A Trace-Driven Analysis of the UNIX 4.2 BSD File System

John K. Ousterhout, Hervé Da Costa, David Harrison,
John A. Kunze, Mike Kupfer, and James G. Thompson

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

We analyzed the UNIX 4.2 BSD file system by recording user-
level activity in trace files and writing programs to analyze the
traces. The tracer did not record individual read and write
operations, yet still provided tight bounds on what information
was accessed and when. The trace analysis shows that the aver-
age file system bandwidth needed per user is low (a few hun-
dred bytes per second). Most of the files accessed are open only
a short time and are accessed sequentially. Most new informa-
tion is deleted or overwritten within a few minutes of its crea-
tion. We also wrote a ssimulator that uses the traces to predict
the performance of caches for disk blocks. The moderate-sized
caches used in UNIX reduce disk traffic for file blocks by about
50%, but larger caches (several megabytes) can eliminate 90%
or more of all disk traffic. With those large caches, large block
sizes (16 kbytes or more) result in the fewest disk accesses.

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

1. Introduction

This paper describes a series of measurements made on the
UNIX 4.2 BSD file system [5,8]. Most of the work was donein
a series of term projects for a graduate course in operating sys-
tems at the University of California at Berkeley. Our goal was
to collect information that would be useful in designing a
shared file system for a network of persona workstations. We
were interested in such questions as:

e How much network bandwidth is needed to support a disk-
less workstation?

e What are typical file access patterns (and what protocols
will support those patterns best)?

e How should disk block caches be organized and managed?

e How much of a performance advantage do such caches
provide?

We were unable to find answers to these questions in the
literature, so we decided to instrument the 4.2 BSD system to
collect information about file accesses. In order to reduce the
size of the trace files and the impact of the tracer on its host sys-
tems, we did not record individual read and write requests. The
information that we did collect alowed us to deduce the exact
ranges of bytes accessed, although the access times were less
precise than they would have been if we had logged reads and
writes. Section 3 of this paper discusses the tracing technique
and Section 4 describes the three systems we traced.

We wrote two programs to process the trace files: a refer-
ence pattern analyzer and a block cache simulator. Table |
summarizes the most important results. Section 5 discusses the
reference pattern analysis. Some of the conclusions are: indivi-
dual users make only occasiona (though bursty) use of the file
system, and they need very little bandwidth on average (only a
few hundred bytes per second per active user); files are usually
open only a short time, and they tend to be read or written
sequentially in their entirety; non-sequential access is rare;
most of the files that are accessed are short; and most new files
have short lifetimes (only afew minutes).

Section 6 describes the second part of the analysis, a series
of disk-block cache simulations based on the trace data. The
main conclusions are that even moderate-sized disk block
caches such as those used in UNIX (a few hundred kilobytes)
can reduce disk traffic for file blocks by about a factor of two.
But larger caches of several megabytes perform much better,

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

On average, about 300-600 bytes/second of file data are
read or written by each active user.

About 70% of all file accesses are whole-file transfers, and
about 50% of al bytes are transferred in whole-file
transfers.

75% of al files are open less than .5 second, and 90% are
open less than 10 seconds.

About 20-30% of all newly-written information is deleted
within 30 seconds, and about 50% is deleted within 5
minutes.

A 4-Mbyte cache of disk blocks eliminates between 65%
and 90% of all disk accesses for file data (depending on the
write policy).

For a 400-kbyte disk cache, a block size of 8 kbytes results
in the fewest number of disk accesses for file data. For a
4-Mbyte cache, a 16-kbyte block size is optimal.

Table!l. Selected results.

reducing disk traffic by as much as 90%. With large caches and
the delayed-write policy described in Section 6, many files will
not be written to disk at al: they will be deleted or overwritten
while still in the cache. Large block sizes (8 or 16 kbytes) com-
bined with large caches result in the greatest reductions in disk
/0. Even for relatively small caches, large block sizes are
effective in reducing disk 1/0.

2. Previous Work

There has been very little empirical data published on file
system usage or performance. This is probably due to the
difficulty of obtaining trace data, and aso to the large volume
of data that islikely to result. The published studies are limited
in scope, and most deal with older operating systems. As a
consequence, the results may not be applicable in planning
future systems.

For example, Smith studied the file access behavior of
IBM mainframes in order to predict the effects of automatic file
migration [11]. He only considered files used by a particular
interactive editor, which were mostly program source files. The
data were gathered as a series of daily scans of the disk, so they
do not include files whose lifetimes were less than a day. In
another study, Porcar analyzed dynamic trace data for filesin an

-2-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

IBM batch environment [7]. He considered only shared files,
which accounted for less than 10% of all the files accessed in
his system. Satyanarayanan analyzed file sizes and lifetimes on
a PDP-10 system [10], but the study was made statically by
scanning the contents of disk storage at afixed point in time.

