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Summary

The Sprite operating system allows executing processes to be moved between hosts at any

time. We use this process migration mechanism to o�oad work onto idle machines, and also

to evict migrated processes when idle workstations are reclaimed by their owners. Sprite's

migration mechanism provides a high degree of transparency both for migrated processes and for

users. Idle machines are identi�ed, and eviction is invoked, automatically by daemon processes.

On Sprite it takes up to a few hundred milliseconds on SPARCstation 1 workstations to perform

a remote exec, while evictions typically occur in a few seconds. The pmake program uses remote

invocation to invoke tasks concurrently. Compilations commonly obtain speedup factors in the

range of three to six; they are limited primarily by contention for centralized resources such as

�le servers. CPU-bound tasks such as simulations can make more e�ective use of idle hosts,

obtaining as much as eight-fold speedup over a period of hours. Process migration has been in

regular service for over two years.

Keywords: Process migration, Load sharing, Operating systems, Distributed Systems, Experi-

ence

Introduction

In a network of personal workstations, many machines are typically idle at any given time.

These idle hosts represent a substantial pool of processing power, many times greater than what

is available on any user's personal machine in isolation. In recent years a number of mechanisms

have been proposed or implemented to harness idle processors (e.g., References 1, 2, 3, 4). We

have implemented process migration in the Sprite operating system for this purpose; this paper is a

description of our implementation and our experiences using it.

By \process migration" we mean the ability to move a process's execution site at any time from

a source machine to a destination (or target) machine of the same architecture. In practice, process

migration in Sprite usually occurs at two particular times. Most often, migration happens as part of

the exec system call when a resource-intensive program is about to be initiated. Exec-time migration

is particularly convenient because the process's virtual memory is reinitialized by the exec system

call and thus need not be transferred from the source to the target machine. The second common
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occurrence of migration is when a user returns to a workstation when processes have been migrated

to it. At that time all the foreign processes are automatically evicted back to their home machines

to minimize their impact on the returning user's interactive response.

Sprite's process migration mechanism provides an unusual degree of transparency. Process mi-

gration is almost completely invisible both to processes and to users. In Sprite, transparency is

de�ned relative to the home machine for a process, which is the machine where the process would

have executed if there had been no migration at all. A remote process (one that has been migrated

to a machine other than its home) has exactly the same access to virtual memory, �les, devices,

and nearly all other system resources that it would have if it were executing on its home machine.

Furthermore, the process appears to users as if it were still executing on its home machine: its

process identi�er does not change, it appears in process listings on the home machine, and it may

be stopped, restarted, and killed just like other processes. The only obvious sign that a process has

migrated is that the load on the source machine suddenly drops and the load on the destination

machine suddenly increases.

Although many experimental process migration mechanisms have been implemented, Sprite's

is one of only a few to receive extensive practical use (other notable examples are LOCUS

5

and

MOSIX

6

). Sprite's migration facility has been in regular use for over two years. Our version of the

make utility

7

uses process migration automatically so that compilations of di�erent �les, and other

activities controlled by make, are performed concurrently. The speed-up from migration depends

on the number of idle machines and the amount of parallelism in the task to be performed, but we

commonly see speed-up factors of two or three in compilations and we occasionally obtain speed-ups

as high as �ve or six. In our environment, about 30% of all user activity is performed by processes

that are not executing on their home machine.

In designing Sprite's migration mechanism, many alternatives were available to us. Our choice

among those alternatives consisted of a tradeo� among four factors: transparency, residual depen-

dencies, performance, and complexity. A high degree of transparency implies that processes and

users need not act di�erently after migration occurs than before. If a migration mechanism leaves

residual dependencies (also known as \residual host dependencies"

3, 8

), the source machine must

continue to provide some services for a process even after the process has migrated away from it.

Residual dependencies are generally undesirable, since they impact the performance of the source

machine and make the process vulnerable to failures of the source. By performance, we mean that

the act of migration should be e�cient and that remote processes should (ideally) execute with the

same e�ciency as if they hadn't migrated. Lastly, complexity is an important factor because process

migration tends to a�ect virtually every major piece of an operating system kernel. If the migration

mechanism is to be maintainable, it is important to limit this impact as much as possible.

Unfortunately, these four factors are in con
ict with each other. For example, highly-transparent

migration mechanisms are likely to be more complicated and cause residual dependencies. High-

performance migration mechanisms may transfer processes quickly at the cost of residual dependen-

cies that degrade the performance of remote processes. A practical implementation of migration

must make tradeo�s among the factors to �t the needs of its particular environment. As will be

seen in the sections below, we emphasized transparency and performance, but accepted residual de-

pendencies in some situations. (See Reference 9 for another discussion of the tradeo�s in migration,

with a somewhat di�erent result.)

A broad spectrum of alternatives also exists for the policy decisions that determine what, when,

and where to migrate. For Sprite we chose a semi-automatic approach. The system helps to identify

idle hosts, but it does not automatically migrate processes except for eviction. Instead, a few

application programs like pmake identify long-running processes (perhaps with user assistance) and

arrange for them to be migrated to idle machines. When users return to their machines, a system

program automatically evicts any processes that had been migrated onto those machines.
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The Sprite Environment

Sprite is an operating system for a collection of personal workstations and �le servers on a

local area network.

10

Sprite's kernel-call interface is much like that of 4.3 BSD UNIX,

y

but Sprite's

implementation is a new one that provides a high degree of network integration. For example, all the

hosts on the network share a common high-performance �le system. Processes may access �les or

devices on any host, and Sprite allows �le data to be cached around the network while guaranteeing

the consistency of shared access to �les.

11

Each host runs a distinct copy of the Sprite kernel, but

the kernels work closely together using a remote-procedure-call (RPC) mechanism similar to that

described by Birrell and Nelson.

12

Four aspects of our environment were particularly important in the design of Sprite's process

migration facility:

Idle hosts are plentiful. Since our environment consists primarily of personal machines, it seemed

likely to us that many machines would be idle at any given time. For example, Theimer

reported that one-third of all machines were typically idle in a similar environment;

3

Nichols

reported that 50-70 workstations were typically idle during the day in an environment with

350 workstations total;

1

and our own measurements below show 66{78% of all workstations

idle on average. The availability of many idle machines suggests that simple algorithms can

be used for selecting where to migrate: there is no need to make complex choices among

partially-loaded machines.

Users \own" their workstations. A user who is sitting in front of a workstation expects to

receive the full resources of that workstation. For migration to be accepted by our users, it

seemed essential that migrated processes not degrade interactive response. This suggests that

a machine should only be used as a target for migration if it is known to be idle, and that

foreign processes should be evicted if the user returns before they �nish.

Sprite uses kernel calls. Most other implementations of process migration are in message-passing

systems where all communication between a process and the rest of the world occurs through

message channels. In these systems, many of the transparency aspects of migration can be

handled simply by redirecting message communication to follow processes as they migrate.

In contrast, Sprite processes are like UNIX processes in that system calls and other forms of

interprocess communication are invoked by making protected procedure calls into the kernel.

In such a system the solution to the transparency problem is not as obvious; in the worst case,

every kernel call might have to be specially coded to handle remote processes di�erently than

local ones. We consider this issue in greater depth below.

Sprite already provides network support. We were able to capitalize on existing mechanisms

in Sprite to simplify the implementation of process migration. For example, Sprite already

provided remote access to �les and devices, and it has a single network-wide space of process

identi�ers; these features and others made it much easier to provide transparency in the mi-

gration mechanism. In addition, process migration was able to use the same kernel-to-kernel

remote procedure call facility that is used for the network �le system and many other purposes.

On SPARCstation 1 workstations (roughly 10 MIPS) running on a 10 megabits/second Ether-

net, the minimum round-trip latency of a remote procedure call is about 1.6 milliseconds and

the throughput is 480-660 Kbytes/second. Much of the e�ciency of our migration mechanism

can be attributed to the e�ciency of the underlying RPC mechanism.

To summarize our environmental considerations, we wished to o�oad work to machines whose

users are gone, and to do it in a way that would not be noticed by those users when they returned.

