
User’s Guide

for the

GNU GPERF Utility

Douglas C. Schmidt

last updated 1 November 1989

for version 2.0

Copyright c© 1989 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU gperf Gen-
eral Public License” is included exactl y as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical to this
one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU gperf General Public License” ma y be included in a translation approved by the
author instead of in the original English.

1

GNU GENERAL PUBLIC LICENSE

Version 1, February 1989

Copyright c© 1989 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The license agreements of most software companies try to keep users at the mercy of those
companies. By contrast, our General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. The
General Public License applies to the Free Software Foundation’s software and to any other
program whose authors commit to using it. You can use it for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically, the
General Public License is designed to make sure that you have the freedom to give away or
sell copies of free software, that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

1. This License Agreement applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any work containing
the Program or a portion of it, either verbatim or with modifications. Each licensee is
addressed as “you”.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish

2 User’s Guide to gperf

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all
the notices that refer to this General Public License and to the absence of any warranty;
and give any other recipients of the Program a copy of this General Public License along
with the Program. You may charge a fee for the physical act of transferring a copy.

3. You may modify your copy or copies of the Program or any portion of it, and copy and
distribute such modifications under the terms of Paragraph 1 above, provided that you
also do the following:

• cause the modified files to carry prominent notices stating that you changed the
files and the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part
contains the Program or any part thereof, either with or without modifications, to
be licensed at no charge to all third parties under the terms of this General Public
License (except that you may choose to grant warranty protection to some or all
third parties, at your option).

• If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the simplest and
most usual way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this General Public License.

• You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

Mere aggregation of another independent work with the Program (or its derivative) on
a volume of a storage or distribution medium does not bring the other work under the
scope of these terms.

4. You may copy and distribute the Program (or a portion or derivative of it, under
Paragraph 2) in object code or executable form under the terms of Paragraphs 1 and
2 above provided that you also do one of the following:

• accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third
party free (except for a nominal charge for the cost of distribution) a complete
machine-readable copy of the corresponding source code, to be distributed under
the terms of Paragraphs 1 and 2 above; or,

• accompany it with the information you received as to where the corresponding
source code may be obtained. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
alone.)

Source code for a work means the preferred form of the work for making modifications
to it. For an executable file, complete source code means all the source code for all
modules it contains; but, as a special exception, it need not include source code for
modules which are standard libraries that accompany the operating system on which
the executable file runs, or for standard header files or definitions files that accompany
that operating system.

GNU GENERAL PUBLIC LICENSE 3

5. You may not copy, modify, sublicense, distribute or transfer the Program except as
expressly provided under this General Public License. Any attempt otherwise to copy,
modify, sublicense, distribute or transfer the Program is void, and will automatically
terminate your rights to use the Program under this License. However, parties who
have received copies, or rights to use copies, from you under this General Public License
will not have their licenses terminated so long as such parties remain in full compliance.

6. By copying, distributing or modifying the Program (or any work based on the Program)
you indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein.

8. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of the license which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of the license, you may choose any version ever published by the Free Software
Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM ISWITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

4 User’s Guide to gperf

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 5

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to humanity,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 1, or (at your option)

any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts
of the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

program `Gnomovision' (a program to direct compilers to make passes

at assemblers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

That’s all there is to it!

7

Contributors to GNU gperf Utility

• The GNU gperf perfect hash function generator utility was originally written in GNU
C++ by Douglas C. Schmidt. It is now also available in a highly-portable “old-style”
C version. The general idea for the perfect hash function generator was inspired by
Keith Bostic’s algorithm written in C, and distributed to net.sources around 1984.
The current program is a heavily modified, enhanced, and extended implementation of
Keith’s basic idea, created at the University of California, Irvine. Bugs, patches, and
suggestions should be reported to schmidt at ics.uci.edu.

• Special thanks is extended to Michael Tiemann and Doug Lea, for providing a useful
compiler, and for giving me a forum to exhibit my creation.

In addition, Adam de Boor and Nels Olson provided many tips and insights that greatly
helped improve the quality and functionality of gperf.

