Help Contents

Essentials and new feature summary for
getting up to speed with Quattro Pro.

ﬂ' == Notebook Tasks for using standard
— spreadsheet features, plus data analysis,
databases, and Workgroup Desktop (optional).

Graph Tasks for using all graph, drawing, and
slide show features.

Application Building Tasks for creating custom
applications.

(I
|

@ @Functions and formula reference.

{ } Macros programming reference.

Menu Commands reference.

%2 Obijects and Properties reference.

Essentials

Quattro Pro for Windows differs from earlier spreadsheet applications in several key areas. Before
attempting any tasks, read the following topics in this Help system. For a step-by-step introduction to
Quattro Pro, choose Interactive Tutors from the Quattro Pro Help menu.

New Features Describes what's new in version 5.0 of Quattro Pro for Windows.

Using Quattro Pro Help How to use Quattro Pro Help and Object Help for SpeedBar button
identification.

Interactive Tutors Interactive lessons that work with your data.

Experts An alternate way to perform certain spreadsheet tasks.

Using Notebooks Use Notebooks to keep track of multiple sets of spreadsheet data.

Obiject Inspector Provides direct access to the properties of each object.

Work Areas Explains each major part of Quattro Pro.

Quattro Pro Graphs Important background information for working with graphs.

Mouse Technigues Teaches mouse skills that boost your productivity.

Keyboard Techniques Lists shortcut key combinations.

Undoing Mistakes Specifies those areas of Quattro Pro where you can use the Undo
command.

DOS Spreadsheet Users For users of DOS versions of Quattro Pro and Lotus 1-2-3.

=

—
Notebook Tasks

The Notebook window is the background for most of your work in Quattro Pro; for an introduction to
notebooks, see the Essentials topic Using Notebooks. To learn about parts of the screen in each of
Quattro Pro's work areas, use the mouse and Ctrl+right-click to display Object Help for each part of the
screen.

Entering Data Entering text, formulas, and dates;
referencing data blocks.

Editing Changing and deleting data, rows,
columns, and notebook pages, and
naming data blocks.

Formatting Blocks and Displaying and changing block and page

Pages properties.

Using Files Opening, closing, and saving notebook
files.

Using Quattro Pro Manipulating windows and panes within

Windows Quattro Pro.

Printing Printing notebooks and graphs; defining

page layouts; setting up printers and
print settings.

Advanced Editing Using advanced features to modify
blocks of cells (including grouping pages,
DDE, OLE, and maintaining block

names).

Linking Notebooks Working with groups of pages and links
between notebook files.

Data Analysis Using advanced tools to analyze data
structures.

Using Databases Setting up, editing, and querying
databases in notebooks and other
applications.

Importing and Exporting Importing, exporting, parsing, combining,

Data and extracting files.

Setting Global Displaying and changing application and

Properties notebook properties.

Building Custom Using the SpeedBar Designer to create

SpeedBars new Speedbars quickly.

Workgroup Desktop Using the Workgroup Desktop to

Topics exchange notebooks (Workgroup edition
only).

See Also

Graph Tasks
Application Building Tasks

Menu Commands
Objects and Properties

lul

Graph Tasks

You can build graphs from your spreadsheet data, then display them on the spreadsheet, in a separate
window, in a slide show, or send them to a printer or slide service. If you're new to Quattro Pro
graphics, read Graph Basics. Use Ctrl+right-click to learn about parts of the screen in Quattro Pro's
graph work areas.

Building Graphs Creating numeric and text graphs from
spreadsheet data.

Customizing Graph Displaying and changing graph properties;
Properties controlling the appearance of graph markers,
grids, and text.

Enhancing Graphs Using the drawing tools, creating slide shows,
and importing/exporting graphics.

Analytical Graphing Creating graphs from calculations based on
spreadsheet data.

See Also

Notebook Tasks

Application Building Tasks
Menu Commands

Objects and Properties

=

===

Using Databases

Quattro Pro includes conventional spreadsheet database features and provides direct access to the
power of full-fledged database applications with the Database Desktop. Click one of the topics below
for spreadsheet database information or click Database Desktop Help to open its help file.

Step-By-Step Directions

What Is a Database?

Setting Up a Database
The Database Block
The Criteria Table

The Output Block
Searching for Records
Highlighting Matching Records
Copying Matching Records
Deleting Matching Records
Usin Functions with a Database
Using Database Forms
Creating and Editing Records
Searching for Records
Editing and Clearing Search Criteria
Using External Databases
Sorting Data
Sort Keys
Sort Order
SpeedSort Button
Sorting Tips
Limiting Data Entry

Menu Commands
Data Menu

See Also
Translating Database Files
Data Analysis

ElEl

Application Building Tasks

You build user interfaces for custom applications in Quattro Pro's dialog window, displayed with Tools|
Ul Builder. Click one of the topics below for a list of subtopics. Press Ctrl and right-click on each part of
the dialog window to learn about that part.

Step-By-Step Directions

Application Basics

Building Dialog Boxes and SpeedBars

Building Menus

Menu Commands
Dialog Menu
Property Menu

Objects (Controls) and Properties
Dialog Window Objects
Properties in the Dialog Window

See Also
Custom SpeedBars
Notebook Tasks

Graph Tasks
Menu Commands

Objects and Properties

@

@Function Descriptions

@Functions perform special calculations. @Function descriptions can be viewed in an alphabetically-
sorted index, or in a series of lists for each major category:

Function Index

Step-By-Step Directions
Usin Functions

Function Arguments

@Function Categories

Database Perform analytic calculations on records in a database.

Date and Time Calculate dates and times, or perform calculations involving business days.

Engineering Perform number conversion, Boolean operations, and calculations involving
complex numbers or Bessel functions.

Financial Calculate investments and cash flow.

Logical Compare and evaluate relationships between values.

Mathematical Calculate trigonometric functions and other mathematical values.

Miscellaneous Provide current information such as table values.

Statistical Perform analytic calculations on a list of values.

String Manipulate text strings or labels.

{)

Macro Command Descriptions

A "macro" is a stored series of keystrokes, special keys, and commands that can be played back. You
create macros by recording them or typing them in. Macro command descriptions can be viewed in an
alphabetically-sorted index, or in a series of lists for each major category.

Macro Command Index

Step-By-Step Directions

Using Macros

Macro Command Categories

Keyboard
Interactive

Program Flow

Command Equivalents
DDE

Ul Building

Object

Miscellaneous

Analysis Tools

Emulate the action of various keys on the keyboard.
Affect the display.

Let you create macros that display dialog boxes or pause for the user to
enter data from the keyboard.

Let you branch and loop in a macro.

Affect the data stored in specified cells.

Work with data within files other than the active notebook file.

Emulate operations you can perform with menu commands.
Communicate with other Windows applications.

Let you change the menu bar.

Let you create, move, resize, select, and change the properties of objects.
Insert characters and comments, and perform a variety of other tasks.

Let you perform analyses of numerical data.

/ Commands are commands used by Quattro Pro for DOS to emulate menu commands. See the
Quattro Pro for DOS User's Guide for more information on menu-equivalent commands.

1

Keyboard Techniques

Throughout Quattro Pro documentation, instructions emphasize the use of a mouse. The following
topics list Quattro Pro keyboard commands:

Special Keys Useful keyboard shortcuts.

Edit Mode Keys When Quattro Pro is in edit mode.

Point Mode Keys When Quattro Pro is in point mode.

Print Preview Keys When previewing a notebook before printing.
Navigation Keys For moving around notebook pages.
Function Keys Keys labeled F1, F2, through F12.

See Also

Mouse Techniques

Menu Commands

Work with files, print, exit Quattro Pro.
Clipboard operations (cut, copy, paste); undo, goto, search.

Move, copy, fill, name, transpose, and reformat blocks; insert and delete rows, columns,
pages; copy only values of blocks.

Sort and query records, parse strings into fields, set up a data entry form, perform what-
If and frequency calculations, access external databases.

Use macros; group pages; combine, extract, and import files; update links; perform
advanced math calculations; check spelling (optional); run Optimizer and Solve For;
display Scenario Manager and Consolidator SpeedBars; and start SpeedBar designing
and Ul building.

Create and display graphs and slide shows.
Add drawn objects and bitmaps to graphs and slides.

Work with custom SpeedBars in the SpeedBar Designer.
Work with custom SpeedBars and dialog boxes in the Ul Builder.

Alter properties associated with each type of object.
Rearrange window display.
Start Help or view version information and current memory usage.

Objects and Properties

See Object Inspector Menus for an introduction to working with objects and properties in Quattro Pro.

Basic Properties
Active Block

Active Page
Active Notebook

Application

Properties in Each Window
Properties in the Notebook Window
Properties in the Graph Window
Properties in the Dialog Window
Objects You Can Inspect
Notebook Window Obijects

Graph Window Objects

Dialog Window Objects

1

New Features

The following sections introduce the new features in version 5.0 of Quattro Pro for Windows:
Productivity Enhancements

New Graph Types

Analytical Graphing

SpeedBar Designer

Databases and Data Exchange
Data Modeling Desktop

Model Analysis Tools
Advanced Analysis Tools

Array Features

New @Functions

New Macro Commands

1

Quattro Pro Work Areas

Quattro Pro has five work areas:

Notebook window

Graph window

Dialog window
Graphs page

Print Preview screen

See Also
Notebooks

is where you enter and display data. It contains all standard spreadsheet
features along with many enhancements. This is where you will do most of your
work in Quattro Pro.

is where you can build and customize graphs based on data from the Notebook
window.

is where you can build custom applications that run within Quattro Pro

is where you link graphs together to make slide shows, or link dialog boxes you
have created to build a custom application. The Graphs page is the last page in
each notebook.

is where you preview your work before printing.

Object Inspector Menus

Mouse Techniques

1

Using Notebooks

Notebooks are a new concept in spreadsheet products. They provide a way to organize many
spreadsheets together in the same file.

A notebook is a collection of 256 spreadsheet pages and a Graphs page, which is the last page. Each
spreadsheet page is a grid made up of columns and rows. The Graphs page contains icons, each
representing a graph, slide show, or dialog box you've created.

Each notebook is saved as its own file. The default file name for the first notebook is NOTEBK1.WB1.

There are three major ways to take advantage of notebooks:
by breaking up a spreadsheet into small pieces on separate pages
by gathering logically-related data into the same file
by consolidating similarly-formatted spreadsheets into the same file

Breaking Up a Large Spreadsheet

If you're translating a large spreadsheet from Quattro Pro for DOS or another application, you can
make it much easier to work with by breaking it up into separate pieces for each page.

To reach an individual page, you can click the page's tab (this is easier than scrolling to different parts
of one large spreadsheet). Also, when you write a formula that refers to cells on another page, the
page name appears in the formula, making it easier to see what you're referencing.

Gathering Related Data

Instead of saving a budget, a schedule, an inventory, or other related information in different files on
disk, you can make them separate pages in the same notebook. This gives you one file name to
remember, not many.

By default, notebook pages are labeled A through 1V, but you can give them descriptive names to
remind you of their contents. See Naming a Page for details.

Consolidating Data

If you're working with data that conforms to a given template or layout, notebooks give you efficient
ways to enter and format data. Grouping the pages together before entering standard column heading
information or before making formatting changes, for example, speeds up your work. See Grouping

Notebook Pages for details.

Moving Around Within a Notebook

To move to a different page in a notebook, click its tab. If its tab isn't in view, use the tab scroller to
reveal additional tabs. The tab scroller works like those in most Windows applications.

To move quickly to the last page in a notebook (the Graphs page), click the SpeedTab button; it is
located immediately to the right of the page tabs, and has a horizontal arrow on its surface. The
Graphs page contains icons representing each of the graphs, slide shows, and dialog boxes you've
created in the notebook. To switch back to the last active spreadsheet page, click the SpeedTab button
again. Notice that the arrow on the SpeedTab button changes direction depending on whether the
Graphs page is active or not.

After you click the tab of the page you want, you can use the scroll bars to move to different parts of
the page with the scroll bars.

See Also
Object Inspector Menus
Mouse Techniques

1

Object Inspector Menus

Object Inspector menus provide a quick way to display all of the changes that can be made to
individual objects. You just point to most objects and press the right mouse button (right-click) to
display a SpeedMenu. Choose its Properties command to list the object's properties. (For window title
bars, the Object Inspector appears as soon as you right-click.)

An Object Inspector is available for these objects:
blocks

pages

notebooks

graphs in windows, and their elements, such as bars, axes, or text boxes

))))

floating objects, such as graphs, graphic images, or SpeedButtons that appear in a layer above

spreadsheet cells

o

dialog boxes you create and their elements, such as radio buttons or edit fields

=) =

the Quattro Pro application itself

Each of these objects has properties, which are characteristics particular to that type of object. For
example, blocks have a Font property that can be set to Bold, so the text of entries in that block
appear in boldface type. One property of a page is the name that appears on its tab. Each notebook
has its own Palette property for controlling the colors available. Quattro Pro's system defaults, such as
the default storage directory or file-name extension, are application properties.

To change the properties of an object, right-click it and choose the Properties command. A different
Object Inspector menu appears depending on the type of object you right-click. From the left side of
the Object Inspector, choose the property you want to change. The options displayed on the right
change to correspond to the chosen property. Click Active Block Object Inspector for details.

Next, choose settings for the current property. You can go on to change other properties for the current
object. To help you track changes, the property name turns blue if you change its setting. If the Object
Inspector has an example box, it shows the result of your choices. When you're finished, choose OK.

You can also change properties of an object by using the Property menu. Property|Current Object
displays the Object Inspector for the currently selected object. If no object is currently selected, the
properties that control the active window are displayed. Property|Application displays the application
Object Inspector. Other commands, such as Active Notebook or Active Page, are available depending
on whether a notebook, graph, or dialog window is active.

To see where to right-click for the most common objects in each Quattro Pro window, see Locating
Objects.

See Also
Notebooks

Mouse Techniques

Locating Objects

Different properties are available in each Quattro Pro window. Choose the window you are working in:
Notebook Window The standard Quattro Pro window

Graph Window Where you edit a graph

Dialog Window Where you create custom dialogs

1

Quattro Pro Graphs

Using graphs to analyze your data is faster and easier than examining the data cell-by-cell. A graph
presents a set of data as a picture. It may uncover a trouble spot, display a trend, or illustrate a
correlation between categories of data in your spreadsheet.

A single graph can appear in three places in Quattro Pro: as a floating graph in a notebook window, in
a separate graph window, and as an icon on the Graphs page. Graphs always exist on the Graphs
page and in a graph window; only floating graph display is optional.

In a Notebook Window:

Create a floating graph directly on a spreadsheet page when you want to view or print your graph on
the same page as your data. The Notebook window SpeedBar has a tool that creates floating graphs.
You can also add titles to the graph, change the graph type, or redefine the data series plotted in the
graph in this window. For all other changes, you must double-click the floating graph, or use Graph|
Edit, to display the graph in a graph window. (The floating graph updates automatically as you modify
the graph in a graph window.)

In a Graph Window:

Create a graph in its own graph window when you want the graph to appear in a slide show or on a
printed page, but not on a spreadsheet. Every graph (including floating graphs) has its own window.
Object Inspectors for graph elements are available ONLY when you display a graph in its graph
window. You can also enhance graphs using the drawing tools and color palette on the graph window
SpeedBar. The graph window Draw menu lists commands you need to rearrange drawn elements and
import and export graphics.

On the Graphs Page:

The Graphs page displays an icon for each graph in the notebook. You can right-click an icon to
rename a graph, delete or cut an icon to delete a graph, or copy and paste an icon through the
Windows Clipboard to copy a graph. You can also print a series of graphs, or create an onscreen slide
show with special effects. To see the Graphs page, click the SpeedTab button (which looks like an
arrow) at the bottom of the notebook window.

1

Mouse Techniques

Quattro Pro for Windows fully supports standard Windows mouse functions, and also features several
highly useful enhancements. Use the mouse as follows:

To select a:
cell Click the cell.
block Drag it by clicking a cell in one corner, holding down the left mouse button,

moving to the opposite corner and releasing the mouse button. Or click one
corner, hold down the Shift key, and click the opposite corner.

noncontiguous block Hold down the Ctrl key while you drag blocks.

row Click the corresponding row number in the border.
column Click the corresponding column letter in the border.
page Click the Select-All box at the intersection of the row and column borders.

cell on another page Click the page tab, then click the cell.

3-D block First select the 2-D block in the first page in the 3-D block, then hold down the
Shift key while clicking the last page in the 3-D block. A black line appears
under the tabs of the selected pages.

To change object properties:

Right-click an object and choose the Properties command to display its Object Inspector. This lets you
change many settings at once, rather than choosing commands one by one.

To move a block:

Select a block of cells, release the left mouse button, then left-click, hold down the button for a
moment until the hand icon appears, and drag the selected block to move it to another location. This
Drag and Drop procedure has the same result as the Block|Move command.

To copy a block:

Select a block of cells, release the left mouse button, then hold down the Ctrl key and, at the same
time, left-click, hold down the button until the hand icon appears, and drag the selected block to
another location. This Drag and Drop procedure has the same result as the Block|Copy command.

SpeedBars

Quattro Pro includes SpeedBars which allow you to bypass menu commands by clicking buttons. Each
Quattro Pro window has its own unique SpeedBar; for a definition of each SpeedBar button and other
parts of the screen, display Object Help.

You can choose to open and close SpeedBars (see Opening and Closing SpeedBars).

See Also

Object Inspector Menus
Notebooks

1

Undoing Mistakes

The Edit|Undo command lets you reverse most kinds of operations after you've carried them out. For
example, if you make an entry in a cell, then change your mind and want to remove it, choose Edif]|
Undo immediately after making the entry. The entry will be removed and whatever was previously
entered in the cell will be returned.

You can identify your last action by the wording of the Undo command. For example, after making a
cell entry, the Undo command reads "Undo Entry." After changing the Zoom Factor property in the
notebook Object Inspector, the Undo command reads "Undo Notebook Property."

If you change your mind again after using Undo and want to reinstate the first change, choose Edit|
Redo. As with Undo, Redo specifies the type of operation available to be redone.

Some actions are undoable only if you enable Undo in the application Object Inspector. You can
identify these actions because the Undo command is dimmed immediately after the action is taken. In
all situations except where program speed and available memory is absolutely crucial, it's
recommended that you keep Undo enabled.

To enable Undo for the maximum variety of actions,

1. Move the mouse pointer to the Quattro Pro window title bar and click the right mouse button.
2. Choose Startup.

3. Check Undo Enabled in the Options box, and choose OK.

See Also
Object Inspector Menus

Mouse Techniques
Notebooks

1

DOS Spreadsheet Users

If you have used DOS-based versions of Quattro Pro or 1-2-3, read the following topics for guidelines
on using files and macros created with those DOS spreadsheets. Be sure to read the other Essentials
topics for a description of major new product features.

Alternative Menus

File Compatibility
Macro Compatibility

See Also
Notebooks

Object Inspector Menus
Mouse Techniques

1

Alternative Menu Systems

When you're first using Quattro Pro for Windows, you may want to load an alternative menu system.
Display the Application properties and choose Macro and then Slash Key to display a list of available
menu systems (see Application Macro Property for more information). Using an alternative menu
system can help you maintain productivity while you learn the program, but using the default Quattro
Pro for Windows interface makes it easier to access all commands and features.

See Also
File Compatibility
Macro Compatibility

1

File Compatibility

You can load files created with DOS versions of Quattro Pro, 1-2-3 (versions 2.x and 3.x), Excel, and
several databases from within Quattro Pro. Just retrieve the file as you would any other; Quattro Pro
automatically identifies the file type (by its extension or the first record in the file) and translates it. You
can run most macros contained in the file.

To save a 1-2-3 file as a Quattro Pro file, just change the file's extension when you save it; Quattro Pro
for Windows translates the file. The same is true for files in other formats.

If you don't include a file-name extension, Quattro Pro for Windows automatically adds the default file
extension .WB1.

1-2-3 files
When loading a 1-2-3 file, linking is converted to Quattro Pro's syntax.
Here is an example:

Quattro Pro syntax 1-2-3 2.x syntax
[filename]celladdress <<filename>>celladdrs
+[BUDGET.WK1]B4 +<<BUDGET.WK1>>B4

See Also
Alternative Menu Systems
Macro Compatibilit

1

Macro Compatibility

Macros using Quattro Pro for DOS menu equivalents are still compatible. For example, the statement
{/Graph;Type} still executes as Graph|Graph Type.

See Also
Quattro Pro for DOS Macros

1

Graph Expert, Step 1

This dialog box lets you choose data to graph. If you include column and row labels in the graph data
block, they appear in your graph as x-axis and y-axis labels.

Quattro Pro chooses a graph type for your data, based on the number of rows and columns and the
total number of data points in the graph data block. You'll have a chance to change the graph type
later.

If plotted data is hidden in the graph, you may need to swap rows and columns or reverse the data
series. Try checking the check boxes at the bottom of the right pane in Graph Expert, Step 1. See if
the graph in the left pane looks better when you make a change. If not, change it back.

You can choose Tip to switch between the graph and an explanation pane.

1

Graph Expert, Step 2
This dialog box lets you choose a main graph type:
Certain graphs are best suited for plotting certain types of data:

Bar graphs compare values of different items at specific points in time--to contrast monthly

commissions for each sales representative, for example. Rotated bar graphs are
plotted horizontally instead of vertically.

Line graphs show the progression of values over time--to track sales, for example. Area
graphs are like filled-in line graphs.
Pie graphs compare individual values to other values and to the whole--how yearly expenses

break down into categories, for example. Use them to focus on the individual

values in a single series. Doughnut graphs, available through this type choice, are
like pie graphs with a hole in the middle.

Specialty graphs include high-low graphs, radar graphs, and combination graphs.

Choose Expert's Choice if you want the Graph Expert to choose an appropriate type for your graph.

1

Graph Expert, Step 3: Bar Graph

This dialog box offers a number of bar graph choices:

Bar graphs compare values of different items at specific points in time--to contrast
monthly commissions for each sales representative, for example.
Stacked bar graphs show the relationship of each value to the total--how total sales are

divided between regions, for example. 100% stacked bar graphs show
the percentage each series contributes to the total.

Comparison graphs have lines connecting the boundaries between series. This makes it
easier to compare series values or proportions.
Multiple column graphs plot each series as a separate sub-graph.

Choose a type and click Next Step to add titles.

1

Graph Expert, Step 3: Rotated Bar Graph

Rotated graphs are like standard graphs, but they are plotted horizontally instead of vertically. Choose
from among these types of rotated graphs:

Bar graphs compare values of different items at specific points in time--to contrast

monthly commissions for each sales representative, for example.

show the relationship of each value to the total--how total sales are
divided between regions, for example. 100% stacked bar graphs show
the percentage each series contributes to the total.

Stacked bar graphs

Comparison graphs have lines connecting the boundaries between series. This makes it

easier to compare series values or proportions.
Choose a type and click Next Step to add titles.

1

Graph Expert, Step 3: Pie Graph
This dialog box lets you choose from among these graph types:

Pie graphs compare individual values to other values and to the whole--how yearly

expenses break down into categories, for example. Use them to focus on the
individual values in a single series.

Doughnut graphs like pie and column graphs, plot a single series with each value plotted as a

percentage of the whole. You can add text or graphics to the interior "hole" with
graph window drawing tools.

Multiple pie graphs plot each series as a separate sub-graph.
Choose a type and click Next Step to add titles.

1

Graph Expert, Step 3: Line or Area Graph

This dialog box lets you choose from among various line, area, and surface graphs:

Line graphs show the progression of values over time--to track sales, for example.

Area graphs show the relationship of each value to the total over time--how each sales
representative contributed to total sales over a 12 month period, for
example.

Surface graphs plot rows and columns as intersecting lines on a surface that is

suspended in a 3-D frame. Surface graphs are useful for plotting
functions such as f(x) and f(x,y), and parametric curves (x(t), yt(t)).

The graph in the upper right corner is an XY graph. It only plots data if the first column of your graph
data block contains dates.

Choose a type and click Next Step to add titles.

1

Graph Expert, Step 3: Specialty Graph
This dialog box lets you choose from among these graph types:

Radar graphs show x-axis values as imaginary lines radiating from a common center,
like spokes of a wheel, with y-axis values plotted on each "spoke." They
are useful for highlighting trends, depending on the shapes drawn by the
plot lines, or simplifying series comparisons.

High-low graphs illustrate the difference between corresponding values in two series.

Though most often used in tracking daily stock prices, high-low graphs

can be used whenever you want to compare the difference between pairs
of values.

Combination Graphs combine different types of graphs in one -- lines with bar, for example.
Choose a type and click Next Step to add titles.

1

Graph Expert, Step 4

This dialog box lets you add titles to your graph. The main title and subtitle appear above the graph.
The y-axis title appears along the left side and the x-axis title runs along the bottom unless the axes
are reversed or the graph is rotated.

Destination indicates how to display the graph.

Check Notebook Page to display the graph inserted in a notebook page. When you choose Create
Graph, it appears over the selected data block. You can click inside its borders and drag it to a new
location, if you prefer.

If you want to edit the graph, check Graph Window. When you choose Create Graph, the graph
appears in a graph window, ready for editing. The SpeedBar contains drawing tools so you can add
drawn objects and text to the graph, or you can right-click any part of the graph and choose the
Properties command to change its properties. For more information on customizing graphs, see

Customizing Graph Properties.

1

Consolidation Expert, Step 1

This dialog box lets you choose two or more source blocks to be consolidated. Select a block, then
choose Add to add it to the source block list. To delete a block from the list, highlight it and choose
Delete. To choose a block in another notebook, click Browse. Find the notebook in the directory lists,
then enter the block at the bottom of the dialog box and choose OK.

If your blocks include row or column labels, you can use them to sort the data. For example, if one
block contains columns labeled Costs and Revenues, and the other block reverses the columns to
show Revenues then Costs, when you specify a destination block in a later step and perform the
consolidation, all the data under Costs will be combined and so will the data under Revenues, even
though the columns are in a different order.

When you've selected all blocks to be combined, click Next Step to choose a consolidation operator:
SUM, AVG (average), COUNT, MIN (minimum), MAX (maximum), STD (standard deviation), STDS
(sample standard deviation), VAR (variance), and VARS (sample variance).

1

Consolidation Expert, Step 2

This dialog box lets you choose a consolidation operator: SUM, AVG (average), COUNT, MIN

(minimum), MAX (maximum), STD (standard deviation), STDS (sample standard deviation), VAR
(variance), and VARS (sample variance).

Each operator works like the statistical @function of the same name to combine equivalent cells of
each source block.

Choose Next Step to specify a destination block.

1

Consolidation Expert, Step 3

This dialog box lets you specify a destination block. It can be the whole block or just the upper left cell
of the block. If you choose just one cell, be sure there is enough room to the right and down from that
cell to hold the combined blocks. Otherwise, data in unprotected cells is overwritten.

If the source blocks contain labels, you can use labels in the destination block to sort and filter data.
Labeled data will appear beneath matching labels in the output block, so you can control the order of
output by ordering labels in the destination block. Also, if you include labels in the destination block,
but don't include every label used in the source blocks, consolidated data only appears for labels
included in the destination block. If source blocks have labels, but you include no labels in the
destination block, all source block labels appear in the consolidation.

When you have specified a destination block and checked whether to use column and/or row labels,
choose Next Step.

1

Consolidation Expert, Step 4

This dialog box lets you name the consolidation setup and perform the consolidation. Enter a name,
then click Consolidate to save the setup and enter combined data in the destination block. The
consolidation setup is saved when you save the notebook.

Now, you can perform the same consolidation with different data. Add different data to the source
blocks, Then, use Tools|Consolidator to display the Consolidator SpeedBar. Select the name you gave
to the consolidation setup and click the Consolidate button. For details, see Using the Consolidator.

1

Scenario Expert, Step 1

The Scenario Manager lets you create and save scenarios -- sets of conditions and results. For
example, you might have a Worst Case scenario with sales revenues much lower than you expect,
while the Best Case scenario shows greater-than-expected sales and how they boost profits.

Scenario "changing cells" are the cells you change for each scenario -- sales revenue, in the previous
example. "Result cells" contain formulas that reference the changing cells. They show the results of
entering different data in the changing cells. If you haven't yet entered these into your notebook, close
the Scenario Expert and create change and result cells for your scenario set.

In this dialog box, you specify one or more changing cells. They can be connected within a block or
separated (noncontiguous). To specify noncontingous cells or blocks as changing cells, select the first
then press Ctrl and drag or click the mouse to select the next, and so on.

When you're done, choose Next Step to name the scenario.

1

Scenario Expert, Step 2

This dialog box lets you name each scenario and enter values into its changing cells. You must enter a

name, but you don't need to enter a different value into each changing cell--just change values as
appropriate for the scenario you are defining.

When you're done, click Add Scenario and choose Next Step to highlight changing and result cells in
the notebook or delete scenarios.

1

Scenario Expert, Step 3

This dialog box lets you highlight scenario values in your notebook and delete unwanted scenarios.

To show a scenario, highlight its name in the list and click Show Scenario. If values are hidden, click in
the scenario title bar and drag the window out of the way. Changing cells are yellow and result cells
are green.

If you don't want to keep a scenario, highlight it in the list and click Delete Scenario.

When you're done, click Next Step to create a Scenario Summary Report for all scenarios.

1

Scenario Expert, Step 4
This dialog box lets you create a Scenario Summary Report showing changing and result cells and
their values for each scenario.

To create a report, click Create Report. The report appears and the Scenario Expert closes. The report
appears on a new page, the Scenarios page. You can display it and print it just like any other notebook
page.

If you already used the Scenario Expert to create a Scenario Summary Report, you'll be prompted to
replace the existing report. If you choose No, the Scenario Expert closes without creating a new report.
To close the Scenario Expert without creating a report, choose Exit.

Once you create scenarios in the Scenario Manager, you can use Tools|Scenario Manager to display
and edit them. For details, see Using the Scenario Manager.

1

Experts List

Quattro Pro offers these Experts to help with various tasks:

Graph Expert

Scenario Expert

Consolidation Expert

Performance Expert

Analysis Expert

See Also
Experts

Builds a graph from the block of data you select. If you include labels in
the block, they appear in the graph. If you select the data block before
you use the Graph Expert, the graph appears as soon as you open the
Expert.

Lets you create and display groups of scenarios (data conditions and
results) based on models in your spreadsheet notebook. Before you use
this Expert, enter a set of values (the conditions) and formulas based on
them (the results).

Lets you combine data blocks using statistical operators (SUM, AVG,
COUNT, MIN, MAX, STD, STDS, VAR, VARS). You can include column
and row labels in the blocks to combine. Then, combined data is sorted
according to label placement in the output block.

Helps you determine if Quattro Pro's Compiled Formulas feature will
speed up calculation times with your particular hardware and notebooks.

Offers 19 tools for financial, statistical, and engineering analysis.

1

Performance Expert, Step 1

The Performance Expert helps determine if the active notebook will show improved performance if you
use compiled formulas. This dialog box tests your computer hardware to see if its CPU, accessories,
and memory are suitable for compiling formulas. The check beside each item in the right pane
indicates suitability. If an item isn't checked, it doesn't meet the requirements for compiling formulas.

The last item in the dialog box indicates whether the hardware is adequate. If Yes is checked, choose

Next Step. If No, cancel this Expert; compiled formulas aren't likely to improve performance on this
computer system.

1

Performance Expert, Step 2

If other conditions are appropriate, compiled formulas show best performance improvements in large
notebooks that take a long time to recalculate. This dialog box lets you indicate how long the notebook
takes to recalculate with uncompiled formulas.

Check Yes if recalculation time is over 5 seconds. Otherwise, check No. Then choose Next Step.

1

Performance Expert, Step 3
Compiled formulas help the most when a notebook contains lots of basic mathematical operations.
This dialog box lets you indicate the main type of formulas contained in the active notebook.

Check Math Calculations if you work mainly with numbers; check Text Manipulation if you work mainly
with text strings using the string @functions (@MID, @LENGTH, and so on).

1

Performance Expert, Step 4
Compiled formulas are most effective when you create a notebook, then use it to calculate values in
classic spreadsheet fashion, as an electronic ledger book.

If you often edit the notebook by adding and deleting columns and rows, moving blocks of data, and
reformatting it, compiled formulas are less helpful.

This dialog box lets you indicate how you work with the active notebook. Check Entering Data if you
use the notebook mainly to enter data into cells for calculation by standard formulas that reference
those cells. Check Frequent Editing if you rearrange the notebook or change its formulas frequently.

When you're done, choose Next Step.

1

Performance Expert, Step 5: Don't Compile

This Performance Expert step gives the results of the performance analysis. Read the

recommendation in the right pane. Compiled formulas aren't recommended; click the Exit button to
close the Performance Expert.

If you want to try compiled formulas anyway, display Recalc Settings properties in the active notebook
Object Inspector: right-click the notebook title bar, be sure Recalc Settings is selected in the property
list at the left, then check Compile Formulas at the bottom of the right pane. For more information on
this setting, see Compiling Formulas.

1

Performance Expert, Step 5: Compile

This Performance Expert step gives the results of the performance analysis. Read the
recommendation in the right pane. Compiled formulas are recommended; you can click Try Out
Compiled Formulas to use them.

If you want to go back to uncompiled formulas, display Recalc Settings properties in the active
notebook Object Inspector: right-click the notebook title bar, be sure Recalc Settings is selected in the
property list at the left, then uncheck Compile Formulas at the bottom of the right pane. For more
information on this setting, see Compiling Formulas.

1

Analysis Expert, Step 1

For a brief description of an analysis tool, highlight its name in the list and read the description in the
left pane. To use a tool, double-click its name or highlight the name and choose Next Step. For
context-sensitive information within the Analysis Expert, click Tip.

To view detailed information on edit fields and controls in the right pane (Step 2 or higher) , choose Tip,
then choose Help.

1

@@(Cell)

@@ is used to reference a cell that contains another cell address or block name that is written as a

label. @@ translates the label into a cell or single-cell block reference and returns the contents of that
cell. @@ does not accept a block name for a block that is not a single-cell block.

Examples

@Q ("A15"™) = the contents of A15

@@ ("BLOCK_NAME") = the contents of the single-cell block named BLOCK_NAME
@@ (A3) =50 if A3 contains the label 'A1 and cell A1 contains the value 50

@@ (A3) =the label 'Total if A3 contains the label 'Block, which is the name of cell C9, which contains
the label 'Total

@@ (A1) = ERR, where A1 contains the label 'B1..B5
@@ ("A1l") =B1..B5, where A1 contains the label 'B1..B5

@SUM (QR (A1)) =the sum of B1..B5, where A1 contains the label 'B1..B5, because Quattro Pro
translates the label into cell coordinates for a non-single cell block

1

@ABS(X)
@ABS returns the absolute (positive) value of X.

Examples
@ABS (-100) =100

@ABS (100) =100
@ABS (0) =0

1

@ACOS(X)

@ACOS returns the arc cosine of X. The result is the angle (in radians) whose cosine is X. To convert
radians to degrees, use @DEGREES.

Examples

@Acos (1) =0

@ACOS (0.5) =1.047198

@DEGREES (@ACOS (0.5)) =60

@ACOS (RABS (B10)) = the arc cosine of the absolute value of B10
@AcosS (2) = ERR (means that X is greater than 1)

1

@ASIN(X)

@ASIN calculates the arc sine of X. The result is the angle (in radians) whose sine is X. To convert
radians to degrees, use @DEGREES.

Examples

@ASIN (1) =1.570796

@ASIN (0.25) =0.25268

@DEGREES (@ASIN(0.5)) =30
@ASIN (-2) = ERR (Xis less than -1)

1

@ATAN(X)

@ATAN calculates the arc tangent of X. The result is the angle (in radians) whose tangent is X. To
convert radians to degrees, use @DEGREES.

Examples

@ATAN (0.5) =0.463648
@ATAN (1) =0.785398
@DEGREES (RATAN (1)) =45

1

@ATAN2(X,Y)

@ATANZ2 calculates the arc tangent of the angle represented by the point with (x,y) coordinates X and
Y. The result is the angle (in radians) whose tangent is Y/X. The result is between -pi and pi, with the

quadrant chosen appropriately according to the sign of the result. If both X and Y are 0, the result is
ERR.

Note: The order of arguments is the same as for 1-2-3, but opposite that of the ATANZ2 function in
FORTRAN and other programming languages.

To convert radians to degrees, use @DEGREES.
Examples

@ATAN2 (1,2) =1.107149

@DEGREES (RATAN2 (1,1)) =45

1

@AVG(List)
@AVG calculates the arithmetic mean of all values in List, using the formula:
Sum of List divided by N

If List contains more than one item, they must be separated by commas. If any of the cells referenced
contains ERR, the resulting value is ERR.

Note: @AVG ignores blank cells in a block when it makes its calculations. Cells containing blank
labels, however, are treated as 0; make sure blank cells are empty.

Examples
B C D
1
2 January February March
3 $652 $833 $599
4 $456 $305 $522
5 $68 $59 $73

@AVG(5,20,10,5) =10

@AVG (B3..D3) = $694.67

QAVG (225,B3..D5) = $379.20

@AVG (B3..B5, PART) = $395.50 when C3..C5 is named PART

1

@CELL(Attribute,Block)

@CELL returns the requested attribute of the upper left cell in Block.

If you type in or point to a single-cell address when entering Block, Quattro Pro converts it to a block
reference.

You can enter attributes in either upper- or lowercase, but you must surround them with double quotes.
You can also reference a cell containing an attribute.

Note: @CELL does not recalculate automatically; press F9 to obtain the current value.

Examples

A B C D
1
2 January February March
3 Advertising $652 $833 $599
4 Car expenses $456 $305 $522
5 Cleaning $80 $80 $80

@CELL ("prefix",A3) ='
@QCELL ("format",B5) = CO
@CELL ("type",D4) =V

@CELL ("address",A3) = A3

@CELL ("row",B4) =4

See Also
Attribute Arguments

1

Attribute Arguments

You may enter any of these as Attribute arguments for @CELL, @CELLINDEX, and
@CELLPOINTER:

"address" The address of the upper left cell in Block.

