
9. Initializations
    This topic describes operations that must be done before executing other FaceWare commands.    
These operations should only be done once (i.e., they should not be part of routines or loops that are 
executed more than once).

FaceWare Initialization
    The command DoInit must be executed before any other call to FaceWare modules.    DoInit searches 
for the LoadIt module and, if necessary, opens the program's temporary resource file (the name of which 
can be passed in uName). Parameter c indicates which FaceWare modules will be used by the program:
    c ≥ 0 = both FaceIt and ViewIt are in use
    c = -1 = only ViewIt is in use (not FaceIt)
    c = -4 = neither FaceIt nor ViewIt are in use
Passing c = 0, for example, indicates that FaceIt and ViewIt will be used and causes both of these 
modules to be loaded and initialized.    c = -4, on the other hand, skips initialization of FaceIt and ViewIt 
and indicates that the only modules in use will be independent utility-type modules.
    Parameter b in DoInit can be used to request that b kilobytes of extra stack space (beyond the default 
stack size - see discussion below) be allocated by LoadIt.    This also results in LoadIt calling 
MaxApplZone to expand the heap to its limit.    b = -1 can be used to disable this functionality (if your 
program calls MaxApplZone and sets its own stack size), but most programmers pass b = 0 to get the 
default stack size.
    Parameter a is used to set bit flags that are used by FaceIt.    See the "Program Commands" topic 
under the "Commands" menu for a further description of the use of this parameter. If not using FaceIt, 
pass a = 0.
    The minimum program code shown in the "Minimum Code" topic passes a = b = c = 0 to DoInit.    This 
indicates that the program will be using both FaceIt and ViewIt, that the stack size should be set to the 
default size, and that none of the special options supported by FaceIt will be used.

More About Stack Space
    The option of using parameter b to reset stack space when calling DoInit is designed to help those 
programmers who have programs that declare large arrays or records within    routines, or pass large 
variables "by value" to routines.    Such "local" variables are allocated on the "stack" which is a block of 
memory of fixed size located above the program heap.    If the arrays or records allocated on the stack are 
larger than the available stack space, then the stack will clobber memory in the heap, leading to a System 
crash.
    Another important point to understand about the stack is that its growth is cumulative as one routine 
calls another.    For example, suppose routine A calls B, and then B calls C.    If routine A declares a 1000-
element integer*4 array, B declares a 2000-element real*8 array, and C declares a 500-element integer*2 
array, then the total stack memory used to call C would be at least:    (1000)(4) + (2000)(8) + (500)(2) = 
21000 bytes or about 20K.
    One way of increasing the stack space is to pass b > 0 when calling DoInit.    Other options may be 
provided by your development environment (in which case you should pass b = -1 to disable DoInit's 
actions).    Another approach is to minimize stack use by making all large arrays or records global to the 
program (this would include FORTRAN COMMON blocks), or allocate large variables as dynamic blocks 
in the program heap.
    The toolbox call "StackSpace" can be used to check stack space from within a routine at runtime, but a 
calculation like that shown above will usually be enough to tell you that a problem exists.    The PeekCt 
control shipped with ViewIt can also be added to any ViewIt window to show the current stack and heap 
space, but the values displayed are only updated when DoLoop or MdlWnd are called, so you'll still need 
to do calculations or call "StackSpace" to determine the additional stack space used by your routines.    
For your convenience, a PeekCt control was added to the bottom of the ViewIt Help window.
    Finally, note that the default stack space on older Macintosh Mac+ computers (8K) is much smaller than 
that used with newer Macs, so having sufficient stack space on a newer Mac does not guarantee that it 
will work on an older one.

Record Initialization



    In cases where a utility-type FaceWare module requires use of an additional, global record (defined in a 
"Stor" file), this record must usually be initialized with the command DoPrep.    DoPrep uses the values 
passed to it to set up the record's "header" (its first 16 bytes) so that it can be used with the 
corresponding FaceWare module:
 FaceIt(nil,DoPrep,a,b,c,0);          Pascal
 FaceIt(0,DoPrep,a,b,c,0);              /* C */
 FaceIt(0,DoPrep,a,b,c);                  /* C++ */
 call FaceIt(0,DoPrep,a,b,c,0)      !FORTRAN
where a is the record's memory address, b is the module's baseID, and c is its versID.    See demo 
programs that contain calls to DoPrep for examples of its use.    Note that DoPrep is not necessary to 
access FaceIt or ViewIt since the fRec record used by these is automatically initialized by DoInit.
    These extra, global records required by modules are often referred to as "shared records" to denote the 
fact that they are global records that are shared between the module and the main program.


