
Pseudo-File-Systems

Brent B. Welch
John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract
This paper describes a facility that transparently extends the Sprite distributed file
system to include foreign file systems and arbitrary user services. A pseudo-file-
system is a sub-tree of the distributed hierarchical name space that is implemented by
a user-level server process. A pseudo-file-system fits naturally into the Sprite distri-
buted system; the server runs on one host and access from other hosts is handled in
the same way as remote access to Sprite file servers. The pseudo-file-system inter-
face is general enough to be used for version control systems, access to archival
storage, as well as access to other kinds of file systems. We currently use a pseudo-
file-system server to provide access to NFS file servers from Sprite workstations.
Performance results of the NFS server are given in order to evaluate the cost associ-
ated with user-level implementation of services. †

October, 1989

hhhhhhhhhhhhhhhhhhhhhhhhhhh
† This work was supported in part by the Defense Advanced Research Projects Agen-

cy under contract N00039-85-C-0269, and in part by the National Science Foundation
under grant ECS-8351961.



1. Introduction

Sprite [Ousterhout88] is a network operating system that is centered around its

shared file system. The underlying distribution of the system is hidden behind the file

system, which transparently provides access to local or remote files to all the Sprite hosts

in the network. We designed the file system to cleanly handle local and remote file

access through an internal kernel interface much like the vnode [Kleiman86] or gnode

[Rodriguez86] interfaces in the UNIX1 and ULTRIX2 kernels. This kind of structure

supports modular additions to the kernel to support other types of file systems. For

example, we could have provided access to NFS3 [Sandberg85] file servers by adding an

NFS file system type to the kernel. However, we decided instead to add a file system

type that allows further extensions to the system to be implemented in user-level server

processes instead of inside the kernel. We call the new file system type a pseudo-file-

system.

Our main motivation for implementing pseudo-file-systems was to provide access to

existing NFS servers so that users could gradually switch over to using Sprite instead of

UNIX. However, we think that pseudo-file-systems will also be useful for a variety of

other applications where generality and ease of implementation are more important than

achieving the absolute maximum performance. For example, a version control system

hhhhhhhhhhhhhhhhhhhhhhhhhhh
1 UNIX is a registered trademark of A.T.&T.
2 ULTRIX is a registered trademark of Digital Equipment Corporation.
3 NFS is a registered trademark of Sun Microsystems.

2



might be implemented as a pseudo-file-system that automatically checks files in and out

whenever they are used. Or, an archive service might represent itself as a pseudo-file-

system with a directory structure that indicates date of archival. In this case the perfor-

mance overhead of the user-level implementation would be overshadowed by the cost of

archive retrieval. Pseudo-file-systems provide a general mechanism for extending the

naming and I/O structure of the file system with user-implemented applications.

The advantages of user-level implementation of system services have been pro-

moted before by designers of message-based kernels [Cheriton84]. Debugging is easier

because the server is an ordinary application and the standard debugging tools apply to it.

The kernel remains smaller and more reliable. It is easier to experiment with new types

of services. The pseudo-file-system approach has all of these advantages, plus it provides

more structure than a message-based kernel. The file system orientation of the system

means that there is a standard interface to the various system services so the environment

is easy for users to understand. An archive service or a database, for example, can be

accessed like the rest of the file system.

The file system support provided by the kernel allows a pseudo-file-system server to

be simpler than a corresponding server in a pure-message based system. The distributed

name space is managed by the operating system. The server implements its part of the

name space and lets the system handle the problems of server location and remote access.

The kernel does crash detection and supports automatic recovery of our file servers. The

kernel buffers file data to optimize I/O. We are extending our recovery and caching

mechanisms to support pseudo-file-system servers. Thus, Sprite is a ‘‘file-system-based’’

kernel that provides a standard interface to users and applications and provides more sys-

3



tem support for user-implemented services than a message-based kernel.

