Epoch

GNU Emacs for the X Windowing System
Release 4.0 Patchlevel 0
Based on GNU Emacs 18.58

March 1992

Copyright © 1989, 1990, 1991, 1992 by
The Epoch Development Team:

Simon Kaplan (kaplan@cs.uiuc.edu);
Leadership, design, manual

Christopher Love (love@cs.uiuc.edu);
Implementation, design, manual, support

Alan M. Carroll (carroll@cs.uiuc.edu);
Implementation, design, manual

Daniel M. LalLiberte (liberte@cs.uiuc.edu);
Manual support

This documents release 4.0 of Epoch which is based on GNU Emacs 18.58. Epoch was built as
part of the ConversationBuilder project under Simon Kaplan. Epoch was originally designed and
implemented by Kaplan and Carroll. The manual was written by Kaplan, Carroll, Love, and
LaLiberte. Epoch 3.2 was designed and implmented by Kaplan, Carroll, and Love. Epoch 4.0 was

designed by Kaplan, Love, and Carroll and was implemented by Love. Change hooks were provided
by LaLiberte.

Published by ...

1304 W Springfield
Department of Computer Science
University of Illinois, Urbana-Champaign

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated
in a translation approved by the ...University of Illinois, Urbana-Champaign.

Chapter 1: Introduction 1

1. Introduction

Epoch is a modified version of GNU Emacs with several major enhancements:

e Multiple X-Window support

e Marked and attributed regions of text

e Support for proportional and variably-sized fonts

e Support for 8-bit clean fonts (ISO, Latin-1, etc.)

e Asynchronous communication with other X clients (usually the window manager).
e Mouse-dragging with highlighting to support mouse-based cut-and-paste.

e Access to raw X-Window objects.
Some minor enhancements include various bug fixes and improved option handling.

As much compatability as possible with previous versions of GNU Emacs has been maintained.
Existing elisp code should run under Epoch, although it will not automatically use the new features
of Epoch, and the behavior may not be as expected when running with proportional fonts. Almost
all the X support code in GNU Emacs was removed because of incompatabilities. Almost all
features except the X menu code were reproduced; we believe that the window manager should
provide menus (see Section 2.5.2 [Menus], page 13).

Epoch requires X-Windows to funetion. Support for editing on non-graphic terminals is pro-
vided, but is equivalent to running an ASCII version of GNU Emacs with no Epoch functionality.
The mode of operation is determined as with GNU Emacs: if the "-nw" command-line flag is
specified or if the environment variable $DISPLAY is unset, then Epoch will run in ASCII mode;
otherwise it will run under X with full functionality provided. NOTE: Please refer to the file
‘INSTALL’ for insuring appropriate ASCII support.

Most of this manual is intended for the “Emacs guru” who wants to play with and extend
Epoch’s functionality. Information intended for “ordinary Emacs users” is found in see Chapter 2
[General Information], page 5. There is now a list of frequently asked questions; refer to the file
‘etc/EPOCH-FAQ’.

1.1 Support and Mailing List

For sharing ideas about applications of Epoch, code, and bug reports, there is now a news-group:

2 Epoch 4.0

gnu.epoch.misc. Articles posted to this newsgroup are gatewayed to and from the Epoch mailing
list for those without news access.

To post to the mailing list send mail to one of these addresses:

epoch@cs.uiuc.edu
uunet!uiucdcs!epoch
epochics.uiuc.edu@uiucvmd.bitnet

For administrative messages (joining the mailing list, etc), substitute ‘epoch’ with ‘epoch-
request’ in the above.

1.2 Getting Epoch

Epoch is available by anonymous ftp on cs.uiuc.edu. We are negotiating to have it available
through other sites, and through uucp mail request. Send mail to epoch-request to find out the

current status with this if you do not have anonymous ftp.

Epoch is available on tape: The cost at the time of creating version 4.0 was $175.00 for cartridge
tapes. We can currently make 1600 BPI reel tapes and cartridge tapes for SUN and HP 9000 series
machines. The price covers the cost of purchasing, making and shipping the tapes. You should
contact the epoch-request mailing list to confirm these rates. Payment should be by cheque made
payable to the University of Illinois, and sent to:

Epoch Distribution, attn: R. Canaday
Department of Computer Science

University of Illinois at Urbana-Champaign
1304 W. Springfield Avenue, Urbana
Illinois 61801, USA.

Announcements regarding official (i.e. supported) patches and subsequent releases will be made

to gnu.epoch.misc; patches will be available via ftp and email upon request.

1.3 Acknowledgements

Simon would like to thank the Computer Science Department at the University of lllinois, AT&T
and the National Science Foundation for their support of parts of this work, and also Philippa and

Chapter 1: Introduction 3

Ronan for putting up with him.

Dan would like to thank Simon and Alan for their fine work, and Clare and Carey for putting

him up.

Chris would like to thank Simon and Alan for valuable contributions to the design of Epoch 4.0,

and members of the ConversationBuilder research group for serving as "pre-Alpha" guinea pigs.
Susan Hinrichs, Alan’s lovely wife, provided emotional, intellectual, and code support.

We would all like to thank Richard Stallman and the Free Software Foundation for GNU Emacs,
and Colas Nahaboo and Bull for the GWM window manager.

We would also like to thank all those who have provided invaluable advice, assistance, and con-
tributions in getting Epoch to this stage of development through Alpha and Beta testing, including

members of the epoch-design mailing list.

Epoch 4.0

Chapter 2: General Information 5

2. General Information

2.1 Getting Started

We assume you are reasonably familiar with GNU Emacs. You can essentially use Epoch just

like GNU Emacs.

Epoch is started just like GNU Emacs. It opens it own X window(s), so it should be run in
background. Depending on its mode of operation, Epoch will create one or two windows by default.
The first will contain the initial edit buffer; if created, the second will contain the minibuffer. More
on this below (See Section 2.2 [New Features], page 9).

If you wish to use Epoch without having to do any Elisp programming, while still specifying
window properties, the following sections are for you.

2.1.1 X Window Program Defaults

Epoch reads the default values associated with X Window programs, or X defaults, set up by
the user. The possible sources of these defaults are listed below in the order in which epoch will
discover them. These values are loaded into an internal database, called the global default-set,
which is initially filled in with hard-wired defaults (which are listed below).

The resulting global default-set is stored, and remains static for the rest of the program execu-
tion. It serves as a basis for all screen creation, in order to guarantee a value for every property.
(The minibuffer has its own default-set, which is used once to create the minibuffer screen.) See
Section 3.2 [Screen Properties], page 17 for more background on how X defaults are used.

The X default specifications are determined in the following order, with later specifications
superceding earlier values for the same options:

1. Hard-wired X defaults (see below).
2. <resource-name> or <class-name> in either $XAPPLRESDIR or the appropriate app-defaults

directory.
3. SHOME/.Xdefaults if "-ud" command line flag is set.
4. Tile named by the environment variable $XENVIRONMENT

5. If $XENVIRONMENT is not set, SHOME/.Xdefaults-<hostname>

6. Resources database (see ‘xrdb’)

7. Command line options

Epoch 4.0

The X default options recognized by Epoch are listed in the table below. The window resource

name/class defaults are special; they default to the program resource name/class respectively (see

Section 2.1.2 [Command Line Options], page 8).

Furthermore, the program resource name/class command line options are special. They are

not put into the internal database - they affect how the database is queried for X default values.

When searching for names and classes, the leftmost qualifier is the resource name/class name. The

default for the name is the name of the program (normally "epoch") and the default for the class

is "Emacs". If these are set by command line options, the new values become the X defaults.

Epoch also accepts class defaults (as distinct from resource defaults), which are exactly as below

except that the first letter of each field is capitalized.

Option Default Value, Effect
.8creen.background

White, IEdit screen background color
.minibuf.background

White, Minibuffer screen background color
.screen.border.color

Black, Edit screen border color
.minibuf.border.color

Black, Minibuffer screen border color
.screen.border.width

2, Edit screen border width
.minibuf.border.width

2, Minibuffer screen border width
.8creen.cursor.background

White, IEdit screen X cursor background color
.minibuf.cursor.background

White, Minibuffer screen X cursor background color
.screen.cursor.color

Black, Edit screen text cursor color
.minibuf.cursor.color

Black, Minibuffer screen text cursor color

Chapter 2: General Information

.8creen.cursor.foreground
Black, Edit screen X cursor foreground color

.minibuf.cursor.foreground
Black, Minibuffer screen X cursor foreground color

.8creen.cursor.glyph
86, Edit screen X cursor glyph

.minibuf.cursor.glyph
86, Minibuffer screen X cursor glyph

.screen.internal.border.width
2, Edit screen internal border width

.minibuf.internal.border.width
2, Minibuffer screen internal border width

.screen.class
<special>, Resource class of the edit screen

.minibuf.class

<special>, Resource class of the minibuffer screen

.nonlocal.minibuf
false, Minibuffer location (local or non-local)

.display "", X Window display
.motion Off, Whether motion-hints should come through to elisp
.screen.font
“fixed", Edit screen font
.minibuf.font
“fixed", Minibuffer screen font

.screen.foreground
Black, Edit screen foreground color

.minibuf.foreground
Black, Minibuffer screen foreground color

.screen.geometry

"80x24", Geometry of the initial edit screen
.minibuf.geometry

"80x1", Geometry of the minibuffer screen
.Screen.name

“Edit", Name of the edit screen
.minibuf.name

“Minibuffer", Name of the minibuffer screen
.Screen.resource

<special>, Resource name of the edit screen

8 Epoch 4.0

.minibuf.resource

<special>, Resource name of the minibuffer screen

.8Creen.reverse

False, Reverse colors for edit screen

.minibuf.reverse

False, Reverse colors for minibuffer screen

.8creen.icon.name

"t Jcon Name

2.1.2 Command Line Options

Epoch also accepts command line options. These override values in the X defaults. A complete
list is in the table below. Note that the program resource name/class can be overridden by specifying
different values on the command line (see Section 2.1.1 [X Window Program Defaults], page 5 for
how the name and class are used).

Chapter 2: General Information

Option Resource, Iffect
-bg *background, Sets background colors

-background
*background, Sets background colors

-fg *foreground, Sets foreground color

-foreground
*foreground, Sets foreground color

-geometry

*screen.geometry, Sets X-window geometry

-fn *font, Sets the font

-font *font, Sets the font

-nm *nonlocal.minibuf, Selects local minibuffer to each edit screen
-wn *name, Sets the X-window title

-window *name, Sets the X-window title

-d *display, Sets the display to use

-display *display, Sets the display to use

-r *reverse, Reverses foreground / background colors (no argument)
-rn NA, Sets the resource name

-resource

NA, Sets the resource name

-name NA, Sets the resource name
-cn NA, Sets the resource class
-class NA, Sets the resource class
-ud NA, Looks at SHOME/.Xdefaults for program defaults

-motion *motion, Turns on passing motion events to elisp for all screens

-xXrm NA, Overrides a resource manager value

2.2 New Features

This section provides a brief overview of the new features in Epoch. More detail is provided in

subsequent chapters.

In this document, the term screen will mean an X-window, and window will refer to an editor

window to avoid confusion. In most cases, working within a screen works the same as in GNU

FEmacs.

10 Epoch 4.0

At any time there is a single selected screen, similar to having a selected window. This can
also be called the current screen. Standard window functions work, but only apply to the current
screen. E.g., one-window-p returns non-nil if there is only one window on the current screen.
Buffers are shared among all screens, so any buffer in any window can be accessed, and will show
up in buffer lists. Killing buffers removes them from all windows.

Epoch supports two different kinds of minibuffers. The default is a non-local minibuffer which
is displayed in its own distinct screen; this is what Epoch has traditionally done. The alternative
is to have minibuffer windows local to each edit screen; this is similar to traditional GNU Emacs.
In the case of non-local minibuffers, there will always be exactly one minibuffer screen, and one or
more edit screens; a single edit screen and minibuffer screen together act similarly to normal GNU
Emacs. For local minibuffers, the real minibuffer will be located at the bottom of the current edit

screen.

Buttons are regions of text in a buffer than can have data attached to them and be displayed in
different styles (background/foreground color, stipple pattern, font) than surrounding text. Buttons
provide both the ability to do highlighting and also to attach data to text regions that can be
retrieved based on buffer location.

Epoch supports the use of either fixed-size or variable-sized (proportional) fonts for display. This
includes support for mixtures of fonts (using buttons) which feature potentially different attributes
(default or quad width, ascent, descent, etc).

Epoch supports event sending and reception, including client messages and X-window prop-
erties, and asynchronous reception of client and property change events. This allows Epoch to
communicate with other clients or the window manager.

2.3 Key Bindings

We provide a large range of useful functions to create, delete and change the attributes of screens
(including changing colors, size, etc). We provide a default set of key bindings to these functions,
shown below. The basic idea was to take the C-X binding for Emacs window and buffer operations,
and provide analogs for screen operations using C-Z as the prefix key. (We use C-Z because a
suspend operator is not all that useful in a multi-window environment, and anyway C-X C-Z still
provides the same effect as the standard.) We do not believe we have a full set of bindings yet, and
look forward to user contributions.

We supply a standard set of elisp files See Section 7.3 [Packages], page 66. They provide a good

Chapter 2: General Information 11

introduction to using the primitive Epoch facilities described in this document. The file ‘epoch.el’

installs the basic Epoch key bindings. See below for more information.

KEY Functionality

C-Z 4 F find-file-other-screen Find a file in another screen. Prompts for a filename. If
it is already in a window on a screen, warp the cursor there, otherwise create a new
screen and edit the file in it.

C-Z 4 B find-buffer-other-screen Selects a buffer in another screen. Prompts for a buffer
name. If it is already in a window on a screen, warp the cursor there, otherwise create
a new screen with one window for the buffer.

C-Z2 0 remove-screen Delete current screen.
C-Z 0 switch-screen Circulate through mapped screens in forwards direction.
-Z P prev-switch-screen Circulate through mapped screens in reverse direction.
C-Z 2 duplicate-screen Duplicate current screen.
C-Z R raise-current-screen Raise current screen
-Z L lower-current-screen Lower current screen
C-Z M raise-minibuf Raise minibuffer screen
C-Z21 iconify-screen Iconify current screen
C-Z E display-event-status Display event handler status

2.4 Conventions

Several conventions are used in the following chapters.

e Functions and variables are described with the format used in the Emacs Lisp Reference
Manual.

e Any screen argument can be a screen ID or a screen object. Optional screen arguments default
to the current screen.

e Any color argument can be an X Resource of type X-Cardinal See Section 6.1 [X Resources],
page 57, a vector or a string. Strings and vectors are to X-Cardinals converted internally.

Each epoch primitive has a leading ‘epoch: :’in a fashion reminiscent of Common Lisp packages,
e.g., epoch::create-screen. The point is that we want to build around these functions at the
elisp level, so we deliberately make the primitives uncomfortable to use. The files ‘wrapper.el’
and ‘epoch.el’ provide a full set of wrappers that remove the ‘epoch::’ leading characters and
add additional functionality (e.g. there is a function create-screen that provides a higher-level

12 Epoch 4.0

interface to the primitives). If you are going to write your own elisp code you should probably use

these wrapper functions, not the raw primitives.

2.5 Menus

Unlike GNU Emacs and some other X applications, Epoch provides no internal support for
pop-up menus or menu bar facilities. We feel that it is more appropriate for X11 clients to depend
on the window manager (or some sort of widget server) for menu support.

Two primary options exist for creating pop-up menus under Epoch: requesting the Window
Manager (i.e. GWM) to supply them, or using an external X client (XMENU) to provide them.
Examples of each method are available in the epoch/contrib directories.

2.5.1 GWM

GWM (generic window manager) is an Emacs-like window manager in that it provides a basic
kernel of window-managing facilities written in C and a lisp level for extensive user customiza-
tion. GWM is part of the X11 release (the most up-to-date version is always available from
‘expo.lcs.mit.edu’).

One can attach state machines to objects (such as X-windows) in GWM, and these then receive
and handle events. GWM can receive and initiate property change events, as can Epoch, so this
provides the basis for communication between the two.

GWM also provides the ability to decorate windows with up to four bars (one on each side,
top and bottom). Fach bar can have “plugs” (icons) which can have specialized state machines
attached. This allows one to have title bars, bars with pulldown menus, etc, all maintained by

GWM not by the client, but with communication allowing selections to be communicated.

GWM is easily tailored to emulate other window managers and comes with reasonable emula-
tions of MWM and TWM as well as a “home-grown” look-and-feel, so most users can use it as a

replacement for previous managers quite easily.

The interested reader should see the GWM documentation for more details,

Chapter 2: General Information 13

2.5.2 XMENU

XMENU is a toolkit program which producesa popup menu taking command-line arguments as
menu entries. It is possible to execute xmenu as a process from Epoch (or GNU Emacs) and wait
for the process output. XMENU is included in the directory epoch/contrib/xmenu.

14

Epoch 4.0

Chapter 3: Screens 15

3. Screens

This chapter describes screen features supported by Epoch, except for the elisp extensions
described in Chapter 7 [Miscellaneous|, page 65.

3.1 Screen Basics

In this document, the term screen will mean an X window, and window will refer to an editor
window to avoid confusion. In most cases working within a screen will be the same as in GNU

FEmacs.

Fach screen contains its own Emacs window hierarchy. (This terminology is a little confusing:
when GNU Emacs uses the term window this refers to the logical structure in which a buffer is
displayed. The name "window'" was already appropriated, so we had to call our “X-windows”
something different; they are therefore called screens.) When a screen is first created, it contains
a single window with its mode line covering the entire screen. The buffer for this window is set to
xscratchx unless a different buffer is specified.

Epoch supports two types of screens: edit screens and minibuffer screens. There will always be
at least one edit screen. If Epoch is operating with non-local minibuffers, then there will always be
exactly one minibuffer screen; otherwise, a local minibuffer window will appear at the bottom of
each edit screen. Emacs assumes there is at least one edit window at all times. A single edit screen
and the minibuffer window together act much like normal GNU Emacs.

epoch::nonlocal-minibuffer Variable
This variable is set to t if there is a distinct minibuffer screen, nil otherwise.

epoch::synchronize-minibuffers Variable
If Epoch is operating with local minibuffers, and this variable is set to t, then the
contents of all local minibuffer windows will be synchronized with the contents of the
real minibuffer window. This variable defaults to nil.

At any time there is a single selected screen, analogous to the selected window, also called the
current screen. Standard window functions work, but they only apply to the current screen. E.g.,
one-window-p returns non-nil if there is only one window on the current screen. Buffers are shared
among all screens, so any buffer in any window can be accessed, and will show up in buffer lists.

16 Epoch 4.0

Killing buffers removes them from all windows. The value of epoch: :global-update determines

whether Epoch updates non-current screens or not (see See Section 3.7 [Screen Updating], page 27).

Epoch adds screens as a new Emacs Lisp primitive type. Screens are printed as #<screen n>,
where n is the screen ID. This ID is a sequence number attached to a screen when it is created. It
serves primarily as a human convenience. Any argument to a primitive listed as screen can be either
a screen object or a screen ID. However, when the result of a function is a screen, this means a
screen object is returned unless specifically mentioned to do otherwise. Optional screen arguments

default to the current screen unless otherwise specified.

A screen that is displayed is said to be mapped; if it is only displayed as an icon, it is said to
be unmapped. By X Window System conventions, a screen is mapped iff its X window is mapped.

inhibit-initial-screen-mapping Variable
This variable, when bound and set to t, will inhibit the mapping of the first edit screen
when Epoch is starting up. In this case, the only screen which will be mapped initially
will be the minibuffer screen. If Epoch is run with local minibuffers, then the first edit
screen will be mapped regardless. This variable is not bound by default, but can be

[4

set in the user’s ‘.emacs’ file.