We also wanted the migration mechanism to work within the existing Sprite kernel structure, which

had one potential disadvantage (kernel calls) and several potential advantages (network-transparent

facilities and a fast RPC mechanism).

y
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Why Migration?

Much simpler mechanisms than migration are already available for invoking operations on other

machines. In order to understand why migration might be useful, consider the rsh command, which

provides an extremely simple form of remote invocation under the BSD versions of UNIX. Rsh takes

as arguments the name of a machine and a command, and causes the given command to be executed

on the given remote machine.

13

Rsh has the advantages of being simple and readily available, but it lacks four important features:

transparency, eviction, performance, and automatic selection. First, a process created by rsh does

not run in the same environment as the parent process: the current directory may be di�erent,

environment variables are not transmitted to the remote process, and in many systems the remote

process will not have access to the same �les and devices as the parent process. In addition, the user

has no direct access to remote processes created by rsh: the processes do not appear in listings of

the user's processes and they cannot be manipulated unless the user logs in to the remote machine.

We felt that a mechanism with greater transparency than rsh would be easier to use.

The second problem with rsh is that it does not permit eviction. A process started by rsh cannot

be moved once it has begun execution. If a user returns to a machine with rsh-generated processes,

then either the user must tolerate degraded response until the foreign processes complete, or the

foreign processes must be killed, which causes work to be lost and annoyance to the user who owns

the foreign processes. Nichols' butler system terminates foreign processes after warning the user and

providing the processes with the opportunity to save their state, but Nichols noted that the ability

to migrate existing processes would make butler \much more pleasant to use."

1

Another option

is to run foreign processes at low priority so that a returning user receives acceptable interactive

response, but this would slow down the execution of the foreign processes. It seemed us to that

several opportunities for annoyance could be eliminated, both for the user whose jobs are o�oaded

and for the user whose workstation is borrowed, by evicting foreign processes when the workstation's

user returns.

The third problem with rsh is performance. Rsh uses standard network protocols with no par-

ticular kernel support; the overhead of establishing connections, checking access permissions, and

establishing an execution environment may result in delays of several seconds. This makes rsh

impractical for short-lived jobs and limits the speed-ups that can be obtained using it.

The �nal problem with rsh is that it requires the user to pick a suitable destination machine for

o�oading. In order to make o�oading as convenient as possible for users, we decided to provide an

automatic mechanism to keep track of idle machines and select destinations for migration.

Of course, it is unfair to make comparisons with rsh, since some of its disadvantages could

be eliminated without resorting to full-
edged process migration. For example, Nichols' butler

layers an automatic selection mechanism on top of a rsh-like remote execution facility. Several

remote execution mechanisms, including butler , preserve the current directory and environment

variables. Some UNIX systems even provide a \checkpoint/restart" facility that permits a process

to be terminated and later recreated as a di�erent process with the same address space and open

�les.

14

A combination of these approaches, providing remote invocation and checkpointing but

not process migration, would o�er signi�cant functionality without the complexity of a full-
edged

process migration facility.

The justi�cation for process migration, above and beyond remote invocation, is two-fold. First,

process migration provides additional 
exibility that a system with only remote invocation lacks.

Checkpointing and restarting a long-running process is not always possible, especially if the process

interacts with other processes; ultimately, the user would have to decide whether a process can

be checkpointed or not. With transparent process migration, the system need not restrict which

processes make use of load-sharing. Second, migration is only moderately more complicated than

transparent remote invocation. Much of the complexity in remote execution arises even if processes

can only move in conjunction with program invocation. In particular, if remote execution is trans-

parent it turns shared state into distributed shared state, which is much more di�cult to manage.

The access position of a �le is one example of this e�ect, as described below in the section on trans-

ferring open �les. Many of the other issues about maintaining transparency during remote execution
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would also remain. Permitting a process to migrate at other times during its lifetime requires the

system to transfer additional state, such as the process's address space, but is not signi�cantly more

complicated.

Thus we decided to take an extreme approach and implement a migration mechanism that allows

processes to be moved at any time, to make that mechanism as transparent as possible, and to

automate the selection of idle machines. We felt that this combination of features would encourage

the use of migration. We also recognized that our mechanismwould probably be much more complex

than rsh. As a result, one of our key criteria in choosing among implementation alternatives was

simplicity.

The Overall Problem: Managing State

The techniques used to migrate a process depend on the state associated with the process being

migrated. If there existed such a thing as a stateless process, then migrating such a process would

be trivial. In reality processes have large amounts of state, and both the amount and variety of state

seem to be increasing as operating systems evolve. The more state, the more complex the migration

mechanism is likely to be. Process state typically includes the following:

� Virtual memory. In terms of bytes, the greatest amount of state associated with a process

is likely to be the memory that it accesses. Thus the time to migrate a process is limited by

the speed of transferring virtual memory.

� Open �les. If the process is manipulating �les or devices, then there will be state associated

with these open channels, both in the virtual memory of the process and also in the operating

system kernel's memory. The state for an open �le includes the internal identi�er for the

�le, the current access position, and possibly cached �le blocks. The cached �le blocks may

represent a substantial amount of storage, in some cases greater than the process's virtual

memory.

� Message channels. In a message-based operating system such as Mach

15

or V,

16

state of this

form would exist in place of open �les. (In such a system message channels would be used to

access �les, whereas in Sprite, �le-like channels are used for interprocess communication.) The

state associated with a message channel includes bu�ered messages plus information about

senders and receivers.

� Execution state. This consists of information that the kernel saves and restores during a

context switch, such as register values and condition codes.

� Other kernel state. Operating systems typically store other data associated with a process,

such as the process's identi�er, a user identi�er, a current working directory, signal masks and

handlers, resource usage statistics, references to the process's parent and children, and so on.

The overall problem in migration is to maintain a process's access to its state after it migrates.

For each portion of state, the system must do one of three things during migration: transfer the

state, arrange for forwarding, or ignore the state and sacri�ce transparency. To transfer a piece

of state, it must be extracted from its environment on the source machine, transmitted to the

destination machine, and reinstated in the process's new environment on that machine. For state

that is private to the process, such as its execution state, state transfer is relatively straightforward.

Other state, such as internal kernel state distributed among complex data structures, may be much

more di�cult to extract and reinstate. An example of \di�cult" state in Sprite is information about

open �les|particularly those being accessed on remote �le servers|as described below. Lastly,

some state may be impossible to transfer. Such state is usually associated with physical devices on

the source machine. For example, the frame bu�er associated with a display must remain on the

machine containing the display; if a process with access to the frame bu�er migrates, it will not be

possible to transfer the frame bu�er.
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The second option for each piece of state is to arrange for forwarding. Rather than transfer the

state to stay with the process, the system may leave the state where it is and forward operations

back and forth between the state and the process. For example, I/O devices cannot be transferred,

but the operating system can arrange for output requests to be passed back from the process to the

device, and for input data to be forwarded from the device's machine to the process. In the case of

message channels, arranging for forwarding might consist of changing sender and receiver addresses

so that messages to and from the channel can �nd their way from and to the process. Ideally,

forwarding should be implemented transparently, so that it is not obvious outside the operating

system whether the state was transferred or forwarding was arranged.

The third option, sacri�cing transparency, is a last resort: if neither state transfer nor forwarding

is feasible, then one can ignore the state on the source machine and simply use the corresponding

state on the target machine. The only situation in Sprite where neither state transfer nor forwarding

seemed reasonable is for memory-mapped I/O devices such as frame bu�ers, as alluded to above. In

our current implementation, we disallow migration for processes using these devices.

In a few rare cases, lack of transparency may be desirable. For example, a process that requests

the amount of physical memory available should obtain information about its current host rather

than its homemachine. For Sprite, a few special-purpose kernel calls, such as to read instrumentation

counters in the kernel, are also intentionally non-transparent with respect to migration. In general,

though, it would be unfortunate if a process behaved di�erently after migration than before.

