
wxHashTable, 68, 69

wxHelpInstance, 70, 71

wxIcon, 67, 68

wxIsWild, 100

wxItem, 72, 73

wxList, 73, 74

wxListBox, 76

wxMakeConstraintFunction, 64

wxMakeConstraintRange, 64

wxMakeConstraintStrings, 64

wxMakeFormBool, 64

wxMakeFormButton, 63

wxMakeFormFloat, 64

wxMakeFormLong, 63

wxMakeFormMessage, 63

wxMakeFormNewLine, 63

wxMakeFormShort, 64

wxMakeFormString, 64

wxMatchWild, 100

wxMenu, 78

wxMenuBar, 79

wxMessage, 80

wxMessageBox, 102

wxMetaFile, 81

wxMetaFileDC, 81

wxMultiText, 82

wxNode, 82

wxObject, 83

wxPanel, 83

wxPathList, 85

wxPen, 85, 86

wxPenList, 87

wxPoint, 88

wxRemoveFile, 100

wxRenameFile, 100

wxServer, 88

wxSetCursor, 103

wxSleep, 104

wxSlider, 89

wxStartTimer, 104

wxStringList, 89

wxText, 90

wxTextWindow, 91

wxTimer, 93

wxWindow, 94

wxYield, 104

XView, 106

110

PathOnly, 100

Poke, 45

Position, 58

Previous, 82

Put, 70

Quit, 72

RegisterId, 103

RemoveBrush, 33

RemovePen, 87

Request, 46

ResetContext, 37

RevertValues, 63

RightDown, 58

RightUp, 58

RPC, 106

SaveFile, 92

Scroll, 37

SelectObject, 52

Set, 42, 62, 78

SetBackground, 37, 52

SetBrush, 37, 52

SetClientData, 97

SetClientSize, 97

SetClipboard, 81

SetClippingRegion, 37, 52

SetColour, 33, 86

SetContext, 37

SetCursor, 97

SetData, 83

SetDefault, 72

SetFocus, 97

SetFont, 37, 53

SetHorizontalSpacing, 84

SetIcon, 66

SetLabelPosition, 84

SetLogicalFunction, 38, 53

SetMapMode, 53

SetMenuBar, 67

SetPen, 38, 54

SetScrollbars, 38

SetSelection, 41, 78

SetSize, 97

SetStatusText, 67

SetStringSelection, 41, 78

SetStyle, 33, 87

SetTextBackground, 38, 54

SetTextForeground, 39, 54

SetTitle, 98

SetUserScale, 54

SetValue, 39, 89, 91

SetVerticalSpacing, 84

SetWidth, 87

ShiftDown, 58

Show, 56, 98

Sort, 90

Start, 93

StartAdvise, 46

StartDoc, 54

StartPage, 54

Status line, 106

StatusLineExists, 67

Stop, 93

StopAdvise, 46

String, 41, 78

Tab, 84

Text subwindow, 106

Unix2DosFilename, 100

UpdateValues, 63

ViewStart, 39

WriteText, 92

wxApp, 30

wxBrush, 32

wxBrushList, 33

wxButton, 34

wxCanvas, 34

wxCheckBox, 39

wxChoice, 40

wxClient, 41

wxColour, 42

wxColourDatabase, 42, 43

wxColourDisplay, 103

wxConcatFiles, 100

wxConnection, 43, 44

wxConstraintFunction, 64

wxCopyFile, 100

wxCursor, 46

wxDC, 48

wxDialogBox, 54, 55

wxDisplaySize, 103

wxEvent, 56

wxExecute, 104

wxFileSelector, 102

wxFont, 58, 59

wxForm, 59, 61

wxFrame, 65

wxFunction, 67

wxGetElapsedTime, 103

wxGetSingleChoice, 101

wxGetSingleChoiceData, 101

wxGetSingleChoiceIndex, 101

wxGetTextFromUser, 101

109

DrawText, 36, 51

Enable, 79, 80

EndDoc, 51

EndPage, 51

Execute, 44

FileExists, 99

FileNameFromPath, 99

Find, 75

FindColour, 43

FindItem, 62

FindName, 43

FindOrCreateBrush, 33

FindOrCreatePen, 87

FindString, 40, 77

FindValidPath, 85

First, 75

Fit, 95

Frame, 105

Get, 42, 69, 70

GetClientData, 77, 95

GetClientSize, 95

GetColour, 32, 86

GetCursor, 83

GetDC, 36

GetHandle, 95

GetHorizontalSpacing, 83

GetMapMode, 51

GetPointSize, 59

GetPosition, 95

GetSelection, 41, 77

GetSelections, 77

GetSize, 95

GetStringSelection, 41, 77

GetStyle, 32, 86

GetTextExtent, 95

GetValue, 39, 82, 89, 91

GetVerticalSpacing, 83

GetWidth, 86

GNU C++, 105

GUI, 105

Iconize, 55, 66

Iconized, 55, 66

Initialize, 43, 71

Initialized, 31

Insert, 75

IsAbsolutePath, 99

IsButton, 57

KeywordSearch, 71

Last, 75

LeftDown, 57

LeftUp, 57

ListToArray, 90

LoadFile, 72, 92

LogicalToDeviceX, 52

LogicalToDeviceY, 52

MainLoop, 31

MakeConnection, 42

MakeKey, 70

Member, 75, 85, 90

Menu bar, 105

Meta�le, 105

MiddleDown, 57

MiddleUp, 57

Modi�ed, 92

NewId, 103

NewLine, 84

Next, 70, 82

Notify, 93

Nth, 76

Number, 76

Ok, 52

OnAcceptConnection, 88

OnActivate, 96

OnAdvise, 44

OnCancel, 62

OnChar, 96

OnClose, 96

OnDisconnect, 45

OnEvent, 96

OnExecute, 45

OnExit, 31

OnInit, 31

OnKillFocus, 96

OnMakeConnection, 42

OnMenuCommand, 66

OnMenuSelect, 66

OnOk, 62

OnPaint, 96

OnPoke, 45

OnQuit, 72

OnRequest, 45

OnRevert, 63

OnSetFocus, 96

OnSize, 97

OnStartAdvise, 45

OnStopAdvise, 45

OnUpdate, 63

Open Look, 105

Panel, 106

108

Index

<<, 92, 93

�wxApp, 30

�wxBrush, 32

�wxButton, 34

�wxCanvas, 34

�wxCheckBox, 39

�wxChoice, 40

�wxCursor, 47

�wxDC, 48

�wxDialogBox, 55

�wxEvent, 56

�wxFont, 59

�wxForm, 61

�wxFrame, 65

�wxHashTable, 69

�wxIcon, 68

�wxList, 74

�wxListBox, 76

�wxMenu, 78

�wxMenuBar, 80

�wxMessage, 80

�wxMetaFile, 81

�wxMetaFileDC, 81

�wxPanel, 83

�wxPen, 86

�wxSlider, 89

�wxStringList, 90

�wxText, 91

�wxTextWindow, 91

�wxTimer, 93

�wxWindow, 94

Add, 61, 90

AddBrush, 33

AddChild, 94

AddEnvList, 85

AddPath, 85

AddPen, 87

Advise, 44

API, 105

Append, 40, 74, 76, 77, 79, 80

AppendSeparator, 79

AssociatePanel, 62

BeginFind, 69

Blit, 49

Button, 56

ButtonDown, 56

Canvas, 105

Center, 94

Centre, 65, 72, 94

Check, 79, 80

Clear, 35, 40, 49, 69, 74, 77, 92

Close, 82

ControlDown, 57

copystring, 101

Create, 88

CreateCompatibleDC, 49

CreateStatusLine, 65

Data, 82

DDE, 105

Delete, 62, 69, 90

DeleteContents, 74

DeleteNode, 75

DeleteObject, 75

Deselect, 77

DestroyChildren, 94

DestroyClippingRegion, 35, 49

Device context, 105

DeviceToLogicalX, 49

DeviceToLogicalY, 49

Dialog box, 105

DiscardEdits, 92

Disconnect, 44

DisplayBlock, 71

DisplayContents, 71

DisplaySection, 71

Dos2UnixFilename, 99

Dragging, 57

DrawEllipse, 35, 50

DrawIcon, 50

DrawLine, 35, 50

DrawLines, 35, 50

DrawPoint, 36, 50

DrawPolygon, 35, 50

DrawRectangle, 36, 51

DrawRoundedRectangle, 36, 51

DrawSpline, 36, 51

107

Panel A panel in XView and wxWindows terminology is a subwindow on which a limited range

of panel items (widgets or controls for user input) can be placed. wxWindows allows panel

items to be placed explicitly, or laid out from left to right, top to bottom, which is a more

platform independent method since spacing is calculated automatically at run time. Panel

items cannot be placed on a canvas, which is speci�cally for drawing graphics.

RPC Remote Procedure Call - a method of interprocess communication akin to procedure call,

where the client process makes a call to a server, which sends back a result. The AIAI-

supplied PROLOGIO library supports a simple RPC protocol based on DDE (but working

under both UNIX and Windows).

Status line A status line is often found at the base of a window, to keep the user informed (for

instance, giving a line of description to menu items, as in the hello demo). XView has a

status line (or footer) capability, but wxWindows implements the feature explicitly under

Windows 3 and Motif.

Text subwindow In XView and Motif, a text subwindow is supplied for displaying and retrieving

text from a window. It has a rich set of features, only a small subset of which is currently

catered for by wxWindows.

XView An X toolkit supplied by Sun Microsystems, initially just for porting SunView applica-

tions to X, but which has become a popular toolkit in its own right due to its simplicity of

use. XView implements Sun's Open Look `look and feel' for X, but is not the only toolkit

to do so.

106

Glossary

API Application Programmer's Interface - a set of calls and classes de�ning how a library (in

this case, wxWindows) can be used.

Canvas A canvas in XView and wxWindows is a subwindow on which graphics (but not panel

items) can be drawn. It may be scrollable. A canvas has a device context associated with it.

DDE Dynamic Data Exchange - Microsoft's interprocess communication protocol. wxWindows

provides an abstraction of DDE under both Windows and UNIX.

Device context A device context is an abstraction away from devices such as windows, printers

and �les. Code that draws to a device context is generic since that device context could be

associated with a number of di�erent real device. A canvas has a device context, although

duplicate graphics calls are provided for the canvas, so the beginner doesn't have to think in

terms of device contexts when starting out. wxWindows supports device contexts for canvas,

Windows printer, and Encapsulated PostScript �les on UNIX.

Dialog box In wxWindows a dialog box is a convenient way of popping up a window with panel

items, without having to explicitly create a frame and a panel. A dialog box may be modal

or modeless. A modal dialog does not return control back to the calling program until the

user has dismissed it, and all other windows in the application are disabled until the dialog

is dismissed. A modeless dialog is just like a normal window in that the user can access

other windows while the dialog is displayed.

Frame Under XView (and wxWindows), a visible window usually consists of a frame which con-

tains zero or more subwindows, such as text subwindow, canvas, and panel. Under Windows

3, windows can be nested arbitrarily, but this is not currently supported in wxWindows.

GNU C++ A free, solid C++ compiler which may be used to compile the UNIX side of wxWin-

dows applications.

GUI Graphical User Interface, such as Windows 3 or X.

Menu bar A menu bar is a series of labelled menus, usually placed near the top of a window.

It is popular in Windows 3 and Motif applications, and as such is a supported feature, but

wxWindows has to `simulate' the menu bar under XView by using a panel and several menu

buttons.

Meta�le Microsoft Windows-speci�c object which may contain a restricted set of GDI primitives.

It is device independent, since it may be scaled without losing precision, unlike a bitmap.

A meta�le may exist in a �le or in memory. wxWindows implements enough meta�le func-

tionality to use it to pass graphics to other applications via the clipboard.

Open Look A speci�cation for a GUI `look and feel', initiated by Sun Microsystems. XView

is one toolkit for writing Open Look applications under X, and wxWindows sits on top of

XView.

105

void wxSleep(int secs)

Under X, sleeps for the speci�ed number of seconds using the technique speci�ed in the XView

manual, not UNIX sleep.

::wxStartTimer

void wxStartTimer(void)

Starts a stopwatch; use wxGetElapsedTime to get the elapsed time.

::wxYield

void wxYield(void)

Yields control to other applications (has no e�ect under XView or Motif).

::wxExecute

void wxExecute(char *command)

Executes a command in UNIX or Windows. Note that under Windows, the function immedi-

ately returns, whereas under UNIX, it does returns only after the command has �nished executing,

unless the command is executed in the background (append an ampersand).

104

6.4 GDI functions

The following are relevant to the GDI (Graphics Device Interface).

::wxColourDisplay

Bool wxColourDisplay(void)

Returns TRUE if the display is colour, FALSE otherwise.

::SetCursor

void wxSetCursor(wxCursor *cursor)

Globally sets the cursor; only works in Windows 3.

6.5 Miscellaneous

::NewId

long NewId(void)

Generates an integer identi�er unique to this run of the program.

::RegisterId

void RegisterId(long id)

Ensures that ids subsequently generated by NewId do not clash with the given id.

::wxDisplaySize

void wxDisplaySize(int *width, int *height)

Gets the physical size of the display in pixels.

::wxGetElapsedTime

long wxGetElapsedTime(void)

Gets the time in milliseconds since the last wxGetElapsedTime or wxStartTimer.

::wxSleep

103

::wxMessageBox

int wxMessageBox(char *message, char *caption = "Message", int type = wxOK,

wxFrame *parent = NULL, int x = -1, int y = -1)

General purpose message dialog. type may be one or more of the following identi�ers or'ed

together: wxYES NO, wxCANCEL, wxOK.

The return value is one of: wxYES, wxNO, wxCANCEL, wxOK.

For example:

...

int answer = wxMessageBox("Quit program?", "Confirm",

wxYES_NO | wxCANCEL, main_frame);

if (answer == wxYES)

delete main_frame;

...

message may contain newline characters, in which case the message will be split into separate

lines and centred in the dialog box, to cater for large messages.

::wxFileSelector

char * wxFileSelector(char *message, char *default path = NULL,

char *default �lename = NULL, char *default extension = NULL,

char *wildcard = *.*", int
ags = 0, wxFrame *parent = NULL,

int x = -1, int y = -1)

Pops up a �le selector box. In Windows, this is the common �le selector dialog. In X, this is

a �le selector box with somewhat less functionality. The path and �lename are distinct elements

of a full �le pathname. If path is NULL, the current directory will be used. If �lename is NULL,

no default �lename will be supplied. The wildcard determines what �les are displayed in the �le

selector, and �le extension supplies a type extension for the required �lename. Flags may be a

combination of wxOPEN, wxSAVE, wxOVERWRITE PROMPT, wxHIDE READONLY, or 0.

They are only signi�cant at present in Windows.

Both the X and Windows versions implement a wildcard �lter. Typing a �lename containing

wildcards (*, ?) in the �lename text item, and clicking on Ok, will result in only those �les

matching the pattern being displayed. In the X version, supplying no default name will result in

the wildcard �lter being inserted in the �lename text item; the �lter is ignored if a default name

is supplied.

The application must check for a NULL return value (the user pressed Cancel). For example:

char *s = wxFileSelector("Choose a file to open");

if (s)

{

...

}

102

6.2 String functions

::copystring

char * copystring(char *s)

Makes a copy of the string s using the C++ new operator, so it can be deleted with the delete

operator.

6.3 Dialog functions

Below are a number of convenience functions for getting input from the user or displayingmessages.

Note that in these functions the last three parameters are optional. However, it is recommended

to pass a parent frame parameter, or (in Windows 3) the wrong window frame may be brought to

the front when the dialog box is popped up.

::wxGetTextFromUser

char * wxGetTextFromUser(char *message, char *caption = "Input text",

char *default value = "", wxFrame *parent = NULL, int x = -1, int y = -1)

Pop up a dialog box with title set to caption, message message, and a default value. The user

may type in text and press OK to return this text, or press Cancel to return NULL.

::wxGetSingleChoice

char * wxGetSingleChoice(char *message, char *caption, int n, char *choices[],

wxFrame *parent = NULL, int x = -1, int y = -1)

Pops up a dialog box containing a message, OK/Cancel buttons and a single-selection listbox.

The user may choose an item and press OK to return a string or Cancel to return NULL.

choices is an array of n strings for the listbox.

::wxGetSingleChoiceIndex

int wxGetSingleChoiceIndex(char *message, char *caption, int n, char *choices[],

wxFrame *parent = NULL, int x = -1, int y = -1)

As wxGetSingleChoice but returns the index representing the selected string.

::wxGetSingleChoiceData

char * wxGetSingleChoiceData(char *message, char *caption, int n, char *choices[],

char *client data[], wxFrame *parent = NULL, int x = -1, int y = -1)

As wxGetSingleChoice but takes an array of client data pointers corresponding to the

strings, and returns one of these pointers.

101

char * PathOnly(char *path)

Returns the directory part of the �lename (returns a new string).

::Unix2DosFilename

void Unix2DosFilename(char *s)

Converts a UNIX to a DOS �lename by replacing forward slashes with backslashes.

::wxConcatFiles

Bool wxConcatFiles(char *�le1, char *�le2, char *�le3)

Concatenates �le1 and �le2 to �le3, returning TRUE if successful.

::wxCopyFile

Bool wxCopyFile(char *�le1, char *�le2)

Copies �le1 to �le2, returning TRUE if successful.

::wxIsWild

Bool wxIsWild(char *pattern)

Returns TRUE if the pattern contains wildcards. See wxMatchWild.

::wxMatchWild

Bool wxMatchWild(char *pattern, char *text, Bool dot special)

Returns TRUE if the pattern matches the text ; if dot special is TRUE, �lenames beginning

with a dot are not matched with wildcard characters. See wxIsWild.

::wxRemoveFile

Bool wxRemoveFile(char *�le)

Removes �le, returning TRUE if successful.

::wxRenameFile

Bool wxRenameFile(char *�le1, char *�le2)

Renames �le1 to �le2, returning TRUE if successful.

100

Chapter 6

Miscellaneous functions

6.1 File functions

See also the wxPathList class.

::Dos2UnixFilename

void Dos2UnixFilename(char *s)

Converts a DOS to a UNIX �lename by replacing backslashes with forward slashes.

::FileExists

Bool FileExists(char *�lename)

Returns TRUE if the �le exists.

::FileNameFromPath

char * FileNameFromPath(char *path)

Returns the �lename for a full path (returns a new string).

::IsAbsolutePath

Bool IsAbsolutePath(char *�lename)

Returns TRUE if the argument is an absolute �lename, i.e. with a slash or drive name at the

beginning.

::PathOnly

99

void SetTitle(char *title)

Sets the window's title, allocating its own string storage. Currently applicable only to frames.

wxWindow::Show

void Show(Bool show)

If show is TRUE, displays the window and brings it to the front. Otherwise, hides the window.

