
The Slot Machine Game (SLOTS.FSL)

Use the Slot Machine game to bet on the chance of dollar signs ($) appearing after you spin. To play,
follow these steps:

1. Choose the amount to bet in the Bet field.

2. Click the Spin button. The display in the top-left corner of the form shows the outcome of the spin.

The Payoff field shows how much money you won on your last spin. You can click the Payoffs
button to see how payoffs are calculated.

The Pot field displays the total amount of money you have; it is recalculated after each spin.

You can borrow money when your bet exceeds the amount of money in the pot. When you do not have
enough money to cover your bet, the Spin button is replaced with the Borrow button and the Money|
Borrow command is enabled. To borrow money:

1. Press the Borrow button or choose the Money|Borrow command. A dialog box appears either giving
you a loan or stating that a loan cannot be authorized at this time.

2. If a loan cannot be authorized, choose the Retry button until the loan is made.

Reference

For information on the programming techniques used to create the Slot Machine game, see Slot
Machine Programmer's Help.

Slot Machine Programmer's Help

The Slot Machine game uses both TCursors and tables, shows how to build a custom menu, and
demonstrates the techniques you can use to develop a full-scale, data entry application. A TCursor is
a pointer to the data in a table, stored in memory. See the ObjectPAL Reference for details.

Before any code was written, two tables and a form were created. This Help system contains a brief
description of the procedure used to create the underlying structure of the SLOTS.FSL application.

Reference

Select one of the following objects for a description of the code attached to it:

Slots Form object

slotsBox object

spinButton button

Pot field object

payOut object

HelpButton object

PayButton object

Underlying Structure of SLOTS.FSL

This game uses two tables, STAKE.DB and SYMBOLS.DB, and one form, SLOTS.FSL. The Stake
table has the following structure: Bet, $; Pot, $. This table has only one record. After the table was
created, the first record was edited to assign the Bet field a value of 5 and the Pot field a value of 100.
The value of the Pot field represents the amount of money you have, and the value of the Bet field
represents the amount of money you are betting.

The Symbols table has the following structure: Symbol (A1) and SymColor (A12). There is no limit to
the number of records this table can contain. The more records used, the longer the wheels in the slot
machine spin.

The Symbol field in each record can contain any single character; these characters appear in the
windows of the slot machine when you spin it. The dollar signs ($) in this field are used to signal a
payoff. The more dollar signs ($), the better the odds of winning.

The SymColor field assigns a color to each symbol. Valid color names include Red, Yellow,
DarkGreen, and Blue; they are listed online. To display the list, open an ObjectPAL Editor window and
choose Language|Constants. Then, from the Types of Constants column, choose Colors. The
constants appear in the Constants column.

The form is bound to the Stake table, and also uses a TCursor opened on the Symbols table. Menus
enable you to borrow money, start a new game, or quit. Since the SpeedBar is not needed in this
application, the Form type procedure hideSpeedBar is used to hide it.

Custom code prevents you from betting more money than is in the pot and also prevents you from
altering the amount in the pot. Code is attached to the following objects:

Slots Form object the Slots form itself

slotsBox the box that contains the other objects

spinButton a button

Pot a field object

payOut a field object

HelpButton object a button

PayButton object a button

The box that frames the symbols is for cosmetic purposes only. Because the default name is used,
referring to it as part of the containership path is unnecessary. For information about default names
and the containership path, see the ObjectPAL Reference.

Form Methods

Code attached to the Slots form performs two tasks: it makes sure you're running the application from
the working directory, and it invokes the Help application when you press F1.

Select one of the following methods for a description of the code attached to the form:

open method

keyPhysical method

Form open Method

Code attached to the form's built-in open method makes sure you're running this application from the
working directory. The call to isFile does the checking: when you give a file name without a path or an
alias, Paradox looks in the working directory by default.
method open(var eventInfo Event)
 if not eventInfo.isPreFilter() then
 if not isFile("slots.fsl") then
 msgInfo("Startup Error!", "The ObjectPAL example files must

 be in the working directory.")
 disableDefault
 close()
 else
 message("Welcome to SLOTS! Choose Spin to try your luck.")
 endIf
 endIf
endmethod

