
Working in GDB
A guide to the internals of the GNU debugger

John Gilmore
Cygnus Support

Cygnus Support
Revision: 1.28

TEXinfo 2023-09-19.19

Copyright c© 1990, 1991 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Chapter 3: Adding a New Configuration 1

1 The README File

Check the README file, it often has useful information that does not appear anywhere else
in the directory.

2 Defining a New Host or Target Architecture

When building support for a new host and/or target, much of the work you need to do
is handled by specifying configuration files; see Chapter 3 [Adding a New Configuration],
page 1. Further work can be divided into “host-dependent” (see Chapter 4 [Adding a New
Host], page 2) and “target-dependent” (see Chapter 5 [Adding a New Target], page 4). The
following discussion is meant to explain the difference between hosts and targets.

What is considered “host-dependent” versus “target-
dependent”?

Host refers to attributes of the system where GDB runs. Target refers to the system
where the program being debugged executes. In most cases they are the same machine;
unfortunately, that means you must add both host and target support for new machines in
this category.

The config/mh-*, xm-*.h and *-xdep.c files are for host support. Similarly, the
config/mt-*, tm-*.h and *-tdep.c files are for target support. The question is, what
features or aspects of a debugging or cross-debugging environment are considered to be
“host” support?

Defines and include files needed to build on the host are host support. Examples are tty
support, system defined types, host byte order, host float format.

Unix child process support is considered an aspect of the host. Since when you fork on
the host you are still on the host, the various macros needed for finding the registers in the
upage, running ptrace, and such are all in the host-dependent files.

This is still somewhat of a grey area; I (John Gilmore) didn’t do the xm-* and tm-* split
for gdb (it was done by Jim Kingdon) so I have had to figure out the grounds on which it
was split, and make my own choices as I evolve it. I have moved many things out of the
xdep files actually, partly as a result of BFD and partly by removing duplicated code.

3 Adding a New Configuration

Most of the work in making GDB compile on a new machine is in specifying the configu-
ration of the machine. This is done in a dizzying variety of header files and configuration
scripts, which we hope to make more sensible soon. Let’s say your new host is called
an xxx (e.g. ‘sun4’), and its full three-part configuration name is xarch-xvend-xos (e.g.
‘sparc-sun-sunos4’). In particular:

In the top level directory, edit config.sub and add xarch, xvend, and xos to the lists of
supported architectures, vendors, and operating systems near the bottom of the file. Also,
add xxx as an alias that maps to xarch-xvend-xos. You can test your changes by running

./config.sub xxx

Chapter 4: Adding a New Host 2

and

./config.sub xarch-xvend-xos

which should both respond with xarch-xvend-xos and no error messages.

Now, go to the bfd directory and create a new file bfd/hosts/h-xxx.h. Examine the
other h-*.h files as templates, and create one that brings in the right include files for your
system, and defines any host-specific macros needed by GDB.

Then edit bfd/configure.in. Add shell script code to recognize your xarch-xvend-

xos configuration, and set my_host to xxx when you recognize it. This will cause your file
h-xxx.h to be linked to sysdep.h at configuration time.

Also, if this host requires any changes to the Makefile, create a file bfd/config/mh-xxx,
which includes the required lines.

(If you have the binary utilities and/or GNU ld in the same tree, you’ll also have to
edit binutils/configure.in or ld/configure.in to match what you’ve done in the bfd

directory.)

It’s possible that the libiberty and readline directories won’t need any changes for
your configuration, but if they do, you can change the configure.in file there to recognize
your system and map to an mh-xxx file. Then add mh-xxx to the config/ subdirectory,
to set any makefile variables you need. The only current options in there are things like
‘-DSYSV’.

Aha! Now to configure GDB itself! Edit gdb/configure.in to recognize your sys-
tem and set gdb_host to xxx, and (unless your desired target is already available) also
set gdb_target to something appropriate (for instance, xxx). To handle new hosts, mod-
ify the segment after the comment ‘# per-host’; to handle new targets, modify after ‘#
per-target’.

Finally, you’ll need to specify and define GDB’s host- and target-dependent .h and .c

files used for your configuration; the next two chapters discuss those.

