
REALbasic Socket ReadMe

Table of Contents:

Background
Synchronous vs Asynchronous Operation
Overhaul for REALbasic 5.0
Changes for REALbasic 5.5

Caveats
1) Verifying a connection
2) Verifying a send
3) New functionality: Orphaned sockets
3a) Orphaned sockets and ServerSocket.AddSocket
3b) ServerSocket/UDPSocket can’t be orphaned
4) Server sockets and UDP don’t mix
5) Use packets to prevent repeated data
6) UDP isn’t reliable
7) PPP connections on Windows
8) UDP sockets and binding
9) Connect within events can be hazardous
10) Connection types
11) ServerSocket.Listen
12) Privileged ports
13) File descriptor limits
14) Easy networking class command IDs
15) Calling .Read, .Write, etc on the easy networking classes
16) Using the easy networking classes with standards
17) Largest UDP packet you can send

Known Issues
1) Listening is not secure
2) SendToSelf on Windows
3) PPP functions not supported in some instances

Obsolete Workaround
1) Polling ("tickling") the socket for faster send speeds
2) Polling during socket events

Deprecations for 5.0
1) Socket.PPP functions
2) Socket class

New Features and Nifty Ideas for 5.0
Faster send speeds
Better socket stability
TCPSocket.SendProgress event
SocketCore.SendComplete parameter
TCPSocket.RemoteAddress returns an IP
TCPSocket.Disconnect closes the socket
New SSLSocket inheriting from TCPSocket
New System.PPP functions
System.PPPConnect parameter
New ServerSocket class
Multiple simultaneous incoming connections fixed

New Datagram class for UDP sockets

New Features and Nifty Ideas for 5.5
Getting the system to pick a port for you
What port am I really bound to?
Multiple interface support
New networking helper classes

Things to Watch Out For
Circular references
Orphaned sockets that never close
Socket state after an error
Socket state after Close
System.PPPConnect and user interaction
Beware of Endian-ness!
Setting the socket's port after connecting

Miscellaneous Tidbits
TCPSocket.Address purpose and scope
TCPSocket.Address is sometimes empty
TCPSocket.DataAvailable events explained
UDPSocket.DataAvailable events explained

Protocols Explained
TCP: Transmission Control Protocol
UDP: User Datagram Protocol
PPP: Point-to-Point Protocol

Easy Networking Classes Explained
EasyTCPSocket
EasyUDPSocket
AutoDiscovery

Socket Errors Explained

PPP Status Codes Explained

Socket Classes
SocketCore (provides base functionality for inheritors)

TCPSocket (inherits from SocketCore)
SSLSocket (inherits from TCPSocket)
EasyTCPSocket (inherits from TCPSocket)

UDPSocket (inherits from SocketCore)
EasyUDPSocket (inherits from UDPSocket)

AutoDiscovery (inherits from EasyUDPSocket)
Datagram (used with UDPSocket)
ServerSocket (manages multiple sockets in a pool)
System.PPP functions (replace old Socket.PPP functions)
NetworkInterface (manages multiple interfaces)

Version History

Background:
This document describes the socket functionality in version 5.5 of REALbasic. It might not be

correct for earlier versions, though we try to keep this document updated as of REALbasic version 5.0.
Prior to version 5.0, REALbasic supported only one socket protocol: TCP/IP. This is a connection-

oriented protocol that has been an Internet standard for years. Then, with version 5.0, many new features
and changes were implemented (including adding support for new protocols such as SSL and UDP). For
version 5.5, there are many improvements to the existing socket functionality, as well as new features and
a better underlying implementation for Mac OS X.

Note that the ServerSocket and the SSLSocket are Pro-Only features of REALbasic.

Synchronous vs Asynchronous Operation:
In general, there are two modes of operation for a socket: synchronous and asynchronous.

REALbasic sockets are always asynchronous (though synchronous operation can be simulated by the
calling code).

Synchronous sockets operate under the assumption that once the socket call has been made, it
will not return control to the calling program until after it has received some form of response. This means
that either an error has occurred, or the function has completed. Example: if you say Socket1.Connect,
control will not be given back to your program until the socket has connected, or it has determined there
was an error with the connection process.

Synchronous sockets, while easy to program for, tend to be slow. This is because the majority of
the time is spent in waiting for the socket instead of doing something useful, like queuing data to send
once the connection is complete.

Asynchronous sockets return control back to the calling program immediately. The calling
program will receive a notification via a callback function letting it know whether there was an error, or the
function completed properly. To go back to the previous example, an asynchronous call to
Socket1.Connect will return immediately, but you won't know the outcome of the process until you receive
a Socket.Connected event, or a Socket.Error event.

Asynchronous sockets tend to be faster than their synchronous counterparts because they give
the calling program the control it needs to do other things, such as process user input, etc. This means
your sockets will work faster. But there are some caveats you need to be aware of (see below).

Overhaul for 5.0:
With REALbasic 5.0, sockets have gone through a major overhaul. The first major change was

the introduction of a new base class, SocketCore, from which other socket classes inherit. This class
handles the core functionality for the sockets that RB provides. SocketCore is an abstract class; that is, it
cannot be instantiated by itself.

From this new SocketCore base class, two new subclasses are derived: TCPSocket and
UDPSocket. The old Socket class has been deprecated (though it is still functional), and you are
encouraged to use the new TCPSocket class instead. TCPSocket has new functionality, and has been
rewritten for Mac OS 9 and OS X.

You can check out the specs for all socket-related classes at the end of this document.

Changes for 5.5:
With REALbasic 5.5, sockets have gone through another overhaul for Macintosh OS X. With

Apple moving further away from supporting OpenTransport (in fact, they officially dropped support for
OpenTransport when OS 10.3 was released), we decided to move the underlying implementation from
OT to using straight BSD sockets. So again with version 5.5, sockets have been rewritten under the hood
to use the best technology provided by the operating system. Consequently, with this change, we were
able to make our sockets behave identical on three separate platforms. Since OS X, Linux and Windows
all have a POSIX-compliant (well, mostly) implementation of BSD sockets, the code under the hood is
identical for all three of those platforms. This should provide for an identical experience on all three of
those platforms where sockets are concerned.

In addition to the under-the-hood changes we made, we added some new classes to help you
write networking code without worrying about all the little details. We now provide three new helper
classes for networking: EasyUDPSocket, EasyTCPSocket and AutoDiscovery.

Caveat One:
Just because you have called TCPSocket.Connect does not guarantee that you are connected to

the remote side. All it means is that the connection process has begun. Sometimes, calling
TCPSocket.Connect (especially to localhost, or 127.0.0.1) will result in what seems like an instant

connection. Do not be fooled by this into thinking it will work that way always! Due to network latency,
among other issues, it is possible for your socket to take a long time to finish the connection process.
Because of this functionality, you should not call TCPSocket.Write until you know you are connected.

The two ways to know that you are connected are to either wait until you receive a
TCPSocket.Connected event, or to test the return value of SocketCore.IsConnected. If you fail to adhere
to this, you either cause the connection process to halt, resulting in a lost connection error (102), or an
out of state error (106).

Caveat Two:
When you say TCPSocket.Write, you are beginning the process of sending data across the wire.

Certain low-level socket service providers have limits on the maximum amount of data the socket can
send in one batch. This is dependent on a few factors; among them are which library is providing the
TCP/IP services (such as OpenTransport on Mac Classic, WinSock on Windows, etc), and how much
data you are trying to send.

You might think that the provider will only affect transfers of large data, but this is not true. Never
assume how much data REALbasic will send between calls to TCPSocket.SendProgress. It is natural to
see this fluctuate. Each provider that RB uses specifies the max and min amount of data it will send.