98

wxWindow::OnSize

void OnSize(int x, int y)

Sent to the window when the window has been resized. You may wish to use this for frames to

resize their child windows as appropriate. Derive your own class to handle this message. Note that

the size passed is of the whole window: call GetClientSize for the area which may be used by

the application. A window is sent both an OnPaint and an OnSize message when a resize occurs.

wxWindow::SetFocus

void SetFocus(void)

This sets the window to receive keyboard input. The only panel item that will respond to this

under XView is the wxText item and derived items.

wxWindow::SetSize

void SetSize(int x, int y, int width, int height)

This sets the size of the entire window in pixels.

wxWindow::SetClientData

void SetClientData(char *data)

Sets user-supplied client data. Normally, any extra data the programmer wishes to associate

with the window should be made available by deriving a new class with new data members.

wxWindow::SetClientSize

void SetClientSize(int x, int y, int width, int height)

This sets the size of the window client area in pixels. Using this function to size a window

tends to be more device-independent than SetSize, since the application need not worry about

what dimensions the border or title bar have when trying to �t the window around panel items,

for example.

wxWindow::SetCursor

wxCursor * SetCursor(wxCursor *cursor)

Sets the window's cursor, returning the previous cursor (if any). This function applies to all

subwindows.

wxWindow::SetTitle

97

void OnActivate(Bool active)

Called when a window is activated or deactivated (Windows 3 only). If the window is being

activated, active is TRUE, else it is FALSE.

wxWindow::OnChar

void OnChar(int ch)

Sent to the window when the user has pressed a key. ch gives the ASCII code (function key

identi�ers not yet implemented). See OnEvent for mouse event noti�cation. Currently applicable

to canvas subwindows only.

wxWindow::OnClose

Bool OnClose(void)

Sent to the window when the user has tried to close the window. If TRUE is returned, the

window will be deleted by the system, otherwise the attempt will be ignored. Derive your own

class to handle this message; the default handler returns TRUE. Really only relevant to wxFrames.

wxWindow::OnEvent

void OnEvent(wxEvent& event)

Sent to the window when the user has initiated an event with the mouse. Derive your own class

to handle this message. So far, only relevant to the wxCanvas class. See OnChar for character

events, and also wxEvent for how to access event information.

wxWindow::OnKillFocus

void OnKillFocus(void)

Called when a window's focus is being killed.

wxWindow::OnPaint

void OnPaint(void)

Sent to the window when the window must be refreshed. Derive your own class to handle this

message. So far, only relevant to the wxCanvas class.

wxWindow::OnSetFocus

void OnSetFocus(void)

Called when a window's focus is being set.

96

void Fit(void)

Sizes the window to �t the content (for panels and frames).

wxWindow::GetClientData

char * GetClientData(void)

Gets user-supplied client data. Normally, any extra data the programmer wishes to associate

with the window should be made available by deriving a new class with new data members.

wxWindow::GetClientSize

void GetClientSize(int *width, int *height)

This gets the size of the window `client area' in pixels. The client area is the area which may

be drawn on by the programmer, excluding title bar, border etc.

wxWindow::GetHandle

char * GetHandle(void)

Gets the platform-speci�c handle of the physical window.

wxWindow::GetPosition

void GetPosition(int *x, int *y)

This gets the position of the window in pixels, relative to the parent window or if no parent,

relative to the whole display.

wxWindow::GetSize

void GetSize(int *width, int *height)

This gets the size of the entire window in pixels.

wxWindow::GetTextExtent

void GetTextExtent(char *string, int *x, int *y)

Gets the width and height of the string as it would be drawn on the window with the currently

selected font.

wxWindow::OnActivate

95

5.46 wxWindow: wxObject

wxWindow is the base class for all windows and panel items. Any children of the window will be

deleted automatically by the destructor before the window itself is deleted.

wxWindow::wxWindow

void wxWindow(void)

Constructor.

wxWindow::�wxWindow

void �wxWindow(void)

Destructor. Deletes all subwindows, then deletes itself.

wxWindow::AddChild

void AddChild(wxWindow *child)

Adds a child window. This is called automatically by window creation functions so should not

be required by the application programmer.

wxWindow::Center

void Center(int direction)

See Centre.

wxWindow::Centre

void Centre(int direction)

Centres the window. The parameter may be wxHORIZONTAL, wxVERTICAL or wxBOTH.

The actual behaviour depends on the derived window. For a frame or dialog box, centring is

relative to the whole display. For a panel item, centring is relative to the panel.

wxWindow::DestroyChildren

void DestroyChildren(void)

Destroys all children of a window. Called automatically by the destructor.

wxWindow::Fit

94

wxTextWindow& <<(char c)

Operator de�nitions for writing to a text window, for example:

wxTextWindow wnd(my_frame);

wnd << "Welcome to text window number " << 1 << ".\n";

5.45 wxTimer: wxObject

The wxTimer object is an abstraction of Windows 3, XView and X toolkit timers. To use it,

derive a new class and override the Notify member to perform the required action. Start with

Start, stop with Stop, it's as simple as that.

wxTimer::wxTimer

void wxTimer(void)

Constructor.

wxTimer::�wxTimer

void �wxTimer(void)

Destructor. Stops the timer if activated.

wxTimer::Notify

void Notify(void)

This member should be overridden by the user. It is called on timeout.

wxTimer::Start

Bool Start(int milliseconds = -1)

(Re)starts the timer. If milliseconds is absent or -1, the previous value is used. Returns FALSE

if the timer could not be started, TRUE otherwise (in Windows 3 timers are a limited resource).

wxTimer::Stop

void Stop(void)

Stops the timer.

93

void Clear(void)

Clears the window and deletes the stored text.

wxTextWindow::DiscardEdits

void DiscardEdits(void)

Clears the window and deletes the stored text (same as Clear).

wxTextWindow::LoadFile

Bool LoadFile(char * �le)

Loads and displays the named �le, if it exists. Success is indicated by a return value of TRUE.

wxTextWindow::Modi�ed

Bool Modi�ed(void)

Returns TRUE if the text has been modi�ed. Under Windows 3, this always returns FALSE.

wxTextWindow::SaveFile

Bool SaveFile(char * �le)

Saves the text in the named �le. Success is indicated by a return value of TRUE.

wxTextWindow::WriteText

void WriteText(char * text)

Writes the text into the text window. Presently there is no means of writing text to other than

the end of the existing text. Newlines in the text string are the only control characters allowed,

and they will cause appropriate line breaks. See the <<operators for more convenient ways of

writing to the window.

wxTextWindow::<<

wxTextWindow& <<(char *s)

wxTextWindow& <<(int i)

wxTextWindow& <<(long i)

wxTextWindow& <<(
oat f)

wxTextWindow& <<(double d)

92

Constructor, creating and showing a text item with the given string value. If width or height

are omitted (or are less than zero), an appropriate size will be used for the item. func may be

NULL; otherwise it is used as the callback for the list box. Note that the cast (wxFunction)

must be used when passing your callback function name, or the compiler may complain that the

function does not match the constructor declaration.

wxText::�wxText

void �wxText(void)

Destructor, destroying the text item.

wxText::GetValue

char * GetValue(void)

Gets a pointer to the current value { this is allocated using new, so should be deleted by the

calling program.

wxText::SetValue

void SetValue(char * value)

Sets the text. value must be deallocated by the calling program.

5.44 wxTextWindow: wxWindow

A text window is a subwindow of a frame, o�ering some basic ability to display scrolling text. At

present, editing is only possible using the XView and Motif implementations.

wxTextWindow::wxTextWindow

void wxTextWindow(wxFrame *parent, int x = -1, int y = -1,

int width = -1, int height = -1, int style = 0)

Constructor. Set style to wxBORDER to draw a thin border in Windows 3.

wxTextWindow::�wxTextWindow

void �wxTextWindow(void)

Destructor. Deletes any stored text before deleting the physical window.

wxTextWindow::Clear

91

wxStringList::�wxStringList

void �wxStringList(void)

Deletes string list, deallocating strings.

wxStringList::Add

void Add(char *s)

Adds string to list, allocating memory.

wxStringList::Delete

void Delete(char *s)

Searches for string and deletes from list, deallocating memory.

wxStringList::ListToArray

char ** ListToArray(Bool new copies = FALSE)

Converts the list to an array of strings, only allocating new memory if new copies is TRUE.

wxStringList::Member

Bool Member(char *s)

Returns TRUE if s is a member of the list (tested using strcmp).

wxStringList::Sort

void Sort(void)

Sorts the strings in ascending alphabetical order. Note that all nodes (but not strings) get

deallocated and new ones allocated.

5.43 wxText: wxWindow

wxText::wxText

A text item is an area of editable text, with an optional label displayed in front of it.

void wxText(wxPanel *parent, wxFunction func, char *label,

char *value = "", int x = -1, int y = -1, int width = -1, int height = -1)

90

5.41 wxSlider: wxItem

wxSlider::wxSlider

A slider is, as its name suggests, an item with a handle which can be pulled back and forth to

change a value. It is currently horizontal only. In Windows 3, a scrollbar is used to simulate the

slider.

void wxSlider(wxPanel *parent, wxFunction func, char *label,

int value, int min value, int max value, int width, int x = -1, int y = -1)

Constructor, creating and showing a horizontal slider. The width is in pixels, and the scroll

increment will be adjusted to a suitable value given the minimum and maximum integer values.

wxSlider::�wxSlider

void �wxSlider(void)

Destructor, destroying the slider.

wxSlider::GetValue

int GetValue(void)

Gets the current slider value.

wxSlider::SetValue

void SetValue(int value)

Sets the value (and displayed position) of the slider).

5.42 wxStringList: wxList

A string list is a list which is assumed to contain strings, with a speci�c member functions. Memory

is allocated when strings are added to the list, and deallocated by the destructor or by the Delete

member.

wxStringList::wxStringList

void wxStringList(void)

Constructor.

void wxStringList(char *�rst, ...)

Constructor, taking NULL-terminated string argument list. wxStringList allocates memory

for the strings.

89

5.39 wxPoint: wxObject

A wxPoint is a useful data structure for graphics operations. It simply contains
oating point x

and y members.

wxPoint::wxPoint

void wxPoint(void)

void wxPoint(
oat x,
oat y)

Create a point.

oat x

oat y

Members of the wxPoint object.

5.40 wxServer: wxIPCObject

A wxServer object represents the server part of a client-server DDE (Dynamic Data Exchange)

conversation (available in both Windows and UNIX). See section 2.12.

wxServer::wxServer

void wxServer(void)

Constructs a server object.

wxServer::Create

Bool Create(char *service)

Registers the server using the given service name. Under UNIX, the string must contain an

integer id which is used as an Internet port number. FALSE is returned if the call failed (for

example, the port number is already in use).

wxServer::OnAcceptConnection

wxConnection * OnAcceptConnection(char *topic)

When a client calls MakeConnection, the server receives the message and this member is

called. The application should derive a member to intercept this message and return a connection

object of either the standard wxConnection type, or of a user-derived type. If the topic is \STDIO",

the application may wish to refuse the connection. Under UNIX, when a server is created the

OnAcceptConnection message is always sent for standard input and output, but in the context of

DDE messages it doesn't make a lot of sense.

88

void SetStyle(int style)

Set the pen style (wxSOLID or wxTRANSPARENT).

wxPen::SetWidth

void SetWidth(int width)

Set the pen width.

5.38 wxPenList: wxList

A pen list is a list containing all pens which have been created. There is only one instance of this

class: wxThePenList. Use this object to search for a previously created pen of the desired type

and create it if not already found. In some windowing systems, the pen may be a scarce resource,

so it is best to reuse old resources if possible. When an application �nishes, all pens will be deleted

and their resources freed, eliminating the possibility of `memory leaks'.

wxPenList::wxPenList

void wxPenList(void)

Constructor. The application should not construct its own pen list: use the object pointer

wxThePenList.

wxPenList::AddPen

void AddPen(wxPen *pen)

Used by wxWindows to add a pen to the list, called in the pen constructor.

wxPenList::FindOrCreatePen

wxPen * FindOrCreatePen(wxColour *colour, int width, int style)

wxPen * FindOrCreatePen(char *colour name, int width, int style)

Finds a pen of the given speci�cation, or creates one and adds it to the list.

wxPenList::RemovePen

void RemovePen(wxPen *pen)

Used by wxWindows to remove a pen from the list.

87

wxPen::wxPen

void wxPen(void)

void wxPen(wxColour &colour, int style)

void wxPen(char *colour name, int style)

Constructs a pen, uninitialized, initialized with a width, initialized with an RGB colour, a

width and a style, or initialized using a colour name, a width and a style. If the named colour

form is used, an appropriate wxColour structure is found in the colour database.

wxPen::�wxPen

void �wxPen(void)

Destructor, destroying the pen. Note that pens should very rarely be deleted since windows

may contain pointers to them. All pens will be deleted when the application terminates.

wxPen::GetColour

wxColour& GetColour(void)

Returns a reference to the pen colour.

wxPen::GetStyle

int GetStyle(void)

Returns the pen style.

wxPen::GetWidth

int GetWidth(void)

Returns the pen width.

wxPen::SetColour

void SetColour(wxColour &colour)

void SetColour(char *colour name)

void SetColour(int red, int green, int blue)

The pen's colour is changed to the given colour.

wxPen::SetStyle

86

wxPathList::wxPathList

void wxPathList(void)

Constructor.

wxPathList::AddEnvList

void AddEnvList(char *env variable)

Finds the value of the given environment variable, and adds all paths to the path list. Useful

for �nding �les in the PATH variable, for example.

wxPathList::AddPath

void AddPath(char *path)

Adds the given directory to the path list.

wxPathList::FindValidPath

char * FindValidPath(char *�le)

Searches for a full path for an existing �le by appending �le to successive members of the path

list. If the �le exists, a temporary pointer to the full path is returned.

wxPathList::Member

Bool Member(char *�le)

TRUE if the path is in the path list (ignoring case).

5.37 wxPen: wxObject

A pen is a drawing tool for drawing outlines. It is used for drawing lines and painting the outline

of rectangles, ellipses, etc. It has a colour, a width and a style. On a monochrome display, the

default behaviour is to show all non-white pens as black. To change this, set the Colour member

of the device context to TRUE, and select appropriate colours.

The style may be one of wxSOLID, wxDOT, wxLONG DASH, wxSHORT DASH and wx-

DOT DASH. The names of these styles should be self explanatory.

Do not initialize objects on the stack before the program commences, since other required

structures may not have been set up yet. Instead, de�ne global pointers to objects and create

them in OnInit or when required.

An application may wish to dynamically create pens with di�erent characteristics, and there

is the consequent danger that a large number of duplicate pens will be created. Therefore an

application may wish to get a pointer to a pen by using the global list of pens wxThePenList,

and calling the member function FindOrCreatePen. See the entry for the wxPenList class.

85

wxPanel::NewLine

void NewLine(void)

Cause the next item to be positioned at the beginning of the next line, using the current

vertical spacing. More than one new line in succession causes extra vertical spacing to be inserted.

wxPanel::SetHorizontalSpacing

void SetHorizontalSpacing(int sp)

Sets the horizontal spacing for placing items on a panel.

wxPanel::SetLabelPosition

void SetLabelPosition(int position)

Determines the current method of placing labels on panel items: if position is wxHORIZONTAL,

labels are placed to the left of the item value. If position is wxVERTICAL, the label is placed above

the item value. The default behaviour is to have horizontal label placing.

Under Windows 3, this function words for wxText, wxChoice and wxListBox. Under

XView, absolute positioning must be used for the wxVERTICAL position to work in some cases.

This is because of some strange behaviour in XView where setting a horizontal layout orientation

but a vertical label position causes items after list box to appear too low on the panel. So, where

it is necessary to have vertical labels, use absolute positioning where results are not as expected.

wxPanel::SetVerticalSpacing

void SetVerticalSpacing(int sp)

Sets the vertical spacing for placing items on a panel.

wxPanel::Tab

void Tab(int pixels)

Tabs by the given number of pixels.

5.36 wxPathList: wxList

The path list is a convenient way of storing a number of directories, and when presented with a

�lename without a directory, searching for an existing �le in those directories. Storing the �lename

only in an application's �les and using a locally-de�ned list of directories makes the application

and its �les more portable.

Use the FileNameFromPath global function to extract the �lename from the path.

84

void SetData(void)

Sets the data associated with the node (usually the pointer will have been set when the node

was created).

5.34 wxObject

This is the root class of all wxWindows classes, and has no base functionality. It declares a virtual

destructor which ensures that destructors get called for all derived class objects where necessary.

5.35 wxPanel: wxWindow

A panel is a subwindow of a frame in which panel items can be placed to allow the user to view

and set controls. Panel items include messages, text items, list items, and check boxes. Use Fit

to �t the panel around its items.

wxPanel::wxPanel

void wxPanel(wxFrame *parent, int x = -1, int y = -1, int width = -1, int height = -1,

int style = 0)

Constructor. Set style to wxBORDER to draw a thin border in Windows 3.

wxPanel::�wxPanel

void �wxPanel(void)

Destructor. Deletes any panel items before deleting the physical window.

wxPanel::GetCursor

void GetCursor(int *x, int *y)

Gets the current panel `cursor' position, i.e. where the next panel item will be placed.

wxPanel::GetHorizontalSpacing

int GetHorizontalSpacing(void)

Gets the horizontal spacing for placing items on a panel.

wxPanel::GetVerticalSpacing

int GetVerticalSpacing(void)

Gets the vertical spacing for placing items on a panel.

83

wxMetaFileDC::Close

wxMetaFile * Close(void)

This must be called after the device context is �nished with. A meta�le is returned, and

ownership of it passes to the calling application (so it should be destroyed explicitly).

5.32 wxMultiText: wxText

Members as for wxText, but allowing multiple lines of text.

wxText::GetValue

char * GetValue(void) void GetValue(char *bu�er, intbu�erSize)

The �rst form gets a pointer to the current value { this is allocated using new, so should be

deleted by the calling program. The second form copies the value into a bu�er, for situations

where a lot of text is returned (more than the capacity of the small bu�er used for the �rst form).

5.33 wxNode: wxObject

A node structure used in linked lists (see wxList).

wxNode::Data

wxObject * Data(void)

Retrieves the client data pointer associated with the node. This will have to be cast to the

correct type.

wxNode::Next

wxNode * Next(void)

Retrieves the next node (NULL if at end of list).

wxNode::Previous

wxNode * Previous(void)

Retrieves the previous node (NULL if at start of list).

wxNode::SetData

82

5.30 wxMetaFile: wxObject

A wxMetaFile represents the Windows 3 meta�le object, so meta�le operations have no e�ect in

X. In wxWindows, only su�cient functionality has been provided for copying a graphic to the

clipboard; this may be extended in a future version. Presently, the only way of creating a meta�le

is to use a wxMeta�leDC.

wxMetaFile::wxMetaFile

void wxMetaFile(void)

Constructor.

wxMetaFile::�wxMetaFile

void �wxMetaFile(void)

Destructor.

wxMetaFile::SetClipboard

Bool SetClipboard(int width = 0, int height = 0)

Passes the meta�le data to the clipboard. The meta�le can no longer be used for anything,

but the wxMetaFile object must still be destroyed by the application.

5.31 wxMetaFileDC: wxDC

This is a type of device context that allows a meta�le object to be created (Windows only), and

has most of the characteristics of a normal wxDC. The Closemember must be called after drawing

into the device context, to return a meta�le. The only purpose for this at present is to allow the

meta�le to be copied to the clipboard (see wxMetaFile).

Adding meta�le capability to an application should be easy if you already write to a wxDC;

simply pass the wxMetaFileDC to your drawing function instead. You may wish to conditionally

compile this code so it is not compiled under X (although no harm will result if you leave it in).

wxMetaFileDC::wxMetaFileDC

void wxMetaFileDC(char *�lename = NULL)

Constructor. If no �lename is passed, the meta�le is created in memory.

wxMetaFileDC::�wxMetaFileDC

void �wxMetaFileDC(void)

Destructor.