There is one significant difference between screens and windows: screens are known to external
programs (e.g., the X-server). This means that the GNU Emacs scheme for window activities is
not sufficient for screen activities. In particular, the creation of screens is much more complex than

window creation.

epoch::create-screen &optional buffer alist Function
Creates a new screen (unmapped), and returns it. If the buffer argument is present,
that buffer is attached to the single window originally present in the screen, otherwise
the *scratch* buffer is used. The alist argument is used to override screen creation

defaults. See *create-screen-alist-hook* below.

create-screen &optional buffer alist Function
Calls epoch: :create-screen but does some additional things. The alist passed to
epoch: :create-screenis a copy of alist appended with a copy of epoch-mode-alist
and two additional properties. These additional properties are icon-name and title
(which here default to buffer name@system name). Also see *create-screen-alist-
hook below.

Chapter 3: Screens 17

create-screen-alist-hook Variable
This is a hook variable used by create-screen. Just before the call to epoch: :create-
screen, each function in the hook is called with the screen property alist create-
screen has generated. Fach function should return a new version of the alist to be
used instead. Normally, the hook function will add or modify some of the entries in

the alist. See the code in See Section 7.4 [Screen Pools], page 70 for an example.

3.2 Screen Properties

Screens have a large number of properties (or attributes) that can differ between screens, and are
externally visible (e.g., colors, cursor shape and color, font, size, title, class). Most of the complexity
of screen creation is involved in dealing with these properties. Epoch deals with default-sets which
are collections of X window property types and values. When a screen is created, a default-set is
used to set the various properties of the screen. For information on default sets See Section 2.1.1

[X Window Program Defaults], page 5.

In order to allow more variety in screens, Epoch provides more ways of overriding the global X
default set. A global variable epoch: :screen-properties contains an alist of screen properties. At
screen creation time, a copy of the global default-set is made, and entries are overwritten with values
from epoch::screen-properties. After that, the alist given as an argument to create-screen

(if any) is used to override any previous values.

The order of determination of the default set for each screen is as follows (in increasing order of

precedence):

X Window Program Defaults (see Section 2.1.1 [X Window Program Defaults], page 5)
Values in epoch: :screen-properties.
Alist argument to epoch: :create-screen.

Mode-specific values using epoch-mode-alist, if create-screen is used for creation.

U= W N =

Alist argument to create-screen.

epoch::screen-properties Variable
This variable should contain an alist, the key values being screen property keys. The
primitive attempts to bypass bad entries, but if the alist is improperly formed, Epoch

may experience bizarre failures.

18

epoch-mode-alist

Epoch 4.0

Variable

This variable allows you to associate a set of X defaults with an emacs mode. The form

is a list, each element of which is a form (mode-

name . alist-of-defaults). Whenever

create-screen is called, the mode of the buffer argument (or the scratch buffer’s

mode if buffer is nil) is used to look in the alist.

This feature allows you to set geometry, colors, font, etc by mode. It’s useful to allow

(for example) 80x60 windows for ‘.c” and *.h’ files, but a regular size window for other

file types. See the definition of ‘epoch-mode-alist’in ‘epoch.el’ for some examples.

Thus you can set up a default mode to epoch upon entry and then override portions

of it at the time you call create-screen.

The table below is a list of all screen property keys recognized by the screen creation routines.

The defaults listed are the hard-wired defaults, but they may be superceded as described in Sec-

tion 2.1.1 [X Window Program Defaults], page 5. Values listed as flag are false if the value is nil,

true for any other value.

As an example, to set screens to have the font ‘9x15’
code would be used:

(setq epoch::screen-properties
(cons ’(font . "9x15")

(cons ’(cursor-glyph . 56) epoch

Name Type, Default, Description
foreground

String, Black, Screen foreground
background

String, White, Screen background

cursor-color

String, Black, Text cursor color

cursor-foreground

String, White, cursor foreground color

cursor-background

String, Black, cursor background color

border-color
String, White, X border color

and the ‘Gumby’ cursor, the following Elisp

::screen-properties)))

Chapter 3: Screens 19

in-border-width
Number, 2, Internal border width

ex-border-width
Number, 1, External border width

title String, “Edit”, Screen title

name String, “epoch”, Screen resource name

class String, “Emacs”, Screen class name

update String, false, Flag to indicate non-local screen updating

geometry String, 80x24, Geometry specifier. Size units are characters. Screen must be at least 2

lines high.

cursor-glyph
Number, 86, X cursor glyph. Index into the cursor font.

reverse Flag, False, Reverse foreground / background

font String, “fixed”, Font name
icon-name
String, “”, Name of Icon for Screen
motion Flag, nil, t will cause motion-events to be sent to screen, nil will inhibit this.
parent X resource, nil, If non-nil, must be an X “resource id”. The new screen is created as

a child of this resource. Useful to provide clipping-parents, for example when trying to
put screen in a form of some kind. This option is extremely dangerous and you should
not use it if you don’t know what you are doing.

initial-state
Flag, True, Starting state of screen. True means NormalState, false is IconicState.

3.3 Controlling Screens

The primitives in this section concern internal manipulations of screens.

epoch::get-screen &optional screen Function

Coerces a screen or screen D argument to the corresponding screen object.

epoch::get-screen-id &optional screen Function
Coerces a screen or screen 1D to the corresponding screen ID. Returns nil if the screen
is deleted.

20 Epoch 4.0

epoch::screen-p screen Function

Returns t if the argument is of type screen, nil otherwise.

epoch::screen-list &optional unmapped Function
Returns a list of all mapped screens, except the minibuffer which is never in the list.

If the argument unmapped non-nil then unmapped screens are also included.

epoch::next-screen &optional screen unmapped Function
Returns the next screen in the internal ordering. With no arguments, it is the next
screen after the current screen. A screen argument returns the next screen past the
argument. Unmapped screens are not returned, unless the second argument unmapped
is non-nil. The minibuffer screen is never returned.

epoch::prev-screen &optional screen unmapped Function
Same as epoch: :next-screen except the internal screen list is traversed in the opposite
order.

epoch::select-screen &optional screen Function

Makes the argument screen the current edit screen. The default is the next screen, as
defined by epoch: :next-screen. The minibuffer screen cannot be selected. Unmapped
screens may be selected, but only explicitly or if only unmapped screens are left. Epoch
attempts to remember what window was last selected in each screen, and selects that

one. The hook *select-screen-hook™ is run at this time.

Returns the selected screen, or nil if given a bad argument or if screen has been deleted.

Note: If a window is selected by select-window, an implicit epoch::select-screen
is done to select the screen the window is on. This insures that the current window
is on the current screen whether epoch: :select-screen or select-window was used.
In fact, this primitive actually works by selecting a window in the new screen.

select-screen-hook Variable
This hook is run by epoch::select-screen.

epoch::current-screen Function
Returns the current edit screen. The minibuffer screen is never returned.

Chapter 3: Screens 21

epoch::minibuf-screen Function
Returns the minibuffer screen. If no distinct minibuffer screen exists, then nil is
returned.

epoch::delete-screen &optional screen Function

Deletes a screen. Returns t if successful, nil otherwise. It is an error to delete the sole
remaining screen, and Epoch will not allow this.

If you delete a screen and it is the current screen, it first uses epoch: :select-screen

to select a new screen.

BUG: Window managers can delete the last edit screen. If this happens, Epoch will
crash and burn in short order. Window managers should obey the ICCCM standard
and send a delete signal to the client; then Epoch can grab this and terminate gracefully.

3.4 Screens and Windows

Epoch supports all of the windowing ability of GNU Emacs on each screen. Every window is on
a screen, and can never be moved from that screen. Epoch provides some primitives to help in the

interaction between screens and windows.

NOTE: The concept of selected-window under Epoch changes slightly from that of GNU Emacs
in that asynchronous events (i.e. Focus events) may cause the selected window to change without
any user-originated command to do so. This will cause problems for elisp packages which make the
assumption that the selected window can not change in the midst of their processing.

epoch::get-buffer-window bhuffer Function
Searchs for a window displaying buffer on all screens. Returns such a window if suc-
cessful, nil otherwise. This is effectively an updated version of the normal primitive
get-buffer-window, which searches only the current screen and minibuffer.

Note: selecting a window also selects the screen it is on. Remember that the window
may be on an unmapped screen. This function has no wrapper since that would collide

with the standard function get-buffer-window.

epoch::screens-of-buffer huffer Function
Returns a list of all screens on which buffer is displayed in a window.

22 Epoch 4.0

epoch::screen-of-window &optional window Function

Returns the screen that window is on. Returns the current screen if window is nil.

epoch::first-window &optional screen Function
Returns the first window in canonical order for screen. Use next-window to find the
other windows in the screen.

epoch::selected-window &optional screen Function
Returns the selected window for screen. This is the window that would be selected
if the screen it is on were selected, or equivalently the selected window the last time

screen was the current screen.

Note: There is no wrapper for this function, since that would collide with the standard
function selected-window.

3.5 Variable sized Fonts

Epoch now specifies the dimensions of Emacs windows in pixels. The primitives window-height
and window-width now calculate character dimensions based on pixel dimensions and the base font
for that window. It is important to realize that only the pixel values are "constant"; character/line
values will fluxuate based on the presence of any proportional fonts or variable-height lines.

NOTE: The behavior of Epoch with standard GNU Emacs elisp packages should be as expected
if fixed fonts are being used; different behavior may be seen otherwise.

window-pixheight &optional window Function

Returns the height of window in pixels. Defaults to selected window.

window-pixwidth &optional window Function
Returns the width of window in pixels. Defaults to selected window.

window-pixedges &optional window Function

Returns a list of edge coordinates of window in pixels. Defaults to selected window.

window-height &optional window Function
Returns the height of window in characters. Defaults to selected window.

Chapter 3: Screens

window-width &optional window Function
Returns the width of window in characters. Defaults to selected window.

window-edges &optional window Function

Returns alist of the edge coordinates of the window in characters. (LEFT TOP RIGHT
BOTTOM). NOTE: LEFT and TOP will be approximate, according to the base font
for the screen; RIGHT will be one more than the rightmost column in the window;
and BOTTOM is one more than the bottommost row used by the window and its
mode-line.

23

Epoch now provides pixel-based functions and variables analogous to several character-based

functions:

current-pixel Function
Returns a pixel position corresponding to current location of point. Does not take
window dimensions into consideration; may return pixel values past the right edge of
the window.

move-to-pixel pixel Function
Moves point to the character position corresponding to pixel position pixel. Ignores
values of pixel which are past the edge of the window.

fill-pixel Variable
Pixel column beyond which automatic line-wrapping should happen. Automatically
becomes local when set in any fashion. If fill-column is set to nil, the value of auto-fill-
hoolk is called if the current pixel position is past this value. The value of line-fill-hook
is called if text insertion will cause the current line to extend past fill-pixel.

text-width string &optional font Function
Return the length of text in string as displayed using font, or the base font of the
current screen and window.

3.6 Manipulating Screens

These primitives allow control of the windowing system aspects of screens. Most of them corre-

spond directly to X-window calls.

24 Epoch 4.0

Each of these functions return the screen, if successful, or nil otherwise.

The screen-or-xwin arguments may be screen objects or X resource object with type window

(see Section 6.1 [X Resources], page 57).

epoch::raise-screen {&optional screen-or-xwin Function
Raises the screen-or-xwin to the top of the display. This is called by epoch: :select-

sScCreen.

epoch::lower-screen &optional screen-or-xwin Function
Lowers the screen-or-xwin to the bottom of the display.

epoch::map-screen &optional screen-or-xwin Function
Maps the screen-or-xwin onto the display. No effect if the screen is already mapped.

epoch::unmap-screen &optional screen-or-xwin Function
Unmaps the screen-or-xwin. This is for sophisticated users only, as it does not check
to see if the screen is the edit screen or the minibuffer. If the unmapped screen is the

edit screen, it remains so - you just won’t be able to see it.

epoch::mapraised-screen &optional screen-or-xwin Function
This does a MapRaised call on the screen-or-xwin. This is equivalent to doing a map
followed atomically by a raise. If no argument is present, it uses the current screen.

epoch::iconify-screen &optional screen Function
Sends ICCCM client message requesting iconification of screen (or current screen if no

argument present).
Note:

e Some window managers are not ICCCM compliant and will not handle this cor-

rectly.

e [CCCM standard says that to uniconify, an epoch: :map-screen should be used.
This doesn’t seem to work for many window managers at present.

Chapter 3: Screens 25

epoch::screen-mapped-p &optional screen Function
Returns t if the screen exists and is mapped, nil otherwise.

epoch::screen-height &optional screen Function
Returns the height (in characters) of the screen. NOTE: there is no Epoch wrapper
function for this primitive, as it would conflict with the existing GNU FEmacs screen-
height primitive. The height returned is calculated according to the base font for that

screen.

epoch::screen-width &optional screen Function
Returns the width (in characters) of the screen. NOTE: there is no Epoch wrapper
function for this primitive, as it would conflict with the existing GNU FEmacs screen-
width primitive. The width returned is calculated according to the base font for that

screen.

epoch::change-screen-size &optional width height screen Function
Attempts to resize the screen, leaving the upper left corner fixed. The width and
height are in characters, and default to the current width and height. This uses the
XResizeWindow () call, which may be intercepted by the window manager. The width
and height values are adjusted be be not more than 150. The height is adjusted to at
least 1 for the minibuffer and 2 for edit screens.

epoch::font &optional font screen Function
If called with nil font argument, this function returns the current font. If called with
font argument, it changes screen’s font to be that font. It will resize the screen so that
it still has the same character geometry. It operates on the current screen if screen is
nil. The result is a list of three elements: Font name, character-width, character-height

in pixels.

epoch::title &optional name screen Function
If called with nil name argument, this function returns the X screen name for screen

or the current screen. If name is a string, screen’s title is changed accordingly.

epoch::icon-name &optional name screen Function
If called with nil name argument, this function returns the X screen icon name for

screen or the current screen. If name is a string, screen’s icon name is changed accord-

ingly.

26 Epoch 4.0

epoch::plane-size Function
Returns a cons pair. Car is plane width, cdr is plane height in pixels. (A plane is a
“minor screen” on a display: on mono screens, there is just one plane, color screens
sometimes have several).

epoch::screen-information &optional screen-or-xwin Function
Returns information about screen-or-xwin, or the current screen if screen-or-xwin is
nil. The information is a list with the following elements:

X location of screen in pixels
Y location of screen in pixels
Width of screen in pixels
Height of screen in pixels
External Borderwidth in pixels

Internal Borderwidth; for an xwin, this is always 0.

-] O Ot = W N =

Map state: t if normal, nil if iconic.

epoch::move-screen x y &optional screen-or-xwin Function
Sends request to window manager to move upper-left corner of screen-or-xwin (or
current screen if no third argument) to given (x,y) coordinates in pixels. Note that
some window managers may choose to ignore this request.

epoch::foreground &optional color screen Function
Set/get the foreground color of the screen. If color is nil then the function returns the
current foreground color as an X Resource. Otherwise it attempts to set the foreground
color, and returns t on success and nil otherwise.

epoch::background &optional color screen Function
Set/get the background color of the screen. If color is nil then the function returns
the current background color as an X Resource. Otherwise it attempts to set the

background color, and returns t on success and nil otherwise.

epoch::cursor-color &optional color screen Function
Set/get the text cursor color of the screen. If color is nil then the function returns
the current text cursor color as an X Resource. Otherwise it attempts to set the text
cursor color, and returns t on success and nil otherwise.

Chapter 3: Screens 27

epoch::cursor-glyph &optional glyph screen Function
Set/get the X cursor glyph. If glyph is nil, returns the current glyph number, otherwise
attempts to set the glyph.

epoch::flash-screen &optional screen-or-xwin Function
Flash the screen-or-xwin. If the argument is a screen object, the flashing is done
by exchanging the foreground and background colors, pausing .25 seconds, and then
exchanging them again. For an X-window resource (even if it is an Epoch screen),
the flashing is done by inverting the pixels, pausing, and then inverting again. This is
effective on a monochrome display, but is not as effective for color, depending on the

foreground and background colors.

3.7 Screen Updating

Epoch allows you to control which screens are updated as their contents are changed. The
default is to only update the current screen, which is maximally efficient. It is possible, however,
to set things up so that all screens or only some subset of the screens are updated. This is useful
if you are editing a buffer which is displayed on multiple screens, or if you have a shell or other
process running in one buffer and you are working in another. Then you can set things up so that
the screen with the shell continues to update as it runs, while you work in another screen. There

are several ways to do this, all involving the value of the global variable epoch: :global-update.

The functions and variables are:

epoch::global-update Variable

There are three classes of values for this variable.

e set to nil. Disables updating all but the local screen.

e set tot. Enables potential updates: particular screens to be updated conditionally
based on the value of the screen-local update flag. This flag may be set using
epoch: :set-update, and is stored in the epoch-mode-alist variable.

e set to any other value: causes all screens to be updated. This is a shorthand for
setting to t and then setting the update property on each screen individually.

epoch::set-update arg &optional screen Function
Sets update flag to arg for screen, or current screen if nil. arg must be t for update,

nil for no update. Returns previous value of flag.

28 Epoch 4.0

epoch::update-p &optional screen Function
Returns t if screen’s update flag is set, nil otherwise. Uses current screen if screen

argument is not present. This function should be epoch: :updatep.

In addition you can use the following primitives to help control when screens get updated:

epoch::redisplay-screen &optional screen Function
Forces a non-premptive redraw of argument screen (current screen if nil).

redraw-display Function
Clears current screen and redraws what should be there.

recenter &optional line Function
Center point in window and redisplay screen. If line is non-nil, put point on that line.

Operates on current window.

epoch::set-screen-modified &optional screen Function
Mark the argument screen (current if nil) as modified for update next time Epoch

gets around to an update.

Chapter 4: Zones 29

4. Zones

4.1 Zone Basics

Epoch supports the notion of zones (A.K.A. buttons), which are regions that are displayed in a

different styles. Two new data types are used for this: zone and style.

zone

style

Each zone has the following characteristics:
start The start of the zone. A marker.

end The end of the zone. A marker. The zone covers all characters between
start and end.

style Style to be used for displaying the text of the zone.
read-only If set to non-nil, the text of the zone cannot be directly edited. Attempts

to insert or delete any character in the zone will generate an error. (See
Section 4.7 [Read-only Zones], page 38)

data Not used internally. This field can be any Elisp object, and is provided for
the programmer to use to attach data to a zone for later retrieval.

transient Flag to indicate zone should be ignored by undo operations.
A styleis an object that describes how to display characters. It has the following fields:

foreground
The text foreground color.
background
The text background color.
cursor-foreground
The character foreground color when the text cursor is on the character.
cursor-background
The character background color when the text cursor is on the character.
font The font to be used for displaying the text in this style.
stipple The stipple pattern to use for the text.
cursor-stipple
The stipple to use when the cursor is on the text.

background-stipple
The stipple to use for the background. Bits that are set in the stipple are
displayed in the screen background color. Cleared bits are displayed in the
style background color.

30 Epoch 4.0

underline The color to use for underlining. If not set, no underlining is done.

tag Not used internally. This can be any Elisp object.

Zones were intended as a way of providing “hotbutton” capabilities in hypertext-like applications
using Epoch as a front-end. In these cases the data field will hold information for the hotbutton.

Zones can also be used for many other applications, of course.

Each zone is attached to a buffer. All buffer arguments in the Epoch primitives default to the
current buffer. Arguments of type zone must zone objects. A package has been written to store
zone information with buffers when they are written to files and then restore zones when the buffer
is visisted (See Section 7.5 [Saving Zones], page 71).

NOTE: To maintain compatibility with older Elisp packages, you may do a (require ’button)
to get "button" wrapper functions for the zone primitives. Old Elisp code may be converted to
require zones by using the file ‘convert-buttons.el’.

