
{bmc win_one.bmp}

WOIO Library Documentation
Version 2.03

Copyright (c) by Lucien Cinc

Introduction
The WOIO package
WOIO and Dynamic Data Exchange

General Information
Entry function main()
Stdin, Stdout and Stderr

Automatic File Generation
Command AUTOGEN

Function Reference
Categories

Function Reference Categories

Control Functions
more enable/disable buffered screen output
isbreak check for ^C pressed

Screen Output Functions
printf formatted output
puts display a string
putchar display a character
putch display a character (direct video)
perror display an error message
textcolor change foreground colours

clrscr clear the screen
clreol clear till the end of the line
gotoxy set the caret screen position
wherex get the horizontal caret position
wherey get the vertical caret position

scrwidth get the screen width
scrheight get the screen height

Input Functions
scanf formatted input
gets get a string
getchar get a character
getch get a character (direct keyboard)

Command Line Functions
argc get the number of command line arguments
argv retrieve a command line argument
arg_c Global variable
arg_v Global variable

argpath retrieve a command line path
argabs retrieve an absolute command line path
argtail retrieve the actual command line tail
argn get the number of command line switches
args retrieve all the command line switches

argstr retrieve a command line string
argnstr get the number of command line strings
isargstr check for a command line string

Status Bar Functions
limit set the status bar target value
inc update the status bar by a value
empty clear the status bar percent indicator

File Functions
fillfile create a file table of all files in a given path
getfile retrieve a file control block from the file table
getfilepath retrieve a file path from the file table
getfilename retrieve a file name from the file table
padfilename pad a file name suitable for displaying

Path Functions

fillpath create a path table of all directories
fillpathall create a path table of all directories for all drives
freepaths free the path table
getpath retrieve a path from the path table
totalfiles total bytes of all files in the path table

Unix Functions
unixpath convert a DOS path to a Unix path
unixcmd convert a DOS command to a Unix command
isunix determine if Unix mode is on or off
todospath convert a Unix path to a DOS path
todoscmd convert a Unix command to a DOS command

File Description Functions
opendesc not yet implemented
closedesc not yet implemented
appenddesc not yet implemented
deletedesc not yet implemented
finddesc not yet implemented

Environment Functions
getenvironment get a WinOne environment variable
putenvironment set a WinOne environment variable

The WOIO package

WOIO is a library that allows programs to interact (ie. preform I/O functions) with the main WinOne window.
WOIO is essentially an abstract layer that sits on top of a normal windows program and provides a number of
functions, that covers up just what is necessary to write a windows program. In fact a program written using WOIO,
will look more like a DOS program then a Windows program. For example, WOIO programs use main() as the entry
point, just like DOS programs do, and printf() will write to the main WinOne window (ie. a virtual screen), just like
DOS programs write to the screen.

WOIO greatly simplifies the writing of programs intended for execution by WinOne. Those of you familiar with
Windows programming would known just how much code is needed to displaying something as simple as "hello,
world" inside a window. It takes about 2 pages of code to do this properly, registering a class, set-up up an event
loop to handle events like WM_PAINT, creating a font, etc. Using the WOIO library the same can be accomplish
with 5 lines of code :-

#include "woio.h"

int main(void)
{
 printf("Hello, World\n");

 return 0;
}

There are some additional things that need to be set-up correctly before the above program will work, for example,
the compilers switches (eg. Smart Callbacks, the Memory Model, etc...) and a definition file (ie. .DEF file) are
needed. All these things will be all discussed later in this document. Apart from these extra things that are needed,
some programs will only need to be modified to include this library to compile. However this will NOT generally be
the case.

WOIO and Dynamic Data Exchange

WOIO uses a sort of backward Dynamic Data Exchange (DDE) protocol to communicate with WinOne. Essentially,
functions are transformed into a message and posted to WinOne. WinOne then processes the message and posts a
reply, which signals success or failure. This is the only way one program can communicate with another program
and get an instant response.