A disadvantage of our approach, however, is that the performance of the pseudo-

file-system will be degraded by its user-level implementation. Our measurements sug-

gest that the performance degradation is as much as 50 percent for I/O intensive applica-

tions. This indicates that systems that implement regular file service out of the kernel

may suffer in performance. There is unavoidable overhead associated with context

switching and message passing that is not incurred with kernel-resident services. Sprite

optimizes the common case, regular file system activity, by implementing it inside the

kernel, yet is also provides for transparent extension of the system via pseudo-file-

systems.

The remainder of this paper is organized as follows. Section 2 describes the way

the Sprite distributed file system is organized. Section 3 describes the kernel structure

that supports pseudo-file-systems. Section 4 describes our NFS pseudo-file-system and

gives some performance results. Section 5 outlines our current work to extend the

kernel’s caching and recovery systems to pseudo-file-systems. Section 6 reviews related

work, and Section 7 gives our conclusions.

2. The Structure of the Distributed Name Space

Pseudo-file-systems are a natural extension of mechanisms already present in Sprite

to support distribution. The file system is organized into domains controlled by different

servers. A domain can be implemented by the local operating system kernel, it can be

implemented at a remote host, or it can be implemented as a pseudo-file-system by a

user-level process. Each domain is a sub-tree of the hierarchical name space, and the

4



sub-trees can be nested arbitrarily to form the global hierarchy. The division of the name

space into different domains is transparent to users and application programs. There is

just one name space shared by all the Sprite hosts, and its distribution among servers is

hidden by the operating system.

The distribution of the name space is managed by the Sprite kernel with a prefix

table mechanism [Welch86a]. Each domain is identified by a prefix that is the name of

the domain’s top-level directory. The kernel on each host maintains a prefix table that is

used to map a pathname to a domain, its server, and its type. The prefix table records

what domains are serviced by a host, and they also cache information about other

D

C

B

A

‘‘/users/archive’’

‘‘/users’’

‘‘/cmds’’

‘‘/’’

serverprefix

sprite archive

19891988

root (‘‘/’’)

cmds etc dev users

staff

john

passwdcc ls edit

B A

C

D

Figure 1. This shows the file system hierarchy and a prefix table that partitions the
hierarchy into four domains. The distribution is transparent to applications. A domain’s
server might be the local operating system kernel, a remote Sprite kernel, or a user-level
pseudo-file-system server. The server’s type and a token that identifies the domain are
also kept in the prefix table. For example, ‘‘/users/archive’’ can be implemented as a
pseudo-file-system that presents a name space organized by date of archival.

5



domains being accessed by the host. The system automatically adds prefixes as new

domains are accessed, and it automatically locates the server of a domain. Servers are

located using broadcast, and there is no centralized agent that has to know the complete

structure of the system. Figure 1 shows an example of a file system divided into four

domains and a prefix table that defines the division.

The use of the prefix tables is simple. During name lookup, absolute pathnames

(those beginning at the root of the hierarchy) are compared against a client’s prefix table

and the longest matching prefix determines the domain. Operations on relative path-

names bypass the prefix table and are sent directly to the server of the process’s current

working directory. In both cases the server is passed a relative pathname and a token that

identifies directory at which to begin interpretation of the pathname. The token specifies

a type, a server, and an identifier that is interpreted by the server. Tokens are obtained

from the server when a prefix table entry is initialized, and also when the current direc-

tory of a process is defined.

The layout of the domains is determined by remote links contained in the name

space. When a server encounters a remote link during name lookup it cannot complete

the lookup operation. Instead, it returns a prefix, which is stored in the remote link, and

the remaining pathname to the client kernel. If the prefix is new to the client kernel then

its prefix table is updated and the domain’s server is located using a broadcast protocol.

The lookup algorithm goes back and forth between the client kernel and various servers

until the lookup completes. There is no centralized agent that has to know about the

complete structure of the name space.

6



The prefix table mechanism was designed to support a distributed set of file servers,

but it generalizes easily to support pseudo-file-systems. A pseudo-file-system is treated

like any other domain. The pseudo-file-system server registers its prefix and a

corresponding token with the local kernel, and the prefix table mechanism automatically

incorporates the pseudo-file-system into the distributed name space. The benefit of this is

that there is no visible distinction between a pseudo-file-system and other parts of the file

system. Objects in a pseudo-file-system are named and accessed like the files and dev-

ices implemented by regular Sprite file servers.

