<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//en">

<!–Converted with LaTeX2HTML 2022 (Released January 1, 2022) –> <HTML lang="en"> <HEAD> <TITLE>Contents of Roman type</TITLE>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8"> <META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0"> <META NAME="Generator" CONTENT="LaTeX2HTML v2022">

<LINK REL="STYLESHEET" HREF="dimacs-l.css">

<LINK REL="next" HREF="node7_mn.html"> <LINK REL="previous" HREF="node5_mn.html"> <LINK REL="up" HREF="dimacs-l_mn.html"> <LINK REL="next" HREF="node7_mn.html"> </HEAD>

<BODY bgcolor="#ffffff" text="#000000" link="#9944EE" vlink="#0000ff" alink="#00ff00">

<H1><A ID="SECTION00030000000000000000"> Roman type</A> </H1>

<P> Numbers, punctuation, (parentheses), [brackets], braces, and symbols used as tags should always be set in roman type. The following sample theorem illustrates how to code for roman type within the statement of a theorem.

<P> <P> <DIV><B>Theorem 3.1</B> &nbsp; <I>Let <IMG STYLE="" SRC="img4.png" ALT="$\cal {G}$"> be a free nilpotent-of-class-2 group of rank &#8805;2 with carrier <I>G</I> and let </I><P><!– MATH

m : G×GZ

–> </P> <DIV ALIGN="CENTER"> <I>m</I> : <I>G</I>&#215;<I>G</I>&#8594;<I>Z</I> </DIV><P></P><I> satisfy (2.21), (2.22), and (2.24), and define <I>&#954;</I> by (2.23). Then this kappa-group is kappa-nilpotent of class 2 and kappa-metabelian, that is to say, it satisfies S2 and S3, but it is kappa-abelian if, and only if, </I> <P></P> <DIV ALIGN="CENTER"> <!– MATH

m(x, y) = - 1    for all x, y $\notin$G'. (1)
–> <TABLE WIDTH="100<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP> <I>m</I>(<I>x</I>, <I>y</I>) = - 1&nbsp;&nbsp;&nbsp;&nbsp;for all <!– MATH x, y $\notin$G' –> <I>x</I>, <I>y</I> <IMG STYLE="" SRC="img5.png" ALT="$\notin$"><I>G'</I>. </TD> <TD WIDTH=10 ALIGN="RIGHT"> (3.1)</TD></TR> </TABLE> </DIV><I> (Thus (3.1) implies the trivial consequence (2.1).) Assume now that (3.1) does not hold, so that the kappa-group is kappa-nonabelian. Assume further that <I>m</I> is not constant outside <I>G'</I> (inside <I>G'</I> the values of <I>m</I> clearly do not matter). Then <I>&#954;</I> is neither left nor right linear, that is to say, neither S4 nor S5 holds: I1 again holds, but none of I2&ndash;I5. As before, I6 is equivalent to (2.25). Now I7', however, is equivalent to a condition similar to (2.25), namely </I> <P></P> <DIV ALIGN="CENTER"> <!– MATH

m(xzσ, yzσ) = m(x, y) . (2)
–> <TABLE WIDTH="100<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP> <I>m</I>(<I>xz&#963;</I>, <I>yz&#963;</I>) = <I>m</I>(<I>x</I>, <I>y</I>)&nbsp;. </TD> <TD WIDTH=10 ALIGN="RIGHT"> (3.2)</TD></TR> </TABLE> </DIV></DIV><P></P>

<P> Letters used as abbreviations rather than as variables or constants are set in roman type. Use the control sequences [<A HREF="node12_ct.html#spivak:jot" TARGET="contents">12</A>, p.&nbsp;95] for common mathematical functions and operators like log and lim, and use <code>[#!cite!#]</code> when citing a reference. The reference tag will be <B>bold</B> automatically, but you will need to set any additional information in roman type as illustrated by the coding of the previous sentence.

<P>

<HR>

</BODY> </HTML>