9

1 Introduction

gperf is a perfect hash function generator written in C++. It transforms an n element
user-specified keyword set W into a perfect hash function F. F uniquely maps keywords
in W onto the range 0..k, where k >= n. If k = n then F is a minimal perfect hash
function. gperf generates a 0..k element static lookup table and a pair of C functions.
These functions determine whether a given character string s occurs in W, using at most
one probe into the lookup table.

gperf currently generates the reserved keyword recognizer for lexical analyzers in several
production and research compilers and language processing tools, including GNU C, GNU
C++, GNU Pascal, GNU Modula 3, and GNU indent. Complete C++ source code for gperf
is available via anonymous ftp from ics.uci.edu. gperf also is distributed along with the
GNU libg++ library. A highly portable, functionally equivalent K&R C version of gperf
is archived in comp.sources.unix, volume 20. Finally, a paper describing gperf’s design
and implementation in greater detail is available in the Second USENIX C++ Conference
proceedings.

11

2 Static search structures and GNU gperf

A static search structure is an Abstract Data Type with certain fundamental operations,
e.g., initialize, insert, and retrieve. Conceptually, all insertions occur before any retrievals.
In practice, gperf generates a static array containing search set keywords and any as-
sociated attributes specified by the user. Thus, there is essentially no execution-time cost
for the insertions. It is a useful data structure for representing static search sets. Static
search sets occur frequently in software system applications. Typical static search sets in-
clude compiler reserved words, assembler instruction opcodes, and built-in shell interpreter
commands. Search set members, called keywords, are inserted into the structure only once,
usually during program initialization, and are not generally modified at run-time.

Numerous static search structure implementations exist, e.g., arrays, linked lists, binary
search trees, digital search tries, and hash tables. Different approaches offer trade-offs
between space utilization and search time efficiency. For example, an n element sorted
array is space efficient, though the average-case time complexity for retrieval operations
using binary search is proportional to log n. Conversely, hash table implementations often
locate a table entry in constant time, but typically impose additional memory overhead and
exhibit poor worst case performance.

Minimal perfect hash functions provide an optimal solution for a particular class of static
search sets. A minimal perfect hash function is defined by two properties:

• It allows keyword recognition in a static search set using at most one probe into the
hash table. This represents the “perfect” property.

• The actual memory allocated to store the keywords is precisely large enough for the
keyword set, and no larger. This is the “minimal” property.

For most applications it is far easier to generate perfect hash functions than minimal
perfect hash functions. Moreover, non-minimal perfect hash functions frequently execute
faster than minimal ones in practice. This phenomena occurs since searching a sparse
keyword table increases the probability of locating a “null” entry, thereby reducing string
comparisons. gperf’s default behavior generates near-minimal perfect hash functions for
keyword sets. However, gperf provides many options that permit user control over the
degree of minimality and perfection.

Static search sets often exhibit relative stability over time. For example, Ada’s 63 re-
served words have remained constant for nearly a decade. It is therefore frequently worth-
while to expend concerted effort building an optimal search structure once, if it subsequently
receives heavy use multiple times. gperf removes the drudgery associated with constructing
time- and space-efficient search structures by hand. It has proven a useful and practical
tool for serious programming projects. Output from gperf is currently used in several
production and research compilers, including GNU C, GNU C++, GNU Pascal, and GNU
Modula 3. The latter two compilers are not yet part of the official GNU distribution. Each
compiler utilizes gperf to automatically generate static search structures that efficiently
identify their respective reserved keywords.

13

3 High-Level Description of GNU gperf

The perfect hash function generator gperf reads a set of “keywords” from a keyfile (or
from the standard input by default). It attempts to derive a perfect hashing function that
recognizes a member of the static keyword set with at most a single probe into the lookup
table. If gperf succeeds in generating such a function it produces a pair of C source code
routines that perform hashing and table lookup recognition. All generated C code is directed
to the standard output. Command-line options described below allow you to modify the
input and output format to gperf.

By default, gperf attempts to produce time-efficient code, with less emphasis on efficient
space utilization. However, several options exist that permit trading-off execution time for
storage space and vice versa. In particular, expanding the generated table size produces a
sparse search structure, generally yielding faster searches. Conversely, you can direct gperf
to utilize a C switch statement scheme that minimizes data space storage size. Furthermore,
using a C switch may actually speed up the keyword retrieval time somewhat. Actual
results depend on your C compiler, of course.

In general, gperf assigns values to the characters it is using for hashing until some set
of values gives each keyword a unique value. A helpful heuristic is that the larger the
hash value range, the easier it is for gperf to find and generate a perfect hash function.
Experimentation is the key to getting the most from gperf.