On the surface, it might appear that message-based systems like Accent,

17

Charlotte,

9

or V

16

simplify many of the state-management problems. In these systems all of a process's interactions

with the rest of the world occur in a uniform fashion through message channels. Once the basic

execution state of a process has been migrated, it would seem that all of the remaining issues could

be solved simply by forwarding messages on the process's message channels. The message forwarding

could be done in a uniform fashion, independent of the servers being communicated with or their

state about the migrated process.

In contrast, state management might seem more di�cult in a system like Sprite that is based

on kernel calls. In such a system most of a process's services must be provided by the kernel of

the machine where the process executes. This requires that the state for each service be transferred

during migration. The state for each service will be di�erent, so this approach would seem to be

much more complicated than the uniform message-forwarding approach.

It turns out that neither of these initial impressions is correct. For example, it would be possible

to implement forwarding in a kernel-call-based system by leaving all of the kernel state on the home

machine and using remote procedure call to forward home every kernel call.

14

This would result in

something very similar to forwarding messages, and we initially used an approach like this in Sprite.

Unfortunately, an approach based entirely on forwarding kernel calls or forwarding messages will

not work in practice, for two reasons. The �rst problem is that some services must necessarily be

provided on the machine where a process is executing. If a process invokes a kernel call to allocate

virtual memory (or if it sends a message to a memory server to allocate virtual memory), the request

must be processed by the kernel or server on the machine where the process executes, since only

that kernel or server has control over the machine's page tables. Forwarding is not a viable option

for such machine-speci�c functions: state for these operations must be migrated with processes.

The second problem with forwarding is cost. It will often be much more expensive to forward an

operation to some other machine than to process it locally. If a service is available locally on a

migrated process's new machine, it will be more e�cient to use the local service than to forward

operations back to the service on the process's old machine.

Thus, in practice all systems must transfer substantial amounts of state as part of process mi-

gration. Message-based systems make migration somewhat easier than kernel-call-based systems,

because some of the state that is maintained by the kernel in a kernel-call-based system is main-

tained in a process's address space in a message-based system. This state is transferred implicitly

with the address space of the process. For other state, both types of system must address the same

issues.
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Mechanics of Migration

This section describes how Sprite deals with the various components of process state during

migration. The solution for each component consists of some combination of transferring state and

arranging for forwarding.

Virtual Memory Transfer

Virtual memory transfer is the aspect of migration that has been discussed the most in the liter-

ature, perhaps because it is generally believed to be the limiting factor in the speed of migration.

17

One simple method for transferring virtual memory is to send the process's entire memory image to

the target machine at migration time, as in Charlotte

9

and LOCUS.

5

This approach is simple but

it has two disadvantages. First, the transfer can take many seconds, during which time the process

is frozen: it cannot execute on either the source or destination machine. For some processes, partic-

ularly those with real-time needs, long freeze times may be unacceptable. The second disadvantage

of a monolithic virtual memory transfer is that it may result in wasted work for portions of the

virtual memory that are not used by the process after it migrates. The extra work is particularly

unfortunate (and costly) if it requires old pages to be read from secondary storage. For these rea-

sons, several other approaches have been used to reduce the overhead of virtual memory transfer;

the mechanisms are diagrammed in Figure 1 and described in the paragraphs below.

In the V System, long freeze times could have resulted in timeouts for processes trying to com-

municate with a migrating process. To address this problem, Theimer used a method called pre-

copying .

3, 8

Rather than freezing a process at the beginning of migration, V allows the process to

continue executing while its address space is transferred. In the original implementation of migration

in V, the entire memory of the process was transferred directly to the target; Theimer also proposed

an implementation that would use virtual memory to write modi�ed pages to a shared \backing

storage server" on the network. In either case, some pages could be modi�ed on the source machine

after they have been copied elsewhere, so V then freezes the process and copies the pages that have

been modi�ed. Theimer showed that pre-copying reduces freeze times substantially. However, it has

the disadvantage of copying some pages twice, which increases the total amount of work to migrate

a process. Pre-copying seems most useful in an environment like V where processes have real-time

response requirements.

The Accent system uses a lazy copying approach to reduce the cost of process migration.

4, 17

When a process migrates in Accent, its virtual memory pages are left on the source machine until

they are actually referenced on the target machine. Pages are copied to the target when they are

referenced for the �rst time. This approach allows a process to begin execution on the target with

minimal freeze time but introduces many short delays later as pages are retrieved from the source

machine. Overall, lazy copying reduces the cost of migration because pages that are not used are

never copied at all. Zayas found that for typical programs only one-quarter to one-half of a process's

allocated memory needed to be transferred. One disadvantage of lazy copying is that it leaves

residual dependencies on the source machine: the source must store the unreferenced pages and

provide them on demand to the target. In the worst case, a process that migrates several times

could leave virtual memory dependencies on any or all of the hosts on which it ever executed.

Sprite's migration facility uses a di�erent form of lazy copying that takes advantage of our existing

network services while providing some of the advantages of lazy copying. In Sprite, as in the proposed

implementation for V, backing storage for virtual memory is implemented using ordinary �les. Since

these backing �les are stored in the network �le system, they are accessible throughout the network.

During migration the source machine freezes the process, 
ushes its dirty pages to backing �les, and

discards its address space. On the target machine, the process starts executing with no resident

pages and uses the standard paging mechanisms to load pages from backing �les as they are needed.

In most cases no disk operations are required to 
ush dirty pages in Sprite. This is because

the backing �les are stored on network �le servers and the �le servers use their memories to cache

recently-used �le data. When the source machine 
ushes a dirty page it is simply transferred over

the network to the server's main-memory �le cache. If the destination machine accesses the page

then it is retrieved from the cache. Disk operations will only occur if the server's cache over
ows.

7
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VM Transfer Techniques

source

target

(a) LOCUS, Charlotte

target
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(c) Accent

source

target

(b) V

  residual dependencies end

 transfer virtual memory 

 process executes

source

target

(d) Sprite

file server

Figure 1: Di�erent techniques for transferring virtual memory. (a) shows the scheme used in LOCUS and

Charlotte, where the entire address space is copied at the time a process migrates. (b) shows the pre-copying

scheme used in V, where the virtual memory is transferred during migration but the process continues to

execute during most of the transfer. (c) shows Accent's lazy-copying approach, where pages are retrieved

from the source machine as they are referenced on the target. Residual dependencies in Accent can last for

the life of the migrated process. (d) shows Sprite's approach, where dirty pages are 
ushed to a �le server

during migration and the target retrieves pages from the �le server as they are referenced. In the case of

eviction, there are no residual dependencies on the source after migration. When a process migrates away

from its home machine, it has residual dependencies on its home throughout its lifetime.
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Sprite's virtual memory transfer mechanism was simple to implement because it uses pre-existing

mechanisms both for 
ushing dirty pages on the source and for handling page faults on the target. It

has some of the bene�ts of the Accent lazy-copying approach since only dirty pages incur overhead at

migration time; other pages are sent to the target machine when they are referenced. Our approach

will require more total work than Accent's, though, since dirty pages may be transferred over the

network twice: once to a �le server during 
ushing, and once later to the destination machine.

The Sprite approach to virtual memory transfer �ts well with the way migration is typically used

in Sprite. Process migration occurs most often during an exec system call, which completely replaces

the process's address space. If migration occurs during an exec, the new address space is created

on the destination machine so there is no virtual memory to transfer. As others have observed

(e.g., LOCUS

5

), the performance of virtual memory transfer for exec-time migration is not an issue.

Virtual memory transfer is an issue, however, when migration is used to evict a process from a

machine whose user has returned. In this situation the most important consideration is to remove

the process from its source machine quickly, in order to minimize any performance degradation for

the returning user. Sprite's approach works well in this regard since (a) it does the least possible

work to free up the source's memory, and (b) the source need not retain pages or respond to later

paging requests as in Accent. It would have been more e�cient overall to transfer the dirty pages

directly to the target machine instead of a �le server, but this approach would have added complexity

to the migration mechanism so we decided against it.