81

void �wxMenuBar(void)

Destructor, destroying the menu bar and removing it from the parent frame (if any).

wxMenuBar::Append

void Append(wxMenu *menu, char *title)

Adds the item to the end of the menu bar. Do not use menu after this call: it will be deallocated

by wxWindows.

wxMenuBar::Enable

void Enable(int id, Bool
ag)

If
ag is TRUE, enables the given menu item, else disables it (greys it). Only use this when

the menu bar has been associated with a frame; otherwise, use the wxMenu equivalent call.

wxMenuBar::Check

void Check(int id, Bool
ag)

If
ag is TRUE, checks the given menu item, else unchecks it. Works in Windows but has no

e�ect in XView or Motif. Only use this when the menu bar has been associated with a frame;

otherwise, use the wxMenu equivalent call.

5.29 wxMessage: wxItem

A message is a simple line of text which may be displayed in a panel. It does not respond to mouse

clicks.

wxMessage::wxMessage

void wxMessage(wxPanel *panel, char *message, int x = -1, int y = -1)

Creates and displays the message at the given coordinate.

wxMessage::�wxMessage

void �wxMessage(void)

Destroys the message.

80

wxMenu::Append

void Append(int id, char * item)

void Append(int id, char * item, wxMenu *submenu)

Adds the item to the end of the menu. item must be deallocated by the calling program. If

the second form is used, the given menu will be a pullright submenu (must be created already).

Do not use submenu after this call: it will be deallocated by wxWindows.

wxMenu::AppendSeparator

void AppendSeparator(void)

Adds a separator to the end of the menu. Under XView, this appears as a space.

wxMenu::Enable

void Enable(int id, Bool
ag)

If
ag is TRUE, enables the given menu item, else disables it (greys it).

wxMenu::Check

void Check(int id, Bool
ag)

If
ag is TRUE, checks the given menu item, else unchecks it. Works in Windows 3 but has

no e�ect in XView or Motif.

5.28 wxMenuBar: wxItem

A menu bar is a series of menus accessible from the top of a frame. Selecting a title pulls down a

menu; selecting a menu item causes a MenuSelection message to be passed to the frame with the

menu item integer id as the only argument.

wxMenuBar::wxMenuBar

void wxMenuBar(void)

void wxMenuBar(int n, wxMenu *menus[], char *titles[])

Construct a menu bar. In the second form, the calling program must have created an array of

menus and an array of titles. Do not use the submenus again after this call.

wxMenuBar::�wxMenuBar

79

wxListBox::Set

void Set(int n, char *choices[])

Clears the list box and adds the given strings. Deallocate the array from the calling program

after this function has been called.

wxListBox::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position.

wxListBox::SetStringSelection

void SetStringSelection(char * s)

Sets the choice by passing the desired string.

wxListBox::String

char * String(int n)

Returns a temporary pointer to the string at position n.

5.27 wxMenu: wxItem

A menu is a popup (or pull down) list of items, one of which may be selected before the menu goes

away (clicking elsewhere dismisses the menu). At present, menus may only be used to construct

menu bars, but will eventually have wider use.

A menu item has an integer ID associated with it which can be used to identify the selection,

or to change the menu item in some way.

wxMenu::wxMenu

void wxMenu(char *title = NULL, wxFunction func = NULL)

Both arguments are presently ignored.

wxMenu::�wxMenu

void �wxMenu(void)

Destructor, destroying the menu.

78

void Append(char * item, char *client data)

Adds the item to the end of the list box, associating the given data with the item. item must

be deallocated by the calling program.

wxListBox::Clear

void Clear(void)

Clears all strings from the list box.

wxListBox::GetClientData

char * GetClientData(int n)

Returns a pointer to the client data associated with the given item (if any).

wxListBox::Deselect

void Deselect(int n)

Deselects the given item in the list box.

wxListBox::FindString

int FindString(int char *s)

Finds a choice matching the given string, returning the position if found, or -1 if not found.

wxListBox::GetSelection

int GetSelection(void)

Gets the id (position) of the selected string - for single selection list boxes only.

wxListBox::GetSelections

int GetSelections(int **selections)

Gets an array containing the positions of the selected strings. The number of selections is

returned. Pass a pointer to an integer array, and do not deallocate the returned array.

wxListBox::GetStringSelection

char * GetStringSelection(void)

Gets the selected string - for single selection list boxes only. This must be copied by the calling

program if long term use is to be made of it.

77

wxNode * Nth(int n)

Returns the nth node in the list, indexing from zero (NULL if the list is empty or the nth node

could not be found).

wxList::Number

int Number(void)

Returns the number of elements in the list.

5.26 wxListBox: wxItem

A list box is used to select one or more of a list of strings. The strings are displayed in a scrolling

box, with the selected string(s) marked in reverse video. A list item can be single selection (if an

item is selected, the previous selection is removed) or multiple selection (clicking an item toggles

the item on or o� independently of other selections).

wxListBox::wxListBox

void wxListBox(wxPanel *parent, wxFunction func, char *label,

Bool multiple selection = FALSE, int x = -1, int y = -1,

int width = -1, int height = -1, int n, char *choices[])

Constructor, creating and showing a list box. If width or height are omitted (or are less than

zero), an appropriate size will be used for the list box. func may be NULL; otherwise it is used

as the callback for the list box. Note that the cast (wxFunction) must be used when passing

your callback function name, or the compiler may complain that the function does not match the

constructor declaration.

n is the number of possible choices, and choices is an array of strings of size n. wxWindows

allocates its own memory for these strings so the calling program must deallocate the array itself.

multiple selection is TRUE for a multiple selection list box, FALSE for a single selection list

box.

wxListBox::�wxListBox

void �wxListBox(void)

Destructor, destroying the list box.

wxListBox::Append

void Append(char * item)

Adds the item to the end of the list box. item must be deallocated by the calling program, i.e.

wxWindows makes its own copy.

76

Bool DeleteNode(wxNode *node)

Deletes the given node from the list, returning TRUE if successful.

wxList::DeleteObject

Bool DeleteObject(wxObject *object)

Finds the given client object and deletes the appropriate node from the list, returning TRUE

if successful. The application must delete the actual object separately.

wxList::Find

wxNode * Find(long key)

wxNode * Find(char *key)

Returns the node whose stored key matches key. Use on a keyed list only.

wxList::First

wxNode * First(void)

Returns the �rst node in the list (NULL if the list is empty).

wxList::Insert

wxNode * Insert(wxObject *object)

Insert object at front of list.

wxNode * Insert(wxNode *position, wxObject *object)

Insert object before position.

wxList::Last

wxNode * Last(void)

Returns the last node in the list (NULL if the list is empty).

wxList::Member

Bool Member(wxObject *object)

Returns TRUE if the client data object is in the list.

wxList::Nth

75

wxList::wxList

void wxList(void)

void wxList(unsigned int key type)

void wxList(int n, wxObject *objects[])

void wxList(wxObject *object, ...)

Constructors. key type is one of wxKEY NONE, wxKEY INTEGER, or wxKEY STRING,

and indicates what sort of keying is required (if any).

objects is an array of n objects with which to initialize the list.

The variable-length argument list constructor must be supplied with a terminating NULL.

wxList::�wxList

void �wxList(void)

Destroys list. Also destroys any remaining nodes, but does not destroy client data held in the

nodes.

wxList::Append

wxNode * Append(wxObject *object)

wxNode * Append(long key, wxObject *object)

wxNode * Append(char *key, wxObject *object)

Appends a new wxNode to the end of the list and puts a pointer to the object in the node.

The last two forms store a key with the object for later retrieval using the key. The new node is

returned in each case.

wxList::Clear

void Clear(void)

Clears the list (but does not delete the client data stored with each node).

wxList::DeleteContents

void DeleteContents(Bool destroy)

If destroy is TRUE, instructs the list to call delete on the client contents of a node whenever

the node is destroyed. The default is FALSE.

wxList::DeleteNode

74

wxItem::GetLabel

char * wxItem(void)

Gets a temporary pointer to the item's label.

5.25 wxList: wxObject

This class provides linked list functionality for wxWindows, and for an application if it wishes.

Depending on the form of constructor used, a list can be keyed on integer or string keys to provide

a primitive look-up ability. See wxHashTable for a faster method of storage when random access

is required. It is very common to iterate on a list as follows:

...

wxPoint *point1 = new wxPoint(100, 100);

wxPoint *point2 = new wxPoint(200, 200);

wxList SomeList;

SomeList.Append(point1);

SomeList.Append(point2);

...

wxNode *node = SomeList.First();

while (node)

{

wxPoint *point = (wxPoint *)node->Data();

...

node = node->Next();

}

To delete nodes in a list as the list is being traversed, replace

...

node = node->Next();

...

with

...

delete point;

delete node;

node = SomeList.First();

...

See wxNode for members that retrieve the data associated with a node, and members for

getting to the next or previous node.

Note that a cast is required when retrieving the data from a node. Although a node is de�ned

to store objects of type wxObject and derived types, other types (such as char *) may be used

with appropriate casting.

73

Bool LoadFile(char *�le = NULL)

If wxHelp is not running, runs wxHelp, and loads the given �le. If the �lename is not supplied

or is NULL, the �le speci�ed in Initialize is used. If wxHelp is already displaying the speci�ed

�le, it will not be reloaded. This member function may be used before each display call in case

the user has opened another �le.

wxHelpInstance::OnQuit

Bool OnQuit(void)

Overridable member called when this application's wxHelp is quit.

wxHelpInstance::Quit

Bool Quit(void)

If wxHelp is running, quits wxHelp by disconnecting.

5.24 wxItem: wxWindow

wxItem::Centre

void Centre(int direction = wxHORIZONTAL)

Centres the frame on the panel or dialog box. The parameter may be wxHORIZONTAL,wxVERTICAL

or wxBOTH.

You may still use Fit in conjunction with this call, but call Fit �rst before centring items.

wxItem::SetDefault

void SetDefault(void)

This sets the window to be the default item for the panel or dialog box. Under XView, the

default item is highlighted, and pressing the return key executes the callback for the item (but

with no visual feedback, and only if a text item does not have the focus).

Under Windows 3, only dialog box buttons respond to this function. As normal under Windows

3, pressing return causes the default button to be depressed when the return key is pressed. See

also wxWindow::SetFocus which sets the keyboard focus for windows and text panel items.

wxItem::SetLabel

void wxItem(char *label)

Sets the item's label. A copy of the label is taken.

72

wxHelpInstance::wxHelpInstance

void wxHelpInstance(void)

Constructs a help instance object, but does not invoke wxHelp.

wxHelpInstance::�wxHelpInstance

Destroys the help instance, closing down wxHelp for this application if it is running.

wxHelpInstance::Initialize

void Initialize(char *�le, int server = -1)

Initializes the help instance with a help �lename, and optionally a server (socket) number (one

is chosen at random if this parameter is omitted). Does not invoke wxHelp. This must be called

directly after the help instance object is created and before any attempts to communicate with

wxHelp.

wxHelpInstance::DisplayBlock

Bool DisplayBlock(long blockNo)

If wxHelp is not running, runs wxHelp and displays the �le at the given block number.

wxHelpInstance::DisplayContents

Bool DisplayContents(void)

If wxHelp is not running, runs wxHelp and displays the contents (the �rst section of the �le).

wxHelpInstance::DisplaySection

Bool DisplaySection(int sectionNo)

If wxHelp is not running, runs wxHelp and displays the given section. Sections are numbered

starting from 1, and section numbers may be viewed by running wxHelp in edit mode.

wxHelpInstance::KeywordSearch

Bool KeywordSearch(char *keyWord)

If wxHelp is not running, runs wxHelp, and searches for sections matching the given keyword.

If one match is found, the �le is displayed at this section. If more than one match is found, the

Search dialog is displayed with the matches.

wxHelpInstance::LoadFile

71

wxObject * Get(char * key)

Gets data from the hash table, using an integer or string key (depending on which has table

constructor was used).

wxHashTable::MakeKey

long MakeKey(char *string)

Makes an integer key out of a string. An application may wish to make a key explicitly (for

instance when combining two data values to form a key).

wxHashTable::Next

wxNode * Next(void)

If the application wishes to iterate through all the data in the hash table, it can call BeginFind

and then loop on Next. This function returns a wxNode pointer (or NULL if there are no more

nodes). See thewxNode description. The user will probably only wish to use the wxNode::Data

function to retrieve the data; the node may also be deleted.

wxHashTable::Put

void Put(long key, wxObject *object)

void Put(char * key, wxObject *object)

Inserts data into the hash table, using an integer or string key (depending on which has table

constructor was used). Note that only the pointer to the string key is stored, so it should not be

deallocated by the calling program.

5.23 wxHelpInstance: wxClient

The wxHelpInstance class implements the interface by which applications may invoke wxHelp

to provide on-line help. Each instance of the class maintains one connection to an instance

of wxHelp which belongs to the application, and which is shut down when the Quit member of

wxHelpInstance is called (for example in the OnClosemember of an application's main frame).

Under Windows 3, there is currently only one instance of wxHelp which is used by all applications.

Since there is a DDE link between the two programs, each subsequent request to display a �le

or section uses the existing instance of wxHelp, rather than starting a new instance each time.

wxHelp thus appears to the user to be an extension of the current application. wxHelp may also

be invoked independently of a client application.

Normally an application will create an instance of wxHelpInstance when it starts, and im-

mediately call Initialize to associate a �lename with it. wxHelp will only get run, however, just

before the �rst call to display something. See the test program supplied with the wxHelp source.

Include the �le wx help.h to use this API, even if you have included wx.h.

70

item is added, an integer is constructed from the integer or string key that is within the bounds of

the array. If the array element is NULL, a new (keyed) list is created for the element. Then the

data object is appended to the list, storing the key in case other data objects need to be stored in

the list also (when a `collision' occurs).

Retrieval involves recalculating the array index from the key, and searching along the keyed

list for the data object whose stored key matches the passed key. Obviously this is quicker when

there are fewer collisions, so hashing will become ine�cient if the number of items to be stored

greatly exceeds the size of the hash table.

wxHashTable::wxHashTable

void wxHashTable(unsigned int key type, int size = 1000)

Constructor. key type is one of wxKEY INTEGER, or wxKEY STRING, and indicates what

sort of keying is required. size is optional.

wxHashTable::�wxHashTable

void �wxHashTable(void)

Destroys the hash table.

wxHashTable::BeginFind

void BeginFind(void)

The counterpart of Next. If the application wishes to iterate through all the data in the hash

table, it can call BeginFind and then loop on Next.

wxHashTable::Clear

void Clear(void)

Clears the hash table of all nodes (but as usual, doesn't delete user data).

wxHashTable::Delete

wxObject * Delete(long key)

wxObject * Delete(char * key)

Deletes entry in hash table and returns the user's data (if found).

wxHashTable::Get

wxObject * Get(long key)

69

The following shows the conditional compilation required to de�ne an icon in X and inWindows

3. The alternative is to use the string version of the icon constructor, which loads a �le under

X and a resource under Windows 3, but has the disadvantage of requiring the X icon �le to be

available at run-time. If anyone can invent a scheme or macro which does the following more

elegantly and platform-independently, I'd like to see it!

#ifdef wx_x

short aiai_bits[] ={

#include "aiai.icon"

};

#endif

#ifdef wx_msw

wxIcon *icon = new wxIcon("aiai");

#endif

#ifdef wx_x

wxIcon *icon = new wxIcon(aiai_bits, 64, 64);

#endif

wxIcon::wxIcon

void wxIcon(short bits[], int width, int height)

void wxIcon(char * icon name)

Constructor. An icon can be created by passing an array of bits (X only) or by passing a string

name. icon name refers to a �lename in X, a resource name in Windows 3.

wxIcon::�wxIcon

void �wxIcon(void)

Destroys the icon. Do not explicitly delete an icon pointer which has been passed to a frame

- the frame will delete the icon when it is destroyed. If assigning a new icon to a frame, the old

icon will be destroyed.

5.22 wxHashTable: wxObject

This class provides hash table functionality for wxWindows, and for an application if it wishes.

Data can be hashed on an integer or string key. Below is an example of using a hash table.

wxHashTable table(KEY_STRING);

wxPoint *point = new wxPoint(100, 200);

table.Put("point 1", point);

....

wxPoint *found_point = (wxPoint *)table.Get("point 1");

A hash table is implemented as an array of pointers to lists. When no data has been stored,

the hash table takes only a little more space than this array (default size is 1000). When a data

68

wxSTD_FRAME ICON icon1.ico

wxSTD_MDICHILDFRAME ICON icon2.ico

where icon1.ico will be used for SDI frames or the MDI parent frame, and icon2.ico will be

used for MDI child frames.

wxFrame::SetMenuBar

void SetMenuBar(wxMenuBar *frame)

Tells the frame to show the given menu bar. If the frame is destroyed, the menu bar and its

menus will be destroyed also, so do not delete the menu bar explicitly (except by resetting the

frame's menu bar to another frame or NULL).

wxFrame::SetStatusText

void SetStatusText(char * text)

Sets the status line text and redraws the status line. Use an empty (not NULL) string to clear

the status line.

wxFrame::StatusLineExists

Bool StatusLineExists(void)

Returns TRUE if the status line has previously been created.

5.20 wxFunction

typedef void (*wxFunction)(wxObject&,wxEvent&)

The type of a callback function. See the comments in section 3.8.3.

5.21 wxIcon: wxObject

An icon is a small rectangular bitmap usually used for denoting a minimized application. It is

optional (but desirable) to associate a pertinent icon with a frame. Obviously icons in X and

Windows 3 are created in a di�erent manner, and colour icons in X are di�cult to arrange. There-

fore, separate icons will be created for the di�erent environments. Platform-speci�c methods for

creating a wxIcon structure are catered for, and this is an occasion where conditional compilation

will probably be required.

Note that a new icon must be created for every time the icon is to be used for a new window.

In X, this will ensure that fresh X resources are allocated for this frame. In Windows 3, the icon

will not be reloaded if it has already been used. An icon allocated to a frame will be deleted when

the frame is deleted.

67

void Iconize(Bool iconize)

If TRUE, iconizes the frame; if FALSE, shows and restores it.

wxFrame::Iconized

Bool Iconized(void)

Returns TRUE if the frame is iconized.

wxFrame::OnMenuCommand

void OnMenuCommand(int id)

Sent to the window when an item on the window's menu has been chosen. Derive your own

frame class to handle this message.

wxFrame::OnMenuSelect

void OnMenuSelect(int id)

Sent to the window when an item on the window's menu has been selected (i.e. the cursor is

on the item, but the left button has not been released). Derive your own frame class to handle

this message. See the hello sample for an example of using this to implement a line of explanation

about each menu item.

This function is only called under Windows 3.

wxFrame::SetIcon

void SetIcon(wxIcon * icon)

Sets the icon for this frame, deleting any existing one. Note an important di�erence between

XView and Windows 3 behaviour. In Windows 3, the title of the frame is the icon label, wrapping

if necessary for a long title. If the frame title changes, the icon label changes. In XView, the

icon label cannot be changed once the icon has been associated with the frame. Also, there is no

wrapping, and icon labels must therefore be short.

The best thing to do to accommodate both situations is to have the frame title set to a short

string when setting the icon. Then, set the frame title to the desired text. In XView, the icon will

keep its short text. In Windows 3, the longer (probably more meaningful) title will be shown.

Note also that in Windows 3, icons cannot be associated with a window after window initializa-

tion, except by explicitly drawing the icon onto the iconized window, which is what wxWindows

does. Because of this workaround, the background of the icon will be white rather than the usual

transparent. It was felt limiting to have to pass an icon name at frame create time.

However, drawing the icon like this does not work (for some unknown reason) with MDI parent

and child frames, and so for MDI applications the following lines need to be added to the Windows

3 resource �le:

66

Makes a range constraint; can be used for integer and
oating point form items.

