
1

Tk4.0 Overview and Porting Guide

John Ousterhout

Tk version 4.0 is a major new release with many improvements, new features, and bug

fixes. This document provides an introduction to the new features and describes the most

common problems you are likely to encounter when porting scripts from Tk 3.6, the previ-

ous release. This is not an introduction to Tk: I assume that you are already familiar with

Tk 3.6 as described in the book Tcl and the Tk Toolkit.

The good news about Tk 4.0 is that it has many improvements over Tk 3.6. Here are a

few of the most important new features:

• Tk 4.0 includes a general-purpose mechanism for manipulating color images (Tk 3.6

supports only monochrome images).

• The text widget in Tk 4.0 includes many new features such as tab stops, embedded win-

dows, horizontal scrolling, and many new formatting options.

• The binding mechanism in Tk 4.0 is much more powerful in Tk 3.6.

• Motif compliance is much better. For example, there is now support for keyboard tra-

versal and focus highlights.

• Many widgets have been improved. For example, buttons and labels can display multi-

line justified text, and scales can handle real values.

The bad news about Tk 4.0 is that it contains several incompatibilities with Tk 3.6.

Ever since the first release of Tk I have assumed that there would eventually be a major

new release of Tk with substantial incompatibilities. I knew that I wouldn’t be able to get

all of the features of Tk right the first time; rather than live forever with all of my early

mistakes, I wanted to have a chance to correct them. Tk 4.0 is that correction. I apologize

for the incompatibilities, but I hope they improve Tk enough to justify the difficulties you

FIGURE 1

TABLE 1

2 Tk4.0 Overview and Porting Guide

encounter during porting. Tk 4.0 is a one-time correction: we will try very hard to avoid

substantial incompatibilities (especially in Tk’s Tcl-level interfaces) in future releases.

Sections 1-11 cover the major areas of change in Tk 4.0: bindings, focus, text widgets,

Motif compliance, other widget changes, images, color management, event handling, sup-

port for multiple displays, the send command, and the selection. Section 12 summarizes

several smaller changes. Section 13 lists all of the incompatibilities that affect Tcl scripts,

along with suggestions for how to deal with them. The explanations here are not intended

to be comprehensive, but rather to introduce you to the issues; for complete information

on new or modified commands, refer to the reference documentation that comes with the

distribution.

1 Bindings

The changes for Tk 4.0 that are most likely to affect existing Tcl scripts are those related to

bindings. The new binding mechanism in Tk 4.0 is much more powerful than that of Tk

3.6, particularly in the way it allows behaviors to be combined, but several incompatible

changes were required to implement the new features. These changes are likely to break

most Tk 3.6 scripts. Fortunately, it is relatively easy to upgrade your bindings to work

under Tk 4.0.

The basic mechanism for bindings is the same as in Tk 3.6. A binding associates a Tcl

script with a particular event (or sequence of events) occurring in one or more windows;

the script will be invoked automatically whenever the event sequence occurs in any of the

specified windows. The Tk 4.0 binding mechanism has three major feature changes. First,

there is a more general mechanism for specifying the relationship between windows and

bindings, called binding tags. Second, the conflict resolution mechanism (which is

invoked when more than one binding matches an event) has been changed to allow more

than one binding script to execute for a single event. Third, the Any modifier is now

implicit in all binding patterns. These changes are discussed separately in the subsections

that follow.

Overall, the main effect of Tk 4.0’s binding changes is that it allows more bindings to

trigger than Tk 3.6 does. Feedback from the Tcl/Tk community about the Tk 3.6 binding

mechanism indicated that it was too conservative about triggering bindings. This caused

the system to lose behaviors relatively easily and made the binding structure fragile. It

appears to be easier to deal with too many binding invocations than too few, so Tk 4.0 tries

to err in this direction.

1.1 Binding tags

In Tk 3.6 you specify the window(s) for a binding in one of three ways:

• You give the name of a window, such as .a.b.c, in which case the binding applies

only to that window.

1 Bindings 3

• You give the name of a class, such as Button, in which case the binding applies to all

the windows of that class.

• You specify all, in which case the binding applies to all windows.

In Tk4.0 you specify the window(s) using a more general mechanism called a binding

tag. A binding tag may be an arbitrary string, but if it starts with a “.” then it must be the

name of a window. If you specify a class name or all as a binding tag, it will usually

have the same effect as in Tk 3.6, but you may also specify other strings that were not per-

mitted in Tk 3.6.

Each window in Tk 4.0 has a list of binding tags. When an event occurs in a window,

Tk fetches the window’s binding tags and matches the event against all of the bindings for

any of the tags. By default, the binding tags for a window consist of the window name, its

class name, the name of its nearest toplevel ancestor, and all. For example, a button win-

dow named .b will have the tags

.b Button . all

by default and all of the following bindings will apply to the window:

bind .b <Enter> {identify "press here to exit"}

bind Button <Button-Release-1> {%W invoke}

bind all <Help> {help %W}

So far, this mechanism produces the same behavior as in Tk 3.6 except that bindings cre-

ated for a toplevel also apply to its descendants (see Section 1.5 for more on this issue).

You can use the bindtags command to change the binding tags for a window or

their order. For example, the command

bindtags .b {.b MyButton all}

will change the binding tags for .b to the three values in the list. This provides a simple

way to make radical changes the behavior of a window. After the above command is

invoked none of the Button class bindings will apply to .b. Instead, bindings for

MyButton will apply; this might give the button a totally different set of behaviors than a

normal button. In addition, the bindtags command removes the “.” tag, so bindings on

“.” will not apply to .b.