More recently, Smith used trace data from IBM main-
frames to predict the performance of disk caches[12]; his con-
clusions are similar to ours athough he used different trace
information (physical disk addresses, no information about
files, transfer sizes or reading versus writing). Two other recent
studies contain UNIX measurements that partially overlap ours:
Lazowska et a. analyzed block size tradeoffs and reported on
the disk /O required per user [2], and Leffler et al. reported on
the effectiveness of current UNIX disk caches [4]. Sections 5
and 6 of this paper compare their results and ours.

3. Gathering the Data

Our main concern in gathering file system trace informa-
tion was the volume of data. We wished to gather data over
several daysto prevent temporary unusua activity from biasing
the results. If we had attempted to record all file system
activity, an enormous amount of data would have been pro-
duced. For example, the traces for Smith’s cache study con-
tained 1.5 gigabytes or more per day [12]. We feared that the
work involved in writing such a trace file would have consumed
a substantial fraction of the CPU. It might have perturbed our
results, and it certainly would have made us unpopular with the
systems' users. In addition, the volume of data would have
been so great that we could only have traced a few hours of
activity before running out of space for the trace files.

3.1. No Readsand Writes

In order to reduce the volume of data, we decided to
record file-system-related events at alogical level rather than a
physical level, and not to record individua read and write
requests. Table Il shows the events that were logged. *‘Logi-
ca’’ level means that information was recorded about files and
ranges of bytes within files, not about physical disk blocks.
There is no information in the traces about the locations of
blocks on disk or the timing of actual disk I/Os. Furthermore,
the traces do not contain any information about disk accesses
for paging, file name lookup, or file descriptors (see Section 3.2
below).

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

System Call Information Recorded

open and create Hln;(‘as,iggen id, fileid, user id,
close time, open id, final position
seek (reposition within | time, openid, previous

file) position, new position
unlink (delete file) time, fileid

truncate (shorten file) time, fileid, new length
execve (load program) | time, fileid, user id, file size

Tablell. The eventsrecorded by the trace package. Timeis
accurate to approximately 10 milliseconds. Open id is a
unique identifier assigned to each ‘‘open’’ system call. Itis
used to avoid confusion between concurrent accesses to the
same file. Fileid is unique to each file. User id identifies
the account under which the operation was invoked. Posi-
tion is the current access position in the file (i.e. the byte
offset to/from which data will be transferred next).

Once we decided to gather information at a logical level,
we could take advantage of the fact that file reading and writing
in UNIX are implicitly sequential (a special system call must be
used to change the access position within the file). This means
that read and write events need not be logged to determine
which data were accessed. We recorded the current access
position in the file when it was opened and closed, and aso
before and after each repositioning operation. This information
completely identifies the areas of files that were read or written.

The drawback of the no-read-write approach is that it
reduces the accuracy of times in the system: the open, close,
and reposition events provide bounds on when bytes were actu-
aly transferred, but these may be loose bounds if open files are
idle for long periods. In al of our analyses, we ‘*billed’’ each
transfer at the time of the next close or reposition event for the
file. When analyzing concurrent accesses to different files, the
order in which we processed the data transfers may not be the
same as the order in which reads and writes occurred.

We had two hypotheses about usage patterns that led us to
adopt the no-read-write approach in spite of its potential inaccu-
racy. First, we thought that most file system activity would be
sequential, so that the no-read-write approach would reduce the
volume of trace data substantially. Our experiences bear out
this hypothesis. Second, we thought that most files would only

-4-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

be open a short time, so that the open and close events would
provide tight bounds on the access times. This hypothesis is
also supported by the data in Section 5.

After collecting the trace data we measured the intervals
between successive trace events for the same open file. These
bound the times when data transfers actually occurred. 75% of
the intervals were less than 0.5 second, 90% were less than 10
seconds, and 99% were less than 30 seconds. The measure-
ments in Sections 5 and 6 were averaged over intervals of at
least 10 seconds and often longer, so we do not believe that the
time imprecision biased our results very much. A later study
[13] suggests that no-read-write approach exaggerates slightly
the burstiness of the system. This makes our performance
numbers dlightly pessimistic. For example, [13] concludes that
actual cache miss ratios will be 2-3% lower than predicted by
Section 6.

3.2. Missing Data

Our trace analyses consider both user- and system-initiated
file access, but they examine only the actual bytes contained in
files. We did not include paging activity, nor did we include
the overhead 1/0 activity needed to interpret pathnames or to
read and write file descriptors. The paragraphs below discuss
these other factors individually. It appears that the other factors
could result in as much disk activity as the logical file accesses
that we measured in detail. Fortunately, the results presented in
this paper are independent of the other factors, with the excep-
tion of the block cache simulations of Section 6.

