The Checkbook Application (CHECKS.FSL)

Use the Checkbook application to enter expenditures and deposits. To enter a transaction, follow these
steps:

1. Move to the empty row at the bottom of the form.

2. Enter a check number in the Num field if you are recording a check expenditure and move to the
next field.

3. Enter a date in MM/DD/YY format in the Date field and move to the next field.
. Enter a description of the transaction in the Memo field and move to the next field.

5. Enter the amount of the transaction in the Out field (if you are recording an expenditure) or the In
field (if you are recording deposits).

The amount of the transaction appears in the Amount field; expenditures are enclosed in
parentheses. The Balance field is updated, reflecting the transaction. If the account is overdrawn,
the Balance amount appears in red.

6. Your changes are saved when you close the form.

IN

Reference

For information on the programming techniques used to create the Checkbook application, see
Checkbook Programmer's Help.

Checkbook Programmer's Help

The Checkbook application, CHECKS.FSL, is used to enter expenditures and deposits, which are
stored in a Paradox table. The application uses a calculated field to calculate the balance after each
entry, and displays the total in red characters when the account is overdrawn.

This application shows how to set data dependent properties, how to intercept keystrokes, and how to
set the value of one field depending on the value of another field.

Before any code was written, the underlying table was created and a form was bound to it. This Help
system contains a brief description of the procedure used to create the underlying table for the
CHECKS.FSL application.

Reference

Select one of the following objects for a description of the code attached to it:
CHECKS table frame

Checks Form

CHECKS record object

CHECKS field objects

helpButton

The Underlying Table

Before any code was written, the underlying table, CHECKS.DB, was created and a form was bound
to it. The CHECKS.DB table has the following structure:

Field name Type

xNum Short Number (Small Int)
xDate Date

xMemo Alpha20

xOut Currency

xIn Currency

xAmount Currency

After the table was created, a form was bound to it by choosing File|[New|Form. From the Design
Layout dialog box, the tabular layout style was chosen to place a table frame in the form. By default,
the table frame takes the name of the table it's bound to, so this table frame's name is CHECKS.

Select one of the following objects for a description of the code attached to it:
Checks Form

CHECKS record object

CHECKS field objects

helpButton

Form Methods

Code attached to the Checks form performs two tasks: it makes sure you're running the application
from the working directory, and it invokes the Help application when you press F1.
Select one of the folllowing methods for a description of the code attached to the form:

open method
keyPhysical method

Select one of the following objects for a description of the code attached to it:
CHECKS table frame

CHECKS record object

CHECKS field objects

helpButton

Form open Method

Code attached to the form's built-in open method makes sure you're running this application from the
working directory. The call to isFile does the checking: when you give a file name without a path or an
alias, Paradox looks in the working directory by default.
method open (var eventInfo Event)
if not eventInfo.isPreFilter () then
if not isFile ("checks.fsl") then
msgInfo ("Startup Error!", "The ObjectPAL example files must be
in the working directory.")
close ()
endIf
endif
endmethod

Form keyPhysical Method

Code attached to the form's built-in keyPhysical method invokes the Windows Help application to
display context-sensitive help when you press F1. The call to vChar identifies each key as it's pressed.
The call to disableDefault blocks Paradox's built-in response.

method keyPhysical (var eventInfo KeyEvent)

if eventInfo.isFirstTime () then
if eventInfo.vChar() = "VK F1" then
disableDefault
helpShowIndex (" :WORK:checks.hlp")
endIf
endIf

endmethod

Table Frame Methods

A table frame is a compound object: when you use the Table tool to place a table frame, you're actually
placing several design objects at once. By default, a table frame contains a header, a record object,
and one or more field objects, depending on the structure of the underlying table.

You can inspect the objects in a compound object just as you would any others, and you can attach
code. To display a diagram of its components, select the table frame, then choose Form|Object Tree.
For more information about compound objects, see the ObjectPAL Reference.

