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Structure of the Course

Parallel processing offersthe potential of rendering high-quality images and animationsin reasonabl e times.
This course begins by reviewing the basic issuesinvolved in rendering within a parallel or distributed com-
puting environment. Specifically, various methods are presented for dividing the original rendering problem
into subtasks and distributing them efficiently to independent processors. Careful consideration must be
taken to balance the processing load across the processors, as well as reduce communication between these
subtasks for faster processing.

The course continues by examining the strengths and weaknesses of multiprocessor machines and net-
worked render farms for graphics rendering. Case studies of working applications including “real time
raytracing," and streamlining the creation of full CG movies (“Final Fantasy”) will be presented to demon-
strate in detail practical ways of dealing with the issues involved.

Introduction (10 minutes) (Davis)

e The need for speed in satisfying the demand for high-quality graphics
e Rendering and paralléel processing: aholy union
e Theexciting possibilities of parallel processing in aworld of advanced 3D graphics cards

Parallel/Distributed Rendering Issues (45 minutes) (Chalmers)

e Task subdivision
e Load balancing

e Communication
Task migration
Data M anagement

Classification of Parallel Rendering Systems (25 minutes) (Davis)

By rendering technique
e Polygon rendering
— Sort first, sort middle, sort last
¢ Photo-realistic methods
— Image space subdivision, object space subdivision, object subdivision
By hardware:
¢ Multiprocessor machines
— Prosand cons
e Distributed Computing

— Introduction to render farms
— Prosand cons

Practical Applications (25 minutes) (Davis)

e Distributed computing and spatial/temporal coherence



e Animations
Practical Applications continued

Getting the most from your machine (40 minutes) (Reinhard)
¢ Real time raytracing
— basic operations
— animation and interactivity
— adding complexity
Parallel rendering and the quest for realism (45 minutes) (Kato)

e The“Kilauea’ massively parallel ray tracer

System design

Memory management for thread environments

Parallel shading calculations, space traversal, photon maps
Debugging and stability

Summary (10 minutes) (Chalmers)

Discussion and questions (10 minutes) (All)

Structure of the notes

The notes contain important background information as well as detailed descriptions of the Parallel Pro-
cessing techniques described. The notes are arranged as follows:

Section | introduces the conceptswhich are necessary to understand the difficulties confronting any parallel
implementation. The section goes on in chapter 2 to describe the issues associated with scheduling
tasks on a parallel system. A number of ways of decomposing a problem on a parallel machine are
considered and the advantages and disadvantages of each approach are highlighted. Chapter 3 of
Section | concentrates on managing large data requirements which are distributed across the parallel
environment. Issues of consistency and latency are considered.

Section |1 considersthe classification of parallel rendering systems according to the method of task subdi-
vision and/or by the hardware used.

Section 11 considers Interactive Ray Tracing in depth including hardware considerations, animation and
reuse techniques. Appendices are provided on the SGI Origin 2000.

Finally, Section IV providesdetails on the “Kilauea’ massively parallel raytracer.
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Chapter 1

| ntroduction

Parallel processing is like a dog’s walking on its hind legs. It is not done well, but you are surprised to find
it done at all.

[Steve Fiddes (University of Bristol) with apologiesto Samuel Johnson]

Realistic computer graphics is an area of research which develops algorithms and methods to render
images of artificial models or worlds as realistically as possible. Such algorithms are known for their un-
predictable data accesses and their high computational complexity. Rendering a single high quality image
may take several hours, or even days. Parallel processing offers the potential for solving such complex
problems in reasonable times.

However, there are a number of fundamental issues: task scheduling, data management and caching
techniques, which must be addressed if parallel processing is to achieve the desired performance when
computing realistic images. These are applicable for all three rendering techniques presented in this tuto-
rial: ray tracing, radiosity and particle tracing.

This chapter introduces the concepts of parallel processing, describes its development and considers the
difficulties associated with solving problems in parallel.

Parallel processing is an integral part of everyday life. The concept is so ingrained in our existence that
we benefit from it without realising. When faced with a taxing problem, we involve others to solveit more
easily. This co-operation of more than one worker to facilitate the solution of a particular problem may be
termed parallel processing. The goal of parallel processing is thus to solve a given problem more rapidly,
or to enable the solution of a problem that would otherwise be impracticable by a single worker.

The principles of parallel processing are, however, not new, as evidence suggests that the computational
devices used over 2000 years ago by the Greeks recognised and exploited such concepts. In the Nine-
teenth Century, Babbage used parallel processing in order to improve the performance of his Analytical
Engine [48]. Indeed, the first general purpose electronic digital computer, the ENIAC, was conceived as
a highly parallel and decentralised machine with twenty-five independent computing units, co-operating
towards the solution of a single problem [27].

However, the early computer devel opers rapidly identified two obstacles restricting the widespread ac-
ceptance of parallel machines: the complexity of construction; and, the seemingly high programming effort
required [10]. Asaresult of these early set-backs, the developmental thrust shifted to computerswith asin-
gle computing unit, to the detriment of parallel designs. Additionally, the availability of sequential machines
resulted in the devel opment of algorithms and techniques optimised for these particular architectures.

Theevolution of serial computersmay befinally reachingits zenith dueto the limitationsimposed on the
design by its physical implementation and inherent bottlenecks[5]. As users continue to demand improved
performance, computer designers have been looking increasingly at parallel approachesto overcome these
limitations. All modern computer architectures incorporate a degree of parallelism. Improved hardware
design and manufacture coupled with a growing understanding of how to tackle the difficulties of parallel
programming has re-established parallel processing at the forefront of computer technology.



