
Mulle kybernetiK presents http://www.mulle-
kybernetik.com

The MulleCipher Cryptography Framework v1.1

Containing
      Digests

MD-5
SHA-1
CRC32    (not by default)

      Ciphers
BlowFish
TwoFish

    (C) Copyright 2000,2002 Mulle kybernetiK. All rights reserved.

    Permission to use, copy, modify and distribute this software and its documentation
    is hereby granted, provided that both the copyright notice and this permission
    notice appear in all copies of the software, derivative works or modified versions,
    and any portions thereof, and that both notices appear in supporting documentation,
    and that credit is given to Mulle kybernetiK in all documents and publicity
    pertaining to direct or indirect use of this code or its derivatives.

    THIS IS EXPERIMENTAL SOFTWARE AND IT IS KNOWN TO HAVE BUGS, SOME OF
    WHICH MAY HAVE SERIOUS CONSEQUENCES. THE COPYRIGHT HOLDER ALLOWS
    FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. THE COPYRIGHT HOLDER
    DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER
    RESULTING DIRECTLY OR INDIRECTLY FROM THE USE OF THIS SOFTWARE OR OF
    ANY DERIVATIVE WORK.

    All the actual Digest/Encryption routines were written by other people and made
    available by them for unrestricted use. Please when in doubt check the individual
    notices in those sources or their respective websites.

    Blowfish and Twofish originated from www.counterpane.com
    MD5 SHA1 imlementations, though originally from RSA, was procured via www.isc.org.
    These specific implementations are public domain, though ISC put their copyright
    on top.
    CRC32 by Gary S. Brown

    Thanks to Andy Lee and Derrel Piper for lots of useful suggestions for version 1.0.

Where is the documentation ?

It's currently mostly in the headers, some could be in the source. Please read our copyright notices and

disclaimers. For a sensitive framework like this, this is extra important! OK lets not be too unfriendly, here
is some code that shows how to create a MD5 digest from a NSString

 #import <MulleCipher/MulleCipher.h>
 ...
 NSData *plaintext;
 NSData *digest;

 plaintext = [@"The Fragile Art Of Existence"
dataUsingEncoding:NSISOLatin1StringEncoding];
 digest = [data md5Digest];

Encryption is really easy now.

Encryption is also easy, lets use Blowfish to encrypt that same data. (The key in a real application would
be a random number of appropriate keySize):

 MulleSymmetricCipher *cipher;
 MulleSymmetricCipherKey *cryptKey;
 NSDictionary *ciphered;
 NSString *text;
 NSData *plaintext;

 plaintext = [@"The Fragile Art Of Existence"
dataUsingEncoding:NSISOLatin1StringEncoding];
 password = [@"is kept alive by"
dataUsingEncoding:NSISOLatin1StringEncoding];
 cipher = [MulleSymmetricCipher cipherWithName:@"Blowfish"];

 ciphered = [cipher crypt:plaintext
 password:password];

decrpytion than goes like this:

 plaintext = [cipher decrypt:ciphered
 password:password];
 text = [NSString stringWithData:plaintext
 usingEncoding:NSISOLatin1StringEncoding];

The other way to encrypt

Another way to encrypt data is this slightly longer version, where you generate the encryption and
decryption keys manually:

 MulleSymmetricCipher *cipher;
 MulleSymmetricCipherKey *cryptKey;
 id plaintext;
 NSData *ciphertext;
 unsigned int plaintextLen;

 plaintext = [@"The Fragile Art Of Existence"
dataUsingEncoding:NSISOLatin1StringEncoding];
 password = [@"is kept alive by"
dataUsingEncoding:NSISOLatin1StringEncoding];

 cipher = [MulleSymmetricCipher cipherWithName:@"Blowfish"];
 cryptKey = [[cipher keyClass] keyWithData:password
 forDirection:MulleCipherForEncryption];
 plaintextLen = [plaintext length]; // remember original length
 ciphertext = [data encryptedData:plaintext
 withKey:cryptKey];

decrpytion than goes like this

 cryptKey = [[cipher keyClass] keyWithData:password
 forDirection:MulleCipherForDecryption];
 plaintext = [ciphertext decryptedData:ciphertext
 withKey:cryptKey];
 plaintext = [plaintext subdataWithRange:NSMakeRange(0,
plaintextLen)]; // truncate
 text = [NSString stringWithData:plaintext
 usingEncoding:NSISOLatin1StringEncoding];

The chief advantage here is that you can reuse the cryptKey for subsequent encryptions. Since creating a
key is a potentially expensive operation, this may improve performance quite a bit. Due to the nature of
the Blowfish and Twofish algorithms the decrypted data may be enlarged by a small amount of
random bytes at the end. This is because Blowfish and Twofish encrypt blocks of memory, that are 8
respectively 32 bytes long. If the tail bytes of a plaintext do not fit perfectly into such a block, the
remaining bytes will be padded with random bytes. These random bytes will appear in the decrypted
plaintext. Therefore the receiver of a ciphertext should also get the size of the original plaintext with the
ciphertext and truncate the data accordingly.

