_NBSTARTMACRO

_NBEXITMACRO
_clear_app

_nbexit
app_macro
app_display
app_speedbar

_save_app_settings

{WindowHide}{_save_app_settings} Hide the Budgeteer window

{Application.Macro.Macro_Redraw "Both"} Suppress screen updates during macro execu
{Application.Title "The Budgeteer"} Set application title

{Application.SpeedBar "BUDGTRAK.BAR"} Set application SpeedBar
{Application.Display "None,No,No,Yes,A:A1..B:B2"} Hide Input Line and SpeedBar
{Application.Enable_Inspection "No"} Disable right-clicking

{SETMENUBAR menu_block} Set menu bar to application menu
{SETOBJECTPROPERTY "/Print.Depend_On","No,Yes,No,NSpecify when the Print menu is available
{BRANCH _init_screen} Display expenses

{Let _nbexit,1} Flag that _NBEXITMACRO is being executed
{IF file_saved=0}{_confirm_quit} If the active budget file isn't saved, confirm the
{Application.Macro.Macro_Redraw +app_macro} Re-enable screen updates

{Application.Title "Quattro Pro for Windows"} Reset application title

{Application.SpeedBar +app_speedbar} Restore SpeedBar layout
{Application.Display +app_display} Restore Display settings
{Application.Enable_Inspection "Yes"} Re-enable Object Inspector menus
{SETMENUBAR} Restore standard menu system

{If _nbexit}{Let _nbexit,0{Quit} Resets _nbexit variable and doesn't execute F
{FileCloseAll 0} Close all files opened by Budgteer

None

Standard,Yes,Yes,Yes,A..B:A1..B2
PRODUCTY.BAR

{LET app_macro,@COMMAND("Application.Macro.Macro_Redraw")}
{LET app_display, @ COMMAND("Application.Display")}
{LET app_speedbar, @ COMMAND("Application.SpeedBar")}

ition

» quit

‘ileCloseAll in _NBEXITMACRO

MENU Budget Bar

&Budget
&New... MACRO [BUDGTRAK.WBI1] new budget Create a ne
&Open... MACRO [BUDGTRAK.WBI] open_ budget Open an ex
&Save MACRO [BUDGTRAK.WBI] save budget Save the ac
Save &As... MACRO [BUDGTRAK.WBI1] save budget as Save the ac
Add &Expense... MACRO [BUDGTRAK.WBI1] add expense Add an exp
&Quit MACRO [BUDGTRAK.WBI1] clear app Exit the Bu

&Print
&All ON clicked DOMACRO { print budget "All"} Print all ex;
&Current ON clicked DOMACRO { print_budget "Current"} Print all rec
&Daily ON clicked DOMACRO { print budget "Daily"} Print Daily
&Weekly ON clicked DOMACRO { print budget "Weekly"} Print Week
&Monthly ON clicked DOMACRO { print_budget "Monthly"} Print Montl

&Bi-Monthly ~ ON clicked DOMACRO { print budget "Bi_MonthlPrint Bi-Mq
&Semi-Annually ON clicked DOMACRO { print budget "Semi AnmPrint Semi-
A&nnually ON clicked DOMACRO { print budget "Annually" }Print Annu:
&Statistics MACRO [BUDG Display statistical information about records in the record windo

w, empty b"Yes,Yes,No,No,No,No"
isting budg"Yes,Yes,No,No,No,No"
tive budget"No,Yes,No,No,No,No"
tive budget"No,Yes,No,No,No,No"
iense to a d"No,Yes,No,No,No,No"
dgeteer "Yes,Yes,No,No,No,No"

pense datab"No,Yes,No,No,No,No"
sords in the "No,Yes,No,No,No,No"
expense da"No,Yes,No,No,No,No"
ly expense "No,Yes,No,No,No,No"
aly expense"No,Yes,No,No,No,No"
onthly expe'"No,Yes,No,No,No,No"
‘Annual ex1"No,Yes,No,No,No,No"
al expense ('No,Yes,No,No,No,No"
"No,Yes,No,No,No,No"

help_input

help_stats

help_files

help_filerr

Enter the cost of each expense below its
name. You can change the entry date as
well, but press the Date key (Ctrl+Shift+D)
before typing the date. When you're done,
press Enter by itself or Esc to save the
record.

<< Press a key to continue >>

You can use the arrow keys to scroll
through stats for each expense. When
you're done, press Enter by itself or Esc.

<< Press a key to continue >>

You can use file controls to specify the
name of a budget file to open or to specify
the name to save the active budget file
under. Enter the name under File Name,
and then choose OK. To cancel the
operation, choose Cancel. Choose New to
create a new, empty budget file.

<< Press a key to continue >>

A problem has occurred. Make sure a
valid file name and directory is specified.

<< Press a key to continue >>

help_invalidf

help_noadd

help_layout1

help_layout2

_help_layout

The file you have requested is not a valid
budget file.

<< Press a key to continue >>

This budget database currently has no
expense columns, so you can't add a record
to it. To create expense columns, choose
Budget|Add Expense.

<< Press a key to continue >>

The Budgeteer notebook is structured to make
finding and studying macros easier. Each page
of the notebook contains macros common to
one Budgeteer task. For example,
Print_macros contains macros that print
expense data.

On each macro page, column A lists the
named blocks in the Budgeteer notebook;
each named block is listed to the left of the
cell (or block) it references. This is handy for
re-creating the block names quickly using
Block|Names|Labels. The named blocks in
most macros only refer to one cell. If a block
name in this notebook starts with a space, it
refers to a block larger than one cell. If a block
name begins with an underscore (), it's the
name of a macro the Budgteer runs.

<< Press a key to continue >>

Column B in each macro page contains the
macro commands and variables used by the
Budgeteer. If a cell is colored gray, it contains
a formula used by a macro. Some of these
formulas are in the macros; this lets the macro
adapt to the data in the active budget file.

Column F contains a brief description of what
each line of the macro does. At the start of
many macros is a boxed message describing
what the macro does. Use this documentation
to study the Budgeteer more closely.

<< Press a key to continue >>

{MESSAGE help_layout1,10,5,0}

help_data1

help_data2

_help_data

help_search1

{MESSAGE help_layout2,10,5,0}
{EditGoto ATH{RIGHT}

The expense databases created by the
Budgeteer are stored in a separate notebook,
which is created by the macro _new_budget.
Each page of this notebook contains the data
for a specific expense frequency (Daily
through Annually). The data is stored on

the page in a block starting at cell C1. This
block is set as the database block when the
Budgeteer searches a database. (For more
information on database blocks, see the
User's Guide). The actual coordinates of the
database block are stored in A2, to make it
easier for the Budgeteer to set up a search
quickly.

<< Press a key to continue >>

The list of expenses for a database is stored in
column B, starting at row 2. This list is used by
the Add Expense dialog box. The coordinates
of this list are stored in A5, so that the dialog
box can change quickly.

<< Press a key to continue >>

{MESSAGE help_data1,10,5,0}
{MESSAGE help_data2,10,5,0}
{EditGoto A1KRIGHT}

The Budgeteer uses the command equivalents
of Data|Query to search for records and copy
them into the record window. See the User's
Guide for more information on setting up a
database and query in Quattro Pro.

The query always uses the criteria table
stored in the named block criteria_table (in
the Budgeteer notebook). The macros
_refresh_view and _new_query put formulas
into this criteria table whenever a setting is
changed on the Budgeteer SpeedBar.

<< Press a key to continue >>

help_search2 The coordinates of the database block are
stored on the notebook pages Daily through
Annually; cell A2 on each page has the
coordinates for the data stored on that page.
These coordinates are passed as an argument
to {Query.Database_Block} whenever the
View control on the Budgeteer SpeedBar
changes to a new setting.

Once the database block is set,
{Query.Assign_Names} is used to create
block names that the Stats page needs to
calculate statistical information. The expense
names are also copied into the first row of the
record window, and then that row is specified
as the output block (the row's coordinates are
passed as an argument to the command
equivalent {Query.Output_Block}). Then
copying records into the record window is
done by {Query.Extract}.

<< Press a key to continue >>

_help_search {MESSAGE help_search1,10,5,0}
{MESSAGE help_search2,10,5,0}
{EditGoto A1{RIGHT}

help_graph1 The macro in the Budgeteer that graphs data

in the record window actually creates a
macro that builds the graph. This constructed
macro (named _build_graph) is broken down
into three parts:

1. The first part of the macro, starting at the

named cell _build_graph, creates the graph

and displays it in a graph window for editing.
This part of the macro never changes.

2. The second part of the macro, starting at

the named cell _build_series, is created "on
the fly" by the macro _graph_view (the user
runs _graph_view by clicking Graph on the
Budgeteer SpeedBar). The macro _graph_view
measures the data in the record window, and
creates a list of {Series.Data_Range}
commands, starting at _build_series. This part
of the macro defines the series of the graph.

