
Barking Spider Software, Inc.
Tree Control

for
Windows

Barking Spider Software, Inc. Beaverton, Oregon
(503) 629-8236 VOICE/FAX/AUTO (503) 324-0187 VOICE

Copyright 1993 by Barking Spider Software,Inc. All rights reserved. All Barking
Spider Software products are trademarks or registered trademarks of Barking
Spider Sotware Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Introduction
What is the Barking Spider Tree Control ?

The Tree Control is part of a small, fast Windows DLL that removes the
hassles of adding a tree display to your product. Using the DLL's powerful
exported API, the programmer has complete control over bitmaps, text, spacing,
line colors and more.

The Barking Spider Tree Control currently requires the following execution
environment:

Windows 3.1 or greater in standard or enhanced mode.

To program for the Tree Control your chosen language must be able to:
Access DLL API's
Process Windows messages

NOTE: We will be releasing Visual Basic and C++ interfaces

What is in this package?

Pertaining to the Tree Control, this package contains:
The Tree/List Control DLL.
The export library for the Tree/List Control DLL.

This manual.
BSCORE.H - The core C language header file. This file contains the
constants, structures, notification messages, and error codes return from
the exported API.
BSTREE.H - The Tree Control C language header file. This file contains
the function declarations needed to interface with the DLL.
Treedem1 - Tree demo program 1. This program places the Tree Control
window on it's main window. This program interfaces with the DLL using
the DLL's API.
Treedem2 - Tree demo program 2. This program places the Tree
Control window in a modal dialog. This program shows how to use the
Tree Control with a dialog box editor using the Custom Control interface
and the exported API.
Treedem3 - Tree demo program 3. This program places the Tree
Control window on each of it's MDI children. The program interfaces with
the Tree Control via the exported API.

What can you do with the Tree Control ?

The Tree Control allows you to create and modify visual displays of
trees.

Tree modification APIs:
Node addition
Node insertion
Node deletion
Erase entire tree
Add/change user data

Visual modification APIs:
Set bitmaps
Set icons
Change bitmaps
Change icons
Change line colors
Toggle line drawing
Set bitmap/icon spacing
Set font
Change node text

In addition, the Tree Control simplifies user/tree interaction. All painting
and scrolling tasks are handled by the control. Using a simple messaging

scheme, the application is notified whenever a node is selected or double
clicked. Keyboard interactions with the Tree Control produce the same
messages as the equivalent mouse interactions.

Additional Tree Control features:
Drag and Drop encapsulation
System color change synchronization
Programmer defined data store for each node
User or control owned strings
Multiple bitmaps per line
Complete node hit test notification
Node relation (parent, child, sibling) access
Node deletion callback

Getting Started

What do you install?

To install the Barking Spider Tree Control run the install batch file
provided.
Copy the Tree Control DLL to a directory in your path or into your
project's executable directory.
Copy the Tree Control import library and the header files, BSCORE.H
and BSTREE.H, into the appropriate directory(s) on your hard disk.

Programming Overview
This overview is provided as an aid to programmers who are new to

using the Barking Spider Software Tree Control. It provides a brief overview of
interaction with the Tree Control. For more complete information on APIs please
refer to the API Reference in this manual. For a more indepth technical overview
of the Tree Control's operations and APIs please refer to the BSCORE.H and
BSTREE.H header files included in your package.

What will the control display?

The control will display a graphic representation of the tree described to
it by the application. The display will start at the root and traverse in a depth first

order displaying each node as it is encountered. One node is shown per line.
The children of a node will be displayed indented, and on lines following the
parent.

How do I create the tree display window?

The tree display creation step allows the programmer to specify display
placement, size and window styles. This step does not create a tree do be
displayed, it creates the frame and scroll bars, and readies the control's engine
for processing.

The tree display can be created by:
Calling the DLL's BST_CreateTree exported API (NOTE: See Treedem1
for sample code)

OR
Embedding a Tree Control in a dialog box with a dialog editor. (NOTE:
This uses the Custom Control information embedded in the DLL. See
Treedem2 for sample code)

You must save the window handle of the newly created tree display
window for later API calls. Because the Tree Control can have multiple active
instances, the window handle is used to identify particular display windows.

How do I construct a tree?

The tree to be displayed must be created using the following steps:
Create the root node of the tree. This is accomplished by calling the
BST_AddChildrenToParent API and passing NULL as the node's
parent. The BST_AddChildrenToParent API requires a pointer to an
array of structures that define each node being added. Since there is
only one root per tree, the call to construct the root node will pass in a
pointer to a single structure defining the root.