3. Kernel Architecture

3.1. Naming and I/O Interfaces

The Sprite kernel architecture is built around two general interfaces, one for naming

operations, which are listed in Table 1, and one for the I/O operations, which are listed in

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-File-System Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Open Open an object for further I/O operations.
GetAttr Get the attributes of an object.
SetAttr Set the attributes of an object.
MakeDevice Create a special device object.
MakeDirectory Create a directory.
Remove Remove an object.
RemoveDirectory Remove a directory.
Rename Change the name of an object.
HardLink Create another name for an existing object.
SymbolicLink Create a symbolic link or a remote link.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DomainInfo Return information about the domain.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. This lists the naming operations that are implemented by pseudo-file-system
servers, and the DomainInfo operation that returns information about the whole pseudo-
file-system.

7



Table 2. Pseudo-file-systems were added by providing implementations of these inter-

faces that forward the operations out to the user-level server process. The distinction

between the naming and I/O interfaces means that it is possible for the user-level server

to implement either the naming interface or the I/O interface, or both. A server that only

implements the I/O interface is called a pseudo-device server. In this case, the name for

the pseudo-device is implemented by a Sprite file server, just as names for kernel-

resident device drivers are implemented as special files. Sprite implements its X11

display server and its TCP/IP protocol server as pseudo-devices [Welch88]. The NFS

server, which is described below, implements both interfaces according to the NFS proto-

col. An archive server or a version server can implement the naming interface, but let

the Sprite kernel implement I/O operations once the correct file has been located.

There are three cases for naming operations. The server can be the local kernel, it

can be remote, or it can be a user-level server. This is illustrated in Figure 2. The prefix

table mechanism described in the previous section is used to determine the server and its

type. Note that the case of a remote pseudo-file-system falls out naturally. It appears just

like a remote Sprite file server to the client. After the Sprite kernel-to-kernel RPC

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pseudo-Device Operationsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Read Transfer data from an object.
Write Transfer data to an object.
WriteAsync Write without waiting for completion.
Ioctl Invoke a special operation on an object.
GetAttr Get attributes of an object.
SetAttr Set attributes of an object.
Close Close an I/O connection to an object.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c

Table 2. I/O operations on an object opened in a pseudo-file-system. Read and write
can be asynchronous in order to reduce context switching costs. Asynchronous reads are
done via a read buffer, in which case the server never sees an explicit read request.

8



server process

System

File

LocalRemote-FS

Network

RPC

Request

Response

user-levelnetwork disk

Pseudo-FS

Prefix Table RPC Requests

networkuser-level

Figure 2. There are three types of naming domains implemented in Sprite: local, re-
mote, and user-level. The arrows entering at the top represent operations made from
user-level via the system call interface, and from other hosts via network RPC. The ar-
rows leaving the boxes represent operations that are forwarded to other Sprite hosts via
network RPC, operations on the local disk, or operations forwarded to a user-level
pseudo-file-system server.

protocol[Welch86b] forwards the operation to the remote host, the operation is forwarded

up to the server process.

There are a number of cases for I/O operations that correspond to the different types

of objects accessed via the file system interface. Figure 3 shows the various cases.

Again, note the general way in which remote access is handled. A common set of RPC

stub procedures are used to forward operations in the remote case (except for remote file

operations that check the cache), and the operations go through the I/O interface at the

remote site in order to branch to the correct case.

A pseudo-file-system server can avoid implementing the I/O interface by passing

off open file descriptors in response to open requests. A version control system, for

example, can generate a requested file version from the version history, open the file, and

9



network

user-level

RPC

disk syslognullttynettape

cache cache

response
request-

pseudo-devicedevicepipefile

rmtPdev
rmtPipe
rmtDevice rmtFile

I/O Operations RPC Requests

Figure 3. The kernel architecture for I/O operations. There are several implementations
of the I/O interface corresponding to the different types of objects being accessed. A
common set of RPC stubs handles the remote case, except for the remote file procedures
that check in the data cache.

return its open file descriptor to the other process. Named pipes can be implemented by a

pseudo-file-system server that simply creates regular UNIX pipes and passes off both

ends in response to open requests. The ability to do this in the remote case is supported

by existing file system mechanisms that support the migration of processes (and their

open file descriptors) between hosts [Douglis87]. While these kinds of pseudo-file-

systems are supported by the kernel, we haven’t yet implemented any real applications

that use them.

