
Perl Reference Guide

Conventions

fixed denotes literal text.

THIS means variable text, i.e. things you must fill in.

THISy means that THIS will default to $_ if omitted.

word is a keyword, i.e. a word with a special meaning.

RET denotes pressing a keyboard key.

[. . .] denotes an optional part.

(. . .)* means that the parentheses may be omitted.

1. Command line options

-a turns on autosplit mode when used with -n or -p. Splits to @F.

-c checks syntax but does not execute.

-d runs the script under the debugger. Use -de 0 to start the debugger without

a script.

-D NUMBER

sets debugging flags.

-e COMMANDLINE

may be used to enter one line of script. Multiple -e commands may be

given to build up a multi-line script.

-i EXT

files processed by the <> construct are to be edited in-place.

-I DIR

with -P: tells the C preprocessor where to look for include files. The

directory is prepended to @INC.

-L OCTNUM

enables automatic line ending processing.

-n assumes an input loop around your script. Lines are not printed.

-p assumes an input loop around your script. Lines are printed.

-P runs the C preprocessor on the script before compilation by perl.

-s interprets “-xxx” on the command line as switches and sets the

corresponding variables $xxx in the script.

-S uses the PATH environment variable to search for the script.

-u dumps core after compiling the script. To be used with the undump program

(where available).

-U allows perl to do unsafe operations.

-v prints the version and patchlevel of your perl executable.

-w prints warnings about possible spelling errors and other error-prone

constructs in the script.

-x extracts perl program from input stream.

-0 VAL

(that’s the number zero) designates an initial value for the record terminator

$/. See also -L.

1

Perl Reference Guide

26. The perl debugger

The perl symbolic debugger is invoked with perl -d.

h Prints out a help message.

T Stack trace.

s Single steps.

n Single steps around subroutine call.

r Returns from the current subroutine.

c [LINE] Continues (until LINE, or another breakpoint or exit).

RET Repeats last s or n.

l [RANGE] Lists a range of lines. RANGE may be a number, start-end,

start+amount, or a subroutine name. If omitted, lists next window.

f FILE Switches to FILE and start listing it.

- Lists previous window.

w Lists window around current line.

l SUB Lists the named SUBroutine.

/PATTERN/ Forward search for PATTERN.

?PATTERN? Backward search for PATTERN.

L Lists lines that have breakpoints or actions.

S List the names of all subroutines.

t Toggles trace mode.

b [LINE [CONDITION]]

Sets breakpoint at LINE, default: current line.

b SUBNAME [CONDITION]

Sets breakpoint at the subroutine.

S Lists names of all subroutines.

d [LINE] Deletes breakpoint at the given line.

D Deletes all breakpoints.

a LINE COMMAND

Sets an action for line.

A Deletes all line actions.

< COMMAND Sets an action to be executed before every debugger prompt.

> COMMAND Sets an action to be executed before every s, c or n command.

V [PACKAGE [VARS]]

Lists all variables in a package. Default package is main.

X [VARS] Like V, but assumes current package.

! [[-]NUMBER]

Redo a debugging command. Default is previous command.

H [-NUMBER] Displays the last -NUMBER commands of more than one letter.

q Quits. You may also use your EOF character.

COMMAND Executes COMMAND as a perl statement.

p EXPRy Prints EXPR.

= [ALIAS VALUE]

Sets alias, or lists current aliases.

18

Perl Reference Guide

4. Statements

Every statement is an expression, optionally followed by a modifier, and

terminated by a semi-colon.

Execution of expressions can depend on other expressions using one of the

modifiers if, unless, while or until, e.g.:

EXPR1 if EXPR2 ;
EXPR1 until EXPR2 ;

Also, by using one of the logical operators ||, && or ? :, e.g.:

EXPR1 || EXPR2 ;
EXPR1 ? EXPR2 : EXPR3 ;

Statements can be combined to form a BLOCK when enclosed in {}.