4 Adding a New Host

Once you have specified a new configuration for your host (see Chapter 3 [Adding a New
Configuration], page 1), there are two remaining pieces to making GDB work on a new
machine. First, you have to make it host on the new machine (compile there, handle that
machine’s terminals properly, etc). If you will be cross-debugging to some other kind of
system that’s already supported, you are done.

If you want to use GDB to debug programs that run on the new machine, you have to
get it to understand the machine’s object files, symbol files, and interfaces to processes. see
Chapter 5 [Adding a New Target], page 4,

Several files control GDB’s configuration for host systems:

gdb/config/mh-xxx

Specifies Makefile fragments needed when hosting on machine xxx. In
particular, this lists the required machine-dependent object files, by defining
‘XDEPFILES=...’. Also specifies the header file which describes host xxx, by
defining ‘XM_FILE= xm-xxx.h’. You can also define ‘CC’, ‘REGEX’ and ‘REGEX1’,

Chapter 4: Adding a New Host 3

‘SYSV_DEFINE’, ‘XM_CFLAGS’, ‘XM_ADD_FILES’, ‘XM_CLIBS’, ‘XM_CDEPS’, etc.;
see Makefile.in.

gdb/xm-xxx.h

(xm.h is a link to this file, created by configure). Contains C macro definitions
describing the host system environment, such as byte order, host C compiler
and library, ptrace support, and core file structure. Crib from existing xm-*.h

files to create a new one.

gdb/xxx-xdep.c

Contains any miscellaneous C code required for this machine as a host. On
some machines it doesn’t exist at all.

There are some “generic” versions of routines that can be used by various host systems.
These can be customized in various ways by macros defined in your xm-xxx.h file. If these
routines work for the xxx host, you can just include the generic file’s name (with ‘.o’, not
‘.c’) in XDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into xxx-xdep.c, and put
xxx-xdep.o into XDEPFILES.

Generic Host Support Files

infptrace.c

This is the low level interface to inferior processes for systems using the Unix
ptrace call in a vanilla way.

coredep.c::fetch_core_registers()

Support for reading registers out of a core file. This routine calls register_

addr(), see below. Now that BFD is used to read core files, virtually all ma-
chines should use coredep.c, and should just provide fetch_core_registers
in xxx-xdep.c.

coredep.c::register_addr()

If your xm-xxx.h file defines the macro REGISTER_U_ADDR(reg) to be the offset
within the ‘user’ struct of a register (represented as a GDB register number),
coredep.c will define the register_addr() function and use the macro in it.
If you do not define REGISTER_U_ADDR, but you are using the standard fetch_

core_registers(), you will need to define your own version of register_
addr(), put it into your xxx-xdep.c file, and be sure xxx-xdep.o is in the
XDEPFILES list. If you have your own fetch_core_registers(), you may not
need a separate register_addr(). Many custom fetch_core_registers()

implementations simply locate the registers themselves.

Object files needed when the target system is an xxx are listed in the file config/mt-

xxx, in the makefile macro ‘TDEPFILES = ’. . . . The header file that defines the target
system should be called tm-xxx.h, and should be specified as the value of ‘TM_FILE’ in
config/mt-xxx. You can also define ‘TM_CFLAGS’, ‘TM_CLIBS’, and ‘TM_CDEPS’ in there; see
Makefile.in.

Now, you are now ready to try configuring GDB to compile for your system. From the
top level (above bfd, gdb, etc), do:

Chapter 5: Adding a New Target 4

./configure xxx +target=vxworks960

This will configure your system to cross-compile for VxWorks on the Intel 960, which
is probably not what you really want, but it’s a test case that works at this stage. (You
haven’t set up to be able to debug programs that run on xxx yet.)

If this succeeds, you can try building it all with:

make

Good luck! Comments and suggestions about this section are particularly welcome; send
them to ‘bug-gdb@prep.ai.mit.edu’.

