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ABSTRACT

Due to demand for shared memory in order to implement databases
efficiently, I added the mmap mapped file interface of 4.2 BSD Unix to
Sprite, providing shared memory, file mapping, and user-level control
over paging. This report first discusses the design issues for a shared
memory and file mapping interface and provides an overview of the sup-
port for these functions in other operating systems. Details of the Sprite
virtual memory system and the changes to support shared memory and file
mapping are given. Performance measurements show that in this imple-
mentation, mapped files have comparable performance to block I/O and
are faster than buffered I/O for sequential access. For random access to
locally cached files, the relative performance of mapped files versus block
I/O depends on the access patterns. Access to files across the network is
limited by network transmission time, both for mapped files and block
I/O.

January 4, 1993

hhhhhhhhhhhhhhh
† The work described here was supported by NASA and the Defense Advanced Research Projects Agency under Con-

tract No. NAG2-591, by the National Science Foundation under Grant No. MIP-8715235, and by the IBM Fellowship pro-
gram.



An Implementation of Memory Sharing and File Mapping

Ken Shirriff

Master’s Report

1. Introduction

This report describes the implementation of shared memory and file mapping in the

Sprite operating system. In order to port the Postgres database system to Sprite, the

Postgres research group required extensions to the virtual memory capabilities of Sprite.

We selected the shared memory and mapped file interface of 4.2 BSD Unix† as providing

the required functionality and I added these functions to the Sprite kernel. The functions

in this interface permit memory to be shared between processes and allow files to be

mapped into memory. Additionally, processes can lock pages into memory, force pages

to disk, or check the residency status of pages. Memory can be shared transparently

among processes on a machine and can be shared across a local network if explicit con-

sistency synchronization is used.

I made performance measurements of the mapped file interface, comparing block

I/O, buffered I/O, and mapped file I/O. The measurements show that for sequential

access mapped files have comparable performance to block I/O and are faster than buf-

fered I/O. For random access the relative performance of mapped files versus block I/O

depends on the access patterns. If small accesses are made to many data pages, block I/O

will generally be faster. If multiple references are made to the data pages, mapped files

will generally be faster.

Section 2 of this report gives an overview of the uses of shared memory and file

mapping. Section 3 discusses the goals of the implementation under Sprite. Section 4
hhhhhhhhhhhhhhh

† Unix is a trademark of Bell Laboratories.
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describes some previous implementations of shared memory and file mapping under

other operating systems. Section 5 discusses design issues in the implementation of

shared memory. Section 6 describes the functions added to Sprite to provide shared

memory and file mapping. Section 7 discusses the data structures in the virtual memory

system in Sprite. Section 8 gives performance measurements of file mapping and

discusses my experiences with shared memory and file mapping in Sprite. Section 9 con-

cludes this report.

2. Uses of shared memory and file mapping.

There are many applications for shared memory and file mapping. The paragraphs

below discuss three common uses of shared memory: interprocess communication and

synchronization, sharing of data, and database memory management.

Fast interprocess communication and synchronization are important applications of

shared memory, especially on multiprocessors. By using hardware test-and-set instruc-

tions on a semaphore flag in shared memory, processes can perform fast synchronization

without kernel intervention in the non-blocking case.† Shared memory can also be used

for interprocess communication functions such as message passing. A message can be

written into shared memory and then read by the recipient without explicitly copying the

data. For instance, the lightweight remote procedure call facility of the Taos operating

system [BAL89] uses a shared message buffer to transmit messages efficiently across

domains on a machine.

Shared memory can make memory usage more efficient if several processes are

using the same information, since only one copy of the information needs to be kept in

memory. An example of this is code sharing: multiple processes executing the same
hhhhhhhhhhhhhhh

† If the process must wait on the flag, it could either busy-wait on the flag or call the kernel to
wait.
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program use a single copy of the program.

Another application of shared memory is database memory management. Many

database management systems (DBMS) organize memory as a user-level buffer pool

[Sto81]. In this scheme, data blocks are controlled by a buffer pool manager process

instead of being cached by the operating system. By organizing memory in this way, the

DBMS can fetch data from the buffer without the overhead of a kernel call. Another

advantage of a user-level buffer pool is that the DBMS can use a buffer management

strategy optimized for databases, since standard page replacement strategies usually per-

form poorly with databases. In addition, the database can control the order in which data

is written to disk, to ensure consistency for crash recovery.

Shared virtual memory and file mapping simplify memory organization in a DBMS.

Shared memory allows the database to run as multiple processes sharing a buffer pool.

One process can manage the buffer pool and allocate memory for other processes using

the pool. File mapping can be used as an alternative to a buffer pool. Database files can

be mapped into the address space of the DBMS. This simplifies the DBMS, since the

files will be read and written automatically by the operating system paging functions,

instead of through explicit system calls to perform the reads and writes. One problem

with file mapping is that databases often use very large files. When these files are

mapped into memory, the page table may be large compared to the size of physical

memory. This may require the page table to be paged, resulting in two page-ins to han-

dle a page fault, instead of one.

File mapping has long been used to access files with the power and simplicity of

accessing memory. The Unix standard I/O routines view a file as being a linear stream of

data. Systems usually provide more powerful abstractions for data in memory, such as

arrays, types, structures, and random access. File mapping permits data to be handled

directly with these more powerful abstractions. Another advantage of file mapping is

that the file pages in memory function as a user-level file cache, with paging managed by
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the kernel. For instance, suppose a user is making small random accesses to a large file.

When regular I/O functions are used, each access requires a kernel call even if the data is

in the file system cache.† If a mapped file is used, references to a data page are handled

without any kernel intervention once the page is in memory.

