
TDate TFIELD.H tdate.cpp
--

TDate

*** NOTE ***
This class is derived from the DATECL.ZIP file found in the C++ section (lib 6) of the BPROGB forum on
compuserve. I have just added the setDate functions and the coversion to PXDate functions. The rest of the
class hasn't changed (much, if at all). I haven't found any problems with it, but I haven't attempted to verify
all the algorithm's, either!

Data
Members

day_of_week int day_of_week PROTECTED

Holds the current day of the week: Sunday = 1 ... Saturday = 7, or 0 if an invalid
date is specified.

displayFormat static int displayFormat PRIVATE

Specifies the format used to display the date. Current enumerated values for
displayFormat are MDY, FULL or EUROPEAN. The values DAY and MONTH are also provided, but are not
supported by the setDate string parser.

See Also: TDate::setFormat

displayOptions static unsigned char displayOptions PRIVATE

Specifies options which modify the format used to display the date. Current
options are NO_CENTURY -- Suppress the printing of the century when in the MDY format (ex: 01/01/91
instead of 01/01/1991). DATE_ABBR -- Abbreviate month and day names when printing in the MONTH,
DAY, FULL or EUROPEAN formats. (ex. MON, TUE, JAN, FEB, etc.) The length or the abbreviation is
controlled by a DEFINED constant in TFIELD.H named ABBR_LENGTH, preset to 3.

See Also: TDate::setOption

julian unsigned long julian PROTECTED

Holds the count of the number of days that have passed since 1/1/4713 B.C.

tdate_day int tdate_day PROTECTED

Holds the current day of the month, or 0 if an invalid date is specified.

tdate_month int tdate_month PROTECTED

Holds the current month, or 0 if an invalid date is specified.

tdate_year int tdate_year PROTECTED

Holds the current year, or 0 if an invalid day is specified.

Member
Functions

constructors TDate ();

Initializes displayFormat to MDY. Initializes day, day_of_week, displayOptions,
julian, month and year to 0.

TDate (const long aJulDate, const long offset = 0);

Initializes displayFormat to MDY and displayOptions to 0. Sets julian to
aJulDate + offset. PXOffset is the only offset currently support. This allows a TDate to be initialized by
calling TDate(PXDate, PXOffset). Initializes day, day_of_week, month and year to coincide to the julian
date.

TDate (const int m, const int d, const int y);

Initializes displayFormat to MDY and displayOptions to 0. Sets the initial day,
month and year from the values provides. Computes julian for the specified date and computes the
day_of_week for the date.

TDate (char *dat);

Initializes displayFormat to MDY and displayOptions to 0. Calls setDate to
attempt to parse the dat. If successful, day, day_of_week, julian, month and year are all initialized to the
specified date.

TDate (const date &ds);

Initializes displayFormat to MDY and displayOptions to 0. Copies the day,
month and year from the DOS date structure and sets julian and day_of_week for the specified date.

TDate (const TDate &dt);

Copies the day, displayFormat, displayOptions, month and year from the
specified TDate. Calculates the julian and day_of_week for the specified date.

char_to_month int char_to_month(const char *charMonth); PRIVATE

Converts month name to month value. Only the first two or three characters of
the charMonth are checked for a match. Matching values are JA FE MAR AP MAY JUN JUL AU SE OC NO
DE. If the value doesn't match, a 0 is returned.

day int day(void) const;

Returns the value of the day for the date.

dayOfYear int dayOfYear(void) const;

Returns relative date since Jan. 1

decrMonth void decrMonth(void);

Decrements the month by 1. Adjusts the year and day if necessary.

decrYear void decrYear(void);

Decrements the year by 1. Adjusts the day if necessary.

dow int dow(void) const;

Returns the value of the day_of_week for the date.

eom date eom(void) const;

Returns last day of month in object. ***NOTE*** This function returns a date not
a TDate!!!

formatDate char *formatDate (int type=-1) const;

Return a string value for the current date in the specified format. If type = -1, the
format specified in displayFormat will be used. Other valid types are MDY, FULL and EUROPEAN. Types
MONTH and DAY are valid but not be used to generate a new date from the returned string, as insufficient
information is present for the setDate(char *) parser.

