
Manual for hyText 1.0:

A hypertext library for wxWindows

Julian Smart

Knowledge Based Decision Support Group

Artificial Intelligence Applications Institute

80 South Bridge

University of Edinburgh

EH1 1HN

April 1993

1

Contents

1 Introduction 4

1.1 What is hyText? . 4

1.2 Description . 4

1.3 File format . 5

2 Classes and data types 6

2.1 wxHTMappingStructure: wxObject . 6

2.2 wxHyperTextMapping: wxList . 7

2.3 wxHyperTextWindow: wxCanvas . 8

2.4 wxTextChunk: wxObject . 15

Index 17

2

Copyright notice

Copyright (c) 1993 Artificial Intelligence Applications Institute, The University of Edinburgh

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose is hereby granted without fee, provided that the above copyright notice, author statement
and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WAR-
RANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE
OR THE UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHAT-
SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT
ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

3

Chapter 1

Introduction

1.1 What is hyText?

This manual describes in detail the operation of the hyText library. hyText is a general-purpose
hypertext library capable of displaying text with arbitrary blocks highlighted using different fonts
and colours; an example of a hyText application is wxHelp.

This document is incomplete at present, but will be expanded when time permits. Most
information is contained in the class reference section. The best way to use this library is to play
with wxHelp, browse through the class reference (also available on-line as hytext.xlp) and then
examine the wxHelp source (wxhelp.h and wxhelp.cc).

1.2 Description

The hyText class library is intended for wxWindows programmers who need hypertext function-
ality, that is, the ability to display text with highlighted words and phrases, with the ability to
associate functionality with these blocks (such as viewing further information). A high-level API
(Application Programming Interface) is provided to make these kinds of application easy to write.

wxHelp is one such application. Other possible applications include transcript editors and text
output facilities within larger programs.

The main class in this library is wxHyperTextWindow, which is a type of canvas handles
repainting, stores text, and supplies most of the API for manipulating hypertext files.

Before files may be displayed, the programmer must define a mapping between the integer
block types and the font and colour styles which characterise text blocks. See the class reference
for details, and wxhelp.cc for examples.

4

1.3 File format

An hyText file (usual extension .xlp consists of plain ASCII text, with blocks marked with codes
as in the following:

\hy-X{Y}{Text}

where X is the block type and Y is the block identifier (unique within a file). The block type
indicates the style of the block (font, colour, section), where the mapping between type and style
is defined in a table (an instance of wxHyperTextMapping.

Note that blocks may be nested, in which case any styles in an inner block which have been
the assigned ‘default’ characteristic will inherit the style from the outer block.

At the end of a file there is an optional index section, for example:

\hyindex{

"wxWindows Help"

101 102 "wx.xlp"

114 115

117 118

120 121

123 124

}

The first line indicates the start of the index, the second line is a title for the help file, subsequent
lines (until a closing curly bracket) indicate the link between two block identifiers, with an optional
filename after each pair of (long) integers.

This index is only stored and read by hyText, and must be accessed by the application in order
to allow the user to actually traverse links.

5

Chapter 2

Classes and data types

The member functions are given in alphabetical order except for the constructors and destructors
which appear first.

2.1 wxHTMappingStructure: wxObject

This class is used for storing mapping information for a block type.

wxHTMappingStructure::wxHTMappingStructure

void wxHTMappingStructure(int blockType, int textSize, int textFamily, int textStyle,
int textWeight, char *textColour, char *name, int attribute = wxHYPER NONE,
int visibility = TRUE)

Constructor.

wxHTMappingStructure::∼wxHTMappingStructure

void ∼wxHTMappingStructure(void)

Destructor.

wxHTMappingStructure::Copy

wxHTMappingStructure * Copy(void)

Copies the structure.

wxHTMappingStructure::GetFont

wxFont * GetFont(void)

Finds or creates a font matching the characteristics stored in this structure.