After calling the BST_AddChildrenToParent API to create the root,
record the lpTreeNode member in the definition structure. This member
is filled in by the Tree Control, and it contains the unique identifier that
will be used to refer to this node in future operations.
NOTE: Many applications will not need to store the node identifiers
beyond the creation stage.

Repeat this process for all nodes in the tree, substituting the correct

parent pointer, and node definition structure(s) in the
BST_AddChildrenToParent call.

Communications from the control

Communication with the Tree Control is simple. All of the user input is
filtered by the control and notification messages are sent to the parent window of
the control.

When an event occurs that the application needs to know about the
Control issues a notification message. The lParam of the message contains a
pointer to a SELECT_NOTIF structure. This structure conatins a pointer to the
affected node and flags that describe the state of the node.

The three Tree Notification messages and their causes:

WM_BST_SELECT_NOTIF. This message is triggered by:
- A single left mouse button click while over a tree node.
- Highlight movement with Up arrows, Down arrows, Home, End,

Page Up, Page Down, Ctrl Up arrows, or Ctrl Down arrows.

WM_BST_SELCET_NOTIF_DBLCLK. This message is triggered by:
- A left mouse button double click while over a tree node. NOTE: A
 WM_BST_SELECT_NOTIF is sent on the first click.

- A Carriage Return while a node is selected.
- The '+' key if the currently selected node has no children.
- The '-' key if the currently selected node has children.

WM_BST_DO_DRAG. This message is triggered by:
- Depressing and holding the left mouse button over a tree node,

while moving the mouse a predetermined
distance.

Demo API Reference
NOTE: This is not a complete listing of the Tree Control APIs. The APIs listed
immediately belw were chosen to be documented because they are critical to the
Tree Control's operation. A complete API reference is supplied with each
purchase of the Tree Control.

BST_AddChildrenToParent ()
BST_CreateTree ()
BST_DeleteChildrenOfParent ()

BST_EraseTree ()
BST_SetBitmap ()
BST_SetBitmapAndActiveBitmap ()
BST_SetBitmapSpace ()

Complete API Listing:

BST_AddChildrenToParent ()
BST_ChangeNodeText ()
BST_ChangeUserData ()
BST_ConvertPointToSelectNotif ()
BST_CreateTree ()
BST_DeleteChildrenOfParent ()
BST_DeleteNode ()
BST_DragAcceptFiles ()
BST_EraseTree ()
BST_GetActiveNode ()
BST_GetFirstChildOfParent ()
BST_GetNextSibling ()
BST_GetParent ()
BST_GetPreviousSibling ()
BST_GetVersion ()
BST_InsertSiblingNodes ()
BST_SetActiveNode ()
BST_SetBitmap ()
BST_SetBitmapAndActiveBitmap ()
BST_SetBitmapSpace ()
BST_SetDeleteNodeCallBack ()
BST_SetFont ()
BST_SetIcon ()
BST_SetLineColor ()
BST_SetXSpaceBeforeText ()
BST_ShowActiveNode ()
BST_ShowLines ()

BST_AddChildrenToParent()

short _export FAR PASCAL BST_AddChildrenToParent(
HWND hwndTree,
LP_TREE_NODE lpParentTreeNode,
WORD wNodeDefCount,
LP_TREE_NODE_DEF lpTreeNodeDef)

Description:
This API allows the application to add one or more nodes to the tree

as children of the given parent.
Parameters:

HWND hwndTree - This argument is the handle of the Tree Control
display window that will contain the new tree node(s). This handle may
be retrieved from a Tree Control display creation (see
BST_CreateTree()) or by querying the HWND of a dialog embedded
Tree Control (see Treedem2.c, TreeDlgProc(), WM_INITDIALOG
handler).
LP_TREE_NODE lpParentTreeNode - This argument points to the
parent tree node which will receive the children specified by
lpTreeNodeDef. If lpParentTreeNode is NULL then this tells the Tree
Control that lpTreeNodeDef describes the root of the tree. (NOTE:
There can be only ONE root node)
WORD wNodeDefCount - wNodeDefCount contains the number of
nodes to be added.
LP_TREE_NODE_DEF lpTreeNodeDef: lpTreeNodeDef is a pointer to
an array of TREE_NODE_DEFs that describes nodes to be added.
There must be one complete TREE_NODE_DEF structure for each node
specified by wNodeDefCount.(NOTE: Make sure that the structures are
properly filled in, uninitialized fields may cause errors)

Comments:
If the given parent already has children, then the new children are

added after the last pre-existing child.
This function will return an error if there are memory allocation

problems or the Tree Control's limits are exceeded. This proceedure steps
through the TREE_NODE_DEF array processing each structure one at a
time. When an error occurs the Tree Control will set the lpTreeNode
member of the TREE_NODE_DEF structure that caused the error to NULL..
The offending TREE_NODE_DEF and all subsequent TREE_NODE_DEFs in
the array will not be added to the tree.