If you are trying to send data larger than the max, it will not be sent all in one chunk. Instead, RB
will loop until your data is completely sent, giving you periodic TCPSocket.SendProgress events. If you
try to send too little data, the underlying provider will queue your data up. This doesn't always mean your
data has been sent (though you WILL receive a TCPSocket.SendProgress and
SocketCore.SendComplete event).

This is due to the underlying provider implementing the Nagle algorithm, which helps network
productivity. For every chunk of data that is sent across the network, there is a header attached to the
beginning of that data. You never will have to deal with these headers, because they are taken care of for
you by the underlying provider. The reason this is important, though, is that if you are sending one and
two bytes at a time across the network, you are also attaching these 40 or so bytes of header to each
send. This can bog down a network extremely easily, unless the Nagle algorithm is implemented. All
network providers that we use implement this algorithm.

Currently, REALbasic does not allow the user to turn this feature off, and leaves it set to the
default. Note that, if you send only one byte of data, and never send anymore, the system will still send
your one byte out even though the Nagle algorithm is enabled.

The conclusion of this caveat is: do not assume knowledge of when your data will have been
completely sent. Rely on the SocketCore.SendComplete event to tell you when the send has completed.
Also, do not rely on the bytesSent parameter of the TCPSocket.SendProgress event to be the same value
every time. This value will change based on how many bytes of data the underlying provider was able to
send.

Note: if you are going to be sending small chunks of data across a network (especially a small
network), it might make more sense to use the UDPSocket class instead.

Caveat Three:
One of the new features of sockets in REALbasic 5.0 is the ability to orphan a socket. (This is a

necessity because of the ServerSocket class.) In making this new functionality possible, we have
introduced some new behavior to the socket class. When you call SocketCore.Connect,
TCPSocket.Listen, or return a socket in ServerSocket.AddSocket (*see caveat 3a), your socket’s
reference count is incremented.

This means that the socket does NOT have to be owned by the window in order for it to continue
functioning. This proves helpful in certain circumstances. Example: You write your own socket subclass
that implements all of the events for the socket, called MySpiffySocket. Then somewhere in the action
event for a push button, say, you use the following snippet of code:

Dim s as MySpiffySocket

s = new MySpiffySocket
s.port = 7000

s.address = "somecool.server.com"
s.connect

The socket will continue to live and stay connected, even though there is nothing owning a reference to it
(except the within the push button's action event).

Due to this new functionality, a socket will continue to live until you tell it to die. If you have
dragged a socket to a window, and then called SocketCore.Connect or TCPSocket.Listen before closing
the window, there will be two references to the socket, whereas in previous versions of REALbasic there
was only one reference (the window's reference). In this case, the socket will continue to function until its
connection is terminated, even after the window has been closed.

The termination can be done either locally (by calling TCPSocket.Close) or remotely (with the
remote host terminating the connection). If you have not called Connect or Listen for your socket, then
there will be only one reference to it (the window’s), and it will be destroyed appropriately when the
window closes. In either case, once the application terminates, all sockets are released gracefully, and
your app will not leak memory.

Caveat Three-A:
The reference count isn't incremented as soon as you return a socket in

ServerSocket.AddSocket. Instead, the socket is pooled internally, and its reference count is incremented
when the server hands off a connection to that socket. So if the server socket is destroyed before it uses
one of these pooled sockets, the unused sockets get destroyed as well. Until that time, the ServerSocket
is the parent of the TCPSocket, and so the TCPSocket will stick around. If a socket returned from the
ServerSocket.AddSocket event has been handed a connection, and then the ServerSocket is destroyed,
the socket will remain connected and continue to function.

Caveat Three-B:
The new functionality described above tells you that a socket can be orphaned. This does not

hold true for a ServerSocket or a UDPSocket. Each of these sockets MUST have a reference holder. If it
does not, then once the socket goes out of scope in your code, it is destroyed. However, when the
ServerSocket is destroyed, it will not terminate any of your already-made connections (if there are any). It
will only destroy TCPSockets that have not been connected.

Caveat Four:
A ServerSocket can only return a TCPSocket (or a subclass of TCPSocket) in its AddSocket

event. Since UDP is a connectionless protocol (see description of the UDP protocol), it does not make
sense for a ServerSocket to deal with UDPSockets, or any subclass of a UDPSocket.

Caveat Five:
This really is more of a "watch out for this" than a caveat. And it's been around since the dawn of

time with EVERY application that uses sockets, not just REALbasic.
When you say TCPSocket.Write, the string gets added to an internal buffer, and we start writing

the data out to the socket. If you have multiple calls to TCPSocket.Write in sequential order, sometimes
the writes will get strung together.

Example: if you have a chat program, and the user clicks the send button 5 or 6 times in a row
really fast to send the string "Hello World" to another socket, the other socket will sometimes receive
"Hello WorldHello World". This is because you have added information to the buffer fast enough that the
previous send hasn't completed yet, so you have two of your messages on the buffer for the next time
thru the send loop.

This is not a bug! It's expected functionality. In order to avoid this process, I recommend you
packetize your information. Include a header with your data. Example: instead of just "Hello World", send
"<Msg>Hello World</Msg>". You have a beginning tag that your receiver can parse out, followed by data
and an ending tag. Then if the information gets strung together into <Msg>Hello
World</Msg><Msg>Hello World</Msg>, you can parse it, and realize there are two messages there
instead of one. Another approach is to have the length of the packet in the header so you know how
much data belongs to each packet.

Caveat Six:
Due to the nature of the UDP protocol, there are certain things you cannot take for granted with a

UDPSocket that you can with a TCPSocket. UDP does not guarantee that your data will make it to its
intended target. Also, UDP does not guarantee the order in which you send packets out will be the same
as the order in which the remote side receives the packets. See the discussions about the TCP and the
UDP protocols for more details.

Caveat Seven:
Due to the way the RAS Manager works on Windows, REALbasic cannot determine which

connection in your dialup connection list is the default. This is a limitation of the APIs in the operating
system. Because of this, if you call System.PPPConnect in non-user interactive mode (by passing false),
RB will use the first entry it finds in the connection list.

Caveat Eight:
When using UDPSockets, most operations require that you be bound to a local port. For

example, you cannot set the SendToSelf flag if you have not bound yourself (using the
SocketCore.Connect method). This is also the case for setting RouterHops and
Join/LeaveMulticastGroup. So before you make these calls, be sure to set the SocketCore.Port property
and call SocketCore.Connect on the socket, otherwise you will get an out-of-state error (106).

Caveat Nine:
Due to the speed increases with REALbasic 5.0 sockets, calling TCPSocket.Connect from within

the TCPSocket.Error event can cause stack overflow exceptions. This situation will occur if you are
flooding a server with requests that it is denying. The connection will occur, and the error will fire
immediately. Then, from within the error event, you try to connect again, which (in turn) fires another error
event. Use caution with socket events so that you do not get yourself into this type of situation. One
workaround for this behavior is to use a timer to cause the connection process to happen. Another work-
around is to set a flag before calling the initial TCPSocket.Connect call and checking the state of that flag
before starting a new connection attempt.

Caveat Ten:
Know your connection types when using SSLSockets. Not all servers will accept a connection

with the default ConnectionType (SSLv23). This is server-specific, and generally not known beforehand.
I suggest working around it by making multiple connection attempts to the server. If the initial attempt is
rejected (causes a 102 error), then try again with a different ConnectionType property set. Just be sure to
have a way to terminate this process if none of the connection types works, or if you get an error other
than 102 (*see Caveat Nine).