Functions exist to access and change a zones start/end position or even the zone’s buffer, while
maintaining the correct position in the zone list. NOTE: Elisp code that alters zones by changing
the vectors directly will no longer work correctly. See the file ‘fix-3.2.el’ for a function which
will convert such code.

4.2 Zone Primitives

epoch::make-zone Function

Used to create a new zone. Returns a zone pointing nowhere, in no buffer.

epoch::zonep object Function
Returns t if object is a zone, otherwise nil

epoch::zone-buffer zone Function
Returns the buffer a zone is currently in, or nil.

epoch::zone-start zone Function
Returns the zone’s starting position as an integer.

Chapter 4: Zones

epoch::zone-end zone Function

Returns the zone’s end position as an integer

epoch::move-zone zone &optional start end bufler Function
Moves the specified zone to a new position indicated by start and end in buffer. If
either parameter is nil, it will remain unchanged. The zone start and end will be
swapped, if necessary, so that the start comes before the end. Moving zones will cause
the respective buffer(s) to redisplay, but will not mark the buffer as modified unless
epoch: :zones-modify-buffer is t. Returns the updated zone.

start and end may be markers, but only the marker position is used.

epoch::add-zone start end attribute &optional data bufler Function
Add a zone to buffer. start and end must be markers or integers. attribute is a number.
data is programmer defined, and not used internally, and so can be anything. Returns
the new zone, or nil on failure.

epoch::zone-at &optional position buffer Function
Returns the zone in bufler that contains position, or nil. If position is nil, point is
used.

epoch::zones-at &optional position buffer Function

Returns a list of zones in buffer that contain position, or nil. If position is nil, point
is used. The zones are ordered by starting position.

epoch::zone-list &optional buffer Function
Returns the list of zones for buffer. The list contains the actual zones, not copies. The
zones are ordered by starting position.

epoch::zone-style zone Function
Returns the zone’s current style value.

epoch::set-zone-style zone value Function
Sets the zone’s style to value.

epoch::zone-data zone Function
Returns the zone’s current data value.

32 Epoch 4.0

epoch::set-zone-data zone value Function

Sets the zone’s data to value.

epoch::zone-transient-p zone Function
Returns t if zone has its transient flag set; else nil.

epoch::set-zone-transient zone zone flag Function
Sets the zone’s transient to flag. This is useful if the zone should be ignored by undo
operations.

zone-text &optional zone Function

Returns a string that is the text contained in zone. If zone is omitted, the zone-at
point is used, if any. Returns the empty string for an empty zone or no zone.

epoch::zones-modify-buffer Variable
If non-nil, changing any zones with Epoch primitives will cause the associated buffer
to be marked as changed. Useful if you want write-file-hooks that save zone infor-
mation.

4.3 Deleting Zones

epoch::delete-zone zone Function
Removes the zone from the buffer that it is in. The argument must be the actual zone
itself, not a copy. This can be obtained by saving the result from epoch: :make-zone
or other zone returning primitives. Returns the zone if successful, nil otherwise.

epoch::delete-zone-at position &optional buffer Function
Removes the zone (if any) that contains position in buffer. Returns the zone if success-
ful, nil otherwise. Equivalent to (epoch::delete-zone (epoch::zone-at position
buffer) buffer).

epoch::clear-zones &optional buffer Function
Removes all zones from buffer. Returns t if succesful, nil otherwise.

Chapter 4: Zones 33

4.4 Style Primitives

Epoch supports a completely style-based display, where styles describe the context for displaying
normal text, text within zones, text cursors, and modelines. Each style has a number of different
fields. Foreground and background colors control how normal characters are displayed in the style.
Cursor foreground and background indicate how a character in the text cursor is to be displayed.
If cursor colors are not set but text colors are, the cursor will use the inverse of the text colors.
The underline color controls if the characters are underlined. If set to a color, a line of that color is
drawn under characters using that style. If set to nil, no line is drawn. A stipple pattern must be
a X-bitmap resource (See Section 6.2 [X Objects], page 58). For text, the on bits in the stipple are
displayed in the text foreground; the off bits in the text background. The character background is
either solid background color, or the on bits are displayed in the screen background color and the
off bits in the text background. For the cursor, the cursor colors are used, and the cursor stipple
(if any) is used in place of the background stipple for the cursor background. If the cursor stipple
is not set and the background stipple is, the cursor background is not stippled.

When displaying text within a given buffer, a hierarchy of styles exists for determining display

attributes:

1. Zone styles
2. Buffer-local styles
3. Screen based styles

NOTE: Screen based styles are changed via primitives such as epoch: :foreground epoch: :background,

epoch: :cursor-color, epoch: :font. All style fields are guaranteed to be valid at the screen level.

epoch::make-style Function
Create a style object. Initially all fields are set to nil.

epoch::stylep object Function
Return t if object is a style, else nil.

epoch::style-foreground style Function
Returns the foreground color of style.

epoch::set-style-foreground style color Function
Sets the style to foreground color.

34

epoch::style-background style
Returns the background color of style.

epoch::set-style-background style color
Set the style to background color.

epoch::style-cursor-foreground style
Returns the cursor foreground color of style.

epoch::set-style-cursor-foreground style color

Sets the style to cursor foreground color.

epoch::style-cursor-background style
Returns the background cursor color of style.

epoch::set-style-cursor-background style color

Set the style to cursor background color.

epoch::style-underline style
Return the underline color.

epoch::set-style-underline style color
Set the style underline to color.

epoch::style-stipple style
Return the text stipple for the style.

epoch::set-style-stipple style stipple
Set the text stipple pattern for style to stipple.

epoch::style-background-stipple style
Return the background stipple for style.

epoch::set-style-background-stipple style stipple
Set the background stipple pattern for style to stipple.

Epoch 4.0

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Chapter 4: Zones 35

epoch::style-cursor-stipple style Function
Return the stipple pattern for the cursor for style.

epoch::set-style-cursor-stipple style stipple Function
Set the cursor stipple pattern for style to stipple.

epoch::style-font style Function
Return the font associated with style, or nil if none is specified.

epoch::set-style-font style font Function
Set the font for style to be font.

epoch::style-tag style Function
Return the tag value associated with style, or nil if none is specified.

epoch::set-style-tag style tag Function
Sets the tag value associated with style to tag.

motion::style Variable
This style, which defaults to underlining, is the style used by Epoch mouse dragging
code found in ‘motion.el’. It’s value is set at runtime, and may be superceded by

values in the file ‘. emacs’.

The following code is used to set up the default style for mouse dragging, and demonstrates the

use of Epoch and style primitives.

(setq motion::style (make-style))
(set-style-foreground motion::style (foreground))
(set-style-background motion::style (background))
(set-style-underline motion::style (foreground))

buffer-style Variable
This variable is set to the style used by Epoch to display text in this buffer. It defaults

to nil, and becomes local when set in any fashion.

The variable buffer-style may also be set using the local variables list in files. The following

36 Epoch 4.0

code when included in a TEX file would specify a major mode of tex-mode and a buffer style of

tex-mode-style (which could select a proportional font):
In ‘. emacs’

(setq tex-mode-style
(let ((s (make-style)))
(set-style-font s "variable")

)
)
In file:
#;;; Local Variables: *x**
#;;; mode: tex *xx
#;;; buffer-style: tex-mode-style ***
#;;; End: skx

4.5 Modelines

It is also possible to embed styles into the variables which define modeline format. For details
on mode line constructs, see section 20.3 of the Fmacs Lisp Reference Manual. Note that mode
lines being displayed with styles will override the value of mode-line-inverse-video.

mode-line-inverse-video Variable
If this variable is non-nil, the modeline will be displayed in inverse video, or other
suitable display mode.

default-mode-line-format Variable
This variable holds the default mode-line-format for buffers that do not override it.

This is the same as (default-value ’mode-line-format).

mode-line-format Variable
The value of this variable is a mode line construct responsible for the mode line format.

This variable is buffer-local.

The following is an example of elisp code to embed styles in mode lines.

Chapter 4: Zones 37

;; hilight "Epoch" and buffer name in current buffer’s modeline.
;3 81 - hilight style

(setq sl (make-style))

(set-style-foreground sl "red")

(set-style-background s1 "white")

(set-style-font s1 "fixed")

;3 82 - normal style

(setq s2 (make-style))
(set-style-foreground s2 "black")
(set-style-background s2 "white")
(set-style-font s2 '"variable")

;; define modeline format
(setq mode-line-format

(1ist
82 "" mode-line-modified
s1 mode-line-buffer-identification s2
" " global-mode-string " %[(" mode-name minor-mode-alist
"%n'" mode-line-process ")%]----" (cons -3 "Yp") "-%-"
)

4.6 Zone Plotting

When a buffer is plotted, zones are extracted from the buffer zone list and used to change the
colors of the text and cursor. If the zones are disjoint, then which zone to use for a character is
unambiguous. Overlapping zones are more complex; the algorithm for deciding which style are

used when zones overlap is described next.

The zone plotter assumes that the zone list is sorted by starting position. If zones overlap, the
zone with the largest starting position takes precedence. This allows zones to nest, so that if one
zone is entirely inside another, both zones are visible. If two zones overlap without containment,
the second zone will be entirely visible, and the first truncated. Whenever there is a reference to

the zone “at” a location, that means the zone that was plotted at that location.

A zone with a non-null style always has precedence over a zone with null style. This means that
if a zone with an null style follows and overlaps a zone of non-null style, the preceeding zone will
be plotted in the overlap region. Null styles are intended for hidden or non-user zones (such as for
tagging a region of text with data), and this rule prevents them from interfering with visible zones.

38 Epoch 4.0

4.7 Read-only Zones

In the case of a read-only zone, (the read-only field is t), most attempts to change text within
the zone will result in an error analogous to changing a read-only buffer. Two exceptions to this

rule exist at zone boundaries.

1. Attempted changes on the first character of the zone will be allowed, but will be diverted to

the left of the zone itself, so the zone is not extended.

2. Attempted changes to the immediate right of the zone will be permitted, but the zone will not
be extended. This is really a change outside of the zone.

Essentially, this implies that the size of a read-only zone will only change because of explicit
commands to change the zone boundaries; not by inserting or deleting text within the zone. Chang-
ing the location of a read-only zone by altering text previous to the zone is permitted; this is even
possible with adjoining read-only zones (unless they explicitly overlap).

add-read-only-zone start end attribute &optional data buffer Function
The same as epoch: :add-zone except that the zone is set to be read-only immediately

after being created.

epoch::read-only-region-p start end &optional buffer Function
Given a region delimited by start and end in bufler, check for read-only zones. Returns
nil if region contains no read-only zones; otherwise it returns the zone. In cases of
overlapping zones, the display rule discussed earlier is obeyed (See Section 4.6 [Zone
Plotting], page 37).

NOTE: When checking for insert operation, use the insertion point for both start and
end arguments. If this would normally be inside the zone, but because of insertion
rules would be deflected to the side of the zone, this function will not return the zone.

epoch::zone-read-only zone Function

Return’s the zone’s current read-only value.

epoch::set-zone-read-only zone flag Function
Sets the zone’s read-only flag to flag, which must be either t or nil.

Chapter 4: Zones 39

4.8 Graphical Zones

Epoch now supports displaying graphical images (X pixmaps) in zones. This requires the XPM
version 3 library from Groupe Bull, which is on the X11R5 contrib tape, and is available via anony-
mous ftp from export.lcs.mit.edu (18.24.0.12) and avahi.inria.fr (192.5.60.47). To enable
graphical zones, you must compile Epoch with HAVE_GRAPHIC_ZONES enabled in ‘config.h’.

NOTE: You may need to edit ‘button.c’ to include ‘xpm.h’ appropriately.

Once Epoch has been built in this manner, several new elisp primitives are available:

add-graphic-zone pixmap-name start end &optional offset data buffer Function
read-only
Adds a graphical zone corresponding to a pixmap named pixmap-name from start to
end in buffer (or current buffer). Zone will have data value data, and will be set read-
only if read-only is non-nil. offset describes the percentage of the graphical image which
will appear below the baseline; 0 (default) corresponds to an image totally above the
baseline, 100 corresponds to totally below. pixmap-name can also be an X Resource of

type pixmap. Returns the zone if successful.

epoch::define-opaque-font name width height &optional offset Function
Defines a psuedo font for displaying graphical images. Font name will have width
width, and height height. As above, offset describes the percentage of the font which
will appear below the baseline. Returns the name, or nil.

epoch::read-pixmap-file filename Function
Using the Xpm library, read in filename and create an X pixmap corresponding to
it. Return an X Resource of type Pixmap if successful, otherwise nil. filename must
correspond to the complete filename (including extensions) of a text file in the X Pixmap

Format, or else an X Resource of type Pixmap.

epoch::query-pixmap pixmap Function
Returns a list of the form (width height depth) corresponding to an X pixmap. pixmap
should be an X Resource of type Pixmap.

epoch::set-style-pixmap style pixmap Function
Set style style to reference pixmap. pixmap should be an X Resource of type Pixmap,

or nil.

40 Epoch 4.0

epoch::style-pixmap style Function

Return the pixmap associated with style.

Note: If a buffer containing a graphical zone is being displayed in a window which is too small

to display the entire graphical image, in most cases no text will be displayed in the window.

4.9 Zones and Undo

It is possible for undo operations to restore affected zones to their previous positions. This is
primarily noticeable for undoing delete operations. This feature is enabled by default, but may be
disabled by setting the buffer-local variable undo-restore-zones. Any zones with the transient
field set to t will be ignored.

undo-restore-zones t Variable
If set to non-nil, then zone information will be stored with all delete operations so
that undo may restore the zones to their previous positions. This variable becomes
buffer-local when set in any fashion.

Chapter 5: Events 41

5. Events

Epoch provides the ability to handle X window system events in Elisp.

5.1 Event Basics

Events are the mechanism the X window system uses to communicate with client programs
(such as Epoch). Certain types of X events, listed below, are stored into a queue, the event-queue.
Whenever such an event is received by Epoch, it is stored in the event-queue, and an event-key
is inserted into the keyboard buffer. Whenever the keyboard is checked for keys, these event keys
are read and processed until there are none left or an actual key is encountered. For each of
these event, the variable epoch::event is bound to the value of the event, and the event handler
epoch: :event-handler is called. (See Section 5.2 [Basic Event Handling], page 43 to learn more
about that subject.) Each event is returned as a vector of 4 elements. The first is the event type,
the second is data associated with the event, the third is the screen on which the event occured,
and the fourth is the time-stamp indicating the time the event occured (will be nil for focus, map,

resize, and client-message events)

Epoch currently captures the events described in the following table:

42 Epoch 4.0

Event Data

focus t for focus-in, nil for focus-out

property-change
If epoch::lazy-events is nil, then a cons pair. Car is name of property (a string),
cdr is new value of property. Otherwise, the value is just the X-atom resource of the
property. (See Section 5.4 [Property Change Events], page 46)

selection-clear

atom corresponding to selection name (See Section 5.5 [Selection Events], page 47)

map t for map, nil for unmap
move Cons pair: x-position, y-position in pixels
resize List of 3 elements: new width, new height, outer borderwidth

client-message
A triple of the form (TYPE FROM . DATA). See description of epoch::send-
client-message below for an explanation. (See Section 5.6 [Client Message Events],
page 49).

button A 5-tuple of form (Press/Release x-coord y-coord button mod-state). (See Section 5.7
[Mouse Events], page 50)

motion A triplet of the form (x-coord y-coord mod-state). (See Section 5.8 [Motion Events],
page 54).

To support asynchronous communication through events, Epoch provides primitives to set and
read X Properties (See Section 6.2.2 [X Properties], page 60), and a property event handler. Prim-

itives are also provided to send client messages.

Client messages are sent through the epoch::send-client-message function and received

through events of type client-message.

epoch::lazy-events Variable
If this variable is non-nil, then the internal event code will do as little work as possible.
Primarily, property events will only report the atom of the property changed, and leave
it up to other code to acquire the value if desired. (See Section 5.4 [Property Change
Events], page 46)

epoch::mouse-events Variable
If this variable is non-nil, then mouse events are placed into the Epoch event queue
instead of generating fake key strokes.

Chapter 5: Events 43

5.2 Basic Event Handling

Events are handled by binding the variable epoch::event-handler to a function of no argu-
ments. Whenever an event is dispatched as described above, if epoch: :event-handler is non-nil,
the value in it is called as a no argument function. This function should then examine the value of

epoch: :event and take appropriate action.

If any error occurs while the event handler is being executed, then the behaviour depends on
the value of the variable epoch::event-handler-abort. If this is t, then the event-handler is
aborted by resetting the variable to nil. This action prevents runaway errors on every following
event. If the variable epoch: :event-handler-abort is nil then this action is not taken.

In order to make event handling easier, a standard set of event handling functions are provided.
These provide a (somewhat) widget-like interface to events. Selected parts of the interface can be
replaced without change to the underlying internals. Event handling is organized hierarchially —
the top level handler invokes other handlers to dispatch the final handling routines. The following

description is from the top down.

The basic event handler maintains an internal alist to associate event types with event handlers.
An event type is the symbolic name corresponding to a class of X events. An event handler is an
elisp function that may be called when an event occurs.

For each event type, a stack of event handlers is kept, and when an event of that type occurs,
the function at the top of the stack is called with arguments showed below. This allows you to
change the event handler behaviour in a restorable way. Each basic event type must be installed
before any events will be dispatched for it; this allows events to be globally disabled and reenabled.
Currently the Epoch elisp files (see Section 7.3 [Packages], page 66) install all supported events.

When the basic handler runs, epoch: :event-handler-abort is initially set to t. It then watches
for errors during the dispatch of an event, which are detected by checking epoch: :event-handler
after returning from the dispatch. If epoch::event-handler has been set to nil, an error is
presumed to have occured, and ignore-event is called on that event. This provides improvements
over the built-in system, in that only a particular type of event is ignored (others continue to
dispatch), and service can be restored with a simple (resume-event event), independent of the
actual names of the handlers. This also means that handlers can now be anonymous, i.e. push-
event can be passed a lambda expression instead of the symbol name of a function.

Event handler functions should be defined as follows:

44

Epoch 4.0

(defun my-event-handler (event-type value screen)

"event-type is the type of the event. value is the value of
the event, and screen is the screen which received the event.
Handlers can call the event handling interface routines, so that a
one-shot handler (which pops itself) can be set up."

)

The following functions and variables form the interface to the event handling system.

epoch::event-handler Variable

Variable that contains nil or a function to be called when there are pending property
change events. The handler should use the variable epoch::event to retrieve the
current event. If epoch::event-handler has been set to nil after an event has been

dispatched, an error is presumed to have occured (see above).

epoch::event Variable

Just before the event handler in epoch: :event-handleris called, this variable is bound
to the value of the event that caused the handler call. It is a vector of size four,
consisting of the event type, the event value, the screen where the event occurred, and

the event’s timestamp (if available).

epoch::event-handler-abort Variable

If this variable is non-nil, then if an error occurs while the event handler is running,
epoch: :event-handler is set to nil. This prevents an error in some part of the event
handler code from causing Epoch to lock up with excessive errors.

epoch::get-event Function

All events are stored in an internal event queue. This primitive returns the oldest event
in the event queue as an Elisp vector of size three. The zeroth element is the type of
the event, the first element is the value of the event, the second element is the screen on

which the event occurred, and the third element is the event’s timestamp (if available).

install-event event Function

This puts event into the handler alist. event can be anything, but unless it is eq to an
event type, it will never be dispatched; instead it will be ignored.

remove-event event Function

Removes event from the handler alist. All handlers associated with it are lost.

