The GNU Binary Utilities

Version 2.2

May 1993

Roland H. Pesch
Cygnus Support

Cygnus Support
Revision: 1.22
TgXinfo 2024-02-10.22

Copyright (©) 1991, 1992, 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

2 ar

ar [-]pmod [membername] archive file...
ar -M [<mri-script]
The GNU ar program creates, modifies, and extracts from archives. An archive is a
single file holding a collection of other files in a structure that makes it possible to retrieve
the original individual files (called members of the archive).

The original files’ contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

GNU ar can maintain archives whose members have names of any length; however,
depending on how ar is configured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to coff).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object modules in the archive
when you specify the modifier ‘s’. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the ‘q’ update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

GNU ar is designed to be compatible with two different facilities. You can control its
activity using command-line options, like the different varieties of ar on Unix systems; or,
if you specify the single command-line option ‘-M’, you can control it with a script supplied
via standard input, like the MRI “librarian” program.

2 GNU Binary Utilities

2.1 Controlling ar on the command line
ar [-]pmod [membername] archive file...

When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modifiers), and the archive name to act on.

Most operations can also accept further file arguments, specifying particular files to
operate on.

GNU ar allows you to mix the operation code p and modifier flags mod in any order,
within the first command-line argument.

If you wish, you may begin the first command-line argument with a dash.

The p keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them:

d Delete modules from the archive. Specify the names of modules to be deleted
as file. . .; the archive is untouched if you specify no files to delete.

If you specify the ‘v’ modifier, ar lists each module as it is deleted.

m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs
are linked using the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the file arguments
are moved to the end of the archive; you can use the ‘a’; ‘b’, or ‘i’ modifiers to
move them to a specified place instead.

P Print the specified members of the archive, to the standard output file. If the
‘v’ modifier is specified, show the member name before copying its contents to
standard output.

If you specify no file arguments, all the files in the archive are printed.

q Quick append; add the files file. .. to the end of archive, without checking for
replacement.
The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new members are
always placed at the end of the archive.

The modifier ‘v’ makes ar list each file as it is appended.

Since the point of this operation is speed, the archive’s symbol table index is
not updated, even if it already existed; you can use ‘ar s’ or ranlib explicitly
to update the symbol table index.

r Insert the files file. .. into archive (with replacement). This operation differs
from ‘q’ in that any previously existing members are deleted if their names
match those being added.

If one of the files named in file. .. doesn’t exist, ar displays an error message,
and leaves undisturbed any existing members of the archive matching that
name.

By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing
member.

Chapter 2: ar 3

The modifier ‘v’ used with this operation elicits a line of output for each file
inserted, along with one of the letters ‘a’ or ‘r’ to indicate whether the file was
appended (no old member deleted) or replaced.

t Display a table listing the contents of archive, or those of the files listed in file. . .
that are present in the archive. Normally only the member name is shown; if
you also want to see the modes (permissions), timestamp, owner, group, and
size, you can request that by also specifying the ‘v’ modifier.

If you do not specify a file, all files in the archive are listed.

If there is more than one file with the same name (say, ‘fie’) in an archive (say
‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you must ask
for a complete listing—in our example, ‘ar t b.a’.

X Ezxtract members (named file) from the archive. You can use the ‘v’ modifier
with this operation, to request that ar list each name as it extracts it.

If you do not specify a file, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation’s behavior:

a Add new files after an existing member of the archive. If you use the modifier
‘a’, the name of an existing archive member must be present as the membername
argument, before the archive specification.

b Add new files before an existing member of the archive. If you use the modifier
‘b’, the name of an existing archive member must be present as the membername
argument, before the archive specification. (same as ‘i’).

c Create the archive. The specified archive is always created if it didn’t exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

i Insert new files before an existing member of the archive. If you use the modifier
‘i’ the name of an existing archive member must be present as the membername
argument, before the archive specification. (same as ‘b’).

1 This modifier is accepted but not used.

) Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time
of extraction.

s Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

u Normally, ‘ar r’... inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members
of the same names, use this modifier. The ‘v’ modifier is allowed only for the
operation ‘r’ (replace). In particular, the combination ‘qu’ is not allowed, since
checking the timestamps would lose any speed advantage from the operation

[P]

q

4 GNU Binary Utilities

v This modifier requests the verbose version of an operation. Many operations
display additional information, such as filenames processed, when the modifier
‘v’ is appended.

v This modifier shows the version number of ar.

2.2 Controlling ar with a script
ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard
input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is ‘AR >’), and continues executing even after errors. If you redirect standard input
to a script file, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to GNU ar for developers who already have scripts written
for the MRI “librarian” program.