<< Press a key to continue >>

help_graph2

_help_graph

help_select1
+

help_select2
+

3. The third part of the macro, starting just
after the last series command, creates the
series defined in part 2, displays the graph,
asks the user if they want to print it, and
returns to the record window. This part of the
macro is stored in the named block
finishing_mac; _graph_view copies the macro
below the series commands it created for part
two of the macro.

<< Press a key to continue >>

{MESSAGE help_graph1,10,5,0}
{MESSAGE help_graph2,10,5,0}
{EditGoto A1{RIGHT}

Keeping track of a block whose coordinates change regularly requires
a little planning. It's important to make the upper left corner of the block
a fixed location. This provides a starting point that you can rely on. The
database blocks in the Budgeteer all start at the cell address C1.

You can use the formula @PROPERTY ("Active_Block.Selection") to
get the coordinates of the selected block. Since this information is
returned as a label, you'll also use the function @@ to convert it into

an address that Quattro Pro formulas can understand. The function @@
isn't needed in macros; any macro command argument that expects a
block will understand the coordinates if they're entered as a string. See
Building Spreadsheet Applications for more information on these
functions and the argument type location.

<< Press a key to continue >>

If you'll frequently need to know the width of a block (in columns), set
up a row in that block that doesn't contain any blank cells. In the
Budgeteer, the first row of the database blocks never contain a blank
cell. This way you can move to the first cell of the row and use
{SHIFT+END}{SHIFT+RIGHT} to select the entire row, regardless of its
actual width. Once this row is selected, you can use the formula
@COLS(@@(@PROPERTY("Active_Block.Selection"))
to return the width of the block.

If you'll frequently need to know the height of a block (in rows), setup a
column in that block that doesn't contain any blank cells. In the
Budgeteer, the first column of the database blocks (the Date column)
never contain a blank cell. This way you can move to the first cell of
the column and use {SHIFT+END}{SHIFT+DOWN} to select the entire
column, regardless of it's actual height. Once this column is selected,
you can use the formula

help_select3
+

_help_select

help_check1

@ROWS(@@(@PROPERTY("Active_Block.Selection"))
to return the height of the block.

<< Press a key to continue >>

To select the whole block consistently, combine these two techniques:
set up a column and a row in the block that contain no blank cells,
preferably the first row and column. Selecting the block breaks down into
the following steps:

1. Goto the upper-left corner of the block.

2. Use {(ENDK{DOWN}. This moves the selector to the last row of the
block.

3. Use {SHIFT+END}{SHIFT+UP}. This selects the first column of the
block and moves the selector back to the upper-left corner of the block.

4. Use {SHIFT+END}SHIFT+RIGHT}. This selects the first row of the
block and all the columns in it.

Now you can manipulate the block using the formulas described
earlier. For an example of this, see the macro _update_data_block in
this notebook.

You can use the following macro to select all the data on the active
page: {HOMENSHIFT+ENDKSHIFT+HOME}.

<< Press a key to continue >>

{MESSAGE help_select1,10,5,0}
{MESSAGE help_select2,10,5,0}
{MESSAGE help_select3,10,5,0}
{EditGoto A1{RIGHT}

The function @ISERR is useful for checking
whether a certain object exists. @ISERR takes
one argument, a formula, and returns 1 if the
formula returns ERR, 0 otherwise. You can use
this function in conjunction with @PROPERTY
to check the existence of an object: pick a
property that's unique to the object you're trying
to find (this ensures that objects of the same
name but a different type aren't found), and then
use @PROPERTY to get the setting of that
property. If @PROPERTY returns ERR, the
object doesn't exist. To prevent ERR from
stopping the macro, pass it as an argument to
@ISERR. Then @ISERR returns 0 when the

object exists, 1 when it doesn't.
<< Press a key to continue >>

help_check2 For example, suppose you want to know if the graph named Expense

+ exists in the active notebook. First, pick a unique graph property: the
Aspect_Ratio property is only available in graphs. Second, create the
@PROPERTY formula that checks for that property setting:
@PROPERTY ("Expense.Aspect_Ratio"). Third, plug the formula into
@ISERR: @ISERR(@PROPERTY ("Expense.Aspect_Ratio")). This
formula can be used in an {IF} command to see if the object exists.

You can use a similiar technique to find block names and page names:
use @@ in an @ISERR function. For blocks, pass the block

name as an argument to @@. For example,
@ISERR(@@("database_block")) returns 1 if the named block
database_block doesn't exist. For named pages, pass the address of a
cell on the page. For example, @ISERR(@@("Daily:A1")) returns 1 if
the page Daily doesn't exist.

<< Press a key to continue >>
_help_check {MESSAGE help_check1,10,5,0}

{MESSAGE help_check2,10,5,0}
{EditGoto ATH{RIGHT}

Error_Check
New_Expense
Frequency
SpdBar_Freq
Current_ltems

Current_Freq

_add_expense

_exit_add

temp_freq

_add_field

0 Used by _add_expense to dete
Dialog box setting: the name o

Daily Dialog box setting: the expens:
#NAME? Setting of View on the Budgete
#REF! Block derived from SpeedBar ¢
#NAME? Formula to change dashes to L

{LET New_Expense, "} Make initial expense setting bl
{_get_bar_values} Fetch latest SpeedBar settings

{LET Frequency, @PROPERTY("[BUDGTRAK.BAR]View.VaSet default frequency
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]AddExpense:(Set initial list
{DODIALOG "[BUDGTRAK.WB1]AddExpense",Error_Check,Display Add Expense dialog bc

{IF New_Expense=""{BRANCH _exit_add} If expense is blank, end this m

{IF Error_Check = O{BRANCH _exit_add} Trap if the user cancels the die

{BRANCH _add_field} Run macro that adds expense

{RETURN} End this macro
_add_field

The macro _add_field is called by _add_expense after the user specifies the
name of an expense category to add. The name of the category is stored in
hew_expense. The name of the expense database to add the field to is stored
Iin temp_freq. Here's the flow of the macro:

1Goto to page containing the expense database.

2Select the first non blank cell to the right of the label
Date (in C1).

3Enter the new expense name in that cell.

4Call the subroutine _update_data_block to update
the database block and item list.

5If the field is in the database being viewed, run a

new query.
Daily Used by _add_field to determir
{_get_bar_values} Fetch latest SpeedBar settings
{EditGoto +|[BUDGTRAK.WB1]temp_freq&":C1"} Activate the page in the active
{IF @CELL("type",[JC(1)R(0))="I"HENDKRIGHT} Check the column to the right ¢
{RIGHT} Move to the cell where the new
{LET [JC(0)R(0),+New_Expense} Store the new expense catego
{LET update_freq,+temp_freq{_update_data_block} Update the database block anc
{IF (+"[]"&Frequency)=SpdBar_Fregq}{_new_query} If the new expense category w
{_restore_view} Return to the record window

_add_record

_add_record

[The macro _add_record is called by clicking the Add button on the Budgeteer
SpeedBar. It adds a record to the expense database being viewed. Here's the
flow of the macro:

1Goto to page containing the expense database.
2Copy the field names from that page to the notebook
page Input.
3Activate the page Input and protect all the cells on it.
4Format row 2 to show the data correctly (after the
user enters it).
5Unprotect row 2 so Restrictinput can be used with it.
6Enter INPUT mode, and ask the user to enter a
record.
7Goto to page containing the expense database.
8Select the first cell in column D that's blank.
9Copy data from Input to the current row
10Call the subroutine _update_data_block to update
the database block and item list.
11Run a new query to reflect the new database entry.

{_get_bar_values} Fetch latest SpeedBar settings
{_disable_ui "Yes"} Disable the SpeedBar and mel
{BLANK [JInput:A1..IV2} Erase any category names left
{EditGoto +[BUDGTRAK.WB1]Current_Freg&":C1"} Activate the page in the active
{IF @CELL("type",[]D1)="b"H{_restore_viewl{MESSAGE help|f cell D1 of the active page is |
{BlockCopy C(0)R(0)..C(253)R(1),Input:A1} Copy the expense category na
{BLANK []Input:A2..IV2} Erase any numerical data left ¢
{SETOBJECTPROPERTY "Input:B2..IV2.Numeric_Format","(Format the second row of the i
{EditGoto Input:A2} Activate the notebook page Ing
{SETOBJECTPROPERTY "Input:A1..1V8192.Protection","PraProtect all cells on the page. T
{COLUMNWIDTH []Input:A1..Iv8192,1,2,2} Auto-size the columns so that
{SHIFT+UPHSHIFT+END}{SHIFT+RIGHTH{SHIFT+DOWN]} Select the cells the user will in}
{SETPROPERTY "Protection","Unprotect"} Unprotect the cells the user ca
{LET [Jinput:A2, @ TODAY} Store the current date on the fc
{SETOBJECTPROPERTY "Input:A2.Numeric_Format","LongFormat the default date as Lon
{COLUMNWIDTH [JInput:A2,1,2,2} Make sure column A is wide er
{MESSAGE help_input,10,7,0} Displays instructions on how tc
{Application.Display.Show_InputLine "Yes"} Displays the input line (hidden
{Restrictinput.Enter Input:Al..1V2} Enter INPUT mode. While in IM
{PAUSEMACRO} Wait for the user to press Ente
{Application.Display.Show_InputLine "No"} Hide the input line again