Virtual memory transfer becomes much more complicated if the process to be migrated is sharing

writable virtual memory with some other process on the source machine. In principle, it is possible

to maintain the shared virtual memory even after one of the sharing processes migrates,

18

but this

changes the cost of shared accesses so dramatically that it seemed unreasonable to us. Shared

writable virtual memory almost never occurs in Sprite right now, so we simply disallow migration

for processes using it. A better long-term solution is probably to migrate all the sharing processes

together, but even this may be impractical if there are complex patterns of sharing that involve

many processes.

Migrating Open Files

It turned out to be particularly di�cult in Sprite to migrate the state associated with open

�les. This was surprising to us, because Sprite already provided a highly transparent network �le

system that supports remote access to �les and devices; it also allows �les to be cached and to

be accessed concurrently on di�erent workstations. Thus, we expected that the migration of �le-

related informationwould mostly be a matter of reusing existing mechanisms. Unfortunately, process

migration introduced new problems in managing the distributed state of open �les. Migration also

made it possible for a �le's current access position to become shared among several machines.

The migration mechanism would have been much simpler if we had chosen the \arrange for

forwarding" approach for open �les instead of the \transfer state" approach. This would have

implied that all �le-related kernel calls be forwarded back to the machine where the �le was opened,

so that the state associated with the �le could have stayed on that machine. Because of the frequency

of �le-related kernel calls and the cost of forwarding a kernel call over the network, we felt that this

approach would be unacceptable both because it would slow down the remote process and because

it would load the machine that stores the �le state. Sprite workstations are typically diskless and

�les are accessed remotely from �le servers, so the forwarding approach would have meant that each

�le request would be passed over the network once to the machine where the �le was opened, and

possibly a second time to the server. Instead, we decided to transfer open-�le state along with a

migrating process and then use the normal mechanisms to access the �le (i.e., communicate directly

with the �le's server).

There are three main components of the state associated with an open �le: a �le reference, caching

information, and an access position. Each of these components introduced problems for migration.

The �le reference indicates where the �le is stored, and also provides a guarantee that the �le exists

(as required by UNIX semantics): if a �le is deleted while open then the deletion is deferred until

the �le is closed. Our �rst attempt at migrating �les simply closed the �le on the source machine
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and reopened it on the target. Unfortunately, this approach caused �les to disappear if they were

deleted before the reopen completed. This is such a common occurrence in UNIX programs that �le

transfer had to be changed to move the reference from source to target without ever closing the �le.

The second component of the state of an open �le is caching information. Sprite permits the

data of a �le to be cached in the memory of one or more machines, with �le servers responsible for

guaranteeing \consistent access" to the cached data.

11

The server for a �le keeps track of which hosts

have the �le open for reading and writing. If a �le is open on more than one host and at least one of

them is writing it, then caching is disabled: all hosts must forward their read and write requests for

that �le to the server so they can be serialized. In our second attempt at migrating �les, the server

was noti�ed of the �le's use on the target machine before being told that the �le was no longer in use

on the source; this made the �le appear to be write-shared and caused the server to disable caching

for the �le unnecessarily. To solve both this problem and the reference problem above we built

special server code just for migrating �les, so that the transfer from source to destination is made

atomically. Migration can still cause caching to be disabled for a �le, but only if the �le is also in use

by some other process on the source machine; if the only use is by the migrating process, then the

�le will be cacheable on the target machine. In the current implementation, once caching is disabled

for a �le, it remains disabled until no process has the �le open (even if all processes accessing the

�le migrate to the same machine); however, in practice, caching is disabled infrequently enough that

an optimization to reenable caching of uncacheable �les has not been a high priority.

When an open �le is transferred during migration, the �le cache on the source machine may

contain modi�ed blocks for the �le. These blocks are 
ushed to the �le's server machine during

migration, so that after migration the target machine can retrieve the blocks from the �le server

without involving the source. This approach is similar to the mechanism for virtual memory transfer

and thus has the same advantages and disadvantages. It is also similar to what happens in Sprite

for shared �le access without migration: if a �le is opened, modi�ed, and closed on one machine,

then opened on another machine, the modi�ed blocks are 
ushed from the �rst machine's cache to

the server at the time of the second open.

The third component of the state of an open �le is an access position, which indicates where

in the �le the next read or write operation will occur. Unfortunately the access position for a �le

may be shared between two or more processes. This happens, for example, when a process opens

a �le and then forks a child process: the child inherits both the open �le and the access position.

Under normal circumstances all of the processes sharing a single access position will reside on the

same machine, but migration can move one of the processes without the others, so that the access

position becomes shared between machines. After several false starts we eventually dealt with this

problem in a fashion similar to caching: if an access position becomes shared between machines,

then neither machine stores the access position (nor do they cache the �le); instead, the �le's server

maintains the access position and all operations on the �le are forwarded to the server.

Another possible approach to shared �le o�sets is the one used in LOCUS.

5

If process migration

causes a �le access position to be shared between machines, LOCUS lets the sharing machines take

turns managing the access position. In order to perform I/O on a �le with a shared access position,

a machine must acquire the \access position token" for the �le. While a machine has the access

position token it caches the access position and no other machine may access the �le. The token

rotates among machines as needed to give each machine access to the �le in turn. This approach is

similar to the approach LOCUS uses for managing a shared �le, where clients take turns caching the

�le and pass read and write tokens around to ensure cache consistency. We chose not to use the Locus

approach because the token-passing approach is more complex than the disable-caching approach,

and because the disable-caching approach meshed better with the existing Sprite �le system.

Figure 2 shows the mechanism currently used by Sprite for migrating open �les. The key part

of this mechanism occurs in a late phase of migration when the target machine requests that the

server update its internal tables to re
ect that the �le is now in use on the target instead of the

source. The server in turn calls the source machine to retrieve information about the �le, such as

the �le's access position and whether the �le is in use by other processes on the source machine.

This two-level remote procedure call synchronizes the three machines (source, target, and server)

and provides a convenient point for updating state about the open �le.
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Figure 2: Transferring open �les. (1) The source passes information about all open �les to the target.

(2) For each �le, the target noti�es the server that the open �le has been moved; (3) during this call the

server communicates again with the source to release its state associated with the �le and to obtain the most

recent state associated with the �le.

The Process Control Block

Aside from virtual memory and open �les, the main remaining issue is how to deal with the

process control block (PCB) for the migrating process: should it be left on the source machine or

transferred with the migrating process? For Sprite we use a combination of both approaches. The

home machine for a process (the one where it would execute if there were no migration) must assist

in some operations on the process, so it always maintains a PCB for the process. The details of this

interaction are described in the next section. In addition, the current machine for a process also has

a PCB for it. If a process is migrated, then most of the information about the process is kept in the

PCB on its current machine; the PCB on the home machine serves primarily to locate the process

and most of its �elds are unused.

The other elements of process state besides virtual memory and open �les are much easier to

transfer than virtual memory and open �les, since they are not as bulky as virtual memory and they

don't involve distributed state like open �les. At present the other state consists almost entirely of

�elds from the process control block. In general, all that needs to be done is to transfer these �elds

to the target machine and reinstate them in the process control block on the target.

Supporting Transparency: Home Machines

As was mentioned previously, transparency was one of our most important goals in implementing

migration. By \transparency" we mean two things in particular. First, a process's behavior should
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not be a�ected by migration. Its execution environment should appear the same, it should have the

same access to system resources such as �les and devices, and it should produce exactly the same

results as if it hadn't migrated. Second, a process's appearance to the rest of the world should not

be a�ected by migration. To the rest of the world the process should appear as if it never left its

original machine, and any operation that is possible on an unmigrated process (such as stopping

or signalling) should be possible on a migrated process. Sprite provides both of these forms of

transparency; we know of no other implementation of process migration that provides transparency

to the same degree.

In Sprite the two aspects of transparency are de�ned with respect to a process's home machine,

which is the machine where it would execute if there were no migration at all. Even after migration,

everything should appear as if the process were still executing on its home machine. In order to

achieve transparency, Sprite uses four di�erent techniques, which are described in the paragraphs

below.