You can also place additional tags on a window with the bindtags command to

combine a number of behaviors. For example,

bindtags .b {.b MyButton Button . all}

gives .b the behaviors of MyButton bindings as well as those specified by Button

bindings.

Overall, binding tags are similar to the tag mechanisms already used internally by

canvas and text widgets in Tk 3.6, except that binding tags apply to windows instead of

graphical objects or textual characters.

4 Tk4.0 Overview and Porting Guide

1.2 Conflict resolution

It is possible for several bindings to match a particular event. In Tk 3.6 at most one event

is actually allowed to trigger: a set of conflict resolution rules determines the winner. In

general, a more specific binding takes precedence over a less specific binding. For exam-

ple, any binding for a specific widget takes precedence over any class or all binding, and

a binding on <Control-a> takes precedence over a binding on <KeyPress>.

The mechanism for conflict resolution is similar in Tk 4.0 except that one binding can

trigger for each binding tag on the window where the event occurs. The bindings trigger in

the order of the tags. Thus if button .b has the default binding tags, one binding for .b

can trigger, followed by one for Button, followed by one for “.”, followed by one for

all. If there are no matching bindings for a given tag then none will trigger, and if there

are several matching bindings for a given tag then a single one is chosen using the same

rules as in Tk 3.6.

The philosophy behind binding tags in Tk 4.0 is that each binding tag corresponds to

an independent behavior, so bindings with different tags should usually be additive. Sup-

pose you defined the following binding:

bind .b <Enter> {puts "press here to exit"}

This binding will add to the behavior defined by the Button class binding for <Enter>.

In Tk 3.6, the widget-specific binding will replace the class binding, which will break the

behavior of the button so that it no longer has normal button behavior.

Sometimes there need to be interactions between binding tags. For example, you

might wish to keep most of the default button behavior for .b but replace the default

behavior for <ButtonRelease> with some other behavior. To allow bindings to be

overridden, Tk 4.0 allows the break command to be invoked from inside a binding. This

causes all remaining binding tags for that binding to be skipped. Consider the following

binding:

bind .b <ButtonRelease-1> {myRelease .b; break}

This will cause the myRelease procedure to be invoked, then the break command will

cause the class binding for the event to be skipped (assuming that the widget name appears

before its class in the binding tags for .b), along with any bindings for other tags.

Note: You cannot invoke break from within the myRelease procedure in the above example:
this will generate a Tcl error. However, you can invoke the command “return -code
break” in the procedure to achieve the same effect as the break in the binding script.

1.3 Implicit Any

In Tk 3.6 extraneous modifiers prevent a binding from matching an event. For example, if

a binding is defined for <Button-1> and the mouse button is pressed with the Num-

Lock key down, then the binding will not match. If you want a binding to trigger even

when extraneous modifiers are present, you must specify the Any modifier, as in <Any-

Button-1>.

1 Bindings 5

In Tk 4.0, all bindings have the Any modifier present implicitly. The Any modifier is

still allowed for compatibility, but it has no meaning. Thus a binding for <Button-1>

will match a button press event even if NumLock, Shift, Control, or any combina-

tion of them. If you wish for a binding not to trigger when a modifier is present, you can

just define an empty binding for that modifier combination. For example,

bind .b <Control-ButtonPress-1> {# this script is a no-op}

creates a binding that will trigger on mouse button presses when the Control key is

down. If there is also a <ButtonPress-1> binding for .b, it will no longer be invoked

if the Control key is down, due to the conflict resolution rules. The script for the above

binding is just a Tcl comment, so it has no effect when it is invoked. Alternatively, you

could use %s in the binding script to extract the modifier state, then test to see that only

desired modifiers are present.

1.4 Porting problems: widget bindings vs. class bindings

You are likely to encounter two problems with bindings when you port Tk 3.6 scripts to Tk

4.0: widget bindings vs. class bindings, and events on top-level windows. This section dis-

cusses the first problem and the following section discusses the second problem.

In Tk 3.6, if a widget-specific binding matches an event then no class binding will

trigger for the event; in Tk 4.0 both bindings will trigger. Because of this change, you will

need to modify most of your widget-specific bindings in one of two ways. If a widget-spe-

cific binding in Tk 3.6 was intended to supplement the class binding, this could only be

done by duplicating the code of the class binding in the widget binding script. This dupli-

cated code is no longer necessary in Tk 4.0 and will probably interfere with the new class

bindings in Tk 4.0; you should remove the duplicated class code, leaving only the widget-

specific code in the binding script. If a widget-specific binding in Tk 3.6 was intended to

override the class binding, this will no longer occur by default in Tk 4.0; you should add a

break command at the end of the binding script to prevent the class binding from trigger-

ing. If a widget binding in Tk 3.6 didn’t conflict with a class binding, then you will not

need to modify it for Tk 4.0. For example, a widget binding for <Help> in a text widget

would not need to be modified, since it doesn’t conflict with a class binding.