"row" The row number of the upper left cell in Block.

"col" The column number of the upper left cell in Block; 1=A, etc.

"sheet" Page number of the upper left cell in Block (1 to 256, corresponding to
notebook pages A through V).

"NotebookName" Referenced notebook name, 8 characters or fewer.

"NotebookPath" Full path name of the referenced notebook.

"TwoDAddress" 2-D address of the referenced cell--G23, for example. The page name is
never returned, even if the referenced cell is on another page or in another
notebook.

"ThreeDAddress" 3-D address of the referenced cell--$2A: $G23, for example. The page name is
always returned.

"FullAddress" Full address of the referenced cell-- [NOTEBK1] $A: $G23, for example. The
notebook and page names are always returned.

"contents" The contents of the upper left cell in Block.

"type" The type of data in the upper left cell in Block: b if the cell is blank, v if the cell
contains a number or any formula, | if the cell contains a label.

"prefix" The label-prefix character of the upper left cell in Block: ' if label is left-aligned, #
if label is centered, " if label is right-aligned, \ if label is repeating.

"protect” The protected status of the upper left cell in Block: 0 if cell is not protected, 1 if
cell is protected.

"width" The width of the column containing the upper left cell in Block (between 1 and
1024).

"rwidth" The width of the block.

"format” The numeric format code of the upper left cell in Block:

Fn Fixed (n = 0-15)

Sn Scientific (n = 0-15)

Cn Currency (n = 0-15)

N Commas used to separate thousands (n = 0-15)
General

+ +/- (bar graph format)

Pn Percent (n = 0-15)

D1-D5 Date
D1 = DD-MMM-YY
D2 = DD-MMM
D3 = MMM-YY
D4 = MM/DD/YY, DD/MM/YY, DD.MM.YY, YY-MM-DD

D5 = MM/DD, DD/MM, DD.MM, MM-DD
D6-D9 Time
D6 = HH:MM:SS AM/PM
D7 = HH:MM AM/PM
D8 = HH:MM:SS-24hr, HH.MM.SS-24hr, HH,MM,SS-24hr,

HHhMMmSSs

D9 = HH:MM-24hr, HH.MM-24hr, HH,MM, HHhMMm.
T Show Formulas (Text)
H Hidden

U User-defined

1

@CELLINDEX(Attribute,Block,Col,Row,<Page>)

Same as @CELL, but returns the requested attribute of the cell in the specified column and row of
Block on optional Page. The upper left corner of Block is column 0, row 0. Likewise, the first page is 0.

Note: @CELLINDEX does not recalculate automatically. Press F9 to obtain the current value.

Examples

A B C D
1
2 January February March
3 Advertising $652 $833 $599
4 Car expenses $456 $305 $522
5 Cleaning $80 $80 $80

QCELLINDEX ("prefix",Al..D5,0,2) ='
@CELLINDEX ("format",B3..D5,0,2) =CO0
QCELLINDEX ("type",B3..D5,2,1) =V
QCELLINDEX ("address",Al..D5,0,2) = A3

@QCELLINDEX ("row",Al..D5,1,3) =4

See Also
Attribute Arguments

1

@CELLPOINTER(Attribute)

@CELLPOINTER is similar to @CELL in that it returns the requested attribute of a cell. The only
difference is that it reads the cell containing the selector. You cannot specify another cell. However, if
you move the selector to a different cell and then press F9, the results of the @CELLPOINTER
formula are updated.

You can enter attribute names in either upper- or lowercase, but each must be enclosed by double
quotes.

This @function is useful in macros and @IF statements for quickly determining certain characteristics
about the current cell, such as whether there is a label or a value currently in it. For example, this
function statement tells Quattro Pro to write "value" in the cell if the current cell is a value; otherwise, it
writes "label™

@IF (QCELLPOINTER ("type")="v","value", "label")
Examples

These examples refer to cell A1, which contains the date value 11/19/91.
@QCELLPOINTER ("address") = SAS1

@CELLPOINTER ("col") =1

@CELLPOINTER ("contents") = 33561

@CELLPOINTER ("format") = D4

@CELLPOINTER ("type") =V

See Also

Attributes Arguments

1

@CHAR(Code)

@CHAR returns the onscreen character corresponding to the given code. This is useful in generating
symbols not found on the keyboard.

Refer to Appendix C of Building Spreadsheet Applications or any standard ANSI table for the codes
corresponding to each character.

Examples
@CHAR(33) =
@CHAR(34
@CHAR(35
@CHAR(36

)=
=
)=#
)=3$

1

@CHOOSE(Number,List)

@CHOOSE selects and enters a value from the supplied list. The value it chooses depends on the
value of Number: 0 chooses the first value in the list; 1 chooses the second; 2 chooses the third, and
so on. If you specify a cell address for Number, Quattro Pro uses the number contained in the cell. If
the cell is blank, the first value is chosen.

The List values can be cell addresses, strings, numbers, or a mixture of the three. The total characters
entered cannot exceed 1024.

@CHOOQOSE operates on integers only. If you supply a non-integer (such as 1.6433), the decimal
values are disregarded. @VLOOKUP and @HLOOKUP perform similar tasks in tables.

Examples
@CHOOSE (0, "Howie", "Sarah","Chris") = Howie
@CHOOSE (1, "Howie","Sarah","Chris") = Sarah

@CHOOSE (2, "Howie", "Sarah", "Chris") = Chris

@CHOOSE (A15, "Howie", "Sarah", "Chris") = Howie, if A15is 0; Sarah if A15 is 1; Chris if A15 is
2.

@CHOOSE (3, "Howie", "Sarah", "Chris") = ERR (Number is too large).

1

@CLEAN(String)

@CLEAN removes all nonprintable characters (0-31) from a string.

1

@CODE(String)

@CODE returns the ANSI code of the first character in String. This is the opposite of @CHAR, which
returns the character corresponding to the given code.

Examples
@CODE ("!"™) =33

@CODE ("sSam") = 83 (code for S)
@CODE ("#") =35
@QCODE ("$") =36
@CODE ("?") =63

@CODE (hello) = syntax error (missing quotes)

1

@COLS(Block)

@COLS returns the number of columns within the given block.

Examples
@COLS (Al..IV1) = 256

@COLS (Al..Aal1l) =1

@coLs (NaME) = 30 (if the NAME block contains 30 columns)

1

@COMMAND(CommandEquivalent)

@COMMAND returns the current value of a Quattro Pro for Windows command equivalent. It is most
often used in macros to base the next action on a particular menu setting or to save current settings so
they can be restored later.

CommandEquivalent must be enclosed in double quotes. To view a list of acceptable arguments,
press Shift+F3 and choose Command Equivalents, or see Appendix A of Building Spreadsheet
Applications.

@COMMAND returns strings; even if the setting is a number, it is returned as a string. Not all
CommandEquivalent entries return a useful value. In general, @COMMAND only returns values for
command equivalents that take arguments, usually menu commands that display a current setting or
status.

Like @CELL, @COMMAND statements do not recalculate automatically as many other @functions
do. Press F9 to obtain the current value.

Arelated @function that uses Quattro Pro for DOS menu equivalents is @CURVALUE. Another
related @function, @PROPERTY, returns settings for requested object properties.

Examples
@COMMAND ("Print.Block") = the currently specified print block
@COMMAND ("Print.Copies") =the number entered after Copies in the Spreadsheet Print dialog

box

1

@COS(X)

@COS returns the cosine of the angle X. X must be given in radians, not degrees. To convert degrees

to radians, use @RADIANS.

Examples
@COS (RRADIANS (60)) =0.5

@COS (RRADIANS (75)) =0.258819
@COS (@RADIANS (45)) =0.707107
@cos (@p1/3) =0.5

1

@COUNT(List)

@COUNT returns the number of nonblank cells in List. If more than one block is listed, they must be
separated by commas.

Any single cells in List are counted as 1, even if they are blank. You can work around this by always
using blocks (for example, if A4 is blank, use A3..A4, instead of just A4).

Examples

A B C D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
5 Anna $80 $80 $80
6

@COUNT (B2..B5) =4

@COUNT (B1..B6) =5

@COUNT (A6) =1

@COUNT (A6..B6) =0

@COUNT (C1..C5, D3..D6) =8

1

@CTERM(Rate,Fv,Pv)

@CTERM calculates the number of time periods required for an investment of Pv to reach a value of
Fv, while earning interest of Rate per compounding period.

@CTERM assumes that the investment is an ordinary annuity. @NPER, which is calculated differently
than but is related to @CTERM, uses an optional argument, Type, to indicate whether the investment
is an ordinary annuity or an annuity due.

Examples

Assuming that your savings account has an annual interest rate of 7%, how long would it take a $3000
deposit to reach $5000? The answer is

@CTERM (7%, 5000,3000) = 7.55 years

If the Rate figure is given for years, the result is in years as well. If you're working with monthly
interest, multiply the answer by 12 to get a result in months.

You can also use @NPER to solve this problem:

@NPER(7%,0,-3000,5000,0) =7.55

Other examples:

@CTERM (0.07,5000,3000) =7.550042

@CTERM(0.10,5000,3000)=5.359612

@CTERM(0.12,5000,3000) =4.50747

@CTERM (0.12,10000,7000) = 3.147261

1

@CURVALUE(GeneralAction,SpecificAction)

@CURVALUE returns the current value of a menu command setting. It is used in macros, usually to
base the next action on a particular menu setting. Both GeneralAction and SpecificAction must be
enclosed by double quotes. They must together create one of the Quattro Pro for DOS menu-
equivalent commands.

Not all GeneralAction/SpecificAction combinations return a useful value. In general, only menu
commands that display a current setting or status have menu equivalents that are useful for
@CURVALUE.

Like @CELL, @CURVALUE statements do not recalculate automatically as many other @functions
do. Press F9 to obtain the current value.

Note: This @function is included to ensure compatibility with Quattro Pro for DOS. If you're running a
DOS-version macro that includes this command, it may now return ERR instead of a value. This
is because some settings previously made in Quattro Pro for DOS are now handled through
Windows and aren't included in Quattro Pro for Windows. Most of these settings are found in the
hardware and printing areas. The equivalent @function for Quattro Pro for Windows is

@COMMAND.

Examples

@CURVALUE ("print", "block") = the block currently specified with File|Print (or /Print|Block in the
Quattro Pro for DOS slash menu system)

@CURVALUE ("file", "save") =the name of the last file saved

1

@DATE(Yr,Mo,Day)

@DATE returns the "serial number" of the date specified with year, month, and day arguments. This
serial number can range from -109,571 (January 1,1600) to 474,816 (December 31, 3199). December
30, 1899 is 0, so a positive number represents the number of days from December 30, 1899 up to the
date referenced in the formula. Date serial numbers are used in notebook calculations. (The fractional
portion of a date serial number is used for the time @functions.)

To display a date serial number in a date format, choose Numeric Format in the Block property menu.
This shows the date in its more common form (for example, Jan-1-94 instead of 34335).

Any illegal dates return ERR as their value, for example, @DATE (87, 2, 29) . (This date corresponds to
February 29, 1987, which is impossible; 1987 was not a leap year.)

Examples

@DATE (93,1,1) =33970 (January 1, 1993)

@DATE (91, 9,13) = 33494 (September 13, 1991)

@DATE (-300,1,1) =-109571 (January 1, 1600)

@DATE (102,1,1) = 37257 (January 1, 2002)

1

@DATEVALUE(DateString)

@DATEVALUE returns a serial date value that corresponds to the value in DateString. If the value in
DateString is not in the correct format or is not enclosed in quotes, ERR or a syntax error message is
returned. If DateString is entered using the international format, the year, month, and day must be in
the same order as the current international date format (set in the Applications property menu) and the
separator character must also agree.

You can display resulting date string values in standard date formats by choosing Numeric Format in
the Block property menu.

There are five valid formats for DateString:

[DD-MMM-YY ("04-Jul-92").

[DD-MMM ("04-Jul") (assumes the current year).
[MMM-YY ("Jul-92") (assumes the first of the month).

[The Long International date format specified as the system default, one of which is MM/DD/YY
("07/04/92").

The Short International date format specified as the system default, one of which is MM/DD
("07/18"). This format assumes the current year.

Note: The easiest way to enter a date value is with the date prefix (Shift+Ctrl+D). @DATEVALUE is
included for compatibility with other products.

Examples

@DATEVALUE ("07/04/92™) = 33789

@DATEVALUE ("JUL-92") = 33786 (July 1, 1992)

@DATEVALUE ("04-may-93") = 34093

@DATEVALUE (07/04/94) =0.018617 (no quotes makes Quattro Pro divide the numbers)

@DATEVALUE ("May-04-1992") =ERR

1

@DAVG(Block,Column,Criteria)

@DAVG averages selected field entries in a database. It includes only those entries in Column whose
records meet the criteria specified in Criteria.

The field specified in your criteria and the field being averaged need not be the same. The field
averaged is that contained within the column you specify as Column.

You can specify all or part of your database as Block, but field names must be included for each field
you include in the block. For more information about database blocks, see Setting Up a Database.

Examples

These examples refer to the database and criteria tables.
A B C D

1

2 DATE LOCATION REP AMOUNT

3 Jul-91 San Fran cJd $14,999

4 Jul-91 LA RX $28,725

5 Jul-91 Chicago RX $18, 600

6 Jul-91 NY CJd $15,600

7 Aug-91 Chicago CJ $23,769

8 Aug-91 LA RX $34,345

9

10 Criteria Table

11 Date Location Rep

12 Jul-91 San Fran CcJd

13 LA

@DAVG (A2..D8,3,A11..A12) = $19,481 (average of July sales)
@DAVG (A2..D8, 3,B11..B13) = $26,023 (average of California sales)
@DAVG (A2..D8,3 Cl1..C12) = $18,123 (average of CJ's sales)
@DAVG (A2..D8,4,A11..c13) = ERR (Column figure too high)
@DAVG (A2..D8,2,A11..212) =0 (labels are treated as 0)

1

@DAY(DateTimeNumber)

Converts the date/time serial number you supply as Date TimeNumber into the number associated with
that day (1-31). Decimal (time) portions of the number are ignored.

Examples
@DAY (33508) =27 (9/27/91)

@DAY (32134) =23 (12/23/87)
@DAY (@DATE (93,9,10)) =10
@DAY (474817) = ERR because the number you entered was larger than 474816.

1

@DCOUNT(Block,Column,Criteria)

@DCOUNT counts selected field entries in a database. It includes only those entries in Column whose
records meet the criteria specified in block Criteria.

The field specified in your criteria and the field being counted need not be the same. The field counted
is that contained within the column you specify as Column.

You can specify all or part of your database as Block, but field names must be included for each field
you include in the block. For more information about database blocks, see Setting Up a Database.

Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 San Jose RX $25,000
5 Jul-91 Chicago RX $18,998
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJd $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

These examples refer to the database and criteria tables.

@DCOUNT (A2..D8,3,A11..A12) =4 (number of July sales)

@DCOUNT (A2..D8,3,B11..B13) =3 (number of California sales)
@DCOUNT (A2..D8,3,C11..C12) =3 (number of CJ's sales)

@DCOUNT (A2..D8,4,A11..C13) = ERR (Column figure too high)
@DCOUNT (A3..D8,3,A11..A12) =6 (incorrect--field names not included)

1

@DDB(Cost,Salvage,Life,Period)

@DDB determines accelerated depreciation values for an asset, given the initial cost, life expectancy,
end value, and depreciation period. It calculates depreciation using the double-declining balance
method.

Life must be equal to or greater than Period; both must be integers greater than 0. Cost must be equal
to or greater than Salvage; both must be equal to or greater than zero.

@SLN and @SYD offer other depreciation methods.

Examples

Suppose you just bought a new $4000 computer. The dealer says you can sell it back to the store for
$350 after eight years, but no one would want to buy it after that. In other words, Salvage is $350 and
Life is 8. To calculate the double-declining depreciation allowance of this computer by the second year,
enter this formula:

@DDB (4000, 350, 8,2)

The result is $750.

These examples show depreciation values for the first five years of a $15,000 investment with a
salvage value of $3000 and a life of 10 years:

@DDB (15000,3000,10,1) =$3,000
@DDB (15000, 3000,10,2) =$2,400
@DDB (15000,3000,10,3) =$1,920
@DDB (15000, 3000,10, 4) = $1,536
@DDB (15000,3000,10,5) =$1,229

1

@DDELINK([AppName | Topic]"DataToReceive", <nCols>, <nRows>,
<nSheets>)

@DDELINK creates a "live" data link from another Windows application that supports DDE (Dynamic
Data Exchange). Using @DDELINK is equivalent to choosing Edit|Paste Link with data from another
application copied to the Clipboard.

When you enter @DDELINK into a cell, the linked data appears there. Unless you indicate otherwise,
the data takes up as much space as it did in the original application. You can use nCols, nRows, and
nSheets to specify smaller dimensions. If any of the arguments is 0 or omitted, the original dimension
applies.

Caution: @DDELINK sets up a zone of cells that can be overwritten whenever data changes in the
DDE-server application. Avoid storing other data near @DDELINK, and consider using the limit
arguments.

Examples

This formula gets information from the field Task in the ObjectVision application TASKLIST.OVD and
displays the data in the active notebook:
@DDELINK ([VISION|TASKLIST]"Task")

The maximum size of the data block for the following formula is 5 cells by 5 cells:
@DDELINK ([EXCEL|FILE1]"R1C1:R5C5")

With nRows = 3, the maximum size of the data block drops to 5 cells by 3 cells:
@DDELINK ([EXCEL|FILE1]"R1C1:R5C5", 0, 3)

See Also
Creating DDE Links

1

@DEGREES(X)

@DEGREES converts the given number of radians to degrees, using this formula:
180 times X divided by pi

Examples

@DEGREES (0.5) =28.64789
@DEGREES (0.017) =0.974028
@DEGREES (@PI/2) =90

1

@DMAX(Block,Column,Criteria)

@DMAX finds the maximum value of selected field entries in a database. It includes only those entries
in Column whose records meet the criteria specified in block Criteria.

The field specified in your criteria and the field you are finding the maximum value for need not be the
same. The field you are finding the maximum value for is that contained within the column you specify
as Column.

You can specify all or part of your database as Block, but field names must be included for each field
you include in the block. For more information about database blocks, see Setting Up a Database.

Examples
A B C D

1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 1A RX $28,725
5 Jul-91 Chicago RX $18, 600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CcJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DMAX (A2..D8,3,Al11..A12) = $28,725 (highest July sale)

@DMAX (A2..D8,3,B11..B13) = $34,345 (highest California sale)

@DMAX (A2..D8,3,C11..C12) = $23,769 (highest of CJ's sales)

@DMAX (A2..D8,4,A11..Cc13) = ERR (Column figure too high)

@DMAX (A3..D8,3,Al11..A12) = $34,345 (incorrect--field names not included)

1

@DMIN(Block,Column,Criteria)

@DMIN finds the minimum value of selected field entries in a database. It includes only those entries
in Column whose records meet the criteria specified in block Criteria.

The field specified in your criteria and the field for which you are finding the minimum value need not
be the same. The field for which you are finding the minimum value is that contained within the column
you specify as Column.

You can specify all or part of your database as Block, but field names must be included for each field
you include in the block. For more information about database blocks, see Setting Up a Database.

Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18, 600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJd $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CcJd
13 LA

@DMIN (A2..D8,3,Al11..A12) = $14,999 (smallest July sale)

@DMIN (A2..D8,3,B11..B13) = $14,999 (smallest California sale)

@DMIN (A2..D8,3,Cl1..C12) =$14,999 (smallest of CJ's sales)

@DMIN (A3..D8,3,Al1l..A12) = $15,600 (incorrect--field names not included)
@DMIN (A2..D8,4,A11..C13) = ERR (Column figure too high)

1

@DSTD(Block,Column,Criteria)

@DSTD finds the population standard deviation for selected field entries in a database. @DSTDS
computes the standard deviation of sample data.

@DSTD includes only those entries in Column whose records meet the criteria specified in block
Criteria.

The field specified in Criteria and the field for which you are finding the standard deviation need not be
the same. The field for which you are finding the standard deviation is the field contained within
Column.

You can specify all or part of your database as Block, but field names must be included for each field in
Block. For more information about database blocks, see Setting Up a Database.

Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJd $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18, 600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 1A RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJd
13 LA

@DSTD (A2..D8,3,B11..B13) = $8,126 (population SD of California sales)
@DSTD (A2..D8,3,C1l1..C12) = $4,000 (population SD of CJ's sales)
@DSTD (A2..D8,4,A11..Cc13) = ERR (Column figure too high)

@DSTDS (A2..D8, 3,B11..B13) = $9,952 (sample SD of California sales)
@DSTDS (A2..D8,3,C1l1..C12) = $4,899 (sample SD of CJ's sales)

1

@DSTDS(Block,Column,Criteria)

@DSTDS finds the sample standard deviation for selected field entries in a database. @DSTD
computes the standard deviation of population data.

This @function isn't compatible with 1-2-3. If your file must be compatible with 1-2-3, use @DSTD
instead.

1

@DSUM(Block,Column,Criteria)

@DSUM totals selected field entries in a database. It includes only those entries in Column whose
records meet the criteria specified in Criteria.

The field specified in Criteria and the field you are finding the sum of need not be the same. The field
you are finding the sum of is that contained within Column.

You can specify all or part of your database as Block, but field names must be included for each field
you include in the block. For more information about database blocks, see Setting Up a Database.

Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18, 600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJd $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CcJd
13 LA

@DSUM (A2..D8,3,A11..A12) = $77,924 (total of July sales)
@DSUM (A2..D8, 3,B11..B13) = $78,069 (total of California sales)
@DSUM (A2..D8,3,Cl1..c12) = $54,368 (total of CJ's sales)
@DSUM(A2..D8,1,A11..2A12) =0

@DSUM (A2..D8,4,A11..C13) = ERR (Column figure too high)

1

@DVAR(Block,Column,Criteria)

@DVAR calculates the population variance for selected field entries in a database. @DVARS

computes the variance of sample data.

@DVAR includes only those entries in Column whose records meet the criteria specified in Criteria.

The field specified in Criteria and the field for which you are calculating the variance need not be the
same. The field analyzed is the field contained within Column.

You can specify all or part of your database as Block, but field names must be included for each field
you include in the block. For more information about database blocks, see Setting Up a Database.

Examples

A B C D
1
2 DATE LOCATION REP AMOUNT
3 Jul-91 San Fran CJ $14,999
4 Jul-91 LA RX $28,725
5 Jul-91 Chicago RX $18, 600
6 Jul-91 NY CJ $15,600
7 Aug-91 Chicago CJ $23,769
8 Aug-91 LA RX $34,345
9
10 CRITERIA TABLE
11 Date Location Rep
12 Jul-91 San Fran CJ
13 LA

@DVAR(A2..D8,3,B11..B13) = $66,028,355 (pop. variance of Calif. sales)
@DVAR(A2..D8,3,C11..C12) = $16,000,740 (pop. variance of CJ's sales)
@DVAR(A2..D8,4,A11..C12) = ERR (Column figure too high)
@DVARS(A2..D8,3,B11..B13) = $99,042,532 (sample variance of Calif. sales)
@DVARS(A2..D8,3,C11..C12) = $24,001,110 (sample variance of CJ's sales)

1

@DVARS(Block,Column,Criteria)

@DVARS calculates the sample variance for selected field entries in a database. @DVAR computes
variance with population data.

This @function isn't compatible with 1-2-3. To use the file in 1-2-3, use @DVAR instead.

1

@ERR

@ERR returns the value ERR in the current cell and in any other cells that reference the current cell,
either directly or indirectly. (Exceptions to this are @COUNT, @DCOUNT, @ISERR, @ISNA,
@ISNUMBER, @ISSTRING, and @CELL formulas; these will not result in ERR if they reference an
ERR cell.)

The ERR value resulting from this @function is the same as the ERR value produced by Quattro Pro
when it encounters an error. It is often used with @IF to bring attention to error conditions.

ERR is a unique number, not to be confused with the label ERR.
Examples

@ERR = ERR

@IF(B6>B7,0,@ERR) = 0 (if B6>B7) or ERR (if B6<B7)

1

@EXACT(String1,String2)
@EXACT compares the values of String1 and String2. If the values are exactly identical, including
capitalization and diacritical marks (such as ~), it returns 1. If there are any differences, it returns 0.

If you're comparing literal strings, surround them with double quotes. If you use a block name or cell
address, no quotes are necessary. You can compare the contents of label cells only. If you try to
compare one or more numbers or empty cells, the result is ERR. When you compare labels, label
prefixes are ignored.

To compare strings or cell contents without regard to capitalization or diacritical marks, use @IF. For
example, @IF(C3=B3,1,0) returns 1 if the contents of the cells are the same but are capitalized
differently.

Examples

@EXACT(("client","Client") = 0

@EXACT(("client","client") = 1

@EXACT(29,"29") = ERR (the first string is a value)
@EXACT(A1,"yes") = 1 (if A1 contains the label yes)

@EXACT (client,client) = syntax error (no quotes)
@EXACT(("client","client","client ") = syntax error (more than two strings)

1

@EXP(X)

@EXP returns the mathematical constant e, raised to the Xth power. This @function is the inverse of a
natural logarithm, @LN.

Examples
@EXP(3.4) = 29.9641000474

@EXP(1) = 2.718281828459 (the actual value of e)
@SQRT(@EXP(2)) = 2.71828183
@LN(@EXP(2.5)) = 2.5

1

@FALSE

@FALSE returns the logical value 0 and is usually used in @IF formulas. The zero that it returns is the
same as any other zero, but @FALSE makes the formula easier to read.

@TRUE is a related @function.

Examples

@FALSE =0

@IF(C3=100,10,@FALSE) = 10 (if C3 = 100) or O (if C3 is not equal to 100)
@IF(C3=100,@TRUE,@FALSE) = 1 (if C3 = 100) or 0 (if C3 is not equal to 100)

1

@FILEEXISTS(FileName)

@FILEEXISTS returns a 1 if a file named FileName exists in the current file directory, and returns a 0 if
it doesn't. FileName can be a block name containing a path or file name string. If entered as a literal
string, FileName must be enclosed by quotes and must include any extension attached to the file
name. To search for a file in a directory other than the default directory, include the directory path in
FileName.

Examples
@FILEEXISTS("EXAMPLE.WB1") = 1 (if EXAMPLE.WBH1 is in the working directory)
@FILEEXISTS("C:\DATA\EXAMPLE.WB1") = 1 (if EXAMPLE.WB1 is in the specified directory)

@FILEEXISTS(FILE_NAME) = 1 (if the block FILE_NAME contains a path and file-name label and if
the file exists in that directory)

1

@FIND(Substring,String,StartNumber)

@FIND searches through String from left to right for Substring. If it finds Substring, it returns the
character position of the first occurrence. StartNumber indicates where to begin the search: 0 = the
first character in the string, 1 = the second, and so on. The value of StartNumber must not be more
than the number of characters in String minus 1.

@FIND is case-sensitive and is also sensitive to diacritical marks used in non-English languages. You
can overcome the case sensitivity of this @function by using @UPPER to force one or more of the
strings into all uppercase letters. For example, the following formula forces both the substring in cell
C3 and the string in cell C4 to uppercase, then searches for the substring:

@FIND(@UPPER(C3),@UPPER(C4),0)

@FIND is most often used in conjunction with two other string functions: @REPLACE (to perform
"search and replace" operations on strings) and @MID (to access substrings).

If @FIND fails to find any occurrences of Substring, or if the StartNumber given is invalid, the result is
ERR.

Examples

@FIND("i","find",0) = 1

@FIND("nd","find",2) = 2

@FIND("F","find",0) = ERR

@FIND("f","find",3) = ERR

@FIND("d","find",4) = ERR

@FIND(n,find,0) = syntax error (quote marks omitted from strings)
@FIND("hi",C4,0) = 1 (if C4 contains ship)

1

@FV(Pmt,Rate,Nper)

@FV returns the future value of an investment where Pmt is invested for Nper periods at the rate of
Rate per period.

@FYV assumes that the investment is an ordinary annuity. @FVAL, a related @function, uses an
optional argument, Type, to indicate whether the investment is an ordinary annuity or an annuity due.

Examples

Assume you want to set aside $500 at the end of each year in a savings account that earns 15%
annually. To determine what the account will be worth at the end of six years, enter this formula:
@FVv (500,15%, 6)

Your yearly payment of $500 will be worth $4,376.87 in six years. You could also use @FVAL:
@FVAL(15%,6,-500,0,0)

Note that in @FVAL, you have to be precise about whether a payment is out of your pocket (a
negative number) or paid to you (a positive number).

Other examples:

QFV (200, .12,5) =$1,270.57

QFV (500,0.9,4) = $6,684.50

@FV (800,0.9,3) =$5,208.00
@QEV(800,0.9,A3) = $40,929.67 (if A3 = 6)

1

@FVAL(Rate,Nper,Pmt,<Pv>,<Type>)

Like the related @function @FV, @FVAL returns the future value of an investment. The last two
arguments, Pv and Type, are optional. If you omit the last one or both of them, Quattro Pro assumes
their values are zero. These arguments let you define the problem as an annuity due (putting money
into an account before it earns its interest for that year means you have an annuity due to you, which
increases the future value). Be sure to enter negative numbers for money going out and positive
numbers for money coming in to you.

This @function isn't compatible with 1-2-3. If your file must be compatible with 1-2-3, use @FV
instead.

Examples

Assume you want to set aside $500 at the start of each year in a savings account that earns 15%
annually. To determine what the account will be worth at the end of six years, starting at a present
value of zero, enter this formula:

@FVAL (15%,6,-500,0,1)
Note that the payment is out of your pocket, so you enter a negative number. Your yearly payment of

$500 will be worth $5,033.40 in six years, or $656.53 more than if you deposited the money at the last
day of the year as in the example for @FV.

If the account already had $340 in it before your yearly deposits of $500, you could calculate the future
value after six years with this formula:

@FVAL (15%,6,-500,-340,1) = $5,819.84

1

@HEXTONUM(Hex)

@HEXTONUM converts the hexadecimal number in the string to the corresponding decimal value.
@NUMTOHEX performs the opposite conversion, from decimal to hexadecimal.

Examples
@HEXTONUM ("a") =10
@HEXTONUM ("10") =16

@HEXTONUM ("00FF") =255
@HEXTONUM (A1) = 10 (if cell A1 contains the label 'a)

See Also
Entering Number Conversion @Functions

1

@HLOOKUP(X,Block,Row)

The first row of Block contains the index values (comparison figures used to determine which column
to search). Each cell of the index row must contain a value. If numbers, these values must be in
ascending order.

@HLOOKUP provides an efficient way to access information stored in a table. @HLOOKUP searches
horizontally through the first row of Block for the value X. When found, it returns the value itself (if Row
= 0), or the value displayed the specified number of rows beneath it (as indicated by Row).

If X is a string, Quattro Pro looks for an exact case-sensitive match. If X is a number and Quattro Pro
can't find an equal number, it locates the highest number in the row not more than X. If X is a number
and the index row contains only labels, Quattro Pro stops at the rightmost column.

@HLOOKUP returns 0 if the referenced cell is blank. ERR is returned if:
Row is less than 0 or greater than the number of rows minus 1 in Block.
X is less than the smallest value in the topmost row of Block.

X and the index row entries are string values and Quattro Pro fails to find a match in the top row of
Block.

X s a string or label and the index row entries are numeric values.

Examples
You might have a table listing days of the week by number:

0 1 2 3 4 5 6
Saturday Sunday Monday Tuesday Wednesday Thursday Friday

You could use @HLOOKUP to enter the day of the week for a given date. For example,
@HLOOKUP (@MOD (@DATE (92,11,11),7),A1..G2,1) = Wednesday
Additional examples

A B c D
1 1 5 10 15
2 43 53 32 67
3 92 42 18 22
4 45 83 76 47

In the first example, Quattro Pro searches across the first row of the specified block (row 1), looking for
the largest number equal to or less than 17. It stops at cell D1, then moves down the specified number
of rows (3). It stops at cell D4 and returns the value 47.

@HLOOKUP (17,Al..D4,3) =47
@HLOOKUP (10,A1..D4,0) =10
@HLOOKUP (6,A1..D4,2) =42

@HLOOKUP (50,A1..D4,3) =47

@HLOOKUP ("18",Al..D4,2) = ERR (index row values are not strings)

@HLOOKUP (18,A1..D4,4) = ERR (row value > # rows-1 in block)
To search vertically through a table, use @VLOOKUP.

1

@HOUR(DateTimeNumber)

@HOUR returns the hour portion of DateTimeNumber. Date TimeNumber must be a valid date/time
serial number. Because only the decimal portion of a serial number pertains to time, the integer portion
of the number is disregarded. The result is between 0 (12:00AM) and 23 (11:00PM).

To extract the hour portion of a string that is in time format (instead of serial format), use
@TIMEVALUE with @HOUR to translate the time into a serial number. To return standard hours (1-12)
instead of military hours (1-24), use @MOD with a parameter of 12. See Also @TIME.

Examples
@HOUR(.25) =6

@HOUR(.5) =12
@HOUR(.75) =18
@HOUR (RTIMEVALUE ("10:08am")) =10

@MOD (@HOUR (RTIMEVALUE ("9:31:52 PM")),12) =9

1

@IF(Cond,TrueExpr,FalseExpr)

@IF evaluates the logical condition given as Cond. If the condition is found to be true, it returns the
value given as TrueExpr. If the condition is false, it returns the value given as FalseExpr. Cond is true if
it evaluates to any nonzero numeric value.

The formula entered as Cond can be any logical expression that can be evaluated as true or false; for
example, B6<0 or C3*D2=53.

You can use compound conditions by connecting expressions with #AND# or #OR#. If you use
#AND#, both conditions given must be met to evaluate true. If you use #OR#, the expression is true if
either of the conditions is met. For example, A3<10#AND#A3>5 means that the value in A3 must be
between 6 and 9 to evaluate true. You can also use the #NOT# operator to negate a condition. For
example, #NOT# (B3>10) evaluates true if B3 is not greater than 10.

TrueExpr and FalseExpr can be numbers, formulas resulting in numbers, or text. If text, the string must
be enclosed by double quotes; for example, @IF(D6=5,"John","Harry "). You can also use cell
references to use the contents of other cells in the notebook. For example, @IF(B10<18,D5,C4) enters
the contents of D5 if the condition is true, and enters the contents of C4 if the condition is false.

If the condition you specify with Cond searches a cell for a number and the cell contains a label, the
label is evaluated as having a value of 0 and FalseExpr is returned. Likewise, if you search for a label
and find a numeric value, TrueExpr results if the value of the referenced cell is 0; FalseExpr results if it
is nonzero.

Although logical expressions typically reference other cells, this is not required. Any expression
resulting in a numeric value is accepted; for example, A1=1 or A1="Fred". If the result of Cond is
nonzero, TrueExpr is the result; otherwise, FalseExpr is the result.

@IF statements can be nested, or used within one another. In other words, TrueExpr can contain yet
another test to further validate Cond.

For example, @IF (B5>C6,R@IF (B5>C7,1,2),3) tells Quattro Pro to see if the contents of B5 are
greater than C6. If they are, it then checks to see if B5 is greater than C7; if so, it enters a 1 in the cell.
If not, it enters a 2. If B5 is not greater than CB6, it enters a 3. There's no limit on the number of levels
@IF expressions that you can nest, as long as the entire expression doesn't exceed 1024 characters.

Examples
@IF(8=7,4,5) =5

@IF (B4<100,"Yes","No") = Yes if B4 < 100; otherwise, No
@QIF (C10=BLOCK, 45, 50) =45 if C10 = the cell named BLOCK; otherwise, 50

@IF(C10,1,0) =0if C10 = 0; otherwise, 1

1

@INDEX(Block,Column,Row,<Page>)

@INDEX searches through the table given as Block and returns the value specified with the Column,
Row, and optional Page values. The upper left cell in Block is column 0, row 0. Likewise, the first page
is 0. The Column and Row values are not the actual coordinates of the resulting cell, but instead are
offset values. In other words, @INDEX begins in the top left cell of the given block, moves right the
number of columns specified by Column, moves down the number of rows specified by Row, and
through the number of pages specified by Page (if you've specified a Page). It then returns the value in
the current cell.

The Column, Row, and Page values must be numbers equal to or greater than zero and less than the
number of rows, columns, or pages in the block. If a fractional number is used (for example, 2.35), the
fractional part is dropped (not rounded).

@HLOOKUP and @VLOOKUP are related functions.

Examples

A B C D
1 1 5 10 15
2 43 53 32 67
3 92 42 18 22
4 45 83 76 47

These examples reference cells in the data table:
@QINDEX (Al..D4,3,2) =22

@INDEX (Al..D4,1,2) =42
@INDEX (C2..D3,0,1) =18
@INDEX (C2..D3,1,3) = ERR (too many rows)

@INDEX (Al..D4, -2, 3) = ERR (negative column number)

1

@INT(X)

@INT drops the fractional portion of X, returning its integer value. @ROUND rounds X to the nearest
integer.

Examples
@INT (499.99) =499

@INT(0.1245) =0
@INT (-2.3) =-2

@INT (C4) =5 if C4 contains a value between 5 and 6

1

@IPAYMT(Rate,Per,Nper,Pv,<Fv>,<Type>)

@IPAYMT and @PPAYMT tell what portion of a particular loan payment is interest and what portion is
principal, respectively. For each month in the transaction period: @PAYMT(Rate, Nper, Pv, Fv, Type) =
@IPAYMT(Rate, Per, Nper, Pv, Fv, Type) + @PPAYMT(Rate, Per, Nper, Pv, Fv, Type).

The last two arguments, Fv and Type, are optional. If you omit one or both of them, their values are
assumed to be zero.

Examples

If you are two years into a 30-year, 10% mortgage on a $100,000 loan and your interest payment is
tax-deductible, then @TPAYMT (.1/12,2*12,30*12,100000) returns your current month's
deduction: -824.03.