The first *“ other factor’’ is paging activity, which consists
primarily of loading programs on demand from disk files into
main memory. Paging to and from swapping store can aso
result in I/O activity but israrein 4.2 BSD systems (see [2] and
[6]). We estimated the effects of paging by logging execve sys-
tem calls and recording the sizes of the files that were executed.
The total number of bytes in such files ranged from 1.2 to 2
times the total number of bytes of logical file I/O, depending on
the system measured. However, the actual paging I/O was
probably less than this, for three reasons. First, UNIX provides
shared code segments and will not re-read code pages if they
are already in use by another process. Second, program files
may contain large amounts of debugging information, which is
never paged in. Third, files are paged in on demand, which
means some pages may never be read. See Section 6 for an
estimate of the effect of program page-in on disk block caches.

-5-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

The second additional source of disk 1/O consists of file
descriptors (i-nodes), which map logical file blocks to disk
blocks. UNIX maintains a main-memory cache for the i-nodes
of al open files and many recently-used ones. We were not
able to measure the effectiveness of this cache. In the
(unlikely) worst case, i-node transfers could result in more disk
I/O than the actual file blocks (for example, access to a small
file might consist of reading the i-node on file open, reading or
writing one file block, then writing the i-node on file close).

The third additional source of disk 1/O is the directories
that must be examined when opening files. This results in a
minimum of two block accesses for each element in a file's
pathname (one for the directory’s descriptor and one for the
contents of the directory). However, 4.2 BSD contains a direc-
tory cache to hold recently-used entries. Leffler et al. report
that the directory cache achieves an 85% hit ratio [4].

4. TheTraced Systems

We collected trace data on three different systems, all
timeshared VAX-11/780s in the Department of Electrical
Engineering and Computer Sciences at U.C. Berkeley. The
machines' names are ‘*Ucbarpa’’, ‘*Ucbernie’’, and **Ucbcad’’,
and the traces we used for analysisare called “**A5’’, **E3"’, and
“*C4", respectively. Ucbarpa and Ucbernie are both used pri-
marily by graduate students and staff for program development

Trace A5 E3 C4
Duration (hours) 79.4 65.7 72.5
Number of trace records 1,017,464 921,526 733,403

Size of trace file (Mbytes) 26 23 18

Total data transferred

toffrom files (Mbytes) 1220 1196 1030
create events 38,142 (3.8%) 37,172 (4.1%) 29,462 (4.1%)
open events 320,065 (31.9%) | 280,579 (30.9%) | 203,613 (28.2%)
close events 358,191 (35.7%) | 317,763 (35.0%) | 233,078 (32.3%)
seek events 185,709 (18.5%) | 169,714 (18.7%) | 189,245 (26.2%)
unlink events 37,780 (3.8%) 36,517 (4.0%) 28,373 (3.9%)
truncate events 1,485 (0.1%) 2,070 (0.2%) 1,115 (0.1%)
execve 60,712 (6.1%) 64,732 (7.1%) 37,704 (5.2%)

Table I11. Overal datistics for the three traces. The per-
centages are expressed as fractions of all eventsin that trace.

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

and document formatting. Uchbernie supports a substantial
amount of secretarial and administrative work. Ucbarpa has 4
Mbytes of primary memory and Ucbernie has 8 Mbytes. The
third machine, Ucbcad, is used primarily by electrical engineer-
ing graduate students to run computer-aided design tools for
integrated circuits. Circuit ssimulators, layout editors, design-
rule checkers, and circuit extractors are commonly-used pro-
grams on this machine. Ucbcad has 16 Mbytes of primary
memory. We included Ucbcad in the analysis to see if CAD
programs would show different file system behavior from pro-
gram development and word-processing programs. The results
in Sections 5 and 6 show little difference between the three
machines.

Table Il gives summary information about the three
traces. Each was gathered over a period of 2-3 days during the
busiest part of the work week. During the peak hours of the
day, about 2-3 files were opened per second, on average. For
the A5 and E3 traces, the UNIX load average was typically
5-10 during the afternoon, with a few dozen users active at any
given time. For the C4 trace the load average rarely exceeded 2
or 3, with around ten active users at a time. About 5000-6000
bytes of trace data per minute were collected, on average.
Although the worst-case rate was somewhat higher than this,
there was no noticeable degradation in the performance of the
systems while the traces were being gathered.

5. How the File System is Used

Our trace analysis was divided up into two parts. The first
part contains measurements of current UNIX file system usage.
They are presented in this section under three genera
categories. system activity (how much the file system is used),
access patterns (sequentiality, dynamic file sizes, and open
times), and file lifetimes. The second part of the analysis, exa-
mining the effectiveness of disk block caches, is presented in
Section 6.

5.1. System Activity

The first set of measurements concerns overall system
activity in terms of users, active files, and bytes transferred; see
Table 1V. The most interesting measurement for us is the
throughput per active user. We consider a user to be active if
he or she has any file system activity in a ten-minute interval.