Compound statements may be used to control flow:

if (EXPR) BLOCK [[elsif (EXPR) BLOCK ...] else BLOCK]

unless (EXPR) BLOCK [else BLOCK]

[LABEL:] while (EXPR) BLOCK [continue BLOCK]

[LABEL:] until (EXPR) BLOCK [continue BLOCK]

[LABEL:] for (EXPR; EXPR; EXPR) BLOCK

[LABEL:] foreach VARy(ARRAY) BLOCK

[LABEL:] BLOCK [continue BLOCK]

Special forms are:

do BLOCK while EXPR ;
do BLOCK until EXPR ;

which are guaranteed to perform BLOCK once before testing EXPR.

5. Flow control

do BLOCK

Returns the value of the last command in the sequence of commands

indicated by BLOCK. next, last and redo cannot be used here.

do SUBROUTINE(LIST)

Executes a SUBROUTINE declared by a sub declaration, and returns the

value of the last expression evaluated in SUBROUTINE .

Preferred form is: &SUBROUTINE .

do FILENAME

Executes the contents of FILENAME as a perl script. Errors are returned in

$@.

Preferred form is: require FILENAME .

goto LABEL

Continue execution at the specified label.

last [LABEL]

Immediately exits the loop in question. Skips continue block.

next [LABEL]

Starts the next iteration of the loop.

redo [LABEL]

Restarts the loop block without evaluating the conditional again.

return EXPR

Returns from a subroutine with the value specified.

3

Perl Reference Guide

23. Regular expressions

Each character matches itself, unless it is one of the special characters

+?.*()[]{}|\.

. matches an arbitrary character, but not a newline.

(. . .) groups a series of pattern elements to a single element.

+ matches the preceding pattern element one or more times.

? matches zero or one times.

* matches zero or more times.

{N,M} denotes the minimum N and maximum M match count. {N} means

exactly N times; {N,} means at least N times.

[. . .] denotes a class of characters to match. [ˆ. . .] negates the class.

(. . . |. . .|. . .) matches one of the alternatives.

Non-alphanumerics can be escaped from their special meaning using a \.

\w matches alphanumeric, including “_”, \W matches non-alphanumeric.

\b matches word boundaries, \B matches non-boundaries.

\s matches whitespace, \S matches non-whitespace.

\d matches numeric, \D matches non-numeric.

\n, \r, \f, \t etc. have their usual meaning.

\w, \s and \d may be used within character classes, \b denotes backspace in

this context.

\1. . . \9 refer to matched sub-expressions, grouped with (), inside the match.

\10 and up can also be used if the pattern matches that many sub-expressions.

See also $1. . .$9, $+, $&, $‘ and $’ in section “Special Variables”.

24. Special variables

The following variables are global and should be localized in subroutines:

$_ The default input and pattern-searching space.

$. The current input line number of the last filehandle that was read.

$/ The input record separator, newline by default. May be multi-character.

$, The output field separator for the print operator.

$" The separator which joins elements of arrays interpolated in strings.

$\ The output record separator for the print operator.

$# The output format for printed numbers. Initial value is “%.20g”.

$* Set to 1 to do multiline matching within a string, 0 to assume strings contain

a single line. Default is 0.

$? The status returned by the last ‘COMMAND‘, pipe close or system

operator.

$] The perl version string (as displayed with perl -v), or version number.

$[The index of the first element in an array, and of the first character in a

substring. Default is 0.

$; The subscript separator for multi-dimensional array emulation. Default is

"\034".

$! If used in a numeric context, yields the current value of errno. If used in a

string context, yields the corresponding error string.

$@ The perl error message from the last eval or do EXPR command.

16

Perl Reference Guide

A LIST is a (possibly parenthesised) list of expressions, variables or LISTs. An

array variable or an array slice may always be used instead of a LIST.

