
_NBSTARTMACRO {WindowHide}{_save_app_settings} Hide the Budgeteer window

{Application.Macro.Macro_Redraw "Both"} Suppress screen updates during macro execution

{Application.Title "The Budgeteer"} Set application title

{Application.SpeedBar "BUDGTRAK.BAR"} Set application SpeedBar

{Application.Display "None,No,No,Yes,A:A1..B:B2"} Hide Input Line and SpeedBar

{Application.Enable_Inspection "No"} Disable right-clicking

{SETMENUBAR menu_block} Set menu bar to application menu

{SETOBJECTPROPERTY "/Print.Depend_On","No,Yes,No,No,No,No"}Specify when the Print menu is available

{BRANCH _init_screen} Display expenses

_NBEXITMACRO {Let _nbexit,1} Flag that _NBEXITMACRO is being executed

_clear_app {IF file_saved=0}{_confirm_quit} If the active budget file isn't saved, confirm the quit

{Application.Macro.Macro_Redraw +app_macro} Re-enable screen updates

{Application.Title "Quattro Pro for Windows"} Reset application title

{Application.SpeedBar +app_speedbar} Restore SpeedBar layout

{Application.Display +app_display} Restore Display settings

{Application.Enable_Inspection "Yes"} Re-enable Object Inspector menus

{SETMENUBAR} Restore standard menu system

{If _nbexit}{Let _nbexit,0}{Quit} Resets _nbexit variable and doesn't execute FileCloseAll in _NBEXITMACRO

{FileCloseAll 0} Close all files opened by Budgteer

_nbexit

app_macro None

app_display Standard,Yes,Yes,Yes,A..B:A1..B2

app_speedbar PRODUCTY.BAR

_save_app_settings {LET app_macro,@COMMAND("Application.Macro.Macro_Redraw")}

{LET app_display,@COMMAND("Application.Display")}

{LET app_speedbar,@COMMAND("Application.SpeedBar")}

Suppress screen updates during macro execution

If the active budget file isn't saved, confirm the quit

Resets _nbexit variable and doesn't execute FileCloseAll in _NBEXITMACRO

MENU Budget_Bar
&Budget

&New... MACRO [BUDGTRAK.WB1]_new_budget Create a new, empty budget file
&Open... MACRO [BUDGTRAK.WB1]_open_budget Open an existing budget file
&Save MACRO [BUDGTRAK.WB1]_save_budget Save the active budget file
Save &As... MACRO [BUDGTRAK.WB1]_save_budget_as Save the active budget file under a new name
Add &Expense... MACRO [BUDGTRAK.WB1]_add_expense Add an expense to a database
&Quit MACRO [BUDGTRAK.WB1]_clear_app Exit the Budgeteer

&Print
&All ON clicked DOMACRO {_print_budget "All"} Print all expense databases in the active budget file
&Current ON clicked DOMACRO {_print_budget "Current"} Print all records in the record window
&Daily ON clicked DOMACRO {_print_budget "Daily"} Print Daily expense database
&Weekly ON clicked DOMACRO {_print_budget "Weekly"} Print Weekly expense database
&Monthly ON clicked DOMACRO {_print_budget "Monthly"} Print Monthly expense database
&Bi-Monthly ON clicked DOMACRO {_print_budget "Bi_Monthly"}Print Bi-Monthly expense database
&Semi-Annually ON clicked DOMACRO {_print_budget "Semi_Annually"}Print Semi-Annual expense database
A&nnually ON clicked DOMACRO {_print_budget "Annually"}Print Annual expense database

&StatisticsMACRO [BUDGTRAK.WB1]_view_statsDisplay statistical information about records in the record window

Create a new, empty budget file"Yes,Yes,No,No,No,No"
Open an existing budget file"Yes,Yes,No,No,No,No"
Save the active budget file"No,Yes,No,No,No,No"
Save the active budget file under a new name"No,Yes,No,No,No,No"
Add an expense to a database"No,Yes,No,No,No,No"
Exit the Budgeteer "Yes,Yes,No,No,No,No"

Print all expense databases in the active budget file"No,Yes,No,No,No,No"
Print all records in the record window"No,Yes,No,No,No,No"
Print Daily expense database"No,Yes,No,No,No,No"
Print Weekly expense database"No,Yes,No,No,No,No"
Print Monthly expense database"No,Yes,No,No,No,No"
Print Bi-Monthly expense database"No,Yes,No,No,No,No"
Print Semi-Annual expense database"No,Yes,No,No,No,No"
Print Annual expense database"No,Yes,No,No,No,No"

"No,Yes,No,No,No,No"

Developer Notes
Click a SpeedButton for more information on:

The layout of macros in this file.

How expense databases are stored.

Searching expense databases.

Graphing records in the record window.

Developer tips on selecting blocks and
tracking block coordinates.

Developer tips on checking whether a block
name, graph, or named page exists.

 help_input Enter the cost of each expense below its
name. You can change the entry date as
well, but press the Date key (Ctrl+Shift+D)
before typing the date. When you're done,
press Enter by itself or Esc to save the
record.

<< Press a key to continue >>

 help_stats You can use the arrow keys to scroll
through stats for each expense. When
you're done, press Enter by itself or Esc.

<< Press a key to continue >>

 help_files You can use file controls to specify the
name of a budget file to open or to specify
the name to save the active budget file
under. Enter the name under File Name,
and then choose OK. To cancel the
operation, choose Cancel. Choose New to
create a new, empty budget file.

<< Press a key to continue >>

 help_filerr A problem has occurred. Make sure a
valid file name and directory is specified.

<< Press a key to continue >>

Macro layout

Database structure

Searching

Graphing

Selecting blocks

Checking for things

 help_invalidf The file you have requested is not a valid
budget file.

<< Press a key to continue >>

 help_noadd This budget database currently has no
expense columns, so you can't add a record
to it. To create expense columns, choose
Budget|Add Expense.

<< Press a key to continue >>

 help_layout1 The Budgeteer notebook is structured to make
finding and studying macros easier. Each page
of the notebook contains macros common to
one Budgeteer task. For example,
Print_macros contains macros that print
expense data.

On each macro page, column A lists the
named blocks in the Budgeteer notebook;
each named block is listed to the left of the
cell (or block) it references. This is handy for
re-creating the block names quickly using
Block|Names|Labels. The named blocks in
most macros only refer to one cell. If a block
name in this notebook starts with a space, it
refers to a block larger than one cell. If a block
name begins with an underscore (_), it's the
name of a macro the Budgteer runs.

<< Press a key to continue >>

 help_layout2 Column B in each macro page contains the
macro commands and variables used by the
Budgeteer. If a cell is colored gray, it contains
a formula used by a macro. Some of these
formulas are in the macros; this lets the macro
adapt to the data in the active budget file.

Column F contains a brief description of what
each line of the macro does. At the start of
many macros is a boxed message describing
what the macro does. Use this documentation
to study the Budgeteer more closely.

<< Press a key to continue >>

_help_layout {MESSAGE help_layout1,10,5,0}

{MESSAGE help_layout2,10,5,0}
{EditGoto A1}{RIGHT}

 help_data1 The expense databases created by the
Budgeteer are stored in a separate notebook,
which is created by the macro _new_budget.
Each page of this notebook contains the data
for a specific expense frequency (Daily
through Annually). The data is stored on
the page in a block starting at cell C1. This
block is set as the database block when the
Budgeteer searches a database. (For more
information on database blocks, see the
User's Guide). The actual coordinates of the
database block are stored in A2, to make it
easier for the Budgeteer to set up a search
quickly.

<< Press a key to continue >>

 help_data2 The list of expenses for a database is stored in
column B, starting at row 2. This list is used by
the Add Expense dialog box. The coordinates
of this list are stored in A5, so that the dialog
box can change quickly.

<< Press a key to continue >>

_help_data {MESSAGE help_data1,10,5,0}
{MESSAGE help_data2,10,5,0}
{EditGoto A1}{RIGHT}

 help_search1 The Budgeteer uses the command equivalents
of Data|Query to search for records and copy
them into the record window. See the User's
Guide for more information on setting up a
database and query in Quattro Pro.

The query always uses the criteria table
stored in the named block criteria_table (in
the Budgeteer notebook). The macros
_refresh_view and _new_query put formulas
into this criteria table whenever a setting is
changed on the Budgeteer SpeedBar.

<< Press a key to continue >>

 help_search2 The coordinates of the database block are
stored on the notebook pages Daily through
Annually; cell A2 on each page has the
coordinates for the data stored on that page.
These coordinates are passed as an argument
to {Query.Database_Block} whenever the
View control on the Budgeteer SpeedBar
changes to a new setting.

Once the database block is set,
{Query.Assign_Names} is used to create
block names that the Stats page needs to
calculate statistical information. The expense
names are also copied into the first row of the
record window, and then that row is specified
as the output block (the row's coordinates are
passed as an argument to the command
equivalent {Query.Output_Block}). Then
copying records into the record window is
done by {Query.Extract}.

<< Press a key to continue >>

_help_search {MESSAGE help_search1,10,5,0}
{MESSAGE help_search2,10,5,0}
{EditGoto A1}{RIGHT}

 help_graph1 The macro in the Budgeteer that graphs data
in the record window actually creates a
macro that builds the graph. This constructed
macro (named _build_graph) is broken down
into three parts:

1. The first part of the macro, starting at the
named cell _build_graph, creates the graph
and displays it in a graph window for editing.
This part of the macro never changes.

2. The second part of the macro, starting at
the named cell _build_series, is created "on
the fly" by the macro _graph_view (the user
runs _graph_view by clicking Graph on the
Budgeteer SpeedBar). The macro _graph_view
measures the data in the record window, and
creates a list of {Series.Data_Range}
commands, starting at _build_series. This part
of the macro defines the series of the graph.

<< Press a key to continue >>

 help_graph2 3. The third part of the macro, starting just
after the last series command, creates the
series defined in part 2, displays the graph,
asks the user if they want to print it, and
returns to the record window. This part of the
macro is stored in the named block
finishing_mac; _graph_view copies the macro
below the series commands it created for part
two of the macro.

<< Press a key to continue >>

_help_graph {MESSAGE help_graph1,10,5,0}
{MESSAGE help_graph2,10,5,0}
{EditGoto A1}{RIGHT}

 help_select1 Keeping track of a block whose coordinates change regularly requires
+ a little planning. It's important to make the upper left corner of the block

a fixed location. This provides a starting point that you can rely on. The
database blocks in the Budgeteer all start at the cell address C1.

You can use the formula @PROPERTY("Active_Block.Selection") to
get the coordinates of the selected block. Since this information is
returned as a label, you'll also use the function @@ to convert it into
an address that Quattro Pro formulas can understand. The function @@
isn't needed in macros; any macro command argument that expects a
block will understand the coordinates if they're entered as a string. See
Building Spreadsheet Applications for more information on these
functions and the argument type location.

 << Press a key to continue >>

 help_select2 If you'll frequently need to know the width of a block (in columns), set
+ up a row in that block that doesn't contain any blank cells. In the

Budgeteer, the first row of the database blocks never contain a blank
cell. This way you can move to the first cell of the row and use
{SHIFT+END}{SHIFT+RIGHT} to select the entire row, regardless of its
actual width. Once this row is selected, you can use the formula
 @COLS(@@(@PROPERTY("Active_Block.Selection"))
to return the width of the block.