**** NOTE ****
This function returns a newStr'd string pointer. Storage has been allocated for

this string from the heap. To avoid memory leaks, make sure to delete the string after you're done using it!

getDate date getDate(void) const;

Returns a date structure. ***NOTE*** This function returns a date not a TDate!!!

incrMonth void incrMonth(void);

Increments the month by 1. Adjusts the year and day if necessary.

incrYear void incrYear(void);

Increments the year by 1. Adjusts the day if necessary.

isLeapYear int isLeapYear(void) const;

Returns 1 if leap year, 0 if not

julDate long julDate(void) const;

Returns julian date.

julian_to_mdy void julian_to_mdy (void); PRIVATE

convert julian day to mdy

julian_to_wday void julian_to_wday (void); PRIVATE

convert julian day to day_of_week

mdy_to_julian void mdy_to_julian (void); PRIVATE

convert mdy to julian day

month int month(void) const;

Returns the value of the month for the date.

operators

+ TDate operator + (const long i);

Returns the value date + i days.

- TDate operator - (const long i);

Returns the value of date - i days.

- long operator - (const TDate &dt);

Returns the number of days between two dates.

+= TDate &operator += (const long i);

Adds i days to the date.

-= TDate &operator -= (const long i);

Subtracts i days from the date.

++ TDate &operator ++ (void);

pre increment function

++ TDate &operator ++ (int);

post increment function

-- TDate &operator -- (void);

pre decrement function

-- TDate &operator -- (int);

post decrement function

< friend int operator < (const TDate &dt1, const TDate &dt2);

Returns 1 if dt1 is less than dt2, returns 0 otherwise.

<= friend int operator <= (const TDate &dt1, const TDate &dt2);

Returns 1 if dt1 is less than or equal to dt2, returns 0 otherwise.

> friend int operator > (const TDate &dt1, const TDate &dt2);

Returns 1 is dt1 is greater than dt2, returns 0 otherwise.

>= friend int operator >= (const TDate &dt1, const TDate &dt2);

Returns 1 if dt1 is greater that or equal to dt2, returns 0 otherwise.

== friend int operator == (const TDate &dt1, const TDate &dt2);

Returns 1 if dt1 is equal to dt2, returns 0 otherwise.

!= friend int operator != (const TDate &dt1, const TDate &dt2);

Returns 1 if dt1 is not equal to dt2, returns 0 otherwise.

<< friend ostream &operator << (ostream &os, const TDate &dt);

Places the character date on the output stream in the format MM/DD/YY.

<< friend ostream &operator << (ostream &os, const date &dt);

Places the character date on the output stream in the format MM/DD/YY.

PXDate long PXDate(void) const;

Returns date in paradox format (i.e. julian - PXOffset)

setDate int setDate (const char *charDate);

setDate will attempt to translate the charDate into a valid date format. charDate
is first parsed into seperate tokens by calling TParser::parse. The tokens are then scanned to see if a valid
character month has been specified (JA FE MAR AP MAY JUN JUL AU SE OC NO DE). The tokens are
then rescanned to interpret any numbers into month, day and year values in that order. If a day is not
specified, the first will be assumed. If a year is not specified the current year is assumed. The strings
"TODAY" or "*" will return the current computer date. Returns 1 if successful, 0 if not. (Parsing does not
always return the desired date. If anyone has suggestions for ways to improve this process, please let me
know. This was the best I could come up with. MBB)

setDate int setDate (const long aJulDate, const long offset = 0);

Set the date to the value specified in aJulDate + offset. PXOffset is the only
offset which is currently defined. To set the date from a date in paradox format, call setDate(PXDate,
PXOffset). Returns 1 if successful, 0 if not.

setFormat static void setFormat (const int format);

Specify the default format to be used in displaying the date. Possible values are
MDY, FULL, EUROPEAN. To other values are provided, DAY and MONTH, but are not supported by the
setDate(char *) parser.

setOption static int setOption (const int option, const int
 action=ON);

Specify the display options to be used in displaying the date. Possible values
are NO_CENTURY and DATE_ABBR. Action can be ON or OFF to enable or disable the option.

year int year(void) const;

Returns the value of the year for the date.

