
U1. Menu Utility Commands
    ViewIt provides several menu-related commands, most of which are designed to support its system of
"labeled" menu items and built-in Font, Size, Style, and Color menus.
Labeled Items
    Labeled menu items are menu items that have a "label ID" associated with them.    Information about
the menu item that is associated with each label ID is stored in a private table maintained by ViewIt.   
Entries are added or removed from this table using the SetItm command.    (This is done by FaceIt, for
example, when auto-loading main menus, where the labeled items are ones with "#n" in their titles.)
    Any number of menu items can be associated with the same label ID, and SetItm can be used to
manipulate all items linked to the same label ID at once.    This makes it easy, for example, to have
multiple standard "Cut" items in multiple menus since each such Cut item is associated with the same
label ID (#13) and can be enabled, disabled, checked, etc., by a single call to SetItm.
    Further information about the various types of label IDs supported by FaceWare modules can be found
in the FaceIt Guide under its "Menu Handling" topic.
FSSC Menus
    On DoInit, if ViewIt is in use then it initializes Font, Size, Style, and Color menus that are loaded from
MENU resources 1216-1219 having menuIDs 196-199.    These "FSSC" menus are non-main menus that
can be attached to hierarchical menu items in other menus. Controls in ViewIt windows that support
multiple text styles (such as this HelpCt control), for example, will often support the FSSC menus (see the
style menu at the top of this window).
    FaceIt and ViewIt automatically process (using SelFSC) menu selections from FSSC menus and post
the appropriate messages to control drivers.    The drivers then use FixFSC to update the state of the
FSSC menus.    This means that main programmers using FaceIt or ViewIt will rarely need to call either
SelFSC or FixFSC.
    Advanced Note: All FaceWare modules assume that the FSSC menus remain inserted in the menu list
at all times as non- main menus.    If your program switches menu bars using the toolbox calls
"ClearMenuBar" and/or "SetMenuBar", then these will also delete all non-main menus, including the
FSSC menus.    You will then need to reinsert these menus as non-main menus using the menu handles
stored in fRec:    fFontMenu, fSizeMenu, fStyleMenu, & fColorMenu.

Name    Number    Parameters & Variables used
PopMen 123 a,b,c,d,uString,uMenuID,uMenuItem
    Executes the toolbox call PopUpMenuSelect where a = menuID, b = vertical position, c = horizontal Executes the toolbox call PopUpMenuSelect where a = menuID, b = vertical position, c = horizontal
position of the top, left corner of the menu (in local coordinates), and d is the item to be initially selected position of the top, left corner of the menu (in local coordinates), and d is the item to be initially selected
(ignored by palette menus).    uString, uMenuID, and uMenuItem return with the selected item text, (ignored by palette menus).    uString, uMenuID, and uMenuItem return with the selected item text,
menuID, and item number.menuID, and item number.
    NOTE:    It's unlikely that you'll ever need to use PopMen with ViewIt windows unless attempting to pop     NOTE:    It's unlikely that you'll ever need to use PopMen with ViewIt windows unless attempting to pop
up a special menu (such as a palette) in response to a click in an enabled item.up a special menu (such as a palette) in response to a click in an enabled item.

SetItm 161    a,b,c,d,uResult
    The SetItm command can be used to manipulate menus and menu items in many different ways. It alsoThe SetItm command can be used to manipulate menus and menu items in many different ways. It also
supports "labeled" menu items (discussed above), and is used within all modules that manipulate labeled supports "labeled" menu items (discussed above), and is used within all modules that manipulate labeled
menu items.menu items.
    a = menuID, resource ID, or MenuHandle of target menu*    a = menuID, resource ID, or MenuHandle of target menu*
            or use a = 0 to designate that b is a label ID number            or use a = 0 to designate that b is a label ID number
    b = menu operation or extent of operation    b = menu operation or extent of operation
        -4 = initialize menu**        -4 = initialize menu**
        -3 = delete (if necessary) and dispose of menu**        -3 = delete (if necessary) and dispose of menu**
        -2 = delete menu from menu list        -2 = delete menu from menu list
        -1 = initialize (if necessary) and insert into list**        -1 = initialize (if necessary) and insert into list**
          0 = apply to all menu items in menu***          0 = apply to all menu items in menu***
      > 0 = apply to this menu item number      > 0 = apply to this menu item number
            or a label ID number (if a = 0)            or a label ID number (if a = 0)
    c = menuID before which to insert new menu (if b = -1)†    c = menuID before which to insert new menu (if b = -1)†
            or menu item operation (if b > -1):            or menu item operation (if b > -1):