The most desirable approach is to make kernel calls location-independent; Sprite has been grad-

ually evolving in this direction. For example, in the early versions of the system we permitted

di�erent machines to have di�erent views of the �le system name space. This required open and

several other kernel calls to be forwarded home after migration, imposing about a 20% penalty on

the performance of remote compilations. In order to simplify migration (and for several other good

reasons also), we changed the �le system so that every machine in the network sees the same name

space. This made the open kernel call location-independent, so no extra e�ort was necessary to

make open work transparently for remote processes.

Our second technique was to transfer state from the source machine to the target at migration

time as described above, so that normal kernel calls may be used after migration. We used the

state-transfer approach for virtual memory, open �les, process and user identi�ers, resource usage

statistics, and a variety of other things.

Our third technique was to forward kernel calls home. This technique was originally used for

a large number of kernel calls, but we have gradually replaced most uses of forwarding with trans-

parency or state transfer. At present there are only a few kernel calls that cannot be implemented

transparently and for which we cannot easily transfer state. For example, clocks are not synchronized

between Sprite machines, so for remote processes Sprite forwards the gettimeofday kernel call back

to the home machine. This guarantees that time advances monotonically even for remote processes,

but incurs a performance penalty for processes that read the time frequently. Another example is the

getpgrp kernel call, which obtains state about the \process group" of a process. The home machine

maintains the state that groups collections of processes together, since they may physically execute

on di�erent machines.

Forwarding also occurs from the home machine to a remote process's current machine. For

example, when a process is signalled (e.g., when some other process speci�es its identi�er in the kill

kernel call), the signal operation is sent initially to the process's home machine. If the process is not

executing on the home machine, then the home machine forwards the operation on to the process's

current machine. The performance of such operations could be improved by retaining a cache on

each machine of recently-used process identi�ers and their last known execution sites. This approach

is used in LOCUS and V and allows many operations to be sent directly to a remote process without

passing through another host. An incorrect execution site is detected the next time it is used and

correct information is found by sending a message to the host on which the process was created

(LOCUS) or by multi-casting (V).

The fourth \approach" is really just a set of ad hoc techniques for a few kernel calls that must

update state on both a process's current execution site and its home machine. One example of

such a kernel call is fork , which creates a new process. Process identi�ers in Sprite consist of a

home machine identi�er and an index of a process within that machine. Management of process

identi�ers, including allocation and deallocation, is the responsibility of the home machines named in

the identi�ers. If a remote process forks, the child process must have the same home machine as the

parent, which requires that the home machine allocate the new process identi�er. Furthermore, the

home machine must initialize its own copy of the process control block for the process, as described

previously. Thus, even though the child process will execute remotely on the same machine as
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its parent, both its current machine and its home machine must update state. Similar kinds of

cooperation occur for exit , which is invoked by a process to terminate itself, and wait , which is used

by a parent to wait for one of its children to terminate. There are several potential race conditions

between a process exiting, its parent waiting for it to exit, and one or both processes migrating; we

found it easier to synchronize these operations by keeping all the state for the wait-exit rendezvous

on a single machine (the home). LOCUS similarly uses the site on which a process is created to

synchronize operations on the process.

Residual Dependencies

We de�ne a residual dependency as an on-going need for a host to maintain data structures or

provide functionality for a process even after the process migrates away from the host. One example

of a residual dependency occurs in Accent, where a process's virtual memory pages are left on the

source machine until they are referenced on the target. Another example occurs in Sprite, where

the home machine must participate whenever a remote process forks or exits.

Residual dependencies are undesirable for three reasons: reliability, performance, and complexity.

Residual dependencies decrease reliability by allowing the failure of one host to a�ect processes

on other hosts. Residual dependencies decrease performance for the remote process because they

require remote operations where local ones would otherwise have su�ced. Residual dependencies

also add to the load of the host that is depended upon, thereby reducing the performance of other

processes executing on that host. Lastly, residual dependencies complicate the system by distributing

a process's state around the network instead of concentrating it on a single host; a particularly bad

scenario is one where a process can migrate several times, leaving residual dependencies on every

host it has visited.

Despite the disadvantages of residual dependencies, it may be impractical to eliminate them all.

In some cases dependencies are inherent, such as when a process is using a device on a speci�c host;

these dependencies cannot be eliminated without changing the behavior of the process. In other

cases, dependencies are necessary or convenient to maintain transparency, such as the home machine

knowing about all process creations and terminations. Lastly, residual dependencies may actually

improve performance in some cases, such as lazy copying in Accent, by deferring state transfer until

it is absolutely necessary.

In Sprite we were much more concerned about transparency than about reliability, so we per-

mitted some residual dependencies on the home machine where those dependencies made it easier

to implement transparency. As described above in the section on transparency, there are only a

few situations where the home machine must participate so the performance impact is minimal.

Measurements of the overhead of remote execution are reported below.

Although Sprite permits residual dependencies on the home machine, it does not leave depen-

dencies on any other machines. If a process migrates to a machine and is then evicted or migrates

away for any other reason, there will be no residual dependencies on that machine. This provides

yet another assurance that process migration will not impact users' response when they return to

their workstations. The only noticeable long-term e�ect of foreign processes is the resources they

may have utilized during their execution: in particular, the user's virtual memory working set may

have to be demand-paged back into memory upon the user's return.

The greatest drawback of residual dependencies on the home machine is the inability of users

to migrate processes in order to survive the failure of their home machine. We are considering a

nontransparent variant of process migration, which would change the home machine of a process

when it migrates and break all dependencies on its previous host.

Migration Policies

Until now we have focussed our discussion on the mechanisms for transferring processes and

supporting remote execution. This section considers the policies that determine how migration is

used. Migration policy decisions fall into four categories:
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What. Which processes should be migrated? Should all processes be considered candidates for mi-

gration, or only a few particularly CPU-intensive processes? How are CPU-intensive processes

to be identi�ed?

When. Should processes only be migrated at the time they are initiated, or may processes also be

migrated after they have been running?

Where. What criteria should be used to select the machines that will be the targets of migration?

Who. Who makes all of the above decisions? How much should be decided by the user and how

much should be automated in system software?

At one end of the policy spectrum lies the pool of processors model. In this model the processors

of the system are treated as a shared pool and all of the above decisions are made automatically

by system software. Users submit jobs to the system without any idea of where they will execute.

The system assigns jobs to processors dynamically, and if process migration is available it may

move processes during execution to balance the loads of the processors in the pool. MOSIX

6

is one

example of the \pool of processors" model: processors are shared equally by all processes and the

system dynamically balances the load throughout the system, using process migration.

At the other end of the policy spectrum lies rsh, which provides no policy support whatsoever.

In this model individual users are responsible for locating idle machines, negotiating with other users

over the use of those machines, and deciding which processes to o�oad.

For Sprite we chose an intermediate approach where the selection of idle hosts is fully automated

but the other policy decisions are only partially automated. There were two reasons for this decision.

First, our environment consists of personal workstations. Users are happy running almost all of their

processes locally on their own personal workstations, and they expect to have complete control of

their workstations. Users do not think of their workstations as \shared". Second, the dynamic pool-

of-processors approach appeared to us to involve considerable additional complexity, and we were

not convinced that the bene�ts would justify the implementation di�culties. For example, most

processes in a UNIX-like environment are so short-lived that migration will not produce a noticeable

bene�t and may even slow things down. Eager et al. provide additional evidence that migration is

only useful under particular conditions.

19

Thus, for Sprite we decided to make migration a special

case rather than the normal case.

The Sprite kernels provide no particular support for any of the migration policy decisions, but

user-level applications provide assistance in four forms: idle-host selection, the pmake program, a

mig shell command, and eviction. These are discussed in the following subsections.

Selecting Idle Hosts

Each Sprite machine runs a background process called the load-average daemon, which monitors

the usage of that machine. When the workstation appears to be idle, the load-average daemon noti�es

the central migration server that the machine is ready to accept migrated processes. Programs

that invoke migration, such as pmake and mig described below, call a standard library procedure

Mig RequestIdleHosts to obtain the identi�ers for one or more idle hosts, which they then pass to

the kernel when they invoke migration. Normally only one process may be assigned to any host

at any one time, in order to avoid contention for processor time; however, processes that request

idle hosts can indicate that they will be executing long-running processes and the central server will

permit shorter tasks to execute on those hosts as well.

