
The Paradox Paint Application (PDXPAINT.FSL)

Use the Paradox Paint application to make simple drawings. You can use any of the following
components repeatedly while you draw.

Brush Color: Click a color to choose the color of the square to draw.
Brush Size: Click a size box to choose the size of the square to draw.
Erase button: Click the Erase button to clear the canvas.

To draw, select a pen color and size, then drag the mouse on the canvas to create a succession of
squares.

Reference

For information on the programming techniques used to create the Paradox Paint application, see
Paradox Paint Programmer's Help.

Paradox Paint Programmer's Help

This small sample application, called Paradox Paint, demonstrates techniques for working with
UIObjects at run time. The application demonstrates how you can create modular applications and
portable objects by localizing variables and custom procedures rather than attaching as much as
possible to the form.

Most of the code in this application is attached to three objects: colorBox, sizeBox, and thePaper.
Variables global to these three objects are contained in paintBox and are declared in the Var window of
paintBox. If you want to use these objects and the attached code in another application, you can copy
paintBox (and all the objects paintBox contains), paste it into another form, and it will run without
modification. Similarly, if you want a color palette, you can copy and paste colorBox. After you declare
the necessary variables in the destination form, the palette is created.

Reference

Select one of the following objects for a description of the code attached to it:

Paint Form

paintBox

colorBox

sizeBox

thePaper

helpButton

eraseButton

Form Methods

Code attached to the Paradox Paint form performs two tasks: it makes sure you're running the
application from the working directory, and it invokes the Help application when you press F1.

Select one of the following methods for a description of the code attached to the form:

open method

keyPhysical method

Select one of the following objects for a description of the code attached to it:

paintBox

colorBox

sizeBox

thePaper

helpButton

eraseButton

Form open Method

Code attached to the form's built-in open method makes sure you're running this application from the
working directory. The call to isFile does the checking: when you give a file name without a path or an
alias, Paradox looks in the working directory by default.
method open(var eventInfo Event)
 if not eventInfo.isPreFilter() then
 if not isFile("pdxpaint.fsl") then
 msgInfo("Startup Error!", "The ObjectPAL example files must
 be in the working directory.")
 close()
 endIf
 endIf
endmethod

Form keyPhysical Method

Code attached to the form's built-in keyPhysical method invokes the Windows Help application to
display context-sensitive help when you press F1. The call to vChar identifies each key as it's pressed.
The call to disableDefault blocks Paradox's built-in response.
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isFirstTime() then
if eventInfo.vChar() = "VK_F1" then

disableDefault
helpShowIndex(":WORK:pdxpaint.hlp")

endIf
endIf
endmethod

Code Attached to paintBox

The box that frames this application is named paintBox. Variables declared in paintBox's Var window
are global to all objects paintBox contains.

The paintBox Var window
var
brushColor LongInt ; color of paint brush
brushSize Point ; size of paint brush

endvar

Select one of the following objects for a description of the code attached to it:

Paint Form

colorBox

sizeBox

thePaper

helpButton

eraseButton

Code Attached to colorBox

colorBox is a palette of colors. With one exception, the code attached to colorBox is generalized and
self-contained: You can add or delete colored boxes within colorBox as often as you like, and the code
will run. The exception is the returned value brushColor, which is declared in the Var window of
paintBox. If you copy colorBox to another form, remember to declare brushColor in the Var window of
an object that contains colorBox.

Select one of the following windows or methods for a description of the code attached to colorBox:

The Var window

open method

close method

mouseDown method

setColor procedure

Select one of the following objects for a description of the code attached to it:

Paint Form

paintBox

sizeBox

thePaper

helpButton

eraseButton

The colorBox Var Window

Variables declared in the Var window are visible to all built-in methods, custom methods, and custom
procedures attached to colorBox as well as to all the objects colorBox contains.
var
newColor, oldColor UIObject
colorArray Array[] String

endVar

The colorBox open Method

The code attached to colorBox's built-in open method takes inventory of the colored boxes it contains.
It uses the UIObject type method enumObjectNames, which creates an array of object names,
beginning with the name of the object that called the method, and continuing through all objects the
calling object contains.