TDateFieldTFIELD.H tdfield.cpp
--

TField
 I
 ______I_______
TDateField

TDateField provides the means for manipulating dates in dialogs and windows. Upon entering a TDateField,
the current data string is selected. While the data string is completely selected, the + key will increment the
date one day, the - key will decrement the date one day, the <PageDown> key will increment the date's
month by 1 and the <PageUp> key will decrement the date's month by 1, unless the minimum or maximum
date boundaries would be crossed (if enabled.)

Data
Members

maxValue TDate maxValue

Maximum allowable date if tfValidateMax is enabled.

minValue TDate minValue

Minimum allowable date if tfValidateMin is enabled.

value TDate value

Current date value for this field.

Member
functions

constructor TDateField(const TRect& bounds, int aMaxLen);

convertData virtual void convertData(void);

Attempts to convert the char string data to a date by calling
value.setDate(data). If successful, data is updated to the current displayFormat for the date and the
window is redrawn.

dataSize virtual ushort dataSize();

Returns the size of the date storage in memory (sizeof(long)) in the current
implementation.

filterCharCode virtual ushort filterCharCode(ushort charCode);

getData virtual void getData(void *rec);

isValid virtual Boolean isValid(ushort command);

processKeyCode virtual ushort processKeyCode(ushort keyCode);

setData virtual void setData(void *rec);

setJulian void setJulian(long julDate);

Set the date value from a julian date (1/1/4713 BC offset)

setMax virtual void setMax(TDate newMax);

Set the maxValue to newMax and enable the tfValidateMax option.

setMin virtual void setMin(TDate newMin);

Set the minValue to newMin and enable the tfValidateMin option.

setParadox void setParadox(long pxDate);

Set the date value from a date in Paradox format. (1/1/1 AD offset)

TFieldTFIELD.H tfield.cpp
--

TView
 I
 ____I_____
TField

A TField object provides a basic input line string editor. It handles keyboard input and mouse clicks and drags
for block marking and a variety of line editing functions (see TField handleEvent). The selected text is deleted
and then replaced by the first text input.

The tfOptions data member controls various options based on which bits are set. The current tfOptions
supported are:

tfRight -- the field is right justified when this bit is set
tfNoScroll -- scrolling is disabled when this bit

tfHideSecure -- masks out the data with securityChar if this bit is set and the field's fieldSecurity
< currentSecurity

tfMustFill -- displays an error message when leaving the field if the field does not contain
aMaxLen - 1 characters. Also returns a False from the valid routine so the TDialog/TWindow will not be able
to close.

tfNotEmpty -- checks that the field contains at least 1 character when leaving the field, if it
doesn't an error message is displayed and valid returns False. The error message from tfMustFill overrides
this error message if tfMustFill is enabled.

tfBeepError -- controls whether a beep sounds on data entry errors. Enable tfBeepError to get
a beep.

tfEnterTabs -- controls whether the enter key should move the cursor to the next field or not.
Enable tfEnterTabs for the enter key to advance the focus to the next field.

tfStayError -- controls whether the field will lose the focus when it contains invalid data (or
doesn't meet the requirements of tfMustFill or tfNotEmpty.) If this bit is enabled, the keyboard control keys
(tab/shiftTab/enter) will not allow the focus to leave the field while it contains invalid data. ***NOTE*** this
version DOES NOT stop mouse events from causing the field to lose its focus. The lostFocus routine will still
be called for mouse events, but the way the current TView::Select function operates precludes trapping all
events unless the TView source is modified (requested of Borland, but beyond the scope of the design
specifications for this class.)

tfPreValidate-- controls whether the isValid function is called before or after the "standard"
validations are performed. By default, isValid will be called after the length (and min/max in derived classes)
validations have occurred successfully. Setting this flag forces the isValid function to be called before the
other validations have occurred.