3.2. Request-Response Protocol

The communication between the kernel and a user-level server is implemented as a

request-response protocol. The kernel formats a request message containing the parame-

ters of the operation and passes this to the pseudo-file-system server. The server then

implements the operation and responds with results and an error status. While this is

10



much like RPC, the protocol is different than the network RPC protocol used between

Sprite kernels. The network protocol is concerned with reliable delivery of messages on

an unreliable network, and with efficient use of network packets. The kernel to user-

level request-response protocol is optimized to reduce context switching and to eliminate

the use of kernel-resident buffers.

The server process allocates a request buffer and (optionally) a read buffer for each

request-response stream. These buffers are in the server process’s address space, and

their size is chosen by the server. The kernel copies request messages directly into the

request buffer, at which point a read by the server returns a <firstByte, lastByte> pair of

values that define where the message is located in the request buffer. The server

responds with an ioctl that indicates the return status of the operation and the size and

location of any return data. The kernel copies the return data directly to the client

process’s address space, and the use of kernel buffering is eliminated.

Context switching is reduced by using asynchronous reads and writes. A server can

enable asynchronous writes, in which case the kernel doesn’t wait for a reply after copy-

ing a write request and the associated data into the server’s request buffer. The server

has to accept all the data being written as there is no opportunity to return an error code.

Many write requests can be buffered before switching to the server process. A read

buffer can be used to reduce context switching during reads. The server fills the read

buffer as data is generated, and the kernel empties the buffer to satisfy read requests. If

the read buffer is used then the server doesn’t see explicit read requests, and <firstByte,

lastByte> pointers are used to synchronize over the read buffer.

11



A pseudo-file-system server typically has access to many request-response streams

at any given time. For each domain managed by the server there is a single request-

response stream used for all naming operations on the domain. In addition, a separate

request-response stream can be established each time an object in the pseudo-file-system

is opened; this request-response stream is used by the kernel to forward I/O operations to

the server. Each request-response stream appears to the server as a standard UNIX-like

I/O channel, and each stream has its own request buffer. The server uses read to learn

the current <firstByte, lastByte> values for the read buffer and the request buffer, and it

uses ioctl to reply to requests and update the pointers. A pseudo-file-system server may

multiplex itself among the various streams either as a single process that uses select, or

as a team of processes where each process services one stream. The request-response

protocol and its performance are examined in more detail in [Welch88].

4. The NFS Pseudo-File-System

Our first application of pseudo-file-systems is a server that provides access to

remote NFS file servers. The pseudo-file-system server translates file system operations

into the NFS protocol and uses the UDP datagram protocol to forward the operations to

NFS file servers. The pseudo-file-system server is very simple. There is no caching, of

either file data or file attributes, so all operations are forwarded to the NFS server. The

server process is single-threaded, and it multiplexes itself among requests for different

files using the select system call. This avoids the cost of process creation when NFS files

are opened, and eliminates the need to synchronize threads.

Figure 4 illustrates the communication structure for NFS access under Sprite. An

interesting aspect of the NFS implementation is that the UDP network protocol, which is

12



Ethernet

NFS Pseudo- UDP pseudo-

Sprite Kernel

application

NFS Server
Sprite Kernel

application

RPC UDP

file-system device

UNIX

Figure 4. Two user-level servers are used to access a remote NFS file server. The first is
the NFS pseudo-file-system server. In turn, it uses the UDP pseudo-device server to ex-
change UDP packets with the NFS file server. The figure also depicts requests to the
NFS pseudo-file-system server arriving over the network from remote Sprite clients us-
ing the Sprite network RPC protocol. The arrows indicate the direction of information
flow during a request.

used for communication between the pseudo-file-system server and the NFS server, is not

implemented in the Sprite kernel. Instead it is implemented by a user-level protocol

server using the pseudo-device mechanism mentioned in Section 3. This approach adds

additional overhead to NFS accesses, but illustrates how user-level services may be lay-

ered transparently.