          1 = set checked state (d = 0 = uncheck, ≠ 0 = check)          1 = set checked state (d = 0 = uncheck, ≠ 0 = check)
          2 = set enabled state (d = 0 = disable, ≠ 0 = enable)          2 = set enabled state (d = 0 = disable, ≠ 0 = enable)
          3 = set item text (d = 0 or 1 = uString, 2 = uName, other = Pascal string address)          3 = set item text (d = 0 or 1 = uString, 2 = uName, other = Pascal string address)
          4 = set item mark (d = ASCII value of mark character)          4 = set item mark (d = ASCII value of mark character)
          5 = set item ICON (d = ICON ID = 257 to 511)          5 = set item ICON (d = ICON ID = 257 to 511)
          6 = set item reduced ICON (d = ICON ID = 257 to 511)          6 = set item reduced ICON (d = ICON ID = 257 to 511)
          7 = set item SICN (d = SICN ID = 257 to 511)          7 = set item SICN (d = SICN ID = 257 to 511)
          8 = set item style (d = 0 to 255)          8 = set item style (d = 0 to 255)
          9 = set item command character (d = ASCII value)          9 = set item command character (d = ASCII value)
        10 = link to hierarchical menu (d = menuID = 1 to 255)        10 = link to hierarchical menu (d = menuID = 1 to 255)
        11 = set item label ID (d = ± label ID)††        11 = set item label ID (d = ± label ID)††
        12 = delete item (d = -1) or insert item (d = 0 or 1 = uString, 2 = uName, other = Pascal string         12 = delete item (d = -1) or insert item (d = 0 or 1 = uString, 2 = uName, other = Pascal string
address)†††address)†††
    d = parameter for menu item operation    d = parameter for menu item operation
        (use d = 0 to undo operations 4 through 11)        (use d = 0 to undo operations 4 through 11)
All calls to SetItm return the MenuHandle of the target menu in uResult (or 0 if the menu was not found).All calls to SetItm return the MenuHandle of the target menu in uResult (or 0 if the menu was not found).
Also note that if one or more menus in the main menu bar are deleted/inserted or disabled/reenabled, Also note that if one or more menus in the main menu bar are deleted/inserted or disabled/reenabled,
then you should update the bar with a call to "DrawMenuBar" (We can't do this since we don't know when then you should update the bar with a call to "DrawMenuBar" (We can't do this since we don't know when
you're finished making changes that affect the appearance of the bar).you're finished making changes that affect the appearance of the bar).
    To understand the power of SetItm, consider the case of a labeled menu item (#121) that your program     To understand the power of SetItm, consider the case of a labeled menu item (#121) that your program
needed to support in several different menus.    First, SetItm is called by FaceIt or ViewIt when initializing needed to support in several different menus.    First, SetItm is called by FaceIt or ViewIt when initializing
your menus, so your labeled items get registered properly.    You can then change all instances of a label your menus, so your labeled items get registered properly.    You can then change all instances of a label
with a single call to SetItm. For example, to disable all instances of items with label ID 121, use,with a single call to SetItm. For example, to disable all instances of items with label ID 121, use,

FaceIt(nil,SetItm,0,121,2,0);FaceIt(nil,SetItm,0,121,2,0);
      Pascal      Pascal