If you'll frequently need to know the height of a block (in rows), set up a
column in that block that doesn't contain any blank cells. In the
Budgeteer, the first column of the database blocks (the Date column)
never contain a blank cell. This way you can move to the first cell of
the column and use {SHIFT+END}{SHIFT+DOWN} to select the entire
column, regardless of it's actual height. Once this column is selected,
you can use the formula

 @ROWS(@@(@PROPERTY("Active_Block.Selection"))
to return the height of the block.

 << Press a key to continue >>

 help_select3 To select the whole block consistently, combine these two techniques:
+ set up a column and a row in the block that contain no blank cells,

preferably the first row and column. Selecting the block breaks down into
the following steps:

1. Goto the upper-left corner of the block.

2. Use {END}{DOWN}. This moves the selector to the last row of the
block.

3. Use {SHIFT+END}{SHIFT+UP}. This selects the first column of the
block and moves the selector back to the upper-left corner of the block.

4. Use {SHIFT+END}{SHIFT+RIGHT}. This selects the first row of the
block and all the columns in it.

Now you can manipulate the block using the formulas described
earlier. For an example of this, see the macro _update_data_block in
this notebook.

You can use the following macro to select all the data on the active
page: {HOME}{SHIFT+END}{SHIFT+HOME}.

 << Press a key to continue >>

_help_select {MESSAGE help_select1,10,5,0}
{MESSAGE help_select2,10,5,0}
{MESSAGE help_select3,10,5,0}
{EditGoto A1}{RIGHT}

 help_check1 The function @ISERR is useful for checking
whether a certain object exists. @ISERR takes
one argument, a formula, and returns 1 if the
formula returns ERR, 0 otherwise. You can use
this function in conjunction with @PROPERTY
to check the existence of an object: pick a
property that's unique to the object you're trying
to find (this ensures that objects of the same
name but a different type aren't found), and then
use @PROPERTY to get the setting of that
property. If @PROPERTY returns ERR, the
object doesn't exist. To prevent ERR from
stopping the macro, pass it as an argument to
@ISERR. Then @ISERR returns 0 when the

object exists, 1 when it doesn't.

<< Press a key to continue >>

 help_check2 For example, suppose you want to know if the graph named Expense
+ exists in the active notebook. First, pick a unique graph property: the

Aspect_Ratio property is only available in graphs. Second, create the
@PROPERTY formula that checks for that property setting:
@PROPERTY("Expense.Aspect_Ratio"). Third, plug the formula into
@ISERR: @ISERR(@PROPERTY("Expense.Aspect_Ratio")). This
formula can be used in an {IF} command to see if the object exists.

You can use a similiar technique to find block names and page names:
use @@ in an @ISERR function. For blocks, pass the block
name as an argument to @@. For example,
@ISERR(@@("database_block")) returns 1 if the named block
database_block doesn't exist. For named pages, pass the address of a
cell on the page. For example, @ISERR(@@("Daily:A1")) returns 1 if
the page Daily doesn't exist.

 << Press a key to continue >>

_help_check {MESSAGE help_check1,10,5,0}
{MESSAGE help_check2,10,5,0}
{EditGoto A1}{RIGHT}

0

#NAME?

#REF!

#NAME?

1

2

3

4

5

Daily

Error_Check Used by _add_expense to determine how the Add Expense dialog box was closed

New_Expense Dialog box setting: the name of the new expense to add

Frequency Daily Dialog box setting: the expense database to add a new expense to

SpdBar_Freq Setting of View on the Budgeteer SpeedBar

Current_Items Block derived from SpeedBar setting

Current_Freq Formula to change dashes to underscores. For example, Bi-Monthly becomes Bi_Monthly

_add_expense {LET New_Expense, ""} Make initial expense setting blank

{_get_bar_values} Fetch latest SpeedBar settings

{LET Frequency, @PROPERTY("[BUDGTRAK.BAR]View.Value")}Set default frequency

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]AddExpense:CurrentItems.List",+[BUDGTRAK.WB1]Current_Items}Set initial list

{DODIALOG "[BUDGTRAK.WB1]AddExpense",Error_Check, B3..B4}Display Add Expense dialog box

{IF New_Expense=""}{BRANCH _exit_add} If expense is blank, end this macro

{IF Error_Check = 0}{BRANCH _exit_add} Trap if the user cancels the dialog box

{BRANCH _add_field} Run macro that adds expense to budget

_exit_add {RETURN} End this macro

_add_field
The macro _add_field is called by _add_expense after the user specifies the

name of an expense category to add. The name of the category is stored in

new_expense. The name of the expense database to add the field to is stored

in temp_freq. Here's the flow of the macro:

Goto to page containing the expense database.

Select the first non blank cell to the right of the label

Date (in C1).

Enter the new expense name in that cell.

Call the subroutine _update_data_block to update

the database block and item list.

If the field is in the database being viewed, run a

new query.

temp_freq Used by _add_field to determine the name of the expense database to add a new expense column to

_add_field {_get_bar_values} Fetch latest SpeedBar settings

{EditGoto +[BUDGTRAK.WB1]temp_freq&":C1"} Activate the page in the active notebook that contains the expense database specified by temp_freq

{IF @CELL("type",[]C(1)R(0))="l"}{END}{RIGHT} Check the column to the right of the date field to see if any expense categories have already been added. If so, select all the expense category names

{RIGHT} Move to the cell where the new expense category name will be stored

{LET []C(0)R(0),+New_Expense} Store the new expense category name in the active cell

{LET update_freq,+temp_freq}{_update_data_block} Update the database block and list of expense categories to reflect the new category

{IF (+"[]"&Frequency)=SpdBar_Freq}{_new_query} If the new expense category was added to the database being viewed, set up a new query, since the information has changed

{_restore_view} Return to the record window

_add_record

1

2

3

4

5

6

7

8

9

10

11

The macro _add_record is called by clicking the Add button on the Budgeteer

SpeedBar. It adds a record to the expense database being viewed. Here's the

flow of the macro:

Goto to page containing the expense database.

Copy the field names from that page to the notebook

page Input.

Activate the page Input and protect all the cells on it.

Format row 2 to show the data correctly (after the

user enters it).

Unprotect row 2 so RestrictInput can be used with it.

Enter INPUT mode, and ask the user to enter a

record.

Goto to page containing the expense database.

Select the first cell in column D that's blank.

Copy data from Input to the current row

Call the subroutine _update_data_block to update

the database block and item list.

Run a new query to reflect the new database entry.

_add_record {_get_bar_values} Fetch latest SpeedBar settings

{_disable_ui "Yes"} Disable the SpeedBar and menus while adding a record

{BLANK []Input:A1..IV2} Erase any category names left over from the last Add operation

{EditGoto +[BUDGTRAK.WB1]Current_Freq&":C1"} Activate the page in the active notebook that contains the expense database specified by current_freq

{IF @CELL("type",[]D1)="b"}{_restore_view}{MESSAGE help_noadd,10,15,0}{RETURN}If cell D1 of the active page is blank (which indicates that no expense categories have been added to the database) display an error message and return to the record window, stopping the Add operation

{BlockCopy C(0)R(0)..C(253)R(1),Input:A1} Copy the expense category names to the notebook page Input, which is the form the user will input the new record into

{BLANK []Input:A2..IV2} Erase any numerical data left over from the last Add operation

{SETOBJECTPROPERTY "Input:B2..IV2.Numeric_Format","Currency,2"}Format the second row of the input form as currency, so that when the user enters a value, it displays in currency format. Notice B1 isn't included here, since that's where the date is entered

{EditGoto Input:A2} Activate the notebook page Input, which contains the input form the user will fill in

{SETOBJECTPROPERTY "Input:A1..IV8192.Protection","Protect"}Protect all cells on the page. This ensures that only the cells unprotected later in the macro are accessible to the user

{COLUMNWIDTH []Input:A1..IV8192,1,2,2} Auto-size the columns so that the expense names aren't cropped

{SHIFT+UP}{SHIFT+END}{SHIFT+RIGHT}{SHIFT+DOWN} Select the cells the user will input data into, so that they can be unprotected

{SETPROPERTY "Protection","Unprotect"} Unprotect the cells the user can input data into. Used by RestrictInput later in the macro

{LET []Input:A2,@TODAY} Store the current date on the form under the date column. This way the user doesn't have to enter a date, and the form defaults to the current date

{SETOBJECTPROPERTY "Input:A2.Numeric_Format","Long Date Intl."}Format the default date as Long International (MM/DD/YY)

{COLUMNWIDTH []Input:A2,1,2,2} Make sure column A is wide enough to show the date

{MESSAGE help_input,10,7,0} Displays instructions on how to use the form, and how to complete the add operation

{Application.Display.Show_InputLine "Yes"} Displays the input line (hidden previously by the macro \0) so that the user can see and edit entries as they're typed

{RestrictInput.Enter Input:A1..IV2} Enter INPUT mode. While in INPUT mode, only cells in the block that are unprotected are accessible to the user

{PAUSEMACRO} Wait for the user to press Enter or Esc. These user actions "approve" the new record

{Application.Display.Show_InputLine "No"} Hide the input line again

{IF @CELL("type",[]Input:A2)<>"v"}{LET []Input:A2,+@TODAY}If the user inadvertantly erased the date listed in the date column, place the current date there again, since the date is critical to querying macros in the application

{EditGoto +[BUDGTRAK.WB1]Current_Freq&":C1"} Activate the page in the active notebook that contains the expense database specified by current_freq

{IF @CELL("type",[]C(0)R(1))="v"}{END}{DOWN} If the cell below Date (in C1) isn't a value, then records already exist in the database and the cell selector should move to the last record in the database

{DOWN} Move below the last record in the database

{BlockCopy Input:A2..IS2,C(0)R(0)} Copy the user data from the input form (on page Input) to the active row

{SETPROPERTY "Numeric_Format",@PROPERTY("[]C(0)R(-1).Numeric_Format")}Set the numeric format of the data to the same numeric format as the previous record

{LET update_freq,+current_freq}{_update_data_block} Update the database block to reflect the new record

1

2

3

4

5

6

7

8

{PUTBLOCK +view_page&":Database_Block",[BUDGTRAK.WB1]data_block}Copy the coordinates of the new database block from the page containing the expense database to the variable data_block, which is used to perform queries

{Query.Database_Block @@(+[BUDGTRAK.WB1]data_block)}Set Quattro Pro's database block to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates themselves)

{_refresh_view} Return to the record window and refresh the record display

 _update_data_block
The macro _update_data_block is called by _add_field and _add_record after a

new expense or record has been added to the database. The name of the

database is stored in update_freq. Two pieces of information exist on each

database page that help the Budgeteer do queries and add expenses.

Database_Block (A2) is the actual database block used with {Query.Extract} to

perform searches and copy records into the record window. Item_Block is the

address of a list of expense names. This list is used in _add_expense while

the user views the Add Expense dialog box to show the expense names

that already exist in the database. _update_data_block makes sure these items

stay current. Here's the flow of the macro:

Goto to page containing the expense database.

Select the expense names on the page.

Copy the expense names into column B starting at

B2 (using BlockTranspose).

Select the names just copied in column B.

Calculate the coordinates of this block and store it in

Item_Block.

Select the expense names and records in the

database.

Calculate the coordinates of this block and store it in

Database_Block.