1

@IRATE(Nper,Pmt,Pv,<Fv>,<Type>)

Like @RATE, @IRATE calculates the interest rate required for an investment or loan of Pv to reach Fv
within Nper periods, given Pmt. The last two arguments, Fv and Type, are optional. If you omit one or
both of them, their values are assumed to be zero.

@IRATE requires that the initial cash flow (Pv + Type * Pmt) and the last cash flow (Fv + (1-Type) *
Pmt) have opposite signs. Otherwise, @IRATE returns ERR because the transaction is not simple and
there may not be a meaningful rate.

@IRATE isn't compatible with 1-2-3. If your file must be compatible with 1-2-3, use @RATE instead.

Examples

Assume you're negotiating to buy a $15,000 new car. The salesperson says you can have the car for
$500 a month for the next five years. To calculate the monthly percentage rate:

@IRATE (5*12,-500,15000,0,0) =0.02632

Another example: Assume that you plan to deposit $2000 a year into a savings account that currently
contains only $2.38. What interest rate must the account earn to generate $15,000 at the end of 5
years? Use this formula:

@IRATE (5,-2000,-2.38,15000,0) =0.2038

1

@IRR(Guess,Block)

@IRR determines the internal rate of return on an investment.

Before using @IRR, you must set up a table of expected cash flow amounts over a period of time.
Quattro Pro assumes that the amounts are received at regular intervals. Negative amounts are
interpreted as cash outflows, and positive amounts as inflows. The first amount must be a negative
number, to reflect the initial investment. These amounts can all be the same for each time period, or
they can be different (including a mixture of negatives, positives, or zeros).

Typically, you make an investment (a negative cash flow) and then receive several dividends (positive
cash flows). This is an example of a simple transaction, and @IRR gives the unique rate of return for
this without requiring a Guess. More complex transactions, in which the direction of money changes
several times, often do not have a meaningful value for @IRR. For more information, see @IRR with

Multiple Rates of Return.

@IRR(Guess,Block) gives the number Rate which satisfies @NPV(Rate,Block,0) = 0. For a simple
transaction, @NPV(@IRR(Block),Block,0) will give a number close to 0 (it may not be exactly 0 due to
how numbers are rounded off).

Guess can be any value greater than -1. Values that are NA or less than or equal to -1 are ignored.
Use @NA for Guess unless your cash flow has multiple rates of return (see below). If you use @NA,
you will get ERR if your cash flow has more than one rate of return, rather than the rate of return that
happens to be near your Guess.

Examples

A B c
1 3000 -50000 -10000
2 700 -8000 1000
3 600 2000 1000
4 750 4000 1200
5 900 6000 2000

@IRR(0,Al..A5) =-1
@IRR(0,Bl..B5) =-38.09%
@IRR(0,C1l..C5) =-19.90%

See Also

Entering Cash Flow @Functions

1

@IRR with Multiple Rates of Return

In unusual cases, @IRR may have as many as N-1 roots, where N is the number of terms in the block.
Consider the Block that has the values (-10, +150, -145). @IRR(@NA,Block) returns ERR because it
is not simple. The two roots are 3.86% and 1296%, obtainable from guesses of 0 and 10, respectively.
Both of these values are meaningful, if interpreted properly. For one, you are the borrower; for the
other, the lender.

If you find a transaction with two roots, there is a mechanical way to determine which is the lender rate
and which is the borrower rate. Pick a positive term in the Block, and increase it by a small amount. If
the rate increases, it is a lender rate, and if the rate decreases, it is a borrower rate.

Most uses of @IRR are for analyzing an investment in which the first cash flow is negative, and the
rate is a lender rate.

Some transactions have no rate of return at all. @IRR(Guess,Block), with Block having the values
(-1,+1,-1), returns ERR regardless of the Guess. There is no rate of return that is meaningful for this
cash flow.

See Also

Entering Cash Flow @Functions
@IRR

1

@ISERR(X)

@ISERR is normally used to check the contents of a cell for errors. If the cell contains ERR, 1 is
returned; otherwise, 0 is returned. You can also use formulas or numeric values with @ISERR.

Examples
@ISERR (C2) =1 if C2 contains ERR; otherwise, 0

@ISERR(10/0)=1
@ISERR (45+C3) =1if C3is ERR; otherwise, 0
@ISERR (C2/B3)=1ifB3is 0 or ERR, or if C2 is ERR; otherwise, 0

@QIF (RISERR (A2),0,A5)=0if A2 is ERR; otherwise, it returns the value in A5

1

@ISNA(X)

@ISNA tests for the special value NA in a cell. If the cell contains an NA value, it returns 1; otherwise,
it returns 0. NA is considered a special value; it appears in the notebook only through the use of @NA.
Cells containing the label "NA" typed directly (not produced by @NA) are not recognized by @ISNA.

Examples
@ISNA ("NA") =0

@ISNA (@NA) =1

@ISNA (A18) =1 if A18 contains NA produced by @NA

1

@ISNUMBER(X)

@ISNUMBER examines X and determines if it contains a numeric value. If X is blank or contains a
numeric value, ERR, or NA, @ISNUMBER returns a 1. If Xis a label or text, @ISNUMBER returns a 0.
@ISNUMBER is usually used with @IF to determine whether an entry is a value.

Examples
@ISNUMBER (88) =1

@ISNUMBER ("88") = 0 (quotes signify a text string)
@ISNUMBER (9/15/87) =1

@ISNUMBER (@ERR) =1 (ERR and NA are numeric values)

1

@ISSTRING(X)

@ISSTRING examines X and determines if it contains a label or text string. If X does (even if the string
is empty), @ISSTRING returns 1. If X is blank or contains a numeric or date value, @ISSTRING
returns O.

Usually, @ISSTRING is used to test the contents of a cell. You can test any expression, however.
Literal string arguments must be enclosed by double quotes.

Examples
@ISSTRING (55) =0

@ISSTRING(2/5/88) =0

@ISSTRING ("Hello, world.") =1
@ISSTRING ("Hello, "&"world.") =1
@ISSTRING ("55") =1

@ISSTRING (A15) =1 if A15 contains a label or formula that results in a string, otherwise 0
@ISSTRING (A15&A16&"! ! ™) =1if A15 and A16 contain labels or formulas that result in strings
@ISSTRING ("") =1 (" is an empty string)

@ISSTRING (@NA) =0 (NA and ERR are considered numeric values)

1

@LEFT(String, Num)

@LEFT returns the leftmost Num characters of String. It lets you extract a specified number of
characters starting from the left end of a string or label.

If String is a numeric or date value or a blank cell, @LEFT returns ERR. If Num is longer than the
length of String, all of String is returned. The number of characters returned is never greater than the
length of the string.

Examples
@LEFT ("Jennifer", 5) = Jenni

@LEFT ("Jennifer",15) = Jennifer

QLEFT ("155",1) =1

@LEFT (" Jennifer",6) = J(including five leading spaces)
@LEFT (123,1) =ERR (123 is a value)

@LENGTH (RLEFT ("Jennifer",255)) =8

1

@LENGTH(String)

@LENGTH returns the number of characters in String, including spaces. You can combine strings or
cell addresses with an ampersand (&). When String is a text string, it must be enclosed by double
quotes.

If you try to reference a blank cell with this @function, Quattro Pro returns ERR.

Examples
@LENGTH ("Hello, world.") =13
@LENGTH (" Jennifer™) =9 (including preceding space)

@LENGTH ("Greetings "&"earthling™) =19 (including space after Greetings)
@LENGTH (29584949) = ERR (29584949 is a value, not a string)
@LENGTH (A6&B10) = total number of characters in A6 and B10

@LENGTH (B10) = ERR (if B10 is blank or a value)

1

@LN(X)

@LN returns the natural logarithm of X. A natural logarithm uses the mathematical constant e as a
base. @LN produces the inverse of @EXP.

Examples
@LN (3) =1.098612289

@LN (@EXP (10)) =10
QLN (16) /QLN(2) =4

QLN (-4) = ERR (-4 is less than 0)

1

@LOG(X)
@LOG returns the base 10 logarithm of X.

Examples
@LOG (1000) = 3

@LOG(10723.8) =23.8

@LOG (16) /RLOG (2) =4 (log to base 2 of 16)

1

@LOWER(String)

@LOWER returns String in lowercase characters. Numbers and symbols within a string are
unaffected. Numeric and date values return ERR.

Examples

@LOWER ("UPPER") = upper

@LOWER ("Hello, world.") = hello, world.

@LOWER ("145 Bancroft Lane") = 145 bancroft lane

@LOWER (4839) = ERR

@LOWER (QLEFT ("Johnson", 1)) =]j

1

@MAX(List)

@MAX returns the largest numeric or date value in List. If more than one block is listed, commas must
separate the blocks. If any of the cells referenced contain ERR, the resulting value is ERR.

Examples

A B (o} D
1 Jan Feb Mar
2 JA $652 $833 $599
3 MH $456 $305 3522
4 RB $68 $59 $73
5 PD $379 $379 $379
6 $1,555 $1,576 $1,573

@MAX (B3..B5) = $456
@MAX (C3..C5,D3..D5) = $522
@MAX (Al..D6) = $1,576

@MAX (B2..C5,D3) = $833

1

@MEMAVAIL

@MEMAVAIL returns the number of bytes of memory currently available.
Example
@MEMAVATIL = 47819 (if 47,819 bytes of memory are available)

1

@MEMEMSAVAIL

This @function is included for compatibility with Quattro Pro for DOS; it always returns NA under
Windows.

See Also

@MEMAVAIL

1

@MID(String,StartNumber,Num)

@MID extracts the first Num characters of String starting at StartNumber, which is the number of
characters to the right of the first character (character 0). It is similar to @LEFT. which extracts Num
characters of String beginning with the first character. The difference is that you can specify a
character other than the first character in the string.

String can be any text string (enclosed by quotes) or reference to a cell containing a label. If
StartNumber is greater than or equal to the length of String or if Num is 0, the result is ", or an empty
string.

Examples
@MID ("Abraham Lincoln", 8,7) =Lincoln

@MID ("George Washington",7,4) = Wash
@MID("Theodore Roosevelt™,19,5) ="

@MID (A23,@FIND ("Roosevelt",A23,0),R@LENGTH ("Roosevelt")) = Roosevelt (if A23 =
Franklin Roosevelt)

1

@MIN(List)

@MIN returns the smallest numeric value in List. If List contains more than one value, commas must
separate the values. Labels are treated in all statistical functions as 0 and should therefore be
excluded from List.

If List is entered as a block and one or more cells in that block are blank, the blanks are excluded from
the calculation; otherwise, blanks are treated as 0.

Examples
A B (o4 D

1 Jan Feb Mar
2 JA $652 $833 $599
3 MH $456 $305 $522
4 RB $68 $59 $73
5 PD $379 $379 $379
6 $1,555 $1,576 $1,573

@MIN (B3..B6) = $68
@MIN (B2..D2,B4..D4) =$59

@MIN (B3..D3) = $305

1

@MINUTE(DateTimeNumber)

@MINUTE returns the minute portion of Date TimeNumber. Date TimeNumber must be a valid
date/time serial number. Because only the decimal portion of a serial number pertains to time, the
integer portion of the number is disregarded. The result is between 0 and 59.

To extract the minute portion of a string that is in time format (instead of serial format), use

@TIMEVALUE with @MINUTE to translate the time into a serial number. You can also use @TIME to
enter a time value instead of a serial number.

Examples
@MINUTE (.36554) =46

@MINUTE (.2525) =3
@MINUTE (35) =0
@MINUTE (QRTIME (3,15,22)) =15

@MINUTE (QTIMEVALUE ("10:08 am")) =8

1

@MOD(X,Y)

@MOD divides the X value by Y and returns the remainder, or modulus, value. Because you cannot
divide a number by zero, ERR results if the value of Y'is zero.

Examples
@MOD (3,1) =0 (3 divided by 1 leaves no remainder)

@MOD (5,2) =1 (5 divided by 2 leaves a remainder of 1)
@MOD (3,1.1) =0.8

@MoD (4, 0) = ERR

1

@MONTH(DateTimeNumber)

@MONTH returns the month portion of Date TimeNumber. Date TimeNumber must be a valid date/time
serial number. Only the integer portion is used. The result is between 1 (January) and 12 (December).

To extract the month portion of a string that is in date format (instead of serial format), use

@DATEVALUE with @MONTH to translate the date into a serial number. You can also use @DATE to
enter a date value instead of a serial number.

Examples
@MONTH (69858) =4

@MONTH (58494) =2

@MONTH (.3773) =12

@MONTH (@DATEVALUE ("3/5/88")) =3
@MONTH (@DATE (88, 3,5)) =3

@MOD (@MONTH (@DATEVALUE ("3/5/88")),12) =3

1

@N(Block)

@N inspects Block and returns the numeric value of the upper left cell. If that cell contains a label or is
blank, it returns a 0.

This @function is used by other spreadsheet programs to avoid unnecessary ERR values resulting
from labels included in calculations. This is unnecessary with Quattro Pro, however, because labels
are already considered zero values in calculations. @N is included in Quattro Pro only for compatibility
with other products.

1

@NA

@NA returns the special value NA (not available). Formulas that depend on a value entered as @NA
return the value NA, unless there is an error, in which case they return ERR. NA is a unique number,
not to be confused with the label NA.

@NA is used to indicate values not yet available (it won't work with labels). It ensures that formulas
relying on information that is not provided don't display inaccurate data.

Examples

A B (o4 D
1 QTR North South West
2 1 $187,681 $151,136 $131,123
3 2 $170,072 NA $149,181
4
5 YTD $357,753 NA $280,304
6 AVG $178,877 NA $140,152

@NA has been entered for the South's Qtr 2 results. As you can see, the NA cascades through to the
totals. When the @NA is replaced with a valid value, the totals will immediately reflect the correct
figures.

@NA = NA
@IF (B3=0,@NA,B3) = NAif B3 = 0; otherwise, the value of B3

1

@NOW

@NOW returns the serial number corresponding to the current date and time. To display the number
as a date or time, choose Numeric Format in the Block property menu.

The value generated by @NOW is updated to the current date and time each time you press the Calc
key (F9), or perform any operation that recalculates the notebook.

The integer part of a date/time serial number pertains to the date; the decimal portion pertains to time.
To extract just the date portion, use @INT(@NOW). To extract just the time portion, use
@MOD(@NOW,1).

Examples

@eNow = 31905.572338 (5/8/87, 1:45 PM)

@INT (@NOwW) = 31905 (5/8/87)

@MOD (@NOW, 1) = 0.572338 (1:45 PM)

@INT (@MOD (@NOW, 7)) = 6 (the number of the day of the week)

1

@NPER(Rate,Pmt,Pv,<Fv>,<Type>)

Like @CTERM and @TERM, @NPER computes the number of payments needed to reach Fv, given
Pv, Pmt, and Rate. The last two arguments of @NPER, Fv and Type, are optional. If you omit one or
both of them, Quattro Pro assumes their values are zero.

Be sure to enter a negative number for money that's out of your pocket and a positive number for
money that's coming in to you.

This @function isn't compatible with 1-2-3. If your file must be compatible, use @CTERM or @ TERM
instead.

Examples

Assume you have an IRA account that earns 11.5% interest paid annually at the start of the year, and
you deposit $2000 into the account at the end of each year. The present account balance is $633. To
determine how many payment periods it will take to reach a nest egg of $50,000, use @NPER:

@NPER(11.5%,-2000,-633,50000,0) =12.12

The fractional part of the answer is not very meaningful; you can't be sure of having your nest egg until
the end of the 13th year.

1

@NPV(Rate,Block,<Type>)

@NPV calculates the current value of estimated cash flow values in Block, discounted at Rate. It can
help determine the current value of an investment, based on expected earnings.

The optional third argument, Type, can be 0 or 1, depending on whether the cash flows are at the
beginning or the end of the period. The default value is 0, end of the period.

The cash flow table in Block should show expected income and debits over a period of time. Quattro
Pro assumes that cash flow intervals are regular and the length of each interval is the same as the
period on which interest is compounded. If monthly cash flow is estimated, Rate needs to show
monthly interest. To convert annual interest to monthly interest, divide by 12.

Examples

A B c D E
1 1992 1993 1994 1995 1996
2 -5000 +2000 +2000 +2000 +2000

Suppose you're considering investing $5000 this year, and you expect a return of $2000 in each of the
next four years. Put the values -5000,+2000,+2000,+2000,+2000 in the block A2..E2. The net present
value, using a discount rate of 10%, is @NPV (.1,A2..E2, 1) which equals $1,340. Or, combine the
initial investment with the present value of the four returns with +22+@NPV (.1,B2..E2,0). The
result is the same.

Additional examples

A B C D
1 Jan 8000 200 3500
2 Feb 9000 350 4000
3 Mar 8500 -300 3000
4 Apr 9500 600 5000

@NPV (1.25%,B1..B4) = $33,908.92

@NPV (15%/12,C1..C4) = $820.83

@NPV (15%/12,D1..D4) = $15,006.51

-2000+@NPV (15%/12,D1..D4) = $13,006.51 (assumes an initial cash outflow of $2,000)

See Also

Entering Cash Flow @Functions

1

@NUMTOHEX(Decimal)

@NUMTOHEX converts the decimal number Decimal to its corresponding hexadecimal string value.
@HEXTONUM performs the opposite conversion, from hexadecimal to decimal.

Examples
@NUMTOHEX (10) ='A

@NUMTOHEX (16) ="10
@NUMTOHEX (65535) ='FFFF

See Also
Entering Number Conversion @Functions

1

@PAYMT(Rate,Nper,Pv,<Fv>,<Type>)

@PAYMT calculates the periodic payment needed to reach Fv, given Rate, Nper, and Pv. The last two
arguments of @PAYMT, Fv and Type, are optional. If you omit the last one or both of them, Quattro
Pro assumes that their values are zero. Enter negative numbers for out-of-pocket money and positive
numbers for money coming in.

Related @function @PMT isn't as flexible, but can be used if your file must be compatible with 1-2-3.

Examples

Assume you want to take out a 30-year $175,000 mortgage with a 17.5% annual interest rate with 12
payments a year, and you'd like to see the difference in your monthly payments if you paid at the start
or at the end of the month. All you have to do is enter these two @functions:

@PAYMT (17.5%/12,12*30,175000,0,0) =-2566.07

@PAYMT (17.5%/12,12*30,175000,0,1) =-2529.19

If, on the other hand, your mortgage has a "balloon payment" that leaves you with unpaid principal at
the end of the mortgage, you can still calculate the payment. Just insert the balloon payment amount
(say, $80,000) as the future value component:

@PAYMT (17.5%/12,12*30,175000,-80000,0) =-2559.68

1

@PI

@PI returns the value of pi (3.141592653589794...), the classic ratio of a circle's circumference to its
diameter.

To figure the area of a circle, given the radius in cell A1, enter this formula:
@PI*ALN2

Examples
@PI*13 =40.84 (circumference of circle with a diameter of 13)

@PI* (7.5)"2 =176.7146 (area of circle with a radius of 7.5)

@PI*B3 = the circumference of a circle whose diameter is in B3

1

@PMT(Pv,Rate,Nper)

@PMT calculates the fully amortized periodic payment needed to repay a loan with a principal of Pv
dollars at Rate percent per period over Nper periods. It assumes that interest is paid at the end of each
period and the investment is an ordinary annuity (not an annuity due).

Rate must correlate with the unit used for Nper; if payments are monthly, Rate must equal the annual
rate divided by 12.

You can enter the value for Rate as a percent or a decimal; for example, 9.5% or .095. The amount
you specify for Rate must correlate with the unit used for Nper. In other words, if payments are made
and interest calculated annually, the amount entered for Nper must represent years. If monthly, Nper
must represent the number of months the loan covers. To calculate monthly payments using an annual
interest rate, divide the interest rate by 12.

@PMT assumes that the investment is an ordinary annuity. Related @functions @PAYMT, @IPAYMT,
and @PPAYMT let you use an optional argument, Type, to indicate whether the investment is an
ordinary annuity or an annuity due.

Examples

To calculate a monthly payment (paid on the last day of the month) for a three-year loan of $10,000 at
an annual 15% interest rate, enter

@PMT (10000, 15%/12,3*12) = $346.65

You can also use @PAYMT to figure this payment (the negative result means the money is out of your
pocket):

PAYMT (15%/12,3*12,10000,0,0) = $-346.65
Other examples:
@PMT (1000,0.12,5) =$277.41

@PMT (500,0.16,12) =$96.21
@PMT (5000,16%/12,12) = $453.65
@PMT (12000,0.11,15) =$1,668.78

@PMT (10000, 15%/12, 36) calculates a monthly payment for a three-year loan of $10,000 at an
annual 15% interest rate

1

@PPAYMT(Rate,Per,Nper,Pv,<Fv>,<Type>)
@PPAYMT calculates the amount of a particular payment that is going toward the loan principal or
investment Pv and is not interest.

@IPAYMT gives the part of the payment which is interest; @PAYMT calculates the total payment for
each period.

Examples

Assume you're two years into a 30-year, 10% mortgage on a $100,000 loan. To determine what portion
of this month's payment is principal, enter

@PPAYMT (.1/12,2*12,30%12,100000) = $-53.54
The negative result indicates the money is out of your pocket.
Another example:

@PPAYMT (.15/4,24,40,10000,0,1) =$-252.41 quarterly payments for a $10,000 loan at 15%
annual percentage rate adjusted to a quarterly basis over a 10-year term

1

@PROPER(String)

@PROPER converts the first letter of every word in String to uppercase, and the rest of the characters
to lowercase. A word is defined as an unbroken string of alphabetic characters. Any blank spaces,
punctuation symbols, or numbers mark the end of a word.

Examples
@PROPER ("GEORGE washINGTON") = George Washington
@PROPER ("FIRST QUARTER") = First Quarter

@PROPER ("JOHN J. SMITH") =John J. Smith
@PROPER ("1979's results") =1979'S Results

@PROPER (A1) =John J. Smith (where cell A1 contains JOHN J. SMITH)

1

@PROPERTY(Object.Property)

@PROPERTY is similar to @COMMAND and @CURVALUE. It returns the current setting of Property
for the requested Object.

Object.Property must be enclosed in double quotes. See Property Reference for lists of objects and
properties you can enter as arguments.

@PROPERTY returns strings; even if the setting is a number, it is returned as a string.

@PROPERTY can be used in macros to read current settings so they can be restored at the end of
the macro.

Like @CELL, @PROPERTY statements do not recalculate automatically. Press F9 to obtain the
current value.

Examples
@PROPERTY ("Active Block.Selection") = the coordinates of the currently selected block.
@PROPERTY ("Active Block.Protection") = Protect if the currently selected block is protected,;

otherwise, it returns Unprotect.

@PROPERTY ("Sales:Al..D12.Protection™) = Protectif block A1..D12 on page Sales is
protected; otherwise, it returns Unprotect.

@PROPERTY ("Graph8:GS$Pane.Fill Style™) = "Bitmap,Crop to fit, C:\QPW\tiger.omp" if the
Graph Pane Fill Style for Graph8 is a cropped bitmap named Tiger from directory C:\QPW.

@PROPERTY ("B4.Font.Typeface") = Courier when cell B4 of the active page is set to display
Courier type.

1

@PV(Pmt,Rate,Nper)

@PV calculates the present value of an investment where Pmt is received for Nper periods and is
discounted at the rate of Rate per period.

@PV assumes that the investment is an ordinary annuity. Related @function @PVAL lets you use an
optional argument, Type, to indicate whether the investment is an ordinary annuity or an annuity due.

Examples

Assume you want to buy a new van that costs $12,000. The dealer presents two offers: Pay $12,000
cash up front, or pay $350 per month for the next five years with 7% interest. The present value of the
loan is

@PV (350,7%/12,5*12) = $17,675.70

The loan is worth over $5000 more than paying the cost all at once.
You can also use @PVAL. The car loan example becomes

@PVAL (7%/12,5*12,-350,0,0) = $17,675.70

Other examples:

@PV(277,0.12,5) = $998.52

@PV (600,0.17,10) =$2,795.16

@PV (100,0.11,12) =$649.24

1

@PVAL(Rate,Nper,Pmt,<Fv>,<Type>)

@PVAL calculates the present value of an investment where Pmt is received for Nper periods and is
discounted at the rate of Rate per period.

Enter negative numbers for money that's out of your pocket and positive numbers for money coming in
to you. The last two arguments, Fv and Type, are optional. If you omit the last one or both of them,
Quattro Pro assumes their values are zero.

This @function isn't compatible with 1-2-3. If your file must be compatible, use the related @function
@PV instead.

Examples

Your grandfather leaves you $24,000 in cash over the next 12 years ($2000 a year) or you can have all
his government bonds, which mature in 15 years to a worth of $30,000. To determine which is worth
more, compute the present value of the $24,000. Assume you can invest the money as you
accumulate it in a 10% money market account.

@PVAL (10%,12,2000,0,0) =-13,627.38

The result is negative because the money you invest is considered an outgoing cash flow. Now
compare this figure with the present value of the $30,000, which you won't receive for 15 years:

@PVAL(10%,15,0,30000,0) =-7,181.76

These results tell you that the $24,000 spread over 12 years is the more valuable choice.

1

@RADIANS(X)

@RADIANS converts the given number of degrees to radians, using this formula:
pi times X divided by 180

One degree is equal to approximately 0.017 radians.

Examples
@RADIANS (1) =0.017453

@RADIANS (57) =0.994838
@RADIANS (@DEGREES (3.5)) =3.5

@RADIANS (A4) =0.994838 (where cell A4 contains the value 57)

1

@RAND

@RAND returns a fractional random number between 0 and 1. This offers a sampling of figures, useful
for generating sample data for simulated situations.

To generate random numbers in another range, multiply @RAND by the difference between the new
high and low ends, then add the new low end number. The formula is @RAND * (high number - low
number) + low number.

For example, to indicate a range of 10 to 100, enter @RAND*90+10. This extends the upper limit to 100
and the lower limit to 10.

@RAND generates a new random number with each recalculation.

Examples
@RAND = a random number between 0 and 1

@RAND*9+1 = a random number between 1 and 10
@RAND*1000 = a random number between 0 and 1000
@RAND+5 = a random number between 5 and 6

-QINT (RRAND*90+10) = arandom integer between -10 and -100

1

@RATE(Fv,Pv,Nper)

@RATE calculates the interest rate required for an investment of Pv to be worth Fv within Nper
compounding periods. If Nper represents years, an annual interest rate results; if Nper represents
months, a monthly interest rate results, and so on.

@RATE assumes the investment is an ordinary annuity. The related @function @IRATE lets you use
an optional argument, Type, to indicate whether the investment is an ordinary annuity or an annuity
due.

Examples

This formula determines what yearly interest rate will double an initial investment of $2000 at the end
of 10 years:

@RATE (4000,2000,10) =7.18%
Other examples:
@RATE (10000, 7000, 6*12) = 0.50% (monthly)

@RATE (1200,1000, 3) =6.27% (yearly)

@RATE (500,100, 25) =6.65% (yearly)

1

@REPEAT(String,Num)

@REPEAT returns Num copies of String as one continuous label. This @function is similar to the
repeating label prefix (\) in that it repeats one or more characters. The difference is that you can
specify exactly how many times you want the string to be repeated. The \ label prefix adjusts the

display to fill the column, even when the width is changed. @REPEAT displays a fixed number of
copies of String and does not change.

When you specify a text string with @REPEAT, it must be enclosed by double quotes.

Examples
@REPEAT ("=",20) = =mmmmmmmmmmmmmmemee

@REPEAT ("good day!", 3) = good day!good day!good day!

@REPEAT (A5, 5) = the contents of A5 repeated 5 times

@REPEAT ("-", @CELL ("width",Al..Al)) = =mmmmmmmmmm- if column A is 12 characters wide. If you
change the column width, you can press F9 to adjust the repeat string to fill the cell.

1

@REPLACE(String,StartNum,Num,NewString)

@REPLACE lets you replace characters in text with a new text string. It searches through the given
String from left to right beginning with the first character (character 0) until it reaches character position
StartNum. Then it removes Num number of characters from the string, replacing them with NewString.

Both String and NewString can be either cell references or text strings. If text strings, they must be
enclosed by double quotes.

To replace one string with another, specify 0 as StartNum. For Num, enter a number equal to or
greater than the number of characters in String.

To insert one string into another string, specify 0 as Num.

To add one string to the end of another, specify as StartNum a number one greater than the number of
characters in String.

To delete part or all of a string, specify "" as NewString.

Examples

@REPLACE ("McDougal Corp.",2,6,"Douglas") = McDouglas Corp.

@REPLACE ("Leslie J. Cooper",7,3,"") = Leslie Cooper

@REPLACE ("Sales Salaries", 6,0, "Reps' ") = Sales Reps' Salaries (There must be a space

between Reps and the final quotation mark.)
@REPLACE ("355 Howard",11,0," St.") =355 Howard St. (There must be a space between "
and St.)

You can use @REPLACE with other string functions. For instance, to replace one word with another
within a sentence, you can use @FIND and @LENGTH to simplify the search-and-replace operation.
For example,

QREPLACE (A7, @FIND ("man",A7,0), ALENGTH ("man"), "person")

searches through A7 for man, then replaces man with person.

1

@RIGHT(String,Num)

@RIGHT returns the last Num characters of String counting from right to left. It extracts a specified
number of characters from the right side of a string or label.

If String is a not a valid string, @RIGHT returns ERR. If Num is 0, the result is "", or an empty string. If
Num is greater than or equal to the number of characters in String, the entire string is returned.

Examples
@RIGHT ("Jennifer Meyer",5) = Meyer

@RIGHT ("Jennifer Meyer",25) = Jennifer Meyer

@RIGHT ("Jennifer ",6) =fer (including 3 subsequent spaces)
@RIGHT ("155",1) =5

@RIGHT (123,1) = ERR (123 is a value)

@RIGHT (A10, 5) = the last five characters of A10

@RIGHT (A16, RLENGTH (A16) - QFIND("Roosevelt",Al6,0)) = Roosevelt (if A16 = Theodore
Roosevelt)

1

@ROUND(X,Num)

@ROUND adjusts the precision of X to Num decimal places. Num specifies the power of 10 to which X
is rounded. If Num is positive, X is rounded Num digits to the right of the decimal point. If Num is
negative, X is rounded Num digits to the left of the decimal point. For example, if Num is -3, X is
rounded to the nearest thousand.

If Num is 0, Xis rounded to an integer. If Num is not an integer, it is truncated to an integer.

Examples
@ROUND (12345.54321,0) =12346

@ROUND (12345.54321,2) =12345.54

@ROUND (12345.54321,-2) =12300

1

@ROWS(Block)
@ROWS returns the number of rows within the given block.

Examples
@ROWS (Al..Al) =1

@ROWS (Al..C15) =15
@ROWS (B100..B8192) =8093

@RrROWS (NAME) = 30 (if the block NAME contains 30 rows)

1

@S(Block)

@S returns the string value of the upper left cell of Block. If that cell contains a numeric or date value
or is blank, it returns "™ (an empty string).

If you enter a single cell address instead of a block, Quattro Pro changes it to a one-cell block (such as
C3..C3). Quattro Pro also transforms cells prefixed with an exclamation point (as used in 1-2-3) to a
one-cell range (IC3 changes to C3..C3).

Examples
A B C D
1 COMPANY REP SALES COMMISSION
2 ABC Inc. Jones $123,630 $3,115
3 Rogers Co. Marcus $160,330 $4,040
4 Klein Sales Wong $145,330 $3,662

@S (Al..A6) = COMPANY

@s(a2..a2) =ABC Inc.

@S (C2..c4) = (blank)

@S(B1..Bl)&™ = "&@S(B2..B2) =REP =Jones

@S (B3) &«@S (C3) = Marcus

1

@SECOND(DateTimeNumber)

@SECOND returns the second portion of Date TimeNumber. Date TimeNumber must be a valid
date/serial number. Because only the decimal portion of a serial number pertains to time, the integer
portion of the number is disregarded. The result is between 0 and 59.

To extract the second portion of a string that is in time format (instead of serial format), use

@TIMEVALUE with @SECOND to translate the time into a serial number. You can also use @TIME to
enter a time value instead of a serial number.

Examples
@SECOND (.3655445) =23

@SECOND (.2543222) =13

@SECOND (35) =0

@SECOND (QTIME (3,15,22)) =22

@SECOND (@TIMEVALUE ("10:08:45 am")) =45

@SECOND (@TIMEVALUE ("10:08 am™)) =0

1

@SHEETS(Block)

@SHEETS returns the number of pages within Block. This @function is similar to @COLS and
@ROWS.

Examples
@SHEETS (B:Al..D:IV1) =3

@SHEETS (Al..C7) =1

@SHEETS (A..E:NAME) =5

1

@SIN(X)

@SIN returns the sine of the angle X. X must be given in radians, not degrees. To convert degrees to
radians, use @RADIANS.

Examples
@SIN (GRADIANS (30)) =0.5

@SIN(@PI/6) =0.5

1

@SLN(Cost,Salvage,Life)

@SLN calculates the straight-line depreciation allowance for an asset over one period of its life, using
this formula:

(Cost - Salvage) divided by Life

To compute accelerated depreciation with the sum-of-the-years'-digits method (allowing higher

depreciation values in the first years of the asset's life), use @SYD. To calculate depreciation using the
double-declining balance method, use @DDB.

Examples

Assume you just bought a new $4000 computer. The dealer says you can sell it back to the store for
$350 after eight years, but that no one would want to buy it after that. In other words, the Salvage
value of that computer is $350 and its Life is 8. To determine the depreciation allowance of the
computer for each year of its life, enter this formula:

@SLN (4000, 350, 8) =456.25

Other examples:
@SLN (15000,3000,10) =$1,200

@SLN (5000, 500,5) = $900

@SLN (1800,0, 3) =$600

1

@SQRT(X)

@SQRT returns the square root of X. If X is a negative value, the result of @SQRT is ERR. If X is a
string or reference to a cell containing a label, the @function returns 0.

Examples
@SQRT (9) =3

@SQRT (2) = 1.414213562
@SQRT (144) =12
@SQRT (@SQRT (16)) =2

@SQRT (-4) =ERR

1

@STD(List)

@STD returns the population standard deviation (the square root of the population variance) of all
values in List. @STDS computes the standard deviation of sample data.

List can be any combination of single cell references, cell blocks, and numeric values. When more
than one component is used, all components must be separated by commas. @STD treats any labels
within a cell block as zero and ignores any blank cells. If the List contains only blank cells, however,
@STD returns ERR.

@STD determines how much individual values in List differ from the average (mean) of all values in
List. It can be used to verify the reliability of the average; the lower the value returned by @STD, the
less individual values vary from the average.

Examples

A B (o] D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
5 Anna $80 $80 $80
6

@STD (B4..D4) =$5.79

@STD(C2..C5,260) =$279.97

@STD(B2..D5) =$270.20

@STD (A15..D20) = ERR (because the entire block is blank)
@STDS (B4..D4) =$7.09

@STDS (B2..D5) = $282.22

1

@STDS(List)
@STDS returns the sample standard deviation (the square root of the sample variance) of all values in
List. @STD computes population standard deviation.

This @function isn't compatible with 1-2-3. If your file must be compatible with 1-2-3, use @STD
instead.

Examples

A B C D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
5 Anna $80 $80 $80
6

@STD (B4..D4) = $5.79

@STD(C2..C5,260) = $279.97

@STD (B2..D5) = $270.20

@STD (A15..D20) = ERR (because the entire block is blank)
@STDS (B4..D4) =$7.09

@STDS (B2..D5) = $282.22

1

@STRING(X,DecPlaces)

@STRING converts X to a string, rounding X to the decimal precision indicated by DecPlaces.

Once a number or date has been converted to a label using @STRING, no display formatting can be
done with it. To format strings derived from numbers as anything other than General format, you must
build a macro that uses the {CONTENTS} keyword.

Examples
@STRING(3.59,0) =4

@STRING (98.6,2) =98.60
@STRING(0.3902,0) =0
@STRING ("Harry",0) =0

@STRING (A1, 2) = 10.00 (where A1 =10)

1

@SUM(List)

@SUM returns the total of all numeric values in List. List can be any combination of single cell
references, cell blocks, and numeric values. When more than one component is used, they must be
separated by commas. Any labels or blank cells within a cell block are ignored by @SUM.

Any dates in the block will be converted to serial numbers and included in the calculation. Since this
will throw off your sum, avoid including dates in the @SUM argument block.

If you use a mouse, the SpeedBar SpeedSum button offers a convenient way to total columns, rows,
or both. It can total rows and columns in the selected block, but you don't need to enter a formula.

Examples
A B Cc D
1 January February March
2 John $652 $833 $599
3 Mary $456 $305 $522
4 Ralph $68 $59 $73
5 Anna $80 $80 $80
6

@SUM (B4..D4) = $200
@sUM(C2..C5,260) = $1,537
@SUM (A5, 534) = $534

@SUM (B2..B5,D2..D5) =$2,530

@SUM (B2..D5) = $3,807

1

@SUMPRODUCT(Block1,Block2)

@SUMPRODUCT(Block1, Block2) returns the dot product of the vectors corresponding to the blocks.
Quattro Pro multiplies each corresponding cell from Block1 and Block2 and then totals those results.
The blocks must be the same size (same number of rows and same number of columns), or else the
blocks must both be one-dimensional (either a row or a column) and they must have the same length.
If the blocks don't match, @SUMPRODUCT returns ERR.

This @function isn't compatible with 1-2-3. If your notebook must be compatible with 1-2-3, don't use
@SUMPRODUCT.

Examples
Assume the following values for these cells:

A1=1,B1=5A2=2,B2=6,A3=3,B3=7,A4=4,B4=8
@SUMPRODUCT (Al..A2,B1..B2) =17 (because 1*5 + 2*6 = 5+12 = 17)
@SUMPRODUCT (Al..A4,B1..B4) =70

@SUMPRODUCT (Al..A4,B1..B5) = ERR (blocks are not the same size)

1

@SYD(Cost,Salvage,Life,Period)

@SYD calculates depreciation amounts for an asset using an accelerated depreciation method. This
allows higher depreciation in the earlier years of the asset's life. @SYD uses this formula to compute
depreciation:

((Cost - Salvage)(Life - Period + 1)) divided by (Life(Life + 1)/2)

Cost must be equal to or greater than Salvage; both must be equal to or greater than 0. Life must be
equal to or greater than Period; both must be equal to or greater than 1.