Next, the UIObject type attach method reads the object name stored in item 2 of the array, and
assigns that object to the variable oldColor. Then, the custom procedure setColor uses oldColor to
specify a default color.
method open(var eventInfo Event)
 self.enumObjectNames(colorArray) ; item 1 is self,
 ; item 2 is first item contained
 oldColor.attach(colorArray[2]) ; attach to first contained item
 setColor(oldColor) ; specify a default color
endmethod

The colorBox close Method

The code attached to colorBox's built-in close method uses the array created by the open method to
make all colored boxes appear popped out. It gets this effect by setting the Frame.Style property to
Outside3DFrame. (Inside3DFrame makes a box look pushed in.)
method close(var eventInfo Event)
 var
 i SmallInt ; declare the variable to make code execute faster
 endVar

 for i from 2 to colorArray.size() ; start at 2 because item 1 is self
 oldColor.attach(colorArray[i])
 if oldColor.frame.style <> Outside3DFrame then ; makes boxes pop out
 oldColor.frame.style = Outside3DFrame
 endIf
 endFor
endmethod

The colorBox mouseDown Method

The built-in mouseDown method executes for each mouse click colorBox receives. It also executes
for each mouse click received by the colored boxes it contains. By default, a box passes a mouse click
to its container. There's no code attached to the colored boxes, so the mouse click is passed to
colorBox.

The event packet for the mouse click contains information about the target object (that is, the object
that was actually clicked). If the target was colorBox, this code ignores the click. But, if the target was
one of the colored boxes, this method gets information about the target and passes it to the custom
procedure setColor.
method mouseDown(var eventInfo MouseEvent)
 if not eventInfo.isTargetSelf() then ; if self is not the target
 eventInfo.getTarget(newColor) ; then a colored box is the target
 setColor(newColor) ; pass colored box info to setColor
proc

 endIf
endmethod

The colorBox setColor Procedure

The custom procedure setColor is declared in colorBox's Proc window. It gets the Color property of the
colored box specified in the mouseDown or open methods. It also sets the pushed-in and popped-out
appearance of the boxes, as appropriate.

You could use a custom method here but there are tradeoffs: a custom method is public, and can be
called by objects not in the containership path. However, a custom method isn't needed here. The only
object that calls this procedure is colorBox. A custom procedure is private, but Paradox for Windows
can call a custom procedure faster than a custom method, though the code inside executes at the
same speed.
proc setColor(newColor UIObject)
 brushColor = newColor.color ; get Color property of chosen color box
 oldColor.frame.style = Outside3DFrame ; make old color box pop out
 newColor.frame.style = Inside3DFrame ; make new color box push in
 oldColor.attach(newColor) ; assign oldColor for next time through
endproc

Code Attached to sizeBox

Code attached to sizeBox works similarly to the code attached to colorBox: the open method takes
inventory of contained objects, the close method sets display attributes, the mouseDown method
processes a mouse click, and a custom procedure (setSize) assigns a value to a variable based on
the object that got the mouse click. Like colorBox, sizeBox is self-contained and portable.

Select one of the following for a description of the code attached to sizeBox:

The Var window

open method

close method

mouseDown method

setSize procedure

Select one of the following objects for a description of the code attached to it:

Paint Form

paintBox

colorBox

thePaper

helpButton

eraseButton

The sizeBox Var Window

Variables declared in the Var window are visible to all built-in methods, custom methods, and custom
procedures attached to sizeBox as well as to all the objects sizeBox contains.
var
 oldSize, newSize UIObject
 sizeArray Array[] String
endVar

The sizeBox open Method

The code attached to sizeBox's built-in open method takes inventory of the colored boxes it contains.
It uses the UIObject type method enumObjectNames, which creates an array of object names,
beginning with the name of the object that called the method, and continuing through all objects the
calling object contains.

Next, the UIObject type attach method reads the object name stored in item 2 of the array, and
assigns that object to the variable oldSize. Then, the custom procedure setSize uses oldSize to
specify a default color.
method open(var eventInfo Event)
 self.enumObjectNames(sizeArray) ; item 1 is self,
 ; item 2 is first item contained
 oldSize.attach(sizeArray[2]) ; pass UIObject var oldSize
 ; to the setSize proc
 setSize(oldSize)
endmethod

The sizeBox close Method

The code attached to sizeBox's built-in close method uses the array created by the open method to
make all brush size boxes appear popped out. It gets this effect by setting the Frame.Style property to
Outside3DFrame. (Inside3DFrame makes a box look pushed in.)
method close(var eventInfo Event)
 var
 i SmallInt
 endVar

 for i from 2 to sizeArray.size() ; start at 2 because item 1 is self
 oldSize.attach(sizeArray[i])
 if oldSize.frame.style <> Outside3DFrame then
 oldSize.frame.style = Outside3DFrame
 endIf
 endFor
endmethod

The sizeBox mouseDown Method

The built-in mouseDown method executes for each mouse click sizeBox receives. It also executes for
each mouse click received by the brush size boxes it contains. By default, a box passes a mouse click
to its container. There's no code attached to the boxes, so the mouse click is passed to sizeBox.