Caveat Eleven:
When you call ServerSocket.Listen, this begins an extensive process. The first thing that occurs

is that the ServerSocket needs to fill its internal pool of handoff sockets. It does so by calling the
AddSocket event. This event will be called until we have enough sockets in the internal pool of available
sockets. Currently (as of 5.5), we will fill up to the MinimumSocketsAvailable plus ten extras. Note that if
you return nil from this event, it will throw a NilObjectException. Only after this process has completed is
the ServerSocket ready to hand off connections. Connections that come in while the server is populating
its pool are rejected. To know when the ServerSocket is ready to accept incoming connections, check the
ServerSocket.IsListening property.

Caveat Twelve:
On Mac OS X and Linux, attempting to bind to a port < 1024 will cause a SocketCore.Error event

to fire with an error 105 unless your application is running with root permissions. This is due to security
issues that can arise from allowing sockets to listen on privileged ports. This is not a bug, but a security
feature that is provided in some operating systems.

Caveat Thirteen:
There is a limit to the number of sockets your application can have opened concurrently on Mac

OS X (prior to OS 10.3). This is because BSD sockets use a file descriptor for each open socket (one
that is currently bound to any port on the machine). The standard limit on OS X is set to 256 file
descriptors, but this limit can fluctuate based on the amount of RAM in your machine. This means that
you can have, at most, 256 sockets connected at once per application. In practice, this number tends to
be less than 256, because your application might have files open, or the underlying API calls might be
using a file descriptor for their purposes. This is not an issue on Windows, Mac OS 9 or (to a certain
extent) Linux, and it is not a bug in REALbasic. It is a caveat of the underlying BSD system. For more
information, and a possible workaround, check out this web page:
http://support.realsoftware.com/feedback/index.php?p_public_id=uvadknxt
Note that you can run into this issue on Linux, but it tends to be far less likely. The same Mach-O call can
be made on Linux as well to reset the file descriptor limit for the user.

Caveat Fourteen:
One caveat to the message-based system we have implemented is that REAL Software reserves

all command IDs less than 0 for internal use. That means, when you are sending messages, you should
not use a command ID < 0 as it may very well cause issues with other classes (such as the
AutoDiscovery class).
Caveat Fifteen:

Even though you have access to the TCPSocket.Write, Read and ReadAll methods in the
EasyTCPSocket class, you should _never_ call them. Doing so will cause a RuntimeException to be
raised (with an appropriate message set). This is so the internal protocol is enforced. The same is true
for the EasyUDPSocket and AutoDiscovery classes.

Caveat Sixteen:
The easy networking classes were created to help you communicate with other REALbasic

applications easier. As such, you cannot use things like the EasyTCPSocket class to write your own
HTTPSocket. This is because we enforce a protocol under the hood (on both the sending and the
receiving ends) that does not just send out raw data (like a regular TCPSocket or UDPSocket would). So,
if you need to communicate with another application over the network (like an FTP server, or some other
protocol), chances are, you will not be able to use the easy networking classes provided. This also
applies to the AutoDiscovery class. AutoDiscovery is not Rendezvous (or Zeroconf); it is a proprietary
protocol under the hood. Because of this, you will not be able to auto-discover things like iChat over your
network.

Caveat Seventeen:
The UDP protocol allows you to send small packets across the network in a low-latency fashion.

But with this extra freedom comes a few problems you need to watch out for. In addition to the fact that
packets may be dropped or rearranged before they reach their destination, there is a concept of a
maximum transmission unit (also called MTU). This MTU limit can fluctuate from system to system (on
some systems, it's a user-specific setting that can be changed), but is typically around 1500 bytes. To be
safe, always try to keep the packets you send out to having less than 1024 bytes of payload data. Failure
to do so can cause the packets to be dropped by routers or rejected by network transports.

Known Issue One:
Currently, setting SSLSocket.Secure to true and then saying SSLSocket.Listen will NOT create a

secure listening socket. Doing so will create a non-secure listening port on your machine at the port
specified, and any connections received will not be secured. A secure listening feature might be added to
REALbasic later.

Known Issue Two:
Setting the SendToSelf property might not work on all versions of Windows. MSDN states that

the SendToSelf property on Windows 95 and NT 4 cannot be turned off. A multicasting socket will always
receive the data it sends out on these systems.

Known Issue Three:
System.PPPConnect, System.PPPStatus and System.PPPDisconnect are currently not

supported for Linux and Mach-O builds. This may change in the future.

Obsolete Workarounds No Longer Needed:
In previous versions of REALbasic (before 5.0), you could speed up your send process by a fair

amount by "tickling" the socket with a timer. You would do this by having a timer say Socket.Poll in its
Action event while the socket was doing a send. This trick should no longer be needed, though it isn't
detrimental to leave it in. Sockets now internally keep track of the fact that they have more data to send,
and are in a tighter send loop. Once the data has finished sending, the socket no longer takes up as
much processor time.

In old applications that I have come across, I have seen calls to Socket.Poll strewn throughout
Socket event handlers. These calls are not necessary. The Poll method is used to allow RB to fire
events to you, as well as update internal data structures. Since you are already in an event, then calling
Poll might cause reentrancy issues. You should only call Poll if you are in a tight loop and need to give
RB some time to update its internals.

Deprecation One:
Socket.PPPConnect, Socket.PPPStatus and Socket.PPPDisconnect are now deprecated. This is

because they don’t make much sense. A PPP connection (point to point protocol) is a dial-up connection
that must occur before a TCP/IP connection can be used. It is a feature that is used when Ethernet is not
available, to dial in to a server for your Internet access. This is not a feature that is used on a socket-by-
socket basis. So calling Socket1.PPPConnect or Socket2.PPPDisconnect will affect ALL sockets on the
system. In fact, saying Socket.PPPDisconnect will affect sockets that do not even belong to REALbasic!
These features are system-wide feature, and thus have been moved to the System class. Instead of
using the Socket.PPP functions, please use their System counterparts. These are System.PPPConnect,
System.PPPStatus and System.PPPDisconnect. The functionality of these features remains the same.

Deprecation Two:
The old Socket class has been deprecated, and replaced with the new TCPSocket class, which

can be used identically to the old Socket class. We strongly recommend that you use TCPSocket in
newer versions of REALbasic. The only good reason to use Socket instead is if you need backwards
compatibility with REALbasic 4.5 and earlier (though the new socket features will obviously not be
available in the earlier versions).

New Features and Nifty Ideas for REALbasic 5.0:
* TCPSocket send speeds are faster. Due to the internal loops automatically tightening, and

sending the maximum amount of data that the underlying protocols allow per send, you should see an
increase in the speed of your TCPSocket.Write calls. This is a Mac-only improvement (since on Windows
and Linux, the send speeds have never been bound to the event handling loop).

* Better socket stability. The socket code now gracefully handles the disconnection process. It
tries to do an orderly disconnect when possible (which allows for all data transfers to finish), and will only
fall back on an abortive disconnect when it is not possible to do an orderly one. Sockets now handle flow
control, so sending large amount of data out will not drop data during the send or the receive process. It
is possible for packets of data to come in before the socket has finished the connection process. In the
event this happens, the new socket code is prepared to handle this, so your initial packets will not be lost
either. This is a Mac-only improvement; our Windows sockets were already prepared to handle these
situations.

* TCPSocket.SendProgress event. This new event allows you to determine send speeds, and
tells you how many bytes of data you have sent since your last SendProgress event, as well as how
many bytes are left to send. By returning true from the send progress event, you are canceling the
current transfer. This does NOT close the socket's connection; it just clears the send buffer. You can use

this new event to determine that a connection is too slow, and cancel it. Once all of the data has been
transferred, you will get a final TCPSocket.SendProgress event, followed by a SocketCore.SendComplete
event. This is a new feature to both Mac and Windows.