Form keyPhysical Method

Code attached to the form's built-in keyPhysical method invokes the Windows Help application to
display context-sensitive help when you press F1. The call to vChar identifies each key as it's pressed.
The call to disableDefault blocks Paradox's built-in response.
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isFirstTime() then
 if eventInfo.vChar() = "VK_F1" then
 disableDefault
 helpShowIndex(":WORK:slots.hlp")
 endIf
endIf
endmethod

slotsBox Methods and Procedures

Three built-in methods affect the behavior of slotsBox: open, menuAction and close. In addition,
three custom procedures are attached to slotsBox: newGame, quitGame, and borrow. All variables
for this application are declared in slotsBox's Var window.

All of the code is attached either to slotsBox, or to an object that slotsBox contains. The application is
modular: if you want, you can easily copy slotsBox (and the objects it contains), and paste the whole
application in a new form. The code runs without modification.

Select one of the following items for a description of the code attached to it:

Var window

open method

close method

menu methods and procedures

Select one of the following objects for a description of the code attached to it:

Slots Form object

spinButton button

Pot field object

payOut object

HelpButton object

PayButton object

slotsBox Var Window

Variables declared in slotsBox's Var window (shown in the following code) are available to all objects
slotsBox contains.
var
 theChoice String ; holds your menu choice
 goodCredit Logical ; your credit rating
 symbolsTC TCursor ; used to get values from the Symbols table
 p1, p2 PopUpMenu ; used to build the application menu
 m Menu ; the application menu
 nr LongInt ; the number of records in the Symbols table
endVar

slotsBox open Method

When slotsBox opens, the open method hides the SpeedBar, opens a TCursor onto SYMBOLS.DB,
initializes the text boxes, and builds and displays a custom menu.
method open(var eventInfo Event)
 hideSpeedBar()

 if not symbolsTC.open("symbols.db") then ; open the table of symbols
 msgStop("Stop", "Couldn't open the Symbols table.")
 return
 endIf

 nr = symbolsTC.nRecords() ; do this now, instead of when you spin,
 ; so you only have to do it once

 edit() ; puts Stake.db (Bet and Pot) into Edit mode

 w1.text = "$" ; display $ in each text box
 w2.text = "$"
 w3.text = "$"

 if Pot < 1 then
 spinButton.labelText = "Borrow"
 else
 spinButton.labelText = "Spin"
 endIf

 p1.addText("&New game") ; build a pop-up menu
 p1.addText("&Quit") ; the & specifies a key to press
 m.addPopUp("&Game", p1) ; add the pop-up to the menu

 p2.addText("&Borrow") ; build another pop-up menu
 m.addPopUp("&Money", p2) ; add it to the menu

 m.show() ; display the menu
endmethod

slotsBox close Method

The close method does some routine housekeeping and restores the SpeedBar.
method close(var eventInfo Event)
 removeMenu() ; restore built-in menus
 endEdit()

errorTrapOnWarnings(True)
try
 symbolsTC.close()
onFail

errorTrapOnWarnings(False)
endTry

 showSpeedBar()
endmethod

slotsBox Menu Methods and Procedures

slotsBox uses the built-in menuAction method to handle your menu choices. menuAction calls one
of the custom procedures newGame, quitGame, or borrow to handle the menu selection.

Select one of the following methods or procedures for a description of the code attached to the
slotsBox object:

menuAction method

newGame procedure

quitGame procedure

borrow procedure

slotsBox menuAction Method

The menuAction method for slotsBox uses eventInfo.menuChoice and a switch...endSwitch block
to handle menu choices. When you choose a menu item, one of the three custom procedures
newGame, quitGame, or borrow executes.