Chapter 5: Events

push-event event handler Function
Installs handler for event. Handlers are installed in a stack, and the handler at the top
of the stack is dispatched for the event.

pop-event event Function
Removes and returns the top level handler for event.

ignore-event event Function
Pushes a marker onto the handler stack for event so that the event is not dispatched.

resume-event event Function
Pops the ignore marker from the top of the handler stack for event. Note that these
two functions are different from remove-event and install-event in that these allow
temporary, transparent inhibition of events in a local area, while the latter have global
effects.

display-event-status Function
Print the current event handler status into a buffer and display it in a window on the
current screen. Normally bound to C-z e. The status keys are H for being handled, T
for ignored, and U for uninstalled. If a number follows the letter, that is the depth of

the handlers or ignore markers.

5.3 Advanced Event Handling

In addition to the standard event handling facilities just described, it is occassionally necessary

to handle certain event types specially.

epoch::wait-for-event event-type handler Function
This primitive will wait for an event-type type to occur, and then call handler if non
nil. handler should be a function defined similarly to other event handler functions
See Section 5.2 [Basic Event Handling], page 43. Any other events which are received
during the wait are stored and dispatched in the order of arrival after the desired event
has occured. The function will return after this has occured. NOTE: This function

could cause deadlock if the selected event type does not occur.

46 Epoch 4.0

5.4 Property Change Events

The Epoch elisp files set up a handler for the property-change event which then dispatches
based on the property, in a manner analagous to the basic event handling. This property event
handler uses lazy events (see epoch::lazy-events in See Section 5.2 [Basic Event Handling],
page 43.) This means that a property change event has a value of just the X-atom resource
corresponding to the property that changed.

Implementation note: Property events are passed as lazy events to save the expense of
unneeded round-trip server requests. With non-lazy events, all property events would
involve 2 round-trip requests, one for the atom and another for the value. However,
most property events are not handled, and so such information is simply thrown away.
With this system, only those property events that are actually dispatched invoke this
expense, and in many cases the name of the property is unnecessary. (If the handler
function is attached to only one property, then it implicitly knows the property name
value.) The primitive equal has been extened to provide comparisons for X-Resources
See Section 6.1 [X Resources], page 57.

Each installed property is stored as the X-atom resource and a stack of handlers. If the top
entry is a function, then it is called with the same parameters as for basic event handling. (The
event type will always be property-change, but this allows a consistent handler interface for all
handler functions.) If the property is not in the alist, or the top entry is not a function, the property

change is ignored.

In contrast to basic event handling, if the property is not installed, pushing the property handler
will install it. The inhibition of handling for certain properties is not as useful as for events. Since
the number of possible property events is far larger than the number of possible event types, the
extra hassle of having to seperately install properties was judged to be too much. The install-
property and remove-property should be used seldom, if at all, and are provided primarily for

conformity with basic event handling.

Property change handler functions should be of the same form as the general event handlers.
Note that the value of the property change is passed as an X-atom. If the value of the property
is desired, the function get-property can be used. If the name of the property is needed, use

unintern-atom.

One way that property change events can be used is to send messages to and receive mes-
sages from the window manager. We use this facility extensively to display menus to the user,
change window names and decorations, etc. X properties are manipulated and accessed through
the epoch: :set-property and epoch: :get-property functions (see Section 6.2.2 [X Properties],
page 60).

Chapter 5: Events 47

Epoch maintains two properties on the screens automatically. These are EPOCH_SCREEN_ID,
which is an integer that is the screen ID, and EPOCH_CURRENT, which is a string, either “yes” if that

[13

screen is the current edit screen, “no” if it is not, or “minibuf” if it is the minibuffer.

The following functions are the interface to the property event handling system.

install-property property Function
This puts property into the handler alist. property should be the name of an X
Property (i.e. a string or X Atom).

remove-property property Function
Removes property from the handler alist. All handlers associated with it are lost.

push-property property handler Function
Installs handler for property. Handlers are installed in a stack, and the handler at the
top of the stack is dispatched for the property. If the property is not already in the
handler list, it is added.

pop-property property Function

Removes and returns the top level handler for property.

ignore-property property Function
Pushes a marker onto the handler stack for property so that the property is not dis-
patched.

resume-property property Function

Pops the ignore marker from the top of the handler stack for property.

5.5 Selection Events

There are three types of events associated with X11 selections, two of which may be handled
in elisp (See Section 6.2.3 [X Selections], page 61). selection-clear events are handled based
on selection name with a handler similar to other events. selection-request events are handled

internally unless the requested target atom is non-standard.

48 Epoch 4.0

epoch::convert-selection-hook convert-to-target Variable
The function named by this hook will be called for any selection-requests with non-

standard target atoms.

add-selection-target target function Function
Adds target to list of user-defined target atoms. function will be called for conversion
requests of this type.

convert-to-target target Function
Called by epoch::convert-selection-hook to call appropriate conversion function

based on target. If no function exists, return nil.

install-selection selection Function
Puts selection on handler alist. selection should be the name of an X Selection (i.e. a
string or X Atom).

remove-selection selection Function
Removes selection from handler alist. All handlers associated with it are lost.

push-selection selection handler Function
Installs handler for selection. Handlers are installed in a stack, with the handler at the
top of the stack is dispatched for the selection. If the selection is not already on the
handler list, it is added.

pop-selection selection Function

Removes and returns the top level handler for selection.

ignore-selection selection Function
Pushes a marker onto the handler stack for selection so that the selection is not dis-
patched.

resume-selection selection Function

Pops the ignore marker from the top of the handler stack for selection.

NOTE: If no handler is installed for a given selection, then selection-clear events received
will be handled generically, with any data for that selection being deleted from epoch: :selection-

Chapter 5: Events 49

alist. If a handler has been installed for a selection, it is the responsibility of that handler to

remove data from epoch::selection-alist if this behavior is desired.

5.6 Client Message Events

The Epoch elisp files set up a handler for the client-message event which then dispatches
based on the message type. Each installed property is stored as the X-atom resource and a stack
of handlers. If the top entry is a function, then it is called, with the same parameters as for basic
event handling. If the message type is not in the alist, or the top entry is not a function, the

message is ignored.

The value of a client message is a list of (type source . data) where type is the message type
X-atom resource, source is an X-window resource specifying the source window, and data is the
data field of the message converted to Elisp data in the same manner as X property values (see
Section 6.2.2 [X Properties], page 60). To send client mesages, see Section 6.2.1 [Client Messages],
page 59.

If the message type is not installed, pushing a handler will install it. install-message and
remove-message should be used seldom, if at all, and are provided primarily for conformity with

basic event handling.

The following functions are the interface to the client message event handling system.

install-message message Function
This puts message into the handler alist. message should be either a string or X Atom.

remove-message message Function
Removes message from the handler alist. All handlers associated with it are lost.

push-message message handler Function
Installs handler for message. Handlers are installed in a stack, and the handler at the
top of the stack is dispatched for the message. If the message is not already in the
handler list, it is added.

pop-message message Function
Removes and returns the top level handler for message.

50 Epoch 4.0

ignore-message message Function
Pushes an ignore marker onto the handler stack for message so that the message is not
dispatched.

resume-message message Function

Pops the ignore marker from the top of the handler stack for message.

5.7 Mouse Events

Mouse events go into the event queue with event type button (which have nothing to do with
epoch buttons) and event value the 5-tuple (press/release x-coord y-coord button mod-state).
press/release indicates if the event was a button press or release; the coordinates are character
coordinates within the screen; button indicates which button; and the mod-state is a bitmask

indicating the state of the button modifiers.

Note: Mouse events are only received on the keyboard queue when epoch: :mouse-events is
nil. This is the default value, but the Epoch Elisp files set it to t.

The Epoch Elisp files install a handler for the button events, which in turn dispatches functions

for each different mouse event.

Mouse event dispatching uses two tables, one global and the other local to each buffer. When
a mouse event is dispatched, the local table is checked first. If the table is missing or the entry is
nil, then the global table is used. If a function is found, then it is dispatched. The mouse event
handler should be defined as follows:

(defun my-mouse-handler (mouse-data)

“mouse-data is a list of (point buffer window screen).
These all refer to the character location
at which the button on the mouse was pressed or released. Note that at
the time the handler is called, no change to point, current buffer,
current window or current screen has been made. It is entirely up to the
handler how much to change such information.")

When specifying a particular mouse event, both the mouse button and keyboard modifier states
must be specified, e.g. the middle button with Control. Note that separate mouse button codes
exist for button presses in the window, mode line, and minibuffer. These values are specified as

numbers, but for ease of programming, constants are defined for them, listed below.

Chapter 5: Events 51

These are the predefined constants for specifying the mouse button: Note that these now match

codes in mouse: :event-data.

Name Value

mouse-left
1

mouse-middle
2

mouse-right

3

mouse-mode-left
4

mouse-mode-middle

5

mouse-mode-right

6

mouse-minibuf-left

7

mouse-minibuf-middle

8
mouse-minibuf-right

9

These are the predefined constants for specifying the keyboard modifier state. Names without

a trailing -up signify the down button event.

Name Value

mouse-down

0
mouse-up 1
mouse-shift

2
mouse-shift-up

3

mouse-control
4

mouse-control-up

5

52 Epoch 4.0

mouse-control-shift

6

mouse-control-shift-up

7

mouse-meta

8

mouse-meta-up

9

mouse-meta-shift
10

mouse-meta-shift-up
11

mouse-meta-control
12

mouse-meta-control-up
13

mouse-meta-control-shift
14

mouse-meta-control-shift-up
15

Note: This version of the mouse handling code is very different from the previous version, whose
main advantage was that it was the same as regular Emacs. In that version, the passed argument
was a list of the form (X Y screen) of the mouse event. This data was not particularly useful, and
had to be converted into more useful data by actually setting point with the x-mouse-set-point
call. A look through the mouse handling code indicated that, in fact, every function went ahead
and did this in order to calculate the point.

The following functions are modeled after keymaps.

create-mouse-map &optional source-map Function
Creates a mouse map for use in dispatching. If source-map is non-nil, then the contents
of that map are copied into the new map.

copy-mouse-map source-map dest-map Function

Copies a mouse map from source-map to dest-map.

Chapter 5: Events

use-local-mouse-map mouse-map &optional buffer Function

Sets mouse-map to be the local mouse map in buffer.

kill-local-mouse-map &optional buffer Function
Removes the local mouse map from buffer.

define-mouse mouse-map button modifier function Function
Sets the entry in mouse-map for the mouse button with modifier to be function. button
should be one of the mouse button constants, and modifier should be one of the button

modifiers.

local-set-mouse button modifier function Function
Sets the entry in the local mouse map for button and modifier to function.

global-set-mouse button modifier function Function
Sets the entry in the global mouse map for button and modifier to function.

mouse::set-point mouse-data Function
Sets the point to the value specified in mouse-data, which should be the same form as
the list passed to mouse handler functions, (point buffer window screen)

coordinates-in-window-p position window Function
Returns t if position described by position is in window. position is a list of the form

(screen-x screen-y).

epoch::coords-to-point x y screen Function
Converts a pixel (x, y) location on a given screen into a list of the form (point buffer
window screen) or nil if the location is not on the screen. point is returned as nil if

location is in window’s modeline.

53

Data pertaining to the most recent button press event is available in the following variables.

Note that this enables the detection of multiple mouse clicks.

mouse::interval 200 Variable
The number of milliseconds allowed between multiple mouse clicks. Interval is clocked
between down-click and the previous up-click.

54 Epoch 4.0

mouse::x Variable

X screen position of last mouse button press, in pixels.

mouse:y Variable
Y screen position of last mouse button press, in pixels.

mouse::last-spot Variable
Mouse data of the last event (point buffer window screen).

mouse::time-stamp Variable
Millisecond time of the last up-click.

mouse::clicks Variable

The number of times mouse button was pressed and released.

5.8 Motion Events

Epoch allows the user to receive motion events, which occur when the mouse moves. By default

this feature is turned off. It can be enabled in a number of ways:

e using command line option -motion: makes motion events appear for all screens.
e using *motion in resources: makes motion events appear for all screens.

e using motion in the property alist; t turns on motion events at screen creation time, nil
disables them.

e using primitive epoch::set-motion-hints: turns motion events on or off by screen.

Note that motion events go into the event-queue but must be specifically solicited by functions
rather than being automatically provided. FEach time you execute a function affecting the mouse,
(for example epoch: :query-pointer), the next motion event (if any) is sent to the primitive. This
prevents motion events from coming so fast that Fpoch would thrash to death.

The relevent primitives are:

Chapter 5: Events 55

epoch::motion-hints-p &optional screen Function
Returns t or nil for screen (default: current screen) depending if motion events are

enabled or disabled for that screen.

epoch::set-motion-hints flag &optional screen Function
Flag must be t or nil; enables or disables motion hints for screen (default: current

screen).

5.9 On Event Handling

As part of the standard event handling, a facility to install one-shot handlers for events on
particular screens is provided. After the action function has been called for the particular event, it

is removed.

on-map-do screen action Function
On the next map event for screen, call action with a single argument that is the screen

of the event.

on-unmap-do screen action Function
On the next unmap event for screen, call action with a single argument that is the

screen of the event.

on-move-do screen action Function
On the next move event for screen, call action with 2 arguments, the screen and the

move event value.

on-resize-do screen action Function
On the next resize event for screen, call action with 2 arguments, the screen and the

resize event value.

56

Epoch 4.0

Chapter 6: X11 Primitives 57

6. X11 Primitives

Various primitive X11 facilities are provided which we describe here.

6.1 X Resources

Epoch X Resources give the ability to work with raw “X resources”, such as the X server’s
internal ID numbers for screens (X “windows”). These numbers are too big to fit into the standard
GNU Emacs number size, so they are made a special opaque type called an X-resource. X-resources
contain X-window id information (32 bit quantity), and a type, which is always an X window system
atom. When the type of an Epoch X Resources is a predefined value (such as "X-Atom"), then
it is referred to by that type, (e.g. X-atom resource). Currently recognized types are Arc, Atom,
Bitmap, Cardinal, Cursor, Drawable, Font, Integer, Pixmap, Point, Rectangle, String, Window,
WMHints, WM Size Hints or Resource (untyped).

epoch::intern-atom name Function
Interns the string name as an X-atom resource (as opposed to Elisp atom). name
should be a string. X-atom resources are 32-bit numbers that represent strings in the

X window system. They are used for typing information on X window data objects.

epoch::unintern-atom name Function
Converts the X-atom resource name to an Elisp string. Note that the atom is not
removed from the server.

epoch::resourcep arg Function
Returns t if arg is an X resource, nil otherwise.

In addition, the primitive equal has been extended to accept X resources. Two re-
sources are equal if their values are the same, regardless of type.

epoch::string-to-resource string type Function
Converts an elisp string to an X resource (raw window id, for example) of given type.
string is assumed to represent a 32-bit numeric value in the C language numeric literal
format. type must be an X-atom resource.

58 Epoch 4.0

epoch::resource-to-type resource Function

Returns an X resource whose type is atom and whose value is the type of the resource.

epoch::resource-to-string resource &optional base Function
Convert the id of the resource to a numeric string. Optional base specifies the base
for the conversion (may be 2..36 inclusive). Note that no special notation is used to
signify the base.

epoch::xid-of-screen &optional screen Function
Returns the X-window resource value for the screen (default: current-screen).

epoch::set-resource-type resource type Function
Sets the type field of resource to the value of type. type must be an X-atom resource.
Returns resource if it was successfully modified, nil otherwise.

6.2 X Objects

Several types of X objects can be encapsulated into Elisp. Each is stored in Epoch as its X-
window resource ID, in an X-resource data object. When a function claims that it returns the
X-window object, this should be taken to mean that it returns an X-resource with the resource 1D
and type stored in it. These resources can be manipulated with various functions, see Section 6.1
[X Resources], page 57.

epoch::get-font name Function

Loads the font into the server, and returns the X Resource associated with it, or nil.

epoch::get-color color Function
Allocates a slot in the X server default colormap for the color. Returns an X Resource
of type Cardinal, which is the pixel value for the color. color can be a color name, a
vector of length 3 specifying the red, green, blue components, or an X Resource of type
Cardinal. If the last, it is simply returned (this is so that the function can be called on
any representation without generating an error).

epoch::free-color color Function
Releases the X server colormap slot corresponding to the color. color must be an X
Resource of type Cardinal. No checking is done to verify that the color was allocated

Chapter 6: X11 Primitives 59

by Epoch, or is available for release. Once released, the pixel value can be reused for
a different color, so that anything still displayed in the color may change at any time
(through the action of another X client, or Epoch).

epoch::color-components color Function
Return a 3-vector containing the red, green and blue components of color, which should
be an X Resource of type Cardinal.

epoch::make-bitmap width height byte-string Function
Creates a bitmap, and returns it. The width and height should be positive integers,
specifying the size of the bitmap. There is no way to change the size once the bitmap has
been created. The byte-string should be a string, which will be interpreted as an array
of bytes, not characters per se. The format corresponds directly to the standard X11
bitmap format. Fach row of the bitmap is in integral number of bytes, floor(width+7
/ 8) long, and should consist of height rows.

epoch::free-bitmap bitmap Function
Releases a bitmap from the X server. The bitmap should not be used again, even

indirectly (e.g., in a style).

6.2.1 Client Messages

epoch::send-client-message to &optional from data type format Function
Sends a client message of type with data to the destination to using format and data.
The parameters have the following meaning:

to A screen or an X Resource of type Window. See Chapter 6 [X11 Primitives],

page 57 for more information.

from A screen or an X Resource of type Window that serves as the source of the
message. This defaults to the current screen.

data The message data may be nil if there is no data, integer, string, or a list
or vector of integers or X-resources. If it is simply a string, the first 20
characters are transmitted, and interpreted as 1, 2 or 4-byte data on the
other end according to the format parameter. If data is nil, Os are sent.

tvpe This is an X-atom (as opposed to an elisp atom) and can be created by

intern-atom. Usually something which conveys the meaning of the mes-
sage, e.g., WM_CHANGE_STATE.

60

Epoch 4.0

format The data for a client message is always 20 bytes long. The format statement
tells how to interpret this. The value must be one of the following;:

nil The format defaults to a value appropriate for the data, as

determined by Epoch.

8 for 20 1-byte data objects.
16 for 10 2-byte objects.
32 for 5 4-byte objects.

;; Fake an iconify message
(setq xroot (car (query-tree))) ; get the root window
;; IconicState is 3
;3 Send to the root window, from the current screen,
;3 with data 3 of type WM_CHANGE_STATE.
(send-client-message xroot nil 3

(intern-atom "WM_CHANGE_STATE"))

6.2.2 X Properties

epoch::get-property name &optional screen

epoch::set-property name value &optional screen

Returns the X-Property name on the screen. screen can be an X-window resource.
name can be an X-atom resource or a string. The property value is returned in the

most (in Epoch’s opinion) convenient form.

If the property is an array of items (e.g., the count return value is more than 1) then it
is returned as a list. Strings are converted to Elisp strings, integers into Elisp integers
(with a possible loss of precision, since Elisp integers are less than 32 bits), and other
32-bit types into X-resources. Strings are handled specially - if nulls are found in the
returned byte array, they are assumed to represent string seperators, and that the

property is an array of these null-seperated substrings.

If there is a failure (bad screen, no property, bad type, etc.), then nil is returned.

Sets the X-property name to value on the X-window screen. screen can be an X-window
resource. name can be an X-Atom resource or a string. value must be a string, an
integer, an X-resource, or an vector or list of these types. If it is a vector or list, the
types of all the sequence elements must be the same, and for X-resources the X-resource

types must also be the same.

Function

Function

Chapter 6: X11 Primitives 61

6.2.3 X Selections

epoch::get-selection-owner selection Function
Returns an X Resource of type Window corresponding to the X11 client owning selec-
tion. selection may be an X-Atom Resource or a string. If selection is not owned by

any client, nil is returned.

epoch::acquire-selection selection &optional screen Function
Asserts ownership of selection for the X-Window screen. screen can be an X-Window
resource. Uses current screen if no screen is given. If screen is t, set selection owner to

None, and send Epoch a selection-clear event.