@DDB and @SLN offer other methods of calculating depreciation.

Examples

Assume you just bought a new $4000 computer. The dealer says you can sell it back to the store for
$350 after eight years, but that no one would want to buy it after that. The Salvage value of that
computer is $350 and its Life is 8. To see what the depreciation allowance of this computer will be by
the second year (using this method of depreciation), enter this formula:

@SYD(4000,350,8,2) =709.72

These examples show depreciation values for the first five years of an asset's life. These can be
compared to those calculated with @DDB, which distributes more of the depreciation in the first year
of life.

@SYD(12000,1000,5,1) = $3,667
@SYD(12000,1000,5,2) =$2,933
@SYD(12000,1000,5,3) =$2,200
@SYD(12000,1000,5,4) = $1,467
@SYD(12000,1000,5,5) =$733

@DDB (12000,1000,5,1) = $4,800
@DDB (12000,1000,5,2) =$2,880
@DDB (12000,1000,5,3) =$1,728
@DDB (12000,1000,5,4) = $1,037
@DDB (12000,1000,5,5) = $555

1

@TAN(X)

@TAN returns the tangent of the angle X. X must be given in radians, not degrees. To convert degrees

to radians, use @RADIANS.

Examples
@TAN (4) =1.157821

@TAN (@PI/4) =1

@TAN (@RADIANS (45)) =1

1

@TERM(Pmt,Rate,Fv)

@TERM computes the number of payment periods required in order to accumulate an investment of
Fv, making regular payments of Pmt and accruing interest at the rate of Rate.

@TERM assumes the investment is an ordinary annuity. The related @function @NPER uses an
optional argument, Type, to indicate whether the investment is an ordinary annuity or an annuity due.

Examples

To determine how long it will take to accrue $50,000 by depositing $2000 at the end of each year into a
savings account that earns 11% annually, enter this formula:

@TERM (2000,11%,50000) =12.67

Quattro Pro determines that it will take 12.67 years to accumulate $50,000 in your account.
(Depending upon how your bank pays interest, your balance might not exceed $50,000 until the end of
the 13th year.)

If, on the other hand, the money is not coming in to you but is being paid out by you, you can enter the
future value as a negative number.

You can also use @NPER to calculate this example:
@NPER(11%,-2000,0,50000,0) =12.67

Other examples:

@TERM (300, 6%,5000) =11.9 years

@TERM (500, 7%,1000) = 1.94 years
@TERM (500, .07,1000) =1.94 years
@TERM(1000,10%,50000) = 18.8 years

@TERM(100,5%,1000) = 8.3 years

1

@TIME(Hr,Min,Sec)

@TIME returns the date/time serial number represented by Hr.Min:Sec. Any fractional portions of Hr,

Min, and Sec are rounded. You can display the resulting time string values in standard time formats by
choosing Numeric Format in the Block property menu.

Examples
@TIME (3,0,0) =0.125 (3:00 am)

@TIME (3,30,15) =0.14600694444 (3:30:15 am)
@TIME (18,15,59) =0.76109953704 (6:15:59 pm)
@TIME (B15,23,45) =0.099826388889 (when the value in B15 is 2)

@TIME (QHOUR(C3),A4,B10) =0.5751388889 (1:48:12 pm) (when C3 = 01:23:13 pm (formatted
date/time serial number), A4 = 48, and B10 =12)

1

@TIMEVALUE(TimeString)

@TIMEVALUE returns a serial time value that corresponds to the value in TimeString. If the value in
TimeString is not in the correct format, or is not enclosed in quotes (if entered as a literal string), an
ERR value is returned.

You can display resulting time string values in standard time formats by choosing Numeric Format in
the Block property menu.

There are four valid formats for TimeString:

[HH:MM:SS AM/PM (03:45:30 PM)
[HH:MM AM/PM (03:45 PM)

[The Long International time format chosen as a system default, one of which is HH:MM:SS
(15:45:30)

[The Short International time format chosen as a system default, one of which is HH:MM (15:45)

Examples
@TIMEVALUE ("03:30:15 AM") = 0.1460069444

QTIMEVALUE ("03:00") =0.125

@TIMEVALUE ("18:15:59") =0.76109953704
QTIMEVALUE ("3.45") = ERR

@TIMEVALUE (RTIME (12,30, 45)) =0.521354

@TIMEVALUE (A1) = 0.125 if A1 contains the label '03:00

1

@TODAY
@TODAY enters the numeric value of the system's date. It is equal to the expression @INT(@NOW).

1

@TRIM(String)

@TRIM removes any extra spaces from String; that is, spaces following the last nonspace character or
preceding the first nonspace character, and duplicate spaces between words. Strings with no extra
spaces are not affected. If String is empty or contains a numeric value, it returns ERR.

Examples
@TRIM (" too many spaces ") ="too many spaces"
@TRIM("no extra spaces") ="no extra spaces"

@TRIM(125) =ERR

1

@TRUE

@TRUE returns the logical value 1 and is usually used in @IF formulas. The 1 it returns is the same
as the regular numeral 1, but @ TRUE makes the formula easier to read.

See Also

@FALSE.

Examples
@TRUE = 1

@IF(C3=100,Q@TRUE,10) =1 (if C3 = 100) or 10 (if C3 is not equal to100)

@IF (C3=100, @TRUE, RFALSE) =1 (if C3 = 100) or 0 (if C3 is not equal to 100)

1

@UPPER(String)

@UPPER returns String in uppercase characters. Numbers and symbols within a string are
unaffected. If String is blank, or contains a numeric or date value, the result is ERR.

Examples
@UPPER (4839) =ERR

@UPPER (QLEFT ("johnson", 1)) =J

@UPPER ("upper") = UPPER

QUPPER ("Hello, world.") =HELLO, WORLD.

QUPPER ("145 Bancroft Lane") =145 BANCROFT LANE

1

@VALUE(String)

@VALUE converts String into a numeric value. String can contain arithmetic operators (but don't place
arithmetic operators within quotes). String must not contain embedded spaces. Dollar signs, commas,
and leading and trailing spaces are ignored.

This @function is useful for converting imported data that has not already been converted into values.

Examples
@VALUE (" 3.59") =3.59 (leading spaces are stripped)

@VALUE (" 98.6 ") =98.6 (leading and trailing spaces are stripped)
@VALUE ("98.6 4") = ERR (an embedded space is not allowed)

@VALUE (3+4) =7

@VALUE ("3+4") = ERR (arithmetic operators within quotes are not allowed)
QVALUE (" 88.039") =88.039

QVALUE (A10) = 56.34 (where cell A10 = '$56.34)

@VALUE ("34,200") = 34200

@VALUE (Al) = ERR (where cell A1 ='1800 Green Hills Road)

1

@VAR(List)

@VAR calculates the population variance of all nonblank, numeric cells in List, using the n method
(biased). Use @VARS to compute the variance of a data sample.

If List contains text, a reference to a single cell containing a label (for example, @VAR (B1) where B1 =
Adam), or label cells within references to multiple cell blocks (such as @VAR (B1..B5)), @VAR treats

the string as having a value of 0. @VAR ignores blank cells within a referenced block of cells, but
returns ERR if every cell in the block is blank.

Examples
@VAR(23,24,25) = .666666667

@VAR ("Adam", 53) =702.25 (same as for @VAR(0,53)

@VAR (B1..B4) =54.6875 (if B1=10, B2=15, B3="Susan", B4=20; the string in B3 is treated as if it
were 0)

@VARS (23,24,25) =1
@VARS ("Adam", 53) = 1404.5 (same as for @VARS(0,53)

@VARS (B1..B4) =72.9167 (if B1=10, B2=15, B3="Susan", B4=20; the string in B3 is treated as if it
were 0)

1

@VARS(List)

@VARS calculates the sample variance of all nonblank, numeric cells in List, using the n-1 method
(unbiased). @VAR computes population variance.

This @function isn't compatible with 1-2-3. If your file must be compatible with 1-2-3, use @ VAR
instead.

1

@VERSION
@VERSION returns the version number of Quattro Pro.

1

@VLOOKUP(X,Block,Col)

@VLOOKUP works along the same basic principles as @HLOOKUP, except that rows and columns
are reversed.

@VLOOKUP searches (vertically) down the first column of Block for value X. When found, it returns
the value itself (if Col = 0), or the value displayed the specified number of columns to the right (as
indicated by Col).

X can be a character string or a number, the address or block name of any cell containing a label or
value, or any expression that results in a number or string. If X is a string, the match must be exact;

the lookup is case-sensitive. If X is a number and @VLOOKUP can't find an equal number, it locates
the highest number in the column not greater than X.

The second argument (Block) specifies the coordinates of the table to be used for the lookup. This
table must have its index values in the leftmost column. These values (if numbers) must be in
ascending numerical order. Also, there must be no blank cells in the index column. Blanks in the table
to the right of the index column are treated as 0.

If X'is a string value and Column = 0, @VLOOKUP returns the offset number of the row X'is found in,
not the value of X.

These instances result in ERR:

[Column is less than 0 or greater than the number of columns in Block.

[X is less than the smallest value in the first column of Block.

[X is a string and an exact match in the index column is not found.

Examples

A B C D
1 5 52 84 43
2 10 32 67 45
3 15 42 18 22
4 20 83 76 47

In the first example, @VLOOKUP searches down the first column of the specified block (column A),
looking for the largest number equal to or less than 17. It stops at cell A3, then moves across the
specified number of columns (3). It stops at cell D3 and returns the value 22.

QVLOOKUP (17,Al..D4,3) =22
@VLOOKUP (10,A1..D4,0) =10
@VLOOKUP (50,A1..D4,3) =47
@VLOOKUP ("18",Al..D4,2) = ERR (no labels in block)

@VLOOKUP (18,A1..D4,8) = ERR (col value > # cols)

@VLOOKUP (18,A1..C4,3) = ERR (col value > # cols in given block)
To search horizontally through a table, use @HLOOKUP.

1

@YEAR(DateTimeNumber)

@YEAR returns the year portion of Date TimeNumber. The result will be between 0 (1900) and 199
(2099). To display the actual year, just add 1900 to the result of @YEAR. If you want to extract the

year portion of a string that is in date format, use @DATEVALUE with @YEAR to convert the string
into a serial number.

Examples
@YEAR (22222) =60 (1960)

@YEAR (A6) +1900 = 19nn, where nn is the year value in A6

@YEAR (@DATEVALUE ("12-0Oct-54")) =54

1

New @Functions

In addition to the existing eight categories of functions (mathematical, statistical, database, logical,
financial, date and time, string, and miscellaneous), there is a new category: engineering.

This section lists new @functions by category. Refer to the New @Functions Index for details and
examples. For the complete listing of @functions, see @Functions Index.
New Date and Time @Functions
Engineerin Functions

Bessel @Functions

Boolean @Functions

Complex Number @Functions

Miscellaneous @Functions

Number Conversion @Functions
New Financial @Functions

New Annuit Functions

New Cash Flow @Functions

Bill @Functions

Bond @Functions

CD @Functions
Stock @Functions

New Mathematical @Functions

New Miscellaneous @Functions

New Statistical @Functions
New Descriptive Statistical @Functions
New Inferential Statistical @Functions

1

New Date and Time @Functions

@ABDAYS
@ACDAYS
@AMNTHS
@BDAYS

@BUSDAY
@CDAYS

@EMNTH
@FBDAY

@HOLS

@ISBDAY
@LBDAY

LWKDAY

@MDAYS
@MNTHS
@NBDAY

@NWKDAY
PBDAY

WKDAY

@YDAYS
@YDIV

@YEARFRAC

See Also

New @Functions
Setting Holidays

Adds (or subtracts) a given number of business days to a given date.
Adds a given number of calendar days to a given date.
Adds a given number of months to a given date.

Returns the number of business days between two dates, inclusive of the
second date.

Returns a given date if it is a business day, or the closest business day before
(or after) the date.

Returns the number of calendar days between two dates, inclusive of the
second date.

Returns the date of the last day of the month in which a specified date falls.

Returns the date of the first business day of a month in which a specified date
falls.

Returns the number of holidays between two dates, excluding holidays that fall
on weekends.

Returns 1 if the specified date is a business day, or 0 if it is not.

Returns the date of the last business day of a month in which a specified date
falls.

Returns the date of the last given weekday in a given month.

Returns the number of calendar days in a given month of a given year.
Returns the number of whole months between two dates.

Returns the date of the first valid business day after a given date.

Returns the date of the nth occurence of a given weekday in a given month.
Returns the date of the first valid business day before a given date.

Returns the day of the week that a given date falls on.

Returns the number of calendar days in a given year.

Returns the date of the beginning of the year division in which a given date or
given number of divisions always falls.

Returns the year fraction representing the number of whole days between a
given starting and ending date.

@Functions and Formulas

Entering Formulas
@Function Arguments

1

Setting Holidays

Business date functions have three arguments to specify which dates are holidays: Saturday, Sunday,
and Holidays. By default, Saturday and Sunday are holidays. Setting the argument Saturday to 1
specifies that Saturday is a business day; setting Sunday to 1 specifies that Sunday is a business day.
Use the argument Holidays to specify holidays that don't fall on weekends (unless weekends are used
as business days). You can set Holidays to a block containing holiday dates (see the next figure), the
date of a single holiday, or 0 to specify no special holidays.

A B Cc

7 01/01/93 07/05/93 11/26/93
8 02/15/93 09/06/93 12/23/93
9 05/31/93 11/25/93 12/24/93

See Also
New Date and Time @Functions

@Functions and Formulas

Entering Formulas
@Function Arguments

1

Entering Number Conversion @Functions

Input numbers that include non-numeric characters (such as hexadecimal or ASCII values) must be
enclosed in quotation marks (for example, "1AF3C"). Numbers that exceed 14 digits, except decimal
numbers, must also be enclosed in quotation marks.

For the 64-bit number conversion @functions, numbers must be in the following ranges for each base:

64-bit Base Ranges

Base Range

Signed decimal -9223372036854775808 to +9223372036854775807

Unsigned decimal 0 to 18446744073709551615

Hexadecimal 0000000000000000 to FFFFFFFFFFFFFFFF

Octal 0000000000000000000000 to 17777777777T77TTTTT7777

If a 64-bit number conversion @function results in a string value greater than , the @function

returns ERR.

See Also
Number Conversion Engineering @Functions
@Functions and Formulas

Entering Formulas
@Function Arguments

1

Entering Boolean @Functions

The shift @functions, @SHLB, @SHRB, @SHLH, and @SHRH, shift the bits in a number to the left or
right. You can use the shift @functions to perform quick multiplication of integers. Each binary shift to
the left is equivalent to multiplying the number by 2. Each binary shift to the right is equivalent to
dividing the number by 2.

Binary Decimal
00011 = 3
00110 = 6
01100 = 12
11000 = 24

As you shift bits off one end of a number, bits are added to the other end. Shift, however, is not equal
to rotate. For example, the binary number 1001 shifted left is 0010. The same number rotated left is
0011. To perform this rotation, you can use a nested bit test @function to set the Bitin argument:
@SHLB(1001,@BITTB(1001,3),1,4) = 0011

The addition @functions, @ADDB and @ADDH, return the sum of two numbers. The subtraction
@functions, @SUBB and @SUBH, return the difference of two numbers.

Note: To add or subtract negative numbers with the Boolean @functions, use two's complement
notation. Two's complement notation is a code used to give meaning to a binary string. The sign
bit of two's complement notation is the leftmost bit of the word. A number is positive if the sign
bit is 0 and negative if it is 1. Negative integers are converted to two's complement by inverting
each bit (that is, changing each 1 to a 0 and each 0 to a 1), and then adding 1.

The overflow @functions, @SHLBO, @SHRBO, @SHLHO, @SHRHO, @ADDBO, @ADDHO,
@SUBBO, @SUBHO, return the overflow bit (either 0 or 1) of a shift, addition, or subtraction
operation. For example, if you shift the binary number 1001 to the left and maintain four places, the
result is 0010. The overflow bit, that is, the bit that has shifted into the fifth place not shown, is 1.

The AND @functions, @ANDB and @ANDH, combine the zeros of the input words. Any bit that is 0 in
either number sets the corresponding output bit to 0.

The OR @functions, @ORB and @ORH, combine the ones of the input words. Any bit that is 1 in
either number sets the corresponding output bit to 1.

The exclusive OR @functions, @XORB and @XORH, set an output bit to 1 when two corresponding
input bits are not equal.

The following table shows the results of AND, OR, and exclusive OR operations of Bit A and Bit B.
Bit A Bit B AAND B AORB AXORB

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The invert @functions, @INVB and @INVH, invert individual bits of a number; that is, all bits with a
value of 1 change to 0, and all bits with a value of 0 change to 1.

The bit manipulation @functions, @BITSB, @BITRB, @BITTB, @BITSH, @BITRH, and @BITTH, let
you set or reset bits, or test the value of a bit in a number.

The concatenation @functions, @CATB, @CATH, @CATNB, and @CATNH, link numbers together in

a chain. For example, the concatenation of the two binary numbers 11111 and 10101 is 1111110101.

The argument Bits defines the word size (in number of binary bits) for both input and output. The
default for Bits is the number of bits in the largest input number. If you perform an operation with two
numbers of different word size, the smaller number is left-padded with zeros. If Bits is less than the
length of an input value, then the excess most significant digits are truncated. For Boolean @functions
using hexadecimal numbers, note that each hexadecimal digit equals 4 bits.

The argument Bitln represents either the binary bit inserted during a shift, the carry bit for addition, or
the borrow bit for subtraction; it can be either 0 (the default) or 1.

See Also
Boolean Engineerin Functions

@Functions and Formulas
Entering Formulas
Function Arguments

1

New Financial @Functions

Annuity

@

G0
o
>
o

Cash Flow

O
O

92}
o
23

toc

See Also
Calendar Conventions

New @Functions

The investment @functions involve a series of periodic payments over a term
measured in the number of payment periods. This set of @functions allows you
to compute one value, knowing three of the other values.

These @functions compute values for Treasury billls.
These @functions compute values for bonds.

These @functions operate on tables of data that record income and
expenditures.

These @functions compute values for certificates of deposit.
These @functions compute values for common stock.

@Functions and Formulas

Entering Formulas
@Function Arguments

1

Calendar Conventions

Financial @functions support four different calendar conventions to count the difference in days
between two dates. The optional Calendar argument lets you specify which calendar convention to
use.

Calendar Description

30/360 The 30/360 calendar convention assumes all months have 30 days and every year
has 360 days. Using the 30/360 calendar, the number of years, months and days
between two dates are counted separately. Then, the number of days between two
dates is the sum of three quantities: the number of years times 360, the number of
months time 30, and the number of days.

Actual/Actual The Actual/Actual calendar convention considers the actual number of days
between two dates and the actual number of days in the year. For example,
February 28, 1994 and August 31, 1994 are 184 days apart. February 28, 1994 and
March 1, 1994 are 1 day apart.

Actual/360 The Actual/360 calendar convention considers the actual number of days in each
month, but assumes 360 days in the year.

Actual/365 The Actual/365 calendar convention considers the actual number of days in each
month, but assumes 365 days in the year, thus making no provision for leap year.

1

New Annuity @Functions

@AMAINT
@AMINT
@AMPMT
@AMPMTI
@AMPRN
@AMRES
@AMRPRN
@AMTERM
@MTGACC

@YLD2YLD

See Also

Calculates the accumulated interest paid on an amortized loan after n payments.
Calculates the periodic interest rate for an amortized loan.

Calculates the periodic payment for an amortized loan.

Calculates the interest portion of the nth periodic payment of an amortized loan.
Calculates the initial principal of an amortized loan.

Calculates the end value of an amortized loan or the future value of an annuity.
Calculates the remaining balance of an amortized loan after n payments.
Calculates the length of an amortized loan, expressed as number of payments.

Returns the new loan term, the payoff-date, or interest saved by paying extra
monthly principal for a home loan.

Converts a yield expressed in one compounding frequency and time length to that
in another frequency and/or time length.

Annuit Function Arguments
Calendar Conventions

New @Functions

New Financial @Functions

@Functions and Formulas

Entering Formulas

1

Annuity @Function Arguments

Argument Description

Adv Number of cash flows (payments, deposits) made before the annuity begins.

Fv Future value.

Int Interest charged on the loan per period (not per year; many loans quote annual
interest rates that must be divided by the number of payments per year).

Nper Number of periods of the loan or investment (should be an integer greater than 0).

Odd Number > 0 that specifies the number of periods between the start of a loan and
the first payment (for example, if the loan is made two and a half months before the
first monthly payment is due, use 2.5)

Payment Cash flow made each period.

Per A specified loan or investment period, 1 thorugh Nper.

Pmt Payment.

Principal Amount of money loaned or the initial deposit on an annuity that increases principal
(like depositing $2,500 to open a savings account)

Pv Present value.

Rate Interest rate (should be greater than -1).

Residual Remaining principal and interest at the end of a loan that the annuity didn't take
care of

ResOff Number of periods after the annuity ends before the residual must be paid; express
it as a fraction of a period (for example, in a monthly loan, 1.5 means 1.5 months
before the residual is due)

Simp Specifies how the interest is calculated: 0 for compounded interest, 1 for simple
interest

Term The total number of cash flows (payments or deposits) to make

Type 0 if payments are at the end of each period, 1 if at the beginning. This optional

argument lets you use financial @functions to compute either an ordinary annuity,
where periodic payments are made at the end of each period, or an annuity due,
where payments are made at the beginning of each period. Quattro Pro assumes
that Type = 0 unless you indicate otherwise.

Note: In the following @functions, as well as @NPV and @IRR, amounts with positive signs represent
money received, and amounts with negative signs represent money paid: @FVAL, @IRATE,
@IPAYMT, @NPER, @PAYMT, @PPAYMT, and @PVAL. This convention applies to arguments
and to the results of the @functions. In 1-2-3-compatible @functions (such as @PV, @PMT,
@FV, @RATE, @TERM, and @CTERM) the amounts are usually all positive regardless of
which way the money changes hands.

Non-integer values are allowed for Nper, and the @functions give results that are consistent with other
spreadsheet programs, but which are actually not very meaningful. If you borrow money from a bank
for, say, 15.2 months with interest paid monthly, giving Nper a value of 15.2 in the financial @functions
will only be a rough indicator of what the bank will tell you to pay. In order to compute the figures the
way the bank would, you have to consider two transactions, one for 15 months and one for 0.2

months.

The functions asume that there is no residual unless a nonzero value is specified for the optional
argument Residual. When a residual is specified, the functions assume that it's paid along with the last

payment. When it's not, a positive value should be specified for the optional argument ResOff. For
example, if the residual is paid three months after the last monthly payment, ResOff = 3. Compound
interest is used during any fractional component of ResOff unless Simp = 1.

Advance payments, specified by Adv, are made on or before the first day of the loan period. They're
included in the total payment count. The functions assume zero advance payments unless a nonzero
value is specified for the optional argument Odd.

Odd specifies the time period between the beginning of a loan (or issue of an annuity) and the date of
the first periodic payment, and does not necessarily constitute exactly one normal payment period. For
example, if a loan begins on March 19, 1993 and monthly payments are due the first of every month
beginning April 5, 1993, the first payment period is 17 days long. Since the implied normal first

payment period, March 5 to April 5, is 31 days long, Odd =

See Also
Annuity Financial @Functions

@Functions and Formulas
Entering Formulas
Function Arguments

1

New Cash Flow @Functions

@DURAT
@FUTV
@NETPV
@PIRATE
@SCMARG

See Also
Calendar Conventions

New @Functions

Calculates the Macaulay duration of a cash flow stream.
Calculates the future value of a cash flow stream.

Calculates net present value of a stream of cash flows.
Calculates the internal rate of return for a stream of cash flows.

Calculates the discount scenario margin, the margin to add to each discount
rate in order to arrive at a given net present value.

New Financial @Functions

Entering Cash Flow @Functions
@Functions and Formulas

Entering Formulas
@Function Arguments

1

Entering Cash Flow @Functions

@IRR and @NPV are similar to annuity @functions; they assume value changes based on Rate.
These @functions differ from annuity @functions because they operate on tables of data that record
income and expenditures. @IRR calculates the internal rate of change, while @NPV calculates the
current value of cash flow values given a set interest rate.

Cash flow analysis is a process of listing a stream of cash gains and losses (positive and negative
cash flows), modifying them using a percentage or percentages (discount rate(s)), and determining
their future value, present value, or rate of growth (or decline; both are called the internal rate of
return).

One example of a cash flow stream is a savings account: the stream consists of deposits (positive
cash flows) and withdrawals (negative cash flows) in chronological order. The current balance is the
net present value of the cash flows.

If you decided to set up a what-if scenario by adding estimated deposits and withdrawals to the
savings account, this estimated balance is the future value of the stream. Interest is added to the
account using percentages called discount rates. A discount rate doesn't just reduce a cash flow (like a
fee); it can also increase a cash flow (like accruing interest).

Unlike an annuity, this stream of cash flows doesn't always occur periodically, and doesn't have a fixed
interest rate for each cash flow.

You can use cash flow functions to estimate the net present value of a cash flow stream, project the
future value of the stream, compute the gains the stream is making as a percentage, or compute how
the discount rates must change to achieve a specific future value.

In Quattro Pro, a stream of cash flows is specified by a column (or row) of values. The Flows argument
of a cash flow function is set to this block. Positive values add cash to the stream; negative values
subtract from it. For example, if your savings account had two deposits of $50, one withdrawal of $25,
and one deposit of $75 (in that order), you could use A2..A5 or B2..E2 of the next figure to represent it
in a cash flow function:

A B C D E

1l Cash Flows

2 $50 $50 $50 ($25) $75
3 $50
4 ($25)
5 $75

If the stream contains a series of equal cash flows, you can add an additional column (or row) to
specify how many times a given cash flow repeats. For example, you can replace A2..A5 of the
previous figure with A2..B4 of the next figure:

A B
1 Cash Flows
2 2 $50
3 1 ($25)
4 1 $75

The first column (or row) of the block specifies how many times each cash flow occurs. For example,
in the previous figure the value 2 (in A2) specifies that two cash flows of $50 occur in the stream, not
one.

Note: Quattro Pro uses the size of the cash flow block to determine whether you're specifying a
column of cash flows or a row of cash flows. It assumes that blocks with more than two rows
contain cash flows in the second column; blocks with more than two columns contain cash flows
in the second row. In the case of a two-column, two-row block, Quattro Pro assumes that the
cash flows are in the second row.

You can use the argument, Filter, Start, and End to make Quattro Pro automatically exclude cash flows
that don't fall in a certain range, such as all deposits, or any withdrawals less than $20. Excluded cash
flows aren't included in the function calculations. Use Filter to specify the rules for exclusion, as shown
in the next table.

Filter Cash flows are excluded when

No filtering (the default)
Cash flow < Start

Cash flow < Start

Cash flow > Start

Cash flow > Start

Start < Cash flow < End
Start < Cash flow < End

As shown, Start and End are used differently, depending on the setting of Filter. They always bind the
cash flows in some way; Start and End could be a range of cash flows values to use (Filter set to 5) or
an upper limit for values (Filter set to 1, Start set to the upper limit).

o b~ W N -~ O

The Discrate argument of a cash flow function specifies how the cash flows are discounted to achieve
their future or net present value. It can be a single percentage (like 0.05 for 5%) that applies to all the

cash flows, or a column (or row) of discount rates, one for each cash flow in the Flows block (see the

previous section). Positive discount rates decrease the cash flow; negative ones increase it. The next
figure shows a stream of cash flows (in A2..B4) and their corresponding discount rates (in C2..C4).

A B C
1 Cash Flows Discounts
2 2 $50 5.0%
3 1 ($25) -2.5%
4 1 $75 7.5%

The first two cash flows (specified by A2..B2) are discounted by 5% (as specified by C2). The third is
discounted by -2.5% (an increase, as specified by the negative percentage in C3), and the final cash
flow is discounted by 7.5% (as specified by C4).

You can use the Simp argument to specify how Quattro Pro applies discount rates to cash flows. The
next table shows the discounting methods available.

Simp Discounting

0 Compounded

1 Mixture of compounded and simple
2 Simple

In addition to Simp, PathDep, which is used only when Discrate is a block, specifies whether path-
dependent discounting is used. When path-dependent discounting is used (PathDep is set to 1), the
set of discount rates are chained together to determine future or net present value. If the order of
discount rates changes, the future or net present value can be affected.

When path-dependent discounting isn't used (PathDep is set to 0, the default), each cash flow is
affected by its associated discount rate; other discount rates in Discrate don't affect it.

By default, cash flow functions assume that each cash flow occurs periodically (every month, every
year, and so on). The arguments Odd and Periods let you specify irregular periods. You normally use
one or the other, so these arguments appear in the function descriptions as Odd|Periods.

If the length of time of the first period is odd, specify a number for Odd. For example, if a series of cash
flows are monthly, and the first period is half a month long, set Odd to 0.5; if the first period is one and
a half months, set Odd to 1.5.

Note: In @FUTYV, Odd specifies the length of the last period.

If several cash flows are unevenly spaced, specify a block for Periods. Periods is a column (or row) of
numbers that specify the duration of each cash flow in the Flows block. Like Odd, each value in the
block is expressed as a fraction of the regular period. For example, the next figure shows a cash flow
block in B2..B4, and a Period block in A2..A4.

A B
1 Periods Flows
2 1 $50
3 3.5 $75
4 2 ($25)

The value 1 in A2 specifies that the first cash flow ($50) occurs at a regular period. You decide what
this period is; it could be a week, a month, or a year. Assuming the regular period is a month, the value
3.5 (in A3) specifies that the second cash flow ($75) occurs three and a half months after the first. The
final value, 2, specifies that two months elapse between the second cash flow and the third.

Like Flows, the Periods block can have an additional column (or row) added to specify how many
times a given period length repeats. Periods doesn't have to be the same size as Flows. For example,
in the next figure, the cash flow stream is A2..B5.

A B C D
1 Cash flows Periods
2 4 $5 1 0.56745
3 4 $10 11 1
4 7 S11 4 1.5
5 1 $110

Periods is C2..C4, and specifies that the first cash flow is 0.56745 periods away, the next 11 cash
flows occur one period apart, and the last four cash flows are 1.5 periods apart.

See Also

Cash Flow @Functions
@Functions and Formulas
Entering Formulas
@Function Arguments

1

Bond @Function Arguments

Argument Description

Settle Settlement date for the trade

Maturity Redemption date for the bond

Coupon Annual coupon rate expressed as a decimal

Issue Issue date, that is, the date at which the bond is first offered for sale and begins
accruing interest

FirstCpn Date on which the first coupon period ends; if the first coupon period is longer or
shorter than the other periods, the first coupon payment date is explicitly specified
at issue; the size of the first coupon payment is linearly prorated in accordance with
the length of the first coupon period

Redemption Redemption value per par of 100

Freq Frequency of coupon payments in the number of payments per year; the default is 2
(semiannual)

Calendar Calendar to observe; the default is 0 (30/360)

Yield Internal rate of return expressed as a decimal

Price Quoted price of the bond assuming a par value of 100 and not including accrued
interest

LastCpn Date on which the last coupon period ends

See Also

New Financial @Functions

@Functions and Formulas

Entering Formulas

@Function Arguments

1

New Mathematical @Functions

@CEILING Rounds a number up to the nearest integer.
@DFRAC Converts a decimal number to a whole number and fractional component.
@EVEN Rounds a number up to the nearest even integer.
@FACT Calculates the factorial of a number.
@FACTDOUBLE Returns the double factorial of a number.
@FIB Calculates the nth term of a Fibonacci sequence.
@FLOOR Rounds a number down, toward zero.
@FRACD Converts a number with a fractional component to a decimal.
@GCD Calculates the greatest comman divisor of x and y.

LCM Calculates the least common multiple of x and .
@LINTERP Performs linear interpolation between sets of xy pairs.
@MDET Calculates the determinant of a matrix.
@MROUND Returns a number rounded to the desired multiple.
@MULT Calculates cumulative product of a set of numbers.
@MULTINOMIAL Returns the multinomial of a set of numbers.
@ODD Rounds a number up to the nearest odd integer.
@QUOTIENT Returns the integer portion of a division.
@RANDBETWEEN Returns a random number between the numbers you specify.
@SERIESSUM Returns the sum of a power series based on a formula.
@SQRTPI Returns the square root of a number multiplied by pi.
See Also
New @Functions
@Functions and Formulas

Entering Formulas
Function Arguments

1

New Miscellaneous @Functions

@ARRAY

@BLOCKNAME
@BLOCKNAMEZ2
@BLOCKNAMES

@BLOCKNAMES2

@FIRSTBLANKPAGE

@FIRSTINGROUP
@GETGROUP

@INDEXTOLETTER

@ISLEGALPAGENAME

@LASTBLANKPAGE

@LASTINGROUP
@LETTERTOINDEX
@PAGEINDEX
@PAGEINDEX2

@PAGENAME
@PAGENAME2

@PAGENAMES
@PAGENAMES2

See Also

New @Functions
@Functions and Formulas
Entering Formulas
@Function Arguments

Returns the result of an expression (a formula or @function) using array
syntax.

Returns the name of a specified block.
Returns the block name created in a given notebook for a specified block.

Returns a two-column table showing the block names that intersect with a
specified block.

Returns a two-column table showing the block names created in a given
notebook that intersect with a specified block.

Returns the page letters for the first unnamed blank page in a notebook that
isn't part of a group.

Returns the page letters for the first page in the specified group.

Returns the name of the group that contains the page for a specified block,
or the name of the group in the specified block that contains a specified
page name.

Returns a one- or two-character string for the index number of a page or
column.

Returns 1 if the specified page name is valid (whether it exists or not);
otherwise, returns 0.

Returns the page letters for the last unnamed blank page in a notebook that
isn't part of a group.

Returns the page letters for the last page in the specified group.
Returns the index number for column letters or page letters.
Returns the index number for a notebook page with a specified name.

Returns the index number for a notebook page with a specified name in a
given notebook.

Returns the name of a notebook page with a given index number.

Returns the name of a notebook page with a given index number in a
specified notebook.

Returns a two-column table showing the page letters and corresponding
page names for the active notebook.

Returns a two-column table showing the page letters and corresponding
page names for a specified notebook.

1

New Statistical @Functions

The statistical @functions perform aggregation, counting, and analysis operations on a group of values
expressed as a list (or lists) of one or more arguments. These arguments can be numeric values or
block values.

Descriptive These @functions return a value that helps you summarize and describe a
group of values.

Inferential These @functions return a value (or values) that helps you draw conclusions
about a group (or groups) of values.

See Also

New @Functions

@Functions and Formulas

Entering Formulas
@Function Arguments

1

New Descriptive Statistical @Functions

@GEOMEAN Returns the geometric mean of all numeric values in a list.

@HARMEAN Returns the harmonic mean of all numeric values in a list.

@KURT Returns the kurtosis (peakedness or flatness) of a data set.

@LARGEST Returns the k-th largest value in a data set.

@MEDIAN Returns the median of a data set.

@MODE Returns the most common value in a data set.

@PERCENTILE Returns the value from a group of values at a specified percentile.

@PERCENTRANK Returns the percentage rank of a value in a data set.

@QUARTILE Returns the quartile of a data set.

@RANK Returns the rank of a number in a list of numbers.

@SKEW Returns the skewness of a distribution.

@SMALLEST Returns the k-th smallest value in a data set.

@STANDARDIZE Returns a normalized value.

@TRIMMEAN Returns the mean of all numeric values in a list with a fraction of values
excluded.

See Also

New @Functions

New Statistical @Functions
@Functions and Formulas
Entering Formulas
@Function Arguments

1

New Inferential Statistical @Functions

@AVEDEV

BETA

@BETADIST
@BETAI
@BETAINV
@BINOMDIST
@CHIDIST
@CHIINV
@CHITEST

@coms
@CONFIDENCE
@CORREL
@COVAR
@CRITBINOM

@DEVSQ
@EXPONDIST
@FDIST

@FINV

@FISHER
@FISHERINV
@FORECAST
@FTEST
@GAMMADIST
@GAMMAINV
@GAMMALN
@GAMMAP
@GAMMAQ
@HYPGEOMDIST
@INTERCEPT
@LOGINV
@LOGNORMDIST
@NEGBINOMDIST
@NORMDIST
@NORMINV

Performs the average of the absolute deviations of data points from their
means.

Returns the beta function.

Returns the cumulative beta probability density function.

Returns the incomplete beta function.

Returns the inverse of the cumulative beta probability density function.
Returns the binomial probability mass function.

Returns the cumulative chi-square distribution.

Returns the inverse of the cumulative chi-square distribution.

Computes the probability that the actual and expected frequencies are similar
by chance using the chi-square test.

Calculates the number of unordered subgroups of given size in a group.
Returns the confidence interval for a population mean.

Returns the correlation coefficient of two data sets.

Returns the covariance of two data sets.

Returns the smallest value for which the cumulative binomial distribution is less
than or equal to a criterion value.

Returns the sum of the squares of the deviations.

Returns the exponential distribution.

Returns the F distribution function.

Returns the inverse of the cumulative F distribution function.
Returns the Fisher transformation.

Returns the inverse of the Fisher transformation.

Returns a value along a linear trend.

Returns the result of the F-test.

Returns the gamma distribution function.

Computes the inverse of the cumulative Gamma distribution function.
Returns the natural logarithm of the gamma function.

Returns the incomplete gamma function.

Returns the complement of the incomplete gamma function.
Returns the hypergeometric distribution.

Returns the intercept of the linear regression line.

Returns the inverse of the lognormal distribution.

Returns the lognormal distribution.

Returns the negative binomial distribution.

Returns the normal cumulative distribution.

Computes the inverse of the cumulative normal distribution function.

