

OneClick

Scripting Guide

WestCode
S O F T W A R E

WestCode Software, Inc. • 15050 Avenue of Science, Suite 112 • San Diego, CA 92128
619–487–9200 • fax 619–487–9255 • tech support 619–487–9233
www.westcodesoft.com • e-mail westcode@westcodesoft.com

ONECLICK SCRIPTING GUIDE

■

ii

■

The OneClick Product Team

Alan Bird
Rob Renstrom
John Oberrick
Jeff Jungblut
Mark Brooks

Manual and Layout

Jeff Jungblut

Cover and Package Design

Steve Sharp, Sharp Advertising & Design

Copyright



 1995–97 Alan Bird and
WestCode Software, Inc.
All rights reserved.

This manual and the software described in it are
copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of
WestCode Software, except in the normal use of the
software or to make a backup copy of the software. This
exception does not allow copies to be made for others.
Under the law, copying includes translation into
another language or format.

Trademarks

OneClick, ShortCut Software, and the WestCode logo
are trademarks of WestCode Software, Inc.

Macintosh, Mac, the Mac OS logo, and Finder are
trademarks and registered trademarks of Apple
Computer, Inc.

Apple Installer, © 1987–1994 Apple Computer, Inc. All
rights reserved.

All other brand and product names are trademarks of
their respective owners.

Second Printing, February 1997
Printed in the United States of America.

Disclaimer of Warranty on Software.

You
expressly acknowledge and agree that use of the
software is at your sole risk. The Software and
related documentation are provided “AS IS” and
without warranty of any kind and WestCode and
WestCode’s Licensor(s) expressly disclaim all
warranties, express or implied, including, but not
limited to, the implied warranties of
merchantability and fitness for a particular
purpose. WestCode does not warrant that the
functions contained in the Software will meet your
requirements, or that the operation of the
Software will be uninterrupted or error-free, or
that defects in the Software will be corrected.
Furthermore, WestCode does not warrant or make
any representations regarding the use or the
results of the use of the Software or related
documentation in terms of their correctness,
accuracy, reliability, or otherwise. No oral or
written information or advice given by WestCode
or a WestCode authorized representative shall
create a warranty or in any way increase the scope
of this warranty. Should the Software prove
defective, you (and not WestCode or a WestCode
authorized representative) assume the entire cost
of all necessary servicing, repair or correction.
Some states do not allow the exclusion of implied
warranties, so the above exclusion may not apply
to you.

Limitation of Liability.

Under no circumstances
including negligence shall WestCode be liable for
any incidental, special or consequential damages
that result from the use or inability to use the
Software or related documentation, even if
WestCode or a WestCode authorized
representative has been advised of the possibility
of such damages. Some states do not allow the
limitation or exclusion of liability for incidental or
consequential damages so the above limitation or
exclusion may not apply to you.

In no event shall WestCode’s total liability to you
for all damages, losses, and causes of action
(whether in contract, tort (including negligence) or
otherwise) exceed the amount paid by you for the
Software.

ONECLICK SCRIPTING GUIDE

■

CONTENTS

Contents

1 Introduction ...1
Why script? ... 1
About this manual.. 1

2 Scripting Tutorial ...3
Viewing a button’s script.. 4
Making simple changes to a script... 6
Correcting errors in a script .. 7
Getting help for script keywords ... 10
Inserting parameters for script keywords...................................... 12
Copying a script from one button to another 14

Using the Check and Uncheck modifiers 16
Displaying information in message boxes 19
Where to go from here .. 20

3 Using the Script Editor ..21
About the Script Editor .. 21
Accessing the Script Editor .. 22
Recording a script .. 24

Tips for recording a script .. 25
Typing and editing in the script pane.. 26

Checking a script for errors.. 27
Saving changes to a script .. 28
Reverting to the last saved script.. 29

Running a script... 30
Printing scripts ... 30
Getting help for script keywords ... 31

Using the Keyword List... 31
Using Detailed Help ... 32

Inserting parameters for script keywords...................................... 34
Button... 34
Click.. 35
Cursor... 35
Date .. 36
■ iii

ONECLICK SCRIPTING GUIDE

■

CONTENTS

iv

File ..37
File Type..37
Sound..38
Time ..39
Window...39

Script compiler error messages..40

4 Using EasyScript .. 43
Overview ..43

About scripting..43
How scripting differs from programming44

Parts of the EasyScript language...45
Statements and keywords ...46
Values ..46
Commands..47
Functions ..49
Comments...49
Variables ..50
Expressions and operators ...55
Control statements (branching and looping).........................58
Objects ..65
Handlers..72

Common scripting techniques...74
Finding the checked item in a menu......................................75
Manipulating lists..75
Creating pop-up menu buttons..79
Getting input while a script runs..80
Accessing the Clipboard ...80
Creating tear-off palettes...82
Calling scripts as subroutines ...82
Calling scripts as functions ...83
Getting a list of the installed fonts or sounds85
Using Drag and Drop..85
Determining how long the mouse is held down....................89
Making a script run when an application starts90
Scheduling a script to run periodically90
Testing and debugging a script ...93
■

ONECLICK SCRIPTING GUIDE

■

CONTENTS

Specifications and Limits ... 97
Memory usage .. 98

5 EasyScript Reference ...99
Using the EasyScript Reference ... 99
Commands... 100

AppleScript ... 100
Beep ... 101
Call ... 101
Click.. 101
CloseWindow.. 102
ConvertClip .. 103
Dial ... 103
DragButton... 104
DrawIndicator .. 105
Exit.. 106
FinderCopy... 106
FinderMove .. 107
For, Next For, Exit For, End For.. 108
If, Else, Else If, End If.. 109
Message .. 110
Open... 110
PaletteMenu.. 111
Pause... 112
PopupPalette .. 112
QuicKey .. 112
Repeat, Next Repeat, Exit Repeat, End Repeat 113
Schedule ... 114
Scroll... 114
SelectButton ... 115
SelectMenu... 116
SelectPopUp ... 118
Set... 118
Sound ... 118
Speak .. 119
Type .. 119
Variable ... 120
■ v

ONECLICK SCRIPTING GUIDE

■

CONTENTS

vi

Wait ...120
While, Next While, Exit While, End While121
With...122

Functions..123
Absolute ..123
AskButton ...123
AskFile...124
AskList ...125
AskText ..126
Char ..126
Code..127
Date...127
Find...129
FindFolder ..129
Gestalt ...131
GetDragAndDrop..132
GetResources ..133
Length ...133
ListCount...133
ListItems..134
ListSort ..134
ListSum ...135
Lower ..135
MakeNumber ..135
MakeText ...136
PopupFiles ..137
PopupFont ..138
PopupMenu ..139
Proper ...140
Random...140
Replace..141
Return ...141
SubString ..141
Tab...142
Time ..142
Trim...143
Upper ..143

System Variables ...144
■

ONECLICK SCRIPTING GUIDE

■

CONTENTS

ASResult.. 144
BeepLevel ... 144
Clipboard.. 145
CommandKey ... 146
ControlKey ... 146
Cursor... 147
Dialogs.. 147
Directory .. 148
Error ... 148
IsKeyDown ... 151
IsMouseDown... 152
ListDelimiter ... 152
OptionKey .. 154
ShiftKey... 154
SoundLevel ... 155
SystemFolder .. 156
Ticks.. 156

Objects ... 157
Button... 157
DialogButton .. 167
File.. 169
Menu .. 173
Palette ... 176
Process.. 182
Screen... 186
Volume.. 189
Window .. 191

Handlers... 197
DragAndDrop ... 197
DrawButton.. 198
MouseDown ... 198
MouseUp .. 199
Scheduled... 199
Startup.. 200

A EasyScript Summary..203
■ vii

ONECLICK SCRIPTING GUIDE

■

CONTENTS

viii

B AppleScript Information 209
Why use AppleScript? ...209
Integrating OneClick and AppleScript ...210

Launching compiled AppleScript scripts211
Embedding AppleScript code in an EasyScript script211
Accessing the AppleScript result variable212
Accessing OneClick variables from an AppleScript script212
Calling a OneClick script from an AppleScript script...........213
Determining if AppleScript is installed.................................214

AppleScript resources ..214

Index .. 215
■

One

Introduction

Chapter

This manual shows you how to write and edit scripts using OneClick’s scripting
language, EasyScript. Before you start writing your own scripts, you should be familiar
with how to use basic OneClick features, such as buttons and palettes, and the button
and palette options in the OneClick Editor window.

If you haven’t already done so, read Chapter 3, “Getting Started with OneClick” and
Chapter 4, “Using The OneClick Editor” in the OneClick User’s Guide.

Why script?

It’s not necessary to learn how to write scripts to make use of OneClick. The pre-
designed buttons included with OneClick may already meet your needs. However, if
you’re an advanced user, a system integrator, or simply curious, we recommend that
you read this manual. You’ll learn how scripting can extend OneClick’s capabilities for
virtually any need.

About this manual

This manual is divided into six parts. We recommend that you read at least Chapter 2
to get started and Chapter 4 after you’re comfortable using the Script Editor and
reading scripts. You can read the other chapters in any order.

■ Chapter 2, “Scripting Tutorial,” introduces basic techniques for recording and
writing your own button scripts. You’ll learn how to write and edit scripts using
OneClick’s Script Editor, and you’ll begin learning the EasyScript language.
■ 1

CHAPTER ONE

■

INTRODUCTION

About this manual

2

■ Chapter 3, “Using the Script Editor,” describes all the options available in the
Script Editor, including the script recorder, editor, compiler, and online help.

■ Chapter 4, “Using EasyScript,” provides a more thorough introduction to the
EasyScript language. You’ll learn how to use commands, functions, variables,
objects, and other language elements to enhance your scripts.

■ Chapter 5, “EasyScript Reference,” contains detailed descriptions of all EasyScript
keywords. A section for each keyword describes how and when to use the
keyword, the keyword’s syntax and parameters, and sample scripts that use the
keyword.

■ Appendix A, “EasyScript Summary,” contains a brief summary of all the EasyScript
keywords. Use this chapter as a quick reference when you want to find out what a
keyword does.

■ Appendix B, “AppleScript Information,” shows how you can integrate AppleScript
scripts with OneClick scripts and provides pointers to other sources of
information for AppleScript users.

Technical information for Macintosh developers

The OneClick manuals do not include technical information regarding the
development of OneClick extensions (external script keywords and plug-in button
border styles). The use of this feature requires some knowledge of Macintosh
programming. If you’re a Macintosh developer and you’re interested in adding new
keywords to the EasyScript language, or you want to develop new button border
styles, contact WestCode Software for more information about our OneClick
Extension Developer’s Toolkit.
■

Two

Scripting Tutorial

Chapter

This chapter contains a few short tutorials that show you how to get up and running
with the Script Editor and how to write some basic scripts.

These tutorials assume that you’ve read Chapter 3, “Getting Started with OneClick” in
the OneClick User’s Guide, which explains the basics of how to work with palettes,
buttons, and the OneClick Editor window. This chapter builds upon the SimpleText
palette you created in that chapter, so if you haven’t yet created your SimpleText
palette, you’ll need to perform the exercises in Making a custom palette in Chapter 3
of the OneClick User’s Guide first. Then return here when you’re ready to uncover the
scripts on the SimpleText palette and see how they work.

We recommend that you go through these exercises in the order presented. You’ll
learn how to do the following:

■ View a button’s script

■ Make simple changes to a script

■ Correct errors in a script

■ Get help for script keywords

■ Insert parameters for script keywords

■ Copy a script from one button to another

Along the way, you’ll also learn a bit of the EasyScript language, such as how to use
simple EasyScript commands and functions to type text, press command keys, and
choose menu items.
■ 3

CHAPTER TWO

■

SCRIPTING TUTORIAL

Viewing a button’s script

4

Viewing a button’s script

In the first part of this chapter, we’ll take a look at the scripts you recorded earlier and
make some changes to them.

1 If SimpleText is not already open, double-click the SimpleText icon to open it.

Your palette appears when SimpleText is open.

2 If there are no document windows open, click the button to open a new
untitled window.

3 Click the Address button once to type your address in the window.

The button you recorded to type your address probably works great, but what if
you had made a typing error while recording? When you click the button to play
back the recorded script, the button would faithfully reproduce the mistake.

The script recorder accurately records all your actions—including any mistakes,
such as typographical errors, misspellings, clicking the wrong button, or
choosing the wrong menu item. To correct these kinds of errors, you can start
over and record the button’s script again, but that’s probably not the most
practical way to do it—especially if you were recording a long sequence of
actions.

An easier way to correct errors made while recording is to edit the script and fix
the mistakes directly. The Script Editor shows all your recorded actions in easy-
to-understand statements, so you can quickly locate the error and fix it.

4 Do one of the following:

■ If the OneClick Editor is closed, hold down the Command and Option keys,
then click the Address button and choose Script Editor from the pop-up
menu.
■

CHAPTER TWO

■

SCRIPTING TUTORIAL

Viewing a button’s script

■ If the OneClick Editor is open, hold down the Command and Option keys,
then click the Address button. (No pop-up menu appears if the OneClick
Editor is already open.)

The Script Editor appears. The script for the selected button (the Address button)
appears in the text box at the bottom of the window.

5 If lines in the script run past the right edge of the window, drag the size box in
the bottom-right corner to resize the window so you can see the rest of the script.

Checking out the script statements

Because you most likely typed your own address instead of David Barrett’s address,
you see some different information in the script window than the address shown
above. Your script, however, should contain one or more lines beginning with the
word Type, followed by the information you typed.

The ↵ symbols you see in the script are Return characters. When you press the Return
key while recording, the script recorder represents the Return keystroke as the ↵
symbol in the script.
■ 5

CHAPTER TWO ■ SCRIPTING TUTORIAL

Making simple changes to a script

6

A script is like a mini-program: statements in the script tell OneClick what actions to
perform when you click the button. In this script, a Type statement tells OneClick to
type something as if you typed it yourself using the keyboard.

Your script may appear as one or more statements. If you type a lot of information
while recording, OneClick divides the information into multiple Type statements.
OneClick plays back the statements in the order in which they appear in the script.

Understanding commands and parameters

Each statement in the script contains two parts: a command and a parameter.

The command part of the statement, Type, tells OneClick what to do—that is, type
text or other keystrokes. The Type command needs to know what text or keystrokes
to type.

A parameter is a piece of information that you give to a command when the
command needs more information to work with. The information between quotation
marks (") is the text that OneClick types—the parameter for the Type command. A
space separates the command name and the parameter so they don’t run together. In
programmer-speak, giving information (such as the quoted text) to a command is
called “passing a parameter.”

Not all commands require a parameter. The Beep command, for example, plays the
Macintosh system beep. The command doesn’t need additional information to play
the beep sound.

Making simple changes to a script

Now that you’ve seen the anatomy of a script, you’re ready to make some changes.

1 Click before the first Type statement in the script so that the cursor appears at the
beginning of the line.

2 Press Return to insert a blank like.

Command Parameter
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Correcting errors in a script
3 Press the Up Arrow key to move the cursor back up to the first line.

4 Type the following statement in the script, then press Return to insert another
blank line:

Type Date

The script window should now look something like this:

You can insert blank lines in a script to separate groups of statements, making the
script easier to read. Blank lines aren’t required.

5 Click the Run button in the upper-right corner of the Script Editor.

Clicking the Run button plays back the script. It’s the same as clicking the
Address button when the OneClick Editor window is closed.

Correcting errors in a script

The script now types the current date, followed by your address, in the
SimpleText window. However, the date and the first line of the address all appear
on the same line. You’ll need to edit the script so that it presses the Return key a
few times to put some blank lines between the date and the address.

1 Click in the Script Editor window and move the cursor to the blank line following
the Type Date statement.
■ 7

CHAPTER TWO ■ SCRIPTING TUTORIAL

Correcting errors in a script

8

2 Type the command Type, followed by a space and a quotation mark (").

Type "

3 Hold down the Option key and press Return three times.

Type "↵↵↵

Three ↵ symbols appear in the script. (Remember, the ↵ symbol in a Type
statement tells OneClick to press the Return key.)

Note Holding down the Option key lets you type other special characters in a script,
not just Return. You could press Option-Delete and Option-Left Arrow to insert the
symbols for the Delete and Left Arrow keys, for example.

4 Click the Run button.

The script won’t run. Instead, the Script Editor beeps and displays an error
message on the status line.

The message, Missing ‘"’, means that there is a quotation mark (") missing
somewhere in the script. The cursor blinks at the beginning of line below the
new line you just typed, indicating that the quotation mark is probably missing
on the previous line.

Status line
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Correcting errors in a script
The parameter for the Type command, the three ↵ symbols, must be enclosed in
quotation marks. The quotation marks tell OneClick where the parameter’s text
begins and ends.

OneClick won’t run the script until all the errors in the script are corrected.

5 Move the cursor to the end of the line you typed in step 3, then type a quotation
mark (").

6 Click the Run button.

The script now types the current date, followed by two blank lines and your
address. The message “No errors” appears on the status line to indicate that no
errors were found.

Note If you want to check a script for errors without running it, click the button
in the Script Editor. The status line shows “No errors” if the script is OK, otherwise it
displays an error message and highlights the error in the script.

There are additional error messages that can appear on the status line. Error messages
are discussed at the end of Chapter 3, “Using the Script Editor.”

OneClick always checks a changed script for errors when you select a different button,
switch to another editor, or close the Script Editor window. You must correct any
errors in the script before leaving the Script Editor, or else discard the changes you
made to the script.

Understanding functions

The word Date you used in the previous exercise is called a function. A function gives
a value, such as the current date, to a command (such as the Type command) or to
another function. The Type command uses the Date function as its parameter. It takes
the value given by the Date function and types it in the SimpleText window. The Date
function itself doesn’t do the actual typing, it just returns its value to the Type
command.

The Date function you used earlier did not include a parameter. You can pass a
number as a parameter to the Date function, however, that tells Date the format in
which you want the date returned. For example, the statement “Date 3” returns the
■ 9

CHAPTER TWO ■ SCRIPTING TUTORIAL

Getting help for script keywords

10
date in the short format, 7/23/95; the statement “Date 12” returns the date in the long
format: Sunday, July 23, 1995. Without a parameter, the Date function returns the
date in the default short format.

Note The names of commands, functions, and all the other words that OneClick
understands are called keywords. A keyword is simply a single word in the EasyScript
language. Type and Date are both examples of keywords.

Getting help for script keywords

To find out how to tell the Date function to return the date in a different format, you
need to know what numbers the Date function can use in its parameter. You can look
up the information in Chapter 5, “EasyScript Reference” or you can use the online
help available in the Script Editor.

1 Click the button in the Script Editor.

A list of keywords appears in the window. This list shows all the keywords in the
EasyScript language. A one-line description appears next to each keyword.

2 Type the letter “D” to scroll down to the keywords beginning with D.

The status line shows the Date function, followed by the words “date_format” in
square brackets. Date_format is the name of the Date function’s parameter; the
name tells you that the parameter you pass to the Date function indicates the
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Getting help for script keywords
date format to use. The square brackets around the parameter name mean that
the parameter is optional—you don’t need to supply a parameter to use the Date
function.

The keyword list gives brief descriptions of all the keywords, but it doesn’t tell
you what values you can use for the format parameter.

3 Click the button, or double-click the Date keyword in the list box.

Either method displays additional help for the Date function.

4 Scroll down past the Description paragraph in the help text to see a list of values
for the format parameter.

As you can see in the Script Editor window on your screen, there are a variety of date
formats you can use, and each format is represented by a number. Using a different
number with the Date function causes the Date function to return the date in a
different format. You can even add numbers together to create more formats, such as
a short format with a dash separator (7-23-95).

Looking up the different format numbers for the Date function may seem tedious if
you want to use the function often. Fortunately, the Script Editor provides an easier
way to figure out the parameter to use for the Date function (and other keywords).
Also, the Date function is an exception; parameters for other commands and
functions are typically much easier to remember and use.
■ 11

CHAPTER TWO ■ SCRIPTING TUTORIAL

Inserting parameters for script keywords

12
Inserting parameters for script keywords

For the handful of commands and functions that have difficult-to-remember
parameters, such as Date, the Script Editor provides an intuitive method for specifying
the parameters.

1 Click the button in the Script Editor to close the help window and return to
the script.

2 Move the cursor to the end of the Type Date statement in your script, then press
the space bar to insert a space.

3 Choose Date from the Parameters pop-up menu in the Script Editor.

The Date Format dialog box appears.

4 Choose 4/21/94 from the Date Format pop-up menu.

5 Choose the dash (–) from the Separator pop-up menu.

6 Click OK.

OneClick inserts the number 67 after the Date keyword in the script.
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Inserting parameters for script keywords
The number 67 is the format number that corresponds to the options you chose
in the dialog box— the short M/D/YY format, using a dash (instead of a slash) for
the separator character.

Note that the number 67 is not enclosed in quotation marks. Parameters that
contain text (such as the parameters in the Type statements) must be enclosed in
quotation marks, but numeric parameters are not. If the number 67 were inside
quotation marks, then OneClick might try to interpret the value as the characters
“6” and “7”, not the number 67.

7 Click the Run button to run the script.

OneClick types the date in the format M-D-YY, followed by two blank lines and
your address.

Other options in the Parameters pop-up menu

Other items in the Parameters pop-up menu let you insert parameters for different
keywords. For example, if you want to play a sound using the Sound command, you
can either type the sound’s name yourself, or you can use the Sound submenu in the
Parameters menu. The Sound submenu lets you pick a sound from all the sounds
available in your System file. When you choose a sound, OneClick inserts the sound’s
name in the script, so you don’t have to type the name yourself or remember its exact
spelling.

The Time option in the Parameters menu is similar to the Date option: it displays a
dialog box that lets you choose options for the parameter used by the Time function.
■ 13

CHAPTER TWO ■ SCRIPTING TUTORIAL

Copying a script from one button to another

14
By the way, the Time function works just like the Date function—it returns the current
time in a variety of formats, or a default format if you don’t specify a parameter.

For information about the other options in the Parameters menu, see Chapter 3,
“Using the Script Editor.”

Copying a script from one button to another

You can use copy and paste to edit statements in the Script Editor. In this exercise,
you’ll combine the two scripts you’ve created into a single script for the Address
button. When you run the combined script, OneClick will do the following:

■ Type the current date in the SimpleText window, followed by your address

■ Select all the text in the window

■ Change the font and size

■ Move the cursor to the end of the document

First we’ll take a look at the script that chooses commands from the Font and Size
menus.

1 Open the OneClick Editor if it isn’t already open.

2 Click the second button you created on the SimpleText palette (the button that
selects all the text and changes the font and size).

The Script Editor shows the script for the selected button.
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Copying a script from one button to another
Note If an error message appears when you click the button, it means that the script
for the Address button (the one you were just editing) contains an error. Click Edit to
return to the Script Editor and correct the error, then try again.

There are two new keywords in this script: the Command keyword in the first
line, and the SelectMenu keyword in the second and third lines.

The Command keyword in the Type statement is called a modifier. The modifier
changes the way the Type statement works. In this script, Type Command “a”
means to hold down the Command key while typing the letter “a”. When you run
the script, OneClick presses Command-A to select all the text in the SimpleText
window, instead of simply typing the letter “a” as text.

The SelectMenu command chooses an item from a pull-down menu in the menu
bar. SelectMenu needs two parameters: the name of the menu in the menu bar
and the name of the menu item to choose. In this script, the second statement
chooses Palatino from the Font menu and 18 Point from the Size menu. The
menu and menu item names, like other text parameters, are enclosed in
quotation marks.

3 Use the mouse to select all the lines in the script.

Shortcut To select a whole line in the script, triple-click the line. To select the whole
script, quadruple-click the script or press Command-A.
■ 15

CHAPTER TWO ■ SCRIPTING TUTORIAL

Copying a script from one button to another

16
4 Press Command-C to copy the script to the Clipboard.

You must use the keyboard command, not the Copy command in the Edit menu.
The command in the Edit menu copies text in the SimpleText window, not in the
Script Editor window.

5 Click the Address button to display the button’s script in the Script Editor.

6 In the Script Editor, move the cursor down to the blank line following the last
Type statement.

7 Press Command-V to paste the script from the Clipboard into the script for the
Address button.

Your script should now look something like this:

8 Choose New from the File menu to open another untitled SimpleText window.

9 Click the Run button in the Script Editor.

Your script now types the date, two blank lines and your address, then changes
all the text to Palatino 18-point and moves the cursor to the end of the
document.

Using the Check and Uncheck modifiers

Now you’ll add a new SelectMenu statement to the script. The statement will choose
the Bold item from the Style menu.
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Copying a script from one button to another
1 Move the cursor to the beginning of the last line in the script (the statement that
types the Right Arrow key), then press Return to insert a blank line.

2 Type the following statement on the blank line before the last Type statement:

SelectMenu "Style", "Bold"

Your script should now look similar to this:

3 Close the OneClick Editor window.

If an error message appears, click Edit to return to the Script Editor. Make sure
you typed the SelectMenu statement exactly as it appears above, then try again.

4 Click the Address button three or four times to run the script.

The text in the SimpleText window changes to Bold the first time you click the
button. But every other time you click the button, the text alternates between
Plain and Bold.

This happens because the Bold item in the Style menu is a checkmarked item.
Each time the SelectMenu command chooses the menu item, it toggles the item
on and off. This is a good example of why it’s sometimes necessary to edit a script
after you’ve recorded it—if you had simply recorded the menu choice, then ran
the script a few times, the SelectMenu command would always toggle the Bold
item on and off each time you ran the script. In cases like this, you’ll need to do a
little fine-tuning to make the script work the way you want.
■ 17

CHAPTER TWO ■ SCRIPTING TUTORIAL

Copying a script from one button to another

18
To make the Bold option turn on and stay on, you’ll add a modifier to the
SelectMenu statement.

5 Hold down the Command and Option keys and click the Address button, then
choose Script Editor from the pop-up menu.

The script for the Address button appears in the Script Editor.

6 Type the word Check in the last SelectMenu statement so that the statement
reads as follows:

SelectMenu Check "Style", "Bold"

The Check keyword is a modifier that changes the way the SelectMenu command
works. Using Check in a SelectMenu statement means that SelectMenu turns on
the Bold item if it wasn’t already on (checked). If the Bold item is already
checked, then the SelectMenu statement does not choose the Bold item, because
doing so would turn it off.

7 Click the Run button in the Script Editor a few more times.

Now when you run the script, the text in the SimpleText window changes to Bold
and stays that way each time you run the script.

The SelectMenu command has another modifier, Uncheck, that you can use to
turn off a checked menu item instead of turning it on (like Check) or toggling the
menu item. You don’t need to use Check and Uncheck with regular menu items,
just checkmarked items when you want to force the checkmark on or off.

The SelectButton command

The SelectButton command is a command you’ll see often in recorded scripts, but
we haven’t actually used this command in any of the scripts in this chapter.

SelectButton clicks a button or a checkbox in a dialog box or window. The command
needs one parameter, the name of the button to click. Here are some examples:

SelectButton "OK"
SelectButton "Cancel"
SelectButton Uncheck "Smooth Graphics"
■

CHAPTER TWO ■ SCRIPTING TUTORIAL

Displaying information in message boxes
The first two statements click the OK and Cancel buttons in a dialog box. The third
statement clicks a checkbox named Smooth Graphics (from the Page Setup Options
dialog box).

As you see in the third statement, the SelectButton command can also use the
Uncheck (and Check) modifiers. When the SelectButton command clicks a checkbox,
it turns the checkbox on or off like a toggle. You can use the Check or Uncheck
modifier to force the checkbox either on or off, just as you do with the SelectMenu
command and checked menu items.

Displaying information in message boxes

The scripts you record and write aren’t limited to choosing menu items, clicking
buttons, pressing command keys, and typing text. Many other keywords let your
scripts make decisions based on certain conditions, get input while the script runs,
display information in message boxes, display pop-up menus, and more. Here’s an
example of one of the commands.

1 Close the OneClick Editor window if it’s open.

2 Command-Option-click on an empty space on the SimpleText palette (not on a
button), then choose Script Editor from the pop-up menu.

When you click on the palette’s background and choose Script Editor, OneClick
creates a new button and opens the Script Editor for the new button. It doesn’t
start recording.

3 Type the following line in the script window:

Message "Hello, World!"

The Message keyword is a command that shows a message box on the screen.
When you run the script, the box contains the message “Hello, World!” and an
OK button.

4 Click the Run button in the Script Editor.

A message box appears.
■ 19

CHAPTER TWO ■ SCRIPTING TUTORIAL

Where to go from here

20
5 Click OK to close the message box.

Where to go from here

You’ve now learned the basic principles of scripting with OneClick. While working on
your Address button, you learned how to do the following:

■ Access the Script Editor and view a button’s script

■ Edit a script

■ Get help for script commands

■ Use the Parameters menu

■ Run a script

■ Correct mistakes

You have also learned a bit about the EasyScript language, such as how to use
commands, functions, parameters, and modifiers.

There are many more features available in the EasyScript language than the few that
you worked with in this chapter. Also, we haven’t covered every single option
available in the Script Editor. The following chapters cover the Script Editor and the
EasyScript language in greater detail.
■

Three
Using the Script Editor

Chapter
This chapter describes all the features of the Script Editor. The chapter covers the
following topics:

■ Accessing the Script Editor

■ Recording a script

■ Typing and editing in the script pane

■ Checking a script for errors

■ Running a script

■ Printing scripts

■ Getting help for script keywords

■ Inserting parameters for script keywords

■ Script compiler error messages

About the Script Editor

The Script Editor lets you record, write, and edit scripts for buttons. It’s the one
editor you’ll probably use most often as you create your own custom buttons and
palettes.

The Script Editor also provides online help for all the keywords in the EasyScript
language.
■ 21

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Accessing the Script Editor

22
You can use the Script Editor to view and make changes to the scripts for any of
OneClick’s pre-designed buttons. Using the Script Editor is a good way to find out
how the pre-designed buttons work. Because the buttons all perform their tasks by
running EasyScript scripts, you’ll discover some valuable scripting techniques in the
pre-designed buttons that you can copy and use in your own scripts.

Accessing the Script Editor

There are several ways to open the Script Editor and view a button’s script.

. To display a button’s script

1 Choose OneClick Editor from the OneClick menu.

The OneClick Editor window appears.

Choose a button
script to edit

Show a list of
keywords and
descriptions

Show help for
the highlighted
keyword

Type or record
statements in
the script pane

Toggle word
wrap on or off

Check for
errors

Revert to the
last saved
version

Drag to resize the
editor window

Choose an option to
quickly insert parameters
for keywords

Watch your
actions and
record them in
a script

Stop script
recording or
playback

Play back the
script

Status area

Print the script
or help topic
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Accessing the Script Editor
2 On any OneClick palette, click the button whose script you want to view or edit.

3 Click the Script tab in the OneClick Editor window.

The selected button’s script appears in the Script Editor.

Because writing a button script is usually an interactive process (record, edit, test,
edit, test, and so on), OneClick provides several shortcuts you can use to access the
Script Editor.

To Do this

Create a new, blank button and edit its script Command-Option-click a palette where you want the
new button to appear, then choose Script Editor from
the pop-up menu.

Edit a button’s script when the OneClick
Editor window is closed

Command-Option-click the button, then choose
Script Editor from the pop-up menu.

Edit a button’s script when the OneClick
Editor window is open, but another editor is
active

Command-Option-click the button to switch to the
Script Editor.

Edit a different button’s script while the
Script Editor is active

Click the button or choose the button’s name from
the Button pop-up menu.
■ 23

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Recording a script

24
Recording a script

When you record a script, OneClick watches your mouse and keyboard actions and
saves them as statements in the script. Recording is the best way to start writing a new
script or to insert new statements in an existing script.

. To record a script

1 Place the insertion point in the script where you want the new statements to
appear.

2 Click the Record button.

The following indicators show that recording is in progress:

■ A microphone icon flashes in the menu bar.

■ The Record button lights up in the Script Editor.

■ The button you’re recording flashes on the palette.

3 Perform the actions (clicking and typing) that you want the script to contain.

Perform actions in an application as you normally would. A new script statement
appears in the script pane each time you click or type.

If you want to temporarily stop recording, choose Pause Recording from the
OneClick menu. To continue recording where you left off, choose Resume
Recording from the OneClick menu.

4 Click the Stop button or choose Stop Recording from the OneClick menu.

Recording stops automatically if you close the OneClick Editor window while
recording.

Note You cannot click buttons on OneClick palettes while recording is in progress.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Recording a script
The following table shows how OneClick records typical mouse and keyboard actions
as script commands.

Tips for recording a script

Usually, statements that use the SelectMenu, SelectPopUp, SelectButton, and Scroll
commands perform more reliably than those that use Click commands. This is
because the Click command performs just a simple click or drag on the screen at the
specified coordinates; the command has no knowledge of what it is clicking at that
location. Other commands are more intelligent: SelectButton, for example, clicks a
named button and will work no matter where the button appears on the screen.

Follow these guidelines when recording a script to improve the script’s reliability.

■ Choose menu commands and type command keys where possible instead of
clicking or dragging. For example, to switch to the Finder, you should choose
“Finder” from the Application menu instead of clicking the desktop or a Finder
window. This is because windows and items in them may not be in the exact
same position each time you run the script. When recording, it’s best to perform
actions that you know will work the same way every time without depending on
the position of items on the screen.

■ When choosing a file in a directory dialog box, type the file’s name to select it
instead of clicking a name in the list. The file may not be in the same position in
the list each time you run the script, so a Click statement may not choose the
correct file.

Your action Script command

Typing text or commands Type

Choosing an item from a menu in the menu bar SelectMenu

Choosing an item from a pop-up menu SelectPopUp

Clicking a button in a window or dialog box SelectButton

Clicking in a scroll bar Scroll

Clicking or dragging within a window Click

Clicking or dragging outside a window Click Global
■ 25

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane

26
■ To select Finder icons, type the icon’s name instead of clicking it. Icons may not
always be in the same position.

■ Take your time when recording a script to avoid making mistakes. The script
recorder records any mistakes you make as well as your corrections, so it’s best
to go slow and be careful while recording. Of course, if you do make mistakes
while recording a script, you can edit the script later to correct any errors.

Typing and editing in the script pane

The script pane works similar to other text editing programs for the Macintosh.

. To type statements in the script pane

1 Click in the script pane to place the cursor where you want your statements to
appear.

You need to click in the Script Editor to make it active before typing. Otherwise,
keystrokes go to the active application or the selected palette (wherever you last
clicked). The OneClick Editor window’s title bar frame appears darkened when
the window is active and receiving keystrokes.

2 Type a script statement.

3 Press Return to signal the end of the statement and move the cursor down to the
next line.

Script statements do not automatically word-wrap when you type past the right edge
of the script pane. Use the horizontal scroll bar to scroll sideways if your script
statements go past the edge of the script pane. Or, resize the Script Editor by dragging
the size box in the lower-right corner of the window.

You can enable automatic word wrap if you’re working on a small screen and don’t
want to scroll back and forth to see all of a line.

. To turn word wrap on or off

■ Click the button next to the horizontal scroll bar.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane
Note Because EasyScript is a line-based language (meaning each statement occupies
only one line), it’s easier to see where one statement ends and the next statement
begins if you leave word wrap turned off.

Script editing shortcuts

You can use the following shortcuts to select and edit text in the Script Editor.

Checking a script for errors

Whenever you click Run or close the Script Editor, OneClick first checks the script for
errors. An error can occur because of a typographical mistake or a misspelling.

. To check a script for errors

■ Click the button in the Script Editor.

If any errors are present, a message describing the error appears in the status area and
the location of the error appears highlighted in the script. See “Script compiler error
messages” on page 40 for more information about each possible error.

You need to correct any errors in the script before you can save it and close the Script
Editor.