1.5 Porting problems: events on top-levels

The second binding problem you are likely to encounter in porting Tk 3.6 scripts to Tk 4.0

is that in Tk 4.0 a binding on a toplevel will match events on any of the internal windows

within that top-level. For example, suppose you have a binding created as follows:

toplevel .t

button .t.b1 ...

button .t.b2 ...

bind .t <Enter> action

6 Tk4.0 Overview and Porting Guide

This binding will trigger not only when the mouse enters .t, but also when it enters either

.t.b1 or .t.b2. This is because the binding tags for a window include its nearest

ancestor toplevel by default. The toplevel is present in the binding tags to make it easy to

set up accelerator keys that apply in all the windows of a panel. For example,

bind .t <Control-a> {controlAProc %W}

will cause controlAProc to be invoked whenever Control-a is typed in any of the

windows in .t. The procedure will receive the name of the focus window as its argument.

Unfortunately, if you have created bindings on toplevel windows in your Tk 3.6

scripts, they probably expect to trigger only for events in the toplevel, so the bindings will

misbehave under Tk 4.0. Fortunately you can reproduce the behavior of Tk 3.6 by using

the %W substitution in the binding script. For example, to ensure that action is invoked

only for Enter events in a toplevel window itself, create the following binding in place

of the one above:

bind .t <Enter> {

if {"%W" == ".t"} {

action

}

}

When an Enter event occurs in a descendant of .t such as .t.x, a binding for Enter

in .t.x will trigger first, if there is one. Then the above binding will trigger. Since %W

will be substituted with .t.x, the if condition will not be satisfied and the binding will

not do anything.

 An alternative solution is to remove the toplevel window from the binding tags of all

its internal windows. However, this means that you won’t be able to take advantage of the

tag to create key bindings that apply everywhere within the toplevel.

1.6 Internal bindings in canvases and texts

The same changes in conflict resolution described in Section 1.2 also apply to bindings

created internally for the items of a canvas or the tags of a text widget. If a canvas item or

character of text has multiple tags, then one binding can trigger for each tag on each event.

The bindings trigger in the priority order of the tags. Similar porting problems are likely to

occur as described in Section 1.4; if a binding for one tag needs to override that of another

tag, you’ll need to add a break command under Tk 4.0; if a binding for one tag dupli-

cated the code from another tag’s binding, so that they will compose in Tk 3.6, you’ll have

to remove the duplicated code in Tk 4.0.

2 Focus management 7

2 Focus management

The input focus is another area where Tk 4.0 contains major changes. Fortunately, the

focus changes should not require as many modifications to your Tk 3.6 scripts as the bind-

ing changes.

2.1 One focus window per toplevel

Tk 3.6 only keeps track of a single focus window for each application, and this results in

two problems. First, it doesn’t allow an application to use multiple displays since this

could result in multiple simultaneous focus windows, one on each display. Second, the Tk

3.6 model doesn’t work very well for applications that have multiple toplevels: when the

mouse moves from one toplevel to another, the focus window should switch to whatever

window had the focus the last time the mouse was in the new toplevel, but Tk 3.6 does not

remember this information.

Tk 4.0 corrects both of these problems. It remembers one focus window for each

toplevel, which can be queried with the focus -lastfor command. When the win-

dow manager gives the focus to a toplevel window (because the mouse entered the win-

dow or because you clicked on the window, depending on the focus model being used by

the window manager), Tk passes the focus on to the remembered window. Several win-

dows in an application can have the focus at the same time, one on each display the appli-

cation is using. When asking for the current focus window in the focus command, you

can use the -displayof switch to specify a particular display.

When you set the focus to a window with the focus command, Tk remembers that

window as the most recent focus window for its toplevel. In addition, if the application

currently has the focus for the window’s display, Tk moves the focus to the specified win-

dow; this can be used, for example to move the focus to a dialog when the dialog is posted,

or to perform keyboard traversal among the toplevels of an application. If the application

doesn’t currently have the focus for the display, then Tk will not normally take the focus

from its current owner. However, you can specify the -force argument to focus to

insist that Tk grab the focus for this application (in general this is probably not a good

idea, since it may clash with the window manager’s focus policy).

2.2 Keyboard traversal

Tk 4.0 has a much more complete implementation of keyboard traversal than Tk 3.6. In Tk

3.6 there is built-in support only for keyboard traversal of menus. In Tk 4.0 keyboard tra-

versal is implemented for all widgets. You can type Tab to move the focus among the

windows within a toplevel and Shift+Tab to move in the reverse direction. The order of

traversal is defined by the stacking order of widgets, with the lowest widget first in the tra-

versal order. All Tk widgets now provide a -takefocus option, which determines

8 Tk4.0 Overview and Porting Guide

whether the window should accept the focus during traversal or be skipped. This option

has several features; see the options.n manual entry for details.

All of the Tk widgets provide a traversal highlight ring as required by Motif. The

highlight ring turns dark when the widget has the input focus. Its size and colors are con-

trolled by the -highlightthickness, -highlightbackground, and

-highlightcolor options. You may notice that widgets appear to have extra space

around them in Tk 4.0; this is due to the traversal highlight ring, which is normally the

same color as the background for widgets.

2.3 Support for focus-follows-mouse

Both Tk 3.6 and Tk 4.0 use an explicit focus model within a toplevel. This means that

moving the mouse among the windows of a toplevel does not normally move the focus;

you have to click or perform some other action (such as pressing Tab) to move the focus.

Tk 3.6 has no support for an implicit focus model where the window under the mouse

always has the focus. In Tk 4.0 you can invoke the library procedure tk_focusFol-

lowsMouse to switch to an implicit focus model; in this mode whenever the mouse

enters a new window the focus will switch to that window.

