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Abstract

This paper argues that a shared, distributed name space and I/O interface should be implemented 

inside the operating system kernel. The grounding for the argument is a comparison between the 

Sprite network operating system and the Mach microkernel. Sprite optimizes the common case of 

file and device access, both local and remote, by providing a kernel-level implementation. Sprite 

also allows for user-level extensibility by letting a user-level process implement the naming and I/O 

interfaces of the file system. Mach, in contrast, provide general interprocess communication and 

does not define a file system protocol in the kernel.

[Published in the Proceedings of the 2nd USENIX Mach Symposium, Nov 20-22, 1991, pages 233-

250]

1 Introduction

This paper argues that the file system is a mature enough abstraction that it should be implemented 

inside the operating system kernel for optimal performance. Data storage and high-level naming are 

fundamental features of today’s computer systems, along with process and communication abstrac-

tions. In the Sprite network operating system, a shared network file system is the basis for a distrib-

uted system, and it is implemented inside the operating system kernel. The kernel provides the 

framework for a transparently distributed hierarchical name space and for an I/O stream abstraction 

with UNIX semantics. The Sprite file system provides higher performance than NFS and AFS [Nel-

son88] [Ousterhout90]. Unlike these two systems, the Sprite file system retains the full semantics 

of the UNIX I/O stream abstraction even in cases of network sharing [Welch90].

In comparison, the central abstractions in Mach are ports, messages, tasks, threads, and memory 

objects. These are lower-level, more general purpose abstractions than those of a file system. There-

fore, many would argue that the operating system should provide only these general-purpose facil-

ities and defer higher-level facilities like the file system to implementation at user-level. However, 

I argue that our experiences with UNIX have taught us the value of the file system abstractions, so 

they merit efficient support in a kernel-level implementation. Consider the following quote from 

Butler Lampson’s article Hints on Computer System Design [Lampson83].

“If the interface is used widely enough, the effort put into designing and tuning the 

implementation can pay off many times over. But do this only for an interface 

whose importance is already known from existing uses. And be sure that you know 

how to make it fast.”

The file system satisfies both of Lampson’s criteria; its importance is well-known and there are 

caching techniques that make it perform well. The fundamental differences between the VM inter-

face and the file system interface will discussed in more detail below.

Aiming at a high-level interface has two benefits. First, the interface provides more functionality so 

its clients are simpler. In particular, the Sprite file system abstraction handles network transparency. 

Second, in focusing on a high-level interface, the designers have more freedom to make different 



design decisions. Sprite optimizes network access by providing a kernel-to-kernel RPC protocol, 

and it optimizes remote file access by providing a distributed caching scheme. It optimizes perfor-

mance in general by putting the implementation inside the kernel. The hierarchical file system name 

space has names for a variety of object types, not just files.This requires careful design of the file 

system interfaces, which are described in more detail below. The final touch is to add an upcall facil-

ity[Clark85] so that a user-level process can implement the naming and I/O interface for functions 

we did not wish to put into the kernel. Thus Sprite takes a hybrid approach. It chose a well-known, 

high-level, widely used interface and supports it in the kernel, yet provides an escape hatch to user-

level for more arbitrary functionality.

 In contrast, a microkernel requires an external file system implementation in order to be generally 

useful. The strategy taken by Mach is to layer file access on top of the virtual memory system by 

using mapped files. The section below describes why this is not necessarily a good idea, especially 

in a network environment. Also, one of the nice features of the UNIX file system is the hierarchical 

name space. The only names implemented in the Mach microkernel are ports, which are too low-

level to be useful by themselves. Instead, a name service is also required for the microkernel to be 

useful. In short, you’ll need a file system anyway, and layering it on top of a virtual memory-ori-

ented, message-passing kernel is not the best way to go about it. The next few sections elaborate on 

this point.

2 The File System vs. Virtual Memory

The fundamental difference between the virtual memory interface and the file system interface is 

that the virtual memory interface is used on every load and store instruction, while the file system 

interface is invoked at a few well defined moments. As a result, considerable hardware support is 

provided for the VM system so it performs well. Translations from virtual to physical addresses are 

cached in fast registers, and CPUs are designed so they can make virtual memory references with 

little or no penalty. However, this model does not extend well to networks of loosely coupled 

machines. Work by Kai Li has demonstrated that it is feasible, but his work is applicable to a certain 

class of applications that share memory at a relatively infrequent rate [Li89].

In contrast, the file system is oriented towards access to slow devices such as disks and terminals. 

In these cases, it is more natural to use read and write procedures that move data from the slower 

devices into main memory. Open and close procedures provide convenient points at which the sys-

tem can set up state about the underlying device in order to optimize later read and write calls. In 

particular, setup can be performed to optimize network accesses. Sharing resources is also easier 

via the file system interface because the calls into the file system interface provide well defined 

points at which to check for consistency among shared copies. In contrast, network shared memory 

schemes must rely on complex page protection schemes that grant ownership of a page to a partic-

ular process.

Consider the hard case for network sharing when processes on different machines are sharing and 

modifying the same page of data. If the page is shared via the VM interface, the system must arrange 

page protections so that one process has read-write privileges, while all other processes have no 

access rights. The later processes will suffer a page fault and the cost of copying a whole hardware 

pageframe across the network when they try to access the shared page. Recall that this can occur as 

often as every load and store instruction. In contrast, the Sprite file system uses a simple trick to 

handle the hard case. It simply disables the caching for the shared file, forcing the read and write 

calls to go over the network to the server for the file[Nelson88]. I/O operations are serialized in the 

main memory file cache of the server. In most cases less data is transferred over the network, too, 

because only the modified bytes need to be sent to the server in this case, not the whole page.

