
2.5 The Object Graphics demo

New to version 1.20 of wxWindows is a library of graphic calls to help with manipulating objects

on a canvas. The demo in samples/objects shows a simple application where the user can create

new rectangles and ellipses, join them up, label them, move them about, resize them, and delete

them.

This library is not yet documented but I hope that most of it is reasonably intuitive from

the header �le graphics.h and from the demo source code. Some of the features may be tricky

to spot, however, such as multiple-segment lines and splines, attachment points on shapes, auto-

straightening of line segments, manual repositioning of line endpoints, newlines in text labels

(%n).

7



without any accelerators and without a choice of position. Also, instead of deriving frames from

distinct classes for MDI versus SDI, the approach taken in Microsoft's class library, wxWindows

uses an option in the frame constructor to switch between styles. This allows the programmer to

delay the MDI/SDI decision, perhaps even providing a command-line switch to let the user decide.

The mdi example program shows this run-time switching. Invoked without a command line

switch, it defaults to SDI. Invoked with the switch -mdi it runs as an MDI program, but only

under Windows 3.

There are a few extra considerations when programming an MDI applications. One is the

choice of menu items. An SDI program might have a main window and several child windows,

where the main window menu has options for quitting the program and other global matters,

while child window menus have child-speci�c options. In MDI, the child window menu visually

replaces the main window menu when activated, and so it must duplicate some main window menu

options. One solution is to include logic to add extra menu items depending on whether MDI or

SDI is speci�ed, as the mdi example does.

Also, for programs which must be both SDI and MDI (on non-Windows 3 platforms SDI

mode is mandatory), the main window must not have subwindows (i.e. panels, canvases or text

subwindows) since the client area may be occupied with child MDI windows under Windows 3.

MDI icons pose a small technical di�culty, in that for some reason it is not possible to use the

same technique of dynamically painting the icon onto the iconized frame client area as with SDI

frames. Consequently the programmer must insert some lines into the resource �le for providing

icons (see mdi.rc) as well as using the SetIcon call in the program for non-Windows 3 platforms.

Only one icon image for child MDI frames may be provided.

2.4 The IPC demo

The demo in the directory samples/ipc shows how processes may easily talks to each other

synchronously (i.e. when A sends a message to B, A waits for an answer). If you start server,

then client, a new window should appear on top of the server window, which represents the

connection between server and client. Quitting the client causes the connection to be broken and

this window to disappear.

To illustrate `hot linking', click on the server's listbox. This sends an advise message to the

client, telling it to update its own listbox. The reverse is not true, however.

A client may request information from the server. Select the Request menu item from the

client's File menu. The window which pops up is created by the client and contains a message

that the server sent back.

Selecting Execute from the client's menu makes the server pop up a window. Normally this

would execute some command that the client wishes the server to run.

The Poke menu item sends a poke message to the server; normally this would insert some data

into the server's memory.

Interprocess communication in wxWindows uses a subset of DDE (Dynamic Data Exchange)

which is Microsoft's standard for low-level IPC under Windows. wxWindows gives you DDE under

UNIX as well as Windows, and makes it easier to program into the bargain by using an intuitive

object-oriented model of communication.

6



Figure 2: Demo program running under Windows 3

because wxWindows calls are high level (creating a working text window is a single call) and

because an object-oriented approach is taken, where much default functionality is provided.

Note also the lack of explicit coordinates or sizes in the panel item creation calls. This is the

preferred approach, leaving wxWindows to lay out the items from left to right and top to bottom,

with the user interjecting the occasional NewLine call. Explicit positioning is not recommended

since it is less device independent, but can be achieved by using more parameters to the creation

calls, or by using SetSize after an item has been created. Coordinates and sizes default to -1,

which tells wxWindows to choose appropriate positioning and sizing. In this example, the windows

are explicitly sized, but you may size a frame or panel to �t around its contents by calling Fit.

MyFrame's OnSize member sizes each subwindow in proportion to the new size of the

frame. MyCanvas's OnPaint draws a couple of lines, a rectangle and a spline whenever the

canvas requires repainting (e.g. on creation, and when exposed). The OnEvent member checks

for mouse dragging, and draws a line from the last point to the current position. Scrolling the

canvas and subsequent repainting is handled automatically by wxWindows.

Finally, two callback functions demonstrate popping up dialog boxes, setting the status line,

and inserting text into a text window.

This demo can provide a template for your own application. Gradually modify it for your own

needs, and you will rapidly be writing portable X and Windows 3 programs!

2.3 The MDI demo

As explained in the manual, wxWindows takes an automated view of Microsoft Windows's MDI

(Multiple Document Interface) since it is a very platform-speci�c feature. The special MDI `Win-

dow' menu, allowing the user to switch between child windows, is provided automatically, though

5



Figure 1: Demo program running under X

2.2 More advanced features: the hello demo

The `hello' (source �les, hello.cc and hello.h shows o� some more wxWindows features (see

Figures 1 and 2). When run, two windows pop up. One is the `mainwindow', with two subwindows

- a panel containing various `widgets', and a text window. The other contains a canvas, drawing

some simple shapes, and allowing the user to doodle on it by dragging with the left mouse button.

The canvas contents can be scaled and printed out, either to a printer supported by Windows or

to PostScript, writing to a �le or invoking the printer directly. Under Windows, the graphic may

be copied to the clipboard as a meta�le.