Sounds simple enough, so why is it backward?. Well, there is no initialisation or termination involved in the WinOne
DDE protocol, that always occurs when using the standard DDE protocol. To understand why there is not, you have
to know something about the actual problem that has to be overcome. Assume that WinOne knew nothing about a
program that it needed to execute, then after executing it, WinOne would have to wait for some period of time, to
see if the executing program tries to initiate a DDE conversation. This waiting time is essentially the problem. For
example, how long would WinOne wait before timing out, how can you guarantee that WinOne would not time out,
before a program can link via DDE to WinOne. The overhead associated with waiting for some period of time would
apply to every program that is executed by WinOne, even programs that do not want to communicate with WinOne.
Clearly this is not acceptable, there must be a better way to do things. There needs to be a way to determine before a
program is even executed, whether or not, it wants to communicate with WinOne, so that the appropriate course of
action can be taken. There is of course and here is how it is done. All windows programs contain a description string
that is inserted into the program by the compiler. Description strings usually contain a short description of a program
and/or the author's copyright message. This string is set in the Module Definition File (.DEF file) and is inserted into
a program at compile time. Knowing this fact, it is possible to check for a predetermined string and thereby know
whether or not a program will want to communicate with WinOne before it is even executed.

The entry function main()

WOIO programs have an entry function main(), which is similar to DOS programs, but with one important
difference, main() does not include the argc and argv arguments, but instead these arguments are implemented as
functions calls. The arg... family of functions provide a high level of functionality that the standard argc and argv
arguments do not and greatly simplifies the processing of command line arguments. It is not uncommon to see
programs that devote whole modules purely for handling command line arguments and this is clearly not necessary
when using the WOIO library. It may be interesting to note that these functions are similar to that used internally by
WinOne itself. There are 10 arg... functions available, which include :-

argc argn argnstr argpath
argv args argstr argabs
argtail isargstr

Borland or Turbo C/C++ Compilers for Windows

The WOIO package is compiled using Borland C/C++ for windows. Therefore, to use the WinOne package you will
need to use either the Borland or Turbo C/C++ compilers for Windows 3.0 and above.

Memory Model
 
There are two libraries supplied with the WOIO package. WOIOS.LIB supports the Small Memory model and
WOIOM.LIB supports the Medium Memory model.

The Module Definition file (.DEF)

A module definition file (ie. .DEF file) needs to be created, so that WinOne can recognise external commands and
take the appropriate course of action. WinOne uses the DESCRIPTION field in the .DEF file to determine whether a
program is an external command. For example, consider the following sample .DEF file :-
 
NAME XXXX
DESCRIPTION 'WinOne Command XXXX - Copyright etc...'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 37888
STACKSIZE 6144
 
The DESCRIPTION field must start with 'WinOne Command'. This string is case sensitive. The 'XXXX' part of this
field is not currently checked, but will be in latter releases of WinOne, so please include it, in capital letters. The rest
of the string is ignored. Insert the .DEF file into your project file and this is all that needs to be done, so that WinOne
can determine whether or not your program is an external command and therefore, need special processing.

Command AUTOGEN

Function:

Auto generate the files needed to program external commands.

Syntax:

AUTOGEN

Note:

Command AUTOGEN generates the following files :-

Extension Description
.CPP C++ program file
.H C++ header file
.RC Resource file
.PRJ Project file
.DSK Disk file
.DEF Module Definition file
CLEAN.BAT Batch file to clean up program

files

AUTOGEN asks the following questions in order to generate the correct files :-

Question Description
Command Name Specifies the name of the External Command.
Command Author Specifies the author of the External Command. This

question is optional. Press return to skip the
question.

Memory Model (S/M) Specifies the memory model to use. Enter 'S' to
specify the Small Model and enter 'M' to specify the
Medium Model.

Compiler Path [D:\TCWIN] Specifies the directory in which the compiler is
located. The default path is D:\TCWIN

All the files are generated in the current directory and AUTOGEN assumes the library files (ie. WOIO.H,
WOIOS.LIB and WOIOM.LIB) needed to program external commands are also located in the current directory.

Stdin, Stdout and Stderr

The standard I/O streams stdin, stdout and stderr are not supported by the WOIO library. Instead WOIO provides a
number of functions that attempt to simulate these streams. Functions that requires stdin, stdout or stderr to be past
as a parameter will NOT work, and should NOT be used. For example, fputc(c, stdout), putc(c, stdout), fgetc(stdin)
or getc(stdin) should not be used. When a program uses these functions, the program    will still compile and run, but
will not produce the expected result. You may very well be wondering what happens when a program uses these
functions, well, the output will most likely end up writing over the desktop window. WOIO supports the following
functions, which attempt to mimic the standard I/O functions of the same name as closely as is possible :-

printf textcolor scrwidth scanf
puts clrscr scrheight gets
putchar clreol getchar
putch gotoxy getch
perror wherex

wherey

Actually, stdin, stdout and stderr is a special case of a much larger problem. In general, it is not recommended to use
any functions from the standard I/O library that uses buffered I/O or file streams (ie. FILE *stream). For example
fopen, fread, fwrite,fclose, fprintf, etc..., should not be used, instead un-buffered file I/O should be used, for example
open, close, read, write, _dos_open, _dos_close, _dos_read, _dos_write, OpenFile, etc... Un-buffered file I/O will
allow yield points to be inserted into the code, so that other tasks can run (ie. multi task).