1.1 Concepts

Parallel processing is the solution of asingle problem by dividing it into a number of sub-problems, each of
which may be solved by a separate worker. Co-operation will always be necessary between workers during
problem solution, even if thisis asimple agreement on the division of labour. Theseideas can beillustrated
by a simple analogy of tackling the problem of emptying a swimming pool using buckets. This job may be
sub-divided into the repeated taskof removing one bucket of water.

A single person will complete all the tasks, and complete the job, in a certain time. This process may
be speeded-up by utilising additional workers. Ideally, two people should be able to empty the pool in half
the time. Extending this argument, alarge number of workers should be able to complete the job in a small
fraction of the original time. However, practically there are physical limitations preventing this hypothetical
situation.

Figure 1.1: Emptying apool by means of a bucket

The physical realisation of this solution necessitates a basic level of co-operation between workers.
This manifestsitself due to the contention for access to the pool, and the need to avoid collision. The time
required to achieve this co-operation involves inter-worker communication which detracts from the overall
solution time, and as such may be termed an overhead

1.1.1 Dependencies

Another factor preventing an ideal parallel solution are termed: dependencies. Consider the problem of
constructing a house. In simple terms, building the roof can only commence after the walls have been
completed. Similarly, thewalls can only be erected oncethe foundationsarelaid. Theroof isthus dependent
upon the walls, which are in turn dependent on the foundations. These dependencies divide the whole
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problem into a number of distinct stages. The parallel solution of each stage must be completed before the
subsequent stage can start.

The dependencies within a problem may be so severe that it is not amenable to parallel processing. A
strictly sequentia problem consists of anumber of stages, each comprising asingletask, and each dependent
upon the previous stage. For example, in figure 1.2, building a tower of toy blocks requires a strictly
sequential order of task completion. The situation is the antithesis of dependency-free problems, such as
placing blocks in arow on the floor. In this case, the order of task completion is unimportant, but the need
for co-operation will still exist.

Task .
completion

Task completion
€Y (b)

Figure 1.2: Building with blocks: (a) Strictly sequential (b) dependency-free

Pipelining is the classic methodology for minimising the effects of dependencies. This technique can
only be exploited when a process, consisting of a number of distinct stages, needs to be repeated several
times. An automotive assembly line is an example of an efficient pipeline. In a simplistic form, the con-
struction of a car may consist of four linearly dependent stages as shown in figure 1.3: chassis fabrication;
body assembly; wheel fitting; and, windscreen installation. An initial lump of metal is introduced into
the pipeline then, as the partially completed car passes each stage, a new section is added until finally the
finished car is available outside the factory.

Consider an implementation of this process consisting of four workers, each performing their task in one
time unit. Having completed the task, the worker passes the partially completed car on to the next stage.
Thisworker is now free to repeat its task on a new component fed from the previous stage. The completion
of thefirst car occurs after four time units, but each subsequent car is completed every time unit.

The completion of a car is, of course, sensitive to the time taken by each worker. If one worker were
to take longer than one time unit to complete its task then the worker after this difficult task would stand
idle awaiting the next component, whilst those before the worker with the difficult task would be unable to
move their component on to the next stage of the pipeline. The other workers would thus also be unable
to do any further work until the difficult task was completed. Should there be any interruption in the input
to the pipeline then the pipeline would once more have to be “refilled” beforeit could operate at maximum
efficiency.

112 Scalability

Every problem contains a upper bound on the number of workers which can be meaningfully employed
in its solution. Additional workers beyond this number will not improve solution time, and can indeed be
detrimental. This upper bound provides an idea as to how suitable a problem isto parallel implementation:
ameasure of its scalability.
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A given problem may only be divided into afinite number of sub-problems, corresponding to the small-
est tasks. The availability of more workersthan there are tasks, will not improve solution time. The problem
of clearing a room of 100 chairs may be divided into 100 tasks consisting of removing a single chair. A
maximum of 100 workers can be allocated one of these tasks and hence perform useful work.

The optimum solution time for clearing the room may not in fact occur when employing 100 workers
due to certain aspects of the problem limiting effective worker utilisation. This phenomenon can be illus-
trated by adding a constraint to the problem, in the form of a single doorway providing egress from the
room. A bottleneckwill occur as large numbers of workers attempt to move their chairs through the door
simultaneously, as shown in figure 1.4.

y

Figure 1.4: Bottleneck caused by doorway

The delays caused by this bottleneck may be so great that the time taken to empty the room of chairs by
this large number of workers may in fact be longerthan the original time taken by the single worker. In this
case, reducing the number of workers can alleviate the bottleneck and thus reduce solution time.

1.1.3 Control

All parallel solutions of aproblem require someform of control. Thismay be as simpleasthe control needed
to determine what will constitute a task and to ascertain when the problem has been solved satisfactorily.
More complex problems may require control at several stages of their solution. For example, solution time
could be improved when clearing the room if a controller was placed at the door to scheduleits usage. This
control would ensure that no time was wasted by two (or more) workers attempting to exit simultaneously
and then having to “reverse” to allow a single worker through. An alternative to this explicit centralised
control would be some form of distributed control. Here the workers themselves could have a way of
preventing simultaneous access, for example, if two (or more) workers reach the door at the same time then
the biggest worker will always go first while the others wait.