6

2.2 wxHyperTextMapping: wxList

An object of this class stores a list of block mapping structures. The programmer needs to call
wxHyperTextWindow::SetMapping with an object of this class, to specify how blocks are
interpreted; several instances of wxHyperTextWindow could make use of the same wxHyper-

TextMapping.

wxHyperTextMapping::wxHyperTextMapping

void wxHyperTextMapping(void)

Constructor.

wxHyperTextMapping::∼wxHyperTextMapping

void ∼wxHyperTextMapping(void)

Destructor.

wxHyperTextMapping::AddMapping

void AddMapping(int blockType, int textSize, int textFamily, int textStyle,
int textWeight, char * textColour, char *name, int attribute = -1,
int visibility = TRUE)

Adds a mapping for a block type. blockType must be unique, and any parameters which have
the default value (-1 for integers, NULL for strings) will be instantiated according to the context
of the block. That is, if a block is nested with another block, the outer block’s characteristics are
used to fill in the default values.

See wxhelp.cc for examples.

wxHyperTextMapping::ClearMapping

void ClearMapping(void)

Deletes all members of the mapping list.

wxHyperTextMapping::FindByName

void FindByName(char *name)

Finds a mapping structure by name.

wxHyperTextMapping::GetMapping

Bool GetMapping(int blockType, int * textSize, int *textFamily, int *textStyle,
int *textWeight, char **textColour, char **name, int *attribute,
int *visibility)

Gets mapping values for a given block, returning FALSE if not found.

7

2.3 wxHyperTextWindow: wxCanvas

Objects of this class represent a canvas on which hypertext files are drawn. Most of the function-
ality of the library is accessed through this class.

Note that the class defines behaviour for OnEvent and OnPaint.

wxHyperTextWindow::wxHyperTextWindow

void wxHyperTextWindow(wxFrame *parent, int x, int y, int w, int h, int style)

Constructor; for details see wxCanvas in the wxWindows class reference.

wxHyperTextWindow::∼wxHyperTextWindow

void ∼wxHyperTextWindow(void)

Destructor.

wxHyperTextWindow::AddBlock

Bool AddBlock(int xStart, int yStart, int xEnd, int yEnd, int blockType, int blockId)

Adds a block from the first row/column to the second row/column, with given type and unique
identifier. The display will not change until the functions Compile andDisplayFileAt are called.

wxHyperTextWindow::ClearBlock

Bool ClearBlock(int blockId)

Clears the given block. The display will not change until the functions Compile and Dis-

playFileAt are called.

wxHyperTextWindow::ClearFile

void ClearFile(void)

Clears the current hypertext file.

wxHyperTextWindow::Compile

void Compile(void)

Compiles the current hypertext file, that is, traverses the block structure of the file associating
actual fonts and other attributes to text chunks. This must be done before a file may be displayed,
and may also require the functions SaveSection and RestoreSection to be called in order to
save and restore the current position in the file, since compilation destroys section pointers.

After a Compile (which is necessary after marking up or any operation which affects the
display) the file must be displayed with DisplayFileAt or RestoreSection.

8

wxHyperTextWindow::DiscardEdits

void DiscardEdits(void)

Discards any edits (just sets the internal modified flag to FALSE).

wxHyperTextWindow::DisplayFile

void DisplayFile(void)

Draw the text at the point found by DisplayFileAt.

wxHyperTextWindow::DisplayFileAt

void DisplayFileAt(long blockId, Bool refresh = TRUE)

Positions the file at the given block, drawing the text only if refresh is TRUE. If blockId is -1,
the file is displayed at the top.

wxHyperTextWindow::DisplayFileAtTop

void DisplayFileAtTop(void)

Displays the file at the top (first section).

wxHyperTextWindow::DisplayNextSection

void DisplayNextSection(void)

Finds and displays the next section.

wxHyperTextWindow::DisplayPreviousSection

void DisplayPreviousSection(void)

Finds and displays the previous section.

wxHyperTextWindow::DrawOutline

void DrawOutline(float x1, float y1, float x2, float y2)

Draws a rectangular outline for rubber-banding using the given top-left and bottom-right
coordinates

wxHyperTextWindow::FindBlock

9

wxTextChunk * FindBlock(long blockId)