2.4 No default focus window, no “none” focus.

Tk 3.6 has the notion of a default focus window, which receives the focus if the focus win-

dow is deleted. It is also possible for an application to abandon the input focus by setting

the focus to none. In Tk 4.0 both of these features have been eliminated. There is no

default focus window, and the focus can never be explicitly abandoned. If the focus win-

dow is destroyed, Tk resets the input focus to the toplevel containing the old focus win-

dow. If the toplevel is destroyed, the window manager will reclaim the focus and move it

elsewhere.

If you really want to abandon the focus in Tk 4.0 so that keyboard events are ignored,

you can create a dummy window with no key bindings (set its binding tags to an empty

string to be sure), make sure that is never mapped, and give it the input focus.

2.5 Better focus events

Tk 3.6 has a quirky event model for FocusIn and FocusOut events: when the window

manager gives the focus to a toplevel, Tk generates a FocusIn event for the toplevel and

another FocusIn event for the focus window, but no events for any other windows.

When the window manager moves the focus somewhere else, FocusOut events are gen-

erated for these same two windows. In Tk 4.0, FocusIn and FocusOut events are gen-

erated in the same way as Enter and Leave events: when the focus arrives, a FocusIn

event is generated for each window from the toplevel down to the focus window, with dif-

3 Text widgets 9

ferent detail fields for different windows (see Xlib documentation for information on these

values). The reverse happens when the focus leaves a window.

2.6 Porting issues

If you didn’t have any special focus-related code in Tk 3.6, then you shouldn’t need to

make any changes for 4.0; things will just work better. If you wrote code in Tk 3.6 to get

around the weaknesses with its focus mechanism, then you should remove most or all of

that code. For example, if you implemented keyboard traversal yourself, or if you built

your own mechanism to remember a separate focus window for each toplevel and give it

the input focus whenever the toplevel gets the focus, you can simply remove this code,

since Tk 4.0 performs these functions for you. If you wrote code that depends on the weird

event model in Tk 3.6, that code will need to be rewritten for Tk 4.0. The Tk 4.0 model is

general enough to duplicate any effects that were possible in Tk 3.6.

3 Text widgets

Text widgets have undergone a major overhaul for Tk 4.0 and they have improved in

many ways. The changes to text widgets are almost entirely upward-compatible from Tk

3.6.

3.1 Embedded windows.

Tk 3.6 supported two kinds of annotations in texts: marks and tags. In Tk 4.0 a third kind

of annotation is available: an embedded window. This allows you to embed other widgets

inside a text widget, mixed in with the text. The text widget acts as a geometry manager

for these windows, laying them out and wrapping them just as if each embedded window

were a single character in the text. You can even have texts with nothing in them but

embedded windows. The window widget command for text widgets provides several

options to manage embedded windows.

3.2 More options for tags.

In Tk 4.0 tags support many new options providing additional control over how informa-

tion is displayed. Here is a summary of the new options:

• You can now specify tab stops with the -tabs option. Each tab stop can use left, cen-

ter, right, or numeric justification. Tab stops can also be specified for the widget as a

whole.

• You can specify justification (left, center or right) with the -justify option.

10 Tk4.0 Overview and Porting Guide

• You can now specify line spacing with three options, -spacing1, -spacing2, and

-spacing3, which control the spacing above a line, between wrapped lines, and

below a line.

• You can now specify margins with the -lmargin1, -lmargin2, and -rmargin

options.

• You can now adjust the vertical position of text (e.g. for superscripts or subscripts) with

the -offset option.

• You can now specify the wrapping style (word wrapping, character wrapping, or none)

with the -wrap option.

• You can now request overstriking with the -overstrike option.

3.3 Bindings

The default bindings for text widgets have been completely rewritten in Tk 4.0. They now

support almost all of the Motif behavior (everything except add mode and secondary

selections). They also include a substantial subset of the Emacs bindings for cursor motion

and basic editing. The tk_strictMotif variable disables the Emacs bindings.

3.4 Miscellaneous new features

In addition to the major changes described above, text widgets also include the following

new features:

Horizontal scrolling. Text widgets can now be scrolled horizontally as well as verti-

cally, using the -xscrollcommand option and the xview widget command.

Searching. Text widgets have a new search widget command, which provides effi-

cient searching of text widgets using either exact matching, glob-style matching, or reg-

ular expressions. You can search forwards or backwards.

Mark gravity. In Tk 3.6 marks always had “right gravity”, which means they stick to

the character on the right side of the mark; if you insert at the position of a mark, the

new character goes before the mark. In Tk 4.0 you can specify whether marks have left

or right gravity.

Screen information. In Tk 4.0 there are two new widget commands for text widgets

that return information about the screen layout. The dlineinfo widget command

returns the bounding box of a display line (all the information displayed on one line of

the window, which may be either a whole line of text or a partial line if wrapping has

occurred). The bbox widget command returns the screen area occupied by a single

character.

Extended insert command. The insert widget command now supports an addi-

tional argument giving a list of tags to apply to the new characters. You can also include

several text and tag arguments in a single insert command.

4 Better Motif compliance 11

See command. There is a new see widget command, which adjusts the view in the

widget if needed to ensure that a particular character is visible in the window.

3.5 Porting issues: tag stickiness, change in end

There are two changes in text widgets that may require modifications to Tk 3.6 scripts.

