
An Overview to dvitool 2.0
by Jeffrey W. McCarrell

jwm@Berkeley.EDU

This file describes dvitool version 2.0, an interactive previewer for the output files
produced by TEX. It does not describe TEX, nor any of the TEX derivatives, nor how
to produce hard copy of your TEX files. The person who is responsible for maintaining
dvitool, and who should be your first contact point to find out details of your local
implementation is:

local-contact: your-name-here

If they are not able to answer your questions, you may direct them to me at the
electronic mail address listed above.

Dvitool was designed to be an efficient, productive tool for creating TEX documents;
a significant percentage of the development time was spent on the user interface. The
resulting system is very flexible but it is also somewhat complex. There are three different
approaches to understanding the system:

• this overview help file describes the general mechanisms that comprise dvitool.
All of the major interfaces and features are described here. After reading this file you
should be able to run any of the 70 odd commands that dvitool has to offer; you should
understand how the interface that collects the arguments to the commands works; and you
should understand how dvitool “attaches” a command to a sequence of keystrokes and
where to look to learn how to change the default attachments.

• The command help-commands describes each of the commands; it can be run
from the help item in the main menu which can be brought up by pushing the right
mouse button while in the main window of dvitool.

• The help-variables command is similiar to help-commands except that it de-
scribes all of dvitool’s variables.

Running Commands: Every command has a long, mnemonic name. For example,
the command to repaint the DVI image so that more of it can be seen is called scroll-

down. Every command can be executed by the command called exec, so the general way
to run dvitool commands is to first run exec, whose job it is to run other commands, and
then to run the command you wanted. But how does one run exec? Some commands are
associated with, or “bound to”, sequences of characters. In this particular case, dvitool
knows that the pattern <ESC>x means “run the exec command”. (The string <ESC>

means the escape key on your keyboard, not the five characters ‘<’, ‘E’, ‘S’, ‘C’ and
‘>’. Characters which are symbols for other characters are surrounded by angle brackets.
Control characters will be represented in this document by a C, followed by a dash (-),
followed by the character. So control–x is written <C-X>). One way to scroll down is to
type:

<ESC>xscroll-down<RETURN>

Fourteen characters is a lot to have to type to run a command used as often as
scroll-down, so dvitool provides a simpler way to do the same thing. Any command

1

can be “bound” to a sequence of 1 or 2 keystrokes. This is how dvitool knew that <ESC>x
meant “run exec.”

Well, that’s all well and good, but how do you learn which commands are bound to
which keys? There are two approaches:

• the command bound-to describes all of the keystrokes that will run the command
given as its argument;

• the command describe-key goes the other direction and describes what command
will be invoked by the keys given as its argument.
If a keystroke is bound to a command, it is called a “binding.” A command can have many
bindings, but a key can have only one. For those of you that like to have it all at once, the
command dump-bindings lists each key combination and the command it invokes. This
information is written in a file named dvitool.commands in your current directory so you
can print it out and keep it handy for easy, if voluminous, reference.

Note that mouse input in this context is considered a keystroke. You can bind com-
mands to mouse inputs just like you can bind commands to ascii characters. For more
information on how to actually make your own bindings, see the help entry for bind-to-
key. One way to do this is to type:

<ESC>xhelp-c <RETURN>bin <RETURN>

There is a yet another way to run a command: invoke it from a menu. The right
mouse button is bound to a command that produces a menu of choices of other commands
to run. If the command has a key binding, it is listed on the right side of the menu, the
idea being that you can get a good idea of the available commands just by popping up a
menu and as you become more familiar with the command you can note its key-binding
and invoke it directly with a single keystroke (or mouse press) rather than the several
actions menus require.

Arguments: Many of the commands take arguments; for example, the command
find-file takes the name of a DVI file as its argument. To show you that it is waiting for
you to type an argument, dvitool will change the cursor tracked by the mouse into the
shape of a mouse. Should you decide that you don’t want to run this command after all,
you should type C-G to abort the command. In general, the abort character (which can be
specified by the variable abort-character) is a good key to press when you are unsure
what is going on and you want to get back to the top level. You’ll know you’re back at
the top level when the cursor changes to it’s default shape (usually a circle with a hole in
its center).

Arguments have types like integer, string, and so forth. Dvitool usually gives a clue
as to the type of argument it is expecting by changing the cursor in the message window.
The cursor in the message window is not the cursor that tracks the mouse, but a cursor to
let you know where the next characters you type will appear. Here’s a table of all of the
of argument types dvitool has, and the character that is displayed “under” the cursor.

type char completion type char completion

command name ‘c’ yes integer ‘i’ no
file name ‘f’ yes font name ‘F’ yes

string ‘s’ no literal string ‘S’ no

2

variable name ‘v’ yes variable help index ‘V’ yes
command help index ‘C’ yes overview help index ‘O’ yes

others ‘ ’ no

The completion column describes whether or not each type is capable of the time
saving capability to “complete” some or all of the argument for you. Completion compares
the characters you’ve already typed to the set of possible choices and fills in any characters
that are common to all the choices or, if what you have typed so far uniquely identifies
a choice, it completes that choice. The space character invokes completion. Dvitool will
do what it can and either complete the argument all the way or give you a message about
why it failed.

