
The Address Book Application (ADDRESS.FSL)

The ADDRESS.FSL form is an online address book. You can display information about a customer by
using one of the following methods:

Choose a letter from the list on the right side of the form; all customers whose names begin with
that letter appear in the Name list at the bottom of the form.

For example, choosing K retrieves all customers whose names begin with K.
Press the Search by Customer Number button; the Locate Value dialog box appears.
Enter the Customer number in the Value box.
Make sure @ and .. is chosen and that Customer No appears in the Fields box, then click OK.

Information for the specified customer appears in the top portion of the form.
For example, entering 1221 in the Locate Value dialog box displays information about the Kauai
Dive Shoppe.

You can also use Paradox's built-in tools to navigate and edit the table.

Reference

For information on the programming techniques used to create the Address Book application, see
Address Book Programmer's Help.

Address Book Programmer's Help

The ADDRESS.FSL form is an online address book. With just a few small methods, this application
provides quick and easy access to data. This application demonstrates one technique for showing the
results of a query in a form.

If you want to create a similar application, you must know how to create tables and forms, and how to
bind forms and table frames to tables, as explained in the Paradox for Windows User's Guide. This
Help system contains a brief description of the underlying table structure of this application and the
design objects placed on the ADDRESS.FSL form.

Reference

Select one of the following objects for a description of the code attached to it:

LETTERS table frame

foundTF record objects

searchCustNum button

Table Structure

The following tables are part of the underlying structure of the Address Book application:
CUST.DB contains the customer information used in the address book.
XXX.DB is an empty table with a single field: Temp (A1). It is a temporary table used to unbind

foundTF from FOUND.DB during the query.
FOUND.DB has one field: Name (A30). It displays the customer names that begin with the letter

selected from the table frame.
LETTERS.DB has one field: Letter (A1), containing 26 records (one for each letter of the

alphabet). It contains the letters in the table frame.

See Also
Design objects

Design Objects

The following design objects are placed after binding the form to the tables:

A multi-record object is bound to the Cust table; its record layout is set to 1 across and 1 down. Its
name is CUST by default.

A table frame is bound to the Letters table. Its name is LETTERS by default.
A table frame is bound to the Found table, and its name is then changed to foundTF.
A button named searchCustNum.

See Also
Table structure

Form Methods

Code attached to the Address form performs two tasks: it makes sure you're running the application
from the working directory, and it invokes the Help application when you press F1.

Select one of the folllowing methods for a description of the code attached to the form:

open method

keyPhysical method

Form open Method

Code attached to the form's built-in open method makes sure you're running this application from the
working directory. The call to isFile does the checking: when you give a file name without a path or an
alias, Paradox looks in the working directory by default.
method open(var eventInfo Event)
if eventInfo.isPreFilter() then

;code here executes for each object in form
else

if not eventInfo.isPreFilter() then
if not isFile("address.fsl") then

msgInfo("Startup Error!", "The ObectPAL example files must
be

in the working directory.")
close()

endIf
endIf

endIf
endmethod

Form keyPhysical Method

Code attached to the form's built-in keyPhysical method invokes the Windows Help application to
display context-sensitive help when you press F1. The call to vChar identifies each key as it's pressed.
The call to disableDefault blocks Paradox's built-in response to F1.
method keyPhysical(var eventInfo KeyEvent)
if eventInfo.isFirstTime() then

if eventInfo.vChar() = "VK_F1" then
disableDefault
helpShowIndex(":WORK:address.hlp")

endIf
endIf

endmethod

The LETTERS Table Frame Methods

Like all table frames, LETTERS is a compound object. You can inspect the objects in a compound
object just as you would any others, and you can attach code. Remember, code attached to the built-in
methods for the single record object affects all records in the table frame.

Select one of the following methods or properties for a description of the code attached to the
LETTERS table frame:

open method

setFocus method

TableName property

Select one of the following objects for a description of the code attached to it:

foundTF record objects

searchCustNum button

The Table Frame open Method

The following code is attached to the built-in open method for the record object. It uses the RowNo
property to specify alternating colors for the rows in the table frame. The RowNo property returns the
row number of the table frame, not the underlying table.