File mapping can sometimes be used for controlling devices: a device is mapped

into a process’s address space and then the process controls the device directly by writing

to the device in memory. This allows devices to be used without having to write device

drivers in the kernel and without the cost of a kernel call. However, this only works if

the device can be controlled at user level, since the memory accesses are made at user

level, not at kernel level. User-level control of a device also requires a mechanism for

the user program to handle interrupts, if the device is interrupt driven. One example of a

device that is commonly controlled by mapping is a frame buffer. By mapping the frame

buffer into memory, programs can directly write to the frame buffer without having to go

through the kernel.

3. Goals of the implementation

The primary motivation for the implementation of shared memory in Sprite was the

wish to run the Postgres database under Sprite. The Postgres database requires shared

memory for its buffer pool manager, as described in Section 2. The Postgres group

wanted shared memory functionality similar to that in 4.3 BSD or System V Unix. Only

sharing on a single machine was required, not sharing across a network.

The characteristics of the Sprite operating system influenced the design of the

shared memory implementation. Sprite is being developed for medium-sized networks
hhhhhhhhhhhhhhh

† With buffered I/O, references will be handled without a kernel call if the data is in the user-
level I/O buffer. However, with the Unix stdio routines, the I/O buffer is only 4-Kbytes.
Thus, random accesses to a large file will almost never reference data already in the I/O buffer. In
contrast, physical user memory and the file cache may each be several megabytes.
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of heterogeneous high-performance workstations [Nel88], [OCD88]. Sprite has a kernel

interface and functionality similar to 4.3 BSD Unix. A single system image is provided,

with files shared transparently among the machines in a Sprite cluster. Files are stored on

a file server and are accessed by client machines using remote procedure calls across the

network, with file caching on both clients and servers.

These characteristics motivated several goals for the implementation. Since the

Sprite operating system is designed to be portable to a variety of systems, the shared

memory implementation must also be portable and must isolate any machine-specific

features into small machine-dependent routines. The implementation had to handle map-

ping files across the local network because Sprite uses a client/server structure. Another

important consideration was that the addition of file mapping and shared memory

shouldn’t cause a performance penalty to programs not using these new features. Other

design goals were that the shared memory and file mapping implementations should be

efficient and reasonably compact.

There were several reasons to use a standard shared memory interface instead of

designing a new one. Past experience of the Sprite group has shown that using a non-

standard interface causes many difficulties since programs must be rewritten to use the

new interface. As well, a familiar interface is usually simpler for programmers. In the

case of shared memory, there didn’t seem to be any significant benefits from designing

and using a new interface.

4. Other implementations of file mapping and shared memory

File mapping and shared memory have been implemented in many operating sys-

tems. Multics is described here first since it is one of the earliest systems to provide

shared memory and file mapping and it has influenced many later designs. The 4.2 BSD

Unix, System V Unix, and Mach shared memory and file mapping interfaces are

currently in use on many systems and are described here. Finally the sharing
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mechanisms of Sprite are described.

4.1. Multics

Multics is interesting historically, as it was one of the first operating systems to pro-

vide shared memory and file mapping [DaD68], [BCD72]. Two design goals of Multics

were to provide direct access to all data and to permit controlled sharing of information.

These goals were attained by file mapping and shared memory. File mapping is the basic

method for accessing information in Multics. Processes can directly access any data in

the system as if it were resident in memory.†

File mapping is transparent under Multics: there is no distinction between accessing

a file and accessing memory. All on-line information in the Multics system is organized

into the file system as directories of symbolically named segments [Org72]. These seg-

ments include not only normal files, but also dynamic blocks of data created by a pro-

cess, such as its heap segment.‡ A process’s address space is a collection of segments

mapped into memory. A segment can be referenced by a symbolic generalized address,

composed of the segment’s path name in the file system and a symbolic offset within the

segment. When the generalized address is first used, the operating system maps the

appropriate segment into the process’s address space and substitutes a segment number

and numeric offset for the symbolic address. Sharing is achieved by having multiple

processes refer to the same file, which causes the segment associated with the mapped

file to be shared in memory.

hhhhhhhhhhhhhhh
† A process must have the proper permissions to access data, of course.
‡ Each process has its own temporary directory for holding segments created during execution,

such as heap and stack segments.
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4.2. BSD Unix

An interface for shared memory and file mapping was defined in 4.2 BSD Unix

[JFL86, McK86] but was not implemented in BSD Unix until Version 4.4 (which is

currently unreleased) [McK90]. This interface has been implemented in various operat-

ing systems derived from BSD Unix, such as SunOS [GMS87] and DYNIX† [Seq86].

The Sprite implementation of shared memory and file mapping is based on the 4.2 BSD

design. The functions implemented in Sprite are summarized in Table 1. In the 4.2 BSD

file mapping interface, a file is mapped into memory by opening the file and then calling

the mmap function with the file’s file descriptor. If the same file is mapped into two

address spaces, the associated memory segment will be shared between the two address

spaces. In this way, the mmap function provides both file mapping and shared memory.

The segment can be unmapped from the address space using the munmap function. The

4.2 BSD interface also provides the functions mlock, munlock, and mincore,

which lock pages into memory, unlock pages from memory, and return the residency

status of pages. The 4.2 BSD interface is described in more detail in Section 6.

In contrast to the interface designed for 4.2 BSD Unix, the actual implementations

of 4.2 and 4.3 BSD Unix have limited support for sharing memory and no support for

mapped files. The implementation permits sharing of read-only code, but not heap or

stack memory. This read-only sharing of code improves performance when several

processes are using the same code, but doesn’t provide any read-write sharing of data.

This sharing is invoked automatically through the routines used to create new processes.