This example illustrates another fundamental difference between the file system and VM. A virtual 



memory page always has to be resident in physical memory in order to access it, while file system 

data can be streamed into memory from the device, often using a highly tuned hardware channel 

interface. Granted, the file system interface implies a copy operation from the device into the user’s 

memory, but this occurs when the programmer invokes read, plus it can be further optimized by 

caching the data in main memory.

Another difference between the two systems is the way they access memory. Accesses to file system 

data is by and large sequential, while virtual memory accesses are more randomized. Systems that 

layer the file system on top of mapped files often suffer performance problems because of this. The 

classic bug is that copying a large file can throw out the working set of the running programs, slow-

ing down all those load and store instructions. In Sprite, the file system and the virtual memory sys-

tem each maintain their own pool of memory pages. When they run out, they negotiate over who 

should give up a page. The two systems compare their oldest LRU times, and system with the oldest 

time gives up a page. This technique is refined by biasing against the file system. The VM system 

cheats and adds 20 minutes to its time before telling the file system. This means that no VM page 

that has been accessed within the last 20 minutes will be thrown out in favor of a file system cache 

page [Nelson88]. A system that uses a common pool of pages for a generalized memory object 

either does not support this optimization, or it clutters up the memory object interface to achieve it.

3 Micro vs. Monolithic

“So what?”, you say, given efficient IPC, you could perform all those tricks in the file system that 

accompanies the microkernel. However, the microkernel makes a fundamental trade-off between 

security clearance procedures and performance. Smaller programs are easier to certify as secure, so 

the goal of the Mach microkernel is to have a small kernel and a set of small system servers. How-

ever, by moving system services out of the kernel address space there are inevitable performance 

consequences.

 First, the resources controlled by the file system are ultimately accessed via kernel-resident device 

drivers. Note that in Sprite, this includes access to the network as well as to disks and other periph-

eral devices. Therefore, the execution path ultimately has to end up inside the kernel. If the file sys-

tem is implemented in a separate address space, then file system accesses suffer additional traps into 

the kernel in order to effect the change of address space. Furthermore, each additional address space 

that is crossed places more load on the MMU. For example, the Sun MMU is designed to support 

efficient access to 8 or 16 address spaces, one of which is reserved for the kernel. The DECstation 

has a 64 entry TLB, but it can get away with this because most of the operating system kernel resides 

in a memory range that is mapped one-for-one to physical pages, thus bypassing the small TLB. 

Processor caches have similar problems. Often a change of address space requires a cache flush. In 

the Suns, the cache is only flushed when one of the hardware contexts is reused, but this will happen 

more often when there are more address spaces placed in the critical path of the file system. Finally, 

each address space crossing adds more instructions to the execution path. There is an inevitable 

amount of glue code, however small, associated with the boundary. If the message abstraction is 

added, then there is even more code to pack and unpack things from the messages.

Thread scheduling is another potential source of overhead in the microkernel approach. Not only 

does the execution path cross address spaces, but a new thread must be found to execute in the other 

address space. This overhead is not present in a kernel-resident system. The application thread traps 

into the kernel and continues to execute in the kernel’s protected address space. After that, commu-

nication between various kernel-provided services is achieved with a simple procedure call.

Recently, Bershad has extended this idea to apply to user-level IPC, eliminating the need to sched-

ule a new thread [Bershad90]. In Bershad’s LRPC mechanism an execution stack is mapped into a 

server process for each client that is bound to it. The client thread traps into the kernel when crossing 



the protection boundary, but it continues to execute on the shared execution stack after the kernel 

fixes up the address space. Using this technique, Bershad reports a null round-trip time of 125 

microseconds on a 3-MIP C-vax. In contrast, Draves reports the same time for an optimized version 

of Mach IPC, but on a 12-MIP DECstation [Draves90].

In spite of recent advances in IPC by Bershad, which I applaud, the fact remains that execution paths 

will be longer in services that are provided outside the operating system kernel. Extra glue code at 

the interfaces, traps into the kernel, and MMU effects from changing address spaces all contribute 

to overhead. Given that the file system is as fundamentally important as the VM interface, and the 

potential problems with implementing one in terms of the other, it seems reasonable to provide an 

efficient, kernel-level implementation of the file system.

4 Benefits of a Shared File System

A UNIX file system supports two main abstractions, pathnames and I/O streams. These abstractions 

were derived from earlier work in Multics [Feirtag71]. Experiences with these abstractions have 

shown that the notions of device-independent naming and I/O are extremely useful, and that the lack 

of them in a network environment is frustrating. Accordingly, Sprite extends these file system 

abstractions to a network environment. Additionally, Sprite provides process migration so that 

cycles can be shared across the network. The combination of a shared file system and process migra-

tion makes a network of Sprite workstations into a powerful computing platform.

If the file system is chosen as the basis for the system, a number of simplifications are possible. First, 

the file system can act as the name space for the system. UNIX, for example, uses special files to 

represent peripheral devices. Additionally, Sprite uses special files to represent user-level server 

processes known as pseudo-devices [Welch88]. The services implemented as pseudo-devices 

include a TCP/IP protocol server, terminal emulators, and the X display server. More details about 

the pseudo-device mechanism will be given below.

Another simplification possible in Sprite is that regular files are used as virtual memory backing 

store as opposed to having preallocated, dedicated swap space. This is especially convenient in a 

network of diskless workstations. First, it is not necessary to preallocate swap space on disk as it is 

in most UNIX systems. Second, a remote file server can share a swap directory among many clients. 

This approach is valuable in today’s networks of workstations with large memories and applications 

with large working sets. The Sprite network at Berkeley uses a single, 600 Meg disk for the backing 

store of over 40 hosts. 