8. Arithmetic functions

atan2(Y,X)

Returns the arctangent of Y/X in the range -� to �.

cos(EXPRy)*

Returns the cosine of EXPR (expressed in radians).

exp(EXPRy)*

Returns e to the power of EXPR.

int(EXPRy)*

Returns the integer portion of EXPR.

log(EXPRy)*

Returns natural logarithm (base e) of EXPR.

rand[(EXPR)*]

Returns a random fractional number between 0 and the value of EXPR. If

EXPR is omitted, returns a value between 0 and 1.

sin(EXPRy)*

Returns the sine of EXPR (expressed in radians).

sqrt(EXPRy)*

Return the square root of EXPR.

srand[(EXPR)*]

Sets the random number seed for the rand operator.

time Returns the number of seconds since January 1, 1970. Suitable for feeding

to gmtime and localtime.

9. Conversion functions

gmtime(EXPR)*

Converts a time as returned by the time function to a 9-element array ($sec,

$min, $hour, $mday, $mon, $year, $wday, $yday, $isdst) with the time

analyzed for the Greenwich timezone. $mon has the range 0..11 and $wday

has the range 0..6.

hex(EXPRy)*

Returns the decimal value of EXPR interpreted as an hex string.

localtime(EXPR)*

Converts a time as returned by the time function to a 9-element array with

the time analyzed for the local timezone.

oct(EXPRy)*

Returns the decimal value of EXPR interpreted as an octal string. If EXPR

starts off with 0x, interprets it as a hex string instead.

ord(EXPRy)*

Returns the ascii value of the first character of EXPR.

vec(EXPR,OFFSET,BITS)

Treats EXPR as a string of unsigned ints, and yields the bit at OFFSET.

BITS must be between 1 and 32. May be used as an lvalue.

5

Perl Reference Guide

20. Miscellaneous

caller[(EXPR)]

Returns an array ($package,$file,$line,...) for a specific subroutine call.

“caller” returns this info for the current subroutine, “caller(1)” for

the caller of this subroutine etc..

defined(EXPR)*

Tests whether the lvalue EXPR has a real value.

dump [LABEL]

Immediate core dump. When reincarnated, starts at LABEL.

local(LIST)

Creates a scope for the listed variables local to the enclosing block,

subroutine or eval.

package NAME

Designates the remainder of the current block as a package.

require(EXPRy)*

Includes the specified file from the perl library. Does not include more than

once, and yields a fatal error if the file does include not OK.

reset [(EXPR)*]

Resets ?? searches so that they work again. EXPR is a list of single letters.

All variables and arrays beginning with one of those letters are reset to their

pristine state. Only affects the current package.

scalar(EXPR)

Forces evaluation of EXPR in scalar context.

sub NAME { EXPR ; ... }
Designates NAME as a subroutine. Parameters are passed by reference as

array @_. Returns the value of the last expression evaluated.

undef[(LVALUE)*]

Undefines the LVALUE. Always returns the undefined value.

wantarray

Returns true if the current context expects an array value.

21. Formats

format [NAME] =
FORMLIST

.

FORMLIST pictures the lines, and contains the arguments which will give values

to the fields in the lines. Picture fields are:

@<<<... left adjusted field, repeat the < to denote the desired width;

@>>>... right adjusted field;

@|||... centered field;

@#.##... numeric format with implied decimal point;

@* a multi-line field.

Use ˆ instead of @ for multi-line block filling.

Use ˜ at the beginning of a line to suppress unwanted empty lines.

Use ˜˜ at the beginning of a line to have this format line repeated until all fields

are exhausted.

Use $- to zero to force a page break.

See also $ˆ, $˜, $- and $= in section “Special Variables”.

14

Perl Reference Guide

12. Array and list functions

delete $ARRAY{KEY}
Deletes the specified value from the specified associative array. Returns the

deleted value.

each(%ARRAY)*

Returns a 2-element array consisting of the key and value for the next value

of an associative array. Entries are returned in an apparently random order.