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

(bytes/sec. over 10 second intervals)

A5 E3 C4
Average throughput (bytes/sec.
over life of trace) 4200 5080 3940
Total number of different users
over life of trace 137 331 169
_Greatest r_1umbe_zr of active users 29 a4 20
in a10 minute interval
Average number of active users
(over 10 minute intervals) 11.7 (£ 5.8) 18.7 (£ 10.1) 7.4 (£4.1)
Average throughput per active user
(bytes/sec. over 10 minute intervals) 370 (+ 230) 280 (* 190) 570 (£760)
Average number of active users
(over 10 second intervals) 2.5 (+ 1.5) 3.3(x2.0) 1.7 (x1.1)
Average throughput per active user | 4 g0, 10000) | 1380 (+ 4100) | 1790 (7400)

Table IV. Some measurements of system activity. The
numbers in parentheses are standard deviations. A user is
activein an interval if there are any trace events for that user
in the interval. For example, the lower-right entry in the
table means that if a user was active in a 10-second interval,
he/she requested 1790 bytes of file data per second during
that interval, on average.

Averaged over ten-minute intervals, active users tend to transfer
only a few hundred bytes of file data per second. If only ten-
second intervals are considered, users active in these intervals
tend to have much higher transfer rates (a few kilobytes per
second per user) but there are fewer active users. In [2]
Lazowska et a. reported about 4 kbytes of 1/0 per second per
active user. Thisis somewhat higher than our figure, but their
measurement includes additional overhead not present in our
analysis, such as paging I/0O and directory searches, and was
measured for asingle user at atime of heavy usage.

The low average throughput per user suggests that a
network-based file system using a single 10 Mbit/second net-
work can support many hundreds of users without overloading
the network. Transfer rates tended to be relatively bursty in our
measurements, with rates as high as 100 kbytes/sec recorded for
some users in some intervals, but even so a 10 Mbit/second net-
work could support several such bursts simultaneously without
difficulty.

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

A5 E3 c4
Whole-file read transfers 168,127 | 131,408 | 93,469
(% of all read-only accesses) (69%) (63%) (70%)
Whole-file write transfers 78,542 67,340 60,363
(% of all write-only accesses) (82%) (81%) (85%)
Datatransferred in 664 592 547
whole-file transfers (Mbytes) (54%) (49%) (53%)
Sequential read-only accesses | 221,136 | 189,734 | 122,557
(% of all read-only accesses) (92%) (91%) (93%)
Sequential write-only accesses | 92,954 79,847 76,425
(% of all write-only accesses) (97%) (96%) (98%)
Sequential read-write accesses 4215 5459 8163
(% of all read-write accesses) (19%) (21%) (35%)
Data transferred 801 804 703
sequentially (Mbytes) (66%) (67%) (68%)

Table V. Datatends to be transferred sequentially. Whole-
file transfers were those where the file was read or written
sequentially from beginning to end. Sequential accesses in-
clude whole-file transfers plus those where there was an ini-
tial reposition operation before any bytes were transferred.
Only files opened for read-write access showed significant

non-sequential use.

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

100 -
801
Percent 60:
of 1
Runs 404 7
204
0 T T T T 1
0 2 4 6 8 10
Kilobytes Transferred
@)
100 -
80 1
Percent 60:
of J
Bytes 404
201
0))) 1

0 25 50 75 100
Kilobytes Transferred

(b)

Figure 1. Cumulative distributions of the lengths of sequen-
tial runs (number of bytes transferred before repositioning or
closing the file). Figure (a) is weighted by number of runs:
about 70-75% of all sequential runs were less than 4000
bytes in length. Jumps occur at 1024 bytes and 4096 bytes
because user-level 1/0 routines round up transfers to these
sizes. Figure (b) is weighted by the number of bytes
transferred: about 30-40% of al bytes were transferred in
runs longer than 25000 bytes.

5.2. File Access Patterns

Table V contains our measurements of sequentiality,
which confirm the widely-held belief that file access is highly
sequential. More than 90% of all files are processed sequen-
tially, and more than two thirds of file accesses are whole-file
transfers. Of those accesses that are not whole-file transfers,
most consist of a single reposition to a particular position in the
file, followed by a transfer of data to or from that position
without any additional repositioning. This mode of operation is
used, for example, to append new messages onto existing

-10-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

mailbox files.

Figure 1 measures the lengths of sequential runs in two
ways. Figure 1(a) shows that most sequential runs are short,
rarely more than a few kbytes in length. This is because most
files are short (see below); there simply isn't much data to
transfer. On the other hand, Figure 1(b) shows that long
sequential runs account for much of the data transferred: 30%
of al bytes are read or written in sequentia runs of 25 kbytes or
more.

Figure 2 shows the dynamic distribution of file accesses by
Size at close. Most of the files accessed are short. Short files
are used extensively in UNIX for directories, command files,
memaos, circuit description decks, C definition files, etc. The
figure also shows that a few very large administrative files
account for almost 20% of all file accesses. These files are each
around 1 Mbyte in size and are used for network tables, a log of
all logins, and other information. They are typically accessed
by positioning within the file and then reading or writing a
small amount of data.