The shared file system also simplifies the implementation of process migration. An address space 

is moved to a new host simply by paging it all out to the shared file system and demand paging it 

back it at the new site. Similarly, there is no difficulty with data files or device access after a migra-

tion because all file system resources are uniformly available on all hosts. I will admit, however, 

that the algorithm to correctly migrate an open I/O stream while preserving the semantics of shared 

UNIX I/O streams was tricky to get right.

5 Sprite Features and Development History

Sprite is a 4.3 BSD UNIX compatible operating system with extensions for a distributed file system, 

process migration, multi-threaded address spaces, and a multi-threaded kernel for use on a multi-

processor. The kernel was coded from scratch in C, from the device drivers and boot code up 

through the system call layer. The project began with professor John Ousterhout and 4 graduate stu-

dents: myself, Andrew Cherenson, Fred Douglis, and Mike Nelson. Later students included Mendel 

Rosenblum, Mary Baker, John Hartmann, Ken Sherriff, and Jim Mott-Smith. Adam de Boor, Robert 

Bruce, and Mike Kupfer were valuable staff members.

The facilities implemented in the Sprite kernel include:



• A debugnub to support remote kernel debugging.

• Device drivers.

• A kernel-to-kernel RPC network protocol.

• Address spaces with virtual memory. 

• Multiple threads of execution per address space.

• A transparently distributed hierarchical name space. 

• An transparently distributed I/O interface. 

• A local file system. 

• Host monitoring and failure recovery. 

• Integration of user-level services into the name space and I/O interfaces. 

• Process migration. 

During the ‘84-85 academic year, I built a prototype of the file system by modifying SunOS 1.1 to 

use prefix tables to distribute the name space uniformly among workstations [Welch86b], and to use 

a kernel-to-kernel RPC protocol for network communication [Welch 86a]. Implementation of the 

true Sprite kernel began in the Summer of 1985 using Sun2 workstations. The debugnub was built 

early so we could use a symbolic debugger via a remote workstation running UNIX. File service 

was initially provided by the prototype Sprite file server. This approach let us defer writing the first 

local Sprite file system, including disk drivers and a file system format, until the Summer of 1986. 

Work on the distributed caching system followed soon after the native file server was up. In the fall 

of 1987 the system sources were moved to a native Sprite file server, a Sun3 with 16 Meg of main 

memory, and all development continued using Sprite itself. Work continued on graceful failure 

recovery, user-level extensions, and process migration. During the ‘87-88 academic year I rede-

signed and reimplemented the file system architecture to better support the many features that had 

crept into the system. In 1989, Sprite was ported to the Sun4, DECstation, and SPUR multiprocessor 

[Hill86]. In the Fall of 1989 the Sprite network expanded to support a number of regular users that 

included professors and grad students working on other projects. The most recent work on Sprite is 

the log-structured file system[Rosenblum90][Rosenblum91] and extensive measurements of the 

system’s day-to-day performance [Baker91]. Today the main Sprite network at Berkeley includes 1 

primary file server, a Sun4 with 128 Meg of main memory, 3 auxiliary file servers, and about 40 

workstations. The time from initial development to day-to-day usage by non-developers was about 

5 years, which matches experiences with other operating system projects [Lauer81].

In contrast, Mach began as a modification of a 4.2 BSD kernel. This gave it a nice head start, and it 

was quickly used on a number of multiprocessors because it improved on the BSD virtual memory 

interface that was oriented heavily towards the VAX architecture. In 1986, a USENIX paper hailed 

Mach as a “new kernel foundation for UNIX development.” [Accetta86] However, 5 years later, the 

microkernel and its accompanying set of server processes is still under development. My conclusion 

is that it is ultimately cleaner to start from scratch, although there is an initial start-up penalty as 

basic features are reimplemented.

6 Sprite File System Architecture

 The internals of the file system were rewritten in an object-oriented style during the period of about 

one year (academic year ‘87-88) to clean up and simplify the interactions among various features. 

The redesign introduced a generalized object descriptor, which is a main-memory data structure 

maintained by the kernel, not a disk-resident representation of an object. A basic object descriptor 

has a type, uid, server ID (a sprite Host ID), a reference count, and a lock bit. Objects are specified 

internally by a tuple of <type, serverID, uid>. This base data structure is subclassed* for the imple-

*. The various kinds of object descriptors would be the result of subclassing if Sprite were written 

in C++. However, all the object-oriented features described here were hand crafted in C.



mentations of various object types. The object-oriented approach allowed clean separation of dif-

ferent object implementations, as well as sharing between similar objects like remote devices and 

remote pipes. At the same time, the interface between the top-level, generic layers of the file system 

and the lower-level, object-specific layers was cleaned up based on experiences with the initial 

design. A diagram of the file system architecture is given in Figure 1.

 The pathname interface illustrates the three basic cases handled by the Sprite kernel. The server for 

a pathname may be the local kernel, in which case the file system implementation is accessed by an 

ordinary procedure call within the Sprite kernel. The server may be remote, in which case the ker-

nel-to-kernel RPC protocol is used to pass the pathname to the server. Finally, the server may be a 

user-level process, in which case an upcall mechanism, which is described below, is used to pass 

the operation up to user level. Thus there are three orthogonal cases that are supported by a Sprite 

kernel, a local, kernel-resident module, a remote module, and a user-level module. The I/O interface 

is similar, except that the local and remote cases may be further specialized depending on the type 

of the object being accessed.

The importance of this approach is that it extends the general features implemented in upper levels 

of the kernel to local, remote, and user-provided objects. Notable, high-level features include the 

name space, error recovery, and blocking I/O. Thus, the focus of the file system architecture has rel-

atively little to do with actual disk management. The focus is on extending the high-level abstrac-

tions of pathnames and I/O streams to the network environment.

7 The Sprite Name Space

Sprite uses a prefix table mechanism to implement a uniformly shared, hierarchical name space. 