Figure 1.5(a) shows the sequential approach to solving a problem. Computation is applied to the prob-
lem domain to produce the desired results. The controlled parallel approach shown in figure 1.5(b) achieves
aparallel implementation of the same problem viathree steps. In step 1, the problem domainis divided into
anumber of sub-problems, inthis casefour. Parallel processing isintroduced in step 2 to enable each of the
sub-problemsto be computedin parallel to produce sub-results. In step 3, these results must now be collated
to achieve the desired final results. Control is necessary in steps 1 and 3 to divide the problem amongst the
workers and then to collect and collate the results that the workers have independently produced.
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Figure 1.5: Control required in (a) a Sequential versus (b) a parallel implementation



1.2 Classification of Parallel Systems

A traditional sequential computer conforms to the von Neumanmodel. Shown in figure 1.6, this model
comprises aprocessor, an associated memory, an input/output interface and various busses connecting these
devices. The processor in the von Neumann model is the single computational unit responsible for the
functions of fetching, decoding and executing a program’sinstructions. Parallel processing may be added
to this architecture through pipelining using multiple functional units within a single computational unit or
by replicating entire computational units (which may contain pipelining). With pipelining, each functional
unit repeatedly performs the same operation on data which is received from the preceding functiona unit.
So in the simplest case, a pipeline for a computational unit could consist of three functional units, one
to fetch the instructions from memory, one to decode these instructions and one to execute the decoded
instructions. As we saw with the automobile assemblage example, a pipeline is only as effective as its
slowest component. Any delay in the pipeline has repercussions for the whole system.

Control Bus
\ I/O interface \
Memory
Processor
Data bus
Address bus

Figure 1.6: Von Neumann model architecture

Vector processingvas introduced to provide efficient execution of program loops on large array data
structures. By providing multiple registers as special vector registers to be used alongside the central pro-
cessing unit, a vector processor is able to perform the same operatioen all elementsof a vector simulta-
neously. This simultaneous execution on every element of large arrays can produce significant performance
improvements over conventional scalar processing However, often problems need to be reformulate to
benefit from this form of parallelism. A large number of scientific problems, such as weather forecasting,
nuclear research and seismic data analysis, are well suited to vector processing.

Replication of the entire computational unit, the processoyallowsindividual tasksto be executed on dif-
ferent processors. Tasks are thus sometimesreferred to as virtual processorsvhich are allocated a physical
processor on which to run. The completion of each task contributes to the solution of the problem.

Tasks which are executing on distinct processors at any point in time are said to be running in parallel.
It may also be possible to execute several tasks on asingle processor. Over a period of time the impression
is given that they are running in parallel, when in fact at any point in time only onetask has control of the
processor. In this case we say that the tasks are being performed concurrently that is their execution is
being shared by the same processor. The difference between parallel tasks and concurrent tasksis shownin
figure 1.7.

The workers which perform the computational work and co-operate to facilitate the solution of a prob-
lemonaparallel computer are known as processing elemenésd are often abbreviated asPEs A processing
element consists of a processor, one or more tasks, and the software to enable the co-operation with other
processing elements. A parallel system comprises of more than ongrocessing element.

1.2.1 Flynn’staxonomy

The wide diversity of computer architectures that have been proposed, and in a large number of cases
realised, sincethe 1940’s has led to the desire to classify the designsto facilitate eval uation and comparison.
Classification requires a means of identifying distinctive architectural or behavioural features of amachine.

In 1972 Flynn proposed a classification of processors according to amacroscopic view of their principal
interaction patterns relating to instruction and data streamg21]. The term stream was used by Flynn to
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refer to the sequence of instructions to be executed, or data to be operated on, by the processor. What has
become known as Flynn’s taxonomyhus categorises architectures into the four areas shown in figure 1.8.

Since its inception, Flynn's taxonomy has been criticised as being too broad and has thus been en-
larged by several other authors, for example, Shore in 1973 [55], Treleaven, Brownbridge and Hopkins in
1982[58], Basu in 1984 [7], and perhaps one of the most detailed classifications was given by Hockney and
Jesshope in 1988 [31].

Real architectures are, of course, much more complex than Flynn suggested. For example, an architec-
ture may exhibit propertiesfrom more than one of his classes. However, if we are not too worried about the
minute details of any individual machine then Flynn's taxonomy serves to separate fundamentally differ-
ent architecturesinto four broad categories. The classification schemeis simple (which is one of the main
reasonsfor its popularity) and thus useful to show an overview of the concepts of multiprocessor computers.

SISD: Single Instruction Single Data embraces the conventional sequential, or von Neumann, processor.
The single processing element executes instructions sequentially on a single data stream. The opera-
tions arethus ordered in time and may be easily traced from start to finish. Modern adaptations of this
uniprocessor use some form of pipelining technique to improve performance and, as demonstrated
by the Cray supercomputers, minimise the length of the component interconnectionsto reduce signal
propagation times [54].

SIMD: Single Instruction Multiple Data machines apply a single instruction to a group of dataitems si-
multaneously. A master instruction is thus acting over a vector of related operands. A number of
processors, therefore, obey the same instruction in the same cycle and may be said to be executing in
strict lock-step Facilities exist to exclude particular processors from participating in a given instruc-
tion cycle. Vector processors, for example the Cyber 205, Fujitsu FACOM VP-200 and NEC SX1,
and array processors, such asthe DAP[53], Goodyear MPP (Massively Parallel Processor) [8], or the
Connection Machine CM-1 [30], may be grouped in this category.