3.1 Input Format to gperf

You can control the input keyfile format by varying certain command-line arguments, in
particular the ‘-t’ option. The input’s appearance is similar to GNU utilities flex and
bison (or UNIX utilities lex and yacc). Here’s an outline of the general format:

declarations

%%

keywords

%%

functions

Unlike flex or bison, all sections of gperf’s input are optional. The following sections
describe the input format for each section.

3.1.1 struct Declarations and C Code Inclusion

The keyword input file optionally contains a section for including arbitrary C declarations
and definitions, as well as provisions for providing a user-supplied struct. If the ‘-t’ option
is enabled, you must provide a C struct as the last component in the declaration section
from the keyfile file. The first field in this struct must be a char * identifier called “name,”
although it is possible to modify this field’s name with the ‘-K’ option described below.

Here is simple example, using months of the year and their attributes as input:

14 User’s Guide to gperf

struct months { char *name; int number; int days; int leap_days; };

%%

january, 1, 31, 31

february, 2, 28, 29

march, 3, 31, 31

april, 4, 30, 30

may, 5, 31, 31

june, 6, 30, 30

july, 7, 31, 31

august, 8, 31, 31

september, 9, 30, 30

october, 10, 31, 31

november, 11, 30, 30

december, 12, 31, 31

Separating the struct declaration from the list of key words and other fields are a pair
of consecutive percent signs, %%, appearing left justified in the first column, as in the UNIX
utility lex.

Using a syntax similar to GNU utilities flex and bison, it is possible to directly include
C source text and comments verbatim into the generated output file. This is accomplished
by enclosing the region inside left-justified surrounding %{, %} pairs. Here is an input
fragment based on the previous example that illustrates this feature:

%{

#include <assert.h>

/* This section of code is inserted directly into the output. */

int return_month_days (struct months *months, int is_leap_year);

%}

struct months { char *name; int number; int days; int leap_days; };

%%

january, 1, 31, 31

february, 2, 28, 29

march, 3, 31, 31

...

It is possible to omit the declaration section entirely. In this case the keyfile begins
directly with the first keyword line, e.g.:

january, 1, 31, 31

february, 2, 28, 29

march, 3, 31, 31

april, 4, 30, 30

...

3.1.2 Format for Keyword Entries

The second keyfile format section contains lines of keywords and any associated attributes
you might supply. A line beginning with ‘#’ in the first column is considered a comment.
Everything following the ‘#’ is ignored, up to and including the following newline.

The first field of each non-comment line is always the key itself. It should be given as
a simple name, i.e., without surrounding string quotation marks, and be left-justified flush

Chapter 3: High-Level Description of GNU gperf 15

against the first column. In this context, a “field” is considered to extend up to, but not
include, the first blank, comma, or newline. Here is a simple example taken from a partial
list of C reserved words:

These are a few C reserved words, see the c.gperf file

for a complete list of ANSI C reserved words.

unsigned

sizeof

switch

signed

if

default

for

while

return

Note that unlike flex or bison the first %% marker may be elided if the declaration
section is empty.

Additional fields may optionally follow the leading keyword. Fields should be separated
by commas, and terminate at the end of line. What these fields mean is entirely up to you;
they are used to initialize the elements of the user-defined struct provided by you in the
declaration section. If the ‘-t’ option is not enabled these fields are simply ignored. All
previous examples except the last one contain keyword attributes.

3.1.3 Including Additional C Functions

The optional third section also corresponds closely with conventions found in flex and
bison. All text in this section, starting at the final %% and extending to the end of the input
file, is included verbatim into the generated output file. Naturally, it is your responsibility
to ensure that the code contained in this section is valid C.

3.2 Output Format for Generated C Code with gperf

Several options control how the generated C code appears on the standard output. Two
C function are generated. They are called hash and in_word_set, although you may
modify the name for in_word_set with a command-line option. Both functions require two
arguments, a string, char * str, and a length parameter, int len. Their default function
prototypes are as follows:

static int hash (char *str, int len);

int in_word_set (char *str, int len);

By default, the generated hash function returns an integer value created by adding len
to several user-specified str key positions indexed into an associated values table stored in a
local static array. The associated values table is constructed internally by gperf and later
output as a static local C array called hash table; its meaning and properties are described
below. See Chapter 7 [Implementation], page 27. The relevant key positions are specified
via the ‘-k’ option when running gperf, as detailed in the Options section below. See
Chapter 4 [Options], page 17.