Storing the Plaintext length in the data

If you don't want to use the new methods crypt:password: decrypt:password: methods -
introduced in v1.0, you    may use as an alternative the methods
encryptedDataWithFooter:withKey: and decryptedDataWithFooter:withKey: to append
information about the size of the encrypted plaintext. Every ciphertext encrypted with one of the
new ...WithFooter methods, will have (currently) 8 bytes appended, that encode the length of the
plaintext.

Using these methods, you would modify the code above lile this

 ciphertext = [data encryptedDataWithFooter:plaintext
 withKey:cryptKey];

and

 plaintext = [ciphertext decryptedDataWithFooter:ciphertext
 withKey:cryptKey];

Although this may sound convenient, it means that a 100% proper decrypt of the encoded message can
only be done with a program also using the MulleCipher size encoding scheme. A different encoder will
find some (more) "garbage" at the end of its plaintext message.

You may check if a data contains a footer by asking hasFooterAppended: with the ciphertext. If there is
no footer you may still use the withFooter routines which will silently assume that there is no padding in
the ciphertext.

How do I use the Framework ?

You compile it and link it to your program, or - maybe preferable - add the desired subproject to your
existing code. Both subprojects are independent of each other.
To compile and install, the following shell commands should work for Mac OS X and Mac OS X Server. Be
sure to say install_all to have the debug frameworks available.

bash$ gnutar xfz MulleCipher.source.tgz
bash$ cd MulleCipher
bash$ su
Password:
bash$ make install_all

How do I use the Framework with the new Project Builder?

Start Project Builder and IMPORT the framework. Everything should work out ok.

What is a Digest ?

A digest is sort of a digital fingerprint of some binary data. A digest promises to produce for a unique
amount of data a unique digest, which is just a short string of binary data itself.

The claim may sound dubious. If you were to use an digest algorithm like MD5 that provides digests of 16
bytes length, and you are inputting data of 17 bytes length, you can mathemetically expect that there are
256 value combinations of those 17 bytes, where there MUST be duplicate digests. The idea behind such
a digest is though, that it would be computationally infeasible to create such a duplicate. Imagine having
to try all possible combinations by brute force!    You would not make it in your lifetime even with a million
supercomputers. (1)

So it should be extremely unlikely, that two amounts of data produce the same digest.

One use for a digest could be to compare the contents of a local MP3 file with a file on an internet server,
instead of having to download that file, to then find out that it the same lame remix you already have.
Instead you'd just be comparing your digest with his digest.

The MulleCipher framework provides two digest types, one is called MD5, which is fairly popular in
Internet applications and one is called SHA1, which is used for example in JAR files. SHA1 produces
longer digests and is considered more secure, i.e. less likely to produce duplicates.

I have run a few test cases with MD5 and SHA-1 and the implementations appear to work correctly on a
PowerPC with a Gnu Compiler.

Historically crc32 has been used for somewhat of the same purpose, validating and error checking hunks
of data. The 4 byte data length of the crc32 and the algorithm itself does not lend itself to digital
fingerprinting though. A version of this algorithm has also been included. It is a more lightweight algorithm
and should be faster in all circumstances.

What is a Cipher ?

A cipher is a way to encrypt binary data with a certain key, so that is very hard, neigh almost impossible to
recreate the original values without the key.    A symmetric cipher has a single key, that is used for
encryption and decryption. PGP, which uses two keys, a public and a private, is not a symmetric cipher.
The two ciphers cotained in MulleCipher are Blowfish and Twofish - both brainchilds of Bruce Schneier -

are symmetric ciphers.

Twofish is considered the stronger encryption of the two and was a top 5 finalist for DES replacement in
the NIST competition this year (2000 ?).

Both implementations seem to work, but I have not tested that their output is compatible with their Intel
implementations.

To use this technology properly it, you need a little background on the subject, else the NSA or some
other friendly agency will crack your ciphertext in no time. So get a copy of Bruce Schneiers
"AppliedCryptography", if you want to use this code "real seriously".

Public Key encryption

Is not a part of the MulleCipher framework.

How safe are Blowfish and Twofish ?

Answering these questions means writing a book about it. Recurring theme: get "Applied Cryptography".

Some Material in the Net

SHA-1 http://security.isu.edu/isl/fip180-1.html
MD5 http://www.faqs.org/rfcs/rfc1321.html
BlowFish, TwoFish http://www.counterpane.com
Mersenne Twister: http://www.math.keio.ac.jp/~matumoto/emt.html

(1)

With a billion supercomputers, though there might be hope! Figure it like this for MD-5:        (note: 2^32 is ca. 4 billion (US), 4 Milliarden (German))

In 16 bytes (128 bits) you have 2^(16*8) possible bit patterns. (256*256*256*256*256*256*256*256*256*256*256*256*256*256*256*256*). Now if you were able to try lets say 2^32

patterns with one machine (pretty fine machine!) in one second, it would still take you 2^(12*8) seconds. If you employ 2^32 machines in parallel, the time left is still 2^32 seconds. If

you consider a 50% chance to hit the duplicate early, that reduces to 2^31 seconds. Now that is only 70 years!

SHA-1 demands a cryogenic solution...

 