Note that selection’s data should be stored in epoch::selection-alist so that Epoch
can internally handle conversion requests and possible loss of ownership to other X11

clients.

epoch::convert-selection selection target property &optional screen Function
Requests owner of selection to convert selection’s data to type target and store result
in property. Property will be hung on screen, or current screen if no screen argument
is given. This function will wait internally for the selection value to be available, and
will return this value if the selection is owned by a client and no timeout occurs waiting

for the client response.

epoch::selection-timeout 2 Variable
This variable describes the amount of time (in seconds) for the epoch::convert-selection
function to wait for a response before returning nil. This pause will not occur in the

event the selection is unowned.

epoch::selection-alist Variable
This variable will hold an alist of (atom . value) for all selections owned by Epoch
X-Windows. It is the responsibility of the elisp code under Epoch to store data in this
alist upon asserting ownership of any selections. When selection-clear events are

processed, the corresponding entry is deleted from the alist.

When selection-request events are processed internally, Epoch looks in this alist
for selection data to be converted. Currently, selection data must be of type String;
the selection-notify event structure is set to None for invalid requests or requests of

selections with null data.

62 Epoch 4.0

epoch::convert-selection-alist Variable
This variable will hold an alist of (atom function) for any user-supplied target atoms.
function will be called with no arguments, and should return either a string or nil.

6.2.4 X Cursor

epoch::query-pointer &optional screen-or-xwin Function
Returns a list containing x-coordinate, y-coordinate (in pixels) and state of mouse.
Uses current screen if no screen argument is given.

epoch::warp-pointer x y &optional screen-or-xwin Function
Warps cursor to (x,y) location (in pixels) on screen relative to the upper-left corner.
Uses current screen if no screen argument is given.

epoch::ungrab-pointer Function
Ungrabs the pointer. This is useful after a mouse down event, so that another X client

can act before the mouse up event.

epoch::query-mouse &optional screen Function
Returns a list containing x-coordinate, y-coordinate (in character position) and state
of mouse. Uses current screen if no screen argument is given.

epoch::warp-mouse x y &optional screen Function
Warps cursor to (x,y) location (in character position) on screen. Uses current screen
if no screen argument is given.

epoch::query-cursor &optional screen Function
Returns a list (x . y) corresponding to the cursor position in characters. Uses current
screen if no screen argument is given.

epoch::query-cursor-pixels &optional screen Function
Returns a list (x . y) corresponding to the cursor position in pixels (Upperleft corner

of cursor). Uses current screen if no screen argument is given.

Chapter 6: X11 Primitives 63

6.3 Other X Stuff

epoch::get-default name &optional class Function
Does a lookup into X Resources database for name and class (if specified). Returns a

string for the definition, or nil if lookup request failed.

epoch::rebind-key keysym shiftmask string Function
Rebinds a raw X key on the fly. Takes as arguments the keysym to rebind, the shiftmask
for the rebinding, and a string to send when that key is depressed. keysym should be
a string, naming the keysym. shiftmask should be one of the following:

integer This is a bit-mask, with a bit for every modifier, just like an X shift state.

symbol The symbol should be one of *shift, *lock, ’control, ’meta, *modl ...
’mod5. ’meta and ’modl are equivalent.

list A list of symbols, indicating multiple modifiers.

This function does not affect keybindings for other X clients, but does affect all Epoch

screemns.

epoch::mod-to-shiftmask index Function
Input is an X modifier index, output a shiftmask that can be passed to epoch: :rebind-

key. OBSOLETE.

epoch::query-tree &optional screen-or-xwin Function
Returns a list of the form (root parent . children) where all the elements are X-
window resources. root is the X root window, parent is the X parent window of
screen-or-xwin (nil if screen-or-xwin is the X root window), and children is a list of

the X child windows of screen-or-xwin.

epoch::set-bell arg Function
If arg is nil, Epoch will use an audible bell. If non-nil, then a visual bell will be used.

epoch::bell-volume Variable
Controls the X bell volume. If a number from -100 to 100, then the value is used as
the bell volume, otherwise it is ignored and 50 is used. Note that on many systems,
the hardware does not support different bell volumes, and so this may not be effective.

64

Epoch 4.0

Chapter 7: Miscellaneous 65

7. Miscellaneous

Several unrelated features of Epoch are described here.

7.1 Standard Extensions

Epoch contains some extensions of GNU Emacs that are not specifically related to X Windows.

symbol-buffer-value symbol buffer Function

Returns the value of symbol in buffer, without the expense of using set-buffer.

epoch::function-key-mapping t Variable
If this variable is non-nil, then functions keys will be mapped into an extended form

starting with ESC [, as is done in normal GNU-Emacs.

If this variable is set tonil, then no mapping will be done, and the key will be ignored.
Keys rebound (see Section 6.3 [Other X Stuff], page 63, epoch::rebind-key) to a
non-empty string will not be affected by this value. If set to t then keys which have

not been rebound will be mapped to various escape strings.

equal objectl object2 Function
This function returns t if objectl and object2 have equal components; nil otherwise.
If objectl and object2 are both X Resources, see Section 6.1 [X Resources|, page 57,
then t is returned if their xid’s are equal regardless of type.

7.2 Epoch Version

epoch::version Variable
This built-in variable will contain the version number of Epoch. Thus, (boundp
>epoch: :version) will be t on epoch and nil on any other version of GNU Emacs.
You can use this to customize your elisp code conditionally. The value of this variable

will of the form

66 Epoch 4.0

"Epoch 4.0 Patchlevel 0"

and will indicate the highest official patch applied.

7.3 Packages

Epoch comes with a set of standard elisp files, which provide functionality to the user. Beginning
with version 3.2, a majority of the standard files are loaded when Epoch is built. See ‘ymakefile’
and ‘loadup.el’ for which files are loaded. Any code which can not be executed except at runtime

may be loaded from ‘.emacs’, or run via a hook:

epoch-setup-hook nil Variable
Functions to be executed at runtime, prior to ‘.emacs’ being loaded and term-setup-
hook and window-setup-hook have been run.

The following files are included in this version of the Epoch distribution, in the epoch-1lisp

directory:

‘dot . emacs’
Things that should go in your .emacs file, or (1oad "dot.emacs"). Pretty straight-
forward; read the code.

‘epoch.el’
Installs standard keybindings, variables that you can set to change things, etc. This
file also defines the default event handler code.
‘epoch-util.el’
Some utility functions used throughout Epoch lisp code.
‘mini-cl.el’
Provides some common lisp primitives to Emacs lisp. This is a subset of the common

lisp package provided by ‘cl.el’.

‘wrapper.el’
Every primitive function introduced into GNU Emacs to support Epoch is of the form
epoch::name. This is like common lisp internal package symbols, and for each we
provide a form without the leading epoch: :. These are the forms you should use; this
way, you can add additional functionality to the primitives very easily. For example,
the definition of create-screen determines what to take from the epoch-mode-alist

before creating the screen with epoch: :x-create-screen.

Chapter 7: Miscellaneous 67

‘zone.el’ Extensions to zone primitives; primitives for style manipulation.

‘event.el’
Standard event handler code.

‘mouse.el’
Mouse event handling for epoch. (See Section 7.3.1 [Mouse Dragging], page 67)

‘motion.el’
Handles mouse motion events. Provides dragging and pasting operations. (See Sec-
tion 7.3.1 [Mouse Dragging], page 67)

‘message.el’
Provides a client message handler. Provides a handler for the WM_DELETE_WINDOW

client message from the window manager.

‘property.el’
Provides the basic property handlers.

‘selection.el’
Provides support code for selections.

‘button.el’
Provides wrappers for zone functions to maintain compatibility with older Elisp pack-

ages.

‘convert-buttons.el’
Provides a function to convert old Elisp code using buttons to use zones instead.

Additional lisp code is provided in the ‘contrib’ directory, under the name of the author or
package. This code has been verified to be minimally compatible with Epoch version 4.0, but is

not considered to be part of the standard distribution.

7.3.1 Mouse Dragging

We have implemented drag, scrolling drag, cut and paste with the mouse. The files ‘mouse.el’

and ‘motion.el’ must be loaded to use this feature.

The functionality of buttons with this feature loaded is shown in following table.

68 Epoch 4.0

Button Action
left-down Clear drag region, set point.

shift left-down

Display line number and buffer name at mouse pointer.

left-down and drag
Drag out a region. Highlight (buffer-local), place in PRIMARY selection and kill-ring.
Set point and mark around highlighted region.

middle-down

Paste at the mouse location. (Use yank to paste at the current point.)
right-down

Extend highlighted region from a left-down and drag.

right-down and drag
Extend highlighted region initially, then adjust by drag.

Scrolling Drag means that when the mouse moves out of the window with a button down, the
scroll continues until the mouse button is raised. The speed of the drag can be controlled by setting
the following variables:

horizontal-drag-inc 5 Variable
The number of characters the buffer is scrolled horizontally in a single scroll.

vertical-drag-inc 2 Variable

The number of lines the buffer is scrolled vertically in a single scroll.

Dragged regions are global, so you can have only one drag between all Epoch buffers. Dragged
region will no longer be highlighted if some other X11 client asserts ownership of PRIMARY
selection. (This is the standard behavior for xterms, etc.) Because point and mark are set around
drags, you can use a combination of mouse drag and Epoch keystrokes to do editing.

NOTE: When cutting and pasting, Epoch will first request data from the selection indicated by
mouse: :selection, and subsequently look to the X cutbuffer. This is to maintain compatibility
with older Xterms which do not support selections, and/or do not use the standard selection for
cutting and pasting:

mouse::selection (intern-atom "PRIMARY") Variable
This variable indicates the name of the selection to use. This defaults to the atom
XA_PRIMARY, but may need to be set differently for xterms which don’t use the
standard primary selection.

Chapter 7: Miscellaneous 69

7.3.2 Screen Naming

include-system-name Variable
Set the variable include-system-name to t if you would like screen names to include
the name of the system they are running on, for example the name of the screen with

buffer foo selected on machine bar would appear foo @ bar.

7.3.3 Autoraise

auto-raise-screen Variable
The variable auto-raise-screen is a flag to indicate which (if any) screens will be
raised when a new edit screen is selected with select-screen. When set to t, both
the edit screen and minibuffer screen (if distinct) will be raised. If set to >screen, only
the edit screen will be raised; if set to *minibuf, only the minibuffer screen (if distinct)

is raised. Finally, if set to nil, no screens are raised.

7.3.4 Multiple Screen Updates

The ‘epoch.el’ file sets things up so all screens are updated automatically. You will have to
change this if you would like a different convention. For example, you could use the epoch-mode-
alist to set things up so that only screens created for buffers with mode shell-mode would be

updated. See Section 3.7 [Screen Updating], page 27 for more information.

7.3.5 Display of Control Characters

Epoch 4.0 includes the well-known patches to support full 8-bit character sets. (i.e. 1SO,
LATIN-1, etc.).

ctl-arrow Variable
This buffer-local variable, will display control characters with uparrow if set to t, as
backslash and octal digits if set to nil, and as regular characters if set to any other

values.

This behavior may be selected for all buffers by using the code

70 Epoch 4.0

(setq-default ctl-arrow ’foo)

7.4 Screen Pools

The package in ‘scr-pool.el’, which is not dumped or loaded by default, provides a set of
functions for creating pools of screens. This is a set of screens of a fixed size that are used in a
package. Screens pools are useful when a package wants to use multiple screens, but wants a limit
on the number of screens in use to prevent excessive clutter or resource consumption.

7.4.1 Screen Pool Basics

A screen pool consists of

Size The maximum number of screens allowed in the pool. When this many screens are in
the pool, and another is requested, one of the screens already in the pool is recycled

and returned instead of a new screen.

Create-Function
This is a function that is used to create a new screen when needed, either because there
are less than size screens in the pool, or one of the screens in the pool is dead. This
function is optional, and if missing create-screen is used. No arguments are passed
to this function.

Cleanup-Function
This function is called on a screen just before it is recycled, with the screen as its single
argument. If missing, no function is called. This is useful, for example, when buffers
displayed in a screen should be killed when the screen is recycled.

The screen pool attempts to keep track of the least recently used screen and will recycle that
screen first. A screen is marked as used whenever it is returned as a requested screen. In addition,
there are functions to explicitly mark screens as either most or least recently used. These function
should not be called on screens not in the pool, since this will cause the screen to be added to the

pool.

7.4.2 Screen Pool Functions

These are the functions provided by the Screen Pool package.

Chapter 7: Miscellaneous 71

pool:create size &optional create-function cleanup-function Function

Creates and returns a screen pool with no screens in it.

pool:delete pool Function
Deletes all the screens in the pool using delete-screen. The cleanup-function, if any,

is called on each screen first.

pool:get-screen pool Function
Returns a screen from the pool. If there are fewer screens than the maximum size, a
new screen is created, otherwise an existing screen is recycled. If a screen is recycled,
the cleanup-function (if any) is called on the screen.

pool:get-screen-with-buffer pool huffer Function
Similar to pool:get-screen, except that if one of the screens in the pool is already
displaying buffer, it is returned instead of creating a new screen or recycling another

screen, and the cleanup-function is not called.

pool:get-shrink-wrapped-screen pool buffer limits Function
Similar to pool:get-screen. If buffer is displayed on any screen in the pool, then that
screen is used, otherwise a screen selected as in pool:get-screen is used. This screen
is selected, all but one window is deleted, and that window is set to display buffer. The
screen is then shrunk to fit the buffer, in height and width, up to limits. limits should be
a list of 4 numbers, of the form (min-width, max-width, min-height, max-height).

pool:mark-screen pool screen Function
Mark screen as being the most recently used screen in the pool. This means it will be

the last to be recycled.

pool:unmark-screen pool screen Function
Mark screen as being the least recently used screen in the pool. This means it will be

the first screen to be recycled.

7.5 Saving Zones

The package in ‘save-zones.el’, which is not dumped or loaded by default, provides the basis

for saving a buffer’s zone information when it is saved for restoration later. Zone information is

72 Epoch 4.0

stored at the end of the buffer, commented out appropriately according to the buffer’s mode. The
information is interpreted and deleted when the buffer is loaded, and is recreated and inserted when
the file is stored.

The following zone information is archived:

e zone start
e zone end
e zone data

e zone style tag (or nil)

When recreating zones for a buffer, the style tag information is used to determine the appropriate
style to assign to the zone. If the style tag is non-nil, then the value of find-style-hook is called
with the style tag as an argument. It is expected that this function will return either a style object,
or nil. The code provides one possible scheme for using style tags, in which the tag is assumed
to be an Elisp symbol whose value is the appropriate style. The hook can be made buffer local if
necessary. Any buttons with the transient field set to t will be ignored.

find-style-hook nil Variable
The function called to find a style corresponding to a style-tag.

7.6 Menus

The package in contrib/wm-menu ‘menu.el’, which is not dumped or loaded by default, provides
the basis for doing popup menus between Epoch and GWM 1.6. A second file, ‘emenu.el’, gives
an example of using the menu package to implement a menu for various options which call Elisp
functions, and binds this menu to an event in the mouse map (control-right-up).

Menu lists passed to this function should be of the following form:

("menu title"
option 1
option 2
option N

)

Chapter 7: Miscellaneous 73

Each option should be a list (return-symbol "option name'"), and in the case of submenu

options, should contain a menu list structure of the same format corresponding to that submenu.

menus:popup ment Function
This function will produce a popup menu containing options described in the menu
list. It will then wait until the user has selected an option and then return the return-

symbol defined in the menu list.

7.7 Colors

Colors can be specified as either a string, which is used for lookup in the X color database, or
a vector with three components, the red, green, and blue components. Vector values are such that
65535 (==2716-1) is the maximum for the display device, and 0 is off. Epoch stores colors as X
Resources of type X-Cardinal See Section 6.1 [X Resources|, page 57.

epoch::number-of-colors Function
Returns the number of color cells on the display. This function is used to distinguish
between monochrome and color systems. A result of 2 indicates monochrome, a larger
number indicates a grey-scale or color display.

epoch::get-color name Function
Given a color name, this function converts the name into an X-Cardinal resource (a
pixel value).

7.8 Change Hooks

Two variables were added to Epoch that hold functions to call before and after, respectively,
each change is made to a buffer. These variables are not buffer-local, so if you wish to have your
change function called only for specific buffers, first make the variables buffer-local, then assign the
name of the function to be called.

These variables are only defined if you compile Epoch with DEFINE_CHANGE_FUNCTIONS
defined in the ‘config.h’ file.

74 Epoch 4.0

before-change-function Variable
Function to call before each text change. Two arguments are passed to the function:
the position of the change and the position of end of the region deleted. If the two
positions are equal, then the change is an insertion.

While executing the before-change-function, changes to any buffers do not cause
calls to any before-change-function, after-change-function, or after-movement-

function.

after-movement-function Variable
Function to call after cursor (point) movement which was not due to buffer changes.
No arguments are passed to the function.

after-change-function Variable
Function to call after each text change. Three arguments are passed to the function:
the position of the change, the position of the end of the inserted text, and the length
of the deletion, or 0 if none.

While executing the after-change-function, changes to any buffers do not cause
calls to any before-change-function, after-change-function, or after-movement-

function.

While executing the after-movement-function, changes to any buffers will not cause
calls to any before-change-function, after-change-function, or after-movement-

function.

(defun after-change (pos inspos dellen)
"Called after each change"
(condition-case err
(progn
(cond ((= dellen 0)
(message "insertion: (%s %s)" pos inspos))
((= dellen (- inspos pos))
(message "replacement: (Y%s %s)" pos inspos))
((= pos inspos)
(message "deletion: %s of length Js" pos dellen))
(t
(message "other change at %s: ins s, del Ys"
pos inspos dellen))

)

(error

Chapter 7: Miscellaneous 75

(setq after-change-function nil)
(message "#Change error: Js'" (prinl-to-string err)))
)

)

;; first evaluate the above function
;; then eval the next two lines to activate the function

(make-local-variable ’after-change-function)
(setq after-change-function ’after-change)

7.9 Icons

You can set the names of icons for screens (accessible through the property WM_ICON_NAME using

the global .Xdefaults, the screen property list, or the function epoch: :icon-name.)

epoch::icon-name &optional value screen Function
If value is nil, return current icon name. Otherwise set icon name to value. If screen

is nil, use current screen.

7.10 dbx

dbx Function
Calls a C function named DEBUG which does nothing. This serves as an entry into a

debugger if a breakpoint was set upon entry to this function.