{IF @CELL("type",[JInput:A2)<>"v"HLET [JInput:A2,+@TODAIf the user inadvertantly erasec
{EditGoto +|[BUDGTRAK.WB1]Current_Freq&":C1"} Activate the page in the active
{IF @CELL("type",[[C(0)R(1))="v"HENDH{DOWN} If the cell below Date (in C1) is
{DOWN} Move below the last record in t
{BlockCopy Input:A2..1S2,C(0)R(0)} Copy the user data from the in

{SETPROPERTY "Numeric_Format",@PROPERTY ("[]C(0)RiSet the numeric format of the ¢
{LET update_freq,+current_freq{_update_data_block} Update the database block to r

update_freq
copy_cell

_update_data_block

{PUTBLOCK +view_page&":Database_Block",[BUDGTRAK.\Copy the coordinates of the ne
{Query.Database_Block @@ (+[BUDGTRAK.WB1]data_blockSet Quattro Pro's database blc
{_refresh_view} Return to the record window ai

_update_data_block
[The macro _update_data_block is called by _add_field and _add_record after a
hew expense or record has been added to the database. The name of the
database is stored in update_freq. Two pieces of information exist on each
database page that help the Budgeteer do queries and add expenses.
Database_Block (A2) is the actual database block used with {Query.Extract} to
pberform searches and copy records into the record window. ltem_Block is the
address of a list of expense names. This list is used in _add_expense while
the user views the Add Expense dialog box to show the expense names
that already exist in the database. _update_data_block makes sure these items
Stay current. Here's the flow of the macro:

1Goto to page containing the expense database.

2Select the expense names on the page.

3Copy the expense names into column B starting at
B2 (using BlockTranspose).

4Select the names just copied in column B.

5Calculate the coordinates of this block and store it in
Item_Block.

6Select the expense names and records in the
database.

7Calculate the coordinates of this block and store it in
Database_Block.

8Set the variable file_saved to 0 to indicate that
unsaved changes exist.

[JWeekly Used by _update_data_block t
Weekly:B2..Weekly:B2 Used by _update_data_block t
{_get_bar_values} Fetch current SpeedBar setting
{EditGoto +[BUDGTRAK.WB1]update_freq&":C1"} Activate the page in the active
{IF @CELL("type",[]C(0)R(1))="v"HEND}DOWN} If the database contains any re
{SHIFT+ENDH{SHIFT+UP} Select the first column of the d

{IF @CELL("type",[JD1)="I"{SHIFT+ENDKSHIFT+RIGHT} If any categories exist in the d¢
{LET copy_cel, @PROPERTY ("Active_Block.Selection")} Store the coordinates of the se
{BlockCopy [BUDGTRAK.WB1]copy_cell,+[BUDGTRAK.WBICopy the new coordinates to tt

{EditGoto C1} Select the first cell of the datak
{BlockTranspose C(1)R(0)..C(253)R(0),C(-1)R(1)} Copy the expense category na
{EditGoto B2} Select the first cell of the list cr

{IF @CELL("type",[IC(0)R(1))="I"HSHIFT+ENDH{SHIFT+DOWIf more than one record exists,
{LET copy_cell, @PROPERTY("Active_Block.Selection")} Store the coordinates of the se
{BlockCopy [BUDGTRAK.WB1]copy_cell,+[BUDGTRAK.WBICopy the new coordinates to tf
{LET file_saved,0} Specify that until this file is sav

ui_setting

_disable_ui

_disable_ui
[The macro _disable_ui is called by various macros to disable or enable the
Budgteer SpeedBar and menus. Which operation is performed is determined by
ui_setting, which is set to Yes to disable the Ul, or No to enable the Ul. Here's
the flow of the macro:

1Disable/Enable the SpeedBar by setting its Disabled
property to the setting stored in ui_setting.

2Change the Depend On property of the menu items.
This prevents them from unprotecting themselves as
the user edits cells, activates new windows, and so
on.

3Disable/Enable the menus by setting their Grayed
property to the setting stored in ui_setting.

4if the Ul is to be enabled, change the Depend On
property settings back to their defaults; then Quattro
Pro automatically ungreys the menus.

No Used by _disable_ui to specify

{DEFINE ui_setting:string} Sets up the arguments the mau
{SETOBJECTPROPERTY "[BUDGTRAK.BAR].Disabled",+[BDisables/Enables the SpeedBs
{SETOBJECTPROPERTY "/Budget.Depend_On","No,No,YesChanges the areas where Bud
{SETOBJECTPROPERTY "/Print.Depend_On","No,No,Yes,YChanges the areas where Prin
{SETOBJECTPROPERTY "/Statistics.Depend_On","No,No,YChanges the areas where Stat
{SETOBJECTPROPERTY "/Budget.Grayed",+[BUDGTRAK.\Disables/Enables the Budget n
{SETOBJECTPROPERTY "/Print.Grayed",+[BUDGTRAK.WEDisables/Enables the Print mel
{SETOBJECTPROPERTY "/Statistics.Grayed",+[BUDGTRAKDisables/Enables the Statistics
{IF [BUDGTRAK.WB1]ui_setting="Yes"{RETURN} If the macro is supposed to dis
{SETOBJECTPROPERTY "/Budget.Depend_On","Yes,Yes,NIf the macro is supposed to en:
{SETOBJECTPROPERTY "/Print.Depend_On","No,Yes,No,NIf the macro is supposed to en:
{SETOBJECTPROPERTY "/Statistics.Depend_On","No,Yes,lIf the macro is supposed to eni

armine how the Add Expense dialog box was closed
f the new expense to add
2 database to add a new expense to

rer SpeedBar
setting
inderscores. For example, Bi-Monthly becomes Bi_Monthly

ank

X

acro

llog box
to budget

1e the name of the expense database to add a new expense column to

notebook that contains the expense database specified by temp_freq

>f the date field to see if any expense categories have already been added. If so, select all the expense category names
/ expense category name will be stored

ry name in the active cell

1 list of expense categories to reflect the new category

as added to the database being viewed, set up a new query, since the information has changed

1us while adding a record

over from the last Add operation

notebook that contains the expense database specified by current_freq

slank (which indicates that no expense categories have been added to the database) display an error message and return -
mes to the notebook page Input, which is the form the user will input the new record into

wer from the last Add operation

nput form as currency, so that when the user enters a value, it displays in currency format. Notice B1 isn't included here, si
yut, which contains the input form the user will fill in

his ensures that only the cells unprotected later in the macro are accessible to the user

the expense names aren't cropped

jut data into, so that they can be unprotected

n input data into. Used by Restrictinput later in the macro

rm under the date column. This way the user doesn't have to enter a date, and the form defaults to the current date

ig International (MM/DD/YY)

10ough to show the date

) use the form, and how to complete the add operation

previously by the macro \0) so that the user can see and edit entries as they're typed

{PUT mode, only cells in the block that are unprotected are accessible to the user

r or Esc. These user actions "approve" the new record

| the date listed in the date column, place the current date there again, since the date is critical to querying macros in the aj
notebook that contains the expense database specified by current_freq

n't a value, then records already exist in the database and the cell selector should move to the last record in the database
he database

put form (on page Input) to the active row

lata to the same numeric format as the previous record

‘eflect the new record

'w database block from the page containing the expense database to the variable data_block, which is used to perform que
ick to new coordinates. The variable data_block contains a cell address that indicates where the new coordinates are (not t
1d refresh the record display

o determine which expense database needs updating
o store the new database block and the new list of expense category names. This information is copied onto the notebook

IS

notebook that contains the expense database specified by update_freq
rcords, move to the last record in the database

atabase. Note the active cell is now at the top of the database (C1)
itabase, select them. The new database block is now selected

lected block in the variable copy_cell

1e cell A2 on the active page. This information is used by query macros
)ase (the top of the Date column)

mes to column B starting at B2. This information is used by _add_expense
eated by the last command

select all the records

lected block in the variable copy_cell

1e cell A5 on the active page. This information is used by query macros
ed, the user should be warned that unsaved changes exist

whether the Ul should be disabled or enabled

cro accepts

r

get is available. This ensures that Budget isn't accidentally enabled when it shouldn't be
t is available. This ensures that Print isn't accidentally enabled when it shouldn't be
istics is available. This ensures that Statistics isn't accidentally enabled when it shouldn't be
nenu

nu

; command

able the Ul, the macro is finished, and the macro is stopped

able the Ul, this command resets the areas in which the Budget menu is available

able the Ul, this command resets the areas in which the Print menu is available

able the Ul, this command resets the areas in which the Statistics command is available

to the record window, stopping the Add operation

nce that's where the date is entered

Jplication

rries
he coordinates themselves)

page containing the expense database

criteria_table
criteria

view_page
current_day
current_month
current_year
data_block

_new_query

of the macro:

search.

