
Perl Reference Guide

Perl Reference Guide Revision 4.010.2.1 c

1989,1990,1991 Johan Vromans

19

Perl Reference Guide

for Perl version 4.010

Perl program designed and created by

Larry Wall <lwall@netlabs.com>

Reference guide designed and created by

Johan Vromans <jv@mh.nl>

Contents

1. Command line options

2. Literals

3. Variables

4. Statements

5. Flow control

6. Operators

7. File test operators

8. Arithmetic functions

9. Conversion functions

10. Structure conversion

11. String functions

12. Array and list functions

13. File operations

14. Directory reading routines

15. Input / Output

16. Search and replace functions

17. System interaction

18. Networking

19. SystemV IPC

20. Miscellaneous

21. Formats

22. Info from system files

23. Regular expressions

24. Special variables

25. Special arrays

26. The perl debugger

Rev. 4.010.2.1

Perl Reference Guide

$: The set of characters after which a string may be broken to fill continuation

fields (starting with “ˆ”) in a format.

$0 The name of the file containing the perl script being executed. May be

assigned to.

$$ The process number of the perl running this script. Altered (in the child

process) by fork.

$< The real uid of this process.

$> The effective uid of this process.

$(The real gid of this process.

$) The effective gid of this process.

$ˆD The debug flags as passed to perl using -D .

$ˆF The highest system file descriptor, ordinarily 2.

$ˆI In-place edit extension as passed to perl using -i .

$ˆP Internal debugging flag.

$ˆT The time (as delivered by time) when the program started. This value is

used by the file test operators “-M”, “-A” and “-C”.

$ˆW The value if the -w option as passed to perl.

$ˆX The name by which this perl was invoked.

The following variables are context dependent and need not be localized:

$% The current page number of the currently selected output channel.

$= The page length of the current output channel. Default is 60 lines.

$- The number of lines left on the page.

$˜ The name of the current report format.

$ˆ The name of the current top-of-page format.

$| If set to nonzero, forces a flush after every write or print on the currently

selected output channel. Default is 0.

$ARGV
The name of the current file when reading from <> .

The following variables are always local to the current block:

$& The string matched by the last pattern match.

$‘ The string preceding what was matched by the last pattern match.

$’ The string following what was matched by the last pattern match.

$+ The last bracket matched by the last search pattern.

$1. . .$9. . .

Contains the subpattern from the corresponding set of parentheses in the last

pattern matched. $10. . . and up are only available if the match contained

that many sub-expressions.

25. Special arrays

@ARGV Contains the command line arguments for the script (not including the

command name).

@INC Contains the list of places to look for perl scripts to be evaluated by the

do FILENAME and require commands.

@_ Parameter array for subroutines. Also used by split if not in array context.

%ENV Contains the current environment.

%INC List of files that have been required or done.

%SIG Used to set signal handlers for various signals.

17

Perl Reference Guide

2. Literals

Numeric: 123 123.4 5E-10 0xff (hex) 0377 (octal).

String: ’abc’ literal string, no variable interpolation nor escape characters.

Also: q/abc/.

(Almost any pair of delimiters can be used instead of /.../.)

"abc" Variables are interpolated and escape sequences are processed.

Also: qq/abc/.

Escape sequences: \t (Tab), \n (Newline), \r (Return), \f
(Formfeed), \b (Backspace), \a (Alarm), \e (Escape), \033(octal),

\x1b(hex), \c[(control).

\l and \u lowcase/upcase the following character;

\L and \U lowcase/upcase until a \E is encountered.

‘COMMAND‘ evaluates to the output of the COMMAND.

Also: qx/COMMAND/.

Array: (1,2,3). () is an empty array.

Also: ($a,$b,@rest) = (1,2,...);
(1..4) is the same as (1,2,3,4). Likewise (’abc’..’ade’)

Associative array: (KEY1,VAL1,KEY2,VAL2,...)

Filehandles:

Pre-defined: <STDIN>, <STDOUT>, <STDERR>, <ARGV>, <DATA>;

User-specified: <HANDLE>, <$VAR>.

<> is the input stream formed by the files specified in @ARGV, or standard

input if no arguments are supplied.