When hosting GDB on a new operating system, to make it possible to debug core files,
you will need to either write specific code for parsing your OS’s core files, or customize
bfd/trad-core.c. First, use whatever #include files your machine uses to define the
struct of registers that is accessible (possibly in the u-area) in a core file (rather than
machine/reg.h), and an include file that defines whatever header exists on a core file (e.g.
the u-area or a ‘struct core’). Then modify trad_unix_core_file_p() to use these values
to set up the section information for the data segment, stack segment, any other segments in
the core file (perhaps shared library contents or control information), “registers” segment,
and if there are two discontiguous sets of registers (e.g. integer and float), the “reg2”
segment. This section information basically delimits areas in the core file in a standard
way, which the section-reading routines in BFD know how to seek around in.

Then back in GDB, you need a matching routine called fetch_core_registers(). If
you can use the generic one, it’s in core-dep.c; if not, it’s in your xxx-xdep.c file. It will
be passed a char pointer to the entire “registers” segment, its length, and a zero; or a char
pointer to the entire “regs2” segment, its length, and a 2. The routine should suck out
the supplied register values and install them into GDB’s “registers” array. (See Chapter 2
[Defining a New Host or Target Architecture], page 1, for more info about this.)

5 Adding a New Target

For a new target called ttt, first specify the configuration as described in Chapter 3 [Adding
a New Configuration], page 1. If your new target is the same as your new host, you’ve
probably already done that.

A variety of files specify attributes of the GDB target environment:

gdb/config/mt-ttt

Contains a Makefile fragment specific to this target. Specifies what object files
are needed for target ttt, by defining ‘TDEPFILES=...’. Also specifies the header
file which describes ttt, by defining ‘TM_FILE= tm-ttt.h’. You can also define
‘TM_CFLAGS’, and other Makefile variables here; see Makefile.in.

gdb/tm-ttt.h

(tm.h is a link to this file, created by configure). Contains macro definitions
about the target machine’s registers, stack frame format and instructions. Crib
from existing tm-*.h files when building a new one.

gdb/ttt-tdep.c

Contains any miscellaneous code required for this target machine. On some
machines it doesn’t exist at all. Sometimes the macros in tm-ttt.h become

Chapter 6: Adding a Source Language to GDB 5

very complicated, so they are implemented as functions here instead, and the
macro is simply defined to call the function.

gdb/exec.c

Defines functions for accessing files that are executable on the target system.
These functions open and examine an exec file, extract data from one, write
data to one, print information about one, etc. Now that executable files are
handled with BFD, every target should be able to use the generic exec.c rather
than its own custom code.

gdb/arch-pinsn.c

Prints (disassembles) the target machine’s instructions. This file is usually
shared with other target machines which use the same processor, which is why
it is arch-pinsn.c rather than ttt-pinsn.c.

gdb/arch-opcode.h

Contains some large initialized data structures describing the target machine’s
instructions. This is a bit strange for a .h file, but it’s OK since it is only
included in one place. arch-opcode.h is shared between the debugger and the
assembler, if the GNU assembler has been ported to the target machine.

gdb/tm-arch.h

This often exists to describe the basic layout of the target machine’s processor
chip (registers, stack, etc). If used, it is included by tm-xxx.h. It can be shared
among many targets that use the same processor.

gdb/arch-tdep.c

Similarly, there are often common subroutines that are shared by all target
machines that use this particular architecture.

When adding support for a new target machine, there are various areas of support that
might need change, or might be OK.

If you are using an existing object file format (a.out or COFF), there is probably little to
be done. See bfd/doc/bfd.texinfo for more information on writing new a.out or COFF
versions.

If you need to add a new object file format, you are beyond the scope of this document
right now. Look at the structure of the a.out and COFF support, build a transfer vector
(xvec) for your new format, and start populating it with routines. Add it to the list in
bfd/targets.c.

If you are adding a new operating system for an existing CPU chip, add a tm-xos.h file
that describes the operating system facilities that are unusual (extra symbol table info; the
breakpoint instruction needed; etc). Then write a tm-xarch-xos.h that just #includes
tm-xarch.h and tm-xos.h. (Now that we have three-part configuration names, this will
probably get revised to separate the xos configuration from the xarch configuration.)