Each Sprite kernel keeps a cache of pathname prefixes. The prefixes define the way server domains 

are coalesced into a single hierarchy. The Sprite naming protocol ensures that servers export their 

domains consistently so that all hosts, and therefore all processes, see exactly the same name space. 

In contrast, the V-system and Mach 3.0 use a prefix cache that is maintained on a per-process basis 

by library routines. While this is advertised as a feature that allows custom name spaces, I believe 

this is a case where generality is not what you want. Users, administrators, and developers enjoy the 

simplicity of a single, shared name space. The resulting, fully shared file system supports cross-

compilation and easy maintenance for all architectures from any workstation.

The Sprite prefix implementation and the naming protocol are very simple. After matching a path-

name against the prefix cache, the remaining pathname is sent to the server identified in the cache. 

Figure 1. An overview of the Sprite file system architecture. The two primary interfaces involve 

pathnames and I/O streams. The Upcall module forwards operations to user-level processes. 

RPC forwards operations across the network to other Sprite kernels.
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The server traverses its directory structure, expanding symbolic links if necessary, until the lookup 

terminates or the pathname leaves its domain. A symbolic link to an absolute pathname is one way 

a pathanme exits, and specifying “..” in the server’s root directory is the other way. If the server pro-

cesses the whole pathname, it performs the requested operation (create, delete, rename, mkdir,...). 

Otherwise, the server returns the remaining pathname to the client. Relative pathnames bypass the 

prefix match and are sent to the server of the current working directory.

Mount points are handled by placing a special symbolic link at the mount point. The contents of the 

symbolic link is the absolute pathname of the mount point, and the link has a different file type than 

ordinary symbolic links so that the server knows when it hits a mount point. After expanding this 

link, the server returns the new pathname to the client along with an indication of how much of the 

pathname is the prefix of the mount point so that the client can add the prefix to its cache. Note that 

there is nothing in the link but its own name, so some other mechanism is used to locate the server 

for that name. Currently, Sprite uses broadcast to locate the server. After locating the server, the cli-

ent reiterates the lookup procedure. Bootstrapping is achieved by broadcasting for the server of “/”. 

There are a number of good properties of the name space, and one limitation. First, clients are sim-

plified. They do not iterate through directories or expand symbolic links, in contrast to the NFS 

naming protocol. The prefix mechanism completely replaces the UNIX mount mechanism, so serv-

ers are no more complex. The most important property is that the name space remains uniform 

across machines because it is the contents of the symbolic links at the mount points that defines how 

domains fit together, not a per-host or per-process configuration file. An advantage in common with 

all prefix caching schemes is that the root server is usually bypassed because clients quickly cache 

prefixes for the domains they use. Mount points can occur in any directory, so it is possible to nest 

server domains arbitrarily.

The primary limitation of the Sprite scheme is the use of broadcast to locate servers. This choice 

was made for simplicity, but it obviously limits the range of the name space. A general solution 

would be make an upcall in the case that the broadcast fails so that a user-level process can take 

arbitrary action to locate the server. For example, the Domain name server or some other name ser-

vice could be used. This solution has the nice property that the kernel implements a lightweight 

mechanism (broadcast) that works for the common case, but can rely on the escape hatch to user-

level in the hard case.

8 Separating Naming and I/O

A mistake that is easy to make when extending a file system to handle more than just files is to blur 

the distinction between the naming and I/O interfaces. The SunOS implementation, for example, 

has a vfs interface that is primarily concerned with the mount protocol, and a vnode interface that 

includes both naming and I/O operations. These interfaces stemmed from the original UNIX design 

where the namei procedure was the central core of name lookup. The problem is that namei handles 

both mount points and directory scanning. When generalizing the implementation to handle remote 

file systems, namei was retained and the interfaces to mounts and directory scanning were general-

ized. This erroneously lumps name lookup operations with I/O operations together into the vnode 

interface. In contrast, the Sprite prefix abstraction replaces the mount abstraction and goes further 

by hiding the notion of directory scanning altogether.

Consider the open system call that maps from a pathname to an I/O stream. In Sprite, this is broken 

into two, high-level operations: name_open and io_open. The name_open procedure returns 

attributes of the named object. The io_open procedure uses these attributes to create an open I/O 

stream. The name_open and io_open procedures may be implemented by different servers, and this 

is implemented cleanly by branching through the object-oriented naming and I/O interfaces. Note 

that a stateless protocol like NFS has no notion of an io_open operation.



The clean separation of naming and I/O allows for a number of optimizations. First, simple objects 

like devices can rely on a file server to implement the naming interface on their behalf. Special files 

are used to represent devices and pseudo-devices in the name space. Furthermore, a file server can 

have special files that represent devices and pseudo-devices on any machine in the network. Con-

trast this with NFS, which doesn’t support remote device access, or even RFS, which only supports 

accesses to devices on the file server. These systems are limited by the vnode (or equivalent) inter-

face that lumps naming and I/O together.

Another obvious optimization is that in the case of regular files, name_open sets up enough state to 

support an I/O stream to the file. This eliminates the need for io_open to contact the file server a 

second time. This is a subtle, but important optimization for the common case of file access.

Both of the above optimizations are implemented cleanly by introducing a one-procedure interface 

on the file servers that has different implementations for different file types (i.e., for each kind of 

special file used on the server). After a file server finds a file with a general directory traversal pro-

cedure*, its name_open procedure calls through the interface to a type-specific procedure that 

extracts attributes from the disk-resident file descriptor and takes any special action needed for that 

type. It is at this point that the cache consistency protocol for regular files is invoked, for example. 

The attributes are returned to the client for use in calling the io_open procedure.

There are two areas in which Sprite and the Mach microkernel provide similar features, interprocess 

communication and user-level extensibility of a kernel-level abstraction.