Globs: <PATTERN> evaluates to all filenames according to the pattern.

Use <${VAR}> to glob from a variable.

Here-Is: <<IDENTIFIER

See the manual for details

Special tokens:

__FILE_ _: filename; __LINE_ _: line number.

__END_ _: end of program; remaining lines can be read using <DATA>.

3. Variables

$var a simple scalar variable

$var[28] 29th element of array @var (the [] are part of it)

$var{’Feb’} one value from associative array %var

$#var last index of array @var

@var the entire array;

in scalar context: the number of elements in the array

@var[3,4,5] a slice of the array @var

@var{’a’,’b’} a slice of %var; same as ($var{’a’},$var{’b’})

%var the entire associative array

$var{’a’,1,...}
emulates a multi-dimensional array

(’a’..’z’)[4,7,9]
a slice of an array literal

*NAME refers to all objects represented by NAME. “*name1 =
*name2” makes name1 a reference to name2.

2

Perl Reference Guide

22. Info from system files

passwd
Info is ($name, $passwd, $uid, $gid, $quota, $comment, $gcos, $dir, $shell).

endpwent Ends lookup processing.

getpwent Gets next info.

getpwnam(NAME) Gets info by name.

getpwuid(UID) Gets info by uid.

setpwent Resets lookup processing.

group
Info is a 4-item array: ($name, $passwd, $gid, $members).

endgrent Ends lookup processing.

getgrgid(GID) Gets info by group id.

getgrnam(NAME) Gets info by name.

getgrent Gets next info.

setgrent Resets lookup processing.

hosts
Info is ($name, $aliases, $addrtype, $length, @addrs).

endhostent Ends lookup processing.

gethostbyname(NAME) Gets info by name.

gethostent Gets next info.

sethostent(STAYOPEN) Resets lookup processing.

networks
Info is ($name, $aliases, $addrtype, $net).

endnetent Ends lookup processing.

getnetbyaddr(ADDR,TYPE) Gets info by address and type.

getnetbyname(NAME) Gets info by name.

getnetent Gets next info.

setnetent(STAYOPEN) Resets lookup processing.

services
Info is ($name, $aliases, $port, $proto).

endservent Ends lookup processing.

getservbyname(NAME, PROTO) Gets info by name.

getservbyport(PORT, PROTO) Gets info by port.

getservent Gets next info.

setservent(STAYOPEN) Resets lookup processing.

protocols
Info is ($name, $aliases, $proto).

endprotoent Ends lookup processing.

getprotobyname(NAME) Gets info by name.

getprotobynumber(NUMBER) Gets info by number.

getprotoent Gets next info.

setprotoent(STAYOPEN) Resets lookup processing.

15

Perl Reference Guide

6. Operators

+ - * / Addition, subtraction, multiplication, division.

% Modulo division.

| & ˆ Bitwise or, bitwise and, bitwise exclusive or.

>> << Bitwise shift right, bitwise shift left.

** Exponentiation.

. Concatenation of two strings.

x Returns a string or array consisting of the left operand (an array or

a string) repeated the number of times specified by the right operand.

All of the above operators also have an assignment operator, e.g. “.=”.

++ -- Auto-increment (magical on strings), auto-decrement.

? : Alternation (if-then-else) operator.

|| && Logical or, logical and.

== != Numeric equality, inequality.

eq ne String equality, inequality.

< > Numeric less than, greater than.

lt gt String less than, greater than.

<= >= Numeric less (greater) than or equal to.

le ge String less (greater) than or equal.

<=> Numeric compare. Returns -1, 0 or 1.

cmp String compare. Returns -1, 0 or 1.

=˜ !˜ Search pattern, substitution, or translation (negated).

.. Enumeration, also input line range operator.

, Comma operator.

7. File test operators

These unary operators takes one argument, either a filename or a filehandle, and

tests the associated file to see if something is true about it. If the argument is

omitted, tests $_ (except for -t, which tests STDIN). If the special argument _
(underscore) is passed, uses the info of the preceding test.

-r -w -x -o
File is readable/writable/executable/owned by effective uid.

-R -W -X -O
File is readable/writable/executable/owned by real uid.