The first change has to do with tag stickiness. In Tk 3.6, tags are sticky to the right: if you

insert new text just after a tagged range, the new text acquires the tags of the preceding

character. If you insert text before a tagged range in Tk 3.6, the new characters do not

acquire the tags of the range. In Tk 4.0, tags are not sticky on either side: new text acquires

a tag from surrounding characters only if the tag is present on both sides of the insertion

position. The sticky behavior in Tk 3.6 was rarely useful and special code was often

needed to work around it. You should be able to eliminate this code in Tk 4.0.

The second incompatible change in text widgets is that the index end now refers to

the position just after the final newline in the text, whereas in Tk 3.6 it referred to the posi-

tion just before the final newline. This makes it possible to apply tags to the final newline,

which was not possible in Tk 3.6, but you may need to modify your scripts if you depend

on the old position of end.

4 Better Motif compliance

All of the widgets have been modified in Tk 4.0 to improve their Motif compliance. This

was done by adding features that were missing and reworking the bindings to comply with

Motif conventions. I believe that the widgets are now completely Motif compliant except

for the following missing features:

• There is no support for secondary selections.

• There is no support for “add mode” in widgets such as texts and listboxes.

• There is no support for drag and drop.

Please let me know if you find any other discrepancies between the Tk widgets and Motif

widgets. We plan to eliminate the remaining incompatibilities over the next year or two.

5 Widget changes

All of the Tk 4.0 widgets have been improved over their 3.6 counterparts, mostly in small

and backwards compatible ways. Here is a summary of the widget improvements; see Sec-

tion 13 for information about incompatible changes.

• All widgets now have a cget command, which provides an easier way to retrieve the

value of a configuration option. In other situations where configuration options are

used, such as for menu entries or text tags, a cget command is also available.

12 Tk4.0 Overview and Porting Guide

• All widgets now have -highlightthickness, -highlightbackground, and

-highlightcolor options for displaying a highlight ring when the widget (or one

of its descendants) has the input focus.

• Entry widgets now support justification and provide a -show option for (not) display-

ing passwords. They will autosize to fit their text if -width 0 is specified.

• The label/button family of widgets now supports multiline text and justification, includ-

ing new options -wraplength and -justify. These features make the message

widget obsolete. There is also a new -underline option for highlighting a character

for keyboard traversal.

• Listboxes now support all of the Motif selection modes, including single selection, mul-

tiple selection, and multiple disjoint selections, via the -selectmode option. They

will autosize to fit their contents if -width 0 or -height 0 is specified. There are

new see, bbox, and activate widget commands.

• Canvas polygons now support -outline and -width options for drawing outlines.

• Scale widgets now support real values as well as integers (see the -resolution and

-digits options), and they have a -variable option to link to a Tcl variable. They

have two new widget commands, coords and identify, and their bindings are now

defined in Tcl rather than being hardwired in C code as in Tk 3.6.

• Scrollbar widgets now have a new interface to the controlling widget, which provides

more flexibility than the old style (but the old style is still supported for compatibility).

There is a new option -jump to prevent continuous updates while dragging the slider,

and a new option -elementborderwidth to control the border width of the arrows

and slider separately from the widget’s outer border. There are four new widget com-

mands, activate, delta, fraction, and identify, and the default bindings

are now defined in Tcl rather than being hardwired in C code as in Tk 3.6.

• Menu entries now have several new configuration options such as -foreground and

-indicatoron, and tear-off menus have been reimplemented to be more Motif-like.

New menu entries can be created in the middle of a menu using the insert widget

command, and there is a type widget command that returns the type of a menu entry.

• Menubuttons now have a -indicatoron option for displaying an option menu indi-

cator. There is now support for option menus via the tk_optionMenu procedure, and

popups are simplified with the tk_popup procedure.

• The variable tk_strictMotif is used in more places to enforce even stricter Motif

compliance.

6 Images 13

6 Images

Tk 4.0 contains a general-purpose image mechanism for displaying color pictures and

other complex objects. There is a new command, image, which may be used to create

image objects. For example, the command

image create photo myFace -file picture.ppm

creates a new image named myFace. The image is of type photo (a full-color represen-

tation that dithers on monochrome or color-mapped displays) and the source data for the

image is in the file named picture.ppm. Once an image has been created, it can be

used in many different places by specifying a -image option. For example, the command

label .l -image myFace

will create a label widget that displays the image, and if .c is a canvas widget the com-

mand

.c create image 400 200 -image myFace

will create an image item in the canvas that displays myFace.

The image mechanism provides a great deal of flexibility:

• Once an image has been defined, it can be used in many different places, even on differ-

ent displays.

• Images provide image commands, analogous to widget commands, that can be used to

manipulate the image; any changes in an image are automatically reflected in all of its

instances.

• There can be many different types of images. Tk 4.0 has two built-in types, photo and

bitmap. Other image types can be defined in C as extensions (see the documentation

for the Tk_CreateImageType library procedure). The photo image type was imple-

mented by Paul Mackerras, based on his earlier photo widget.

• Within the photo image type, there can be many different file formats. In Tk 4.0, only

PPM, PGM, and GIF formats are built-in, but other formats can be added as extensions

(see the documentation for the Tk_CreatePhotoImageFormat library proce-

dure). Readers for XPM, TIFF, and others are available from the Tcl community.