Another special feature of completion is the ability to list all of the choices that match
the input string you’ve typed so far, invoked with ?. Dvitool uses its typeout mechanism
to display all of the choices and then it waits for you to type some character to show that
you’ve finished reading the list and you’re ready to proceed. A space character or a mouse
press will simply be eaten and ignored; other characters are acted on.

Startup File: One of the first things that dvitool does is look for a file of com-
mands to execute whose name is “.dvitoolrc” *. It looks for this file in two places: in
your home directory, and in the current directory. If a startup file exists in both places,
dvitool first reads the one in your home directory, then the one in your current directory,
so the commands in the startup file in the current directory have precedence over the file
in your home directory.

The file should contain commands that you want dvitool to run every time it is
invoked. Common uses of the startup files are to load key bindings, personal cursors,
icons, etc. Comment lines begin with the sharp character (‘#’) and end with a newline.
Blank lines are ignored. Every other line is expected to contain a dvitool command and
arguments. It turns out that there are very few commands that make sense when run inside
a startup file, so dvitool disallows most of them. Here is the complete list of commands
allowed inside a startup file:

command description

bind-to-key change the command invoked by a key sequence
cd change directory
print show the value of a variable
set change the value of a variable
version show the version number

Since key bindings don’t make a great deal of sense inside a startup file, the correct
way to refer to a command is by its long mnemonic name. Any arguments the command
expects should follow on the same line, separated by whitespace. The arguments should
appear exactly as you would type them to dvitool interactively, with the exception an

* This isn’t strictly true. Dvitool actually takes the name it was invoked with, prepends
a ‘.’ and appends "rc" to create the filename. So if your system wizard installed dvitool

under a different name, or you have symbolic links to it, the name of your startup file will
differ.

3

argument that has a space in it (or a tab) should be surrounded by double quotes. There
are actually several translations that dvitool does just when it is reading arguments in a
startup file and here is the complete list:

from to comment

\\ \

\" "

" double quotes are elided
\n <RETURN> ASCII 13, control-M

Now that all of the rules have been presented, it’s time to look at a real example. These
4 lines are syntactically correct; were you to put them into a startup file in your home
directory, dvitool would process them without error.*

set init-cursor-file ~/lib/cursors/$DVICURSOR

set init-cursor-xhot 0

bind-to-key cd \e\^D

bind-to-key next-page-positioned "\e "

Some points to note here:

• Every filename is always processed for ~ and $ characters, so line 1 expands $DVI-
CURSOR into the value of the environment variable named DVICURSOR. It is an error to
reference an undefined environment variable.

• The next-page-positioned binding requires double quotes so the space character
will be passed as an argument and not elided as an argument separator.

Comand Line Switches: There is only one:

• -E tells dvitool to try to use an existing dvitool to preview the first file name. If
there are no dvitool’s running, then -E is a no-op. If there are other dvitool’s running,
the -E dvitool will start up, send a message to a running dvitool, and then exit. This
mechanism is most often used inside other programs to provide a simple way to invoke
dvitool.

• The generic Suntools flags (they all begin with -W) are ignored by dvitool. Their
effect is undefined, since dvitool has variables to perform nearly all of the same functions.
The use of the -W flags is discouraged.

Help Summary: Here is a complete list of the commands which provide informa-
tion and or help.

command description

ascii-of-selection show the ASCII representation of some DVI characters
bound-to show all the key sequences which invoke a command
describe-key displays the command which will be run by a key sequence
dump-bindings writes a file of key bindings sorted by keys
dump-commands writes a file of all the commands and their arguments

* Of course, you’d have to define the environment variable DVICURSOR, and create the
cursor file or dvitool will complain.

4

help-commands provides interactive help for each of the commands
help-overview displays this file
help-variables provides interactive help for each of the variables
list-all-commands displays all of the command names interactively
list-all-variables displays all of the variable names interactively
print display the value of a single variable
version displays the version number
which-char shows the font position of the selection
which-font shows the font of the selection

Bugs: Yes Virginia, there is such a thing as a free bug or two in dvitool. I
personally don’t think of them as bugs, but as facts of life. All of the bugs that I could
correct without super-human effort have been squashed. Nonetheless, dvitool does, at
times, behave in unexpected ways. Here is the known list:

• Syntax errors in generic Suntools command line arguments (they all begin with -W)
are silently ignored. The use of these arguments is discouraged.

• If the mouse cursor is positioned over the message subwindow, all input (both
keyboard and mouse input) is ignored. Always position the mouse cursor inside the large
image window.

• When dvitool is waiting for you to type some input (when the mouse cursor has
changed into an image of the mouse), any input to the namestripe (like to close or hide
the window) is ignored until the local input is completed. Always make sure dvitool is
back to the top level by typing your abort character (usually control-g) before attempting
any operations in the namestripe.

• Due to resolution rounding, two identical hrules may be displayed differently at
different places on the page. The difference will be at most 2 pixels.

Complex tools such as TEX and to a lesser extent dvitool take time to master; I have
tried to ease that transition with consistent interfaces and with several levels of help, but
I am always willing to hear suggestions, and even criticism. Good luck!

Berkeley, California — J. W. M.
December, 1986 jwm@Berkeley.EDU

...!ucbvax!jwm

5