void more(flag)

BOOL flag /* on and off value */

Enable or disable buffered screen output. When writing to the screen the text will not appear until enough lines have
been written to fill one complete screen.

Parameter Description
flag When this value is TRUE, then the screen will only update after each screen

full. When this value is FALSE, then the screen is updated to
show any lines not yet displayed.

Returns
There is no return value.

Comments
When more() is set on it should be set off before the program terminates. When more() is not used then the screen is
updated as it is written to.

Example

#include "woio.h"

int main(void)
{
 int ret;

 more(TRUE); /* enable buffered output */

 ret = dofunction();

 more(FALSE); /* flush any lines not displayed */

 return ret; /* error level */
}

BOOL    isbreak(void)

Determines if ^C has been pressed.

Returns
A non-zero value when ^C has been pressed and zero if it has not been pressed.

Comments
All output to the display is turned OFF when ^C is pressed and the program continues to execute. When ^C has been
pressed (ie. isbreak() returns TRUE) the program should then perform any cleaning up necessary and exit (ie. by
returning from main(), do NOT use exit() to terminate).

Example

#include "woio.h"

/* Loop until ^C is pressed */

int main(void)
{
 printf("press ^C to quit: \n");

 while (1)
 if (isbreak()) /* check for ^C pressed */
 break;

 return 0;
}

int    printf(fmt, ...)

printf() provides formatted output and functions similar to the standard run time library printf().

Example

Comments
For a full description of printf() consult your standard run time library reference manual.

printf() will only display printable characters.

The following #define values can be past as character arguments to change the colour of the text displayed by
printf() :-

#define BLACK (char)128 /* text colours */
#define RED (char)129
#define GREEN (char)130
#define BLUE (char)131
#define YELLOW (char)132
#define MAGENTA (char)133
#define CYAN (char)134
#define WHITE (char)135
#define LIGHTGRAY (char)136
#define LIGHTRED (char)137
#define LIGHTGREEN (char)138
#define LIGHTBLUE (char)139
#define BROWN (char)140
#define LIGHTMAGENTA (char)141
#define LIGHTCYAN (char)142
#define DARKGRAY (char)143

See Also

puts
putch
putchar
textcolor
scanf
gets

Example

Consider the following :-

 printf("%cHello, world\n%cHow are you?", MAGENTA, BLUE);

will display the following :-

Hello, world
How are you?

void puts(s)

char *s /* character string */

Display a character string along with a CR-LF character combination.

Parameter Description
s Address of a    NULL terminated character string.

Returns
There is no return value.

Comments
Function puts() is streamable, that is, when stdout is redirected on the command line to a file, the character string
will be written to the file.

Tab characters are padded with space characters.

See Also
printf
putchar
putch
gets

void putch(c)

char c /* character */

Display a character directly to the screen.

Parameter Description
c Character value.

Returns
There is no return value.

Comments
Function putch() writes directly to the screen, and as a result is not streamable.

Tab characters are padded with space characters.

See Also
printf
puts
putchar
getch

Example

void myerror(char *msg)
{
 textcolor(RED); /* display message in RED */

 while (*msg) /* display message */
 putch(*msg++);

 putch('\n');
}

void putchar(c)

char c /* character */

Display a character.

Parameter Description
c Character value.

Returns
There is no return value.

Comments
Function putchar() is streamable, that is, when stdout is redirected on the command line to a file, the character will
be written to the file.

Tab characters are padded with space characters.

See Also
printf
puts
putch
getchar

Example

void charmsg(char *msg)
{
 while (*msg) /* display message */
 putchar(*msg++);

 putchar('\n');
}

void perror(msg)

char *msg /* character string */

Display an error message.

Parameter Description
msg Address of a    NULL terminated character string that contains the

message    to display.

Returns
There is no return value.

Comments
The message along with two CR-LF character combinations is written to stderr. Stderr is not streamable, that is,
when stdout is redirected on the command line to a file, stderr will still write to the screen.