SpeedBar settings.

the record window.

window.

information.

record window.

_hew_query
The macro _new_query is called when the user selects a new choice from the
\View control on the Budgeteer SpeedBar, or an operation is performed that
pffects the expense names that will be shown in the record window. It searches
the database and copies records that meet the SpeedBar criteria into the record
Wwindow. It also sets up the statistics displayed on the Stats page. Here's the flow

1Activate the record window and clear it of all data.
2Get the latest SpeedBar settings.

3Activate the page Input and protect all the cells on it.
4Calculate the coordinates of the database block to

5Set the database block to the property coordinates.
6Create field names based on the new coordinates.
7Set and specify the criteria table to search with, using
8Copy the expense category hames into the first row of

9Set the output block to the first row of the record

10Dress up the record window.
11Set up the Stats page to display the current statistical

12Call _refresh_view, which copies records into the

Date Date Date
crit_1 crit_2 crit_3
[IMonthly
#NAME?
#NAME?
#NAME?
#REF!

{EditGoto Expense_View:Al}
{SHIFT+END}{SHIFT+HOME}
{ClearContents 1}
{EditGoto Expense_View:Al}
{_get_bar_values}
{LET view_page,current_freq}

This is the criteria table used to determine wt

The named blocks crit_1 through crit_3 are u:

Used by _new_query to determine the expen
The current setting of Day on the SpeedBar

The current setting of Month on the SpeedBa
The current setting of Year on the SpeedBar
The coordinates of the database block to que

Activate the record window

Select all data in the record window

Clear the contents of the record window
De-select the record window

Fetch current SpeedBar settings

Copy the name of the expense database beir

{PUTBLOCK "@@(+[BUDGTRAK.WB1]view_page&":A2")"Copy the coordinates of the new database bl

{Query.Database_Block +[BUDGTRAK.WB1]data_block}

{Query.Assign_Names}

{Query.Criteria_Table [BUDGTRAK.WB1]criteria_table}

Set Quattro Pro's database block to new cool
Create field names (used in the criteria table)
Set the criteria table to the block criteria_tabl¢

_refresh_view

{BLANK @CELL("ThreeDAddress",crit_1)&".."&@CELL("ThréErase the contents of the criteria table

{IF Current_Day<>"All"{PUTBLOCK "@CHOOSE(@MOD(+[If the Day control on the SpeedBar isn't set tc
{IF Current_Month<>"All"{PUTBLOCK "@CHOOSE(@MODIlIf the Month control on the SpeedBar isn't set
{IF Current_Year<>"AlI"{PUTBLOCK "(@YEAR([IDATE)+19(lf the Year control on the SpeedBar isn't set t
{EditGoto +[BUDGTRAK.WB1]Current_Freg&":C1"} Activate the page in the active notebook that
{IF @CELL("type",[JC(1)R(0))="I"HSHIFT+ENDH{SHIFT+RIGHf any categories exist in the database, select
{BlockCopy @PROPERTY("Active_Block.Selection"),ExpensCopy the expense category names to the firs

{EditGoto Expense_View:Al} Activate the record window

{IF @CELL("type",[IC(1)R(0))="I"HSHIFT+ENDH{SHIFT+RIGHf any expense category names exist, select t
{SETPROPERTY "Font.Bold","Yes"} Set the names to a bolder typeface
{SETPROPERTY "Alignment","Center"} Center the names

{COLUMNWIDTH @PROPERTY ("Active_Block.Selection"),1Auto-size the columns so that the expense n:¢
{BLANK []Stats:B1..IV6} Clear out any old data on the notebook page
{BlockCopy Expense_View:B1..1V1,Stats:B1} Copy the expense names to the first row of S
{Query.Output_Block @PROPERTY("Active_Block.Selection'Set the output block to the first row of the rec
{EditGoto Stats:B2} Activate the notebook page that contains stat
{_add_stat "SUM","Currency,2"} Add a formula to the Stats page that totals the
{_add_stat "AVG","Currency,2"} Add a formula to the Stats page that returns t
{_add_stat "MAX","Currency,2"} Add a formula to the Stats page that returns t
{_add_stat "MIN","Currency,2"} Add a formula to the Stats page that returns t
{COLUMNWIDTH []Stats:B1..1V5,1,2,2} Auto-size the columns so that the expense n¢
{EditGoto Expense_View:Al} Activate the record window
{SETOBJECTPROPERTY "Expense_View:A1..A8192.NumeiSet the numeric format of the first column to ¢
{COLUMNWIDTH [JExpense_View:A1..1V8192,1,2,2} Auto-size the columns so that the expense n¢
{_refresh_view} Return to the record window and refresh the |

_refresh_view
[The macro _refresh_view is called when the user selects a new choice from the
Day, Month, or Year control on the Budgeteer SpeedBar. It copies the records that
Imeet the criteria specified in the SpeedBar into the record window. Here's the flow
of the macro:

1Get the latest SpeedBar settings.

2Erase the entries in the current criteria table (the
named block criteria_table).

3Set up the criteria table based on the latest settings.

4Copy the records into the record window.

{_get_bar_values} Fetch the current SpeedBar settings
{EditGoto Expense_View:Al} Activate the record window

{BLANK @CELL("ThreeDAddress",crit_1)&".."&@CELL("ThréErase the contents of the criteria table

{IF Current_Day<>"All"{PUTBLOCK "@CHOOSE(@MOD(+[If the Day control on the SpeedBar isn't set tc
{IF Current_Month<>"All"{PUTBLOCK "@CHOOSE(@MODIlIf the Month control on the SpeedBar isn't set
{IF Current_Year<>"AlI"{PUTBLOCK "(@YEAR([IDATE)+19(lf the Year control on the SpeedBar isn't set t
{ONERROR _do_nothing} This ensures that if no records match the crite
{Query.Extract} Copies records that meet the criteria specifie(
{RECALCCOL [JStats:A1..B8192} Refreshes the formulas on the notebook page

stat_formula
operation
num_format

_add_stat

_get_bar_values

_do_nothing

_view_stats

{COLUMNWIDTH [JExpense_View:A1..1V8192,1,2,2} Auto-size the columns so that the expense n¢
{_restore_view} Return to the record window

_add_stat
The macro _add_stat is called by _new_query whenever a new database
(@function needs to be added to the Stats page (which displays statistical
Information about the records displayed in the record window). The named block
Stat_formula contains a text formula that results in the statistical formula to enter.

0 Used by _add_stat to specify a formula to typ
MIN Used by _add_stat to specify the database @
Currency,2 Used by _add_stat to specify the numeric for
{DEFINE operation:string, num_format:string} Sets up the arguments the macro accepts
{_get_bar_values} Fetch the current SpeedBar settings
#REF! When a budget file is active, this text formula
{PUTBLOCK +[BUDGTRAK.WB1]stat_formula} Copies the formula returned by the formula st
{SETPROPERTY "Numeric_Format",+[BUDGTRAK.WB1]nurSets the format of the active block to the numr
{DOWN} Moves to the next row. Used when adding mt

_get_bar_values
[The macro _get_bar_values is called whenever the Budgeteer needs the latest
SpeedBar settings. These SpeedBar settings are returned by formulas in the
hotebook. It recalculates these formulas.

{RECALCCOL ChangeDB_Macros..Query_Macros:B1..B150Recalculates the formulas in ChangeDB_mac

_do_nothing
[The macro _do_nothing is called whenever no records are found by a database
search (the search is started by _refresh_view). It makes sure the record window
s tidy by calling _restore_view.

{_restore_view} Used when a {Query.Extract} operation finds

_view_stats
The macro _view_stats is called when the user chooses Statistics from the
Budgeteer menu bar. It displays the statistical information stored on the notebook
page Stats and then returns to the record window.

{_disable_ui "Yes"} Disable the SpeedBar and menus while addir
{SETOBJECTPROPERTY "Stats:Al..IV8192.Protection","PrcProtect all cells on the page. This ensures th:

_restore_view

{EditGoto Stats:B1} Activate the notebook page Stats, which disp
{WindowTitles Vertical} Lock column A of Stats so that no matter how
{IF @CELLPOINTER("type")="b"{BRANCH _restore_view} If no statistics are available, re-activate the re
{IF @CELL("type",[[C(1)R(0))<>"b"{SHIFT+ENDXSHIFT+RI(f any expense category names exist, select t

{SETPROPERTY "Protection","Unprotect"} Unprotect the cells the user can select
{Restrictinput.Enter @PROPERTY ("Active_Block.Selection") Confine selector movement to the first row of
{MESSAGE help_stats,10,5,0} Display a help message that describes how t
{PAUSEMACRO} Wait for the user to exit the viewing by pressi
{_restore_view} Activate the record window

_restore_view
The macro _restore_view is called whenever the record window needs to be
Activated (page Expense_View) and freshened up.