@NORMSDIST
@NORMSINV
@PEARSON
@PERMUT

POISSON
@PROB
@RSQ

@SLOPE
@STEC
@STEYX
@SUMSQ
@SUMX2MY?2

@SUMX2PY2
SUMXMY2

@SUMXPY2
@SUMXY
SUMXY2

@TDIST
@TINV
@TTEST
@WEIBULL
@ZTEST

See Also

New @Functions

Computes the standard normal cumulative distribution.
Returns the inverse of the standard normal cumulative distribution.
Returns the Pearson product moment correlation coefficient.

Calculates the number of ordered subgroups of given size in a group
(permutations).

Returns the Poisson probability distribution.
Returns the probability that values in a range are between two limits.

Returns the square of the coefficient of correlation of the linear regression line
through data points in known xs and known ys.

Returns the slope of the linear regression line.

Returns the standard error of the regression coefficient.
Standard error of the predicted y-value for each x.
Returns the sum of the squares of the arguments.

Returns the sum of the differences of the squares of the corresponding values
in two arrays.

Returns the sum of the sum of the squares of corresponding values in two
arrays.

Returns the sum of squares of differences of corresponding values in two
arrays.

Returns the sum of the squares of corresponding values in two arrays.
Sum of the products of the corresponding numbers in two arrays.

Sum of the product of values and the squares of the corresponding numbers in
two arrays.

Returns the Student's t-distribution.

Returns the inverse of the Student's t-distribution.

Returns the probability associated with the Student's t-test.
Returns the Weibull distribution.

Returns the two-tailed probability value of a z-test.

New Statistical @Functions
@Functions and Formulas

Entering Formulas
Function Arguments

1

New @Functions Index

This section lists the new @functions in alphabetical order. Each entry includes syntax, arguments,
and a short description. For the complete @functions index, see @Function Index

@ABDAYS
@ACCRINT
@ACCRINTM
@ACDAYS
@ADDB
@ADDBO
@ADDH
@ADDHO
@AMAINT
@AMINT
@AMNTHS
@AMPMT
@AMPMTI
@AMPRN
@AMRES
@AMRPRN
@AMTERM
@ANDB
@ANDH
@ARRAY
@ASCTOHEX
@AVEDEV
@BASE
@BDAYS
@BESSELI
@BESSELJ
@BESSELK
@BESSELY
@BETA
@BETADIST
@BETAI
@BETAINV
@BINOMDIST
@BINTOHEX
@BINTOHEX64

@BINTONUM
@BINTONUM64
@BINTOOCT
@BINTOOCT64
@BITRB
@BITRH
@BITSB
@BITSH
@BITTB
@BITTH
@BLOCKNAME
@BLOCKNAMEZ2
@BLOCKNAMES
@BLOCKNAMES2
@BUSDAY
@CATB

@CATH
@CATNB
@CATNH
@CDAYS
@CEILING
@CHIDIST
@CHIINV
@CHITEST
@comB
@COMPLEX
@CONFIDENCE
@CONVERT
@CORREL
@COUPDAYBS
@COUPDAYS
@COUPDAYSNC
@COUPNCD
@COUPNUM
@COUPPCD
@COVAR
@CRITBINOM
@DELTA
@DEVSQ
@DFRAC

@DISC

DURAT
@DURATION
@EMNTH
@ERF
@ERFC
@EVEN
@EXPONDIST
@FACT
@FACTDOUBLE
@FBDAY
@FDIST
@FEETBL
@FB
@FINV
@FIRSTBLANKPAGE
@FIRSTINGROUP
@FISHER
@FISHERINV
@FLOOR
@FORECAST
@FRACD
@FTEST
@FUTV
@GAMMADIST
@GAMMAINV
@GAMMALN
@GAMMAP
@GAMMAQ
@GCD
@GEOMEAN
@GESTEP
@GETGROUP
@HARMEAN
@HEXTOASC
@HEXTOBIN
@HEXTOBING4
@HEXTONUM64
@HEXTOOCT
@HEXTOOCT64

@HOLS
@HYPGEOMDIST
@IMABS
@IMAGINARY
@IMARGUMENT
@IMCONJUGATE
@IMCOS
@IMDIV
@IMEXP
@IMLN
@IMLOG10
@IMLOG2
@IMPOWER
@IMPRODUCT
@IMREAL
@IMSIN
@IMSQRT
@IMSUB
@IMSUM
@INDEXTOLETTER
@INTERCEPT
@INTRATE
@INVB
@INVH
@ISBDAY
@ISLEGALPAGENAME
@KURT
@LARGEST
@LASTBLANKPAGE
@LASTINGROUP
@LBDAY

LCM
@LETTERTOINDEX
@LINTERP
@LOGINV
@LOGNORMDIST
@LWKDAY
@MDAYS
@MDET
@MDURATION

@MEDIAN
@MNTHS
@MODE
@MROUND
@MTGACC
MULT
@MULTINOMIAL
@NBDAY
@NEGBINOMDIST
@NETPV
@NORMDIST
@NORMINV
@NORMSDIST
@NORMSINV
@NUMTOBIN
@NUMTOBING4
@NUMTOHEX64
@NUMTOOCT
@NUMTOOCT64
@NWKDAY
@OCTTOBIN
@OCTTOHEX
@OCTTONUM
@ODD
@ODDFPRICE
@ODDFYIELD
@ODDLPRICE
@ODDLYIELD
@ORB
@ORH
@PAGEINDEX
@PAGEINDEX2
@PAGENAME
@PAGENAME2
@PAGENAMES
@PAGENAMES?2
@PBDAY
@PEARSON
@PERCENTILE
@PERCENTRANK

@PERMUT
PIRATE
@POISSON
@PRICE
@PRICEDISC
@PRICEMAT
@PROB
@QUARTILE
@QUOTIENT
@RANDBETWEEN
@RANK
@RECEIVED
@RSQ
@SCMARG
@SERIESSUM
@SHLB
@SHLBO
@SHLH
@SHLHO
@SHRB
@SHRBO
@SHRH
@SHRHO
@SKEW
@SLOPE
@SMALLEST
@SQRTPI
@STANDARDIZE
@STEC
@STEYX
@STKOPT
@suBB
@SUBBO
@SUBH
@SUBHO
@SUMSQ
@SUMX2MY?2
@SUMX2PY2
@SUMXMY2
@SUMXPY2

@SUMXY
@SUMXY?2
@TBILLEQ
@TBILLPRICE
@TBILLYIELD
@TDIST
@TINV
@TRIMMEAN
@TTEST
@WEIBULL
WKDAY
@XORB
@XORH
@YDAYS
@YDIV
@YEARFRAC
@YIELD
@YIELDDISC
@YIELDMAT
@YLD2YLD
@ZTEST

1

@ABDAYS

Format
@ABDAYS (Date, Days, <Holidays>, <Saturday>, <Sunday>)

Date = number representing the date to which a number of business days should be added

Days = integer representing number of business days to add; can be negative

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to
indicate no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a
business day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a

business day (the default is 0)
@ABDAYS adds or subtracts Days business days from Date and returns a serial date number.

If Date falls on a weekend or a holiday, one business day out of Days is used to bring Date forward to
the next business day; if Days is negative, Date is taken backward to the previous business day. For
example, if 20 business days are added to June 5, 1993, the result is the same as adding 19 business
days to June 7, 1993 since June 5 falls on a Saturday.

Example

This formula calculates the date that precedes January 12, 1994 by 90 business, assuming that
Saturday, Sunday, and the dates in the block A7..C9 are holidays:

@ABDAYS (@DATE (94,1,12),-90,A7..C9) = 34213 (September 1, 1993)

See Also
Setting Holidays

1

@ACCRINT

Format

@ACCRINT (Settle, Maturity, Coupon, <Issue>, <FirstCpn>, <Par>, <Freqg>,
<Calendar>)

Settle = number representing the settlement date

Maturity = number representing the maturity date

Coupon = coupon rate; 0 < Coupon < 1

Issue = number representing the issue date

FirstCpn = number representing the first coupon date

Par = par value (the default is 1000)

Freq = frequency of coupon payments in the number of payments per year (can be 1, 2, 3,

4, 6, or 12; the default is 2)
Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@ACCRINT returns the accrued interest for a bond. Accrued interest represents an amount paid to the
bond seller as compensation for owning the bond for a fraction of a coupon period. Interest accrues
from the last coupon date to the settlement date. @ACCRINT returns the accrued interest per 1000

face value.
Dates for @ACCRINT must follow this pattern:
Issue < Settle < FirstCpn < Maturity

Example

This formula returns the accrued interest, as of May 15, 1993, on an 8.875% bond with a $100,000
face value, maturing February 15, 1998, dated November 22, 1992, and paying its first coupon on

August 15, 1993:

@ACCRINT (@RDATE (93,5,15) ,@DATE (98,2,15),0.08875,@DATE (92,11,22),

5), 100000) =$4,264.93

@DATE (93,8,1

1

@ACCRINTM

Format
@ACCRINTM (Issue, Settle, Coupon, <Par>, <Calendar>)

Issue = number representing the issue date; must be < Settle

Settle = number representing the settlement date

Coupon = coupon rate; 0 < Coupon < 1

Par = par value (the default is 1000)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@ACCRINTM calculates the amount of interest accrued per par value between the issue date of the
coupon and the settle date.

Example

This formula returns the accrued interest on a certificate of deposit (CD) with $1,000,000 face value
settling March 11, 1990, dated December 15, 1989, and paying a coupon of 10% on an actual/360
basis:

@ACCRINTM (QDATE (89,12,15) ,@DATE (90,3,11),0.10,1000000,2) = $23,888.89

1

@ACDAYS

Format
@ACDAYS (Date, Days, <Calendar>, <EndMnth>)

Date = number representing the date to add days to
Days = integer representing number of days to add; can be negative
Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

EndMnth = 1 to indicate adherence to ends of months; 0 to indicate that ends of months are
ignored (the default is 1)

@ACDAYS adds Days days to Date using an actual or 30/360 calendar and returns a serial date
number. If Days is negative, @ACDAYS subtracts the absolute value of Days from Date.

With the 30/360 calendar, if the ending month is February and the remaining days push the result to
the 29th or 30th, the result is forced to the true end of the month (28th or 29th, depending on whether
Date is in a leap year).

More than one result is possible when using the 30/360 calendar. For example, adding 90 days to April
30 can yield either July 30 or July 31.

Examples
@ACDAYS (@DATE (93,1,1),120) =34090 (May 1, 1993)

@ACDAYS (@DATE (93,11,15),-270) = 34015 (February 15, 1993)

See Also

@ABDAYS
@AMNTHS
@YDIV

1

@ADDB

Format
@ADDB (Binaryl, <Binary2>, <BitIn>, <Bits>)

Binaryl = first binary number

Binary2 = second binary number

BitIn = input carry bit; can be either 0 (the default) or 1

Bits = number of binary bits used for both input and output; if omitted, Bits = number of bits in

Binary1 or Binary2, whichever is greater; must be < 64

@ADDB returns the sum of two binary numbers. If Binary2 is omitted, @ADDB counts the bits in
Binary1 that are set to 1; this bit counting operation is called addition reduction.

Use two's complement notation to represent negative numbers. If Bitln is 1, @ADDB adds one extra
bit to the result.

Example

@ADDB (100,100) =1000
@ADDB(100,100,1,4) =1001
@ADDB (101) =2
@ADDB(1100,1,1,5) =01110

See Also
Entering Boolean @Functions

1

@ADDBO

Format
@ADDBO (Binaryl, Binary2, <BitIn>, <Bits>)

Binaryl = first binary number

Binary2 = second binary number

BitIn = input carry bit; can be either 0 (the default) or 1

Bits = number of binary bits used for input; if omitted, Bits = number of bits in Binary1 or

Binary2, whichever is greater; must be < 64

@ADDBO returns the overflow bit (either 0 or 1) of the sum of two binary numbers. An overflow occurs
when a bit is carried out of the word size specified by Bits. For example, if Binary1 = 10 and Binary2 =
10, the sum of the two numbers is 00, with 1 carry bit in the third place not shown.

Use two's complement notation to represent negative numbers. If Bitln is 1, @ADDBO adds one extra
bit to the sum of the two numbers before returning the overflow.

Example

@ADDBO (1000,111) =0

@ADDBO (1000,111,1) =1

@ADDBO (1100,100,1,4) =1

See Also
Entering Boolean @Functions

1

@ADDH

Format
@ADDH (Hex1l, <Hex2>, <BitIn>, <Bits>)

Hex1 = first hexadecimal number

Hex2 = second hexadecimal number

BitIn = input carry bit; can be either 0 (the default) or 1

Bits = number of binary bits used for both input and output; if omitted, Bits = number of bits in

Hex1 or Hex2, whichever is greater; must be < 64

@ADDH returns the sum of two hexadecimal numbers. If Hex2 is omitted, @ADDH counts the bits in
Hex1 that are set to 1; this bit counting operation is called addition reduction.

Use two's complement notation to represent negative numbers. If Bitln is 1, @ADDH adds one extra
bit to the result.

Example

@ADDH ("EOO","100") =F00
@ADDH ("100",™100",1,16) =0201
@ADDH ("9") =2

@ADDH ("C","1",1,8) =0E

See Also
Entering Boolean @Functions

1

@ADDHO

Format
@ADDHO (Hex1, Hex2, <BitIn>, <Bits>)

Hex1 = first hexadecimal number

Hex2 = second hexadecimal number

BitIn = input carry bit; can be either 0 (the default) or 1

Bits = number of binary bits used for input; if omitted, Bits = number of bits in Hex1 or Hex2,

whichever is greater; 4 binary digits = 1 hexadecimal digit; must be < 64

@ADDHO returns the overflow bit (either 0 or 1) of the sum of two hexadecimal numbers. An overflow
occurs when a bit is carried out of the word size specified by Bits. For example, if the binary
equivalents for Hex1 and Hex2 are 10 and 10, the sum of the two numbers is 00 with 1 carry bit in the
third place not shown.

Use two's complement notation to represent negative numbers. If Bitln is 1, @ADDHO adds one extra
bit to the sum of the two numbers before returning the overflow.

Examples

@ADDHO(H8H,HFH) :1

@ADDHO("8","F",1,5) =0

@ADDHO ("C™,"4",1,4) =1

See Also
Entering Boolean @Functions

1

@AMAINT

Format
@AMAINT (Principal, Int, Term, n, <Part>, <Residual>, <ResOff>, <Adv>,
<0dd>, <Simp>)

Principal = initial loan principal

Int = periodic interest rate

Term = term of the loan, expressed in number of total payments

n = number of payments made; must be an integer from 0 to Term

Part = part of (n+1)th period passed (must be from 0 to 1; the default is 0)

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0); n £ Adv must be
an integer

Odd = number of periods between loan inception and date of first payment (not including

advance payments); can have fractional component (the default is 1)

Simp 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMAINT calculates the accumulated interest paid on a loan after n payments. The accumulated
interest is the sum of the interest portions of the first n payments plus the interest of an optional partial
payment (specified by Part).

Term and n should include advance payments made at the beginning of the loan. Part handles payoff
situations where the payoff date doesn't coincide with a periodic payment date. For example, if 20 out
of 60 monthly payments of a loan have been made and 10 days have passed since the 20th payment

date, Part = /| assuming there are 31 days between the 20th and 21st monthly payments.

If Simp = 0, @AMAINT uses this formula:
I-=-n** Par—-DPr-+:B-*- (1-4-Int)?

If Simp =1, @AMAINT uses this formula:
I-=n-*-Pa-—-+Pr-+:-B-*-(1l-+-Int-*-P)

where Payment is the periodic payment and Balance is the remaining balance on the loan after n
payments. Balance, like Principal, is the present value of an annuity paying Payment.

| = interest
Pa = payment
Pr = principal
B = balance
P = part

Examples

Aloan of $10,000 was made on September 11, 1992 to be repaid in 48 monthly installments. The
annual interest rate is 8.4% (8.4%/12 = 0.7% monthly rate). The first payment was paid in advance.
This formula calculates the amount of paid interest after 15 regular payments:

@AMAINT (10000,0.007,48,15,0,0,0,1) =$840.74

For the same loan, this formula calculates how much interest accumulated on the loan as of March 3,
1993, assuming the borrower made regular payments. The previous payment (the 18th) fell on
February 11, 1993; there are 21 days between the previous payment and March 3. Interest accrues as
simple interest over fractional periods.

@AMAINT (10000,0.007,48,18,21/29,0,0,1,1,1) =$1,020.69

1

@AMINT

Format
@AMINT (Principal, Term, Payment, <Residual>, <ResOff>, <Adv>, <0dd>,
<Simp>, <Prec>)

Principal = initial loan principal

Term = term of loan, expressed in number of total payments

Payment = periodic payment (for example, if Term is expressed in months, Payment must be a
monthly payment)

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that Residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

Prec = required precision of result (the default is 0.000001); must be > 0

@AMINT calculates the interest rate for one payment of an amortized loan. For example, if the
arguments passed correspond to a monthly loan, the interest rate returned represents a monthly rate.
Use Prec to specify how close @AMINT must be to the actual interest rate.

Example

Aloan for $50,000 was made on March 15, 1993. Repayment terms stipulate ten annual payments of
$7,500, each to be made on July 31, beginning 1993 and ending 2002, along with a final payment of
$2,500 on December 31, 2003. Assuming interest is compounded during fractional periods, this
formula calculates the interest rate at which the financing is performed:

@AMINT (50000,10,7500,2500,1.4180,0,0.3781) =0.098915

A normal period is one year long, but the first period is 138 days long. Since there are 365 days
between March 15, 1993 and March 15, 1994, the first period is the length of a normal period
(Odd = 0.3781). There is also a delay between the last periodic payment and the residual payment of
$2,500. The length of the delay is one period (July 31, 2002 to July 31, 2003) plus 153 days (July 31,
2003 to December 31, 2003), so ResOff = 1

(1.4180).

1

@AMNTHS

Format
@AMNTHS (Date, Months, <EndMnth>)

Date = number representing the date to add number of months to
Months = integer representing number of months to add; can be negative
EndMnth = 1 to indicate adherence to ends of months; 0 to indicate that ends of months are

ignored (the default is 1)

@AMNTHS adds the number of months specified by Months to Date and returns a serial date number.
If Months is negative, @AMNTHS subtracts the absolute value of Months from Date.

Adding one month usually means going from a day in one month to the same day in the next month.
However, adding one month to March 31 can't result in April 31, since April 31 doesn't exist. In this
case, the last day of the month, April 30, is returned. If Date falls on the 31st of a month, the result also
falls on the last day of a month.

If Date falls on the last day of a month with less than 31 days, you can use EndMnth to specify one of
two different results: to move months ahead to the same day, specify EndMnth as 0; to move months
ahead to the last day of the month, omit EndMnth or specify it as 1.

Examples
@AMNTHS (@DATE (93,4, 30),3) = 34181 (July 31, 1993), which is the last day of the month three
months from April 30, 1993.

Consider a loan with 120 payments that pays on the 30th of each month starting on June 30, 1993. In
February, it pays on the last day of the month. This formula calculates the date of the 43rd payment:

@AMNTHS (@DATE (93, 6,30) ,42,0) = 35429 (December 30, 1996)

See Also

@ABDAYS
@ACDAYS
@YDIVS

1

@AMPMT

Format
@AMPMT (Principal, Int, Term, <Residual>, <ResOff>, <Adv>, <0dd>, <Simp>)

Principal = initial loan principal

Int = periodic interest rate (for example, if Term is expressed in months, Int must be a
monthly rate)

Term = term of loan, expressed in number of total payments

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMPMT calculates the payment (monthly, annual, and so on) for an amortized loan.

Examples

Aloan for $35,000 has 48 monthly payments and a residual payment of $7,500 that is due three
months after the last monthly payment. This formula calculates the monthly payment if the annual
interest rate is 9% (9%/12 = 0.75% monthly rate):

@AMPMT (35000,0.0075,48,7500,3) =$743.48

An annuity with an investment of $250,000 makes quarterly payments starting five years from the date
of investment for a period of 20 years. It also pays a lump sum of $50,000 three and a half years after
the last quarterly payment. If the annualized yield from the investment is 8.4% (8.4%/4 = 2.1%
quarterly rate), this formula calculates the quarterly payment:

@AMPMT (250000, 0.021,80,50000,14,0,20) =$9,431.83

The term of the annuity is 80 quarters. A value of 14 for ResOff specifies, in quarters, the three-and-a-
half year delay between the last quarterly payment and the residual payment. A value of 20 for Odd
specifies the five year delay between investment and first payment, in quarters.

1

@AMPMTI

Format
@AMPMTI (Principal, Int, Term, n, <Residual>, <ResOff>, <Adv>, <0dd>,
<Simp>)

Principal = initial loan principal

Int = periodic interest rate (for example, if Term is expressed in months, then Int must be a
monthly rate)

Term = term of loan, expressed in number of total payments

n = number of payments made; must be an integer from 0 to Term

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMPTI calculates the interest portion of the nth payment of an amortized loan. Term and n should
include any advance payments made at the beginning of the loan.

If Simp = 0, @AMPMT]I uses this formula:

T, =B .., * [{14 Int)ta--1]

0" nr-

If Simp =1, @AMPMT]I uses this formula:

I, = By ¥ [00l-4-Int)liEghe®e {1-4-F it j-*-Int))---1]

I = interest
B = balance

Balance |, like Principal, is the present value of an annuity. Both correspond to annuities with the
same payment size but differing in number of payments. If Principal corresponds to an annuity with
Term payments, Balance

corresponds to annuity with Term n + 1 payments.

equals 1 except when n equals Adv + 1, in which case

equals Odd.

Example

This formula calculates the portion of the 15th payment (the 15th after any advanced payments) of a
120 payment loan that constitutes interest, if the original principal of $100,000 is financed at a periodic
rate of 4.5% and the first two payments are made in advance:

@AMPMTI (100000,0.045,120,17,0,0,2) =%$4,106.92.

The value of 17 passed for n specifies the 15th payment after the two advance payments.

1

@AMPRN

Format
@AMPRN (Int, Term, Payment, <Residual>, <ResOff>, <Adv>, <0dd>, <Simp>)

Int = periodic interest rate (for example, if Term is expressed in half-years, Int must be a
semiannual rate)

Term = term of loan, expressed in number of total payments

Payment = periodic payment

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMPRN calculates the initial principal of an amortized loan.

Examples

Aloan has an annualized monthly compounded interest rate of 10.8% (10.8%/12 = 0.9% monthly rate)
over a period of 48 months, and the monthly payment is $525. Each payment is due at the beginning
of the month, including the first payment which coincides with the loan's start date. This formula
calculates the amount financed:

@AMPRN (0.009,48,525,0,0,1) =$20,573.04

A savings plan requires a monthly contribution of $1,000 for a period of 25 years. If the plan pays an
annual interest rate of 6.6% (6.6%/12 = 0.55% monthly rate), this formula calculates what initial
deposit (not payment), if any, is needed in order to accumulate $1,000,000 two and a half years after
the last monthly payment:

@AMPRN (0.0055,300,-1000,1000000,30) =$16,907.93.

If the annuity is viewed as a loan and the investor as the lender, the original investment can be treated
as the loan principal, the monthly payments as payments from lender to borrower, and the $1,000,000
future value as a residual payment from the borrower to the lender. The interest rate is 0.55%. The

negative payment means payment from lender to borrower. A value of 30 for ResOff specifies the thirty
month delay between the last monthly contribution and the date on which to measure the end balance.

1

@AMRES

Format
@AMRES (Principal, Int, Term, Payment, <ResOff>, <Adv>, <0dd>, <Simp>)

Principal = initial loan principal

Int = periodic interest rate (for example, if Term is expressed in months, then Int must be a
monthly rate)

Term = term of loan, expressed in number of total payments

Payment = periodic payment

ResOff = number of periods after last periodic payment that Residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMRES calculates the residual (or balloon) payment of an amortized loan or the future value of an
annuity.

Example

A $10,000,000 loan is paid back in 20 payments of $1,000,000 and a final payment. The first payment
is made at the start of the loan. The remaining 19 payments are made annually, starting 9 months after
the first payment. The final payment is made 20 months after the last annual payment. If the loan has
an annual interest rate of 9.68%, this formula calculates the final payment (assume compounding of
interest over fractional periods):

@AMRES (10000000,0.0968,20,1000000,20/12,1,0.75) =$1,681,942.54.

ResOff is set to 20/12 to specify the 20 month delay between the last annual payment and the residual

payment. Adv is set to 1 to specify the advance payment. Odd is setto ~ (0.75) to specify the nine
month period between the start of the loan and the second payment.

1

@AMRPRN

Format
@AMRPRN (Principal, Int, Term, n, <Part>, <Residual>, <ResOff>, <Adv>,
<0dd>, <Simp>)

Principal = initial loan principal

Int = periodic interest rate (for example, if Term is expressed in years, then Int must be a
yearly rate)

Term = term of loan, expressed in number of total payments

n = number of payments made; must be an integer from 0 to Term

Part = part of (n+1)th period passed; 0 < Part < 1 (the default is 0)

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMRPRN computes the balance remaining after n payments, accounting for possible interest
accrual over part of the following payment period.

Term and n should include advance payments made at the beginning of the loan. Part handles payoff
situations where the payoff date (date on which the remaining balance on a loan is fully paid) doesn't
coincide with a periodic payment date. For example, if 15 out of 36 monthly payments of a loan have
been made and 17 days have passed since the 15th payment date, Part = | assuming there are 30
days between the 15th and 16th monthly payments.

If Simp = 0, @AMRPRN uses this formula:
By-pop =By *- (1-4-Inc)F

If Simp = 1, @AMRPRN uses this formula:
Bpogep' = By ®+ (L4 Int-*-E)

B = Balance
P = Part

Examples

Aloan of $100,000 has an annual interest rate of 9.6% (9.6%/12 = 0.8% monthly rate). Repayment
consists of monthly payments over ten years. This formula calculates the balance remaining after the
57th monthly payment:

@AMRPRN (100000,0.008,120,57) = $64,108.38

Aloan of $2,000,000 was made on March 16, 1993, to be paid back in 40 quarterly payments and a
final payment of $100,000. The annual interest rate is 9.96% (9.96%/4 = 2.49% quarterly rate). The
first four payments are due at the start of the loan. The fifth payment is due July 1, 1993. Thereafter, a
payment is due every three months. The final residual payment of $100,000 is due June 15, 2002. This
formula calculates the remaining balance due on the loan as of September 23, 1996, assuming timely
payments and simple interest accrual over fractional periods:

@AMRPRN (2000000, 0.0249,40,17,84/92,100000,75/91,4,1+16/90,1) =$1,321,951.76.

September 23, 1994 falls in the middle of the payment period following the 17th quarterly payment. It
falls 84 days into the quarter, which is 92 days long, so Part = . The residual is paid 75 days after
the 40th quarterly payment. The corresponding quarter (April 1, 2002 to July 1, 2002) contains 91
days, so ResOff =

/. The first quarterly payment after the advance payments is paid one period and 16 days after loan
inception. The 16 days correspond to the quarter containing the loan inception date, March 16, 1993. That

quarter contains 90 days, so Odd = 1

1

@AMTERM

Format
@AMTERM (Principal, Int, Payment, <Residual>, <ResOff>, <Adv> <0dd>, <Simp>)

Principal = initial loan principal

Int = periodic interest rate (for example, if term is expressed in quarters, Int must be a
quarterly rate)

Payment = periodic payment

Residual = remaining balance on loan at end of loan term (the default is 0)

ResOff = number of periods after last periodic payment that residual is to be paid; can have
fractional component (the default is 0)

Adv = number of advance payments made at loan inception (the default is 0)

Odd = number of periods between loan inception and date of first payment (not including
advance payments); can have fractional component (the default is 1)

Simp = 0 to specify compounded interest or 1 to specify simple interest (the default is 0)

@AMTERM calculates the duration of an amortized loan, expressed in number of payments.

Example

Aloan for $50,000 was made on April 1, 1993. The loan is repaid monthly, starting on May 1, 1993,
except for the first three payments, which are due at the start of the loan (April 1, 1993). If the monthly
interest rate is 1.15%, this formula calculates the smallest number of payments that would allow
repayment with a maximum allowable monthly payment of $600:

@AMTERM (50000,0.0115,600,0,0,3) =228.18

The smallest number of payments to support such a loan is 229, which results in a monthly payment of
$599.56. Using 228 payments results in a monthly payment of $600.10.

1

@ANDB

Format
@ANDB (Binaryl, <Binary2>, <Bits>)

Binaryl = first binary number
Binary2 = second binary number
Bits = number of binary bits used for both input and output; if omitted, Bits = number of bits in

Binary1 or Binary2, whichever is greater; must be < 64

@ANDB performs a bit-by-bit logical AND of each bit in Binary1 and Binary2. Use @ANDB to set bits
to 0; any bit that is 0 in either Binary1 or Binary2 causes the resulting output bit to be 0.

If only one number is given, then @ANDB performs an all-ones test, or AND reduction, on Binary1;
@ANDB returns 1 if all bits in Binary1 are set to 1; otherwise, it returns 0.

Examples

@ANDB (10,1) =00

@ANDB (11,10) =10

@ANDB (11) =1
@ANDB(1100,111,5) =00100

See Also
Entering Boolean @Functions

1

@ANDH

Format
QANDH (Hex1l, <Hex2>, <Bits>)

Hex1 = first hexadecimal number
Hex2 = second hexadecimal number
Bits = number of binary bits used for both input and output; if omitted, Bits = number of bits in

Hex1 or Hex2, whichever is greater; 4 binary digits = 1 hexadecimal digit; must be < 64

@ANDH performs a bit-by-bit logical AND of each bit in Hex1 and Hex2. Use @ANDH to set bits to 0;
any binary bit that is 0 in either Hex1 or Hex2 causes the resulting output bit to be 0.

If only one number is given, then @ANDH performs an all-ones test, or AND reduction, on Hex1;
@ANDH returns 1 if all bits in Hex1 are set to 1; otherwise, it returns 0.

Examples
@ANDH(IIAII,IIFII) =A
@ANDH ("A") =0

@ANDH ("C","4",8) =04

See Also
Entering Boolean @Functions

1

@ARRAY

Format
@ARRAY (Expression, <Columns>, <Rows>)

Expression = formula or @function using array syntax; @functions can be nested, that is, you can
have more than one @function in a single statement

Columns = number of columns in the output range, including the column of the current cell (the
default Columns depends on dimensions of input array(s) in Expression)

Row = number of rows in the output range, including the row of the current cell (the default

Rows depends on dimensions of input array(s) in Expression)

@ARRAY returns the result of Expression, which can be either a formula with array operands or an
@function with array arguments. An array is a block of values treated as a single group. You don't
need to type @ARRAY to create an array formula or @function; if an Expression requires array output,
Quattro Pro converts it by surrounding it with the @ARRAY @function.

Note: If an array expression returns an array, the @ARRAY @function appears only in the current cell,
which is also the upper left cell of the output array; the other cells in the array contain calculated
values. Also, array formulas don't recognize 3-D block syntax; if you specify a 3-D block in
Expression, @ARRAY recognizes only the block on the first page of the series of consecutive
pages.

Columns and Rows are optional arguments; the size of an output array is dependent on the size of the
input array(s) in Expression. Specify values for Columns and Rows only if you want to truncate or
replicate portions of the output array.

By using arrays in formulas and @functions, you can perform an operation on multiple values or cells.
You also save time by not having to repeat the same formula or @function in multiple cells. Arrays also
save memory by reducing the number of formulas in a notebook.

Tip: If you use many array formulas in a notebook, recalculation may become noticeably slower.
Also, if you plan to share a notebook with other people, keep in mind that array formulas can
make notebooks difficult to understand.

Examples
The next figure shows several examples using @ARRAY.

A B C D
1 B1=@ARRAY ({1;2;3}*12) 12 24 36
2
3 B3=@ARRAY ({1|2]|3}*12) 12
4 24
5 36
6
7 B7=@ARRAY (D7..D9*2) 16 8
8 20 10
9 24 12
10

11 Bl11=Q@ARRAY (D7..D9/{4;5;6}) 2 1.6 1.333333

12

13

14

15

16 B16=QARRAY (QABS (B15..D15))

17

18 B18=@ARRAY (@SQRT (C18..C20))
19

20

21

22 B22=QARRAY (QUPPER (C22..C25))
23

24

25

See Also
Array Features

1.23
1.23

6.78233

7.348469

6

THIS
IS

TEST

-6.43
6.43

46

54

36

This

is

Test

1.666667
2

1

@ASCTOHEX

Format
@ASCTOHEX (ASCII, <Places>)

ASCII
Places

ASCII character string to convert; can be up to 20 ASCII characters

number of characters to return; can be from 1 to 40 characters
@ASCTOHEX returns the hexadecimal string equivalent of an ASCII number.

Note: If the ASCII value includes nonnumeric characters, enclose it in quotation marks.
Examples

@ASCTOHEX ("A") =41

@ASCTOHEX ("A"™, 4) = 0041

@ASCTOHEX ("O1ABCDEF") = 3031414243444546

@ASCTOHEX ("BORLAND", 5) = 14E44

See Also
Entering Number Conversion @Functions

1

@AVEDEV

Format
@AVEDEV (List)

List = one or more numeric or block values

@AVEDEV returns the mean absolute deviation, that is, the average of the absolute deviation of the
data points in List from their mean. Use @AVEDEYV to measure the variability of a data set around the
mean. @AVEDEYV uses this formula:

z
M

=

_xj—/f

[
1]
[

Example
@AVEDEV (10,11,12,13,12,11,10) =0.897959

See Also

@DEVSQ
@STD
@STDS

1

@BASE

Format
@BASE (Decimal, <Base>, <Precision>)

Decimal = any decimal value to convert

Base = indicates the target base in which to express Decimal; can be any integer from 2 to 36,
inclusive (the default is 16)

Precision = indicates the number of desired digits after the decimal point; can be any integer from 0

to 15, inclusive (the default is 0)
@BASE converts a number from base-10 to a string value in a target base from 2 to 36.
Examples
@BASE (128,8) =200
@BASE (123.47,16,6) =7B.7851EB

See Also
Entering Number Conversion @Functions

1

@BDAYS

Format
@BDAYS (StartDate, EndDate, <Holidays>, <Saturday>, <Sunday>)

StartDate = number representing the start date

EndDate = number representing the end date

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to indicate
no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)

@BDAYS returns the number of business days between StartDate and EndDate inclusive of EndDate.
If EndDate is less than StartDate, the result is negative.

If neither StartDate nor EndDate falls on a weekend or holiday, @BDAYS returns the number of
business days from StartDate to EndDate, including EndDate.

If StartDate and EndDate are two consecutive business days, the result is 1. If StartDate and EndDate
both fall on weekends or holidays, @BDAYS returns the number of business days between the two
dates, excluding EndDate.

If StartDate or EndDate (but not both) falls on a weekend or holiday, the result depends on which date
falls on a business day. If StartDate falls on the weekend, the result includes EndDate. For example, if
StartDate is a Saturday and EndDate is the following Thursday, the result includes the Thursday and is
4. If EndDate falls on the weekend, the result doesn't include EndDate. For example, if StartDate is a
Thursday and EndDate is the following Saturday, the result is 1.

Examples

This formula calculates how many business days pass from November 30, 1993 to November 14,
1993, assuming that the dates in the block A7..C9 are holidays:

@BDAYS (@DATE (93,11,30),@DATE (93,11,14),A7..C9) =-9

This formula calculates how many business days pass from June 2, 1993 to June 10, 1993, assuming
no holidays other than weekends:

@BDAYS (@DATE (93, 6,2) ,@DATE (93,6,10)) =6

See Also
Setting Holidays
@HOLS
@CDAYS

1

@BESSELI

Format
@BESSELI (x, n)

x
1

numeric value at which to evaluate the function

number > 0 representing the order of the Bessel function; if n isn't an integer, it's truncated to an
integer

@BESSELI calculates the nth order modified Bessel function of the variable x with this formula:

T (=) = (i) =J,(ix)

@BESSELI is equivalent to the Bessel function J , but is evaluated for purely imaginary arguments.

Example
@BESSELI (1.5,0) =1.646723

See Also

@BESSELJ
@BESSELK
@BESSELY

1

@BESSELJ

Format
@BESSELJ (x, n)

x
1

numeric value at which to evaluate the function

number > 0 representing the order of the Bessel function; if n isn't an integer, it's truncated to an
integer

@BESSELJ calculates the Bessel function J (x) using this formula:

= -1 ke wu+2h
) I
=Rilin+k+ 1)\ 2 . where

- . ntk

@ TH dx
is the Gamma function.

MNno+k+1)-=

O T 2

Example
@BESSELJ(1.5,0) =0.511828

See Also

@BESSELI
@BESSELK
@BESSELY

1

@BESSELK

Format
@BESSELK (x, n)

x
1

numeric value at which to evaluate the function; must be > 0

integer > 0 representing the order of the Bessel function; if n isn't an integer, it's truncated to an
integer

@BESSELK calculates the nth order modified Bessel function of the variable x with this formula:
Kp(x) = = iP"H [, (ix) + i¥,(ix)]
where and
are @BESSELJ and @BESSELY, respectively.