FaceIt(0,SetItm,0,121,2,0);FaceIt(0,SetItm,0,121,2,0);
          /* C */          /* C */
 FaceIt(0,SetItm,0,121,2);                /* C++ */ FaceIt(0,SetItm,0,121,2);                /* C++ */

call FaceIt(0,SetItm,0,121,2,0)call FaceIt(0,SetItm,0,121,2,0)
 !FORTRAN !FORTRAN
where the menus affected would include all main menus, hierarchical or non-main menus, and menu where the menus affected would include all main menus, hierarchical or non-main menus, and menu
controls in ViewIt modal and modeless windows.controls in ViewIt modal and modeless windows.
    Another example of the power of SetItm is its use to quickly change the contents of an existing menu.        Another example of the power of SetItm is its use to quickly change the contents of an existing menu.   
The code fragment that follows would completely change the contents of the menu displayed by the menuThe code fragment that follows would completely change the contents of the menu displayed by the menu
control at position v2c5 in a ViewIt window opened with FWND 1000:control at position v2c5 in a ViewIt window opened with FWND 1000:
• Pascal
 FaceIt(nil,GetCtl,1000,0,2,5); FaceIt(nil,GetCtl,1000,0,2,5);
 myMenu := ord(fRec.cHiData); myMenu := ord(fRec.cHiData);
 FaceIt(nil,SetItm,myMenu,0,12,-1); FaceIt(nil,SetItm,myMenu,0,12,-1);
 fRec.uString := 'Paste#16/V;Copy#14/C;Cut#13/X'; fRec.uString := 'Paste#16/V;Copy#14/C;Cut#13/X';
 FaceIt(nil,SetItm,myMenu,0,12,0); FaceIt(nil,SetItm,myMenu,0,12,0);
• FORTRAN• FORTRAN
 FaceIt(0,GetCtl,1000,0,2,5) FaceIt(0,GetCtl,1000,0,2,5)
 myMenu = fRec.cHiData myMenu = fRec.cHiData
 FaceIt(0,SetItm,myMenu,0,12,-1) FaceIt(0,SetItm,myMenu,0,12,-1)
 fRec.uString = 'Paste#16/V;Copy#14/C;Cut#13/X' fRec.uString = 'Paste#16/V;Copy#14/C;Cut#13/X'
 FaceIt(0,SetItm,myMenu,0,12,0) FaceIt(0,SetItm,myMenu,0,12,0)
where "myMenu" is used to store the MenuHandle of the menu associated with the control (see first note where "myMenu" is used to store the MenuHandle of the menu associated with the control (see first note
below), and the calls to SetItm first delete all items in the menu and then replace them by the 3 standard below), and the calls to SetItm first delete all items in the menu and then replace them by the 3 standard
items (with keyboard equiv.s "V", "C", and "X") passed in uString.items (with keyboard equiv.s "V", "C", and "X") passed in uString.

SetItm Notes:SetItm Notes:
* Do not pass a resource ID or menuID when referring to menu controls within ViewIt windows since each such * Do not pass a resource ID or menuID when referring to menu controls within ViewIt windows since each such
control is given its own MenuHandle which is a copy of the linked MENU resource (use GetCtl to get this control is given its own MenuHandle which is a copy of the linked MENU resource (use GetCtl to get this
MenuHandle in cHiData).    Also note that in cases where SetItm needs to generate a resource ID from a menuID, it MenuHandle in cHiData).    Also note that in cases where SetItm needs to generate a resource ID from a menuID, it
assumes the relationship:    resource ID = menuID + 900 (= FaceIt's auto-load scheme for main program menus).assumes the relationship:    resource ID = menuID + 900 (= FaceIt's auto-load scheme for main program menus).