Select one of the following methods for a description of the code attached to the CHECKS table frame:

open method
close method
Select one of the following objects for a description of the code attached to it:
Checks Form

CHECKS record object
CHECKS field objects
helpButton

Table Frame open Method

The built-in open method puts the table frame CHECKS into Edit mode so the user can make changes
to the Checks table. The built-in open method also turns off the TabStop property for the field objects
Balance and xAmount. This technique is useful when you want to let the user move to a field when
certain conditions are met, and block the move otherwise. You can achieve the same effect using
Paradox interactively by inspecting each object and unchecking its Tab Stop property.
method open (var eventInfo Event)
self.edit () ; put self (the table frame) into Edit mode
Balance.TabStop = False ; prevent user from moving to this field
xAmount.TabStop False
endmethod

Table Frame close Method

The table frame's built-in close method takes the table frame out of Edit mode, committing the last
changes to the Checks table, as shown in the following example:
method close (var eventInfo Event)

self.endEdit () ; take the table frame out of Edit mode, commit last
endmethod

Record Object Methods

Like every table frame, CHECKS contains a record object. Although there is no SpeedBar tool for
creating a record object, you can select the record object that is built into a table frame, set its
properties, and attach code to it.

Anything you do to this record object affects all records displayed in the table frame when you run the
form. So, code attached to the built-in methods for the single record object affects all records in the
table frame.

Select one of the following methods for a description of the code attached to the CHECKS record
object:

arrive method

depart method

Select one of the following objects for a description of the code attached to it:

CHECKS table frame

Checks Form

CHECKS field objects
helpButton

Record Object arrive Method

The following code is attached to the record object's built-in arrive method. It highlights the record by
setting its color property to white. This methods assume the table frame color is set to gray in the
Design window. (In other words, right-click CHECKS in the Design window, choose Color, then choose
the gray panel.)
method arrive (var eventInfo MoveEvent)

self.color = White
endmethod

Record Object depart Method

The following code is attached to the record object's built-in depart method. It turns off the highlight
effect by changing the color property to gray.
method depart (var eventInfo MoveEvent)
self.color = Gray
endmethod

In the Design window, you can select only one record object in the table frame. Anything you do to this
record object in the Design window affects all records displayed in the table frame when you run the
form. So, code attached to the built-in methods for the single record object affects all records in the
table frame.

Field Object Methods

You attach methods to the field objects xOut, xin, Balance, and xAmount to process keystrokes and
trigger calculations. As with records, you can select only one instance of a field object in the Design
window, but anything you do affects all instances displayed when you run the form. So, by attaching
code to the single selectable instance of the xOut field object, you specify the behavior of all instances
displayed in the table frame.

Select one of the following field objects for a description of the code attached to it:

xOut

xln

Balance

Select one of the following objects for a description of the code attached to it:
CHECKS table frame
Checks Form

CHECKS record object
helpButton

xOut Field Object Methods

The xOut field object is for transactions (like checks) where money flows out of the account. By adding
code to its changeValue method, it is certain that the amount is subtracted. For simplicity, this method
assumes you always enter positive amounts, but does nothing to prevent you from entering negative
amounts.

Select one of the following methods for a description of the code attached to the xOut field object:

changeValue method

keyChar method
action method

Select one of the following field objects for a description of the code attached to it:
xin
Balance

xOut changeValue Method

A field object's built-in changeValue method executes when changes to a field object's value are
about to be posted. As long as the cursor is in the field object, Paradox assumes you're still editing the
field. When you move the cursor out of the field, Paradox assumes you are finished editing, so it calls
the field object's changeValue method.