To do this Do this

Select a word Double-click the word.

Select a line Triple-click the line.

Select all text Press Command-A or quadruple-click in the script.

Cut text to the clipboard Press Command-X.

Copy text to the clipboard Press Command-C.

Paste text from the clipboard Press Command-V.

Undo the last typing or editing action Press Command-Z.

Insert special characters in a script
(such as Return, Delete, or arrows)

Hold down Option and type the character (Option-Return,
Option-Delete, Option-Left Arrow, and so on).
■ 27

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane

28
Compiling a script

When you check a script for errors, OneClick compiles the script. Compiling means
that OneClick translates the script from its human-readable text format into a more
compact binary format. OneClick can understand and execute a compiled script
much faster than a script in text format.

When OneClick compiles a script, each keyword is translated into a two-byte code;
characters in literal strings and comments each take up one byte. A script statement
must compile to less than 256 bytes or an error occurs. This method of compiling a
script is often called tokenizing in other scripting or programming languages.

Automatic script formatting

You’ve probably noticed that when you save a script or check its syntax, OneClick
reformats the script in the following ways:

■ The case of any keywords you typed changes to the “proper” case (for example,
“selectmenu” changes to “SelectMenu”).

■ The case of variable names changes to the case used in the Variable statement.

■ Extra spaces between keywords, operators, and values are added or removed as
necessary.

■ Handlers and loops are indented with tab characters.

This reformatting occurs because OneClick decompiles the compiled script after the
script compiles successfully. The compiled version, which does not retain any
formatting, is translated back into a formatted text version that you can edit in the
Script Editor. While you can control the script’s content, OneClick helps improve the
script’s readability by controlling most of the formatting.

Saving changes to a script

Normally, you don’t need to explicitly save a script after making changes to it;
OneClick automatically saves the changes. You can, however, make OneClick save the
changed script to its button at any time if you want.

. To save a script to its button

■ Press Command-S.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Typing and editing in the script pane
Before saving a script, OneClick first attempts to compile the script. A message
appears in the status area if the script contains errors, just as if you had clicked the
button. After the script compiles without errors, OneClick saves the compiled script to
the script’s button.

OneClick automatically saves a changed script whenever you do any of the following:

■ close the Script Editor

■ switch to another button’s script in the Script Editor

■ switch to another editor in the OneClick Editor window

■ quit the active application (if the script is for a button on an application-specific
palette)

■ run the script by clicking the Run button or pressing Command-R

If you try to close the Script Editor (or switch to another button’s script) while the
current script contains errors, a dialog box appears:

Click Edit to return to the Script Editor and fix the error, or click Discard Changes to
throw away all changes you’ve made to the script since you last saved it.

Reverting to the last saved script

While editing a button’s script, you can cancel any changes you’ve made revert to the
last saved version of the script.

. To revert to the last saved version of the script

■ Click the button in the Script Editor.
■ 29

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Running a script

30
Running a script

You can play back the script to test it while the Script Editor remains open.

. To run the current script in the Script Editor

■ Click the Run button or press Command-R.

OneClick runs only the default handler in the script (usually MouseUp). To run other
handlers, such as DragAndDrop or MouseDown, you must close the Script Editor and
use the button as you normally would (click it or drag something to it) to trigger the
appropriate handler.

. To stop a running script

■ Click the Stop button or press Command-period.

Printing scripts

You can print the current script, all scripts for buttons on the selected palette, or all
scripts for visible (not hidden) palettes.

. To print one or more scripts

1 Click the button or press Command-P.

The bottom of the Print dialog box contains some additional options.

2 Choose one of the options on the left to specify which scripts you want to print.

To print scripts in a hidden palette, choose the palette from the OneClick menu
to make it visible first. Then choose the third option.

3 To set paper size, orientation, and other printing options, click Page Setup and
set the desired options, then click OK.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Getting help for script keywords
4 Click Print.

You can press Command-period to cancel printing.

Getting help for script keywords

The Script Editor provides two methods you can use to get online help for keywords:
the Keyword List mode and the Detailed Help mode.

Using the Keyword List

The Keyword List mode is an online version of Appendix A, “EasyScript Summary.”

. To use the Keyword List

1 Click the button or press Command-Tab in the Script Editor.

A list of all EasyScript keywords appears in place of the script pane.

2 Click a keyword in the list.

The selected keyword’s name and parameters, if any, appear in the status area.

You can quickly scroll to the desired keyword by typing the first few letters of the
keyword.
■ 31

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Getting help for script keywords

32
3 If desired, you can reduce the number of keywords displayed in the list by
choosing a keyword category from the pop-up menu (shown at left).

Only keywords of the type you choose (such as Functions, Commands, or Menu-
related keywords) appear in the list. For example, if you choose Mouse from the
pop-up menu, the keyword list changes to show only the keywords that perform
mouse-related activities.

4 To turn off the Keyword List mode, click the button again or press Command-
Tab.

Using Detailed Help

The Detailed Help mode is an online version of Chapter 5, “EasyScript Reference.”

. To get detailed help for a keyword

■ If you’re editing a script, double-click a keyword in the script to select it, then
click the button or press Command-? to get help for the selected keyword.

–Or–

■ If you’re viewing the Keyword List, select a keyword in the list, then do one of the
following:

■ click the button,

■ double-click the keyword, or

■ press Return or Command-?.

Information for the selected keyword appears in the script pane. Help for each
keyword includes the following:

■ keyword syntax and parameters

■ what the keyword does

■ why and when you would use it

■ sample scripts that use the keyword

You can use Command-C to copy sample script statements from the keyword help and
paste the copied statements in your own script.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Getting help for script keywords
Printing keyword help

If your manual isn’t close at hand, you can print selected topics from the detailed
help.

. To print help for one or more keywords

1 While in Detailed Help mode, click the button or press Command-P.

The bottom of the Print dialog box contains some additional options.

2 Choose one of the options on the left to specify which help topics you want to
print.

The Current Help option prints the help topic that’s displayed in the Script
Editor.

To print help for keywords in a certain category (such as Menu- or Mouse-related
keywords), choose the category from the pop-up menu, then choose the second
option.

3 To set paper size, orientation, and other printing options, click Page Setup and
set the desired options, then click OK.

4 Click Print.

You can press Command-period to cancel printing.

Note Printing help for all keywords may take a while and use up a lot of paper.
■ 33

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords

34
Inserting parameters for script keywords

The Parameters pop-up menu lets you insert parameters for various keywords into a
script. Parameters that could otherwise be lengthy to type or tedious to figure out can
be inserted in the script with just a few clicks.

. To insert a parameter using the Parameters pop-up menu

1 Place the insertion point where you want the parameter to appear in the script.
(Usually you’ll want the parameter to appear following its keyword and a space.)

2 Choose an option from the Parameters menu.

3 If the option you choose displays a dialog box, choose options in the dialog box
and click OK.

The new parameter appears in the script at the insertion point. If the parameter is a
string, then OneClick also inserts quote marks at either end of the string.

The following sections describe each option in the Parameters menu.

Button

The Button submenu contains the names of all named buttons in all on-screen dialog
boxes and windows. Use the Button submenu to quickly insert the name of a button
for use with the SelectButton or DialogButton keywords.

For more information, see “SelectButton” on page 115 and “DialogButton” on
page 167.

Button submenu when the Page Setup Options
dialog box is open in an application.

Buttons below the divider line are in the
Page Setup dialog box (behind Page Setup
Options).
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords
Click

Use the Click option to insert screen or window coordinates for use with the Click
command, or any other keyword that requires screen coordinates as a parameter.
When you choose Click, a dialog box appears:

You can click the buttons in the miniature screen to reposition the dialog box if it’s in
the way of where you want to click.

When you click and release the mouse button, OneClick inserts the mouse click’s
coordinates in the script. If you click within a window, the coordinates are local to the
window; if you click outside of a window (such as on the desktop), the keyword
Global is also inserted, indicating the coordinates are global to the entire screen.

If you click and drag the mouse, OneClick inserts two pairs of coordinates (the
starting point and the ending point of the drag).

See “Click” on page 101 for more information.

Cursor

Use the Cursor submenu to insert the ID number of a cursor (for use with the Cursor
system variable). The Cursor submenu shows all the cursors available in the System
file and the active application, with the ID number of each cursor. Choosing a cursor
from the submenu inserts its ID number in the script.
■ 35

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords

36
See “Cursor” on page 147 for more information.

Date

Use the Date option to insert a date format number for use with the Date function.
When you choose Date, the Date Format dialog box appears:

Choose options in the dialog box to specify the format you want the Date function to
return, then click OK. OneClick inserts in the script the format number that
corresponds to the options you chose in the dialog box.

See “Date” on page 127 for more information.

Date Format pop-up menu
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords
File

The File option displays a dialog box that lets you choose a file or folder, then inserts
in the script the full path to chosen the file or folder. Use File to insert a path for any
keyword that requires a path parameter.

The button at the bottom of the dialog box shows the currently selected file or folder.

To choose a file, locate the file and then click Select, or click the button at the bottom
of the dialog box. To choose a folder, locate the folder and then click the button at the
bottom of the dialog box.

Folder paths always end in a colon (:), file paths do not. For the example dialog box
above, the following path appears in the Script Editor:

"Mac HD:System Folder:Apple Menu Items:"

File Type

The File Type option inserts the four-character file type code (such as “TEXT” or
“PICT”) of a file you choose. When you choose File Type, a directory dialog box
appears.
■ 37

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords

38
Choose the file whose file type code you want to insert, then click Open. OneClick
inserts in the script the file type code of the chosen file.

The following keywords can use a file type parameter:

■ AskFile (page 124)

■ PopupFiles (page 137)

■ File.Kind (page 170)

Sound

Use the Sound submenu to insert the name of a sound for use with the Sound
command. The Sound submenu lists all the sounds available in the System file and the
active application.

OneClick inserts in the script the name of the sound chosen from the submenu.

See “Sound” on page 118 for more information.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Inserting parameters for script keywords
Time

Use the Time option to insert a time format number for use with the Time function.
When you choose Time, the Time Format dialog box appears:

Choose options in the dialog box to specify the format you want the Time function to
return, then click OK. OneClick inserts in the script the format number that
corresponds to the options you chose in the dialog box.

See “Time” on page 142 for more information.

Window

The Window submenu contains the names of all windows in the active application.

Use the Window submenu to quickly insert the name of a window for use with the
Window object or another keyword that requires a window name as a parameter.

See “Window” on page 191 for more information.

Time Format pop-up menu
■ 39

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Script compiler error messages

40
Script compiler error messages

This section lists the possible error messages you may encounter when saving a script
or checking its syntax and the solutions for each problem.

Unknown name

The script compiler doesn’t recognize the name of a keyword or variable name as
you’ve typed it.

■ If a variable name is highlighted, make sure you declared the variable in a
Variable statement before the variable is used in the script.

■ If a script keyword is highlighted, make sure you spelled the keyword correctly.

■ If part of a literal string is highlighted, make sure the string is enclosed in quotes
(").

■ If part of a comment is highlighted, make sure the comment follows a //
(comment) keyword.

Not a command

The script attempted to use a function as if it were a command (the function is
outside of an expression or assignment statement). Make sure you’re assigning the
function to a variable or evaluating it in an expression.

Invalid variable name

The name you specified in a Variable statement cannot be used, probably because it
contains punctuation characters other than an underscore (_) or because it’s the
same name as a script keyword. See the rules for naming variables on page 50.

Missing ‘"’

A closing quote mark (") is missing at the end of a literal string. When this error
occurs, the cursor usually appears on the line below the line that’s missing the quote
mark.
■

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Script compiler error messages
Missing ‘(’ or Missing ‘)’

An opening or closing parenthesis is missing in an expression. The number of left and
right parentheses must match. The cursor appears at the end of the line containing
the error.

Valid END specifier required

The keyword in an End statement is missing, or the End statement contains
something other than For, While, If, With, Repeat, or a handler name. Make sure
you’ve specified the correct keyword in the End statement at the end of a loop, a
handler, or another block of statements. For example, a While loop must end with an
End While statement.

Line too long

The statement compiles to more than 255 bytes. Try breaking the statement up into
two or more statements to make it shorter.

Insufficient memory

There isn’t enough memory available in the system or the active application to
compile the script. If the script is on an application-specific palette, try closing
windows to make more memory available in the active application. If the script is on a
global palette, try closing applications.

AppleScript Error

OneClick cannot connect to the AppleScript scripting system to compile an
embedded AppleScript statement. This usually occurs when AppleScript is not
installed, or when there is not enough memory to initialize AppleScript.

Other AppleScript errors

If AppleScript encounters an error while compiling an embedded AppleScript
statement, AppleScript’s error message appears in the status area where OneClick
messages normally appear. Refer to an AppleScript reference manual for a description
of AppleScript error messages.
■ 41

CHAPTER THREE ■ USING THE SCRIPT EDITOR

Script compiler error messages

42
Unknown version of script

The script appears to have been created with a version of OneClick that’s newer than
the current version of OneClick you have installed, and the script cannot be
decompiled or run. Normally you shouldn’t ever see this message.
■

Four
Using EasyScript

Chapter
Overview

This chapter shows you how to write scripts for buttons and enhance recorded
scripts. You’ll learn basic scripting techniques using OneClick’s EasyScript scripting
language. Topics covered in this chapter include:

■ Introduction to scripting

■ Parts of the EasyScript language

■ Common scripting techniques

■ Testing and debugging a script

About scripting

OneClick’s ability to record and play back a sequence of actions on the Macintosh is a
powerful feature, because it can save you a lot of time and tedious repetition—letting
you be more productive. OneClick’s robust EasyScript language makes the
sequencing ability even more powerful. Unlike scripts or macros that are simply
recordings of keystrokes and mouse clicks, EasyScript scripts are recorded in a simple
programming language.

At its core, EasyScript is a small language with a simple, easy-to-learn syntax. To this
core, EasyScript adds dozens of commands and functions created specifically to access
and manipulate the Macintosh user interface and operating environment. The
addition of the built-in commands to EasyScript means that many actions that would
take a number of instructions to execute in other scripting or macro software can
usually be expressed with a single EasyScript command or function.
■ 43

CHAPTER FOUR ■ USING EASYSCRIPT

Overview

44
At the most basic level, you can record scripts to automate routine tasks, but that’s
only the beginning. When you click a button on a OneClick palette, you’re simply
running an EasyScript script. By learning EasyScript, you can edit and enhance your
recorded scripts to increase their functionality.

Sample EasyScript scripts

While learning EasyScript, you’ll find a good source of example scripts in the pre-
made buttons that come with OneClick. Use the Script Editor to browse or print the
scripts for different buttons. When you’re not sure what a particular keyword does in
a script, refer to this chapter and Chapter 5, “EasyScript Reference.”

How scripting differs from programming

You don’t need to know a programming language to use EasyScript. Although this
chapter does not take a systematic approach to teaching a programming language, it
does teach you what you need to know about EasyScript scripting.

Because of the power of the EasyScript language, the difference between it and a
traditional programming language (such as BASIC, Pascal, or C++) may seem to
blur. Although there are many features that EasyScript shares with traditional
programming languages, there are a few distinct areas in which EasyScript is different.

Ability to create stand-alone applications

Programming languages are designed to let programmers develop stand-alone
applications from the ground up. A typical application, such as a word processor,
consists of thousands of lines of code that may take months or even years to develop.

EasyScript scripts usually perform just a single task or series of tasks within an
application. Compared to a programming language, EasyScript scripts are very short
and to the point; most of the scripts you’ll write may contain no more than a few lines
of EasyScript statements. Scripts that perform simple tasks, such as opening an
application or document, may contain only one EasyScript statement.

Ability to control other applications

EasyScript commands and functions are uniquely designed to interact with an
application’s user interface elements, such as menus, windows, and buttons.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
A programming language lets you create applications that display user interface
elements, but the language itself doesn’t provide the built-in ability to automatically
interact with those elements.

Ability to create custom or structured data types

In a traditional programming language, the programmer can create new data types
used to store information—often called records or structs, depending on the
language.

EasyScript supports three data types needed to interact with the Macintosh user
interface: number, string, and list, which is a special kind of string data. Lists are
similar to arrays in other languages, but they can also be manipulated as string values.

Parts of the EasyScript language

In this section you’ll become familiar with aspects of the EasyScript language, such as:

■ statements and keywords

■ values

■ commands

■ comments

■ functions

■ variables

■ expressions and operators

■ objects

■ handlers

If you’re already familiar with another scripting or programming language, skim this
section to gain an understanding of the differences between EasyScript and other
languages. If you’re new to scripting, pay careful attention to each of the following
sections.
■ 45

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

46
Statements and keywords

A statement is one line of instructions in a script. A script is made up of one or more
statements, with one statement per line in the script. You write statements using
commands, functions, objects, handlers, and other elements in the EasyScript
language. The names of all the different commands, functions, objects, and
handlers—all words in the EasyScript language—are collectively called keywords.

The following are five statements in an example script. Keywords are highlighted in
boldface.

Message "Hello, world!"
Open (FindFolder "amnu") & "Chooser"
Variable X, MyCount
X = Date 1
MyCount = MyCount + 10

The first two statements contain commands and their parameters. The third statement
declares two variables named X and MyCount. The fourth statement assigns the result
of the Date function to the variable X. The last statement adds 10 to the value of the
MyCount variable.

Values

A value is a series of characters (called a string value) or a number (called a numeric
value). String values can consist of any character, including numbers, symbols, and
punctuation marks. String values must be enclosed in quotation marks when you type
them in a script.

Numeric values are limited to numbers and a minus sign, if needed. Floating-point
numbers (numbers with a decimal fraction) are not supported. A numeric value can
range from –2,147,483,648 to 2,147,483,647.

Following are some examples of values. String values are enclosed in quotation
marks.

29930
—62
"Projects"
"3:00 Meeting"
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
List values

A list value is a special type of string. A list is a series of individual strings separated by
a special character, called the list delimiter. The preset delimiter is the Return
character (↵). Examples of lists include the following:

"Apple↵ Banana↵ Navel Orange↵ Strawberry↵ Peach↵ Pear↵ Concord Grape"
"9↵ 26↵ 66↵ 7↵ 13↵ 63"

The first list contains seven string items: Apple, Banana, Navel Orange, and so on. The
second list contains six strings. EasyScript treats numeric characters in a list as strings,
not numbers.

Many EasyScript commands and functions use lists to perform their tasks. For
example, the PopupMenu function (described later) displays a list as a pop-up menu;
each individual string in the list appears as an item in the menu.

. To insert the Return character (↵) in the Script Editor

■ Press Option-Return.

You don’t need to insert the ↵ character before the first item or after the last item in
the list, just between each item.

For more information on how to use lists in your scripts, see “Manipulating lists” on
page 75.

Commands

Commands are words that perform the work of a script. The other language elements
(values, variables, functions, objects, and so on) just let you put the commands
together in more useful ways.

Common commands you might use in scripts include the following:

Command Description

Type Types text or simulates pressing Command keys

SelectMenu Chooses a command from a menu in the menu bar

SelectPopUp Chooses a command from a pop-up menu
■ 47

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

48
Command examples

Here’s an example script that uses some of the above commands:

Open "Hard Disk:Applications:SimpleText"
SelectMenu "File", "New"
SelectMenu "Style", "Bold"
Type "Status Report — Alan Bird"
SelectMenu "Style", "Plain Text"
Type Return, "Week Ending ", Date
Type Return, Return, Return

The script opens SimpleText, opens a new document, types the status report heading
in bold text, then types the week-ending date in plain text, followed by three carriage
returns.

Parameters

Many commands and functions require one or more parameters. A parameter is a
value you include as part of a statement so the command knows what value to work
with. For example, the Type command requires at least one parameter that specifies
what text or keystrokes to type. The SelectMenu command accepts two parameters:
the first is the name of the menu, and the second is the name of the menu item to
choose.

You can use either spaces or commas to separate multiple parameters. The following
statements are equivalent:

SelectMenu "File", "New"
SelectMenu "File" "New"

SelectButton Clicks a button in a dialog box or window

Open Opens an application, folder, document, or other Finder item

Wait Waits for a certain condition to become true, such as waiting for a
specific window to appear

Variable Declares variables for use in a script

Command Description
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Functions

Functions are commands that return a value. While commands usually perform some
kind of action, such as choosing a menu item, functions usually just report a value,
such as the current date or time.

Functions can be assigned to variables, used in If statements, or anywhere else a value
of the specified type is expected. Common functions you might use include the
following:

Some functions, such as AskFile and AskList, perform some action (such as displaying
a dialog box) before returning a value. Other functions simply return a value.

Function examples

Here’s an example script that uses the AskFile, Return, and AskButton functions:

Type AskFile "TEXT"
Type Return
Type AskButton "You chose a file.", "Yes, I know", "I goofed"

Comments

A comment is a note to yourself that you type in a script. OneClick ignores any
comments in your scripts. It’s a good idea to include comments in the scripts you
write so that if you write something complicated, you can quickly figure out what the
script does later on.

You use two slashes (//) to mark the beginning of a comment. A comment can appear
on a line by itself or after a statement; a comment always extends to the end of the
line. Here are some examples of comments in a script:

// This is my Hello World script
Sound "Quack" // quack like a duck
Message "Hello, World!" // displays a greeting in a dialog box

Function Description

ListCount Returns the number of items in a list

SubString Returns a portion of a string

Date Returns the current date as a string value
■ 49

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

50
You can also use the comment marker to “comment-out” statements you don’t want
OneClick to execute while you’re testing a script. Just put the comment indicator at
the beginning of the statement you want OneClick to ignore:

// This is my Hello World script
// Sound "Quack" // quack like a duck
Message "Hello, World!" // displays a greeting in a dialog box

The above script works like the previous version, except it doesn’t play the Quack
sound. When you want to re-enable a statement you commented out, just remove the
comment marker.

Variables

Variables are containers which store a string or number value that can change as a
script runs. In script statements, you can use variables instead of literal values (text or
numbers typed directly in the script).

Before you can use a variable, you must first use the Variable command to declare the
variable’s name. Declaring a variable name lets OneClick recognize the word as a
variable when it appears in your script.

Variables must be named according to these rules:

■ The variable name must start with a letter (A–Z or a–z).

■ The rest of the name can contain letters, numbers, or underscores (_).

■ The name can be up to 255 characters long.

■ The name can’t be the same as an EasyScript keyword or any other type of
variable.

Following are some examples of correct and incorrect variable names:

Variable name Valid?

theText Yes

My_Number_Variable Yes

X Yes

Message No (Message is an EasyScript keyword)
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
When you save a script or check its syntax in the Script Editor, OneClick checks to
make sure the variable names you declared are all valid. If you use an invalid variable
name, the Script Editor displays the message “Invalid variable name” and highlights
the name so you can change it.

Variable names are not case-sensitive. The variable names “thetext”, “TheText”, and
“THETEXT” all refer to the same variable. When you save a script or check its syntax,
OneClick changes the case of variable names to match the case used in the Variable
statement.

The variables you declare assume their type (string or number) the first time they are
assigned a value, so you don’t need to explicitly declare them as string or number
variables like you might do in some programming languages.

Assigning variables

Use the equal (=) operator to assign values to variables:

MyNumberVar = 47024
MyStringVar = "Monday is my favorite day of the week"
FruitListVar = "Apples↵ Oranges↵ Bananas↵ Pears"
WindowListVar = Window.List

As mentioned earlier, variables assume their type when they are initially assigned.
However, you can change the type of a variable by assigning it a value of a different
type. For example, consider the following:

MyStringVar = "Forty Two"
MyStringVar = 42

In the second statement, variable MyStringVar becomes a numeric variable containing
the value 42 instead of a string variable.

The MakeText and MakeNumber functions allow you to interpret a string variable as a
numeric value and vice versa. For example:

MyVar1 = 42
MyVar2 = MakeText MyVar1

num-lines No (contains punctuation other than an underscore)

4files No (starts with a number)

Variable name Valid?
■ 51

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

52
MyVar1 contains the numeric value 42 and MyVar2 contains the string value “42”.

Note A variable has no value until you assign a value to it. When a variable has no
value, it is considered equal to both the empty string (“”) and zero (0).

Local and global variables

When you declare a variable, you can access that variable only from within the script
in which the variable is defined. This kind of variable is called a local variable because
it can only be accessed locally within a single script; other scripts cannot access the
same variable. Local variables have no value when they are declared and lose their
value when the script ends.

Global variables, unlike local variables, can be shared between scripts in different
buttons. Because they are meant to be shared between different scripts, global
variables do not lose their value when a script ends. When a global variable is
declared and assigned a value in one script, the variable’s value is not re-initialized
when it’s declared in another script.

Global variables do lose their values when the application for which the script was
written quits. For example, if you assign values to global variables in scripts written
for a SimpleText palette, those variables lose their values when you quit SimpleText.
The variables are re-initialized the next time you open SimpleText and run the script.

To access a variable from any script (either on the current palette or from another
palette within the same application), use the Global keyword in the Variable
statement:

Variable Global FavoriteTeam

The above statement declares one global variable, FavoriteTeam. You can now access
FavoriteTeam from any other script that also declares FavoriteTeam as a global variable.
Each script that accesses a global variable must declare it. (Make sure to use the
Global keyword and to spell the variable name the same in each script.) Here are two
scripts (for a pair of buttons) that share a global variable:

// Script #1: This script shows a list box and gets a response
Variable Global FavoriteTeam
FavoriteTeam = AskList "Padres↵ Dodgers↵ Giants", "Pick your favorite team:"
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
// Script #2: This script shows the result of the AskList function in script #1
Variable Global FavoriteTeam
Message "My favorite team is the " & FavoriteTeam

You can share global variables between scripts on the same palette or between scripts
on different palettes. The only limitation is that you cannot share global variables
between palettes of different applications. For example, if you have a global variable
named PictureName in both an Adobe Photoshop palette and a Microsoft Word
palette, EasyScript treats the variable as two different global variables. This is because
only one application’s palettes are available at a time—when Photoshop is active, only
Photoshop’s palettes are active; the Microsoft Word palettes (including its buttons,
scripts, and therefore variables) are unavailable.

Global variables on global palettes work the same way. A script on a global palette can
access global variables only on other global palettes, not on application-specific
palettes. Likewise, scripts on application-specific palettes cannot access global
variables on global palettes.

Tip for naming global variables

When working with global variables, it’s a good idea to come up with unique variable
names to avoid potential conflicts with global variables in other scripts. For example,
consider a script that relies on the following global value:

Variable Global Num
Num = 16

If another script also has Num declared as global variable, and each script assigns a
different value to Num, then the scripts may not work correctly if Num contains a
value that one of the scripts didn’t expect.

A better strategy is to use local variables, when possible, and change the global
variable names to more unique (but still readable) names. For example, you might
add an abbreviation of the button’s name to the global variable name, so the variable
name is distinct from any global variables declared in other scripts:

Variable Global QH_Num
QH_Num = 16
■ 53

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

54
Static variables

When you need to store data in a variable that doesn’t go away when the script ends
or when the application quits, use a static variable. Static variables always remember
their values, even when you shut down or restart your computer. (Static variables are
stored on disk in the button’s palette file.)

To declare a static variable, use the keyword Static in the Variable statement.

Variable Static PhoneList
Variable Static Addresses, JobLeads

Static variables are always local to the script in which they are declared. You cannot
declare a variable to be both static and global.

System variables

A system variable is a built-in variable whose value is changed and maintained by
OneClick. System variables behave like functions, except they don’t require
parameters and don’t do any special processing like some functions do. Following are
some examples of system variables:

Some system variables, such as Clipboard and SoundLevel, allow you to change their
value. Other system variables are maintained by OneClick and cannot be changed in a
script.

Here is a sample script that uses the SoundLevel system variable:

Variable CurrentSound
CurrentSound = SoundLevel
SoundLevel = 7
Sound "Quack"
Message "The sound level is " & SoundLevel
SoundLevel = CurrentSound
Sound "Quack"
Message "The sound level is " & SoundLevel

System Variable Description

Clipboard Returns or sets the contents of the Clipboard.

CommandKey True when the Command key is pressed, otherwise False.

SoundLevel Returns the current speaker volume level (0—7) or sets the volume to a
new level.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
The script stores the value of SoundLevel (the current sound volume) in the variable
CurrentSound. The script then sets the volume to 7, plays a sound, and displays a
message indicating the current sound level. After you click OK in the message box, the
script restores the previous sound volume, plays the sound again and displays
another message box.

Expressions and operators

Values, variables, and functions can be combined into expressions using operators.
The expressions, in turn, can be used anywhere a value is expected.

Arithmetic operators

These operators perform arithmetic on two expressions. In the following examples,
assume that x = 32 and y = 45.

Note Because EasyScript does not support floating-point (decimal) numbers, the
division operator returns the result without the decimal fraction.

Operator Description Example Result

– negation –x –32

+ addition x + y 77

– subtraction x – y –13

* multiplication x * y 1440

/ integer division x / y 0
■ 55

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

56
Relational operators

Relational operators compare the values of two expressions. If the comparison is true,
the resulting expression has the value 1 (True). Otherwise the resulting expression
has the value 0 (False). In the following examples, assume that x = 32 and y = 45.

You can also use relational operators to compare string values. EasyScript uses the
ASCII sort order for <, >, <=, and >= comparisons. In the following examples,
assume that x = “One” and y = “Click”:

Operator Description Example Result

= equal x = y False (0)

<> not equal x <> y True (non-zero)

> greater than x > y False (0)

>= greater than or equal x >= y False (0)

< less than x < y True (non-zero)

<= less than or equal x <= y True (non-zero)

Operator Description Example Result

= equal x = y False (0)

<> not equal x <> y True (non-zero)

> greater than x > y True (non-zero)

>= greater than or equal x >= y True (non-zero)

< less than x < y False (0)

<= less than or equal x <= y False (0)
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Logical operators

Logical operators perform logical (Boolean) operations on their operands. The result
of a logical expression is either True (1) or False (0). In the following examples,
assume x = 32 and y = 45.

String operator

The string concatenation operator (&) joins two string values. Use it to glue two
strings together and store the result in a string variable. In the following examples,
assume that Var1= “One” and Var2 = “Click”.

Parentheses

Parentheses change the order of evaluation:

When you save a script or check its syntax, OneClick checks for mismatched
parentheses in expressions. (There should always be an equal number of left and
right parentheses.) If a parenthesis is missing, OneClick displays a Missing ‘(’ or
Missing ‘)’ message and moves the cursor to the line where the parenthesis is missing.

Operator Description Example Result

NOT logical negate NOT (x < y) False (0)

AND logical and (x < y) AND (x > y) False (0)

OR logical or (x < y) OR (x > y) True (non-zero)

Operator Description Example Result

& string concatenation "Today is " & Date "Today is 2/20/97"

Var1 & Var2 "OneClick"

Operator Description Example Result

() parentheses (32 + 45) * 5 385

32 + (45 * 5) 257
■ 57

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

58
Operator precedence

EasyScript uses the following order of precedence to determine the order in which
parts of an expression are evaluated. Operators of equal precedence (such
as + and –) are evaluated from left to right.

unary +, –, NOT
*, /
+, _
<, >, <=, >=
=, <>
AND
OR
&

Control statements (branching and looping)

EasyScript provides several types of control statements you can use to create
intelligent scripts. Control statements act on the value of an expression and execute
different statements depending on the expression’s value. The control statements in
EasyScript are similar to those found in traditional programming languages:

■ If, Else, Else If, End If

■ For, Next For, Exit For, End For

■ Repeat, Next Repeat, Exit Repeat, End Repeat

■ While, Next While, Exit While, End While

Each set of statements has its own purpose: for conditional execution and decision
making; looping (repeating statements); and conditional looping.

Conditionally executing statements

Use an If…End If statement to execute one or more statements only when a certain
condition is true. All statements between If and End If are executed only if the
condition in the If statement is true. If the condition is false, the statements between
If and End If are skipped. The syntax of the If statement is as follows:

If expression
statements

End If
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Here’s an example script that uses If and End If to compare the values of two
variables, X and Y:

Variable X, Y
X = 12
Y = 43
If X < Y

Message "X is less than Y"
End If
Sound "Quack"

In the above script, a message box appears only when the value of X is less than Y. If X
is greater than or equal to Y, the Message statement is skipped. Execution always
continues with the Sound statement following the End If statement.

An expression is true if it is a number that is not equal to zero, or a string that is not
equal to the null string (“”). For example, the Sound statement in the following script
will execute if X = 35 or X = “Hello”, but will not execute if X = 0 or X = “” (the
null string).

If X
Sound "Quack"

End If

The Else statement lets you specify alternate statements to execute if the condition in
the If statement is false. The syntax of an If, Else, End If statement is as follows:

If expression
statements

Else
statements

End If

Here’s an example (similar to the previous script) that uses an Else statement.

Variable X, Y
X = 12
Y = 43
If X < Y

Message "X is less than Y"
Else

Sound "Indigo"
Message "X is NOT less than Y"

End If
Sound "Quack"
■ 59

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

60
In the above script, a message appears if X is less than Y, just as it did in the previous
script. But if X is not less than Y (the condition is false), then the Indigo sound plays
and a different message appears. As before, the Quack sound plays following the End
If statement, regardless of the condition in the If statement.

You can create a series of If statements using one or more Else If statements. Each Else
If statement contains a different expression to evaluate. Here’s the syntax of an If
statement that includes one Else If statement:

If expression
statements

Else If expression
statements

Else
statements

End If

As with a regular If…End If statement, the Else statement is optional.

The sample script below uses an If statement with two Else If statements. To run the
script, you choose a name from a pop-up menu button; the pop-up menu contains
three names (Lucy, Viki, and Erica). The If and Else If statements type a certain mailing
address depending on the value of MyChoice (the name chosen from the pop-up
menu). After one of the mailing addresses is typed, the script finishes by typing a
salutation.

// Get a choice from a pop-up menu
Variable MyChoice
MyChoice = PopupMenu "Lucy↵ Viki↵ Erica"

// Type a different address depending on the value of MyChoice
If MyChoice = "Lucy"

Type "Lucy Coe↵ Deception, Inc.↵ Port Charles, NY↵↵ "
Else If MyChoice = "Viki"

Type "Viki Carpenter↵ The Banner↵ Llanview, PA↵↵ "
Else If MyChoice = "Erica"

Type "Erica Kane↵ Enchantment, Inc.↵ Pine Valley, PA↵↵ "
End If

// Type the salutation
Type “Dear ", MyChoice, ", ↵↵ "

If statements can be nested to create even more complex conditions. For more
information, see “If, Else, Else If, End If ” on page 109.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Repeating a sequence of statements a number of times

Use a Repeat…End Repeat loop to repeat one or more statements a certain number
of times. All statements between Repeat and End Repeat are repeated the number of
times specified by the Repeat parameter. The following script opens, resizes, and
moves new document windows in SimpleText:

// Assign the starting values for the window position
Variable X, Y, HowMany
X = 10
Y = 45
HowMany = AskText "How many new windows?"

// Open and cascade some new windows
Repeat HowMany

SelectMenu "File", "New"
Window.Location = X, Y
Window.Size = 300, 250
X = X + 20
Y = Y + 20

End Repeat
Message "All done."

This script uses the AskText function to display a dialog box and request the number
of new windows to open. The result is stored in the HowMany variable, which is used
as the parameter to the Repeat command. If HowMany is greater than zero, then the
script executes the statements between Repeat and End Repeat the number of times
specified by HowMany, then continues with the statement following End Repeat. If
HowMany is zero or a negative number, the Repeat loop is skipped entirely and
execution continues with the statement following End Repeat.

To improve readability, the statements between Repeat and End Repeat are indented
automatically when you check or save the script.