5.19 wxFrame: wxWindow

A frame is a window which contains subwindows of various kinds. It has a title bar and, optionally,

a menu bar, and a status line. Depending on the platform, the frame has further menus or buttons

relating to window movement, sizing, closing, etc. Most of these events are handled by the host

system without need for special handling by the application. However, the application should

normally de�ne an OnClose handler for the frame so that related data and subwindows can be

cleaned up.

The Windows 3 issues of Multiple Document Interface (MDI) versus Single Document Interface

(SDI) frames are covered in section 2.1.1 and in the tutorial.

wxFrame::wxFrame

void wxFrame(wxFrame *parent, char *title, int x = -1, int y = -1,

int width = -1, int height = -1, int style = wxSDI)

Constructor. The parent parameter can be NULL or an existing frame. The �nal parameter

determines whether, under Windows, the frame is an SDI frame (wxSDI), an MDI parent frame

(wxMDI PARENT) or an MDI child frame (wxMDI CHILD).

wxFrame::�wxFrame

void �wxFrame(void)

Destructor. Destroys all child windows and menu bar if present.

wxFrame::Centre

void Centre(int direction = wxBOTH)

Centres the frame on the display. The parameter may be wxHORIZONTAL, wxVERTICAL or

wxBOTH.

wxFrame::CreateStatusLine

void CreateStatusLine(void)

Creates a status line at the bottom of the frame. The width of the status line is the whole

width of the frame (adjusted automatically when resizing), and the height and text size are chosen

by the host system. Does not work for MDI parent frames.

wxFrame::Iconize

65

wxFormItem * wxMakeFormShort(char *label, int *var,

int item type = wxFORM DEFAULT, wxList *constraints = NULL,

char *help string = NULL, wxEditFunction editor = NULL, int width = -1,

int height = -1)

Makes an integer form item, given a label, a pointer to the variable holding the value, an item

type, and a list of constraints (see below). help string and editor are currently not used.

wxFormItem * wxMakeFormFloat(char *label,
oat *var,

int item type = wxFORM DEFAULT, wxList *constraints = NULL,

char *help string = NULL, wxEditFunction editor = NULL, int width = -1,

int height = -1)

Makes a
oating-point form item, given a label, a pointer to the variable holding the value, an

item type, and a list of constraints (see below). help string and editor are currently not used.

wxFormItem * wxMakeFormBool(char *label, Bool *var,

int item type = wxFORM DEFAULT, wxList *constraints = NULL,

char *help string = NULL, wxEditFunction editor = NULL, int width = -1,

int height = -1)

Makes a boolean form item, given a label, a pointer to the variable holding the value, an item

type, and a list of constraints (see below). help string and editor are currently not used.

wxFormItem * wxMakeFormString(char *label, char **var,

int item type = wxFORM DEFAULT, wxList *constraints = NULL,

char *help string = NULL, wxEditFunction editor = NULL, int width = -1,

int height = -1)

Makes a string form item, given a label, a pointer to the variable holding the value, an item

type, and a list of constraints (see below). help string and editor are currently not used.

wxFormItemConstraint * wxMakeConstraintStrings(wxList *list)

Makes a constraint specifying that the value must be one of the strings given in the list.

wxFormItemConstraint * wxMakeConstraintStrings(char *�rst, ...)

Makes a constraint specifying that the value must be one of the strings given in the variable-

length argument list,terminated with a zero.

wxFormItemConstraint * wxMakeConstraintFunction(wxConstraintFunction func)

Makes a constraint with a function that gets called when the value is being checked. The

function should return FALSE if the constraint was violated, TRUE otherwise. The function

should also write an appropriate message into the bu�er passed to it if the constraint was violated.

The type wxConstraintFunction is de�ned as follows:

typedef Bool (*wxConstraintFunction)(int type, char *value, char *label, char *msg)

type is the type of the item, for instance wxFORM STRING. value is the address of the variable

containing the value, and should be coerced to the correct type, except for wxFORM STRING,

where no coercion is required.

wxFormItemConstraint * wxMakeConstraintRange(
oat lo,
oat hi)

64

void OnRevert(void)

This member may be derived by the application. When the user presses the Revert button, the

C++ form item variable values in e�ect before the last Update are restored. Then this member

is called, allowing the application to take further action.

wxForm::OnUpdate

void OnUpdate(void)

This member may be derived by the application. When the user presses the Update button,

the C++ form item variable values are updated to the values on the panel. Then this member is

called, allowing the application to take further action.

wxForm::RevertValues

void RevertValues(void)

Internal function for displaying the C++ form item values in the displayed panel items. Should

not need to be called by the user.

wxForm::UpdateValues

Bool UpdateValues(void)

Internal function for setting the C++ form item values to the values set in the panel items.

Should not need to be called by the user.

5.18.5 Functions for making form items and constraints

These functions make form items and their associated constraints for passing to wxForm::Add.

wxFormItem * wxMakeFormButton(char *label, wxFunction fun)

Makes a button with a conventional callback.

wxFormItem * wxMakeFormMessage(char *label)

Makes a message.

wxFormItem * wxMakeFormNewLine(void)

Adds a newline.

wxFormItem * wxMakeFormLong(char *label, long *var,

int item type = wxFORM DEFAULT, wxList *constraints = NULL,

char *help string = NULL, wxEditFunction editor = NULL, int width = -1,

int height = -1)

Makes a long integer form item, given a label, a pointer to the variable holding the value, an

item type, and a list of constraints (see below). help string and editor are currently not used.

63

wxForm::FindItem

wxNode * FindItem(long id)

Given a form item id, returns a list node containing the form item.

wxForm::Set

Bool Set(long id, wxFormItem *item)

Given a form item id, replaces an existing item with that id with the given form item. Returns

TRUE if successful.

wxForm::Delete

Bool Delete(long id)

Deletes the given form item by id. Returns TRUE if successful.

wxForm::AssociatePanel

void AssociatePanel(wxPanel *panel)

Associates the form with the given panel (or window derived from wxPanel, such as wxDialog-

Box). This causes a number of items to be created on the panel using information from the list of

form items. The panel should be shown after this has been called.

wxForm::OnCancel

void OnCancel(void)

This member may be derived by the application. When the user presses the Cancel button,

this is called, allowing the application to take action. By default, OnCancel deletes the form and

the panel associated with it, probably the normal desired behaviour.

wxForm::OnOk

void OnOk(void)

This member may be derived by the application. When the user presses the OK button, this is

called, allowing the application to take action. By default, OnOk deletes the form and the panel

associated with it, probably the normal desired behaviour. Note that if any form item constraints

were violated when the user pressed OK, the member does not get called.

wxForm::OnRevert

62

5.18.4 Example

The following is an example of a form de�nition, taken from the form demo. Here, a new form

MyForm has been derived, and a new member EditForm has been de�ned to edit objects of the

type MyObject, given a panel to display it on.

void MyForm::EditForm(MyObject *object, wxPanel *panel)

{

Add(wxMakeFormString("string 1", &(object->string1), wxFORM_DEFAULT,

new wxList(wxMakeConstraintFunction(MyConstraint), 0)));

Add(wxMakeFormNewLine());

Add(wxMakeFormString("string 2", &(object->string2), wxFORM_DEFAULT,

new wxList(wxMakeConstraintStrings("One", "Two", "Three", 0), 0)));

Add(wxMakeFormString("string 3", &(object->string3), wxFORM_CHOICE,

new wxList(wxMakeConstraintStrings("Pig", "Cow",

"Aardvark", "Gorilla", 0), 0)));

Add(wxMakeFormNewLine());

Add(wxMakeFormShort("int 1", &(object->int1), wxFORM_DEFAULT,

new wxList(wxMakeConstraintRange(0.0, 50.0), 0)));

Add(wxMakeFormNewLine());

Add(wxMakeFormFloat("float 1", &(object->float1), wxFORM_DEFAULT,

new wxList(wxMakeConstraintRange(-100.0, 100.0), 0)));

Add(wxMakeFormBool("bool 1", &(object->bool1)));

Add(wxMakeFormNewLine());

Add(wxMakeFormButton("Test button", (wxFunction)MyButtonProc));

AssociatePanel(panel);

}

wxForm::wxForm

void wxForm(void)

Constructor.

wxForm::�wxForm

void �wxForm(void)

Destructor. Does not delete the associated panel or any panel items, but does delete all form

items.

wxForm::Add

void Add(wxFormItem *item, long id = -1)

Adds a form item to the form. If an id is given this is associated with the form item; otherwise

a new id is generated, by which the item may be identi�ed later.

61

being chosen automatically according to the given constraints. The supplied form demo shows

how succinct a form de�nition can be. A form gets laid out from left to right; the programmer

can intersperse new lines and specify item sizes, but for brevity no more control is allowed.

A form does not presuppose a particular type of panel: any window derived from wxPanel may

be associated with a form, once the form has been built by adding form items. Also, a form reads

from and writes to any C++ variables in your program - just supply pointers to the variables, and

the form handles the rest.

5.18.2 Constraints on form items

Each item in a form may be supplied with zero or more constraints, where the range of possible

constraints depends on the data type, and the displayed panel item depends upon the data type

and the constraint(s) given. For example, a string form item with a list of possible strings as a

constraint will produce a list box on the panel; an integer form item with a range constraint will

result in a slider being displayed. The user may de�ne his or her own constraint by passing a

function as a constraint which returns FALSE if the constraint was violated, TRUE otherwise.

The function should write an appropriate message into the bu�er passed to it if the constraint

was violated.

5.18.3 Form appearance

Once displayed on a panel, a form shows Ok, Cancel, Update and Revert buttons along the top,

with the user-supplied items below. When the user presses Ok, the form items are checked for

violation of constraints; if any violations are found, an appropriate error message is displayed and

the user must correct the mistake (or press Cancel, which leaves the item values as they were

after the last Update). Pressing Update also checks the constraints and updates the values, but

typically does not dismiss the dialog. Revert causes the displayed values to take on the values at

the last Update. By default, the OnOk and OnCancel messages dismiss and delete the dialog box

and form, but these may be overridden by the application (see below).

The display-type values which may be passed to a form-item creation function are as follows:

� wxFORM DEFAULT: let wxWindows choose a suitable panel item

� wxFORM SINGLE LIST: use a single-selection listbox. Default for string item with a one-of

constraint

� wxFORM CHOICE: use a choice item

� wxFORM CHECKBOX: use a checkbox. Default for boolean item

� wxFORM TEXT: use a single-line text item. Default for
oating point item, and for string

and integer items with no constraints

� wxFORM MULTITEXT: use a multi-line text item

� wxFORM SLIDER: use a slider. Default for integer item with range constraint

The wxFormItem and wxFormItemConstraint classes are not detailed in this manual since

their members do not need to be directly accessed by the user. Functions for creating form items

and constraints for passing to wxForm::Add are given in the next subsection.

60

� Family. Supported families are: wxDEFAULT, wxDECORATIVE, wxROMAN, wxSCRIPT,

wxSWISS, wxMODERN. wxMODERN is a �xed pitch font; the others are either �xed or

variable pitch.

� Style. The value can be wxNORMAL, wxSLANT or wxITALIC.

� Weight. The value can be wxNORMAL, wxLIGHT or wxBOLD.

There is currently a di�erence between the appearance of fonts on the two platforms, if the

mapping mode is anything other than MM TEXT. Under X, font size is always speci�ed in points.

Under Windows, the unit for text is points but the text is scaled according to the current mapping

mode. However, user scaling on a device canvas will also scale fonts under both environments.

A future version of wxWindows will attempt to make font appearance more consistent across

platforms.

wxFont::wxFont

void wxFont(void)

void wxFont(int point size, int family, int style, int weight)

Creates a font object. If the desired font does not exist, the closest match will be chosen.

Under XView, this may result in a number of XView warnings during the matching process; these

should be ignored, and will only occur the �rst time wxWindows attempts to use an absent font

in a given size. wxWindows under Motif does the same thing, but silently. Under Windows 3,

only scaleable TrueType fonts are used.

wxFont::�wxFont

void �wxFont(void)

Destroys a font object. Do not manually destroy a font which has been assigned to a canvas.

All GDI objects, including fonts, are automatically destroyed on program exit, so there is no

danger of memory leakage as in conventional Windows programming.

wxFont::GetPointSize

int GetPointSize(void)

Gets the point size.

5.18 wxForm: wxObject

5.18.1 The purpose of the form class

The wxForm is a stab at providing form-like functionality, relieving the programmer of the tedium

of de�ning all the physical panel items and the callbacks handling out-of-range data. It allows

the application writer to write form dialogs quickly (albeit programmatically) with panel items

59

void Position(
oat *x,
oat *y)

Sets *x and *y to the position at which the event occurred. If the window is a canvas, the

position is converted to logical units (according to the current mapping mode) with scrolling

taken into account. To get back to device units (for example to calculate where on the screen to

place a dialog box associated with a canvas mouse event), use wxDC::LogicalToDeviceX and

wxDC::LogicalToDeviceY.

For example, the following code calculates screen pixel coordinates from the frame position,

canvas view start (assuming the canvas is the only subwindow on the frame and therefore at the

top left of it), and the logical event position. A menu is popped up at the position where the

mouse click occurred. (Note that the application should also check that the dialog box will be

visible on the screen, since the click could have occurred near the screen edge!)

float event_x, event_y;

event.Position(&event_x, &event_y);

frame->GetPosition(&x, &y);

canvas->ViewStart(&x1, &y1);

int mouse_x = (int)(canvas->GetDC()->LogicalToDeviceX(event_x + x - x1);

int mouse_y = (int)(canvas->GetDC()->LogicalToDeviceY(event_y + y - y1);

char *choice = wxGetSingleChoice("Menu", "Pick a node action",

no_choices, choices, frame, mouse_x, mouse_y);

wxEvent::RightDown

Bool RightDown(void)

Returns TRUE if the right mouse button changed to down.

wxEvent::RightUp

Bool RightUp(void)

Returns TRUE if the right mouse button changed to up.

wxEvent::ShiftDown

Bool ShiftDown(void)

Returns TRUE if the shift button was down at the time of the event.

5.17 wxFont: wxObject

A font is an object which determines the appearance of text, primarily when drawing text to a

canvas or device context. A font is determined by four parameters:

� Point size. This is the standard way of referring to text size.

58

wxEvent::ControlDown

Bool ControlDown(void)

Returns TRUE if the control button was down at the time of the event.

wxEvent::Dragging

Bool Dragging(void)

Returns TRUE if this was a dragging event.

wxEvent::IsButton

Bool IsButton(void)

Returns TRUE if the event was a mouse button event (not necessarily a button down event -

that may be tested using ButtonDown).

wxEvent::LeftDown

Bool LeftDown(void)

Returns TRUE if the left mouse button changed to down.

wxEvent::LeftUp

Bool LeftUp(void)

Returns TRUE if the left mouse button changed to up.

wxEvent::MiddleDown

Bool MiddleDown(void)

Returns TRUE if the middle mouse button changed to down.

wxEvent::MiddleUp

Bool MiddleUp(void)

Returns TRUE if the middle mouse button changed to up.

wxEvent::Position

57

wxDialogBox::Show

void Show(Bool show)

If show is TRUE, the dialog box is shown and brought to the front; otherwise the box is hidden.

If show is FALSE and the dialog is modal, control is returned to the calling program.

5.16 wxEvent: wxObject

An event is a general-purpose structure holding information about an event passed to a callback

or member function. Call member functions of wxEvent to �nd out information appropriate to

the kind of event, or query the wxWindow object itself (for example list box, canvas) to �nd out

the status of the object.

wxEvent::wxEvent

void wxEvent(void)

Constructor. Should not need to be used by an application.

wxEvent::�wxEvent

void �wxEvent(void)

Destructor. Should not need to be used by an application.

wxEvent::Button

Bool Button(int button)

Returns TRUE if the identi�ed mouse button is changing state. Valid values of button are:

1. Left button

2. Middle button

3. Right button

Not all mice have middle buttons so a portable application should avoid this one.

wxEvent::ButtonDown

Bool ButtonDown(void)

Returns TRUE if the event was a mouse button down event.

56

1. A surrounding frame is implicitly created.

2. Extra functionality is automatically given to the dialog box, such as tabbing between items

(currently Windows only).

3. If the dialog box is modal, the calling program is blocked until the dialog box is dismissed.

Under XView, some panel items may display incorrectly in a modal dialog. An XView bug-�x

for list boxes is supplied with wxWindows, but some items remain a problem.

Note that under Windows 3, modal dialogs have to be emulated using modeless dialogs and

a message loop. This is because Windows 3 expects the contents of a modal dialog to be loaded

from a resource �le or created on receipt of a dialog initialization message. This is too restrictive

for wxWindows, where any window may be created and displayed before its contents are created.

It would be easy to add a facility for loading Windows 3 dialog resources instead of building

them programmatically, but of course this method is very non-portable. See the discussion in

section 2.2.

For a set of dialog convenience functions, including �le selection, see Section 6.3.

wxDialogBox::wxDialogBox

void wxDialogBox(wxFrame *parent, char *title, Bool modal=FALSE,

int x=300, int y=300, int width=500, int height=500)

Constructor. If modal is TRUE, the dialog box will wait to be dismissed (using Show(FALSE))

before returning control to the calling program.

wxDialogBox::�wxDialogBox

void �wxDialogBox(void)

Destructor. Deletes any panel items before deleting the physical window.

wxDialogBox::Iconize

void Iconize(Bool iconize)

If TRUE, iconizes the dialog box; if FALSE, shows and restores it. Note that in Windows,

iconization has no e�ect since dialog boxes cannot be iconized. However, applications may need

to explicitly restore dialog boxes under XView and Motif which have user-iconizable frames, and

under Windows calling Iconize(FALSE) will bring the window to the front, as does Show(TRUE).

wxDialogBox::Iconized

Bool Iconized(void)

Returns TRUE if the dialog box is iconized. Always returns FALSE under Windows for the

reasons given above.

55

� MM TEXT - each logical unit is 1 pixel

wxDC::SetPen

void SetPen(wxPen *pen)

Sets the current pen for the DC. The pen is not copied, so you should not delete the pen

unless the DC pen has been set to another pen, or to NULL. Note that all pens and brushes are

automatically deleted when the program is exited.

wxDC::SetTextBackground

void SetTextBackground(wxColour *colour)

Sets the current text background colour for the DC. Do not delete colour while selected for use

by a DC.

wxDC::SetTextForeground

void SetTextForeground(wxColour *colour)

Sets the current text foreground colour for the DC. Do not delete colour while selected for use

by a DC.

wxDC::SetUserScale

void SetUserScale(
oat x scale,
oaty scale)

Sets the user scaling factor, useful for applications which require `zooming'.

wxDC::StartDoc

Bool StartDoc(char *message)

Starts a document (only relevant when outputting to a printer). Message is a message to show

whilst printing.

wxDC::StartPage

Bool StartPage(void)

Starts a document page (only relevant when outputting to a printer).

5.15 wxDialogBox: wxPanel

A dialog box is similar to a panel, with the following exceptions:

54

wxDC::SetFont

void SetFont(wxFont *font)

Sets the current font for the DC. The font is not copied, so you should not delete the font

unless the DC pen has been set to another font, or to NULL.

wxDC::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the DC. The possible values are:

� wxXOR

� wxINVERT

� wxOR REVERSE

� wxAND REVERSE

� wxCOPY

The default is wxCOPY, which simply draws with the current colour. The others combine

the current colour and the background using a logical operation. wxXOR is commonly used for

drawing rubber bands or moving outlines, since drawing twice reverts to the original colour.

wxDC::SetMapMode

void SetMapMode(int int)

The mapping mode of the device context de�nes the unit of measurement used to convert logical

units to device units. Note that in X, text drawing isn't handled consistently with the mapping

mode; a font is always speci�ed in point size. However, setting the user scale (see SetUserScale)

scales the text appropriately. In Windows, scaleable TrueType fonts are always used; in X, results

depend on availability of fonts, but usually a reasonable match is found.