Both frames can be resized, and the subwindows will be resized in an appropriate manner. The

text subwindow can be scrolled; on the panel, a button can be pressed for the program to prompt

the user with text with which to set the status bar. Clicking on the list box writes a line of text

into the text window.

The File menu has options for selecting the `mapping mode' (logical dimensions) used in

drawing graphics, a zoom option, and an option for loading a �le into the text subwindow using

a �le selector tool.

The Timer menu allows the user to switch a timer on and o�; when on, some text gets written

to the text subwindow every �ve seconds.

The Cursormenu enables the canvas cursor to be changed, and lets the potential wxWindows

programmer view the available standard cursors.

The About option of the Help menu pops up a dialog box with some information.

This represents a fair amount of GUI functionality for a relatively small program. This is

4



wxPanel *panel = new wxPanel(frame, 0, 0, 400, 300);

(void)new wxMessage(panel, "Hello, this is a minimal wxWindows program!", 0, 0);

// Show the frame

frame->Show(TRUE);

// Return the main frame window

return frame;

}

// My frame constructor

MyFrame::MyFrame(wxFrame *frame, char *title, int x, int y, int w, int h):

wxFrame(frame, title, x, y, w, h)

{}

// Intercept menu commands

void MyFrame::OnMenuCommand(int id)

{

switch (id) {

case MINIMAL_QUIT:

delete this;

break;

}

}

The statement #include "wx.h" provides the program with access to all the wxWindows

classes and functions.

The �rst class declaration,MyApp, declares a new application, overriding one member func-

tion OnInit. This is an essential part of writing a wxWindows program, since OnInit is the

equivalent of main in a normal C++ program.

The class MyFrame declares a constructor, and a message handler for intercepting menu

commands.

The de�nition of the global variablemyApp looks innocuous enough but this starts the whole

application going simply by being de�ned.

The OnInitMyApp member function does the initialization of the program. It creates a main

frame, sets the icon, creates a menu bar, a panel, and a panel item.

The MyFrame constructor may seem a little pointless, but it ful�ls the requirements of

Microsoft C/C++ syntax in de�ning the constructor in terms of its parent's constructor.

The OnMenuCommand de�nition intercepts menu commands for the main frame. If the

option chosen is Quit, the application terminates by deleting the main frame. Normally any other

existing frames should be deleted (subframes are deleted automatically); these calls are usually

put in the frame's OnClose handler so that a system-generated OnClose event will enable the

program to clean itself up �rst. System-generated OnClose events delete the main frame after

calling OnClose, so this should not be done from within OnClose.

3



* that the above copyright notice, author statement and this permission

* notice appear in all copies of this software and related documentation.

*

* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,

* IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

*

* IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE OR THE

* UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR

* CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM

* LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF

* DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH

* THE USE OR PERFORMANCE OF THIS SOFTWARE.

*/

#include <windows.h> // Included only for benefit of MSC7 precompiled headers

#include "wx.h"

// Define a new application type

class MyApp: public wxApp

{ public:

wxFrame *OnInit(void);

};

// Define a new frame type

class MyFrame: public wxFrame

{ public:

MyFrame(wxFrame *frame, char *title, int x, int y, int w, int h);

void OnMenuCommand(int id);

};

// ID for the menu quit command

#define MINIMAL_QUIT 1

// This statement initializes the whole application and calls OnInit

MyApp myApp;

// `Main program' equivalent, creating windows and returning main app frame

wxFrame *MyApp::OnInit(void)

{

// Create the main frame window

MyFrame *frame = new MyFrame(NULL, "Minimal wxWindows App", 50, 50, 400, 300);

// Give it an icon

frame->SetIcon(new wxIcon("aiai_icn"));

// Make a menubar

wxMenu *file_menu = new wxMenu;

file_menu->Append(MINIMAL_QUIT, "Quit");

wxMenuBar *menu_bar = new wxMenuBar;

menu_bar->Append(file_menu, "File");

frame->SetMenuBar(menu_bar);

// Make a panel with a message

2



Tutorial for wxWindows: a portable GUI toolkit for C++

Julian Smart

Arti�cial Intelligence Applications Institute

University of Edinburgh

EH1 1HN

January 1993

1 Introduction

This short tutorial accompanies the main wxWindows 1.30 manual, and takes a look at some of

the supplied demonstration programs. The tutorial is incomplete and may be expanded in later

releases.

2 The demo programs

2.1 A minimal wxWindows program

The best way to get a feel for how to use a tool is to see a small example. The supplied demo

`minimal' (source �le minimal.cc) shows a rudimentary wxWindows program. It has a main

window with a panel inside it, displaying a message. There is a menu bar with a Filemenu which

in turn has a Quit option, and the program has its own icon. Under Windows 3, the system menu

shows the usual options including Minimize, Maximize and Close, and under X, there is a similar

pull-down system menu provided by the current window manager. The window is resizeable, and

the panel automatically resizes to �t its parent.

Look at minimal.cc.

/*

* File: minimal.cc

* Purpose: Minimal wxWindows app

*

* wxWindows 1.40

* Copyright (c) 1993 Artificial Intelligence Applications Institute,

* The University of Edinburgh

*

* Author: Julian Smart

* Date: 18-4-93

*

* Permission to use, copy, modify, and distribute this software and its

* documentation for any purpose is hereby granted without fee, provided

1