6 Adding a Source Language to GDB

To add other languages to GDB’s expression parser, follow the following steps:

Chapter 6: Adding a Source Language to GDB 6

Create the expression parser.
This should reside in a file lang-exp.y. Routines for building parsed expres-
sions into a ‘union exp_element’ list are in parse.c.

Since we can’t depend upon everyone having Bison, and YACC produces parsers
that define a bunch of global names, the following lines must be included at the
top of the YACC parser, to prevent the various parsers from defining the same
global names:

#define yyparse lang_parse

#define yylex lang_lex

#define yyerror lang_error

#define yylval lang_lval

#define yychar lang_char

#define yydebug lang_debug

#define yypact lang_pact

#define yyr1 lang_r1

#define yyr2 lang_r2

#define yydef lang_def

#define yychk lang_chk

#define yypgo lang_pgo

#define yyact lang_act

#define yyexca lang_exca

#define yyerrflag lang_errflag

#define yynerrs lang_nerrs

At the bottom of your parser, define a struct language_defn and initialize it
with the right values for your language. Define an initialize_lang routine
and have it call ‘add_language(lang_language_defn)’ to tell the rest of GDB
that your language exists. You’ll need some other supporting variables and
functions, which will be used via pointers from your lang_language_defn.
See the declaration of struct language_defn in language.h, and the other
*-exp.y files, for more information.

Add any evaluation routines, if necessary
If you need new opcodes (that represent the operations of the language), add
them to the enumerated type in expression.h. Add support code for these
operations in eval.c:evaluate_subexp(). Add cases for new opcodes in
two functions from parse.c: prefixify_subexp() and length_of_subexp().
These compute the number of exp_elements that a given operation takes up.

Update some existing code
Add an enumerated identifier for your language to the enumerated type enum

language in defs.h.

Update the routines in language.c so your language is included. These routines
include type predicates and such, which (in some cases) are language dependent.
If your language does not appear in the switch statement, an error is reported.

Also included in language.c is the code that updates the variable current_

language, and the routines that translate the language_lang enumerated iden-
tifier into a printable string.

Chapter 7: Configuring GDB for Release 7

Update the function _initialize_language to include your language. This
function picks the default language upon startup, so is dependent upon which
languages that GDB is built for.

Update allocate_symtab in symfile.c and/or symbol-reading code so that
the language of each symtab (source file) is set properly. This is used to deter-
mine the language to use at each stack frame level. Currently, the language is
set based upon the extension of the source file. If the language can be better
inferred from the symbol information, please set the language of the symtab in
the symbol-reading code.

Add helper code to expprint.c:print_subexp() to handle any new expression
opcodes you have added to expression.h. Also, add the printed representa-
tions of your operators to op_print_tab.

Add a place of call
Add a call to lang_parse() and lang_error in parse.c:parse_exp_1().

Use macros to trim code
The user has the option of building GDB for some or all of the languages. If
the user decides to build GDB for the language lang, then every file dependent
on language.h will have the macro _LANG_lang defined in it. Use #ifdefs to
leave out large routines that the user won’t need if he or she is not using your
language.

Note that you do not need to do this in your YACC parser, since if GDB is not
build for lang, then lang-exp.tab.o (the compiled form of your parser) is not
linked into GDB at all.

See the file configure.in for how GDB is configured for different languages.

Edit Makefile.in
Add dependencies in Makefile.in. Make sure you update the macro variables
such as HFILES and OBJS, otherwise your code may not get linked in, or, worse
yet, it may not get tarred into the distribution!

7 Configuring GDB for Release

From the top level directory (containing gdb, bfd, libiberty, and so on):

make gdb.tar.Z

This will properly configure, clean, rebuild any files that are distributed pre-built (e.g.
c-exp.tab.c or refcard.ps), and will then make a tarfile.

This procedure requires:

• symbolic links

• makeinfo (texinfo2 level)

• TEX

• dvips

• yacc or bison

. . . and the usual slew of utilities (sed, tar, etc.).

Chapter 9: Symbol Reading 8

TEMPORARY RELEASE PROCEDURE FOR
DOCUMENTATION

gdb.texinfo is currently marked up using the texinfo-2 macros, which are not yet a default
for anything (but we have to start using them sometime).