** When initializing menus, ViewIt scans the menus for labeled items and processes the items.    When disposing of ** When initializing menus, ViewIt scans the menus for labeled items and processes the items.    When disposing of
menus, ViewIt removes the corresponding entries from its labeled item tables.    You can also use b = -4 with menus menus, ViewIt removes the corresponding entries from its labeled item tables.    You can also use b = -4 with menus
that are already initialized to get ViewIt to process their labeled items.that are already initialized to get ViewIt to process their labeled items.
*** If b = 0 (all items) and c = 2 (enable/disable) then the menu itself is enabled/disabled, not the individual items *** If b = 0 (all items) and c = 2 (enable/disable) then the menu itself is enabled/disabled, not the individual items
within the menu.within the menu.
† Use c = -1 to insert the menu as a non-main menu (or use a "+" or "-" as the first character of the menu's title).† Use c = -1 to insert the menu as a non-main menu (or use a "+" or "-" as the first character of the menu's title).
†† When adding new label entries to its private tables, ViewIt does not check whether the entries already exist, so do †† When adding new label entries to its private tables, ViewIt does not check whether the entries already exist, so do
not call SetItm to assign an ID to the same item more than once.    You can, however, pass an existing label ID in not call SetItm to assign an ID to the same item more than once.    You can, however, pass an existing label ID in
parameter b and a new value in d to change the label ID of all associated menu items.    For example,parameter b and a new value in d to change the label ID of all associated menu items.    For example,
 FaceIt(nil,SetItm,0,19,11,151); FaceIt(nil,SetItm,0,19,11,151);
would change the label ID of all items associated with ID #19 (the "Select All" standard item) to ID #151 (a program would change the label ID of all items associated with ID #19 (the "Select All" standard item) to ID #151 (a program
item).item).
††† Passing b = 0 can be used with d = -1 to delete all items in a menu, but passing b = 0 with d > -1 to insert items ††† Passing b = 0 can be used with d = -1 to delete all items in a menu, but passing b = 0 with d > -1 to insert items
results in inserting items at the top of the menu (same as b = 1).    When inserting a new item, the string passed is results in inserting items at the top of the menu (same as b = 1).    When inserting a new item, the string passed is
interpreted in the same way as that done by the "AppendMenu" toolbox call (i.e., a single string can specify mulitiple interpreted in the same way as that done by the "AppendMenu" toolbox call (i.e., a single string can specify mulitiple
items to add, as well as icon, mark, style, keyboard equiv., and enabled status of each item), but items are added in items to add, as well as icon, mark, style, keyboard equiv., and enabled status of each item), but items are added in
the reverse order that they appear in the string.    Each item inserted or deleted is also checked for the presence of a the reverse order that they appear in the string.    Each item inserted or deleted is also checked for the presence of a
label ID, and ViewIt's private label table is updated accordingly.    Finally, note that this operation (c = 12) does not label ID, and ViewIt's private label table is updated accordingly.    Finally, note that this operation (c = 12) does not
support the use of label IDs (a = 0, b = label ID) to designate menu item positions.    Always use parameter a to support the use of label IDs (a = 0, b = label ID) to designate menu item positions.    Always use parameter a to
designate a specific menu when inserting or deleting items.designate a specific menu when inserting or deleting items.