9 Interprocess Communication

The Mach kernel provides a communication mechanism between threads on the same host. Threads 

inherit or create communication ports that are the destinations for messages. A send right to a port 

can be passed in a message so that communication patterns among threads can be built up. Network 

communication is achieved by using a user-level server, the netmsgserver, that maintains a mapping 

between local and remote ports and forwards messages over the network using a network protocol 

to a peer netmsgserver. Note that this design means that there are 4 user-level processes involved in 

a network message exchange: the two processes that wish to exchange the messages and the two 

netmsgserver processes that forward the message across the network. Extrapolating the microkernel 

philosophy, the code for the protocol stacks may also be implemented in user level. In the most gen-

eral design, the function of the netmsgserver might even be separated from the implementation of 

the network protocol stack. In that case there would be an additional two processes involved in net-

work communication. Another paper in this Symposium describes optimizations to this scheme 

[Barrera91].

In contrast, Sprite provides two special-purpose communication mechanisms, both of which are 

basically hidden behind the file system interface. The first is its network RPC protocol that is used 

solely for communication among Sprite kernels. If a kernel operation needs to be carried out on a 

remote machine, the kernel-to-kernel RPC protocol is used to invoke it. The other mechanism is an 

upcall facility that is used in a similar way, except that it forwards the operation up to a user-level 

process that implements a pseudo-device. The upcall mechanism is somewhat analogous to a Mach 

kernel using a port to communicate with a user-level external pager process. The equivalent of net-

work RPC is not defined by the Mach kernel. Instead, it is left up to the netmsgserver implementa-

tion. Note that the two Sprite mechanisms compose nicely. If a remote, user-level process needs to 

be invoked, then the network RPC protocol is used first. At the remote host, the operation is con-

verted into an upcall by calling through the object-oriented interface

*. We are ignoring the effects of the prefix mechanism. This discussion applies to the final server 

involved in a pathname resolution, the one in whose domain the pathname terminates.



The network RPC protocol is based on the Birrell-Nelson RPC protocol that uses implicit acknowl-

edgments so that ordinarily an RPC requires only two network packets[Birrell84]. Their basic 

model was extended to optimize bulk data transfer. Large messages are fragmented into multiple 

packets, and the whole batch is acknowledged by the reply packet (or subsequent request if it was 

the reply that was fragmented). A custom implementation allows other optimizations. An RPC 

request or reply is composed of two buffers plus the header. One buffer, the parameter block, is used 

to marshall small arguments. The other buffer refers to a large, uninterpreted block of data, usually 

in user-space, that can remain in place until copied onto the network by the network interface. 

Packet headers and parameter blocks are automatically byte-swapped at a low level, but only if the 

receiver has a different byte order. Packet headers contain a boot time-stamp so that crashes and 

reboots can be easily detected. These optimizations tune the RPC protocol for its primary use as the 

file system’s network transport protocol.

While the RPC protocol is designed to optimize network traffic, the upcall mechanism is designed 

to reduce context switching and data copying. The buffer space for the upcall messages is kept in 

the server process’s address space, not in the kernel. This allows the kernel to copy data directly 

between address spaces of the client application and the server process. A write on a pseudo-device 

can be made asynchronous at the server’s option. In this case, write messages are allowed to accu-

mulate in the server’s buffer until another type of operation occurs, or until the buffer fills up. The 

server can also use a read buffer to decouple client reads from the generation of the data by the 

server. In this case, the server adds data to the read buffer as it is generated, and the kernel copies 

data out of the buffer in response to read operations by other processes. For example, the X server 

diverts mouse and keyboard input to read buffers associated with different windows, and applica-

tions read the data at their leisure. The select call is also optimized by keeping state bits inside the 

kernel. The kernel can test the state of a pseudo-device without a context switch to the process. The 

server updates the state bits as part of the upcall protocol, and it can notify the kernel directly when 

a pseudo-device changes state.

The Sprite RPC protocol is reasonably efficient. A null call takes 2.45 msec between Sun3 class 

hosts, and about 1 msec between Sun4 and DECstation 3100 class hosts. This is about the same time 

it takes to exchange a byte of data between user-level processes on the same host using UNIX pipes. 

Using 16 Kbyte block sizes, Sun3 workstations can transfer data at 800 Kbytes/sec on a 10 Mbit/sec 

ethernet, while Sun4 workstations can achieve 900 Kbytes/sec. Other systems have implemented 

faster protocols. Amoeba claims the fastest RPC time in with a 1.4 msec null RPC on a Sun3 

[Renesse88]. The x-kernel group reports a Sprite RPC implementation that makes a null RPC 

between Sun3 hosts in 1.73 msec [Hutchinson89]. The improvements by the x-kernel result from 

careful design of the protocol stacks, while I suspect that much of the performance of the Amoeba 

system stems from an assembly language implementation. The Sprite upcall mechanism has not 

been tuned at all, so it is about as expensive as exchanging data with UNIX pipes, or about 1 msec 

on a DS3100. This is the time to make a null ioctl on a pseudo-device.

10 User-Level Extensibility

The purpose of the Sprite upcall mechanism is to allow user processes to extend the kernel’s path-

name and I/O interfaces. A user process can implement any semantics it chooses for a pseudo-

device or a pseudo-file-system. Unlike simple message passing, the value of this approach is that 

general purpose features provided by the kernel, in particular network transparency, are inherited 

by the user-level server processes. For example, the X server lives under the pathname /hosts/host-

name/X0. (The /hosts/hostname directories are just ordinary directories that are used for the few 

files needed on a per-host basis.) A process wishing to display a window on a particular host merely 

needs to open the corresponding pseudo-device. The kernel’s RPC protocol is used to forward oper-

ations to the particular host. Similarly, NFS access is provided by a user-level pseudo-file-system 



that maps Sprite file system requests onto the NFS protocol. The server process runs on a single 

workstation, yet the NFS pseudo-file-system is transparently integrated into the distributed name 

space using the prefix table mechanism described earlier. Another feature that is inherited is block-

ing I/O. The server process can respond just like a device driver in order to cause the client process 

to block. As a result, the select system call can be used to wait on a set of devices and pseudo-

devices that are located throughout the network.