The file sizes shown in Figure 2 are much smaller than
those measured for IBM systems in [7] and [11]. We believe
that this difference is due to the better support provided in
UNIX for short files, including hierarchical directories and
block-based disk allocation instead of track-based alocation.
Satyanarayanan’s file-size measurements are roughly compar-
able to ours (about 50% of al his files were less than 2500
bytes), even though his measurements were made statically and
his system did not support hierarchical directories [10]. The
measurements of Lazowska et. a. are also very similar to ours
[2].

Our last measurement of access patterns is displayed in
Figure 3. It shows that most files are open only a short time:
programs tend to open files, read or write their contents, then
close the files again very quickly. This measurement is con-
sistent with our previous observations: if most files are short,
and most are accessed as whole-file transfers, then it shouldn’t
take very long to complete most of the accesses. On the other
hand, there are a few files that stay open for long periods of
time, such astemporary files used by the text editor.

5.3. FileLifetimes

Both Satyanarayanan [10] and Smith [11] have published
measurements of file lifetimes (the intervals between when files

-11-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

- - - A5
—E3
""""" Cc4
0 1 1 1 1
0 50 100 150 200
File Size (kbytes)
€Y
100 -
80
Percent .
of 60 4
Bytes T
Transferre&o: ,
204 /
0 T

0 50 100 150 200
File Size (kbytes)
(b)

Figure 2. Dynamic distribution of file sizes, measured when
files were closed. Figure (a) is a cumulative distribution
weighted by number of files. 80% of all file accesses were
to files less than 10 kbytes long; most of the remaining 20%
were to a few very large administrative files. Figure (b) is
aso cumulative but is weighted by number of bytes
transferred (only about 30% of all bytes were transferred to
or from files less than 10 kbytes long).

-12 -

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

100 +
80
Percent 60: y
of d/
Files 404
20 -
0 1 1 1 1

O 2 4 6 8 10 12 14 16 18 20
Open Time (seconds)

Figure 3. Distribution of times that files were open. Thisis
a cumulative distribution. For example, about 70-80% of all
files were open less than .5 second.

-13-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

100 -

80 4

Percent 60 :
of J
Files 40-

0 100 200 300 400 500 600
Lifetime (seconds)

100 ~

80 1
Percent 1

of 60- 04///
Bytes]
Created 401 '

20 1

0 100 200 300 400 500 600
Seconds

Figure 4. Cumulative distributions of file lifetimes. Figure
(@) is weighted by number of files (about 80% of al new
files were deleted or completely overwritten in less than 200
seconds). Figure (b) is weighted by the size of the file (files
deleted or overwritten in less than 200 seconds accounted for
about 40% of all data written to new files). The large jumps
at 180 seconds are due to network status daemons.

are written and they are overwritten or deleted; thisis actualy
the lifetime of the file's data, not necessarily the lifetime of the
file). In both cases the measurements were made by sampling
the *‘last-modified”” and ‘‘last-examined’’ times of files on a
disk, so they describe only long-term behavior (a few days or
months). We used our trace data to study file lifetimes over
much shorter intervals.

Figure 4 shows the results, which are surprising in two
respects. First of al, most file lifetimes are very short: 80% of
al new files are deleted or overwritten within about 3 minutes
of creation. The second unusual characteristic of the datais the
large concentration of lifetimes around 3 minutes. 30-40% of
all new files have lifetimes between 179 and 181 seconds. This
concentration is due to network daemons that update each of

-14 -

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

about 20 host status files every three minutes. This feature is
peculiar to 4.2 BSD. However, even disregarding the files with
lifetimes around 3 minutes, 50-60% of the remaining files have
lifetimes less than 3 minutes and 30-40% of al new information
(counted by bytes) is overwritten within 3 minutes.

The results in Figure 4 were quite surprising to us, but can
be accounted for by temporary files. For example, in program
development the compiler generates an assembler file which is
deleted as soon as it has been trandlated to machine code. In a
CAD environment, a circuit simulator generates output listings
that are examined and then deleted before the next simulation
run. In a word-processing environment, printer spool files can
account for some of the short lifetimes.

Figure 4 includes only data written to new files. files that
did not exist before or that were truncated to zero length after
being opened. Although this includes most of the data written
(refer back to Table V), it does not include information written
to the middle or end of an existing file. Section 6 contains
another lifetime measurement that is more inclusive but reaches
about the same conclusion.

6. Block Cache Simulations

In considering various designs for a network filing system,
one of the most interesting possible areas of change is the cache
of disk blocks. The UNIX file system uses about 10% of main
memory (200-400 kbytes) for a cache of recently-used disk
blocks. This cache is maintained in a least-recently-used
fashion and results in a substantial reduction in the number of
disk operations.

For a network filing system with dedicated file servers it
seems reasonable to use amost al of the servers memory for
disk caches; this could result in caches of eight megabytes or
more with today’s memory technology, and perhaps 32 or 64
megabytes in a few years. Although the general benefits of
block caches are already well-known, there were a number of
guestions we wished to answer:

° How do the benefits scale with the size of the cache?

e How should the cache be organized to maximize its effec-
tiveness?

e Canlarge block caches be used without risking large infor-
mation losses on server crashes?