GetItm    162    a,b,c
    Parameters a and b define a menu item in the same way as they are used with SetItmParameters a and b define a menu item in the same way as they are used with SetItm (if b = 0, then b =
1 is used).    Information about this item is returned as,    Information about this item is returned as,
    uString = menu item text    uString = menu item text
    uMenuID = menuID number    uMenuID = menuID number
    uMenuItem = menu item number    uMenuItem = menu item number
    uResult = label number (±1 to ±7499, 0 if unlabeled)    uResult = label number (±1 to ±7499, 0 if unlabeled)
    uI1 = mark character (ASCII value)    uI1 = mark character (ASCII value)
    uI2 = ICON or SICN resID (257-511)    uI2 = ICON or SICN resID (257-511)
    uI4 = WindowPtr of old picture palette window (obsolete)    uI4 = WindowPtr of old picture palette window (obsolete)
    uStyle = menu item style    uStyle = menu item style
    uMenuHdl = MenuHandle    uMenuHdl = MenuHandle
where an empty string or zero is returned if the item is not found, and the label number in uResult will be where an empty string or zero is returned if the item is not found, and the label number in uResult will be
negative if it was entered as such in the MENU resource.negative if it was entered as such in the MENU resource.
    A typical use for this command might be to get the menuID and menu item number of an item specified     A typical use for this command might be to get the menuID and menu item number of an item specified
by a label ID number (a = 0, b = label ID).    In this case you can also use parameter c to specify the nth by a label ID number (a = 0, b = label ID).    In this case you can also use parameter c to specify the nth
instance of the labeled item that you are looking for.instance of the labeled item that you are looking for.

FixFSC    163    a,b,c,d
    Notifies ViewIt that its built-in Font, Size, Style, and/or Color (FSSC) menus need updating according to Notifies ViewIt that its built-in Font, Size, Style, and/or Color (FSSC) menus need updating according to
parameters a, b, c, and d.    Pass -1 for parameters to be ignored, and -2 to uncheck all items in the parameters a, b, c, and d.    Pass -1 for parameters to be ignored, and -2 to uncheck all items in the
corresponding menu (which will also occur if the parameter does not correspond to any item in the menu).corresponding menu (which will also occur if the parameter does not correspond to any item in the menu).
This command is most often used from within control drivers to update the state of the FSSC menus to This command is most often used from within control drivers to update the state of the FSSC menus to
reflect the current selection's text style and color.reflect the current selection's text style and color.
    a = font number OR address of Pascal string containing font name (outlining of sizes in Size menu is     a = font number OR address of Pascal string containing font name (outlining of sizes in Size menu is
also updated)also updated)
    b = size (12 pt. if b = 0)    b = size (12 pt. if b = 0)
    c = style = sum of following constants:    0 = Plain,    c = style = sum of following constants:    0 = Plain,
          1 = Bold, 2 = Italic, 4 = Underline, 8 = Outline,          1 = Bold, 2 = Italic, 4 = Underline, 8 = Outline,
          16 = Shadow, 32 = Condensed, 64 = Extended          16 = Shadow, 32 = Condensed, 64 = Extended
    d = address of RGB color OR old-style color constant:    d = address of RGB color OR old-style color constant:
          33 = black, 30 = white, 205 = red, 341 = green,          33 = black, 30 = white, 205 = red, 341 = green,
          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow

SelFSC    164    a,b
    Processes an FSSC menu selection by comparing the chosen item with the current state of the FSSC Processes an FSSC menu selection by comparing the chosen item with the current state of the FSSC

menus (set by calling FixFSC), where a is the item's menu ID and b is the item number.    If the selection menus (set by calling FixFSC), where a is the item's menu ID and b is the item number.    If the selection
would change the state of the FSSC menus, then uResult is returned with a non-zero value, and the new would change the state of the FSSC menus, then uResult is returned with a non-zero value, and the new
font, size, style, or color is placed in the current port's txFont, txSize, txFace, or fgColor fields (or font, size, style, or color is placed in the current port's txFont, txSize, txFace, or fgColor fields (or
rgbFgColor for color windows).rgbFgColor for color windows).
    In the case of a style change, txFace is set to contain just the newly selected style (Plain OR Bold OR     In the case of a style change, txFace is set to contain just the newly selected style (Plain OR Bold OR
Italic...) so that the selected style can be turned on or off without affecting the other styles in the current Italic...) so that the selected style can be turned on or off without affecting the other styles in the current
text selection.text selection.
    This command is rarely used by either main programmers or module developers since FaceIt and     This command is rarely used by either main programmers or module developers since FaceIt and
ViewIt automatically preprocess most menu selections.ViewIt automatically preprocess most menu selections.