The status of these bits may be directly changed by the programmer, but using the setTFOptions member
function insures that all views are appropriately redrawn as required by the changes to tfOptions.

The following tfOption flags are reserved for future use in derived classes:

tfValidateMin
tfValidateMax

tfPopUp

Field security is controlled by two member variables: fieldSecurity (the security level for this field) and
currentSecurity (the applications current authorized security level.) The cmUpdateSecurity broadcast
message can be used to update the currentSecurity level of any fields derived from TField (not completely
functional at rev 1.0.1). Alternatively, the setCurrentSecurity member function can be called to update

individual field's currentSecurity levels.

Two character fields (and a tfOptions flag) control the security of displayed data. hideChar will always
replace the displayed data with strlen(data) copies of itself (ie. if data = "hello" and hideChar = '*' then "*****"
will be displayed) when hideChar > ' '. securityChar contains the character that will replace the displayed
data only if tfHideSecure is enabled and fieldSecurity < currentSecurity. This allows for dynamic control of
what fields will display data based on a user's security level.

The getData and setData member functions are available for writing and reading data strings (referenced via
the data string data member) into the given record. TField::setState simplifies the redrawing of the view with
appropriate colors when the state changes from or to sfActive and sfSelected.

Field validation can be accomplished using a combination of virtual functions. filterCharCode can be used to
filter out unacceptable characters for a field. convertData can be used for custom data conversion from
string data values to other internal types. convertData is called before any valid ation is performed. isValid is
called from the valid routine an may be used to perform special validations tasks (eg. table lookups, etc.)
either before or after the standard validations have been performed for the field. Finally the gotFocus and
lostFocus routines can be used to perform various tasks upon entering/leaving the field.

Data
members

 curPos int curPos;

Index to insertion point (that is, to the current cursor position).

See also: TField::selectAll

currentSecurity ushort currentSecurity;

Holds the current security level for the form (or program or user, etc.) This field
is used in conjunction with tfHideSecure option to determine if secure data should be masked or not.

See also: TField::fieldSecurity, TField::securityChar, TField::setCurrentSecurity,
cmUpdateSecurity

data char *data;

The string containing the edited information.

fieldHint char *fieldHint;

Pointer to the hint text for this field. (Not used in this implementation. In the
future though...)

See also: TField::setHint

fieldName char *fieldName;

Pointer to the name text for this field.

See also: TField::setName

fieldSecurity ushort fieldSecurity;

Holds the security level for the current field. If the tfHideSecure option is

enabled, then the data for the field is masked if fieldSecurity < currentSecurity.

See also: TField::currentSecurity, TField::SecurityChar, tfHideSecure

firstPos int firstPos;

Index to the first displayed character.

See also: TField::selectAll

hideChar char hideChar;

Character to use to hide the field's display. If hideChar < ' ' (space) then the
field's data is displayed, if hideChar >= ' ' then the field's data is masked by the hideChar.

maxLen int maxLen;

Maximum length allowed for string to grow (excluding the final 0). This value is
initialized to aMaxLen - 1 in the TField constructor.

See also: TField::dataSize

securityChar char securityChar;

Holds the character to be used as a mask if tfHideSecure is enables and
fieldSecurity < currentSecurity.

See also: TField::fieldSecurity, TField::currentSecurity, TField::tfOptions,
tfHideSecure

selEnd int selEnd;

Index to the end of the selection area (that is, to the last character block
marked).

See also: TField::selectAll

selStart int selStart;

Index to the beginning of the selection area (that is, to the first character block
marked).

See also: TField::selectAll

tfOptions ushort tfOptions;

Bitmapped flag field for various field control states.