Repeating a sequence of statements using a counter

A For…End For loop is similar to a Repeat…End Repeat loop, except you supply a
variable that OneClick increments each time through the loop. You can use this
counter variable in statements within the For loop, perhaps as an index into a list
value. (See “Manipulating lists” on page 75.)
■ 61

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

62
A For…End For loop in EasyScript is very much like a For…Next loop in many
programming languages. The syntax for a For…End For loop is as follows:

For index-variable = start To end
statements

End For

Index-variable is a variable you declare at some point before the beginning of the For
loop. You don’t need to initialize its value. Start is a numeric value (or expression)
that indicates the starting value for index-variable in the beginning of the loop. Each
time through the loop, OneClick adds 1 to index-variable and then compares the
new value with end, a numeric value (or expression). When index-variable is greater
than end, the loop terminates and execution continues with the statements following
End For. Here’s an example:

Variable X
For X = 1 to 5

Message X
End For

The first time through the loop, X equals 1 (the value of start). OneClick increments X
each time through the loop until X equals 5 (the value of end). The result of this script
is a series of five message boxes, displaying the numbers 1 through 5.

Start can be any number; it doesn’t need to be 1. End must be greater than start,
however. (You cannot loop backwards, counting down from end to start.)

For more information, see “For, Next For, Exit For, End For” on page 108.

Repeating statements while a condition is true

Use a While…End While loop to repeat one or more statements while a certain
condition is true. The following script loops through all of the open windows in an
application, saving and closing each document until there are no more open
windows.

While (Window.Front <> "")
SelectMenu "File", "Save"
CloseWindow

End While
Message "All done."

The script works by repeatedly checking the Window.Front property, which is equal
to the empty string (“”) if there are no open windows.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
The While loop works as follows: The expression following the While command
(Window.Front <> “”) is tested. If it is true (Window.Front is not equal to the empty
string), the statements between While and End While are executed. Then the
expression is re-tested, and if true, the body of the loop is executed again. When the
expression becomes false (Window.Front equals the empty string) the loop ends, and
execution continues at the statement following End While.

In a While…End While loop, it’s possible to use an expression in the While statement
that never evaluates to false. This causes an endless loop—the statements between
While and End While continue to repeat and the loop never ends. You can press
Command-period to stop a script that’s stuck in an endless loop.

To improve readability, the statements between While and End While are indented
automatically when you check or save the script.

For more information, see “While, Next While, Exit While, End While” on page 121.

Pausing a script for a specified period of time

Use the Pause command to wait for a certain duration. Pause accepts one parameter,
the number of 1/10ths of a second to wait:

// Wait 10 seconds between saving the file and quitting
SelectMenu "File", "Save"
Pause 100
SelectMenu "File", "Quit"

In the example script, Pause waits 10 seconds (100/10ths of a second) before quitting
an application. While the script is paused, you can press Command-period to stop
and cancel the script.

Pausing a script until a condition is true

When you want a script to stop running until some action occurs in the application
(such as waiting for a certain window to appear), use the Wait command to check for
a condition:

// Open our e-mail program, then open the "In Basket" window and wait for it to appear.
Open "Macintosh HD:Applications:E-mail"
Type Command "I"
Wait (Window.Front = "In Basket")
■ 63

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

64
// The "In Basket" window appeared, so let’s click the "Check Mail" button
Button "Check Mail"

You can use any logical expression in a Wait statement. The Wait command evaluates
the expression repeatedly until the result is True (1), then the script resumes running.

Note that you have control of the application while the Wait statement is waiting for
something to happen. By using this feature, you can create interactive scripts in which
the script does something, stops and waits for you to do something, then continues
doing something else when you’re done. Here is a sample script that displays the
Open dialog box, waits for you to open a document, then prints the document when
the document window appears:

Variable oldWindowCount
oldWindowCount = Window.Count
SelectMenu "File", "Open*"
Wait ((Window.Count) = (oldWindowCount + 1))
SelectMenu "File", "Print*"
SelectButton "Print"

The script first declares a variable, oldWindowCount, and sets that variable equal to
the number of windows currently open. (Window.Count returns the number of open
windows in an application.) The SelectMenu command chooses Open from the File
menu, causing a directory dialog box to appear.

The Wait command then sits and waits for another window to appear; it does this by
checking to see if the number of open windows is one greater than the number
previously stored in oldWindowCount. While the script is waiting, you can use the
directory dialog box to locate and select a file to open. When the window for the
opened document appears, the number of windows will then equal oldWindowCount
+ 1, allowing the script to continue with the SelectMenu statement following the
Wait statement.

If the expression in the Wait statement always stays False (0) and never changes to
True (1), the script will appear to hang—it just keeps evaluating the Wait expression
endlessly. To cancel a hung script, press Command-period.

For more information, see “Wait” on page 120.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Stopping a script before it ends normally

Use the Exit command when you want to immediately stop the execution of a script
and ignore all remaining script statements. The following is a script that will either
stop short or continue executing depending on whether a certain window is active:

If (Window.Front <> "In Basket")
Exit

End If
SelectMenu "Mail", "Sort Mail", "by Date"
Sound "Quack"
Message "You have mail."

The script first checks to see if the In Basket window is the active window in an e-mail
program. If In Basket isn’t the active window, the Exit statement causes the script to
end (no other statements are executed). If In Basket is the active window, the script
continues with the SelectMenu statement (following End If) and continues to the end
of the script.

Objects

An object is a type of data with several properties that describe the object. Think about
a physical, real-life object, such as a banana: properties that might describe a banana
object include size, color, weight, ripeness, flavor, and so on.

You can set or retrieve the value of object properties using EasyScript statements. The
syntax for doing so is as follows:

Object(specifier).Property = value // assigns a value to an object’s property
value = Object(specifier).Property // assigns an object’s property to a value

Using a pair of bananas as an example, you can access the properties of the bananas
and assign the properties to variables. If bananas actually supported scripting, you
might also assign values to their properties. Assume you have two bananas named
Chiquita and Dole:

Variable Size1, Size2, Weight1, Weight2

Size1 = Banana("Chiquita").Size
Size2 = Banana("Dole").Size
■ 65

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

66
If Size1 > Size2
Message "Chiquita is larger than Dole"

Else
Message "Dole is larger than Chiquita"

End If

Banana("Chiquita").Ripeness = "Fresh"
Banana("Dole").Ripeness = Banana("Chiquita").Ripeness

In the above example, Banana is the object type. “Chiquita” and “Dole” are the
specifiers, the names of the Banana objects. The script compares the Size property of
each banana, then sets the Ripeness property of each banana to “Fresh”.

Like real-life objects, OneClick objects have properties that describe their contents or
appearance. For example, a Window object has Height and Width properties that tell
you the dimensions of a window on the screen.

// set the width of the window named "Document1" to 540
Window("Document1").Width = 540

// set the height of the window named "Checkbook" to 300
Window("Checkbook").Height = 300

OneClick supports the following object types:

Object type Description

Button A button on a OneClick palette

DialogButton A button or checkbox in a dialog box or window

File A file on disk

Menu A menu in the menu bar

Palette A OneClick button palette

Process A running application

Screen A monitor connected to your Mac

Volume A mounted disk, CD-ROM, or file server volume

Window A window in the active application
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Specifying an object

An object specifier identifies which object a statement refers to. If you omit the
specifier, OneClick assumes you’re specifying the active, or default, object. Which
object is considered the default object depends on the type of object you’re working
with. In the case of a Window object, the default object is the active (frontmost)
window.

// set the width of the active window to 540
Window.Width = 540

// set the height of the active window to 300
Window.Height = 300

The following table summarizes the default objects for each object type.

Setting and retrieving object properties

As you saw earlier, you can get and set the values of properties, much like you do with
variables. The key difference between a property and a variable is that properties are
dynamic. When you get a property’s value, the value returned is the property’s value
at the time the statement is executed. When you assign a value to a property, the
object itself changes to match the property’s new value.

// set the width of the active window to 540
Window.Width = 540

Object type Default object if no specifier given

Button The button containing the active script

DialogButton (No default)

File (No default)

Menu (No default)

Palette The palette containing the active script

Process The active application

Screen The main (menu bar) screen (if you have more than one
monitor connected)

Volume The startup disk

Window The active (frontmost) window in the active application
■ 67

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

68
// set the height of the active window to 300
Window.Height = 300

When you run the above script, you’ll see that the active window’s size actually
changes as each statement executes.

Manipulating many properties at once

When you get or set the values of several properties for the same object, you can use a
With statement to specify the object just once, which simplifies the script and reduces
the amount of typing required. The following script sets four different properties of a
Button object.

With Button("E-mail")
.Color = 43
.Width = 60
.Height = 22
.Text = "Check E-mail"

End With

The above script is functionally the same as the following script, written the long way.

Button("E-mail").Color = 43
Button("E-mail").Width = 60
Button("E-mail").Height = 22
Button("E-mail").Text = "Check E-mail"

Telling an object to do something

A message tells an object to perform some kind of action. To continue our banana
analogy, two possible messages for a Banana object might be Peel and Ripen.

Banana("Chiquita").Peel
Banana("Dole").Ripen

The first statement causes the Chiquita banana to peel itself. The second statement
causes the Dole banana to ripen, possibly by incrementing the banana’s Ripeness
property.

The Process (running application) object lets you use the Quit message to tell an
application to quit itself.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
// quit the active application
Process.Quit

// quit SimpleText
Process("SimpleText").Quit

The Palette and Button objects each allow you to create and delete palettes or buttons
on the fly, using the New and Delete messages. This is an advanced feature that lets
you create dynamic palettes and buttons—for example, you can write a script that
creates buttons for all the active applications. When you quit an open application or
launch a new one, the script can create a new button or delete an old one as
appropriate. (The Task Bar included with OneClick does just that.)

To create a new palette, use the New message. A newly-created palette is hidden, so
you’ll need to set its Visible property to 1 to make it appear.

The optional Global modifier lets you create a global palette.

// create a new application palette named My Palette
Palette("My Palette").New
Palette("My Palette").Visible = 1

// create a new global palette named Global Controls
Palette("Global Controls").New Global
Palette("Global Controls").Visible = 1

You can also use the New message to create new, blank buttons on a palette. A newly-
created button uses the default button properties from the Button Editor, except it’s
invisible (just like a new palette). This lets you set all the button’s properties (color,
size, location, and so on) before you make the button visible.

Here’s a script that creates a row of five buttons and sets their properties. The row of
buttons appears in the upper-left corner of the palette.

// create a row of five new, blank buttons
// the buttons are named "1" to "5"
■ 69

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

70
Variable X
For X = 1 to 5

Button(MakeText X).New
With Button(MakeText X)

.Color = 43

.Width = 22

.Height = 22

.Top = 1

.Left = (X – 1) * 23

.Visible = 1
End With

End For

To delete a button or palette, use the Delete message.

// permanently delete the palette named Switcher
Palette("Switcher").Delete

// permanently delete the button named Temp
Button("Temp").Delete

Supported object properties and messages

All objects support multiple properties, and many objects have properties with the
same names. You can get and set the values of most properties; however, some
properties are read-only, meaning you can’t set their value. For example, Window and
Palette objects each have a .Name property containing the name that appears in the
window or palette’s title bar. You can set the .Name property of a Palette object to
change the name in a palette’s title bar, but you can’t do the same for a Window
object—you cannot change the name of a window.

The .Size and .Location properties are write-only—you can set their values, but you
can’t retrieve them, because these properties contain a pair of values instead of a
single value.

Window.Size = 540, 300
Window.Location = 50, 50

To get an object’s .Size property, get the .Height and .Width properties instead; to get
an object’s .Location property, get the .Top and .Left properties.

Some objects have the same property, but the property’s meaning is different
depending on the object. File and Button objects each have a .Text property, for
example; for the Button object, the .Text property contains the text that appears on
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
the button. But for a File object, the .Text property contains the text in the specified
file.

The following table summarizes the properties and messages available for each object.

Properties
& Messages O

b
je

ct
s

Bu
tt

on

D
ia

lo
gB

ut
to

n

Fi
le

Pa
le

tt
e

Pr
oc

es
s

M
en

u

Sc
re

en

V
ol

um
e

W
in

do
w

.Border ●

.Checked ❍ ❍

.Color ● ● ●

.Count ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

.Creator ● ❍

.Delete ◆ ◆

.Depth ●

.Drag ◆

.Eject ◆

.Enabled ❍ ❍

.Exists ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

.Folder ❍

.Free ❍ ❍

.Front ● ●

.Grow ◆

.Height ● ● ❍ ●

.Help ●

.Icon ●

.IconAlign ●

.Kind ● ❍ ❍

.Left ● ● ❍ ●

.List ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

.Location ✪ ✪ ✪

.Locked ●

.Mode ●

.Name ● ● ❍ ❍ ❍ ❍

.New ◆ ◆

Key: ● Read/write ❍ Read-only ✪ Write-only ◆ Message
■ 71

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language

72
For more detailed information about objects and their associated properties and
messages, refer to the descriptions of each object in Chapter 5, “EasyScript
Reference.”

Handlers

A handler is a series of statements that run when a specific event occurs, such as when
you click the button or when you drag a Finder icon to the button.

The syntax for writing a handler is as follows.

On HandlerName
statements

End HandlerName

.NewFolder ◆

.Quit ◆

.Script ●

.Selection ●

.SendAE ◆

.Size ✪ ✪ ❍ ❍ ✪

.Text ● ●

.TextAlign ●

.TextColor ●

.TextFont ●

.TextSize ●

.TextStyle ●

.TitleBar ●

.Top ● ● ❍ ●

.Update ◆ ◆ ◆ ◆

.Unmount ◆

.Visible ● ● ● ●

.Width ● ● ❍ ●

.Zoom ●

Properties
& Messages O

b
je

ct
s

Bu
tt

on

D
ia

lo
gB

ut
to

n

Fi
le

Pa
le

tt
e

Pr
oc

es
s

M
en

u

Sc
re

en

V
ol

um
e

W
in

do
w

Key: ● Read/write ❍ Read-only ✪ Write-only ◆ Message
■

CHAPTER FOUR ■ USING EASYSCRIPT

Parts of the EasyScript language
Statements inside a handler are run only when the event associated with the handler
occurs. A script can contain more than one handler to respond to different kinds of
events. The following script contains three common handlers: Startup, Scheduled,
and DragAndDrop.

// these statements run only once when the application starts up
On Startup

Sound "Wild Eep"
Schedule 100

End Startup

// these statements run every 10 seconds after the Schedule 100 command runs
On Scheduled

Sound "Quack"
End Scheduled

// these statements run only when a Finder icon is dragged to the button
On DragAndDrop

Sound "Sosumi"
Message GetDragAndDrop

End DragAndDrop

// this is the default handler—these statements run only when you click the button
Sound "Indigo"
Message "I’ve been clicked!"

The default handler for a script is the MouseUp handler. You don’t need to explicitly
write a MouseUp handler when writing a script; statements not in any handler are
assumed to be in a MouseUp handler. The MouseUp handler runs whenever you click
and release the mouse on a button.

The exception to this rule is when the script contains a PopupMenu, PopupPalette, or
PopupFiles command. Because these commands require you to hold down the mouse
button while you choose something from the popped-up menu or palette, the default
handler becomes MouseDown instead of MouseUp. You don’t need to explicitly write
a MouseDown handler; if the script contains PopupMenu, PopupPalette, or
PopupFiles, the script automatically runs when you click (but before you release) the
mouse on a button.
■ 73

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

74
The following table summarizes the handlers that OneClick supports.

See the descriptions of individual handlers in Chapter 5, “EasyScript Reference,” for
more information about each handler.

Common scripting techniques

This section shows you how to perform certain tasks that you can use in a variety of
different scripts. You’ll learn how to use different commands together in new ways,
letting you create even more powerful and useful buttons for your palettes.

Many of the examples in this section are taken from the actual scripts included with
OneClick. For more information about the particular commands described in this
section, see Chapter 5, “EasyScript Reference” in this manual.

Handler Description

DragAndDrop Executed when a Finder icon or text clipping is dragged and dropped on the
button

DrawButton Executed when OneClick draws or redraws the button

MouseDown Executed when you click the mouse on a button, but before you release the
mouse

MouseUp Executed when you click and release the mouse on a button

Scheduled Executed when a Scheduled event occurs (initiated with the Schedule command)

Startup Executed when any of the following occur:

■ the application starts up (for global palettes, Startup handlers execute after
the computer starts up)

■ a button assigns a script containing a Startup handler to another button

■ you edit a script containing a Startup handler and then close the OneClick
Editor window

■ you import a palette that contains a Startup handler in one of its scripts

■ you copy a button that contains a Startup handler from a palette or the
Button Library to another palette
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
Finding the checked item in a menu

You can use the Menu object to determine which item in a menu is checked, if any.
Here’s an example script that sets the button’s text label to the font name that’s
checked in the Font menu of a word processor.

On Startup
Schedule 5

End Startup

On Scheduled
Menu.Update
Button.Text = Menu("Font").Checked

End Scheduled

The Menu object’s .Checked property returns a list of checked items in the specified
menu. Only one font is selected at a time, so the .Checked property returns the name
of the checked font. If no menu items are checked, .Checked returns the empty string
(“”).

The script example is a scheduled script that runs once every half second. (See
“Scheduling a script to run periodically” on page 90.) The statement that does all the
work is the Button.Text statement: Button.Text changes the text label of the button to
the value of the Menu.Checked property, which is the checked font name. The script
runs every half second so that as you click different sections of text that use different
fonts, the button’s text label is continually updated with the selected font name.

Some applications don’t update the checkmarks and enabled/disabled status of menu
items until you pull down a menu, which would cause .Checked to give incorrect
results. The Menu.Update statement forces the application to update its menus before
.Checked looks for checked menu items. For applications that do update their menus
normally, you don’t need to use Menu.Update.

Manipulating lists

OneClick provides a lot of versatility through the use of the list data type, since you
can treat a list value as both a single string and as a collection of strings. Several
commands and functions let you create lists and access list elements as if the list were
an indexed array. Also, some objects return a list of items as an object property: for
example, Process.List returns a list of active applications, and Window.List returns a
list of all open windows.
■ 75

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

76
Accessing items in a list

The ListItems function lets you get individual items out of a list. ListItems returns the
list item at the numeric position you specify. In the following example, a message box
displays the second item in the list (Banana).

Variable fruitList, theFruit
fruitList = "Apple↵ Banana↵ Orange"
theFruit = ListItems fruitList, 2
Message theFruit

The ListCount function returns the number of items in a list. Using this information,
you can write a For loop to loop through every item in a list. The following script
loops through all the fruits in a list and displays each fruit in a message box.

Variable fruitList, fruitCount, theFruit, X
fruitList = "Apple↵ Banana↵ Orange↵ Strawberry↵ Peach↵ Pear↵ Grape"
fruitCount = ListCount fruitList
For X = 1 to fruitCount

theFruit = ListItems fruitList, X
Message theFruit

End For

Accessing items in file paths and other types of lists

A list is usually a series of substrings separated by ↵ (the Return character). By
changing the ListDelimiter system variable, you can use list values to work with other
types of lists, not just lists containing one-line strings. For example, the following
script displays a directory dialog box from which you can select a file. It then displays
three messages showing the full path of the chosen file, the file’s name, and the name
of the volume it’s on.

Variable thePath theDisk theFileName
thePath = AskFile
ListDelimiter = ":"
theDisk = ListItems thePath, 1
theFileName = ListItems thePath, –1 // –1 gets the last item in the list
Message "The complete path is: " & thePath
Message "The volume name is: " & theDisk
Message "The file name is: " & theFileName

The script changes the ListDelimiter value, which is normally ↵ (Return), to the colon
(:) character. Because paths use colons to separate folder and file names, you can treat
a path as a list of items. The first item in the list is the volume or disk name and the
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
last item is the file name. Other items between the first and last items (if any) are
folder names.

Another useful feature is the ability to access a word in a sentence. A sentence is just a
list of words separated by space characters.

Variable theSentence
theSentence = "Bats are not rodents, Dr. Meridian."
ListDelimiter = " " // space character
// Display a message box containing the word "Bats"
Message ListItems theSentence, 1

Creating multi-dimensional lists

Using the ListDelimiter system variable, it is possible to have lists of lists. This allows
you to use lists as multi-dimensional arrays or lists of records.

For example, if you want a list of names, telephone numbers, and ages, separate each
record in the list with a Return character and each field within a record with a slash (/)
character. To get an individual record out of the list, use the Return delimiter. After
you have the record, change the delimiter to a slash (/) to extract each field of the
record. If you put the name as the first field in the record, you can sort the records by
name (make sure the delimiter is Return before sorting).

// Define a list.
Variable myList, Record, Telephone
myList = "Oberrick, J./555-2708/22↵ Renstrom, R./555-5721/25↵ Bird, A./555-6020/29"

// Sort by name. ListDelimiter is Return by default.
myList = ListSort myList

// Get the telephone number of the 2nd record.
Record = ListItems myList, 2
ListDelimiter = "/"
Telephone = ListItems Record, 2
ListDelimiter = Return
Message Telephone
■ 77

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

78
Following is a brief summary of the commands, functions, system variables, and
object properties that support lists. For more information about each item, see the
appropriate section in Chapter 5, “EasyScript Reference.”

Keyword Description

AskList Displays a list in a list box and returns a list of the selected item(s).

GetDragAndDrop Returns a list of paths when multiple Finder items are dropped on a button.

GetResources Returns a list of resources of the specified resource type (sound, font, and so
on).

ListCount Returns the number of items in a list. Useful for accessing the last item in a list,
or for processing items in a list by starting with the last item and ending with
the first.

ListDelimiter Sets or gets the character used to separate items in a list. The default list
delimiter is ↵ (Return).

ListItems Returns (as a list) one or more items from another list. Lets you access (by
number) individual items in a list.

ListSort Alphabetically sorts all items in a list.

ListSum Adds together all numbers in a list and returns the numeric result.

Button.List Returns a list of buttons on the specified palette, or on the palette containing
the script if no palette is specified.

DialogButton.List Returns a list of buttons, radio buttons, and checkboxes in the active window
or dialog box.

File.List Returns a list of files or folders in the specified folder, or files in the current
folder if no folder is specified.

Menu.List Returns a list of menu items in the specified menu, or a list of menus in the
menu bar if no menu is specified.

Palette.List Returns a list of global and application palettes available in the active
application.

Process.List Returns a list of all open applications.

Window.List Returns a list of all visible, named windows. (Hidden windows and windows
without a name don’t appear in the list.)
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
Creating pop-up menu buttons

Many of the pre-made OneClick buttons behave as pop-up menus. You can create
your own pop-up menu buttons using the PopupMenu function. PopupMenu accepts
a list of menu items as a parameter and returns the chosen item as a string. A dash (–)
in the list appears as a divider line in the menu.

This sample button uses the built-in pop-up menu border style and the button’s text
is “Personality”.

Variable theChoice
theChoice = PopupMenu "Viki↵ –↵ Niki↵ Tommy↵ Jean↵ Princess↵ Tori"
Message "You chose " & theChoice

When you choose an item from the pop-up menu, the text of the item chosen is
assigned to the variable theChoice. The script continues by showing a message box
containing the item you picked. If you don’t choose an item from the menu, then
PopupMenu returns the empty string (“”).

When you run a script that contains the PopupMenu function, the pop-up menu
appears while you hold the mouse down on the button. Any statements that appear
before the PopupMenu function execute normally, so it’s a good idea to keep the
number of statements prior to the PopupMenu statement to a minimum. Doing so
allows the menu to pop up more responsively.

You can also use a list function or property (such as File.List) to return a list for the
PopupMenu function to use. Here’s a script that shows a pop-up menu of all the files
in the Control Panels folder.

Variable theChoice
theChoice = PopupMenu File(FindFolder "ctrl").List
Open (FindFolder "ctrl") & theChoice

In this example, File.List returns a list of all the files in the Control Panels folder
(FindFolder returns the path to the Control Panels folder). Choosing a file from the
pop-up menu assigns the chosen file name to the variable theChoice; the Open
command then opens the chosen file in the Control Panels folder.
■ 79

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

80
Getting input while a script runs

Several functions let you add dialog boxes to your scripts to get input during script
execution.

The Script Editor’s online help and Chapter 5, “EasyScript Reference,” show examples
of how you can use these functions in your own scripts.

Accessing the Clipboard

The Clipboard system variable lets you access the contents of the Clipboard. The
benefits of being able to access the Clipboard contents from a script include the
following:

■ storing the Clipboard contents in variables

■ assigning a new value to the Clipboard

■ manipulating the Clipboard contents using commands and functions

Manipulating the Clipboard contents

By using EasyScript’s commands and functions to manipulate the Clipboard variable,
you can easily add new functionality to an application. Here’s an example script for a
Sort Lines button you can use in a word processor:

Variable UnsortedLines SortedLines
SelectMenu "Edit", "Copy"
UnsortedLines = Clipboard
SortedLines = ListSort UnsortedLines
Clipboard = SortedLines
SelectMenu "Edit", "Paste"

To do this in a script Use this function

Display a message with one to four buttons and return the button clicked AskButton

Display a message with an edit box and return the text typed in the box AskText

Display a message with a list box and return the selected item(s) AskList

Display a directory dialog box and get the path of the chosen file or folder AskFile
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
The script works by copying the current selection (a few lines of text) to the
Clipboard. The UnsortedLines variable stores the contents of the Clipboard, which
the SortList function sorts alphabetically. The result of the SortList function (the
sorted lines of text) is stored in the SortedLines variable. To put the sorted lines on
the Clipboard, the script simply assigns the SortedLines variable to the Clipboard
variable. The last statement pastes the contents of the Clipboard into the active
document, replacing the selection of unsorted text lines with the sorted text lines.

You could achieve the same results from the previous script by sorting the Clipboard
text directly:

SelectMenu "Edit", "Copy"
Clipboard = ListSort Clipboard
SelectMenu "Edit", "Paste"

Storing Clipboard data in static variables

Assigning the contents of the Clipboard to a static variable lets you create a somewhat
“permanent” Clipboard. Consider the following script:

Variable Static ClipContents
If OptionKey

SelectMenu "Edit", "Copy"
ClipContents = Clipboard
Exit

End If
Clipboard = ClipContents
SelectMenu "Edit", "Paste"

When you select some text or graphics and Option-click the button, the script copies
the current selection to the Clipboard and stores the contents in ClipContents, a
static variable. When you click the button without the Option key, the script puts the
ClipContents variable back on the Clipboard and then pastes it into the active
application. Because the Clipboard is stored in a static variable, you can go back and
access it any time, even after cutting or copying other material.

The script’s usefulness becomes even more apparent when you duplicate the button
containing the script several times. In the ManyClip palette at left, each of the eight
Clipboard buttons contains a copy of the above script. Because each button has its
own local, static ClipContents variable, the palette effectively gives you eight separate
Clipboards—letting you store different selections of text, graphics, or other data in
each button. To set the contents of a button’s Clipboard, select some text or other
■ 81

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

82
material in a document, then Option-click the button. To paste a button’s Clipboard
contents into a document, simply click the button.

Using public and private Clipboard formats

In certain applications, you’ll need to use the ConvertClip command before accessing
data on the Clipboard. Applications that store Clipboard data in a private format
normally convert their Clipboard’s contents when you switch applications; the
Clipboard data is converted to public format that’s usable by other applications.
Because an EasyScript script may need to access the Clipboard’s data without
switching applications, the ConvertClip command tells the application to convert the
Clipboard data to a public format as if you were about to switch to another
application.

If the Clipboard system variable doesn’t appear to contain the correct information
when you access it, try using a ConvertClip statement before the Clipboard statement:

SelectMenu "Edit", "Copy"
ConvertClip
ClipContents = Clipboard

For more information, see “Clipboard” on page 145 and “ConvertClip” on page 103.

Creating tear-off palettes

Use the PopupPalette command to create pop-up and tear-off palettes. When a
button’s script contains the PopupPalette command, clicking the button displays the
specified palette as a pop-up palette.

PopupPalette "System Folders"

The PopupPalette command takes one parameter, the name of the palette to display.
The above script pops up the System Folders palette when you click the button. You
can choose a button from the pop-up palette, or tear the palette off into a separate
palette by dragging away from the pop-up palette.

Calling scripts as subroutines

When you click a button to run a script, OneClick normally executes only the
statements contained in the button’s script. A single script works as a self-contained
program. You can use the Call command to run scripts in other buttons, either on the
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
same palette or on a different palette. When a called script finishes running, the
calling script resumes executing with the statement following the Call statement.

// This is the main script; it calls "PlaySounds" as a subroutine
If Menu("Mail", "Read New Mail").Enabled

Call "PlaySounds"
Message "You have new mail."

Else
Message "No mail."

End If

// This is the subroutine script in the button named "PlaySounds"
// The script plays three sounds and can be called by any other script
Sound "Sosumi"
Sound "Eep"
Sound "Indigo"

Calling scripts as subroutines lets you create large, complex scripts that are broken
down into smaller, modular pieces. Once you’ve written a subroutine script, any
other script can call the subroutine with just one Call statement—you don’t need to
copy and paste the entire subroutine into every script that uses it. When you make
changes to the subroutine script, you don’t need to make any changes to the scripts
that call the subroutine.

Calling scripts as functions

EasyScript doesn’t let you write functions that actually return a value when called, but
you can easily mimic functions by using subroutines and global variables. To pass
parameters to a function script, declare the same global variables in both the function
script and the script that calls it. To simulate a return value, declare another global
variable (such as “Result”) in each script. Here’s an example of a a function script that
returns a value and another script that calls it:

// This is the calling script. It passes the number 134 to the
// function "MakeWords" and types the result.
Variable Global Parameter, Result
Parameter = 134
Call "MakeWords"
Message Result

The global variables Parameter and Result are accessible to both scripts. By assigning a
value to Parameter in the calling script, then assigning another value to Result in the
■ 83

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

84
function script, you can simulate passing a parameter to a function and retrieving a
result.

The following script does some processing on the parameter passed to it in the
Parameter variable. It converts the parameter (a number) to a string value, then looks
at the text one character at a time and builds a new string containing words that
represent each digit in the number. The While statement loops through each digit
(character) in the number and the If, Else If, End If statement determines which words
to add to the Result string based on the digit in the number.

// This is the function script in a button named "MakeWords". It
// takes a number parameter and returns a text string containing
// the names of each digit in the number.
Variable Global Parameter, Result
Variable X, L, C, T
T = MakeText Parameter
L = Length T
X = 1
Result = ""
While X <= L

C = SubString T, X, X
If C = "1"

Result = Result & "one "
Else If C = "2"

Result = Result & "two "
Else If C = "3"

Result = Result & "three "
Else If C = "4"

Result = Result & "four "
Else If C = "5"

Result = Result & "five "
Else If C = "6"

Result = Result & "six "
Else If C = "7"

Result = Result & "seven "
Else If C = "8"

Result = Result & "eight "
Else If C = "9"

Result = Result & "nine "
Else If C = "0"

Result = Result & "zero "
End If
X = X + 1

End While
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
Like subroutine scripts, the advantage of writing function scripts is modularity. Once
you’ve written a function script, any other script can call the function and get a result
with just a few statements.

Getting a list of the installed fonts or sounds

Fonts on the Macintosh are stored as resources, and the GetResources function lets
you get a list of resources of any particular type. GetResources requires one
parameter, a four-character resource type, and returns a list of all the available
resources of the given type.

Font resources have the “FOND” resource type, so creating a pop-up Font menu is as
simple as the following:

Variable Choice
Choice = PopupMenu (GetResources "FOND")
SelectMenu "Font", Choice

The first line of the script declares a variable, Choice, to hold the result from the
PopupMenu function. The second line creates a pop-up menu that lists all the
available fonts. When you click the button, a pop-up Font menu appears; the name of
the font you choose is stored in Choice. The third line in the script uses the
SelectMenu command to choose from the menu bar’s Font menu the font you
selected.

Creating a pop-up Sound menu is also just as easy, because sounds are stored as
resources of type “snd ” (note the trailing space).

Variable Choice
Choice = PopupMenu (GetResources "snd ")
Sound Choice

Note that four-character resource types (“FOND”, “snd ”, and so on) are case-
sensitive.

Using Drag and Drop

If you’re using System 7.5 or newer (or System 7.1 with the Macintosh Drag and Drop
extensions), you can drag information from an application onto a button and have the
button’s script act on the dropped information. Buttons can receive either plain text
or Finder icons.
■ 85

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

86
To support Drag and Drop in a button, you write a DragAndDrop handler in the
button’s script. Only buttons containing a DragAndDrop handler can receive dropped
information. The DragAndDrop handler runs whenever you drop information on the
button.

You use the GetDragAndDrop function to find out what was dropped on the button.
When you drop a text selection, GetDragAndDrop returns the dropped text. When
you drop one or more Finder items, GetDragAndDrop returns a list containing the
full paths of all the dropped items.

Note Not all applications support Drag and Drop. For example, you can drag text
from WordPerfect 3.1, SimpleText, or BBEdit 3.0, but not from Microsoft Word 5.1. To
drag and drop Finder icons, you need Finder version 7.1.3 or newer.

Working with dropped text

The following script is a variation on the ManyClip script shown earlier in this chapter.
Instead of using the Option key to store selected text in the button, the script uses a
DragAndDrop handler to receive and store dropped text.

Dropping text on the button stores the dropped text in a static variable. Clicking the
button pastes the stored text in the active application.

On DragAndDrop // this runs only when something is dropped on the button
Variable Static theText
theText = GetDragAndDrop // store the dropped text in theText

End DragAndDrop

On MouseUp // this runs only when you click the button
Variable Static theText
Variable tempClip
tempClip = Clipboard // temporarily store the Clipboard’s contents
Clipboard = theText
SelectMenu "Edit", "Paste" // paste theText in the active application
Clipboard = tempClip // restore the original Clipboard

End MouseUp

Because static variables are local, they need to be declared in both the MouseUp
handler and the DragAndDrop handler. When the same static variable is declared in
different handlers within the same script, the variable has the same value in each
handler.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
Working with dropped Finder items

The following script creates a pop-up menu that launches items. To add an item to the
menu, drop a Finder icon on the button. To launch an item, click the button and
choose an item from the pop-up menu.

On DragAndDrop // this runs only when something is dropped on the button
// the list of items is stored in a static variable so we don’t lose it when we restart
Variable Static filePathList

// get the path of the dropped item and add it to the path list
filePathList = filePathList & GetDragAndDrop

End DragAndDrop

On MouseDown // this runs only when you click the button
Variable theChoice
Variable Static filePathList

// Option-click the button to clear the pop-up menu
If OptionKey

filePathList = ""
Exit

End If

// show a pop-up menu of the stored paths
theChoice = PopupMenu filePathList
If theChoice = "" // nothing was chosen

Exit
End If
Open theChoice // open the chosen item

End MouseDown

The script adds an item to the pop-up menu by getting the path of the dropped item
from the GetDragAndDrop function. GetDragAndDrop returns a list of one or more
paths, so the script simply adds the path list to the existing filePathList variable. When
you click the button, the PopupMenu function uses the filePathList variable to display
a pop-up menu of paths. The Open command then opens the path chosen from the
menu.

Creating launch buttons using Drag and Drop on a palette

Normally when you drop a Finder icon on a palette (not on a button), nothing
happens. To add Drag and Drop support to a palette (to create launch buttons, for
example), create a button on the palette and name it “PaletteDrop.”
■ 87

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

88
When you drop a Finder icon on a palette with a PaletteDrop button, OneClick first
creates a new, invisible button the same size as the PaletteDrop button. The new
button is positioned at the same location where you dropped the icon.

After creating the new button, OneClick then calls the DragAndDrop handler in the
PaletteDrop button. In the DragAndDrop handler, you can change the new button’s
icon, name, or other properties, and add a script to the button. Here’s an example
DragAndDrop handler for a PaletteDrop button that creates a new launch button for
an item dropped on the palette.