Note that the coordinate origin should ideally be selectable, but for now is always at the top

left of the screen/printer.

Drawing to a Windows printer device context under UNIX uses the current mapping mode,

but mapping mode is currently ignored for PostScript output.

The mapping mode can be one of the following:

� MM TWIPS - each logical unit is 1/20 of a point, or 1/1440 of an inch

� MM POINTS - each logical unit is a point, or 1/72 of an inch

� MM METRIC - each logical unit is 1 mm

� MM LOMETRIC - each logical unit is 1/10 of a mm

53

wxDC::LogicalToDeviceX

int LogicalToDeviceX(
oat x)

Converts logical X coordinate to device coordinate, using the current mapping mode.

wxDC::LogicalToDeviceY

int LogicalToDeviceY(
oat y)

Converts logical Y coordinate to device coordinate, using the current mapping mode.

wxDC::Ok

Bool Ok(void)

Returns TRUE if the DC is ok to use.

wxDC::SelectObject

void SelectObject(wxBitmap *bitmap)

Selects the given bitmap into the device context, to use as the memory bitmap. Drawing onto

the DC is not yet allowed, but selecting the bitmap into a DC created by using CreateCompat-

ibleDC allows you to then use Blit to copy the bitmap to a canvas. For this purpose, you may

�nd DrawIcon easier to use instead, if your Windows bitmaps can be converted to icon format.

wxDC::SetBackground

void SetBackground(wxBrush *brush)

Sets the current background brush for the DC. Do not delete the brush - it will be deleted

automatically when the application terminates.

wxDC::SetClippingRegion

void SetClippingRegion(
oat x,
oat y,
oat width,
oat height)

Sets the clipping region for the DC. The clipping region is a rectangular area to which drawing

is restricted. Possible uses for the clipping region are for clipping text or for speeding up canvas

redraws when only a known area of the screen is damaged.

wxDC::SetBrush

void SetBrush(wxBrush *brush)

Sets the current brush for the DC. The brush is not copied, so you should not delete the brush

unless the DC pen has been set to another brush, or to NULL. Note that all pens and brushes are

automatically deleted when the program is exited.

52

void DrawRectangle(
oat x,
oat y,
oat width,
oat height)

Draws a rectangle with the given top left corner, and with the given size. The current pen is

used for the outline and the current brush for �lling the shape.

wxDC::DrawRoundedRectangle

void DrawRoundedRectangle(
oat x,
oat y,
oat width,
oat height,
oat radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners are

quarter-circles using the given radius. The current pen is used for the outline and the current

brush for �lling the shape.

wxDC::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete the

wxList and contents. The spline is drawn using a series of lines, using an algorithm taken from

the X drawing program `XFIG'.

void DrawSpline(
oat x1,
oat y1,
oat x2,
oat y2,
oat x3,
oat y3)

Draws a three-point spline using the current pen.

wxDC::DrawText

void DrawText(char *text,
oat x,
oat y)

Draws a text string at the speci�ed point, using the current text font, and the current text

foreground and background colours.

wxDC::EndDoc

void EndDoc(void)

Ends a document (only relevant when outputting to a printer).

wxDC::EndPage

void EndPage(void)

Ends a document page (only relevant when outputting to a printer).

wxDC::GetMapMode

int GetMapMode(void)

Gets the mapping mode for the device context (see SetMapMode).

51

void DrawEllipse(
oat x,
oat y,
oat width,
oat height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the given

size. The current pen is used for the outline and the current brush for �lling the shape.

wxDC::DrawIcon

void DrawIcon(wxIcon *icon,
oat x,
oat y)

Draw an icon on the display (does nothing if the device context is PostScript). This can be the

simplest way of drawing bitmaps on a canvas. Icons and bitmaps in X are currently monochrome

only.

wxDC::DrawLine

void DrawLine(
oat x1,
oat y1,
oat x2,
oat y2)

Draws a line from the �rst point to the second. The current pen is used for drawing the line.

wxDC::DrawLines

void DrawLines(int n, wxPoint points[],
oat xo�set = 0,
oat yo�set = 0)

void DrawLines(wxList *points,
oat xo�set = 0,
oat yo�set = 0)

Draws lines using an array of points of size n, or list of pointers to points, adding the optional

o�set coordinate. The current pen is used for drawing the lines. The programmer is responsible

for deleting the list of points.

wxDC::DrawPolygon

void DrawPolygon(int n, wxPoint points[],
oat xo�set = 0,
oat yo�set = 0)

void DrawPolygon(wxList *points,
oat xo�set = 0,
oat yo�set = 0)

Draws a �lled polygon using an array of points of size n, or list of pointers to points, adding the

optional o�set coordinate. The current pen is used for drawing the outline, and the current brush

for �lling the shape. Using a transparent brush suppresses �lling. The programmer is responsible

for deleting the list of points.

Note that wxWindows does not close the �rst and last points automatically.

wxDC::DrawPoint

void DrawPoint(
oat x,
oat y)

Draws a point using the current pen.

wxDC::DrawRectangle

50

wxDC::Blit

Bool Blit(
oat xdest,
oat ydest,
oat width,
oat height,

wxDC *source,
oat xsrc,
oat ysrc, int logical func)

Copy from a source DC to this DC, specifying the destination coordinates, size of area to

copy, source DC, source coordinates, and logical function (see SetLogicalFunction). See Cre-

ateCompatibleDC for typical usage.

wxDC::Clear

void Clear(void)

wxDC::CreateCompatibleDC

wxDC * CreateCompatibleDC(void)

Creates and returns a device context compatible with this DC. A bitmap must be selected into

the new DC before it may be used for anything. Typical usage is as follows:

wxDC *temp_dc = dc.CreateCompatibleDC();

temp_dc->SelectObject(test_bitmap);

dc.Blit(250, 50, BITMAP_WIDTH, BITMAP_HEIGHT, temp_dc, 0, 0);

delete temp_dc;

In future versions of wxWindows, this kind of DC will be used for drawing graphics in memory,

then copying to visible windows.

wxDC::DestroyClippingRegion

void DestroyClippingRegion(void)

Destroys the current clipping region so that none of the DC is clipped.

wxDC::DeviceToLogicalX

oat DeviceToLogicalX(int x)

Convert device X coordinate to logical coordinate, using the current mapping mode.

wxDC::DeviceToLogicalY

oat DeviceToLogicalY(int y)

Converts device Y coordinate to logical coordinate, using the current mapping mode.

wxDC::DrawEllipse

49

5.14 wxDC: wxObject

A wxDC is device context onto which graphics and text can be drawn. It is intended to represent a

number of output devices in a generic way, so a canvas has a device context and a printer also has

a device context. In this way, the same piece of code may write to a number of di�erent devices,

if the device context is used as a parameter.

To determine whether a device context is colour or monochrome, test the Colour Bool member

variable. To override wxWindows monochrome graphics drawing behaviour, set this member to

TRUE.

wxDC::wxDC

void wxDC(void)

void wxDC(wxCanvas *canvas)

void wxDC(char *driver, char *device, char *output, Bool interactive = TRUE)

Constructor. The third formmay be called with three NULLs to put up a default printer dialog

in Windows or UNIX. The only supported printer type in UNIX is \PostScript"; in Windows,

specifying \PostScript" uses wxWindow's own Encapsulated PostScript driver, writing to a �le

only. Otherwise, device indicates the type of printer and output is an optional �le for printing to.

The driver parameter is currently unused. Use the Ok member to test whether the constructor

was successful in creating a useable device context.

The following global variables are de�ned in wxWindows, edited by the user in the printer

dialog and used by the PostScript driver. An application may wish to set them to appropriate

default values.

� char *wx portrait = TRUE

� char *wx printer command =\lpr"

� char *wx printer
ags = \"

� Bool wx preview = TRUE

� char *wx preview command = \ghostview"

�
oat wx printer scale x = 1.0

�
oat wx printer scale y = 1.0

�
oat wx printer translate x = 0.0

�
oat wx printer translate y = 0.0

� Bool wx print to �le = FALSE

wxDC::�wxDC

void �wxDC(void)

Destructor.

48

The following stock cursor ids may be used:

� wxCURSOR ARROW

� wxCURSOR BULLSEYE

� wxCURSOR CHAR

� wxCURSOR CROSS

� wxCURSOR HAND

� wxCURSOR IBEAM

� wxCURSOR LEFT BUTTON

� wxCURSOR MAGNIFIER

� wxCURSOR MIDDLE BUTTON

� wxCURSOR NO ENTRY

� wxCURSOR PAINT BRUSH

� wxCURSOR PENCIL

� wxCURSOR POINT LEFT

� wxCURSOR POINT RIGHT

� wxCURSOR QUESTION ARROW

� wxCURSOR RIGHT BUTTON

� wxCURSOR SIZENESW

� wxCURSOR SIZENS

� wxCURSOR SIZENWSE

� wxCURSOR SIZEWE

� wxCURSOR SIZING

� wxCURSOR SPRAYCAN

� wxCURSOR WAIT

� wxCURSOR WATCH

wxCursor::�wxCursor

void �wxCursor(void)

Destroys the cursor. Unlike an icon, a cursor can be reused for more than one window, and does

not get destroyed when the window is destroyed. wxWindows destroys all cursors on application

exit.

47

wxConnection::Request

char * Request(char *item, int *size, int format = wxCF TEXT)

Called by the client application to request data from the server. Causes the server connec-

tion's OnRequest member to be called. Returns a character string (actually a pointer to the

connection's bu�er) if successful, NULL otherwise.

wxConnection::StartAdvise

Bool StartAdvise(char *item)

Called by the client application to ask if an advise loop can be started with the server. Causes

the server connection's OnStartAdvisemember to be called. Returns TRUE if the server okays

it, FALSE otherwise.

wxConnection::StopAdvise

Bool StopAdvise(char *item)

Called by the client application to ask if an advise loop can be stopped. Causes the server

connection's OnStopAdvisemember to be called. Returns TRUE if the server okays it, FALSE

otherwise.

5.13 wxCursor: wxObject

A cursor is a small bitmap usually used for denoting where the mouse pointer is, with a picture

that might indicate the interpretation of a mouse click. As with icons, cursors in X and Windows

3 are created in a di�erent manner. Therefore, separate cursors will be created for the di�erent

environments. Platform-speci�c methods for creating a wxCursor object are catered for, and

this is an occasion where conditional compilation will probably be required (see wxIcon for an

example).

A single cursor object may be used in many windows (any subwindow type). The wxWindows

convention is to set the cursor for a window, as in X, rather than to set it globally as in Windows

3, although a global wxSetCursor is also available for Windows 3 use.

Run the hello demo program to see what stock cursors are available.

wxCursor::wxCursor

void wxCursor(short bits[], intwidth, int height)

void wxCursor(char * cursor name)

void wxCursor(int id)

Constructor. A cursor can be created by passing an array of bits (XView and Motif only) by

passing a string name, or by passing a stock cursor id. cursor name refers to a �lename in X, or

a resource name in Windows 3.

46

Bool OnDisconnect(void)

Message sent to the client or server application when the other application noti�es it to delete

the connection. Default behaviour is to delete the connection object.

wxConnection::OnExecute

Bool OnExecute(char *topic, char *data, int size, int format)

Message sent to the server application when the client noti�es it to execute the given data.

Note that there is no item associated with this message.

wxConnection::OnPoke

Bool OnPoke(char *topic, char *item, char *data, int size, int format)

Message sent to the server application when the client noti�es it to accept the given data.

wxConnection::OnRequest

char * OnRequest(char *topic, char *item, int *size, int format)

Message sent to the server application when the client calls Request. The server should

respond by returning a character string from OnRequest, or NULL to indicate no data.

wxConnection::OnStartAdvise

Bool OnStartAdvise(char *topic, char *item)

Message sent to the server application by the client, when the client wishes to start an `advise

loop' for the given topic and item. The server can refuse to participate by returning FALSE.

wxConnection::OnStopAdvise

Bool OnStopAdvise(char *topic, char *item)

Message sent to the server application by the client, when the client wishes to stop an `advise

loop' for the given topic and item. The server can refuse to stop the advise loop by returning

FALSE, although this doesn't have much meaning in practice.

wxConnection::Poke

Bool Poke(char *item, char *data, int size = -1, int format = wxCF TEXT)

Called by the client application to poke data into the server. Can be used to transfer arbitrary

data to the server. Causes the server connection's OnPoke member to be called. Returns TRUE

if successful.

45

wxConnection::wxConnection

void wxConnection(void)

void wxConnection(char *bu�er, int size)

Constructs a connection object. If no user-de�ned connection object is to be derived from

wxConnection, then the constructor should not be called directly, since the default connec-

tion object will be provided on requesting (or accepting) a connection. However, if the user

de�nes his or her own derived connection object, the Server::OnAcceptConnection and/or

Client::OnMakeConnection members should be replaced by functions which construct the

new connection object. If the arguments of the wxConnection constructor are void, then a default

bu�er is associated with the connection. Otherwise, the programmer must provide a a bu�er and

size of the bu�er for the connection object to use in transactions.

wxConnection::Advise

Bool Advise(char *item, char *data, int size = -1, int format = wxCF TEXT)

Called by the server application to advise the client of a change in the data associated with

the given item. Causes the client connection's OnAdvise member to be called. Returns TRUE

if successful.

wxConnection::Execute

Bool Execute(char *data, int size = -1, int format = wxCF TEXT)

Called by the client application to execute a command on the server. Can also be used to trans-

fer arbitrary data to the server (similar to Poke in that respect). Causes the server connection's

OnExecute member to be called. Returns TRUE if successful.

wxConnection::Disconnect

Bool Disconnect(void)

Called by the client or server application to disconnect from the other program; it causes the

OnDisconnectmessage to be sent to the corresponding connection object in the other program.

The default behaviour of OnDisconnect is to delete the connection, but the calling application

must explicitly delete its side of the connection having called Disconnect. Returns TRUE if

successful.

wxConnection::OnAdvise

Bool OnAdvise(char *topic, char *item, char *data, int size, int format)

Message sent to the client application when the server noti�es it of a change in the data

associated with the given item.

wxConnection::OnDisconnect

44

The colours in the standard database are as follows:

AQUAMARINE, BLACK, BLUE, BLUE VIOLET, BROWN, CADET BLUE, CORAL, CORN-

FLOWER BLUE, CYAN, DARK GREY, DARK GREEN, DARK OLIVE GREEN, DARK OR-

CHID, DARK SLATE BLUE, DARK SLATE GREY DARK TURQUOISE, DIM GREY, FIRE-

BRICK, FOREST GREEN, GOLD, GOLDENROD, GREY, GREEN, GREEN YELLOW, IN-

DIAN RED, KHAKI, LIGHT BLUE, LIGHT GREY, LIGHT STEEL BLUE, LIME GREEN, MA-

GENTA, MAROON, MEDIUM AQUAMARINE, MEDIUM BLUE, MEDIUM FOREST GREEN,

MEDIUMGOLDENROD,MEDIUM ORCHID,MEDIUM SEAGREEN, MEDIUM SLATE BLUE,

MEDIUM SPRING GREEN, MEDIUM TURQUOISE, MEDIUM VIOLET RED, MIDNIGHT

BLUE, NAVY, ORANGE, ORANGE RED, ORCHID, PALE GREEN, PINK, PLUM, PURPLE,

RED, SALMON, SEA GREEN, SIENNA, SKY BLUE, SLATE BLUE, SPRING GREEN, STEEL

BLUE, TAN, THISTLE, TURQUOISE, VIOLET, VIOLET RED, WHEAT, WHITE, YELLOW,

YELLOW GREEN.

Note that wxWindows' colour handling in XView and Motif canvases is poor and so only some

of these colours are likely to show up. This should be improved in a subsequent release.

wxColourDatabase::wxColourDatabase

void wxColourDatabase(void)

Constructs the colour database. Should not need to be used by an application.

wxColourDatabase::FindColour

wxColour * FindColour(char *colour name)

Finds a colour given the name. Returns NULL if not found.

wxColourDatabase::FindName

char * FindName(wxColour& colour)

Finds a colour name given the colour. Returns NULL if not found.

wxColourDatabase::Initialize

char * Initialize(void)

Initializes the database with a number of stock colours. Called by wxWindows on start-up.

5.12 wxConnection: wxObject

A wxConnection object represents the connection between a client and a server. It can be created

by making a connection using a client object, or by the acceptance of a connection by a server

object. It implements the bulk of a DDE (Dynamic Data Exchange) conversation (available in

both Windows and UNIX). See section 2.12.

43

wxConnection * MakeConnection(char *host, char *service, char *topic)

Tries to make a connection with a server speci�ed by the host (machine name under UNIX,

ignored under Windows), service name (must contain an integer port number under UNIX), and

topic string. If the server allows a connection, a wxConnection object will be returned. The type

of wxConnection returned can be altered by deriving the OnMakeConnectionmember to return

your own derived connection object.

wxClient::OnMakeConnection

wxConnection * OnMakeConnection(void)

The type of wxConnection returned from a MakeConnection call can be altered by deriving

the OnMakeConnectionmember to return your own derived connection object. By default, an

ordinary wxConnection object is returned.

5.10 wxColour: wxObject

A colour is an object representing a Red, Green, Blue (RGB) combination of primary colours, and

is used to determine drawing colours. See the entry for wxColourDatabase for how a pointer

to a prede�ned, named colour may be returned instead of creating a new colour.

wxColour::wxColour

void wxColour(char red, char green, char blue)

void wxColour(char * colour name)

Construct a colour object from the RGB values or using a colour name (uses wxTheColour-

Database).

wxColour::Get

void Get(char * red, char * green, char * blue)

Gets the RGB values - pass pointers to three char variables.

wxColour::Set

void Set(char red, char green, char blue)

Sets the RGB value.

5.11 wxColourDatabase: wxObject

wxWindows maintains a database of standard RGB colours for a prede�ned set of named colours

(such as \BLACK", \LIGHT GREY"). The application may add to this set if desired by using

Append. There is only one instance of this class: wxTheColourDatabase.

42

wxChoice::GetSelection

int GetSelection(void)

Gets the id (position) of the selected string.

wxChoice::GetStringSelection

char * GetStringSelection(void)

Gets the selected string. This must be copied by the calling program if long term use is to be

made of it.

wxChoice::SetSelection

void SetSelection(int n)

Sets the choice by passing the desired string position.

wxChoice::SetStringSelection

void SetStringSelection(char * s)

Sets the choice by passing the desired string.

wxChoice::String

char * String(int n)

Returns a temporary pointer to the string at position n.