MISD: Multiple Instruction Single Data Although part of Flynn's taxonomy, no architecture falls obvi-
ousdly into the MISD category. One the closest architecture to this concept is a pipelined computer.
Another is systolic array architectures which derives their from the medical term “systole” used to
describe the rhythmic contraction of chambers of the heart. Data arrives from different directions at
regular intervals to be combined at the “cells’ of the array. The Intel iWarp system was designed
to support systolic computation [4]. Systolic arrays are well suited to specially designed algorithms
rather than general purpose computing [40, 41].

MIMD: Multiple Instruction Multiple Data The processorswithinthe MIMD classification autonomously
obey their own instruction sequence and apply these instructions to their own data. The processors
are, therefore, no longer bound to the synchronous method of the SIMD processors and may choose
to operate asynchronouslyBy providing these processors with the ability to communicate with each
other, they may interact and therefore, co-operate in the solution of asingle problem. Thisinteraction
hasled to MIMD systems sometimes being classified as tightly coupledf the degree of interactionis
high, or loosely coupledif the degree of interactionis low.

Two methods are available to facilitate this interprocessor communication. Shared memorgystems
allow the processors to communicate by reading and writing to a common address space. Controls
are necessary to prevent processors updating the same portion of the shared memory simultaneously.
Examples of such shared memory systems are the Sequent Balance [57] and the Alliant FX/8 [17].

In distributed memorgystems, on the other hand, processors address only their private memory and
communicate by passing messages along some form of communication path. Examples of MIMD
processors from which such distributed memory systems can be built are the Intel i860 [50],the Inmos
transputer [33] and Analog Devices SHARC processor.

The conceptual difference between shared memory and distributed memory systems of MIMD pro-
cessors is shown in figure 1.9. The interconnection method for the shared memory system, fig-
ure 1.9(a), allows all the processors to be connected to the shared memory. If two, or more, proces-
sors wish to access the same portion of this shared memory at the same time then some arbitration
mechanism must be used to ensure only one processor accesses that memory portion at atime. This
problem of memory contention may restrict the number of processors that can be interconnected
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Figure 1.9: Systems of MIMD processors (a) shared memory (b) distributed memory

using the shared memory model. The interconnection method of the distributed memory system, fig-
ure 1.9(b), connects the processors in some fashion and if one, or more, processors wish to access
another processor’s private memory, it, or they, can only do so by sending a message to the appro-
priate processor along this interconnection network. There is thus no memory contention as such.
However, the density of the messages that result in distributed memory systems may still limit the
number of processors that may be interconnected, although this number is generally larger than that
of the shared memory systems.

Busses have been used successfully as aninterconnection structureto connect low numbers of proces-
sors together. However, if more than one processor wishes to send a message on the bus at the same
time, an arbiter must decide which message gets access to the bus first. Asthe number of processors
increases, so the contention for use of the bus grows. Thus abus is inappropriate for large multipro-
cessor systems. An alternative to the bus is to connect processors via dedicated links to form large
networks. This removes the bus-contention problem by spreading the communication load across
many independent links.

1.2.2 Parallel versusDistributed systems

Distributed memory MIMD systems consist of autonomous processors together with their own memory
which co-operate in the solution of a single complex problem. Such systems may consist of a number of
interconnected, dedicated processor and memory nodes, or interconnected “stand-alone” workstations. To
distinguish between these two, the former configuration is refered to as a (dedicated) parallel system, while
the latter is known as a distibutedsystem, as shown in figure 1.10.

The main distinguishing features of these two systems are typically the computation-to-communication
ratio and the cost. Parallel systems make use of fast, “ purpose-built” (and thus expensive) communication
infrastructures, while distributed systems rely on exisiting network facilities such as ethernet, which are
significantly slower and suceptible to other non-related traffic.

The advantage of distributed systemsis that they may consist of a cluster of existing workstationswhich
can be used by many (sequential) users when not employed in a parallel capacity. A number of valuable
tools have been developed to enable these workstations to act in parallel, such as Parallel Virtual Machine
(PVM), and Message Passing I nterface (MPI). These providean easy framework for coupling heterogeneous
computersincluding, workstations, mainframes and even parallel systems.

However, while some of the properties of a distributed computing system may be different from those
of a parallel system, many of the underlying concepts are equivalent. For example, both systems achieve
co-operation between computational units by passing messages, and each computational unit has its own
distinct memory. Thus, the ideas presented in this tutorial should prove equally useful to the reader faced
with implementing his or her realistic rendering problem on either system.
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Figure 1.10: (a) Parallel system (b) Distributed system

1.3 TheReationship of Tasksand Data
The implementation of any problem on a computer comprises two components:
¢ the algorithm chosen to solve the problem; and,

o the domain of the problem which encompasses all the data requirementsfor that problem.

The agorithm interacts with the domain to produce the result for the problem, as shown diagrammatically
infigure1.11.

The Problem

—_— = -

\ Application of 1
Algorithm !

Figure 1.11: The components of a problem

A sequential implementation of the problem means that the entire algorithm and domain reside on a
single processor. To achieve aparallel implementationit is necessary to divide the problem’s componentsin
some manner amongst the parallel processors. Now no longer resident on asingle processor, the components
will have to interact within the multiprocessor system in order to obtain the same result. This co-operation

reguirement introduces anumber of novel difficultiesinto any parallel implementation which are not present
in the sequential version of the same problem.
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1.3.1 Inherent difficulties

User confidencein any computer implementation of a problemis bolstered by the successful termination of
the computation and the fact that the results meet design specifications. The reliability of modern computer
architectures and languagesis such that any failure of a sequential implementation to complete successfully
will point automatically to deficiencies in either the algorithm used or data supplied to the program. In
addition to these possibilities of failure, a parallel implementation may also be affected by a number of
other factors which arise from the manner of the implementation:

Deadlock: An active parallel processor is said to be deadlocked if it is waiting indefinitely for an event
which will never occur. A simple example of deadlock is when two processors, using synchronised
communication, attempt to send a message to each other at the same time. Each process will then
wait for the other process to perform the corresponding input operation which will never occur.