* SocketCore.SendComplete now gets a parameter. This parameter will let you know whether
the transfer has completed, or has been cancelled by returning true from TCPSocket.SendProgress. You
can use this information to update different status variables, or to alert the user of transfer success or
failure. If the user aborted, this parameter is true, and if the send was completed, this value is false. This
is a new feature to both Mac and Windows. SocketCore.SendComplete's parameter will always be false
for UDPSockets, since there is not a SendProgress event for that class.

* TCPSocket.RemoteAddress for a connecting socket now returns the IP address of the remote
host connection for Windows sockets. In previous versions of REALbasic, a connecting socket on
Windows would return a blank string if you asked it for the TCPSocket.RemoteAddress. This has been
fixed, and the socket will now return the correct IP address of the remote connection. Now, on either
platform, you can test to make sure the IP address you WANTED to connect to is the same as the IP
address you are currently connected to.

* TCPSocket.Disconnect will now close your socket, and fire the SocketCore.Error event, passing
in a 102 error to let you know that the socket has been disconnected.

* SSLSocket has been added (REALbasic Pro only) as a subclass of TCPSocket. With this new
feature, you can now create Secure Socket Layer sockets to connect with. You can choose the protocol
you want to connect with by setting the SSLSocket.ConnectionType property. There are currently four
different protocols supported by REALbasic. They are:

0 - SSLv2 SSL (Secure Sockets Layer) version 2
1 - SSLv23 SSL version 3, but can roll back to 2 if needed
2 - SSLv3 SSL version 3
3 - TLSv1 TLS (Transport Layer Security) version 1

The default protocol is SSLv23, which is compatible with most SSL servers. You must set this property
BEFORE you call SSLSocket.Connect. Trying to set the protocol after you have begun the connection
process will have no effect.

* System.PPP functions. In addition to deprecating the Socket.PPP functions, some work was
done on the Windows side to improve them. PPP connections are now established using RAS (Remote
Access Service) connections. On Windows 2000/XP, the standard RAS connection dialog will appear
when you say System.PPPConnect, and allow users to choose which phonebook entry they want to
connect with. On all other Windows platforms, these dialogs are not available. Therefore, REALbasic will
attempt a dialup connection using the default phonebook entry, including the username and password
supplied. If either of these fields is missing, the connection process will fail, and a dialog box will appear
telling the user the reason for failure.

* System.PPPConnect now takes an optional parameter that gives you the choice to allow user
intervention during the dial-up process, or whether you want it to run by itself. Some users might have
more than one ISP, and the default might not be the one they want to call. If this is the case, call
System.PPPConnect(true) to allow user intervention when possible. This feature is not available on all
systems; see "Things to Watch Out For" for more information.

* ServerSocket has been added (REALbasic Pro only). This is a totally new concept to
REALbasic, and one that was impossible to achieve using the old Socket class. A server socket is a
permanent socket that listens on a single port. When a connection attempt is made on that port, the
server socket hands the connection off to another socket, and continues listening on the same port.
Previously, it was difficult to obtain this functionality due to the latency between a connection coming in,
being handed off, creating a new listening socket, and beginning the listening process. If you had two

connections coming in at almost the same time, one of the connections would be dropped due to there
not being a listening socket on that port.

* Sockets now appropriately handle multiple simultaneous incoming connection requests. In
previous versions of REALbasic, this phenomenon would provide a range of results, including crashes,
hangs and dropped connections. This bug has been fixed for the Macintosh. It was not an issue with
Windows sockets, and continues to be a non-issue on that platform.

* An implementation of the UDP protocol has been added to REALbasic 5.0 in the form of the
UDPSocket class. A description of the class is at the end of this document. See also the discussion of
the differences between the TCP and UDP protocols.

* The UDPSocket class makes use of a new data structure, called Datagram. This class is used
to store data, as well as an IP address, for purposes of sending and receiving data. When you call
UDPSocket.Read, the Datagram will contain the originating machine's IP address, and the data that was
sent to you. When calling UDPSocket.Write (assuming you pass in a Datagram), it should contain the
data you want to send, and IP address of the remote machine. This IP address can also be a multicast or
broadcast address.

New Features and Nifty Ideas for REALbasic 5.5:
* Getting the system to pick a port for you. There are some instances where you'd like the

system to pick a port for you. These needs can range from needing a port for passive FTP file transfers,
or perhaps you wrote a class to auto-discover other applications on the network and you'd like to
negotiate a port to connect over TCP on. Well, now you can have REALbasic pick the port for you. If you
specify a SocketCore.Port = 0 and then call TCPSocket.Listen or UDPSocket.Connect, we will pick a
random, open port for you to connect on. Most often, these ports will be in the range 49512 to 65535
(inclusive).

* Determining what port you're really bound to. If you used the above method for obtaining an
open port, then you'll probably need to use this method to determine which port you're actually bound to.
After calling SocketCore.Connect or TCPSocket.Listen, you can check the SocketCore.Port property to
see which port was assigned. This means that the port number will change from 0 to the port number we
are actually bound to. There's another benefit to this duality to the Port property. There is a hacking
technique called port hijacking where the hacker steals a port out from under you. If this is the case,
checking the SocketCore.Port property will tell you if someone has hijacked the port out from under you.
It can be a good idea (though paranoid) to periodically check to make sure the .Port property lists a port
that you expect to see. For instance, if you were listening on port 80 for HTTP connections, but the .Port
property says you're listening on port 2113, then something might be wrong.

* Multiple interface support. New with version 5.5 is multiple interface support for Mac OS X,
Windows and Linux. This allows you to write applications that can bind to different NIC cards installed on
a user's machine. You can use this to write tunneling applications, and various other things you couldn't
previously do in REALbasic. To see what interfaces are installed on the user's machine, you can use the
System.GetNetworkInterface method, and assign the obtained interface object to a
SocketCore.NetworkInterface property. For more information on the type of information available, please
see the NetworkInterface API section.

* New networking helper classes. Have you ever wanted to write your own networked
application, but have just been stuck in how to get it started? How about trying to write applications that
self-discover one another on a local network? All of this (and more) have been made trivially easy now.
The basis behind the new networking classes in RB is to provide you with easy access to a basic protocol
which allows you to send and receive arbitrary messages. This may sound complex at first, but it really
isn't. First, let's define what a "message" is. A message is made up of two pieces of information. One is
an integer representing a command, and the other is a string of data. This command could be anything
you'd like it to be. It is there to allow you an easy way to identify what type of information is in the data
string. For example, you could send a command ID of 100 to mean that the string data is actually a

memory block containing a FolderItem. Or you could have ID 101 mean that the string contains the
username of a remote application. This message mode is enforced on you in that you cannot do an
arbitrary .Write command. If you'd like to send arbitrary data, then you can just make up a "misc
command ID" and send your arbitrary data. When you receive data in, you are no longer given a
DataAvailable event. Instead, we only pass whole messages to you with the ReceivedMessage event.
Because of this, we do not allow you to read in arbitrary data using the .Read or .ReadAll methods.

Things to Watch Out For:
* Circular references. It is often logical for you to have a socket associated with some other data

type, such as an EditField subclass, or something along those lines. In this case, the EditField subclass
has a reference to the socket. When the socket is done with whatever you wanted it to do, it's often
necessary to let the EditField subclass know that the socket is done. This might mean that your socket
has a reference to your EditField subclass (if your socket is subclasses as well). This will cause a circular
reference! You will leak memory if you have a circular reference! You can break the circular reference by
setting one of the two objects to nil (most likely the socket, since it is done with what the EditField had it
doing).