5.9 wxClient: wxIPCObject

A wxClient object represents the client part of a client-server DDE (Dynamic Data Exchange)

conversation (available in both Windows and UNIX). See section 2.12.

wxClient::wxClient

void wxClient(void)

Constructs a client object.

wxClient::MakeConnection

41

5.8 wxChoice: wxItem

A choice item is used to select one of a list of strings. Unlike a listbox, only the selection is visible

until the user pulls down the menu of choices. Under XView and Motif, all selections are visible

when the menu is displayed. Under Windows 3, a scrolling list is displayed when the user wants

to change the selection. Note that under XView, creating a choice item with a large number of

strings takes a long time due to the ine�ciency of Sun's implementation of the XView choice item.

wxChoice::wxChoice

void wxChoice(wxPanel *parent, wxFunction func, char *label,

int x = -1, int y = -1, int width = -1, int height = -1, int n, char *choices[])

Constructor, creating and showing a choice. If width or height are omitted (or are less than

zero), an appropriate size will be used for the choice. funcmay be NULL; otherwise it is used as the

callback for the choice. Note that the cast (wxFunction) must be used when passing your callback

function name, or the compiler may complain that the function does not match the constructor

declaration.

n is the number of possible choices, and choices is an array of strings of size n. wxWindows

allocates its own memory for these strings so the calling program must deallocate the array itself.

wxChoice::�wxChoice

void �wxChoice(void)

Destructor, destroying the choice item.

wxChoice::Append

void Append(char * item)

Adds the item to the end of the choice item. item must be deallocated by the calling program,

i.e. wxWindows makes its own copy.

wxChoice::Clear

void Clear(void)

Clears the strings from the choice item. Under XView, this is done by deleting and recon-

structing the item, but it doesn't redisplay properly until the user refreshes the window.

wxChoice::FindString

int FindString(char *s)

Finds a choice matching the given string, returning the position if found, or -1 if not found.

40

wxCanvas::SetTextForeground

void SetTextForeground(wxColour *colour)

Sets the current text foreground colour for the canvas. Do not delete colour.

wxCanvas::ViewStart

void ViewStart(int *x, int * y)

Get the position at which the visible portion of the canvas starts. If either of the scrollbars is

not at the home position, x and/or y will be greater than zero. Combined with GetClientSize,

the application can use this function to e�ciently redraw only the visible portion of the canvas.

The positions are in logical scroll units, not pixels, so to convert to pixels you will have to multiply

by the number of pixels per scroll increment.

5.7 wxCheckBox: wxItem

A checkbox is a labelled box which is either on (checkmark is visible) or o� (no checkmark).

wxCheckBox::wxCheckBox

void wxCheckBox(wxPanel *parent, wxFunction func, char *label,

int x = -1, int y = -1, int width = -1, int height = -1)

Constructor, creating and showing a checkbox. If width or height are omitted (or are less than

zero), an appropriate size will be used for the check box. func may be NULL; otherwise it is used

as the callback for the check box. Note that the cast (wxFunction) must be used when passing

your callback function name, or the compiler may complain that the function does not match the

constructor declaration.

wxCheckBox::�wxCheckBox

void �wxCheckBox(void)

Destructor, destroying the checkbox.

wxCheckBox::GetValue

Bool GetValue(void)

Gets the state of the checkbox, TRUE if it is checked, FALSE otherwise.

wxCheckBox::SetValue

void SetValue(Bool state)

Sets the checkbox to the given state: if the state is TRUE, the check is on, otherwise it is o�.

39

wxCanvas::SetLogicalFunction

void SetLogicalFunction(int function)

Sets the current logical function for the canvas. The possible values are:

� wxXOR

� wxINVERT

� wxOR REVERSE

� wxAND REVERSE

� wxCOPY

The default is wxCOPY, which simply draws with the current colour. The others combine

the current colour and the background using a logical operation. wxXOR is commonly used for

drawing rubber bands or moving outlines, since drawing twice reverts to the original colour.

wxCanvas::SetPen

void SetPen(wxPen *pen)

Sets the current pen for the canvas. The pen is not copied, so you should not delete the pen

unless the canvas pen has been set to another pen, or to NULL. Note that all pens and brushes

are automatically deleted when the program is exited.

wxCanvas::SetScrollbars

void SetScrollbars(int horiz pixels, int vert pixels, int x length, int y length,

int x page, int y page)

Sets up vertical and/or horizontal scrollbars. The �rst pair of parameters give the number of

pixels per `scroll step', i.e. amount moved when the up or down scroll arrows are pressed. These

may be 0 or less for no scrollbar. The second pair gives the length of scrollbar in scroll steps,

which e�ectively sets the size of the `virtual canvas'. The third pair gives the number of scroll

steps in a `page', i.e. amount moved when pressing above or below the scrollbar control, or using

page up/page down (not yet implemented).

For example, the following gives a canvas horizontal and vertical scrollbars with 20 pixels per

scroll step, a size of 50 steps (1000 pixels) in each direction, and 4 steps (80 pixels) to a page.

canvas->SetScrollbars(20, 20, 50, 50, 4, 4);

wxCanvas::SetTextBackground

void SetTextBackground(wxColour *colour)

Sets the current text background colour for the canvas. Do not delete colour.

38

void ResetContext(void)

Reset a canvas's context set by SetContext.

wxCanvas::Scroll

void Scroll(int x pos, int y pos)

Scrolls a canvas so the view start is at the given point. The positions are in scroll units,

not pixels, so to convert to pixels you will have to multiply by the number of pixels per scroll

increment. If either parameter is -1, that position will be ignored (no change in that direction).

wxCanvas::SetBackground

void SetBackground(wxBrush *brush)

Sets the current background brush for the canvas. The brush should not be deleted while being

used by a canvas. All brushes are deleted automatically when the application terminates.

wxCanvas::SetClippingRegion

void SetClippingRegion(
oat x,
oat y,
oat width,
oat height)

Sets the clipping region for the canvas. The clipping region is a rectangular area to which

drawing is restricted. Possible uses for the clipping region are for clipping text or for speeding up

canvas redraws when only a known area of the screen is damaged.

wxCanvas::SetContext

void SetContext(wxDC *dc)

Set a substitute context for the canvas, so applications which think they're drawing to canvases

can be fooled into drawing to the printer. Reset with ResetContext.

wxCanvas::SetBrush

void SetBrush(wxBrush *brush)

Sets the current brush for the canvas. The brush is not copied, so you should not delete the

brush unless the canvas pen has been set to another brush, or to NULL. Note that all pens and

brushes are automatically deleted when the program is exited.

wxCanvas::SetFont

void SetFont(wxFont *font)

Sets the current font for the canvas. The font is not copied, so you should not delete the font

unless the canvas pen has been set to another font, or to NULL.

37

void DrawPoint(
oat x,
oat y)

Draws a point using the current pen.

wxCanvas::DrawRectangle

void DrawRectangle(
oat x,
oat y,
oat width,
oat height)

Draws a rectangle with the given top left corner, and with the given size. The current pen is

used for the outline and the current brush for �lling the shape.

wxCanvas::DrawRoundedRectangle

void DrawRoundedRectangle(
oat x,
oat y,
oat width,
oat height,
oat radius = 20)

Draws a rectangle with the given top left corner, and with the given size. The corners are

quarter-circles using the given radius. The current pen is used for the outline and the current

brush for �lling the shape.

wxCanvas::DrawSpline

void DrawSpline(wxList *points)

Draws a spline between all given control points, using the current pen. Doesn't delete the

wxList and contents. The spline is drawn using a series of lines, using an algorithm taken from

the X drawing program `XFIG'.

void DrawSpline(
oat x1,
oat y1,
oat x2,
oat y2,
oat x3,
oat y3)

Draws a three-point spline using the current pen.

wxCanvas::DrawText

void DrawText(char *text,
oat x,
oat y)

Draws a text string at the speci�ed point, using the current text font, and the current text

foreground and background colours.

wxCanvas::GetDC

wxDC * GetDC(void)

Get a pointer to the canvas's device context. Note that the canvas's apparent device context

may be temporarily replaced by the application using SetContext, so for example a printer context

can be substituted and programs using the canvas's device context will really write to the printer.

The canvas's real device context is una�ected by SetContext.

wxCanvas::ResetContext

36

void Clear(void)

Clears the canvas (�lls it with the current background brush).

wxCanvas::DestroyClippingRegion

void DestroyClippingRegion(void)

Destroys the current clipping region so that none of the canvas is clipped.

wxCanvas::DrawEllipse

void DrawEllipse(
oat x,
oat y,
oat width,
oat height)

Draws an ellipse contained in the rectangle with the given top left corner, and with the given

size. The current pen is used for the outline and the current brush for �lling the shape.

wxCanvas::DrawLine

void DrawLine(
oat x1,
oat y1,
oat x2,
oat y2)

Draws a line from the �rst point to the second. The current pen is used for drawing the line.

wxCanvas::DrawLines

void DrawLines(int n, wxPoint points[],
oat xo�set = 0,
oat yo�set = 0)

void DrawLines(wxList *points,
oat xo�set = 0,
oat yo�set = 0)

Draw lines using an array of points of size n, or list of pointers to points, adding the optional

o�set coordinate. The current pen is used for drawing the lines. The programmer is responsible

for deleting the list of points.

wxCanvas::DrawPolygon

void DrawPolygon(int n, wxPoint points[],
oat xo�set = 0,
oat yo�set = 0)

void DrawPolygon(wxList *points,
oat xo�set = 0,
oat yo�set = 0)

Draw a �lled polygon using an array of points of size n, or list of pointers to points, adding the

optional o�set coordinate. The current pen is used for drawing the outline, and the current brush

for �lling the shape. Using a transparent brush suppresses �lling. The programmer is responsible

for deleting the list of points.

Note that wxWindows does not close the �rst and last points automatically.

wxCanvas::DrawPoint

35

5.5 wxButton: wxItem

wxButton::wxButton

void wxButton(wxPanel *parent, wxFunction func, char *label,

int x = -1, int y = -1, int width = -1, int height = -1)

Constructor, creating and showing a button. If width or height are omitted (or are less than

zero), an appropriate size will be used for the button. func may be NULL; otherwise it is used

as the callback for the button. Note that the cast (wxFunction) must be used when passing

your callback function name, or the compiler may complain that the function does not match the

constructor declaration.

wxButton::�wxButton

void �wxButton(void)

Destructor, destroying the button.

5.6 wxCanvas: wxWindow

A canvas is a subwindow onto which graphics and text can be drawn, and mouse and keyboard

input can be intercepted. At present, panel items cannot be placed on a canvas.

To determine whether a canvas is colour or monochrome, test the canvas's device context

colour Bool member variable.

wxCanvas::wxCanvas

void wxCanvas(wxFrame *parent, int x = -1, int y = -1, int width = -1, int height = -1,

int style = wxRETAINED)

Constructor. The style parameter may be a combination (using the C++ logical `or' operator)

of the following
ags:

� wxBORDER, to give the canvas a thin border (Windows 3 only)

� wxRETAINED, to give the canvas a backing store, making repainting much faster but at a

memory premium (XView and Motif only)

wxCanvas::�wxCanvas

void �wxCanvas(void)

Destructor.

wxCanvas::Clear

34

wxBrush::SetColour

void SetColour(wxColour &colour)

void SetColour(char *colour name)

void SetColour(int red, int green, int blue)

The brush's colour is changed to the given colour.

wxBrush::SetStyle

void SetStyle(int style)

Sets the brush style (wxSOLID or wxTRANSPARENT).

5.4 wxBrushList: wxList

A brush list is a list containing all brushes which have been created. There is only one instance

of this class: wxTheBrushList. Use this object to search for a previously created brush of the

desired type and create it if not already found. In some windowing systems, the brush may be a

scarce resource, so it is best to reuse old resources if possible. When an application �nishes, all

brushes will be deleted and their resources freed, eliminating the possibility of `memory leaks'.

wxBrushList::wxBrushList

void wxBrushList(void)

Constructor. The application should not construct its own brush list: use the object pointer

wxTheBrushList.

wxBrushList::AddBrush

void AddBrush(wxBrush *brush)

Used by wxWindows to add a brush to the list, called in the brush constructor.

wxBrushList::FindOrCreateBrush

wxBrush * FindOrCreateBrush(wxColour *colour, int style)

wxBrush * FindOrCreateBrush(char *colour name, int style)

Finds a brush of the given speci�cation, or creates one and adds it to the list.

wxBrushList::RemoveBrush

void RemoveBrush(wxBrush *brush)

Used by wxWindows to remove a brush from the list.

33

5.3 wxBrush: wxObject

A brush is a drawing tool for �lling in areas. It is used for painting the background of rectangles,

ellipses, etc. It has a colour and a style - the style may be wxSOLID (normal) or wxTRANS-

PARENT (the brush isn't used). On a monochrome display, the default behaviour is to show all

brushes as white. If you wish the policy to be `all non-white colours are black', as with pens, un-

comment the piece of code documented in SetBrush in wx dc.cc. Alternatively, set the Colour

member of the device context to TRUE, and select appropriate colours.

Do not initialize objects on the stack before the program commences, since other required

structures may not have been set up yet. Instead, de�ne global pointers to objects and create

them in OnInit or when required.

An application may wish to create brushes with di�erent characteristics dynamically, and there

is the consequent danger that a large number of duplicate brushes will be created. Therefore an

application may wish to get a pointer to a brush by using the global list of brushes wxTheBrush-

List, and calling the member function FindOrCreateBrush. See the entry for thewxBrushList

class.

wxBrush::wxBrush

void wxBrush(void)

void wxBrush(wxColour &colour, int style)

void wxBrush(char *colour name, int style)

Constructs a brush: uninitialized, initialized with an RGB colour and a style, or initialized

using a colour name and a style. If the named colour form is used, an appropriate wxColour

structure is found in the colour database.

wxBrush::�wxBrush

void �wxBrush(void)

Destructor, destroying the brush. Note that brushes should very rarely be deleted since win-

dows may contain pointers to them. All brushes will be deleted when the application terminates.

wxBrush::GetColour

wxColour& GetColour(void)

Returns a reference to the brush colour.

wxBrush::GetStyle

int GetStyle(void)

Returns the brush style (wxSOLID or wxTRANSPARENT).

32

Destructor. Will be called implicitly if the wxApp object is created on the stack.

wxApp::argc

int argc

Number of command line arguments (after environment-speci�c processing).

wxApp::argv

char ** argv

Command line arguments (after environment-speci�c processing).

wxApp::Initialized

Bool Initialized(void)

Returns TRUE if the application has been initialized (i.e. if OnInit has returned successfully).

This can be useful for error message routines to determine which method of output is best for the

current state of the program (some windowing systems may not like dialogs to pop up before the

main loop has been entered).

wxApp::MainLoop

void MainLoop(void)

Called by wxWindows on creation of the application. Override this if you wish to provide your

own (environment-dependent) main loop.

wxApp::OnExit

void OnExit(void)

Provide this member function for any processing which needs to be done as the application is

about to exit.

wxApp::OnInit

wxFrame * OnInit(void)

This must be provided by the application, and must create and return the application's main

window.

31

In the following descriptions of the wxWindows classes and their member functions, note

that descriptions of inherited member functions are not duplicated in derived classes unless their

behaviour is di�erent. So in using a class such as wxCanvas, be aware that wxWindow functions

may be relevant.

Note also that arguments with default values may be omitted from a function call, for brevity.

Size and position arguments may usually be given a value of -1 (the default), in which case

wxWindows will choose a suitable value.

The member functions are given in alphabetical order except for the constructors and destruc-

tors which appear �rst.

5.2 wxApp: wxObject

The wxApp class represents the application itself. A wxWindows application does not have a

main procedure; the equivalent is the OnInit member de�ned for a class derived from wxApp.

OnInitmust create and return a main window frame as a bare minimum. If NULL is returned from

OnInit, the application will exit. Note that the program's command line arguments, represented

by argc and argv, are available from within wxApp member functions.

An application closes by destroying all windows. Because all frames must be destroyed for

the application to exit, it is advisable to use parent frames wherever possible when creating new

frames, so that deleting the top level frame will automatically delete child frames. In emergencies

the wxExit function can be called to kill the application.

An example of de�ning an application follows:

class DerivedApp: public wxApp

{

public:

wxFrame *OnInit(void);

};

wxFrame *DerivedApp::OnInit(void)

{

wxFrame *the_frame = new wxFrame(argv[0]);

...

return the_frame;

}

MyApp DerivedApp;

wxApp::wxApp

void wxApp(void)

Constructor. Call implicitly with a de�nition of a wxApp object.

wxApp::�wxApp

void �wxApp(void)

30

Chapter 5

Classes and data types

5.1 Class hierarchy

The GUI-speci�c wxWindows class hierarchy is shown in Figure 5.1. Many other, non-GUI classes

have been omitted.

wxObject

wxPen

wxBrush

wxFont

wxIcon

wxCursor

wxWindow

wxItem

wxFrame

wxCanvas

wxTextWindow

wxPanel

wxButton

wxText wxMultiText

wxListBox

wxCheckBox

wxChoice

wxMenu

wxMenuBar

wxMessage

wxDialogBox

wxColour

Figure 5.1: wxWindows class hierarchy

29

2. Better support for bitmap operations and image �le loading.

3. a wxToolBar class.

4. interception of all wxWindows system events, for `meta-applications' such as a special-needs

interface.

5. More panel item types.

6. Changeable panel item fonts.

7. An enhanced text window for the Windows environment

8. Use of a tool such as DevGuide to generate wxWindows code.

4.3 Troubleshooting

Under Windows, dialog boxes refuse to appear.

You probably forgot to include the �le wx.rc in your resource script (see Section 3.3.1).

Under X, the menu bar does not appear, and a blank area of window appears instead.

You may be using SetClientSize before the menu bar has been created. Call it after the

whole window and its subwindows have been created.

Under XView, the following message appears:

XView warning: SERVER IMAGE BITMAP FILE: Server image creation failed (Server Image

package)

The application may be looking for an icon �le which does not exist or has been referenced by

a relative icon pathname. Use an absolute path, or include the icon image in the source �le using

conditional compilation (see the wxIcon class entry).

The program exits abnormally without initializing.

You may be declaring a pen, brush, icon, cursor or colour globally. These objects automatically

add themselves to global lists which may not be initialized before the object constructors are called,

and so only global pointers to these objects may be declared. After or during OnInit is called,

these objects may be created with impunity.

Under Windows, I get a link error.

See sections 3.4 and 3.10. Also, try invoking the MSC7 help compiler with the given error

message.

28

Chapter 4

Bugs and future developments for

wxWindows

4.1 Bugs

These are the known bugs:

1. Using SetClientSize before setting the menu bar on a frame does not cause a menu bar

to appear under X. Use SetClientSize after changes to the window which might a�ect its

size.

2. Modal dialogs under XView do not treat some panel items correctly. This XView problem

is partially corrected with the list item scrollbar �x supplied with wxWindows, but choice

items (and probably other items) still don't work properly.

3. MDI support is hampered by the inability to paint icons dynamically onto the iconized

window client area, thus limiting icons to one image for all child windows.

4. Mapping mode support is patchy.

5. PostScript output control could be improved. Mapping mode ignored by PostScript driver.

6. Some text window behaviour is not implemented in Windows (e.g. character input).

7. Support for panel items such as radio buttons is absent.

8. On creation of a new frame, XView often appears to send too many repaint events to

subwindows. I can't �nd a way around this, any suggestions appreciated.

4.2 Future developments

The following enhancements are under consideration, some of which have been discussed earlier.

1. Ports to other windowing systems, such as Motif and NT. These are both under way.

27

3.10 Large amounts of global data

Under Windows, it is possible that the default data segment becomes too large (for example, a

large number of small, global data items have been declared). This may be cured by using more

than one data segment. In MSC7, specify the /Gt compiler option with a number representing

the data size threshold for putting data items in a separate segment. For example, /Gt8.

The tradeo� is that using more than one data segment prevents you from having more than

one instance of the program running at a time (see above). Large model programs with one data

segment may still have multiple instances.

A separate problem sometimes occurs when the linker complains about too many segments.

This can be cured by using the /SEG linker switch, for example /SEG:256.