When the array is entirely read, a null array is returned. The next call to

each after that will start iterating again.

grep(EXPR,LIST)

Evaluates EXPR for each element of the LIST, locally setting $_ to refer to

the element. Modifying $_ will modify the corresponding element from

LIST. Returns array of elements from LIST for which EXPR returned true.

join(EXPR,LIST)

Joins the separate strings of LIST into a single string with fields separated by

the value of EXPR, and returns the string.

keys(%ARRAY)*

Returns an array with of all the keys of the named associative array.

pop(@ARRAY)*

Pops and returns the last value of the array, shortens the array by 1.

push(@ARRAY,LIST)

Pushes the values of LIST onto the end of ARRAY. The length of the array

increases by the length of LIST.

reverse(LIST)*

In array context: returns the LIST in reverse order.

In scalar context: returns the first element of LIST with bytes reversed.

shift[(@ARRAY)*]

Shifts the first value of the array off and returns it, shortening the array by 1

and moving everything down. If @ARRAY is omitted, shifts @ARGV in main

and @_ in subroutines.

sort([SUBROUTINE] LIST)*

Sorts the LIST and returns the sorted array value. If SUBROUTINE is

specified, gives the name of a subroutine that returns less than zero, zero, or

greater than zero, depending on how the elements of the array, available to

the routine as $a and $b, are to be ordered.

splice(@ARRAY,OFFSET[,LENGTH[,LIST]])

Removes the elements of @ARRAY designated by OFFSET and LENGTH,

and replaces them with LIST (if specified).

Returns the elements removed.

split[(PATTERN[,EXPRy[,LIMIT]])]

Splits a string into an array of strings, and returns it. If LIMIT is specified,

splits in no more than that many fields. If PATTERN is also omitted, splits

on whitespace. If not in array context: returns number of fields and splits to

@_. See also: “Search and Replace Functions”.

unshift(@ARRAY,LIST)

Prepends list to the front of the array, and returns the number of elements in

the new array.

values(%ARRAY)*

Returns a normal array consisting of all the values of the named associative

array.

7

Perl Reference Guide

exec(LIST)*

Executes the system command in LIST; does not return.

exit(EXPR)*

Exits immediately with the value of EXPR.

fork Does a fork(2) system call. Returns the child pid to the parent process and

zero to the child process.

getlogin

Returns the current login name as known by the system.

getpgrp[(PID)*]

Returns the process group for process PID (0, or omitted, means the current

process).

getppid

Returns the process id of the parent process.

getpriority(WHICH,WHO)

Returns the current priority for a process, process group, or user.

kill(LIST)*

Sends a signal to a list of processes. The first element of the list must be the

signal to send (numeric, or its name as a string).

setpgrp(PID,PGRP)

Sets the process group for the PID (0 = current process).

setpriority(WHICH,WHO,PRIO)

Sets the current priority for a process, process group, or a user.

sleep[(EXPR)*]

Causes the script to sleep for EXPR seconds, or forever if no EXPR. Returns

the number of seconds actually slept.

syscall(LIST)*

Calls the system call specified in the first element of the list, passing the rest

of the list as arguments to the call.

system(LIST)*

Does exactly the same thing as exec LIST except that a fork is done first,

and the parent process waits for the child process to complete.

times

Returns a 4-element array ($user, $system, $cuser, $csystem) giving the

user and system times, in seconds, for this process and the children of this

process.

umask[(EXPR)*]

Sets the umask for the process and returns the old one. If EXPR is omitted,

returns current umask value.

wait Waits for a child process to terminate and returns the pid of the deceased

process (-1 if none). The status is returned in $?.

waitpid(PID,FLAGS)

Performs the same function as the corresponding system call.

warn(LIST)*

Prints the message on STDERR like die, but doesn’t exit.

12

Perl Reference Guide

14. Directory reading routines

closedir(DIRHANDLE)*

Closes a directory opened by opendir.

opendir(DIRHANDLE,DIRNAME)

Opens a directory on the handle specified.

readdir(DIRHANDLE)*

Returns the next entry (or an array of entries) in the directory.

rewinddir(DIRHANDLE)*

Positions the directory to the beginning.

seekdir(DIRHANDLE,POS)

Sets position for readdir on the directory.

telldir(DIRHANDLE)*

Returns the postion in the directory.