 * Orphaned sockets that never close. If you orphan a socket, you need to be certain that at
some point, that socket will get a disconnect message from its connection. For example, some web
servers will not release a socket once the data has been transferred to it (for efficiency reasons). So once
you are done with the socket, unless you explicitly call SocketCore.Close, it will remain active and
connected. If you think your socket could be in a state where it is left open, keep a reference to the
socket around somewhere, and use SocketCore.Close to terminate the connection. (Note that calling
TCPCore.Disconnect also applies instead of calls to SocketCore.Close).

* Once your socket has received an Error event, it has been closed. The connection has been
torn down and the internal send buffers have been released. This means that once an error has
occurred, and you have left the SocketCore.Error event, the socket will no longer be connected, has
nothing in its send buffer, and is ready to be used again (without calling SocketCore.Close or
TCPSocket.Disconnect). The information that is retained is: the socket's port, address (in the case of
TCPSockets) and LastErrorCode properties, as well as any data left in the socket's receive buffer. If you
attempt to call Connect or Listen on the socket, the internal receive buffer will then be destroyed, so your
socket can start over afresh.

* Calling SocketCore.Close tears down the socket, and will close any connections the socket
might have. The information that is retained is: the socket's port, address (in the case of TCPSockets)
and LastErrorCode properties, as well as any data left in the socket's receive buffer. If you attempt to call
Connect or Listen on the socket, the internal receive buffer will then be destroyed so your socket can start
over afresh. This also applies to calls to TCPCore.Disconnect

* System.PPPConnect behaves slightly differently, depending on how you use it. If you pass in
the value 'true', on the Mac, there will be no intervention. There are no standard dialogs provided for the
user to choose which connection to use on Macintosh. If you pass in 'true' on Windows, and the user is
running on NT 4 or later, then the standard RAS Manager dialogs will appear, and ask the user for
connection information. If the user is running Windows 95/98/ME, or you pass in 'false' (or leave the
parameter blank), then the system will attempt the connection using the first phonebook entry it can find.

* Beware of endian-ness! There are two different endian standards. On Macintosh systems you
have big endian-ness, and on Windows and x86 Linux you have little endian-ness. Sockets work with
streams of data and do not muck with the endian-ness of the data you are transferring. This is fine in
many cases if you are transferring strings from one platform to another (like from Mac OS X to Windows
XP). But if you are transferring binary data (such as from a BinaryStream or a MemoryBlock), you will
want to ensure that the endian-ness matches from server to client regardless of what platform you are on.
You can do this by setting the "LittleEndian" flag on MemoryBlocks or BinaryStreams to the same value
for your client and your server. Failure to ensure that the endian-ness is consistent will result in a
possible byte-order conflict in your application.

* Setting the socket's port after connecting. Once you have called SocketCore.Connect or
TCPSocket.Listen, setting the socket's port will do nothing. This isn't a problem unless you are trying to
set then check the socket's port while you're connected. For example, let's pretend your socket is
currently connected to www.google.com and you do the following:

TCPSocket1.Port = Val(EditField1.Text)
if TCPSocket1.Port = 0 then
 MsgBox "Please enter a valid port"
else
 MsgBox "Thanks!"
end

If the socket is currently bound when you do this, you will never see the "Thanks" message, even if the
EditField contains a valid port. This is because of the new feature (in REALbasic 5.5) that allows you to
check which port you're currently bound to. Since you are connected, the test for .Port = 0 will fail
because you're already bound to some (non-zero) port. However, if your socket isn't bound to any local
port (you haven't called .Connect or .Listen yet, or the socket is Closed), then it will work just fine because
we will just report back whatever is stored there. This probably won't affect many of you, but it's certainly
something to watch out for!

Miscellaneous Tidbits:
* TCPSocket.Address is used only to specify the address to connect to. REALbasic does not

modify this property at all. This is in contrast to TCPSocket.RemoteAddress, which specifies the remote
IP address of the machine you are trying to connect to. If you set TCPSocket.Address to
"www.google.com", then REALbasic will, upon connection, set TCPSocket.RemoteAddress to Google's IP
address ("216.239.39.101"). Before the connection has occurred, and after the connection terminates,
TCPSocket.RemoteAddress will be an empty string. What this means is: don't rely on
TCPSocket.Address to give you any useful information. It is there strictly to tell REALbasic where to
attempt a connection. If you want information about the connection, use TCPSocket.RemoteAddress.

* Because REALbasic does not modify the TCPSocket.Address property, there can be situations
where this property is an empty string. For example, when using a ServerSocket, the TCPSockets that
have a connection handed off to them will not have their TCPSocket.Address property set.

* TCPSocket.DataAvailable events will only fire once control has been given back to REALbasic's
internals. This means that if you have code executing in a tight loop somewhere, your TCPSocket's
DataAvailable event won't get the chance to fire until your code is done executing, or you call
SocketCore.Poll. The DataAvailable event will fire once per chunk of data received. This means that if
you do not read all the data from the buffer, we won't fire another DataAvailable event until new data
arrives. Also, the DataAvailable event is not reentrant, so you will never have to worry about getting a
new DataAvailable event while processing the current one.

* UDPSocket.DataAvailable events will fire when at least one new packet has arrived in
REALbasic's internal packet queue. It is possible (likely even), that more than one packet will have
arrived. We only give you one DataAvailable event for a discrete set of packets. This means that you will
need to loop over the PacketsAvailable property of the UDPSocket in order to read all of the packets in. If
any packets come in while you are processing a DataAvailable event, we will fire the DataAvailable event
for you again.

Protocols Explained:
TCP:

The Transmission Control Protocol, or TCP, is the basis for most Internet traffic. It is a
connection-oriented protocol that provides a reliable way to transfer data across a network. Because of
this principal, all TCP sockets follow a similar procedure for use.

To establish a connection between two computers (to be able to send data back and forth), one

computer must be set up to listen on a specific port. The other computer (called the client) then attempts
to connect by specifying the network address (or IP address) of the remote machine and the port to
attempt the connection on.

This means that in order to send and receive data with a remote machine, both machines must
have some indication that this connection will be established. That happens by either picking a well-
defined port for the listener (or server) to listen on, or by some prior arrangement (e.g. you are the author
of both the server and the client program).

When a server receives a connection attempt for the port it is listening on, it accepts the incoming
connection, and sends an acknowledgement back to the remote machine. Once both machines have
reached an agreement (or are "Connected"), then you can begin sending and receiving data. When you
close your connection with the remote machine, there is a similar handshake process that goes on, so
both computers know that the connection is being terminated.

Picking a port to listen on is not always well defined. If you are implementing a well-known
protocol, such as writing an FTP program, then you know you will need to support listening on port 21.
But if you are writing your own protocol for your application, then how do you know what port to use? I
suggest picking a port at random (at design time, NOT at runtime), and then checking to see whether that
port is registered by another application. You can check this at

http://www.iana.org/assignments/port-numbers

If the number you have chosen is registered by another application, you should choose a different
number.

Due to the amount of error checking, and handshakes, TCP is very reliable. When you send a
packet of information out, it is guaranteed to make it to the remote machine (assuming you have not been
disconnected, either abortive or orderly). But this feature comes at the cost of high overhead. A typical
TCP packet that is sent over the network has around a 40-byte header that goes with it. This header is
checked and changed by all the various machines en route to its destination. This overhead makes TCP
a slower protocol; it gives up speed to gain security. If it is speed you are looking for (e.g. to write a
networked game), then you should look into the UDP protocol.

UDP:
The User Datagram Protocol, or UDP, is the basis for most high-speed, highly distributed network

traffic. It is a connectionless protocol that has very low overhead, but it is not as secure as TCP. To use a
UDP socket, since there is no connection, you do not need to take nearly as many steps to prepare.