Two options, ‘-g’ (assume you are compiling with GNU C and its inline feature) and
‘-a’ (assume ANSI C-style function prototypes), alter the content of both the generated

16 User’s Guide to gperf

hash and in_word_set routines. However, function in_word_set may be modified more
extensively, in response to your option settings. The options that affect the in_word_set

structure are:

‘-p’ Have function in_word_set return a pointer rather than a boolean.

‘-t’ Make use of the user-defined struct.

‘-S total switch statements’
Generate 1 or more C switch statement rather than use a large, (and
potentially sparse) static array. Although the exact time and space savings
of this approach vary according to your C compiler’s degree of optimization,
this method often results in smaller and faster code.

If the ‘-t’, ‘-S’, and ‘-p’ options are omitted the default action is to generate a char *

array containing the keys, together with additional null strings used for padding the array.
By experimenting with the various input and output options, and timing the resulting C
code, you can determine the best option choices for different keyword set characteristics.

17

4 Options to the gperf Utility

There are many options to gperf. They were added to make the program more convenient
for use with real applications. “On-line” help is readily available via the ‘-h’ option. Other
options include:

‘-a’ Generate ANSI Standard C code using function prototypes. The default
is to use “classic” K&R C function declaration syntax.

‘-c’ Generates C code that uses the strncmp function to perform string com-
parisons. The default action is to use strcmp.

‘-C’ Makes the contents of all generated lookup tables constant, i.e., “readonly.”
Many compilers can generate more efficient code for this by putting the
tables in readonly memory.

‘-d’ Enables the debugging option. This produces verbose diagnostics to “stan-
dard error” when gperf is executing. It is useful both for maintaining the
program and for determining whether a given set of options is actually
speeding up the search for a solution. Some useful information is dumped
at the end of the program when the ‘-d’ option is enabled.

‘-D’ Handle keywords whose key position sets hash to duplicate values. Dupli-
cate hash values occur for two reasons:

• Since gperf does not backtrack it is possible for it to process all your
input keywords without finding a unique mapping for each word. How-
ever, frequently only a very small number of duplicates occur, and the
majority of keys still require one probe into the table.

• Sometimes a set of keys may have the same names, but possess dif-
ferent attributes. With the -D option gperf treats all these keys as
part of an equivalence class and generates a perfect hash function with
multiple comparisons for duplicate keys. It is up to you to completely
disambiguate the keywords by modifying the generated C code. How-
ever, gperf helps you out by organizing the output.

Option ‘-D’ is extremely useful for certain large or highly redundant key-
word sets, i.e., assembler instruction opcodes. Using this option usually
means that the generated hash function is no longer perfect. On the other
hand, it permits gperf to work on keyword sets that it otherwise could
not handle.

‘-e keyword delimiter list’
Allows the user to provide a string containing delimiters used to separate
keywords from their attributes. The default is ",\n". This option is essen-
tial if you want to use keywords that have embedded commas or newlines.
One useful trick is to use -e’TAB’, where TAB is the literal tab character.

‘-E’ Define constant values using an enum local to the lookup function rather
than with #defines. This also means that different lookup functions can
reside in the same file. Thanks to James Clark (jjc at ai.mit.edu).

18 User’s Guide to gperf

‘-f iteration amount’
Generate the perfect hash function “fast.” This decreases gperf’s running
time at the cost of minimizing generated table-size. The iteration amount
represents the number of times to iterate when resolving a collision. ‘0’
means ‘iterate by the number of keywords. This option is probably most
useful when used in conjunction with options ‘-D’ and/or ‘-S’ for large
keyword sets.

‘-g’ Assume a GNU compiler, e.g., g++ or gcc. This makes all generated rou-
tines use the “inline” keyword to remove the cost of function calls. Note
that ‘-g’ does not imply ‘-a’, since other non-ANSI C compilers may have
provisions for a function inline feature.

‘-G’ Generate the static table of keywords as a static global variable, rather than
hiding it inside of the lookup function (which is the default behavior).

‘-h’ Prints a short summary on the meaning of each program option. Aborts
further program execution.

‘-H hash function name’
Allows you to specify the name for the generated hash function. Default
name is ‘hash.’ This option permits the use of two hash tables in the same
file.