7 Color management

Tk 3.6 suffers from a relatively weak mechanism for managing colors. It uses only the

default colormap for a screen, and if all the entries in that colormap fill up then Tk

switches to monochrome mode and “rounds” all future colors to black or white. This

approach is becoming increasingly unpleasant because of applications such as Frame and

Web browsers that use up all the entries in the default colormap.

Tk 4.0 has a much more powerful color management mechanism. If a colormap fills

up, Tk allocates future colors by picking the closest match from the available colors, so

14 Tk4.0 Overview and Porting Guide

that it need not revert to monochrome mode. Tk also manages colors better by delaying

color allocation until colors are actually needed; in many cases, such as 3D borders, colors

are never needed. When colors are scarce Tk changes the way it displays beveled borders

so that it uses stippling instead of additional colors for the light and dark shadows. You can

find out whether a colormap has filled up using the new command winfo colormap-

full.

Tk 4.0 also allows you to allocate new colormaps for toplevel and frame widgets with

the -colormap option, and you change the visual type in these widgets (with the

-visual option) to take advantage of visuals other than the default visual for a screen.

New commands winfo visualsavailable and wm colormapwindows have

been added to help manage colormaps and visuals.

The default color scheme in Tk 4.0 has changed from a tan palette (“bisque”) to a

gray palette, which seems to becoming standard for Motif. There is a new Tcl procedure

tk_setPalette that changes the palette of an application on the fly, and there is also a

procedure tk_bisque to restore the palette to the old bisque colors.

The Tk 3.6 color model mechanism is no longer necessary so it has been removed in

Tk 4.0. If you want to find out whether a screen is monochrome or color, you cannot use

the tk colormodel command anymore; use winfo depth instead.

8 Event handling: fileevent and after

Tk 4.0 contains several improvements in the area of event handling besides those already

mentioned for bindings:

• There is a new command fileevent for performing event-driven I/O to and from

files. The fileevent command is modelled very closely after Mark Diekhans’ add-

input extension, which has been used widely with Tk 3.6.

• The after command has two new options, idle and cancel. After idle can be

used to schedule a script as an “idle handler”, which means it runs the next time that Tk

enters the event loop and finds no work to do. After cancel may be used to delete

a previously-scheduled after script, so that it will no longer be invoked.

9 Multiple displays

Although Tk has always allowed a single application to open windows on several dis-

plays, the support for multiple displays is weak in Tk 3.6. For example, many of the bind-

ings break if users work simultaneously in windows on different displays, and

mechanisms like the selection and the input focus have insufficient support for multiple

displays.

10 The send command 15

Tk 4.0 contains numerous modifications to improve the handling of multiple displays.

Several commands, such as selection, send, and focus, have a new -displayof

argument so that you can select a particular display. In addition, the bindings have been

reworked to handle interactions occurring simultaneously on different displays. With Tk

4.0 it should be possible to create applications that really use multiple displays gracefully.

10 The send command

The send command has been completely overhauled for Tk 4.0 to eliminate several prob-

lems in Tk 3.6 and add a number of new features:

• Tk 3.6 aborts a send command if no response is received within 5 seconds; this made

it very difficult to invoke long-running commands. Tk 4.0 eliminates the timeout and

uses a different mechanism to tell if the target application has crashed.

• The winfo interps command no longer returns the names of applications that have

exited or crashed.

• Asynchronous sends are possible using the -async switch.

• Commands can be sent to displays other than that of the root window, using the

-displayof switch.

• Window server security is now checked on each send, so Tk 4.0 deals better with

changes in the security of the server.

• More complete error information (including the errorCode and errorInfo vari-

ables) is propagated back to the sender after errors.

• You can query and change the name of an application with the tk appname com-

mand.

Unfortunately the improvements to the Tk 4.0 send mechanism required substantial

changes to the transport protocol for sends; this makes it impossible for Tk 4.0 applica-

tions to communicate with Tk 3.6 applications via send. The new transport protocol is

more flexible than the old protocol, so it should be possible to make protocol improve-

ments in an upward-compatible way.

11 The selection and clipboard

In Tk 3.6 the selection mechanism can deal only with the display of the root window and

with the primary selection; there is no support for multiple displays, secondary selections,

or the clipboard. Tk 4.0 eliminates all of these shortcomings. The -displayof option

can be used to specify a particular display in the selection command, and there is now full

access to all of the X selection types. Tk 4.0 also includes a new clipboard command

for manipulating the clipboard.

16 Tk4.0 Overview and Porting Guide

12 Miscellaneous changes

Here is a quick summary of the remaining changes in Tk 4.0:

• The wish application has been modified so that the -file switch is no longer needed

or recommended. This makes wish just like tclsh, where you specify the script file

as the first argument to the program, e.g. wish foo.tcl. The -file switch is still

permitted for backward compatibility, but its use is deprecated.

• Wish now sets the application’s class from the application name (what appears in the

title bar of the window by default), rather than always using Tk as the class as in Tk 3.6.

This makes application-specific options easier to use.

• Toplevel windows are now resizable by default, whereas in Tk 3.6 they were not. You

can use the wm resizable command to make windows non-reiszable.

• Tk 4.0 patches around an Xlib bug whereby long-running applications tended to reach

the end of the space of X resource ids, wrap around to 0 again, and then crash. Tk now

reuses resource identifiers so that wrap-around should never occur.