A UDP socket must be bound to a specific port on your machine. Once the bind has occurred,
the UDP socket is ready for use. It will immediately begin accepting any data that it sees on the port it is
bound to.

It also allows you to send data out, as well as to set UDP socket options (which will be described
later). To tell which machine is sending you what data, a UDP socket receives a data structure known as
a Datagram. A Datagram consists of two parts, the IP address of the remote machine that sent you the
data, and the 'payload'-- the actual data itself. When you attempt to send data out, you must also specify
information in the form of a Datagram. This information is the remote address of the machine you want to
receive your packet (this is not entirely true; please read further), the port it should be sent to, and the
data you want to send the remote machine.

UDP sockets can operate in various modes, which are all very similar, but have vastly different
uses. The mode that most resembles a TCP communication is called 'unicasting'. This occurs when the
IP address you specify when you write data out is that of a single machine. An example would be
sending data to "www.google.com", or to some network address. It is a Datagram that has one intended
receiver.

The second mode of operation is called 'broadcasting'. As the name implies, this is akin to yelling
into a megaphone. Everyone gets the message, whether they want to or not. If the machine happens to
be listening on the specific port you specified, then it will receive the data.

As you can imagine, broadcasting can amount to huge amounts of network traffic. The good
news is, when you broadcast data out, it does not leave your subnet. Basically, a broadcast send will not
leave your network to travel out into the world. When you want to broadcast data, instead of sending the
data to an IP address of a remote machine, you specify the broadcast address for your machine. This

http://www.iana.org/assignments/port-numbers

address changes from machine to machine, so RB provides a property of the UDPSocket class that tells
you the correct broadcast address.

This brings us to the third mode of operation for UDP sockets: 'multicasting'. It is a combination
of unicasting and broadcasting that proves to be very powerful and practical to use. Multicasting is a lot
like a chat room: you enter the chat room, and are able to hold conversations with everyone else in the
chat room. When you want to enter the chat room, you call JoinMulticastGroup, and you specify the
group you want to join. The group parameter is a special kind of IP address, called a 'Class D IP'. It can
range from 224.0.0.0 to 239.255.255.255. Think of the IP address as the name of the chat room. If you
want to start chatting with two other people, all three of you need to call JoinMulticastGroup with the same
Class D IP address specified as the group. When you want to leave the chat room, you just need to call
LeaveMulticastGroup, and again, specify the group you want to leave. You can join as many multicast
groups as you like; you are not limited to just one at a time. When you want to send data to the multicast
group, you just need to specify the multicast group's IP address. Everyone that has joined the same
group as you will receive the message.

Multicasting has some extra features that make it an even more powerful utility for network
applications. If you want to receive the multicast data you sent (known as "loopback"), set the
SendToSelf property on the socket. If it is true, then when you do a send (to a multicast group) you will
get that data back.

You can also set the number of router hops a multicast datagram will take (known as the "Time to
Live", or TTL). When your datagram gets sent out, it runs thru a series of routers on the way to its
destinations. Every time the datagram hits a router, its RouterHops property is decremented. When that
number reaches zero, the datagram is destroyed. This means you can control who gets your datagrams
with a lot more precision. There are some "best guesses" as to what the value of RouterHops should be.

0 -- same host
1 -- same subnet
32 -- same site
64 -- same region
128 -- same continent
255 -- unrestricted

Note that if your datagram runs through a router that does not support multicasting, it is killed
immediately. Most routers do not support multicast packet forwarding, and so, as a general rule, a
multicast will never escape your local network. Therefore, multicasting can be great in a large internal
network (that spans many routers and switches), but it probably will not work for you if you are trying to
write Internet applications.

The connectionless functionality of UDP makes no guarantee that your data will reach its
destination. You can work around this by creating your own protocol, on top of the UDP protocol, that
acknowledges receives.

I want to go into a little more detail about Class D IP addresses, since they seem to confuse
many users. A Class D IP address is a specially reserved IP that no "real" machine can have. So you do
not have to worry that your local machine's IP address is not Class D, and similarly, you do not have to
worry about IP collisions on your network. These IPs are used by the network transport layer to
determine how to efficiently to send a packet. When broadcasting, the transport will simply blast the
packet out to every computer on the network. But when multicasting, the transport will determine which
machines are connected to the group, and it will only send the packets to those machines. This will cut
down on network traffic for "chatty" protocols, to a large degree. As of this writing, there is no database of
Class D IPs and which applications use them (like there are for registered ports), and so picking an IP can
be somewhat hard to do. A general rule of thumb is to pick a random-looking IP in the Class D range. If
you run into collisions, it's usually pretty trivial to change the address that the socket tries to multicast to,
and collisions are fairly rare.

PPP:
The point-to-point protocol, or PPP, is the way to gain a connection to the Internet with a dial-up

modem. It is system-wide functionality that you can use to get the modem to dial out to an ISP, and upon
successful connection, you TCPSocket and UDPSocket code will function. Due to the system-wide

nature of PPP, the calls that were attached to Socket have been moved to the System class.
Note that if you say System.PPPDisconnect, it will terminate the connection to the Internet. This

means that you will kill other applications' connections as well as your own, so be sure to ask the user if
they want the connection terminated before happily killing all connections to the Internet!

Easy Networking Classes Explained:
EasyTCPSocket:

This class allows you to establish connections and communicate via the messaging protocol with
a remote machine. The main difference between the EasyTCPSocket class and a regular TCPSocket
class is the message-based aspects of the protocol. The connection process is identical to a regular
TCPSocket. However, when you want to send data to a remote machine you must use the SendMessage
method to do so. If you are on the receiving end of a message, you will get the ReceivedMessage event.
For your synchronous listening needs, there is a WaitForConnection method which will synchronously
wait for a predetermined amount of time for a connection to be established. If the connection is made, it
returns true, otherwise, it returns false. Note that we call App.DoEvents internally so that your
application's UI will stay responsive during this call. Also for your synchronous needs, we added the
WaitForMessage method. This method will wait for a message to come in with the command ID you
specify. Once that message comes in, we will return the string data portion of that message. If a
message comes in with a command ID that is different from the one you are expecting, we will drop that
message. Note that this method internally calls App.DoEvents, so your UI will stay responsive.
EasyUDPSocket:

This class allows you to easily communicate with the UDP protocol using unicasting, multicasting
or broadcasting. Like the EasyTCPSocket class, this class is based around the simple messaging
protocol described above. You can send message to either an individual, or to an entire group. One
main benefit to the EasyUDPSocket class is the way we handle multicasting. Everyone has a hard time
remembering what IP addresses can be used with multicasting. It's a bother to try to look up what a
"Class D" IP address is. So we made it simple on you: you don't have to use one if you don't want to.
You can pass any string you would like as a groupName parameter and we will change it into a proper
multicasting IP address for you. This means that you can pass "My Awesome Application" in as the
parameter to Register and use that same string for calls to SendMessageToGroup. You can still pass in a
valid Class D IP address; we will honor them. One other helper function is the Bind function. This sets up
the socket for your properly (so you don't have to set .RouterHops or .SendToSelf up yourself) and does
the bind on the port specified. One thing to keep in mind is that we default to having .SendToSelf on. You
are welcome to override this default yourself by setting SendToSelf to false after the making the .Bind
call. While you can still call [Join/Leave]MulticastGroup, we suggest that you only use Register and
Unregister for your application.
AutoDiscovery:

The AutoDiscovery class does exactly as the name implies; it lets you automatically discover
other applications on the local network. It does so by checking to see what other applications are using
the same group name that you pass in to the Register function. When a member joins (this includes your
application when you first call .Register), you will get a MemberJoined event with the IP address of the
member that joined. When a member leaves, then you get a MemberLeft event with their IP as well. If
you would like a list of the currently connected members, you can get an array of their IPs back by calling
GetMemberList. If you're worried about your member list getting stagnant (due to computer's crashing,
etc), you can always call the UpdateMemberList method which will clear the internal list of connected
members and re-query the network for members.
Socket Errors Explained:

The SocketCore class has a property called LastErrorCode, which is an integer value specifying
what the last error code is. These error codes provide you with key information about your socket, and it
is not advisable to ignore them. Here is a list of the current errors and what they mean.