15. Input / Output

In input/output operations, FILEHANDLE may be a filehandle as opened by the

open operator, or a scalar variable which evaluates to the name of a filehandle to

be used.

binmode(FILEHANDLE)*

Arranges for the file opened on FILEHANDLE to be read in “binary” mode

as opposed to “text” mode (MS-DOS only).

close(FILEHANDLE)*

Closes the file or pipe associated with the file handle.

dbmclose(%ARRAY)*

Breaks the binding between the array and the dbm file.

dbmopen(%ARRAY,DBMNAME, MODE)

Binds a dbm or ndbm file to the associative array. If the database does not

exist, it is created with the indicated mode.

eof(FILEHANDLE)

Returns 1 if the next read will return end of file, or if the file is not open.

eof Returns the eof status for the last file read.

eof()

Indicates eof on the pseudo file formed of the files listed on the command

line.

fcntl(FILEHANDLE,FUNCTION,$VAR)

Implements the fcntl(2) function. This function has non-standard return

values. See the manual for details.

fileno(FILEHANDLE)*

Returns the file descriptor for a given (open) file.

flock(FILEHANDLE,OPERATION)

Calls flock(2) on the file. OPERATION adds from 1 (shared), 2 (exclusive), 4

(non-blocking) or 8 (unlock).

getc[(FILEHANDLE)*]

Yields the next character from the file, or "" on EOF. If FILEHANDLE is

omitted, reads from STDIN.

ioctl(FILEHANDLE,FUNCTION,$VAR)

performs ioctl(2) on the file. This function has non-standard return values.

See the manual for details.

9

Perl Reference Guide

open(FILEHANDLE[,FILENAME])

Opens a file and associates it with FILEHANDLE. If FILENAME is omitted,

the scalar variable of the same name as the FILEHANDLE must contain the

filename.

The following filename conventions apply when opening a file.

"FILE" open FILE for input. Also "<FILE".

">FILE" open FILE for output, creating it if necessary.

">>FILE" open FILE in append mode.

"+>FILE" open FILE with read/write access.

"|CMD" opens a pipe to command CMD.

"CMD|" opens a pipe from command CMD.

FILE may be &FILEHND in which case the new file handle is connected to

the (previously opened) filehandle FILEHND.

open returns 1 upon success, undef otherwise, except for pipes. The

parentheses may be omitted, if only a FILEHANDLE is specified.

pipe(READHANDLE,WRITEHANDLE)

Returns a pair of connected pipes.

print[([FILEHANDLE]LISTy)*]

Prints a string or a comma-separated list of strings. If FILEHANDLE is

omitted, prints by default to standard output (or to the last selected output

channel - see select).

printf[([FILEHANDLE] LIST)*]

Equivalent to print FILEHANDLE sprintf(LIST).

read(FILEHANDLE,$VAR,LENGTH[,OFFSET])

Read LENGTH binary bytes from the file into the variable at OFFSET.

Returns number of bytes actually read.

seek(FILEHANDLE,POSITION,WHENCE)

Arbitrarily positions the file. Returns 1 upon success, 0 otherwise.

select[(FILEHANDLE)

Sets the current default filehandle for output operations. Returns the

previously selected filehandle.

sprintf(FORMAT,LIST)

Returns a string formatted by (almost all of) the usual printf conventions.

sysread(FILEHANDLE,$VAR,LENGTH[,OFFSET])

Reads LENGTH bytes into $VAR at OFFSET.

syswrite(FILEHANDLE,SCALAR,LENGTH[,OFFSET])

Writes LENGTH bytes from SCALAR at OFFSET.

tell[(FILEHANDLE)]*

Returns the current file position for the file. If FILEHANDLE is omitted,

assumes the file last read.

write[(FILEHANDLE)]*

Writes a formatted record to the specified file, using the format associated

with that file. See “Formats”.

10