On DragAndDrop
Variable Quote, thePath
Quote = Char 34 // quotation mark (") character
thePath = GetDragAndDrop 1
ListDelimiter = ":"
// Change some of the new button’s properties
With Button(Button.Count)

.Script = "Open " & Quote & thePath & Quote

.Icon = 1, thePath, 16

.Name = ListItems thePath, –1

.Visible = 1
End With

End DragAndDrop

The Button.Count property returns the number of the last button added to the
palette; that’s how we figure out which button to change. The variable thePath (from
the GetDragAndDrop function) contains the full path to the item dropped on the
palette.

The With Button statement changes some of the new button’s properties, including
its script, icon, name, and visibility:

■ The .Script property (which contains the new button’s script) is set to the Open
command, followed by the item’s path in quotation marks. For example, if the
dropped item was Mac HD:SimpleText, then the new button’s script would be:

Open "Mac HD:SimpleText"

■ The new button’s icon is set to the small (16-pixel) icon of the dropped item.

■ The new button’s name is set to the name of the dropped item (just the name,
not the full path).

■ After setting the other properties, the new button is made visible so it appears on
the palette and can be used.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
This is a fairly simple example of how to write a DragAndDrop handler for a
PaletteDrop button. The script (as it is written here) does not create multiple launch
buttons if you drop multiple items on the palette. It also does not add Drag and Drop
support to the launch buttons it creates.

Determining how long the mouse is held down

A button’s MouseDown handler runs immediately when you click the button, before
you release the mouse. You can use the Ticks system variable to determine how long
the mouse was held down on the button and perform different actions based on that
length of time. For example, consider a button that opens a folder: If you quickly click
and release the button, the folder opens, but if you hold the mouse down on the
button for a specified period of time (3/4ths of a second in this example), then a pop-
up menu of the folder’s contents appears, letting you select a file to open.

On MouseDown
Variable theFolder beginningTicks delayTime
theFolder = FindFolder "ctrl" // Control Panels folder
beginningTicks = Ticks
delayTime = 45
While Ticks < beginningTicks + delayTime

If NOT IsMouseDown
// Do the following if mouse is released before delay time elapses
Open theFolder
Exit

End If
End While
// Do the following if mouse is held down beyond delayTime
Open theFolder & (PopupMenu File(theFolder).List)

End MouseDown

In this script, the beginningTicks variable contains the time (in 60ths of a second)
when the button was clicked. The While loop repeatedly checks to see if the button
was held down for more than 45 ticks (3/4ths of a second, the delay time). If the
button wasn’t held down for more than 45 ticks (meaning the button was clicked and
immediately released), then the Control Panels folder opens. If the button is held
down longer than 45 ticks, then a pop-up menu listing all the control panels appears;
choosing an item from the menu opens a control panel.
■ 89

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

90
Making a script run when an application starts

Some of the palettes that come with OneClick use startup scripts—scripts that run as
soon as their application starts. Startup scripts are useful for a variety of reasons
because they can perform a task whenever you start a certain application. Common
startup tasks include the following:

■ Opening one or more documents

■ Moving the palette to a default location on the screen

■ Changing the monitor’s color depth (for games or graphics programs)

■ Scheduling a script to run periodically (see the next section)

Use a Startup handler in a script to specify that the script should run whenever the
application starts. Here’s an example script from an Adobe Photoshop palette that
changes the monitor’s color depth whenever Adobe Photoshop is run.

On Startup
// Switch the monitor to millions of colors
Screen.Depth = 32
// Show the Scanner Tools palette and move it down to the corner of the screen
Palette("Scanner Tools").Visible = 1
Palette("Scanner Tools").Location = 0, ScreenHeight – PaletteHeight

End Startup

Startup handlers run even if the palette is closed when the application starts up. If
you don’t want a script’s startup handler to run when its palette is closed, you can use
the following technique:

On Startup
If NOT Palette.Visible

Exit
End If
Screen.Depth = 32
Palette("Scanner Tools").Visible = 1
Palette("Scanner Tools").Location = 0, ScreenHeight – PaletteHeight

End Startup

Scheduling a script to run periodically

Many of the buttons on the pre-designed OneClick palettes can change their text or
icon’s appearance based on a menu command’s state or other information. For
example, a button on the System Bar periodically updates itself to show the current
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
time and date, and the style buttons in the SimpleText library update themselves to
indicate the current styles selected in the Style menu.

All of these buttons use the Schedule command in their scripts. A scheduled script
runs periodically to check the state of something (such as whether a menu command
is enabled or disabled) and then change their appearance based on the current state.
To update a button’s appearance in real time, a scheduled script must run quite
often—usually every second or half second. The Schedule command lets you specify
(in 1/10 second increments) how often a script should run.

A scheduled script typically contains three parts:

■ The Startup handler runs when the palette’s application starts up. (Use the On
Startup handler to indicate the script is a startup script.) The Startup handler
should use the Schedule command to add the script to OneClick’s list of
scheduled scripts.

■ The Scheduled handler runs whenever OneClick runs the script as a result of it
having been scheduled with the Schedule command. When OneClick runs a
scheduled script, it executes statements in the Scheduled handler. Statements in
the Scheduled handler usually check the status of something, such as whether a
menu command is enabled or disabled, then change the button’s appearance
based on the status.

■ The default handler (usually MouseUp or MouseDown) runs only when you
click the button. This handler contains the usual statements that perform the
action of the button, such as choosing the menu command that’s being
monitored in the Scheduled handler.

Note The name of the command that initiates scheduling is “Schedule” and the
name of the handler is “Scheduled” (with a “d” at the end).

The following script shows a simple scheduled script. The Startup handler schedules
the script to run every half second.

// This is the Startup handler. It turns on scheduling for this script.
On Startup

Schedule 5
End Startup
■ 91

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

92
// The Scheduled handler sets the button’s text to the name of the font that
// appears checked in the Font menu.
On Scheduled

Menu.Update
Button.Text = Menu("Font").Checked

End Scheduled

The next script shows how the three parts of a scheduled script work together to
create a dynamically changing Get Info button. The script works by monitoring the
Get Info command in the Finder’s File menu; when the command is enabled, the
script uses Button.Mode = 0 to change the button’s icon to Normal appearance. If
the Get Info command is disabled (dimmed because no Finder icon is selected), the
script uses Button.Mode = 2 to give the button a disabled appearance.

On Startup
Schedule 5

End Startup

// This Scheduled handler runs every half second to check the status of the File
// menu’s Get Info command and change the button’s appearance accordingly.
On Scheduled

If Menu("File", "Get Info").Enabled
Button.Mode = 0

Else
Button.Mode = 2

End If
End Scheduled

// This statement is executed only when the button is clicked.
SelectMenu "File", "Get Info"

For more examples of scheduled scripts, see the scripts for the Font, Size, and Style
buttons in the SimpleText button library. Also see the descriptions of the Startup,
Schedule, and Scheduled keywords in Chapter 5, “EasyScript Reference”.

Tips for making scheduled scripts run more efficiently

You should write scheduled scripts to run as efficiently as possible since they usually
run very often. Scheduled scripts run only when you’re not interacting with the
computer (when there is no keyboard or mouse activity); however, the more time the
computer spends running scheduled scripts, the less time there is available for
background processes such as PrintMonitor.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
Following are a few suggestions for improving efficiency.

■ Make the Scheduled handler the first handler in the script. When OneCLick
runs a script, it searches through the script to locate the appropriate handler. If
the handler is at the beginning of the script, the search goes slightly faster,
especially with very large scripts.

■ Try to avoid using a large number of variables, especially global variables.
It takes a small amount of time to allocate the memory required for each variable,
and global variables need to be looked up in OneClick’s global variable table
each time the script runs. Variables aren’t actually allocated until the Variable
statement is executed in the script, so declare only those variables at the
beginning of a Scheduled handler that are necessary to determine if further
processing is needed. Others may be declared later on in the handler.

■ Try to avoid script statements that cause screen drawing to occur. Changes
to palettes or buttons, such as changing a button’s .Icon property, can slow down
the script because the button gets redrawn each time the script runs.

■ Try to avoid using Menu.Update to force the application to update its
menus. If you do use it, however, it doesn’t hurt to use it several times or in
several different scripts. OneClick will not process this statement more than
twice a second, no matter how many times it is called.

Testing and debugging a script

Writing a moderately complex script usually takes some time to get the script working
the way you want it to. You may run into logic errors when writing and testing a
script—the script doesn’t behave the way you think it should because of a mistake in
the logical flow of your script. This section provides some tips and techniques to help
you get your scripts working flawlessly faster.

Using message boxes to inspect variables

The Message command is a convenient way to check the value of a variable within a
script while the script runs. If your script isn’t running correctly because a variable
doesn’t contain a value you think it should, use a Message statement to show the
value in a message box. Here’s an example:

Variable fileCount, theFileList
theFileList = File("Mac HD:Data:Reports:").List
fileCount = ListCount theFileList
■ 93

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

94
// We’re not sure at this point what FileCount’s value might be,
// so we’ll show it in a message box and then exit
Message fileCount
Exit

When you run the script, a message box appears showing the value of fileCount when
the script reaches the Message statement. When you have the script working the way
you expect and no longer need the message box, simply delete the Message
statement.

You don’t need to use an Exit statement after a Message statement unless you want
the script to stop after the message box appears. For brevity, we’ve omitted the rest of
the script following the Exit statement.

Sometimes you might be working with a string that has an extra white space character
(a space, tab, or return) at the end of it. You can use the Message command to find
out:

Message myStringVar & "!"

The & (concatenation) operator joins the two strings into the one string that appears
in the message box:

If the string has a carriage return appended, the exclamation point appears on the
second line below the string as shown above, otherwise it appears at the end of the
string:
■

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques
The exclamation point is just an example character used to show this technique. You
can use any character you want.

Using text buttons to monitor the values of variables

If you have more than a couple of variables you want to monitor continuously, or you
don’t want message boxes interrupting your script (using the previous technique),
you can use buttons as text displays to show the current values of variables. The
Button.Text property changes a button’s text label; by changing a button’s text to a
variable’s value, you can monitor as many variables as you wish.

Here’s a sample script that uses Button.Text to monitor two variables on buttons
named A and B:

Variable X, Y
X = 0
While X <= 5

X = X + 1
Y = 5
While Y >= 0

Y = Y – 1
Button("B").Text = Y
Button.Update

End While
Button("A").Text = X
Button.Update

End While

The Button.Update statements cause OneClick to update the text on the buttons
while the script runs. Without the Button.Update statements, the buttons’ text
wouldn’t get updated until the script ends.
■ 95

CHAPTER FOUR ■ USING EASYSCRIPT

Common scripting techniques

96
The values of X and Y appear in two buttons on this example Testing palette during
each pass through the While loops:

For global variables, this technique is even easier. Just create a button with a script
that declares the global variable, then sets its text to the variable’s value, such as the
following:

Variable Global X
Button.Text = X

Whenever you click the button, the button’s text label updates to show the current
value of X.

Using sounds to determine what’s being executed

When writing If and While statements, it’s possible that your script might execute
statements unexpectedly (or not at all)—this usually happens because the condition
being tested in the If or While statement doesn’t evaluate to the value you think it
should. If you’re not sure if a group of statements is being executed, then using a
Sound statement is a quick way to find out. For example, here’s part of a script that
contains an If statement, and we’re not sure if the expression evaluates to True:

If indexNumber = 3
theData = reportTotal & reportSummary
Sound "Quack"

End If

If the expression evaluates to True, the Quack sound plays, indicating that statements
following the If statement are being executed. If the expression doesn’t evaluate to
True (or False) as we think it should, then we know whether or not there’s a problem
based on whether or not the Quack sound played.

Checking for run-time errors

A run-time error is a scripting error that occurs while a script runs, as opposed to a
logic or syntax error in a script. Several commands can generate run-time errors due
to a variety of reasons: invalid parameters; interface items that couldn’t be found
(windows, menus, buttons, and so on); a file or folder not found; out of memory; and
other conditions.
■

CHAPTER FOUR ■ USING EASYSCRIPT

Specifications and Limits
Normally when a run-time error occurs, OneClick doesn’t display any kind of error
message—it just skips the offending statement and continues executing the rest of the
script. It’s up to you, the script writer, to determine whether or not a run-time error
has occurred.

The Error system variable contains the error result of the last command, function, or
object that reported an error. There are four possible numeric values for Error.

■ 0—No error

■ 1—General error (out of memory or miscellaneous errors)

■ 2—Not Found error

■ 3—Parameter error

See the error table on page 149 for a list of keywords and their associated error values
and meanings.

Specifications and Limits

The following table summarizes the memory requirements, capacities, and data
limitations for the EasyScript language.

Number range –2,147,483,648 to 2,147,483,647

Maximum string length Limited only by memory (4GB maximum)

Maximum length for a variable name 255 characters

Maximum number of variables in a script Limited only by memory

Length of one line in a script Varies; each line must compile to less than
256 bytes (keywords take two bytes each)

Length of a script Limited only by memory

Maximum number of nested While, Repeat, or For loops Loops can be nested up to 20 levels deep

Maximum number of nested If/Else/Else If statements No limit

Maximum number of nested scripts (using Call to run
another button’s script and then return)

Scripts can be nested up to 8 levels deep

Number of buttons on a palette 65535

Number of global or application palettes Limited only by memory
■ 97

CHAPTER FOUR ■ USING EASYSCRIPT

Specifications and Limits

98
Memory usage

The OneClick control panel requires about 335K of memory when it’s installed. Each
palette takes an additional 250 bytes of RAM, plus about 100 bytes for every button.
Button resources such as icons, scripts, and button text are purgeable so that any
memory they occupy is recovered by the system if it is needed.

Global palettes occupy memory in the system heap (memory used by system software
and extensions). Application palettes use memory in the application’s memory
partition. If you have an unusually large number of palettes or buttons for a particular
application and that application is usually tight on memory, you may need to increase
the application’s memory size (using Get Info in the Finder). It’s extremely unlikely
that you’ll need to do this, however.
■

Five
EasyScript Reference

Chapter
Using the EasyScript Reference

This chapter contains detailed information about each keyword in the EasyScript
language. The chapter is divided into five sections:

■ Commands

■ Functions

■ System Variables

■ Objects

■ Handlers

Keywords are listed alphabetically within each section.

For information on values, expressions, operators, iteration, and other EasyScript
language concepts, see Chapter 4, “Using EasyScript.”

In all syntax descriptions, items in italics are values you supply. Items in square
brackets are optional.
■ 99

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

AppleScript command

10
Commands

See “Commands” on page 47 for a general description of how to use commands.

AppleScript
Syntax AppleScript compiled-script-file

AppleScript
applescript-statements

End AppleScript

Description Runs a compiled AppleScript script file, or indicates the beginning and end of
AppleScript code.

Compiled-script is a path to a compiled AppleScript script. If you’ve written and
compiled a script using Apple’s Script Editor, use the AppleScript command to run
the compiled script.

You can also use the AppleScript command to embed AppleScript statements within
an EasyScript script. Put the AppleScript statements between the AppleScript and End
AppleScript commands. When you save the button’s script, OneClick tells the
AppleScript extension to compile the embedded AppleScript code. Compiling
AppleScript code may take a few moments, compared to the near-instantaneous
compiling of EasyScript code.

You must have the AppleScript software installed to use this command. AppleScript is
included in System 7 Pro and System 7.5 and is also available as a separate product.

Examples // Run the Start File Sharing script included with System 7.5.
AppleScript "Mac HD:Automated Tasks:Start File Sharing"

// Open the Finder’s "About This Macintosh" window.
// Requires the Scriptable Finder included in System 7.5.
AppleScript

tell application "Finder"
activate
open about this macintosh

end tell
End AppleScript

See Also Appendix B, “AppleScript Information”
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Beep command
Beep
Syntax Beep

Description Plays the system alert sound.

Examples Beep

See Also BeepLevel (page 144), Sound (page 118), SoundLevel (page 155)

Call
Syntax Call button-name [, palette-name]

Description Runs another button’s script as a subroutine of the active script. After the called script
finishes running, the calling script continues running at the statement following the
Call command.

Button-name is the name of the button to run. If the button is on a different palette,
you must supply the palette’s name in palette-name.

Examples // Run the script in the Choose Font button, then run the script in
// the Open E-mail button on the Launcher palette
Call "Choose Font"
Call "Open E-mail", "Launcher"

See Also Calling scripts as subroutines (page 82), Calling scripts as functions (page 83)

Click
Syntax Click [Global] [Command] [Option] [Control] [Shift] X, Y [, toX, toY]

Description Simulates clicking the mouse at the specified location of X and Y.

The coordinates are local to the active window or dialog box. For example, Click 50,
100 indicates 50 pixels from the left edge and 100 pixels down from the top edge of
the window contents (not including the title bar). Adding the Global keyword causes
the coordinates to be global to the entire screen. For example, Click Global 50, 100
indicates 50 pixels from the left edge and 100 pixels down from the top edge of the
screen.
■ 101

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

CloseWindow command

10
Add the toX and toY coordinates to simulate clicking and dragging. When you use toX
and toY, the Click statement clicks the mouse at X, Y, then drags to toX, toY and
releases the mouse button.

Negative X coordinates measure left from the right edge of the window or screen and
negative Y coordinates measure up from the bottom of the window or screen.

To simulate holding down a modifier key while clicking, use one or more of the
following keywords in any order after the Click keyword: Command, Option, Control,
or Shift.

Note To click buttons or select items from menus, use the SelectButton, SelectMenu, or
SelectPopUp commands. Use Click to click other types of controls.

Examples // Click 200 pixels down and 30 pixels from the right edge of the window.
Click –30, 200

// Click the right arrow of the scroll bar at the bottom of the window.
Click –20, –5

// Clicks somewhere in the upper right corner of the screen with the Shift key held down.
Click Shift Global –50, 75

// Drag from 50, 50 to 200, 200 in the active window.
Click 50, 50, 200, 200

See Also SelectButton (page 115), SelectMenu (page 116), SelectPopUp (page 118)

CloseWindow
Syntax CloseWindow

Description Closes the active (front) window.

Examples CloseWindow

See Also Window (page 191)
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

ConvertClip command
ConvertClip
Syntax ConvertClip

Description Forces the active application to convert its Clipboard contents from a private data
format to a public format. You don’t need to use this command if the application
you’re using always stores its Clipboard contents in a public format, such as TEXT,
PICT, or RTF.

If you want to store the Clipboard data in one application and use it in another
application, you may need to use ConvertClip to convert the Clipboard’s data prior to
storing it in a variable. Normally, the Clipboard contents are converted when you
switch from one application to another so that the application you’re switching to can
use the Clipboard data. But if you get the contents of the Clipboard and store it in a
variable, then switch applications, this conversion doesn’t occur in the variable. That’s
when you may need to use ConvertClip.

Examples Variable Static theClip
ConvertClip
theClip = Clipboard

See Also Clipboard (page 145)

Dial
Syntax Dial telephone-number [, port]

Description Dials the specified telephone number. If you don’t specify a port, the number is sent
to the modem port. Values for port are:

■ 0: internal speaker

■ 1: modem port

■ 2: printer port

If you have no modem, use port 0 (the speaker) and hold the mouthpiece of the
phone close to the computer’s speaker.

If telephone-number begins with “AT”, the entire string is sent as a command to the
modem.
■ 103

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

DragButton command

10
Any non-digits in telephone-number except the comma are ignored. A comma
indicates a pause.

Note The Dial command is an extension (external command). It’s not available if the
OneClick Extensions file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

Examples // Dials through modem port
Dial "555-7427"

// Dials through the speaker
Dial "555-7427", 0

// Sends a command to the modem
Dial "ATS0=0S11=40DT5557427"

DragButton
Syntax DragButton text

Description Drags the specified text from the button and lets you drop the text in a Drag-and-
Drop-aware application. The DragButton command works only inside a MouseDown
handler.

Examples // Drag and drop the current date into a document. Option-drag to drag the current time.
On MouseDown

If OptionKey
DragButton Time

Else
DragButton Date

End If
End MouseDown

Click the button and drag it to a Drag-and-Drop-aware application
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

DrawIndicator command
Dropping the button in the document inserts the DragButton parameter value

// Option-click to choose a text file from the pop-up menu. Then drag the button
// to insert the file’s contents in a document.
On MouseDown

Variable theFolder
Variable Static theFile
theFolder = "Mac HD:Boilerplate Text:"
If OptionKey

theFile = PopupMenu File(theFolder, "TEXT").List
Button.Text = theFile // show the file’s name on the button

Else
DragButton File(theFolder & theFile).Text

End If
End MouseDown

DrawIndicator
Syntax DrawIndicator progress [, color]

Description Draws a progress indicator (a thermometer or pie graph) on the button. Progress is a
percentage (0–100) that indicates how full to draw the indicator. Color is the color
value (1–256) of the indicator. To draw a pie graph instead of a thermometer, specify
a negative color value. If you omit the color parameter, DrawIndicator draws a
thermometer using black as the default color.

The indicator is proportional in size to the button and fills almost the entire button.
To make an indicator appear directly on the palette (not inside a button), set the
button’s border style to None, set its appearance to Disabled, and uncheck its color
checkbox.
■ 105

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Exit command

10
Examples // Draw a black progress bar that’s half full
DrawIndicator 50

// Draw a light purple pie graph that’s 1/3 full
DrawIndicator 33, –43

See Also DrawButton (page 198)

Exit
Syntax Exit

Description Exits from the script, even if the script hasn’t reached the end yet. If the script was
called from another script, execution continues in the calling script after the Call
statement.

Examples Exit

See Also Call (page 101)

FinderCopy
Syntax FinderCopy [path-list,] destination

Description Tells the Finder to copy the items specified in path-list to the destination folder. If you
omit path-list, then the Finder copies the selected icon(s) to the destination folder.

Path-list may contain one or more files, folders, or a combination of files and folders.
If you specify a folder, FinderCopy copies the folder and all of its contents.

If the destination folder is the same as the source folder, then the Finder simply
duplicates the item and adds “copy” to the end of the new file’s name.

You can use FinderCopy or FinderMove with FindFolder to copy or move items to
special folders such as the System Folder, Desktop Folder, Trash, and so on.

Note FinderCopy and FinderMove work only with the Finder included in System 7.5 and
System 7 Pro. To determine if you’re running this version of the Finder, use the
Gestalt function (see below).
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

FinderMove command
Examples // Copy the selected Finder icons to the folder "For Review"
// First determine if the proper Finder version is running
If Gestalt "fndr", 3

FinderCopy "Mac HD:For Review:"
Else

Beep
Message "Requires newer version of Finder."

End If

// Copy the file "Status Report" on the desktop to the folder "Backups"
FinderCopy "Mac HD:Desktop Folder:Status Report", "Mac HD:Backups:"

// Copy all the items in the "Stuff to Post" folder to the "Items Posted" folder
FinderCopy File("Mac HD:Internet:Stuff to Post:").List, "Mac HD:Internet:Items Posted:"

See Also FinderMove (page 107), FindFolder (page 129)

FinderMove
Syntax FinderMove [path-list,] destination

Description FinderMove works just like FinderCopy, except it moves files instead of copying them.
See the description of FinderCopy above.

Examples // Move the selected Finder icons to the Trash
// First determine if the proper Finder version is running
If Gestalt "fndr", 3

FinderMove FindFolder "trsh"
Else

Beep
Message "Requires newer version of Finder."

End If

// Move all PICT files in the folder "Downloads" to the folder "Pictures"
Variable theFile, theFileList, X
theFileList = File("Mac HD:Downloads:").List
For X = 1 to ListCount theFileList

theFile = ListItems theFileList, X
If File(theFile).Kind = "PICT"

FinderMove theFile, "Mac HD:Pictures:"
End If

End For

See Also FinderCopy (page 106), FindFolder (page 129)
■ 107

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

For, Next For, Exit For, End For command

10
For, Next For, Exit For, End For
Syntax For index-variable = start To end

statements
[Next For]
[Exit For]

End For

Description Repeats statements between For and End For a number of times. When the script first
enters the For…End For loop, index-variable is set to the value of start. Each time
through the loop, index-variable is incremented by 1 and compared to the end value.
If index-variable is greater than the end value, the loop terminates and execution
continues with statements following End For. The total number of times the loop runs
is end – start + 1.

You can use Next For to skip to the next iteration of the For loop, and you can use Exit
For to prematurely exit the loop and continue executing the statements following End
For.

For loops can be nested (you can have a For loop within a For loop).

Examples Variable i
For i = 1 to 5

Message i
End For

Variable j
For j = 15 to 20

If j = 17
Next For // don’t display a message for #17

End If
Message j

End For

See Also Repeat, Next Repeat, Exit Repeat, End Repeat (page 113)
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

If, Else, Else If, End If command
If, Else, Else If, End If
Syntax If condition

statements
[Else If condition

statements]
[Else

statements]
End If

Description Causes the script to execute different statements depending on the value of
condition, which is usually an expression that evaluates to true (non-zero) or false
(zero). A numeric expression is true if it does not equal zero; a string expression is
true if it does not equal the null string (“”).

If condition is true (is not equal to zero or the null string), the script continues
following the If command. If it is false, all statements up to the next Else, Else If or
End If are skipped. If there is an Else statement and the If condition is false, only
those commands after the Else will be executed until the next End If.

If statements can be nested (there can be an If statement inside of an If statement).

Else If is a shortcut for multiple Else and If statements.

Examples If LineVar < 100 // Only types LineVar if it is less than 100
Type LineVar

End If

// Shows if FlagVar is or is not equal to zero. Could also use: If FlagVar <> 0
If FlagVar

Type "Is not zero"
Else

Type "Is zero"
End If

// The following types something different depending on what was chosen from the menu
TheMenu = PopupMenu "Red↵ Green↵ Blue"
If TheMenu = "Red"

Type "Roses"
Else If TheMenu = "Green"

Type "Grass"
Else If TheMenu = "Blue"

Type "Ocean"
End If
■ 109

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Message command

11
Message
Syntax Message string

Description Displays string in a dialog box with an OK button. Use Message when you want to
display a message on the screen while a script runs. The script stops and waits until
you click the OK button, then closes the dialog box and resumes running.

Examples Message "Happy mother’s day"
Message (Substring "Macintosh", 1, 3)

Sample Message dialog box

See Also AskButton (page 123)

Open
Syntax Open file-list [, application]

Description Opens the specified application, document, control panel, desk accessory, or folder.
(The Open command can open anything the Finder can open.) File-list is usually a
full path or a list of paths. If you specify just a file name (not a full path), then Open
assumes the file is in the current directory.

If you include the optional application parameter, OneClick opens the file using the
specified application instead of the application used to create the file. (It’s the same as
opening the document by dropping it onto the application’s icon.)

Note If there isn’t enough memory to open an item, then the item does not open and the
Error system variable is set to 1 (out of memory error).
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

PaletteMenu command
Examples // Open a single document
Open "Macintosh HD:Quicken 4 Folder:My Accounts"

// Open three documents in the current directory
Open "Status Report↵ Month-End↵ Budget"

// Open the File Sharing Monitor control panel
Open (FindFolder "ctrl") & "File Sharing Monitor"

// Open Picture 1 using Adobe Photoshop. Display a message if there’s not enough memory
// to open Photoshop.
Open "Picture 1", "Adobe Photoshop"
If Error = 1

Message "Not enough memory to open Photoshop."
End If

See Also Directory (page 148)

PaletteMenu
Syntax PaletteMenu

Description Shows the OneClick menu as a pop-up menu. This is the same menu as the one
available in palette title bars, the menu bar, and the Apple menu.

If you’ve turned off the OneClick menu in the Apple menu and the menu bar and
you’ve turned off the title bars on your palettes, you can use the PaletteMenu
command to add the OneClick menu to a palette.

Examples PaletteMenu
■ 111

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Pause command

11
Pause
Syntax Pause tenths

Description Stops script execution for the specified period of time. Tenths is a number that
specifies length of time to pause, expressed in tenths of a second.

Examples Pause 5 // pauses for half a second (5/10)
Pause 600 // pauses for one minute
Pause 20 // pauses for two seconds

See Also Wait (page 120)

PopupPalette
Syntax PopupPalette palette-name

Description Displays the palette named palette-name as a pop-up palette. You can choose a
button from the popped-up palette, or drag away from the palette to tear it off into a
floating palette.

Examples PopupPalette "Launcher"
PopupPalette "Calendar"

See Also PopupMenu (page 139)

QuicKey
Syntax QuicKey QuicKey-name

Description Plays the specified QuicKeys™ shortcut or shortcut sequence. To use this command,
you must have QuicKeys (version 2.0 or later) from CE Software installed. You don’t
need to run CEIAC (from QuicKeys 2.0) or QuicKeys Toolbox (from QuicKeys 3.0).

Note The QuicKey command is an extension (external command). It’s not available if the
QuicKey Extension file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

Examples QuicKey "QuickReference Card"
QuicKey "Mount Imaging Server"
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Repeat, Next Repeat, Exit Repeat, End Repeat command
Repeat, Next Repeat, Exit Repeat, End
Repeat

Syntax Repeat count
statements
[Next Repeat]
[Exit Repeat]

End Repeat

Description Repeats the script statements between the Repeat and End Repeat count number of
times.

You can use Next Repeat to skip to the next iteration of the Repeat loop, and you can
use Exit Repeat to prematurely exit the loop and continue executing the statements
following End Repeat.

Examples // Type 75 dashes
Repeat 75

Type "–"
EndRepeat

// Get input five times. Play the Quack sound unless the input is "shut up"
Variable theText
Repeat 5

theText = AskText "Type some text:"
If theText = "shut up"

Message "Okay!"
Next Repeat

End If
Sound "Quack"

End Repeat
Message "All done"

See Also For, Next For, Exit For, End For (page 108)
■ 113

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Schedule command

11
Schedule
Syntax Schedule tenths [, run-always]

Description Causes the script to automatically run its Scheduled handler every tenths tenths of a
second. Use Schedule 0 to turn off the automatic execution of the script.

A script’s Scheduled handler runs only if its palette is visible. To have the scheduled
handler run even if the palette is hidden, include 1 (True) in the run-always
parameter.

It’s useful to have a Schedule command in a script’s Startup handler so that the
schedule starts as soon as the application starts. Otherwise, the schedule won’t start
until you click the button.

Examples // Play the Quack sound every two seconds.
Schedule 20
On Scheduled

Sound "Quack"
End Scheduled

// Check for new e-mail every ten minutes from the time the application starts up.
// Run even if the palette is hidden.
On Startup

Schedule 6000, 1
End Startup
On Scheduled

SelectMenu "Mail", "Check Mail"
End Scheduled

See Also Scheduled (page 199), Startup (page 200)

Scroll
Syntax Scroll [Page] Up | Down | Left | Right [, window-specifier]

Description Simulates clicking a window’s scroll bar. Add the Page keyword to scroll a page at a
time.

The Scroll command scrolls the active window by default. To scroll a different
window, specify a window name or number in the optional window-specifier
parameter.
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

SelectButton command
Examples // Scroll down one line
Scroll Down

// Scroll up one page
Scroll Page Up

// Click the right scroll arrow on the horizontal scroll bar
Scroll Right

SelectButton
Syntax SelectButton [Command] [Option] [Control] [Shift] [Check | Uncheck] button-name

Description Simulates clicking a button in a dialog box. Button-name is the name of the button to
click. SelectButton lets you click regular pushbuttons, radio buttons, and checkboxes.

When SelectButton clicks a checkbox, the checkbox is toggled either on or off. Use
the Check or Uncheck keywords to force a checkbox on or off. (SelectButton Check
turns a checkbox on if it’s off; SelectButton Uncheck turns a checkbox off if it’s on.)

To simulate holding down a modifier key while clicking the button, add one or more
of the following keywords in any order: Command, Option, Control, or Shift.

You can use wildcard characters to match button names. ‘?’ matches a single character
and ‘*’ matches zero or more characters.

The ‘*’ wildcard is useful for clicking buttons whose names end in an ellipsis (…)
character: while most programs use a true ellipsis (Option-semicolon), some
programs use three periods instead. If your script uses three periods when specifying
a button name, then SelectButton won’t find the button if its name ends in an ellipsis.
Use the ‘*’ wildcard to click a button without caring whether it has an ellipsis or three
periods.

Note Some applications use non-standard button controls that may look like regular
buttons. To click these kinds of buttons, use the Click command instead and specify
the button’s X and Y coordinates.

If you click a non-standard button control while recording a script, OneClick records
the click as a Click statement instead of a SelectButton statement.
■ 115

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

SelectMenu command

11
Examples SelectButton "OK"
SelectButton "Cancel"

// Click the Generate… button
SelectButton "Genera*"

// Uncheck the Smooth Text checkbox if it’s checked
SelectButton Uncheck "Smooth Text"

See Also DialogButton (page 167)

SelectMenu
Syntax SelectMenu [Check | Uncheck] menu, [, menu, …] item

Description Selects item from the specified menu.

Menu can be either a menu name or number. Menu 1 is the first menu on the left (the
Apple menu). Menu 2 is the second menu from the left (normally the File menu).
Specifying a negative number goes from the right. Menu –1 is the rightmost menu
(the Application menu).

SelectMenu also understands the following pseudo menu names for certain icon
menus in the menu bar. You can use these menu names in place of menu numbers.

Item can be either a menu item name or number. Item 1 is the first item in the menu.
Dividing lines in the menu are included in the count. Negative numbers go from the
bottom. Menu –1 is the last item in the menu.

To choose an item from a hierarchical menu, specify two or more menus (the path to
the menu) before the menu item.

Menu Pseudo menu name

Apple menu [Apple]

OneClick menu [OneClick]

Help (or Guide) menu [Balloon]

Application menu [Process]
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

SelectMenu command
If you specify menu 0 (zero), OneClick searches through all of the application’s
menus (including hierarchical menus) to find the specified menu item. When you use
0 as the menu specifier, the menu item to search for must be a text string, not a
number. This searching ability is great for global palette buttons that don’t know in
which menu the item may appear.

You can use wildcard characters to match menu and item names. ‘?’ matches a single
character and ‘*’ matches zero or more characters.

The ‘*’ wildcard is useful for choosing menu items that end in an ellipsis (…)
character: while most programs use a true ellipsis (Option-semicolon), some
programs use three periods instead. If your script uses three periods when specifying
a menu item, then SelectMenu won’t find the menu item if it ends in an ellipsis. Use
the ‘*’ wildcard to select a menu item without caring whether it has an ellipsis or
three periods.

Note Some applications don’t update their menus (enable, disable, check or uncheck menu
items) until you click in the menu bar. Because OneClick selects menu items without
clicking the menu bar, SelectMenu may not work correctly when it tries to choose a
menu item that appears disabled, or choose an unchecked menu item that appears
checked. To get around this problem, use Menu.Update to force the application to
update its menus.

Examples SelectMenu "File", "Print"
SelectMenu "Edit", "Copy"
SelectMenu 3, 4 // selects Copy from the Edit menu
SelectMenu –1, "Finder" // selects Finder from the Application menu
SelectMenu "Window", –1 // selects the last window from the Window menu

// Force the application to update the checkmarks in its menus
Menu.Update
// Choose Plain Text from the Style menu only if it’s not already checked in the menu
SelectMenu Check "Plain Text"

// Search every menu for the Bold command
SelectMenu 0, "Bold"

// Choose Definitions… from the Color submenu in the View menu
// It doesn’t matter if Definitions... ends in an ellipsis or three periods
SelectMenu "View", "Color", "Defini*"

See Also SelectPopUp (page 118), Menu (page 173)
■ 117

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

SelectPopUp command

11
SelectPopUp
Syntax SelectPopUp [Global] X, Y, item

Description Chooses item from the pop-up menu at the coordinates X and Y. If the pop-up menu
is in a window or dialog box, specify the menu’s location using the window or dialog
box’s local coordinates. If the pop-up menu is somewhere else on the screen (not in a
window or dialog box), use global coordinates and add the Global keyword.