The execve function replaces the current process with a new process, running the

specified code image. If any other process is running the same code image, the two

processes will share code in a read-only fashion. The fork function creates a new pro-

cess which shares the code segment of the parent process.
hhhhhhhhhhhhhhh

† DYNIX is a trademark of Sequent Computer Systems, Inc.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
mmap(address, length, protection,

sharing, file_descriptor, offset);
caddr_t address;
int length, protection, sharing;
int file_descriptor;
off_t pos;

Maps a file into memory, sharing
memory if multiple processes map
the file.

munmap(address, length);
caddr_t address;
int length;

Unmaps part or all of a mapping
from the process’s address space.

msync(address, length);
caddr_t address;
int length;

Forces mapped pages of memory to
disk.

mlock(address, length);
caddr_t address;
int length;

Locks pages into memory.

munlock(address, length)
caddr_t address;
int length;

Unlocks pages from memory.

mincore(address, length,
return_vector);

caddr_t address;
int length, return_vector[];

Returns status (invalid, absent,
clean, dirty) of specified pages.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 1: 4.2 BSD Unix virtual memory functions added to Sprite.

4.3. System V Unix

System V Unix has support for shared memory but not for file mapping [ATT86].

The System V shared memory interface is summarized in Table 2. This interface has

also been implemented in other Unix-based operating systems such as SunOS. The

Postgres group has implemented a simplified version of the System V interface at user

level on top of Sprite’s BSD mmap interface. Shared segments in System V are

identified by a systemwide integer identification key. To use a shared memory segment,

a user process invokes the shmget system call, passing it the size of the segment and

the identification key. This system call creates a shared segment if none already exists

for the given key and returns an integer shared memory identifier. The shared memory

identifier is used to identify the shared segment in subsequent operations. The segment

can be mapped into the address space with shmat and unmapped from the address

space with shmdt. The segment can be locked into memory, unlocked from memory,
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or destroyed with shmctl.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
shmget(key, size, flag) Creates shared segment from a key.
shmat(id, address, flag) Maps shared segment into process’s address space.
shmdt(address) Removes shared segment from process’s address space.
shmctl(id, command, buffer) Performs various operations on a shared segment.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

cc
c
c
c
c

Table 2: Shared memory functions in System V Unix.

4.4. Mach

The Mach operating system has extensive, flexible support for shared memory and

file mapping [TRY87]. One method of sharing is the concept of a thread, which is a

lightweight process that shares its entire address space with other processes. Another

method of sharing is inheritance, which allows a process to share regions of memory with

its child processes. Mach permits user-defined network sharing semantics through the

capabilities of an external memory pager. File mapping is provided by the Mach func-

tion map_fd, which is similar to mmap, but doesn’t provide sharing.

Mach provides flexible control of the virtual memory system through the abstrac-

tions of memory objects and pagers [RTY88]. A memory object is an abstract block of

data which can be mapped into a process’s address space. The data can be provided by a

default paging routine or by an external user-level memory pager. A pager is a collection

of routines to handle page faults and to store paged-out pages. The kernel communicates

with the designated pager when paging is required. Since the pager can generate the data

to fill memory in an arbitrary way, it has tremendous flexibility and control over the vir-

tual memory system. For instance, mapped files are implemented by a memory pager

which reads and writes data from a file. Consistent shared memory across a network can

be implemented at user level by a pager that provides the same memory object to several

different machines and makes sure the data is consistent among the machines [YTR87].

A different shared memory consistency policy can be obtained by modifying the pager.
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4.5. Sprite

Prior to the addition of the 4.2 BSD mmap interface, Sprite had two limited sharing

capabilities. Sprite permitted processes to share code segments, similar to Unix. In addi-

tion, Sprite processes could share both their code and heap segments, while having

separate stacks [Nel86]. This is similar to the Mach model of multiple threads of execu-

tion in a single address space. The motivation for heap sharing was to provide fast and

efficient interprocess communication for Sprite applications running on the SPUR mul-

tiprocessor. Code and heap sharing is provided by the vfork function, which starts a

new process sharing its parent’s code and heap, but with a separate stack. The imple-

mentation of the Sprite virtual memory system is summarized in Section 7 of this report.

5. Design issues

There are several design issues for a shared memory and file mapping interface.

This section discusses various design issues and the ways these issues have been resolved

by different operating systems.

5.1. Name space for shared memory

Processes need some way to refer to shared memory segments so that different

processes can inform the operating system that they are to share the same segment.

Many of the Mach sharing mechanisms and the original Sprite heap sharing mechanism

depend on inheritance, where a process must create subprocesses which can share

memory with it. A more general method is to have a name space for the segments and

allow processes to select arbitrary names for segments they are to share. This works as

long as cooperating processes can pick the same name for a segment to be shared and

disjoint processes don’t conflict with each other by picking the same name for unrelated

segments. Multics, BSD Unix, Mach, and Sprite all use the file system name space to

indicate shared segments, while System V Unix uses 4-byte integer keys as the name
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space. Because there is no structure on the System V name space, unlike the file

system’s directory structure, unrelated System V processes could easily pick conflicting

keys for shared segments. The recommended System V solution is to generate keys

using the library routine ftok, which takes a file system path and a single character

identifier and returns a unique integer identification key.

Access to a segment can be made more efficient by having the operating system

translate the user-selected segment name into an internal segment identifier, which is

then used for future operations. In BSD Unix and Sprite, the segment name is translated

to an integer file descriptor by the standard file system open command, and the file

descriptor is used in any functions on the shared segment. In System V, the integer seg-

ment key is converted into a shared memory identifier by the shmget function and the

shared memory identifier is used for further operations on the segment.

One advantage of using the file system as a name space is that shared memory seg-

ments can be examined using normal file system functions. For instance, under BSD

Unix, ls will show what segments exist in the file system and rm can be used to

remove unwanted segments. System V has no method to determine what keys are in use

except examining the kernel’s virtual memory (/dev/kmem). Two user-level programs

are provided to do this: ipcs displays a list of keys in use and ipcrm removes a

shared memory segment, given its key.

5.2. Persistence of segments

The lifetime of a shared memory segment is another design decision. Once a shared

segment has been created, it could either be automatically removed at some point or per-

sist in the system indefinitely. Automatically removing shared segments prevents

unwanted data from lingering around in the system. However it also prevents processes

from being able to create segments that will last across process lifespans or machine

crashes. In Multics, BSD Unix, and Sprite, shared segments reside in the file system and
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thus will exist until they are explicitly removed. Since System V Unix manages shared

segments in kernel memory, the segments will be lost if the host machine is rebooted. In

normal operation, though, System V segments will persist until they are explicitly

removed.