{EditGoto Expense_View:Al} Activate the notebook page Expense_View, v
{WindowTitles Clear} Clear any locked titles, if they exist

{DOWN} Move to cell A2

{COLUMNWIDTH [JExpense_View:A1..1V8192,1,2,2} Auto-size the columns so that the expense n¢

{_disable_ui "No"} Make sure the Ul is enabled

lich records display in the record window.

sed by _new_query and _refresh_query to specify the search criteria

se database being queried

1g viewed into the variable view_page
ock from the page containing the expense database to the variable data_block
-dinates. The variable data_block contains a cell address that indicates where the new coordinates are (not the coordinates

2, which is used to specify search criteria

) All, place a formula in the criteria table that searches for records with the day specified

-to All, place a formula in the criteria table that searches for records with the month specified
o All, place a formula in the criteria table that searches for records with the year specified
contains the expense database specified by current_freq

-their names

t row of the record window

hem

ames aren't cropped

Stats

tats

ord window

istical information about records in the record window
2 cost for each expense

he average cost of each expense

he maximum cost of each expense

he minimum cost of each expense

ames and data aren't cropped

jate, so that dates display in MM/DD/YY format
ames and data aren't cropped
record display

) All, place a formula in the criteria table that searches for records with the day specified

-to All, place a formula in the criteria table that searches for records with the month specified
o All, place a formula in the criteria table that searches for records with the year specified
aria specified in the SpeedBar, an error message isn't displayed

d by the SpeedBar into the record window

2 Stats that return statistical information

ames and data aren't cropped

ie into the notebook page Stats
)function to enter on the notebook page Stats
mat of the database @function entered on the notebook page Stats

returns a macro command that selectes a row of the active page
tored in stat_formula into the active block

leric format specified by num_format

Jltiple formulas

sros and Query_macros. This ensures that current results are used

no records, this command re-activates the record window

1g a record
at only the cells unprotected later in the macro are accessible to the user

lays a list of statistics

/ far right the user scrolls, the titles are shown
rcord window

hem

the page. This lets the users scroll through the statistics, but prevents them from editing the formulas that provide the statit
o finish viewing the statistics
ng Enter or Esc

vhich is the record window the user sees

ames and data aren't cropped

; themselves)

stics

file_saved
file_name

_new_budget

no_warning

_hew_budget
The macro _new_budget is called when the user chooses Budget|New or clicks
the New button in the initial Budgeteer dialog box. It creates a new budget file on
the desktop, which the user can add records to and save. Here's the flow of the
macro:

1Check if unsaved changes exist.

2If unsaved changes exist, warn the user the changes will be lost.
3Check if any windows are open on the desktop, and close them.
4Create a new notebook.

5Set up the notebook to make it a valid budget file.

1
NEWBUDG.BDG

{IF file_saved=1BRANCH no_warning}

Used by _open_budget, _new_budget, and _cc
Used by _save_budget to determine the name

If the file contains no unsaved changes, branch

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.BitrMake the Yes button (in the dialog box Warn) d
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:MessagSet the warning message appearing in the dialc
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.LatMake the Yes button (in the dialog box Warn) @
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.LabeéMake the No button (in the dialog box Warn) di:
{DODIALOG "[BUDGTRAK.WB1]Warn",Error_Check}
{IF Error_Check=0{RETURN}

{_check_windows "{FileClose 0}","{FileNew}"}
{EditGoto A:A1}

{_reset_speedbar}

Display the dialog box Warn to caution the usel
If the user cancels the dialog box, stop the opel
Reset the SpeedBar to default settings (Monthl
Check if any windows are open on the desktop
Select the first page of the new notebook. Note
{Page.Name "Expense_View"}
{SETOBJECTPROPERTY "Al1..A8192.Numeric_Format","LoiFormat the first column in Short Date format (M
{SETOBJECTPROPERTY "B1..IV8192.Numeric_Format","CtFormat the remaining columns in Currency forn
{CTRL+PGDN}Page.Name "Stats"}
{EditGoto A1} Move to cell Al of the active page

{PUTCELL Cost{SETPROPERTY "Font.Bold","Yes"{DOWNEnter the label Cost and set it to bold; move do
{PUTCELL Total}{DOWN}

{PUTCELL Average{DOWN}

{PUTCELL Maximum}{DOWN}

{PUTCELL MinimumH{DOWN}
{CTRL+PGDN}KPage.Name "Input"}
{CTRL+PGDN}KPage.Name "Daily"}
{CTRL+PGDN}KPage.Name "Weekly"}
{CTRL+PGDN}Page.Name "Monthly"}
{CTRL+PGDN}Page.Name "Bi_Monthly"}
{CTRL+PGDN}Page.Name "Semi_Annually"}
{CTRL+PGDN}XPage.Name "Annually"}
{PUTBLOCK "Date",Daily..Annually:C1} Enter the label Date in cell C1 of the pages Dai
{SETOBJECTPROPERTY "Daily..Annually:C1.Numeric_FornFormat the cell on each database page that wil
{PUTBLOCK "Item List",Daily..Annually:B1}
{PUTBLOCK "Database_Block",Daily..Annually:A1}
{PUTBLOCK "Item_Block",Daily..Annually:A4}

Name the page Expense_View. This will be the

Move to the next page, and name it Stats. This

Enter the label Total; move down a cell

Enter the label Average; move down a cell
Enter the label Maximum; move down a cell
Enter the label Minimum; move down a cell
Move to the next page, and name it Input. This
Move to the next page, and name it Daily. This
Move to the next page, and name it Weekly. Tt
Move to the next page, and name it Monthly. Tl
Move to the next page, and name it Bi_monthly
Move to the next page, and name it Semi_Annt
Move to the next page, and name it Annually. T

Enter the label Item List in cell B1 of the pages
Enter the label Database_Block in cell Al of the
Enter the label Item_Block in cell A4 of the pag

_check_validity

_invalid_file

open_routine

{PUTBLOCK "@CELL(""ThreeDAddress",Daily:C1)",Daily..APut the address of the first cell of the database

{BlockName.Create "Database_Block","Daily:A2"}
{BlockName.Create "ltem_Block","Daily:A5"}
{EditGoto Expense_View:Al}

{Page.Borders "No,No"}

{Page.Grid_Lines "Yes,No"}

{Notebook.Display "Yes,Yes,No"}

{LET File_Saved,1}

{_new_query}

Create the block name Database_Block, and
Create the block name Item_Block, and make i
Return to the page that's used as the record wi
Hide the row and column borders on the active
Hide the vertical grid lines on the active page
Hide the page tabs on the active page. This hid
Set file_saved to indicate that no unsaved char
Set up a new database query

_check_validity

pages and named blocks the Budgeteer must use.

[The macro _check_validity is called whenever a budget file is opened to make
sure the notebook loaded is a valid budget file. It checks for the existence of

{IF @ISERR(@@("[IExpense_View:A1")){BRANCH _invalid Check if the active notebook contains a page n

{IF @ISERR(@@("[Stats:A1")){BRANCH _invalid_file}
{IF @ISERR(@@("[IDaily:A1")){BRANCH _invalid_file}
{IF @ISERR(@@("[]Weekly:A1")){BRANCH _invalid_file}
{IF @ISERR(@@("[[Monthly:A1")){BRANCH _invalid_file}

Check if the active notebook contains a page n
Check if the active notebook contains a page n
Check if the active notebook contains a page n
Check if the active notebook contains a page n

{IF @ISERR(@@("[IBi_Monthly:A1")){BRANCH _invalid_fileCheck if the active notebook contains a page n
{IF @ISERR(@@("[]Semi_Annually:A1")){BRANCH _invalid Check if the active notebook contains a page n
{IF @ISERR(@@("[JAnnually:A1")){BRANCH _invalid_file} Check if the active notebook contains a page n
{IF @ISERR(@@("[|Database_Block")){BRANCH _invalid_fiCheck if the active notebook contains a block n

{IF @ISERR(@@("[]Iitem_Block"))BRANCH _invalid_file}
{_new_query}

Check if the active notebook contains a block n
Set up a new database query

_invalid_file

The macro _invalid_file is called when the active window can't be used as a
pudget file. It displays a message explaining that and closes the active window.

{MESSAGE help_invalidf,10,15,0}
{FileClose 0}
(_new_budget}

Display a message explaining that the active n¢
Close the active notebook
Create a new budget file

_check_windows

[The macro _check_windows is called by various macros to check whether
indows are open on the desktop. If a window is open, the macro commands
Stored in the variable open_routine are run. If no windows are open, the macro
commands stored in the variable close_routine are run. This macro is

self-modifying; it changes depending on the arguments passed to it.

{FileClose 0} Used by _check_windows to determine what o}

close_routine

_check_windows
_check_win_loop

_save_budget

temp_file
filing_result

_open_budget

{FileNew} Used by _check_windows to determine what o}

{DEFINE open_routine:string,close_routine:string} Sets up the arguments the macro accepts

{BLANK open_windows} Erase the cell named open_windows (the cell c
{GETWINDOWLIST open_windows} Get a list of open, unhidden windows and store
{IF @CELL("type",[BUDGTRAK.WB1]open_windows)<>"b"Hdf the cell open_windows is blank, then no wind
{close_routine} If the cell open_windows isn't blank, then no wi

_save_budget
[The macro _save_budget is called when the user chooses File|Save or File|Save
As. It saves the active notebook under the name stored in the variable file_name,
and then sets file_saved to 1 to indicate that no unsaved changes exist.