76

Epoch 4.0

Index

Index
$HOME/.Xdefaults-<hostname>..........covuunen. 5
%k

create-screen-alist-hook™ i il ., 16
select-screen-hook™ . ..o vi it i 20
<

<hostname>, $HOME/ Xdefaults- 5

A

abort, epoch::event-handler- 44
acquire-selection, epoch:: i, 61
add-graphic-zone o il 39
add-read-only-zone ittt 38
add-selection-targetcooiiiii i, 48
add-zone, epoch::. .. .o ool i 31, 38
after-change-function...........o ooviii, 74
after-movement-function........... ool 74
alist properties alist, epoch-mode-................. 17
alist, create-screen propertiescoviiiiinn. 17
alist, epoch-mode- o i, 17
alist, epoch-mode-alist properties.................. 17
alist, epoch::convert-selection-..................... 62
alist, epoch::create-screen properties............... 17
alist, epoch::screen-propertiescoovun... 17
alist, epoch::selection-o, 61
alist-hook*, *create-screen-covvvevnnnn... 16
app-defaults i e 5
ATTOW, Cll-v et it i i i i it e i 69
ASCIT Support «vee et et ee i ieeieeenaennn 1
Asked Questions, Frequently 1
asynchronous communicationcoeveeen.. 42
at, epoch::delete-zone-.......... oo i, 32
at, epochiiZone-. ..ot irt i i i e e e 31
at, epOChiZONes- ... v i e i i e e 31
atom, epochuintern-.......oveiiineinnenenennnns 57
atom, epoch::unintern-coveiieeiienann.. 57
atom, property X- ..ouveeeininrien e reneeaennnns 46
attributes, screen properties or..........c.eeveeen.. 17

AULO-TAISE-SCTEEI ¢ v v vttt vee e cnaneeeenanenennnns 69

77
AUOTAISE, SCTEEI v vt s e in e reeeneeesneenanannns 69
B
background coloro il 9
background color, cursor..........cooiiiiiiiiia., 18
background, epoch::....ooi i i 26
background, epoch::set-style-.................oout. 34
background, epoch::set-style-cursor- 34
background, epoch:style- ..ot 34
background, epoch::style-cursor-..........., 34
background, minibuffer.......... oo o 6
background, screen iiiii it 6, 18
background, screen cursor iiiiiiiin i, 6
background-stipple, epoch::set-style-............... 34
background-stipple, epoch:style- ...t 34
before-change-functiono, 73
bell, epoch:iset- ..o rn it i i i i i 63
bell-volume, epoch::.. oot 63
bindings, key .. covviii it e 10
bitmap, epoch::free-. ... i 59
bitmap, epoch:imake- i i, 59
blue components, red green..........cooiiiian.. 73
border color ...covvin it 18
border color, minibuffer oL, 6
border color, SCreenoveveeeneerieneneenennn. 6
border width, external........... oo, 19
border width, internal, 19
border width, minibuffer.............., 6
border width, minibuffer internal 7
border width, screen ...ttt 6
border width, screen internal 7
borderwidth of screen, external and internal........ 26
buffer, epoch::screens-of-......... o oL, 21
buffer, epoch:izone-o i 30
buffer, epoch::zones-modify- 32
buffer, pool:get-screen-with- 71
buffer-style . ..o e e 35
buffer-value, symbol-.......... i L. 65
buffer-window, epoch:iget-........coiiiiiiiiiLt. 21
bug reports. . coiii i e e e e 1
button eventcoiiiii i e 42

78

button events.vviiiiiii it i i e 50
button.el. ...t e i e 67
buttons.el, convert-ot i i 67

L/ 11
L/ 45
change event, property-.......coooiiiiiiiiiiii... 42
change events, property-.......coovveeiiiiinnien., 46
change hooks.......cooiiiiiiii i, 73
change-function, after- oo, 74
change-function, before-.......ooiviiiiit. 73
change-screen-size, epoch::...oovvviiiii ... 25
clel, MIni- . ov vttt e i et e i e 66
class defaults, Xttt 6
class Name, SCTEEM .« vvvv e vt in e eneeeeneneeaenns 19
class name, X program or window 6
class, minibuffer i i 7
Class, TESOULCE v v vt ittt ie i ieeteeerneenenannennns 9
Class, SCTEEI v v vttt ettt ittt in et eeeeteeernennnnanns 7
clear event, selection-covieeinininnnennan. 42
clear-zones, epoch:: i i 32
ClickS, MOUSE:: v vttt it i it i et ee i neenenennnn 54
clicks, multiple mousecovviiiiiiiiinn.. 54
client message event........ooviiiiiiiiiiiiiiin., 42
client mMessages .. vvv v ittt ittt 59
client-message, epoch:send-.......oooiiiiiiiant, 59
color vector or string.......ovevviiiiiiiiininn... 11
color, background o il 9
color, border ... oviin i i e 18
color, cursor background............. ... ool 18
color, cursor foregroundo, 18
color, epoch::CurSor-..vv e ie et ii ittt 26
color, epochi:free-. ... 58
color, epoch:iget-....ovvviiii i, 58, 73
color, foreground........ ..ot i, 9
color, minibuffer border 6
color, minibuffer cursor........... o i, 6
color, screen borderco it i e 6
COlOT, SCTEEN CUTSOT .+t vvt ittt ittt i iii i eenen 6
COlOT, tEXE CUTSOT vt vt vt ittt ieiniinieeennaennnn 18
color-components, epoch::o i, 59

Epoch 4.0

colors, epoch::number-of-, 73
COlOTS, TEVETSE & vt vttt inieeinieeeeeeeeernennenannns 9
command line optionscovvverin i, 8
command line options, defaultsin.................. 5
communication, asynchronous..................... 42
compatability for deletion, ICCCM................ 21
compatibility, GNU Emacs...............covveaa.. 1
compatibilty for iconify, [CCCM 24
components, epoch::color-, 59
components, red green blue.......... 73
configuration, windowcoiiiiiiiin .. 15
controls, windowing systemoovviiiien.. 23
convert-buttons.el......... .. oo il 67
convert-selection, epoch::o, 61
convert-selection-alist, epoch::..................... 62
convert-selection-hook, epoch:: 48
convert-to-target......... ... il 48
coordinates-in-window-P . ..o eerenereenrneenennnns 53
coords-to-point, epoch:: c.ovvveiiii i 53
COPY-TNOUSE-TNAD + ¢+ o e v vt v nevnvenensnssnonnesnesnns 52
CTEAtE SCTEET v vt vt ittt ittt et e e enineeeaenn 16, 17
create, Pool: «ue vt ittt e e i e e 71
CTEAte-TNOUSE-TNAD ¢+ vt vttt ittt ete it nnsenennennss 52
CTEAtE-SCTEEI « v v ittt ittt i i it it 16
create-screen properties alist 17
create-screen properties alist, epoch:: 17
create-screen, epoch::. ... oo i i, 16
CTEATION, ZOME vt vt vttt e te s cee e eeneennaennneenns 30
CHl-aTTOW oot e e e 69
CUITENt SCTEEIL « vttt vt it ittt in et cienenenennnnns 15
Current-pixel «.vevevenn ettt e 23
current-screen, epoch:: o i i i, 20
cursor background color........ il 18
cursor background, screeno, 6
cursor color, minibuffer, 6
CUTSOT COlOT, SCTEEM. v vvt it it ittt i iii i eenen 6
CUrsor Color, teXt «vverr ettt ittt i 18
cursor foreground color......... ..ot 18
cursor foreground, minibuffer oL 7
cursor foreground, screencoiiiiiiiiiiiiien., 7
cursor glyph.. ..o i i 19
cursor glyph, minibuffer oo il 7
cursor glyph, screen.........o il 7

Index

CUTSOT, €POCh IqUETY- o vt ittt ie i ieeeenennnn 62
CUTSOT, X et vt ee e e neaeeneeneneeeensneeneeeaneenns 62
cursor-background, epoch::set-style- 34
cursor-background, epoch:style-........ooooill 34
cursor-color, epoch::. ... oo i i i 26
cursor-foreground, epoch::set-style- 34
cursor-foreground, epoch::style-o ool 34
cursor-glyph, epoch::..ooovin i 27
cursor-pixels, epoch::query-............ oo, 62
cursor-stipple, epoch::set-style-.................... 35
cursor-stipple, epoch:style- oo il 35
cut and paste. ...oiiir i i e i e e 67

data, epoch::set-zone-oviiiiin ittt 32
data, epochiizone-.....oviiiininin ittt 31
database, X reSOUTCES «.vvetntnenrneenrneenenannnn 5
0 1 o St 75
default sets.....ooieiiiniiiiiiii it 5
default, epochiiget-....oovviiii it 63
default-mode-line-formato oa. 36
default-sets, screenooeene et rieennnnnns 17
defaults in command line options 5
defaults, app-...veeeetnenr ittt it it 5
defaults, X class . ..oveerininiin i ii it 6
defaults, X Window program................coouut. 5
define-mouse . c..ooviiii i e 53
define-opaque-font, epoch::.........., 39
DEFINE_CHANGE_FUNCTIONS................ 73
delete, pool: . oo e it i e e 71
delete-screen, epoch::. ..ot 21
delete-zone, epoch:: i i 32
delete-zone-at, epoch::. ..o 32
deleting zonesoovviiii it e 32
deletion, ICCCM compatability for................ 21
display, redraw-........oiiiiiii ittt 28
display, X windowcoviuitninrininnnnnennnn. 9
display, X Windowcoiiiiiiiiiiiinnnenenn.. 7
display, zone . ..ottt i e i 33
display-event-statuscoviiii ittt 45
dO, ON-INAP- + ot et ee it et i e e e 55
dO, ON-IMOVE- .ottt e it ie e e e 55

dO, ON-TESIZE- vt vttt ettt ittt in et eeneeennannnn 55

79
dO, ON-UNINAP- . ¢ttt ittt i teieeeneeaaannns 55
dot.emMacs o vv et i e i e e 66
drag, scrollingcovviii ittt i 68
drag-inc, horizontal-..........o il 68
drag-inc, vertical-........ .. oo il 68
dragging, MOUSE ettt it ein e eennenn. 67
E
ST /P 45
edges, WINdOW- ..ottt it 23
edit SCTEENS « vttt ittt ittt iin e 15
Emacs compatibility, GNU......................... 1
Emacs windows, X windows and GNU............. 15
end, epoch:izone-l e 31
epoch version........coviiiiiii ittt 65
epoch-mode-alistco i, 17
epoch-mode-alist properties alist 17
epoch-setup-hook il L, 66
epoch-utilelo i 66
epoch.el. i e e 66
epoch:: .o 11, 66
epoch::acquire-selection..........ccoviiiiii ... 61
epoch::add-zone i i i 31, 38
epoch::background oo il 26
epoch::bell-volume it 63
epoch::change-screen-sizecoovviniin.e. 25
epoch::clear-zones.........oo ittt 32
epoch::color-components ..., 59
epoch::convert-selection i, 61
epoch::convert-selection-alist 62
epoch::convert-selection-hook 48
epoch::coords-to-pointcviiiiiiiiiie., 53
epoch::create-screencciiiiiiii ... 16
epoch::create-screen properties alist................ 17
epoch::current-screen...........ccoiiiiiiiiiiiaa, 20
epoch::cursor-coloro i i i 26
epoch::cursor-glyphol 27
epoch::define-opaque-font, 39
epoch::delete-screen o i, 21
epoch::delete-zone......... i i i 32
epoch::delete-zone-at o i i ., 32
epoch:zevento i e 44
epoch::event-handler, 44

80

epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::

event-handler-aborto oLt 44
first-window ... il 22
flash-screenoovviii il 27
font ..o 25
foreground oo il 26
free-bitmapovn i i i e 59
free-color ...ovvii il 58
function-key-mappingcoiiiiiiin 65
get-buffer-windowo ool 21
get-color ool 58, 73
get-default ...l 63
get-event il 44
get-font....oooiiiiii il 58
get-property ...l 60
o] Yot 1S 1 e 19
get-screen-id .ooveviin il e 19
get-selection-owner ..ol 61
global-updateo ol 27
TCOM-TAIIIE « v v v e ve e v eeenenesnennaneens 25, 75
ICONITY-SCIEEN + vt vttt it ee e i ieeennennnn 24
INtErn-atom . c.ovvvviiini ittt 57
lazy-events . ..coee e inieineinennnnn 42
lower-screen. .oovvveiiii i i ennn 24
make-bitmap.........coi i i 59
make-styleol e 33
make-zone ..ot 30
TNAP-SCTEETL + vt v v v e vt ennennseneenennssnnnns 24
MapraiSed-SCreen .. .ouee e eeeeeeeeennn. 24
minibuf-screen i i 21
mod-to-shiftmask............. ... o oot 63
motion-hints-p ...ovvvnin e, 54
mouse-events........ ... il i 42
TNOVE-SCTEEIL .« v v vt v veae e e ennneeneenenenns 26
TNOVE-ZOIIE + vttt tveve e ineneneneennnnnnns 31
NEeXt-SCTEEI v oot vt vttt i iiiene e 20
nonlocal-minibuffer oL 15
number-of-colors oo iaiiiniiL e 73
plane-size vi i i e e 26
PTEV-SCTEEI + vt vv it vt tnrnenneennsnnsennns 20
QUETY-CUTSOT « vt vvevnennenneennsonsnansnnss 62
qUery-cursor-pixelso.ooeiiieiiaan... 62
QUETY-TNOUSE &t vt v eevennesnnsnnenesnnsnns 62

QUETY-PIXINAD « ¢ v et ve e vneeeeeeeaseennennnns 39

epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::
epoch::

Epoch 4.0

QUETY-POINEET « vttt s eeeernennannnns 62
QUETY-TTEE vt i ittt ittt i i inn e enenn 63
TAISE-SCTEETL « v vt v vt ene et veveneonnennenenss 24
read-only-region-pooiiiiii i, 38
read-pixmap-fileo i L., 39
rebind-keyoiiiii i e 63
redisplay-Screen ...oven i ie i 28
resource-to-string......ovvviin i innien.. 58
Tesource-to-type . oo vvi it e 58
TESOUTCED « v v v v e veeeeeveeaeneneeeneneennnss 57
screen-heighto ool 25
screen-informationoooviiiiiiiin . 26
screen-list .o vvneiii i it 20
SCTEEN-MAPPEA-P « et vee et nein e eneeneneens 24
screen-of-windowooiiiiin i 22
SCTEETI-D 4 et v veetnaeeeeneonneeneenennssnns 20
SCTEEN-PIOPETHIES + vttt vt ieninnneeeneennn 17
screen-properties alist...................... 17
screen-widtho o it 25
SCTEETIP + v v te vt tnaeeeesesnnsansenennesnss 20
screens-of-buffer oo il 21
select-screen ...oviiiiiii il i i 20
selected-windowooiii il 22
selection-alistc. oot 61
selection-timeoutoovviii i, 61
send-client-messageooiiii i, 59
set-bell ..o 63
set-motion-hints o il 55
Set-property...ooiiiii it i 60
set-resource-type ... iii it i e 58
set-screen-modifiedo oo 28
set-style-background ool 34
set-style-background-stipple 34
set-style-cursor-background 34
set-style-cursor-foreground 34
set-style-cursor-stipple L., 35
set-style-fonto, 35
set-style-foreground ool 33
set-style-pixmapcoeeneneneeennnennnn. 39
set-style-stipple i, 34
set-style-tag.......ooviiiiiiiiiiiii i, 35
set-style-underline, 34
set-update .o vv it e e e e 27

Index

epoch::set-zone-data........ccooviiiii ... 32
epoch::set-zone-read-only, 38
epoch::set-zone-style i i, 31
epoch::set-zone-transiento i, 32
epoch::string-to-resource.ovvvi i iiiien., 57
epoch::style-background oot 34
epoch::style-background-stipple 34
epoch::style-cursor-background 34
epoch::style-cursor-foreground ooaL 34
epoch::style-cursor-stippleccoiiiiia. 35
epoch::style-font 35
epoch::style-foregroundl 33
epoch::style-pixmapovenin it i 40
epoch::style-stipplet 34
epochustyle-tag.....oovvii il 35
epoch::style-underline o L., 34
epoch:stylep ..ot e e 33
epoch::synchronize-minibuffers 15
epoch::title . ..o e i 25
epoch::ungrab-pointer ool 62
epoch::unintern-atom.......... ... o i, 57
epoch::unmap-screen i i i, 24
epoch::update-p ... vviiiniii i e e 28
epoch:iversionoov i i e 65
epoch::wait-for-event il 45
epoch::warp-mouse.covi i e 62
epoch::warp-pointer oo, 62
epoch::xid-of-screen il 58
epoch:izone-at e e 31
epoch::zone-buffer.......... i i, 30
epoch:izone-data............ciiii i i i i 31
epoch:izone-end....... .. o i i i i i 31
epoch:izone-listo i i 31
epoch::zone-read-only, 38
epoch::zone-start.......... oot 30
epoch::zone-style........co i, 31
epoch::zone-transient-po, 32
epoch:izonep . ..ot i e 30
epoch:izones-at ... i i e 31
epoch::zones-modify-buffer, 32
equal .t e e i e 65
errors, event handler oL, 43

81
event handlers, one-shot 55
event handling, on......... ... oo, 55
event inhibition oo i il e 45
event Key « vttt i e it i e 41
EVEND QUETIE vt v it ittt iiiitneineenenneenaenas 41
event queue, internal o i i, 44
LR 11 =T od 1S P 41
Lo T 174 0 41
event value.......oo il i 41
event, button........c.cov ittt e 42
event, client messageottt ii it 42
event, epochi:. ... e e e i 44
event, epochiiget-...oo il i e 44
event, epoch:wait-for-........ ..o i i, 45
RS (L T 1T 45
event, install-...... ... i e 44
EVENt, MOTIOM . v ettt ie e eeeneeernennenanneenns 42
EVEND, TNOVE .+ttt ittt itt it iiinneineenenneenasnas 42
L T AR 0T) o P 45
event, property-change ool 42
event, push-......oiiiiiii i it i i e 45
EVEND, TEIMOVE- . vt ittt ittt iiie s s rnenneennsnas 44
EVEND, TESIZE ¢ v vt vt e e teineeneneeeeeeeeenenaenaenns 42
EVEND, TESUIME- + vt vttt ii ittt i iinnenennennesnas 45
event, selection-clearot 42
event-handler, epoch::.......o i, 44
event-handler-abort, epoch:: 44
event-status, display-.......coviiiiiiii i, 45
event.el oot e 67
events, button ...t i e . 50
events, epoch::lazy- o i i il 42
events, epoch:imouse- i, 42
events, map and UNIMAP ¢« vveereeerneeneneenaneens 42
events, MOotIoN .o vv v n e eerneennnnnnn 7,9, 19, 54
EVENTS, TNOUSE « vttt it iit it e inaneeneennsnnsennns 50
events, property-change coiiiia, 46
events, waiting for i it 45
extensions, fill mode i il 23
extensions, standard i i, 65
external and internal borderwidth of screen 26
external border widtho, 19

82

F

file, epoch::read-pixmap-....c.cvvveerieennennnnnnnn 39
fill mode extensionscoviiiiiiiiiiiiiiiin.. 23
fillkhook, line-vveiiie i i 23
fill-pixel oo e e e e e 23
find-style-hookt 72
first-window, epoch::ot i 22
flash-screen, epoch::. ..o i 27
font oo e e 9,19
font, epoch::. .o i e e 25
font, epoch::define-opaque-.............coiia.... 39
font, epoch:iget- .o vv i 58
font, epoch:set-style-.......ooiie i, 35
font, epochistyle- .. .ot 35
font, minibuffer i 7
font, screen. ...oovie it e e 7
for-event, epoch:iwait-........cooivii i, 45
foreground colorol 9
foreground color, cursor ool 18
foreground, epoch::. ... ool 26
foreground, epoch:set-style-ooiiiitt. 33
foreground, epoch::set-style-cursor- 34
foreground, epochustyle-.....oooiiiiii it 33
foreground, epoch::style-cursor- 34
foreground, minibuffer.......... ... o il 7
foreground, minibuffer cursor oL 7
foreground, screenoiiiiiiiii il 7,18
foreground, screen cursor ..o, 7
format, default-mode-line- 36
format, mode-line- i, 36
format, Modelinecoiiiiiiiiiiiinnnan, 36
free-bitmap, epoch:: ..ot e 59
free-color, epoch::. . oot e 58
Frequently Asked Questions.............cocevvnn. 1
function, after-change-o, 74
function, after-movement- 74
function, before-change-ot 73
function-key-mapping, epoch::... ..ot 65
G

generic Window MaNAZET . oo v vrnnenneennerenennss 12
geometry, minibuffero i il 7
ZEOMEtTY, SCTEEI + vt vttt ie it i iiininnnn s 7,9, 19