See also: tfRight, tfNoScroll, tfHideSecure, tfValidateMax,
tfValidateMin, tfMustFill, tfNotEmpty, tfBeepError, tfEnterTabs, tfStayError,

tfPopUp, tfPreValidate and TField::setTFOptions

Member
functions

constructor TField(const TRect& bounds, int aMaxLen);

Creates an input box control with the given values by calling TView(bounds).
state is then set to sfCursorVis, options is set to (ofSelectable | ofFirstClick), and maxLen is set to aMaxLen -
1. Memory is allocated and cleared for aMaxlen bytes and the data data member set to point at this
allocation.

**** NOTE ****
Be sure to note that aMaxLen includes the terminating \0 character. For a

TField which allows the user to type in 10 characters, use an aMaxLen of 11.

constructor TField(StreamableInit streamableInit); protected

Each streamable class needs a "builder" to allocate the correct memory for its
objects together with the initialized vtable pointers. This is achieved by calling this constructor with an
argument of type StreamableInit. Refer also to Chapter 8.

See also: TView::TView, sfCursorVis, ofSelectable, ofFirstClick

destructor ~TField();

Deletes the data, fieldHint and fieldName memory allocation, then calls ~TView
to destroy the TField object.

See also: ~TView

build static TStreamable *build();

Called to create an object in certain stream-reading situations.

See also: TStreamableClass, ipstream::readData

convertData virtual void convertData(void);

Called from the valid routine to convert from character data to specialized data
types (eg. TDate, long, etc.) in derived classes.

See alse: TField::valid

dataSize virtual ushort dataSize ();

Returns the size of the record for TField::getData and TField:: setData calls. By
default, it returns maxLen + 1. Override this member function if you define descendants to handle other data
types.

See also: TField::getData, TField::setData

draw virtual void draw();

Draws the input box and its data. The box is drawn with the appropriate colors
depending on whether the box is sfFocused (that is, whether the box view owns the cursor), and arrows are
drawn if the input string exceeds the size of the view (in either or both directions). Any selected
(blockmarked) characters are drawn with the appropriate palette.

filterCharCode virtual ushort filterCharCode(ushort charCode)

Used to limit what characters can be input into a field. Default allow all
characters in. If the charCode should not be allowed, a value of 0 should be returned. If a value of 1 is
returned, the equivalent of a selectAll(true) will be performed. Values >= ' ' will be added to or overwrite the
data item.

getData vlrtual void getData (void *rec);

Writes the number of bytes (obtained from a call to dataSize) from the data
string to the array given by rec. Used with setData for a variety of applications; for example, temporary
storage, or passing on the input string to other views. Override getData if you define TField descendants to
handle non-string data types. You can also use getData to convert from a string to other data types after
editing by TField.

See also: TField::dataSize, TField::setData

getPalette virtual TPalette& getPalette() const;

Returns the default palette string, cplnputLine, "\x13\x13\x14\x15".

gotFocus virtual void gotFocus(void);

Called when the field receives the cmReceivedFocus message (usually when
the field receives the focus).

handleEvent void handleEvent(TEvent& event);

Calls TView::handleEvent, then handles all mouse and keyboard events if the
input box is selected. This member function implements the standard editing capability of the input box.

Editing features include: block marking with mouse click and drag; block
deletion; insert or overwrite control with automatic cursor shape change; automatic and manual scrolling as
required (depending on relative sizes of the data string and size.x); manual horizontal scrolling via mouse
clicks on the arrow icons; manual cursor movement by arrow, Home, and End keys (and their standard
control-key equivalents); character and block deletion with Del and Ctrl-G. The view is redrawn as required
and the TField data members are adjusted appropriately.