Figure 4 also shows an application accessing the NFS pseudo-file-system from a

Sprite host other than the one executing the pseudo-file-system server. In this case the

kernel’s network RPC protocol is used to forward the operation to the pseudo-file-system

server’s host. There the regular request-response protocol is used to pass the operation

along to the pseudo-file-system server. Thus the kernel-to-kernel and kernel-to-user pro-

tocols can be composed together to handle the case of a remote-user-level server.

13



4.1. NFS Performance

We measured the performance of our NFS pseudo-file-system with micro bench-

marks that measured individual file system operations, and with a macro benchmark that

measures the system-level cost of pseudo-file-system access. The tests were run on Sun-

3 workstations that run at 16 MHz and have 8 to 16 Mbytes of main memory. The net-

work is a 10 Mbit Ethernet. The file servers are equipped with 400 Mbyte Fujistu Eagle

drives and Xylogics 450 controllers. The version of the Sun operation system is SunOS

3.2 on the native NFS clients, and SunOS 3.4 on the NFS file servers.

The four cases tested are:

Sprite A Sprite application process accessing a Sprite file server. File access

is optimized using Sprite’s distributed write-back caching system [Nel-

son88].

UNIX-NFS A UNIX application process accessing an NFS file server. /tmp is

located on a virtual network disk (ND) that has better writing perfor-

mance than NFS.

Sprite-NFS A Sprite application accessing an NFS file server via a pseudo-file-

system whose server process is on the same host as the application. A

Sprite file server is used for executable files and for /tmp.

Sprite-rmt-NFS Like the previous case, except that the pseudo-file-system server is on a

different host than the application so the kernel-to-kernel RPC protocol

is also used.

14



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Read-Write Performanceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Read 1-Meg UNIX-NFS 320 K/s 25.0 msec/8K
Read 1-Meg Sprite 280 K/s 14.3 msec/4K
Read 1-Meg Sprite-NFS 135 K/s 59.3 msec/8K
Read 1-Meg Sprite-rmt-NFS 75 K/s 106.7 msec/8Kiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Write 1-Meg UNIX-NFS 60 K/s 133.3 msec/8K
Write 1-Meg Sprite 320 K/s 12.5 msec/4K
Write 1-Meg Sprite-NFS 40 K/s 200.0 msec/8K
Write 1-Meg Sprite-rmt-NFS 31 K/s 258.0 msec/8Kiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 3. I/O performance when reading and writing a remote file. The file is in the
server’s main-memory cache when reading. Sprite uses 4 Kbyte block size for network
transfers while NFS uses an 8 Kbyte block size. The write bandwidth is lower when ac-
cessing the NFS server because it writes its data through to disk while the Sprite file
server implements delayed writes.

The raw I/O performance for Sprite files, NFS files, and NFS files accessed from

Sprite is given in Table 3. In all cases the file is in the file server’s main memory cache.

Ordinarily Sprite files are cached in the client’s main memory, too. For the read bench-

mark we flushed the client cache before the test. For the write benchmark we disabled

the client cache. The native Sprite read bandwidth is slightly lower than NFS read

bandwidth because Sprite uses a smaller blocksize, 4K verses 8K. The native Sprite

write bandwidth is an order of magnitude greater than NFS write bandwidth because NFS

file servers write their data through to disk before responding, while Sprite servers

respond as soon as the data is in their cache.

The NFS pseudo-file-system server enables asynchronous writes in order to obtain

the performance given in Table 3. It declares a request buffer large enough for two 8K

writes plus the message headers. While the server is waiting for a UDP reply packet its

client can issue a second write request. This buffering improved the raw NFS write

bandwidth from about 9K/sec to 40K/sec.