Examples SelectPopUp 28, 382, "Center"
SelectPopUp 66, 389, "Top of Right Page"
SelectPopUp 114, 390, "Column First"

See Also SelectMenu (page 116)

Set
Syntax Set variable = value

Description Stores a value in a variable.

The Set keyword is optional; you can omit it if you want.

Examples Variable A, X
Set A = "Monday"
Set X = 5 * 7

See Also Variable (page 120)

Sound
Syntax Sound sound-name

Description Plays the specified sound. The sound must be stored in the System file or the active
application. To see what sounds are available in the system and the active application,
use the Sound submenu in the Script Editor’s Parameters pop-up menu.

Examples Sound "Quack"

See Also Beep (page 101)
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Speak command
Speak
Syntax Speak text [, voice]

Description Speaks the value of text (a string) using the default voice. The optional voice lets you
specify which voice file to use when speaking. (Voices are stored in the Voices folder
in the Extensions folder.)

The Speak command requires the Speech Manager extension, included with
AV-capable computers and with System 7.5.

Note The Speak command is an extension (external command). It’s not available if the
OneClick Extensions file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

Examples Speak "OneClick is the Killer App of the Nineties!"
Speak "I want my mother", "Princess"

Type
Syntax Type [Command] [Option] [Control] [Shift] text [, text, …]

Description Types the value of text (a string) as if you had typed it from the keyboard. You can
specify one or more text values to type.

To simulate holding down a modifier key, include one or more of the following
keywords in any order: Command, Option, Control, or Shift.

Note When typing in menu key equivalents from a script, it’s best to use lowercase letters
instead of uppercase. Some third-party extensions that modify menu equivalent
behavior do not expect an uppercase letter, because you don’t usually hold down the
Shift key when typing a menu equivalent.

Examples Type "Hello there."

// types 28
Type 3 + 25

// types 2/20/97, 5:00 PM
Type Date, ", ", Time
■ 119

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Variable command

12
// types Command-B
Type Command "b"

// type Command-S, then Command-P
Type Command "sp"

Variable
Syntax Variable [Global | Static] variable-name [, variable-name, …]

Description Declares variables for use in a script or handler. Variables are local by default; add the
Global or Static keywords to declare global or static variables. A variable can be static
or global, but not both.

Variable names can contain only letters, numbers, and the underscore (_) character
and must start with a letter. They can contain both upper and lowercase letters. (It’s a
good idea to begin variable names with a lowercase letter to differentiate them from
other script keywords.) When a variable name consists of two or more words, you can
improve the name’s readability by capitalizing the first letter of each word or
separating the words with underscore characters.

Examples // Declare two local variables named X and Y
Variable X, Y

// Declare a local variable named dayName and two global variables named dayNum and dayVal
Variable dayName Global dayNum dayVal

// Declare a static variable named lastRunDate
Variable Static lastRunDate

See Also Variables (page 50)

Wait
Syntax Wait expression

Description Stops script execution until expression evaluates to true (non-zero). Execution
continues with the statement following Wait after the expression becomes true.

You can continue using the computer while the script waits.
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

While, Next While, Exit While, End While command
Examples // Waits until you click the mouse, then displays a message box
Wait IsMouseDown
Message "All done"

// Waits until you press any key
Wait IsKeyDown

// Waits until the time is 12:15 PM, then plays a sound
Wait (Time 0) = "12:15 PM"
Sound "Quack"

See Also Pause (page 112)

While, Next While, Exit While, End While
Syntax While condition

statements
[Next While]
[Exit While]

End While

Description Executes all of the statements between While and EndWhile while condition is true
(non-zero). When condition becomes false, execution continues with the statement
following End While. If condition is false the first time it’s tested, then the loop is
skipped.

You can use Next While to skip to the next iteration of the While loop, and you can
use Exit While to prematurely exit the loop and continue executing the statements
following End While.
■ 121

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

With command

12
Examples // Type 1 to 10 separated by commas
Index = 1
While Index <= 10

Type Index & ", "
Index = Index + 1

End While

// Type 1 to 10 separated by commas, skipping number 5
Index = 1
While Index <= 10

If Index = 5
Next While

End If
Type Index & ", "
Index = Index + 1

End While

See Also Repeat, Next Repeat, Exit Repeat, End Repeat (page 113); For, Next For, Exit For, End
For (page 108); Repeating statements while a condition is true (page 62)

With
Syntax With object-specifier

.property = value
End With

Description Lets you omit the object specifier when getting or setting the values of many of the
same object’s properties. Use the With command to make a script more readable and
save yourself some typing.

When you specify a property without an object, the object is assumed to be the same
object specified in the With statement. You can access other objects and properties
within the With statement as long as you specify the object you want to access.

Examples With Button("Program Launcher")
.Width = 40
.Height = 22
.Color = 43 // light purple
.Text = "Launcher"
Palette.Name = .Name // sets the palette name equal to the button name
.Mode = 0 // sets the button appearance to Normal

End With

See Also Objects (page 65)
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Absolute function
Functions

See “Functions” on page 49 for a general description of how to use functions in
scripts.

Absolute
Syntax Absolute number

Description Returns the absolute value of number.

Examples // Each statement types the value 25
Type Absolute –25
Type Absolute 25

AskButton
Syntax AskButton [message] [button1 [button2...]]

Description Displays a dialog box with the specified message and lets you click one of up to four
buttons. If you don’t specify any buttons, the dialog box has a single OK button. The
AskButton function returns the number (1–4) of the button clicked.

Examples Variable theAnswer
theAnswer = AskButton "What’s your favorite flavor?", "Chocolate", "Strawberry", "Banana"
// Types 1, 2, or 3 depending on the button clicked (1=Chocoloate, 2= Strawberry, 3=Banana)
Type theAnswer

See Also Message (page 110), AskList (page 125)
■ 123

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

AskFile function

12
AskFile
Syntax AskFile [type-list]

Description Displays a directory dialog box and returns the full path to the selected file or folder.
If you click Cancel in the dialog box, AskFile returns the empty string (“”).

Type-list is a list of four-character file type codes, such as “TEXT”, “PICT”, “WDBN”, or
“APPL”. To permit choosing a folder, use the pseudo file type “fold”. If you omit “fold”,
the dialog box permits the selection of a file only, not a folder.

To set the default directory that appears in the dialog box, set the Directory system
variable to the desired path before calling AskFile.

In the AskFile dialog box, check the “Use Alias instead of original” checkbox to return
the path to an alias instead of the path to the file or folder the alias refers to.

Examples Variable theFile, theFolder
theFolder = AskFile "fold"
theFile = AskFile "TEXT"

Select File dialog box (AskFile "TEXT") Select Folder dialog box (AskFile "fold")

See Also Directory (page 148)
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

AskList function
AskList
Syntax AskList item-list [, prompt] [, selected-list]

Description Displays a message (prompt) and a list of items (item-list) in a dialog box and returns
a list containing the selected items. If you want one or more items in the list to appear
selected by default, include the list of selected items in selected-list.

When the dialog box appears, click an item in the list to select it. To select more than
one item, hold down the Command key and click additional items. To select a
contiguous group of items, hold down the Shift key and click the first and last items in
the group.

Examples Variable theResponse
// Show a list of three colors with red and yellow already selected
theResponse = AskList "red↵ orange↵ yellow↵ blue↵ green", "Pick colors:", "red↵ yellow"
Type "You picked:" & Return & theResponse

Sample AskList dialog box

See Also AskText (page 126), AskButton (page 123), AskFile (page 124)
■ 125

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

AskText function

12
AskText
Syntax AskText [string] [, default-value]

Description Displays a dialog box with an edit box and prompts you to type a line of text. When
you click OK, the function returns the typed text. The optional string is the prompt in
the dialog box. The second parameter, default-value, is an optional default string that
appears pre-entered in the edit box.

Examples // Assigns whatever is typed to Result. The dialog box says: Type something
Variable Result, favoriteFruit
Result = AskText "Type something"

// The default response is Banana
favoriteFruit = AskText "What’s your favorite fruit?", "Banana"
Message "You typed " & Result & " and " & favoriteFruit

Sample AskText dialog box

See Also Message (page 110), AskButton (page 123), AskList (page 125), AskFile (page 124)

Char
Syntax Char ascii-code

Description Returns a string containing the character specified by the ascii-code number. This is
the opposite of the Code function.

Examples // Type the capital letter A
Type Char 65
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Code function
// Presses the Return key
Type Char 13

See Also Code (page 127)

Code
Syntax Code text

Description Returns (as a number) the ASCII code of the first character in text. This is the opposite
of the Char function.

Examples // Types 97
Type Code "a"

// Types 65
Type Code "Apple"

See Also Char (page 126)

Date
Syntax Date [format]

Description Returns the current date as a string. The optional format specifies which of several
date formats to use. If you don’t specify a format, Date uses the default short format.
The default types use the format specified by the Date and Time control panel.

You can use the Date command in the Script Editor’s Parameters pop-up menu to
choose different format settings and insert the proper format number in the script.

Format Type Example

0 Default short* 4/22/94

1 Default long* Thursday, April 22, 1994

2 Default abbreviated* Thu, Apr 22, 1994

3 Short MDY 4/22/94

4 Short DMY 22/4/94

*format may vary depending on the settings in the Date and Time control panel
■ 127

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Date function

12
Examples Assume it’s Tuesday, September 26, 1995.

See Also Time (page 142)

5 Short YMD 94/4/22

6 Abbreviated MDY Apr 21, 1994

7 Abbreviated DMY 21 Apr, 1994

8 Long MDY April 21, 1994

9 Long DMY 21 April, 1994

10 Abbreviated WMDY Thu, Apr 21, 1994

11 Abbreviated WDMY Thu, 21 Apr, 1994

12 Long WMDY Thursday, April 21, 1994

13 Long WDMY Thursday, 21 April, 1994

+16 Include leading zeros 04/03/94, April 03, 1994

The following apply only to the short type:

+32 Include century 4/22/1994

+0 Use ‘/ ’ separator 4/22/94

+64 Use ‘-’ separator 4-22-94

+128 Use ‘.’ separator 4.22.94

+192 Use space separator 4 22 94

Type Date Types: 9/26/95

Type Date 0 Same as above

Type Date 1 Types: September 26, 1995

Type Date 3 Types: 9/26/95

Type Date 19 Types: 09/26/95

Type Date 179 Types: 09.26.1995

Type Date 8 Types: September 2, 1995

Type Date 26 Types: Tue, Sep 26, 1995

Format Type Example

*format may vary depending on the settings in the Date and Time control panel
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Find function
Find
Syntax Find find-text, in-text

Description Returns the character position of find-text in in-text. If find-text is not found, Find
returns zero (false).

Examples // Types 5
Type Find "is", "Now is the time"

// Types 0
Type Find "and", "Now is the time"

See Also Replace (page 141)

FindFolder
Syntax FindFolder folder-code

Description Returns the full path to the specified folder. Folder-code is a four-character folder
abbreviation.

Use the FindFolder function instead of typing the paths for special folders such as
Desktop Folder, System Folder, or Trash in your scripts. Not only might it save you
some typing, but it also allows your scripts to work with non-English versions of the
system software. (Folders have different names in different languages.) Also, future
versions of the system software may put the folders in different locations; FindFolder
will still be able to determine the correct path to the folder given the folder’s
abbreviation.
■ 129

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

FindFolder function

13
Following are the folder codes to use:

Items in the Desktop Folder appear on the desktop.

Note Not all System versions support the folder codes listed here. (This table lists only the
folder codes supported in System 7.5.1.) Later versions of system software may
support additional folder codes; FindFolder will automatically support the new
codes. To find out which folder codes your System version supports, open the System
file with ResEdit and view the “fld#” resource.

Examples // Make an alias of the selected icon, then move the alias to the Apple Menu Items folder.
// After choosing Make Alias, the new alias is automatically selected and gets moved.
SelectMenu "File", "Make Alias"
FinderMove FindFolder "amnu"

// Store the name of the startup disk in the global variable HD.
// FindFolder "macs" returns a path to the System folder.
// The startup disk name is the first item in the path.
Variable Global HD
ListDelimiter = ":"
HD = ListItems FindFolder "macs", 1

Code Folder name Code Folder name

“macs” System Folder “font” Fonts

“desk” Desktop Folder “fonD” Fonts (disabled)

“trsh” Trash “pref ” Preferences

“amnu” Apple Menu Items “prnt” PrintMonitor Documents

“amnD” Apple Menu Items (disabled) “shdf ” Shutdown Items

“ctrl” Control Panels “shdD” Shutdown Items (disabled)

“ctrD” Control Panels (disabled) “strt” Startup Items

“sdev” Control Strip Modules “strD” Startup Items (disabled)

“extn” Extensions “macD” System Extensions (disabled)

“extD” Extensions (disabled)
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Gestalt function
Gestalt
Syntax Gestalt selector [, bit]

Description Returns information about the hardware and system software configuration. You can
use Gestalt to find out if a particular hardware or software component is available.

Selector is a four-character string that identifies the category of information you want
to retrieve. Use the optional bit specifier (0–31) to get an individual bit in the result
code as a True (1) or False (0) value.

Gestalt is based on the Macintosh toolbox call of the same name. This function is
intended for use by programmers and advanced scripters.

Examples If (Gestalt "kbd ") = 4
Message "You are using an Extended keyboard"

Else
Message "You are not using an Extended keyboard"

End If

If Gestalt "ascr", 0
Message "AppleScript is available."

End If

If Gestalt "drag", 0
Message "Drag and Drop support is available."

End If

If Gestalt "fndr", 3
Message "OSL Compliant Finder is running."

End If

See Also Inside Macintosh, Volume VI, pages 3-38 to 3-53
■ 131

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

GetDragAndDrop function

13
GetDragAndDrop
Syntax GetDragAndDrop [item]

Description Returns a list of paths of icons dropped on the button. If you drop more than one
icon on the button, you can get individual paths from the list using the optional item
(the index number of the dropped item).

If you drag and drop text on the button, GetDragAndDrop returns the dropped text as
a string.

You must use the GetDragAndDrop function within a DragAndDrop handler to
retrieved the dropped information. You cannot drop icons or text on a button that
doesn’t have a DragAndDrop handler.

Examples // Changes the dropped text to all uppercase and pastes it back into the
// application, replacing the current selection (the dropped text)
On DragAndDrop

// save the current contents of the Clipboard
Variable tempClip
tempClip = Clipboard
// change dropped text to uppercase and put it on the Clipboard
Clipboard = Upper GetDragAndDrop
// paste the uppercase text (replacing the dropped text) and restore the Clipboard
SelectMenu "Edit", "Paste"
Clipboard = tempClip

End DragAndDrop

// Changes the creator of all dropped TEXT and PICT files to “ttxt” (SimpleText).
// This causes SimpleText to open the TEXT or PICT file when you double-click the file’s icon.
On DragAndDrop

Variable fileCount, index, theFile
// get the number of files dropped
fileCount = ListCount GetDragAndDrop
For index = 1 to fileCount

// get the path of the dropped file from the list of dropped files
theFile = GetDragAndDrop index
If (File(theFile).Kind = "TEXT") OR (File(theFile).Kind = "PICT")

File(theFile).Creator = "ttxt"
End If

End For
End DragAndDrop

See Also Using Drag and Drop (page 85), DragAndDrop (page 197)
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

GetResources function
GetResources
Syntax GetResources resource-type

Description Returns a list of names of all available resources of the specified type. Resource-type is
a 4-character resource type (the type must be exactly 4 characters). Suggested types
are “FONT”, “DRVR”, and “snd ” (note the trailing space).

Examples // Types the names of all available fonts.
Type GetResources "FONT"

// Types the names of all items in the Apple menu.
Type GetResources "DRVR"

// Shows a pop-up menu of available sounds and plays the selected sound.
Sound PopupMenu GetResources "snd "

Length
Syntax Length text

Description Returns the number of characters in text.

Examples // Types: 6
Type Length "Banana"

// Types: 0
Type Length ""

ListCount
Syntax ListCount list

Description Returns the number of items in the list.

Examples // Types: 5
Type ListCount "Red↵ Orange↵ Yellow↵ Green↵ Blue↵ Purple"

// Types the number of fonts in the Font menu
Type ListCount Menu("Font").List
■ 133

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

ListItems function

13
ListItems
Syntax ListItems list, start [, end]

Description Returns a portion of the specified list. Start indicates the list item to start from and
end indicates the last list item. If end is not supplied, ListItems returns the single list
item at start. If Start and end are negative numbers, then ListItems returns items from
the end of the list instead of the beginning.

Examples // Types: Green, Blue, Yellow (all on separate lines)
Type ListItems "Red↵ Green↵ Blue↵ Yellow↵ Brown", 2, 4

// Types: Blue, Yellow, Brown (all on separate lines)
Type ListItems "Red↵ Green↵ Blue↵ Yellow↵ Brown", –3, –1

// Assuming the SystemFolder path is "Mac HD:System Folder", types "Mac HD"
ListDelimiter = ":"
Type ListItems SystemFolder, 1

See Also ListDelimiter (page 152)

ListSort
Syntax ListSort list

Description Sorts all list items in alphabetical order.

Examples // Types: Blue, Green, Red (all on separate lines)
Type ListSort "Red↵ Green↵ Blue"

// Lets you choose a window from a list of all windows sorted alphabetically,
// then makes the chosen window the active (front) window.
Variable theChoice
theChoice = PopupMenu ListSort Window.List
Window(theChoice).Front
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

ListSum function
ListSum
Syntax ListSum list

Description Returns the sum of all the numbers in the list.

Examples // Types:30
Type ListSum "10↵ 35↵ –15"

// Sums all the currently selected numbers and types the
// sum on the line after the last number
SelectMenu "Edit", "Copy"
// Move to the next line
Type "→↵ "
// Type the sum of all the numbers on the Clipboard
Type ListSum Clipboard

Lower
Syntax Lower text

Description Returns text with all letters changed to lowercase.

Examples // Types "this is it."
Type Lower "This is IT."

See Also Upper (page 143), Proper (page 140)

MakeNumber
Syntax MakeNumber text

Description Returns text as a numeric value. This is the opposite of MakeText.

OneClick normally converts a string value to a number when the value is passed to a
command that expects a numeric parameter. However, some commands (such as
SelectMenu) can accept both string and numeric parameters; the value is interpreted
differently depending on whether it is a string or a number. In cases like these, you’ll
need to use MakeNumber to force the command to interpret the string value as a
number.
■ 135

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

MakeText function

13
When converting text to a number, MakeNumber observes the following rules:

■ any leading spaces are ignored

■ the number can have a leading ‘–’ or ‘+’

■ there cannot be a space after the ‘–’ or ‘+’ or between the digits

■ conversion stops when any non-numeric characters are encountered

Following are some examples of how MakeNumber converts text to numbers.

Examples Variable theMenu
theMenu = AskText "Type a menu number:"

// AskText returns a string value, so we’ll convert it to a number before
// passing it to the Menu object. For example, if we type 3 in the AskText
// dialog box and pass that value to the Menu object, Menu will think
// we’re referring to the menu named "3" instead of the 3rd menu in the menu bar.
theMenu = MakeNumber theMenu

// Types a list of all the menu items for the specified menu
Type Menu(theMenu).List

See Also MakeText (page 136)

MakeText
Syntax MakeText number

Description Returns number as a string value. This is the opposite of MakeNumber.

OneClick normally converts a numeric value to a string when the value is passed to a
command that expects a string parameter. However, some commands (such as
SelectMenu) can accept both string and numeric parameters; the value is interpreted
differently depending on whether it is a string or a number. In cases like these, you’ll
need to use MakeText to force the command to interpret the numeric value as a string.

Text Number Text Number Text Number

“12” 12 “Twelve” 0 “12–42” 12

“12 point” 12 “–42” –42 “1 2 3” 1
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

PopupFiles function
Examples Variable theWindow
theWindow = 3

// Selects the 3rd item from the Window menu
SelectMenu "Window", theWindow

// Selects an item named "3" from the Window menu
SelectMenu "Window", MakeText theWindow

See Also MakeNumber (page 135)

PopupFiles
Syntax PopupFiles [folder [, file-type-list]

Description Pops up a hierarchical menu of all the files, folders, and volumes on the desktop and
returns the full path to the chosen file or folder.

Folder is a path to a volume or folder; if you specify folder, the pop-up menu shows
the files and folders in folder and lists higher-level folders and volumes at the bottom
of the menu, below the separator line.

File-type-list is a list of four-character file type codes, such as “TEXT”, “PICT”, and
“WDBN”. If you specify file-type-list, PopupFiles lists only folders and files of the
specified types.

Examples // Choose a Text or Microsoft Word file from within the Data folder, then open the chosen file
Open PopupFiles "Mac HD:Data", "TEXT↵ WDBN"

// Choose a file or folder from any volume and open it
Open PopupFiles
■ 137

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

PopupFont function

13
Sample PopupFiles menu

See Also PopupMenu (page 139)

PopupFont
Syntax PopupFont [font-name | font-id [, size]]

Description Displays a pop-up menu of all the characters in a font and returns the chosen
character as a one-character string.

Sample PopupFont menu

You can specify a font by its name or ID number and optionally specify the font size
(in points). If you don’t specify a font, the font defaults to Geneva; if you don’t specify
a size, the size defaults to 14.
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

PopupMenu function
Note The PopupFont function is an extension (external function). It’s not available if the
OneClick Extensions file is not installed in the Extensions folder inside the OneClick
Folder (in Preferences).

PopupFont works only in a MouseDown handler.

Examples Type PopupFont "Times"
Type PopupFont "Symbol", 12
Type PopupFont Menu("Font").Checked, MakeNumber Menu("Size").Checked

PopupMenu
Syntax PopupMenu menu-list [, checked-item, …]

Description Returns the item selected from a pop-up menu. The menu-list parameter is the list of
text items that you want to appear in the menu; each item in the list is separated by
the Return (↵) delimiter.

To include a divider line in the menu, include a hyphen (-) as an item in the menu list.

To indicate that a menu item is disabled (is gray in the menu and cannot be selected),
start the item’s name with a tilde (~).

The checked-item parameter is the name or number of an item to appear checked in
the menu. You can include multiple checked-item parameters to check more than one
menu item.

Examples // Types the selected item from the Red, Green, Blue menu.
Type PopupMenu "Red↵ Green↵ Blue"

// Types the selected item from Red and Blue. Green is disabled.
Type PopupMenu "Red↵ ~Green↵ Blue"
■ 139

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Proper function

14
// Choose a planet from the pop-up menu. Venus (item #2) and Mars are checked.
Variable theChoice
theChoice = PopupMenu "Mercury↵ Venus↵ Earth↵ Mars↵ Jupiter↵ Saturn", 2, "Mars"

// Shows a pop-up menu of the Font menu.
SelectMenu "Font", PopupMenu Menu("Font").List

See Also PopupFiles (page 137)

Proper
Syntax Proper text

Description Returns text with each word capitalized.

Examples // Displays "Sunday, Monday, Tuesday" in a message box
Message Proper "sunday, monday, tuesday"

See Also Lower (page 135), Upper (page 143)

Random
Syntax Random [value]

Description Returns a random number. If value is supplied, the number is in the range of 1 to
value. If value is not supplied, the range is 1 to 65536.

Examples // Types a number between 1 to 65536 inclusive
Type Random

// Types a number between 1 to 10 inclusive
Type Random 10
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Replace function
Replace
Syntax Replace find-text, in-text, replace-text [, replace-all]

Description Returns the string procured by finding find-text in in-text and replacing it with
replace-text. If find-text is not found, it returns in-text unchanged.

The function replaces only the first occurrence of find-text, not all occurrences. To
replace all occurrences, pass 1 (True) in the optional replace-all parameter.

Examples // Types "Snippy"
Type Replace "oo", "Snoopy", "ip"

// Types "Hellothere"
Type Replace " ", "Hello there", ""

// Types "Middiddippi"
Type Replace "iss", "Mississippi", "idd", 1

See Also Find (page 129)

Return
Syntax Return

Description Returns the carriage return character (the character generated by pressing the Return
key).

Examples // Types three blank lines
Type Return Return Return

See Also Tab (page 142)

SubString
Syntax SubString string, start [, end]

Description Returns a portion of string. Start indicates the position of the character to start from
and end indicates the position of the last character. If end is not supplied, SubString
returns the single character at start. Both start and end may be negative numbers
indicating their position from the end of the string.
■ 141

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Tab function

14
Examples // Types: is
Type SubString "This is it.", 6,7

// Types: SS
Type SubString "Annuities (SS)", –3, –2

// Types: e
Type SubString "Hello", 2

See Also ListItems (page 134)

Tab
Syntax Tab

Description Returns the tab character (the character generated by pressing the Tab key).

Examples // Insert three tab characters at the current cursor position
Type Tab Tab Tab

See Also Return (page 141)

Time
Syntax Time [format]

Description Returns the current time as a string. The optional format specifies which of several
time formats to use. If you don’t specify a format, Time uses the default short format.
The default time types use the format specified by the Date and Time control panel.

You can use the Time command in the Script Editor’s Parameters pop-up menu to
choose different format settings and insert the proper format number in the script.

Format Type Example

0 Default 1:07 PM

1 Default with seconds* 1:07:45 PM

2 12 hour 1:07 PM

*format may vary depending on the settings in the Date and Time control panel
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Trim function
Examples Assume it’s 4:09:13 PM.

See Also Date (page 127)

Trim
Syntax Trim text

Description Returns text with extra spaces removed. Extra spaces are spaces at the beginning or at
the end of the string or more than one space in a row. Trim removes spaces only, not
Tab or Return characters.

Examples // Types "Alan L. Bird"
Type Trim " Alan L. Bird "

Upper
Syntax Upper text

Description Returns text with all letters changed to uppercase.

Examples // Types "THIS IS IT."
Type Upper "This is IT."

See Also Lower (page 135), Proper (page 140)

3 12 hour with seconds 1:07:45 PM

4 24 hour 13:07

5 24 hour with seconds 13:07:45

+16 Include leading zeros before hour 01:07 PM

Type Time Types: 4:09 PM (format may vary)

Type Time 18 Types: 04:09:13 PM

Type Time 5 Types: 16:09:13

Format Type Example

*format may vary depending on the settings in the Date and Time control panel
■ 143

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

ASResult system variable

14
System Variables

See “System variables” on page 54 for a general description of how to use system
variables in scripts.

ASResult
Description Contains the AppleScript result variable.

Every time an AppleScript statement is executed, the returned information is put into
the AppleScript variable “result.” If no information is returned, the result variable is
set to empty. The ASResult system variable lets you retrieve the value of AppleScript’s
result variable.

Examples // Display a message box showing the name of Scriptable Text Editor’s front window
AppleScript

-- puts the window name in result
get the name of window 1 of application "Scriptable Text Editor"

End AppleScript
Message ASResult

See Also Integrating OneClick and AppleScript (page 210), AppleScript (page 100)

BeepLevel
Description Returns the current alert sound volume, or sets the alert volume to a new value.

Changing the BeepLevel volume affects only the default beep sound, not the volume
of other system sounds. It’s the same as adjusting the volume in the Alert Sounds
panel of the Sound control panel (version 8.0 or later).

The alert sound level can be zero (no sound) to 7 (highest sound level).

Changing BeepLevel works only when running System 7.5 or Sound Manager 3.0 or
later. Under earlier Sound Manager versions, BeepLevel is the same as SoundLevel.
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Clipboard system variable
Examples // If the Option key is held down, turn off the alert sound, otherwise set the volume to 3.
If OptionKey

BeepLevel = 0
Else

BeepLevel = 3
End If
Beep

See Also SoundLevel (page 155), Beep (page 101), Sound (page 118)

Clipboard
Description Returns the contents of the Clipboard, or puts the specified value on the Clipboard.

Use the Clipboard system variable when you want to store the Clipboard’s contents in
a variable for later use, or when you want to manipulate data on the Clipboard and
later paste it back into the same application or another application.

You can store any type of Clipboard data in a variable, including plain or styled text,
graphics, spreadsheet cells, and other data types. If you want to manipulate the
Clipboard’s contents, however, you can change only the plain text on the Clipboard.
You can use EasyScript’s string- and list-handling commands to manipulate Clipboard
text as you would do with regular string variables.

Note If the Clipboard variable doesn’t contain the data you expect after you copy
something to the Clipboard in an application, you may need to use the ConvertClip
command (see page 103).

Examples // Types the Clipboard contents. A slow paste.
Type Clipboard

// Puts My Name on the Clipboard as plain text.
Clipboard = "My Name"

// Copy this script to several buttons to make multiple Clipboards. Because the script doesn’t
// actually manipulate the Clipboard data (it just gets data from and puts data onto the
// Clipboard), it works with any type of data on the Clipboard (text, pictures, and so on).
Variable Static clipContents
// If the button is Option-clicked, copy the selection and put it in a static variable.
If OptionKey

SelectMenu "Edit", "Copy"
clipContents = Clipboard

Else
■ 145

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

CommandKey system variable

14
// When clicked without the Option key, put the contents back on the Clipboard and paste.
Clipboard = clipContents
SelectMenu "Edit", "Paste"

End If

See Also Accessing the Clipboard (page 80), ConvertClip (page 103)

CommandKey
Description Returns True (1) if the Command key was held down when the button was clicked to

run the script. You cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // If the Command key was pressed, select SuperScript, otherwise select SubScript
If CommandKey

SelectMenu "Style", "SuperScript"
Else

SelectMenu "Style", "SubScript"
End If

See Also ControlKey (page 146), OptionKey (page 154), ShiftKey (page 154)

ControlKey
Description Returns True (1) if the Control key was down when the button was clicked to run the

script. You cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // If the Control key was pressed, dial GEnie, otherwise display the dialing directory.
If ControlKey

SelectMenu "Dial", "GEnie"
Else

SelectMenu "Dial", "Directory…"
End If

See Also CommandKey (page 146), OptionKey (page 154), ShiftKey (page 154)
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Cursor system variable
Cursor
Description Returns the ID number of the cursor (mouse pointer). You cannot set this system

variable.

Use Cursor to determine which cursor is active. It’s useful in conjunction with the
Wait command: have a script start some long process that causes the watch cursor ()
to appear, then stop and wait for the standard arrow cursor () to appear before
continuing. You can use the Cursor submenu in the Script Editor’s Parameters menu
to see the ID numbers of the cursors in the active application. The ID number of the
standard system arrow cursor is always –1.

In most applications, the cursor changes to the standard system arrow when you
move the cursor over a palette. In some applications, however, the cursor doesn’t
change to the arrow, especially if the cursor is animated and the application doesn’t
give any time to background processes. If you want a script to reliably check for the
system arrow cursor, don’t move the mouse over a palette while the script runs.

Examples // Sign on to America Online, then wait until we’re signed on before opening Stuffit Deluxe
Open "Mac HD:Communications:America Online v2.5.1:America Online v2.5.1"
Wait (Window.Name = "Welcome")
SelectButton "Sign On"
Wait (Cursor = –1)
Open "Mac HD:Utilities:Compression:Stuffit Deluxe"

Dialogs
Description Enables or disables display of dialog boxes while a script runs. False (0) means don’t

show dialog boxes, True (non-zero) means show dialog boxes (the default).

Set Dialogs to 0 (False) to keep dialog boxes from flashing up on the screen while the
script runs. It makes script execution look smooth and clean. The script can still type
information and click buttons in dialog boxes, even when they’re not visible.

Only certain types of dialog boxes are affected by setting the Dialogs system variable.
Specifically, only modal dialog boxes and alert boxes are hidden. Movable dialog
boxes (both modal and non-modal), windows, and windows disguised as dialog
boxes are not hidden.
■ 147

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Directory system variable

14
When a script ends or is cancelled with Command-period, Dialogs is automatically set
back to True. You don’t need to explicitly set Dialogs to True at the end of the script.
(If Dialogs was left False, then you wouldn’t be able to see any dialog boxes while
working in your applications.)

Examples // Check the Substitute Fonts checkbox in Page Setup Options, but don’t show the two dialogs
Dialogs = 0
SelectMenu "File", "Page Setup..."
SelectButton "Options"
If NOT DialogButton("Substitute Fonts").Checked

SelectButton "Substitute Fonts"
End If
SelectButton "OK"
SelectButton "OK"
Dialogs = 1

Directory
Description Returns the directory where file open and save operations start from, or sets the

current directory for file open and save operations.

Set the Directory system variable to the path of the folder you want to appear in Open
and Save As dialog boxes.

Examples // Save the current directory, then set the directory to where we want to save a file.
Variable saveDir
saveDir = Directory
Directory = "Mac HD:Data:"
// Select Save As from the File menu, type a file name, then click Save and Replace.
SelectMenu "File", "Save As…"
Type "My Notes File"
SelectButton "Save"
SelectButton "Replace"
// Set the directory back to the previous directory.
Directory = saveDir

Error
Description Contains a run-time error number if an error occurred in the last statement executed,

or contains 0 (zero) if there was no error. For example, SelectMenu sets the Error
variable to 2 (Not Found) if it wasn’t able to find the specified menu or menu item.
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Error system variable
Normally when a run-time error occurs in a script, the offending statement is skipped
and execution continues with the next statement. If you plan to share your scripts
with others, it’s a wise idea to anticipate and check for possible errors that could
occur while the script runs.

For example, assume your hard disk is named “Mac HD” and you wrote a script that
opens a file on the hard disk, then does some processing on the file. The script uses
the Open command and a full path, including the hard disk name, to open the file. If
you give the script to your co-worker, whose hard disk is named “Centris,” the script
won’t run correctly on his computer because the Open command won’t be able to
find the file (the path is different). The best place to check for this potential error is
right after the Open command.

Most commands (including If) set or clear the Error variable after they run, so the
value of Error is likely to change from one statement to the next. Because of this, you
should always store Error in a temporary variable and then refer to the temporary
variable, not Error, when dealing with the error condition.

Error 1: General Error (out of memory or resource problem)

AskButton Unable to load dialog

Message Unable to load dialog

Error 2: Not Found error

Button(button-name) Button not found

Call Button not found

DialogButton(button-name) Button not found

File(path) File, folder, or volume not found

Menu(menu-name) Menu not found

Palette(palette-name) Palette not found

Process(process-name) Application not open

PopupPalette Palette not found

Scroll Window not found

SelectButton Button not found
■ 149

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Error system variable

15
SelectMenu Menu not found

SelectPopUp Menu not found

Sound Sound not found

Volume(volume-name) Volume not found

Window(window-name) Window not found

Error 3: Parameter error (generally means missing parameter)

/ (division) Divide by zero

Button.Help Invalid help

Button.Icon Invalid icon number or path

Button.Mode Invalid mode

Button.Text Invalid text

Find Invalid string

GetResources Invalid type

ListCount Invalid list

ListItems Invalid list

ListSort Invalid list

ListSum Invalid list

PopupMenu Invalid menu values

PopupPalette Invalid palette

Proper Invalid string

Replace Invalid string

Schedule Invalid time

Trim Invalid string

Error 2: Not Found error
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

IsKeyDown system variable
Examples // Open the file "Status Report" on the desktop
// If the Open fails, show a message box explaining why the file wasn’t opened.
// Declare a temporary variable for storing the error code.
Variable theProblem
Open "Mac HD:Desktop Folder:Status Report"
theProblem = Error
// If Error is non-zero, then some kind of error occurred.
If theProblem

Message "An error occurred."
If theProblem = 2

// Error 2 is the generic "Not Found" error. Because we were trying to open a file,
// we can deduce that a Not Found error means that a volume, folder, or file
// wasn’t found.
// Now display a more descriptive message for the specific error that occurred.
Message "Status Report: File or path not found."