One problem with storing shared segments in the file system is that in many cases

the applications share the data in memory but don’t require the data to be saved to disk,

so writing it to a file is wasted effort. The 4.3 BSD Unix interface specification has a

solution to this: a flag can be given to mmap to create an anonymous segment, which

resides only in memory and is not associated with a file. Since Mach allows user-level

pagers, Mach applications can control shared segments and store them in the file system,

or not, as desired.

5.3. Sharing in a network

A network environment adds several complications to shared memory. The main

issue is whether (and, if so, how) to maintain consistency when data is shared across two

or more hosts. This is related to the cache consistency problem; the main memory of a

host can be considered to hold a cached copy of the shared data and some semantics for

consistency must be provided. One possibility is to limit sharing to processes on the

same machine. This eliminates the consistency problems of multiple machines, but at the

cost of limiting the functionality provided.

Another alternative is to implement sharing transparently across the network. This

would permit processes on different machines to share a memory segment as if the

processes were on a single machine. Transparent sharing can be very costly since every

write to a shared segment must be propagated across the network to any other users of

the segment. Consider the case of one machine writing to a shared page while another

machine reads the shared page. The reading machine must continually obtain the

modified data from the writing machine if the page is to be shared transparently.
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A third alternative, limited consistency, was selected for implementation in Sprite.

In this model, sharing can occur across the network but changes to a shared page on one

processor will not be visible to processes on other processors until the modified page is

returned to the server by msync or by being paged out. At this point, the changes will

be propagated to any other processors sharing the page. This does not provide tran-

sparent sharing, since changes to segments are not visible immediately, but it gives the

user the capability to implement transparent sharing or other desired consistency seman-

tics on top of the supplied functionality. A similar method of supplying consistency is

provided in SunOS. In Mach, the user-supplied pager routine can implement whatever

consistency model is desired.

Process migration poses a potential problem for shared memory. The Sprite operat-

ing system permits processes to be migrated from one processor to another across the

local network. This raises the possibility of multiple processes sharing memory on a sin-

gle processor and then having some of the processes migrate to a different processor

while others stay behind. If this happened and sharing across the network is not tran-

sparent, the sharing semantics would change and the application might no longer work

correctly. To avoid this, processes using shared memory in Sprite are marked as not

migratable, so they will remain on their original machine. An alternative would be to

migrate all processes sharing memory on a machine together, so the sharing would still

be local.

5.4. Assigning a virtual address range

One last issue is where in a process’s address space to place a segment for shared

memory or file mapping. In a segmented architecture such as used by Multics, each

memory segment is assigned a separate segment number and thus resides in a separate

region of the address space. However, in a flat address space, a shared segment must

share the address space with other segments without conflicting with them. For instance,
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suppose a shared memory segment is mapped after the end of the heap. This would com-

plicate memory allocation functions such as malloc, since there will be holes in the

usable heap as the heap expands over the shared segment.

Many shared memory interfaces allow the user to supply an address for a segment,

but may ignore this address. Mach permits a virtual memory object to be created either

at a user-specified address or at a free address selected by the kernel. 4.3 BSD Unix and

System V permits the user to provide a page-aligned starting address when creating a

shared memory segment, but the system is free to use this address as a suggestion or

ignore it totally, depending on the implementation.

Sprite currently reserves part of the address space above the stack for shared

memory segments in order to simplify memory management. This eliminates any prob-

lems with shared segments interfering with the heap or stack. The main problem with

this method is that a large region (currently 32 Megabytes) of the address space must be

reserved. Reserving this region both limits the total size of a process’s shared memory

segments and prevents anything else from using the reserved address space. If the fixed

sharing region proves to be insufficient, I may modify shared memory allocation to allo-

cate arbitrarily large segments† between the heap and the stack.

6. Functions added to Sprite

The functions added to the virtual memory system of Sprite are mmap, munmap,

msync, mlock, munlock, and mincore. These functions are summarized in

Table 1, and are are basically the same as the corresponding functions in 4.3 BSD.

The function mmap(address, length, protection, sharing,

file_descriptor, offset) is used to provide file mapping and shared memory.
hhhhhhhhhhhhhhh

† The size of shared memory or mapped file segments will be limited by the size of the
processor’s virtual address space, in any case.
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It maps the specified file into the specified region of the process’s address space. If two

or more processes map the same file, the processes will share the mapped region. The

file to be mapped is specified by file_descriptor and an offset into the file is

given by offset. The region of memory is specified by address and length,

and must be page aligned. In the current implementation, the value of address is

ignored. The mmap function returns the address in the process’s virtual memory at

which the segment is mapped. The access mode for the segment (read/write) is given by

flags. If the file is mapped with write access, the file functions as a swap file for the

shared region.

The function munmap(address, length) is used to remove part or all of a

mapping from the process’s virtual address space. The values of address and

length specify the region to be unmapped and must be page aligned. Any modified

pages that are no longer mapped by any process will be written back to the file. The

munmap function can result in a mapped region being shrunk, split into two parts, or

entirely removed.

The msync, mlock, and munlock functions can be used to force the desired

consistency between the data in memory and the data on disk. They provide the capabil-

ity, required by some databases, of ensuring pages are written to disk in the right order

and at the right time. The function msync(address, length) forces the pages in

the specified address range to disk and returns after the pages have been written. The

function mlock(address, length) locks the specified pages into memory, so

they cannot be paged out to disk. The function munlock(address, length)

unlocks the specified pages from memory. If mlock isn’t used, data will be stored in

memory and will be written back when the segment is no longer in used. Additionally,

data will be written to disk if the pages are paged out by the operating system. By using

mlock, the specified pages will be locked down into memory and will not be paged out.