Mach is similar in that the interface to a memory object can be exported to user-level [Young90]. 

In this case a user-level process responds to kernel requests to create and destroy memory objects, 

and to fetch and store pages. This facility allows a number of interesting applications, including net-

work shared memory, compressed paging, and even remote file systems. In this case, features of the 

kernel-resident VM implementation are inherited by the external pager. This includes the general 

notion of memory objects, and more detailed features like copy-on-write.

Overall, the notion of an escape hatch to a user-level implementation is quite useful. A key differ-

ence between message passing among user processes and an upcall from the kernel is that with 

upcalls the kernel performs some processing on behalf of the user-level applications. The alterna-

tive in a pure message passing kernel is to put some amount of system software into runtime librar-

ies. The fundamental difference, however, is that it is more difficult to share data structures among 

libraries, while the kernel has its own address space in which to maintain critical, shared data struc-

tures. Recall the differences between the kernel-resident prefix tables in Sprite vs. the per-process 

prefix tables in V and Mach.

Exporting a kernel interface via upcall is so useful that I have regretted the cases where it is not 

done. Notably, the cache consistency protocol is not exported via upcall, so caching data from 

pseudo-devices and pseudo-file-systems is not supported. As a result, the Sprite-to-NFS gateway 

provides absolutely no caching, and the Andrew benchmark runs twice as slow through the gateway 

as it does with a native Sprite file server. (In this case, the user-level UDP/IP server is also in the 

loop.) Also, as mentioned earlier, an upcall would be very useful in the case where the broadcast for 

a prefix fails. There is no fundamental reason why these features could not be implemented, it is just 

a small matter of programming.

The main drawback with Sprite’s use of upcall is that ioctl is the only way to get at arbitrary func-

tionality in the server process. Ioctl is perfectly general because it takes a command ID, an input 

buffer, and a reply buffer. While this is obviously clumsy, it has proved sufficient for user-level 

implementations of sockets and the TCP/IP protocols, terminal emulation, and the X display server. 

The ioctl model also assumes a request-reply pattern of interaction, while Mach ports can provide 

more general patterns of communication.

11 Sprite Performance.

Performance of Andrew file system benchmark, a benchmark that copies, stats, and compiles a large 

program, shows how well Sprite performs in the remote case. The numbers given in Table 1 were 

measured by Ousterhout in a series of measurements of UNIX systems [Ousterhout90]. This is a 

part of Table 7 from that paper.

The microkernel was unavailable to him at the time Ousterhout made his measurements. While a 

recent paper has reported that the microkernel with the single-server UNIX emulator can perform 

about as well as the Mach 2.5 kernel on the Andrew benchmark [Golub90], this makes no statement 

about the performance in the remote case, nor for performance with a multi-server configuration.

The primary reason for the performance advantage of the Sprite workstations is the differences in 

the file caching protocol. Sprite uses a delayed write strategy on both diskless clients and servers, 

while NFS writes data from a client through to the servers disk. The effectiveness of the Sprite cach-

ing system is presented in [Nelson88] and [Welch91]. As much as 50% of the data generated by 



Sprite clients is deleted before being written back to the server. This result is from long term (i.e., 

months long) measurements of clients that use the standard 30-second delay policy inherited from 

UNIX.

Recent work by Rosenblum has dramatically improved the performance of Sprite in the local case, 

as well. The log-structured file system aggressively optimizes writing performance, which is 

becoming the bottleneck as large main memory caches reduce the percentage of reads that go 

through to the disk [Rosenblum90][Rosenblum91].

12 The Cost of Complexity

The danger, of course, with providing a fancy distributed file system is in complexity. Consider the 

following sources of complexity.The cache consistency protocol relies on state maintained by the 

server, and this state has to be recovered after a server reboots. Users can abort operations with 

down servers, or they can wait for automatic recovery. During process migration the server’s state 

has to be updated, and the semantics of shared UNIX I/O streams (e.g., the shared seek offset) have 

to be maintained so that migration is transparent to the processes involved [Douglis90].Finally, the 

system supports a variety of “file system” objects, including devices, files, pipes, and user-level 

server processes. 

The main cost of this complexity is in development time. As described earlier, it was about 5 years 

before Sprite was stable enough to be used by outsiders, although I began using Sprite for all my 

day-to-day work 2 years before that. Complexity doesn’t necessarily imply larger programs. They 

do get larger as “small” features are added incrementally over time. However, major re-writes often 

reduce code size and simplify things. The file system benefited considerably from a re-write after 

initial experiences with process migration, crash recovery, and the upcall mechanism. Another of 

Butler Lampson’s quotes is:

“Plan to throw one away; you will anyhow.” [Lampson83]

13 The Size of the Sprite Kernel

The sizes of the Sprite kernel modules are given in Appendix 1. Overall, the kernel contains about 

95,000 lines of code, excluding comments, and it compiles into about 1 Megabyte on a DS3100. 