For a given block id, returns the text chunk at the start of the block.

wxHyperTextWindow::FindBlockForSection

long FindBlockForSection(wxNode *sectionNode)

Pointers to blocks which mark sections are stored in the data member sections. This function
takes a node which is known to point to a text chunk marking a block, and returns the block id.
This is a fairly trivial function since it just gets the wxTextChunk from the node and returns
its block id.

wxHyperTextWindow::FindChunkAtBlock

wxNode * FindChunkAtBlock(long blockId)

For a given block id, returns the position in the text chunks list of the first CHUNK START LINE
chunk before the block. A wxNode pointer is returned to allow the programmer to efficiently
traverse the text chunks list from this point. The data stored in this node is a wxTextChunk

object.

This function may not be very useful for programmers; it is mainly for internal use. Normally
functions returning and taking block ids are used for manipulating blocks.

wxHyperTextWindow::FindChunkAtLine

wxNode * FindChunkAtLine(long blockId)

For a given block id, returns the position in the text chunks list of the first chunk on the
given line. A wxNode pointer is returned to allow the programmer to efficiently traverse the text
chunks list from this point. The data stored in this node is a wxTextChunk object.

This function may not be very useful for programmers; it is mainly for internal use. Normally
functions returning and taking block ids are used for manipulating blocks.

wxHyperTextWindow::FindPosition

Bool FindPosition(float mouseX, float mouseY, int *charPos, int *linePos, long *blockId)

Finds the character and line position of the given point, plus the id of the block found. Returns
FALSE if no character was found at this position.

wxHyperTextWindow::GenerateId

long GenerateId(void)

Generates a unique identifier for a block; may be overridden to supply a different generator.

10

wxHyperTextWindow::GetBlockText

void GetBlockText(char *buffer, int maxSize, long blockId)

void GetBlockText(char *buffer, int maxSize, wxNode *node, long blockId)

Gets the plain text bounded by the given block, stripping out any block codes. The second
form is more efficient since it takes a node containing a pointer to the wxTextChunk, and doesn’t
have to search for the block.

wxHyperTextWindow::GetBlockType

int GetBlockType(long blockId)

Gets the type of the given block.

wxHyperTextWindow::GetCurrentSectionNumber

int GetCurrentSectionNumber(void)

Gets the number of the currently-displayed section, starting from 1. Zero is returned if there
are no section markers.

wxHyperTextWindow::GetEditMode

Bool GetEditMode(void)

Returns TRUE if the hypertext window is editable.

wxHyperTextWindow::GetFirstSelection

long GetFirstSelection(void)

Gets the first block selected. Use GetNextSelection for subsequent blocks. Returns -1 if no
more selections.

wxHyperTextWindow::GetLinkTable

wxHashTable * GetLinkTable(void)

Returns the hypertext window’s hash table used for storing links between blocks. Objects of
type HypertextItem are stored in the table, containing a destination filename and destination
block id; these objects must be indexed by the source block id, to store a link between a source
block and destination block.

This is only relevant if using the built-in index facility, rather than implementing your own
index. You need to put and get explicitly, and writing to a file will use this table for saving the
index. For example:

11

if (GetLinkTable()->Get(block_id))

MainFrame->SetStatusText("This block already linked!");

else if (hySelection->block_id > -1)

{

GetLinkTable()->Put(block_id,

new HypertextItem(hySelection->filename, hySelection->block_id));

modified = TRUE;

SelectBlock(hySelection->block_id, FALSE);

Compile();

DisplayFile();

}

wxHyperTextWindow::GetNextSelection

long GetFirstSelection(void)

Gets the next block selected (useGetFirstSelection to start. Returns -1 if no more selections.

wxHyperTextWindow::GetTitle

char * GetTitle(void)

Returns NULL or the title (pointer to the hypertext window’s local memory).

wxHyperTextWindow::LoadFile

Bool LoadFile(char *file)

Loads the named file.

wxHyperTextWindow::Modified

Bool Modified(void)

Returns true if the user has modified the text.

wxHyperTextWindow::OnBeginDragLeft

void OnBeginDragLeft(float x, float y, long blockId, int keys)

Called when the user starts to left-drag. Overrideable.

wxHyperTextWindow::OnBeginDragRight

void OnBeginDragRight(float x, float y, long blockId, int keys)

Called when the user starts to right-drag. Overrideable.