RED is used for the foreground colour.

See Also
printf
puts
putchar

void textcolor(col)

char col /* colour value */

Set the current text colour.

Parameter Description
col Range value, that specifies the colour to set.

Returns
There is no return value.

Comments
The following colours are #defined in the WOIO.H header file :-

#define BLACK (char)128 /* text colours */
#define RED (char)129
#define GREEN (char)130
#define BLUE (char)131
#define YELLOW (char)132
#define MAGENTA (char)133
#define CYAN (char)134
#define WHITE (char)135
#define LIGHTGRAY (char)136
#define LIGHTRED (char)137
#define LIGHTGREEN (char)138
#define LIGHTBLUE (char)139
#define BROWN (char)140
#define LIGHTMAGENTA (char)141
#define LIGHTCYAN (char)142
#define DARKGRAY (char)143

There are no blinking or bold characters.

See Also
printf

void clrscr(void)

Clear the screen.

Returns
There is no return value

Comments
When the screen is cleared, the contains of the screen are NOT moved to the scroll back buffer.

void clreol(void)

Clear till the end of the current line.

Returns
There is no return value

void gotoxy(x, y)

int x /* co-ordinate */
int y /* co-ordinate */

Position the caret on the screen.

Parameter Description
x Co-ordinate on the horizontal x-axis.
y Co-ordinate on the vertical y-axis.

Returns
There is no return value

Comments
The first character on the screen is at co-ordinate 1, 1.

See Also
wherex
wherey

Example

#include "woio.h"
#include <string.h>

/*
 Display the string "Hello, World"
 centred on the screen
*/

int main(void)
{
 char *s;

 s = "Hello, World"; /* string to display */
 clrscr();

 gotoxy((scrwidth() - strlen(s)) / 2, scrheight() / 2);
 printf("%c%s", WHITE, s);

 gotoxy(0, scrheight());

 return 0; /* error level */
}

int    wherex(void)

Determine the horizontal location of the caret.

Returns
Co-ordinate of the caret on the horizontal x-axis.

Comments
Co-ordinates start from 1.

See Also
wherey
gotoxy

int    wherey(void)

Determine the vertical location of the caret.

Returns
Co-ordinate of the caret on the vertical y-axis.

Comments
Co-ordinate start from 1.

See Also
wherex
gotoxy

int scrwidth(void)

Determine the screen width in characters.

Returns
The screen width in characters.

See Also
scrheight

int scrheight(void)

Determine the screen height in characters.

Returns
The screen height in characters.

See Also
scrwidth

int scanf(fmt, ...)

scanf() provides formatted input and functions the same as the standard run time library scanf().

Comments
For a full description of scanf() consult your standard run time library reference manual.

See Also
gets
getch
getchar
printf

char *gets(s)

char *s /* character string */

Get a character string without the CR-LF character combination.

Parameter Description
s Address of a character array to store the string. This array must be at

least 80 characters in size.

Returns
On success, it returns the address of the character array,    where the NULL terminated character string is stored. On
end of file (ie. EOF) or on error, NULL is returned.

Comments
Function gets() is streamable, that is, when stdin is redirected on the command line from a file, the character string
will be read from the file and will not be echoed to the screen.

Tab characters are converted to a single space character, unless stdin has been redirected on the command line.

See Also
scanf
getch
getchar
puts

Example

#include "woio.h"
#include <dos.h>

/* Determine whether a file exists */

int prompt_open(void)
{
 char buf[80];
 int handle;

 printf("%cEnter filename:%c ", WHITE, LIGHTGRAY);

 if (gets(buf)) /* get a filename */
 if (_dos_open(buf, 0, &handle)
 return handle; /* opened file */

 return 0; /* failed to open file */
}

int main(void)
{
 int handle;

 if ((handle = prompt_open()) != 0) {
 printf("File exists\n");
 _dos_close(handle); /* close the file */
 return 1;
 }

 return 0;
}

int getchar(void)

Get a character .

Returns
On success, a character value is returned, on error or end of file, a value of EOF (ie. -1) is returned.

Comments
Function getchar() is streamable, that is, when stdin is redirected on the command line from a file, the characters
will be read from the file and will not be echoed to the screen.

When stdin has NOT been redirected on the command line then the following applies :-
1. Characters are echoed to the screen.
2. Tab characters are converted to single space characters,
3. Carriage return characters are converted to new line characters (ie. '\r' mapped to '\n').
4. All non-printable characters are ignored.