The syntax for the ar command language is straightforward:

e commands are recognized in upper or lower case; for example, LIST is the same as
list. In the following descriptions, commands are shown in upper case for clarity.

e a single command may appear on each line; it is the first word on the line.

e empty lines are allowed, and have no effect.

e comments are allowed; text after either of the characters ‘*’ or ‘;’ is ignored.

e Whenever you use a list of names as part of the argument to an ar command, you can

separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

e ‘+’is used as a line continuation character; if ‘+” appears at the end of a line, the text
on the following line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file required for most of
the other commands.

SAVE commits the changes so far specified by the script. Prior to SAVE, commands affect
only the temporary copy of the current archive.

ADDLIB archive

ADDLIB archive (module, module, ... module)
Add all the contents of archive (or, if specified, each named module from
archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD file, file, ... file
Add each named file as a module in the current archive.
Requires prior use of OPEN or CREATE.

Chapter 2: ar 5

CLEAR Discard the contents of the current archive, cancelling the effect of any opera-
tions since the last SAVE. May be executed (with no effect) even if no current
archive is specified.

CREATE archive
Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing file named archive will not be destroyed

until SAVE.

DELETE module, module, ... module
Delete each listed module from the current archive; equivalent to ‘ar -d
archive module ... module’.

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)

DIRECTORY archive (module, ... module) outputfile
List each named module present in archive. The separate command VERBOSE
specifies the form of the output: when verbose output is off, output is like that
of ‘ar -t archive module...’. When verbose output is on, the listing is like

‘ar —tv archive module...’.

Output normally goes to the standard output stream; however, if you specify
outputfile as a final argument, ar directs the output to that file.

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output file; if you have changed the current archive
since the last SAVE command, those changes are lost.

EXTRACT module, module, ... module
Extract each named module from the current archive, writing them into the
current directory as separate files. Equivalent to ‘ar -x archive module. .. .

Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in “verbose” style regardless of the
state of VERBOSE. The effect is like ‘ar tv archive’). (This single command is
a GNU 1d enhancement, rather than present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN archive
Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually affect archive until you next use SAVE.

REPLACE module, module, ... module
In the current archive, replace each existing module (named in the REPLACE ar-
guments) from files in the current working directory. To execute this command
without errors, both the file, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from DIRECTORY. When the flag
is on, DIRECTORY output matches output from ‘ar -tv ’.. ..

6 GNU Binary Utilities

SAVE Commit your changes to the current archive, and actually save it as a file with
the name specified in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

3 objcopy

objcopy [-F format | --format=format]
[-I format | --input-format=format]
[-0 format | --output-format=format]
[-S| --strip-all] [-g | --strip-debug]
[-=x | --discard-all] [-X | --discard-locals]
[-v | --verbose] [-V | --version]
infile [outfile]

The GNU objcopy utility copies the contents of an object file to another. objcopy uses
the GNU BFD Library to read and write the object files. It can write the destination object
file in a format different from that of the source object file. The exact behavior of objcopy
is controlled by command-line options.

objcopy creates temporary files to do its translations and deletes them afterward.
objcopy uses BFD to do all its translation work; it knows about all the formats BFD
knows about, and thus is able to recognize most formats without being told explicitly. See
Section “BFD” in Using LD.
infile
outfile The source and output files respectively. If you do not specify outfile, objcopy

creates a temporary file and destructively renames the result with the name of
the input file.

-1 format

--input-format=format
Consider the source file’s object format to be format, rather than attempting
to deduce it.

-0 format
—--output-format=format
Write the output file using the object format format.

-F format
-—format=format
Use format as the object format for both the input and the output file; i.e.
simply transfer data from source to destination with no translation.
-3
--strip-all
Do not copy relocation and symbol information from the source file.
)
--strip—-debug
Do not copy debugging symbols from the source file.
-x
--discard-all
Do not copy non-global symbols from the source file.
-X
-—discard-locals
Do not copy compiler-generated local symbols. (These usually start with ‘L or

‘)

8 GNU Binary Utilities

-V
--version
Show the version number of objcopy.
-v
—--verbose

Verbose output: list all object files modified. In the case of archives, ‘objcopy
-V’ lists all members of the archive.

4 1d

The GNU linker 1d is now described in a separate manual. See Section “Overview” in Using
LD: the GNU linker.

11

5 nm
nm [-a | --debug-syms] [-g | --extern-only]
[-s | --print-armap] [-o | --print-file-name]
[-n | --numeric-sort] [-p | --no-sort]
[-r | --reverse-sort] [-u | --undefined-only]
[--target=bfdname]
[objfile...]

GNU nn lists the symbols from object files obffile. . ..

The long and short forms of options, shown here as alternatives, are equivalent.

objfile. ..
Object files whose symbols are to be listed. If no object files are listed as
arguments, nm assumes ‘a.out’.

-a

--debug-syms
Display debugger-only symbols; normally these are not listed.

g

--extern-only

Display only external symbols.
Y
--no-sort

Don’t bother to sort the symbols in any order; just print them in the order
encountered.