-15-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

6.1. The Cache Simulator

In order to answer these questions we wrote a program to
simulate the behavior of various kinds of caches, using the trace
data to drive the smulations. As mentioned in Section 3, the
trace data contains only approximate timing information, which
could conceivably have biased the results of a smulation. For-
tunately, the inaccuracy in the trace times (a few seconds) is
small in comparison to typical cache lifetimes (afew minutes to
afew hours), so we doubt that it had much affect on the results.
For the measurements below the three traces produced nearly
indistinguishable results; only the results from the A5 trace are
reported.

In each of the smulations, the disk cache consisted of a
number of fixed-size blocks used to hold portions of files. We
used a least-recently-used algorithm for cache replacement.
When the trace indicated that a range of bytesin afile was read
or written, the range was first divided up into one or more block
accesses. For each block access, the simulator checked to see if
the block was in the cache. If so, it was used from the cache. If
not, then the block was added to the cache, replacing the block
that had not been accessed for the longest time.

In evaluating the different caches, our principal metric was
the miss ratio, which is the ratio of disk 1/O operations to logi-
cal block accesses. The smaller the miss ratio, the better. Disk
accesses occurred in two ways in the simulations. First, a disk
access was necessary each time a block was referenced that
wasn't in the cache, unless the block was about to be overwrit-
ten in its entirety. Second, disk accesses were necessary to
write modified blocks back from the cache to disk. We experi-
mented with several different write policies, which are dis-
cussed below.

In computing block accesses, we assumed that programs
made requests in units of the cache block size, rather than as
several smaller requests. In practice, though, some programs
make smaller requests than these, resulting in lower miss ratios
than we have reported (there will be many more block accesses
for the same amount of data, but about the same number of
disk 1/0s).

6.2. Cache Size and Write Palicy

The ssimulations varied in three respects. cache size, write
policy, and block size. Figure 5 and Table VI show the effect
of varying the cache size and write policy with a block size of

-16-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

1001
80
Miss 1\
Ratio 60-
t J
(percent) 40_ Write—Tr}rough
204 : - in Iﬁuu]
J Delayed Write
0 T T T 1
0 1 2 3 4

Cache Size (Mbytes)

Figure 5. Cache miss ratio as a function of cache size and
write policy, using the A5 trace with a cache block size of
4096 bytes.

Write- 30sec | 5min | Delayed

Cache Size Through | Flush | Flush Write
390 kbytes 0 0 0 0
(UNIX) 57.6% | 49.2% | 45.0% | 43.1%

1 Mbyte 45.1% 36.6% | 30.1% 25.0%
2Mbytes | 39.7% 31.2% | 24.3% 17.7%
4 Mbytes | 36.5% 28.0% | 21.2% 13.5%
8 Mbytes | 34.7% 26.2% | 19.3% 11.2%
16 Mbytes | 33.5% 25.0% | 18.1% 9.6%

Table VI. A tabular representation of the data from Figure
5 (miss ratio as a function of cache size and write policy for
the A5 trace with 4096-byte cache blocks).

4096 bytes (the most common size in 4.2 BSD UNIX systems).
We tried four different write policies in the ssimulations. The
first write policy is write-through: each time a block is
modified in the cache, a disk access is used to write the block
through to disk. Write-through is attractive because it ensures
that the disk always contains an up-to-date copy of each block.
Unfortunately, about one third of all block accesses were
writes, so the miss ratio was never lower than about 30%.

The caches were most effective with the policy we call
delayed-write (this policy is sometimes referred to as ‘‘copy-
back’’ or ‘‘write-back’’). The delayed-write policy waits to
write a block to disk until the block is about to be gected from
the cache. This resulted in much better performance for large
caches. With a cache size of 16 megabytes, miss ratios less

-17 -

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

than 10% occurred. The improvement occurred because about
75% of the newly-written blocks were overwritten or their files
were deleted before the blocks were gected from the cache;
these blocks were never written to disk at all.

Unfortunately, a delayed-write policy may not be practical
because some blocks could reside in the cache a long time
before they are written to disk. For example, we found that
with a 4 Mbyte cache, about 20% of all blocks stay in the cache
longer than 20 minutes. System crashes could cause large
amounts of information to be lost. We tried two write policies
that were intermediate between write-through and delayed-
write. We call these flush-back policies. With a flush-back pol-
icy the cache is scanned at regular intervals. any blocks that
have been modified since the last scan are written to disk. If the
flush interval becomes very small then flush-back is equivalent
to write-through; if the flush interval becomes very large then
flush-back is equivalent to delayed-write.

Figure 5 shows two different flush-back intervals: 30
seconds and 5 minutes. For large caches, a 30-second flush-
back policy reduces the number of 1/0Os by about 25% and a 5-
minute flush-back policy reduces the number of 1/0Os by about
50%. This means that about 25% of newly-written blocks are
overwritten or deleted within 30 seconds and about 50% are
overwritten or deleted within 5 minutes. These data provide
another measurement of the lifetime of information in files, and
are similar to the results of Figure 4.