For making paper, the only thing this implies is the right generation of texinfo.tex
needs to be included in the distribution.

For making info files, however, rather than duplicating the texinfo2 distribution, generate
gdb-all.texinfo locally, and include the files gdb.info* in the distribution. Note the
plural; makeinfo will split the document into one overall file and five or so included files.

8 Binary File Descriptor Library Support for
GDB

BFD provides support for GDB in several ways:

identifying executable and core files
BFD will identify a variety of file types, including a.out, coff, and several vari-
ants thereof, as well as several kinds of core files.

access to sections of files
BFD parses the file headers to determine the names, virtual addresses, sizes,
and file locations of all the various named sections in files (such as the text
section or the data section). GDB simply calls BFD to read or write section X
at byte offset Y for length Z.

specialized core file support
BFD provides routines to determine the failing command name stored in a core
file, the signal with which the program failed, and whether a core file matches
(i.e. could be a core dump of) a particular executable file.

locating the symbol information
GDB uses an internal interface of BFD to determine where to find the symbol
information in an executable file or symbol-file. GDB itself handles the reading
of symbols, since BFD does not “understand” debug symbols, but GDB uses
BFD’s cached information to find the symbols, string table, etc.

9 Symbol Reading

GDB reads symbols from "symbol files". The usual symbol file is the file containing the
program which gdb is debugging. GDB can be directed to use a different file for symbols
(with the “symbol-file” command), and it can also read more symbols via the “add-file”
and “load” commands, or while reading symbols from shared libraries.

Symbol files are initially opened by symfile.c using the BFD library. BFD identifies
the type of the file by examining its header. symfile_init then uses this identification to
locate a set of symbol-reading functions.

Symbol reading modules identify themselves to GDB by calling add_symtab_fns during
their module initialization. The argument to add_symtab_fns is a struct sym_fns which

Chapter 9: Symbol Reading 9

contains the name (or name prefix) of the symbol format, the length of the prefix, and
pointers to four functions. These functions are called at various times to process symbol-
files whose identification matches the specified prefix.

The functions supplied by each module are:

xxx_symfile_init(struct sym_fns *sf)

Called from symbol_file_add when we are about to read a new symbol file.
This function should clean up any internal state (possibly resulting from half-
read previous files, for example) and prepare to read a new symbol file. Note
that the symbol file which we are reading might be a new "main" symbol file, or
might be a secondary symbol file whose symbols are being added to the existing
symbol table.

The argument to xxx_symfile_init is a newly allocated struct sym_fns

whose bfd field contains the BFD for the new symbol file being read. Its
private field has been zeroed, and can be modified as desired. Typically, a
struct of private information will be malloc’d, and a pointer to it will be
placed in the private field.

There is no result from xxx_symfile_init, but it can call error if it detects
an unavoidable problem.

xxx_new_init()

Called from symbol_file_add when discarding existing symbols. This function
need only handle the symbol-reading module’s internal state; the symbol table
data structures visible to the rest of GDB will be discarded by symbol_file_

add. It has no arguments and no result. It may be called after xxx_symfile_
init, if a new symbol table is being read, or may be called alone if all symbols
are simply being discarded.

xxx_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)

Called from symbol_file_add to actually read the symbols from a symbol-file
into a set of psymtabs or symtabs.

sf points to the struct sym fns originally passed to xxx_sym_init for possible
initialization. addr is the offset between the file’s specified start address and its
true address in memory. mainline is 1 if this is the main symbol table being
read, and 0 if a secondary symbol file (e.g. shared library or dynamically loaded
file) is being read.

In addition, if a symbol-reading module creates psymtabs when xxx symfile read is
called, these psymtabs will contain a pointer to a function xxx_psymtab_to_symtab, which
can be called from any point in the GDB symbol-handling code.

xxx_psymtab_to_symtab (struct partial_symtab *pst)

Called from psymtab_to_symtab (or the PSYMTAB TO SYMTAB macro) if
the psymtab has not already been read in and had its pst->symtab pointer set.
The argument is the psymtab to be fleshed-out into a symtab. Upon return,
pst->readin should have been set to 1, and pst->symtab should contain a pointer
to the new corresponding symtab, or zero if there were no symbols in that part
of the symbol file.