‘-i initial value’
Provides an initial value for the associate values array. Default is 0. In-
creasing the initial value helps inflate the final table size, possibly leading
to more time efficient keyword lookups. Note that this option is not partic-
ularly useful when ‘-S’ is used. Also, ‘-i’ is overriden when the ‘-r’ option
is used.

‘-j jump value’
Affects the “jump value,” i.e., how far to advance the associated character
value upon collisions. Jump value is rounded up to an odd number, the
default is 5. If the jump value is 0 gper f jumps by random amounts.

‘-k keys’ Allows selection of the character key positions used in the keywords’ hash
function. The allowable choices range between 1-126, inclusive. The posi-
tions are separated by commas, e.g., ‘-k 9,4,13,14’; ranges may be used,
e.g., ‘-k 2-7’; and positions may occur in any order. Furthermore, the
meta-character ’*’ causes the generated hash function to consider all char-
acter positions in each key, whereas ’$’ instructs the hash function to use
the “final character” of a key (this is the only way to use a character posi-
tion greater than 126, incidentally).

For instance, the option ‘-k 1,2,4,6-10,'$'’ generates a hash function
that considers positions 1,2,4,6,7,8,9,10, plus the last character in each key
(which may differ for each key, obviously). Keys with length less than the
indicated key positions work properly, since selected key positions exceed-
ing the key length are simply not referenced in the hash function.

Chapter 4: Options to the gperf Utility 19

‘-K key name’
By default, the program assumes the structure component identifier for
the keyword is “name.” This option allows an arbitrary choice of identifier
for this component, although it still must occur as the first field in your
supplied struct.

‘-l’ Compare key lengths before trying a string comparison. This might cut
down on the number of string comparisons made during the lookup, since
keys with different lengths are never compared via strcmp. However, using
‘-l’ might greatly increase the size of the generated C code if the lookup
table range is large (which implies that the switch option ‘-S’ is not en-
abled), since the length table contains as many elements as there are entries
in the lookup table.

‘-L generated language name’
Instructs gperf to generate code in the language specified by the option’s
argument. Languages handled are currently C++ and C. The default is C.

‘-n’ Instructs the generator not to include the length of a keyword when com-
puting its hash value. This may save a few assembly instructions in the
generated lookup table.

‘-N lookup function name’
Allows you to specify the name for the generated lookup function. Default
name is ‘in word set.’ This option permits completely automatic gener-
ation of perfect hash functions, especially when multiple generated hash
functions are used in the same application.

‘-o’ Reorders the keywords by sorting the keywords so that frequently occuring
key position set components appear first. A second reordering pass follows
so that keys with “already determined values” are placed towards the front
of the keylist. This may decrease the time required to generate a perfect
hash function for many keyword sets, and also produce more minimal per-
fect hash functions. The reason for this is that the reordering helps prune
the search time by handling inevitable collisions early in the search pro-
cess. On the other hand, if the number of keywords is very large using ‘-o’
may increase gperf’s execution time, since collisions will begin earlier and
continue throughout the remainder of keyword processing. See Cichelli’s
paper from the January 1980 Communications of the ACM for details.

‘-p’ Changes the return value of the generated function in_word_set from
boolean (i.e., 0 or 1), to either type “pointer to user-defined struct,” (if
the ‘-t’ option is enabled), or simply to char *, if ‘-t’ is not enabled. This
option is most useful when the ‘-t’ option (allowing user-defined structs)
is used. For example, it is possible to automatically generate the GNU C
reserved word lookup routine with the options ‘-p’ and ‘-t’.

‘-r’ Utilizes randomness to initialize the associated values table. This fre-
quently generates solutions faster than using deterministic initialization
(which starts all associated values at 0). Furthermore, using the random-

20 User’s Guide to gperf

ization option generally increases the size of the table. If gperf has diffi-
cultly with a certain keyword set try using ‘-r’ or ‘-D’.

‘-s size-multiple’
Affects the size of the generated hash table. The numeric argument for
this option indicates “how many times larger or smaller” the maximum
associated value range should be, in relationship to the number of keys. If
the size-multiple is negative the maximum associated value is calculated by
dividing it into the total number of keys. For example, a value of 3 means
“allow the maximum associated value to be about 3 times larger than the
number of input keys.”

Conversely, a value of -3 means “allow the maximum associated value to
be about 3 times smaller than the number of input keys.” Negative values
are useful for limiting the overall size of the generated hash table, though
this usually increases the number of duplicate hash values.