Ampersands (&) in menu items provide keyboard access to the menu, so they must be included in the
text strings for the case statements. For example, &New game lets you press Alt+N to choose the
item. For more information about working with menus, see the Menu and PopUpMenu sections in the
ObjectPAL Reference. menuAction stores the menu choice, then either lets you choose a menu item
or provides the default choice.
method menuAction(var eventInfo MenuEvent)
 theChoice = eventInfo.menuChoice() ; store the menu choice
 switch ; execute a custom method based on the menu choice
 case theChoice = "&New game" : newGame()
 case theChoice = "&Quit" : quitGame()
 case theChoice = "&Borrow" : borrow()
 otherwise : enableDefault
 endSwitch
endmethod

Three custom procedures act on menu choices: newGame, quitGame, and borrow. These methods
display predefined dialog boxes using methods from the System type (for example,
msgYesNoCancel).

slotsBox newGame Procedure

newGame resets the amount of the bet and the amount in the pot.
 proc newGame()
 ; msgYesNoCancel (System type) displays a pre-defined dialog box
 if msgYesNoCancel("New game", "Do you want to start a new game?
 The pot is $100.") = "Yes" then
 pot = 100
 endIf
endproc

slotsBox quitGame Procedure

quitGame closes the form and restores the built-in menus. If you just want to switch to the Design
window, press F8 instead.
 proc quitGame()
 if msgYesNoCancel("Quit game", "Do you want to quit?") = "Yes" then
 removeMenu() ; (System type) restores built-in menus
 close() ; close this form
 endIf
endproc

slotsBox borrow Procedure

borrow evaluates your credit rating and might or might not let you borrow money.
proc borrow()

 var
 Continue Logical
 tryAgain String
 endvar

 Continue = TRUE

 While Continue

 ; this is a rather arbitrary lending scheme
 if rand() > .4 then
 goodCredit = True
 else
 goodCredit = False
 endIf
 ; msgInfo and msgRetryCancel display pre-defined dialog boxes
 if goodCredit = True then
 Continue = False
 msgInfo("Borrow", "Your credit is good.
You may borrow $10.") ; this message spans two lines

 pot = pot + 10

 else
 TryAgain = msgRetryCancel("Borrow", "Sorry. We can't authorize a
loan at this time. Try again later.") ; here, too, we force a line break
 If TryAgain = "Cancel" then
 Continue = False
 Endif
 endIf

 endWhile
endproc

spinButton Methods and Procedures

Select one of the following methods or procedures for a description of the code attached to the
spinButton object:

spin procedure

open method

pushButton method

Select one of the following objects for a description of the code attached to it:

Slots Form object

slotsBox object

Pot field object

payOut object

HelpButton object

PayButton object

spinButton spin Procedure

The spin is simulated in the procedure spin, which uses the TCursor symbolsTC to step through the
records in the Symbols table, displays the value of the Symbol field in a text box, and sets the font
color property of each text box.

The slot machine pays only if a dollar sign is displayed in a text box; the more dollar signs displayed,
the more money is paid out.
var
 i, x SmallInt ; declare variables used by the custom proc spin
endVar

 proc spin(uio UIObject)
 x = SmallInt(rand() * nr)+ 1 ; nr = symbolsTC.nRecords(),
 ; set in slotsBox's open method
 for i from 1 to x ; move to a record chosen at random
 symbolsTC.nextRecord()
 uio.text = symbolsTC.Symbol ; display the symbol in the text box
 uio.font.color = symbolsTC.SymColor ; set the font color property
 endFor
 symbolsTC.home() ; return to the first record
 endproc

spinButton open Method

The open method attached to spinButton makes the button the active object when you start the
application. It calls moveTo to move focus to Self (the button).
method pushButton(var eventInfo Event)
 self.moveTo()
endmethod

spinButton pushButton Method

The pushButton method attached to spinButton simulates the wheels that spin inside a slot machine.
If you win, this method also determines how much money you receive.
 var
 i, x SmallInt ; declare variables used by the custom proc spin
 endVar

 proc spin(uio UIObject)
 x = SmallInt(rand() * nr) + 1
 ; nr = symbolsTC.nRecords(), set in slotBox's open

 for i from 1 to x ; move to a record chosen at random
 symbolsTC.nextRecord()
 uio.text = symbolsTC.Symbol ; display the symbol in the text box
 uio.font.color = symbolsTC.SymColor ; set the font color
property

 endFor
 symbolsTC.home() ; return to the first record
 endProc

method pushButton(var eventInfo Event)

 doDefault
 if Self.labelText = "Spin" then ; Don't let players bet more than they
have

 if Pot.value < Bet.value then
 msgStop("Hey!", "You don't have that much money.")
 return
 endIf