Maintaining the database of idle hosts can be a challenging problem in a distributed system,

particularly if the system is very large in size or if there are no shared facilities available for storing

load information. A number of distributed algorithms have been proposed to solve this problem,

such as disseminating load information among hosts periodically,

6

querying other hosts at random to

�nd an idle one,

20

or multicasting and accepting a response from any host that indicates availability.

8

In Sprite we have used centralized approaches for storing the idle-host database. Centralized

techniques are generally simpler, they permit better decisions by keeping all the information up-
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to-date in a single place, and they can scale to systems with hundreds of workstations without

contention problems for the centralized database.

We initially stored the database in a single �le in the �le system. The load-average daemons

set 
ags in the �le when their hosts became idle, and the Mig RequestIdleHosts library procedure

selected idle hosts at random from the �le, marking the selected hosts so that no one else would

select them. Standard �le-locking primitives were used to synchronize access to the �le.

We later switched to a server-based approach, where a single server process keeps the database

in its virtual memory. The load-average daemons and the Mig RequestIdleHosts procedure commu-

nicate with the server using a message protocol. The server approach has a number of advantages

over the �le-based approach. It is more e�cient, because only a single remote operation is required

to select an idle machine; the �le-based approach required several remote operations to open the

�le, lock it, read it, etc. The server approach makes it easy to retain state from request to request;

we use this, for example, to provide fair allocation of idle hosts when there are more would-be users

than idle machines. Although some of these features could have been implemented with a shared

�le, they would incur a high overhead from repeated communication with a �le server. Lastly, the

server approach provides better protection of the database information (in the shared-�le approach

the �le had to be readable and writable by all users).

We initially chose a conservative set of criteria for determining whether a machine is \idle". The

load-average daemon originally considered a host to be idle only if (a) it had had no keyboard or

mouse input for at least �ve minutes, and (b) there were fewer runnable processes than processors,

on average. In choosing these criteria we wanted to be certain not to inconvenience active users

or delay background processes they might have left running. We assumed that there would usually

be plenty of idle machines to go around, so we were less concerned about using them e�ciently.

After experience with the �ve-minute threshold, we reduced the threshold for input to 30 seconds;

this increased the pool of available machines without any noticeable impact on the owners of those

machines.

Pmake and Mig

Sprite provides two convenient ways to use migration. The most commonuse of process migration

is by the pmake program. Pmake is similar in function to the make UNIX utility

7

and is used,

for example, to detect when source �les have changed and recompile the corresponding object �les.

Make performs its compilations and other actions serially; in contrast, pmake uses process migration

to invoke as many commands in parallel as there are idle hosts available. This use of process

migration is completely transparent to users and results in substantial speed-ups in many situations,

as shown below. Other systems besides Sprite have also bene�tted from parallel make facilities; see

References 21 and 2 for examples.

The approach used by pmake has at least one advantage over a fully-automatic \processor pool"

approach where all the migration decisions are made centrally. Because pmake makes the choice of

processes to o�oad, and knows how many hosts are available, it can scale its parallelism to match

the number of idle hosts. If the o�oading choice were made by some other agent, pmake might

overload the system by creating more processes than could be accommodated e�ciently. Pmake

also provides a degree of 
exibility by permitting the user to specify that certain tasks should not

be o�oaded if they are poorly suited for remote execution.

The second easy way to use migration is with a program called mig , which takes as argument

a shell command. Mig will select an idle machine using the mechanism described above and use

process migration to execute the given command on that machine. Mig may also be used to migrate

an existing process.

Eviction

The �nal form of system support for migration is eviction. The load-average daemons detect

when a user returns. On the �rst keystroke or mouse-motion invoked by the user, the load-average

daemon will check for foreign processes and evict them. When an eviction occurs, foreign processes
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Action Time/Rate

Select & release idle host 36 milliseconds

Migrate \null" process 76 milliseconds

Transfer info for open �les 9.4 milliseconds/�le

Flush modi�ed �le blocks 480 Kbytes/second

Flush modi�ed pages 660 Kbytes/second

Transfer exec arguments 480 Kbytes/second

Fork , exec null process with migration, wait for child to exit 81 milliseconds

Fork , exec null process locally, wait for child to exit 46 milliseconds

Table 1: Costs associated with process migration. All measurements were performed on SPARCstation 1

workstations. Host selection may be amortized across several migrations if applications such as pmake reuse

idle hosts. The time to migrate a process depends on how many open �les the process has and how many

modi�ed blocks for those �les are cached locally (these must be 
ushed to the server). If the migration is not

done at exec-time, modi�ed virtual memory pages must be 
ushed as well. If done at exec-time, the process's

arguments and environment variables are transferred. The execs were performed with no open �les. The

bandwidth of the RPC system is 480 Kbytes/second using a single channel, and 660 Kbytes/second using

multiple RPC connections in parallel for the virtual memory system.

are migrated back to their home machines, and the process that obtained the host is noti�ed that

the host has been reclaimed. That process is free to remigrate the evicted processes or to suspend

them if there is no new host available. To date, pmake is the only application that automatically

remigrates processes, but other applications (such as mig) could remigrate processes as well.

Evictions also occur when a host is reclaimed from one process in order to allocate it to another.

If the centralized server receives a request for an idle host when no idle hosts are available, and one

process has been allocated more than its fair share of hosts, the server reclaims one of the hosts

being used by that process. It grants that host to the process that had received less than its fair

share. The process that lost the host must reduce its parallelism until it can obtain additional hosts

again.

A possible optimization for evictions would be to permit an evicted process to migrate directly to

a new idle host rather than to its home machine. In practice, half of the evictions that occur in the

system take place due to fairness considerations rather than because a user has returned to an idle

workstation.

22

Permitting direct migration between two remote hosts would bene�t the other half

of the evictions that occur, but would complicate the implementation: it would require a three-way

communication between the two remote hosts and the home machine, which always knows where its

processes execute. Thus far, this optimization has not seemed to be warranted.

Performance and Usage Patterns

We evaluated process migration in Sprite by taking three sets of measurements. The next sub-

sections discuss particular operations in isolation, such as the time to migrate a trivial process or

invoke a remote command; the performance improvement of pmake using parallel remote execution;

and empirical measurements of Sprite's process migration facility over a period of several weeks, in-

cluding the extent to which migration is used, the cost and frequency of eviction, and the availability

of idle hosts.

Migration Overhead

Table 1 summarizes the costs associated with migration. Host selection on SPARCstation 1

workstations takes an average of 36 milliseconds. Process transfer is a function of some �xed over-

head, plus variable overhead in proportion to the number of modi�ed virtual memory pages and �le
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blocks copied over the network and the number of �les the process has open. If a process execs at

the time of migration, as is normally the case, no virtual memory is transferred.

The costs in Table 1 re
ect the latency and bandwidth of Sprite's remote procedure call mecha-

nism. For example, the cost of transferring open �les is dominated by RPC latency (3 RPC's at 1 ms

latency each), and the speed of transferring virtual memory pages and �le blocks is determined by

RPC bandwidth (480-660 Kbytes/second). All things considered, it takes about a tenth of a second

to select an idle host and start a new process on it, not counting any time needed to transfer open

�les or 
ush modi�ed �le blocks to servers. Empirically, the average time to perform an exec-time

migration in our system is about 330 milliseconds.

22

This latency may be too great to warrant run-

ning trivial programs remotely, but it is substantially less than the time needed to compile typical

source programs, run text formatters, or do any number of other CPU-bound tasks.

After a process migrates away from its home machine, it may su�er from the overhead of for-

warding system calls. The degradation due to remote execution depends on the ratio of location-

dependent system calls to other operations, such as computation and �le I/O. Figure 3 shows the

total execution time to run several programs, listed in Table 2, both entirely locally and entirely

on a single remote host. Applications that communicate frequently with the home machine su�ered

considerable degradation. Two of the benchmarks, fork and gettime, are contrived examples of the

type of degradation a process might experience if it performed many location-dependent system calls

without much user-level computation. The rcp benchmark is a more realistic example of the penal-

ties processes can encounter: it copies data using TCP, and TCP operations are sent to a user-level

TCP server on the home machine. Forwarding these TCP operations causes rcp to perform about

40% more slowly when run remotely than locally. As may be seen in Figure 3, however, applications

such as compilations and text formatting show little degradation due to remote execution.