If ‘generate switch’ option ‘-S’ is not enabled, the maximum associated
value influences the static array table size, and a larger table should de-
crease the time required for an unsuccessful search, at the expense of extra
table space.

The default value is 1, thus the default maximum associated value about
the same size as the number of keys (for efficiency, the maximum associated
value is always rounded up to a power of 2). The actual table size may
vary somewhat, since this technique is essentially a heuristic. In particular,
setting this value too high slows down gperf’s runtime, since it must search
through a much larger range of values. Judicious use of the ‘-f’ option helps
alleviate this overhead, however.

‘-S total switch statements’
Causes the generated C code to use a switch statement scheme, rather than
an array lookup table. This can lead to a reduction in both time and space
requirements for some keyfiles. The argument to this option determines
how many switch statements are generated. A value of 1 generates 1
switch containing all the elements, a value of 2 generates 2 tables with 1/2
the elements in each switch, etc. This is useful since many C compilers
cannot correctly generate code for large switch statements. This option
was inspired in part by Keith Bostic’s original C program.

‘-t’ Allows you to include a struct type declaration for generated code. Any
text before a pair of consecutive %% is consider part of the type declaration.
Key words and additional fields may follow this, one group of fields per line.
A set of examples for generating perfect hash tables and functions for Ada,
C, and G++, Pascal, and Modula 2 and 3 reserved words are distributed
with this release.

‘-T’ Prevents the transfer of the type declaration to the output file. Use this
option if the type is already defined elsewhere.

‘-v’ Prints out the current version number.

Chapter 4: Options to the gperf Utility 21

‘-Z class name’
Allow user to specify name of generated C++ class. Default name is
Perfect_Hash.

23

5 Known Bugs and Limitations with gperf

The following are some limitations with the current release of gperf:

• The gperf utility is tuned to execute quickly, and works quickly for small to medium
size data sets (around 1000 keywords). It is extremely useful for maintaining perfect
hash functions for compiler keyword sets. Several recent enhancements now enable
gperf to work efficiently on much larger keyword sets (over 15,000 keywords). When
processing large keyword sets it helps greatly to have over 8 megs of RAM.

However, since gperf does not backtrack no guaranteed solution occurs on every run.
On the other hand, it is usually easy to obtain a solution by varying the option param-
eters. In particular, try the ‘-r’ option, and also try changing the default arguments
to the ‘-s’ and ‘-j’ options. To guarantee a solution, use the ‘-D’ and ‘-S’ options,
although the final results are not likely to be a perfect hash function anymore! Finally,
use the ‘-f’ option if you want gperf to generate the perfect hash function fast, with
less emphasis on making it minimal.

• The size of the generate static keyword array can get extremely large if the input
keyword file is large or if the keywords are quite similar. This tends to slow down
the compilation of the generated C code, and greatly inflates the object code size. If
this situation occurs, consider using the ‘-S’ option to reduce data size, potentially
increasing keyword recognition time a negligible amount. Since many C compilers
cannot correctly generated code for large switch statements it is important to qualify
the -S option with an appropriate numerical argument that controls the number of
switch statements generated.

• The maximum number of key positions selected for a given key has an arbitrary limit
of 126. This restriction should be removed, and if anyone considers this a problem
write me and let me know so I can remove the constraint.

• The C++ source code only compiles correctly with GNU G++, version 1.36 (and hope-
fully later versions). Porting to AT&T cfront would be tedious, but possible (and
desirable). There is also a K&R C version available now. This should compile without
change on most BSD systems, but may require a bit of work to run on SYSV, since
gperf uses alloca in several places. Send mail to schmidt at ics.uci.edu for information.

25

6 Things Still Left to Do

It should be “relatively” easy to replace the current perfect hash function algorithm with
a more exhaustive approach; the perfect hash module is essential independent from other
program modules. Additional worthwhile improvements include:

• Make the algorithm more robust. At present, the program halts with an error diag-
nostic if it can’t find a direct solution and the ‘-D’ option is not enabled. A more
comprehensive, albeit computationally expensive, approach would employ backtrack-
ing or enable alternative options and retry. It’s not clear how helpful this would be, in
general, since most search sets are rather small in practice.