The event packet for the mouse click contains information about the target object (that is, the object
that was actually clicked). The call to isTargetSelf tests the target of the event. If the target was
sizeBox, this code ignores the click. But, if the target was one of the brush size boxes, this method
calls getTarget to get information about the target. This information is then passed to the custom
procedure setSize.
method mouseDown(var eventInfo MouseEvent)
 if not eventInfo.isTargetSelf() then
 eventInfo.getTarget(newSize)
 setSize(newSize)
 endIf
endmethod

The sizeBox setSize Procedure

The custom procedure setSize is declared in sizeBox's Proc window. It gets the Size property of the
brush size box specified in the mouseDown or open methods. It also sets the pushed-in and popped-
out appearance of the boxes, as appropriate.

You could use a custom method here but there are tradeoffs: a custom method is public, and can be
called by objects not in the containership path. However, a custom method isn't needed here. The only
object that calls this procedure is sizeBox. A custom procedure is private, but Paradox for Windows
can call a custom procedure faster than a custom method, though the code inside executes at the
same speed.
proc setSize(newSize UIObject)
brushSize = newSize.size
oldSize.frame.style = Outside3DFrame
newSize.frame.style = Inside3DFrame
if oldSize.name <> newSize.name then

oldSize.attach(newSize)
endIf

endproc

Code Attached to thePaper

Code attached to the built-in mouseMove method gets data about the mouse position and uses it to
create paint objects. This method is triggered when the mouse moves over thePaper. Three
MouseEvent type methods get information from the event packet:

isLeftDown reports whether the left mouse button is pressed as the mouse is moving.
isInside reports whether the mouse pointer is still inside the object.
getMousePosition returns the position of the mouse pointer at the time of the event.

thePaper mouseMove method

This statement uses the UIObject type method create to create an object onscreen. The argument
BoxTool says to create a box; arguments eventInfo.x() and eventInfo.y() specify the coordinates of the
upper left corner of the box, and arguments brushSize.x() and brushSize.y() specify the coordinates of
the lower right corner of the box. The argument Self specifies a coordinate system relative to the
calling object; in this case, it's thePaper. See the ObjectPAL Reference Guide for details about using
create.
method mouseMove(var eventInfo MouseEvent)
 var
 thePaint,
 targetUI UIObject
 thePoint,
 newPoint Point
 endVar

 if eventInfo.isLeftDown() then
 If eventInfo.isTargetSelf() and eventInfo.isInside() then
 thePaint.create(boxTool, eventInfo.x(), eventInfo.y(),
 brushSize.x(), brushSize.y(), self)

 thePaint.color = brushColor
 thePaint.frame.color = brushColor
 thePaint.visible = Yes
 else
 eventInfo.getMousePosition(thePoint)
 eventInfo.getTarget(targetUI)
 if targetUI.containerName = "#Page2.paintBox.thePaper" then
 thePaint.attach(targetUI.ContainerName)
 targetUI.convertPointWithRespectTo(thePaint, thePoint,
 newPoint)

 thePaint.create(boxTool, newPoint.x(), newPoint.y(),
 brushSize.x(), brushSize.y(), thePaint)

 thePaint.color = brushColor
 thePaint.frame.color = brushColor
 thePaint.visible = Yes
 endIf
 endIf
 endIf
endmethod

Select one of the following objects for a description of the code attached to it:

Paint Form

paintBox

colorBox

sizeBox

helpButton

eraseButton

Help Button Methods

Code attached to the built-in pushButton method of the button named helpButton invokes the Help
application to display help for the Paradox Paint form.
method pushButton(var eventInfo Event)
 message("Loading HELP; one moment, please...")
 helpShowIndex(":WORK:pdxpaint.hlp")
 message("")
endmethod

Select one of the following objects for a description of the code attached to it:

Paint Form

paintBox

colorBox

sizeBox

thePaper

eraseButton

Erase Button Methods

Code attached to the built-in pushButton method of the button named eraseButton erases the paint;
that is, it deletes the colored boxes. The call to enumObjectNames fills an array with the names of the
objects contained by thePage. The first item in this array is the name of thePage, and that's why the
for loop sets the value of arrayCtr to 2.
method pushButton(var eventInfo Event)
var

 boxArray Array[] String
 pageName UIObject
 arrayCtr SmallInt
endvar
 doDefault
 message("One moment while I erase your drawing...")
 delayScreenUpdates(True)
 pageName.attach("thePaper")
 pageName.enumObjectNames(boxArray)
 for arrayCtr from 2 to boxArray.Size()
 pageName.attach(boxArray[arrayCtr])
 pageName.delete()
 endFor
 delayScreenUpdates(False)
 message("")
endmethod

Select one of the following objects for a description of the code attached to it:

Paint Form

paintBox

colorBox

sizeBox

thePaper

helpButton