26

...

void mycallback(wxButton& button, wxEvent& event);

...

wxButton button(parent, &mycallback, label, 100, 200);

Since wxButton is derived from wxObject, the function mycallback is a subtype of wxFunc-

tion. In MSC 7, however, the function is not an exact match, and the compiler complains. The

solution is to place a cast in front of the function address, thus:

wxButton button(parent, (wxFunction)&mycallback, label, 100, 200);

3.8.4 Precompiled headers

MSC 7 supports precompiled headers, which can save a great deal of compiling time. However,

if the header �le to be compiled only appears in the DOS environment (for example windows.h),

there is a problem. The �lename must appear in any source �le including this header �le, not

just in another header �le; therefore any application using wx.h and requiring precompilation of

windows.h must include a reference to windows.h in all the source �les. It is not possible to

conditionally include this reference due to another MSC 7 restriction, so the only solution seems

to be to have a dummy windows.h in the UNIX environment.

If wx.h is itself precompiled, this problem should go away assuming all source �les include

wx.h. Precompilation is useful only for stable code and so precompiling the wxWindows headers

is not practical if wxWindows itself is being altered.

3.9 File handling

When building an application which may be used under di�erent environments, one di�culty is

coping with documents which may be moved to di�erent directories on other machines. Saving a

�le which has pointers to full pathnames is going to be inherently unportable. One approach is to

store �lenames on their own, with no directory information. The application searches through a

number of locally de�ned directories to �nd the �le. To support this, the class wxPathListmakes

adding directories and searching for �les easy, and the global functionFileNameFromPathallows

the application to strip o� the �lename from the path if the �lename must be stored. This has

undesirable rami�cations for people who have documents of the same name in di�erent directories.

As regards the limitations of DOS 8+3 single-case �lenames versus unrestricted UNIX �le-

names, the best solution is to use DOS �lenames for your application, and also for document

�lenames if the user is likely to be switching platforms regularly. Obviously this latter choice is

up to the application user to decide. Some programs (such as YACC and LEX) generate �lenames

incompatible with DOS; the best solution here is to have your UNIX make�le rename the gener-

ated �les to something more compatible before transferring the source to DOS. Transferring DOS

�les to UNIX is no problem, of course, apart from EOL conversion for which there should be a

utility available (such as dos2unix).

See also section 6.1 for descriptions of miscellaneous �le handling functions.

25

wxMetaFile *mf = dc.Close();

mf->SetClipboard();

delete mf;

#endif

...

3.7 Building on-line help

wxWindows has its own help system from version 1.30: wxHelp. It can be used to view the wxWin-

dows class library reference, and also to provide on-line help for your wxWindows applications.

The API, made accessible by including wx help.h, allows you to load �les and display speci�c

sections, using DDE to communicate between the application and wxHelp. See install.txt and

the wxHelp documentation (in utils/wxhelp/docs) for further details.

3.8 C++ issues

There are cases where a C++ program will compile and run �ne under one environment, and then

fail to compile using a di�erent compiler. Some caveats are given below, from experience with the

GNU C++ compiler (GCC) and MS C/C++ compiler Version 7 (MSC 7).

3.8.1 Templates

I have not investigated using the cut-down template facility in MSC 7; probably it is best to avoid

using templates for maximum portability.

3.8.2 De�nition of constructors

GCC allows the user to omit constructor de�nitions where a parent class provides a constructor

with parameters. In MSC 7, all constructors with parameters must be de�ned in the derived class,

or the compiler cannot �nd the required constructor. This maymean de�ning dummy constructors

which call parent constructors, for example:

MyClass::MyClass(int x, int y):ParentClass(x, y)

{

}

This is not a problem where the constructor has no parameters.

3.8.3 Pointers to functions

GCC is clever in its matching of function pointer arguments to the declaration of the function,

and will not complain in the following case:

typedef void (*wxFunction) (wxObject&, wxEvent&);

24

� Use /PACKDATA to combine data segments.

� Use /Gt65500 /Gx to force all data into the default data segment.

Even with the single-instance limitation, the productivity bene�t is worth it in the majority

of cases. Note that some other multi-platform class libraries also have this restriction. (If more

than one instance really is required, create several copies of the program with di�erent names.)

Having chosen the large model, just use C++ `new', `delete' (and if necessary `malloc' and

`free') in the normal way. The only restrictions now encountered are a maximum of 64 KB for a

single program segment and for a single data item, unless huge model is selected.

3.5 Dynamic Link Libraries

wxWindows may be used to produce DLLs which run under Windows 3.1. Note that this is not

the same thing as having wxWindows as a DLL, which is not currently possible. For MSC 7, use

the make�le with the argument DLL=1 to produce a version of the wxWindows library which

may be used in a DLL application. There is a bug in MSC 7 which makes the compiler complain

about returned
oats, which goes away when the /Os option is used, which is why that
ag is set

in the make�le.

For making wxWindows as a Sun dynamic library, there are comments in the UNIX make�le

for the appropriate
ags for AT&T C++. Sorry, I haven't investigated the
ags needed for other

compilers.

3.6 Conditional compilation

One of the purposes of wxWindows is to reduce the need for conditional compilation in source code,

which can be messy and confusing to follow. However, sometimes it is necessary to incorporate

platform-speci�c features (such as meta�le use under Windows 3.1). The following identifers may

be used for this purpose, along with any user-supplied ones:

� wx x - for code which should work under any X toolkit

� wx xview - for code which should work under XView only

� wx motif - for code which should work under Motif only

� wx msw - for code which should work under Microsoft Windows only

For example:

...

#ifdef wx_x

(void)wxMessageBox("Sorry, metafiles not available under X.");

#endif

#ifdef wx_msw

wxMetaFileDC dc;

DrawIt(dc);

23

3.3.1 Resource �le

The least that must be de�ned in the resource �le (extension RC) is the following statement:

rcinclude wx.rc

which includes essential internal wxWindows de�nitions. The resource script may also contain

references to icons, cursors, etc., for example:

wxicon icon wx.ico

The icon can then be referenced by name when creating a frame icon. See the Windows 3 SDK

documentation.

3.3.2 Module de�nition �le

A module de�nition �le (extension DEF) looks like the following:

; hello.def

;

NAME Hello

DESCRIPTION 'Hello'

EXETYPE WINDOWS

STUB 'WINSTUB.EXE'

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MOVEABLE MULTIPLE

HEAPSIZE 1024

STACKSIZE 8192

The only lines which will usually have to be changed per application are NAME and DE-

SCRIPTION.

3.4 Memory models and memory allocation

Under UNIX, this isn't a problem. Under Windows, the only really viable way to go is to use the

large model, which uses the global heap instead of the local heap for memory allocation. Unless

more than one read-write data segment is used (see section 3.10 below), large model programs

may still have multiple instances under MS C/C++ 7. Microsoft give the following guidelines for

producing multiple-instance large model programs:

� Do not use /ND to name extra data segments unless the segment is READONLY.

� Use the .DEF �le to mark extra data segments READONLY.

� Do not use far or FAR to mark data items.

22

� wx panel.h - panels

� wx privt.h - some private wxWindows declarations

� wx text.h - text subwindows

� wx timer.h - timer object

� wx utils.h - various utilities

� wx win.h - abstract base class for frames, subwindows and items

Unfortunately, including speci�c header �les for purposes of compiling speed can be a problem

on the PC if wx.h is precompiled, since then wx.h must be mentioned in each source (see below).

A tradeo� is probably necessary between speed of compiling under UNIX versus on the PC.

3.2 Make�les

At the moment there is no attempt to make UNIX make�les and nmake make�les compatible, i.e.

one make�le is required for each environment. If anyone knows how to avoid this duplication, I

would be interested!

Sample make�les are included with the library and demos, but not for Borland C++, so if

anyone can send me some Borland make�les I will make them available with a future release.

3.2.1 DOS make�les

Normally it is only necessary to type nmake -f makefile.dos (or an alias or batch �le which

does this). By default, binaries are made with debugging information, and no optimization. Use

FINAL=1 on the command line to remove debugging information (this only really necessary at

the link stage), and DLL=1 to make a DLL version of the library, if building a library.

3.2.2 UNIX make�les

All make�les have the targets xview and motif, which build versions of a library or binary

appropriate to desired GUI toolkit. To change from one toolkit to another you must remember

to recompile anything using wxWindows, for example by using the wxclean target. Debugging

information is usually included; you may add DEBUG= on the command line to compile without

it, or use the UNIX strip command to remove debugging information (faster and more thorough).

3.3 Windows-speci�c �les

wxWindows application compilation under Windows 3 requires at least two extra �les, resource

and module de�nition �les.

21

Chapter 3

Multi-platform development with

wxWindows

3.1 Include �les and libraries

Under UNIX, use the library libwx.a. Under DOS, use the library wx.lib.

Under both operating systems, include the �le <wx.h>, or to save on compilation time, include

only those header �les relevant to the source �le. The header �les are as follows.

� common.h - important de�nitions and includes

� wx.h - includes all wxWindows headers

� wx canvs.h - drawing on canvases

� wx dc.h - drawing on canvases and printers

� wx dialg.h - user-de�ned and standard dialogs

� wx event.h - used in conjunction with windows and panel items

� wx form.h - forms allow succinct expression of panels with constrained items

� wx frame.h - frame window handling

� wx gdi.h - graphics objects such as colours, pens, brushes and icons

� wx help.h - API for invoking wxHelp

� wx hash.h - hash table implementation

� wx ipc.h - interprocess communication (using a subset of the DDE standard)

� wx item.h - panel items

� wx list.h - linked list implementation, heavily used by wxWindows

� wx main.h - application initialization

� wx obj.h - base class for wxWindows classes

20

2.12.3 Data transfer

These are the ways that data can be transferred from one application to another.

� Execute: the client calls the server with a data string representing a command to be

executed. This succeeds or fails, depending on the server's willingness to answer. If the

client wants to �nd the result of the Execute command other than success or failure, it has

to explicitly call Request.

� Request: the client asks the server for a particular data string associated with a given item

string. If the server is unwilling to reply, the return value is NULL. Otherwise, the return

value is a string (actually a pointer to the connection bu�er, so it should not be deallocated

by the application).

� Poke: The client sends a data string associated with an item string directly to the server.

This succeeds or fails.

� Advise: The client asks to be advised of any change in data associated with a particular

item. If the server agrees, the server will send an OnAdvise message to the client along with

the item and data.

The default data type is wxCF TEXT (ASCII text), and the default data size is the length of

the null-terminated string. Windows-speci�c data types could also be used on the PC.

2.12.4 Examples

See the sample programs server and client in the IPC samples directory. Run the server, then

the client. This demonstrates using the Execute, Request, and Poke commands from the client,

together with an Advise loop: selecting an item in the server list box causes that item to be

highlighted in the client list box.

See also the source for wxHelp, which is a DDE server, and the �les wx help.h and wx help.cc

which implement the client interface to wxHelp.

2.12.5 Remote Procedure Call

DDE is quite a low level protocol, and all encoding and decoding of messages must be done

by the client and server applications. The wxWindows extension PROLOGIO implements a

remote procedure call protocol (RPC) so that a server can implement a library of functions for

a client to call. PROLOGIO makes it easy for applications to pack and unpack the arguments

and return value(s) of procedure calls, and provides a mechanism for the server to register its

available calls and automatically handle the routing of calls to appropriate server callbacks, one to

a procedure de�nition. All this makes calling or implementing server facilities childishly simple.

Since PROLOGIO sits on top of the DDE wrapper, it is also platform independent. See the

PROLOGIO manual.

PROLOGIO is expected to be available in the �rst quarter of 1993.

19

3. wxConnection. This represents the connection from the current client or server to the other

application (server or client), and can be used in both server and client programs. Most

DDE transactions operate on this object.

Messages between applications are usually identi�ed by three variables: connection object,

topic name and item name. A data string is a fourth element of some messages. To create

a connection (a conversation in Windows parlance), the client application sends the message

MakeConnection to the client object, with a string service name to identify the server and a

topic name to identify the topic for the duration of the connection. Under UNIX, the service name

must contain an integer port identi�er.

The server then responds and either vetos the connection or allows it. If allowed, a connection

object is created which persists until the connection is closed. The connection object is then used

for subsequent messages between client and server.

To create a working server, the programmer must:

1. Derive a class from wxServer.

2. Override the handler OnAcceptConnection for accepting or rejecting a connection, on

the basis of the topic argument. This member must create and return a connection object

if the connection is accepted.

3. Create an instance of your server object, and call Create to activate it, giving it a service

name.

4. Derive a class from wxConnection.

5. Provide handlers for various messages that are sent to the server side of a wxConnection.

To create a working client, the programmer must:

1. Derive a class from wxClient.

2. Override the handler OnMakeConnection to create and return an appropriate connection

object.

3. Create an instance of your client object.

4. Derive a class from wxConnection.

5. Provide handlers for various messages that are sent to the client side of a wxConnection.

6. When appropriate, create a new connection by sending a MakeConnection message to

the client object, with arguments host name (processed in UNIX only), service name, and

topic name for this connection. The client object will call OnMakeConnection to create

a connection object of the desired type.

7. Use the wxConnection member functions to send messages to the server.

18

of colour accordingly. Currently, wxWindows tries to choose appropriate pen and brush colours

for a monochrome display. To override this behaviour, set the device context Colour member to

TRUE and choose custom colours for drawing graphics.

2.11 Online help

Most modern GUI applications have on-line hypertext help. In Windows 3, help is normally

supplied in binary �les which are read by an external program, which is itself accessed from within

the application using Microsoft-supplied function calls. XView has provisions for simple context

sensitive help, but no equivalent of the Windows 3 browseable help.

From version 1.30, wxWindows comes with wxHelp, a hypertext help system which may be

invoked from wxWindows applications. wxHelp works in two modes|edit and end-user. In edit

mode, an ASCII �le may be marked up with di�erent fonts and colours, and divided into sections.

In end-user mode, no editing is possible, and the user browses principally by clicking on highlighted

blocks.

When an application invokes wxHelp, subsequent sections, blocks or �les may be viewed using

the same instance of wxHelp since the two programs are linked using wxWindows interprocess

communication facilities. When the application exits, that application's instance of wxHelp may be

made to exit also. See the wxHelpInstance entry in the reference section for how an application

controls wxHelp.

2.12 Interprocess Communication

2.12.1 What wxWindows has

Interprocess communication (IPC) has always been a tricky area, and the plethora of techniques

on di�erent platforms has not helped. Microsoft has laid down several standards for IPC under

Windows 3, the most fundamental being Dynamic Data Exchange (DDE). DDE is the basis for

wxWindows's IPC capability: the same, simple, object-oriented interface is provided for a subset

of DDE under both Windows on the PC, and under XView and Motif on UNIX. The UNIX version

is implemented using sockets, and allows processes on the same or di�erent machines to talk to

each other.

The bene�ts of wxWindows's DDE package are twofold: much greater simplicity compared with

DDE and UNIX sockets; and the considerable advantage of keeping to platform-independence even

in this notoriously platform-dependent area. Currently only synchronous transactions are handled;

a later version of wxWindows may support asynchronous transactions also.

2.12.2 Principles of DDE

The following describes how wxWindows implements DDE. The following three classes are crucial.

1. wxClient. This represents the client application, and is used only within a client program.

2. wxServer. This represents the server application, and is used only within a server program.

17

device context for canvases and printers, with Windows 3 printing supported on the PC and an

Encapsulated PostScript driver provided under X. Thus graphic code may be extremely generic -

the same piece of code can draw to Windows 3 screens of all types, to X windows, and to hundreds

of di�erent printers.

2.8 Programmatic versus interactive GUI building

Interactive tools for rapidly building GUIs are all the rage, and wxWindows does not at this point

support this. Loading Windows 3 dialog boxes from resource �les will be possible in future in

wxWindows, so that dialogs may be constructed interactively. However, this will not carry through

to other platforms, so a more general solution is required. One possibility is to translate Windows

3 resource scripts or DevGuide descriptions into wxWindows code, or into a form that wxWindows

could load. Using YACC and LEX such a project could be quite straightforward, although there

will not always be a mapping between the dialog builder and wxWindows constructs.

Another consideration is that it is not always possible to build GUI components interactively:

the `what you see is all you get' syndrome. When complex repositioning of items depending on

window size is required, then GUI builders such as the Microsoft dialog editor are useless.

However, using a toolkit with geometry management may be no panacea; for example, the

Motif constraint algorithm is di�cult to understand and much experimentation is necessary. The

approach taken by wxWindows is in keeping with the main goal of simplicity: wxWindows has

the ability to create panel items from left to right, top to bottom with appropriate horizontal and

vertical spacing; or the programmer may position the panel items explicitly. The �rst method

gives resolution and font independence, and is less �ddly, and the second method may be used for

tidying up a display for a speci�c platform.

2.9 Dimensions

The graphics origin is always the top left hand corner of a window. Dimensions are a problem

in a multi-platform application, since display and character widths will change from machine to

machine, even more so than for di�erent PC display boards. At the moment wxWindows uses

pixels; Windows 3 tackles the problem by using `dialog units' based on the size of the standard

system font. To avoid this problem when creating panel items, wxWindows provides automatic

left to right, top to bottom item layout (similar to XView), in addition to absolute positioning, in

which case, portability is up to the discretion of the programmer.

A canvas has a mapping mode associated with it, which determines the meaning of dimensions

in subsequent graphics operations. Drawing may be done using various units including mm, 1/10

mm, pixels and points. Future versions of wxWindows will support a change of graphics origin.

2.10 Colour

Under XView and Motif, the default palette is used for canvases, giving a limited range of colours.

More colours show up under Windows 3. Future versions of wxWindows should improve upon

colour and palette handling.

The presence of a monochrome screen can be detected so the application can change its use

16

Motif, wxWindows allows a canvas to be retained if desired, which means that fewer paint messages

are received and scrolling is fast. The Motif implementation has a slight overhead in that drawing

must be done both to the canvas and to the backing pixmap, but this is usually made up for by

the speed of repainting.

The repaint procedure will obviously be written in such a way that the minimum amount of

work needs to be done (for example, positions of objects on a canvas are only recalculated when

the positions change).

See below for more information on repainting and scrolling.

2.6 Scrolling

Scrolling can be a tricky subject for a novice GUI programmer to tackle. The Windows 3 API

ensures that the su�ering is as acute as possible by requiring the application to program the

scrollbar behaviour and to check the scrollbar positions on repainting. XView has the decency to

provide a canvas event with coordinates that re
ect what the scrollbars are doing. In wxWindows,

the XView approach is taken, so that all the programmer has to do is to create scrollbars with

a given scroll length and increment, and the repaint procedure automatically re
ects scrollbar

positions. Obviously this simple approach can be ine�cient if the canvas doesn't know what is

actually in view, so the application can get the current view in order to limit the amount of

repainting required.

It is possible to tell a wxWindows canvas to be retained (though this only has an e�ect in

XView and Motif). In this case no repaint events will happen when scrolling since the system

remembers what was drawn and simply moves a bitmap around.

Under Windows 3.1, wxWindows scrolls the bits of the canvas around when the user generates

a scroll event, so the canvas does not need to be cleared and only the damaged areas need be

repainted|so all the application need do is redraw the whole image, and scrolling will appear to

be relatively smooth. This is the case in the hello.exe demo.

However, there are times when we can't allow the system to scroll the bits of the image, for

example when a scroll increment will result in an unpredictable actual movement of the image.

This is true for wxHelp, since scrolling is in terms of lines, and lines vary in height. If we left it

up to wxWindows to scroll without clearing the screen, the text would then overlay some of the

previous screen since the old and new images will probably not exactly match.

In the wxHelp application the horizontal direction is scrolled in terms of pixels, not character

widths, and so wxWindows can be left to scroll the image smoothly, without having to clear before

repainting. This kind of control is avilable by using wxCanvas::EnableScrolling.

Scrolling panels have yet to be implemented in wxWindows.