Return Codes:
BST_NO_ERROR
BST_ERR_MEMORY_ALLOC_FAILED
BST_ERR_LEVEL_LIMIT_EXCEEDED

BST_ERR_TOO_MANY_NODES
BST_ERR_ONLY_ONE_ROOT_ALLOWED
BST_ERR_INVALID_PARENT_FOR_INSERTION

BST_CreateTree()

HWND _export FAR PASCAL BST_CreateTree(
HANDLE hInstance,
HWND hwndApp,
int x,
int y,
int nWidth,
int nHeight,
DWORD dwStyle,
DWORD dwExStyle)

Description:
Creates an empty Tree Control display window. BST_CreateTree ()

ORs the style bits specified in dwStyle to the Tree Control's required styles
and then creates a display window with the appropriate styles.

Parameters:
HANDLE hInstance - Instance associated with the creation of the Tree
Control window.

HWND hwndApp - Window handle of the parent window that contains the
Tree Control display.

int x - X coordinate of the upper left corner of the Tree Control display,
relative to the origin of the client area of the parent window.

int y - Y coordinate of the upper left corner of the Tree Control display,
relative to the origin of the client area of the parent window.

int nWidth - Width of the Tree Control in device (pixel) units.

int nHeight - Height of the Tree Control in device (pixel) units.

DWORD dwStyle - Application requested window styles for the tree display

window..

DWORD dwExStyle - Application requested CreateWindowEx () extended
styles.

Comments:
If this call is successful then it will return a window handle for the

newly created Tree Control display window. This window handle is used to
identify this particular Tree Control display window.

Return Codes:
If successful, BST_CreateTree () will return the window handle of

the newly created Tree Control. If failure, then a NULL will be returned.

BST_DeleteChildrenOfParent()

short _export FAR PASCAL BST_DeleteChildrenOfParent(
HWND hwndTree,
LP_TREE_NODE lpTreeNode)

Description:
Deletes all of the child tree nodes of the given parent tree node

specified in lpTreeNode.
Parameters:

HWND hwndTree - This argument specifies the Tree Control that contains
the nodes to be destroyed.

LP_TREE_NODE lpTreeNode - lpTreeNode points to a tree node who's
children, if it has any, will be destroyed.

Comments:
When a tree node is deleted, all pointers to it are no longer valid.

The Tree Control frees the deleted tree node's memory. If a notification of a
tree node's deletion is desired, then the application can use a Tree Control
API function, BST_SetDeleteNodeCallBack (), to register a callback
function that the Tree Control will call just before deletion of the node.

NOTE: It is up to the application to manage any memory pointed to by the
lpUserData member of the tree node.

Return Codes:
BST_NO_ERROR

BST_EraseTree()

short _export FAR PASCAL BST_EraseTree(HWND hwndTree)

Description:
This proceedure removes all of the tree nodes in the specified Tree

Control but does not destroy the Tree Control display window.

Parameters:
HWND hwndTree - This argument specifies the Tree Control that will destroy
all of it's children including the root node. It does not invalidate the Tree
Control display window handle. This handle can still be used in any of the
APIs, such as BST_AddChildrenToParent ().

Comments:
The Tree Control frees memory allocated by the control for the

deleted tree node. The Control will NOT free any memory pointed to by the
lpUserData of the node. If the application has assigned a pointer to
dynamically allocated memory in the lpUserData member of the tree node, it
is the responsibility of the application to free this memory.

If notification of a tree node's deletion is desired, then the application
can use the BST_SetDeleteNodeCallBack() API function to register a
callback function that the Tree Control will call just before deletion of the
node. If the application has assigned a pointer to the lpUserData member of
the tree node, it is the responsibility of the application to free this memory if
necessary.

Return Codes:
BST_NO_ERROR

BST_SetBitmap()

short _export FAR PASCAL BST_SetBitmap(

HWND hwndTree,
short nBitmap,
LP_TREE_NODE lpTreeNode,
HBITMAP hBitmap)

Description:
This function assigns a bitmap handle to a specified tree node for the specified
bitmap space. The old bitmap or icon is erased but not deleted and then the new
bitmap or icon is drawn.
Parameters:

HWND hwndTree - hwndTree is the Tree Control in which the tree node will
receive the bitmap handle

short nBitmap - nBitmap is the number of the bitmap space in which this
bitmap is to be displayed. The bitmap spaces are numbered from left to right
and the number of the left most bitmap space is zero. The maximum bitmap
space number is MAX_BITMAPS - 1.
Reference the Tree Control API documentation for BST_SetBitmapSapce()
to learn the process of defining a bitmap space.