Set the variable file_saved to 0 to indicate that

unsaved changes exist.

update_freq []Weekly Used by _update_data_block to determine which expense database needs updating

copy_cell Weekly:B2..Weekly:B2 Used by _update_data_block to store the new database block and the new list of expense category names. This information is copied onto the notebook page containing the expense database

_update_data_block {_get_bar_values} Fetch current SpeedBar settings

{EditGoto +[BUDGTRAK.WB1]update_freq&":C1"} Activate the page in the active notebook that contains the expense database specified by update_freq

{IF @CELL("type",[]C(0)R(1))="v"}{END}{DOWN} If the database contains any records, move to the last record in the database

{SHIFT+END}{SHIFT+UP} Select the first column of the database. Note the active cell is now at the top of the database (C1)

{IF @CELL("type",[]D1)="l"}{SHIFT+END}{SHIFT+RIGHT} If any categories exist in the database, select them. The new database block is now selected

{LET copy_cell,@PROPERTY("Active_Block.Selection")} Store the coordinates of the selected block in the variable copy_cell

{BlockCopy [BUDGTRAK.WB1]copy_cell,+[BUDGTRAK.WB1]update_freq&":Database_Block"}Copy the new coordinates to the cell A2 on the active page. This information is used by query macros

{EditGoto C1} Select the first cell of the database (the top of the Date column)

{BlockTranspose C(1)R(0)..C(253)R(0),C(-1)R(1)} Copy the expense category names to column B starting at B2. This information is used by _add_expense

{EditGoto B2} Select the first cell of the list created by the last command

{IF @CELL("type",[]C(0)R(1))="l"}{SHIFT+END}{SHIFT+DOWN}If more than one record exists, select all the records

{LET copy_cell,@PROPERTY("Active_Block.Selection")} Store the coordinates of the selected block in the variable copy_cell

{BlockCopy [BUDGTRAK.WB1]copy_cell,+[BUDGTRAK.WB1]update_freq&":Item_Block"}Copy the new coordinates to the cell A5 on the active page. This information is used by query macros

{LET file_saved,0} Specify that until this file is saved, the user should be warned that unsaved changes exist

1

2

3

4

_disable_ui
The macro _disable_ui is called by various macros to disable or enable the

Budgteer SpeedBar and menus. Which operation is performed is determined by

ui_setting, which is set to Yes to disable the UI, or No to enable the UI. Here's

the flow of the macro:

Disable/Enable the SpeedBar by setting its Disabled

property to the setting stored in ui_setting.

Change the Depend On property of the menu items.

This prevents them from unprotecting themselves as

the user edits cells, activates new windows, and so

on.

Disable/Enable the menus by setting their Grayed

property to the setting stored in ui_setting.

If the UI is to be enabled, change the Depend On

property settings back to their defaults; then Quattro

Pro automatically ungreys the menus.

ui_setting No Used by _disable_ui to specify whether the UI should be disabled or enabled

_disable_ui {DEFINE ui_setting:string} Sets up the arguments the macro accepts

{SETOBJECTPROPERTY "[BUDGTRAK.BAR].Disabled",+[BUDGTRAK.WB1]ui_setting}Disables/Enables the SpeedBar

{SETOBJECTPROPERTY "/Budget.Depend_On","No,No,Yes,Yes,No,Yes"}Changes the areas where Budget is available. This ensures that Budget isn't accidentally enabled when it shouldn't be

{SETOBJECTPROPERTY "/Print.Depend_On","No,No,Yes,Yes,No,Yes"}Changes the areas where Print is available. This ensures that Print isn't accidentally enabled when it shouldn't be

{SETOBJECTPROPERTY "/Statistics.Depend_On","No,No,Yes,Yes,No,Yes"}Changes the areas where Statistics is available. This ensures that Statistics isn't accidentally enabled when it shouldn't be

{SETOBJECTPROPERTY "/Budget.Grayed",+[BUDGTRAK.WB1]ui_setting}Disables/Enables the Budget menu

{SETOBJECTPROPERTY "/Print.Grayed",+[BUDGTRAK.WB1]ui_setting}Disables/Enables the Print menu

{SETOBJECTPROPERTY "/Statistics.Grayed",+[BUDGTRAK.WB1]ui_setting}Disables/Enables the Statistics command

{IF [BUDGTRAK.WB1]ui_setting="Yes"}{RETURN} If the macro is supposed to disable the UI, the macro is finished, and the macro is stopped

{SETOBJECTPROPERTY "/Budget.Depend_On","Yes,Yes,No,No,No,No"}If the macro is supposed to enable the UI, this command resets the areas in which the Budget menu is available

{SETOBJECTPROPERTY "/Print.Depend_On","No,Yes,No,No,No,No"}If the macro is supposed to enable the UI, this command resets the areas in which the Print menu is available

{SETOBJECTPROPERTY "/Statistics.Depend_On","No,Yes,No,No,No,No"}If the macro is supposed to enable the UI, this command resets the areas in which the Statistics command is available

Used by _add_expense to determine how the Add Expense dialog box was closed

Dialog box setting: the name of the new expense to add

Dialog box setting: the expense database to add a new expense to

Setting of View on the Budgeteer SpeedBar

Block derived from SpeedBar setting

Formula to change dashes to underscores. For example, Bi-Monthly becomes Bi_Monthly

Make initial expense setting blank

Fetch latest SpeedBar settings

Display Add Expense dialog box

If expense is blank, end this macro

Trap if the user cancels the dialog box

Run macro that adds expense to budget

Used by _add_field to determine the name of the expense database to add a new expense column to

Fetch latest SpeedBar settings

Activate the page in the active notebook that contains the expense database specified by temp_freq

Check the column to the right of the date field to see if any expense categories have already been added. If so, select all the expense category names

Move to the cell where the new expense category name will be stored

Store the new expense category name in the active cell

Update the database block and list of expense categories to reflect the new category

If the new expense category was added to the database being viewed, set up a new query, since the information has changed

Fetch latest SpeedBar settings

Disable the SpeedBar and menus while adding a record

Erase any category names left over from the last Add operation

Activate the page in the active notebook that contains the expense database specified by current_freq

If cell D1 of the active page is blank (which indicates that no expense categories have been added to the database) display an error message and return to the record window, stopping the Add operation

Copy the expense category names to the notebook page Input, which is the form the user will input the new record into

Erase any numerical data left over from the last Add operation

Format the second row of the input form as currency, so that when the user enters a value, it displays in currency format. Notice B1 isn't included here, since that's where the date is entered

Activate the notebook page Input, which contains the input form the user will fill in

Protect all cells on the page. This ensures that only the cells unprotected later in the macro are accessible to the user

Auto-size the columns so that the expense names aren't cropped

Select the cells the user will input data into, so that they can be unprotected

Unprotect the cells the user can input data into. Used by RestrictInput later in the macro

Store the current date on the form under the date column. This way the user doesn't have to enter a date, and the form defaults to the current date

Format the default date as Long International (MM/DD/YY)

Make sure column A is wide enough to show the date

Displays instructions on how to use the form, and how to complete the add operation

Displays the input line (hidden previously by the macro \0) so that the user can see and edit entries as they're typed

Enter INPUT mode. While in INPUT mode, only cells in the block that are unprotected are accessible to the user

Wait for the user to press Enter or Esc. These user actions "approve" the new record

If the user inadvertantly erased the date listed in the date column, place the current date there again, since the date is critical to querying macros in the application

Activate the page in the active notebook that contains the expense database specified by current_freq

If the cell below Date (in C1) isn't a value, then records already exist in the database and the cell selector should move to the last record in the database

Move below the last record in the database

Copy the user data from the input form (on page Input) to the active row

Set the numeric format of the data to the same numeric format as the previous record

Update the database block to reflect the new record

Copy the coordinates of the new database block from the page containing the expense database to the variable data_block, which is used to perform queries

Set Quattro Pro's database block to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates themselves)

Return to the record window and refresh the record display

Used by _update_data_block to determine which expense database needs updating

Used by _update_data_block to store the new database block and the new list of expense category names. This information is copied onto the notebook page containing the expense database

Fetch current SpeedBar settings

Activate the page in the active notebook that contains the expense database specified by update_freq

If the database contains any records, move to the last record in the database

Select the first column of the database. Note the active cell is now at the top of the database (C1)

If any categories exist in the database, select them. The new database block is now selected

Store the coordinates of the selected block in the variable copy_cell

Copy the new coordinates to the cell A2 on the active page. This information is used by query macros

Select the first cell of the database (the top of the Date column)

Copy the expense category names to column B starting at B2. This information is used by _add_expense

Select the first cell of the list created by the last command

If more than one record exists, select all the records

Store the coordinates of the selected block in the variable copy_cell

Copy the new coordinates to the cell A5 on the active page. This information is used by query macros

Specify that until this file is saved, the user should be warned that unsaved changes exist

Used by _disable_ui to specify whether the UI should be disabled or enabled

Sets up the arguments the macro accepts

Disables/Enables the SpeedBar

Changes the areas where Budget is available. This ensures that Budget isn't accidentally enabled when it shouldn't be

Changes the areas where Print is available. This ensures that Print isn't accidentally enabled when it shouldn't be

Changes the areas where Statistics is available. This ensures that Statistics isn't accidentally enabled when it shouldn't be

Disables/Enables the Budget menu

Disables/Enables the Print menu

Disables/Enables the Statistics command

If the macro is supposed to disable the UI, the macro is finished, and the macro is stopped

If the macro is supposed to enable the UI, this command resets the areas in which the Budget menu is available

If the macro is supposed to enable the UI, this command resets the areas in which the Print menu is available

If the macro is supposed to enable the UI, this command resets the areas in which the Statistics command is available

If cell D1 of the active page is blank (which indicates that no expense categories have been added to the database) display an error message and return to the record window, stopping the Add operation

Format the second row of the input form as currency, so that when the user enters a value, it displays in currency format. Notice B1 isn't included here, since that's where the date is entered

If the user inadvertantly erased the date listed in the date column, place the current date there again, since the date is critical to querying macros in the application

Copy the coordinates of the new database block from the page containing the expense database to the variable data_block, which is used to perform queries

Set Quattro Pro's database block to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates themselves)

Used by _update_data_block to store the new database block and the new list of expense category names. This information is copied onto the notebook page containing the expense database

1

2

3

4

5

6

7

8

9

10

11

12

#NAME?

#NAME?

#NAME?

#REF!

_new_query
The macro _new_query is called when the user selects a new choice from the

View control on the Budgeteer SpeedBar, or an operation is performed that

affects the expense names that will be shown in the record window. It searches

the database and copies records that meet the SpeedBar criteria into the record

window. It also sets up the statistics displayed on the Stats page. Here's the flow

of the macro:

Activate the record window and clear it of all data.

Get the latest SpeedBar settings.

Activate the page Input and protect all the cells on it.

Calculate the coordinates of the database block to

search.

Set the database block to the property coordinates.

Create field names based on the new coordinates.

Set and specify the criteria table to search with, using

SpeedBar settings.

Copy the expense category names into the first row of

the record window.

Set the output block to the first row of the record

window.

Dress up the record window.

Set up the Stats page to display the current statistical

information.