6.3. Block Size

We also evaluated the effectiveness of different block
sizes. The original UNIX system used 512-byte blocks, but the
block size has grown since then to 1024 bytesin AT&T’s Sys-
tem V [1] and 4096 bytes in most 4.2 BSD systems. Figure 6
and Table VII show the results of varying the block size and
cache size. For a 4-Mbyte cache, a block size of 16 kbytes
reduces disk accesses by about 25% over a 4-kbyte block size
and by afactor of 3 over 1-kbyte blocks. Even for a cache size
of 400 kbytes, an 8-kbyte block size results in about 10% fewer
disk 1/Os than a 4-kbyte block size and 60% fewer 1/Os than a
1-kbyte block size. This conclusion is similar to the one
reached by Lazowska et. a. in [2]. For smaller caches, larger
block sizes are less beneficia because they result in fewer
blocks in the cache; most of the cache space is wasted since
short files only occupy the first portions of their blocks.

-18-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

500 4

400-
DIk 300

1/0s

(x1000) 200 4

100 4

0

400 KB Cache

¥—/2M
4M
8M

0

4 8

12 16

20 24

Block Size (K)

28 32

B Cache

B Cache
B Cache

Figure 6. Disk traffic as a function of block size and cache
size, for the A5 trace using the delayed-write policy. Large
block sizes work well for small caches, but they work even
better for large caches. For very large block sizes, the
curves turn up because the cache has too few blocks to func-
tion effectively as acache.

Block No 400 Kbyte | 2Mbyte | 4 Mbyte | 8 Mbyte
Size Cache Cache Cache Cache Cache

1 kbytes 1,432,179 562,492 280,056 | 227,299 | 194,724
2 kbytes 925,934 365,806 165,312 | 129,654 | 110,369
4 kbytes 623,573 268,864 110,182 84,164 69,651
8 kbytes 527,634 259,941 90,539 65,302 51,635
16 kbytes 481,052 280,068 103,223 63,330 47,626
32 kbytes 461,976 307,002 156,523 82,350 51,883

Table VII. A tabular representation of the data from
Figure 6 (disk 1/O’s as a function of cache size and
block size). The first column gives the total number of
block accessesfor each block size.

Although large blocks are attractive for a cache, they may
result in wasted space on disk due to internal fragmentation.
Fortunately a scheme like the one in 4.2 BSD, which uses mul-
tiple block sizes on disk to avoid wasted space for small files,
works well in conjunction with afixed-block-size cache.

6.4. Comparisons

Typica 4.2 BSD systems run with disk block caches con-
taining about 100-200 blocks of different sizes, with a total
cache size of about 400 kbytes. The sync system call is typi-
cally invoked every 30 seconds to flush the cache. According
to our simulations, this combination of cache size and write pol-
icy should reduce disk accesses by about a factor of two.

-19-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

However, Leffler et al. report a measured cache miss ratio of
only about 15% [4]. There are two explanations for the
discrepancy. First, there are many programs that make 1/0
requests in units smaller than the cache block size; this inflates
the number of logical 1/Os and reduces the miss ratio. Second,
the measurements in [4] include block accesses for paging,
directories, and file descriptors, which we did not consider.

We ran a crude test to verify the hypothesis that paging
accesses also exhibit high locality. The trace data include infor-
mation about which files were executed as programs; we simu-
lated paging activity by forcing a whole-file read to each pro-
gram file at the time the program was executed. We did not
attempt to simulate page-out activity, since [2] and [6] indicate
that it rarely happens. As Figure 7 shows, the simulated paging
resulted in degraded performance for small cache sizes (the
large program files increased the total working set of file infor-
mation), but improved miss ratios for large cache sizes. This
implies that the locality of program accesses is at least as great
asthat of file data.

From this evidence we think that our miss ratio estimates
are likely to be upper bounds; the real benefits of caches should
be even better than our figures suggest.

100

40 - """""" Page-in simulated
4\ — Page-in ignored

012 3 456 7 8 9 101112 1314 1516
Cache Size (MB)

Figure 7. Miss ratios (4096-byte blocks, delayed write,
trace A5) with paging behavior approximated by forcing a
whole-file read of each program that is executed.

-20-

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

7. Dothe Results Generalize?

A few of our results, such as the large number of files with
lifetimes around 3 minutes, are peculiar to 4.2 BSD. However,
we think that most of the conclusions will apply across a wide
range of personal workstations and timesharing systems. We
also think that the results will apply to operating systems other
than UNIX. For example, Smith’s disk cache study reaches
conclusions similar to ours [12], even though his study used
IBM mainframes and was based on physical disk blocks rather
than logical file accesses. Rodriguez-Rosell determined in [9]
that database systems also exhibit sequential access patterns.