{ONERROR _filing_error} If a problem occurs while saving the file, run the
{EditGoto Expense_View:A2} Move back to the record window

{FileSaveAs +[BUDGTRAK.WB1]file_name,Replace} Save the file, replacing it if it already exists on ¢
{LET file_saved,1} Set file_saved to indicate that no unsaved char

_open_budget
The macro _open_budget is called when the user chooses Budget|Open. It loads
A budget file. Here's the flow of the macro:

1Check if unsaved changes exist.

2If unsaved changes exist, warn the user the changes
will be lost.

3Check if any windows are open on the desktop, if
there aren't any, create a new notebook.

4Request the name of a budget file to load.

5Load the budget file into the active notebook.

6Check if the file is a valid budget file (using
_check_validity).

71f the file is valid, start a new query using current
SpeedBar settings (this step is done in the macro
_check_validity). If not, close the file.

*BDG Used by _open_budget and _save_budget_as
0 Used by _open_budget and _save_budget_as
{IF file_saved=1}{BRANCH no_warning2} If the file contains no unsaved changes, branch

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.BitrMake the Yes button (in the dialog box Warn) d
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:MessagSet the warning message appearing in the dialc
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.LatMake the Yes button (in the dialog box Warn) ¢
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.LabeéMake the No button (in the dialog box Warn) di:

no_warning2

_save_budget_as

_init_screen

{DODIALOG "Warn",Error_Check} Display the dialog box Warn to caution the usel
{IF Error_Check=0{RETURN} If the user cancels the dialog box, stop the opel
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:NewHide the new button in the dialog box InitOpen
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:.TitleSet the title appearing at the top of the dialog b

{LET temp_file,"*.BDG"} Set the temp_file to *.BDG. The DODIALOG cc
{DODIALOG "[BUDGTRAK.WB1]InitOpen" filing_result,temp Display a dialog box requesting the name of the
{IF filing_result=0{QUIT} If the user cancels the dialog box, stop the ope!
{FileClose 0}{FileNew} Check if any windows are open on the desktop
{ONERROR _filing_error} If a problem occurs while opening the file, run tl
{FileRetrieve +[BUDGTRAK.WB1]temp_file} Open the new budget file

{LET file_name,temp_file} Copy the new file name to file_name, which alv
{LET file_saved,1} Set file_saved to indicate that no unsaved char
{_check_validity} Check whether the new budget file is a valid bu

_save_budget_as
The macro _save_budget_as is called when the user chooses File|Save As. It
equests a new name for the active budget file, and saves the active budget file
under the new name.

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:NewHide the New button in the dialog box InitOpen
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:.TitleSet the title appearing at the top of the dialog b

{LET temp_file, @UPPER(file_name)} Set the variable temp_file to the current name ¢
{DODIALOG "[BUDGTRAK.WB1]InitOpen" filing_result,temp Display a dialog box requesting the new name
{IF filing_result=O{BRANCH _restore_view} If the user cancels the dialog box, stop the opel
{LET file_name,temp_file} Copy the new file name to file_name, which alv
{_save_budget} Save the budget file under the new name

{LET file_saved,1} Set file_saved to indicate that no unsaved char
{_restore_view} Activate the record window

_init_screen
[The macro _init_screen is called when Budgeteer first opens. It closes any
indows the Budgeteer can't use, and then displays a dialog box requesting the
hame of a budget file to open. Here's the flow of the macro:

1Reset the SpeedBar to default settings.

2Close any open windows, prompting the user if any of
the windows has unsaved changes.

3Request the name of a budget file to load. If the user
cancels the dialog box, or chooses New from it,
create a new budget file.

4l oad the budget file into the active notebook.

5Make sure it's a valid budget file.

6Start a new query using _new_query

{_check_windows "{FileClose 1{BRANCH _check_win_loop}Check if any windows are open on the desktop
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:NewMake sure the New button in the dialog box Init

_reset_speedbar

_filing_error

_confirm_quit

open_windows

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]InitOpen:.TitleSet the title appearing at the top of the dialog b

{LET temp_file,"*.BDG"} Set the temp_file to *.BDG. The DODIALOG cc
{DODIALOG "[BUDGTRAK.WBL1]InitOpen" filing_result,temp_Display a dialog box requesting the name of the
{IF filing_result=O{BRANCH _new_budget} If the user cancels the dialog box, create a new
{LET file_name,temp_file} Copy the new file name to file_name, which alv
{ONERROR _filing_error} If a problem occurs while opening the file, run tl
{FileNew}{_reset_speedbar} Create a new notebook and reset the SpeedBa
{FileRetrieve +[BUDGTRAK.WB1]temp_file} Open the budget file

{LET file_saved,1} Set file_saved to indicate that no unsaved char
{_check_validity} Check whether the new budget file is a valid bu
{_restore_view} Activate the record window

{_new_query} Set up a new database query

_reset_speedbar
[The macro _reset_speedbar is called whenever a new budget file is created. It sets
the SpeedBar to the following defaults: View to Monthly, Day to All, Month to All,
and Year to the current year.

{SETOBJECTPROPERTY "[BUDGTRAK.BAR]View.Value","ISet the View control on the SpeedBar to Month
{SETOBJECTPROPERTY "[BUDGTRAK.BAR]Month.Value",Set the Month control on the SpeedBar to All
{SETOBJECTPROPERTY "[BUDGTRAK.BAR]Day.Value","ASet the Day control on the SpeedBar to All
{SETOBJECTPROPERTY "[BUDGTRAK.BAR]Year.Value",+Set the Year control on the SpeedBar to the cu

_filing_error
[The macro _filing_error is called whenever a problem occurs while loading or
saving a budget file. It sounds the computer's bell and displays an error message.

{BEEP 2}{BEEP 4}{MESSAGE help_filerr,10,15,0} Sound the computer's bell and display a messe

_confirm_quit
The macro _confirm_quit is called by the macro _clear_app when unsaved
changes exist. It asks the user to verify that they want to quit the Budgeteer and
ose the changes.

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.BitrMake the Yes button (in the dialog box Warn) d
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:MessagSet the warning message appearing in the dialc
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.LatMake the Yes button (in the dialog box Warn) ¢
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.LabeéMake the No button (in the dialog box Warn) di:
{DODIALOG "Warn",Error_Check} Display the dialog box Warn to caution the usel
{IF Error_Check=0{QUIT} If the user cancels the dialog box, stop the ope

Used by _check_windows to store a list of oper

ynfirm_quit to determine whether unsaved changes exist in the active budget file
of the active budget file

1 to the part of the macro that creates the new budget file; no warning is needed

lisplay the OK button bitmap

)g box Warn. Message is the name of the label in the dialog box that contains this warning
lisplay Yes on its face

splay Cancel on its face

r that creating a new budget file will destroy unsaved changes to the active budget file
ration

y database, All days and months, the current year)

. If there aren't, create one

that even if the first page of the notebook is named Expense_View, A:Al will still take you there; named pages can still be
r record window

IM/DD/YY)

nat

page contains the statistical information the user views when they choose Statistics

wn a cell

page contains the form that the user can enter records with
page contains the Daily expense database

lis page contains the Weekly expense database

nis page contains the Monthly expense database

. This page contains the Bi-Monthly expense database

Jally. This page contains the Semi-Annual expense database
“his page contains the Annual expense database

ly through Annually

| contain the first entry date to Short Date format (MM/DD/YY)
Daily through Annually

2 pages Daily through Annually

es Daily through Annually

block in cell C1 on pages Daily through Annually. This cell is used on each page to determine the coordinates of the datab
1ake it refer to the cell A2. This block name is used by many Budgeteer macros to determine where the data is located on €
t refer to the cell A5. This block name is used by many Budgeteer macros to determine where a list of expense category ne
ndow

page

les the existence of other notebook pages from the user
1ges exist

amed Expense_View. If it doesn't, branch to the macro that closes the invalid budget file
amed Stats. If it doesn't, branch to the macro that closes the invalid budget file

amed Daily. If it doesn't, branch to the macro that closes the invalid budget file

amed Weekly. If it doesn't, branch to the macro that closes the invalid budget file

amed Monthly. If it doesn't, branch to the macro that closes the invalid budget file

amed Bi_Monthly. If it doesn't, branch to the macro that closes the invalid budget file
amed Semi_Annually. If it doesn't, branch to the macro that closes the invalid budget file
amed Annually. If it doesn't, branch to the macro that closes the invalid budget file

iamed Database_Block. If it doesn't, branch to the macro that closes the invalid budget file
amed Item_Block. If it doesn't, branch to the macro that closes the invalid budget file