-e -z -s File exists / has zero/non-zero size.

-f -d File is a plain file, a directory.

-l -S -p File is a symbolic link, a socket, a named pipe (FIFO).

-b -c File is a block/character special file.

-u -g -k File has setuid/setgid/sticky bit set.

-t Tests if filehandle (STDIN by default) is opened to a tty.

-T -B File is a text/non-text (binary) file. -T and -B return TRUE on a

null file, or a file at EOF when testing a filehandle.

-M -A -C File creation / access / inode change time. Measured in days since

this program started. See also $ˆT in section “Special Variables”.

4

Perl Reference Guide

18. Networking

accept(NEWSOCKET,GENERICSOCKET)

Accepts a new socket.

bind(SOCKET,NAME)

Binds the NAME to the SOCKET.

connect(SOCKET,NAME)

Connects the NAME to the SOCKET.

getpeername(SOCKET)

Returns the socket address of the other end of the SOCKET.

getsockname(SOCKET)

Returns the name of the socket.

getsockopt(SOCKET,LEVEL,OPTNAME)

Returns the socket options.

listen(SOCKET,QUEUESIZE)

Starts listening on the specified SOCKET.

recv(SOCKET,SCALAR,LENGTH,FLAGS)

Receives a message on SOCKET.

send(SOCKET,MSG,FLAGS[,TO])

Sends a message on the SOCKET.

setsockopt(SOCKET,LEVEL,OPTNAME,OPTVAL)

Sets the requested socket option.

shutdown(SOCKET,HOW)

Shuts down a SOCKET.

socket(SOCKET,DOMAIN,TYPE,PROTOCOL)

Creates a SOCKET in DOMAIN with TYPE and PROTOCOL.

socketpair(SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL)

As socket, but creates a pair of bi-directional sockets.

19. SystemV IPC

The following functions all perform the same action as the corresponding system

calls.

msgctl(ID,CMD,ARGS)

msgget(KEY,FLAGS)

msgsnd(ID,MSG,FLAGS)

msgrcv(ID,$VAR,SIZE,TYPE,FLAGS)

semctl(ID,SEMNUM,CMD,ARG)

semget(KEY,NSEMS,SIZE,FLAGS)

semop(KEY,...)

shmctl(ID,CMD,ARG)

shmget(KEY,SIZE,FLAGS)

shmread(ID,$VAR,POS,SIZE)

shmwrite(ID,STRING,POS,SIZE)

13

Perl Reference Guide

10. Structure conversion

pack(TEMPLATE,LIST)

Packs the values into a binary structure using TEMPLATE.

unpack(TEMPLATE,EXPR)

Unpacks the structure EXPR into an array, using TEMPLATE.

TEMPLATE is a sequence of characters as follows:

a / A Ascii string, null / space padded

b / B Bit string in ascending / descending order

c / C Native / unsigned char value

f / d Single / double float in native format

h / H Hex string, low / high nybble first.

i / I Signed / unsigned integer value

l / L Signed / unsigned long value

n / N Short / long in network byte order

s / S Signed / unsigned short value

u / p Uuencoded string / Pointer to a string

x / @ Null byte / null fill until position

X Backup a byte

Each character may be followed by a decimal number which will be used as

a repeat count, an * specifies all remaining arguments.

If the format is preceded with %N, unpack returns an N-bit checksum

instead.

Spaces may be included in the template for readability purposes.

11. String functions

chop(LISTy)

Chops off the last character on all elements of the list; returns the last

chopped character. The parentheses may be omitted if LIST is a single

variable.

crypt(PLAINTEXT,SALT)

Encrypts a string.

eval(EXPRy)*

EXPR is parsed and executed as if it were a perl program. The value

returned is the value of the last expression evaluated. If there is a syntax

error or runtime error, an undefined string is returned by eval, and $@ is set

to the error message.

index(STR,SUBSTR[,OFFSET])

Returns the position of SUBSTR in STR at or after OFFSET. If the substring

is not found, returns $[-1.

length(EXPRy)*

Returns the length in characters of the value of EXPR.

rindex(STR,SUBSTR[,OFFSET])

Returns the position of the last occurrence of SUBSTR in STR at or before

OFFSET.

substr(EXPR,OFFSET[,LEN])

Extracts a substring out of EXPR and returns it. If OFFSET is negative,

counts from the end of the string. May be used as an lvalue.