15



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Andrew Benchmark Performanceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sprite 522 secs 0.69
UNIX-NFS 760 secs 1.0
Sprite-NFS 1008 secs 1.33
Sprite-rmt-NFS 1074 secs 1.41iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c

c
c
c
c
c
c

Table 4. The performance of the Andrew benchmark on different kinds of file systems.
The elapsed time in seconds and the relative slowdown compared to the native NFS case
are given.

We measured system-level performance of the NFS pseudo-file-system using the

Andrew file system benchmark, which was developed at CMU by M. Satyanarayanan

[Howard88]. It includes several file system intensive phases that copy files, examine the

files a number of times, and compile the files 4 into an executable program. The results

of running this benchmark are given in Table 4. The 33-41% slowdown relative to the

native UNIX implementation illustrates the performance tradeoff when implementing

services at user-level. This performance hit is acceptable to us because most of our files

are on much higher performance Sprite servers. NFS access lets us access the (fewer and

fewer) files still kept on NFS servers in our network. Furthermore, we can run all the

NFS pseudo-file-system servers on one Sprite host, whereas a kernel NFS implementa-

tion would inflate the size of every Sprite kernel. Thus we have high performance for

most work, and transparent, although slower, access to foreign systems, if needed.

The user-level implementation of the UDP protocol has a large effect on the Sprite-

NFS bandwidths given in Table 4. (Recall that Sprite uses its own kernel-to-kernel RPC

protocol for inter-Sprite communication, so the performance of UDP is not ordinarily
hhhhhhhhhhhhhhhhhhhhhhhhhhh

4 The version we used here has been modified to eliminate machine dependencies, the main
one being the compiler used. This standardized Andrew benchmark uses the gcc compiler gen-
erating code for the SPUR, so these results are not directly comparable with those reported in
[Howard88] and [Nelson88].

16



local pdev

UNIX-to-UNIX

Sprite-to-UNIX

UNIX-to-Sprite

s
d
n
o
c
e
s
i
l
l
i

M

Kilobytes

50

40

30

20

10

0
86420

Figure 5. Timing of the UDP protocol. The receiver is always a UNIX process to model
the use of UDP to communicate with the UNIX NFS server. Each Sprite-to-UNIX pack-
et exchange requires two request-response exchanges with the Sprite UDP server. The
cost of one request-response exchange is given by the line labeled ‘‘local pdev’’. Dou-
bling this cost accounts for most of the difference in UDP performance. Receiving large
packets on Sprite is slower because IP fragment reassembly cannot be done in the inter-
rupt handler as it is in UNIX.

important.) The cost to send data via a UDP packet and receive a one-byte acknowledg-

ment packet is plotted in Figure 5. At small transfer sizes the overhead is a little over

twice that of the UNIX kernel implementation. Larger transfers take about 25% longer.

The overhead is due mainly to the cost of the request-response protocol. However, the

performance of receiving large packets is further reduced because IP packet reassembly

is not done in the interrupt handler as it is in UNIX. Each IP fragment has to be passed

up to the user-level server for reassembly.

17



The cost of one request-response is plotted in Figure 5 as the line labeled ‘‘local

pdev’’. There is one request-response for each UDP packet sent, so there are two

request-response exchanges in the UDP benchmark plotted in Figure 4. Note that the

cost of request-response is dominated by the base cost, which is about 3 msec, and not

the per-byte copy cost. The base cost is the time for two process switches, 4 system

calls, a VM mapping operation, and scheduling and synchronization overhead. The

Sprite scheduler has remained untuned since its initial implementation and can mostly

likely be improved. There is also a relatively high VM mapping cost, (about 400

microseconds!), needed to implement the copy between two user processes on the Sun3

hardware. Only one process’s address space is accessible at one time, so the server’s

request buffer is mapped into the kernel during the copy. This mapping is not cached, so

its cost is incurred for each request-response.

5. Future Work

There are two additional aspects of pseudo-file-systems that have been designed but

not implemented: data caching and automatic recovery.† Sprite uses large file caches on

both client and server machines, resulting in efficient file access even for diskless works-

tations [Nelson88]. The pseudo-file-system mechanism currently bypasses the caches,

but we plan to modify the kernel so that blocks from pseudo-file-systems may be cached

in the same way as blocks from ‘‘native’’ Sprite files. The pseudo-file-system server will

define the caching policy, while the kernel will access the cache in response to I/O

hhhhhhhhhhhhhhhhhhhhhhhhhhh
† The author is frantically trying to get his dissertation written, of which pseudo-file-systems

are only a small part.