Example
@BESSELK(1.5,0) =0.213806

See Also

@BESSELJ
@BESSELI
@BESSELY

1

@BESSELY

Format
@BESSELY (x, n)

x
1

nonnegative numeric value at which to evaluate the function

integer > 0 representing the order of the Bessel function; if n isn't an integer, it's truncated to an
integer

@BESSELY calculates the Bessel function Y (x) (also called the Neumann or Weber function) using
this formula:

Ry Sl {3
gy limq.lvlix,ucs[fr, J_, =)

vn zin(ve)
where:

J_bw) o= (=1Pa (=)
Example

@BESSELY (1.5,0) =0.382449

See Also

@BESSELJ
@BESSELI
@BESSELK

1

@BETA

Format
@BETA (Z, W)

4
w

@BETA returns the value of the beta function, which is widely used in mathematics and statistics.
@BETA uses this formula:

a parameter to the function; must be > 0

b parameter to the function; must be > 0

Sz, w) = flw,2z) = jt“’L(l - tat
Examples ’
@BETA (4,3) =0.016667
@BETA (2,3) =0.083333
@BETA (9,0.4) =0.93348
@BETA(12,0.3) =1.432072

See Also

@BETADIST
@BETAI
@BETAINV

1

@BETADIST

Format
@BETADIST (X, Z, W, <A>,)

value at which to evaluate the function over the interval A < X < B

= adistribution parameter; if W=0,Z2>0
b distribution parameter; if Z=0, W >0
= optional lower bound to the interval of X (the default is 0); A cannot equal B and must be < X

W > s N X
1

= optional upper bound to the interval of X (the default is 1); B cannot equal A and must be > X

@BETADIST returns the cumulative beta probability density function. The cumulative beta probability
density function is a bounded distribution that is useful for studying variables such as percentages that
may only take on values within a restricted range. The optional arguments A and B set those bounds.

Examples
@BETADIST (0.5,3,4,0,1) =0.65625
@BETADIST (0.4,3,4,0,1) =0.45568
See Also

BETA

@BETAI
@BETAINV

1

@BETAI

Format
@BETAI (Z, W, X)

Z = a parameter to the function; if W=0,Z>0
W = b parameter to the function; if Z=0, W>0
X = value at which to evaluate the function; cannot exceed 1

@BETAI computes the incomplete beta function, that is, the probability that a standard beta-distributed
variable will be less than X. @BETAI uses this formula:

L(z,w) =1-I,_ (w =)= j’:‘""[l -t lae
Examples "

@BETAT (3,4,0.5) =0.65625
@BETAI(3,4,0.1) =0.01585

@BETAI (3,4,0.98) =0.999998

@BETAI (7,8,0.7) =0.968531

See Also

@BETA
@BETADIST
@BETAINV

1

@BETAINV

Format
@BETAINV (Prob, Z, W, <A>,)

Prob = cumulative probability value; 0 < Prob < 1

Z = a parameter to the Beta distribution; must be > 0

w = b parameter to the Beta distribution; must be > 0

A = optional lower bound to the interval of X (the default is 0); A cannot equal B and must be < X
B = optional upper bound to the interval of X (the default is 1); B cannot equal A and must be > X

@BETAINV computes the inverse of the cumulative beta distribution function. If Prob =
@BETADIST(X...), then @BETAINV(Prob...) = X.

Examples
@BETAINV(0.65625,3,4,0,1) =0.5
@BETAINV (0.45568,3,4,0,1) =04
See Also

BETA

@BETADIST
@BETAI

1

@BINOMDIST

Format
@BINOMDIST (Successes, Trials, Prob, Cumulative)

Successes = number of successes in number of trial runs; must be > 0

Trials = number of independent trial runs in sample; must be > Successes

Prob = probability of a success on each trial run; must be > 0 and < 1

Cumulative = 1 to return the cumulative distribution function; 0 to return the probability that there

are exactly Successes successes.

@BINOMDIST returns the binomial probability mass function, which is the probability that the number
of successes in the independent trials equals Successes. Use @BINOMDIST when the outcome of
experiments is success or failure, when the experiments are independent of one another, and when
the probability of success doesn't change in successive trials. For example, a coin toss experiment is a
binomial experiment.

Example

Using a random sample, a polling organization asks 50 voters if they favor Candidate A for reelection.
Given that 55% of the city's voters favor Candidate A, this formula returns the probability that 40
people from the sample will favor her:

@BINOMDIST (40,50, .55,0) =0.000144

See Also

CRITBINOM
@NEGBINOMDIST

1

@BINTOHEX

Format
@BINTOHEX (Binary)

Binary = binary number to convert; denote negative numbers using a minus sign

@BINTOHEX returns the hexadecimal string equivalent of a binary number.

Examples

@BINTOHEX ("1010™) =A
@BINTOHEX ("10000™) =10
@BINTOHEX ("11110™) =1E
See Also

@BINTOHEX64

Entering Number Conversion @Functions

1

@BINTOHEX64

Format
@BINTOHEX64 (Binary, <Places>)

Binary = binary number to convert; must be positive

Places number of characters to return; must be < 16

@BINTOHEX64 returns the hexadecimal string equivalent of a binary number (up to 64 bits).
Examples

@BINTOHEX64 (1001) =9

@BINTOHEX64 (1010,2) =0A

@BINTOHEX64 ("11110000001111000") =1EQ78

@BINTOHEX64 ("11110000001111000",2) =78

See Also

@BINTOHEX

Entering Number Conversion @Functions

1

@BINTONUM

Format
@BINTONUM (Binary)

Binary = binary number to convert; denote negative numbers using a minus sign
@BINTONUM returns the decimal equivalent of a binary number.

Examples
@BINTONUM("1010") =10
@BINTONUM ("10000") =16
@BINTONUM ("11110") =30
See Also

@BINTONUM64

Entering Number Conversion @Functions

1

@BINTONUMG64

Format
@BINTONUM64 (Binary, <Signed>)

Binary = binary number to convert

Signed 1 if the most significant bit of Binary is a sign bit; 0 (the default) if Binary is positive
@BINTONUMG64 returns the decimal equivalent of a binary number (up to 64 bits).

If Signed is 1, the most significant bit of Binary is the sign bit. If the sign bit is 0, the number is positive;
if it's 1, the number is negative.

Examples

@BINTONUMG4 (100) =4

@BINTONUMG64 (1010) =10

@BINTONUMG64 ("11110000001111000") =123000
@BINTONUMG64 ("11110000001111000",1) =-8072
See Also

@BINTONUM

Entering Number Conversion @Functions

1

@BINTOOCT

Format
@BINTOOCT (Binary)

Binary = binary number to convert; denote negative numbers using a minus sign
@BINTOOCT returns the octal string equivalent of a binary number.

Examples

@BINTOOCT ("1010") =12
@BINTOOCT ("10000"™) =20
@BINTOOCT ("11110"™) =36
See Also

@BINTOOCT64

Entering Number Conversion @Functions

1

@BINTOOCT64

Format
@BINTOOCT64 (Binary, <Places>)

Binary = binary number to convert; must be positive

Places number of characters to return; must be < 22

@BINTOOCT returns the octal string equivalent of a binary number (up to 64 bits).

Examples

@BINTOOCT64 ("0111") =07

@BINTOOCT64 ("1000",3) =010

@BINTOOCT64 ("11110000001111000™) =360170
@BINTOOCT64 ("11110000001111000",3) =170
@BINTOOCT64 ("000001010011100101110111"™) =01234567
See Also

@BINTOOCT

Entering Number Conversion @Functions

1

@BITRB

Format
@BITRB (Binary, Position)

Binary = binary number

Position = bit position; must be = 0 and < number of bits in Binary - 1
@BITRB resets to 0 the given Position bit of a binary value.

Examples

@BITRB(1010,1) =1000

@BITRB(1010,3) =0010

@BITRB(1100,2) =1000

See Also
Entering Boolean @Functions

1

@BITRH

Format
@BITRH (Hex, Position)

Hex hexadecimal number

Position = bit position; must be > 0 and < number of bits in Hex - 1
@BITRH resets to 0 the given Position bit of a hexadecimal value.
Examples

@BITRH("A",1) =8

@BITRH ("A",3) =2

@BITRH("C",2) =8

See Also
Entering Boolean @Functions

1

@BITSB

Format
@BITSB (Binary, Position)

Binary = binary number

Position = bit position; must be = 0 and < number of bits in Binary - 1
@BITSB sets to 1 the given Position bit of a binary number.

Examples

@BITSB(1010,2) =1110

@BITSB(1010,0) =1011

@BITSB(1100,0) =1101

See Also
Entering Boolean @Functions

1

@BITSH

Format
@BITSH (Hex, Position)

Hex hexadecimal number

Position = bit position; must be > 0 and < number of bits in Hex - 1
@BITSH sets to 1 the given Position bit of a hexadecimal number.
Examples

@BITSH("a",2) =E

@BITSH("C",0) =D

See Also
Entering Boolean @Functions

1

@BITTB

Format
@BITTB (Binary, Position)

Binary = binary number

Position = bit position; must be = 0 and < number of bits in Binary - 1
@BITTB returns the value of the bit of a binary number in the given Position.
Examples

@BITTB(1010,2) =0

@BITTB(1001,0) =1

@BITTB(1100,1) =0

See Also
Entering Boolean @Functions

1

@BITTH

Format
@QBITTH (Hex, Position)

Hex hexadecimal number

Position = bit position; must be > 0 and < number of bits in Hex - 1

@BITTH returns the value of the bit of a hexadecimal number in the given Position.
Examples

@BITTH("A",2) =0

@BITTH("9",0) =1

@BITTH("C",0) =0

See Also
Entering Boolean @Functions

1

@BLOCKNAME

Format
@BLOCKNAME (Block)

Block = cell or block reference (for example, A1 or B1..B5)

@BLOCKNAME returns the name of a cell or block specified by Block. If Block doesn't contain a
name, @BLOCKNAME returns ERR; if Block contains more than one name, @BLOCKNAME
arbitrarily returns one of the names.

Note: If the name for a block was created in another notebook, use @BLOCKNAME2.

Example
BLOCKNAME (D2..D15) = SALES (block D2..D15 is named SALES)

See Also

@BLOCKNAMEZ2
@BLOCKNAMES
@BLOCKNAMES?2

1

@BLOCKNAME2

Format
@BLOCKNAME?2 (NotebookLink, Block)

NotebookLink = a reference to a page, cell, or block in another notebook (for example,
[BUDGET]A:A1)

Block cell or block reference (for example, A1 or B1..B5)

@BLOCKNAMEZ2 returns the block name created in the notebook specified by NotebookLink that
refers to Block, which can be in another notebook. If Block doesn't contain a name, @BLOCKNAME2
returns ERR; if Block contains more than one name, @BLOCKNAME?2 arbitrarily returns one of the
names.

Example
@BLOCKNAME?2 ([BUDGET]A:A1,A:D2..D15) = SALES (block A:D2..D15 of the active notebook is
named SALES in the name table of notebook BUDGET)

See Also

@BLOCKNAME
@BLOCKNAMES
@BLOCKNAMES2

1

@BLOCKNAMES

Format
@BLOCKNAMES (Block)

Block = cell or block reference (for example, A1 or B1..B5)

@BLOCKNAMES returns a two-column table showing the block names that intersect with Block. The
left column of the table contains block names, and the right column contains corresponding block
coordinates.

If Block doesn't contain a name, @BLOCKNAMES returns ERR.

Because @BLOCKNAMES returns an array, it is automatically enclosed within an @ARRAY
@function.

Caution: Make sure there is enough room for a two-column table, with one row for each block name.
Quattro Pro overwrites existing data in cells it uses for the table.

Note: If block names for a notebook were created in another notebook, use @BLOCKNAMES?2.

Example

This example refers to cells in the next figure. Blocks B3..B7, C3..C7, D3..D7, and B3..D7 are named
HOTEL, TRANS, MEALS, and TOTAL, respectively. The example is entered in cell A12.

@ARRAY (@BLOCKNAMES (B3..D7)) = table in A12..B15 shown in the next figure.
A B C D

1 WEEKLY EXPENSE REPORT

2 DATE HOTEL TRANS MEALS

3 05/11 $99.70 $774.23 $67.34

4 05/12 $99.70 $15.00 $89.50

5 05/13 $99.70 $23.00 $97.78

6 05/14 $99.70 $13.00 $75.41

7 05/15 $99.70 $32.00 $63.20

8 $498.50 $857.23 $393.23

9

10 TOTAL $1,748.96

11

12 HOTEL [C:\QPW\EXPENSES.WB1]A:B3..B7

13 TRANS [C:\QPW\EXPENSES.WB1]A:C3..C7

14 MEALS [C:\QPW\EXPENSES.WB1]A:D3..D7

15 TOTAL [C:\QPW\EXPENSES.WB1]A:B3..D7

See Also
@ARRAY
@BLOCKNAME
@BLOCKNAME?2
@BLOCKNAMES2

1

@BLOCKNAMES2

Format
@BLOCKNAMES?2 (NotebookLink, Block)

NotebookLink = a reference to a page, cell, or block in another notebook (for example,
[BUDGET]A:A1)

Block = cell or block reference (for example, A1 or B1..B5)

@BLOCKNAMES?2 returns a two-column table showing the block names created in the notebook
specified by NotebookLink that refer to blocks that intersect with Block. Use @BLOCKNAMES2
instead of @BLOCKNAMES if the block names for a notebook were created in another notebook. The
left column of the output table contains block names, and the right column contains corresponding
block coordinates.

If Block doesn't contain a name, @BLOCKNAMES2 returns ERR.

Because @BLOCKNAMES? returns an array, it is automatically enclosed within an @ARRAY
@function.

Caution: Make sure there is enough room for a two-column table, with one row for each block name.
Quattro Pro overwrites existing data in cells it uses for the table.

Example

This example refers to cells in the next figure. Blocks B3..B7, C3..C7, D3..D7, and B3..D7 in the active
notebook EXPENSES are named HOTEL, TRANS, MEALS, and TOTAL, respectively, in the notebook
TRAVEL. The example is entered in cell A12.

@ARRAY (@BLOCKNAMES?2 ([TRAVEL]A:A1,B3..D7)) = table in A12..B15 shown in the next figure
A B c D

1 WEEKLY EXPENSE REPORT

2 DATE HOTEL TRANS MEALS

3 05/11 $99.70 $774.23 $67.34

4 05/12 $99.70 $15.00 $89.50

5 05/13 $99.70 $23.00 $97.78

6 05/14 $99.70 $13.00 $75.41

7 05/15 $99.70 $32.00 $63.20

8 $498.50 $857.23 $393.23

9

10 TOTAL $1,748.96

11

12 HOTEL [C:\QPW\EXPENSES.WB1]A:B3..B7

13 TRANS [C:\QPW\EXPENSES.WB1]A:C3..C7

14 MEALS [C:\QPW\EXPENSES.WB1]A:D3..D7

15 TOTAL [C:\QPW\EXPENSES.WB1]A:B3..D7

See Also
ARRAY

@BLOCKNAME
@BLOCKNAME2
@BLOCKNAMES

1

@BUSDAY

Format
@BUSDAY (Date, <Direction>, <Holidays>, <Saturday>, <Sunday>)

Date = number representing a date

Direction = flag specifying direction of adjustment; 0 = forward; 1 = backward; 2 = forward if in same
month as Date, otherwise backward (the default is 0)

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to indicate
no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)

@BUSDAY returns Date if it's a valid business day. If Date falls on a Saturday (and Saturday is set to
0 or omitted), Sunday (and Sunday is set to 0 or omitted), or holiday, @BUSDAY returns the date of
the closest valid business day in the direction specified by Direction.

Example
This formula calculates the closest business day after December 25, 1993, assuming that the 25th is a
holiday:

@BUSDAY (@DATE (93,12,25),0,@DATE (93,12,25)) = 34330 (December 27, 1993)

See Also
Setting Holidays
@FBDAY
@LBDAY

1

@CATB

Format
@CATB (Binaryl, <HiBitl>, <LoBitl>, <Binary2>, <HiBit2>, <LoBit2>, <Bits>)

Binaryl = first binary number

HiBit1 = highest bit of the first number to use for concatenation; the default is the most significant
bit

LoBit1 = lowest bit of the first number to use for concatenation; the default is 0

Binary2 = second binary number

HiBit2 = highest bit of the second number to use for concatenation; the default is the most
significant bit

LoBit2 = lowest bit of the second number to use for concatenation; the default is 0

Bits = number of binary digits to return; must be < 64

@CATB joins together two given binary numbers or extracts selected bits from one binary number.
Specify high bit and low bit values if you want to use only a portion of a number for concatenation. For
example, if HiBit1 = 2 and LoBit1 = 0, only the first three bits of Binary1 are joined with Binary2.

Examples

@CATB("1100",2,0,"0011",1,0) =10011
@caTrB("1100",2,0,"0011",1,0,3) =011
@CATB("1100",3,0,"11",1,0,8) =00110011
@CATB("101101",4,1) =0110

See Also
Entering Boolean @Functions

1

@CATH

Format
@CATH (Hex1,

Hex1 =
HiBit1 =

LoBit1 =
Hex2 =
HiBit2 =

LoBit2 =
Bits =

<HiBitl>, <LoBitl>, <Hex2>, <HiBit2>, <LoBit2>, <Bits>)

first hexadecimal number

highest bit of the first number to use for concatenation; the default is the most significant
bit

lowest bit of the first number to use for concatenation; the default is 0

second hexadecimal number

highest bit of the second number to use for concatenation; the default is the most
significant bit

lowest bit of the second number to use for concatenation; the default is 0

number of equivalent binary digits to return; 4 binary digits = 1 hexadecimal digit; must
be < 64

@CATH joins together two given hexadecimal numbers or extracts selected bits from one hexadecimal
number. Specify high bit and low bit values if you want to use only a portion of a number for

concatenation.
with Hex2.

Examples

For example, if HiBit1 = 2 and LoBit1 = 0, only the first three bits of Hex1 are joined

@CATH("C",2,0,"3",1,0) =13
@CATH("C",2,0,"3",1,0,3) =3
@CATH("C",3,0,"3",1,0,8) =33

@CATH ("CA",

See Also

6,2) =12

Entering Boolean @Functions

1

@CATNB

Format

@CATNB (n, Binaryl, <Binary2>, <Binary3>, ..., <BinaryN>, <Bits>)

n = number of binary numbers being concatenated; n < 64
Binary1 = first binary number

Binary2,Binary3,....BinaryN = second through the nth binary numbers

Bits = number of binary digits to return; must be < 64

@CATNB joins together n binary numbers.
Examples

@CATNB (3,1,0,1010) =101010
@CATNB(3,1,0,1010,4) =1010
@CATNB (3,11,"00",11,8) =00110011

See Also
Entering Boolean @Functions

1

@CATNH

Format

@CATNH (n, Hexl, <Hex2>, <Hex3>, ., <HexN>, <Bits>)

n = number of hexadecimal numbers being concatenated; n < 16
Hex1 = first hexadecimal number

Hex2,Hex3,...,HexN = second through the nth hexadecimal numbers

Bits = number of equivalent binary digits to return; 4 binary digits = 1

hexadecimal digit; must be < 64
@CATNH joins together n hexadecimal numbers.
Examples
@CATNH (3,"1","0","A") =10A
@CATNH (3,"1","0","A",4) =A
@CATNH (3,"aA","B","C",16) =0ABC

See Also
Entering Boolean @Functions

1

@CDAYS

Format
@CDAYS (StartDate, EndDate, <Calendar>, <February>)

StartDate = number representing the start date

EndDate = number representing the end date

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,
3 = actual/365; the default is 0)

February = 0 to use 30-day treatment of February for 30/360 calendar; 1 to use the actual-day

treatment (the default is 0)

@CDAYS returns the number of calendar days between StartDate and EndDate, including EndDate in
the total. If EndDate precedes StartDate, the result is negative.

You can use Calendar to specify whether the actual or 30/360 day calendar is used. Under the actual
calendar, Quattro Pro calculates the number of days by subtracting one date from the other.

To handle months with more than 30 days (and February), @CDAYS sometimes adjusts StartDate or
EndDate before the sum is calculated. @CDAYS adjusts StartDate to fall on the 30th if either of the
following two conditions are true: the day of the month on which StartDate falls is greater than 30, or
StartDate falls on the last day of February (28th or 29th, depending on year) and February is 0.

If StartDate falls on the 30th (either because @CDAYS adjusted it or it falls on the 30th) and the day of
the month on which EndDate falls is greater than 30, then EndDate also adjusts to fall on the 30th. By
default, @CDAYS treats the last day of February as the 30th. To prevent this, set February to 1.

Example
@CDAYS (@QDATE (93,1, 23),R@DATE (95, 6,28)) =875

See Also

@BDAYS
@HOLS

1

@CEILING

Format
@CEILING (X, Y)

X
Y

@CEILING rounds X up (away from zero) to the nearest value that's evenly divisible by Y. If X and Y
have different signs, the result of @CEILING is ERR.

value to round

value to make rounded x evenly divisible by

Examples
@CEILING (22,5) =25

@CEILING(5.7,0.2) =538
@CEILING(-3.2,-2) =-4
@CEILING(-3.2,2) =ERR

See Also

@EVEN
@FLOOR
@INT
@MROUND
@ODD
@ROUND

1

@CHIDIST

Format
@CHIDIST (X, DegFreedom)

X

DegFreedom

value at which to evaluate the function; must be > 0

integer number of degrees of freedom in the distribution; must be > 1

@CHIDIST returns the cumulative chi-square distribution, which is associated with a chi-square tests.
Chi-square tests allow you to compare the differences between observed and expected frequencies.

If DegFreedom isn't an integer, @CHIDIST rounds it to the nearest integer.
Examples

@CHIDIST (36.41503,24) =0.05

@CHIDIST (17.53455,8) =0.025

See Also

@CHIINV

1

@CHIINV

Format
@CHIINV (Prob, DegFreedom)

Prob
DegFreedom

@CHIINV computes the inverse of the cumulative one-tailed chi-square distribution. Use @CHIINV to
compute the critical value for a test involving a chi-square variable.

cumulative probability value; must be > 0 and < 1

integer number of degrees of freedom; must be > 1

If DegFreedom isn't an integer, @CHIINV rounds it to the nearest integer.
Examples

@CHIINV(0.05,24) =36.41503

@CHIINV(0.025,8) =17.53455

See Also

@CHIDIST
@CHITEST

1

@CHITEST

Format
@CHITEST (Actual, Expected)

Actual block containing actual values

Expected block containing expected values

@CHITEST computes the probability that the actual and expected frequencies are similar by chance.
@CHITEST returns the probability for a chi-square test distribution with (r - 1)(c - 1) degrees of
freedom, where r = number of rows, and ¢ = number of columns.

Actual and Expected must have the same number of values and must contain multiple rows or
columns of data.

Example

This example refers to cells in the next figure. The chi-square statistic for the data in the next figure is
16.25813 and the degrees of freedom is 4.

@CHITEST (C3..E5,C7..E9) =0.002692

A B C D E
1 Soft Drink Flavors
2 Age Ranges Cola Orange Lemon-lime
3 Actual Under 25 120 65 55
4 26-50 100 45 85
5 Over 50 75 35 70
6
7 Expected Under 25 108.93 53.53 77.54
8 26-50 104.38 51.31 74.31
9 Over 50 81.69 40.16 58.15
See Also
@CHIDIST

@CHIINV

1

@COMB

Format
QCOMB (R, N)

R
N

@COMB calculates the number of combinations (unordered subgroups of size R) that you can form
out of a group of size N. If N <R @COMB returns 0.

The formula for calculating the number of combinations, if R < N, is

number of elements in each subgroup selected from group N; must be > 0

number of elements in the group; must be > 0

N
R!(N-Ri!

Example

Given eleven marbles, this formula calculates how many ways a subset of 5 marbles can be
constructed such that no two constructions contain the same 5 marbles:

@COMB (5,11) =462

See Also

@PERMUT

1

@COMPLEX

Format
@COMPLEX (X, Y)

X
Y numeric value representing imaginary coefficient of complex number
@COMPLEX converts X and Y into a complex number.

numeric value representing real coefficient of complex number

Example
@COMPLEX (5,7) ="5+7i"

See Also

@IMAGINARY
@IMREAL

1

@CONFIDENCE

Format
@CONFIDENCE (Alpha, SDhev, Size)

Alpha = significance level; the percentage of the normal curve that is outside the confidence
interval (1 - Alpha); for example, if the confidence interval is 95%, Alpha = 5%; must be
>0and <1

SDev = population standard deviation; must be > 0

Size = sample size; must be > 1

@CONFIDENCE computes the confidence interval around the mean for a given sample size, using
the normal distribution function. Given a specified degree of confidence, the confidence interval
indicates that the population mean will be within that interval. Use @CONFIDENCE to apply levels of
confidence to sample data and to determine margins of error.

Example

Out of 1000 people sampled, 490 said they would vote for Candidate A. If the population standard
deviation is 0.5, this formula returns the 95% confidence interval for the population mean:

@CONFIDENCE (0.05,0.5,1000) =0.03099

Pollsters can report that Candidate A will receive 49% of the vote with a margin of error of 3.1%.

1

@CONVERT

Format
QCONVERT (X, FromUnit, ToUnit)

X = numeric value in FromUnit to convert, in the units specified by FromUnit
FromUnit = unit type of the value X (must be on the list of supported unit names)
ToUnit = units to convert the value X into; must be on the list of supported unit names

@CONVERT changes X, which is expressed in FromUnit units, to the equivalent value in ToUnit units.
Column Unit of the following tables lists the measurement units that you can specify in FromUnit and
ToUnit. Each argument is case sensitive.

Mass measurement units

Mass Unit
Gram "g"
Slug lnglI

Pound mass (avoirdupois) "lbm"

U (atomic mass unit) u

Ounce mass (avoirdupois) "ozm

Pressure measurement units

Pressure Unit
Pascal "p"
Atmosphere "at"

Distance measurement units

Distance Unit
Meter "m"
Statute mile "mi"
Nautical mile "Nmi"
Inch "in"
Foot "ft"
Yard "yd"
Angstrom "ang"

Time measurement units

Time Unit

Year "yr
Day "day

Hour "hr"

Minute "mn
Second "sec"
Force measurement units
Force Unit
Newton "N"
Dyne lldyll
Pound force "Ibf"

Energy measurement units

Energy Unit
Joule "J"

Erg "e"

Thermodynamic calorie "c"

IT calorie "cal"
Electron volt "ev"
Horsepower-hour "hh"
Watt-hour "wh"
Foot-pound "flb"
BTU "btu"

Power measurement units

Power Unit
Horsepower "h"
Watt "w"

Magnetic measurement units

Magnetism Unit
Tesla "T"
Gauss "ga"

Temperature measurement units

Temperature Unit
Celsius "cel"
Fahrenheit "fah"
Kelvin "kel"

Rankine ran

Liquid measurement units

Liquid Unit
Teaspoon "tsp"
Tablespoon "ths"
Fluid ounce "o0z"
Cup "cup"
Pint "pt"
Quart "gt"
Gallon "gal"
Liter "It"

If a metric unit is used (for example, Gram, Meter, or Liter), you can preface it with one of the prefixes
listed in the next table. Use the metric prefixes to multiply a metric unit by a power of 10.

Metric prefixes

Metric Prefix Multiplier Unit Prefix
exa 1E+18 "E"
peta 1E+15 "P"
tera 1E+12 "T"
giga 1E+09 "G"
mega 1E+06 "M"
kilo 1E+03 "k"
deka 1E+01 "e"
deci 1E-01 "d"
centi 1E-02 "c"
milli 1E-03 "m"
micro 1E-06 "u"
nano 1E-09 "n"
pico 1E-12 "p"
femto 1E-15 "
atto 1E-18 "a"

Whenever @CONVERT is used, both FromUnit and ToUnit must come from the same table.
To determine a specific conversion factor, use 1 for X.

Examples
@CONVERT (2, "day", "hr") =48
@CONVERT (3.5, "kg", "1bm") =7.71618

@CONVERT (2.5, "oz", "mlt") =73.94991

See Also

IMAGINARY
@STRING
VALUE

1

@CORREL

Format
@CORREL (Arrayl, Array2)

Array1 = first array of numeric values

Array2 second array of numeric values

@CORREL computes the correlation coefficient of the numeric values in Array1 and Array2. Use
@CORREL to ascertain the relationship between two sets of data. If two data sets change in a related
matter based on the input that generates them, they are said to be correlated.

Array1 and Array2 must have the same number of values. Also, the values in Array1 and Array2 must
show some variance.

Examples

These examples refer to cells in the next figure.

@CORREL (A2..A9,B2..B9) =0.994135

@CORREL (A2..A9,C2..C9) =0.460718

@CORREL (A2..A9,D2..D9) =-0.52494

@CORREL (B2..B9,C2..C9) =0.547422

A B C D

1 X1 X2 X3 X4
2 1 2 -1 -9
3 2 3 -7 -3
4 3 4 2 6

5 4 5 8 3

6 5 6 -4 =2
7 6 7 0 -21
8 7 8 -12 0

9 8 10 45 -33
See Also

@COVAR

1

@COUPDAYBS

Format
@COUPDAYBS (Settle, Maturity, <Freg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@COUPDAYBS returns the number of days from the beginning of the coupon period of a bond to the
settlement date.

Example
A bond's settlement date is May 15, 1992 and its maturity date is February 15, 1996. This formula
calculates the number of days from the beginning of the coupon period to the settlement date:

@COUPDAYBS (@DATE (92,5,15) ,@DATE (96,2,15)) =90

1

@COUPDAYS

Format
@COUPDAYS (Settle, Maturity, <Freqg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@COUPDAYS returns the number of days in the coupon period of a bond that contains the settlement
date.

Example
A bond's settlement date is May 15, 1992 and its maturity date is February 15, 1996. This formula
calculates the number of days in the coupon period that contains the settlement date.

@COUPDAYS (@DATE (92,5,15), @DATE (96,2,15)) =180

1

@COUPDAYSNC

Format
@COUPDAYSNC (Settle, Maturity, <Freqg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@COUPDAYSNC returns the number of days from the settlement date of a bond to the next coupon
date.

Example
A bond's settlement date is May 15, 1992 and its maturity date is February 15, 1996. This formula
calculates the number of days between the settlement date and the next coupon date:

@COUPDAYSNC (@DATE (92,5,15) ,@DATE (96,2,15)) =90

1

@COUPNCD

Format
@COUPNCD (Settle, Maturity, <Freg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@COUPNCD returns the serial date number for the next coupon date after the settlement date of a
bond.

Example
A bond pays a coupon semiannually and matures on August 31, 2003. This formula calculates the date
of the next coupon payment after December 17, 1992:

@COUPNCD (@DATE (92,12,17) ,@DATE (103, 8,31)) =34028 (February 28, 1993)

1

@COUPNUM

Format
@COUPNUM (Settle, Maturity, <Freg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@COUPNUM returns the number of coupons payable between the settlement date and maturity date
of a bond.

Example
A bond's settlement date is March 15, 1994 and its maturity date is April 15, 2004. This formula
calculates the number of annual coupon payments there are until the maturity date:

@COUPNUM (@DATE (94, 3,15) ,@DATE (104,4,15),1) =11

1

@COUPPCD

Format
@COUPPCD (Settle, Maturity, <Freg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@COUPPCD returns the serial date number for the coupon date just before the settlement date of a
bond.

Example
A bond's settlement date is December 17, 1992 and its maturity date is August 31, 1999. This formula
calculates the date of the previous semiannual coupon payment before the settlement date:

RCOUPPCD (@DATE (92,12, 17) , @DATE (99, 8,31)) = 33847 (August 31, 1992)

1

@COVAR

Format
@COVAR (Arrayl, Array2)

Array1 = first array of numeric values

Array2 second array of numeric values

@COVAR returns the covariance by taking the deviations for each corresponding element in Array1
and Array2, computing their products, and taking the average of their average. Array1 and Array2 must
have the same number of values. Use @COVAR to analyze the relationship between two data sets.
The covariance is calculated using this formula:

l e b
c - ﬁg‘:“l Ny, - 7}

Examples
These examples refer to cells in the next figure.

@COVAR (A2..A9,B2..B9) =5.6875
@COVAR (A2..A9,C2..C9) =21.75
@COVAR (A2..A9,D2..D9) =12.3125
@QCOVAR (B2..B9,C2..C9) =26.21875

A B o] D
1 X1 X2 X3 X4
2 1 2 1 9
3 2 3 2 3
4 3 4 2 6
5 4 5 8 3
6 5 6 4 2
7 6 7 0 21
8 7 8 12 0
9 8 10 45 33
See Also

@CORREL

1

@CRITBINOM

Format
@CRITBINOM (Trials, Prob, Alpha)

Trials = integer number of Bernoulli trials; must be > 0
Prob
Alpha

@CRITBINOM calculates the maximum number of successes that can occur before the cumulative
probability expressed by Alpha is exceeded for the number of Trials. @CRITBINOM has applications in
quality assurance. For example, you could use @CRITBINOM to calculate the maximum number of
defects allowed in a shipment.

probability of success per trial; must be > 0 and < 1

critical probability to test; must be > 0 and < 1

Example

Company A tests a sample of 100 electrical circuits received from Company B. The probability that a
circuit is defective is 7%. Using an Alpha value of 7.4%, this formula calculates the maximum number
of defective circuits that can be expected.

@CRITBINOM(100,0.07,0.074) =3

See Also

@BINOMDIST
@NEGBINOMDIST

1

@DELTA

Format
@DELTA (X, <Y>)

X
Y numeric value that X must equal for the function to return 1 (if omitted, assumed to be zero)

@DELTA tests whether X and Y are equal. If they are, @DELTA returns 1 (True); if not, @DELTA
returns O (False).

numeric value to check

Examples
@DELTA(1,2) =0

@DELTA (2,2) =1
QIF (@DELTA (2,2),"Equal", "Not Equal") =Equal

See Also

@GESTEP

1

@DEVSQ

Format
@DEVSQ (List)

List = one or more numeric or block values

@DEVSAQ returns the sum of the squares of the deviations of the numbers in List from their mean
value.

@DEVSAQ uses this formula:
Il=- =)

Example
@DEVSQ(9,10,12,14,15) =26

See Also

@AVEDEV

1

@DFRAC

Format
@DFRAC (Dec, Denom)

Dec number to be converted, expressed as a decimal

Denom denominator; must be an integer

@DFRAC converts a number expressed as a decimal to a fraction using the specified denominator.
@DFRAC reverses the effect of @FRACD.

The result looks like a decimal, but the portion to the right of the decimal point is actually the
numerator of the fraction using the specified denominator. For example, you can use @DFRAC to

convert a decimal to 32nds. Converting 99.375 to 32nds results in 99.12, representing 99

Tip: Format the cell that contains the @function to show the same number of decimal places as the
number of digits in the desired Denom. For example, if Denom is 32, set the cell format to
display two decimal places.

Example
@DFRAC (106.4375,32) = 106.14; the 14 to the right of the decimal place signifies

See Also

@FRACD

1

@DISC

Format
@DISC (Settle, Maturity, Price, <Redemption>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity number representing the maturity date; must be > Settle

Price settlement price per 100 face value; must be > 0 and < 100
Redemption=redemption value per 100 face value (must be > 0; the default is 100)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =
actual/360, 3 = actual/365; the default is 0)

@DISC computes the discount rate for a security, which is the percentage discount offered on a
security for a 360-day or 365-day term.

@DISC computes the discount rate using this formula:

i s A
D-[l Pl b

R M= 5
= discount rate
= price
= redemption
basis
= maturity
= settle

D
P
R
b
M
S

B is the number of days over which the discount rate applies (360 or 365).

Example
This formula calculates the discount rate for a bond with the following terms: Settle is May 27, 1995,
Maturity is November 24, 1995, Price is 96.2492, Redemption is 100, and Calendar is 2 (actual/360).

@DISC (@RDATE (95,5,27),@DATE (95,11,24),96.2492,100,2) =0.074602

1

@DURAT

Format
@DURAT (Discrate, Flows, <Initial>, <[Odd|Periods]>, <Simp>, <Pathdep>,
<Filter>, <Start>, <End>)

Discrate = discount rate or a block containing discount rates that correspond to cash flows
stored in Flows

Flows = block containing cash flows associated with the discount rates in Discrate

Initial = initial cash flow (the default is 0)

Odd|Periods = delay between initial and first cash flow, in number of periods (the default is 1) or
block containing lengths of periods between cash flows (the default is 1)

Simp = flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep = flag specifying whether to apply path-dependent compounding to each flow; 0 = no
path (default); 1 = path

Filter = flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow <
Start; 3 = cashflow > Start; 4 = cashflow > Start; 5 = Start < cashflow < End; 6 =
Start < cashflow < End

Start = a starting cash flow amount to compare against individual flows

End = an ending cash flow amount to compare against individual flows

@DURAT calculates the duration of a given cash flow structure. Duration (also called Macaulay
duration) is defined as the weighted average time to receipt of a cash flow where the present values of
the cash flows are the weights. Each weight in the sum is the present value of a cash flow divided by
the net present value of all the cash flows.

@DURAT computes Macaulay duration using this formula:

Di; * DF; * Fl;

Du = =
I+ D> DE * Fl;
i=1
where
i
Di; = » F1;
=L
Di = Distance
Du = Duration
F1 = Flows

I = Initial
n is the number of cash flows. s the discount factor corresponding to the ith flow.

Modified (or Hicks) duration is defined as a sensitivity of present value to change in the internal rate of
return. Modified duration is not defined for multiple discount rates (when Discrate is a block of discount
rates).
To convert Macaulay duration to Modified (or Hicks) duration, use this formula:

modified duration = Macaulay duration / (1 + Discrate)

Example

Consider a cash flow stream comprising four flows of $5, followed by four flows of $10, followed by
seven flows of $11, followed by a final flow of $110. The first flow is 0.56745 periods away. The next 11
flows occur one period apart. The last four flows are 1.5 periods apart. This formula calculates the the
duration, assuming compound discounting, no initial cash flow, and the data shown in the next figure:

@DURAT (D8,A2..B5,B8,C2..D4) =10.28273

A B C D E
1 Cash Flows Periods
2 4 $5 1 .056745
3 4 $10 11 1
4 7 $11 4 1.5
5 1 $110
6
7 Initial Discount Rate
8 0 7.85%
9
See Also
@DURATION

Entering Cash Flow @Functions

1

@DURATION

Format
@DURATION (Settle, Maturity, Coupon, Yield, <Freg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date; must be > Settle

Coupon = coupon rate; must be > 0

Yield = annual yield; mustbe >0 and < 1

Freq = frequency of coupon payments in the number of payments per year (can be 1, 2, 3, 4, 6,
or 12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@DURATION returns the Macaulay duration for a bond with an assumed par value of 100. Macaulay
duration is the weighted average maturity of a bond's cash flow stream where the present values of all
future cash receipts are used as weights.