Epoch 4.0

get-buffer-window, epoch:: ...l iii oLt 21
get-color, epoch:..voviiii i 58, 73
get-default, epoch:. ..o 63
get-event, epoch:i .. oo i 44
get-font, epoch:: ...l 58
get-property, epoch:: o .oovii il 60
get-screen, epoch:: .. oovii il i 19
get-screen, pool: co. il i 71
get-screen-id, epoch:. oo oviiii il 19
get-screen-with-buffer, pool: oo it 71
get-selection-owner, epoch:: ..ol 61
get-shrink-wrapped-screen, pool:ount. 71
global-set-mouseo i i 53
global-update, epoch::.. ..o viiiiiiiiii it 27
glyph, cursorooiiiii i 19
glyph, epoch:icursor-oooiiii il 27
glyph, minibuffer cursoro ool 7
glyph, screen cursor......... il 7
GNU Emacs compatibilityocoviion... 1
GNU Emacs windows, X windows and 15
graphic-zone, add- oo il 39
Graphical zones.cov ittt 39
green blue components, red....... ...l 73
GWM L e 12

handler errors, eventcciiiiiiii i, 43
handler, epoch:ievent-...........coiiiiiiiiaa. 44
handler-abort, epoch::event- 44
handlers, one-shot event............, 55
handling, onevento i, 55
height of screen, width and 26
height, epoch:iscreen- ..o iii il 25
height, window-..........cooiiiiiiiiii i, 22
hierarchy, Style ...t 33
hints, epoch::set-motion-......... ... oo, 55
hints-p, epoch::motion-............. ... i, 54
hook™*, *create-screen-alist-cvvin... 16
hook™, *select-screen-ooveeeiiinneennnnennnn. 20
hook, epoch-setup-......ccoiveiiiin i, 66
hook, epoch::convert-selection- 48
hook, find-style-coviiiiiiiin i, 72
hook, line-fill- o 23

Index

hooks ..o 17
hooks, changeco il i 73
horizontal-drag-inc...........cooiiiiiiiii i, 68
hypertext «oove ettt i i e e 30

I

ICCCM compatability for deletion................. 21
ICCCM compatibilty for iconify................... 24
L1070} 1 1 -1 1 L 19
ICON NAIME, SCTEEI « v vt e et e e eeeeeeeeeaaeeennnnnnn 8
icon-name, epoch::. i i i i 25, 75
TcomicState . .ovvv it 19
iconify, ICCCM compatibilty for 24
iconify-screen, epoch::ot 24
ID or screen object, screen.......covveeiieeeaann. 11
id, epoch::get-screen-......cooiiiiii i 19
id, make-. ... e 19
id, X parent reSOUTCe . .vvve e e e eneneeeeneeaenns 19
IZNOTE-EVENE « vttt et ettt eet e eeneeennenneens 45
IZTNOTE-TNESSAZE + v v vvvvnvenneennsensennoennsonnss 50
IZNOTE-PTOPETEY vt vttt ettt iie it eene e ennenns 47
ignore-selection ...ovviii ittt i e 48
inc, horizontal-drag-............ ... it 68
inc, vertical-drag-......... ittt 68
include-system-namecoceieeiieeenennnnnnn. 69
information, epoch::screen-o, 26
inhibit-initial-screen-mappingcoviein. 16
inhibition, event i i i e 45
initial state, sCreen......covven e rneennnnnnnn 19
initial-screen-mapping, inhibit-......... L. 16
install-evento i il 44
install-message ...l e 49
mnstall-propertyovviiii i e e 47
install-selectionoooiiiiiiiiiii i 48
intern-atom, epoch::. i il i 57
internal border width oot 19
internal border width, minibuffer 7
internal border width, screen....................... 7
internal borderwidth of screen, external and........ 26
internal event queue.........coi i e 44
interval, mouse::t e e 53

83
K
key bindings......cooiiiiiiiiiii i e 10
key, epoch:irebind- ..o iiin i 63
key, event . oovvi i e 41
key-mapping, epoch::function-..................... 65
keyboard queune....... ... il e 50
kill-local-mouse-mapc.ooviiiiiiiiiii i, 53
L
last-spot, MOUSE:: «vvt ettt it it i ineeennennnn 54
lazy-events, epoch:: ... oo it 42
line options, commandccveieerineneenann. 8
line options, defaults in command 5
Line-fill-hookoovii i 23
line-format, default-mode- 36
line-format, mode-o iiiiiii i, 36
line-inverse-video, mode-covveiiinrnnnn.. 36
Lisp packages . .ovvn i 66
list support, mailing...........c.coiiiiiiiiiiiaa, 1
list, epoch:iscreen- ... vve e 20
list, epoch:izone-. ...t 31
list, unmapped SCIEENS ... vu vt veerenenenennnnnnns 20
local-mouse-map, kill-o, 53
local-mouse-map, use-...coviin i, 52
local-set-mouse . .ovvvvvin i e 53
location of screen, X and Y........oovvvinian... 26
lower-screen, epoch:: o oovviiin i, 24
M
mailing list supportooiiiiii it e 1
make-bitmap, epoch:: i i i, 59
make-id . ..ot e 19
MAaKE-SCTEEN v vt vttt it ei e 19
make-style, epoch::. ..o 33
make-zone, epoch:: L i 30
manager, ZeNeric Window «...vvivi e ennneen.s 12
TNANAZET, TESOUTCE ¢ o v vt v v eenesvnsonnosnesaneenns 9
map and UNMAaP EVENES .« et veveerrneneneenennnns 42
TNAP, COPY-TNOUSE- + 4 vt v et vt tnaseennesnnsensanennss 52
MAP, CTEALE-TNOUSE- v vt i e it e et naenneonas 52
map, kill-local-mouse- i L. 53
map, use-local-mouse-........... ... o i, 52
MAaP-dO, Oll- + ottt teie it teeeeeeeneneeneenaneenns 55

84

map-screen, epoch::o i i i e 24
MAapPed SCTEEI. . vttt ettt et e ne e eeeeneeaeereaennns 16
mapped state, sCreenoveiiieineneeeneennn. 26
mapped-p, epoch:iscreen- ..., 24
mapping, epoch::function-key-..................... 65
mapping, inhibit-initial-screen-............. 16
mapraised-screen, epoch::.o, 24
mark-screen, pool: ... i i e 71
INENUIPOPUD - v e v et et veeaenseeeeeeneenensnenenens 73
TIETIUIS & ot vt vt e eaeeeee et eeneneaeaeaennnannnss 46, 72
message event, client o il 42
message, epoch::send-client-........ .. .o ool 59
TNESSAZE, 1BTNOTE « vttt ettt e s enneeneeeneenneens 50
message, install-o il 49
INESSAZE, POP- + vt vt tvtn e nenenenonenennaeneens 49
message, push-ooiiiii it 49
IMESSAZE, TEIMOVE- &t vttt vttt ienenenenenennennnnns 49
IMESSAZE, TESUIME- + vt vttt nene e innnenenenenns 50
message.el.o i i e 67
messages, client....... .. o i il 59
mini-clel ... oo i 66
minibuf-screen, epoch:: o i i, 21
minibuffer background il 6
minibuffer border color.........o il 6
minibuffer border width oot 6
minibuffer class........ .. o i il 7
minibuffer cursor color il 6
minibuffer cursor foreground 7
minibuffer cursor glyph........... ... oo il 7
minibuffer font o i 7
minibuffer foregroundo iiiiiaL 7
minibuffer geometry...... ..ol 7
minibuffer internal border width 7
minibuffer modes o i il 7
minibuffer name....... ... oo il il 7
minibuffer resource name oo, 8
minibuffer reverse......... ..o il 8
minibuffer screens........ ... oo il 15
minibuffer title o i i 7
minibuffer, epoch::nonlocal-....................... 15
minibuffers, epoch::synchronize- 15
TNINOT SCTEETIS + ¢ v v v et e s e eneeeenenneonnennsnanss 26

Epoch 4.0

mode extensions, fill il 23
mode-alist properties alist, epoch-................. 17
mode-alist, epoch- i i 17
mode-line-format i il 36
mode-line-format, default-........................ 36
mode-line-inverse-videooviii it 36
Modeline format..........oooiiiiiiiiiiiii i, 36
modes, minibuffer i i 7
modified, epoch::set-screen-.......cccoviiiiaan.. 28
modify-buffer, epoch::zones- 32
MOtION EVENT vttt it iitiie i ineeeeennenns 42
MOLION eVENtS ¢ vt ernenenannnn 7,9, 19, 54
motion-hints, epoch:set-.....o i, 55
motion-hints-p, epoch:: oo il 54
motion.el. ..ot e 67
motion:style ..t i i e e e 35
mouse clicks, multiple oL, 54
MOouSE dTag@iNg .o oo vvvr e reenneenrenneeneeeneenns 67
MOUSE VENES v v ittt ittt ittt it ii i en e 50
mouse, define-o i e e 53
mouse, epoch:iquery-.. ..o einin e eneennn. 62
mouse, epoch:iwarp- ... vinennie i e nennnns 62
mouse, global-set-......... ..o il 53
mouse, local-set- ...t i i 53
mouse-events, epoch:: ... i i e 42
TNOUSE-TNAD, COPY -+ s et v te vt vnasensnesnnsansansnnss 52
mouse-map, Create-oviiiiiiiii it i 52
mouse-map, kill-local- o i, 53
mouse-map, use-local- i, 52
mouse.el ..ot e 67
mouse::clicks ... i i 54
mouse:interval ... ool il 53
mouse:last-spot .. ovt it i i i e 54
mouse::selection ...oov il i e 68
MOUSE:SEt-POINt « ot e st ieieennennannnns 53
MOUSE:TIME-SEAMP « ¢ v vt v e e e e e neeerneeneneeaennns 54
TNOUSEIIX t ottt vt eee e ieenenenenenennaneeenenenns 54
TNOUSE LY ¢ v tv ittt eeneesesnnsnaseeennsensenesnsss 54
MOVE €VENE vt vttt ittt ittt ittt it i inieenens 42
MOVE-dO, Oll- + v vttt et ittt ee s eneneeaeannaennns 55
move-screen, epoch:: «. .t i e 26
move-to-pixel . ..ottt i i e 23
MOVE-ZONE, €POCh:: v vttt ie it ieennennns 31

Index

movement-function, after- 74
multiple mouse clicks.............. o i il 54
multiple screen updateso i, 69

N

name, epoch::icon-........ ... o i i, 25, 75
NMAME, 1COTL ¢ v v e e eee e eesaeeneeesneeneneenaneens 19
name, include-system-........ccoceviiiininiinnn.n. 69
name, minibuffer......... o i, 7
name, minibuffer resource, 8
TIATNE, TESOUTCE + oot v e ne tnsnvenesnssnosnesnnsnas 9
NAIME, SCTEETL « v v v et teee et st eeensnseeeeneseennnss 7
name, SCreen Class . vvvveeein e iin e eeeeneenennn 19
NAIME, SCTEET 1COTL ¢ v vt e v v vne e s enseeneoensannoens 8
TNAME, SCTEEN TESOUTCE + v vt v v nneeneenennsenas 7,19
name, X program or window class.................. 6
name, X program or Window resource............... 6
NATNING, SCTEET ¢ vttt vevtet i oo eensenneenenenss 69
next-screen, epoch::t i 20
nonlocal-minibuffer, epoch::...... o oL, 15
NormalStateoovn ittt 19
null zone stylesoovieiinininii it 37
number-of-colors, epoch:: i i i L 73

O

ODJECt, SCTEEIM . v vttt ettt eerneneeeeaennns 16
object, screen ID or screen..........coiiiiiiii.. 11
ODJECt, ZOME + v vt ittt ettt e it ie et 29
ObJeCts, X it ittt ittt i ittt e ittt 58
one-shot event handlers..................ooiitt. 55
only zones, read-.....oviiiininin ittt 38
only, epoch::set-zone-read-.............. oL, 38
only, epoch::zone-read- 38
only-region-p, epoch:iread-.......oovi il 38
only-zone, add-read-o, 38
opaque-font, epoch::define-........................ 39
options, command linecov it 8
options, defaults in command line 5
or attributes, screen properties...........oc.oee... 17
or screen object, screen ID........ o i, 11
or string, color VeCtor «.ovvvvi it 11
or window class name, X program 6

or window resource name, X Program............... 6

85
OVerlapping zomes .. .ovvvi ittt 37
owner, epoch::get-selection-o oLt 61
P
p, coordinates-in-window-........coovueeeeeerenenn.. 53
p, epoch::motion-hints- 54
p, epoch::read-only-region-............ .ot 38
P, epochiiscreen-....ovu i e e 20
p, epoch::screen-mapped-oii i, 24
p, epochiiupdate- ... i 28
p, epoch::zone-transient-............ceviiiiiiaan.. 32
packages, isp......oooiiii il 66
parent resource id, X. ..ot ernenrneennnnnns 19
paste, cut and i e e 67
pixedges, Window-oiiiii it 22
PIXEl, CUTTENt- ottt it i e eeeneieeenenn 23
pixel, fill- ... e e e 23
PIXel, MOVE-10- « vttt it et e 23
pixels, epoch::query-cursor-coveveveneennnn. 62
pixheight, window-........cooiiiiin i n., 22
pIXmap, epoch:iquery-....oouuveveeeinenrnnenennnns 39
pixmap, epoch::set-style-coiiiiiia, 39
pixmap, epoch:style-..ot 40
pixmap-file, epoch:iread-....... ... oo, 39
pixwidth, window-oi i, 22
plane-size, epoch:: o i e 26
plotting, zone.......ooiiiii ittt e 37
point, epoch::coords-to- ...t 53
POINt, MOUSESE - ¢ vt vttt it ete e e neennnenneenns 53
pointer, epoch::query-......coviiiiiiiiiiiiiienn.. 62
pointer, epoch::ungrab-........ ... oo iiiiia i, 62
pointer, epoch:warp-....veire e in e nenennn 62
POOLEl SCT- vttt i i i e i e e 70
| S10T0) BEed Y P 71
poolidelete ..ot i e 71
pooliget-screenoiiiii il i e e 71
pool:get-screen-with-buffero il 71
pool:get-shrink-wrapped-screen............ 71
poolimark-screen. .. .o.oveiiei it 71
pooliunmark-SCreen «...ove i ineneeeennnnans 71
POOIS, SCTEEI « vttt et e e et ieeee e eeeeereeennnannns 70
POP-EVENL t ittt ittt ittt ittt innennennens 45
POP-TNESSAZE e e v vttt ieietee i nnnnneenenennns 49

86

POP-PIOPETEY ot ettt it et ettt e ettt 47
pop-selection e e 48
POPUP, MENUI ¢t vttt teeee et eeeneneaeaeaeenennns 73
prev-screen, epoch:: it i i e 20
Primitives, Style....... ..o, 33
program defaults, X Window..................oout. 5
program or window class name, X..........., 6
program or window resource name, X.......c.ooeeu... 6
properties alist, create-screenc..ueon.. 17
properties alist, epoch-mode-alist 17
properties alist, epoch::create-screen............... 17
properties alist, epoch:iscreen- 17
properties or attributes, screen.................... 17
properties, epoch:iscreen-ooveveeennennnnnnn. 17
PIOPETTIES, X v vt ittt ieeein e eeeeeeneennnannns 60
Property X-atom .. .vee e reneeeeeeneenenaenns 46
property, epochiiget- ..ol 60
property, epoch:iset- i i 60
PTOPETEY, 1QNOTE- « v vttt vttt eie it it eeneeenennens 47
property, install- i i 47
PTOPET Y, POP- « et et ittt et it ittt et e et 47
property, push-ot e e 47
PTOPETEY, TEMOVE- + vttt it i it eiee i eennannnnn 47
PTOPETEY, TESUME- + ot vt te et it iee e e ennennenenns 47
property-change event.............cooiiiiiiin, 42
property-change events...........cciiiiiiiiian.. 46
property.el ... e e i 67
push-eventoiuiiiin ittt i e 45
push-message.....covviiiiiin ittt 49
PUSh-PrOpPerty oo e it i i i i e e 47
push-selectionoviiiinn i iinennnnennn. 48

Q

query-cursor, epoch::. i i i 62
query-cursor-pixels, epoch:: o oL, 62
query-mouse, epochi:t i i i 62
QUEry-piXmap, epoch::. ... reneinenrneenennnns 39
query-pointer, epoch:: i i 62
query-tree, epoch:: oot i e e 63
Questions, Frequently Asked....................... 1
QUETE, EVEND vttt ittt ittt iii i iteiinneenennens 41
queue, internal event.......... ... i i, 44

queune, keyboard i e 50

Epoch 4.0

R

TAISE-SCTEEN, AUTO- 1.ttt v et et e rneeneneeneeeeaeenns 69
raise-screen, epoch:: i i i i i 24
read-only zomes.coiiiiii it i i e i 38
read-only, epoch::set-zone-..........coiiiiiaa, 38
read-only, epoch::zone- oL, 38
read-only-region-p, epoch::. ... oo iii il 38
read-only-zone, add- o i, 38
read-pixmap-file, epoch::.o il 39
rebind-key, epoch:: o il i 63
T oLl 11 7S 28
red green blue components........... .ol 73
redisplay-screen, epoch::. ..., 28
redraw-display .« oove ittt i i e 28
region-p, epoch:iread-only-..... ...l 38
TEMOVE-EVENt . oottt ittt it ittt ci e 44
TEINOVE-TNESSAZE s ¢ vt v v vvtesenenenennnnnnenenenens 49
TEMOVE-PTOPETEY & vt ve vt ettt iee e enneeeneanss 47
remove-selectionoovviiiiii i i e 48
TEPOTtS, bUg ..o vv it e e 1
required, X Windows......cocoviiiirinennenrnnnnnns 1
TESIZE EVENMT. ot ettt ittt it iietineeennennnns 42
TESIZE-A0, ON- v vt vttt ettt eeine s eeennaeennannns 55
TESOUTCE Class. . vv ittt e 9
resource id, X parent.....co.oeeveeeenenrneenennnns 19
TESOUTCE TNANAZET & v v v v v o eeneeennsenneonnennesanss 9
TESOUTCE MAIME & vt vt v e vt v i e eneeenonenennnenens 9
resource name, minibuffer, 8
TESOUTCE NATNE, SCTEET + v vt v v e nneenenneensenas 7,19
resource name, X program or window............... 6
resource, epoch:string-to-ooiiiiiiii i, 57
resource-to-string, epoch::ol 58
resource-to-type, epoch::. ool 58
resource-type, epoch:iset-ot i ., 58
Tesourcep, epoch:i. .ot e 57
resources database, X i it 5
TESOUTCES, Xt vvteevenerneeneneeeeeeeeenenaaneenns 57
restore-zones, UNdo-.....ovveenerrneenenrneennn. 40
TESUMeE-eVeNt .. vttt 45
TESUINE-TNESSAZE « ¢ v v v vvvnreeoneneneneneennnennns 50
TESUME-PTOPETEY « vt ve ittt e iieeneeeneenns 47
resume-selection ... oo i i i 48
S = e 19

Index

TEVErse COlOIS . v vttt it e it e it it 9
reverse, minibuffer i il L., 8
TEVETSE, SCTEEIL v vt v e s o e e v enanesaneennenensnneenns 8