The record at the top of the table frame is row 1, the next row is row 2, and so on for all the records
displayed in the table frame. As each record object in the table frame opens, this code executes.
Because Self refers to the object executing the code, the following statement assigns a different value
to rn for each record:
rn = Self.RowNo

Here is the built-in open method code:
method open(var eventInfo Event)
var

rn LongInt
endVar

rn = self.rowNo
if rn.mod(2) = 0 then

self.color = Gray
else

self.color = White
endIf

endmethod

The Table Frame setFocus Method

The following code is attached to the setFocus method built into the field object Letter. This code is
attached to setFocus rather than canArrive because setFocus sets the highlight in a field object,
making it easier to see which letter was chosen. This code (and this application) demonstrates a way
to show the results of a query in a form. Refer to the Paradox for Windows User's Guide for more
information about binding forms to queries.
method setFocus(var eventInfo Event)
 var
 ss string
 qq query
 endvar

 doDefault
 delayScreenUpdates(Yes)
 foundTF.visible = No ; hide the table frame

 foundTF.TableName = "xxx.db" ; bind to XXX.DB while we write to
FOUND.DB

 DMRemoveTable("found.db") ; unbind FOUND.DB so we can write
 ; the query results to it

 ss = self.value + ".." ; assign a value to the variable
 ; used as tilde variable in query

 qq = query ; build a query statement

 cust.db | Customer No | Name |
 | Check | Check ~ss |

 endQuery

 executeQBE(qq, "found.db") ; run the query, write results to
 ; FOUND.DB

 foundTF.TableName = "found.db" ; add FOUND.DB to data model, bind it
to

 ; foundTF
 foundTF.visible = Yes ; display the updated table frame
foundTF

 delayScreenUpdates(No)
endmethod

The Table Frame TableName Property

You use the TableName property twice: first to bind foundTF to XXX.DB, which unbinds FOUND.DB to
run the query and store the results, and then to rebind foundTF to FOUND.DB to display the results.
When you use the TableName property to bind a table frame to a table, it adds the table to the form's
data model. The Form type procedure DMRemoveTable is called to unbind FOUND.DB and remove it
from the form's data model while you run the query and write the results. If DMRemoveTable is not
called, FOUND.DB would be bound to the form and opened, and the attempt to write the query results
would fail.

The foundTF Record Object

The table frame foundTF is a compound object that contains a header, a record object, and some field
objects. The record object displays the names and customer numbers found by the query. You can
choose a name or number to display more information.

Select the following method for a description of the code attached to the foundTF record object:

canArrive method

Select one of the following objects for a description of the code attached to it:

LETTERS frame

searchCustNum button

The foundTF canArrive Method

Code attached to the record object's built-in canArrive method blocks a move to the blank record at
the end of the table. canArrive effectively asks permission to move focus to an object. This code uses
the BlankRecord property to see if the record you're trying to move to is the blank (empty) record at the
end of the table.
method canArrive(var eventInfo MoveEvent)
var

destObj UIObject
destVal AnyType

endvar

if self.blankRecord then
eventInfo.setErrorCode(CanNotArrive)

else
eventInfo.getDestination(destObj)
CUST.locate(destObj.name, destObj.Value)

endIf
endmethod

Because the constant UserMove is used with eventInfo.reason, the custom code for this method
executes only when canArrive is triggered by the user interacting with the form, but not when it's
triggered by Paradox or an ObjectPAL statement. If the move is allowed, the following statement uses
the Event type method getDestination to assign to destObj the UIObject that was the destination of
the move.
eventInfo.getDestination(destObj)

Then, in the following statement, destObj.name returns the name of the destination object,
destObj.value returns the object's value (name and value are UIObject properties), and this data is
passed to the locate method, which searches the CUST multi-record object.
CUST.locate(destObj.name, destObj.Value)

The searchCustNum Button

This button's pushButton method displays Paradox's built-in Locate Value dialog box (described in
the Paradox for Windows User's Guide). The Locate Value dialog box waits for you to enter a number,
then searches the table. If the search succeeds, it displays the results; if it fails, it displays a message.
Because the Locate Value dialog box is a built-in Paradox dialog box, you can't control it using
ObjectPAL. It's up to the user to use it correctly.
method pushButton(var eventInfo Event)

;--
; This method attempts to locate a user-entered customer number, using
; the built-in Locate Value dialog box.
;--

var
retVal Logical

endvar

CUST.Customer_No.moveTo() ; move to Customer No field
retVal = CUST.action(DataSearch) ; call dialog and perform search
If not retVal then ; If search failed...

beep() ; beep and display a message
msgInfo("Oops!", "Either you canceled the dialog box or I couldn't

find the number you entered.")
endIf

endmethod

You can use the UIObject type method action with ObjectPAL constants like DataSearch to access
many Paradox facilities. For more information about using action, see the Object PAL Reference.

Select one of the following objects for a description of the code attached to it:

LETTERS frame

foundTF record objects

Help Button Methods

Code attached to the built-in pushButton method of the button named helpButton invokes the Help
application to display help for the Checks form.
method pushButton(var eventInfo Event)
message("Loading HELP; one moment, please...")

helpShowIndex(":WORK:address.hlp")
message("")

endmethod