The largest modules are the file system (38% of lines of code), process manager (10%), which 

includes process migration, network and device drivers (12%), virtual memory (%8), and the RPC 

Configuration Copy Compile Total Penalty

DS3100 Sprite Local 22 98 120

DS3100 Sprite Diskless 34 93 127 6%

DS3100 Mach 2.5 Local 29 107 136

DS3100 Mach 2.5 NFS 58 147 205 50%

Sun4 Mach 2.5 Local 37 122 159

Sun4 Sprite Local 44 128 172

Sun4 Sprite Diskless 56 128 184 7%

Sun4 SunOS 4.0.3 Local 54 133 187

Sun4 SunOS 4.0.3 NFS 92 213 305 63%

Sun3 Sprite Local 52 375 427

Sun3 Sprite Diskless 75 364 439 3%

Table 1. Comparison of local and remote file system performance. The times are in seconds. The 

last column gives the percent slowdown of the benchmark when using a remote file system under 

the same OS



protocol (4%). The remaining third of the kernel is split among a miscellaneous group of modules 

that implement signals, synchronization primitives, the scheduler, a timer, a host monitor that trig-

gers recovery, a debug nub to support remote debugging, malloc, free, printf, and support for pro-

filing with the UNIX gprof program.

The file system is broken into a number of modules. The largest, fs (8%), contains an emulation 

library for 4.3 BSD system calls that used to be linked into applications via the C library. The parts 

of file system that directly manage disks are relatively small. fsdm (1%) has generic code to handle 

file descriptors and superblocks, while lfs (6%) and ofs (3%) implement particular block layouts. 

One layer higher, fscache (3%) maintains a cache of local and remote file blocks, while fsconsist 

(1%) implements the network consistency protocol. The fslcl (2%) module implements a directory 

hierarchy on a local disk, while fsprefix (1%) implements a transparently distributed name space. 

Local and remote implementations of various file system objects are implemented in fsio (3.5%) 

and fsrmt (3.5%), respectively. The fspdev (3%) module implements the upcall l facility. The fsutil 

(1%) module maintains the table of object descriptors and contains other supporting routines.

Note that a Sprite kernel leaves out some things that are found in other UNIX kernels, notably pro-

tocol stacks and terminal emulation. The only network protocol in the Sprite kernel is the kernel-

to-kernel RPC protocol. The TCP/IP protocols are implemented in a user-level process as a pseudo-

device. The socket interface is implemented in a library that makes ioctl calls on the TCP/IP pseudo-

device to setup and destroy network connections. The kernel-resident terminal driver is very crude, 

relying on a more sophisticated terminal emulator that runs as part of a window system. Thus Sprite 

takes a hybrid approach, putting performance critical features into the kernel, yet exporting the file 

system interface via upcall in order to allow for user-level extensibility.

14 The Size of the Mach Microkernel

Table 3 gives the sizes of the code in the directories that make up a microkernel for the DECstation 

3100. For comparison, the compiled size of the emulator library and the single server are also 

given.The Mach microkernel is about 65% the size of a Sprite kernel in the number of non-comment 

code lines. This is approximately equal to leaving out the Sprite file system, although other modules 

in the Sprite kernel depend on the file system. The single process UNIX server is about the same 

size as the microkernel, although I suspect there may be some dead code in the UNIX server. I do 

not have access to a multi-server implementation, so I cannot comment on the size of that system. 

All-in-all, the code size comparison comes out a wash. By the time a file system is added back onto 

Directory Description Procedures Lines Text Bytes

boot_ufs Bootstrap file system 30 3006

chips Common device code. 235 6411

ddb Kernel debugger 111 2836

device Device interface 91 3912

inline Compiler support 12 360

ipc Messages and ports 224 13097

kern Tasks and threads 387 11573

scsi Generic SCSI 113 4225

vm Virtual memory 137 9209

pmax DS3100-specific code 190 6016

Total A DS3100 Microkernel 1550 60645 473576 574880

Emulator The emulator library/process 81 2421 65536 73728

Server The monolithic UNIX server 1424 63816 503808 615600

Table 3. Sizes for a DECstation 3100 microkernel. The kernel modules are not linked separately, so I 

have not given compiled sizes for each module. The total size of the emulator and server are given for 

comparison



the microkernel, both systems are about the same size.

15  Other Comparisons

Ease of Development - A microkernel is hailed as providing an easier environment in which to 

develop system services. After all, they are ordinary user processes so they can be debugged in the 

normal ways. However, Sprite has always had a symbolic debugging facility for its kernel. The 

debugnub implements enough functionality to support the ptrace interface used by UNIX debug-

gers. It communicates with the debugger over a serial line, or over the ethernet. It is possible to set 

breakpoints and even single step the kernel. Debugging a multi-server environment might even be 

more difficult because system services are distributed into different address spaces. In this case, it 

isn’t as easy to trace the execution of something like exec that involves the process manager, the file 

system, and the virtual memory system.

Virtual Memory- Mach provides an excellent internal interface to the machine-dependent MMU 

facilities. One of the most difficult aspects of porting an operating system is dealing with a new 

MMU. Much of Mach’s success is due to the pmap interface and its support for multiprocessors. 

Sprite, too, has a decent internal interface between the machine-dependent and machine-indepen-

dent parts of the kernel. It also runs on multiprocessors. However, the Mach VM interface reflects 

a long history of experience with VM in the Rig and Accent kernels.

Real Time - The key to real time performance is a preemptible kernel, not necessarily the use of a 

microkernel. Early versions of Sprite had a scheduler that preempted kernel threads, although this 

feature was eliminated in order to simplify the scheduler. The Sprite kernel is multi-threaded inter-

nally, and with some effort the scheduler could revert to a preemptive one. Another important issue 

for real time is guaranteed I/O bandwidth. Again, a microkernel per se makes no guarantees in this 

regard. I suspect that the next version of SunOS will be readily converted to a real time kernel 

because it is multi-threaded internally and has a preemptive scheduler[Powell91].