Example

The following formula calculates the Macaulay duration of a bond with these terms: Settle is August 8,
1992, Maturity is November 15, 1998, Coupon is 9%, and Yield is 8.816%.

@DURATION (@DATE (92, 8,8),@DATE (98,11,15),0.09,0.08816) =4.836099

1

@EMNTH

Format
@EMNTH (Date)

Date = number representing a date
@EMNTH returns the serial date number for the date of the last day of the month in which Date falls.

Example
@EMNTH (@DATE (96,2, 14)) = 35124 (February 29, 1996), the last day of the month in which
February 14, 1996 falls.

See Also
LBDAY

@LWKDAY

1

@ERF

Format
@ERF (Lower, <Upper>)

Lower = lower bound for integrating @ERF; must be > 0

Upper upper bound for integrating @ERF; if omitted, @ERF integrates the error function

between 0 and Lower

@EREF returns the error function integrated between Lower and Upper. The error function helps solve
partial differential equations that involve convection or diffusion.

The equation for @ERF(z) is

2
s~ %

|

—

0
The equation for @ERF(a,b) is
5 B ,
& =t
- J = dt
a

This is the same as @ERF(b) minus @ERF(a).

Example
@ERF (0,1) =0.842701

See Also

@ERFC

1

@ERFC

Format
@ERFC (Lower)

Lower = lower bound for integrating @ERF; must be > 0

@ERFC returns the complementary error function, which derives from the error function @ERF using
this formula for @ERFC(x):

-
e

N

This is the same as 1 - @ERF(x).
Therefore, @ERFC(Lower) = 1 - @ERF(Lower,Upper).

Example
@ERFC (1) =0.157299

T z
j=_~'t’ dt
H

See Also

@ERF

1

@EVEN

Format

@EVEN(X)

X = value to round

@EVEN rounds X up (away from zero) to the nearest even integer.

Examples
@EVEN(3.2) =4

@EVEN (-3.2) =-4

See Also

@CEILING
@FLOOR
@INT
@MROUND
@ODD
@ROUND

1

@EXPONDIST

Format
QEXPONDIST (X, Lambda, Cum)

X = value at which to evaluate function; mustbe > 0
Lambda = value to indicate; Lambda = 1/Mean; must be > 0
Cum = 1 to perform cumulative distribution function; 0 to perform the probability density

function

The exponential distribution, sometimes called the waiting-time distribution, describes the amount of
time or distance between the occurrence of random events (such as the time between major
earthquakes or the time between no hitters pitched in major league baseball). The exponential
distribution calculated by @EXPONDIST is a continuous distribution with a probability density function
whose formula is:

£(¥: A) = ke

For the cumulative distribution function, the formula is:

F(X; h) = 1 - "

Use this distribution in connection with estimating the length of material life, or the length of time a

process might take.

Examples
On average, customers at a certain bank must wait 2 minutes before being served by a teller. This
formula calculates the probability that someone would have to wait 3 minutes:

@EXPONDIST (3,1/2,0) =0.111565

This formula calculates the probability that someone would wait only 1 minute for a teller:
@EXPONDIST (1,1/2,1) =0.393469

1

@FACT

Format
@FACT (N)

N = integer > 0 specifying the factorial to calculate

@FACT calculates the factorial of a number, N!, defined as follows: if N = 0,
N! = N X (N-1) X (N-2) X (N-3) X...X (2) X (1)
@FACT(0) returns 1. If N is a non-integer or negative number, @FACT returns ERR.

Examples
@FACT (10) = 3628800

@FACT (128) =3.9E+215

See Also

@FACTDOUBLE

1

@FACTDOUBLE

Format
@FACTDOUBLE (N)

N = value = 0 to calculate factorial of

@FACTDOUBLE returns the double factorial of N, N!!, defined as follows:
If N is even, N!! = N(N-2)(N-4)...(4)(2)
If N is odd, N!' = N(N-2)(N-4)...(3)(1)

If N is negative, @FACTDOUBLE returns ERR.

Examples

@FACTDOUBLE (12) =46080

@FACTDOUBLE (13) =135135

See Also

@FACT

1

@FBDAY

Format
@FBDAY (Date, <Holidays>, <Saturday>, <Sunday>)

Date = number representing a date

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to indicate
no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)

@FBDAY returns the serial date number of the first business day of the month in which Date falls. If
the first of the month isn't a business day, @FBDAY returns the business day closest to it within the
same month.

Example
This formula calculates the first business day in January 1993, assuming that Saturdays and some
dates are holidays:

@FBDAY (@DATE (93,1,1),A7..C9,0,1) =33972 (January 3, 1993)

See Also
Setting Holidays
@BUSDAY
@LBDAY

1

@FDIST

Format
@FDIST (X, DegFreedoml, DegFreedom?2)

X = positive value at which to evaluate the function DegFreedom1
DegFreedom1 = numerator degrees of freedom; must be > 1
DegFreedom?2 = denominator degrees of freedom; must be > 1

@FDIST returns the cumulative F-distribution function, which is the probability that a random variable
will be less than X. Use @FDIST to compare two population variances.

Example
@FDIST (6.256057,5,4) =0.05

See Also

@FINV
@FTEST

1

@FEETBL

Format
@FEETBL (Tu, Ppu, [StdTbl|Vval], <[MinTbl|Val]l>, <[MaxTbl|Val]>, <RndPlcs>)

Tu = total units; if Tu is negative, @FEETBL uses its absolute value

Ppu = price per unit

StdTbl|Val = fee table or a single value that defines the standard fee calculation

MinTbl|Val = fee table or a single value that defines the minimum fee calculation (if omitted,
MinTbl equals StdTbl)

MaxTbl[Val = fee table or a single value that defines the maximum fee calculation (if omitted,
MaxTbl equals StdTbl)

RndPlIcs = number of places to which the final result is rounded; can be from 0 to 10 places

(the default is no rounding)

@FEETBL returns fee calculations from tables. You can use @FEETBL to calculate fees or
commissions for many types of stock transactions, taxes, sales commissions, and other types of fees
and charges. To use @FEETBL, you need to create a table (or tables) that describe the fees.

@FEETBL is more powerful than other table lookup @functions such as @HLOOKUP and
@VLOOKUP because it allows you to

[Compare the standard fee with minimum and maximum values
[Multiply the lookup value by the number of units or total price

[Add a fixed value to the fee

[Round the result to a specified number of decimal places

If the fee table is indexed by values of total units or price per unit, Tu or Ppu must be greater than the
smallest value in the index; otherwise, @FEETBL cannot find a lookup value. If either Tu or Ppu is
zero, @FEETBL returns zero.

If you specify an optional argument, such as RndPIcs, you must also specify all preceding optional
arguments. If MinTbl and MaxTbl are not pertinent to the fee calculation, use StdTbl again for MinTbl
and MaxThbl, or enter values that have no effect on the final result. For example, enter 0 for MinTbl and
1E+99 for MaxTbl.

Note: For valid comparison, values for StdTbl, MinTbl, and MaxTbl arguments must have the same
units.

The upper left cell of a fee table must contain a table header string that identifies the row index,
column index, and cell contents of the table, and also specifies if the table contains an additive factor
for the fee calculation. The table header string consists of three or four parameters separated by a
space; each parameter has several possible values.

Table header parameters

Parameter Description Values

1 Row index tu, ppu, tp, na

2 Columnindex tu, ppu, tp, na

3 Cell contents fpu, fpct, luo
4 Additive factor fa
Description Values

tu = total units

fou = fee per unit

ppu = price per unit

fpct = fee percentage

tp = total price

luo = lookup only

na = notapplicable

fa = fixed adder

The first parameter of the table header identifies the contents of the row index, which appears in the
first column of the table below the table header. The second parameter identifies the contents of the
column index, which appears in the first row of the table to the right of the table header.

The third parameter of the table header determines if @FEETBL multiplies the lookup value from the
table by another value. For example, "fpu" (fee per unit) indicates that @FEETBL multiplies the lookup
value by the number of units; "fpct" (fee percentage) indicates that the lookup value is a percentage
that @FEETBL multiplies by the total price; "luo" (lookup only) indicates that @FEETBL uses the
lookup value without modification.

The fourth parameter of the table header is an optional additive factor; specify "fa" (fixed adder) to add
a value to the result of the operation specified by the third parameter. If the fee table has no additive
factor, omit the fourth parameter.

In the next figure, the table header in cell A3 is "tp na fpct fa"; "tp" indicates that A4..A9 represents the
row index values for total price; "na" indicates that B3..C3 has no column index values; "fpct" indicates
that the lookup values in B4..B9 are percentages that must be multiplied by the total price; "fa"
indicates that the values in C4..C9 are "fixed adders", that is, one of these values must be added to
the product of the fee percentage and the total price.

A B C D
1 Standard Commission Rate Table
2 Principal $Fee + Fixed Adder
3 tp na fpct fa
4 $0 1.60% $26.00
5 $2,500 0.60% $51.00
6 $6,000 0.30% $69.00
7 $22,000 0.20% $91.00
8 $50,000 0.10% $141.00
9 $500,000 0.08% $241.00
10

In the next figure, the table header in cell A2 is "tu tp luo"; "tu" indicates that A3..A7 represents the row
index values for total units; "tp" indicates that B2..E2 represents the column index values for total
price; "luo" indicates that @FEETBL uses the lookup values in B3..E7.

A B C D E F

1 Total Units Total Price

2 tu tp luo $0 $10,000 $15,000 $20,000
3 0 $250 $500 $750 $1,000
4 2 $200 $400 $600 $800
5 5 $175 $350 $525 $700
6 10 $150 $300 $450 $600
7 20 $125 $250 $375 $500
8

@FEETBL treats all string values (other than the table header) or empty cells in fee tables as zero.

Examples

A furniture manufacturer sells 100 bookcases at a price of $150 each to a retailer. This formula
calculates the handling fee for the order based on the fee table in the next figure.

@FEETBL (100,150,A1..D5) = $300

Cell A4 is the row index value for 100 total units. Cell C1 is the column index value for $150 price per
unit. Cell C4 is the lookup value, which is multiplied by the total units: $3 * 100 = $300.

This formula calculates the handling fee based on the fee table in the next figure for a sale of 5 end
tables at a price of $75 each:

QFEETBL (5,75,A1..D5) =$25

Cell A2 is the row index value for 5 units (between 0 and 9). Cell B1 is the column index value for $75
price per unit. Cell B2 is the lookup value, which is multiplied by the total units: $5 * 5 = $25.

A B C D E
1 tu ppu fpu $0 $100 $500
2 0 $5 $7 $8
3 10 $4 $5 $6
4 100 $2 $3 $4
5 1000 $2 sl $2
6
See Also
@HLOOKUP

@VLOOKUP

1

@FIB

Format
@FIB (N)

N = integer > 0 specifying the desired term of a Fibonacci sequence

@FIB calculates the Nth term of a Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21...), in which each
number, after the first two, is the sum of the two numbers immediately preceding it. @FIB(0) is defined
to be 0.

Examples
@FIB(4) =3
@FIB(9) =34

@FIB(15) =610

1

@FINV

Format
@FINV (Prob, DegFreedoml, DegFreedom?2)

Prob
DegFreedom1

cumulative probability value; must be > 0 and < 1

numerator degrees of freedom; must be > 1

DegFreedom2= denominator degrees of freedom; must be > 1

@FINV returns the inverse of the cumulative F-distribution function. Use this function to measure the
degree of variability in two data sets.

Example
@FINV(0.05,5,4) =6.256057

See Also

@FDIST
@FTEST

1

@FIRSTBLANKPAGE

Format
@FIRSTBLANKPAGE (Block)

Block = acell or block reference; can be a link to another opened notebook (for example,
[BUDGET]A:A1)

@FIRSTBLANKPAGE returns a string that contains the letters for the first unnamed blank page in a
notebook that isn't part of a group.

Quattro Pro searches for the first unnamed blank page (that isn't in a group) starting at page A and
continuing toward page IV. If there are no unnamed blank pages (or they're all in groups),
@FIRSTBLANKPAGE returns ERR.

Example
@FIRSTBLANKPAGE (B17) = AA (if it is the first page that is blank and unnamed)

See Also

@LASTBLANKPAGE

1

@FIRSTINGROUP

Format
@FIRSTINGROUP (Block, GroupName)

Cell
GroupName = a string value representing a group name

a cell or block of the notebook to check

@FIRSTINGROUP returns a string that contains the letters for the first page in the group named
GroupName. @FIRSTGROUP searches the notebook referenced by Block for the group. If the group
doesn't exist, @FIRSTINGROUP returns ERR.

Example
@FIRSTINGROUP ([REPORTQ4]A:C1l2, "Totals") = "A" (if the notebook REPORTQ4 contains a
group named Totals that starts with page A)

See Also

@LASTINGROUP

1

@FISHER

Format
@FISHER (X)

X = numeric value; -1 < X <1

@FISHER returns the Fisher transformation at the value X. Fisher's z-transformation is used to

produce an approximately normally distributed variable (rather than skewed) from the correlation
coefficient. The formula @FISHER uses is

Example
@FISHER (0.25) =0.255413

See Also

@FISHERINV
@PEARSON

1

@FISHERINV

Format
@FISHERINV (Y)

Y = numeric value < 354 for which you want the inverse of the Fisher transformation

@FISHERINV returns the inverse of the Fisher transformation. Use @FISHERINV to determine the
confidence limits for a correlation coefficient.

Example
@FISHERINV (0.255413) =0.25

See Also

@FISHER
@PEARSON

1

@FLOOR

Format
@FLOOR (X, Y)

X
Y value to make rounded X evenly divisible by

@FLOOR rounds X down (toward zero) to the nearest value that's evenly divisible by Y. If X and Y
have different signs, the result of @FLOOR is ERR.

value to round

Examples
@FLOOR(3.2,3) =3

@FLOOR(-3.2,-3) =-3

See Also

@CEILING
@EVEN
@MROUND
@ODD
@INT
@ROUND

1

@FORECAST

Format
@FORECAST (X, KnownY, KnownX)

X = numeric value at which to evaluate the function
KnownY = dependent range of values
KnownX = independent range of values

@FORECAST returns a predicted Y value corresponding to X based upon a linear regression of
KnownY and KnownX.

KnownY and KnownX must contain the same number of values. The variance of KnownX must not be
0.

Example
This example refers to cells in the figure below.

@FORECAST (1000,C2..C16,B2..B16) =$15,868.50

A B C
1 Date Advertising Sales
2 04/30/93 $435 $7,000
3 05/07/93 $400 $6,000
4 05/14/93 $505 $7,767
5 05/21/93 $470 $7,800
6 05/28/93 $610 $9,534
7 06/04/93 $540 $7,750
8 06/11/93 $575 $8,945
9 06/18/93 $715 $11,301
10 06/25/93 $645 $9,465
11 07/02/93 $680 $10,760
12 07/09/93 $785 $13,000
13 07/16/93 $750 $11,890
14 07/23/93 $855 $12,980
15 07/30/93 $820 $13,068
16 08/06/93 $890 $14,246

1

@FRACD

Format
QFRACD (Frac, Denom)

Frac = number to be converted

Denom denominator; must be an integer

@FRACD converts the fraction Frac to a decimal number. For example, you can use this @function to
convert a number with a fractional portion in 32nds to a decimal number. @FRACD reverses the effect
of @DFRAC.

Frac looks like a decimal, but @FRACD doesn't use it that way. The portion to the right of the decimal
point is the numerator of the fraction using the denominator specified by Denom. For example, if

Denom is 32 and you want to find the decimal equivalent of 99 * , set Frac to 99.12. If Denom were
100, setting Frac to 99.12 represents 99

Example

This formula finds the decimal equivalent of 106 .
@FRACD (106.14,32) =106.4375

See Also

@DFRAC

1

@FTEST

Format
@FTEST (Arrayl, Array?2)

Array1 = first array of numeric values

Array2 second array of numeric values

@FTEST returns the results of an F-test run against the samples in Array1 and Array2. An F-test is a
one-tailed probability that the differences in the sample variances in Array1 and Array2 are different.
Use @QFTEST to determine if two samples have significantly different variances (that is, if data sets
were drawn from different parent populations).

Array1 and Array2 must have more than two values. The variance of Array1 or Array2 must not be
zero.

Example
@FTEST ({75,82,83,85,85,90},{80,86,92,93,95,96}) =0.637248

See Also
@FDIST
@FINV

1

@FUTV

Format
@FUTV (Intrate, Flows, <[0dd|Periods]>, <Simp>, <Pathdep>, <Filter>,
<Start>, <End>)

Intrate = interest rate or block containing interest (discount) rates

Flows = block containing cash flows

Odd|Periods = delay after last cash flow in number of periods (the default is 0) or block containing
lengths of periods between cash flows (the default is 1)

Simp = flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep = flag specifying whether to apply path-dependent compounding to each flow; 0 = no
path (default); 1 = path

Filter = flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow <
Start; 3 = cashflow > Start; 4 = cashflow > Start; 5 = Start < cashflow < End; 6 =
Start < cashflow < End

Start = astarting cash flow amount to compare against individual flows

End = an ending cash flow amount to compare against individual flows

@FUTV calculates the future value of a given cash flow structure. The future value of a stream of cash
flows is the sum of the future values of each cash flow.

By default, @FUTV computes the future value at the time of the last cash flow. If you specify Periods,
@FUTV calculates the future value at a time one period after the last cash flow. If you specify Odd,
@FUTV calculates the future value at a time Odd periods after the last cash flow.

@FUTV computes future value using this formula:

FY = ‘_:;I".:"_l % IF,
L=1
where n is the number of cash flows, and is the interest factor associated with the ith cash flow, Flows .
is the @FUTV counterpart of the discount factor,
, used in @NETPV. Unlike
, Which reduces the value of a flow,

increases the value.

FV = Future Value
F1 = Flows

Example

Suppose a portfolio has a bond that will make 15 annual interest payments of $1,500, and pay
$20,000 in principal along with the last interest payment. If the interest earned on investing the annual
interest payments (the reinvestment rate) is 8.5%, this formula calculates the amount in the portfolio at
the end of 15 years, using the data shown in the next figure:

@FUTV (D2,A2..B3) =$62,348.40

A B C D

1 Cash Flows Interest Rate
2 14 $1,500 8.5%
3 1 $21,500

4

See Also

Entering Cash Flow @Functions

1

@GAMMADIST

Format
@GAMMDIST (X, Alpha, Beta, Cum)

X = value at which to evaluate the function; must be > 0

Alpha = parameter to the gamma distribution; must be > 0

Beta = parameter to the gamma distribution; must be > 0

Cum = 1 to return the cumulative gamma distribution function; 0 to return the probability density

function

@GAMMDIST returns the gamma distribution function, which is the probability that a random variable
will be less than X. Use @GAMMADIST to study random variables characterized by skewed and
asymmetric distributions.

When Alpha = 1, @GAMMADIST returns the exponential distribution; see @EXPONDIST.

Examples
@GAMMADIST (18,8,2,1) =0.676103

@GAMMADIST (18,8,2,0) =0.058558

See Also

@GAMMAINV
@GAMMALN
@GAMMAP
@GAMMAQ

1

@GAMMAINV

Format
@GAMMAINV (Prob, Alpha, Beta)

Prob = probability associated with the gamma cumulative function; must be > 0 and < 1
Alpha = a parameter to the gamma distribution; must be > 0
Beta = a parameter to the gamma distribution; must be > 0

@GAMMAINYV returns the inverse of the cumulative gamma distribution function.

Example
@GAMMAINV (0.676103,8,2) =18

See Also

@GAMMADIST
@GAMMALN
@GAMMAP
@GAMMAQ

1

@GAMMALN

Format
@GAMMALN (X)

X = value for which you want to calculate @GAMMALN; must be >0

Returns the natural logarithm of the gamma function. Use @GAMMALN to build other common
statistical functions such as the beta function (see @BETA) and the factorial function (see @FACT).

Example
@GAMMALN (6) =4.787492

See Also

@GAMMADIST
@GAMMAINV
@GAMMAP
@GAMMAQ

1

@GAMMAP

Format
@GAMMAP (A, X)

A
X

@GAMMARP returns the incomplete gamma function, also known as the standard cumulative gamma
distribution. @GAMMAP is equal to the cumulative gamma distribution when b = 1.

parameter to the function; must be > 0

value at which to evaluate the function; must be > 0

Example
@GAMMAP (3,4) =0.761897

See Also

@GAMMADIST
@GAMMAINV
@GAMMALN
@GAMMAQ

1

@GAMMAQ

Format
@GAMMAQ (A, X)

A
X value at which to evaluate the function; must be = 0
@GAMMAQ is a complement to the incomplete gamma function and equals (1 - @GAMMAP).

parameter to the function; must be > 0

Example
@GAMMAQ (3, 4) =0.238103

See Also

@GAMMADIST
@GAMMAINV
@GAMMALN
@GAMMAP

1

@GCD

Format
QGCD (X, Y)

X
Y

@GCD returns the greatest common divisor of X and Y (the largest integer that both numbers can be
divided by without a remainder; it's also called the greatest common denominator).

positive integer to find greatest common divisor of

positive integer to find greatest common divisor of

Examples
@GCD(96,78) =6

QGCD (112,42) =14

See Also

@LCM

1

@GEOMEAN

Format
@GEOMEAN (List)

List = one or more numeric or block values; values in List must be positive

@GEOMEAN returns the geometric mean of a positive range of values. The geometric mean is the nth
root of the product of a series of numbers. Use @GEOMEAN when you're interested in an average
rate of change of values in a data set given a varying rate of change.

@GEOMEAN uses this formula:

——————
HiHge oo Hy

]
o

Example
@GEOMEAN (3,4,5,6,7) =4.789389

See Also

@HARMEAN
@MEDIAN
@MODE
@TRIMMEAN
@AVG

1

@GESTEP

Format
@GESTEP (X, <Y>)

X
Y numeric value that X must exceed for function to return 1 (if omitted, assumed to be 0)

@GESTEP tests whether X is greater than or equal to Y. If it is, @GESTEP returns 1 (true); if not,
@GESTERP returns 0 (false).

numeric value to check

Examples
@GESTEP(1,2) =0

@GESTEP (2,1) =1

@GESTEP (1) =1

@GESTEP (-2) =0

You can sum several @GESTEP functions to count the number of values that exceed a certain
threshold (Y).

See Also

@DELTA

1

@GETGROUP

Format
@GETGROUP (Block, <PageName>)

Block

PageName = a string value representing a page name or an address specifying the page name to
check (optional)

a cell or block of the notebook to check

@GETGROUP returns a string that is the name of the group that contains the page specified by Block
(unless PageName is used, as discussed next).

If Block is used in conjunction with the optional argument PageName, @GETGROUP searches the
notebook referenced by Block for the group that contains the page specified by PageName.
PageName is a string or cell address.

If the page isn't part of a group, @GETGROUP returns ERR.

Example
@GETGROUP ([REPORTQ4]A:C12, "April") searches the notebook REPORTQ4 for the name of the
group that contains the page named April

@GETGROUP ([REPORTQ4]A:C12) searches the notebook REPORTQ4 for the name of the group that
contains the page named A

@GETGROUP ([REPORTQ4]A:C12,"Totals:A12") searches the notebook REPORTQ4 for the
name of the group that contains the page named Totals.

See Also
@FIRSTINGROUP
@LASTINGROUP

1

@HARMEAN

Format
@HARMEAN (List)

List = one or more numeric or block values; none of the values in List can equal 0

@HARMEAN returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the
arithmetic mean of the reciprocals of a set of numbers (see @MEAN).

@HARMEAN uses this formula:
1

s

1 1 1 1
S = =t =
nix = b

i n

Example
@HARMEAN (3,4,5,6,7) =4.575163

See Also

@GEOMEAN
@MEDIAN
@MODE
@TRIMMEAN
@AVG

1

@HEXTOASC

Format
QHEXTOASC (Hex)

Hex = hexadecimal number to convert; can be up to 40 hexadecimal digits
@HEXTOASC returns the ASCII equivalent of a hexadecimal number.
Note: If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.

Examples

@HEXTOASC ("2B") =+

@HEXTOASC ("3031414243444546") =01ABCDEF
@HEXTOASC ("424F524C414E44") =BORLAND
See Also

Entering Number Conversion @Functions

1

@HEXTOBIN

Format
@HEXTOBIN (Hex)

Hex = hexadecimal number to convert

@HEXTOBIN returns the binary string equivalent of a hexadecimal number. To convert a negative
number, precede Hex with a minus sign.

Examples

@HEXTOBIN ("A") =1010
@HEXTOBIN ("10") =10000
@HEXTOBIN ("1E") =11110
See Also

@HEXTOBING4

Entering Number Conversion @Functions

1

@HEXTOBIN64

Format
@HEXTOBING64 (Hex, <Places>)

Hex hexadecimal number to convert

Places number of characters to return; must be < 64
@HEXTOBING4 returns the binary string equivalent of a hexadecimal number (up to 64 bits).

Note: If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples

@HEXTOBING4 ("A",2) =10

@HEXTOBING4 ("A",6) =001010

@HEXTOBING64 ("1E078") =00011110000001111000

@HEXTOBING4 ("1E078",7) =1111000

See Also

@HEXTOBIN

Entering Number Conversion @Functions

1

@HEXTONUM64

Format
@HEXTONUM64 (Hex, <Signed>)

Hex hexadecimal number to convert

Signed 1 if the most significant bit of Hex is a sign bit; 0 if Hex is positive (the default is 0)
@HEXTONUMG64 returns the decimal equivalent of a hexadecimal number (up to 64 bits).

If Signed is 1, the most significant bit of Hex is the sign bit. If the sign bit is 0, the number is positive; if
it's 1, the number is negative.

Note: If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples

@HEXTONUM64 ("A") =10

@HEXTONUMG64 ("123456789ABCDEF0O") = 1311768467463790320

@HEXTONUMG64 ("FE4FA1",1) =-110687

See Also

@HEXTONUM

Entering Number Conversion @Functions

1

@HEXTOOCT

Format
@HEXTOOCT (Hex)

Hex = hexadecimal number to convert

@HEXTOOCT returns the octal string equivalent of a hexadecimal number. To convert a negative
number, precede Hex with a minus sign.

Examples

@HEXTOOCT ("A") =12
@HEXTOOCT ("10") =20
@HEXTOOCT ("1E") =36
See Also
@HEXTOOCT64

Entering Number Conversion @Functions

1

@HEXTOOCT64

Format
QHEXTOOCT64 (Hex, <Places>)

Hex hexadecimal number to convert

Places number of characters to return; must be < 22

@HEXTOOCT®64 returns the octal string equivalent of a hexadecimal number (up to 64 bits).
Note: If the hexadecimal number includes nonnumeric characters, enclose it in quotation marks.
Examples

@HEXTOOCT64 ("A") =12

@HEXTOOCT64 ("7",2) =07

@HEXTOOCT64 ("1E078", 6) =360170

@HEXTOOCT64 ("0123456789ABCDEF") =0004432126361152746757

See Also

@HEXTOOCT

Entering Number Conversion @Functions

1

@HOLS

Format
@HOLS (StartDate, EndDate, Holidays, <Saturday>, <Sunday>)

StartDate = number representing the start date

EndDate = number representing the end date

Holidays = block containing dates that are holidays; to indicate no holidays, enter an empty cell or
block

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)
@HOLS returns the number of holidays between StartDate and EndDate, including the given dates (if
they appear in Holidays).

By default, @HOLS doesn't include holidays that fall on a Saturday or Sunday; if either Saturday or
Sunday is passed as 1, the count also includes holidays falling on that day.

Example

This formula calculates the number of holidays between April 1, 1993 and December 14, 1993,
assuming that the dates contained in block A7..C9 are holidays.

@HOLS (@DATE (93,4,1) ,@DATE (93,12,14),A7..C9) =5

See Also

@BDAYS
@CDAYS

1

@HYPGEOMDIST

Format
@HYPGEOMDIST (SampleSuccess, SampleSize, PopSuccess, PopSize)

SampleSuccess = successes in the sample; must be > 0

SampleSize = sample size; must be > 0 and < PopSize

PopSuccess = successes in the population; must be > 0 and < PopSize
PopSize = population size; must be > 0

@HYPGEOMDIST returns the hypergeometric distribution of a sample, which gives the probability of
successes in a sample given the sample's size, the total population, and the number of successful
trials in that population. Use @HYPGEOMDIST to determine the probability that a distribution contains
exactly SampleSuccess items of a particular type.

SampleSuccess must be greater than or equal to 0, greater than the lesser of SampleSize or
PopSuccess, and greater than the larger of 0 or (SampleSize-PopSize+PopSuccess)

@HYPGEOMDIST uses this formula:

(a)(523)

F{X=d)=h(d;n, D, H)=
4
n
where:
d = SampleSuccess
n = SampleSize

D = PopSuccess
N = PopSize
Examples

Five cards are drawn from a deck of 52 playing cards. This formula calculates the probability that one
of the five cards drawn is an ace (assuming there are only four aces in the deck):

@HYPGEOMDIST (1,5,4,52) =0.299474

See Also

@BINOMDIST
@COMB

@FACT
@NEGBINOMDIST
@PERMUT

1

@IMABS

Format
@IMABS (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj, or x + jy for which you want the

absolute (modulus) value

@IMABS returns the absolute value (modulus) of a complex number with this formula:
=] = '-Jm

C = Complex

Example

@IMABS ("-10+25.63") =27.48381

1

@IMAGINARY

Format
@IMAGINARY (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy from which you want to
extract the imaginary coefficient

@IMAGINARY returns the imaginary coefficient of a complex number.
Examples

@IMAGINARY ("2+8i") =8

@IMAGINARY ("-1i") =-1

See Also

@COMPLEX
@IMREAL

1

@IMARGUMENT

Format
@IMARGUMENT (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj, or x + jy for which you want to

calculate the angle in the complex plane

@IMARGUMENT returns the angle 0, in radians, of a number in the complex plane, such that
wot oyl o= |u o y.i.le“3 = |+ yillcos® + i2in &)

Example

@IMARGUMENT ("5+12i") =1.176005

1

@IMCONJUGATE

Format
@IMCONJUGATE (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj, or x + jy for which you want to
calculate the complex conjugate

@IMCONJUGATE returns the complex conjugate of a complex number.

Example
@IMCONJUGATE ("5+12i") ="5-12i"

1

@IMCOS

Format
@IMCOS (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj, or x + jy for which you want to
calculate the cosine

@IMCOS returns the cosine of the complex number Complex. @IMCOS uses this formula:

ic ic
- a
cog(C) =

2
C = Complex
Example

@IMCOS ("5+12i") ="23083.7+78034.8i"

See Also

@COS
@IMSIN

1

@IMDIV

Format
IMDIV (Complexl, Complex?2)

Complex1= complex numerator or dividend in the format x + yi, x + iy, X + yj or x + jy
Complex2= complex denominator or divisor in the format x + yi, x + iy, X + yj or X + jy

@IMDIV returns the quotient of two complex numbers (Complex1 and Complex2) using this formula:
Given: Complexl = a + bi and Complex?2 = c + di

_atbi _ fact bd)+ (boc - adji

o+ oAl e o+ gt

lf'1|l"!
0|

C = Complex

Example
@IMDIV ("5+6i","3+4i") ="1.56-0.08i"

See Also

@IMPOWER
@IMPRODUCT
@IMSUB

1

@IMEXP

Format
@IMEXP (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy for which you want to
calculate the exponential

@IMEXP returns the exponential of a complex number using this formula:
Given Complex = x + yi,

C = Complex

Example
@IMEXP ("5+121i™) ="125.239-79.6345{"

See Also

@IMPOWER
@IMLN
@IMLOG10
@IMLOG2

1

@IMLN

Format
@IMLN (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj, or x + jy for which you want to
calculate the natural logarithm

@IMLN returns the natural logarithm of the complex number Complex using this formula:
In(x +yi) = Inje® + ¥ + i t:-u—_'lfi’-\

LA

Example
@IMLN ("5+121i"™) ="2.56495+1.17601i"

See Also

@IMLOG2
@IMLOG10
@IMPOWER

1

@IMLOG10

Format
@IMLOG10 (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy for which you want to
calculate the base 10 log

@IMLOG10 returns the base 10 (common) logarithm of the complex number Complex using this
formula:

Given Complex = x + yi

log(C)

logllo)

C = Complex

log 10(C) =

Example
@IMLOGI1O0 ("5+1241i™) ="1.11394+0.510733i"

See Also

@IMLOG2
@IMLN
@IMPOWER

1

@IMLOG2

Format
@IMLOG2 (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy for which you want to
calculate the base 2 log

@IMLOG?2 returns the base 2 logarithm of the complex number Complex using this formula:
Given Complex = x + yi

logl(c)

log(2)

C = Complex

log 2{C) =

Example
@IMLOG2 ("5+12i") ="3.70044+1.69662i"

See Also

@IMLOG10
@IMLN
@IMPOWER

1

@IMPOWER

Format
@IMPOWER (Complex, Power)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy

the power to which you want to raise Complex; can be a complex number in the format
X +yi, X +iy, X +yj, or X +jy

@IMPOWER returns the complex number Complex raised to the power Power. Power can be a value
or a complex number.

Power

Examples
@IMPOWER ("5+121i",3) ="-2035-828i"

@IMPOWER ("5+121i™,"3+21i") ="-150.575+145.094i"

See Also

@IMEXP
@IMLN
@IMLOG2
@IMLOG10

1

@IMPRODUCT

Format
@IMPRODUCT (Complexl, Complex?2)

Complex1= complex number in the format x + yi, x + iy, X + yj or x + jy
Complex2= complex number in the format x + yi, x + iy, x + yj or x + jy

@IMPRODUCT returns the product of two complex numbers (Complex1 and Complex2) using this
formula:
Given Complexl = a + bi and Complex2 = c + di

(Complexl) (Complex2) = (ac - bd) + (ad + bc)i

Example
@IMPRODUCT ("5+12i","2-1") ="22+19i"

@IMPRODUCT ("10+21i",5) ="50+10i"

See Also

@IMDIV
@IMPOWER
@IMSUB
@IMSUM

1

@IMREAL

Format
@IMREAL (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy from which you want to
extract the real coefficients

@IMREAL returns the real coefficient of a complex number.
Examples

@IMREAL ("2+481i") =2

@IMREAL ("-i") =0

See Also

@COMPLEX
@IMAGINARY

1

@IMSIN

Format
@IMSIN (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj, or x + jy for which you want to
calculate the sine

@IMSIN returns the sine of the complex number Complex using the formula:

Given Complex = x + yi,
ic -iC
= - e
21
C = Complex

sin{C) =

Examples

@IMSIN ("5+12i"™) ="-78034.8+23083.7i"
@IMSIN ("1+i"™) ="1.29846+0.634964i"
See Also

@IMCOS

1

@IMSQRT

Format
@IMSQRT (Complex)

Complex = complex number in the format x + yi, x + iy, X + yj or x + jy to calculate square root of

@IMSQRT returns the square root of a complex number using this formula:

J& - i < [M]

Cc = Complex

1 f_ar"ﬂ'-"': C}\]]

Example
@IMSQRT ("5+12i"™) ="3+2i"

1

@IMSUB

Format
@IMSUB (Complexl, Complex?2)

Complex1= complex number in the format x + yi, x + iy, X + yj or x + jy from which to subtract
Complex2

Complex2= complex number in the format x + yi, x + iy, X + yj or x + jy to subtract from Complex1

@IMSUB returns the difference of two complex numbers (Complex1 and Complex2) with this formula:
Given Complexl = (a + bi) and Complex2 = (c + di)

(a + bi) = (¢ +di) = (a - c) + (b - d)1i

Example
@IMSUB ("5+12i™,"2-1i") ="3+13i"

See Also

@IMDIV
@IMPOWER
@IMPRODUCT
@IMSUM

1

@IMSUM

Format
@IMSUM (List)

List = one or more complex numbers in the format x + yi, x + iy, x + yj or x + jy, separated by
commas

@IMSUM returns the sum of a list of complex numbers using this formula:
Given Complexl = (a + bi) and Complex2 = (c + di)

Complexl + Complex2 = (a + c) + (b + d)i

Example
@IMSUM ("5+124i™,"7+144i") ="12+26i"

See Also

@IMDIV
@IMPOWER
@IMPRODUCT
@IMSUB

1

@INDEXTOLETTER

Format
@INDEXTOLETTER (Index)

Index = an integer number from 0 to 255 inclusive

@INDEXTOLETTER returns a one- or two-character string equivalent (for example, A, B, AA, AB, and
IV) for the index number of a page or column.

If Index is < 0 or > 255, @INDEXTOLETTER returns ERR. If Index isn't an integer, it's rounded to the
nearest integer.

Examples
@INDEXTOLETTER (0) =A
@INDEXTOLETTER (1) =B
@INDEXTOLETTER (255) =1V

See Also

@LETTERTOINDEX

1

@INTERCEPT

Format
@QINTERCEPT (KnownY, KnownX)

KnownY = dependent range of values

KnownX independent range of values

@INTERCEPT returns the y-intercept of the linear regression line through two data sets. KnownY and
KnownX must contain the same number of values. The formula @INTERCEPT uses is

q=% - &=
, the slope, is calculated using this formula:

nZry -(Zx)(Zy)
n& R - fE W:IE

Example

@INTERCEPT ({16,28,30,35,52,65},{11,15,18,22,35,43}) =3.56304

a2 =

See Also

@FORECAST
@PEARSON
@RSQ
@SLOPE
@STEYX

1

@INTRATE

Format
@INTRATE (Settle, Maturity, Investment, Redemption, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date; must be > Settle

Investment = amountinvested; must be >0

Redemption = redemption value; must be >0

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@INTRATE returns the simple annualized yield for a fully invested security. @INTRATE computes
yield using this formula:

-

R =T + A
'r.'—[]*[b J
T | A LM - 5

= yield

= redemption
= investment
basis

= maturity

= settle

'_|.
N 20O HWK
Il

is the number of days over which the discount rate applies (360 or 365).