Application Performance

The benchmarks in the previous section measured the component costs of migration. This section

measures the overall bene�ts of migration using pmake. We measured the performance improvements

obtained by parallel compilations and simulations.

The �rst benchmark consists of compiling 276 Sprite kernel source �les, then linking the resulting

object �les into a single �le. Each pmake command (compiling or linking) is performed on a remote

host using exec-time migration. Once a host is obtained from the pool of available hosts, it is reused

until pmake �nishes or the host is no longer available.

Figure 4 shows the total elapsed time to compile and link the Sprite kernel using a varying number

of machines in parallel, as well as the performance improvement obtained. In this environment,

pmake is able to make e�ective use of about three-fourths of each host it uses up to a point (4-6

hosts), but it uses only half the processing power available to it once additional hosts are used.

The \compile and link" curve in Figure 4(b) shows a speed-up factor of 5 using 12 hosts. Clearly,

there is a signi�cant di�erence between the speed-ups obtained for the \normalized compile" bench-

mark and the \compile and link" benchmark. The di�erence is partly attributable to the sequential

parts of running pmake: determining �le dependencies and linking object �les all must be done on a

single host. More importantly, �le caching a�ects speed-up substantially. As described above, when

a host opens a �le for which another host is caching modi�ed blocks, the host with the modi�ed

blocks transfers them to the server that stores the �le. Thus, if pmake uses many hosts to compile

di�erent �les in parallel, and then a single host links the resulting object �les together, that host

must wait for each of the other hosts to 
ush the object �les they created. It then must obtain the

object �les from the server. In this case, linking the �les together when they have all been created

on a single host takes only 56 seconds, but the link step takes 65{69 seconds when multiple hosts

are used for the compilations.

In practice, we don't even obtain the �ve-fold speed-up indicated by this benchmark, because

we compile and link each kernel module separately and link the modules together afterwards. Each

link step is an additional synchronization point that may be performed by only one host at a time.

In our development environment, we typically see three to four times speed-up when rebuilding
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Figure 3: Comparison between local and remote execution of programs. The elapsed time to execute

CPU-intensive and �le-intensive applications such as pmake and L

a

T

E

X showed negligible e�ects from remote

execution (3% and 1% degradation, respectively). Other applications su�ered performance penalties ranging

from 42% (rcp), to 73% (fork), to 3200% (gettime).

Name Description

pmake recompile pmake source sequentially using pmake

L

a

T

E

X

run L

a

T

E

X on a draft of this article

rcp copy a 1 Mbyte �le to another host using TCP

fork fork and wait for child, 1000 times

gettime get the time of day 10000 times

Table 2: Workload for comparisons between local and remote execution.
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Figure 4: Performance of recompiling the Sprite kernel using a varying number of hosts and the pmake

program. Graph (a) shows the time to compile all the input �les and then link the resulting object �les into

a single �le. In addition, it shows a \normalized" curve that shows the time taken for the compilation only,

deducting as well the pmake startup overhead of 19 seconds to determine dependencies; this curve represents

the parallelizable portion of the pmake benchmark. Graph (b) shows the speedup obtained for each point in

(a), which is the ratio between the time taken on a single host and the time using multiple hosts in parallel.
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Program

Number of

Sequential Time Parallel Time Speed-Up

Files Links

gremlin 24 1 180 41 4.43

T

E

X 36 1 259 48 5.42

pmake 49 3 162 55 2.95

kernel 276 1 1971 453 4.35

Table 3: Examples of pmake performance. Sequential execution is done on a single host; parallel execution

uses migration to execute up to 12 tasks in parallel. Each measurement gives the time to compile the indicated

number of �les and link the resulting object �les together in one or more steps. When multiple steps are

required, their sequentiality reduces the speed-up that may be obtained; pmake, for example, is organized

into two directories that are compiled and linked separately, and then the two linked object �les are linked

together.

gremlin

kernel

pmake

TeX

ideal

Number of hosts used

Speedup
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0 2 4 6 8 10 12

Figure 5: Speedup of compilations using a variable number of hosts. This graph shows the speedup relative

to running pmake on one host (i.e., without migration). The speedup obtained depends on the extent that

hosts can be kept busy, the amount of parallelization available to pmake, and system bottlenecks.

a kernel from scratch. Table 3 presents some examples of typical pmake speed-ups. These times

are representative of the performance improvements seen in day-to-day use. Figure 5 shows the

corresponding speedup curves for each set of compilations when the number of hosts used varies

from 1 to 12. In each case, the marginal improvement of additional hosts decreases as more hosts

are added.

The speedup curves in Figure 4(b) and Figure 5 show that the marginal improvement from

using additional hosts is signi�cantly less than the processing power of the hosts would suggest.

The poor improvement is due to bottlenecks on both the �le server and the workstation running

pmake. Figure 6 shows the utilization of the processors on the �le server and client workstation over

5-second intervals during the 12-way kernel pmake. It shows that the pmake process uses nearly

100% of a SPARCstation processor while it determines dependencies and starts to migrate processes

to perform compilations. Then the Sun-4/280 �le server's processor becomes a bottleneck as the 12

hosts performing compilations open �les and write back cached object �les. The network utilization,

also shown in Figure 6, averaged around 20% and is thus not yet a problem. However, as the server

and client processors get faster, the network may easily become the next bottleneck.
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Figure 6: Processor and network utilization during the 12-way pmake. Both the �le server and the client

workstation running pmake were saturated.
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Host Total CPU Time Remote CPU Time Fraction Remote

garlic 314,218 secs 228,641 secs 72.77 %

crackle 172,355 14,451 8.38 %

sassafras 158,515 138,821 87.58 %

burble 151,117 2,352 1.56 %

vagrancy 107,853 81,343 75.42 %

buzz 96,402 260 0.27 %

sage 92,063 32,525 35.33 %

kvetching 91,611 26,765 29.22 %

jaywalk 75,394 24,017 31.86 %

joyride 58,231 6,233 10.70 %

Others 857,532 120,727 14.1 %

Total 2,175,291 676,135 31.08 %

Table 4: Remote processing use over a one-month period. The ten hosts with the greatest total processor

usage are shown individually. Sprite hosts performed roughly 30% of user activity using process migration.

The standard deviation of the fraction of remote use was 25%.

Though migration has been used in Sprite to perform compilations for nearly two years, it has

only recently been used for more wide-ranging applications. Excluding compilations, simulations

are the primary application for Sprite's process migration facility. It is now common for users to

use pmake to run up to one hundred simulations, letting pmake control the parallelism. The length

and parallelism of simulations results in more frequent evictions than occur with most compilations,

and pmake automatically remigrates or suspends processes subsequent to eviction.

In addition to having a longer average execution time, simulations also sometimes di�er from

compilations in their use of the �le system. While some simulators are quite I/O intensive, others

are completely limited by processor time. Because they perform minimal interaction with �le servers

and use little network bandwidth, they can scale better than parallel compilations do. One set of

simulations obtained over 800% e�ective processor utilization|eight minutes of processing time per

minute of elapsed time|over the course of an hour, using all idle hosts on the system (up to 10{15

hosts of the same architecture).

Usage Patterns

We instrumented Sprite to keep track of remote execution, migrations, evictions, and the avail-

ability of idle hosts. First, when a process exited, the total time during which it executed was added

to a global counter; if the process had been executing remotely, its time was added to a separate

counter as well. (These counters therefore excluded some long-running processes that did not exit

before a host rebooted; however, these processes were daemons, display servers, and other processes

that would normally be unsuitable for migration.) Over a typical one-month period, remote pro-

cesses accounted for about 31% of all processing done on Sprite. One host ran applications that

made much greater use of remote execution, executing as much as 88% of user cycles on other hosts.

Table 4 lists some sample processor usage over this period.