S

SAVING ZOMES ¢ vt ve vttt iie e nnenereneenneens 71
SCr-pool.el . .o e e 70
SCTEEN AULOTAISE. + v vttt t it iie e neennnennnns 69
screen backgroundo iiaiiiiiet, 6, 18
screen border color........oiiiiiiiiiii il 6
screen border width........ .o ool 6
SCTeen Class. ..o vii i i i i e 7
screen class namecovviniiii it 19
screen cursor background oL, 6
screen cursor color .. oovvii i i i 6
screen cursor foreground oiiiiiiiii i, 7
screen cursor glyph oo il iin i 7
screen default-sets ...l 17
screen font ..ol e 7
screen foreground........... .. iiiiiiiiien, 7,18
SCreen geometIy.....ooviiiiiiiii i 7,9, 19
SCTEEN 1COM MAME . v vt ve v senneennsensonneeensanss 8
screen ID or screen object i, 11
screen initial stateo i it 19
screen internal border widtho... 7
screen mapped state i i i i e 26
SCTEEN MAMIE v ettt vttt e rneenenseesesenenns 7
SCTEEN MATNITIE + v vt veveeeennonneneneennennenanss 69
SCTEEN ODJECE v vttt ittt et ee e eeeeneeanannnn 16
screen object, screen ID or...... ... o i, 11
SCTEEN POOIS ¢ vttt it it it c et ieeieeenneennn 70
screen properties alist, create-............... .o ... 17
screen properties alist, epoch::create- 17
screen properties or attributes 17
SCTEEN TESOUTCE NAIME &t vt v vvnsvnrenennsensnns 7,19
SCTEEN TEVETSE . vt o v e veetesenneeneoensonneeneonnss 8
screen title.. ..ol 7,19
screen updates, multiple 69
screen updating .o ovviiiii it 19, 27
SCTEEN, AULO-TAISE- 1ttt eveeeerneenenenneneeaeenns 69
SCTEEN, CTEAtE .« v vttt ittt it i ie e e 16, 17
SCTEEN, CTEALE- o vt i ittt ittt ittt ittt ineiieeneenenns 16

SCTEEN, CUTTEND . v v vt vttt ittt it it i iieeneenens 15

87
screen, epoch:icreate-.. ..ot 16
screen, epoch::current- ..., i, 20
screen, epoch:delete- ... v i i 21
screen, epoch::flash-o o il 27
screen, epochiiget- .. oovii i il 19
screen, epoch::iconify- o o i il 24
screen, epoch::lower- ... o i i i 24
screen, epochomap- ... vv ittt i e e 24
screen, epoch:mapraised-.......oovtviiiieiienan. 24
screen, epoch::minibuf- o L., 21
screen, epoch:move- ... o e i i e 26
screen, epochimext-ol i i e 20
screen, epochprev- ... o it i i e e 20
SCreen, epoch:ralse- v vt et ie it e 24
screen, epochuredisplay-oovvee i, 28
screen, epoch:select- . ..o i i i i 20
screen, epoch:unmap-....vven e eeneneennn. 24
screen, epochuxid-of-. ..o i i 58
SCTEEN, EVENE « vt vttt ittt ittt ittt ieneinenneanens 41
screen, external and internal borderwidth of........ 26
SCTEEN, MAaKe- . ottt ittt ittt iieeeneenannnns 19
screen, Mapped «vv e et in i it e i e 16
screen, pooliget- .ol i i 71
screen, pool:get-shrink-wrapped-, 71
screen, poolimark- i i 71
screen, pooliunmark-...... ... oo i i ., 71
screen, selected i i e 15
screen, UnmMappPed . .v e ee ittt et eeerneenaeena 16
screen, width and height ofo oo it 26
screen, X and Y location of 26
screen-alist-hook™, *create-oo... 16
screen-height, epoch:: ool 25
screen-hook™, *select-oviieiiiiiin i, 20
screen-id, epoch:iget-. ..ol 19
screen-information, epoch:: o il 26
screen-list, epoch:: .. oo vt i 20
screen-mapped-p, epoch::o oo il 24
screen-mapping, inhibit-initial-.......... 16
screen-modified, epochiset-ol 28
screen-of-window, epoch::. ... oo ie i .., 22
SCreen-p, €poch: vttt i i i i 20
screen-properties alist, epoch:: 17
screen-properties, epoch:: ... oo ii i, 17

88

screen-size, epoch::change-.......o oLt 25
screen-width, epoch:: ... o i i 25
screen-with-buffer, pooliget-t 71
SCreenp, epoch:i. ...t it i it 20
o8 T 1 =P 15
screens list, unmapped i, 20
SCreens, edit v vv e ettt ettt 15
screens, minibuffer i oL, 15
SCTEENS, TNITIOT « ¢ v v oo e ee e eeeneeeeneneeneenaneenns 26
screens-of-buffer, epoch::.o i il 21
scrolling drag.....covviiiiiin it i e 68
select-screen, epoch:: .. ooe i i i 20
selected screen.....covvii il i e 15
selected-windowoo i il i e 21
selected-window, epoch::. oo iiiiiaL, 22
selection, epoch::acquire-vvvviii ... 61
selection, epoch::convert-o, 61
selection, 1gNOTeE-. .o vttt e e 48
selection, install-..........oo i, 48
selection, MouSe:: ..ot tve et ie i i iniinineaeannnn 68
SEleCtion, POP- . ver ittt i e et e 48
selection, push-.......co ittt 48
selection, Temove-....vvvtirinnnin i ennennn. 48
selection, Tesume-o rinenenrnneneneenennns 48
selection-alist, epoch::. o i il 61
selection-alist, epoch::convert-..................... 62
selection-clear event..........coiiiiiiiiiiii 42
selection-hook, epoch::convert-.................... 48
selection-owner, epoch::get-........ooooiiiiiLt, 61
selection-target, add-....... ..o i, 48
selection-timeout, epoch::.o, 61
selection.eloiii i 67
send-client-message, epoch::. ... oo il 59
set-bell, epoch:: o i e 63
set-motion-hints, epoch::. o il 55
set-mouse, global-......... ... o il 53
set-mouse, local-co i i i 53
SEt-POINt, MOUSE:: vttt r ittt eerneennnenneenns 53
set-property, epoch:: ... oo ittt e 60
set-resource-type, epoch:: ... oot i, 58
set-screen-modified, epoch::......... oL 28
set-style-background, epoch::. il 34

Epoch 4.0

set-style-cursor-background, epoch:: 34
set-style-cursor-foreground, epoch:: 34
set-style-cursor-stipple, epoch::.................... 35
set-style-font, epoch::. oo i i 35
set-style-foreground, epoch::l 33
set-style-pixmap, epoch::o i, 39
set-style-stipple, epoch:: it 34
set-style-tag, epoch:: ..ol 35
set-style-underline, epoch::.......... 34
set-update, epoch::. ..o i e 27
set-zone-data, epoch:: i i, 32
set-zone-read-only, epoch::. oLl 38
set-zone-style, epoch:: . ..o i 31
set-zone-transient, epoch::, 32
sets, default ... e 5
sets, screen default- o i, 17
setup-hook, epoch-...... o i i i, 66
shiftmask, epoch::mod-to- 63
shot event handlers, one- 55
shrink-wrapped-screen, pool:iget-oount. 71
size, epoch::change-screen-.............. ..ol 25
size, epoch::plane- o i i i e 26
spot, mouse:last- i i e 54
stamp, Mouse: : time-. ... vereereneneneeneenenennnn 54
standard extensionscoiiiiii i, 65
start, epoch:izone- i i 30
state, screen initial i i i 19
state, screen mappedv ittt i 26
status, display-event-........cviiiiiiiiii i, 45
stipple, epoch::set-style- i, 34
stipple, epoch::set-style-background-............... 34
stipple, epoch::set-style-cursor-.................... 35
stipple, epochustyle-o i 34
stipple, epoch::style-background- 34
stipple, epoch::style-cursor- oot 35
string, color vector or ...vvviiiii il 11
string, epoch::resource-to-vviiiiiiiii i, 58
string-to-resource, epoch:: ... vviiii il 57
Style hierarchy ..., 33
Style Primitivesvvveirieinininiineneenennn. 33
style, buffer-. ... i i 35
style, epoch:imake-...... ..ot 33
style, epoch:iset-zone-t 31

Index

style, epoch:izone- i i i 31
style, motion::ottt i i e 35
style-background, epoch:: ool 34
style-background, epoch:set-.o oot 34
style-background-stipple, epoch::ot 34
style-background-stipple, epoch:set-............. .. 34
style-cursor-background, epoch::........ ... il 34
style-cursor-background, epoch:set-l 34
style-cursor-foreground, epoch:: 34
style-cursor-foreground, epoch:set- 34
style-cursor-stipple, epoch:: oL, 35
style-cursor-stipple, epoch:set-.................... 35
style-font, epoch::. ... 35
style-font, epochiiset-.......coivi i, 35
style-foreground, epoch::....... .o, 33
style-foreground, epoch:iset-oooiiiiiiiiat, 33
style-hook, find- ..., 72
style-pixmap, epoch::. .. oviin i, 40
style-pixmap, epochiset- .. oov e, 39
style-stipple, epoch:: ... oot 34
style-stipple, epochiiset- .. .ooviiiii i, 34
style-tag, epoch::. .o oviii il 35
style-tag, epochuset- ..o vvi it 35
style-underline, epoch:: oo, 34
style-underline, epochiset-.. ..o, 34
stylep, epoch:: .o v i e e 33
0 1 33
styles, null zone.........ciiiiiiiiiiiiiininnen... 37
Support, ASCIL.t ittt i e 1
support, mailing list.........oooiiiiiii i, 1
symbol-buffer-value i L, 65
synchronize-minibuffers, epoch::................... 15
system controls, windowingooiiiin.. 23
system-name, include-............. 69

T

tag, epochuset-style-oooiiiiiii il 35
tag, epochustyle-...oooviiiii il i 35
target, add-selection-...........co ol 48
target, convert-to-o il 48
text cursor color.....ooviiii i i 18
text, Zome- ..o i e 32
text-width ... oo 23

89
BIME-STaAMP, MOUSE It ettt e et eenenerneenaneenns 54
timeout, epoch::selection-...............oiian... 61
title, epoch::. ..o e 25
title, minibuffer...... 7
title, SCTeen .ottt i e i e 7,19
title, Window ...vveirinr it i i e i e e 9
transient, epoch::set-zone- oL, 32
transient-p, epoch:izone-........ ... oo, 32
tree, epochquery- ...t e 63
type, epoch::resource-to-.....coviviii i, 58
type, epoch::set-resource- ..ot 58
types, event . oo vii i i e 41
U
underline, epoch::set-style-........... ..., 34
underline, epoch:style-o oL, 34
Undo, Zones and.......oveinnininnnennnaenns 40
UNO-TESEOTE-ZONES + v e vt et etetieetennneeeneanns 40
ungrab-pointer, epoch::.......ooiii il 62
unintern-atom, epoch:: i i, 57
unmap events, map andttt 42
UNMAP-AO, 0N\ vttt e eteeernenneneeneeaaanens 55
unmap-screen, epoch::......ovei ittt 24
UNMAPPEd SCTEEIM & v et ee e e eerneennneenannnns 16
unmapped screens listo.ve i, 20
unmark-screen, pool:t i i e 71
update, epoch::global-.......... ... o it 27
update, epoch:iset-. ..o i i e 27
update-p, epoch:: ... i i e 28
updates, multiple screen......... .. i, 69
updating, SCTEEM .. .vvv v itin e eennennnsn 19, 27
use-local-mouse-mapco i e 52
util.el, epoch-.. .o e 66
Vv
value, event ... ovt vttt i e e et e e 41
value, symbol-buffer- i Lt 65
vector or string, color «..vvviiiii il 11
VErsion, epoch ... vuviin it i i i e 65
VErsiOn, epoCh::. vttt ittt i i i 65
vertical-drag-inccoviiii il e 68
video, mode-line-Inverse-oveivunenennennnnn 36

volume, epoch::bell- i i 63

90

W

wait-for-event, epoch::.o i i 45
waiting for events..........cooiiiiiiiiiii i, 45
Warp-mouse, epoch:: «. .o vtvenrininin e nennnnn 62
warp-pointer, epoch::....oern ittt 62
width and height of screen............. ... oot 26
width, epochiscreen-. ..o, 25
width, external border.............., 19
width, internal border............., 19
width, minibuffer border..........., 6
width, minibuffer internal border................... 7
width, screen border o il i, 6
width, screen internal border....................... 7
width, text- ..ot i i i e e 23
width, window-ooiiiiin it 23
window class name, X program Or............cc.u... 6
window configuration...........ooiiiiiiiiiiii., 15
window display, X ...t i i e 9
Window display, X...vvieriiniiniiieininnenennn. 7
WINdow Manager, ENETIC « v v vvvnvenvennerneeenss 12
Window program defaults, X............oooooiint. 5
window resource name, X PrOgram OTcees.. 6
window title. ..o i i 9
window, epoch::first- o i 22
window, epoch::get-buffer-........... ... oo it 21
window, epoch::screen-of-........ i, 22
window, epoch::selected-....... ... oo i, 22
window, selected- i i i 21
Wwindow-edges. ..ot i e e 23
window-height ... o i i i 22
window-p, coordinates-in-........cooeeeeeeerenennn. 53
WINdOW-PIXedges « oo vit ittt i i i 22
window-pixheight o il 22
window-pixwidth o i i i 22
window-widtho i i 23
windowing system controls............ ... oont 23
windows and GNU Emacs windows, X............. 15
Windows required, X. .. .vuit it ieeneenrnennnns 1
windows, X windows and GNU Emacs............. 15
with-buffer, pool:get-screen-oiont. 71
WM_DELETE_WINDOWooiiiiinia, 67
WM_ICON_NAME . ..ot 75
wrapped-screen, pool:get-shrink- 71

Epoch 4.0

wrapper.el ... i e e 66

X

X and Y location of screen........covvviiiiiiin., 26
Xclassdefaults......oovvviin i, 6
o1 o 62
X ODJeCtS v vt e e e 58
X parent resource id «..ovvie it e 19
X program or window class name................... 6
X program or windOw TE€SOUTCE NAINE « . vverreneenn. 6
X PIOPEItIES e v vt ettt ettt teeeetneeeeereaeannaenns 60
X TESOUTCES t vt e tees it enneeeereneonneoeneanss 57
X resources database....... ... i iii i 5
X window display ..o voen i ie it i e 9
X Window display .« vvevienninin ittt 7
X Window program defaults....................... 5
X windows and GNU Emacs windows.............. 15
X Windows required . ..vvevnvrreertnenrnnnenannnn 1
Xy TOUSE e vt v e o eea e nesnnsonenesnnsensnesnnsans 54
X-atom, PrOPeItY « vttt eeneeerneenenennns 46
XAPPLRESDIR ...ooii it 5
XENVIRONMENT .. oo 5
xid-of-screen, epoch::. ... i 58
D4 413 11 AP 13
11 TS P 39
-4 0 I o TN 5

/2 T PP 45
/7 PN 11
ZONE CTEAION + vttt tt ittt ien it e iee i ennennnen 30
ZONe dISPlay « vt vt it i e e e 33
ZONE ODJECt . o vttt i i i e it i e 29
zone Plotting . ..o ittt e e 37
zone styles, null o i 37
zone, add-graphic-o il 39
zone, add-read-only- i i, 38
zone, epochzadd-. ..o v et 31, 38

zone, epochi:delete- ... i o i i 32

Index

zone, epoch:make- i il 30
ZONE, EPOChIIMOVE- ..ottt ittt it ie i 31
zone-at, epoch::. ... i e 31
zone-at, epoch:delete-. ... i i, 32
zone-buffer, epoch:: i 30
zone-data, epoch:.ot 31
zone-data, epochiset- oo i i, 32
zone-end, epoch:: i i 31
zone-list, epoch::. .. i i i e e 31
zone-read-only, epoch::ol ., 38
zone-read-only, epochiset-.l 38
zone-start, epoch:: «. oot e i 30
zone-style, epoch:: i 31
zone-style, epoch:iset- i i 31
zome-teXt. . vt e e 32

91
zone-transient, epoch:iset- o il 32
zone-transient-p, epoch::. oo i iaL, 32
zome.el. v e e 67
ZONEP, €POCh:: Lttt e e e e 30
703 11 29
Zones and Undo....vvviiiiiiiiiiiiiininn e, 40
zones, deletingoovviii il e 32
zones, epoch::clear- o i i 32
zones, Graphical o i i i 39
ZONES, OVETIAPPING « vt vvn ittt iin i ieeeanen 37
zones, read-only il i e 38
ZONES; SAVING vt vt ti it eeneenneennenns 71
zones, UNAdo-TeStOTe- . vv v et e inie e eeeenennnns 40
zones-at, epochi: .o it i 31

92

Epoch 4.0

Short Contents

1 Introduction 1
2 General Informationo i 5
R T o1 T o 1= 15
/7o) 1T - S 29
ST 11X - S 41
6 X1 Primitives ..o e 57
T Miscellaneous.o 65

ii

Epoch 4.0

Table of Contents

1 Introduction........................... 1
1.1 Support and Mailing List........ooioiiii i 1

1.2 Getting Epoch ..o 2

1.3 Acknowledgements.........coiiniiiiiiii e 2

2 General Information.............................. 5
2.1 Getting Startedooi i e 5

2.1.1 X Window Program Defaultsccoil 5

2.1.2 Command Line Options........cocoviiiiiiiiiiiiiiinan.., 8

2.2 NeWw Featltres .. o.oe et 9

2.3 Key Bindingsooviririiiii i 10

2.4 CONVENTIONS . ¢ ettt ettt ettt et et e e e e e 11

2.0 M nUS . ottt ettt e 12

2.5, 1 GWM L 12

2.5.2 XMENU .o 13

3 SCrEEMS ... 15
3.1 Screen Basics ..o 15

3.2 Screen Properties.o e 17

3.3 Controlling SCreens.uvu ittt 19

3.4 Screens and Windows ..ot 21

3.5 Variable sized Fonts..... ..o 22

3.6 Manipulating SCreens.u. ettt 23

3.7 Screen Updating......ovvuieniiiiiiiiii e i 27

A ZIOMES ..o 29
A1 7008 Basies c v vttt e 29

4.2 Zone Primitives.oeoe i e 30

4.3 Deleting Zomes. ...ttt e 32

4.4 Style Primitives. 33

4.5 Modelines. ..o 36

4.6 Zone Plotting. ... e 37

4.7 Read-only Zomes.o e 38

4.8 Graphical Zones i 39

4.9 Zones and Undoo e 40

iii

5 Events............ 41
5.1 Event Basics...ouiui i e 41

5.2 Basic Event Handling ..o 43

5.3 Advanced Event Handling. ..o 45

5.4 Property Change Events, 46

5.5 Selection Events . ..o e 47

5.6 Client Message Events........vvieiiiiniiiiin i 49

BT Mouse Eventso e e 50

5.8 Motion Events .. .o e e 54

5.9 On Event Handling.......coooiiiiiiiiiii e 55

6 X11 Primitives. ..., 57
6.1 X RSOUTCOS t vttt ittt e e e e e e 57

6.2 X 0D et s et 58

6.2.1 Client Messages......ouuvuurintinen i, 59

6.2.2 X Properties.....ouiuiiiiin i 60

6.2.3 X Selections.oooiuiiiii i e 61

0.2.4 X ClB0T vttt ettt e et ettt e e e 62

6.3 Other X Stuff.. ... 63

7 Miscellaneous................................ 65
7.1 Standard Extensionsoiiiiiiiiiiii e 65

7.2 Epoch Versiono oo 65

7.3 Packages ... e 66

7.3.1 Mouse Draggingooooiiiiiiiiiii i 67

7.3.2 Screen Naming.......oveviutenen et iaainenenn, 69

7.3.3 AUTOTaISe .\ttt e e 69

7.3.4 Multiple Screen Updates..........coooiiiiiiiiiiiiinn... 69

7.3.5 Display of Control Charactersooiiin... 69

T4 Screen Poolso e 70

7.4.1 Screen Pool Basics....ooovveiii i 70

7.4.2 Screen Pool Functions............cooiiiiiiiiiiiiiiiiiian.. 70

T SAVINE ZiOMES . ettt ettt e et e 71

AT = 1 72

R o o TP 73

7.8 Change HoOKS ... oo e 73

A8 TR o 75

L0 dDX e ee e e 75
Index. 77

Epoch 4.0