Data consistency: Inaparallel implementation, the problem’s data may be distributed across several pro-
cessors. Care has to be taken to ensure:

o if multiple copies of the same dataitem exists then the value of thisitem is kept consistent;

e mutual exclusionis maintained to avoid several processors accessing a shared resource simulta-
neously; and,

¢ thedataitems arefetched from remotelocations efficiently in order to avoid processor idle time.

While there is meaningful computation to be performed, a sequential computer is able to devote 100%
of its time for this purpose. In a paralel system it may happen that some of the processors become idle,
not because there is no more work to be done, but because current circumstances prevent those processors
being able to perform any computation.

Parallel processing introduces communication overheads. The effect of these overheadsis to introduce
latency into the multiprocessor system. Unless some way is found to minimise communication delays,
the percentage of time that a processor can spend on useful computation may be significantly affected.
So, as well as the factors affecting the successful termination of the parallel implementation, one of the
fundamental considerations also facing parallel programmersis the computation to communicatiagtio.

132 Tasks

Subdividing a single problem amongst many processors introduces the notion of atask. In its most general
sense, atask is a unit of computation which is assigned to a processor within the parallel system. In any
parallel implementation adecision hasto be taken asto what exactly constitutesatask. Thetask granularity
of a problem is a measure of the amount of computational effort associated with any task. The choice
of granularity has a direct bearing on the computation to communication ratio. Selection of too large a
granularity may prevent the solution of the problem on alarge parallel system, while too fine a granularity
may result in significant processor idle time while the system attempts to keep processors supplied with
fresh tasks.

On completion of a sequential implementation of a problem, any statistics that may have been gathered
during the course of the computation, may now be displayed in a straightforward manner. Furthermore,
the computer is in a state ready to commence the next sequential program. In a multiprocessor system, the
statistics would have been gathered at each processor, so after the solution of the problem the programmer is
still faced with the task of collecting and collating these statistics. To ensure that the multiprocessor system
isin the correct state for the next parallel program, the programmer must also ensure that all the processors
have terminated gracefully

1.3.3 Data

The problem domains of many rendering applicationsare very large. The size of these domainsaretypically
far more than can be accommodated within the local memory of any processing element (or indeed in the
memory of many sequential computers). Yet it is precisely these complex problems that we wish to solve
using parallel processing.
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Consider a multiprocessor system consisting of sixty-four processing elements each with 4 MBytes of
local memory. If wewereto insist that the entire problem domain were to reside at each processing element
then we would be restricted to solving problemswith a maximum domain of 4 MBytes. The total memory
within the system is 64 x 4 = 256 MBytes. So, if we were to consider the memory of the multiprocessor
system as awhole, then we could contempl ate solving problems with domains of up to 256 MBytesin size;
a far more attractive proposition. (If the problem domain was even larger than this, then we could also
consider the secondary storage devices as part of the combined memory and that should be sufficient for
most problems.)

Thereis a priceto pay in treating the combined memory as a single unit. Data management strategies
will be necessary to trandlate between the conceptual single memory unit and the physical distributed im-
plementation. The aims of these strategieswill be to keep track of the dataitems so that an item will always
be available at a processing element when required by the task being performed. The distributed nature of
the dataitemswill thus be invisible to the application processes performing the computation. However, any
delay between the application process requesting an item and this request being satisfied will result in idle
time. Aswewill seg, it isthe responsibility of data management to avoid thisidletime.

1.4 Evaluating Parallel mplementations

The chief reason for opting for a parallel implementation should be: to obtain answers fasterThe time
that the parallel implementation takes to compute results is perhaps the most natural way of determining
the benefits of the approach that has been taken. If the parallel solution takes longer than any sequential
implementation then the decision to use parallel processing needs to be re-examined. Other measurements,
such as speed-up and efficiency, may also provide useful insight on the maximum scalability of the imple-
mentation.

Of course, there are many issues that need to be considered when comparing parallel and sequential
implementations of the same problem, for example:

o Was the same processor used in each case?
o If not, what is the price of the sequential machine compared with that of the multiprocessor system?

e Was the algorithm chosen already optimised for sequential use, that is, did the data dependencies
present preclude an efficient parallel implementation?

1.4.1 Realisation Penalties

If we assume that the same processor was used in both the sequential and parallel implementation, then we
should expect,, that the time to solve the problem decreases as more processing elements are added. The
best we can reasonably hope for is that two processing elements will solve the problem twice as quickly,
three processing elements three times faster, and n processing elements, n times faster. If n is sufficiently
large then by this process, we should expect our large scale parallel implementation to produce the answer
in atiny fraction of the sequential computation, as shown by the “optimum time” curve in the graph in
figure 1.12.

However, in redity we are unlikely to achieve these optimised times as the number of processors is
increased. A more realistic scenario is that shown by the curve “actual times” in figure 1.12. This curve
shows an initial decrease in time taken to solve the example problem on the parallel system up to acertain
number of processing elements. Beyond this point, adding more processors actually leads to an increasen
computation time.