End If
// Stop script execution if an error occurred. (Otherwise the script continues.)
Exit

End If

See Also Testing and debugging a script (page 93), Checking for run-time errors (page 96)

IsKeyDown
Description Returns True (non-zero) when any key on the keyboard is pressed or held down. “Any

key” includes all keys on the keyboard except the Power On key. As soon as the
pressed key is released, IsKeyDown returns False (0). You cannot check to see which
key was pressed.

You can use IsKeyDown to check to see if a key was pressed, then take some other
action. Or, use the Wait command to wait for a keystroke, then continue. You may
need to hold down a key slightly longer than you would for a simple keystroke to give
IsKeyDown time to recognize that a key is down.

Note When Caps Lock is on, the Caps Lock key is considered pressed even if it’s not
physically held down.
■ 151

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

IsMouseDown system variable

15
Examples // Wait for a keypress, then start quacking while the key is down.
// Stop quacking when the key is released. Show the status on the button.
Button.Text = "Waiting..."
Wait IsKeyDown
While IsKeyDown

Sound "Quack"
End While
Button.Text = "Done"

See Also IsMouseDown (page 152)

IsMouseDown
Description Returns True (non-zero) if the mouse button is down (pressed), otherwise returns

False.

You can use IsMouseDown to check to see if the mouse was clicked, then take some
other action. Or, use the Wait command to wait for a mouse click, then continue. You
may need to hold down the mouse button slightly longer than you would for a
normal mouse click to give IsMouseDown time to recognize that the mouse button is
down.

Examples // Wait for the mouse button to be pressed, then start quacking while the button is down.
// Stop quacking when the button is released. Show the status on the button.
Button.Text = "Waiting..."
Wait IsMouseDown
While IsMouseDown

Sound "Quack"
End While
Button.Text = "Done"

See Also IsKeyDown (page 151)

ListDelimiter
Description Returns the character used to separate items in a list, or sets the character that

separates list items. The default ListDelimiter is the carriage return character (↵).

Set ListDelimiter to a different character to work with regular text strings as lists. For
example, you could change ListDelimiter to a space to treat a sentence as a list of
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

ListDelimiter system variable
words. Or change ListDelimiter to a colon (:) to treat a file’s path as a list containing
the volume, folder(s), and file name.

Note When you change ListDelimiter, all functions that work with lists (and object
properties that return lists) use the new ListDelimiter value. If you change
ListDelimiter to a colon or another character, remember to change it back to the
default character (↵) before using a list delimited by carriage returns. The
ListDelimiter value is reset to ↵ when the script ends or is cancelled with Command-
period, so you don’t need to explicitly change it back at the end of the script.

Examples // Show a list box containing a list of all words in the sentence.
Variable X, theSentence
theSentence = "Monday is my favorite day of the week."
// Change ListDelimiter to a space (a space character separates words in the sentence).
ListDelimiter = " "
X = AskList theSentence

// Show a message box containing the volume name and file name of the chosen file.
// The first item in the path is the volume name, the last item is the file name
// A colon separates items in a path.
Variable thePath, volumeName, fileName
thePath = AskFile
ListDelimiter = ":"
volumeName = ListItems thePath, 1
fileName = ListItems thePath, –1
Message "You chose something named " & fileName & " on the disk named " & volumeName

// Type a list of sounds, separated by commas instead of carriage returns
ListDelimiter = ","
Type GetResources "snd "

See Also Manipulating lists (page 75)
■ 153

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

OptionKey system variable

15
OptionKey
Description Returns True (1) if the Option key was held down when the button was clicked to run

the script. Cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.

Examples // Normal click quits the active application, Option-click quits all open applications
Variable listOfApps, appCount, theApp, Index
If OptionKey

// Get a list of running applications and the number of apps in the list
listOfApps = Process.List
appCount = Process.Count
// Loop through all the active applications and quit all the apps not named Finder
For Index = 1 to appCount

theApp = ListItems appList, index
If Process(theApp).Name <> "Finder"

Process(theApp).Quit
End If

End For
Else

// Normal (not Option) click: if the active app is something other than Finder, then quit it
If Process.Name <> "Finder"

Process.Quit
End If

End If

See Also CommandKey (page 146), ControlKey (page 146), ShiftKey (page 154)

ShiftKey
Description Returns True (1) if the Shift key was held down when the button was clicked to run

the script. Cannot set this system variable.

Use CommandKey, ControlKey, OptionKey, and ShiftKey to create buttons that
perform different actions based on the modifier key (or keys) that are pressed when
you click the button.
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

SoundLevel system variable
Examples // When clicked, show a pop-up menu of apps. If Shift-clicked, open all apps in the menu.
Variable theAppList, netFolder, Index
netFolder = "Mac HD:Internet:"
theAppList = "Eudora↵ NewsWatcher↵ Netscape"
If ShiftKey

For Index = 1 to ListCount theAppList
Open netFolder & (ListItems theAppList, Index)

End For
Else

Open netFolder & (PopupMenu theAppList)
End If

See Also CommandKey (page 146), ControlKey (page 146), OptionKey (page 154)

SoundLevel
Description Returns the current system sound level (volume), or sets the sound level to a new

value. It’s the same as adjusting the volume in the Volumes panel of the Sound
control panel (version 8.0 or later).

The sound level can be zero (no sound) to 7 (highest sound level).

Examples // Save the current sound level and set it to the highest value before running Maelstrom.
// Option-clicking the button restores the previous sound level.
Variable Static savedVolume
If NOT OptionKey

savedVolume = SoundLevel
SoundLevel = 7
Open "Mac HD:Games:Maelstrom 1.4.0"

Else
SoundLevel = savedVolume

End If

See Also BeepLevel (page 144), Beep (page 101), Sound (page 118)
■ 155

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

SystemFolder system variable

15
SystemFolder
Description Returns the path to the System Folder on the startup disk. You cannot set this system

variable.

Using the SystemFolder variable is a shortcut to typing the actual path in your scripts
(or using FindFolder “macs”). Using SystemFolder (or FindFolder) is recommended if
you plan on sharing your scripts with others.

Examples // Open the Views control panel
Open SystemFolder & "Control Panels:Views"

See Also FindFolder (page 129)

Ticks
Description Returns the number of ticks (1/60th of a second) since the computer was started. You

cannot set this system variable.

Use Ticks to measure time intervals in 1/60ths of a second.

Examples // Quack for 10 seconds
Variable saveTicks
saveTicks = Ticks
While (Ticks – saveTicks < 600) // 60 ticks per second

Sound "Quack"
End While

See Also Pause (page 112), Time (page 142), Wait (page 120)
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object
Objects

This section describes all the objects, properties, and messages you can use in scripts.
Except where noted, the syntax for accessing and changing a property is the same for
all properties and objects.

. To retrieve the value of a property:

value = Object[(specifier)].Property

. To change the value of a property:

Object[(specifier)].Property = value

For general information on how to use objects, specifiers, properties, and messages,
see “Objects” on page 65.

Button
Description A Button object is a button on a OneClick palette. The Button properties let you

access or change nearly all the properties of a button that you normally set in the
Button Editor. You can also access or change a button’s script using the .Script
property, and you can create and delete buttons using the .New and .Delete
messages.

You can specify a button either by name or by number. Specifying by name lets you
perform an operation on a specific button that you already know the name of.
Specifying by number lets you loop through all the buttons on a palette and perform
operations on each of them in sequence. Buttons are numbered 1 to N, where N is
the total number of buttons on the palette. The numbering sequence is the same as
the creation order of the buttons (1 being the oldest, N being the newest).

Button(–1) refers to the button currently under the cursor. A scheduled script could
check to see which button is under the cursor, if any, and perform some action (such
as display a help message) for the button you’re pointing to.

If you omit the specifier part of the Button object, then the object is assumed to be
the button that was clicked (the button containing the running script). Also, OneClick
assumes the specified button is on the same palette as the button containing the
■ 157

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object

15
running script. To specify a button on a different palette, specify a palette object using
this format:

Palette(palette-specifier).Button(button-specifier).Property

.Border Gets or sets the button’s border style. There are 12 border styles numbered 0 through
11 which correspond to the choices in the Border pop-up menu:

Setting the .Border value to 3 removes the border. To make the button appear without
a face or border (so only the icon or text appears), set .Border to 3 and .Color to 0.

.Color Gets or sets the button’s color. Colors are numbered 1–256. To determine a color’s
number, drag the mouse over a color in a Color pop-up menu (in the Button Editor)
and look at the number in the bottom-right corner of the menu:

Setting the color to 0 removes the button’s color and makes the button transparent,
allowing the palette’s background to show through (the same as unchecking the
Color checkbox in the Button Editor). Setting the button’s .Color to a value 1–256
also checks the Color checkbox in the Button Editor.
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object
.Count Gets the total number of buttons on the palette (a shortcut for using ListCount
Button.List). No button specifier is necessary. This property is read-only.

// Loop through all the buttons and change them to a light purple color.
Variable Index
For Index = 1 to Button.Count

Button(Index).Color = 43
End For

.Delete The .Delete message permanently deletes the specified button from the palette. The
button specifier is the name of the button to delete. If you don’t specify a button, the
button containing the script is deleted and the script stops running. To delete a
button on another palette, include a palette specifier before the button specifier.

// Delete the button named "Tile Windows"
Button("Tile Windows").Delete

// Delete the button named "Open Text Editor" on the palette named "Tools"
Palette("Tools").Button("Open Text Editor").Delete

// Delete all the buttons on the palette named "Cool Buttons"
Variable Index, numButtons
numButtons = Palette("Cool Buttons").Button.Count
For Index = 1 to numButtons

Palette("Cool Buttons").Button(Index).Delete
End For

.Exists Returns True (1) if the specified button exists, otherwise False (0). You can use this
property to determine if a button exists before performing some other action on the
button.

// If the button named "Switcher" exists, then change its color to red, otherwise
// show an error message
If Button("Switcher").Exists

Button("Switcher").Color = 36
Else

Message "Can’t find the Switcher button"
End If

// If the button named "Current Task" doesn’t already exist, then create it
If NOT Button("Current Task").Exists

Button("Current Task").New
End If
■ 159

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object

16
.Height Gets or sets the button’s height. You can set the height to 1 to draw a button as a
horizontal line.

// Change the height of the button named Quicken to 22
Button("Quicken").Height = 22

.Help Gets or sets the button’s Balloon Help message. There is no limit on the length of the
help message.

Button(“Quicken”).Help = “To open Quicken, click here.”

.Icon Gets or sets the button’s icon. Specify a number 1–4 to set the button’s icon to one of
the four stored icons. Setting .Icon to 0 causes no icon to appear on the button. (The
icon isn’t deleted from the button; it just doesn’t appear.)

// Set the button’s icon to icon #1
Button.Icon = 1

// Remove the button’s icon
Button.Icon = 0

You can also copy an icon from one button to another button using the following
syntax:

Button.Icon = icon-number, Button(button-specifier).Icon

The statement copies the currently visible icon from the specified button to the
current button. Icon-number is a number 1–4 that specifies which icon you want to
copy to in the current button.

// Copy the icon currently appearing on the Chooser button to this button’s icon #2
Button.Icon = 2, Button("Chooser").Icon

You can copy a 16- or 32-pixel icon from a file’s Finder icon to a button’s icon using
this syntax:

Button.Icon = icon-number, path [, icon-size]

Path is a path to an application, document, folder, or other Finder item. If the file
you’re copying an icon from has a custom icon, OneClick copes the custom icon, not
the file’s original icon. Icon-size indicates whether you want to copy the small icon
(16) or large icon (32). The default is the small icon if you don’t specify icon-size.

// Set the button’s icon #1 to the SimpleText application’s 32-pixel icon
Button.Icon = 1, "Mac HD:Applications:SimpleText", 32
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object
.IconAlign Gets or sets the alignment of an icon on the button. The numbers 0 and 5-12
correspond to the 9 positions on the Position grid in the Button Editor. (These values
are the same for the .TextAlign property, except .IconAlign doesn’t use values 1–4.)

.Left Gets or sets the button’s horizontal location on the palette. The left side of the palette
is coordinate 0.

// Move the button to the left edge of the palette
Button.Left = 0

.List Gets a list of the names of all the buttons on the palette. Specify a palette object to get
a list of button names from another palette. No button specifier is necessary. This
property is read-only.

// Display a list box containing the names all the buttons on the palette
Variable theSelection
theSelection = AskList Button.List

// Display a list box containing the names of all the buttons on the palette named "Cool Tools"
Variable theSelection
theSelection = AskList Palette("Cool Tools").Button.List

.Location Changes the button’s location on the palette. The .Location property requires two
parameters (left and top) and is write-only. Using .Location is the same as using .Left
and .Top, except it redraws the button only once instead of twice.

// Move the Quicken button to the upper-left corner of the palette
// Leave a 2-pixel margin between the edges of the button and the palette
Button("Quicken").Location = 2, 2

56

7

8 9 10

11

12

0

■ 161

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object

16
.Mode Gets or sets the appearance of the button. .Mode is a number 0–7 that corresponds to
a setting in the Appearance pop-up menu in the Button Editor: A button’s default
appearance is Normal (0).

// Set the button’s appearance according to the appearance of a menu command
// If Bold is dimmed in the Style menu, then make the button lighter and disabled
If NOT Menu("Style", "Bold").Enabled

Button.Mode = 7
// If Bold is checked, make the button look pushed in and darker
Else If Menu("Style", "Bold").Checked

Button.Mode = 6
// Bold isn’t checked or dimmed, so make the button look normal
Else

Button.Mode = 0
End If

.Name Gets or sets the button’s name. A button’s name is limited to 31 characters.

// Types a list of button names
Variable Index
For Index = 1 to Button.Count

Type Button(Index).Name
End For

// Quacks if the current button’s name is "Quack Button"
If Button.Name = "Quack"

Sound "Quack"
End If

// Renames all the buttons to "Button" and a number
Variable Index
For Index = 1 to Button.Count

Button(Index).Name = "Button" & MakeText Index
End For

.New The .New message creates a new button on the palette. The button specifier is the
name of the new button. The button is created with all the default properties
specified in the Button Editor, except the button is invisible. This lets your script

0: Normal 1: Pushed 2: Disabled

3: Inverted 4: Lighter 5: Darker

6: Pushed/Darker 7: Disabled/Lighter
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object
change other properties (size, location, text, icon, color, and so on) before making
the button visible.

You can create a copy of an existing button by assigning another button to the new
button using the following syntax:

Button(button-name).New = Button(button-to-copy)

To copy a button from another palette, add a palette specifier using this syntax:

Button(button-name).New = Palette(palette-name).Button(button-to-copy)

All the original button’s properties (including its script) are copied to the new button.
By creating new buttons in this manner, you don’t need to copy all the individual
properties one at a time from the original button to the new button.

// Make a new purple button named "Open Unread Mail" with the text "Unread" in the
// palette’s upper-left corner, then turn the button on after all the properties have been set
Button("Open Unread Mail").New
With Button("Open Unread Mail")

.Color = 43

.Text = "Unread"

.Location = 2, 2

.Visible = 1
End With

// Create a copy of the button named "Toggle" and name it "Toggle 2"
Button("Toggle 2").New = Button("Toggle")

.Script Gets or sets a button’s script. Use the .Script property to get a button’s script as a
string, or to assign a string containing a script to another button, replacing the
existing script. Keep the following in mind when assigning a script to a button:

■ When assigning a literal string to a button’s .Script property, replace any
quotation marks (") in the script text with single apostrophes ('). Use the Return
symbol (↵ or <return>) to separate lines in the script text.

■ If you assign a script to a button and the script contains a Startup handler, the
current script stops and the Startup handler runs immediately.

■ If you assign a script to the button containing the currently running script
(replacing the active script), all script execution stops.

■ Special characters in scripts, such as Return, arrow keys, and function keys, are
converted to their text equivalents in angle brackets when you get the .Script
■ 163

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object

16
property of a button. You must use these same text equivalents when you assign a
literal text string (or text from a text file) to a button’s .Script property:

// Create three new buttons and assign scripts to them. The scripts assigned to each button
// are actually identical; only the method used to represent the Return character is different.
Button("New Button 1").New
Button("New Button 2").New
Button("New Button 3").New
Button("New Button 1").Script = "Message 'Hello there.'↵ Sound 'Quack'"
Button("New Button 2").Script = "Message 'Hello there.'<return>Sound 'Quack'"
Button("New Button 3").Script = "Message 'Hello there.'" & Return & "Sound 'Quack'"

// Assign a script that types the Home and Down Arrow keys
Button("Another Button").Script = "Type '<home><downarrow>'"

// Copy the script from Button 1 to Button 2
Button("Button 2").Script = Button("Button 1").Script

// Take the script stored in the text file named "Launch Script" and assign it to a button
Button("New Button 1").Script = File("Mac HD:Launch Script").Text

// Store the Quicken button's script in a text file named My Quicken Script
File("Mac HD:My Quicken Script").Text = Button("Quicken").Script

.Size Changes the button’s size. The .Size property requires two parameters (width and
height) and is write-only. Using .Size is the same as using .Width and .Height, except it
redraws the button only once instead of twice.

// Change the size of the Quicken button to 40 wide by 22 tall
Button("Quicken").Size = 40, 22

<return> <enter> <tab>

<esc> <delete> <help>

<fwddelete> <home> <end>

<pageup> <pagedown> <leftarrow>

<rightarrow> <uparrow> <downarrow>

<f1> <f2> <f3>

<f4> <f5> <f6>

<f7> <f8> <f9>

<f10> <f11> <f12>

<f13> <f14> <f15>
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object
.Text Gets or sets the button’s text (the label that appears on the button). There is no
length limit on the button text. The text wraps inside the button if it’s too long to fit
on one line.

.TextAlign Gets or sets the alignment of text within or outside the button. The numbers 0–12
correspond to the 13 positions on the Position grid in the Button Editor.

// Place the button’s text outside the right edge of the button
Button.TextAlign = 4

.TextColor Gets or sets the color of the button’s text. Colors are numbered 1–256. See the
Button.Color property for information on determining the number of a color.

.TextFont Gets or sets the font of the button’s text. You can specify a font either by its name (as
it appears in the Button Editor’s font menu) or by its font ID number. The .TextFont
property returns the font name.

// Set the button’s font to Palatino 12
Button.TextFont = "Palatino"
Button.TextSize = 12

// Set the button’s font to Courier (font ID 22)
Button.TextFont = 22

.TextSize Gets or sets the font size (in points) of the button’s text.

1

2

3

4

56

7

8 9 10

11

12

0

■ 165

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Button object

16
.TextStyle Gets or sets the font style of the button’s text. Add style numbers together to combine
styles.

// Set style to Plain Text (removes all other style attributes)
Button.TextStyle = 0

// Set style to Bold and Underline
Button.TextStyle = 5

.Top Gets or sets the button’s vertical location on the palette. The top of the palette is
coordinate 0.

// Move the button ten pixels down from the top of the palette
Button.Top = 10

.Update The .Update message tells OneClick to immediately redraw the specified button,
instead of waiting until the script stops executing before redrawing. When a button is
redrawn, its DrawButton handler is also called (if the handler exists).

.Visible Gets or sets whether or not the button appears on the palette. This property
corresponds to the Visible setting in the Appearance pop-up menu in the Button
Editor. Set .Visible to 0 to hide a button or set .Visible to 1 to show it. All buttons are
visible when the OneClick Editor window is open; invisible buttons don’t disappear
until you close the editor window.

.Width Gets or sets the button’s width. You can set the width to 1 to draw a button as a
vertical line.

// Set the width of the button named Quicken to 40, then set the width of
// the current button to match the width of the Quicken button.
Button("Quicken").Width = 40
Button.Width = Button("Quicken").Width

0: Plain Text 1: Bold 2: Italic 4: Underline

8: Outline 16: Shadow 32: Extend 64: Condense
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

DialogButton object
DialogButton
Description A DialogButton object is any push button, radio button, or checkbox in an application

window or dialog box. You can tell whether a button is checked or enabled by looking
at the button’s .Checked or .Enabled property, then click the button (using
SelectButton) if necessary to check or uncheck the button. You specify a DialogButton
object using the button’s name (such as “OK” or “Cancel”) as the specifier.

In the picture above, the following statements describe the state of the buttons in the
dialog box. Checkboxes and radio buttons can also be disabled, although they aren’t
pictured here.

DialogButton("Checked Checkbox").Checked = 1
DialogButton("Unchecked Checkbox").Checked = 0
DialogButton("Checked Radio Button").Checked = 1
DialogButton("Unchecked Radio Button").Checked = 0
DialogButton("Enabled Push Button").Enabled = 1
DialogButton("Disabled Push Button").Enabled = 0

You can use wildcard characters to match button names. ‘?’ matches a single character
and ‘*’ matches zero or more characters.

All DialogButton properties are read-only.

.Checked Returns 1 if the specified button is checked, or 0 if it’s unchecked.

// Open the Page Setup dialog, click Options, and uncheck Substitute Fonts if it’s checked
SelectMenu "File", "Page Setup…"
SelectButton "Options"
If DialogButton("Substitute Fonts").Checked

SelectButton "Substitute Fonts" // click the checked button to uncheck it
End If
■ 167

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

DialogButton object

16
.Enabled Returns 1 if the specified button is enabled (not dimmed), or 0 if it’s dimmed.

// Display a message and stop the script if the "Subscribe" button isn’t available,
// otherwise click the button and continue.
If NOT DialogButton("Subscribe").Enabled

Message "The Subscribe button isn’t available. (Probably because no edition is selected.)"
Exit

Else
// click the Subscribe button
SelectButton "Subscribe"
// set some subscriber options
SelectMenu "Edit", "Publishing", "Subscriber Options..."

End If

.Exists Returns True (1) if the specified dialog box button exists, otherwise False (0). Use this
property to determine if a button exists before performing some other action.

// If the Cancel/Replace dialog box appears, then click the Replace button
If DialogButton("Replace").Exists

SelectButton "Replace"
End If

// If it looks like an Open or Save dialog box is on the screen, then show the
// Directory Assistance palette, otherwise hide the palette
If DialogButton("Desktop").Exists AND DialogButton("Eject").Exists

Palette("Directory Assistance").Visible = 1
Else

Palette("Directory Assistance").Visible = 0
End If

.List Returns an unsorted list of names on all the buttons in the frontmost window or
dialog box.

// Displays a list box listing all the buttons in the Finder’s Print dialog box.
Variable theResponse
SelectMenu –1, "Finder"
SelectMenu "File", "Print Window…"
// Display a list box and get a response. The chosen list items are put in theResponse.
theResponse = AskList DialogButton.List
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

File object
AskList dialog box listing buttons from the Print dialog box

// Choose Save As, type a file name, click Save, and then click Replace if necessary
SelectMenu "File", "Save As…"
Type "Personal Assets 6/2/95"
SelectButton "Save"
// If the Replace/Cancel dialog box appears, then DialogButton.List will contain
// "Cancel↵ Replace" and Find will return a non-zero value. Otherwise, DialogButton.List
// will contain nothing and Find will return 0, causing the SelectButton statement to be skipped.
If Find "Replace", DialogButton.List

SelectButton "Replace"
End If

File
Description The File object lets you work with files and folders. You can get a list of all files in a

folder, or just the files of a specified type; get or change a file’s type and creator codes;
and read and write information in a text file.

The specifier for a File object is the file or folder’s path. When specifying a path to a
volume, include a colon (:) at the end of the volume name.

.Creator Gets or sets the specified file’s creator code. A creator code is a four-character code
that indicates which application created the file; for example, the creator code for any
SimpleText file is “ttxt” and the creator code for any Photoshop file is “8BIM”. The
Finder uses a file’s creator code to figure out which icon to show in the Finder and
which application to open when you double-click the icon.
■ 169

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

File object

17
If you use .Creator to change a file’s creator code, the Finder does not immediately
update the display of the file’s icon in an open Finder window. Close and re-open the
window to make the Finder show the correct icon.

// Change the creator code of all TEXT and PICT files in Mac HD:Data to "ttxt" (for SimpleText).
Variable index, theFile, fileList
fileList = File("Mac HD:Data:", "TEXT↵ PICT").List
For index = 1 to ListCount fileList

theFile = ListItems fileList, index
File(theFile).Creator = "ttxt"

End For

// Change the creator code of the dropped TEXT files to "R*ch" (for BBEdit).
// Skip the file if its type is something other than TEXT.
On DragAndDrop

Variable index, theFile, fileList
fileList = GetDragAndDrop
For index = 1 to ListCount fileList

theFile = ListItems fileList, index
If File(theFile).Kind = "TEXT"

File(theFile).Creator = "R*ch"
End If

End For
End DragAndDrop

.Exists Returns True (1) if the specified file or folder exists, otherwise False (0). Use this
property to determine if a file or folder exists before performing some other action on
the file or folder.

// The path to the SimpleText application is stored in the static variable simpleTextPath.
// If the file can’t be found, display a directory dialog so the user can locate SimpleText
// and store the new path. The While loop ensures that the user chooses a valid path to
// an application.
Variable Static simpleTextPath
While NOT File(simpleTextPath).Exists

Message "SimpleText can’t be found. Please locate it."
simpleTextPath = AskFile "APPL"

End While
Open simpleTextPath

.Kind Gets or sets the specified file’s file type code. A file type code is a four-character code
that indicates the file’s format; for example, the file type code for a text file is “TEXT”
and the file type code for an application is “APPL”. When you’re not sure of a file’s type
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

File object
code, use the File Type command in the Script Editor’s Parameter menu to choose a
file and insert it’s type code into the script.

The .Kind property returns the pseudo type “fold” if you specify a folder.

The most common use for the .Kind property is to get a file’s type and do something
with the file based on its type.

// Move all PICT files in the folder "Downloads" to the folder "Pictures"
Variable theFile, theFileList, X
Directory = "Mac HD:Downloads:"
theFileList = File.List
For X = 1 to ListCount theFileList

theFile = ListItems theFileList, X
If File(theFile).Kind = "PICT"

FinderMove theFile, "Mac HD:Pictures:"
End If

End For

Normally you won’t want to change a file’s type unless you know what you’re doing.
Changing a file’s type does not translate the file’s contents into another format: if you
change a Microsoft Word document (type “WDBN”) into a ClarisImpact report (type
“iRpt”), you can then open the file in ClarisImpact, but the program won’t understand
the file’s contents and will probably give an error message. The file still contains
Microsoft Word data in the file, not ClarisImpact data.

.List Returns a list of files in the specified folder. A second file type specifier is optional:
specify a list of file type codes to get a list that contains only files of the specified
type(s).

Remember to use a colon at the end of the folder’s path to indicate the path is a
folder, not a file.

The .List property is read-only.

// Type a list of all the files in the folder Mac HD:Data.
Type File("Mac HD:Data:").List

// Type a list of the TEXT and PICT files in the folder Mac HD:Data.
Type File("Mac HD:Data:", "TEXT↵ PICT").List
■ 171

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

File object

17
// Open all the TIFF documents in the folder Mac HD:Scans.
Variable theFile, theListOfFiles
theListOfFiles = File("Mac HD:Scans:", "TIFF").List // put the list of TIFFs in theListOfFiles
For theFile = 1 to ListCount theListOfFiles // loop through the list and open each file

Open "Mac HD:Scans:" & (ListItems theListOfFiles, theFile)
End For

.NewFolder The NewFolder message creates a new folder at the specified path. A colon (:) at the
end of the folder name is optional.

If OneClick can’t find the volume or folder where the new folder should be created,
then no folder is created.

// Create a new folder named Received Files in the current directory
File("Received Files").NewFolder

// Create a Documents folder inside the WordPerfect folder. The Applications and
// WordPerfect folders must already exist (only the last folder in the path gets created).
File("Mac HD:Applications:WordPerfect 3.1:Documents:").NewFolder

// Create a new, untitled folder on the desktop
File((FindFolder "desk") & "untitled").NewFolder

.Text Reads text from the specified file or writes text to a text file. You can read text
(actually, the data fork) from any file and store it in a variable, allowing you to work
with text in a file just like any other string value.

You can also write text to a text file by assigning a value to the file’s .Text property. To
prevent accidently overwriting a non-text file’s data fork, you can only write text to a
text file (a file whose type code is “TEXT”). No text is written if you try to write text to
a non-text file.

If you write text to a file that doesn’t exist, OneClick creates a new SimpleText file and
writes the text to it. You can then change the type and creator codes, if you prefer,
after the new file is created. If you create a new file in this manner, the folder
containing the file (if specified) must exist or else OneClick won’t create the file.
OneClick will not create any non-existent folders in the file’s path.

// Create a new file on the desktop called "My Text File" and put the text "Hello there" in it
// If "My Text File" already exists, the text in it is overwritten
File("Mac HD:Desktop Folder:My Text File").Text = "Hello there"
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Menu object
// Copy the text from "File A" to "File B", overwriting the text already in "File B"
File("File B").Text = File("File A").Text

// Append the contents of "Mac HD:File B" to "Mac HD:File A"
File("Mac HD:File A").Text = File("Mac HD:File A").Text & File("Mac HD:File B").Text

// Display a list box containing interesting information from the System file.
// This just shows the System file’s data fork in the list. There will be some garbage in the text.
Variable theList, theResponse
theList = File(SystemFolder & "System").Text
theResponse = AskList theList

// Search all files in a directory for a text string, then display a list box showing only the files
// that contain the search string
Variable theDirectory, theTotalFileList, theFoundFileList, theResponse, theSearchString
theDirectory = AskFile "fold" // choose the directory to search
theSearchString = AskText "Type a string to search for:" // get the string to find
theTotalFileList = File(theDirectory).List
For index = 1 to ListCount theTotalFileList

theCurrentFile = theDirectory & (ListItems theTotalFileList, index)
If Find theSearchString, File(theCurrentFile).Text

theFoundFileList = theFoundFileList & theCurrentFile & "↵ "
End If

End For
theResponse = AskList theFoundFileList, "Search results:"

Menu
Description A Menu object is any menu or submenu in the menu bar. You can use a Menu object

to determine if a menu item is checked or enabled, or to get a list of all the menu
items in a specified menu. The .Checked and .Enabled properties work the same way
as the DialogButton object’s .Checked and .Enabled properties.

The specifier for a Menu object is a menu or menu item name. You can also specify a
menu by number: 1 is the first menu in the menu bar (usually the Apple menu), 2 is
the second menu (usually File), and so on. Use a negative number to specify a menu
starting from the right side of the menu bar: –1 is the Application menu, –2 is the
Help menu, and so on.

You can also specify menu items by number. Like menus in the menu bar, the first
item in the menu is 1, the second is 2, and the last is –1. A divider line in the menu
also counts as a menu item.
■ 173

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Menu object

17
To specify a menu item in a menu, specify both the menu and menu item using this
syntax:

Menu(menu, menu-item).Property

For example, to see if the Copy command in the Edit menu is enabled, you could use
either of these statements:

If Menu("Edit", "Copy").Enabled // check to see if Copy in the Edit menu is enabled
If Menu(3, 4).Enabled // check to see if the 4th command in the 3rd menu is enabled

You can specify menu items in hierarchical menus using a similar syntax. Just include
any submenu names in the path to the menu or menu item:

Menu(menu, submenu, menu-item)

For example, you could use the following to see if the Bold menu item is checked in
the Style submenu of the Format menu:

If Menu("Format", "Style", "Bold").Checked

You can use wildcard characters to match menu or menu item names. ‘?’ matches a
single character and ‘*’ matches zero or more characters.

All Menu properties are read-only.

.Checked Returns True (1) if the specified menu item is checked, or False (0) if it’s unchecked.

// Switch between Body Pages and Master Pages. The current choice appears checked
// in the View menu; only one choice appears checked at a time.
Menu.Update // force the application to update the checkmarks in its menus
If Menu("View", "Body Pages").Checked

SelectMenu "View", "Master Pages"
Else

SelectMenu "View", "Body Pages"
End If

.Enabled Returns True (1) if the specified menu or menu item is enabled (not dimmed), or
False (0) if it’s dimmed.
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Menu object
.Exists Returns True (1) if the specified menu or menu item exists, otherwise False (0).

// Check to see if the Format menu exists before opening the Paragraph Designer.
// (The Format menu exists only if a document is open.) If the menu doesn’t exist, then
// display a message box and exit.
If Menu("Format").Exists

SelectMenu "Format", "Paragraphs", "Designer…"
Else

Message "Can’t open the Paragraph Designer. Perhaps no document is open."
Exit

End If

.List Returns an unsorted list of menu items in the specified menu or submenu. Use
Menu.List without a specifier to get a list of the menus in the menu bar.

// Type a list of all the menus in the menu bar
Type Menu.List

// Type a list of all the commands in the File menu
Type Menu("File").List

// Type a list of all the commands in the Style submenu of the Format menu
Type Menu("Format", "Style").List

// See if the Palatino font is available in the Font menu
If NOT Find "Palatino", Menu("Font").List

Message "You don’t have Palatino installed."
Exit

End If

.Name Returns the name of the specified menu or menu item. Use .Name when you want to
get the name of an icon menu that doesn’t have a name, such as the Apple menu or
Help menu. .Name returns a pseudo name if it knows what the menu is. If the
specified menu already has a name, then .Name just returns the menu’s name.

For this menu: .Name returns:

Apple menu [Apple]

OneClick menu [OneClick]

Help (or Guide) menu [Balloon]

Application menu [Process]
■ 175

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Palette object

17
If .Name is unable to determine a menu’s name, then .Name may return garbage or
nothing at all, depending on how the application defines its menu names for icon
menus.

// Type the name of the Application menu
Type Menu(–1).Name

.Update Forces the active application to update the status of checked, unchecked, enabled,
and disabled items in its menus.

Some applications don’t update their menus (enable, disable, check or uncheck menu
items) until you click in the menu bar. Because OneClick accesses and selects menu
items without clicking the menu bar, the SelectMenu command (and the .Checked
and .Enabled properties of menu items) may not work correctly when the script tries
to access a menu item that appears disabled. To get around this problem, use
Menu.Update before a SelectMenu statement and before statements that access a
menu item’s .Checked or .Enabled property.

// Check the status of the Bold item in the Style menu, then set the button’s icon appropriately
// Make sure the Style menu shows the correct status of the Bold item first
Menu.Update
If Menu("Style", "Bold").Checked

Button.Icon = 1
Else

Button.Icon = 2
End If

Palette
Description A Palette object refers to any OneClick palette. You can use the Palette object to

manipulate or get information about any of the global and application-specific
palettes available in the active application.

The specifier for a Palette object is the name of the palette as it appears in the Palette
Editor and on the palette’s title bar.

You can also specify a palette by number, which is useful for looping through all the
available palettes and performing some operation on each palette. Palette(–1) refers
to the palette under the cursor, if any.
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Palette object
.Color Gets or sets the color of the palette’s background. Colors are numbered 1–256; see
the Button.Color property (page 158) for more information.

.Count Returns the total number of available palettes. The .Count property is a shortcut for
ListCount Palette.List.

.Delete Permanently removes the specified palette. If no palette is specified, the palette
containing the active script is deleted.

.Drag Causes the button to act like a title bar, letting you drag the palette around on the
screen when you drag the button. The .Drag message works only in a MouseDown
handler.

To create a palette with a drag button (such as the palette at left), create a button with
the following script. Then simply drag the button to move the palette.

On MouseDown
Palette.Drag

End MouseDown

.Exists Returns True (1) if the specified palette exists, otherwise False (0). A palette exists if
it’s available in the OneClick menu; .Exists returns True whether or not the palette is
actually visible.

An application-specific palette “exists” only if its application is open and active
(meaning the palette appears in the OneClick menu).

// Display the Styles palette. If the palette can’t be found, display a message box.
If Palette("Styles").Exists

Palette("Styles").Visible = 1
Else

Message "The Styles palette can’t be found. Make sure its application is open and active."
End If

.Grow Causes the button to act like a size box (sometimes called a grow box), letting you
resize the palette when you click and drag the button. The .Grow message works only
in a MouseDown handler.