Example

This formula calculates the interest rate for a bond with the following terms: Settle is November 11,
1995, Maturity is May 27, 1996, Investment is $10,000, Redemption is $10,397.50, and Calendar is 1
(actual/actual).

@INTRATE (@DATE (95,11,11),@DATE (%6,5,27),10000,10397.50,1) =0.073277

1

@INVB

Format
@INVB (Binary, <Bits>)

Binary = binary number
Bits

number of binary bits used for both input and output; if omitted, Bits = number of bits in
Binary; must be < 64

@INVB inverts the bits of a binary number. All bits that are 1 change to 0, and all bits that are 0
change to 1.

Examples

@INVB(0) =1

@INVB (1010,5) =10101

@INVB(1100,5) =10011

See Also
Entering Boolean @Functions

1

@INVH

Format
QINVH (Hex, <Bits>)

Hex = hexadecimal number
Bits

number of binary bits used for both input and output; if omitted, Bits = number of bits in
Hex; 4 binary digits = 1 hexadecimal digit; must be < 64

@INVH inverts the binary bits of a hexadecimal number. All bits that are 1 change to 0, and all bits that
are 0 change to 1.

Example

@QINVH("A"™) =5

@INVH("C",8) =F3

See Also
Entering Boolean @Functions

1

@ISBDAY

Format
@ISBDAY (Date, <Holidays>, <Saturday>, <Sunday>)

Date = number representing a date

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to indicate
no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)

@ISBDAY tests whether Date is a business day. To qualify as a business day, Date can't fall on a
Saturday or Sunday (unless Saturday and Sunday are designated as business days by Saturday and
Sunday), and can't appear in the block specified by Holidays. If Date is a business day, @ISBDAY
returns 1; otherwise, @ISBDAY returns 0.

Example

Given the block of holidays, A7..C9, and treating Saturday as a business day (except when it's a date
included in A7..C9), this formula tests whether May 31, 1993 is a business day:

@ISBDAY (@DATE (93,5,31) ,A7..C9,1) =0, since May 31, 1993 is Memorial Day.

See Also
Setting Holidays

1

@ISLEGALPAGENAME

Format
@ISLEGALPAGENAME (PageName)

PageName = a string value

@ISLEGALPAGENAME returns 1 if PageName is a valid page name (even if the page name doesn't
currently exist). Otherwise, it returns 0.

Example
@ISLEGALPAGENAME ("A") =1

@ISLEGALPAGENAME ("A Report") =0 (name contains a space)

1

@KURT

Format
@KURT (List)

List = one or more numeric or block values

@KURT returns the kurtosis of List. The kurtosis of a data set measures a distribution's closeness to
normality, indicating relative peakedness or flatness. A kurtosis greater than zero is referred to as
leptokurtic. A kurtosis less than zero is referred to as platykurtic.

List must have four or more values. The standard deviation of List must not be 0.
@KURT uses this formula:

nin + 1) o x:—;*_ '3:n—'_}‘:
fn-1Mn-2(n-3) | = (n— 2)n - 3)

where s is the sample standard deviation.

Examples
@KURT (5,7,9,12,14,15,4,9,5,6) =-1.11117

@KURT (9.7,10,9.5,9.3,10.2,10,9.5,11) =1.780277
@KURT (20,25,27,22,35,28) =0.876754

See Also

@SKEW

1

@LARGEST

Format
@LARGEST (Array, N)

Array = anumeric array or a block of values
N

number that indicates the rank in size from the data set Array; must be greater than 0
and less than or equal to the number of values in Array

@LARGEST returns the Nth largest number in Array. Use @LARGEST to determine a value's rank in
a data set from the top of that set.

Note: If there are duplicates in Array, @LARGEST treats them as separate numbers.

Examples

@LARGEST ({1,2,3,4,5,6,7,8,9,10},2) =9
@LARGEST ({1,2,3,4,5,6,7,8,9,10},4) =7
@LARGEST ({1,2,3,4,5,6,7,8,9,10},6) =5

See Also

@PERCENTILE
@PERCENTRANK
@QUARTILE
@SMALLEST

1

@LASTBLANKPAGE

Format
@LASTBLANKPAGE (Block)

Block = acell or block reference; can be a link to another opened notebook (for example,
[BUDGET]A:A1)

@LASTBLANKPAGE returns a string that contains the letters for the last unnamed blank page in a
notebook that isn't part of a group.
Quattro Pro searches for the last unnamed blank page (that isn't in a group) starting at page IV and

continuing toward page A. If there are no unnamed blank pages (or if they're all in groups),
@LASTBLANKPAGE returns ERR.

Example
@LASTBLANKPAGE (B17) =IG (ifitis the last page that is blank and unnamed)

See Also
@FIRSTBLANKPAGE

1

@LASTINGROUP

Format
@LASTINGROUP (Block, GroupName)

Block

GroupName = a string value representing a group name

a cell or block of the notebook to check

@LASTINGROUP returns a string that contains the letters for the last page in the group named
GroupName. @LASTINGROUP searches the notebook referenced by Block for the group. If the group
doesn't exist, @LASTINGROUP returns ERR.

Example
@LASTINGROUP ([REPORTQ4]A:C12,"Totals"™) ="C" (if the notebook named REPORTQ4
contains a group named Totals that ends with page C)

See Also
@FIRSTINGROUP

1

@LBDAY

Format
@LBDAY (Date, <Holidays>, <Saturday>, <Sunday>)

Date = number representing a date

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to indicate
no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)

@LBDAY returns the serial date number for the date of the last business day of the month in which
Date falls.

Example
This formula calculates the last business day in November 1993, assuming that Sundays and the
dates contained in block A7..C9 are holidays.

@LBDAY (@DATE (93,11,1),A7..C9,1) = 34303 (November 30, 1993)

See Also
Setting Holidays
@NBDAY
@PBDAY

1

@LCM

Format
@LCM (X, Y)

X
Y

@LCM returns the least common multiple of X and Y (the smallest positive integer into which both X
and Y can divide without leaving a remainder).

positive integer to find least common multiple of

positive integer to find least common multiple of

Examples
@LCM(9,6) =18

@LCM(24,12) =24

See Also

@GCD

1

@LETTERTOINDEX

Format
@LETTERTOINDEX (Letters)

Letters = a one- or two-character string enclosed in quotation marks; column and page letters run
in sequence from A to Z, and continue from AAto AZ, up to IV

@LETTERTOINDEX returns the index number (from 0 to 255) for column letters or page letters.

If Letters is a character string outside the range of page and column letters (for example, "IW"),
@LETTERINDEX returns ERR.

Examples

@LETTERTOINDEX ("A") =0
QLETTERTOINDEX ("B") =1
@LETTERTOINDEX ("IV") =255
See Also

@INDEXTOLETTER

1

@LINTERP

Format

QLINTERP (KnownX, KnownY, X)

KnownX = one-dimensional block containing X values in increasing order

KnownY
X

one-dimensional block containing Y values corresponding to the X values in KnownX
number for which the corresponding Y value is desired

@LINTERP interpolates a Y value corresponding to X using the XY pairs specified by KnownX (which
contains the X coordinates) and KnownY (which contains the Y coordinates). If X lies between two
values in KnownX, @LINTERP interpolates using those two values and their respective KnownY
counterparts. If X is outside the range of KnownX, the Y value is extrapolated based on the slope of
the line between the two closest points.

KnownX and KnownY don't have to be the same size. If KnownY is smaller than KnownX, the last
value in KnownY is used as the corresponding Y value for extra KnownX values. If KnownY is larger
than KnownX, its extra values are ignored.

Example

This formula calculates the Y value for the X value 6.7 if the data in the next figure is used.
@LINTERP (A3..A9,B3..B9,6.7) =17.5976

A B C

1 x values y values

2

3 -28.345 -9.7821

4 -17.89 -5.6667

5 0.9232 2.891

6 1.212 2.9978

7 4.552 13.67

8 10.75 25.003

9 30.8 33.33

[y
o

1

@LOGINV

Format
@LOGINV (Prob, Mean, SDev)

Prob = probability associated with the cumulative lognormal distribution function; 0 < Prob < 1
Mean = mean of In(x)
SDev = standard deviation of In(x); must be > 0

@LOGINYV returns the inverse of the cumulative lognormal distribution.

Example
@LOGINV (0.027985,2.5,0.8) =2.640543

See Also

@LOGNORMDIST

1

@LOGNORMDIST

Format
@LOGNORMDIST (X, Mean, SDev)

X = value to evaluate the function; must be >0
Mean = mean of In(x)
SDev = standard deviation of In(x); must be > 0

@LOGNORMDIST returns the cumulative lognormal distribution.

Example
@LOGNORMDIST (3,2.5,0.8) =0.03991

See Also

@LOGINV

1

@LWKDAY

Format
@LWKDAY (Wkday, Month, Year, <AuxWkday>)

Wkday = number from 1 (Saturday) to 7 (Friday)

Month = number from 1 (January) to 12 (December)

Year = number from 0 (1900) to 199 (2099) or a standard year like 1993
AuxWkday = auxiliary day of the week that must fall in the same week as Wkday; 0 for no

auxiliary day or a number from 1 (Saturday) to 7 (Friday) indicating the auxiliary day
(the default is 0)

@LWKDAY returns the serial date number for the date of the last occurrence of Wkday in Month of
Year (for example, the last Tuesday in November 1994).

You can use AuxWkday to specify that both Wkday and AuxWkday must fall in the same week of the
same month. (See the second example.)

Examples
@LWKDAY (3,6,115) =42184 (June 29, 2015), the date of the last Monday in June 2015.

@LWKDAY (4,11,94,7) =34660 (November 22, 1994), the last Tuesday on which both the last
Tuesday and a Friday fall on the same week of November 1994.
See Also

LBDAY

@EMNTH

1

@MDAYS

Format
@MDAYS (Month, Year)

Month
Year

number from 1 (January) to 12 (December)
number from 0 (1900) to 199 (2099) or a standard year like 1993
@MDAYS returns the number of calendar days in Month of Year.

Example
@MDAYS (2,1996) =29, the number of days in February 1996.

See Also

@BDAYS
@HOLS

@CDAYS
@YDAYS

1

@MDET

Format
@MDET (Array)

Array = anumeric array or a block of values specifying a square matrix; must have an equal
number of rows and columns, and cannot contain blank cells

@MDET calculates the determinant of a matrix (Array). The determinant is obtained by taking any row
or column of the matrix, forming the products of each element and its cofactor, and taking the sum of
the products; @MDET uses this formula:

1

where is the element in the ith row and jth column of A and the cofactor
 isthe product of the determinant of the minor matrix
, formed by deleting row i and column j of A, and a power of -1:
A = —1]1‘j|rr.ij|
If Array does not contain the same number of rows and columns, or if Array contains any blank cells,

@MDET returns ERR. If any two rows or columns in Array are equal or have proportional elements,
@MDET returns 0.

Examples
@MDET ({12,15,2118,13,17116,32,44}) =144

This formula calculates the determinant of the data shown in the next figure:
@MDET (C3..F6) =-2869.95

C D E F G
3 2.908 -2.253 6.775 3.97
4 1.212 1.995 2.266 8.008
5 4.552 5.681 8.85 1.302
6 5.809 -5.03 0.099 7.832
7

1

@MDURATION

Format
@MDURATION (Settle, Maturity, Coupon, Yield, <Freg>, <Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date; must be > Settle

Coupon = coupon rate; 0 < Coupon < 1

Yield = annual yield; 0 < Yield < 1

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4, 6, or
12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 = actual/360,

3 = actual/365; the default is 0)

@MDURATION returns the modified Macaulay duration for a bond with assumed par value of 100.
Modified duration is calculated using this formula:

1+

|

modified duration =

D = Duration
Y = Yield
F = Frequency

Example

This formula calculates the modified duration of a bond with these terms: Settle is August 8, 1992,
Maturity is November 15, 1998, Coupon is 9%, and Yield is 8.816%.

@MDURATION (@RDATE (92,8, 8),@DATE (98,11,15),0.09,0.08816) =4.631923

See Also

@DURATION

1

@MEDIAN

Format
@MEDIAN (List)

List = one or more numeric or block values

@MEDIAN returns the middle value in a range of values in a data set arranged in ascending or
descending order. If the number of values in the data set is even, the median is the mean of the two
middle values. Use @MEDIAN when you want a more robust estimation of the central value in a
distribution than you obtain with @AVG.

Examples
@MEDIAN(10,12,15,25,30) =15

@MEDIAN(2,4,5,5,6,8,9,9) =55

See Also

@AVG
@COUNT
@DAVG

@MODE
SUM

1

@MNTHS

Format
@MNTHS (StartDate, EndDate, <EndMnth>)

StartDate = number representing the start date
EndDate = number representing the end date
EndMnth = 1 to indicate adherence to ends of months; 0 to indicate that ends of months are

ignored; the default is 1

@MNTHS calculates the number of whole months between StartDate and EndDate. A whole month is
the day of the month on which a given date falls to that same day in the next month, such as March 11
to April 11.

If the day of the month on which StartDate falls doesn't exist in the month in which EndDate falls, and
EndDate falls on the last day of that month, the number of months returned includes that month. For
example, the number of months returned for March 31, 1993 to June 30, 1993 is 3 and not 2.

If StartDate falls on the last day of a month with less than 31 days, and EndDate precedes StartDate,
the result depends on the value of EndMnth; for example, when evaluating the period from February
29, 1992, to January 31, 1992, if EndMnth is 1, -1 is returned; if EndMnth is 0, O is returned.

Examples
@MNTHS (@DATE (93,4, 9),@DATE (94, 9,15)) = 17, the number of whole months between April 9,
1993 and September 15, 1994,

@MNTHS (@DATE (93, 4, 30), @DATE (93,1,31)) =-3

See Also

@BDAYS
@HOLS

@CDAYS
@MDAYS
@YDAYS

1

@MODE

Format
@MODE (List)

List = one or more numeric or block values

The mode is a measure of central tendency and represents the value in a sample or population that
appears more frequently than any other value. The mode emphasizes data concentration and is best
used to describe large data sets. It is commonly used to decide which resulting value is correct when
the same measuring or computing process is repeated several times.

If the data set contains no duplicate data points, @MODE returns NA.
Examples

@MODE (2,2,5,7,9,9,9,10,10,11,12,18) =9

@MODE (91,87,83,80,86,55,83,68,79,83) =83

@MODE (1,2,3,4,5) =NA

See Also

@MEDIAN
@AVG

1

@MROUND

Format
@MROUND (X, Y)

X
Y value to make rounded X divisible by

@MROUND rounds X to the nearest value that's evenly divisible by Y. If Y is zero, @MROUND returns
zero. If X and Y do not have the same sign, @MROUND returns ERR.

value to round

Examples
@MROUND (2.36,0.25) =2.25

@MROUND (2.47,0.25) =25

See Also

@CEILING
@EVEN
@FLOOR
@ODD
@INT
@ROUND

1

@MTGACC

Format
@MTGACC (Int, TtlPer, Principal, Residual, ExtraPrin, <Fper>, <Lper>,
<Rper>, <Option>)

Int = number = 0 representing the periodic interest rate
TtIPer

total periods in the loan from start to finish, or the total periods remaining from the
chosen starting period forward

Principal = original loan balance; also can be any starting point in the loan

Residual = remaining balance on loan at end of loan term; enter 0 if the loan will be paid in full

ExtraPrin = extra principal amount to be paid each period (must be positive)

Fper = number of the first period, relative to the starting point, in which extra principal is paid;
the default is 1 (the first period)

Lper = number of the last period, relative to the starting point, in which extra principal is paid;
the default is until the end of the loan; you can set Lper to any number greater than or
equal to the last period number when extra principal payments last the life of the loan
(for example, Lper can be 400 for a loan which lasts 360 periods)

Rper = period for which the loan status is reported; the default is at loan end (any number
greater than the end of the loan defaults to loan end); Rper does not affect the value
@MTGACC returns if Option is 0 or 10

Option = specifies the output value type (the default is 0):

0 = number of periods to loan end, when balance equals Residual

1 = balance of loan at the Rper

2 = cumulative interest paid at Rper

3 = cumulative principal paid at Rper

10 = number of fewer periods in loan life, due to payment of extra principal

11 = balance reduction at Rper due to payment of extra principal

12 = reduction in cumulative interest paid at Rper due to payment of extra principal
13 = increase in cumulative principal paid at Rper due to payment of extra principal

@MTGACC calculates the effects of paying extra monthly principal for amortized loans. The value that
@MTGACC returns depends on the Option you specify. For the specified Rper, you can find the loan
balance, cumulative interest, or cumulative principal. You can also find how the number of periods,
loan balance, and cumulative interest have been reduced, and how cumulative principal has
increased, as a result of paying extra principal.

@MTGACC returns values for the end of the loan or for the end of any payment period. During
calculation, @MTGACC rounds currency values to 2 decimal places, giving currency answers in whole
cents, as is common with mortgage institutions.

You can use @MTGACC to return information about a loan on which you make no extra principal
payments (ExtraPrin = 0); for example, @MTGACC returns exact values of the loan balance,
cumulative interest paid, and cumulative principal paid.

Examples

For a mortgage with a yearly interest rate of 9%, monthly payments for 30 years, an original balance of
$150,000, and a future value of $80,000, the following formulas calculate the effects of paying $300

extra principal per month starting at the beginning of the second year and continuing through the fourth
year. The reporting period is the tenth year (when the home will be sold and the mortgage paid-off).

Number of periods to loan end:

@MTGACC (.09/12,30*12,150000,80000,300,2*12,4*12,10*12,0) =357
Balance at Rper:

@MTGACC (.09/12,30*12,150000,80000,300,2*12,4%12,10%12,1) =$128,635.26
Cumulative interest paid at Rper:

@MTGACC (.09/12,30*12,150000,80000,300,2*12,4%12,10%12,2) =$125,724.06
Cumulative principal paid at Rper:

@MTGACC (.09/12,30*12,150000,80000,300,2*12,4*12,10*12,3) =$21,364.74
Number of fewer periods in loan life:
@MTGACC(.09/12,30*%12,150000,80000,300,2*12,4*12,10*12,10) =3
Reduction in balance at Rper due to ExtraPrin:
@MTGACC(.09/12,30%12,150000,80000,300,2*%12,4*12,10%12,11) =$13,964.70
Reduction in cumulative interest paid at Rper due to ExtraPrin:
@MTGACC(.09/12,30%12,150000,80000,300,2*12,4*12,10%12,12) =$6,464.70

1

@MULT

Format
@MULT (List)

List = one or more numbers or blocks of numbers, separated by commas

@MULT calculates the cumulative product of a set of numbers (List). List is a comma separated list of
numbers, blocks containing numbers, or both. The numbers in this list are multiplied by each other.
Blank cells and cells containing strings in any of the blocks passed as arguments are ignored.

Example

This formula calculates the cumulative product 3.4, 5.7, -1.2, and the numbers shown in the next

figure.

@MULT (A6..C10,3.4,5.7,-1.2)

A B C
6 3.467 0.123
7 134.23 0.034 1.238
8 87.65 6.54% 0,987
9 -2.35 79.11
10 101.93 0.005

= 30037.32

1

@MULTINOMIAL

Format
@MULTINOMIAL (List)

List = one or more numbers to calculate multinomial of; each number in List must be = 0

@MULTINOMIAL returns the multinomial of the values in List using this formula for
@MULTINOMIAL (a,b,c):

ta+t+ bk +a)l

alblecl

If any value in List is negative, @MULTINOMIAL returns ERR.
Example
@MULTINOMIAL (3,4,5) =27720

1

@NBDAY

Format
@NBDAY (Date, <Holidays>, <Saturday>, <Sunday>)

Date = number representing a date

Holidays = block containing dates that are holidays or the date of a single holiday or 0 to indicate
no holidays (the default is 0)

Saturday = 0 to specify that Saturday is not a business day; 1 to specify that Saturday is a business
day (the default is 0)

Sunday = 0 to specify that Sunday is not a business day; 1 to specify that Sunday is a business

day (the default is 0)
@NBDAY returns the serial date number of the next business day after Date.

Examples
@NBDAY (@DATE (93,2,26)) = 34029 (March 1, 1993)

@NBDAY (@QDATE (93,12,24),A7..C9,0,1) =34329 (December 26, 1993), assuming that
Saturdays and the dates in block A7..C9 are holidays.

See Also
Setting Holidays
@LBDAY
@PBDAY

1

@NEGBINOMDIST

Format
Q@NEGBINOMDIST (Failures, Successes, Prob)

Failures = number of failures

Successes threshold of successes

Prob probability of a success; 0 < Prob < 1

@NEGBINOMDIST returns the negative binomial distribution. Use @NEGBINOMDIST to determine
the distribution of the number of failures you experience before achieving a given number of
successes.

Example

A polling organization asks a sampling of voters if they favor Candidate A for reelection. Given that
55% of the city's voters favor Candidate A, this formula calculates the probability that the polling
organization will contact 10 voters who do not favor her for reelection before contacting 1 voter who
does favor her:

@NEGBINOMDIST (10,1,0.55) =0.000187

1

@NETPV

Format
@NETPV (Discrate, Flows, <Initial>, <[0Odd|Periods]>, <Simp>, <Pathdep>,
<Filter>, <Start>, <End>)

Discrate = discount rate or block containing discount rates corresponding to block of cash
flows

Flows = block containing cash flows

Initial = initial cash flow (the default is 0)

Odd|Periods = delay between initial and first cash flow in number of periods (the default is 1) or
block containing lengths of periods between cash flows (the default is 1)

Simp = flag specifying how to discount:
0 = compounded discounting (default)
1 = mixed compounded and simple discounting
2 = simple discounting

Pathdep = flag specifying whether to apply path-dependent compounding to each flow; 0 = no
path (default); 1 = path

Filter = flag specifying filter type: 0 = no filter (default); 1 = cashflow < Start; 2 = cashflow <
Start; 3 = cashflow > Start; 4 = cashflow > Start; 5 = Start < cashflow < End; 6 =
Start < cashflow < End

Start = a starting cash flow amount to compare against individual flows

End = an ending cash flow amount to compare against individual flows

@NETPV computes the net present value of a stream of cash flows.

Example

A firm is considering the purchase of two machines. Machine A requires an initial outlay of $40,000 and
produces a cash flow of $23,000 for three years. Machine B requires an outlay of $50,000 and
produces a cash flow of $22,000 for four years. The following formulas calculate the net present
values of both machines, using the data shown in the next figure and a discount rate of 12%. The
results are useful for determining which machine is a better purchase:

Machine A: @NETPV (0.12,213..B14,B12) = $15,242.12
Machine B: @NETPV (0.12,C13..D14,D12) = $16,821.69

A B C D E
11 Machine A Income Machine B Income
12 Initial ($40,000) 1Initial ($50,000)
13 3 $23,000 4 $22,000

14

The net present value of the flows associated with Machine B is greater, so it should be purchased.

See Also

Entering Cash Flow @Functions

1

@NORMDIST

Format
@NORMDIST (X, Mean, SDev, Cum)

X = value at which to evaluate function

Mean = mean of the normal distribution

SDev = standard deviation of the normal distribution; must be > 0

Cum = 1 to return the cumulative normal distribution function; 0 (the default) to return the

probability density function

@NORMDIST computes the normal distribution function. A normal distribution is one that is perfectly
symmetrical about its mean, and its spread is determined by the value of the standard deviation. The
normal distribution describes many statistical phenomena, including the distribution of population
means.

@NORMDIST uses this formula to calculate the cumulative normal distribution function:

E—I;t-—l.l.-:lr'EIF:

L
fltidt, £it) =
J = JEMT

—m

To calculate the probability mass function for a normal distribution, @NORMDIST uses this formula:
—le—plseat
£it) = =
N ETT

Examples
@NORMDIST (50,48,1.2,1) =0.95221

@NORMDIST (50,48,1.2,0) =0.082898

See Also

@NORMINV
@NORMSDIST
@NORMSINV
@STANDARDIZE

1

@NORMINV

Format
@NORMINV (Prob, Mean, SDev)

Prob = probability corresponding to the normal distribution; 0 < Prob < 1
Mean = mean of the normal distribution
SDev = standard deviation of the normal distribution; must be > 0

@NORMINYV returns the inverse of the cumulative normal distribution function.

Example
@NORMINV (0.95221,48,1.2) =50

See Also

@NORMDIST
@NORMSDIST
@NORMSINV
@STANDARDIZE

1

@NORMSDIST

Format
@NORMSDIST (X)

X = value at which to evaluate the function

@NORMSDIST returns the standard normal cumulative distribution function. The standard normal
cumulative distribution function has a mean of 0 and a standard deviation of 1.

@NORMSDIST uses this formula:
_t-2 K 2

A2

.-

(=
jff:fd:.ftt:=

=

Example
@NORMSDIST (1.66667) =0.95221

See Also

@NORMDIST
@NORMINV
@NORMSINV
@STANDARDIZE

1

@NORMSINV

Format
@NORMSINV (Prob)

Prob = probability corresponding to the normal distribution; must be > 0 and < 1

@NORMSINYV returns the inverse of the standard normal cumulative distribution function. The
standard normal cumulative distribution function has a mean of 0 and a standard deviation of 1.

Example
@NORMSINV (0.95221) = 1.66667

See Also

@NORMDIST
@NORMINV
@NORMSDIST
@STANDARDIZE

1

@NUMTOBIN

Format
@NUMTOBIN (Decimal)

Decimal = decimal number to convert

@NUMTOBIN returns the binary string equivalent of a decimal number. To convert a negative number,
precede Decimal with a minus sign.

Examples

@NUMTOBIN (10) =1010

@NUMTOBIN (16) = 10000

@NUMTOBIN (30) = 11110

See Also

@NUMTOBING4

Entering Number Conversion @Functions

1

@NUMTOBING64

Format
@NUMTOBING4 (Decimal, <Places>)

Decimal = decimal number to convert

Places number of characters to return; must be < 64

@NUMTOBING4 returns the binary string equivalent of a decimal number (up to 64 bits).
Examples

@NUMTOBING4 (10) =1010

@NUMTOBING4 (10,5) =01010

@NUMTOBING4 (123000) = 11110000001111000

@NUMTOBING64 (123000, 7) = 1111000

See Also

@NUMTOBIN

Entering Number Conversion @Functions

1

@NUMTOHEX64

Format
@NUMTOHEX64 (Decimal, <Places>)

Decimal = decimal number to convert

Places number of characters to return; must be < 16

@NUMTOHEX64 returns the hexadecimal string equivalent of a decimal number (up to 64 bits).
Examples

@NUMTOHEX64 (10) =A

@NUMTOHEX64 (10,2) =0A

@NUMTOHEX64 (123000) = 1EQ078

@NUMTOHEX64 (1000000000) = 3B9ACA00

@NUMTOHEX64 (1311768467463790340) = 123456789ABCDF04

See Also
Entering Number Conversion @Functions

1

@NUMTOOCT

Format
@NUMTOOCT (Decimal)

Decimal = decimal number to convert

@NUMTOOCT returns the octal string equivalent of a decimal number. To convert a negative number,
precede Decimal with a minus sign.

Examples

@NUMTOOCT (10) =12

@NUMTOOCT (16) =20

@NUMTOOCT (30) =36

See Also

@NUMTOOCT64

Entering Number Conversion @Functions

1

@NUMTOOCT64

Format
@NUMTOOCT64 (Decimal, <Places>)

Decimal = decimal number to convert

Places
@NUMTOOCT®64 returns the octal string equivalent of a decimal number (up to 64 bits).

number of characters to return; must be < 22

Examples
@NUMTOOCT64 (8) =10

@NUMTOOCT64 (10,3) =012

@NUMTOOCT64 (123000) =360170

@NUMTOOCT64 (123000,3) =170

@NUMTOOCT64 (2"63) =1000000000000000000002

See Also

@NUMTOOCT

Entering Number Conversion @Functions

1

@NWKDAY

Format
@NWKDAY (N, Wkday, Month, Year, <AuxWkday>)

N = number from 1to 5

Wkday = number from 1 (Saturday) to 7 (Friday)

Month = number from 1 (January) to 12 (December)

Year = number from 0 (1900) to 199 (2099) or a standard year like 1993
AuxWkday = auxiliary day of the week that must fall in the same week as Wkday; 0 for no

auxiliary day or a number from 1 (Saturday) to 7 (Friday) indicating the auxiliary day
(the default is 0)

@NWKDAY returns the serial date number for the date of the Nth occurrence of Wkday in Month. If
there isn't an Nth occurrence, @NWKDAY returns ERR.

You can use AuxWkday to specify another day that must fall in the same week and month as Wkdday;
see the second example.
Examples
@NWKDAY (2, 3,4,99) =36262 (April 12, 1999), the date of the second Monday in April 1999.
@NWKDAY (1,7,12,93,3) =34313 (December 10, 1993), the first Friday on which both the first
Friday and a Monday fall in the same week of December 1993.
See Also

LWKDAY

@WKDAY

1

@OCTTOBIN

Format
@OCTTOBIN (Oct)

Oct = octal number to convert; denote negative numbers using a minus sign
@OCTTOBIN returns the binary string equivalent of an octal number.

Examples
@OCTTOBIN ("12"™) =1010
@OCTTOBIN ("20") =10000
@OCTTOBIN ("36™) =11110
See Also

Entering Number Conversion @Functions

1

@OCTTOHEX

Format
@OCTTOHEX (Oct)

Oct = octal number to convert; denote negative numbers using a minus sign
@OCTTOHEX returns the hexadecimal string equivalent of an octal number.

Examples
@OCTTOHEX ("12™) =A
@OCTTOHEX ("20") =10
@OCTTOHEX ("36™) =1E
See Also

Entering Number Conversion @Functions

1

@OCTTONUM

Format
@OCTTONUM (Oct)

Oct = octal number to convert; denote negative numbers using a minus sign
@OCTTONUM returns the decimal equivalent of an octal number.

Examples

@OCTTONUM ("12™) =10
@OCTTONUM ("20") =16
@OCTTONUM ("36™) =30
See Also

Entering Number Conversion @Functions

1

@OoDD

Format
Q@ODD (X)

X = value to round

@ODD rounds X up (away from zero) to the nearest odd integer. If X is already an odd integer, @ODD
returns X.

Examples
@ODD(3.2) =5
@OoDD(3) =3
@ODD(-3.2) =-5

See Also

@CEILING
@EVEN
@FLOOR
@MROUND
@INT
@ROUND

1

@ODDFPRICE

Format
@ODDFPRICE (Settle, Maturity, Issue, FirstCpn, Coupon, Yield, <Redemption>,
<Freg>, <Calendar>)

Settle = number representing the settlement date

Maturity = number representing the maturity date

Issue = number representing the issue date

FirstCpn = number representing the first coupon date

Coupon = coupon rate; must be > 0

Yield = annual yield; 0 < Yield < 1

Redemption = redemption value per 100 face value (must be > 0; the default is 100)

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4,
6, or 12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@ODDFPRICE returns the price per 100 face value of a bond having an odd (short or long) first
period. In an odd first coupon period, the first coupon payment is a prorated multiple of a normal
coupon payment.

Dates for @ODDFPRICE must follow this pattern:
Issue < Settle < Maturity
Issue < FirstCpn < Maturity

Example

This formula returns the price per 100 face value of a bond with the following terms: Settle is March
15, 1993, Maturity is is November 15, 1995, Issue is January 4, 1992, FirstCpn is May 15, 1993,
Coupon is 8.5%, Yield is 8.7%, Redemption is 100, Freq 2, and Calendar is 0 (30/360).

@QODDFPRICE (@DATE (93, 3,15) ,@DATE (95,11,15) ,@DATE (92,1,4),@DATE (93,5,15),0.08
5, 0.087,100,2,0) =99.40933

1

@ODDFYIELD

Format
@ODDFYIELD (Settle, Maturity, Issue, FirstCpn, Coupon, Price, <Redemption>,
<Freg>, <Calendar>)

Settle = number representing the settlement date

Maturity = number representing the maturity date

Issue = number representing the issue date

FirstCpn = number representing the first coupon date

Coupon = coupon rate; must be = 0

Price = price of the security; must be > 0

Redemption = redemption value per 100 face value (must be > 0; the default is 100)

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4,
6, or 12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@ODDFYIELD returns the yield of a security having an odd (short or long) first period. In an odd first
coupon period, the first coupon payment is a prorated multiple of a normal coupon payment.

Dates for @ODDFYIELD must follow this pattern:
Issue < Settle < Maturity
Issue < FirstCpn < Maturity

Example

This formula calculates the yield for a security with the following terms: Settle is March 15, 1993,
Maturity is November 15, 1995, Issue is January 4, 1992, FirstCpn is May 15, 1993, Coupon is 8.5%,
Price is 100, Redemption is 100, Freq is 2, and Calendar is 0 (30/360).

@QODDFYIELD (@DATE (93, 3,15),@DATE (95,11,15) ,@DATE (92,1, 4) ,@DATE (93,5,15),0.08
5, 100,100,2,0) =0.084487

1

@ODDLPRICE

Format
@ODDLPRICE (Settle, Maturity, LastCpn, Coupon, Yield, <Redemption>, <Freqg>,
<Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

LastCpn = number representing the last coupon date; must be < Maturity

Coupon = coupon rate; must be > 0

Yield = annual yield; 0 < Yield < 1

Redemption = redemption value per 100 face value (must be > 0; the default is 100)

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4,
6, or 12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@ODDLPRICE returns the price per 100 face value of a bond having an odd (short or long) last
period. In an odd last coupon period, the last coupon payment is a prorated multiple of a normal
coupon payment.

Example

This formula calculates the price per 100 face value of a bond with the following terms: Settle is June
1, 1992, Maturity is December 15, 2012, LastCpn is September 15, 2012, Coupon is 7.5%, and Yield is
5.25%.

@ODDLPRICE (@DATE (92, 6,1) ,@DATE (112,12,15),@DATE (112,9,15), 0.075,0.0525) =
128.0663

1

@ODDLYIELD

Format
@ODDLYIELD (Settle, Maturity, LastCpn, Coupon, Price, <Redemption>, <Freqg>,
<Calendar>)

Settle = number representing the settlement date; must be < Maturity

Maturity = number representing the maturity date

LastCpn = number representing the last coupon date; must be < Maturity

Coupon = coupon rate; must be > 0

Price = price; mustbe >0

Redemption = redemption value per 100 face value (must be > 0; the default is 100)

Freq = frequency of coupon payments in number of payments per year (can be 1, 2, 3, 4,
6, or 12; the default is 2)

Calendar = flag specifying which calendar to observe (0 = 30/360, 1 = actual/actual, 2 =

actual/360, 3 = actual/365; the default is 0)

@ODDLYIELD returns the yield of a bond having an odd (short or long) last period. In an odd last
coupon period, the last coupon payment is a prorated multiple of a normal coupon payment.

Example
This formula calculates the yield of a bond with the following terms: Settle is June 1, 1992, Maturity is
December 15, 2012, LastCpn is September 15, 2012, Coupon is 7.5%, and Price is 128.0663.

@ODDLYIELD (@DATE (92,6,1),@DATE (112,12,15),@DATE (112,9,15),0.075, 128.0663)
=0.0525

1

@ORB

Format
@ORB(Binary1, <Binary2>, <Bits>)

Binaryt = first binary number
Binary2 = second binary number
Bits = number of binary bits used for both input and output; if omitted, Bits = number of bits in

Binary1 or Binary2, whichever is greater; must be < 64

@ORB performs a bit-by-bit logical OR of each bit in Binary1 and Binary2. Any bit that is set to 1 in
either Binary1 or Binary2 causes the resulting output bit to be set to 1.

If only one number is given, then @ORB performs an any-ones test, or OR reduction, on Binary1;
@ORSB returns 1 if any bits in Binary1 are set to 1; otherwise, it returns 0.

Examples

@ORB (10,1) =M1

@ORB (10,10) =10

@ORB (10) =1

@ORB(1100,1,5) =01101

See Also
Entering Boolean @Functions

1

@ORH

Format
@ORH (Hex1l, <Hex2>, <Bits>)

Hex1 = first hexadecimal number
Hex2 = second hexadecimal number
Bits = number of binary bits used for both input and output; if omitted, Bits = number of bits in

Hex1 or Hex2, whichever is greater; 4 binary digits = 1 hexadecimal digit; must be < 64

@ORH performs a bit-by-bit logical OR of each bit in Hex1 and Hex2. Any binary bit that is set to 1 in
either Hex1 or Hex2 causes the resulting output bit to be set to 1.

If only one number is given, then @ORH performs an any-ones test, or OR reduction, on Hex1;
@ORH returns 1 if any bits in Hex1 are set to 1; otherwise, it returns 0.

Examples
@ORH(IIAII,IIFII) =F
@ORH ("A™) =1

@ORH(I|CI|,I|1I|,8) =OD

See Also
Entering Boolean @Functions

1

@PAGEINDEX

Format
@PAGEINDEX (Name)

Name = a string corresponding to the name of a page; must be enclosed in quotation marks

@PAGEINDEX returns the index number (from 0 to 255) for a specified page name. If no page names
match the string Name, @PAGEINDEX returns ERR.

Note: To return the index number for a page in another notebook, use @PAGEINDEX2.

Example
@PAGEINDEX ("EXPENSES") =0 (the index number for the page named EXPENSES is 0)

1

@PAGEINDEX2

Format
QPAGEINDEXZ2 (NotebookLink, Name)

NotebookLink = a reference to a page, cell, or block in another notebook (for example,
[BUDGET]A:A1)

Name = a string corresponding to the name of a page; must be enclosed in quotation marks

@PAGEINDEX2 returns the index number (from 0 to 255) for a specified page name in a notebook
specified by NotebookLink. If no page names match the string Name, @PAGEINDEX2 returns ERR.

Example
@PAGEINDEX2 ([BUDGET]A:Al, "EXPENSES") = 0 (the index number for the page named
EXPENSES in notebook BUDGET is 0)

See Also

@PAGEINDEX

1

@PAGENAME

Format
@PAGENAME (Index)

Index = anumber from 0 to 255 inclusive

@PAGENAME returns the name of a page specified by Index. If there isn't a name for the specified
page, @PAGENAME returns ERR.