During the same time frame, we recorded the frequency of exec-time migrations and full migra-

tions in order to determine the most common usage of the migration facility. Since full migrations

require that virtual memory be copied, the choice of a virtual memory transfer method would be

important if full migrations occurred relatively often. In the one-month period studied, exec-time

migrations occurred at a rate of 1.76/hour/host over that period, constituting 86% of all migrations.

Second, we recorded each time a host changed from idle to active, indicating that foreign pro-

cesses would be evicted if they exist, and we counted the number of times evictions actually occured.

To date, evictions have been extremely rare. On the average, each host changed to the active state
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Time Frame In Use Idle

In Use

for Migration

weekdays 31 % 66 % 3 %

o�-hours 20 % 78 % 2 %

total 23 % 75 % 2 %

Table 5: Host availability. Weekdays are Monday through Friday from 9:00 A.M. to 5:00 P.M. O�-hours

are all other times.

only once every 26 minutes, and very few of these transitions actually resulted in processes being

evicted (0.12 processes per hour per host in a collection of more than 25 hosts). The infrequency

of evictions has been due primarily to the policy used for allocating hosts: hosts are assigned in

decreasing order of idle time, so that the hosts that have been idle the longest are used most often

for migration. The average time that hosts had been idle prior to being allocated for remote exe-

cution was 17 hours, but the average idle time of those hosts that later evicted processes was only

4 minutes. (One may therefore assume that if hosts were allocated randomly, rather than in order

of idle time, evictions would be considerably more frequent.) Finally, when evictions did occur, the

time needed to evict varied considerably, with a mean of 3.0 seconds and a standard deviation of

3.1 seconds to migrate an average of 3.3 processes. An average of 37 4-Kbyte pages were written

per process that migrated, with a standard deviation of 6.5 from host to host.

Third, over the course of over a year, we periodically recorded the state of every host (active,

idle, or hosting foreign processes) in a log �le. A surprisingly large number (66{78%) of hosts are

available for migration at any time, even during the day on weekdays. This is partly due to our

environment, in which several users own both a Sun and a DECstation and use only one or the

other at a time. Some workstations are available for public use and are not used on a regular basis.

However, after discounting for extra workstations, we still �nd a sizable fraction of hosts available,

concurring with Theimer, Nichols, and others. Table 5 summarizes the availability of hosts in Sprite

over this period.

To further study the availability of idle hosts, we recorded information about requests for idle

hosts over a 25-day period. During this period, over 17,000 processes requested one or more idle

hosts, and 86% of those processes obtained as many hosts as they requested. Only 2% of processes

were unable to obtain any hosts at all. Processes requested an average of 2.6 hosts, with a standard

deviation of 4.58 hosts and 76% of processes requesting at most one host at a time. Since there were

typically 10 or more idle machines available for each machine type, one would expect processes that

request few hosts to be able to obtain them; more interestingly, however, over 80% of those hosts

requesting at least 10 hosts were able to obtain 10 hosts. Figure 7 shows the fraction of processes

during this period that received as many hosts as requested, as a cumulative function of the number

of hosts requested.

Observations

Based on our experience, as well as those of others (V,

8

Charlotte,

9

and Accent

17

), we have

observed the following:

� The overall improvement from using idle hosts can be substantial, depending upon the degree

of parallelism in an application.

� Remote execution currently accounts for a sizable fraction of all processing on Sprite. Even so,

idle hosts are plentiful. Our use of idle hosts is currently limited more by a lack of applications

(other than pmake) than by a lack of hosts.

� The cost of exec-time migration is high by comparison to the cost of local process creation,

but it is relatively small compared to times that are noticeable by humans. Furthermore, the
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Figure 7: Distribution of host requests and satisfaction rates. For a given number of hosts, shown on the

X-axis, the line labeled requesting shows the fraction of processes that requested at least that many hosts.

The line labeled satis�ed shows, out of those processes that requested at least that number of hosts, the

fraction of processes that successfully obtained that many hosts. Thus, 98% of all processes were able to

obtain at least one host, and over 80% of processes that requested at least ten hosts obtained 10 hosts. Only

24% of processes requested more than one host.

overhead of providing transparent remote execution in Sprite is negligible for most classes of

processes. The system may therefore be liberal about placing processes on other hosts at exec

time, as long as the likelihood of eviction is relatively low.

� The cost of transferring a process's address space and 
ushing modi�ed �le blocks dominates

the cost of migrating long-running processes, thereby limiting the e�ectiveness of a dynamic

\pool of processors" approach. Although there are other environments in which such an ap-

proach could have many favorable aspects, given our assumptions above about host availability

and workstation \ownership", using process migration to balance the load among all Sprite

hosts would likely be both unnecessary and undesirable.

History and Experience

The greatest lesson we have learned from our experience with process migration is the old adage

\use it or lose it." Although an experimental version of migration was operational in 1986,

23

it took

another two years to make migration a useful utility. Part of the problem was that a few important

mechanisms weren't implemented initially (e.g., there was no automatic host selection, migrationwas

not integrated with pmake, and process migration did not deal gracefully with machine crashes).

But the main problem was that migration continually broke due to other changes in the Sprite

kernel. Without regular use, problems with migration weren't noticed and tended to accumulate.

As a result, migration was only used for occasional experiments. Before each experiment a major

e�ort was required to �x the accumulated problems, and migration quickly broke again after the

experiment was �nished.

By the fall of 1988 we were beginning to suspect that migrationwas too fragile to be maintainable.

Before abandoning it we decided to make one last push to make process migration completely usable,

integrate it with the pmake program, and use it for long enough to understand its bene�ts as well as

its drawbacks. This was a fortunate decision. Within one week after migration became available in

pmake, other members of the Sprite project were happily using it and achieving speed-up factors of

two to �ve in compilations. Because of its complex interactions with the rest of the kernel, migration
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is still more fragile than we would like and it occasionally breaks in response to other changes in

the kernel. However, it is used so frequently that problems are detected immediately and they can

usually be �xed quickly. The maintenance load is still higher for migration than for many other

parts of the kernel, but only slightly. Today we consider migration to be an indispensable part of

the Sprite system.

We are not the only ones to have had di�culties keeping process migration running: for example,

Theimer reported similar experiences with his implementation in V.

8

The problem seems to be

inherent in migration, since it interacts with many other parts of the kernel. In Sprite the most

complicated aspects of migration were those related to migrating open �les. In particular, locking

and updating the data structures for an open �le on multiple hosts provided numerous opportunities

for distributed deadlocks, race conditions, and inconsistent reference counts. It is worth reiterating

that these problems would have been present even if we had chosen to implement a \simpler" remote

invocation facility without process migration.

Conclusions

Process migration is now taken for granted as an essential part of the Sprite system. It is used

hundreds of times daily and provides substantial speed-ups for applications that are amenable to

coarse-grain parallel processing, such as compilation and simulation. The transparency provided

by the migration mechanism makes it easy to use migration, and eviction keeps migration from

bothering the people whose machines are borrowed. Collectively, remote execution accounts for a

sizable portion of all user activity on Sprite.

We were originally very conservative in our use of migration, in order to gain acceptance among

our users. As time has passed, our users have become accustomed to their workstations being used

for migration and they have gained con�dence in the eviction mechanism. We have gradually become

more liberal about using idle machines, and we are experimenting with new system-wide migration

tools, such as command shells that automatically migrate some tasks (e.g., jobs run in background).

So far our users have appreciated the additional opportunities for migration and have not perceived

any degradation in their interactive response.

From the outset we expected migration to be di�cult to build and maintain. Even so, we were

surprised at the complexity of the interactions between process migration and the rest of the kernel,

particularly where distributed state was involved as with open �les. It was interesting that Sprite's

network �le system both simpli�ed migration (by providing transparent remote access to �les and

devices) and complicated it (because of the �le system's complex distributed state). We believe that

our implementation has now reached a stable and maintainable state, but it has taken us a long

time to get there.

For us, the bottom line is that process migration is too useful to pass up. We encourage others

to make process migration available in their systems, but to beware of the implementation pitfalls.
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