Failure to achieve the optimum solution time means that the parallel solution has suffered some form of
realisationpenalty. A realisation penalty can arise from two sources:

e an algorithmicpenalty; and,
e animplementatiompenalty.

The agorithmic penalty stems from the very nature of the algorithm selected for parallel processing.
The more inherently sequential the algorithm, the less likely the algorithm will be a good candidate for
parallel processing.
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Figure 1.12: Optimum and actual parallel implementation times

Aside: It hasalso been shown, albeit not conclusively, that the more experiencethe writer of the parallel
algorithm has in sequentia agorithms, the less parallelism that algorithmislikely to exhibit [13].

This sequential nature of an algorithm and its implicit data dependencies will trandate, in the domain
decomposition approach, to a requirement to synchronisehe processing elements at certain points in the
algorithm. This can result in processing elements standing idle awaiting messages from other processing
elements. A further algorithmic penalty may also come about from the need to reconstruct sequentially the
results generated by the individual processorsinto an overal result for the computation.

Solving the same problem twice as fast on two processing elements implies that those two processing
elements must spend 100% of their time on computation. We know that a parallel implementation requires
some form of communication. The time a processing element is forced to spend on communication will
naturally impinge on the time a processor has for computation. Any time that a processor cannot spend
doing useful computation is an implementation penalty. Implementation penalties are thus caused by:

e the need to communicate

As mentioned above, in a multiprocessor system, processing elements need to communicate. This
communication may not only be that which is necessary for a processing element’s own actions, but
in some architectures, aprocessing el ement may also haveto act asaintermediatefor other processing
elements’ communication.

e idletime

Idle time is any period of time when an application process is available to perform some useful
computation, but is unable to do so because either there is no work locally available, or its current
task is suspended awaiting a synchronisation signal, or adataitem which has yet to arrive.

Itisthejob of thelocal task manager to ensure that an application processis kept supplied with work.
The computation to communication ratio within the system will determine how much time a task
manager has to fetch a task before the current oneis completed. A load imbalances said to exist if
some processing elements still have tasks to complete, while the others do not.
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While synchronisation points are introduced by the algorithm, the management of data items for
a processing element is the job for the local data manager. The domain decomposition approach
means that the problem domain is divided amongst the processing elements in some fashion. If an
application process requires a data item that is not available locally, then this must be fetched from
some other processing element within the system. If the processing element is unableto perform other
useful computation while this fetch is being performed, for example by means of multi-threading as
discussed in section 3.5.2, then the processing element is said to be idle

e concurrent communication, data management and task management activity

Implementing each of a processing element’s activities as a separate concurrent process on the same
processor, means that the physical processor has to be shared. When another process other than the
application process is scheduled then the processing element is not performing useful computation
even though its current activity is necessary for the parallel implementation.

The fundamental goal of the system software is to minimise the implementation penalty. While this
penalty can never be removed, intelligent communication, data management and task scheduling strategies
can avoid idle time and significantly reduce the impact of the need to communicate.

14.2 PerformanceMetrics

Solution time provides a simple way of evaluating a parallel implementation. However, if we wish to
investigate the rel ative merits of our implementation then further insight can be gained by additional metrics.
A range of metricswill allow usto compare aspects of different implementations and perhaps provide clues
asto how overall system performance may be improved.

Speed-up

A useful measure of any multiprocessor implementation of a problem is speed-up This relates the time
taken to solve the problem on a single processor machine to the time taken to solve the same problem using
the parallel implementation. We will define the speed-up of a multiprocessor system in terms of the elapsed
time that is taken to compl ete a given problem, as follows:

elapsed time of a uniprocessor

Speed-up = elapsed time of the multiprocessors

(1.1)

Theterm linear speed-us used when the solution time on an n processor system isn times faster than
the solution time on the uniprocessor. This linear speed-up is thus equivalent to the optimum time shown
in section 1.4.1. The optimum and actual computation times in figure 1.12 are represented as a graph of
linear and actual speed-upsin figure 1.13. Note that the actual speed-up curveincreases until a certain point
and then subsequently decreases. Beyond this point we say that the parallel implementation has suffered a
speed-down

The third curve in figure 1.13 represents so-called super-linear speed-upn this example, the imple-
mentation on 20 processors has achieved a computation time which is approximately 32 times faster than
the uniprocessor solution. It has been argued, see [19], that it is not possible to achieve a speed-up greater
than the number of processors used. Whilein practiceit certainly is possible to achieve super-linear speed-
up, such implementation may have exploited “unfair” circumstances to obtain such timings. For example,
most modern processors have a limited amount of cache memory with an access time significantly faster
compared with a standard memory access. Two processors would have double the amount of this cache
memory. Given we are investigating a fixed size problem, this means that alarger proportion of the prob-
lem domain is in the cache in the parallel implementation than in the sequential implementation. It is not
unreasonabl e, therefore, to imagine a situation where the two processor solution time is more than twice as
fast than the uniprocessor time.

Although super-linear speed-up is desirable, in thistutorial wewill assumea*“fair” comparison between
uniprocessor and multiprocessor implementations. The results that are presented in the case studies thus
make no attempt to exploit any hardware advantages offered by the increasing number of processors. This
will enable the performance improvements offered by the proposed system software extensionsto be high-
lighted without being masked by any variations in underlying hardware. In practice, of course, it would be
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Figure 1.13: Linear and actual speed-ups

foolish to ignore these benefits and readers are encouraged to “squeeze every last ounce of performance”
out of their parallel implementation.