• There is a new winfo manager command that tells which geometry manager is con-

trolling a particular widget.

• There is a new bell command that does what its name suggests.

• There are new winfo pointerx, winfo pointery, and winfo pointerxy

commands that can be used to query the position of the mouse pointer.

13 Summary of Incompatibilites

This section lists all of the incompatible changes in Tk 4.0 that may require changes in Tcl

scripts written for Tcl 3.6. Each incompatibility is described in terms of the problem it pro-

duces when you run your Tk 3.6 script under Tk 4.0 and a possible work-around. Only

Tcl-level incompatibilities are covered here. For incompatible changes at the C level, see

the README and changes files in the distribution. The problems and solutions are

roughly in order of importance, with the most important problems first.

Problem #1: When you change the background color of a widget, a small ring in the

default background color remains around the edge of the widget.

Solution: This is the focus traversal highlight, whose color is specified separately

from -background; use the -highlightbackground option to change the

color of the highlight. Or, you can set -highlightthickness to 0 to eliminate

the traversal highlight altogether.

Problem #2: Bindings defined for a widget no longer replace the corresponding class

bindings, so unwanted class bindings get invoked in addition to the widget bindings.

13 Summary of Incompatibilites 17

Solution: Add a break command at the end of the widget binding, or rework the

widget binding so that it’s OK for the class binding to execute.

Problem #3: Bindings on toplevel windows are invoked when events occur for internal

windows inside the toplevels.

Solution: Use the %W substitution to extract the name of the window where the event

actually occurred, and only execute the rest of the binding script if this matches the

name of the toplevel.

Problem #4: The -command option for a cascade menu entry is no longer invoked when

the submenu is posted.

Solution: Use the -postcommand option for the submenu instead.

Problem #5: The -geometry option is no longer supported by listboxes, frames, and

toplevels.

Solution: Use the -width and -height options instead.

Problem #6: The procedure tk_listboxSingleSelect no longer exists.

Solution: Use the -selectmode option on the listbox instead.

Problem #7: Canvases no longer have a -scrollincrement option.

Solution: Use the new -xscrollincrement and -yscrollincrement

options instead.

Problem #8: The tk colormodel command no longer exists.

Solution: To find out whether a window is monochrome or color, use winfo depth

to extract the window’s depth; a depth of 1 means monochrome.

Problem #9: The class of Tk applications is no longer Tk, so options specified for the Tk

class in your .Xdefaults file are no longer used.

Solution: Modify your .Xdefaults file (and any Tcl code that sets options) to

specify the name of the application (with the first letter capitalized) as the class

instead of Tk.

Problem #10: When text is added to a text widget just after a tagged area, the new text no

longer receives the tag.

Solution: Explicitly tag the new text with the desired tags. If you want the tags on the

new text to be the same as those at some other point in the text, you can use the tag

names widget command to query existing tags.

Problem #11: Widgets appear larger than they did in Tk 3.6.

Solution: There are two issues here. The first is that all widgets now have a focus tra-

versal highlight ring that turns dark when the widget has the focus; this is required for

Motif compliance but you can eliminate it by specifying a 0 value for the -high-

lightthickness option. The second issue is that the default padding for buttons

and menubuttons has been increased to match the sizes of Motif widgets. If you don’t

mind being different from Motif, you can set the -padx and -pady options back to

18 Tk4.0 Overview and Porting Guide

their Tk 3.6 values (use the configure widget command in Tk 3.6 to see what the

old values were).

Problem #12: Listboxes now return the selection as a string with newlines separating the

values, rather than a Tcl, list.

Solution: Modify your code to handle the new format. You can convert the selection

back into the old list format with a script like the following:

split [selection get] \n

Problem #13: Tk 4.0 applications cannot send to or be sent from Tk 3.6 applications.

Solution: The only solution is to upgrade all your applications to Tk 4.0.

Problem #14: In texts, end now refers to a position just after the final newline, instead of

the final newline.

Solution: If you wish to refer to the final newline, use the index end-1char instead

of end.

Problem #15: In entry widgets, sel.last now refers to the character just after the last

selected one, rather than the last selected one. The second index for the delete widget

command has changed in the same way.

Solution: Add one to the values used in your scripts.

Problem #16: Because Any is implicit in all bindings, bindings trigger when extra modi-

fiers are present, whereas they didn’t trigger in Tk 3.6.

Solution: In most cases it’s probably fine to ignore the extra modifiers. If you really

don’t want any actions to be taken when extra modifiers are present, create additional

bindings for the cases with extra modifiers, and specify a single blank character (or

any script that does nothing) as the script for those bindings. Alternatively, you can

use the %s substitution to extract the mouse and modifier state in the event binding,

then you can test this value for modifiers you do or don’t want.

Problem #17: In scrollbars there is no longer a -foreground or -activefore-

ground option, and -background has a different meaning.

Solution: Use -troughcolor everywhere that you used -background in Tk 3.6,

-background everywhere you used to use -foreground, and -activeback-

ground everywhere you used to use -activeforeground.

Problem #18: Options for colors seem to have changed in scale widgets.

Solution: Use -background where you used to use -sliderforeground,

-troughcolor where you used to use -background, and -activeback-

ground everywhere you used to use -activeforeground.

Problem #19: Scale widgets no longer accept hexadecimal or octal numbers in the set

command or the -from and -to options.

Solution: Use format or expr to convert the values to decimal.