Thus a locked page will not be written to disk until it is forced to disk by msync or
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released by munlock.

The function mincore(address, length, return_vector) returns in

return_vector[] a list of integers, one for each page, indicating the status of the

pages in the specified address range. The return value indicates if the page is clean, dirty,

paged out, or invalid.

7. The virtual memory system in Sprite

Section 7.1 discusses the data structures in the virtual memory system in Sprite prior

to the addition of shared memory and file mapping. A higher level description of the ori-

ginal Sprite virtual memory system is given in [Nel86]. Section 7.2 describes the data

structures used to provided shared memory and file mapping. Section 7.3 describes the

machine-dependent aspects of shared memory.

7.1. Original virtual memory system

A process’s virtual memory in Sprite consists of four segments, where a segment is

a contiguous group of pages sharing the same swap file. These segments are an operating

system abstraction on top of the machine’s address space, as opposed to being part of the

machine architecture as segments are in Multics. There are four types of segments used

in Sprite, each with different properties: code, heap, stack, and system. A code segment

is read-only and of fixed size. A heap segment is readable and writable, and can be

expanded or contracted through a system call in order to provide memory allocation

functions. Code and heap segments can be shared among processes. A stack segment

automatically grows downwards as references are made outside the allocated part of the

stack. The system segment is locked into memory and is used only by the kernel; it is

unused by user-level processes.

There are four key data structures in the virtual memory system: the processes’ vir-

tual memory data blocks, the segment table of segment control blocks, the operating
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system page tables, and the core map. The first two data structures influenced the design

of shared memory. The last two data structures were unaffected by the addition of shared

memory and are described in this section for completeness. Figure 1 illustrates the data

structures. These data structures are machine-independent operating system structures.

Machine-dependent structures, such as the machine’s page table or translation buffers,

are managed separately by machine-dependent subroutines.

Core MapPage TablesSegment TableProcesses

Stack

Heap

Code

Stack

Heap

Code Segment control
block

Figure 1: Virtual memory data structures. Each process has pointers to segment control
blocks for the code, heap, stack, and system segments. (The system segment is not shown
since it is only used by kernel processes.) Each segment control block holds information
on the segment and points to the page table for the segment. Each physical page in
memory has an entry in the core map. Core map entries are referenced by the page
table. Paged-out pages are marked in the page table as being not physically resident (in-
dicated here by gray). The two processes in this figure are sharing a code segment.

Each process has a virtual memory data block as part of the state in its process con-

trol block. This data block has four (possibly null) pointers to segment control blocks for

the code, heap, stack, and system segments. The data block also contains status flags and

any process-specific machine-dependent data structures. Since the data block limits a

process to four specific segments, I had to change it to handle additional shared
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segments.

The segment table consists of a fixed number of segment control blocks. There is

one segment control block for each potential segment in the system, with a segment con-

trol block holding the state necessary to manage the associated segment. This state

includes the virtual address range of the segment, a pointer to the segment’s page table, a

list of processes using the segment, a reference count, a stream pointer for a swap file,

type information, segment size information, copy-on-reference and copy-on-write infor-

mation, and status flags. Unused segment control blocks are kept in a free list and new

segments are allocated from this list.

Each segment has an associated page table with an entry for each page in the seg-

ment. Each page table entry has status flags and, for physically resident pages, an index

into the core map. There is one core map entry for each physical page of memory. The

core map entries are organized into four linked lists, holding the allocated, free, dirty,

and reserved pages. Each core map entry also holds the page’s status flags, reference

time, lock count, and associated virtual address.

These four data structures are used to handle page faults. First, the faulting virtual

address is converted into a translated address, consisting of the virtual address and a

pointer to the appropriate segment control block. The translated address is obtained by

comparing the virtual address to the addresses of the process’s four segments to deter-

mine in which, if any, segment the address falls. Next, a new physical page is obtained

from the core map’s free page list. Finally, the page is loaded using the translated

address and the address information in the segment table.

7.2. Data structures for shared memory and file mapping

Two data structures were added to the virtual memory system to support file map-

ping and shared memory. The process segment list holds data on sharing associated with

a process and the shared-segment control blocks hold data associated with a shared
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segment. There are two main functions of these data structures: handling page faults and

allowing mapping operations on segments. Figure 2 shows the relationship of these data

structures with the original virtual memory data structures.

Segment TableProcesses

Stack

Heap

Code

Shared

Stack

Heap

Code

Shared

Control Blocks

Segment List

Shared-Segment

Process

Segment List
Process

Normal segment

Shared segment

Mapped segment

Figure 2: Shared memory data structures. Each process has a process segment list,
which lists the process’s shared segments and information on the mapping for each seg-
ment. A shared-segment control block is associated with each shared segment and holds
information on the shared segment and points to the associated segment table entry. The
segment table entries reference the page tables and the core map as in Figure 1. (These
references are not shown here.) The two processes in this figure are sharing a segment.
The second process has an additional shared segment, which is being used for file map-
ping.

Each process has a pointer to a list of all the shared or mapped segments associated

with the process. This list is called the process segment list. Each process segment list

entry holds the information associated with one process-segment mapping: the file

descriptor of the associated file, the segment table entry, the address range mapped, and

the protections on the segment.

The second new data structure is the linked list of shared-segment control blocks.

Each shared segment has a control block to hold segment-specific information: the asso-

ciated file, a reference count of the number of mappings of the segment, and a pointer to
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the appropriate segment control block. This information could alternatively have been

added to the segment table instead of being stored separately.

The main use of the process segment list is handling page-ins of shared or mapped

files. When a page is paged-in, the process segment list is used to determine if the fault-

ing virtual address lies in a shared segment, and if so, which segment. The address trans-

lation routine checks the address against the system, code, heap, and stack segments, and

the process’s list of shared segments.