Two possibilities exist for determining the “elapsed time of a uniprocessor”. This could be the time
obtained when executing:

1. an optimised sequential algorithm on a single processor, T'; or,
2. the parallel implementation on oneprocessing element, T',.

Thetime taken to solve the problem on n processing elementswe will term T',,. The difference between
how the two sequential times are obtained is shown in figure 1.14. There are advantages in acquiring both
these sequential times. Comparing the parallel to the optimised sequential implementation highlights any
algorithmic efficiencies that had to be sacrificed to achieve the parallel version. In addition, none of the
parallel implementation penalties are hidden by this comparison and thus the speed-up is not exaggerated.
One of these penaltiesis the time taken simply to supply the data to the processing element and collect the
results.

The comparison of the single processing element with the multiple processing element implementation
shows how well the problem is “coping” with an increasing number of processing elements. Speed-up
caculated as % therefore, provides the indication as to the scalability of the parallel implementation.
Unless otherwise stated, we will use this alternative for speed-up in the case studies in this book as it better
emphasizes the performance improvements brought about by the system software we shall be introducing.

Aswecan seefromthe curvefor “ actual speed-up” infigure 1.13, the speed-up obtained for that problem
increased to a maximum value and then subsequently decreased as more processing elements were added.
In 1967 Amdahl presented what has become known as “Amdahl’s law” [3]. This “law” attempts to give
a maximum bound for speed-up from the nature of the algorithm chosen for the parallel implementation.
We are given an algorithm in which the proportion of time that needs to be spent on the purely sequential
partsis s, and the proportion of time that might be donein parallel is p, by definition. Thetotal time for the
algorithm on a single processor is s + p = 1 (where the 1 is for algebraic simplicity), and the maximum
speed-up that can be achieved on n processorsis:
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Figure 1.15 shows the maximum speed-up predicted by Amdahl’s law for a sequential portion of an
algorithm requiring 0.1%, 0.5%, 1% and 10% of the total algorithm time, that is s = 0.001, 0.005, 0.01
and 0.1 respectively. For 1000 processors the maximum speed-up that can be achieved for a sequential
portion of only 1% isless than 91. This rather depressing forecast put a serious damper on the possibilities
of massive parallel implementations of algorithms and led Gustafson in 1988 to issue a counter claim [26].

Gustafson stated that a problem size isvirtually never independent of the number of processors, asit appears
in equation (1.2), but rather:

...in practice, the problem size scales with the number of processors.

Gustafson thus derives a maximum speed-up of:

(s + (p x 1))
s+p
= n+(l—-n)xs (1.3

maximum speed-up =

This maximum speed-up according to Gustafson is also shown in figure 1.15. As the curve shows,
the maximum achievable speed-up is nearly linear when the problem size is increased as more processing
elementsare added. Despite this optimistic forecast, Gustafson’s premiseis not applicablein alarge number
of cases. Most scientists and engineers have a particular problem they want to solve in as short atime as
possible. Typically, the application already has a specified size for the problem domain. For example, in
paralldl radiosity we will be considering the diffuse lighting within a particular environment subdivided into
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Figure 1.15: Example maximum speed-up from Amdahl and Gustafson’s laws

anecessary number of patches. Inthisexampleit would beinappropriatefor usto follow Gustafson’sadvice
and increase the problem size as more processing elements were added to their paralel implementation,
because to do so would mean either:

¢ the physical size of the three dimensional objects within the environmentwould have to be increased,
which is of course not possible; or,

¢ the size of the patches used to approximate the surface would have to be reduced, thereby increasing
the number of patches and thus the size of the problem domain.

This latter case is also not an option, because the computational method is sensitive to the size of
the patches relative to their distances apart. Artificially significantly decreasing the size of the patches may
introduce numerical instabilitiesinto the method. Furthermore, artificially increasing the size of the problem
domain may improve speed-up, but it will not improve the time taken to solve the problem.

For fixed sized problems it appears that we are |eft with Amdahl’s gloomy prediction of the maximum
speed-up that is possible for our parallel implementation. However, all is not lost, as Amdahl’s assumption
that an algorithm can be separated into a component which has to be executed sequentially and part which
can be performed in parallel, may not be totally appropriate for the domain decomposition approach. Re-
member, in this model we are retaining the complete sequential algorithm and exploiting the parallelism that
existsin the problem domain. So, in this case, an equivalent to Amdahl’s law would imply that the data can
be divided into two parts, that which must be dealt with in a strictly sequential manner and that which can
executed in parallel. Any data dependencies will certainly imply some form of sequential ordering when
dealing with the data, however, for alarge number of problems such data dependencies may not exist. It
may also be possible to reduce the effect of dependencies by clever scheduling.

The achievable speed-up for a problem using the domain decomposition approach is, however, bounded
by the number of tasks that make up the problem. Solving a problem comprising a maximum of twenty
tasks on more than twenty processors makes no sense. In practice, of course, any parallel implementation
suffers from realisation penalties which increase as more processing elements are added. The actual speed-
up obtained will thus be less than the maximum possible speed-up.
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1.4.3 Efficiency

A relative efficiency based on the performance of the problem on one processor, can be a useful measure as
to what percentage of a processor’stime is being spent in useful computation. This, therefore, determines
what the system overheads are. The relative efficiency we will measure as:

speed-up x 100

Efficiency = 14
Y = umber of processors (1.4)
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Figure 1.16: Optimum and actual processing element efficiency

Figure 1.16 shows the optimum and actual computation times given in figure 1.12 represented as pro-
cessing element efficiency. The graph shows that optimum computation time, and thereforelinear speed-up,
equates to an efficiency of 100% for each processing element. This again shows that to achieve this level
of efficiency every processing element must spend 100% of its time performing useful computation. Any
implementation penalty would beimmediately reflected by adecrease in efficiency. Thisis clearly shownin
the curvefor the actual computation times. Here the efficiency of each processing element decreases steadily
as more are added until by the time 100 processing elements are incorporated, the realisation penalties are
so high that each processing element is only able to devote just over 1% of its time to useful computation.