Chapter 11: Wrapping Output Lines 10

10 Cleanups

Cleanups are a structured way to deal with things that need to be done later. When your
code does something (like malloc some memory, or open a file) that needs to be undone
later (e.g. free the memory or close the file), it can make a cleanup. The cleanup will be
done at some future point: when the command is finished, when an error occurs, or when
your code decides it’s time to do cleanups.

You can also discard cleanups, that is, throw them away without doing what they say.
This is only done if you ask that it be done.

Syntax:

old_chain = make_cleanup (function, arg);

Make a cleanup which will cause function to be called with arg (a char *)
later. The result, old chain, is a handle that can be passed to do_cleanups

or discard_cleanups later. Unless you are going to call do_cleanups or
discard_cleanups yourself, you can ignore the result from make_cleanup.

do_cleanups (old_chain);

Perform all cleanups done since make_cleanup returned old chain. E.g.:

make_cleanup (a, 0);

old = make_cleanup (b, 0);

do_cleanups (old);

will call b() but will not call a(). The cleanup that calls a() will remain in
the cleanup chain, and will be done later unless otherwise discarded.

discard_cleanups (old_chain);

Same as do_cleanups except that it just removes the cleanups from the chain
and does not call the specified functions.

Some functions, e.g. fputs_filtered() or error(), specify that they “should not be
called when cleanups are not in place”. This means that any actions you need to reverse
in the case of an error or interruption must be on the cleanup chain before you call these
functions, since they might never return to your code (they ‘longjmp’ instead).

11 Wrapping Output Lines

Output that goes through printf_filtered or fputs_filtered or fputs_demangled

needs only to have calls to wrap_here added in places that would be good breaking points.
The utility routines will take care of actually wrapping if the line width is exceeded.

The argument to wrap_here is an indentation string which is printed only if the line
breaks there. This argument is saved away and used later. It must remain valid until
the next call to wrap_here or until a newline has been printed through the *_filtered

functions. Don’t pass in a local variable and then return!

It is usually best to call wrap_here() after printing a comma or space. If you call it
before printing a space, make sure that your indentation properly accounts for the leading
space that will print if the line wraps there.

Chapter 12: Frames 11

Any function or set of functions that produce filtered output must finish by printing a
newline, to flush the wrap buffer, before switching to unfiltered (“printf”) output. Symbol
reading routines that print warnings are a good example.

12 Frames

A frame is a construct that GDB uses to keep track of calling and called functions.

FRAME_FP in the machine description has no meaning to the machine-independent part
of GDB, except that it is used when setting up a new frame from scratch, as
follows:

create_new_frame (read_register (FP_REGNUM), read_pc ()));

Other than that, all the meaning imparted to FP_REGNUM is imparted by the
machine-dependent code. So, FP_REGNUM can have any value that is convenient
for the code that creates new frames. (create_new_frame calls INIT_EXTRA_
FRAME_INFO if it is defined; that is where you should use the FP_REGNUM value,
if your frames are nonstandard.)

FRAME_CHAIN

Given a GDB frame, determine the address of the calling function’s frame. This
will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_

INFO and INIT_FRAME_PC will be called for the new frame.

i

Table of Contents

1 The README File . 1

2 Defining a New Host or Target Architecture . . 1

3 Adding a New Configuration 1

4 Adding a New Host . 2

5 Adding a New Target . 4

6 Adding a Source Language to GDB 5

7 Configuring GDB for Release 7

8 Binary File Descriptor Library Support for
GDB . 8

9 Symbol Reading . 8

10 Cleanups . 10

11 Wrapping Output Lines . 10

12 Frames . 11

	1 The README File
	2 Defining a New Host or Target Architecture
	3 Adding a New Configuration
	4 Adding a New Host
	5 Adding a New Target
	6 Adding a Source Language to GDB
	7 Configuring GDB for Release
	8 Binary File Descriptor Library Support for GDB
	9 Symbol Reading
	10 Cleanups
	11 Wrapping Output Lines
	12 Frames