See also: sfCursorlns, TView::handleEvent, TField::selectAll

isValid virtual Boolean isValid(ushort command);

Called by the valid function. If False is returned to valid, valid will always fail. If
command = cmArriving, validation should be performed based on the field being entered (ie. is the field
dependent on other events/values). If command = cmLeaving, validation should be performed based on the
field being left.

lostFocus virtual void lostFocus(void);

Called when the field receives the cmReleasedFocus message (usually when
the field is losing focus.)

processKeyCode virtual ushort processKeyCode(ushort keyCode);

This routine is called if the default handle event didn't deal with the keyCode. It
allows users to easily process non-default kbxxxx codes in derived classes without overriding the handle
event routine.

See also: TField::handleEvent, TField::filterCharCode

read virtual void *read(ipstream& is);

Reads from the input stream is.

See also: TStreamableClass, TStreamable, ipstream

selectAll void selectAll (Boolean enable);

Sets curPos, firstPos, and selStart to 0. If enable is set to True, selEnd is set to
the length of the data string, thereby selecting the whole input line; if enable is set to False, selEnd is set to
0, thereby deselecting the whole line. Finally, the view is redrawn by calling drawView.

See also: TView::drawView

setCurrentSecurity virtual void setCurrentSecurity(ushort newSecurityLevel);

Called to update the current security level. If the new security level >
fieldSecurity and the tfHideSecure is enabled, then the field contents will be masked by the securityChar
character. This routine is also called when the cmUpdateSecurity broadcast is received.

setData virtual void setData (void *rec);

By default, copies the number of bytes (as returned by dataSize) from the rec
array to the data string, and then calls selectAll(True). This zeros curPos, firstPos, and selStart. Finally,
drawView is called to redraw the input box.

Override setData if you define descendants to handle non-string data types. You
also use setData to convert other data types to a string for editing by TField.

See also: TField::dataSize, TField::getData, TField::selectAll

setHideChar virtual void setHideChar(char aChar);

This routine is used to update the hideChar data member. If the new hideChar
is > ' ' then the field's data will be masked by the hideChar character.

setHint virtual void setHint(char *aString);

Sets this field's fieldHint string to aString. The hint options currently aren't
implemented in this class.

setName virtual void setName(char *aString);

Sets this field's fieldName string to aString.

setTFOptions virtual void setTFOptions (ushort aOption, Boolean enable);

Called to change the state of various tfOption flags. tfOption flags control the
justification, scrolling, security, validation and enter handling for fields.

See also: tfRight, tfNoScroll, tfHideSecure, tfValidateMax,
tfValidateMin, tfMustFill, tfNotEmpty, tfBeepError, tfEnterTabs, tfStayError,

tfPopUp and TField::tfOptions

valid virtual void valid(ushort command);

Called to validate the contents of the field. If command = cmValid, we're being
called after the constructor. If command = cmArriving, we're being called before the field is entered. If
command = cmLeaving, we're being called before the field is left. Currently performs standard validations
(ie. string length checks) when cmLeaving. Also calls the user supplies isValid function.

write virtual void write(opstream& os);

Writes to the output stream os.

See also: TStreamableClass, TStreamable, opstream

Related functions Certain operator functions are related to TField but are not member functions; see page
232 for more information.

Palette
TFields use the default palette, cpField, to map onto the 19th through 21st entries in the standard dialog
palette.

 1 2 3 4
 ===========================
cpField || x13 | x13 | x14 | x15 ||
 ===========================
 Passive---^ | | ^---Arrow
 Active----------- ----------Selected

TFloatFieldTFIELD.H tffield.cpp
--

 | TField |

 I
 _______I_______
TFloatField

TFloatField provides support for floating point numeric entries. The current implementation of TFloatField
allows the +/- and PgUp/PgDn keys to increment/decrement the value when the field is selected
(selectAll(True)). This +/- will increment/decrement by a value of 1, the PgUp/PgDn by a value of 10.