2.7 Printing

Printing in Windows 3 is relatively easy, since all drawing is done to a `device context' which could

equally well be associated with a printer as with a window. Windows 3 handles the plethora of

printer types that abound in the PC environment. In X under UNIX, the standard is PostScript;

X, XView and Motif provide no help at all. The solution adopted in wxWindow is to use a

15

Note that under Windows 3, modal dialogs have to be emulated using modeless dialogs and

a message loop. This is because Windows 3 expects the contents of a modal dialog to be loaded

from a resource �le or created on receiving a dialog initialization message. This is too restrictive

for wxWindows, where any window may be created and possibly displayed before its contents are

created.

Standard dialogs are provided for printer settings, �le selection, short messages, single-line text

string entry and scrolling single-selection lists.

2.3 Menus

Menus are mainly used in menu bars, but could also be used for popup menus on panels (not

yet implemented). A menu bar is a sequence of pull-down command menus near the top of the

window, usually with a File menu as the �rst menu. In Windows 3 and Motif, the menu bar is

a standard user interface component. Under XView, wxWindows must simulate a menu bar with

a series of menu buttons. Under wxWindows for Motif and Windows 3, but not XView, placing

and ampersand before a letter in a menu name causes it to be underscored and interpreted as a

kind of hotkey. Under XView such underscores are ignored. The Motif version of wxWindows

automatically right-justi�es the help menu, if there is one.

Menu items are identi�ed by integer identi�ers, and when a menu item is selected, the parent

frame is noti�ed using the OnMenuCommand member.

2.4 Events

In XView and Motif, events (such as resizing, painting, mouse clicks, button presses) are handled

by a rather arbitrary collection of optional XView and Xlib callbacks. In Windows 3, events are

messages which are handled by a window procedure, or ignored.

In wxWindows, GUI objects mostly receive events by wxWindows calling user-overridable

handlers, such as OnEvent, OnChar and OnSize. Frames can receive OnClose events from

the window manager (X) or system control menu (Windows 3). These events are handled by the

application by deriving new window classes and overriding the event-handling member functions.

Panel item noti�cation has to be handled rather di�erently. In Windows 3, all panel item

events (such as a button press) are sent to the parent window (requiring large case statements to

di�erentiate the events), and all window events are sent to the relevant window. In XView and

Motif, di�erent types of callback function have to be de�ned, depending on the event.

In wxWindows, panel items have optional callback functions, but there is only one callback

type: the function takes the object and an event structure. The class derivation approach cannot

be extended to panel items since it does not make sense to derive a new class for every individual

panel item created.

2.5 Repainting of windows

All windows except for the canvas are repainted by the system. The canvas requires a paint

message handler to be de�ned (and therefore canvas derivation is obligatory). Under XView and

14

Windows 3 or Motif programmers may miss the ability to place panel items in canvases (to

use XView terminology), or to draw graphics in panels. A future version of wxWindows may

support drawing on panels, particularly in the Motif version, lifting these restrictions. Support for

displaying panel items and drawing graphics will probably be moved up to the base wxWindow

class, maintaining compatibility with existing wxWindows programs but allowing new programs

more
exibility.

2.1.1 MDI vs. SDI

In Windows 3, a popular technique is to use the MDI (Multiple Document Interface) style, where

the application window has a number of iconizable document windows which �t within it. This

can save clutter on the desktop since iconizing or moving the parent window iconizes or moves

all the child windows. MDI contrasts with SDI (Single Document Interface) in which windows

are not constrained within one parent window, and normal practice is to run one instance of the

application per document. Since wxWindows uses the large model, and large model programs

may be limited to one instance at a time (unless only one data segment is used), it makes sense

to o�er MDI support.

I have decided to include largely automatic, albeit relatively in
exible, support for MDI for

these reasons:

� Since it is likely that wxWindows programmers are writing for multiple platforms, and only

Windows 3 supports MDI, they will not wish to spend much or any time implementing MDI

features.

� The di�erence between writing MDI and SDI applications has been reduced to almost zero

so even the beginner can easily produce MDI programs.

� What wxWindows's auto-MDI cannot handle is hardly worth the extra e�ort anyway!

In wxWindows, the last argument of a frame constructor is used to indicate whether the frame

is an SDI frame, an MDI parent frame or an MDI child frame. The default is to create an SDI

frame. Once MDI frames are created, everything else is automatic, including appending the usual

Window menu option, and moving a child menu to the parent frame when the child frame is

activated. The choice of menu items for an MDI child frame will di�er slightly, usually including

menus (such as Quit) which would normally be on the main SDI window, but this only requires a

small amount of extra application code.

The demo programmdi shows how a program can easily be made switchable between SDI and

MDI - use the -mdi command switch for MDI operation.

2.2 Dialog boxes

A dialog box is like a panel, with an implicit frame surrounding it. A dialog box may be modal (no

other window in this application is active and the calling program
ow is suspended) or modeless

(any window may be interacted with and control returns immediately to the program). With

dialog boxes, creation of separate frames and panels is not necessary, and under Windows 3,

additional functionality is added `for free', such as tabbing between items. Any panel item may

be attached to a dialog box since wxDialogBox is derived from the wxPanel.

13

Chapter 2

Overview and comparison with

other GUI models

wxWindows takes elements of other GUI APIs, and adds some elements of its own. Of course, it

cannot hope to cover every (or even one) native API completely. The following sections discuss

di�erent GUI models and compare these with what wxWindows provides.

2.1 Windows

An application presents the user primarily with a series of windows. A window can be made up

of a frame with one or more subwindows. This is like the XView model, rather than Motif or

Windows 3 where child windows may be nested to any depth. The frame method was chosen since

XView required it, and because it is a useful simplifying assumption, imposing few restrictions in

practise. Note that the splitting of views beloved of the Open Look standard is not allowed in

wxWindows.

A frame window may be parentless or a child of another frame, and may be iconized. It may

have a menu bar, a row of pull-down menus along the top of the frame. Subwindows within a

frame come in three varieties: the panel, canvas and text subwindow. A panel is used for buttons,

lists and other such user input items, while a canvas is used for drawing graphics such as lines and

shapes. Panel items pass high-level noti�cation of user interaction to the program, whereas any

interaction with objects on a canvas must be programmed at a lower level.

In Xlib and Windows 3.1, canvases need to be painted using a handle to a `device context'. The

purpose of this is to enable more than one device context to be used for painting a given window,

and in Windows 3 to enable devices to include printers and other forms of display. wxWindows

also has the notion of a device context, but all drawing commands may also be directly issued to

a canvas for convenience.

wxWindows de�nes several objects required for drawing on canvases: colours, fonts, pens and

brushes. Neither XView nor Motif provides pens and brushes, which in Windows 3 allow the

selection of di�erent prede�ned `drawing tools' with certain characteristics (line thickness, colour,

�ll style etc.). In X there are a limited range of fonts, while in Windows 3 an in�nite selection

of sizes is available thanks to the scaleable TrueType font system. Under XView, wxWindows

chooses the closest matching font.

12

(UNIX) and/or wxwin130.zip (PC). Both archives contain the source code for both platforms, but

only the executable demos for the speci�c platform (UNIX and Windows respectively).

wxWindows 1.40 is expected to be uploaded to the CICA Windows 3 archive at Indiana

University (ftp.cica.indiana.edu). Version 1.20 is available from the British HENSA public domain

software archive at pdsoft.lancs.ac.uk in the directory x/a/a103.

It is also available by post from:

Dr Julian Smart, Arti�cial Intelligence Applications Institute, University of Edinburgh, 80

South Bridge, Edinburgh, Scotland, EH1 1HN. Email jacs@aiai.ed.ac.uk, tel. 031-650-2746.

It is distributed in tar and/or zip format on a high-density 3.5" MS-DOS disk, with online

PostScript, LaTeX and DVI format documentation. We regret we cannot supply printed documen-

tation. Please supply your own disk and return postage, or enclose something to cover distribution

costs.

1.5 Acknowledgments

Thanks are due to the AIAI for being willing to release wxWindows into the public domain, and

to my wife Harriet Smart for her patience while I �nished o� wxWindows at weekends.

The UseNet has been an essential prop when coming up against tricky XView and Windows

problems, so thanks to those who answered my queries, in particular Kari, Jamshid Afshar, Josep

Fortiana, Ian Perrigo, Neil Smith and Robin Corbet.

I also acknowledge the author of x�g, the excellent UNIX drawing tool, from the source of

which I have pinched some spline drawing code and a few cursor de�nitions. His copyright is

included below.

X�g2.1 is copyright (c) 1985 by Supoj Sutanthavibul. Permission to use, copy, modify, dis-

tribute, and sell this software and its documentation for any purpose is hereby granted without

fee, provided that the above copyright notice appear in all copies and that both that copyright no-

tice and this permission notice appear in supporting documentation, and that the name of M.I.T.

not be used in advertising or publicity pertaining to distribution of the software without speci�c,

written prior permission. M.I.T. makes no representations about the suitability of this software

for any purpose. It is provided \as is" without express or implied warranty.

11

� Can be used to create DLLs under Windows, dynamic libraries on the Sun

� Support for Windows 3 printer and �le common dialogs, with equivalents for UNIX

� Under Windows 3, support for creating meta�les and copying them to the clipboard.

� Programmatic form facility for building form-like screens fast, with constraints on values

� Hypertext help facility, with an API for invocation from applications

And here are the important downsides, so you can assess wxWindows's applicability to your

needs:

� No commercial support (I or the net might help, though)

� Restricted to large or huge models under Windows 3

� Limited bitmap support

� XView-style separation of frames, panels, canvases and text

� Not many panel items (widgets/controls) yet

1.3 wxWindows requirements

To make use of wxWindows, you currently need one or both of the following setups.

(a) PC:

1. a 386SX or higher PC running Windows 3.1

2. Microsoft C/C++ version 7 (including the SDK) or Borland C++ version 3.1 (other com-

pilers may work)

(b) UNIX:

1. GNU C++ version 2.1 or later, or compatible compiler (such as AT&T C++)

2. a Sun or other workstation supporting GNU C++ and either XView 3.1 or Motif 1.1

Note that these are the only tested tools; others may work. wxWindows takes up between

about two and �ve megabytes on both platforms, depending on whether wxWindows is being

recompiled or whether the library �le and header �les are su�cient.

1.4 Availability and location of wxWindows

wxWindows is currently available from the Arti�cial Intelligence Applications Institute by anony-

mous FTP. FTP to skye.aiai.ed.ac.uk, log on as `anonymous', and give your user ID as password.

Change directory into pub/wxwin, change transmission method to binary, and get wxwin130.tar.Z

10

wxWindows currently maps to three native APIs: XView or Motif on the Sun (and other

platforms supporting XView or Motif) and Windows 3.1 and above on the PC. This covers a very

large proportion of machines in use today: the Sun being an extremely popular workstation, and

the PC being the most popular personal and business computer. However, there is nothing to

prevent versions of the class library being written for the Macintosh and other environments. A

Windows NT version is currently under development.

In addition to GUI needs, wxWindows also supports a subset of DDE (Dynamic Data Ex-

change) on both the PC and UNIX. A simple object-oriented model of clients, servers and con-

nections is used, making it easy to write programs which communicate synchronously. Under

Windows, other non-wxWindows programs may still communicate with wxWindows programs

and vice versa; under UNIX, non-wxWindows programs just have to conform to a simple protocol

when communicating via sockets with wxWindows programs.

Choice of C++ compiler is currently important for wxWindows (see Requirements, below).

On the PC, the tested compilers for wxWindows are Microsoft C/C++ Version 7 and (to a lesser

extent) Borland C++ 3.1, and currently the make�les are for MS C7 only.

On the Sun, GNU C++ (GCC) and AT&T C++ are known to work with wxWindows.

The importance of using a platform-independent class library cannot be overstated, since GUI

application development is very time-consuming, and sustained popularity of particular GUIs can-

not be guaranteed. Code can very quickly become obsolete if it addresses the wrong platform or

audience. wxWindows helps to insulate the programmer from these winds of change. Although

wxWindows may not be suitable for every application, it provides access to most of the function-

ality a GUI program normally requires, plus some extras such as form construction, interprocess

communication and PostScript output, and can of course be extended as needs dictate. As a

bonus, it provides an arguably cleaner interface to XView, Motif and Windows 3 than the native

APIs. Programmers may �nd it worthwhile to use wxWindows even if they are developing on only

one platform.

When Windows NT becomes readily available, it should require very little work to port wxWin-

dows to it, and then wxWindows applications should work on a much broader range of hardware

(albeit using a subset of NT's facilities).

Here is a summary of some of the advantages of wxWindows:

� Low cost (free, in fact!)

� You get the source

� Several example programs, reasonable documentation

� Simple-to-use, object-oriented API

� No more messing with arcane X window calls under XView or Motif

� Graphics calls include splines, polylines, rounded rectangles, etc.

� XView-style panel item layout

� Status line facility

� Easy, object-oriented interprocess comms (DDE subset) under UNIX and Windows 3

� Encapsulated PostScript generation under UNIX, normal Windows 3 printing on the PC

� Virtually automatic MDI support under Windows

9

Chapter 1

Introduction

1.1 What is wxWindows?

wxWindows is a class library for C++ providing GUI (Graphical User Interface) and other facilities

on more than one platform. It currently supports subsets of Open Look (XView), Motif and

Windows 3.1. It was originally developed at the Arti�cial Intelligence Applications Institute,

University of Edinburgh, for internal use on a medium-sized project

1

. wxWindows has been

released into the public domain in the hope that others will also �nd it useful.

This manual describes in detail the wxWindows version 1.40 API (Application Programmer's

Interface). There is also a smaller, tutorial document which discusses various aspects of wxWin-

dows use.

1.2 Why another cross-platform development tool?

wxWindows was developed to provide a cheap and
exible way to maximize investment in GUI

application development. While a number of commercial class libraries already exist for cross-

platform development (for instance CommonView,XVT++), none met all of the following criteria:

1. low price

2. source availability

3. ability to use Open Look on the Sun instead of or as well as Motif

4. simplicity of programming

5. support for GCC (GNU C++)

6. support for interprocess communication

In writing wxWindows, completeness has inevitably been traded for portability and simplicity

of programming. For projects which do not need uncompromisingly polished interfaces, this

tradeo� seems well worthwhile given the productivity bene�ts.

1

A hypertext-based knowledge-acquisition and diagramming tool called HARDY.

8

Copyright notice

Copyright (c) 1993 Arti�cial Intelligence Applications Institute, The University of Edinburgh

Permission to use, copy, modify, and distribute this software and its documentation for any

purpose is hereby granted without fee, provided that the above copyright notice, author statement

and this permission notice appear in all copies of this software and related documentation.

THE SOFTWARE IS PROVIDED \AS-IS" AND WITHOUT WARRANTY OF ANY KIND,

EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WAR-

RANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL THE ARTIFICIAL INTELLIGENCE APPLICATIONS INSTITUTE

OR THE UNIVERSITY OF EDINBURGH BE LIABLE FOR ANY SPECIAL, INCIDENTAL,

INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHAT-

SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT

ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,

ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

7

Index 106

6

5.26 wxListBox: wxItem : 76

5.27 wxMenu: wxItem : 78

5.28 wxMenuBar: wxItem : 79

5.29 wxMessage: wxItem : 80

5.30 wxMetaFile: wxObject : 81

5.31 wxMetaFileDC: wxDC : 81

5.32 wxMultiText: wxText : 82

5.33 wxNode: wxObject : 82

5.34 wxObject : 83

5.35 wxPanel: wxWindow : 83

5.36 wxPathList: wxList : 84

5.37 wxPen: wxObject : 85

5.38 wxPenList: wxList : 87

5.39 wxPoint: wxObject : 88

5.40 wxServer: wxIPCObject : 88

5.41 wxSlider: wxItem : 89

5.42 wxStringList: wxList : 89

5.43 wxText: wxWindow : 90

5.44 wxTextWindow: wxWindow : 91

5.45 wxTimer: wxObject : 93

5.46 wxWindow: wxObject : 94

6 Miscellaneous functions 99

6.1 File functions : 99

6.2 String functions : 101

6.3 Dialog functions : 101

6.4 GDI functions : 103

6.5 Miscellaneous : 103

Glossary 105

5

5.2 wxApp: wxObject : 30

5.3 wxBrush: wxObject : 32

5.4 wxBrushList: wxList : 33

5.5 wxButton: wxItem : 34

5.6 wxCanvas: wxWindow : 34

5.7 wxCheckBox: wxItem : 39

5.8 wxChoice: wxItem : 40

5.9 wxClient: wxIPCObject : 41

5.10 wxColour: wxObject : 42

5.11 wxColourDatabase: wxObject : 42

5.12 wxConnection: wxObject : 43

5.13 wxCursor: wxObject : 46

5.14 wxDC: wxObject : 48

5.15 wxDialogBox: wxPanel : 54

5.16 wxEvent: wxObject : 56

5.17 wxFont: wxObject : 58

5.18 wxForm: wxObject : 59

5.18.1 The purpose of the form class : 59

5.18.2 Constraints on form items : 60

5.18.3 Form appearance : 60

5.18.4 Example : 61

5.18.5 Functions for making form items and constraints : : : : : : : : : : : : : : : 63

5.19 wxFrame: wxWindow : 65

5.20 wxFunction : 67

5.21 wxIcon: wxObject : 67

5.22 wxHashTable: wxObject : 68

5.23 wxHelpInstance: wxClient : 70

5.24 wxItem: wxWindow : 72

5.25 wxList: wxObject : 73

4

2.12.3 Data transfer : 19

2.12.4 Examples : 19

2.12.5 Remote Procedure Call : 19

3 Multi-platform development with wxWindows 20

3.1 Include �les and libraries : 20

3.2 Make�les : 21

3.2.1 DOS make�les : 21

3.2.2 UNIX make�les : 21

3.3 Windows-speci�c �les : 21

3.3.1 Resource �le : 22

3.3.2 Module de�nition �le : 22

3.4 Memory models and memory allocation : 22

3.5 Dynamic Link Libraries : 23

3.6 Conditional compilation : 23

3.7 Building on-line help : 24

3.8 C++ issues : 24

3.8.1 Templates : 24

3.8.2 De�nition of constructors : 24

3.8.3 Pointers to functions : 24

3.8.4 Precompiled headers : 25

3.9 File handling : 25

3.10 Large amounts of global data : 26

4 Bugs and future developments for wxWindows 27

4.1 Bugs : 27

4.2 Future developments : 27

4.3 Troubleshooting : 28

5 Classes and data types 29

5.1 Class hierarchy : 29

3

Contents

1 Introduction 8

1.1 What is wxWindows? : 8

1.2 Why another cross-platform development tool? : 8

1.3 wxWindows requirements : 10

1.4 Availability and location of wxWindows : 10

1.5 Acknowledgments : 11

2 Overview and comparison with other GUI models 12

2.1 Windows : 12

2.1.1 MDI vs. SDI : 13

2.2 Dialog boxes : 13

2.3 Menus : 14

2.4 Events : 14

2.5 Repainting of windows : 14

2.6 Scrolling : 15

2.7 Printing : 15

2.8 Programmatic versus interactive GUI building : 16

2.9 Dimensions : 16

2.10 Colour : 16

2.11 Online help : 17

2.12 Interprocess Communication : 17

2.12.1 What wxWindows has : 17

2.12.2 Principles of DDE : 17

2

Manual for wxWindows 1.40:

A portable GUI toolkit for C++

Julian Smart

Knowledge Based Decision Support Group

Arti�cial Intelligence Applications Institute

80 South Bridge

University of Edinburgh

EH1 1HN

April 1993

1