-n
--numeric-sort
Sort symbols numerically by their addresses, rather than alphabetically by their
names.

-s
--print-armap
When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain definitions
for which names.

-0
--print-file-name
Precede each symbol by the name of the input file where it was found, rather
than identifying the input file once only before all of its symbols.

-r
--reverse-sort
Reverse the order of the sort (whether numeric or alphabetic); let the last come
first.

--target=bfdname
Specify an object code format other than your system’s default format. See
Chapter 6 [objdump], page 13, for information on listing available formats.

12 GNU Binary Utilities

-u
-—undefined-only
Display only undefined symbols (those external to each object file).

13

6 objdump

objdump [-a] [-b bfdname] [-d]1 [-f]

objdump

[-h | --header 1 [-i] [-j section] [-11]
[-m machine]l] [-r | --reloc] [-s]

[-stabs] [-t | --syms] [-x]

objfile...

displays information about one or more object files. The options control what

particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

The long and short forms of options, shown here as alternatives, are equivalent.

objfile...

-b bfdname

-h
—-header

-m machine

-r
--reloc

The object files to be examined. When you specify archives, objdump shows
information on each of the member object files.

If any of the objfile files are archives, display the archive header information
(in a format similar to ‘1s -1’). Besides the information you could list with ‘ar
tv’, ‘objdump -a’ shows the object file format of each archive member.

Specify that the object-code format for the object files is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,
objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (‘~h’) of fu.o, which is
explicitly identified (‘-m’) as a VAX object file in the format produced by Oasys
compilers. You can list the formats available with the ‘=i’ option.

Disassemble. Display the assembler mnemonics for the machine instructions
from objfile.

File header. Display summary information from the overall header of each of
the objfile files.

Header. Display summary information from the section headers of the object
file.

Display a list showing all architectures and object formats available for specifi-
cation with ‘b’ or ‘-m’.

Display information only for section name.

Label the display (using debugging information) with the source filename and
line numbers corresponding to the object code shown.

Specify that the object files objfile are for architecture machine. You can list
available architectures using the ‘-i’ option.

Relocation. Print the relocation entries of the file.

14

--stabs

GNU Binary Utilities

Display the full contents of any sections requested.

Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF file. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other file formats, debugging
symbol-table entries are interleaved with linkage symbols, and are visible in the
‘~--syms’ output.

Symbol Table. Print the symbol table entries of the file. This is similar to the
information provided by the ‘nm’ program.

Display all available header information, including the symbol table and relo-
cation entries. Using ‘-x’ is equivalent to specifying all of ‘-a -f -h -r -t’.

15

7 ranlib

ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol defined by a member of an archive that is a relocatable object file.

You may use ‘nm -s’ or ‘nm ——-print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows routines in
the library to call each other without regard to their placement in the archive.

The GNU ranlib program is another form of GNU ar; running ranlib is completely
equivalent to executing ‘ar -s’. See Chapter 2 [ar], page 1.
-v
-V Show the version number of ranlib.

17

8 size
size [-A | -B | --format=compatibility]
[—-help] [-d | -o | -x | --radix=number]
[--target=bfdname 1 [-V | --version]
objfile...

The GNU size utility lists the section sizes—and the total size—for each of the object
or archive files objfile in its argument list. By default, one line of output is generated for
each object file or each module in an archive.

The command line options have the following meanings:

objfile...
The object files to be examined.

-A

-B

--format=compatibility
Using one of these options, you can choose whether the output from GNU
size resembles output from System V size (using ‘-A’, or ‘--format=sysv’),
or Berkeley size (using ‘-B’, or ‘--format=berkeley’). The default is the
one-line format similar to Berkeley’s.

Here is an example of the Berkeley (default) format of output from size:

size --format Berkeley ranlib size

text data bss dec hex filename
294880 81920 11592 388392 b5ed28 ranlib
294880 81920 11888 388688 beeb50 size

This is the same data, but displayed closer to System V conventions:

size --format SysV ranlib size

ranlib
section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392
size
section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

--help Show a summary of acceptable arguments and options.

-d

-0

-x

—--radix=number
Using one of these options, you can control whether the size of each section is
given in decimal (‘-d’, or ‘--radix=10’); octal (‘-o’, or ‘--radix=8"); or hex-
adecimal (‘-x’; or ‘--radix=16"). In ‘--radix=number’, only the three values
(8, 10, 16) are supported. The total size is always given in two radices; decimal

18 GNU Binary Utilities

and hexadecimal for ‘~d’ or ‘~x’ output, or octal and hexadecimal if you’re using

‘-0,

--target=bfdname
Specify that the object-code format for objfile is bfdname. This option may not
be necessary; size can automatically recognize many formats. See Chapter 6
[objdump], page 13, for information on listing available formats.