18



requests and do LRU replacement. This requires additional operations between the ker-

nel and the pseudo-file-system server for cache flushing and cache invalidation.

We plan to extend the kernel’s recovery system for regular Sprite file servers to

include pseudo-file-system servers. The kernel includes facilities for automatic detection

of host crashes, recreation of the state of our file servers, and retry of operations with

recovered servers. The recovery system is based on state duplicated on the file servers

and on other Sprite hosts. After a crashed file server reboots, its state is recovered from

the other hosts. We want to extend this facility to support recovery of pseudo-file-system

servers by allowing them to register per-file state with their local kernel. For NFS, this is

simply the NFS file ID of each file. The state has to be propagated back to other hosts

that have files open in the pseudo-file-system. This will allow us to recover either from a

crashed server process or from the crash of the host running the server process.

6. Related Work

We classify pseudo-file-systems as a mechanism for system extension; a pseudo-

file-system is a general mechanism that allows a new system service to be added to the

system without modifying the operating system kernel. Many systems are only extensi-

ble by adding new code to the operating system kernel. This is true for many versions of

UNIX, i.e. with the gnode and vnode architectures, and with the Version 8 streams facil-

ity [Ritchie84]. Other systems use the run-time library for system extensions

[Rees86][Brownbridge82], or they use a message-based architecture and implement all

services outside the kernel [Cheriton84].

19



V is a message-based system that moves all higher-level services, like the file

sysytem, outside the kernel. Like Sprite, V uses a prefix table mechanism to identify

servers. The main difference between the Sprite and V prefix table mechanisms is the

remote links in Sprite. These identify prefixes and replace the administrative manager

required in V [Cheriton89]. V also has a standard I/O interface, UIO, which is compar-

able to the Sprite I/O interface [Cheriton87] The main difference between the I/O inter-

faces concerns the way I/O operations are blocked. Blocking I/O is implemented at a

high level in Sprite in order to support select on objects located throughout the network.

In this case it is not appropriate to block a process within the implementation of an

object, i.e. on a remote host. All long term waiting is done on the client, and the kernel’s

waiting primatives handle races that are possible in a distributed environment.

The Watchdog facility proposed by Bershad provides similar functionality to Sprite

pseudo-file-systems [Bershad88]. A watchdog process can guard a file by intercepting

certain operations. The implementation is not as well integrated into the file system

architecture as pseudo-file-system are; special case checks are required in each file sys-

tem operation to see if they are ‘‘guarded’’. There is also no support for the remote case,

which falls out naturally in the Sprite file system architecture.

Thus Sprite shares many ideas with other file systems. However, it represents a

hybrid between the monolithic kernels of traditional operating systems, and the

message-passing kernels of more recent systems. Sprite appears like a monolithic kernel

from the outside, and it handles the important case of remote access with an efficient

kernel-to-kernel RPC network protocol. However, the pseudo-file-system and pseudo-

device mechanisms provide an ‘‘escape hatch’’ where additional functionality can be

20



added to the system by user-level applications. Furthermore, the features implemented in

the generic top-level layers of the file system do not have to be duplicated by the server.

This includes the prefix table mechanism for distributed naming, remote access, blocking

and non-blocking I/O, and (eventually) crash detection, automatic recovery, and data

caching.

7. Conclusion

There are two main conclusions to make regarding pseudo-file-systems. The first is

that because the Sprite kernel is carefully structured to support a distributed system, it

was very straight-forward to integrate a user-implemented service into the system.

Pseudo-file-systems are treated as another domain type that is automatically integrated

into the name space by the prefix table mechanism. Remote access to a pseudo-file-

system is handled in the kernel with the same network RPC protocol used to access

remote Sprite servers. The kernel also provides parameter checking, blocking and non-

blocking I/O, caching and automated error recovery. (These last two features are

currently being extended for use by pseudo-file-systems.) The main addition to support

pseudo-file-systems was a request-response protocol for passing operations up to the

user-level server process.