Call _refresh_view, which copies records into the

record window.

 criteria_table Date Date Date This is the criteria table used to determine which records display in the record window.

criteria

crit_1 crit_2 crit_3 The named blocks crit_1 through crit_3 are used by _new_query and _refresh_query to specify the search criteria

view_page []Monthly Used by _new_query to determine the expense database being queried

current_day The current setting of Day on the SpeedBar

current_month The current setting of Month on the SpeedBar

current_year The current setting of Year on the SpeedBar

data_block The coordinates of the database block to query

_new_query {EditGoto Expense_View:A1} Activate the record window

{SHIFT+END}{SHIFT+HOME} Select all data in the record window

{ClearContents 1} Clear the contents of the record window

{EditGoto Expense_View:A1} De-select the record window

{_get_bar_values} Fetch current SpeedBar settings

{LET view_page,current_freq} Copy the name of the expense database being viewed into the variable view_page

{PUTBLOCK "@@(+[BUDGTRAK.WB1]view_page&"":A2"")",[BUDGTRAK.WB1]data_block}Copy the coordinates of the new database block from the page containing the expense database to the variable data_block

{Query.Database_Block +[BUDGTRAK.WB1]data_block} Set Quattro Pro's database block to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates themselves)

{Query.Assign_Names} Create field names (used in the criteria table)

{Query.Criteria_Table [BUDGTRAK.WB1]criteria_table} Set the criteria table to the block criteria_table, which is used to specify search criteria

1

2

3

4

{BLANK @CELL("ThreeDAddress",crit_1)&".."&@CELL("ThreeDAddress",crit_3)}Erase the contents of the criteria table

{IF Current_Day<>"All"}{PUTBLOCK "@CHOOSE(@MOD(+[]DATE,7),""Saturday"",""Sunday"",""Monday"",""Tuesday"",""Wednesday"",""Thursday"",""Friday"")=$Current_Day",[BUDGTRAK.WB1]crit_1}If the Day control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the day specified

{IF Current_Month<>"All"}{PUTBLOCK "@CHOOSE(@MOD(@month([]DATE),12),""December"",""January"",""February"",""March"",""April"",""May"",""June"",""July"",""August"",""September"",""October"",""November"")=$Current_Month",[BUDGTRAK.WB1]crit_2}If the Month control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the month specified

{IF Current_Year<>"All"}{PUTBLOCK "(@YEAR([]DATE)+1900)=@VALUE($Current_Year)",[BUDGTRAK.WB1]crit_3}If the Year control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the year specified

{EditGoto +[BUDGTRAK.WB1]Current_Freq&":C1"} Activate the page in the active notebook that contains the expense database specified by current_freq

{IF @CELL("type",[]C(1)R(0))="l"}{SHIFT+END}{SHIFT+RIGHT}If any categories exist in the database, select their names

{BlockCopy @PROPERTY("Active_Block.Selection"),Expense_View:A1}Copy the expense category names to the first row of the record window

{EditGoto Expense_View:A1} Activate the record window

{IF @CELL("type",[]C(1)R(0))="l"}{SHIFT+END}{SHIFT+RIGHT}If any expense category names exist, select them

{SETPROPERTY "Font.Bold","Yes"} Set the names to a bolder typeface

{SETPROPERTY "Alignment","Center"} Center the names

{COLUMNWIDTH @PROPERTY("Active_Block.Selection"),1,2,2}Auto-size the columns so that the expense names aren't cropped

{BLANK []Stats:B1..IV6} Clear out any old data on the notebook page Stats

{BlockCopy Expense_View:B1..IV1,Stats:B1} Copy the expense names to the first row of Stats

{Query.Output_Block @PROPERTY("Active_Block.Selection")}Set the output block to the first row of the record window

{EditGoto Stats:B2} Activate the notebook page that contains statistical information about records in the record window

{_add_stat "SUM","Currency,2"} Add a formula to the Stats page that totals the cost for each expense

{_add_stat "AVG","Currency,2"} Add a formula to the Stats page that returns the average cost of each expense

{_add_stat "MAX","Currency,2"} Add a formula to the Stats page that returns the maximum cost of each expense

{_add_stat "MIN","Currency,2"} Add a formula to the Stats page that returns the minimum cost of each expense

{COLUMNWIDTH []Stats:B1..IV5,1,2,2} Auto-size the columns so that the expense names and data aren't cropped

{EditGoto Expense_View:A1} Activate the record window

{SETOBJECTPROPERTY "Expense_View:A1..A8192.Numeric_Format","Long Date Intl."}Set the numeric format of the first column to date, so that dates display in MM/DD/YY format

{COLUMNWIDTH []Expense_View:A1..IV8192,1,2,2} Auto-size the columns so that the expense names and data aren't cropped

{_refresh_view} Return to the record window and refresh the record display

_refresh_view

The macro _refresh_view is called when the user selects a new choice from the

Day, Month, or Year control on the Budgeteer SpeedBar. It copies the records that

meet the criteria specified in the SpeedBar into the record window. Here's the flow

of the macro:

Get the latest SpeedBar settings.

Erase the entries in the current criteria table (the

named block criteria_table).

Set up the criteria table based on the latest settings.

Copy the records into the record window.

_refresh_view {_get_bar_values} Fetch the current SpeedBar settings

{EditGoto Expense_View:A1} Activate the record window

{BLANK @CELL("ThreeDAddress",crit_1)&".."&@CELL("ThreeDAddress",crit_3)}Erase the contents of the criteria table

{IF Current_Day<>"All"}{PUTBLOCK "@CHOOSE(@MOD(+[]DATE,7),""Saturday"",""Sunday"",""Monday"",""Tuesday"",""Wednesday"",""Thursday"",""Friday"")=$Current_Day",[BUDGTRAK.WB1]crit_1}If the Day control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the day specified

{IF Current_Month<>"All"}{PUTBLOCK "@CHOOSE(@MOD(@month([]DATE),12),""December"",""January"",""February"",""March"",""April"",""May"",""June"",""July"",""August"",""September"",""October"",""November"")=$Current_Month",[BUDGTRAK.WB1]crit_2}If the Month control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the month specified

{IF Current_Year<>"All"}{PUTBLOCK "(@YEAR([]DATE)+1900)=@VALUE($Current_Year)",[BUDGTRAK.WB1]crit_3}If the Year control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the year specified

{ONERROR _do_nothing} This ensures that if no records match the criteria specified in the SpeedBar, an error message isn't displayed

{Query.Extract} Copies records that meet the criteria specified by the SpeedBar into the record window

{RECALCCOL []Stats:A1..B8192} Refreshes the formulas on the notebook page Stats that return statistical information

0

#REF!

{COLUMNWIDTH []Expense_View:A1..IV8192,1,2,2} Auto-size the columns so that the expense names and data aren't cropped

{_restore_view} Return to the record window

_add_stat
The macro _add_stat is called by _new_query whenever a new database

@function needs to be added to the Stats page (which displays statistical

information about the records displayed in the record window). The named block

stat_formula contains a text formula that results in the statistical formula to enter.

stat_formula Used by _add_stat to specify a formula to type into the notebook page Stats

operation MIN Used by _add_stat to specify the database @function to enter on the notebook page Stats

num_format Currency,2 Used by _add_stat to specify the numeric format of the database @function entered on the notebook page Stats

_add_stat {DEFINE operation:string, num_format:string} Sets up the arguments the macro accepts

{_get_bar_values} Fetch the current SpeedBar settings

When a budget file is active, this text formula returns a macro command that selectes a row of the active page

{PUTBLOCK +[BUDGTRAK.WB1]stat_formula} Copies the formula returned by the formula stored in stat_formula into the active block

{SETPROPERTY "Numeric_Format",+[BUDGTRAK.WB1]num_format}Sets the format of the active block to the numeric format specified by num_format

{DOWN} Moves to the next row. Used when adding multiple formulas

_get_bar_values
The macro _get_bar_values is called whenever the Budgeteer needs the latest

SpeedBar settings. These SpeedBar settings are returned by formulas in the

notebook. It recalculates these formulas.

_get_bar_values {RECALCCOL ChangeDB_Macros..Query_Macros:B1..B150}Recalculates the formulas in ChangeDB_macros and Query_macros. This ensures that current results are used

_do_nothing
The macro _do_nothing is called whenever no records are found by a database

search (the search is started by _refresh_view). It makes sure the record window

is tidy by calling _restore_view.

_do_nothing {_restore_view} Used when a {Query.Extract} operation finds no records, this command re-activates the record window

_view_stats
The macro _view_stats is called when the user chooses Statistics from the

Budgeteer menu bar. It displays the statistical information stored on the notebook

page Stats and then returns to the record window.

_view_stats {_disable_ui "Yes"} Disable the SpeedBar and menus while adding a record

{SETOBJECTPROPERTY "Stats:A1..IV8192.Protection","Protect"}Protect all cells on the page. This ensures that only the cells unprotected later in the macro are accessible to the user

{EditGoto Stats:B1} Activate the notebook page Stats, which displays a list of statistics

{WindowTitles Vertical} Lock column A of Stats so that no matter how far right the user scrolls, the titles are shown

{IF @CELLPOINTER("type")="b"}{BRANCH _restore_view} If no statistics are available, re-activate the record window

{IF @CELL("type",[]C(1)R(0))<>"b"}{SHIFT+END}{SHIFT+RIGHT}If any expense category names exist, select them

{SETPROPERTY "Protection","Unprotect"} Unprotect the cells the user can select

{RestrictInput.Enter @PROPERTY("Active_Block.Selection")}Confine selector movement to the first row of the page. This lets the users scroll through the statistics, but prevents them from editing the formulas that provide the statistics

{MESSAGE help_stats,10,5,0} Display a help message that describes how to finish viewing the statistics

{PAUSEMACRO} Wait for the user to exit the viewing by pressing Enter or Esc

{_restore_view} Activate the record window

_restore_view
The macro _restore_view is called whenever the record window needs to be

activated (page Expense_View) and freshened up.

_restore_view {EditGoto Expense_View:A1} Activate the notebook page Expense_View, which is the record window the user sees

{WindowTitles Clear} Clear any locked titles, if they exist

{DOWN} Move to cell A2

{COLUMNWIDTH []Expense_View:A1..IV8192,1,2,2} Auto-size the columns so that the expense names and data aren't cropped

{_disable_ui "No"} Make sure the UI is enabled

This is the criteria table used to determine which records display in the record window.

The named blocks crit_1 through crit_3 are used by _new_query and _refresh_query to specify the search criteria

Used by _new_query to determine the expense database being queried

The current setting of Month on the SpeedBar

The coordinates of the database block to query

Copy the name of the expense database being viewed into the variable view_page

Copy the coordinates of the new database block from the page containing the expense database to the variable data_block

Set Quattro Pro's database block to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates themselves)

Create field names (used in the criteria table)

Set the criteria table to the block criteria_table, which is used to specify search criteria

If the Day control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the day specified

If the Month control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the month specified

If the Year control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the year specified

Activate the page in the active notebook that contains the expense database specified by current_freq

If any categories exist in the database, select their names

Copy the expense category names to the first row of the record window

If any expense category names exist, select them

Auto-size the columns so that the expense names aren't cropped

Clear out any old data on the notebook page Stats

Copy the expense names to the first row of Stats

Set the output block to the first row of the record window

Activate the notebook page that contains statistical information about records in the record window

Add a formula to the Stats page that totals the cost for each expense

Add a formula to the Stats page that returns the average cost of each expense

Add a formula to the Stats page that returns the maximum cost of each expense

Add a formula to the Stats page that returns the minimum cost of each expense

Auto-size the columns so that the expense names and data aren't cropped

Set the numeric format of the first column to date, so that dates display in MM/DD/YY format

Auto-size the columns so that the expense names and data aren't cropped

Return to the record window and refresh the record display

If the Day control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the day specified

If the Month control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the month specified

If the Year control on the SpeedBar isn't set to All, place a formula in the criteria table that searches for records with the year specified

This ensures that if no records match the criteria specified in the SpeedBar, an error message isn't displayed

Copies records that meet the criteria specified by the SpeedBar into the record window

Refreshes the formulas on the notebook page Stats that return statistical information

Auto-size the columns so that the expense names and data aren't cropped

Used by _add_stat to specify a formula to type into the notebook page Stats

Used by _add_stat to specify the database @function to enter on the notebook page Stats

Used by _add_stat to specify the numeric format of the database @function entered on the notebook page Stats

When a budget file is active, this text formula returns a macro command that selectes a row of the active page

Copies the formula returned by the formula stored in stat_formula into the active block

Sets the format of the active block to the numeric format specified by num_format

Moves to the next row. Used when adding multiple formulas

Recalculates the formulas in ChangeDB_macros and Query_macros. This ensures that current results are used

Used when a {Query.Extract} operation finds no records, this command re-activates the record window

Disable the SpeedBar and menus while adding a record

Protect all cells on the page. This ensures that only the cells unprotected later in the macro are accessible to the user

Activate the notebook page Stats, which displays a list of statistics

Lock column A of Stats so that no matter how far right the user scrolls, the titles are shown

If no statistics are available, re-activate the record window

If any expense category names exist, select them

Confine selector movement to the first row of the page. This lets the users scroll through the statistics, but prevents them from editing the formulas that provide the statistics

Display a help message that describes how to finish viewing the statistics

Wait for the user to exit the viewing by pressing Enter or Esc

Activate the notebook page Expense_View, which is the record window the user sees

Auto-size the columns so that the expense names and data aren't cropped

Set Quattro Pro's database block to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates themselves)

Confine selector movement to the first row of the page. This lets the users scroll through the statistics, but prevents them from editing the formulas that provide the statistics

1

2

3

4

5

1

_new_budget
The macro _new_budget is called when the user chooses Budget|New or clicks

the New button in the initial Budgeteer dialog box. It creates a new budget file on

the desktop, which the user can add records to and save. Here's the flow of the

macro:

Check if unsaved changes exist.