Jtebook doesn't have the items needed to be a budget file

seration should be performed if there's a window open on the desktop

Jeration should be performed if there are no windows open on the desktop

)pen_windows is at the bottom of this page)

them starting at the named cell open_windows

ows are open, so the macro stored in open_routine is run
ndows are open, so the macro stored in close_routine is run

2 macro _filing error

lisk
1ges exist

to specify the files shown in the InitOpen dialog box
to find out how the user closed the InitOpen dialog box (OK or Cancel)

1 to the part of the macro that opens the new bugdet file; no warning is needed

lisplay the OK button bitmap

)g box Warn. Message is the name of the label in the dialog box that contains this warning
lisplay Yes on its face

splay Cancel on its face

r that creating a new budget file will destroy unsaved changes to the active budget file
ration

ox
)mmand in the next cell uses this cell to specify what file or list of files should display
2 budget file to open

ration

. If there aren't, create one

he macro _filing_error

vays contains the name of the active budget file
1ges exist
idget file

0oX
>f the budget file. The DODIALOG command in the next cell uses this cell to specify what file or list of files should display
of the budget file

ration

vays contains the name of the active budget file

1ges exist

. If there are, close them, prompting the user to save any changes
Open isn't hidden

ox
)mmand in the next cell uses this cell to specify what file or list of files should display
2 budget file to open

1 budget file

vays contains the name of the active budget file

he macro _filing_error

r to default settings (Monthly database, All days and months, the current year)

1ges exist
idget file

ly

rrent year

\ge explaining that an error has occurred

lisplay the OK button bitmap

)g box Warn. Message is the name of the label in the dialog box that contains this warning
lisplay Yes on its face

splay Cancel on its face

r that quitting the Budgeteer will destroy unsaved changes to the active budget file

ration

1, unhidden windows on the desktop

referred to by their original letter names

ase block on the active page. As the PUTBLOCK command copies the entry down through the pages, the reference Daily:!
ach page
imes is located on each page. _add_expense uses this list

C1 adjusts to refer to the active page (Daily:C1, Weekly:C1, Monthly:C1, and so on)

print_data
entire_block
p_width
p_height
print_block

_print_budget

_print_budget
The macro _print_budget is called when the user chooses a command on the
Print menu. It prints the budget database(s) specified by the user. Here's the flow

of the macro:

1If the user chose Print|All, run the macro _print_all
instead.

2If the user chose Print|Current, run the macro
_print_current instead.

3Activate the notebook page that contains the
expense database to print.

4Check if there's any data to print; if not, stop the
operation.

5Clean up the expense data to make it presentable.

6Set the print block and headings to the data in the
expense database.

7Print the expense database and return to the record

window.
Annually Used by _print_budget to determine what date
Monthly:C1..Monthly:E3 Used by _print_budget to store the coordinate
2 Used by _print_budget to store the width of th
2

IC(OR(0)..C(1)R(1)

{DEFINE print_data:string}

{IF print_data="AlI"{BRANCH _print_all}

{IF print_data="Current"{BRANCH _print_current}
{EditGoto +[BUDGTRAK.WB1]print_data&":C2"}

{IF @CELL("type",[[D1)="b"_restore_view{RETURN}

Used by _print_budget to store the height of tt
Used by _print_budget to calculate the block ¢

Sets up the arguments the macro accepts

If the user requested that all data be printed, r
If the user requested that all data in the recorc
Activate the page in the active notebook that ¢
If D1 on this page is blank, no expense categc

{IF @CELLPOINTER("type")="b"H{_restore_view}{RETURN} If C2 on this page is blank, no records exist in
{BlockCopy +[BUDGTRAK.WB1]print_data&":database_bloclCopy the database block coordinates to the ve

{COLUMNWIDTH +[BUDGTRAK.WB1]entire_block,1,2,2}

{EditGoto +|[BUDGTRAK.WB1]entire_block}

Auto-size the columns so that the expense na
Select the block of data that will print

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,TiDraw thin vertical lines between each column

{LET p_width, @COLS(@ @ (+"[]"&entire_block))-1}
{LET p_height, @ROWS(@ @(+"[]"&entire_block))-1}
{RECALCCOL Print_macros:B1..B100}
{SelectBlock +|[BUDGTRAK.WB1]print_data&":1"}
{SETPROPERTY "Alignment","Center"}

{EditGoto D2}

{Print.PrintReset}

{Print.Orientation Landscape}

{Print.Top_Heading C1}

{Print.Left_Heading C1}

{Print.Block +[BUDGTRAK.WB1]print_block}
{Print.DoPrint}

Store the number of columns in the selected b
Store the number of rows in the selected blocl
Update the formulas on this page that calculat
Select the first row of the active page (contain
Center the expense category names

Move to the first cell of the first record in the e
Clear any old print settings

Specify that the data should print sideways on
Set the top heading to the first row (the expen:
Set the left heading to the first column (the ent
Set the print block to the coordinates calculate
Print the data

_print_all

top_heading
left_heading
whole_block

_print_current

{SelectBlock +[BUDGTRAK.WB1]entire_block} Select the database block again
{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,ClErase any line drawings left previously
{_restore_view} Activate the record window

_print_all
[The macro _print_all is called by _print_budget when the user chooses Print|All
from the Budgeteer menu. It prints all the expense databases using
| print_budget.

{_print_budget "Daily"} Print Daily expense database
{_print_budget "Weekly"} Print Weekly expense database
{_print_budget "Monthly"} Print Monthly expense database
{_print_budget "Bi_Monthly"} Print Bi-Monthly expense database
{_print_budget "Semi_Annually"} Print Semi-Annual expense database
{_print_budget "Annually"} Print Annual expense database

_print_current
[The macro _print_current is called by _print_budget when the user chooses
Print|Current from the Budgeteer menu. It prints the records displaying in the
record window. Here's the flow of the macro:

1Check if there are any records to print; if not, stop the
operation.

2Set the print block and headings to the data in the
record window.

3Activate the notebook page that contains the
expense database to print.

4Check if there's any data to print; if not, stop the
operation.

5Clean up the expense data to make it presentable.

6Print the expense data and return to the record

window.
Expense_View:B1..Expense_View:C1 Used by _print_current to specify the top heac
Expense_View:A2..Expense_View:A3 Used by _print_current to specify the left head
[C(-1)R(-1)..C(1)R(1) Used by whole_block to calculate the block of
{EditGoto Expense_View:B1} Activate the record window
{IF @CELLPOINTER("type")="b"{BRANCH _restore_view} If no categories are shown in the record windc
{IF @CELL("type",[JA2)="b"{BRANCH _restore_view} If no records are shown in the record window,

{IF @CELL("type",[]IC(1)R(0))<>"b"{SHIFT+END}X{SHIFT+RI(f any categories exist in the database, select"
{LET top_heading, @PROPERTY("Active_Block.Selection")} Set the top heading to the first row (the expen:
{LET p_width, @COLS(@ @ (+"[]"&top_heading))} Store the number of columns in the selected b
{EditGoto A2} Move to the cell A2

{IF @CELL("type",[]IC(0)R(1))<>"b"{SHIFT+END}SHIFT+DCIf more than one record exists, select each cel

{LET left_heading, @PROPERTY ("Active_Block.Selection")} Set the left heading to the first column (the ent

{LET p_height @ROWS(@ @ (+"[]"&left_heading))}

{RECALCCOL Print_macros:B1..B100}
{EditGoto B2}

{COLUMNWIDTH +[BUDGTRAK.WB1]whole_block,1,2,2}

{SelectBlock +[BUDGTRAK.WB1]whole_block}

Store the number of rows in the selected blocl
Update the formulas on this page that calculat
Move to the cell B2

Auto-size the columns so that the expense na
Select the whole block of data, including expe

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,TiDraw thin vertical lines between each column

{EditGoto B2}
{Print.PrintReset}
{Print.Orientation Landscape}

{Print.Top_Heading +[BUDGTRAK.WB1]top_heading}
{Print.Left_Heading +|[BUDGTRAK.WB1]left_heading}

{Print.Block +[BUDGTRAK.WB1]print_block}
{Print.DoPrint}
{SelectBlock +[BUDGTRAK.WB1]whole_block}

Move to the first cell of the first record in the e
Clear any old print settings

Specify that the data should print sideways on
Set the top heading to the first row (the expen:
Set the left heading to the first column (the ent
Set the print block to the coordinates calculate
Print the data

Select the whole block of records and names i

{SETPROPERTY "Line_Drawing","Clear,Clear,Clear,Clear,CIErase any line drawings left previously

{EditGoto B2}

Activate the record window

1 should print

s of the block that will print

e expense database, in columns

1e expense database, in rows

)f data to set as the print block. This formula is needed because the first column and row of the expense database can't be

un the macro _print_all

I window be printed, run the macro _print_current

:ontains the expense database specified by print_data

ries exist in the database, and the print operation is stopped
the database, and the print operation is stopped

wriable entire_block

mes and data aren't cropped

of the block

llock in the variable p_width
<in the variable p_height

e the print block and headings
ing the expense names)

xpense database

the page

se category names). If the printout spans multiple pages, this row prints at the top of each page
try dates). If the printout is too wide to fit on one page, this column prints at the left of each page
:d by the formula stored in the variable print_data

ling of the printout. This information prints at the top of each page of the printout
ling of the printout. This information prints at the left side of each page of the printout
data to set as the print block. This formula is needed because the first column and row of the data can't be included in the

W, stop the print operation

stop the print operation

their names

se category names). If the printout spans multiple pages, this row prints at the top of each page
llock in the variable p_width

II'in the first column that contains a record

try dates). If the printout is too wide to fit on one page, this column prints at the left of each page
<in the variable p_height
e the print block and headings

mes and data aren't cropped
nse names

of the block

xpense database

the page

se category names). If the printout spans multiple pages, this row prints at the top of each page
try dates). If the printout is too wide to fit on one page, this column prints at the left of each page
:d by the formula stored in the variable print_data

again

included in the print block; they're used as the top and left heading

print block; they're used as the top and left heading

g_width
g_height
legend_series
xaxis_series

_graph_view

A graph using

_graph_view

[The macro _graph_view is called when the user chooses Graph from the
Budgeteer SpeedBar. It constructs a macro (named _build_graph) that creates

the data in the record window. Here's the flow of the macro:

1Check if there are records to graph; if not, stop the
operation.