Data
members

 value float value

Holds the fields current value

maxValue float maxValue

Holds the maximum value to be checked if tfValidateMax is set

minValue float minValue

Holds the minimum value to be checked if tfValidateMin is set

Member
functions

char *formatString; // field's format string for sprintf function call

constructor TFloatField(const TRect& bounds, int aMaxLen);

Calls the TField constructor and initializes fieldType to TFloatType.

destructor ~TFloatField();

Release any storage allocated for the formatString.

convertData virtual void convertData(void);

Converts the string in data to a floating point value. Calls sprintf to reformat the
value back into data. Uses formatString for the conversion if it is defined, otherwise uses the default %.2f for
the conversion.

dataSize virtual ushort dataSize();

Returns sizeof(float);

filterCharCode virtual ushort filterCharCode(ushort charCode);

Filters out all characters except the digits, minus and decimal point. If the entire
field is selected, the +/- keys will increment/decrement the value by 1 respectively unless doing so would
exceed a min/max boundary.

processKeycode virtual ushort processKeyCode(ushort keyCode);

If the entire field is selected, the kbPgUp/kbPgDn keys will add/subtract 10 from
the current value unless doing so would exceed a min/max boundary.

setFormat virtual void setFormat(char * newFormat);

Specify a sprintf format string to be used to display the value.

setMax virtual void setMax(float newMax);

Sets maxValue to newMax and sets the tfValidateMax flag for the field.

setMin virtual void setMin(float newMin);

Sets minValue to newMin and sets the tfValidateMin flag for the field.

TDoubleFieldTFIELD.H tdbfield.cpp
--

 | TField |

 I
 _______I_______
TDoubleField

TDoubleField's functionality is currently the same as TFloatField's. See the member functions of TFloatField
for a description of the functionality. TDoubleField does use double values instead of floats, though.

TLongDoubleFieldTFIELD.H tldfield.cpp
--

 | TField |

 I
 _________I__________
TLongDoubleField

TLongDoubleField's functionality is currently the same as TFloatField's. See the member functions of
TFloatField for a description of the functionality. TLongDoubleField uses long double values instead of floats.

TIntFieldTFIELD.H tifield.cpp

--

 | TField |

 I
 ______I______
TIntField

TIntField's functionality is almost exactly like TFloatField's. The only significant different is filterCharCode
does not allow decimals for TIntFields, TIntFields have no formatString and TIntField uses Int values instead
of Floats.

TLongFieldTFIELD.H tlfield.cpp
--

 | TField |

 I
 ______I_______
TLongField

TLongField's functionality is almost exactly like TFloatField's. The only significant different is filterCharCode
does not allow decimals for TLongFields, TLongFields have not formatString and TLongField uses Long
values instead of Floats.

TParserTFIELD.H tdate.cpp
--

TStringCollection
 I
 _____I_____
 | TParser |

TParser parses a character string, creating an unsorted TStringCollection of all the words/tokens contained
in the string.

Member
Functions

Constructor TParser(short aLimit, short aDelta)

Calls the TStringCollection Constructor.

compare virtual int compare(void *key1, void *key2)

Returns a -1, causing strings to be added sequentially to the TStringCollection
(duplicates are allowed.)

parse void parse(char *line)

Parses the line for words/tokens to add to the TStringCollection. The characters
/-. will be appended to the end of any word they follow, if no whitespace intervenes, otherwise they are added
as seperate tokens.

TUpperFieldTFIELD.H tufield.cpp
--

TField
 I
_______I_______
TUpperField

TUpperField provides a version of TField which converts all lowercase characters to uppercase.

Member
functions

constructor TUpperField(const TRect& bounds, int aMaxLen);

Calls the TField constructor.

filterCharCode virtual ushort filterCharCode(ushort charCode)

Converts all lowercase characters to uppercase.

TLowerFieldTFIELD.H tlwfield.cpp
--

TField
 I
_______I_______
TLowerField

TLowerField provides a version of TField which converts all uppercase characters to lowercase.

Member
functions

constructor TLowerField(const TRect& bounds, int aMaxLen);

Calls the TField constructor.

filterCharCode virtual ushort filterCharCode(ushort charCode)

Converts all uppercase characters to lowercase.