 100 -- There was an error opening and initializing the drivers. Generally, this means that
either OpenTransport (on the Mac), or WinSock (on Windows) is not installed, or the version is
too low.

 101 -- This error code is no longer used. You will not see any 101 errors in RB 5.0 or later.
 102 -- This is an error you will see more often than most. It means that you lost your

connection. You will get this error if the remote side disconnects (whether forcibly, by a user
pulling the Ethernet cable out of his or her computer), or gracefully (by calling SocketCore.Close).
This might or might not be a true error situation. If the remote side closed the connection, then
it's not truly an error; it's just a status indication. But if the Ethernet cable got pulled, then it really
is an error, but the result is the same: the connection was lost. You will also get this error if you
call TCPSocket.Disconnect.

 103 -- You will get this error if RB cannot resolve the address you specified. A prime example
of this would be a mistyped IP address, or the domain name of an unreachable host.

 104 -- This error code is no longer used. You will not see any 104 errors in RB 5.0 or later.
 105 -- The address is currently in use. This error will occur if you attempt to bind to a port that

you have already bound to. An example of this would be setting up two listening sockets to try to
listen on the same port.

 106 -- This is an invalid state error, which means that the socket is not in the proper state to
be doing a certain operation. Example: calling TCPSocket.Write before the socket is actually
connected.

 107 -- This error means that the port you specified is invalid. This could mean that you
entered a port number less than 0, or greater than 65,535. It could also mean that you do not
have enough privileges to bind to that port. This happens primarily under OS X if you are not
running as root. You can only bind to ports less than 1024 if you have root privileges in OS X.

 108 -- This error means that you've run out of memory. We try to provide you with this error
when the OS or underlying transport provider let us know that an operation could not be
completed due to a lack of memory. Chances are, you will never encounter this error.

These are not the only errors that you can get from SocketCore.LastErrorCode. If REALbasic cannot
adequately map the underlying provider's error code to one of the above codes, we will pass you the
provider's error code. Traditionally, for the Mac Classic, these error codes are negative numbers in the
range [-3211, -3285]. For Windows, Mac OS X and Linux, these error codes are usually positive numbers
in the range [1, 1000]. For a description of the Macintosh Classic error codes, find a copy of MacErrors.h,
for Windows error codes, find a copy of WinSock.h (and add 10000 to the error code provided by
REALbasic), and for Mac OS X or Linux, check out errno.h for error codes.

PPP Status Codes Explained:
When calling System.PPPStatus, there are a number of codes returned to you that have thus far

been confusing, not well documented, and sometimes incorrect. Here is the definitive explanation about
the status values returned.

 0 -- There is no connection present. This means that you haven't called
System.PPPConnect, or that the connection process failed. It could also mean that you have
called System.PPPDisconnect, and the connection has been disconnected.

 1 -- Not used
 3 -- The connection is being closed. This means that you have called

System.PPPDisconnect, and the disconnection process has begun. It does not mean that the
disconnect is complete.

 4 -- The connection is being attempted. This does not mean that you have a valid Internet
connection, and so using your TCPSocket or UDPSockets might cause an error.

 5 -- You have a valid connection. This means that you can use your TCPSocket and
UDPSocket code because you are fully connected.

Socket Classes:

SocketCore:

Properties:
 Port as Integer -- specifies the port to bind on or connect to
 LocalAddress as String -- specifies the local IP address for the machine (Read Only)
 LastErrorCode as Integer -- specifies the last error for the socket (Read Only)

 IsConnected as Boolean -- specifies whether the socket is currently connected or not. For
TCPSockets, this means you can send and receive data, and are connected to a remote
machine. For UDPSockets, this means that you are bound to the port and able to send, receive,
join/leave multicast groups, or set socket options. (Read Only)

 NetworkInterface as NetworkInterface -- specifies which network interface the socket should
use when binding. Leaving this property as nil will use the currently selected interface.

Methods:
 Close() -- closes the socket's connection and resets the socket
 Poll() -- polls the socket manually (allows a socket to be used synchronously)
 Purge() -- removes all data from the socket's internal receive buffer
 Connect() -- attempts to connect. For TCPSockets, the Address and Port properties

must be set.
Events:

 DataAvailable() -- occurs when some more data has come into the internal receive buffer
 Error() -- occurs when an error occurs with the socket
 SendComplete(userAborted as Boolean) -- occurs when a send has completed.

userAborted will always be false for UDP sockets.

TCPSocket (inherits from SocketCore):
Properties:

 Address as String -- specifies the address to try to connect to
 RemoteAddress as String -- specifies the IP address of the remote machine you have a

connection with. (Read Only)
 BytesAvailable as Integer -- tells you how many bytes of data are available in the internal

receive buffer (Read Only)
 BytesLeftToSend as Integer -- tells you how many bytes of data are left to send. This allows you

to write a synchronous socket without implementing any events. (Read Only)
 PPPStatus as Integer -- Deprecated. (Read Only)

Methods:
 Listen() -- attempts to listen on the currently specified port for incoming

connections.
 Read(bytes as Integer, [enc as TextEncoding]) -- reads the amount of bytes specified from the

internal receive buffer. Optionally, if you pass in a non-nil enc, we will set the returned string's
encoding property.

 ReadAll([enc as TextEncoding]) -- reads all the data from the internal
buffer. Optionally, if you pass in a non-nil enc, we will set the returned string's encoding property.

 Write(data as String) -- writes out the string to the remote connection
 Disconnect() -- disconnects the socket, resets it, and fires a socket 102 error.
 Lookahead() as String -- shows the data that is available in the internal queue without removing

it
 PPPConnect() -- Deprecated.
 PPPDisconnect() -- Deprecated.

Events:
 Connected() -- occurs when a connection has been established.
 SendProgress(bytesSent as Integer, bytesLeft as Integer) as Boolean -- tells you that some

progress has been made during the send. Returning true from this event causes the send to be
aborted.

SSLSocket (inherits from TCPSocket):
Methods:

 None

Properties:
 Secure as Boolean -- Specifies whether you want the Connect method to obtain a

secure connection. If this value is false, then you will have a regular TCP (non-secure)
connection. You must set this to true before attempting the connection.

 SSLConnected as Boolean -- Returns true if the connection is currently secure, false
if the connection was made insecurely. (Read Only)

 SSLConnecting as Boolean -- Returns true while attempting a secure connection, false once
the connection has been made (or before attempting the connection) (Read Only)

 ConnectionType as Integer -- Sets the connection type to attempt when calling Connect.
See the "New Features and Nifty Ideas" section for the various connection types REALbasic
currently supports. This property must be set before attempting the connection.

Events:
 None

EasyTCPSocket (inherits from TCPSocket):
Methods:

 SendMessage(command as Integer, data as String) -- Constructs a message and
sends it to the remotely connected side. Note that commands should be greater than (or equal
to) 0.

 WaitForConnection(timeout as Integer) as Boolean -- Initiates a listen and waits for
a connection to come in. If the connection is established before the operation times out, then this
method returns true (otherwise it returns false).