The second conclusion is that there is a significant performance penalty for user-

level implementation of services. The 30%-40% penalty for NFS access from Sprite can

either be viewed pretty good or pretty awful, depending on your point of view. If you

want transparent access and ease of implementation, then this performance hit isn’t so

bad. If you want high-performance, however, you should implement your service inside

the kernel. This is the approach taken in Sprite, where access to remote Sprite file

21



servers is highly optimized by a kernel implementation and write-back caching, and extra

features, such as NFS access, can be added transparently at user-level, but at a reduced

level of performance.

References
Bershad88. B. N. Bershad and C. B. Pinkerton, ‘‘Watchdogs - Extending the UNIX File System’’,

USENIX Association 1988 Winter Conference Proceedings, Feb. 1988, 267-275.

Brownbridge82. D. R. Brownbridge, L. F. Marshall and B. Randell, ‘‘The Newcastle Connection or
UNIXes of the World Unite!’’, Software Practice and Experience 12 (1982), 1147-
1162.

Cheriton84. D. R. Cheriton, ‘‘The V Kernel: A software base for distributed systems.’’, IEEE
Software 1, 2 (Apr. 1984), 19-42.

Cheriton87. D. R. Cheriton, ‘‘UIO: A uniform I/O interface for distributed systems’’, ACM Trans.
on Computer Systems 5, 1 (Feb. 1987), 12-46.

Cheriton89. D. R. Cheriton and T. P. Mann, ‘‘Decentralizing a Global Naming Service for
Improved Performance and Fault Tolerance’’, Trans. Computer Systems 7, 2 (May
1989), 147-183.

Douglis87. F. Douglis, ‘‘Process Migration in Sprite’’, Technical Report UCB/Computer Science
Dpt. 87/343, University of California, Berkeley, Feb. 1987.

Howard88. J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham and M. J. West, ‘‘Scale and Performance in a Distributed File System’’,
Trans. Computer Systems 6, 1 (Feb. 1988), 51-81.

Kleiman86. S. Kleiman, ‘‘Vnodes: An Architecture for Multiple File System Types in Sun
UNIX’’, USENIX Conference Proceedings, June 1986, 238-247.

Nelson88. M. Nelson, B. Welch and J. Ousterhout, ‘‘Caching in the Sprite Network File
System’’, Trans. Computer Systems 6, 1 (Feb. 1988), 134-154.

Ousterhout88. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, ‘‘The Sprite
Network Operating System’’, IEEE Computer 21, 2 (Feb. 1988), 23-36.

Rees86. J. Rees, P. H. Levine, N. Mishkin and P. J. Leach, ‘‘An Extensible I/O System’’,
USENIX Association 1986 Summer Conference Proceedings, June 1986, 114-125.

Ritchie84. D. Ritchie, ‘‘A Stream Input-Output System’’, The Bell System Technical Journal 63,
8 Part 2 (Oct. 1984), 1897-1910.

Rodriguez86. R. Rodriguez, M. Koehler and R. Hyde, ‘‘The Generic File System’’, USENIX
Conference Proceedings, June 1986, 260-269.

Sandberg85. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, ‘‘Design and
Implementation of the Sun Network Filesystem’’, USENIX Conference Proceedings,
June 1985, 119-130.

Welch86a. B. B. Welch and J. K. Ousterhout, ‘‘Prefix Tables: A Simple Mechanism for Locating
Files in a Distributed Filesystem’’, Proc. of the 6th ICDCS, May 1986, 184-189.

Welch86b. B. B. Welch, ‘‘The Sprite Remote Procedure Call System’’, Technical Report
UCB/Computer Science Dpt. 86/302, University of California, Berkeley, June 1986.

Welch88. B. B. Welch and J. K. Ousterhout, ‘‘Pseudo-Devices: User-Level Extensions to the
Sprite File System’’, Proc. of the 1988 Summer USENIX Conf., June 1988, 184-189.

22