There are several alternatives to the process segment list that could have been used

to map addresses to segments. One alternative would be to use a single structure to hold

the code, heap, and stack segments and the shared segments, instead of storing shared

segments separately. This was not done, in order to minimize changes to the previous

Sprite implementation. However, it would probably result in a cleaner implementation

since all segment types would be treated uniformly. Another alternative is a tree-

structured address map such as is used in Accent [FiR86]. This structure provides com-

pact storage of a complex, sparse address space and allows fast indexing into the

appropriate address map. However, it has a high implementation cost [RTY88].

When a segment is mapped into memory by mmap, the list of shared-segment con-

trol blocks is checked to see if the specified file is already mapped. If so, a pointer to the

control block is added to the process’s segment list. Otherwise a new segment is created

and a new segment control block is added to the segment table. A new shared-segment

control block is created for the new segment and a new entry is added to the process’s

shared segment list, pointing to the shared-segment control block.

When a segment is unmapped by munmap or by closing the associated file, the

process segment list is updated. If the segment is partially unmapped, the mapped

address range in the process segment list entry is updated. If the entire region is

unmapped, the process segment list entry is removed and the segment’s reference count

is checked. If there are no more references to the shared segment, the segment is
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removed, along with its segment table entry and shared-segment control block.

The file system contains a new data structure, the client list, to handle synchroniza-

tion of shared data across the network. The file server keeps a list of clients using each

shared segment or mapped file, When a client flushes pages to disk, the server notifies all

clients using the file that the modified pages are invalid. These pages are then invali-

dated in the clients’ virtual memories. Any accesses to these pages will cause the new

data to be paged in from the server, obtaining the new data. The cost of this scheme is

one message to each machine sharing a file each time the file is explicitly synchronized

with msync, and a read of the data from the server every time a client accesses out-of-

date data. As discussed in section 5.3, this scheme doesn’t provide transparent sharing,

but allows the user to implement a desired consistency policy.

7.3. Hardware dependencies

Since the Sprite operating system is designed to run on a variety of machine types,

the code is organized to be easily portable to different machines. The operating system

source code is organized into modules, with each module having subdirectories to hold

the machine-dependent subroutines and definitions for each machine type. In this way,

most of the code can be shared across machine types, with only a small amount that must

be changed for a new machine type. Table 3 shows the machine-dependent routines used

for shared memory and file mapping. The routine VmMach_SharedProcStart is

called when a process first makes use of shared memory or file mapping. When a process

is finished with all its shared segments, VmMach_SharedProcFinish is called. In

the current implementation, these routines are used to create and destroy data structures

for keeping track of what parts of the process’s address space are available for shared

segments. When a shared segment is mapped, VmMach_SharedStartAddr is

called to obtain a suitable address range for the shared segment. This routine takes care

of any constraints a machine may have on the placement of shared segments. In the
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current implementation, this allocates the segment from the region of the process’s

address space reserved for shared memory. When a shared segment is destroyed,

VmMach_SharedSegFinish is called. In the current implementation, this frees the

segment from the reserved address range.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
VmMach_SharedProcStart Starts a process’s shared memory usage.
VmMach_SharedProcFinish Completes a process’s shared memory usage.
VmMach_SharedStartAddr Locates an address and starts a shared segment.
VmMach_SharedSegFinish Finishes usage of a shared segment.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c

cc
c
c
c
c

Table 3: Machine dependent functions for the Sprite implementation.

Shared memory is made more complicated by the presence of virtually addressed

caches on some machines. Implementation of shared memory was straightforward on the

Sun-3 and DECstation 3100, which have physically addressable caches, but was more

difficult on the Sun-4, which has a direct-mapped 128-Kbyte virtually addressable cache.

Because the Sun-4 cache is virtually addressable, cache aliasing can potentially occur.†

One solution to this problem would be to disable caching on shared segments. However,

this would decrease performance, since all references to shared memory would have to

go to memory. To prevent aliasing without a performance loss, all shared memory

regions on the Sun-4 are allocated on an alignment of 128K. Thus, since two different

virtual addresses for the same byte of shared memory will differ by 128K, they will map

to the same location in the cache, and aliasing won’t occur.

hhhhhhhhhhhhhhh
† Aliasing occurs if one physical memory address has two different virtual addresses which

map to different locations in the cache. A write to one of these virtual address will update one of
the cache entries, but will leave the other cache entry out-of-date. However, if the two virtual ad-
dresses are congruent modulo the cache size, both virtual addresses will map to the same location
in the cache. Then, since there is only one cache entry, it will be updated correctly, and aliasing
won’t occur.
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8. Experience with the implementation

The shared memory and file mapping functions are now operational and are being

used by the Postgres group. The implementation took about 1200 lines of code, includ-

ing comments and debugging code. Section 8.1 gives performance measurements of file

mapping, comparing it with other I/O techniques. A detailed description of the measure-

ments is given in Appendix 1. Section 8.2 comments on the implementation and gives

suggestions for changes to the implementation.

8.1. Performance measurements

This section gives measurements of the performance of mapped files and other I/O

techniques. In Section 2 some of the performance tradeoffs of using mapped files instead

of other I/O functions were discussed. The measurements in this section clarify the

effects of these tradeoffs. To summarize these measurements, in the Sprite implementa-

tion mapped files and block I/O provide the same performance for sequentially reading a

file, but mapped files are much faster than buffered I/O. For random file I/O, the relative

performance of mapped files and block I/O depends on the access patterns.

Table 4 gives performance measurements for sequentially reading a 480-Kbyte file

using various methods. The first three measurements give the time to sequentially read

the file using buffered I/O, block I/O, and file mapping. In order to explain the perfor-

mance results, measurements are also given for paging in data pages, copying data, and

transmitting data via remote procedure calls.† The measurements show that all the

methods which read data in blocks (read, mmap, and data fill) have about the same per-

formance. Buffered I/O (getc) is significantly slower, since each byte must be handled

individually. All the I/O functions are an order of magnitude faster when the data is
hhhhhhhhhhhhhhh

† For file mapping and paging in data pages, one byte in each page is touched to cause the data
to be paged in.