See Also
scanf
getch
putch
putchar

int getch(void)

Get a character from the keyboard

Returns
A character value.

Comments
Function getch() read characters from the keyboard, and as a result is not streamable.

Characters read are not echoed to the screen.

There is no character mapping. (ie. '\r' is NOT mapped to '\n');

See Also
scanf
putch
getchar
putchar

int    argc(void)

Determines the number of command line arguments.

Returns
The number of command line arguments.

Comments
Command line strings (eg. "This is a string") are considered as command line arguments. Command line switches
are not considered as part of the command line arguments.

See Also
argv
argn
args
argstr
argnstr

char *argv(index)

int index /* command line argument */

Retrieve a command line argument.

Parameter Description
index Specifies which argument to retrieve. Specifying an index of 0 retrieves

the programs name. Command line arguments start from an index of 1.

Returns
On success it returns the address of a NULL terminated string containing the argument. On error it returns a NULL.

Comments
The argument is stored in a static buffer and is over-written each time this function is called. This function cannot be
used to retrieve command line switches.

See Also
argc
argn
args
argstr
argnstr

Example

#include "woio.h"
#include <stdlib.h>

/* Sum all value on the command line */

int main(void)
{
 long total;
 int i, n;

 total = 0; /* zero total */
 if ((n = argc()) == 0) {
 perror("nothing to sum");
 return 1;
 }

 for (i = 0;i < n;i++)

 total += atol(argv(i + 1));

 printf("%ctotal=%c%ld\n", WHITE, YELLOW, total);

 return 0; /* error level */
}

int arg_c
char *arg_v[]

Global variables that contains the number of command line arguments (ie. arg_c) and the actual command line
arguments (ie. arg_v).

Comments
arg_c and arg_v is provided for compatibility with the standard library argc and argv, which is past to a normal C or
C++ main(), and has the following format :-

#include "stdio.h"

int main(int argc, char *argv[])
{
}

and a WinOne external command main(), has the following format :-

#include "woio.h"

int main(void)
{
 /* arg_c is used instead of argc */
 /* arg_v is used instead of argv */
}

When using arg_c and arg_v, avoid using the arg...() family of functions, since arg_c and arg_v do not separate
command line arguments and command line switches.

See Also
argc
argv
argn
args
argstr
argnstr

char *argpath(index)

int index /* command line argument */

Retrieve a command line argument and convert it to a full path name.

Parameter Description
index Specifies which argument to retrieve. Specifying an index of 0 retrieves

the current directory, as a full path name. Command line arguments start from
an index of 1.

Returns
On success it returns a the address of a NULL terminated string containing the full path name. On error it returns a
NULL.

Comments
The full path name is stored in a static buffer and is over-written each time this function is called.

Full path names are made up of the following components :-

drive:\directory\filename

Component When not Specified
drive Current drive is used.
directory Current directory is used. Also relative directories

are converted to absolute directories.
filename *.* is used. Wildcard characters are allowed in the

filename.

See Also
argc
argv
argabs

Examples
The following examples assume the current directory is C:\WINDOWS :-

Argument Full path
C: C:\WINDOWS*.*
C:\ C:*.*
\DOS\ C:\DOS*.*
NOTEPAD.EXE C:\WINDOWS\NOTEPAD.EXE
.EXE C:\WINDOWS.EXE
WHAT C:\WINDOWS\WHAT.
. C:\WINDOWS*.*
. C:\WINDOWS*.*
.. C:*.*

char *argabs(index)

int index /* command line argument */

Retrieve a command line argument and convert it to an absolute path name.

Parameter Description
index Specifies which argument to retrieve. Specifying an index of 0 retrieves

the current directory, as an absolute path name. Command line
arguments start from an index of 1.

Returns
On success it returns the address of a NULL terminated string containing the absolute path name. On error it returns
a NULL.

Comments
The absolute path name is stored in a static buffer and is over-written each time this function is called.

Absolute path names are made up of the following components :-

drive:\directory\filename

Component When not Specified
drive Current drive is used.
directory Current directory is used. Also relative directories

are converted to absolute directories.
filename The previous directory name becomes the

filename. Wildcard characters are allowed in
filename.