 pot = pot - bet ; reduce the total money by the amount bet

 spin(w1) ; pass w1 to the spin procedure
 spin(w2)
 spin(w3)

 switch ; determine how much money to pay
 case (w1 = "$" and w2 = "$") and ; player got three $'s
 w3 = "$" : payOut = bet * 25
 case (w1 = "$" and w2 = "$") or ; player got two $'s
 (w1 = "$" and w3 = "$") or
 (w2 = "$" and w3 = "$") : payOut = bet * 10
 case w1 = "$" or w2 = "$" or
 w3 = "$" : payOut = bet * 2 ; player only got one $
 otherwise : payOut = 0
 endSwitch

 pot.value = pot.value + payOut.value ; add payOut to the pot
 Active.moveTo()

 else

 Borrow() ; call custom routine

 endIf

 If pot < 1 then
 Self.labelText = "Borrow" ; player doesn't have any money
 else
 Self.labelText = "Spin" ; player has money, so allow spin
 endIf

endmethod

Pot Field Object Methods

Two methods are attached to the Pot field object: canArrive prevents you from altering the amount in
the pot, and changeValue prevents you from borrowing money you don't need.

Select one of the following methods for a description of the code attached to the Pot field:
canArrive method

changeValue method

Select one of the following objects for a description of the code attached to it:

Slots Form object

slotsBox object

spinButton button

payOut object

HelpButton object

PayButton object

Pot canArrive Method

The canArrive method uses the Event type method setErrorCode to prevent the cursor from moving
into the field. You can achieve the same effect by using ObjectPAL or Paradox for Windows
interactively to turn off the field object's Tab Stop property. For more information about setErrorCode
and canArrive, see the ObjectPAL Reference.
method canArrive(var eventInfo MoveEvent)
 if eventInfo.reason() = UserMove then ; if the user tries to move
 to the field
 eventInfo.setErrorCode(CanNotArrive) ; block the move
 endIf
endmethod

Pot changeValue Method

The changeValue method sets the display attribute of the Money|Borrow menu item. If the pot has
more than $50, you can't borrow any money, and the item is gray (dimmed). Otherwise, the item is
displayed normally, and you can borrow money if your credit is good.
method changeValue(var eventInfo ValueEvent)
 if self > 50 then
 setMenuChoiceAttribute("&Borrow", MenuGrayed + MenuDisabled)
 else
 setMenuChoiceAttribute("&Borrow", MenuEnabled)
 endIf
endMethod

payOut Field Object Methods

The MoveEvent type method setErrorCode in the payOut field object's canArrive method is used to
keep you from moving the cursor into the field object. You can achieve the same effect by using
ObjectPAL or Paradox for Windows interactively to turn off the field object's Tab Stop property. For
more information about setErrorCode and canArrive, see ObjectPAL Reference.

The payOut canArrive method
method canArrive(var eventInfo MoveEvent)
if eventInfo.reason() = UserMove then ; if the user tries to move to the
field

 eventInfo.setErrorCode(CanNotArrive) ; block the move
endIf
endmethod

Select one of the following objects for a description of the code attached to it:

Slots Form object

slotsBox object

spinButton button

Pot field object

HelpButton object

PayButton object

HelpButton Methods

Code attached to the built-in pushButton method of the button named helpButton invokes the Help
application to display help for the Slots form.
method pushButton(var eventInfo Event)
 message("Loading HELP; one moment, please...")
 helpShowIndex(":WORK:slots.hlp")
 message("")
endmethod

Select one of the following objects for a description of the code attached to it:

Slots Form object

slotsBox object

spinButton button

Pot field object

payOut object

PayButton object

PayButton Methods

Code attached to the built-in pushButton method opens a dialog box that lists the amount you win for
each dollar sign.
method pushButton(var eventInfo Event)
msgInfo("PayOffs","You win when a dollar sign ($) appears:
 1 $ = Bet * 2
 2 $ = Bet * 10
 3 $ = Bet * 25")
endmethod

Select one of the following objects for a description of the code attached to it:

Slots Form object

slotsBox object

spinButton button

Pot field object

payOut object

HelpButton object