-V
--version
Display the version number of size.

19

9 strip

strip [-F format | --format=format | --target=format]
[-I format | --input-format=format]
[-0 format | --output-format=format]
[-s | --strip-all] [-S | -g | --strip-debug]
[-x | --discard-all] [-X | --discard-locals]
[-v | -—verbose] [-V | --version]
objfile...

GNU strip discards all symbols from object files objfile. The list of object files may
include archives.

strip will not execute unless at least one object file is listed.

strip modifies the files named in its argument, rather than writing modified copies
under different names.

-I format
--input-format=format
Treat the original objfile as a file with the object code format format.

-0 format
—--output-format=format
Replace objfile with a file in the output format format.

-F format

--format=format

--target=format
Treat the original objfile as a file with the object code format format, and
rewrite it in the same format.

-s
--strip-all

Remove all symbols.
)
-5

--strip-debug
Remove debugging symbols only.
-x
--discard-all
Remove non-global symbols.
-X
--discard-locals
Remove compiler-generated local symbols. (These usually start with ‘L’ or ¢.".)
-V
--version
Show the version number for strip.
-V
--verbose

Verbose output: list all object files modified. In the case of archives, ‘strip
-v’ lists all members of the archive.

21

10 c++filt

The C++ language provides function overloading, which means that you can write many
function with the same name (but taking different kinds of parameters). So that the linker
can keep these overloaded functions from clashing, all C++ function names are encoded
(“mangled”) into a funny-looking low-level assembly label. The c++filt program does the
inverse mapping: It decodes (“demangles”) low-level names into user-level names.

When you use c++filt as a filter (which is usually the case), it reads from standard input.
Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods) seen
in the input is a potential label. If the label decodes into a C++ name. the C++ name will
replace the low-level name in the output.

A typical use of c++filt is to pipe the output of nm though it.

Note that on some systems, both the C and C++ compilers put an underscore in front
of every name. (L.e. the C name foo gets the low-level name _foo.) On such systems,
c++filt removes any initial underscore of a potential label.

AOUL ot e 11
all header information, object file............... 14
S 1
ar compatibility i 1
architecture........... 13
architectures available.......................... 13
archive contents....................c.coiiiin... 15
archive headers 13
archives. 1

CHHALL L 21
collections of files, 1
compatibility, ar......... ...l 1
contents of archive............................... 3
creating archives......... ool 3

D

dates in archive...........l 3
debug symbols......... ... oo 14
debugging symbols...........l 11
deleting from archive............ 2
demangling C++ symbols....................... 21
disassembling object code...................... 13
discarding symbols...........ol 19

E

ELF object file format 14
external symbols L 11, 12
extract from archive.................. 3

F

filename.......... 11

H

header information, all......................... 14

I

input file name............... . 11

23

Id . 9
Hbraries.ooooi 1
Hnker 9

M

machine instructions........................... 13
moving in archive........... L. 2
MRI compatibility, ar............... 4

N

name duplication in archive..................... 3
name length 1
TN & 11

objdump. ... 13
object code format............. 11, 13, 18
object file header 13
object file information................ 13
object file sectionsl 14
object formats available........................ 13
operations on archive 2

P

printing from archive............................ 2

Q

quick append to archive......................... 2

R

radix for section sizes 17
ranlib. ... o 15
relative placement in archive 3
relocation entries, in object file................. 13
removing symbols.................. 19
repeated names in archive.................... ... 3
replacement in archive 2

24

S

SCIIPtS, @Y ..t 4
section headers, 13
section information, 13
SECHION SIZES ot i ettt e 17
sections, full contents 14
53 /1 I P 17
size display format.......... oL 17
size number format i 17
sorting symbols........ oo oo 11
source filename..................coiiiiiii.. 11
source filenames for object files................. 13
Sstab ... 14
1517 1§ o2 P 19

symbol index............l 1, 15

GNU Binary Utilities

symbol index, listing........... 11
symbol table entries, printing 14
symbols. ... 11
symbols, discarding, 19

U

undefined symbols ool 12
Unix compatibility, ar.................... 2
updating an archive............. oo 3

\%\%

writing archive index............. L 3

Table of Contents

2 AT . 1
2.1 Controlling ar on the command line 2
2.2 Controlling ar with a SCript..........co.ovviiiiiiiiiiaiii... 4

3 oObjcopy ... 7

4 Id....... 9

5 S 10 s P 11

6 objdump..... 13

7 ranlib. 15

B SIZE. .. 17

9 Strip 19

10 cH+Hflt ..o 21

	2 ar
	Controlling ar on the command line
	Controlling ar with a script

	3 objcopy
	4 ld
	5 nm
	6 objdump
	7 ranlib
	8 size
	9 strip
	10 c++filt
	Index