See Also
argc
argv
argpath

Example
The following examples assume the current directory is C:\WINDOWS :-

Argument Full path
C: C:\WINDOWS.
C:\ C:\.
\DOS\ C:\DOS.
NOTEPAD.EXE C:\WINDOWS\NOTEPAD.EXE
.EXE C:\WINDOWS.EXE
WHAT C:\WINDOWS\WHAT.
. C:\WINDOWS*.*
. C:\WINDOWS.
.. C:\.

char *argtail(void)

Retrieve the actual command line tail.

Returns
Address of a NULL terminated string containing the command line tail.

Comments
The actual command line tail does not include any redirection arguments. Also, the tail is stored in a static buffer and
is over-written each time this function is called.

See Also
argc
argv
argn
args

int    argn(void)

Determines the number of command line switches.

Returns
The number of switches.

See Also
argc
argv
args

char *args(void)

Retrieve the command line switches.

Returns
Address of a NULL terminated string containing all the switches.

Comments
Switches are stored in a static buffer and is over-written each time this function is called.

The string returned can be empty, when there are no command line switches.

See Also
argc
argv
argn

char *argstr(index)

int index /* command line argument */

Retrieve a command line argument and convert it from a string.

Parameter Description
index Specifies which argument to retrieve. Command line arguments start

from an index of 1.

Returns
On success it returns the address of a NULL terminated string containing the converted command line string. On
error it returns a NULL.

Comments
Strings are converted by removing the first are last double-quote marks characters, and by replacing any pair of
double-quote marks that appear inside the string with a single double-quote mark character.

This function converts the actual command line argument and then returns it. After a command line argument is
converted it is no longer considered a command line string.

The converted command line string is stored in a static buffer and is over-written each time this function is called.

See Also
argc
argv
argnstr
isargstr

Example
Converting the following string "This is a ""string""." returns This is a "string".

int argnstr(void)

Determines the number of command line arguments, that can be converted from a string.

Returns
The number of command line arguments that can be converted from a string.

See Also
argc
argv
argstr
isargstr

BOOL isargstr(index)

int index /* command line argument */

Determines whether a command line argument can be converted from a string.

Parameter Description
index Specifies which argument to check. Command line arguments start from an

index of 1.

Returns
On success, a non-zero value when a command line argument can be converted from a string and zero otherwise.

See Also
argc
argv
argnstr
argstr

void limit(upper)

unsigned long upper /* upper limit */

Set the Status Bar upper limit (ie. target value) to reach.

Parameter Description
upper Specifies the upper limit to reach.

Returns
There is no return value.

Comments
This will display 0 in the Precent indicator, the next time the display is updated.

See Also
inc
empty

void inc(value)

unsigned long value /* value to increment by */

Increment the current Status Bar total.

Parameter Description
value Specifies a value to be added to the current Status Bar total.

Returns
There is no return value.

Comments
Function inc() may be called many times before a percentage is calculated and displayed, since the Status Bar is
updated once every second.

See Also
limit
empty

void empty(void)

Clear the Status Bar Percent indicator.

Returns
There is no return value.

Comments
The Status Bar Percent indicator is blanked unconditionally.

See Also
limit
inc

int fillfile(path, attr)

char *path /* directory path */
unsigned int attr /* file attributes */

Create a File Table of all the files in a given path and with a given attribute.

Parameter Description
path Address of a NULL terminated character string containing a path. This path

can be relative or absolute and can contain Wildcard characters any where in
the filename part of the path.

attr DOS File attribute (defined in DOS.H), include the following    :-

FA_RDONLY Read-only
FA_HIDDEN    Hidden file
FA_SYSTEM    System file
FA_LABEL      Volume label
FA_DIREC      Directory
FA_ARCH    Archive

Returns
On success, it returns the number of files that match the path and attribute specified, otherwise, it returns a value of
zero, when no files match.

Comments
Function fillfile() replaces findfirst(), findnext(), _dos_findfirst() and _dos_findnext(), since these functions do not
support extended wildcard card characters.

WinOne allows wildcard characters to be placed anywhere inside a filename and be correctly interpreted.

All files that meet the specifies requirements are places inside a table (ie. File Table) which is over-written with each
call to this function. Use the getfile...() functions to access the information stored in this table.

The table is sorted in alphabetical order.

See Also
getfile
getfilepath
getfilename

BOOL getfile(index, pff)

int index /* index into File Table */
struct ffblk *pff /* DOS file control block structure */

Retrieve a DOS file control block structure from the File Table.