- 24 -

locally cached than when it must be obtained from the server. For locally cached data,

most of the time is spent copying the data from the cache.† For remotely cached data,

nearly all of the time is to receive the data across the network with remote procedure

calls.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Locally cached Remotely cached
Measurement (sec) (Mbytes/sec) (sec) (Mbytes/sec)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
getc .54 .91 2.0 .25
read .13 3.78 1.4 .35
mmap .13 3.78 1.1 .45iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
data fill .13 3.78 1.2 .41
bcopy .08 6.14
RPC 1.1 .45iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 4: Performance measurements for sequential access to a 480-Kbyte file on a
DECstation 3100 with a Sun-4 file server. Times are given to read the file sequentially us-
ing buffered I/O (getc), block I/O (read), and file mapping (mmap). Times are also given
to page in a 480-Kbyte array with initialized data (data fill), to copy a resident array
(bcopy), and to transmit 480-Kbytes by remote procedure call (RPC). The accuracy of
the remotely cached measurements is not sufficient to indicate any performance differ-
ence except betweeen block I/O (getc) and the others.

In [TRY87] it is suggested that mapped files can reduce the cost of file I/O since

mapped files don’t need to copy data from the kernel to user level. However, in the

present Sprite implementation, this benefit of mapped files will only occur for remote file

accesses, for reasons described below. When data is read with file I/O functions, the

requested data is copied from the local file cache to user level. If the data is not in the

file cache, the appropriate page will first be obtained from the file server and stored in the

file cache. To page in data, the page is copied from the local cache if possible.‡ If the
hhhhhhhhhhhhhhh

† Note that in applications such as databases, mapped file data will normally be kept in user
memory once accessed, and will not enter the local file cache. For these applications, it may not
be relevant to consider the case of mapping locally cached data. In other cases, mapped file data
could be in the local cache initially: for instance, if one program accesses data using file I/O and
then another program accesses the same data using file mapping.

‡ This copy operation for paging in local mapped file data could be eliminated by modifying
Sprite file caching to permit the cache block to be mapped into the process’s address space direct-
ly. In the current implementation, the data is explicitly copied from the cache into a memory page
because the Sprite file system and virtual memory system manage cache blocks and memory
pages separately. Mapping cache blocks into a user’s address space would require extensive
changes to the interface between the file cache and the virtual memory system. One problem is
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data is not locally cached, it is obtained from the file server and is stored into the

appropriate memory page, bypassing the local file cache. The required operations are

summarized in Table 5. In conclusion, local data accesses require one data copy for

reading or mapping. Remote data accesses require one more copy operation for reading

than for mapping, and the overhead of a bcopy operation in the total time is about 7%,

from the measurements in Table 4.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Source File I/O read Mapped file accessiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Local cache 1 copy 1 copy
Local disk 1 read, 1 copy 1 read, 1 copy
Remote cache 1 rpc, 1 copy 1 rpc
Remote disk 1 read, 1 rpc, 1 copy 1 read, 1 rpciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

Table 5: Operations required to read data with block I/O and with file mapping. The
"read" operation reads the data from disk. The "rpc" transmits the data across the net-
work via remote procedure call. The "copy" copies the data from the local file cache.

Table 6 gives measurements for randomly accessing individual bytes in a 480-

Kbyte file. There are two important differences between these measurements and the

measurements in Table 4. First, throughput is dramatically reduced, since each random

read obtained only one wanted byte, while each sequential read obtained a 4-Kbyte

block. Second, the relative performance of block I/O and of file mapping depends

heavily on the data access patterns.

There are three important factors affecting the times for randomly reading and map-

ping data. First, when data is read from the cache, only the requested data (in this case

one byte) is copied from the cache. However, when a mapped file is accessed, the entire

4-Kbyte page is paged in, even if only one byte is used. Second, once a mapped page is

loaded, any later accesses to data in that page can be handled immediately. The read
hhhhhhhhhhhhhhh
that the file system and virtual memory system would have to cooperate in performing operations
such as locking, unlocking, flushing, and freeing cache blocks that are mapped into memory.
Another problem is that file cache blocks and virtual memory blocks are different sizes on some
Sprite machines. I tested an experimental implementation of mapped files that directly mapped
cache blocks into memory and found that the performance for locally cached files was about a fac-
tor of 10 better than the mmap measurements in Table 4.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Locally cached Remotely cached

Measurement (sec) (Kbytes/sec) (ms/probe) (sec) (Kbytes/sec) (ms/probe)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
read, 120 probes .05 2.4 .42 .7 .17 5.8
read, 1000 probes .40 2.5 .40 1.3 .77 1.3
mmap, 120 probes .09 1.3 .75 .7 .17 5.8
mmap, 1000 probes .13 7.7 .13 1.2 .83 1.2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Table 6: Performance measurements for random acceses to a 480-Kbyte file. Times are
given to probe the file by reading single random bytes using block I/O (read) and file
mapping (mmap). Tests were performed reading 120 bytes in total (from 74 pages) and
1000 bytes (from 120 pages). For block I/O, a system call is made for each probe. For a
mapped file, a page-in results for each new page accessed. File mapping is more efficient
than block I/O in the 1000 probe case because each page receives many probes.

operation must perform a system call for every read. Finally, for a remotely cached file,

the time to receive data pages from the file server dominates the time to access these

pages in the local cache later.

These three factors account for the measurements in Table 6. When data is read

from the local file cache, the time spent is proportional to the number of reads performed

and the amount of data read. On the other hand, when a mapped file is read, the time

spent is proportional to the number of pages accessed. Thus, when small amounts of data

are accessed from many pages, reading the data with block I/O functions is faster than

mapping the file. However, if many references are made to the same page, mapping the

file will be faster. For a remote file, these distinctions are obscured by the time required

to obtain the data across the network. In this case, the time spent is proportional to the

number of remote pages received.