6

Perl Reference Guide

16. Search and replace functions

[EXPR =˜] [m]/PATTERN/[g][i][o]

Searches EXPR (default: $_) for a pattern. If you prepend an m you can use

almost any pair of characters as delimiters. If used in array context, an array

is returned consisting of the subexpressions matched by the parentheses in

pattern, i.e. ($1,$2,$3,...).

Optional modifiers: g matches as many times as possible; i searches in a

case-insensitive manner; o interpolates variables only once.

If PATTERN is empty, the most recent pattern from a previous match or

replacement is used.

With g the match can be used as an iterator in scalar context.

?PATTERN?
This is just like the /PATTERN/ search, except that it matches only once

between calls to the reset operator. If PATTERN is empty, the most recent

pattern from a previous match or replacement is used.

[$VAR =˜] s/PATTERN/REPLACEMENT/[g][i][e][o]

Searches a string for a pattern, and if found, replaces that pattern with the

replacement text and returns the number of substitutions made. Otherwise it

returns false.

Optional modifiers: g replaces all occurrences of the pattern; e interprets the

replacement string as an expression; i and o as with /PATTERN/ matching.

Almost any delimiter may replace the slashes; if single quotes are used, no

interpretation is done on the replacement string.

If PATTERN is empty, the most recent pattern from a previous match or

replacement is used.

study[($VARy)*]

Study the contents of $VAR in anticipation of doing many pattern matches

on the contents before it is next modified.

[$VAR =˜] tr/SEARCHLIST/REPLACEMENTLIST/[c][d][s]

Translates all occurrences of the characters found in the search list with the

corresponding character in the replacement list. It returns the number of

characters replaced. y may be used instead of tr.

Optional modifiers: c complements the SEARCHLIST; d deletes all

characters not found in SEARCHLIST; s squeezes all sequences of

characters that are translated into the same target character into one

occurrence of this character.

17. System interaction

alarm(EXPR)*

Schedules a SIGALRM to be delivered after EXPR seconds.

chdir [(EXPR)*]

Changes the working directory, $ENV{"HOME"} if EXPR is omitted.

chroot(FILENAMEy)*

Changes the root directory for the process and its children.

die[(LIST)*]

Prints the value of LIST to STDERR and exits with the current value of $!
(errno). If $! is 0, exits with the value of ($? >> 8). If ($? >> 8) is

0, exits with 255. LIST defaults to "Died.".

11

Perl Reference Guide

13. File operations

Functions operating on a list of files return the number of files successfully

operated upon.

chmod(LIST)*

Changes the permissions of a list of files. The first element of the list must

be the numerical mode.

chown(LIST)*

Changes the owner and group of a list of files. The first two elements of the

list must be the numerical uid and gid.

truncate(FILE,SIZE)

truncates FILE to SIZE. FILE may be a filename or a filehandle.

link(OLDFILE,NEWFILE)

Creates a new filename linked to the old filename.

lstat(FILE)

Like stat, but does not traverse a final symbolic link.

mkdir(DIR,MODE)

Creates a directory with given permissions. Sets $! on failure.

select(RBITS,WBITS,NBITS,TIMEOUT)

Performs a select(2) system call with the same parameters.

readlink(EXPRy)*

Returns the value of a symbolic link.

rename(OLDNAME,NEWNAME)

Changes the name of a file.

rmdir(FILENAMEy)*

Deletes the directory if it is empty. Sets $! on failure.

stat(FILE)

Returns a 13-element array ($dev, $ino, $mode, $nlink, $uid, $gid, $rdev,

$size, $atime, $mtime, $ctime, $blksize, $blocks). FILE can be a

filehandle, an expression evaluating to a filename, or _ to refer to the last file

test operation.

symlink(OLDFILE,NEWFILE)

Creates a new filename symbolically linked to the old filename.

unlink(LIST)*

Deletes a list of files.

utime(LIST)*

Changes the access and modification times. The first two elements of the list

must be the numerical access and modification times.

8