2Select the first row of the record window and store its
coordinates in the block legend_series. This block is
used later.

3Measure the width of the row; this is to determine how
many series have to be created in the graph.

4Select the first column of the record window and store
its coordinates in the block xaxis_series. This block is
used later.

5Measure the height of the column; this is to determine
how many data points will exist in each series.

6Using the measurements previously calculated, create
a list of macros commands starting at the cell named
_build_series that creates series in the graph.

the previous step.

7Copy the macros commands stored in the block
finishing_mac just below the commands created in

8Run the macro that builds the graph (_build_graph).

2

2
Expense_View:B1..Expense_View:C1
Expense_View:A2..Expense_View:A3

{EditGoto Expense_View:B1}
{IF @CELLPOINTER("type")="b"{BRANCH _restore_view}
{IF @CELL("type",[JA2)="b"KBRANCH _restore_view}

Used by _graph_view to store the number of
Used by _graph_view to store the number of
Used by _graph_view to store the block in the
Used by _graph_view to store the block in the

Activate the record window, and select the fir
If there's no first record, stop the operation
If there are no expense categories, stop the ¢

{IF @CELL("type",[IC(1)R(0))<>"b"H{SHIFT+ENDXSHIFT+RI(If expense categories exist, select their name
{LET legend_series, @PROPERTY ("Active_Block.Selection")Set the legend series to the selected block. A

{LET g_width, @COLS(@ @ (+"[]"&legend_series))}
{EditGoto A2}

Store the number of series to create in the va
Move to cell A2

{IF @CELL("type",[]C(0)R(1))<>"b"{SHIFT+END}SHIFT+DCIf more than one record exists, select all cells
{LET xaxis_series, @PROPERTY ("Active_Block.Selection")} Set the X-Axis series to the selected block. T

{LET g_height, @ROWS(@ @ (+"[]"&xaxis_series))}
{EditGoto A2}

{FOR series_number,1,g_width,1, add_series}
{RECALCCOL Graph_macros:B1..B250}

Store the number of data points in each serie
Move to cell A2

Dynamically create the macro commands tha
Update the formulas in this page that determi

{BlockCopy [BUDGTRAK.WBI1]finishing_mac,+[BUDGTRAK.Copy the macro stored in finishing_mac to jus

{_build_graph}

Run the macro that actually builds the graph

finishing_mac

series_block
data_range

finishing_mac
[The macro finishing_mac isn't called by itself; it's copied to the end of the list of
Imacro commands created by _graph_view. Here's the flow of the macro:

1Create the series just defined by _build_series.

2Make the graph more presentable.

3Display the graph full screen.

4Ask the user if they'd like to print the graph; if so, print
the graph.

5Activate the record window.

{Series.Go} Create the series

{SETOBJECTPROPERTY "G$Y1Axis.Numeric_Format","CurSet the numeric format of the current graph's
{WindowClose} Close the active graph window

{GraphView Expense} View the graph just created

{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.BitrMake the Yes button (in the dialog box Warn,
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:MessagSet the warning message appearing in the dii
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:Yes.LakMake the Yes button (in the dialog box Warn)
{SETOBJECTPROPERTY "[BUDGTRAK.WB1]Warn:No.LabéMake the No button (in the dialog box Warn)

{DODIALOG "[BUDGTRAK.WB1]Warn",Error_Check} Display the dialog box Warn to ask the user if
{IF Error_Check=0{SELECTBLOCK Expense_View:A2{RETIf the user cancels the dialog box, don't print
{GRAPHPAGEGOTO} Activate the Graphs page

{SELECTOBJECT Expense} Select the icon representing the named grapt
{Print.DoPrintGraph} Print the named graph Expense
{SELECTBLOCK Expense_View:A2} Activate the record window

{RETURN} Stop the macro

_add_series
[The macro _add_series is called by _graph_view to create a command in the
Imacro _build_graph that creates a graph series. This command is copied into the
cell whose address is calculated by the formula stored in command_cell (which
recalcutes to a different address each time _add_series is called). Here's the flow
of the macro:

1Select the data that this series plots. The coordinates
are calculated by the formula stored in series_block.

2Copy the coordinates of the selected block to the
variable data_range.

3Recalculate the formulas that calculate the series
command to create.

4Copy the command created by the formula stored in
series_command into the cell whose address is
calculated by the formula stored in command_cell.

[IC(B)R(0)..C(3)R(1) Used by _add_series to return the relative ad
Expense_View:C2..Expense_View:C3 Used by _add_series to store the coordinates

series_number
series_command

_add_series

command_cell

_build_graph

_build_series

3 Used by _add_series to store the series num
{Series.Data_Range 3,Expense_View:C2..Expense_View:C3Used by _add_series to return the command

{EditGoto A2} Move to cell A2

{SelectBlock +[BUDGTRAK.WB1]series_block} Select the block whoses coordinates are comr
{LET data_range,@PROPERTY ("Active_Block.Selection")} Store the regular block coordinates of the sel
{RECALCCOL Graph_macros:B1..B250} Recalculate the formula that determines the <
{LET +command_cell,+series_command} Copy the series command calculated in the n
[BUDGTRAK.WB1]Graph_macros:B137 Used by _add_series to return the cell addres

_build_graph
The macro _build_graph is called by _graph_view to create a graph that plots the
expense data in the record window. The portion of _build_graph above the named
cell _build_series never changes; starting at _build_series, commands are created
by _graph_view that create the series plotted in the graph, display the graph full
screen, and ask the user if they want to print the graph.

1Select the data that this series plots. The coordinates
are calculated by the formula stored in series_block.

2Copy the coordinates of the selected block to the
variable data_range.

3Recalculate the formulas that calculate the series
command to create.

4Copy the command created by the formula stored in
series_command into the cell whose address is
calculated by the formula stored in command_cell.

{IF @ISERR(@PROPERTY ("Expense.Aspect_Ratio"))}{Graplf the named graph Expense doesn't exist, cr
{GraphEdit "Expense"} Display the graph Expense in a graph windov
{GraphSettings.Type "Line"} Set the graph type to Line
{Series.Data_Range "LegendSeries",+[BUDGTRAK.WB1]legSet the legend series to the coordinates store
{Series.Data_Range "XAxisLabelSeries",+[BUDGTRAK.WB1Set the x-axis series to the coordinates storet
The first available cell to copy macro commai

series in the graph

points on each series of the graph

2 record window that contains legend text

2 record window that contains labels for the X-Axis

st cell of the first record

)peration
'S
. legend appears in the graph showing what each series represents; this legend series specifies the labels that appear in th

rriable g_width

in the first column that contain entry dates
he X-Axis series specifies the labels that appear at the bottom of the graph
s in the variable g_height

it will create the series in the graph. These commands are stored starting at the named cell _build_series
ne where the last part of _build_graph should be placed
st after the series commands created by _add_series

Y-Axis to Currency

| display the print button bitmap

alog box Warn. Message is the name of the label in the dialog box that contains this warning
) display Print on its face

display No on its face

f they wish to print the graph

the graph and return to the record window

1 Expense

dress of the series data to select
; of the series to add

ber being created
that will be copied to _build_series

iputed by the formula in series_block

ected block in data_range

series command to add to the macro _build_graph

amed cell series_command to the cell calculated by the formula command_cell

5s of the next cell that the macro can copy a command to

2ate it
v for editing

:d in the variable legend_series
1 in the variable xaxis_series
1ds in to. As the macro _graph_view runs, various macro commands are created, starting here

at legend

All
January
February
March
April

May

June

July
August
September
October
November
December

All

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Daily

Weekly
Monthly
Bi-monthly
Semi-Annually
Annually

	Startup
	Menus
	Help
	ChangeDB_macros
	Query_macros
	Filing_macros
	Print_macros
	Graph_macros
	Lists