If unsaved changes exist, warn the user the changes will be lost.

Check if any windows are open on the desktop, and close them.

Create a new notebook.

Set up the notebook to make it a valid budget file.

file_saved Used by _open_budget, _new_budget, and _confirm_quit to determine whether unsaved changes exist in the active budget file

file_name NEWBUDG.BDG Used by _save_budget to determine the name of the active budget file

_new_budget {IF file_saved=1}{BRANCH no_warning} If the file contains no unsaved changes, branch to the part of the macro that creates the new budget file; no warning is needed

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Bitmap","_okbutt"}Make the Yes button (in the dialog box Warn) display the OK button bitmap

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Message.Label_Text","Your file hasn't been saved. Are you sure you want to erase it from memory?"}Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Label_Text","Yes "}Make the Yes button (in the dialog box Warn) display Yes on its face

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.Label_Text","Cancel"}Make the No button (in the dialog box Warn) display Cancel on its face

{DODIALOG "[BUDGTRAK.WB1]Warn",Error_Check} Display the dialog box Warn to caution the user that creating a new budget file will destroy unsaved changes to the active budget file

{IF Error_Check=0}{RETURN} If the user cancels the dialog box, stop the operation

no_warning {_check_windows "{FileClose 0}","{FileNew}"} Reset the SpeedBar to default settings (Monthly database, All days and months, the current year)

{EditGoto A:A1} Check if any windows are open on the desktop. If there aren't, create one

{_reset_speedbar} Select the first page of the new notebook. Note that even if the first page of the notebook is named Expense_View, A:A1 will still take you there; named pages can still be referred to by their original letter names

{Page.Name "Expense_View"} Name the page Expense_View. This will be the record window

{SETOBJECTPROPERTY "A1..A8192.Numeric_Format","Long Date Intl."}Format the first column in Short Date format (MM/DD/YY)

{SETOBJECTPROPERTY "B1..IV8192.Numeric_Format","Currency,2"}Format the remaining columns in Currency format

{CTRL+PGDN}{Page.Name "Stats"} Move to the next page, and name it Stats. This page contains the statistical information the user views when they choose Statistics

{EditGoto A1} Move to cell A1 of the active page

{PUTCELL Cost}{SETPROPERTY "Font.Bold","Yes"}{DOWN}Enter the label Cost and set it to bold; move down a cell

{PUTCELL Total}{DOWN} Enter the label Total; move down a cell

{PUTCELL Average}{DOWN} Enter the label Average; move down a cell

{PUTCELL Maximum}{DOWN} Enter the label Maximum; move down a cell

{PUTCELL Minimum}{DOWN} Enter the label Minimum; move down a cell

{CTRL+PGDN}{Page.Name "Input"} Move to the next page, and name it Input. This page contains the form that the user can enter records with

{CTRL+PGDN}{Page.Name "Daily"} Move to the next page, and name it Daily. This page contains the Daily expense database

{CTRL+PGDN}{Page.Name "Weekly"} Move to the next page, and name it Weekly. This page contains the Weekly expense database

{CTRL+PGDN}{Page.Name "Monthly"} Move to the next page, and name it Monthly. This page contains the Monthly expense database

{CTRL+PGDN}{Page.Name "Bi_Monthly"} Move to the next page, and name it Bi_monthly. This page contains the Bi-Monthly expense database

{CTRL+PGDN}{Page.Name "Semi_Annually"} Move to the next page, and name it Semi_Annually. This page contains the Semi-Annual expense database

{CTRL+PGDN}{Page.Name "Annually"} Move to the next page, and name it Annually. This page contains the Annual expense database

{PUTBLOCK "Date",Daily..Annually:C1} Enter the label Date in cell C1 of the pages Daily through Annually

{SETOBJECTPROPERTY "Daily..Annually:C1.Numeric_Format","Long Date Intl."}Format the cell on each database page that will contain the first entry date to Short Date format (MM/DD/YY)

{PUTBLOCK "Item List",Daily..Annually:B1} Enter the label Item List in cell B1 of the pages Daily through Annually

{PUTBLOCK "Database_Block",Daily..Annually:A1} Enter the label Database_Block in cell A1 of the pages Daily through Annually

{PUTBLOCK "Item_Block",Daily..Annually:A4} Enter the label Item_Block in cell A4 of the pages Daily through Annually

{PUTBLOCK "@CELL(""ThreeDAddress"",Daily:C1)",Daily..Annually:A2}Put the address of the first cell of the database block in cell C1 on pages Daily through Annually. This cell is used on each page to determine the coordinates of the database block on the active page. As the PUTBLOCK command copies the entry down through the pages, the reference Daily:C1 adjusts to refer to the active page (Daily:C1, Weekly:C1, Monthly:C1, and so on)

{BlockName.Create "Database_Block","Daily:A2"} Create the block name Database_Block, and make it refer to the cell A2. This block name is used by many Budgeteer macros to determine where the data is located on each page

{BlockName.Create "Item_Block","Daily:A5"} Create the block name Item_Block, and make it refer to the cell A5. This block name is used by many Budgeteer macros to determine where a list of expense category names is located on each page. _add_expense uses this list

{EditGoto Expense_View:A1} Return to the page that's used as the record window

{Page.Borders "No,No"} Hide the row and column borders on the active page

{Page.Grid_Lines "Yes,No"} Hide the vertical grid lines on the active page

{Notebook.Display "Yes,Yes,No"} Hide the page tabs on the active page. This hides the existence of other notebook pages from the user

{LET File_Saved,1} Set file_saved to indicate that no unsaved changes exist

{_new_query} Set up a new database query

_check_validity
The macro _check_validity is called whenever a budget file is opened to make

sure the notebook loaded is a valid budget file. It checks for the existence of

pages and named blocks the Budgeteer must use.

_check_validity {IF @ISERR(@@("[]Expense_View:A1"))}{BRANCH _invalid_file}Check if the active notebook contains a page named Expense_View. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Stats:A1"))}{BRANCH _invalid_file} Check if the active notebook contains a page named Stats. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Daily:A1"))}{BRANCH _invalid_file} Check if the active notebook contains a page named Daily. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Weekly:A1"))}{BRANCH _invalid_file} Check if the active notebook contains a page named Weekly. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Monthly:A1"))}{BRANCH _invalid_file} Check if the active notebook contains a page named Monthly. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Bi_Monthly:A1"))}{BRANCH _invalid_file}Check if the active notebook contains a page named Bi_Monthly. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Semi_Annually:A1"))}{BRANCH _invalid_file}Check if the active notebook contains a page named Semi_Annually. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Annually:A1"))}{BRANCH _invalid_file} Check if the active notebook contains a page named Annually. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Database_Block"))}{BRANCH _invalid_file}Check if the active notebook contains a block named Database_Block. If it doesn't, branch to the macro that closes the invalid budget file

{IF @ISERR(@@("[]Item_Block"))}{BRANCH _invalid_file} Check if the active notebook contains a block named Item_Block. If it doesn't, branch to the macro that closes the invalid budget file

{_new_query} Set up a new database query

_invalid_file
The macro _invalid_file is called when the active window can't be used as a

budget file. It displays a message explaining that and closes the active window.

_invalid_file {MESSAGE help_invalidf,10,15,0} Display a message explaining that the active notebook doesn't have the items needed to be a budget file

{FileClose 0} Close the active notebook

(_new_budget} Create a new budget file

_check_windows
The macro _check_windows is called by various macros to check whether

windows are open on the desktop. If a window is open, the macro commands

stored in the variable open_routine are run. If no windows are open, the macro

commands stored in the variable close_routine are run. This macro is

self-modifying; it changes depending on the arguments passed to it.

open_routine {FileClose 0} Used by _check_windows to determine what operation should be performed if there's a window open on the desktop

1

2

3

4

5

6

7

0

close_routine {FileNew} Used by _check_windows to determine what operation should be performed if there are no windows open on the desktop

_check_windows {DEFINE open_routine:string,close_routine:string} Sets up the arguments the macro accepts

_check_win_loop {BLANK open_windows} Erase the cell named open_windows (the cell open_windows is at the bottom of this page)

{GETWINDOWLIST open_windows} Get a list of open, unhidden windows and store them starting at the named cell open_windows

{IF @CELL("type",[BUDGTRAK.WB1]open_windows)<>"b"}{open_routine}If the cell open_windows is blank, then no windows are open, so the macro stored in open_routine is run

{close_routine} If the cell open_windows isn't blank, then no windows are open, so the macro stored in close_routine is run

_save_budget
The macro _save_budget is called when the user chooses File|Save or File|Save

As. It saves the active notebook under the name stored in the variable file_name,

and then sets file_saved to 1 to indicate that no unsaved changes exist.

_save_budget {ONERROR _filing_error} If a problem occurs while saving the file, run the macro _filing error

{EditGoto Expense_View:A2} Move back to the record window

{FileSaveAs +[BUDGTRAK.WB1]file_name,Replace} Save the file, replacing it if it already exists on disk

{LET file_saved,1} Set file_saved to indicate that no unsaved changes exist

_open_budget
The macro _open_budget is called when the user chooses Budget|Open. It loads

a budget file. Here's the flow of the macro:

Check if unsaved changes exist.

If unsaved changes exist, warn the user the changes

will be lost.

Check if any windows are open on the desktop, if

there aren't any, create a new notebook.

Request the name of a budget file to load.

Load the budget file into the active notebook.

Check if the file is a valid budget file (using

_check_validity).