Drag button
■ 177

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Palette object

17
Resizing a palette with Palette.Grow does not automatically move the button
containing the Palette.Grow script. The script should check the new height and width
of the palette and move the button to the palette’s new lower-right corner.

It’s possible to create a very small palette by dragging the grow button past the
palette’s left or top edge, rendering the palette almost unusable. Therefore, it’s a
good idea to have the script check the height and width of the palette after the
Palette.Grow statement and change the palette’s height or width if the size is too
small.

To create a palette with a grow box, create a button in the lower-right corner of the
palette and put the following script in the button:

On MouseDown
Palette.Grow
// Reset the palette’s height or width if it’s too small (minimum size 30 x 20 pixels)
If Palette.Width < 30

Palette.Width = 30
End If
If Palette.Height < 20

Palette.Height = 20
End If
// Move this button to the new lower-right corner of the palette
Button.Location = (Palette.Width – Button.Width), (Palette.Height – Button.Height)

End MouseDown

.Height Gets or sets the palette’s height. Setting .Height to zero (0) adjusts the height so that
all buttons fit vertically within the palette. (This is similar to clicking Fit To Buttons in
the Palette Editor, except only the height changes, not the width.)

// Toggle the palette between 40 pixels tall and the "Fit To Buttons" height
If Palette.Height = 40

Palette.Height = 0
Else

Palette.Height = 40
End If

.Left Gets or sets the palette’s horizontal position on the screen.

// Move the palette to the left edge of the screen
Palette.Left = 0

// Move the palette to the right edge of the screen
Palette.Left = Screen.Width – Palette.Width
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Palette object
.List Returns a list of all available palettes. Use .List in a loop to cycle through all palettes
and perform some operation on each palette.

// Show a pop-up menu of all available palettes
Variable theChoice
theChoice = PopupMenu Palette.List

// Turn on (show) all the available palettes
Variable X, palList, thePalette
palList = Palette.List
For X = 1 To Palette.Count

thePalette = ListItems palList, X
Palette(thePalette).Visible = 1

End For

.Location Changes the palette’s location on the screen. The .Location property requires two
parameters (left and top) and is write-only. Using .Location is the same as using .Left
and .Top, except it redraws the palette only once instead of twice.

// Move the palette to 40 pixels down and 10 pixels from the left edge of the screen
Palette.Location = 10, 40

.New The .New message creates a new palette. The palette specifier is the name of the new
palette. The palette is created with all the default properties specified in the Palette
Editor, except the palette is hidden. This lets your script change other properties
(size, location, color, and so on) and add new buttons before making the palette
visible. Adding the optional Global keyword following .New lets you create a global
palette. If you omit the Global keyword, then .New creates an application-specific
palette for the active application.

You can create a copy of an existing palette by assigning another palette to the new
palette using the following syntax:

Palette(palette-name).New = palette-to-copy

All the original palette’s properties (including its buttons) are copied to the new
palette, except the new palette isn’t made visible. By creating new palettes in this
manner, you don’t need to copy all the properties and buttons one at a time from the
original palette to the new palette.

To import a palette from a OneClick palette file, use this syntax:

Button(button-name).New = palette-name, palette-file
■ 179

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Palette object

18
This is the same as importing a palette in the Palette Editor, except the new palette
isn’t made visible after it’s imported.

// Create a new palette named "Communications"
Palette("Communications").New
// Change the new palette’s size and location, then make it visible
Palette("Communications").Size = 100, 22
Palette("Communications").Location = 0, (Screen.Height – Palette.Height)
Palette("Communications").Visible = 1

// Create a new global palette named "Project Documents"
Palette("Project Documents").New Global
Palette("Project Documents").Visible = 1

// Copy the palette named "Launcher" to a new palette named "Launcher copy"
Palette("Launcher copy").New = "Launcher"
Palette("Launcher copy").Visible = 1

// Import the palette named "Welcome Screen" from the palette file "Screens"
Palette("My Screen").New = "Welcome Screen", "Mac HD:Extra Palettes:Screens"
Palette("My Screen").Visible = 1

.Size Changes the palette’s size. The .Size property requires two parameters (width and
height) and is write-only. Using .Size is the same as using .Width and .Height, except it
redraws the palette only once instead of twice.

Using zero (0) for either the height or width parameters fits the palette to enclose the
buttons (similar to clicking Fit To Buttons in the Palette Editor).

// Change the palette to 100 pixels wide by 22 pixels tall
Palette.Size = 100, 22

// Resize the palette to enclose all the buttons (same as "Fit To Buttons")
Palette.Size = 0, 0

.TitleBar Turns the palette’s title bar on or off, or gets the palette’s current title bar setting. Set
.TitleBar to 1 to turn on the title bar or 0 (zero) to turn it off.

// Toggle the palette’s title bar on or off
Palette.TitleBar = NOT Palette.TitleBar

.Top Gets or sets the palette’s vertical location on the screen. The palette’s top edge starts
at the top of the palette’s content area, not the top of its title bar. The title bar is 12
pixels tall.
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Palette object
// Move the palette to the top of the screen, just below the menu bar
// If the palette’s title bar is turned on, move the palette 12 pixels higher
If Palette.TitleBar

Palette.Top = 33
Else

Palette.Top = 21
End If

// Move the palette to the bottom of the screen
Palette.Top = Screen.Height – Palette.Height

.Update Forces the palette to redraw itself and all its buttons. Use the .Update message in a
script when you want OneClick to immediately redraw a palette after you change
palette or button properties. (If you change several properties of a button or palette
within a script, OneClick normally redraws the affected button or palette when the
script ends, not after each individual property change.)

// Make the two buttons named "A" and "B" flash between red and green 10 times
Repeat 10

Button("A").Color = 36 // red
Button("B").Color = 226 // green
Palette.Update
Button("A").Color = 226
Button("B").Color = 36
Palette.Update

End Repeat

.Visible Shows or hides the specified palette, or gets the palette’s current visible setting. Set
.Visible to 1 to show the palette or 0 (zero) to hide it. Visible palettes have a bullet (•)
next to their names in the OneClick menu.

// Turn on (show) all the available palettes
Variable X, palList, thePalette
palList = Palette.List
For X = 1 To Palette.Count

thePalette = ListItems palList, X
Palette(thePalette).Visible = 1

End For

// Assign a key shortcut to this script’s button to toggle the palette on or off with a keystroke
Palette.Visible = NOT Palette.Visible
■ 181

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Process object

18
.Width Gets or sets the palette’s width. Setting .Width to zero (0) adjusts the width so that all
buttons fit horizontally within the palette. (This is similar to clicking Fit To Buttons in
the Palette Editor, except only the width changes, not the height.)

// Toggle the palette between 100 pixels wide and the "Fit To Buttons" width
If Palette.Width = 100

Palette.Width = 0
Else

Palette.Width = 100
End If

Process
Description A process is any open, running application or desk accessory, including the Finder. A

Process object lets you manipulate or get information about a running application.

The specifier for a Process object is the name of an application as it appears in the
Application menu in the menu bar. If you don’t specify an application, then Process
refers to the active (front) application.

You can also specify a Process object by number. Process(1) is the active application,
Process(2) is the previous application used, and so on. Process(–1) is a shortcut for
referencing the Finder.

All Process properties (except for .Selection and .Visible) are read-only.

.Count Returns the total number of open applications. The .Count property is a shortcut for
ListCount Process.List.

.Creator Returns the four-character creator code for the specified application. For example, if
SimpleText is the active application, Process.Creator returns “ttxt”.

.Exists Returns True (1) if the specified application is open, otherwise False (0).

// Switch to FileMaker Pro if it’s open, otherwise display a message.
If Process("FileMaker Pro").Exists

Process("FileMaker Pro").Front
Else

Message "FileMaker Pro isn’t running!"
End If
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Process object
.Folder Returns a path to the folder containing the specified application.

// Get the path to the folder containing the SimpleText application
Variable theAppPath
theAppPath = Process("SimpleText").Folder

.Free Returns the amount of free memory (in bytes) in the specified application’s memory
partition. To determine the amount of free memory in K, divide the number of bytes
by 1024. To determine the amount of memory currently in use by an application,
subtract the number of free bytes (.Free) from the total number of bytes allocated
(.Size).

// Display the amount of free memory (in kilobytes) for the active application.
Message Process.Name & " has " & (Process.Free / 1024) & "K free"

.Front Gets the name of the active application, or switches another application to the front.

// Display the name of the active application on the button
Button.Text = Process.Front

To set the active application, use .Front as a message.

// Switch to the Finder
Process("Finder").Front

// Switch back and forth between the two frontmost applications
Process(2).Front

.Kind Returns the four-character file type code for the specified application. The type code is
usually “APPL” (for applications) except for the Finder, whose type code is “FNDR”.
Desk accessories have the type code “dfil”.

.List Returns a list of all running applications. This list includes all applications that appear
in the Application menu. Background-only processes (such as File Sharing) aren’t
included.
■ 183

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Process object

18
.Name Returns the name of the specified application. The .Name property is useful if you
want to get the name of a process specified by number.

// Get the name of the active application.
Variable theActiveApp
theActiveApp = Process.Name

// Type a list of all the active applications (same as Type Process.List)
Variable X
For X = 1 to Process.Count

Type Process(X).Name, Return
End For

.Quit Quits the specified application as if you had chosen Quit from the application’s File
menu. The .Quit message sends an Apple Event to the specified application, telling it
to quit.

// Quit the active application.
Process.Quit

// Quit all running applications except the Finder.
Variable appList appCount theApp X
appCount = Process.Count
appList = Process.List
For X = 1 to appCount

theApp = ListItems appList, X
If Process(theApp).Name <> "Finder"

Process(theApp).Quit
End If

End For

// Force the Finder to quit.
Process("Finder").Quit

.Selection Uses Apple Events to get or set the text of the current selection in the specified
application. Setting an application’s selection using the .Selection property is faster
than typing text (using the Type command) or setting the Clipboard’s contents and
pasting. To the use .Selection property, however, the application must support the
Apple Events required to get and set the current selection, and most applications do
not currently support these events.
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Process object
Microsoft Excel and the System 7.5 Finder do support these events. To determine if
another application supports them, select something in the application and then run
the following script:

Message Process.Selection

If the resulting message box is empty, chances are pretty good that the application
doesn’t support the events required to get or set the selection.

An application’s response to .Selection is usually different depending on the type of
data you work with in the application. For example, if you select the range of cells
A3:B5 in a Microsoft Excel worksheet named “Budget,” then Process.Selection returns
the string “Budget!R3C1:R5C2”—not the contents of the selected cells. If you select a
chart object in the worksheet, Process.Selection returns the name of the selected
chart.

In the Finder, Process.Selection returns the full path of the selected icon, or a list of
paths if more than one icon is selected.

// Get a list of paths of all the selected icons
Variable thePathList
thePathList = Process("Finder").Selection

// Open the Sharing window for the startup disk
Process("Finder").Selection = Volume.Name
// Give Finder time to select the icon before choosing the menu item
Wait (Process("Finder").Selection = Volume.Name)
SelectMenu "File", "Sharing…"

.Size Returns the total amount of memory (in bytes) allocated to the specified application.
To determine the application’s memory size in K, divide the number of bytes by 1024.

// Display the amount of memory used and total memory allocated in Kilobytes
Variable usedMemK, memSizeK, appName
appName = Process.Name
usedMemK = (Process.Size – Process.Free) / 1024
memSizeK = Process.Size / 1024
Message appName & " is using " & usedMem & "K out of the " & memSize & "K reserved for it."

.Visible Returns True (1) if the specified application is visible (showing on the screen) or False
(0) if it’s hidden. Setting .Visible to zero (0) hides the application as if you had chosen
Hide from the Application menu; setting .Visible to 1 shows the application.
■ 185

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Screen object

18
Unlike choosing Hide from the Application menu, hiding the active application (using
Process.Visible = 0) does not bring another application to the front.

// Hide all applications except Finder, then switch to Finder
Variable X
For X = 1 to Process.Count

If Process(X).Name <> "Finder"
Process(X).Visible = 0

End If
End For
Process("Finder").Front

Screen
Description The Screen object lets you get information about and set options for the monitor(s)

connected to your Macintosh. If you have only one monitor, then the Screen object
needs no specifier. If you have more than one monitor, then using Screen without a
specifier refers to the main (menu bar) monitor, Screen(2) refers to the second
monitor, and so on. Screens are numbered as they appear in the Monitors control
panel.

.Color Gets or sets the Colors and Grays options in the Monitors control panel. Setting
.Color to 1 switches the monitor to colors and setting .Color to 0 (zero) switches it to
grays.

// Change the monitor to grayscale mode
Screen.Color = 0

.Count Returns the number of monitors connected to the computer.

If Screen.Count = 1
Message "This is a standard configuration."

Else If Screen.Count = 2
Message "You’re a Power User."

Else If Screen.Count >= 3
Message "Beware of electromagnetic radiation!"

End If
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Screen object
.Depth Gets or sets the number of colors displayed on the monitor. The .Depth property uses
a number (the bit depth) to determine the number of colors. The following table
shows bit depth values and the corresponding settings in the Monitors control panel.

// Switch to millions of colors before opening Adobe Photoshop
Screen.Depth = 32
Open "Mac HD:Applications:Adobe Photoshop:Adobe Photoshop™ 2.5.1"

.Exists Determines if the specified monitor exists. This property is useful in determining if
more than one monitor is connected.

// Display a message if only one monitor is connected
If NOT Screen(2).Exists

Message "Can’t find a second monitor"
End If

.Height Returns the height (in pixels) of the specified monitor. Getting the screen’s height is
useful when you want to position palettes or windows at (or near) the bottom of the
screen.

// Move the palette to the bottom of the screen
Palette.Top = Screen.Height – Palette.Height

.Depth value Monitors control panel setting

1 Black & White

2 4

4 16

8 256

16 Thousands

32 Millions
■ 187

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Screen object

18
.Left Returns the location of the left edge of the specified monitor relative to Screen(1), the
main (menu bar) monitor. For single-monitor systems, .Left always returns 0. If you
have a second monitor connected, Screen(2).Left returns the left edge of the second
monitor relative to the left edge of the main monitor. For example, assume the
following:

■ you have two monitors

■ the main monitor is 1152 pixels wide by 870 pixels tall

■ the second monitor is 832 pixels wide by 624 pixels tall

■ the second monitor is positioned to the right of the main monitor

In this setup, Screen(2).Left returns 1152 because the main monitor goes from 0 (on
the left edge) to 1151 (on the right). If the second monitor was positioned to the left
of the main monitor, then Screen(2).Left would return –832.

// Position the palette in the upper-right corner of the second monitor.
Palette.Left = Screen(2).Left + Screen(2).Width – Palette.Width
Palette.Top = Screen(2).Top + 12

.Top Returns the location of the top edge of the specified monitor relative to Screen(1), the
main (menu bar) monitor. For single-monitor systems, .Top always returns 0. If you
have a second monitor connected, Screen(2).Top returns the top edge of the second
monitor relative to the top edge of the main monitor. (See the .Left property for an
explanation of how this works.)
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Volume object
.Update Forces the Macintosh to redraw the entire contents of the screen, including the menu
bar, the desktop, and all windows and palettes. Use Screen.Update when some other
program malfunctions and leaves garbage on the desktop or in a window.

.Width Returns the width (in pixels) of the specified monitor. Getting the screen’s width is
useful when you want to position palettes or windows at (or near) the right edge of
the screen.

// Move the palette to the right edge of the screen
Palette.Left = Screen.Width – Palette.Width

Volume
Description The Volume object lets you eject, unmount, or get information about any mounted

disk—including hard disks, floppy disks, CD-ROMs, and file server volumes. You can
specify a volume either by name or by number. Using Volume without a specifier
refers to the startup disk. When specifying a volume by name, include a colon (:) at
the end of the name to indicate the name is a path.

.Count Returns the total number of mounted volumes.

.Eject Ejects the specified volume, leaving its icon on the desktop. This is the same as
choosing Eject Disk from the Finder’s Special menu.

.Exists Returns 1 (True) if the specified volume is mounted, otherwise 0 (False).

If NOT Volume("Beavis").Exists
// Open an alias to mount the server volume
Open (FindFolder "amnu") & "Recent Servers:Beavis"
Type "myPassword"
SelectButton "OK"

End If
■ 189

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Volume object

19
.Free Returns the number of free kilobytes (K) on the specified volume. Subtract .Free from
.Size to get the total number of used kilobytes.

// Show a blue thermometer indicating the percentage of space used on the startup disk
Variable usedSpace percentUsed
usedSpace = Volume.Size – Volume.Free
percentUsed = (usedSpace * 100 / Volume.Size)
DrawIndicator percentUsed, 211

.List Returns a list of names of all mounted volumes. Each name has a colon (:) at the end
to indicate the name is a path. Volumes in the list are in the order in which they were
mounted; the first volume in the list is always the startup disk.

// Unmount the volume chosen from the pop-up menu
Variable theChoice
theChoice = PopupMenu Volume.List
Volume(theChoice).Unmount

.Name Returns the name of a volume specified by number.

// Store the name of the startup disk in global variable HD
Variable Global HD
HD = Volume.Name

.Size Returns the total size of the specified volume in kilobytes (K). Divide the size by 1024
to get the size in megabytes.

// Display a list box showing the sizes (in megabytes) of all mounted volumes
Variable volCount volList theVol sizeList X
volCount = Volume.Count
volList = Volume.List
For X = 1 To volCount

theVol = ListItems volList, X
sizeList = sizeList & theVol & " " & (Volume(theVol).Size / 1024) & " MB" & Return

End For
X = AskList sizeList, "Sizes of mounted volumes:"

.Unmount Unmounts the specified volume and removes its icon from the desktop. This is the
same as dragging the volume to the Trash or choosing Put Away from the Finder’s File
menu.

// Unmount the volume named “PowerBook” that’s mounted via file sharing
Volume(“PowerBook”).Unmount
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Window object
Window
Description The Window object lets you get information about or manipulate open windows on

the screen. The specifier for a Window object is the name of the window as it appears
in the window’s title bar. If you don’t specify a window name, then the object refers to
the active (front) window. You can also specify a window by number; window 1 is the
active window.

You can use wildcard characters to match window names. ‘?’ matches a single
character and ‘*’ matches zero or more characters.

You can use the Window object to work with windows in the active application only,
not in inactive applications. To work with windows in an inactive application, use
Process.Front to make the application active first.

.Count Returns the total number of open windows in the active application. Use
Window.Count as a shortcut for ListCount Window.List.

.Exists Returns True (1) if the specified window is open on the screen, otherwise False (0).
Use .Exists to determine if a window is open before performing some other action
that affects the window or its contents (such as moving the window or typing text into
it).

// If the window named "untitled" isn’t open, then open a new window
If NOT Window("untitled").Exists

SelectMenu "File", "New"
End If

.Front Gets the name of the active window or switches to the specified window. Use
Window.Front to switch windows from a script instead of using the Click command to
click a window and make it active.

// Switch to the "Bookmarks" window if it’s not already active
If Window.Front <> "Bookmarks"

Window.Front = "Bookmarks"
End If

Note Applications that have their own floating palettes or tool bars (such as Adobe
Photoshop, Microsoft Word and Excel) often consider one of the floating palettes to
be the active window, not the active document window. (This applies only to an
■ 191

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Window object

19
application’s built-in palettes, not OneClick palettes.) For example, if the active
window is a Photoshop document, Window.Front usually returns “Tools” as the active
window (the Photoshop tool palette). You can use Window.Kind to determine which
windows are real document windows and which are palettes or other kinds of
windows.

.Height Gets or sets the height of the active window. Use .Height to resize a window vertically.
The .Height property works only with the active window, so a window specifier is not
necessary.

// Resize the active window to 100 pixels tall
Window.Height = 100

.Kind Returns an ID number identifying the kind of window specified. Applications that
have different types of windows (document windows, moveable dialog boxes, tool
bars, and so on) use a unique ID number for each style of window.

Use the .Kind property to determine which windows in Window.List are document
windows and which are other special types of windows. By evaluating the .Kind
property of each window in the list, you can create a new list that contains just the
desired windows.

The following table shows the .Kind values for standard window styles.

Value Window style

0 Document

1 Dialog box

2 Plain dialog box

3 Alternate dialog box (has a drop shadow)

4 Document with no size box

5 Moveable dialog box

8 Document with zoom box

12 Document with zoom box, no size box

16 Desk Accessory (rounded) window
2 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Window object
// Displays the .Kind value for any window chosen from the pop-up menu.
// The menu lists all windows, including documents, moveable dialog boxes, tool bars, etc.
Variable theChoice
theChoice = PopupMenu Window.List
If theChoice <> ""

Message Window(theChoice).Kind
End If

// Show a pop-up menu of document windows and floating palettes in QuarkXPress.
// Documents appear at the top of the menu, palettes are at the bottom.
// Quark’s document windows have a .Kind value of 8 and palette windows all
// have a .Kind value greater than 16.
Variable WinList, theChoice, specialList, docList, theWindow, X
WinList = Window.List
For X = 1 To ListCount WinList

theWindow = ListItems WinList, X
If Window(theWindow).Kind > 16

specialList = specialList & theWindow & Return
Else If Window(theWindow).Kind = 8

docList = docList & theWindow & Return
End If

End For
WinList = (ListSort docList) & "-" & Return & (ListSort specialList)
theChoice = PopupMenu WinList
If theChoice <> ""

Window(theChoice).Front
End If

Note For Macintosh programmers: The .Kind value is a combination of the window’s
variant and the resource ID of the window’s WDEF. This is the same number that the
application passes to the Macintosh Toolbox call “NewWindow” when it creates the
window. Standard windows have a value from 0 to 16. Custom windows have a
number that is 16 * WDEF Resource ID + window variant (a number greater than
16).

.Left Gets or sets the window’s left edge on the screen. Use .Left to move a window
horizontally.

// Move the window to the left edge of the screen
Window.Left = 0

// Move the window to the right edge of the screen.
Window.Left = Screen.Width – Window.Width
■ 193

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Window object

19
.List Returns a list of open windows in the active application. The window list includes
regular windows; moveable dialog boxes; and the application’s own special windows
such as tool bars or floating palettes, if any (not OneClick palettes). Special windows
that don’t have a name (such as tool bars in some applications) aren’t included in the
window list.

// Display a pop-up menu of all open windows and switch to the window chosen from the menu
Variable theChoice
theChoice = PopupMenu Window.List
If theChoice <> ""

Window.Front = theChoice
End If

.Location Sets the window’s horizontal and vertical location on the screen. This property
requires two parameters (X and Y coordinates) when specifying the window’s
location. The .Location property is read-only.

// Move the window named "Mac HD" to the left edge of the screen and 20 pixels down.
// (The menu bar is 20 pixels tall.)
Window("Mac HD").Location = 0, 20

.Size Changes the active window’s size. This property requires two parameters (width and
height) when specifying the size. The .Size property works only with the active
window, so a window specifier is not necessary. This property works only if the
window has a resize box.

The .Size property is write-only.

// Resize the window to 540 pixels wide by 400 pixels tall
Window.Size = 540, 400

.Top Gets or sets the window’s top edge on the screen. Use .Top to move a window
vertically .

// Move the active window to just below the menu bar
Window.Top= 20
4 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Window object
// Cascade all open windows
Variable theWindow, winList, winCount, X
winList = Window.List
winCount = Window.Count
For X = 1 to winCount

theWindow = ListItems winList, X
Window(theWindow).Top = (20 * X) + 20
Window(theWindow).Left = 20 * X

End For

.Update Forces the application to redraw the contents of the specified window.

.Visible Returns True (1) if the specified window is visible (showing on the screen) or False
(0) if it’s hidden. Setting .Visible to zero (0) hides the window; setting .Visible to 1
shows the window.

Making a window invisible does not close the window, it just hides it. To make an
invisible window visible, you must specify it by name and not number. Invisible
windows are not seen when specifying by number.

Caution Be careful when changing a window’s .Visible property—some applications
may not work correctly if you make their windows invisible.

.Width Gets or sets the width of the active window. Use .Width to resize a window
horizontally. The .Width property works only with the active window, so a window
specifier is not necessary.

// Resize the active window to 300 pixels wide
Window.Width = 300

.Zoom Gets or sets the zoom state of the specified window. When .Zoom = 1, the window is
zoomed out to its full size; when .Zoom = 0, the window is not zoomed (the
window’s current size is different than its zoomed size). Setting .Zoom without a
parameter toggles the window’s zoom state.

The .Zoom property works only with the active window, so a window specifier is not
necessary.
■ 195

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Window object

19
// Zoom the active window to its full size
Window.Zoom = 1

// Toggle the zoom state of the active window (same as clicking in the window’s zoom box)
Window.Zoom

// Zoom all unzoomed windows
Variable winList, theWindow, X
winList = Window.List
For X = 1 to ListCount winList

theWindow = ListItems winList, X
Window(theWindow).Front
If NOT Window(theWindow).Zoom

Window(theWindow).Zoom = 1
End If

End For
6 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

DragAndDrop handler
Handlers

See “Handlers” on page 72 for a general description of how to use handlers in scripts.

DragAndDrop
Description A script’s DragAndDrop handler executes when you drag and drop a Finder icon or

text clipping on the button. Use the GetDragAndDrop function to retrieve the text or
the paths of the dropped icons. You cannot drop items on a button that doesn’t
contain a DragAndDrop handler.

Examples // Move all the files dropped on the button to the "Briefcase" folder
On DragAndDrop

FinderMove GetDragAndDrop, "Mac HD:Briefcase:"
End DragAndDrop

// Store the text dropped on the button in a static variable named theStoredClipping.
// The button’s text label shows the contents of the text clipping.
// You can later click and drag from the button to insert the text in another document.
On DragAndDrop

Variable Static theStoredClipping
theStoredClipping = GetDragAndDrop
Button.Text = theStoredClipping

End DragAndDrop

// To insert the stored clipping in a document, simply click the button and
// drag from the button to the document.
On MouseDown

Variable Static theStoredClipping
DragButton theStoredClipping

End MouseDown

See Also GetDragAndDrop (page 132), DragButton (page 104), Using Drag and
Drop (page 85)
■ 197

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

DrawButton handler

19
DrawButton
Description A script’s DrawButton handler executes each time OneClick draws or redraws the

button. OneClick redraws a button whenever any of the following occur:

■ the button gets clicked

■ the button, its palette, or the screen gets updated

■ a script changes a button’s visual properties (text, color, icon, size, and so on)

■ the button becomes visible (if it was previously hidden or obscured)

Examples // Play the "Quack" sound whenever OneClick redraws the button
On DrawButton

Sound "Quack"
End DrawButton

See Also DrawIndicator (page 105), Button.Update (page 166), Palette.Update (page 181)

MouseDown
Description A script’s MouseDown handler executes when you click the mouse on a button, but

before you release the mouse. The handler executes as soon as you click the button.

A script cannot contain both MouseUp and MouseDown handlers. If a script does
contain both handlers, only the MouseDown handler runs when you click the button.

Examples // Play the Quack sound when you click the button.
// The sound starts playing as soon as you click.
On MouseDown

Sound "Quack"
End MouseDown

See Also MouseUp (page 199), IsMouseDown (page 152)
8 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

MouseUp handler
MouseUp
Description A script’s MouseUp handler executes when you click and release the mouse on a

button. The script doesn’t start executing until after you release the mouse button.
(This lets you cancel clicking the button by moving the pointer off of the button
before releasing the mouse button.)

The MouseUp handler is the default handler for a script. If the script contains
PopupMenu, PopupPalette, or PopupFiles, then MouseDown is the default handler
instead.

A script cannot contain both MouseUp and MouseDown handlers. If a script does
contain both handlers, only the MouseDown handler runs when you click the button.

Examples // Play the Quack sound when you click and release the mouse button.
On MouseUp

Sound "Quack"
End MouseUp

See Also MouseDown (page 198), IsMouseDown (page 152)

Scheduled
Description A script’s Scheduled handler executes each time a Scheduled event occurs.

Use the Schedule command to turn on scheduling for a script. (If you want
scheduling to run all the time, put the Schedule command in the script’s Startup
handler.) You can specify how often the Scheduled handler should run in increments
of 1/10th of a second. Scheduled scripts run only when the Macintosh is idle (waiting
for keyboard or mouse input).

Normally, a Scheduled handler runs only when its palette is visible; the scheduling
stops if the palette is hidden, then resumes when the palette is made visible again. To
have a Scheduled handler run even if its palette is hidden, include 1 (True) in the
Schedule command’s optional run-always parameter.
■ 199

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Startup handler

20
Examples // Play the Quack sound every five seconds from the time the application starts up.
On Startup

Schedule 50
End Startup

On Scheduled
Sound "Quack"

End Scheduled

// Turn on scheduling for this script when the button is clicked.
// Run even if the palette is hidden.
Schedule 100, 1

// This handler runs once every ten seconds. It checks the contents of a folder and displays
// a message box whenever new files appear in the folder. It then moves the new files
// to a different folder (leaving the original folder empty again) and opens the folder.
On Scheduled

Variable theServerPath, myPath
theServerPath = "Accounting Server:Orders to Process:"
myPath = "Accounting Server:Donna’s Orders:"
// The following statements run only if there are one or more files in "Orders to Process".
If File(theServerPath).List <> ""

Message "There are new files in " & theServerPath
// Move all the files in "Orders to Process" to "Donna’s Orders".
Directory = theServerPath
FinderMove File(theServerPath).List, myPath
// Open "Donna’s Orders".
Open myPath

End If
End Scheduled

See Also Scheduling a script to run periodically (page 90), Schedule (page 114),
Startup (page 200)

Startup
Description A script’s Startup handler executes automatically when the application starts up.

Startup handlers on global palettes execute after the computer starts up. A Startup
handler runs even if the script’s button or palette is hidden.

If you make changes to a script that contains a startup handler, or duplicate a button
whose script contains a startup handler, the handler runs immediately after you close
the OneClick Editor window.
0 ■

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Startup handler
Examples // Turn on scheduling for this script.
On Startup

// Make the Scheduled handler run every five seconds.
Schedule 50

End Startup

// Show the palette (if it’s hidden) when the application starts up.
On Startup

Palette.Visible = 1
End Startup
■ 201

CHAPTER FIVE ■ EASYSCRIPT REFERENCE

Startup handler

20
2 ■

AAppendix
EasyScript Summary
The following tables summarize all of EasyScript’s built-in and external commands,
functions, and system variables. For more detailed information about a specific
command and how to use it, see Chapter 5, “EasyScript Reference” or see the online
help available in the Script Editor.

. To get help for an EasyScript keyword

1 Open the OneClick Editor window.

2 Click the Script tab.

3 Click the button to display the keyword list.

4 Select a keyword from the list.

5 Click the button to display help for the selected keyword.

Note Keywords marked with an asterisk (*) are OneClick extensions (external
commands, functions, or system variables). OneClick extensions are stored in the
Extensions folder inside the OneClick folder (in Preferences). If the OneClick
extension files are not installed, then the extra keywords they provide are not
available to use in scripts.
■ 203

APPENDIX A ■ EASYSCRIPT SUMMARY

20
Command What it does

AppleScript Indicates that the following lines are AppleScript statements.

Beep Plays the Macintosh system beep.

Call Calls another script as a subroutine of the current script.

Click Simulates clicking coordinates on the screen or within a window or dialog box.

CloseWindow Closes the active window.

ConvertClip Forces conversion of the Clipboard contents to plain text.

Dial* Dials a phone number through the speaker or a modem.

DragButton Drags the specified text from a button.

DrawIndicator Draws a progress bar or pie indicator.

Else Indicates statements to execute if a logical expression evaluates to False.

End Indicates the end of a block of statements.

Exit Stops running the current script and returns to the calling script, if any.

FinderCopy Copies files to the specified folder.

FinderMove Moves files to the specified folder.

For Repeats one or more statements while incrementing the specified variable.

If Indicates statements to execute if a logical expression evaluates to True.

Message Displays a message in a dialog box with an OK button.

Next Forces the next iteration of a For, Repeat, or While loop.

On Specifies the start of a handler.

Open Opens the specified application, document, or folder.

PaletteMenu Displays the OneClick menu as a pop-up menu.

Pause Pauses for the specified time interval, then resumes.

PopupPalette Displays another palette as a pop-up palette.

QuicKey* Runs the specified QuicKey macro. Requires QuicKeys™ from CE Software.

Repeat Repeats one or more statements the specified number of times.

Schedule Specifies how often a script should run automatically.
4 ■

APPENDIX A ■ EASYSCRIPT SUMMARY
Scroll Simulates clicks in the active window’s scroll bars.

SelectButton Clicks a named button or checkbox within a window or dialog box.

SelectMenu Simulates choosing a command from a pull-down menu.

SelectPopUp Simulates choosing a command from a pop-up menu in a window or dialog box.

Set Assigns a value to a variable.

Sound Plays the specified sound.

Speak* Speaks the specified text.

Type Types the specified text or command keys.

Variable Declares variable names for use in a script

Wait Waits until the specified condition evaluates to True, then resumes.

While Repeats one or more statements while the specified condition is true.

With Specifies the object whose properties are referenced in the following statements.

// Indicates that the rest of the line is a comment.

Function What it does

Absolute Returns the absolute value of a number.

AskButton Displays an alert box and returns a value indicating which button was used to dismiss the alert.

AskFile Displays a directory dialog box and returns the full path of the file or folder selected.

AskList Displays a list box and returns the selected item.

AskText Displays a dialog box with a text field and returns the text typed in the field.

Char Returns the character indicated by the ASCII code parameter.

Code Returns the ASCII code of the string parameter’s first character.

Date Returns the current date in different string formats.

Find Returns the character position of one text string within another.

FindFolder Returns the full path of the specified folder.

Gestalt Returns Gestalt information for the specified selector.

Command What it does
■ 205

APPENDIX A ■ EASYSCRIPT SUMMARY

20
GetDragAndDrop Returns a list of paths of dropped files or returns the text in a dropped text clipping.

GetResources Returns a list of all the resources of the specified type.

Length Returns the number of characters in a text value.

ListCount Returns the number of items in a list.

ListItems Returns a subset of items from the specified list.

ListSort Sorts the specified list and returns the sorted list.

ListSum Returns the sum of all numbers in a list.

Lower Returns a text value as all lowercase letters.

MakeNumber Converts a text value to a number and returns the result.

MakeText Converts a number to a text value and returns the result.

PopupFiles Displays a hierarchical pop-up menu of files and folders and returns the path of the chosen item.

PopupFont* Displays a pop-up menu of all the characters in a font and returns the chosen character.

PopupMenu Displays a list as a pop-up menu and returns the chosen item.

Proper Returns a string with the first letter of each word capitalized.

Random Returns a random number between 1 and the specified value.

Replace Replaces occurrences of one string within another.

Return Returns the carriage return character. Use with Type to press the Return key from a script.

SubString Returns a portion of a string.

Tab Returns the tab character. Use with Type to press the Tab key from a script.

Time Returns the current time in different text formats.

Trim Returns text with extra spaces removed.

Upper Returns a text value as all uppercase letters.

Variable What it does

ASResult Returns the result of the last AppleScript statement.

BeepLevel Returns or sets the system beep volume level.

Function What it does
6 ■

APPENDIX A ■ EASYSCRIPT SUMMARY
Clipboard Returns the contents of the Clipboard.

CommandKey True when the Command key is pressed, otherwise False.

ControlKey True when the Control key is pressed, otherwise False.

Cursor Returns the resource ID number of the current cursor.

Dialogs Enables or disables display of dialog boxes while a script runs.

Directory Returns or sets the path of the last folder used in the application.

Error Returns the error code of the most recent script error.

IsKeyDown Returns True when a key is currently pressed, otherwise False.