The doDefault call executes the built-in code for the changeValue method, committing the changed
value and displaying it in the field object. This is an important step; the built-in code posts the changed
value of the field object. Until it executes, Paradox works with the previous (unchanged) value of the
field object.

method changeValue (var eventInfo ValueEvent)

doDefault ; execute the built-in code to commit
changes
if self.value <> "" then ; If the field is not empty,
xAmount.value = -1 * self.value ; insert a negative amount, and
endIf ; trigger xAmount's changeValue
method.
endmethod

The following statement triggers the xAmount field object's changeValue method immediately; it does
not wait for the current method to finish executing.

xAmount = -1 * self.value

In this application, a transaction can be either a check (entered in xOut) or a deposit (entered in xIn),
but not both. When you type into xOut, this method erases the value in x/n.

xOut keyChar Method

The built-in keyChar method is called when an object gets a key event that isn't translated to an
action. When you press a key, Paradox checks to see if it's meaningful (like F1, which invokes the
Help system), in which case Paradox must take some action. Otherwise, Paradox passes the event to
the target object.

The following code checks the value of the x/n field object. If x/n contains a value, this code blanks it
out.

method keyChar (var eventInfo KeyEvent)

if xIn.value <> "" then ; If the other field is not empty,
xIn.blank () ; make it blank.
endIf

endmethod

xOut action Method

The following code executes when you try to paste a value into the xOut field object. Like the code
attached to this object's built-in keyChar method, this code checks the value of the x/n field object. If
xIn contains a value, this code blanks it out.

method action (var eventInfo ActionEvent)

if eventInfo.id() = EditPaste then
if xIn.value <> "" then ; If the other field is not empty,
xIn.blank () ; make it blank.
endIf
endIf

endmethod

xIn Field Object Methods

The xIn field object is for transactions (like deposits) where money flows into the account. As with the
xOut field object, xIn expects positive amounts, but does nothing to prevent you from entering negative
amounts.

Select one of the following methods for a description of the code attached to the x/n field object:

changeValue method
keyChar method

action method

Select one of the following field objects for a description of the code attached to it:
xOut
Balance

xIn changeValue Method

method changeValue (var eventInfo ValueEvent)

doDefault ; execute the built-in code now
if self.value <> "" then

xAmount = self ; Put the value into the xAmount field,
endIf ; and trigger xAmount's changeValue method.

endmethod

xIn keyChar Method

When you type into x/n, this method erases the value in xOut.
method keyChar (var eventInfo KeyEvent)
if xOut.value <> "" then ; If the other field is not empty,
xOut.blank () ; make it blank.
endIf
endmethod

xIn action Method

The following code executes when you try to paste a value into the x/n field object. Like the code
attached to this object's built-in keyChar method, this code checks the value of the xOut field object.
If xOut contains a value, this code blanks it out.

method action (var eventInfo ActionEvent)

if eventInfo.id() = EditPaste then
if xOut.value <> "" then ; If the other field is not empty,
xOut.blank () ; make it blank.
endIf
endIf

endmethod

Balance Field Object Methods

The Balance field object is an unbound field that displays the amount in your account. In Design mode,
Balance is defined to be a calculated field that displays the sum of the values in the xAmount field of
the Checks table. The User's Guide explains how to define calculated fields.

newValue

The attached code to Balance's newValue method makes the font color data-dependent: values less
than zero display in red characters.
method newValue (var eventInfo Event)

if self.value < 0 then

self.font.color = Red ; use red characters to display values < 0
else
self.font.color = Black ; use black characters to display values > 0
endIf
endmethod

The code is attached to newValue instead of changeValue because Balance is a calculated field. A
calculated field only displays values, and does not write them to a table. Because Paradox never
writes the data from Balance to a table, it never calls Balance's changeValue method. However, it
does call newValue each time Balance displays a new value.

Select one of the following field objects for a description of the code attached to it:

xOut

xin

Help Button Methods

Code attached to the built-in pushButton method of the button named helpButton invokes the Help
application to display help for the Checks form.

method pushButton (var eventInfo Event)
message ("Loading HELP; one moment, please...")
helpShowIndex (" :WORK:checks.hlp")
message ("")

endmethod

Select one of the following objects for a description of the code attached to it:
CHECKS table frame
Checks Form

CHECKS record object
CHECKS field objects