Parameter Description
index Specifies which ffblk to retrieve from the File Table. Entries in the File Table

start from an index of 0.
pff Address of a DOS file control block structure (defined in DIR.H) :-

struct ffblk {
char ff_reserved[21]; /* reserved by DOS */
char ff_attrib;                /* attribute found */
int    ff_ftime;                /* file time */
int    ff_fdate;                /* file date */
long ff_fsize;                /* file size */
char ff_name[13];          /* found file name */

};

Returns
On success, it returns a non-zero value and the file control block structure is filled. On error zero is returned.

Comments
Use the fillfile() to fill the File Table before using getfile().

See Also
fillfile
getfilepath
getfilename

Example

#include "woio.h"
#include <dir.h>

/* Display a file listing */

int dir(char *path)
{
 int i, n;
 struct ffblk ffblk;

 printf("%cDirectory of %s\n\n", WHITE, path);

 if ((n = fillfile(path, 0)) == 0) {
 perror("No files found");
 return 1;
 }

 for (i = 0;i < n;i++) {

 if (getfile(i, &ffblk) == FALSE) {
 perror("Bad index");

 return 1;
 }

 printf(" %c%-13s%c%9ld\n",
 GREEN, ffblk.ff_name,
 YELLOW, ffblk.ff_fsize); /* display file names */

 }

 return 0; /* all done */
}

int main(void)
{
 char *path;
 int ret;

 if (argc() > 1) { /* check number of arguments */
 perror("Too many or few arguments");
 return 1;
 }

 more(TRUE); /* buffered screen output */

 if ((path = argpath(argc())) == NULL) {
 perror("Path or file not found");
 return 1;
 }

 ret = dir(path);

 more(FALSE); /* flush output */

 return ret; /* error level */
}

char *getfilepath(index)

int index /* index into File Table */

Retrieve a file path from the File Table.

Parameter Description
index Specifies which file path to retrieve from the File Table. Entries in the File

Table start from an index of 0.

Returns
On success it returns the address of a NULL terminated string containing the path name. On error it returns a NULL.

Comments
Use the fillfile() to fill the File Table before using getfilepath().

Path names are stored in a static buffer and is over-written each time this function is called.

The path returned may not contain a fully qualified path name.

See Also
fillfile
getfile
getfilename

char *getfilename(index)

int index /* index into File Table */

Retrieve a file name from the File Table.

Parameter Description
index Specifies which file name to retrieve from the File Table. Entries in the File

Table start from an index of 0.

Returns
On success it returns the address of a NULL terminated string containing the file name. On error it returns a NULL.

Comments
Use the fillfile() to fill the File Table before using getfilename().

File names are stored in a static buffer and is over-written each time this function is called.

See Also
fillfile
getfile
getfilepath

char *padfilename(path)

char *path /* character string */

Pad a file name so that it is suitable for displaying.

Parameter Description
path Address of a NULL terminated character string contain a path name.

Returns
The address of a character string containing the padded file name.

Comments
Only the file name is padded and returned, the rest of the path is discarded.

The padded file name is stored in a static buffer and is over-written each time this function is called.

int fillpath(path)

char *path /* directory path */

Create a Path Table containing all the directories and sub-directories starting from the specified path.

Parameter Description
path Address of a NULL terminated character string containing a path. This path

can be relative or absolute. The file name part of the path is expected and
ignored.

Returns
On success, it returns the number of directories and sub-directories found, otherwise, it returns a value of zero, when
no directories are found.

Comments
The directories . and .. are not included in the table.

A new Path Table is allocated with each call to this function. Use freepaths() to release the memory allocated for the
table, when it is no longer needed.

The table is sorted in alphabetical order

See Also
fillpathall
freepaths
getpath

int fillpathall(void)

Create a Path Table containing all the directories and sub-directories for all drives that are non-removable.

Returns
On success, it returns the number of directories and sub-directories found, otherwise, it returns a value of zero, when
no directories are found.

Comments
The directories . and .. are not included in the table.

A new Path Table is allocated with each call to this function. Use freepaths() to release the memory allocated for the
table, when it is no longer needed.

The table is sorted in alphabetical order

See Also
fillpath
freepaths
getpath

void freepaths(void)

Release the memory allocated to store the Path Table.

Returns
There is no return value.

See Also
fillpath
fillpathall

char *getpath(index)

int index /* index into the Path Table */

Retrieve a path name from the Path Table.

Parameter Description
index Specifies which path to retrieve from the Path Table. Entries in the Path Table

start from an index of 0.

Returns
On success it returns the address of a NULL terminated string containing the path name. On error it returns a NULL.