 WaitForMessage(command as Integer) as String -- Waits indefinitely for the
specified command to come in. When the command arrives, we return the data portion of the
message. Note that if any commands come in that are not the ones we are waiting for, they are
dropped.

Properties:
 None

Events:
 Error(code as Integer) -- Replaces the TCPSocket error event. Functions the same, but instead

this event passes in the error code so you don’t have to check the LastErrorCode property.
 ReceivedMessage(command as Integer, data as String) -- Fires when a new, complete

message has arrived.

UDPSocket (inherits from SocketCore):
Properties:

 RouterHops as Integer -- specifies how many routers hops the data sent out can make. This is
also known as the Time To Live (or TTL). This property only applies to multicast sends.

 SendToSelf as Boolean -- specifies whether the data you send out will be sent to yourself as well.
This is also known as loopback. This property only applies to multicast sends.

 PacketsAvailable as Integer -- tells you how many packets are available in the internal
receive buffer (Read Only)

 BroadcastAddress as String -- specifies the machine's broadcast address. You can specify
this address in a Write, and the data will be broadcast across the network (but you will not receive
the data you sent back). (Read Only)

Methods:
 JoinMulticastGroup(group as String) as Boolean -- attempts to join the specified multicast

group. If the socket successfully joined, it returns true. You can join as many multicast groups as
you'd like. The group parameter specifies a Class D IP address, in the range: 224.0.0.0 thru
239.255.255.255

 LeaveMulticastGroup(group as String) -- leaves the specified multicast group
 Write(address as String, data as String) -- constructs a Datagram and sends the data to

the specified address. If the address is that of a multicast group, all members of that group will
get the data. If the address is the broadcast address, everyone on the network will get the data.
If the address is an IP address, then the data is unicast to just that address.

 Write(data as Datagram) -- writes the data to the address specified.
 Read([enc as TextEncoding]) as Datagram -- retrieves a datagram from the internal receive

buffer. The address member of the datagram is the remote address from which the data was

sent. Optionally, if you pass in a non-nil enc, we will set the returned string's encoding property.

Events:
 None.

EasyUDPSocket (inherits from UDPSocket):
Properties:

 None

Methods:
 Bind(port as Integer) -- Binds the EasyUDPSocket to the port specified. This is a

helper function so you don’t have to set .Port and call .Connect.
 Register(groupName as String)-- Registers your class so it can receive multicasts. groupName

can be any string. We will map it to a valid Class D IP address. For example, you can
say .Register(“Aaron’s Cool App”) and we will hash that to a valid Class D IP address. However,
if you use a valid Class D IP address, we will use that without modifications.

 Unregister(groupName as String) -- Unregisters your class from the group which you had
previously registered yourself with.

 SendMessageToGroup(groupName as String, command as Integer, data as String) --
Constructs and sends a message to the group you registered with.

 SendMessageToIndividual(ip as String, command as Integer, data as String) -- Constructs and
sends a message to the individual you specify.

 WaitForMessage(command as Integer, ByRef fromIP as String) as String -- Waits for the
command specified to be received. Will pass you back the IP address which sent the message
by reference and return the message from the method call.

Events:
 Error(code as Integer) -- Replaces the TCPSocket error event. Functions the same, but instead

this event passes in the error code so you don’t have to check the LastErrorCode property.
 ReceivedMessage(fromIP as String, command as Integer, data as String) -- Fires when a

new, complete message has arrived.

AutoDiscovery (inherits from EasyUDPSocket):
Properties:

 None

Methods:
 GetMemberList() as String() -- Gets an array of the members we currently know about in our

group.
 SendMessageToGroup(command as Integer, data as String) -- Sends a message to the

group we currently belong to. This is a helper function so you don’t need to keep track of the
group you belong to.

 UpdateMemberList() -- Removes all members from our cached list and re-queries the
group to see who’s still active.


Events:

 MemberJoined(ip as String) -- Fires when a member joins our group
 MemberLeft(ip as String) -- Fires when a member leaves our group

Datagram:
Properties:

 Address as String -- specifies an IP address. It is the address of the remote
machine that you are sending data to, or receiving data from.

 Data as String -- specifies the data that you are sending out, or have received.

Methods:
 None

Events:
 None

ServerSocket:
Properties:

 Port as Integer -- specifies the port to bind to for listening
 MinimumSocketAvailable as Integer -- specifies the minimum number of sockets to keep

around at any given point in time. If the server falls below this threshold of available sockets, it
will call the AddSocket event to replenish its supply of sockets.

 MaximumSocketsConnected as Integer -- specifies the maximum number of sockets that the
server will allow to connect. When a socket disconnects (that was connected from the
ServerSocket), the server will allow one more connection.

 LocalAddress as String -- specifies the local IP address of the machine. (Read Only)
 IsListening as Boolean -- specifies that the ServerSocket is listening for incoming

connections. (Read Only)
Methods:

 Listen() -- starts the server listening.
 StopListening() -- closes the ServerSocket so it can no longer accept incoming connections.

Events:
 AddSocket() as TCPSocket -- occurs when the server socket needs a socket for its internal

pool. Will get called when the ServerSocket first begins listening, and be called as many times as
it takes to entirely fill the internal socket pool up (up to ServerSocket.MaximumSocketsConnected
times).

 Error(errorCode as Integer) -- occurs when the server socket has an error

System.PPP* Functions
Methods:

 PPPConnect([userInteraction as Boolean]) -- attempts a dial-up connection, might be with
user interaction

 PPPDisconnect() -- disconnects the dial-up connection

Properties:
 PPPStatus() as Integer -- retrieves the current application's PPP status (Read Only)

System.NetworkInterface Functions:
Methods:

 System.NetworkInterfaceCount() as Integer -- Returns a count of the number of interfaces
currently installed on the system. Note that the loopback device may or may not be listed
depending upon the version of your operating system. For example, on Windows, the loopback
interface will not be listed, but on OS X, it may be listed.

 System.GetNetworkInterface(index as Integer) as NetworkInterface -- Returns a
NetworkInterface object corresponding to the index you passed in. This index is 0-based.

NetworkInterface:
Properties:

 MACAddress as String -- Holds the MAC address for the NIC card
 IPAddress as String -- Holds the IP address currently assigned to that interface
 SubnetMask as String -- Holds the subnet mask (also called the netmask) for that interface

Methods:
 None

Events:
 None

If you have questions, comments, additions or errata, please contact aaron@realsoftware.com or
support@realsoftware.com

Version History:
Sep 30 2002 -- AJB -- Initial write
Oct 29 2002 -- AJB -- Added information about SocketCore and UDPSocket classes
Nov 06 2002 -- AJB -- Added information about the Datagram class
Nov 07 2002 -- AJB -- Added information about socket error codes
Nov 12 2002 -- AJB -- Added more information about our PPP implementation, updated socket error
codes
Nov 19 2002 -- AJB -- Added some useful miscellaneous information about Address and RemoteAddress
Nov 19 2002 -- AJB -- Added the IsListening property to ServerSocket
Nov 20 2002 -- AJB -- Specified which properties were read only, added documentation for SSLSocket
Jan 28 2003 -- AJB -- Updated some of the documentation to rectify confusing parts.
Apr 04 2003 -- AJB -- Updated information, and added new caveats.
May 02 2003 -- AJB -- Added DataAvailable information
Jun 17 2003 -- AJB -- Added warning about endian-ness
Dec 22 2003 -- AJB -- Updated to make the document 5.5 compliant
Jan 02 2004 -- AJB -- Added another "gotcha" to watch out for with getting the port.
Jan 23 2004 -- AJB -- Updated the NetworkInterface information