The generality of our conclusions is also supported by the
similarity of the results for the three different traces. The
results are similar in al three traces, even though one of the
traces (C3) was for a substantially different application domain
than the other two (computer-aided design as opposed to pro-
gram development).

8. Conclusions

Our trace analysis of the 4.2 BSD file system has three
important overall results. First, it shows that individual users
don't use very much file data on average. This suggests that
network bandwidth will not be a limiting factor in building net-
work filesystems. Second, the anaysis shows that most file
data is deleted or replaced within a few minutes of creation.
This is a key reason for the success of large disk block caches.
The third overall result is that very large disk caches (many
megabytes) with very large blocks (16 kbytes) result in very
large reductions in disk 1/O, and that occasional flush-backs
provide safety against crashes without destroying the benefits of
the large caches. As memory sizes approach 100 megabytes,
we think that disk caches will become so effective that the
whole role of magnetic disks comes into question: could
write-once optical disks provide the same level of backup pro-
tection for less cost?

Our results also confirm several suppositions of operating
system folklore: most files accessed are short, though long files
account for a large fraction of the data transferred; accesses
tend to be highly sequential; and file system activity is bursty.

Our final conclusion is that as block sizes become larger
and disk block caches become more and more effective, 1/O for
things other than file data (paging, directories, and file descrip-
tors) begins to play a larger role in determining overal file

-21 -

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

system performance. It appears from our data that more than
half of all disk block references could come from these *‘ other™’
accesses. There are indications that the other accesses can aso
be handled efficiently by caching, but more work is needed to
understand their importance and to evaluate mechanisms for
dealing with them.

9. Acknowledgements

We owe special thanks to Bob Henry, Mike Karels, Brad
Krebs, and Richard Newton for allowing us to gather the trace
data on their machines and for assisting us in installing an
instrumented version of the kernel. The kernel modifications
were based on a Master's project by Tibor Lukac [3]. Luis
Felipe Cabrera, Alan Smith, and the SOSP program committee
provided helpful comments on early drafts of the paper. This
work was supported in part by the Defense Advanced Research
Projects Agency under Contract No. NO0039-85-R-0269 and in
part by the Nationa Science Foundation under grant ECS-
8351961.

10. References

[1] Feder, J. “*The Evolution of UNIX System Performance.”’
Bell Laboratories Technical Journal, Vol. 63, No. 8,
October 1984, pp. 1791-1814.

[2] Lazowska, E.D. et a. File Access Performance of Disk-
less Workstations. Technical Report 84-06-01, Depart-
ment of Computer Science, University of Washington,
June 1984.

[3] Lukac, T.“*A UNIX File System Logical 1/0 Trace Pack-
age.’”” M.S. Report, U.C. Berkeley, 1984.

[4] McKusick, M.K., Karels, M., and Leffler, S. ‘‘Perfor-
mance Improvements and Functional Enhancementsin 4.3
BSD.”” Proceedings of the 1985 Usenix Summer Confer-
ence, Portland, Oregon, June 1985, pp. 519-531.

[5] McKusick, M.K., Joy, W.N., Leffler, S.J., and Fabry, R.S.
“*A Fast File System for UNIX.”” ACM Transactions on
Computer Systems, Vol. 2, No. 3, August 1984, pp. 181-
197.

[6] Nelson, M.N. and Duffy, J.A. Feasibility of Network Pag-
ing and a Page Server Design. Term project, CS 262,
Department of EECS, University of California, Berkeley,

-22 -

Trace-Driven Analysis of 4.2 BSD File System January 2, 1993

[7]

[8]

[9]

[10]

[11]

[12]

[13]

May 1984.

Porcar, JM. File Migration in Distributed Computer Sys-
tems. Ph.D. Dissertation, University of California, Berke-
ley, July 1982.

Ritchie, D.M. and Thompson, K. ‘“The UNIX Time-
Sharing System.”” Communications of the ACM, Vol. 17,
No. 7, July 1974, pp. 365-375.

Rodriguez-Rosdll, J. ‘*Empirical Data Reference Behavior
in Data Base Systems’’ |EEE Computer , November
1976, pp. 9-13.

Satyanarayanan, M. ‘‘A Study of File Sizes and Func-
tional Lifetimes.’” Proc 8th Symposium on Operating Sys-
tems Principles, 1981, pp. 96-108.

Smith, A.J. **Analysis of Long Term File Reference Pat-
terns for Application to File Migration Algorithms.”” |EEE
Transactions on Software Engineering. Vol. SE-7, No. 4,
July, 1981, pp. 403-417.

Smith, A.J. ‘‘Disk Cache — Miss Ratio Analysis and
Design Considerations.”” ACM Transactions on Computer
Systems, August 1985, pp. 161-203.

Thompson, J. ‘“‘File Deletion in The UNIX System: Its
Impact of File System Design and Anaysis’’ CS 266
term project, Department of EECS, University of Califor-
nia, Berkeley, April 1985.

-23-