IsMouseDown True when the mouse button is clicked or held down, otherwise False

ListDelimiter Returns or sets the delimiter character to use with lists.

OptionKey True when the Option key is pressed, otherwise False.

ShiftKey True when the Shift key is pressed, otherwise False.

SoundLevel Returns the current speaker volume level (0—7) or sets the volume to a new level.

SystemFolder Returns the path to the System folder on the startup disk.

Ticks Returns the number of ticks (1/60th of a second) since the computer was started.

Object What it does

Button Accesses or manipulates the properties of OneClick buttons.

DialogButton Accesses the properties of buttons in a window or dialog box.

File Accesses or manipulates the properties or contents of files and folders.

Menu Accesses the properties of menus or menu items.

Palette Accesses or manipulates the properties of OneClick palettes.

Process Accesses or manipulates the properties of running applications.

Screen Accesses or manipulates the properties of monitors.

Volume Accesses or manipulates the properties of mounted volumes (disks).

Window Accesses or manipulates the properties of windows.

Variable What it does
■ 207

APPENDIX A ■ EASYSCRIPT SUMMARY

20
Handler What it does

DragAndDrop Indicates statements to execute if the button was triggered by a Drag and Drop event.

DrawButton Indicates statements to execute upon a Button Draw event.

MouseDown Indicates statements to execute if the button was triggered by a MouseDown event.

MouseUp Indicates statements to execute if the button was triggered by a MouseUp event.

Scheduled Indicates statements to execute upon a Schedule event.

Startup Indicates statements to execute when the application starts up.

Operator What it does

AND Performs a logical AND.

NOT Performs a logical NOT.

OR Performs a logical OR.

" Encloses a literal text string.

& Joins the text string on the left with the text string on the right.

() Encloses expressions to be evaluated first.

* Multiplies the number on the left by the number on the right.

+ Adds the number on the left to the number on the right.

– Subtracts the number on the right from the number on the left.

/ Divides the number on the left by the number on the right.

< Evaluates to True if the expression on the right is greater than the expression on the left.

<= Evaluates to True if the expression on the right is greater than or equal to the expression on the left.

<> Evaluates to True if the expression on the right and the expression on the left are not equivalent.

= Evaluates to True if the expression on the right and the expression on the left are equivalent.

> Evaluates to True if the expression on the right is less than the expression on the left.

>= Evaluates to True if the expression on the right is less than or equal to the expression on the left.
8 ■

BAppendix
AppleScript Information
Why use AppleScript?

AppleScript is a system-level scripting language that’s part of the Mac OS. AppleScript
lets you control applications that are designed to support scripting (called
AppleScript-aware applications). Not all applications support AppleScript, but newer
versions of most major commercial applications do support it to some degree.

The primary reason to use AppleScript is the model in which it works. Whereas
EasyScript lets you control an application by driving its user interface (clicking
buttons and selecting menu items), AppleScript lets you control an application by
using a scripting vocabulary that’s built in to the application. For example, in
EasyScript, you could sort a FileMaker Pro database with the following script:

SelectPopUp 27, 11, "List" // Choose the List layout from the Layout pop-up menu
SelectMenu "Select", "Sort…" // Choose the Sort command from the Select menu
SelectButton "Clear All" // Remove all items from the Sort Order list box
Type Down Down // Select the second item (Last Name) in the Field list box
SelectButton "» Move »" // Move Last Name from the Field list to the Sort Order list
SelectButton "Sort" // Click the Sort button

The script performs its work entirely by clicking options, typing, and choosing menu
commands. AppleScript, by comparison, gets the same result by using some scripting
keywords that are built into FileMaker Pro:

tell application "FileMaker Pro"
Show Layout "List" of Document "Phone Book"
Sort Layout "List" By Field "Last Name"

end tell
■ 209

APPENDIX B ■ APPLESCRIPT INFORMATION

Integrating OneClick and AppleScript

21
The phrases “Show Layout” and “Sort Layout By Field” are part of FileMaker Pro’s
built-in AppleScript vocabulary; they aren’t part of AppleScript. Each AppleScript-
aware application comes with its own vocabulary that it understands. (Most
AppleScript-aware applications also support a common or “core” vocabulary.)

An application’s vocabulary is usually specific to the purpose of the application, for
example:

■ WordPerfect 3.1’s vocabulary lets you manipulate words, paragraphs, pages, and
text formatting in word processing documents.

■ FileMaker Pro’s vocabulary lets you manipulate fields, records, and layouts within
database documents.

■ Microsoft Excel’s vocabulary lets you manipulate cells, rows, columns, tables, and
charts in spreadsheet documents.

AppleScript software is included with System 7.5 or newer and System 7 Pro, and is
also available as a separate product. (It is not included with OneClick.) If you don’t
already have AppleScript, you can purchase it from most software stores or mail-order
retailers.

Note AppleScript knowledge is not required to use OneClick or write EasyScript
scripts, and OneClick works just fine without AppleScript installed.

Integrating OneClick and AppleScript

By leveraging the unique features of both scripting languages, you can achieve greater
scripting control over the applications you use. You can use OneClick buttons to run
either EasyScript or AppleScript scripts (or a combination of the two), and you can
share data between the two languages by the use of global variables.

■ Use OneClick to drive the user interface of applications and to control
applications that don’t support AppleScript.

■ Use AppleScript to manipulate information in documents whose applications are
AppleScript-aware.
0 ■

APPENDIX B ■ APPLESCRIPT INFORMATION

Integrating OneClick and AppleScript
Launching compiled AppleScript scripts

An EasyScript script can launch an AppleScript script that is saved as either a compiled
script or as an “applet” (a compiled script that’s saved as a double-clickable
application). Use the AppleScript command to run the script.

// Run the "Start File Sharing" script included with System 7.5.
AppleScript "Mac HD:AppleScript:Automated Tasks:Start File Sharing"

If you launch an AppleScript “droplet” (a script application that expects you to drop
something on its icon), the AppleScript script will usually use the current selection as
the dropped item (just as if the selection was dropped on the icon). You cannot pass
information from EasyScript’s GetDragAndDrop function to an AppleScript droplet.

Embedding AppleScript code in an EasyScript script

The EasyScript language lets you extend its power by including scripts written in
AppleScript directly in your EasyScript scripts. This AppleScript embedding capability
allows your EasyScript scripts to contain a mixture of EasyScript and AppleScript
code.

To embed AppleScript code within an EasyScript script, type or paste the AppleScript
statements between AppleScript and End AppleScript commands.

// Eject removable disks from all drives.
// This script requires the Scriptable Finder in System 7.5.
AppleScript

tell application "Finder"
put away (every disk whose ejectable is true)

end tell
End AppleScript

When you save or check the syntax of a script that contains embedded AppleScript
code, OneClick tells the AppleScript extension to compile the AppleScript portions of
the script. If the AppleScript compiler needs to report an error message, such as a
syntax error in an AppleScript statement, the message appears in the status line in the
Script Editor (where EasyScript compiler messages normally appear).
■ 211

APPENDIX B ■ APPLESCRIPT INFORMATION

Integrating OneClick and AppleScript

21
Accessing the AppleScript result variable

After each AppleScript statement executes, the special AppleScript variable “result”
gets set to the result of the statement. Use EasyScript’s ASResult system variable to
access the AppleScript result variable. ASResult always returns the AppleScript result
variable as a string, no matter what the original data type was in AppleScript.

Following is a sample script that performs a calculation and returns the floating-point
(decimal) result as a string. OneClick displays the result in a message box.

// Displays a OneClick message box containing the string "1.4"
AppleScript

get (3 + 4) / 5
End AppleScript
Message ASResult

Accessing OneClick variables from an AppleScript script

The OneClick Scripting Addition file (included with OneClick) lets you get and set the
values of EasyScript global variables from within an AppleScript script. You can access
only global variables (not local or static variables) from within AppleScript. Use the
following syntax in your AppleScript scripts:

get OneClick variable "global-variable-name"
set OneClick variable "global-variable-name" to value

Note that the OneClick variable name is a string enclosed in quotes. To access an
EasyScript global variable and use it in AppleScript, the easiest way to do so is to first
get its value, then copy the value to an AppleScript variable of the same name.

The following is an example that passes the pathname of a dropped Finder icon to
AppleScript. The AppleScript script retrieves the pathname from the global variable
theFileToSend; the script then tells Anarchie (an Internet FTP client program) to send
the specified file to an FTP (File Transfer Protocol) server on the Internet. The end
result is that the file dropped on the OneClick button is sent to the FTP server.
2 ■

APPENDIX B ■ APPLESCRIPT INFORMATION

Integrating OneClick and AppleScript
On DragAndDrop
Variable Global theFileToSend
// Get the pathname of the first icon dropped on the button.
theFileToSend = GetDragAndDrop 1
// Tell Anarchie to upload the specified file to the FTP server.
AppleScript

tell application "Anarchie"
activate
-- Get the value of theFileToSend and store it in an
-- AppleScript variable of the same name.
get OneClick variable "theFileToSend"
copy result to theFileToSend
-- Transfer the file to the "incoming" directory on the FTP server.
store file theFileToSend host "crash.cts.com" path "incoming" ¬

user "jeffmj" password "myPass" with binary
end tell

End AppleScript
End DragAndDrop

Calling a OneClick script from an AppleScript script

The OneClick Scripting Addition file lets you call the script of a OneClick button as a
subroutine in AppleScript. The technique is similar to the way you can use the Call
command in an EasyScript script. Use the following syntax to call a script.

call OneClick button "button-name" on palette "palette-name"

Button-name and palette-name are strings enclosed in quotes. Note that unlike
EasyScript’s Call command, a palette name is required when you call a OneClick
button from within AppleScript.

Following is a sample script that calls a OneClick button. The OneClick button opens
the folder named Utilities on the startup disk; the AppleScript statements then zoom
and position the folder’s open window.

tell application "Finder"
activate
call OneClick button "OpenUtilitiesFolder" on palette "Launcher"
set zoomed of window of folder "Utilities" of startup disk to true
set position of window of folder "Utilities" of startup disk to {100, 85}

end tell
■ 213

APPENDIX B ■ APPLESCRIPT INFORMATION

AppleScript resources

21
Determining if AppleScript is installed

If you write scripts for people to use on other Macs, it’s a good idea to include code in
your scripts that lets you determine if AppleScript is installed or not. By doing so, you
can alert the user that AppleScript needs to be present for the script to run correctly.
Use the Gestalt function with the “ascr” selector to find out if AppleScript is available.

If NOT Gestalt "ascr", 0
Message "This button requires AppleScript, but AppleScript is not installed."
Exit

End If
AppleScript SystemFolder & "Scripts:Universal Scripts:Start File Sharing"

Gestalt “ascr”, 0 returns 1 (True) if AppleScript is available, otherwise 0 (False).

AppleScript resources

Because AppleScript is a very different language, describing its syntax and use is
beyond the scope of this manual. There are a number of good books on AppleScript,
including the following:

■ Danny Goodman’s AppleScript Handbook, Second Edition, published by
Random House. This book covers the basics of writing AppleScript scripts, and
also includes intermediate and advanced topics. Several sections cover how to
script many popular business applications. The book comes with a CD-ROM
containing all kinds of goodies: AppleScript and sample scripts, scripting
additions, some scriptable applications, documentation, and more.

■ The Tao of AppleScript, Second Edition, published by Hayden Books. This book
is better suited for scripting beginners than the previous book. It’s best for
people who have no programming knowledge or experience. The book comes
with two disks containing AppleScript, sample scripts, scripting additions, and
other files.

■ Getting Started with AppleScript, AppleScript Language Guide, and
AppleScript Scripting Additions Guide, all published by Addison-Wesley.
These are Apple’s official manuals for the AppleScript language.

■ AppleScript Finder Guide, published by Addison-Wesley. This is Apple’s
reference manual for the Scriptable Finder included in System 7.5. The manual
assumes you already know AppleScript. It’s essential for people who want to
write advanced scripts that control the Finder and manipulate Finder objects.
4 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
Index

A
Absolute function 123
accessing multiple properties 122
adding

buttons 162
list items 135
palettes 179

alert boxes
creating 110, 123, 126
preventing display 147

alert sound 101
volume 144

aligning
button text 165
icons 161

appearance (of buttons) 162
Apple Events 184
Apple Menu Items folder 129
AppleScript 41, 100, 209

determining if installed 131, 214
embedding scripts 100, 211
integration with EasyScript 210
resources 214
result variable 212
result variable (AppleScript) 144
running compiled scripts 100, 211

AppleScript command 100
AppleScript Error (error message) 41
applications

activating 183
counting 182
determining creator code 182
determining existence 182
determining file type 183
determining folder 183
determining free memory 183
determining front application 183
hiding 185
name 184

opening 110
quitting 184
retrieving process list 183
See also processes
showing 185

arithmetic operators 55
ASCII code 127
AskButton function 123
AskFile function 124
AskList function 125
AskText function 126
ASResult system variable 144
AT command (modem) 103
automatic execution 90
automatic execution on startup 90

B
Balloon Help 160
Beep command 101
BeepLevel system variable 144
Border property 158
branching 58, 109
Button object 157–166
buttons

aligning icons 161
aligning text 165
as pop-up menus 79
borders 158
clicking (in a dialog box) 115
color 158
counting 159
creating 162
creating launch buttons with PaletteDrop 87
deleting 159
determining existence 159
dragging text from buttons 104
height 160
help message 160
icon 160
mode/appearance 162
name 162
position 161, 166
■ 215

ONECLICK SCRIPTING GUIDE ■ INDEX

21
retrieving button list 161
See also DialogButton object
size 160, 164, 166
text colors 165
text font 165
text label 165
text size 165
text styles 166
updating 166
visibility 166
width 166

C
Call command 82, 83, 101
calling scripts 82, 83
calling scripts from AppleScript 213
carriage return character 141
characters

ASCII code 127
changing to lowercase 135
changing to proper case 140
changing to uppercase 143
pop-up menu of 138
Return character 141
Tab character 142

Check keyword
SelectButton command 115
SelectMenu command 116

Checked property
DialogButton object 167
Menu object 174

choosing
menu items 116
pop-up menu items 118

Click command 101
click parameter 35
clicking 101

checkboxes 115
dialog box buttons 115
scroll bars 114

Clipboard
ConvertClip command 82, 103

converting contents to public format 82, 103
retrieving contents 80, 145
setting contents 80, 145
storing in static variables 81

Clipboard system variable 145
clippings, text 86
CloseWindow command 102
Code function 127
Color property

Button object 158
Palette object 177
Screen object 186

colors
button text 165
buttons 158
palettes 177

command keys
typing 119

Command keyword
Click command 101
SelectButton command 115
Type command 119

CommandKey system variable 146
commands 100–122

defined 47
comments, defined 49
compiled AppleScript scripts 100
compiler

error messages 40
compiling scripts 28
conditional 109
conditional execution 58
conditional statements 109
Control keyword

Click command 101
SelectButton command 115
Type command 119

Control Panels folder 129
control statements 58
Control Strip Modules folder 129
ControlKey system variable 146
ConvertClip command 82, 103
converting text to number 135
6 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
coordinates 35
clicking 101
dragging 101

copying
buttons 162
files 106
palettes 179

Count property
Button object 159
Palette object 177
Process object 182
Screen object 186
Volume object 189
Window object 191

counting
buttons 159
characters in text 133
list items 133
palettes 177
processes 182
screens 186
volumes 189
windows 191

creating
buttons 162
folders 172
launch buttons 87
palettes 179
text files 172

creator code
files 169
processes 182

Creator property
File object 169
Process object 182

cursor parameter 35
Cursor system variable 147

D
Date function 127
date parameter 36
debugging 93

decision-making 109
default directory 148
defined 72
Delete message

Button object 159
Palette object 177

deleting
buttons 159
palettes 177

delimiter 152
Depth property 187
Desktop Folder 129
Dial command 103
dialog box buttons 115
dialog boxes

creating 110, 123, 124, 125, 126
preventing display 147

DialogButton object 167–169
Dialogs system variable 147
directories

creating 172
finding system folders 129
retrieving contents list 171
setting default directory 148

directory dialog boxes
creating 124

Directory system variable 148
disks. See volumes
dismounting volumes 190
displaying

directory dialogs 124
list boxes 125
messages 110, 123, 126

Down keyword 114
Drag and Drop 85, 87, 197

determining if installed 131
dragging text from buttons 104
retrieving dropped items or text 132
text clippings 86

Drag message
Palette object 177

DragAndDrop handler 85, 197
DragButton command 104
■ 217

ONECLICK SCRIPTING GUIDE ■ INDEX

21
dragging 101
dragging palettes 177
DrawButton handler 198
DrawIndicator command 105
drawing indicators (thermometers) 105
duplicating

buttons 162
palettes 179

E
editing scripts 22, 26
efficiency of scheduled scripts 92
Eject message 189
ejecting volumes 189
Else command 58, 109
Else If command 58, 109
embedding AppleScript 100
Enabled property

DialogButton object 168
Menu object 174

End
End AppleScript command 100
End For command 61, 108
End If command 58, 109
End Repeat command 61, 113
End While command 62, 121
End With command 122

error messages 27
Script Editor 40

Error system variable 96, 148
errors, run-time 96
Exists property

Button object 159
DialogButton object 168
File object 170
Menu object 175
Palette object 177
Process object 182
Screen object 187
Volume object 189
Window object 191

Exit

Exit command 65, 106
Exit For command 108
Exit Repeat command 113
Exit While command 121

exiting a script 65
expressions, defined 55
Extensions folder 129

F
file dialog boxes, creating 124
File object 169–173
file paths 37, 76
file type parameter 37
files

copying 106
creating 172
determining creator code 169
determining existence 170
determining type code 170
hierarchical pop-up menu 137
moving 107
opening 110
reading text from 172
setting creator code 169
setting type code 170
writing text to 172

Find function 129
Finder 106, 107
FinderCopy command 106
FinderMove command 107
FindFolder function 129
floating-point numbers 46, 55
Folder property 183
folders

determining existence 170
finding System Folder 156
finding system folders 129
hierarchical pop-up menu 137
opening 110
retrieving contents list 171
running applications 183
setting default directory 148
8 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
fonts 85
button text 165
pop-up character menu 138

Fonts folder 129
For command 61, 108
Free property

Process object 183
Volume object 190

free space 190
front

process 183
window 191

Front property/message
Palette object 183
Window object 191

functions 83, 123–143
defined 49

G
Gestalt function 131
GetDragAndDrop function 85, 132
GetResources function 133
Global keyword

Click command 101
SelectPopUp command 118
Variable command 120

global variables 52, 53, 120
Grow message 177
growing palettes 177

H
handlers 72, 197–201
height

buttons 160
palettes 178
screens 187
windows 192

Height property
Button object 160
Palette object 178
Screen object 187
Window object 192

help
Balloon Help message 160
keyword help 32
keyword list 31
printing 33

Help property 160

I
Icon property 160
IconAlign property 161
icons

aligning 161
button 160
Finder icons, See Drag and Drop

If command 58, 109
importing palettes 179
index variable 62
input

retrieving from users 80
retrieving in a dialog box 126

inserting parameters 34
Insufficient memory (error message) 41
Invalid variable name (error message) 40
IsKeyDown system variable 151
IsMouseDown system variable 152
iteration

For loop 108
Repeat loop 113
While loop 121

K
keys

Command key 146
Control key 146
determining if pressed 151
Option key 154
Shift key 154

keyword list 31
keyword, defined 46
Kind property

File object 170
Process object 183
■ 219

ONECLICK SCRIPTING GUIDE ■ INDEX

22
Window object 192

L
launch buttons 87
launching

files and applications 110
Left keyword 114
Left property

Button object 161
Palette object 178
Screen object 188
Window object 193

Length function 133
length of text 133
limits 97
Line too long (error message) 41
List property

Button object 161
DialogButton object 168
File object 171
Menu object 175
Palette object 179
Process object 183
Volume object 190
Window object 194

ListCount function 133
ListDelimiter system variable 76, 77, 152
ListItems function 76, 134
lists

counting items 76, 133
defined 47
delimiter character 152
displaying in dialog boxes 125
in a pop-up menu 79, 139
manipulating 75
multi-dimensional 77
retrieving button list 161
retrieving file and folder list 171
retrieving items in a list 76, 134
retrieving menu items 175
retrieving menus 175
retrieving palette list 179

retrieving process list 183
retrieving resource list 133
retrieving volume list 190
retrieving window list 194
script keywords 31
sorting 134
summing 135

ListSort function 134
ListSum function 135
local variables 52, 120
location

buttons 161
palettes 179
windows 194

Location property
Button object 161
Palette object 179
Window object 194

logical operators 57
looping 61

defined 58
For loop 108
Repeat loop 61, 113
While loop 62, 121

Lower function 135
lowercase 135

M
macros (QuicKeys) 112
MakeNumber function 135
MakeText function 136
manipulating lists 75
math operators 55
memory 41

allocation size 185
determining free bytes 183
out of memory error 148
usage 98

menu equivalents 119
menu items

determing checked status 75
determining checked status 174
0 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
determining enabled status 174
determining existence 175
name 175
retrieving menu item list 175
selecting 116
selecting from pop-up menus 118
updating 176

Menu object 75, 173–176
menus

creating pop-up menus 79, 139
determining enabled status 174
determining existence 175
name 116, 175
retrieving menu list 175
searching 116
updating 176

Message command 93, 110
messages 70, 71, 72

defined 68
Script Editor error messages 40

Missing ‘"’ (error message) 40
Missing ‘(’ or Missing ‘)’ (error message) 41
mode (of buttons) 162
Mode property 162
modem 103
modifier keys

Command key 146
Control key 146
Option key 154
Shift key 154

monitors
colors 186
counting 186
determining bit depth 187
determining existence 187
setting bit depth 187

mouse
determining how long pressed 89
determining if pressed 152

mouse coordinates 35
MouseDown handler 89, 198
MouseUp handler 199
moving

buttons 161, 166
files 107
palettes 177, 178, 179, 180
windows 193, 194

N
name

buttons 162
menu items 175
menus 175
processes 184
variable 50
volumes 190

Name property
Button object 162
Menu object 175
Process object 184
Volume object 190

nested scripts 97
New message

Button object 162
Palette object 179

NewFolder message
folders

creating 172
Next

Next For command 108
Next Repeat command 113
Next While command 121

Not a command (error message) 40
numbers

adding a list 135
converting from text 135
converting to text 136
defined 46
generating random 140

O
objects 70, 71, 72, 157–196

defined 65
messages 68
properties 67
■ 221

ONECLICK SCRIPTING GUIDE ■ INDEX

22
specifiers 67
OneClick menu

as a pop-up menu from a button 111
Open command 110
opening Finder items 110
operators

arithmetic 55
defined 55
logical 57
parentheses 57
precedence 58
relational 56
string 57

Option keyword
Click command 101
SelectButton command 115
Type command 119

OptionKey system variable 154

P
Page keyword 114
Palette object 176–182
PaletteDrop button 87
PaletteMenu command 111
palettes

as pop-up palettes 82, 112
color 177
creating 179
deleting 177
determining existence 177
dragging 177
height 178
position 178, 179, 180
resizing 177
retrieving palette list 179
size 178, 180, 182
title bar on/off 180
width 182

parameters
defined 48
inserting 34
invalid parameter error 148

parentheses 57
paths 37, 76
Pause command 63, 112
pausing

for a period of time 63, 112
until an expression becomes true 63, 120

pie graph 105
playing sounds 118
pop-up menus

creating 79, 139
of characters 138
of files and folders 137
selecting items 118

pop-up palettes 82
PopupFiles function 137
PopupFont function 138
PopupMenu function 79, 139
PopupPalette command 82, 112
position

button text 165
buttons 161, 166
icons 161
palettes 178, 179, 180
windows 193, 194

precedence, operator 58
Preferences folder 129
pressing command keys 119
printing

help 33
scripts 30

PrintMonitor Documents folder 129
Process object 182–186
processes

activating 183
counting 182
determining creator code 182
determining existence 182
determining file type 183
determining folder 183
determining free memory 183
determining front process 183
determining visibility of 185
hiding 185
2 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
name 184
quitting 184
retrieving process list 183
showing 185

progress indicators 105
proper case 140
Proper function 140
properties 70, 71, 72

accessing multiple 68, 122
Button object 157–166
defined 65
DialogButton object 167–169
File object 169–173
Menu object 173–176
Palette object 176–182
Process object 182–186
retrieving 67
Screen object 186–189
setting 67
Volume object 189–190
Window object 191–196

pseudo menu names 116

Q
QuicKey command 112
Quit message 184
quitting applications/processes 184

R
Random function 140
recording scripts 24
records (as lists) 77
recursion 97
refreshing

buttons 166
menus 176
screens 189
windows 195

relational operators 56
Repeat command 61, 113
repeating statements 61, 62, 108, 113, 121
Replace function 141

replacing text 141
resizing palettes 177
resources 85

retrieving resource list 133
result variable 144
retrieving object properties 67
Return function 141
reverting scripts 29
Right keyword 114
running

AppleScript scripts 100
buttons as subroutines 101
QuicKeys shortcuts 112
scheduled scripts 114, 199
scripts at startup 200

running at startup 90
run-time errors 96

S
saving scripts 28
Schedule command 90, 114
Scheduled handler 90, 199
scheduling scripts 90, 199
Screen object 186–189
screens

colors 186
counting 186
determining bit depth 187
determining existence 187
height 187
setting bit depth 187
size 187, 189
updating 189
width 189

Script Editor 21
accessing 22
compiling 28
detailed help 32
diagram 22
error messages 27, 40
inserting parameters 34
keyword list 31
■ 223

ONECLICK SCRIPTING GUIDE ■ INDEX

22
printing help 33
printing scripts 30
recording 24
running scripts 30
saving changes 28
script formatting 28
shortcuts 27

Script property 163
scripting techniques 74
scripts

AppleScript scripts 100
as functions 83
as subroutines 82
assigning to buttons 163
compiling 28
copying 163
formatting 28
nesting 97
printing 30
recursion 97
retrieving 163
reverting 29
running 30

scripts at startup 90
running periodically 90
saving 28
scheduling 199
special characters in 163
testing and debugging 93

scroll bars 114
Scroll command 114
searching text 129

replacing search text 141
SelectButton command 115
selecting

menu items 116
pop-up menu items 118

selection
retrieving 184
setting 184

Selection property 184
SelectMenu command 116
SelectPopUp command 118

Set command 118
setting

object properties 67
variable values 118

Shift keyword
Click command 101
SelectButton command 115
Type command 119

ShiftKey system variable 154
shortcuts

Script Editor 27
shortcuts (QuicKeys) 112
Shutdown Items folder 129
size

button text 165
buttons 160, 164, 166
lists 133
of memory partition 185
palettes 178, 180, 182
screens 187, 189
text 133
volumes 190
windows 192, 194, 195

Size property
Button object 164
Palette object 180
Process object 185
Volume object 190
Window object 194

sorting lists 134
sound

alert sound 101
alert sound volume 144
volume 155

Sound command 118
sound parameter 38
SoundLevel system variable 155
sounds 85, 96

playing 118
spaces

trimming from text 143
Speak command 119
speaking text 119
4 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
specifications 97
specifier

defined 67
speech 119
Startup handler 90, 200
Startup Items folder 129
startup scripts 90, 200
statement, defined 46
Static keyword 120
static variables 54, 120

for Clipboard storage 81
stopping script execution 65
string

operator 57
strings

defined 46
See also text

styles, button text 166
sublists 134
subroutines 82, 101
SubString function 141
summation of list items 135
System Folder 129

finding 156
system variables 54, 144–156
SystemFolder system variable 156

T
tab character 142
Tab function 142
tear-off palette 82
techniques 74
testing 93
text

aligning 165
button text 165
changing to lowercase 135
changing to proper case 140
changing to uppercase 143
clippings 86
colors 165
converting from numbers 136

converting to numbers 135
dragging from buttons 104
finding and replacing 141
font 165
operator 57
reading from files 172
retrieving substring 141
searching 129
See also strings
size 133, 165
speaking 119
styles 166
trimming spaces 143
typing 119
writing to files 172

Text property
Button object 165
File object 172

TextAlign property 165
TextColor property 165
TextFont property 165
TextSize property 165
TextStyle property 166
thermometer 105
Ticks system variable 89, 156
time

interval in ticks 156
parameter 39

Time function 142
title bar 180
TitleBar property 180
Top property

Button object 166
Palette object 180
Screen object 188
Window object 194

Trash folder 129
Trim function 143
tutorial 3
Type command 119
typing text and commands 119
■ 225

ONECLICK SCRIPTING GUIDE ■ INDEX

22
U
Uncheck keyword

SelectButton command 115
SelectMenu command 116

Unknown name (error message) 40
Unknown version of script (error message) 42
Unmount message 190
unmounting volumes 190
Up keyword 114
Update message

Button object 166
Menu object 176
Screen object 189
Window object 195

updating
buttons 166, 198
menus 176
screens 189
windows 195

Upper function 143
uppercase 143

V
Valid END specifier required (error message) 41
values

assigning to variables 51
defined 46
lists 47
maximum sizes of 97
monitoring 95
numbers 46
strings 46

Variable command 120
variables

accessing from AppleScript 212
AppleScript result 144
assigning values to 51
declaring 120
defined 50
global 52, 53
index 62

local 52
maximum sizes of 97
monitoring values 95
naming rules 50
naming tips 53
setting values 118
static 54
system 54

viewing scripts 22
visibility

buttons 166
processes 185
windows 195

Visible property
Button object 166
Process object 185
Window object 195

voice 119
volume

alert sound 144
sound 155

Volume object 189–190
volumes

counting 189
determining existence 189
determining free space 190
ejecting 189
name 190
retrieving volume list 190
size 190
unmounting 190

W
Wait command 63, 120
waiting

for a period of time 112
until an expression becomes true 63, 120

While command 62, 121
width

buttons 166
palettes 182
screens 189
6 ■

ONECLICK SCRIPTING GUIDE ■ INDEX
windows 195
Width property

Button object 166
Palette object 182
Screen object 189
Window object 195

Window object 191–196
window parameter 39
windows

activating 191
closing 102
counting 191
determining existence 191
determining front window 191
determining kind 192
determining visibility 195
height 192
position 193, 194
retrieving window list 194
size 192, 194, 195
updating 195
width 195
zooming 195

With command 122
word wrap 26

Z
Zoom property 195
zooming windows 195
■ 227

ONECLICK SCRIPTING GUIDE ■ NOTES

228 ■

ONECLICK SCRIPTING GUIDE ■ NOTES

■ 229

ONECLICK SCRIPTING GUIDE ■ NOTES

230 ■

ONECLICK SCRIPTING GUIDE ■ NOTES

■ 231

ONECLICK SCRIPTING GUIDE ■ NOTES

232 ■

	Contents
	Introduction
	Why script?
	About this manual

	Scripting Tutorial
	Viewing a button’s script
	Making simple changes to a script
	Correcting errors in a script
	Getting help for script keywords
	Inserting parameters for script keywords
	Copying a script from one button to another
	Using the Check and Uncheck modifiers

	Displaying information in message boxes
	Where to go from here

	Using the Script Editor
	About the Script Editor
	Accessing the Script Editor
	Recording a script
	Tips for recording a script

	Typing and editing in the script pane
	Checking a script for errors
	Saving changes to a script
	Reverting to the last saved script

	Running a script
	Printing scripts
	Getting help for script keywords
	Using the Keyword List
	Using Detailed Help

	Inserting parameters for script keywords
	Button
	Click
	Cursor
	Date
	File
	File Type
	Sound
	Time
	Window

	Script compiler error messages

	Using EasyScript
	Overview
	About scripting
	How scripting differs from programming

	Parts of the EasyScript language
	Statements and keywords
	Values
	Commands
	Functions
	Comments
	Variables
	Expressions and operators
	Control statements (branching and looping)
	Objects
	Handlers

	Common scripting techniques
	Finding the checked item in a menu
	Manipulating lists
	Creating pop-up menu buttons
	Getting input while a script runs
	Accessing the Clipboard
	Creating tear-off palettes
	Calling scripts as subroutines
	Calling scripts as functions
	Getting a list of the installed fonts or sounds
	Using Drag and Drop
	Determining how long the mouse is held down
	Making a script run when an application starts
	Scheduling a script to run periodically
	Testing and debugging a script

	Specifications and Limits
	Memory usage

	EasyScript Reference
	Using the EasyScript Reference
	Commands
	AppleScript
	Beep
	Call
	Click
	CloseWindow
	ConvertClip
	Dial
	DragButton
	DrawIndicator
	Exit
	FinderCopy
	FinderMove
	For, Next For, Exit For, End For
	If, Else, Else If, End If
	Message
	Open
	PaletteMenu
	Pause
	PopupPalette
	QuicKey
	Repeat, Next Repeat, Exit Repeat, End Repeat
	Schedule
	Scroll
	SelectButton
	SelectMenu
	SelectPopUp
	Set
	Sound
	Speak
	Type
	Variable
	Wait
	While, Next While, Exit While, End While
	With

	Functions
	Absolute
	AskButton
	AskFile
	AskList
	AskText
	Char
	Code
	Date
	Find
	FindFolder
	Gestalt
	GetDragAndDrop
	GetResources
	Length
	ListCount
	ListItems
	ListSort
	ListSum
	Lower
	MakeNumber
	MakeText
	PopupFiles
	PopupFont
	PopupMenu
	Proper
	Random
	Replace
	Return
	SubString
	Tab
	Time
	Trim
	Upper

	System Variables
	ASResult
	BeepLevel
	Clipboard
	CommandKey
	ControlKey
	Cursor
	Dialogs
	Directory
	Error
	IsKeyDown
	IsMouseDown
	ListDelimiter
	OptionKey
	ShiftKey
	SoundLevel
	SystemFolder
	Ticks

	Objects
	Button
	.Border
	.Color
	.Count
	.Delete
	.Exists
	.Height
	.Help
	.Icon
	.IconAlign
	.Left
	.List
	.Location
	.Mode
	.Name
	.New
	.Script
	.Size
	.Text
	.TextAlign
	.TextColor
	.TextFont
	.TextSize
	.TextStyle
	.Top
	.Update
	.Visible
	.Width

	DialogButton
	.Checked
	.Enabled
	.Exists
	.List

	File
	.Creator
	.Exists
	.Kind
	.List
	.NewFolder
	.Text

	Menu
	.Checked
	.Enabled
	.Exists
	.List
	.Name
	.Update

	Palette
	.Color
	.Count
	.Delete
	.Drag
	.Exists
	.Grow
	.Height
	.Left
	.List
	.Location
	.New
	.Size
	.TitleBar
	.Top
	.Update
	.Visible
	.Width

	Process
	.Count
	.Creator
	.Exists
	.Folder
	.Free
	.Front
	.Kind
	.List
	.Name
	.Quit
	.Selection
	.Size
	.Visible

	Screen
	.Color
	.Count
	.Depth
	.Exists
	.Height
	.Left
	.Top
	.Update
	.Width

	Volume
	.Count
	.Eject
	.Exists
	.Free
	.List
	.Name
	.Size
	.Unmount

	Window
	.Count
	.Exists
	.Front
	.Height
	.Kind
	.Left
	.List
	.Location
	.Size
	.Top
	.Update
	.Visible
	.Width
	.Zoom

	Handlers
	DragAndDrop
	DrawButton
	MouseDown
	MouseUp
	Scheduled
	Startup

	EasyScript Summary
	AppleScript Information
	Why use AppleScript?
	Integrating OneClick and AppleScript
	Launching compiled AppleScript scripts
	Embedding AppleScript code in an EasyScript script...
	Accessing the AppleScript result variable
	Accessing OneClick variables from an AppleScript s...
	Calling a OneClick script from an AppleScript scri...
	Determining if AppleScript is installed

	AppleScript resources

	Index
	Notes