If the file is valid, start a new query using current

SpeedBar settings (this step is done in the macro

_check_validity). If not, close the file.

temp_file *.BDG Used by _open_budget and _save_budget_as to specify the files shown in the InitOpen dialog box

filing_result Used by _open_budget and _save_budget_as to find out how the user closed the InitOpen dialog box (OK or Cancel)

_open_budget {IF file_saved=1}{BRANCH no_warning2} If the file contains no unsaved changes, branch to the part of the macro that opens the new bugdet file; no warning is needed

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Bitmap","_okbutt"}Make the Yes button (in the dialog box Warn) display the OK button bitmap

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Message.Label_Text","Your file hasn't been saved. Are you sure you want to erase it from memory?"}Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Label_Text","Yes "}Make the Yes button (in the dialog box Warn) display Yes on its face

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.Label_Text","Cancel"}Make the No button (in the dialog box Warn) display Cancel on its face

1

2

3

4

5

6

{DODIALOG "Warn",Error_Check} Display the dialog box Warn to caution the user that creating a new budget file will destroy unsaved changes to the active budget file

{IF Error_Check=0}{RETURN} If the user cancels the dialog box, stop the operation

no_warning2 {SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:NewButton.Hidden","Yes"}Hide the new button in the dialog box InitOpen

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:.Title","Enter name of budget to open"}Set the title appearing at the top of the dialog box

{LET temp_file,"*.BDG"} Set the temp_file to *.BDG. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display

{DODIALOG "[BUDGTRAK.WB1]InitOpen",filing_result,temp_file}Display a dialog box requesting the name of the budget file to open

{IF filing_result=0}{QUIT} If the user cancels the dialog box, stop the operation

{FileClose 0}{FileNew} Check if any windows are open on the desktop. If there aren't, create one

{ONERROR _filing_error} If a problem occurs while opening the file, run the macro _filing_error

{FileRetrieve +[BUDGTRAK.WB1]temp_file} Open the new budget file

{LET file_name,temp_file} Copy the new file name to file_name, which always contains the name of the active budget file

{LET file_saved,1} Set file_saved to indicate that no unsaved changes exist

{_check_validity} Check whether the new budget file is a valid budget file

_save_budget_as
The macro _save_budget_as is called when the user chooses File|Save As. It

requests a new name for the active budget file, and saves the active budget file

under the new name.

_save_budget_as {SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:NewButton.Hidden","Yes"}Hide the New button in the dialog box InitOpen

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:.Title","Save budget as"}Set the title appearing at the top of the dialog box

{LET temp_file,@UPPER(file_name)} Set the variable temp_file to the current name of the budget file. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display

{DODIALOG "[BUDGTRAK.WB1]InitOpen",filing_result,temp_file}Display a dialog box requesting the new name of the budget file

{IF filing_result=0}{BRANCH _restore_view} If the user cancels the dialog box, stop the operation

{LET file_name,temp_file} Copy the new file name to file_name, which always contains the name of the active budget file

{_save_budget} Save the budget file under the new name

{LET file_saved,1} Set file_saved to indicate that no unsaved changes exist

{_restore_view} Activate the record window

_init_screen
The macro _init_screen is called when Budgeteer first opens. It closes any

windows the Budgeteer can't use, and then displays a dialog box requesting the

name of a budget file to open. Here's the flow of the macro:

Reset the SpeedBar to default settings.

Close any open windows, prompting the user if any of

the windows has unsaved changes.

Request the name of a budget file to load. If the user

cancels the dialog box, or chooses New from it,

create a new budget file.

Load the budget file into the active notebook.

Make sure it's a valid budget file.

Start a new query using _new_query

_init_screen {_check_windows "{FileClose 1}{BRANCH _check_win_loop}","{RETURN}"}Check if any windows are open on the desktop. If there are, close them, prompting the user to save any changes

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:NewButton.Hidden","No"}Make sure the New button in the dialog box InitOpen isn't hidden

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:.Title","Enter name of budget to use"}Set the title appearing at the top of the dialog box

{LET temp_file,"*.BDG"} Set the temp_file to *.BDG. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display

{DODIALOG "[BUDGTRAK.WB1]InitOpen",filing_result,temp_file}Display a dialog box requesting the name of the budget file to open

{IF filing_result=0}{BRANCH _new_budget} If the user cancels the dialog box, create a new budget file

{LET file_name,temp_file} Copy the new file name to file_name, which always contains the name of the active budget file

{ONERROR _filing_error} If a problem occurs while opening the file, run the macro _filing_error

{FileNew}{_reset_speedbar} Create a new notebook and reset the SpeedBar to default settings (Monthly database, All days and months, the current year)

{FileRetrieve +[BUDGTRAK.WB1]temp_file} Open the budget file

{LET file_saved,1} Set file_saved to indicate that no unsaved changes exist

{_check_validity} Check whether the new budget file is a valid budget file

{_restore_view} Activate the record window

{_new_query} Set up a new database query

_reset_speedbar
The macro _reset_speedbar is called whenever a new budget file is created. It sets

the SpeedBar to the following defaults: View to Monthly, Day to All, Month to All,

and Year to the current year.

_reset_speedbar {SETOBJECTPROPERTY "[BUDGTRAK.BAR]View.Value","Monthly"}Set the View control on the SpeedBar to Monthly

{SETOBJECTPROPERTY "[BUDGTRAK.BAR]Month.Value","All"}Set the Month control on the SpeedBar to All

{SETOBJECTPROPERTY "[BUDGTRAK.BAR]Day.Value","All"}Set the Day control on the SpeedBar to All

{SETOBJECTPROPERTY "[BUDGTRAK.BAR]Year.Value",+1900+@YEAR(@TODAY)}Set the Year control on the SpeedBar to the current year

_filing_error
The macro _filing_error is called whenever a problem occurs while loading or

saving a budget file. It sounds the computer's bell and displays an error message.

_filing_error {BEEP 2}{BEEP 4}{MESSAGE help_filerr,10,15,0} Sound the computer's bell and display a message explaining that an error has occurred

_confirm_quit
The macro _confirm_quit is called by the macro _clear_app when unsaved

changes exist. It asks the user to verify that they want to quit the Budgeteer and

lose the changes.

_confirm_quit {SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Bitmap","_okbutt"}Make the Yes button (in the dialog box Warn) display the OK button bitmap

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Message.Label_Text","Your file hasn't been saved. Are you sure you want to quit?"}Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Label_Text","Yes "}Make the Yes button (in the dialog box Warn) display Yes on its face

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.Label_Text","Cancel"}Make the No button (in the dialog box Warn) display Cancel on its face

{DODIALOG "Warn",Error_Check} Display the dialog box Warn to caution the user that quitting the Budgeteer will destroy unsaved changes to the active budget file

{IF Error_Check=0}{QUIT} If the user cancels the dialog box, stop the operation

open_windows Used by _check_windows to store a list of open, unhidden windows on the desktop

Used by _open_budget, _new_budget, and _confirm_quit to determine whether unsaved changes exist in the active budget file

Used by _save_budget to determine the name of the active budget file

If the file contains no unsaved changes, branch to the part of the macro that creates the new budget file; no warning is needed

Make the Yes button (in the dialog box Warn) display the OK button bitmap

Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

Make the Yes button (in the dialog box Warn) display Yes on its face

Make the No button (in the dialog box Warn) display Cancel on its face

Display the dialog box Warn to caution the user that creating a new budget file will destroy unsaved changes to the active budget file

If the user cancels the dialog box, stop the operation

Reset the SpeedBar to default settings (Monthly database, All days and months, the current year)

Check if any windows are open on the desktop. If there aren't, create one

Select the first page of the new notebook. Note that even if the first page of the notebook is named Expense_View, A:A1 will still take you there; named pages can still be referred to by their original letter names

Name the page Expense_View. This will be the record window

Format the first column in Short Date format (MM/DD/YY)

Format the remaining columns in Currency format

Move to the next page, and name it Stats. This page contains the statistical information the user views when they choose Statistics

Enter the label Cost and set it to bold; move down a cell

Move to the next page, and name it Input. This page contains the form that the user can enter records with

Move to the next page, and name it Daily. This page contains the Daily expense database

Move to the next page, and name it Weekly. This page contains the Weekly expense database

Move to the next page, and name it Monthly. This page contains the Monthly expense database

Move to the next page, and name it Bi_monthly. This page contains the Bi-Monthly expense database

Move to the next page, and name it Semi_Annually. This page contains the Semi-Annual expense database

Move to the next page, and name it Annually. This page contains the Annual expense database

Enter the label Date in cell C1 of the pages Daily through Annually

Format the cell on each database page that will contain the first entry date to Short Date format (MM/DD/YY)

Enter the label Item List in cell B1 of the pages Daily through Annually

Enter the label Database_Block in cell A1 of the pages Daily through Annually

Enter the label Item_Block in cell A4 of the pages Daily through Annually

Put the address of the first cell of the database block in cell C1 on pages Daily through Annually. This cell is used on each page to determine the coordinates of the database block on the active page. As the PUTBLOCK command copies the entry down through the pages, the reference Daily:C1 adjusts to refer to the active page (Daily:C1, Weekly:C1, Monthly:C1, and so on)

Create the block name Database_Block, and make it refer to the cell A2. This block name is used by many Budgeteer macros to determine where the data is located on each page

Create the block name Item_Block, and make it refer to the cell A5. This block name is used by many Budgeteer macros to determine where a list of expense category names is located on each page. _add_expense uses this list

Return to the page that's used as the record window

Hide the row and column borders on the active page

Hide the page tabs on the active page. This hides the existence of other notebook pages from the user

Set file_saved to indicate that no unsaved changes exist

Check if the active notebook contains a page named Expense_View. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Stats. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Daily. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Weekly. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Monthly. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Bi_Monthly. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Semi_Annually. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a page named Annually. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a block named Database_Block. If it doesn't, branch to the macro that closes the invalid budget file

Check if the active notebook contains a block named Item_Block. If it doesn't, branch to the macro that closes the invalid budget file

Display a message explaining that the active notebook doesn't have the items needed to be a budget file

Used by _check_windows to determine what operation should be performed if there's a window open on the desktop

Used by _check_windows to determine what operation should be performed if there are no windows open on the desktop

Erase the cell named open_windows (the cell open_windows is at the bottom of this page)

Get a list of open, unhidden windows and store them starting at the named cell open_windows

If the cell open_windows is blank, then no windows are open, so the macro stored in open_routine is run

If the cell open_windows isn't blank, then no windows are open, so the macro stored in close_routine is run

If a problem occurs while saving the file, run the macro _filing error

Save the file, replacing it if it already exists on disk

Set file_saved to indicate that no unsaved changes exist

Used by _open_budget and _save_budget_as to specify the files shown in the InitOpen dialog box

Used by _open_budget and _save_budget_as to find out how the user closed the InitOpen dialog box (OK or Cancel)

If the file contains no unsaved changes, branch to the part of the macro that opens the new bugdet file; no warning is needed

Make the Yes button (in the dialog box Warn) display the OK button bitmap

Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

Make the Yes button (in the dialog box Warn) display Yes on its face

Make the No button (in the dialog box Warn) display Cancel on its face

Display the dialog box Warn to caution the user that creating a new budget file will destroy unsaved changes to the active budget file

If the user cancels the dialog box, stop the operation

Set the title appearing at the top of the dialog box

Set the temp_file to *.BDG. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display

Display a dialog box requesting the name of the budget file to open

If the user cancels the dialog box, stop the operation

Check if any windows are open on the desktop. If there aren't, create one

If a problem occurs while opening the file, run the macro _filing_error

Copy the new file name to file_name, which always contains the name of the active budget file

Set file_saved to indicate that no unsaved changes exist

Check whether the new budget file is a valid budget file

Set the title appearing at the top of the dialog box

Set the variable temp_file to the current name of the budget file. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display

Display a dialog box requesting the new name of the budget file

If the user cancels the dialog box, stop the operation

Copy the new file name to file_name, which always contains the name of the active budget file