Multiple Personalities - Mach has done a good job of extracting UNIX emulation in to a library and 

an associated server process. However, Sprite also emulates the BSD and Ultrix system call inter-

faces with a simple library. The bulk of UNIX compatibility is in the file system, which is already 

provided. Another approach to emulation is taken by the Chorus microkernel. Different system ser-

vices are downloaded into the kernel depending on the needs of the applications [Guillemont91]. I 

prefer this approach to the Mach multi-server approach because I feel that kernel-resident modules 

will perform better. As for Mac and DOS emulation, I do not see a real need for this given the multi-

tasking facilities available with Windows 3.0 and Mac’s System 7. Only a small set of programmers 

will want to program UNIX-style on DOS or a Mac, while commercial developers and users will 

almost certainly prefer their native DOS and Mac environments.

16 What I Would Do Differently

If I were to write a new operating system today (which I am not), I would like to pick and choose 

from the excellent work done by various research groups. For example, the Mach pmap interface, 

the x-kernel protocol stacks, the Sprite distributed file system, and Bershad’s LRPC would be an 

excellent starting point. The other crucial factor is support from the hardware vendors in the form 

of device drivers and bootstrap code. There are a number of difficulties with this approach, however. 

A practical matter is that each of these have been developed in their own environment, so integra-

tion would be difficult, even if it were possible to get the source code. The other, central problem is 

that the interfaces to these sub-systems are not always well defined. Often the top-level interface is 

published, but the interfaces relied on by the implementations are not specified.

The next time around I would still not choose message passing. Instead, I would provide two com-

munication mechanisms in the kernel, LRPC for local communication and network RPC for remote 

communication. I believe that the procedure call model is right abstraction to present to program-



mers. I would provide, in the kernel, a high-level distributed name space using a prefix table mech-

anism. I would retain the file system’s I/O interface as the default interface, but I would also allow 

other interfaces to be associated with pathnames. Thus the kernel would still provide the default, 

high-performance file system. However, user processes could use the hierarchical name space for 

binding to arbitrary interfaces implemented by other, user-level processes. Finally, I would leverage 

more on dynamic loading so that only the needed kernel modules need to be loaded on any partic-

ular machine, and so that turn-around time in development would improve.

17 Conclusions

First, while it is always true that you can build things with general purpose, low-level facilities, it 

is also true that choosing a higher-level abstraction gives you more flexibility in the implementation. 

A higher-level abstraction also does more for its clients. For Sprite we chose the file system inter-

face as opposed to a message passing interface. As a result, we had the flexibility to implement sim-

ple, efficient mechanisms for its transparently distributed name space and its remote file access. The 

file system also provides an overall structure to the system that provides a benefit in uniformity and 

simplicity. The danger in choosing a high-level abstraction is that it may not be appropriate for 

every application. However, in the case of the file system I can safely assert that this abstraction is 

useful to a wide range of applications.

Second, while it is important for performance to provide kernel-level support, an upcall mechanism 

that integrates user-level processes into kernel abstractions is a good idea.The kernel can provide 

the basic framework for the system, such as a high-level name space or a copy-on-write VM facility, 

yet the user-level processes can extend the system in new ways without modifying the kernel. This 

is different than pure message passing where the kernel makes no statements about the overall struc-

ture of the system. By now, I think we know enough to provide some higher-level functionality in 

the kernel.
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.

Module Description Procedures Lines Text Bytes

dbg.ds3100 Debug Nub 27 1509 13680 24672

dev Devices 117 4159 83296 127472

dev.ds3100 DS3100 drivers 67 5350

fs FS syscalls & BSD compat. 158 8018 76784 97296

fscache Cache manager 70 2747 24032 27184

fsconsist Consistency protocol 35 1338 11584 14080

fsdm Local disk manager 8 889 5904 7344

fsio Local I/O objects 100 3490 26352 31760

fslcl Local directories 43 2086 16896 19104

fspdev Upcall to user-level 68 3155 24784 28176

fsprefix Distributed naming 29 1200 10704 11824

fsrmt Remote I/O objects 91 3644 28816 32336

fsutil Table management 62 1547 13792 16464

lfs Log Structured FS 132 5394 46096 52064

libc Printf, etc. 80 5133 39104 57056

libc.ds3100 ditto 1 99

mach.ds3100 Trap handlers & Ultirx compat. 135 5595 63840 80384

main.ds3100 System start-up 3 294 2480 3648

mem Malloc/free 17 841 6128 22544

net Network interface 42 1718 37760 45408

net.ds3100 Network devices 18 875

ofs Old disk layout 51 2724 23360 2744

proc Process manager 225 9747 77776 96000

proc.ds3100 ditto 1 52

prof Kernel profiling 8 198 2464 3904

prof.ds3100 mtrace, etc. 7 288

raid Disk arrays 116 3230 32 * 128 *

recov Network recovery 40 1253 10448 12144

rpc Remote Procedure Call 79 3709 38704 50928

rpc.ds3100 ditto 1 8

sched Scheduler 24 814 9440 11888

sig Signals 31 1189 9200 1097

sync Monitors, condition vars 42 1493 16152 17348

sys Syscalls and miscellany 38 1847 9312 17184

timer Timer and callout 17 463 8560 15168

timer.ds3100 Timer device 11 247

utils Hash and Trace 17 710 6656 9200

utils.ds3100 ditto 3 39

vm Virtual Memory 198 6565 77328 103200

vm.ds3100 ditto 49 1068

TOTAL A DS3100 Sprite kernel 2261 94725 828576 1085632

Appendix 1. Module sizes for the Sprite kernel. The count of lines of code exclude comment 

blocks and cpp directives. The Text and Bytes columns give the text size and total size of the com-

piled modules as reported by the UNIX size command. The compiled sizes are for the DECstation 

3100. Machine-dependent modules are named with a .ds3100 suffix. They are linked together 

with corresponding machine-independent modules so separate compiled sizes are not given. 

Compiled sizes for the Sun3 are roughly 75% the size for the other, RISC-based architectures. The 

presence of compatibility code in both fs and mach.ds3100 is because the compatibility code is 

being rewritten. There is considerable overlap between the two.