In conclusion, in the Sprite implementation, mapped files and block I/O have simi-

lar performance. The data rates for sequential access are nearly identical. However, in

some situations either mapped files or block I/O may be better. Mapped files have the

advantage of having pages directly available to the user once they’ve been loaded. How-

ever, this must be balanced against the overhead of transferring data in page-sized blocks

with mapped files.
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8.2. Comments on the implementation

One difficulty in implementing shared memory and file mapping in Sprite was that

the file system and the virtual memory system are heavily interrelated. Because files can

be cached on both the client and the server, careful changes to the file system code were

required to ensure that the right copy of a mapped file would be paged in. The problems

arose because Sprite uses separate data paths to access swap files and regular files: swap

files are cached only on the server, while regular files are cached both on the client and

on the server.† The Sprite implementation treats mapped files and shared memory back-

ing files as swap files.

There are many improvements that can still be made to the Sprite virtual memory

system. One improvement would be to provide more support for sharing of data across a

network. This could consist of a library of routines to provide transparent sharing and

other useful consistency strategies. These routines would use the mmap, mlock, and

msync functions to implement the desired sharing semantics.

Another useful change would be support for large, sparse virtual address spaces, in

which the validated part of the address space is much larger than the part actually in use.

In Sprite, page table data structures will be created for the entire validated region. In

contrast, Mach uses an address map [RTY88], which compactly describes the mapping of

a contiguous virtual address range. The address map representation is much more com-

pact than the page table representation for sparse address ranges.

Other improvements could be made to the Sprite virtual memory system to make

database support more efficient. Some suggestions are given in [Sto81] and [Sel89].

One improvement would be to provide asynchronous I/O for paging in data. This would

allow the data manager to request a page and then continue processing while the page is
hhhhhhhhhhhhhhh

† Swap files are not locally cached because paging out from virtual memory to a local cache
would not be useful since it wouldn’t free any physical memory pages.
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being read in from disk instead of blocking when a page fault occurs. Another sugges-

tion is to modify system calls so fewer system calls are required. Possible changes are to

extend mmap to map multiple regions with one system call and to permit mmap to lock

pages as they are read in, instead of requiring a separate mlock call.

The virtual memory interface of Mach is much more flexible than that provided by

Unix or Sprite. Mach gives the user more support over the operating system as well as

providing additional built-in functionality. For these reasons, there are currently plans to

install the virtual memory subsystem of Mach in Sprite.

9. Conclusions

The 4.3 BSD Unix shared memory and file mapping functions have been success-

fully added to Sprite and are being used by the Postgres database system. These func-

tions provide mapped files, sharing of data, and control over writing data to disk. Sprite

is currently running with shared memory and file mapping on the Sun-3, Sun-4, and

DECstation 3100.

Measurements show that, in the Sprite implementation, file mapping has compar-

able performance to block I/O for sequential file access and is much faster than buffered

I/O. For random access the relative performance of mapped files versus block I/O

depends on the access patterns. For locally cached files, the time for block I/O is propor-

tional to the number of reads and the amount of data read. In contrast, the time for

mapped file access is proportional to the number of distinct pages accessed. Thus, if

small accesses are made to many data pages, block I/O will generally be faster. If multi-

ple references are made to data pages, mapped files will generally be faster. When the

data is not locally cached, the performance of mapped files and block I/O is worse by an

order of magnitude. The time spent accessing remote data is proportional to the number

of distinct pages accessed, both for mapped files and block I/O. Most of this time is

spent transmitting the data pages across the network.
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Appendix 1: Details of the performance measurements

This section describes the measurements in Tables 4 and 6 in detail. I performed

these measurements on a DECstation 3100 client served by a Sun 4 file server. The page

size and file block size are 4-Kbytes, and the file is 480-Kbytes (491520 bytes), so the file

is 120 pages long. Table 4 gives the time in seconds to sequentially read, copy, or

transmit 480-Kbytes of data. Table 6 gives the time to individually access 120 or 1000

random bytes in a 480-Kbyte file. The resulting throughput is given in megabytes (106

bytes) per second in Table 4 and kilobytes (103 bytes) per second in Table 6. For the

"locally cached" measurements, the file being read is in the client machine’s file cache.

For the remotely cached" measurements, the file is in the file server’s cache, but not the

client’s file cache. The times given are elapsed time, returned by the time function.

The measurements were done on a lightly loaded network. The numbers in Table 4 and 6

are averages over 10 measurements. The measurements for locally cached data

fluctuated around the average by about 4%. The measurements for remotely cached data

fluctuated by about 30% due to variations in network traffic and server load.

The measurements in Table 4 are of sequential accesses to 480-Kbytes of data. The

measurement "getc" is the time to read the file a byte at a time, using the getc buffered

I/O function. For "read", the read block I/O function read the file in 4-Kbyte blocks.

For "mmap", the file is mapped into memory with mmap and then each page is touched,

causing the file to be read into memory. These measurements exclude the time to open

and close the file (about 6.3 ms) and the time to perform a mmap system call (about 5.7

ms). The "data fill" measurement shows the time to handle page faults. Each page of a

480-Kbyte array of initialized data was touched, causing the data to be paged in from the

object file’s initialized heap. For "bcopy", a 480-Kbyte array in physical memory was

copied. Finally, for "RPC", the remote procedure call function sent 480-Kbytes of data

from the server to the client in blocks of 4-Kbytes.
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The measurements in Table 6 are of random accesses to a 480-Kbyte file. The same

pseudorandom sequence was used for all measurements. For "read", lseek moved to a

random position in the file and then read read one byte. These operations were

repeated 120 times and 1000 times, for the respective measurements. For "mmap", the

file was mapped into memory and then 120 or 1000 bytes at random offsets into the file

were read from memory, causing the appropriate pages to be faulted into memory. The

120 byte measurements accessed 74 different pages, while the 1000 byte measurements

accessed all 120 pages of the file.