• Another useful extension involves modifying the program to generate “minimal” per-
fect hash functions (under certain circumstances, the current version can be rather
extravagant in the generated table size). Again, this is mostly of theoretical interest,
since a sparse table often produces faster lookups, and use of the ‘-S’ switch option
can minimize the data size, at the expense of slightly longer lookups (note that the gcc
compiler generally produces good code for switch statements, reducing the need for
more complex schemes).

• In addition to improving the algorithm, it would also be useful to generate a C++ class
or Ada package as the code output, in addition to the current C routines.

27

7 Implementation Details of GNU gperf

A paper describing the high-level description of the data structures and algorithms used to
implement gperf will soon be available. This paper is useful not only from a maintenance
and enhancement perspective, but also because they demonstrate several clever and useful
programming techniques, e.g., ‘Iteration Number’ boolean arrays, double hashing, a “safe”
and efficient method for reading arbitrarily long input from a file, and a provably optimal
algorithm for simultaneously determining both the minimum and maximum elements in a
list.

29

8 Bibliography

[1] Chang, C.C.: A Scheme for Constructing Ordered Minimal Perfect Hashing Functions
Information Sciences 39(1986), 187-195.

[2] Cichelli, Richard J. Author’s Response to “On Cichelli’s Minimal Perfec t Hash
Functions Method” Communications of the ACM, 23, 12(December 1980), 729.

[3] Cichelli, Richard J. Minimal Perfect Hash Functions Made Simple Communications
of the ACM, 23, 1(January 1980), 17-19.

[4] Cook, C. R. and Oldehoeft, R.R. A Letter Oriented Minimal Perfect Hashing Function
SIGPLAN Notices, 17, 9(September 1982), 18-27.

[5] Cormack, G. V. and Horspool, R. N. S. and Kaiserwerth, M. Practical Perfect Hashing
Computer Journal, 28, 1(January 1985), 54-58.

[6] Jaeschke, G. Reciprocal Hashing: A Method for Generating Minimal Perfect Hashing
Functions Communications of the ACM, 24, 12(December 1981), 829-833.

[7] Jaeschke, G. and Osterburg, G. On Cichelli’s Minimal Perfect Hash Functions Method
Communications of the ACM, 23, 12(December 1980), 728-729.

[8] Sager, Thomas J. A Polynomial Time Generator for Minimal Perfect Hash Functions
Communications of the ACM, 28, 5(December 1985), 523-532

[9] Schmidt, Douglas C. GPERF: A Perfect Hash Function Generator Second USENIX
C++ Conference Proceedings, April 1990.

[10] Sebesta, R.W. and Taylor, M.A. Minimal Perfect Hash Functions for Reserved Word
Lists SIGPLAN Notices, 20, 12(September 1985), 47-53.

[11] Sprugnoli, R. Perfect Hashing Functions: A Single Probe Retrieving Method for
Static Sets Communications of the ACM, 20 11(November 1977), 841-850.

[12] Stallman, Richard M. Using and Porting GNU CC Free Software Foundation, 1988.

[13] Stroustrup, Bjarne The C++ Programming Language. Addison-Wesley, 1986.

[14] Tiemann, Michael D. User’s Guide to GNU C++ Free Software Foundation, 1989.

i

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS . 1
Appendix: How to Apply These Terms to Your New Programs 5

Contributors to GNU gperf Utility 7

1 Introduction . 9

2 Static search structures and GNU gperf 11

3 High-Level Description of GNU gperf 13
3.1 Input Format to gperf . 13

3.1.1 struct Declarations and C Code Inclusion 13
3.1.2 Format for Keyword Entries . 14
3.1.3 Including Additional C Functions . 15

3.2 Output Format for Generated C Code with gperf 15

4 Options to the gperf Utility 17

5 Known Bugs and Limitations with gperf 23

6 Things Still Left to Do . 25

7 Implementation Details of GNU gperf 27

8 Bibliography . 29

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS
	Appendix: How to Apply These Terms to Your New Programs

	Contributors to GNU gperf Utility
	1 Introduction
	2 Static search structures and GNU gperf
	3 High-Level Description of GNU gperf
	Input Format to gperf
	struct Declarations and C Code Inclusion
	Format for Keyword Entries
	Including Additional C Functions

	Output Format for Generated C Code with gperf

	4 Options to the gperf Utility
	5 Known Bugs and Limitations with gperf
	6 Things Still Left to Do
	7 Implementation Details of GNU gperf
	8 Bibliography