12

wxHyperTextWindow::OnDragLeft

void OnDragLeft(Bool draw, float x, float y, long blockId, int keys)

Called when the user is in the middle of a drag operation; called once with draw equal to FALSE
and with x and y equal to the old values, then again with draw equal to TRUE and updated x and
y (to allow erase/draw operations).

wxHyperTextWindow::OnDragRight

void OnDragRight(Bool draw, float x, float y, long blockId, int keys)

Called when the user is in the middle of a drag operation; called once with draw equal to FALSE
and with x and y equal to the old values, then again with draw equal to TRUE and updated x and
y (to allow erase/draw operations).

wxHyperTextWindow::OnEndDragLeft

void OnEndDragLeft(float x, float y, long blockId, int keys)

Called when the user finishes left-dragging. Overrideable.

wxHyperTextWindow::OnEndDragRight

void OnEndDragRight(float x, float y, long blockId, int keys)

Called when the user finishes right-dragging. Overrideable.

wxHyperTextWindow::OnLeftClick

void OnLeftClick(float x, float y, int charPos, int linePos, long blockId, int keys)

Called when the user left-clicks. Overrideable. The default behaviour when SHIFT is held
down is to select or deselect the mouse-over block.

wxHyperTextWindow::OnRightClick

void OnRightClick(float x, float y, int charPos, int linePos, long blockId, int keys)

Called when the user right-clicks. Overrideable.

wxHyperTextWindow::OnSelectBlock

void OnSelectBlock(long blockId, Bool select)

Called whenever a block is selected or deselected. Overridable.

13

wxHyperTextWindow::RestoreSection

void RestoreSection(void)

When a call is made to Compile, the current pointer to the current section becomes in-
valid, since all sections are recalculated. You need to SaveSection before Compile, followed by
RestoreSection after the Compile, in order to restore the display to the previous state.

wxHyperTextWindow::SaveFile

Bool SaveFile(char *file)

Saves the hypertext file and index.

wxHyperTextWindow::SaveSection

void SaveSection(void)

When a call is made to Compile, the current pointer to the current section becomes invalid,
since all sections are recalculated. You need to call this before Compile, followed by Restore-

Section after the Compile, in order to restore the display to the previous state.

wxHyperTextWindow::SelectBlock

void SelectBlock(wxTextChunk * block, Bool select = TRUE)

void SelectBlock(long blockId, Bool select = TRUE)

If select is TRUE, select the existing block, marking it in cyan (colour screens) or in inverse
video (monochrome screens). If select is FALSE, deselect the block. The first form is more efficient
since no search need be done for the block.

Note that Compile must be called before this call has any visible effect.

wxHyperTextWindow::SetBlockType

void SetBlockType(long blockId, int blockType)

Set the specified block to have the given type.

wxHyperTextWindow::SetEditMode

void SetEditMode(Bool editable)

Specifies whether the user should be able to mark up the text or not.

wxHyperTextWindow::SetIndexWriting

14

void SetIndexWriting(Bool indexWriting)

Specifies whether the built-in index and title should be written when SaveFile is called. The
default is FALSE.

wxHyperTextWindow::SetMapping

void SetMapping(wxHyperTextMapping *mapping)

Specify the set of block mappings for this window; this must be called.

wxHyperTextWindow::SetMargins

void SetMargins(int left, int top)

Sets the margins to leave to the left and top of the canvas when displaying text.

wxHyperTextWindow::SetTitle

void SetTitle(char *title)

Sets the title of the hypertext window (allocates its own memory), to be written to the index
file if index writing mode is on.