Set file_saved to indicate that no unsaved changes exist

Check if any windows are open on the desktop. If there are, close them, prompting the user to save any changes

Make sure the New button in the dialog box InitOpen isn't hidden

Set the title appearing at the top of the dialog box

Set the temp_file to *.BDG. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display

Display a dialog box requesting the name of the budget file to open

If the user cancels the dialog box, create a new budget file

Copy the new file name to file_name, which always contains the name of the active budget file

If a problem occurs while opening the file, run the macro _filing_error

Create a new notebook and reset the SpeedBar to default settings (Monthly database, All days and months, the current year)

Set file_saved to indicate that no unsaved changes exist

Check whether the new budget file is a valid budget file

Set the View control on the SpeedBar to Monthly

Set the Year control on the SpeedBar to the current year

Sound the computer's bell and display a message explaining that an error has occurred

Make the Yes button (in the dialog box Warn) display the OK button bitmap

Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

Make the Yes button (in the dialog box Warn) display Yes on its face

Make the No button (in the dialog box Warn) display Cancel on its face

Display the dialog box Warn to caution the user that quitting the Budgeteer will destroy unsaved changes to the active budget file

If the user cancels the dialog box, stop the operation

Used by _check_windows to store a list of open, unhidden windows on the desktop

Select the first page of the new notebook. Note that even if the first page of the notebook is named Expense_View, A:A1 will still take you there; named pages can still be referred to by their original letter names

Put the address of the first cell of the database block in cell C1 on pages Daily through Annually. This cell is used on each page to determine the coordinates of the database block on the active page. As the PUTBLOCK command copies the entry down through the pages, the reference Daily:C1 adjusts to refer to the active page (Daily:C1, Weekly:C1, Monthly:C1, and so on)

Create the block name Database_Block, and make it refer to the cell A2. This block name is used by many Budgeteer macros to determine where the data is located on each page

Create the block name Item_Block, and make it refer to the cell A5. This block name is used by many Budgeteer macros to determine where a list of expense category names is located on each page. _add_expense uses this list

Put the address of the first cell of the database block in cell C1 on pages Daily through Annually. This cell is used on each page to determine the coordinates of the database block on the active page. As the PUTBLOCK command copies the entry down through the pages, the reference Daily:C1 adjusts to refer to the active page (Daily:C1, Weekly:C1, Monthly:C1, and so on)

1

2

3

4

5

6

7

2

2

[]C(0)R(0)..C(1)R(1)

_print_budget
The macro _print_budget is called when the user chooses a command on the

Print menu. It prints the budget database(s) specified by the user. Here's the flow

of the macro:

If the user chose Print|All, run the macro _print_all

instead.

If the user chose Print|Current, run the macro

_print_current instead.

Activate the notebook page that contains the

expense database to print.

Check if there's any data to print; if not, stop the

operation.

Clean up the expense data to make it presentable.

Set the print block and headings to the data in the

expense database.

Print the expense database and return to the record

window.

print_data Annually Used by _print_budget to determine what data should print

entire_block Monthly:C1..Monthly:E3 Used by _print_budget to store the coordinates of the block that will print

p_width Used by _print_budget to store the width of the expense database, in columns

p_height Used by _print_budget to store the height of the expense database, in rows

print_block Used by _print_budget to calculate the block of data to set as the print block. This formula is needed because the first column and row of the expense database can't be included in the print block; they're used as the top and left heading

_print_budget {DEFINE print_data:string} Sets up the arguments the macro accepts

{IF print_data="All"}{BRANCH _print_all} If the user requested that all data be printed, run the macro _print_all

{IF print_data="Current"}{BRANCH _print_current} If the user requested that all data in the record window be printed, run the macro _print_current

{EditGoto +[BUDGTRAK.WB1]print_data&":C2"} Activate the page in the active notebook that contains the expense database specified by print_data

{IF @CELL("type",[]D1)="b"}{_restore_view}{RETURN} If D1 on this page is blank, no expense categories exist in the database, and the print operation is stopped

{IF @CELLPOINTER("type")="b"}{_restore_view}{RETURN} If C2 on this page is blank, no records exist in the database, and the print operation is stopped

{BlockCopy +[BUDGTRAK.WB1]print_data&":database_block",[BUDGTRAK.WB1]entire_block}Copy the database block coordinates to the variable entire_block

{COLUMNWIDTH +[BUDGTRAK.WB1]entire_block,1,2,2} Auto-size the columns so that the expense names and data aren't cropped

{EditGoto +[BUDGTRAK.WB1]entire_block} Select the block of data that will print

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,Thin,Clear"}Draw thin vertical lines between each column of the block

{LET p_width,@COLS(@@(+"[]"&entire_block))-1} Store the number of columns in the selected block in the variable p_width

{LET p_height,@ROWS(@@(+"[]"&entire_block))-1} Store the number of rows in the selected block in the variable p_height

{RECALCCOL Print_macros:B1..B100} Update the formulas on this page that calculate the print block and headings

{SelectBlock +[BUDGTRAK.WB1]print_data&":1"} Select the first row of the active page (containing the expense names)

{SETPROPERTY "Alignment","Center"} Center the expense category names

{EditGoto D2} Move to the first cell of the first record in the expense database

{Print.PrintReset} Clear any old print settings

{Print.Orientation Landscape} Specify that the data should print sideways on the page

{Print.Top_Heading C1} Set the top heading to the first row (the expense category names). If the printout spans multiple pages, this row prints at the top of each page

{Print.Left_Heading C1} Set the left heading to the first column (the entry dates). If the printout is too wide to fit on one page, this column prints at the left of each page

{Print.Block +[BUDGTRAK.WB1]print_block} Set the print block to the coordinates calculated by the formula stored in the variable print_data

{Print.DoPrint} Print the data

1

2

3

4

5

6

[]C(-1)R(-1)..C(1)R(1)

{SelectBlock +[BUDGTRAK.WB1]entire_block} Select the database block again

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,Clear,Clear"}Erase any line drawings left previously

{_restore_view} Activate the record window

_print_all
The macro _print_all is called by _print_budget when the user chooses Print|All

from the Budgeteer menu. It prints all the expense databases using

_print_budget.

_print_all {_print_budget "Daily"} Print Daily expense database

{_print_budget "Weekly"} Print Weekly expense database

{_print_budget "Monthly"} Print Monthly expense database

{_print_budget "Bi_Monthly"} Print Bi-Monthly expense database

{_print_budget "Semi_Annually"} Print Semi-Annual expense database

{_print_budget "Annually"} Print Annual expense database

_print_current
The macro _print_current is called by _print_budget when the user chooses

Print|Current from the Budgeteer menu. It prints the records displaying in the

record window. Here's the flow of the macro:

Check if there are any records to print; if not, stop the

operation.

Set the print block and headings to the data in the

record window.

Activate the notebook page that contains the

expense database to print.

Check if there's any data to print; if not, stop the

operation.

Clean up the expense data to make it presentable.

Print the expense data and return to the record

window.

top_heading Expense_View:B1..Expense_View:C1 Used by _print_current to specify the top heading of the printout. This information prints at the top of each page of the printout

left_heading Expense_View:A2..Expense_View:A3 Used by _print_current to specify the left heading of the printout. This information prints at the left side of each page of the printout

whole_block Used by whole_block to calculate the block of data to set as the print block. This formula is needed because the first column and row of the data can't be included in the print block; they're used as the top and left heading

_print_current {EditGoto Expense_View:B1} Activate the record window

{IF @CELLPOINTER("type")="b"}{BRANCH _restore_view} If no categories are shown in the record window, stop the print operation

{IF @CELL("type",[]A2)="b"}{BRANCH _restore_view} If no records are shown in the record window, stop the print operation

{IF @CELL("type",[]C(1)R(0))<>"b"}{SHIFT+END}{SHIFT+RIGHT}If any categories exist in the database, select their names

{LET top_heading,@PROPERTY("Active_Block.Selection")} Set the top heading to the first row (the expense category names). If the printout spans multiple pages, this row prints at the top of each page

{LET p_width,@COLS(@@(+"[]"&top_heading))} Store the number of columns in the selected block in the variable p_width

{EditGoto A2} Move to the cell A2

{IF @CELL("type",[]C(0)R(1))<>"b"}{SHIFT+END}{SHIFT+DOWN}If more than one record exists, select each cell in the first column that contains a record

{LET left_heading,@PROPERTY("Active_Block.Selection")} Set the left heading to the first column (the entry dates). If the printout is too wide to fit on one page, this column prints at the left of each page

{LET p_height,@ROWS(@@(+"[]"&left_heading))} Store the number of rows in the selected block in the variable p_height

{RECALCCOL Print_macros:B1..B100} Update the formulas on this page that calculate the print block and headings

{EditGoto B2} Move to the cell B2

{COLUMNWIDTH +[BUDGTRAK.WB1]whole_block,1,2,2} Auto-size the columns so that the expense names and data aren't cropped

{SelectBlock +[BUDGTRAK.WB1]whole_block} Select the whole block of data, including expense names

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,Thin,Clear"}Draw thin vertical lines between each column of the block

{EditGoto B2} Move to the first cell of the first record in the expense database

{Print.PrintReset} Clear any old print settings

{Print.Orientation Landscape} Specify that the data should print sideways on the page

{Print.Top_Heading +[BUDGTRAK.WB1]top_heading} Set the top heading to the first row (the expense category names). If the printout spans multiple pages, this row prints at the top of each page

{Print.Left_Heading +[BUDGTRAK.WB1]left_heading} Set the left heading to the first column (the entry dates). If the printout is too wide to fit on one page, this column prints at the left of each page

{Print.Block +[BUDGTRAK.WB1]print_block} Set the print block to the coordinates calculated by the formula stored in the variable print_data

{Print.DoPrint} Print the data

{SelectBlock +[BUDGTRAK.WB1]whole_block} Select the whole block of records and names again

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,Clear,Clear"}Erase any line drawings left previously

{EditGoto B2} Activate the record window

Used by _print_budget to determine what data should print

Used by _print_budget to store the coordinates of the block that will print

Used by _print_budget to store the width of the expense database, in columns

Used by _print_budget to store the height of the expense database, in rows

Used by _print_budget to calculate the block of data to set as the print block. This formula is needed because the first column and row of the expense database can't be included in the print block; they're used as the top and left heading

If the user requested that all data be printed, run the macro _print_all

If the user requested that all data in the record window be printed, run the macro _print_current

Activate the page in the active notebook that contains the expense database specified by print_data

If D1 on this page is blank, no expense categories exist in the database, and the print operation is stopped

If C2 on this page is blank, no records exist in the database, and the print operation is stopped

Copy the database block coordinates to the variable entire_block

Auto-size the columns so that the expense names and data aren't cropped

Draw thin vertical lines between each column of the block

Store the number of columns in the selected block in the variable p_width

Store the number of rows in the selected block in the variable p_height

Update the formulas on this page that calculate the print block and headings

Select the first row of the active page (containing the expense names)

Move to the first cell of the first record in the expense database

Specify that the data should print sideways on the page

Set the top heading to the first row (the expense category names). If the printout spans multiple pages, this row prints at the top of each page

Set the left heading to the first column (the entry dates). If the printout is too wide to fit on one page, this column prints at the left of each page

Set the print block to the coordinates calculated by the formula stored in the variable print_data

Used by _print_current to specify the top heading of the printout. This information prints at the top of each page of the printout

Used by _print_current to specify the left heading of the printout. This information prints at the left side of each page of the printout

Used by whole_block to calculate the block of data to set as the print block. This formula is needed because the first column and row of the data can't be included in the print block; they're used as the top and left heading

If no categories are shown in the record window, stop the print operation

If no records are shown in the record window, stop the print operation

If any categories exist in the database, select their names

Set the top heading to the first row (the expense category names). If the printout spans multiple pages, this row prints at the top of each page

Store the number of columns in the selected block in the variable p_width

If more than one record exists, select each cell in the first column that contains a record

Set the left heading to the first column (the entry dates). If the printout is too wide to fit on one page, this column prints at the left of each page

Store the number of rows in the selected block in the variable p_height

Update the formulas on this page that calculate the print block and headings

Auto-size the columns so that the expense names and data aren't cropped

Select the whole block of data, including expense names

Draw thin vertical lines between each column of the block

Move to the first cell of the first record in the expense database

Specify that the data should print sideways on the page

Set the top heading to the first row (the expense category names). If the printout spans multiple pages, this row prints at the top of each page

Set the left heading to the first column (the entry dates). If the printout is too wide to fit on one page, this column prints at the left of each page

Set the print block to the coordinates calculated by the formula stored in the variable print_data

Select the whole block of records and names again

Used by _print_budget to calculate the block of data to set as the print block. This formula is needed because the first column and row of the expense database can't be included in the print block; they're used as the top and left heading

Used by whole_block to calculate the block of data to set as the print block. This formula is needed because the first column and row of the data can't be included in the print block; they're used as the top and left heading

1

2

3

4

5

6

7

8

2

2

_graph_view
The macro _graph_view is called when the user chooses Graph from the

Budgeteer SpeedBar. It constructs a macro (named _build_graph) that creates

a graph using the data in the record window. Here's the flow of the macro:

Check if there are records to graph; if not, stop the

operation.