LP_TREE_NODE lpTreeNode - lpTreeNode is a pointer to the tree node
that will be assigned the given bitmap handle.

HBITMAP hBitmap - hBitmap is the handle to the bitmap which will be
drawn in the specified bitmap space for the given tree node.

Comments:
Bitmap/icon handles are NOT the property of the Tree Control. The

tree control treats the bitmap/icon handle as read only. It will only use the
handle to draw the bitmap/icon associated with the tree node. If the tree
node already has a bitmap/icon handle stored in the specified bitmap position
then the old handle is simply overwritten.

It is the responsibility of the application to manage creation and destruction of
bitmaps/icons. If the application deletes/destroys bitmaps/icons before the
tree nodes referencing them are destroyed, then the Tree Control may
possibly reference invalid bitmap/icon handles.

For more information regarding bitmaps/icons and tree nodes, refer to the
TREE_NODE structure documentation.

Return Codes:
BST_NO_ERROR

BST_SetBitmapAndActiveBitmap

short _export FAR PASCAL BST_SetBitmapAndActiveBitmap(
HWND hwnd,
short nBitmap,
LP_TREE_NODE lpTreeNode,
HBITMAP hBitmap,
HBITMAP hActiveBitmap)

Description:
This API allows the Tree Control to manage the changing of bitmaps

when a node is selected. The hBitmap will be used to draw the bitmap if the
tree node is not active or else hActiveBitmap will be used to draw the
bitmap if the tree node is active.

Parameters:
HWND hwndTree - hwndTree specifies the Tree Control display to operate
on.

short nBitmap - nBitmap is the index of the bitmap space to display the
bitmaps. The bitmap spaces are numbered from left to right and the first
space is numbered zero.

LP_TREE_NODE lpTreeNode - This is a pointer to the tree node that the
bitmaps will be assigned to.

HBITMAP hBitmap - hBitmap is a handle to the bitmap which will be drawn
in the bitmap space nBitmap, when the node is not selected.

HBITMAP hActiveBitmap - hActiveBitmap is the handle to the bitmap
which will be drawn in the specified bitmap space when the node is active.

Comments:
This proceedure assigns two bitmap handles to a specified tree node

for the specified bitmap space. It erases, but does not delete the old bitmap,
and draws the new bitmap.

It is the application's responsibility to manage the creation and
deletion of bitmaps. If the application destroys the bitmaps that the Tree
Control is using, then there will be trouble in paradise.

For more information regarding bitmaps and tree nodes, refer to the

TREE_NODE structure documentation.
Return Codes:

BST_NO_ERROR

BST_SetBitmapSpace()

short _export FAR PASCAL BST_SetBitmapSpace(
HWND hwndTree,
short nBitmap,
short nWidth,
short nHeight,
BOOL bCenterBitmap)

Description:
This proceedure allows the application to globally specify the placement

of the bitmaps displayed with each node.
Parameters:

HWND hwndTree - A handle to the Tree Control display which is being
formatted.

short nBitmap - Identifies the bitmap space. Bitmap spaces are numbered
from left to right starting at zero.

short nWidth - The width, in pixels, of the bitmap space. See the comments
for a discussion of bitmap spaces.

short nHeight - nHeight is the height, in pixels, of the bitmap space.

BOOL bCentered - If this parameter is TRUE then the bitmaps will be
centered in the bitmap space.

Comments:
This API allows the application to specify the space reserved for

bitmaps to the left of the node text. This 'whitespace' is present on all lines
displaying a node even if the corresponding bitmap handle is NULL.

 If either nHeight or nWidth is zero, then the bitmap space does not
reserve any screen real estate. This is used to deactivate a bitmap space.

The dimensions of a bitmap space are defined globally for all tree

nodes. This is to align the columns of bitmaps, and text strings. In addition
hit testing is performed based on the bitmap spaces not on the bitmap sizes.

The bitmap space is aligned so that the space is centered with the
node's text line. If the bCentered paramter is set to TRUE then the bitmap
or icon will be centered between the right and left boundaries of the space. If
bCentered is set to FALSE then the bitmap or icon will be aligned with the
left boundary of the space.

If a bitmap is larger than it's corresponding bitmap space then the
bitmap will be clipped. An icon that is larger than the bitmap space will not
be clipped, so care must be taken to ensure that the bitmap spaces are large
enough when icons are used.

Return Codes:
BST_NO_ERROR