Comments
All the path names returned contains *.* for the file name part..

Use the fillpath() or fillpathall() to fill the Path Table before using getpath().

Path names are stored in a static buffer and is over-written each time this function is called.

See Also
fillpath
fillpathall
freepaths

int totalfiles(void)

Get the total number of bytes for all the files in the directories contained in the Path Table.

Returns
The total number of bytes for all the files in the Path Table.

Comments
Use the fillpath() or fillpathall() to fill the Path Table before using totalfiles().

The total number of bytes includes all files, irrespective of the file attributes.

See Also
fillpath
fillpathall

char *unixpath(path)

char *path /* DOS path to convert */

Convert a DOS path name to a Unix path name, when Unix mode is enabled.

Parameter Description
path Address of a NULL terminated character string containing a DOS path. This

path can be relative or absolute.

Returns
The address of a NULL terminated string containing the Unix path name, when Unix mode is enabled, otherwise,
the DOS path name is returned.

Comments
Path names are stored in a static buffer and is over-written each time this function is called.

When Unix mode is not enabled, then the DOS path name is simply copied into the static buffer and is not
converted.

See Also

unixcmd
isunix
todospath
todoscmd

char *unixcmd(cmd)

char *cmd /* DOS command to convert */

Convert a DOS command line to a Unix command line, when Unix mode is enabled.

Parameter Description
cmd Address of a NULL terminated character string containing a DOS command

line.

Returns
The address of a NULL terminated string containing the Unix command line, when Unix mode is enabled,
otherwise, the DOS command line is returned.

Comments
Command lines are stored in a static buffer and is over-written each time this function is called.

When Unix mode is not enabled, then the DOS command line is simply copied into the static buffer and is not
converted.

See Also
unixpath
isunix
todospath
todoscmd

int isunix(void)

Determines whether Unix mode is on or off.

Returns
A value greater than zero when Unix is on and zero when Unix is off.

See Also
unixpath
unixcmd
todospath
todoscmd

char *todospath(path)

char *path /* Unix path to convert */

Convert a Unix path name to a DOS path name, when Unix mode is enabled.

Parameter Description
path Address of a NULL terminated character string containing a Unix path. This

path can be relative or absolute.

Returns
The address of a NULL terminated string containing the DOS path name, when Unix mode is enabled, otherwise,
the Unix path name is returned.

Comments
Path names are stored in a static buffer and is over-written each time this function is called.

When Unix mode is not enabled, then the Unix path name is simply copied into the static buffer and is not
converted.

Typically, isunix() will if be called before todospath() to determine whether or not a path should be converted.

See Also
unixpath
unixcmd
isunix
todoscmd

char *todoscmd(cmd)

char *cmd /* Unix command to convert */

Convert a Unix command line to a DOS command line, when Unix mode is enabled.

Parameter Description
cmd Address of a NULL terminated character string containing a Unix command

line.

Returns
The address of a NULL terminated string containing the DOS command line, when Unix mode is enabled,
otherwise, the Unix command line is returned.

Comments
Command lines are stored in a static buffer and is over-written each time this function is called.

When Unix mode is not enabled, then the Unix command line is simply copied into the static buffer and is not
converted.

Typically, isunix() will if be called before todoscmd() to determine whether or not a command line should be
converted.

See Also
unixpath
unixcmd
isunix
todospath

char *getenvironment(name)

char *name /* name of environment variable to retrieve */

Retrieve an environment variable from the WinOne environment space.

Parameter Description
name Address of a NULL terminated character string that contains the name of the

environment variable to retrieve.

Returns
The address of a NULL terminated character string, where the environment variable is stored. On error a NULL
value is returned.

Comments
The environment variable is stored in a static buffer, that is over-written each time this function is called.

See Also
putenvironment

int putenvironment(name)

char *name /* environment string */

Place an environment string into the WinOne environment space.

Parameter Description
name Address of a NULL terminated character string that contains the environment

string to place into the WinOne environment space.

Returns
Value of zero. On error, a value of -1 is returned

Comments
The parameter name is duplicated using malloc() by WinOne and therefore, does not need to be a static    or
malloced and not freed, which is the case with the standard library function putenv().

Environment strings have the form:-

VARNAME=ENVSTRING

To delete an environment variable, exclude the ENVSTRING. For example, to delete the environment variable
AVAR :-

putenvironment("AVAR=");

See Also
getenvironment