Problem #20: In checkbuttons, radiobuttons, and menu entries, the -selector option

no longer exists.

13 Summary of Incompatibilites 19

Solution: Use -selectcolor instead of -select. To specify that no indicator

should be drawn at all, use the -indicatoron option instead of setting -select

to an empty string.

Problem #21: The indices of menu entries have changed, and operations on menu entry 0

no longer work.

Solution: This is because menus now have a tearoff entry at the top by default, and

this occupies entry 0, so your first entry is now entry 1. You can either set the

-tearoff option to 0 to eliminate the tearoff entry or add 1 to all the indices you

use in your scripts.

Problem #22: The enable and disable widget commands are no longer supported by

menus.

Solution: Use the -state configuration option instead.

Problem #23: The activate and deactivate widget commands are no longer sup-

ported by buttons, checkbuttons, radiobuttons, and menus.

Solution: Use the -state configuration option instead.

Problem #24: Canvas arc items no longer use the -fill and -stipple options for

drawing when the -style option is arc.

Solution: Use the -outline and -outlinestipple options instead.

Problem #25: The variable tkVersion no longer exists (it has been obsolete for several

releases).

Solution: Use tk_version instead.

Problem #26: The syntax of the scan widget commands for texts has changed.

Solution: Modify your code to use the new syntax.

Problem #27: wish no longer recognizes the -help option.

Solution: Implement this option yourself in your wish scripts.

Problem #28: Tk 4.0 always prints real numbers such as canvas coordinates with a deci-

mal point. This can cause syntax errors if you later use them in situations where integers

are expected.

Solution: Change your code so that real numbers work OK, or use the expr com-

mand (with the round function) to convert the numbers to integers.

Problem #29: The pack info command returns different information, and pack

newinfo no longer exists.

Solution: Use pack info where you used to use pack newinfo. Pack info

was obsolete, so it has been eliminated.

Problem #30: The view widget command for entries no longer exists, nor does the

-scrollcommand option.

Solution: Use xview where you used to use view; use -xscrollcommand where

you used to use -scrollcommand.

20 Tk4.0 Overview and Porting Guide

Problem #31: The -padx and -pady options are ignored for the button family of wid-

gets if a bitmap or image is being displayed: the padding is always 0.

Solution: Pack the button inside a frame, with extra padding in the frame. Or, redo the

image or bitmap to incorporate padding into it.

Problem #32: In radiobuttons, the -value option no longer defaults to the name of the

widget; it defaults to an empty string.

Solution: Specify the widget’s name explicitly as the value of the option.

Problem #33: The -menu option for menubuttons and cascade menu entries may refer

only to a child of the menubutton or menu.

Solution: Rename menus to meet this requirement.

Problem #34: The interpretation of @y in menus has changed: it never returns none,

even if the y-coordinate is outside the menu (it returns the index of the closest entry).

Solution: If you care about this distinction, check the y-coordinate explicitly to see if

it is less than 0 or greater than or equal to the window’s height (use winfo height

to get the height).

Problem #35: The invoke and activate widget commands for menus no longer post

cascaded submenus.

Solution: Use the postcascade widget command to post submenus.

Problem #36: The selection targets APPLICATION and WINDOW_NAME are no longer

supported.

Solution: Use targets TK_APPLICATION and TK_WINDOW instead.

Problem #37: There is no longer a default focus.

Solution: None: modify your code not to depend on this feature.

Problem #38: The focus command now returns an empty string to indicate that the

application doesn’t have the input focus, instead of none.

Solution: Modify your code to check for an empty string instead of none.

Problem #39: FocusIn and FocusOut events are delivered to more windows than

they used to be.

Solution: Modify your code to use the new set of events. The old event set was some-

what bizarre, and the new set matches more closely what happens elsewhere, such as

with Enter and Leave events.

Problem #40: wm maxsize and wm minsize no longer accept empty arguments. This

means that you cannot use these commands to make windows non-resizable.

Solution: Use the wm resizable command to make windows resizable.

Problem #41: In the placer, if you specify both -x and -relx then they add, instead of

the most recent specification replacing the earlier one. Ditto for -y and -rely, -width

and -relwidth, and -height and -relheight.

Solution: If you no longer want one of these options to be used, set it to 0 explicitly.

Problem #42: The command “focus none” doesn’t work in Tk 4.0.

13 Summary of Incompatibilites 21

Solution: Create a dummy widget that is never mapped and set the focus to that wid-

get.

Problem #43: %D substitutions are no longer supported in bindings, nor are the event

types CirculateRequest, ConfigureRequest, MapRequest, and Resiz-

eRequest.

Solution: Use the name of the display instead of %D to identify a display; you can get

the display name with the winfo screen command. The desupported event types

never really worked anyway, so there should be no code that depends on them.

Problem #44: % binding substitutions that return window identifiers, such as %a and %S,

now produce hexadecimal results instead of decimal.

Solution: Use the format command to turn them back to decimal.

Problem #45: Enter, Leave, FocusIn, and FocusOut events with detail Notify-

Inferior are now ignored by the binding mechanism, so they’re not visible to Tcl

scripts.

Solution: In most cases, Tcl scripts work better if these bindings are ignored. You can

still use C code to access these events if you really need them. Or, create bindings on

the inferior windows and use NotifyAncestor bindings on the children instead of

NotifyInferior bindings on the parent.

22 Tk4.0 Overview and Porting Guide