Select the first row of the record window and store its

coordinates in the block legend_series. This block is

used later.

Measure the width of the row; this is to determine how

many series have to be created in the graph.

Select the first column of the record window and store

its coordinates in the block xaxis_series. This block is

used later.

Measure the height of the column; this is to determine

how many data points will exist in each series.

Using the measurements previously calculated, create

a list of macros commands starting at the cell named

_build_series that creates series in the graph.

Copy the macros commands stored in the block

finishing_mac just below the commands created in

the previous step.

Run the macro that builds the graph (_build_graph).

g_width Used by _graph_view to store the number of series in the graph

g_height Used by _graph_view to store the number of points on each series of the graph

legend_series Expense_View:B1..Expense_View:C1 Used by _graph_view to store the block in the record window that contains legend text

xaxis_series Expense_View:A2..Expense_View:A3 Used by _graph_view to store the block in the record window that contains labels for the X-Axis

_graph_view {EditGoto Expense_View:B1} Activate the record window, and select the first cell of the first record

{IF @CELLPOINTER("type")="b"}{BRANCH _restore_view} If there's no first record, stop the operation

{IF @CELL("type",[]A2)="b"}{BRANCH _restore_view} If there are no expense categories, stop the operation

{IF @CELL("type",[]C(1)R(0))<>"b"}{SHIFT+END}{SHIFT+RIGHT}If expense categories exist, select their names

{LET legend_series,@PROPERTY("Active_Block.Selection")}Set the legend series to the selected block. A legend appears in the graph showing what each series represents; this legend series specifies the labels that appear in that legend

{LET g_width,@COLS(@@(+"[]"&legend_series))} Store the number of series to create in the variable g_width

{EditGoto A2} Move to cell A2

{IF @CELL("type",[]C(0)R(1))<>"b"}{SHIFT+END}{SHIFT+DOWN}If more than one record exists, select all cells in the first column that contain entry dates

{LET xaxis_series,@PROPERTY("Active_Block.Selection")} Set the X-Axis series to the selected block. The X-Axis series specifies the labels that appear at the bottom of the graph

{LET g_height,@ROWS(@@(+"[]"&xaxis_series))} Store the number of data points in each series in the variable g_height

{EditGoto A2} Move to cell A2

{FOR series_number,1,g_width,1,_add_series} Dynamically create the macro commands that will create the series in the graph. These commands are stored starting at the named cell _build_series

{RECALCCOL Graph_macros:B1..B250} Update the formulas in this page that determine where the last part of _build_graph should be placed

{BlockCopy [BUDGTRAK.WB1]finishing_mac,+[BUDGTRAK.WB1]command_cell}Copy the macro stored in finishing_mac to just after the series commands created by _add_series

{_build_graph} Run the macro that actually builds the graph

1

2

3

4

5

1

2

3

4

[]C(3)R(0)..C(3)R(1)

finishing_mac
The macro finishing_mac isn't called by itself; it's copied to the end of the list of

macro commands created by _graph_view. Here's the flow of the macro:

Create the series just defined by _build_series.

Make the graph more presentable.

Display the graph full screen.

Ask the user if they'd like to print the graph; if so, print

the graph.

Activate the record window.

 finishing_mac {Series.Go} Create the series

{SETOBJECTPROPERTY "G$Y1Axis.Numeric_Format","Currency,2"}Set the numeric format of the current graph's Y-Axis to Currency

{WindowClose} Close the active graph window

{GraphView Expense} View the graph just created

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Bitmap","printbut"}Make the Yes button (in the dialog box Warn) display the print button bitmap

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Message.Label_Text","Would you like to print the graph?"}Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.Label_Text","Print"}Make the Yes button (in the dialog box Warn) display Print on its face

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.Label_Text","No "}Make the No button (in the dialog box Warn) display No on its face

{DODIALOG "[BUDGTRAK.WB1]Warn",Error_Check} Display the dialog box Warn to ask the user if they wish to print the graph

{IF Error_Check=0}{SELECTBLOCK Expense_View:A2}{RETURN}If the user cancels the dialog box, don't print the graph and return to the record window

{GRAPHPAGEGOTO} Activate the Graphs page

{SELECTOBJECT Expense} Select the icon representing the named graph Expense

{Print.DoPrintGraph} Print the named graph Expense

{SELECTBLOCK Expense_View:A2} Activate the record window

{RETURN} Stop the macro

_add_series
The macro _add_series is called by _graph_view to create a command in the

macro _build_graph that creates a graph series. This command is copied into the

cell whose address is calculated by the formula stored in command_cell (which

recalcutes to a different address each time _add_series is called). Here's the flow

of the macro:

Select the data that this series plots. The coordinates

are calculated by the formula stored in series_block.

Copy the coordinates of the selected block to the

variable data_range.

Recalculate the formulas that calculate the series

command to create.

Copy the command created by the formula stored in

series_command into the cell whose address is

calculated by the formula stored in command_cell.

series_block Used by _add_series to return the relative address of the series data to select

data_range Expense_View:C2..Expense_View:C3 Used by _add_series to store the coordinates of the series to add

3

{Series.Data_Range 3,Expense_View:C2..Expense_View:C3,

[BUDGTRAK.WB1]Graph_macros:B137

1

2

3

4

series_number Used by _add_series to store the series number being created

series_command Used by _add_series to return the command that will be copied to _build_series

_add_series {EditGoto A2} Move to cell A2

{SelectBlock +[BUDGTRAK.WB1]series_block} Select the block whoses coordinates are computed by the formula in series_block

{LET data_range,@PROPERTY("Active_Block.Selection")} Store the regular block coordinates of the selected block in data_range

{RECALCCOL Graph_macros:B1..B250} Recalculate the formula that determines the series command to add to the macro _build_graph

{LET +command_cell,+series_command} Copy the series command calculated in the named cell series_command to the cell calculated by the formula command_cell

command_cell Used by _add_series to return the cell address of the next cell that the macro can copy a command to

_build_graph
The macro _build_graph is called by _graph_view to create a graph that plots the

expense data in the record window. The portion of _build_graph above the named

cell _build_series never changes; starting at _build_series, commands are created

by _graph_view that create the series plotted in the graph, display the graph full

screen, and ask the user if they want to print the graph.

Select the data that this series plots. The coordinates

are calculated by the formula stored in series_block.

Copy the coordinates of the selected block to the

variable data_range.

Recalculate the formulas that calculate the series

command to create.

Copy the command created by the formula stored in

series_command into the cell whose address is

calculated by the formula stored in command_cell.

_build_graph {IF @ISERR(@PROPERTY("Expense.Aspect_Ratio"))}{GraphNew "Expense"}If the named graph Expense doesn't exist, create it

{GraphEdit "Expense"} Display the graph Expense in a graph window for editing

{GraphSettings.Type "Line"} Set the graph type to Line

{Series.Data_Range "LegendSeries",+[BUDGTRAK.WB1]legend_series}Set the legend series to the coordinates stored in the variable legend_series

{Series.Data_Range "XAxisLabelSeries",+[BUDGTRAK.WB1]xaxis_series}Set the x-axis series to the coordinates stored in the variable xaxis_series

_build_series The first available cell to copy macro commands in to. As the macro _graph_view runs, various macro commands are created, starting here

Used by _graph_view to store the number of series in the graph

Used by _graph_view to store the number of points on each series of the graph

Used by _graph_view to store the block in the record window that contains legend text

Used by _graph_view to store the block in the record window that contains labels for the X-Axis

Activate the record window, and select the first cell of the first record

If there are no expense categories, stop the operation

If expense categories exist, select their names

Set the legend series to the selected block. A legend appears in the graph showing what each series represents; this legend series specifies the labels that appear in that legend

Store the number of series to create in the variable g_width

If more than one record exists, select all cells in the first column that contain entry dates

Set the X-Axis series to the selected block. The X-Axis series specifies the labels that appear at the bottom of the graph

Store the number of data points in each series in the variable g_height

Dynamically create the macro commands that will create the series in the graph. These commands are stored starting at the named cell _build_series

Update the formulas in this page that determine where the last part of _build_graph should be placed

Copy the macro stored in finishing_mac to just after the series commands created by _add_series

Set the numeric format of the current graph's Y-Axis to Currency

Make the Yes button (in the dialog box Warn) display the print button bitmap

Set the warning message appearing in the dialog box Warn. Message is the name of the label in the dialog box that contains this warning

Make the Yes button (in the dialog box Warn) display Print on its face

Make the No button (in the dialog box Warn) display No on its face

Display the dialog box Warn to ask the user if they wish to print the graph

If the user cancels the dialog box, don't print the graph and return to the record window

Select the icon representing the named graph Expense

Used by _add_series to return the relative address of the series data to select

Used by _add_series to store the coordinates of the series to add

Used by _add_series to store the series number being created

Used by _add_series to return the command that will be copied to _build_series

Select the block whoses coordinates are computed by the formula in series_block

Store the regular block coordinates of the selected block in data_range

Recalculate the formula that determines the series command to add to the macro _build_graph

Copy the series command calculated in the named cell series_command to the cell calculated by the formula command_cell

Used by _add_series to return the cell address of the next cell that the macro can copy a command to

If the named graph Expense doesn't exist, create it

Display the graph Expense in a graph window for editing

Set the legend series to the coordinates stored in the variable legend_series

Set the x-axis series to the coordinates stored in the variable xaxis_series

The first available cell to copy macro commands in to. As the macro _graph_view runs, various macro commands are created, starting here

Set the legend series to the selected block. A legend appears in the graph showing what each series represents; this legend series specifies the labels that appear in that legend

All All Daily

January Monday Weekly

February Tuesday Monthly

March Wednesday Bi-monthly

April Thursday Semi-Annually

May Friday Annually

June Saturday

July Sunday

August

September

October

November

December

	Startup
	Menus
	Help
	ChangeDB_macros
	Query_macros
	Filing_macros
	Print_macros
	Graph_macros
	Lists