2.4 wxTextChunk: wxObject

This class is used for storing a text string which has all the same font and colour attributes. The
entire hypertext file is broken up into a list of these fragments, and the Compile function assigns
actual font and colour attributes to each chunk. A text chunk may also mark the start of a line
(each line has a special start line text chunk).

If a chunk represents the start of a block, the block id is this block. For chunks within a
block, the block id is always the id of the block currently in scope. A text chunk which marks
the end of a block has block id set to the next block’s id, but end block set to the ending block’s
id. This is because a text chunk contains the next fragment of text, and an end block chunk has
two purposes: to end one block, and continue another.

wxTextChunk::wxTextChunk

void wxTextChunk(int chunkType, int lineNumber, char *text, wxFont *font,
wxColour *colour, int blockType, long blockId, int attribute, Bool visibility)

Constructor. Used only internally.

wxTextChunk::∼wxTextChunk

void ∼wxTextChunk(void)

Destructor. Used only internally.

15

wxTextChunk::background colour

wxColour * background colour

The background colour allocated for the chunk by Compile.

wxTextChunk::block id

long block id

Id of the block associated with the text in the chunk.

wxTextChunk::block type

int block type

Block type, an integer defined by the application using a wxHyperTextMapping object.

wxTextChunk::chunk type

int chunk type

The chunk type data member may be one of:

• CHUNK START BLOCK

• CHUNK START UNRECOGNIZED BLOCK

• CHUNK END BLOCK

• CHUNK START BLOCK

wxTextChunk::colour

wxColour * colour

The foreground colour allocated for the chunk by Compile.

wxTextChunk::end id

long end id

Id of the block which has just ended, if the type of this chunk is CHUNK END BLOCK.
block id is the id of block which has come into scope, and which starts with the text stored in
the chunk.

wxTextChunk::font

16

wxFont * font

The font allocated for the chunk by Compile.

wxTextChunk::line no

int line no

The line number for this chunk.

wxTextChunk::logical op

int logical op

The logical operator for this chunk.

wxTextChunk::selected

Bool selected

For chunks which start a block, TRUE if the block is currently selected.

wxTextChunk::special attribute

int special attribute

For a block-starting chunk, specifies one or more special attributes ORed together. There is
currently only one such attribute, wxHYPER SECTION, which if present indicates that the block
starts a new section.

wxTextChunk::text

char * text

The actual text in the chunk.

wxTextChunk::visibility

Bool visibility

For a block-starting chunk, determines whether the chunk is visible.

17

Index

∼wxHTMappingStructure, 6
∼wxHyperTextMapping, 7
∼wxHyperTextWindow, 8
∼wxTextChunk, 15

AddBlock, 8
AddMapping, 7

ClearBlock, 8
ClearFile, 8
ClearMapping, 7
Compile, 8
Copy, 6

DiscardEdits, 9
DisplayFile, 9
DisplayFileAt, 9
DisplayFileAtTop, 9
DisplayNextSection, 9
DisplayPreviousSection, 9
DrawOutline, 9

FindBlock, 10
FindBlockForSection, 10
FindByName, 7
FindChunkAtBlock, 10
FindChunkAtLine, 10
FindPosition, 10

GenerateId, 10
GetBlockText, 11
GetBlockType, 11
GetCurrentSectionNumber, 11
GetEditMode, 11
GetFirstSelection, 11, 12
GetFont, 6
GetLinkTable, 11
GetMapping, 7
GetTitle, 12

LoadFile, 12

Modified, 12

OnBeginDragLeft, 12
OnBeginDragRight, 12

OnDragLeft, 13
OnDragRight, 13
OnEndDragLeft, 13
OnEndDragRight, 13
OnLeftClick, 13
OnRightClick, 13
OnSelectBlock, 13

RestoreSection, 14

SaveFile, 14
SaveSection, 14
SelectBlock, 14
SetBlockType, 14
SetEditMode, 14
SetIndexWriting, 15
SetMapping, 15
SetMargins, 15
SetTitle, 15

wxHTMappingStructure, 6
wxHyperTextMapping, 7
wxHyperTextWindow, 8
wxTextChunk, 15

18