Optimum number of processing elements

Faced with implementing a fixed size problem on a parallel system, it may be useful to know the optimum
number of processing elements on which this particular problem should be implemented in order to achieve
the best possible performance. We term this optimum number ;. We shall judge the maximum perfor-
mancefor a particular problem with a fixed problem domain size, as the shortest possible time required
to produce the desired results for a certain parallel implementation. This optimum number of processing
elements may be derived directly from the “ computation time” graph. In figure 1.12 the minimum actual
computation time occurred when the problem was implemented on 30 processing elements. Asfigure 1.17
shows, this optimum number of processing elementsis also the point on the horizontal axisin figure 1.13 at
which the maximum speed-up was obtained.

The optimum number of processing elementsiis also the upper bound for the scalability of the problem
for that parallel implementation. To improve the scalability of the problem it is necessary to re-examinethe
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Figure 1.17: Optimum number of processing elements related to speed-up

decisions concerning the algorithm chosen and the make-up of the system software that has been adopted
for supporting the parallel implementation. Aswe will seein the subsequent chapters, the correct choice of
system software can have a significant effect on the performance of a parallel implementation.

Figure 1.18 shows the speed-up graphs for different system software decisions for the sameproblem.
The goal of a parallel implementation may be restated as:

“to ensure that the optimum number of processing elements for your problem is greater than
the number of processing elements physically available to solve the problem!”

Other metrics

Computation time, speed-up and efficiency provide insight into how successful a parallel implementation
of aproblem has been. Asfigure 1.18 shows, different implementations of the same a gorithm on the same
multiprocessor system may produce very different performances. A multitude of other metrics have been
proposed over the years as ameans of comparing the relative merits of different architectures and to provide
away of assessing their suitability as the chosen multiprocessor machine.

The performance of acomputer is frequently measured as the rate of some number of events per second.
Within a multi-user environment the elapsed time to solve a problem will comprise the user’'s CPU time
plus the system’s CPU time. Assuming that the computer’s clock is running at a constant rate, the user's
CPU performance may be measured as:

CPU clock cyclesfor aprogram
clock rate (eg. 100MHz)

The average clock cycles per instruction (CPI) may be calculated as:
CPU clock cyclesfor aprogram

CPU time =

CPl = .
Instruction count
We can also compute the CPU time from the time a program took to run:
CPUtime — Xconds
program
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Figure 1.18:; Speed-up graphs for different system software for the same problem

seconds " clock cycles  instructions
clock cycle = instructions program

Such a performance metric is dependent on:
Clock rate: thisisdetermined by the hardware technology and the organisation of the architecture;
CPI: afunction of the system organisation and the instruction set architecture; and,
Instruction count: thisis affected by the instruction set architecture and the compiler technology utilised.

One of the most frequently used performance metricsisthe MIPSrating of acomputer, that is how many
Million Instructions Per Second the computer is capable of performing:
instruction count clock rate

MIPS = — =
executiontime x 106  CPI x 106

However, the MIPS value is dependent on the instruction set used and thus any comparison between
computers with different instruction sets is not valid. The MIPS value may even vary between programs
running on the same computer. Furthermore, a program which makes use of hardware floating point routines
may take less timeo complete than a similar program which uses a software floating point implementation,
but the first program will have alower MIPS rating than the second [28]. These anomalieshave led to MIPS
sometimes being referred to as “Meaningless Indication of Processor Speed”

Similar to MIPS is the “Mega-FLOPS’ (MFLOPS) rating for computers, where MFL OPS represents
Million FL oating point OPerations per Second:

no. of floating point operationsin a program

MFLOPS = - -
executiontime x 106

MFLOPS is not universally applicable, for example a word processor utilising no floating point oper-
ations would register no MFLOPS rating. However, the same program executing on different machines
should be comparable, because, although the computers may execute a different number of instructions,
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they should perform the same number of operations, provided the set of floating point operationsis consis-
tent across both architectures. The MFLOPS value will vary for programs running on the same computer
which have different mixtures of integer and floating point instructions as well as adifferent blend of “fast”
and “slow” floating point instructions. For example, the add instruction often executes in less time than a
divideinstruction.

A MFLOPS rating for a single program can not, therefore, be generalised to provide a single perfor-
mance metric for a computer. A suite of benchmark programs, such as the LINPACK or Livermore Loops
routines, have been devel oped to allow a more meaningful method of comparison between machines. When
examining the relative performance of computers using such benchmarksit isimportant to discover the sus-
tained MFL OPS performance as a more accurate indication of the machines’ potential rather than merely
the peakMFLOPS rating, afigure that “can be guaranteed never to be exceeded”

Other metrics for comparing computersinclude;

Dhrystone: A CPU intensive benchmark used to measure the integer performance especially as it pertains
to system programming.

Whetstone: A synthetic benchmark without any vectorisable code for evaluating floating point perfor-
mance.

TPS: Transactions Per Second measure for applications, such as airline reservation systems, which require
on-line database transactions.

KLIPS: Kilo Logic Inferences Per Second is used to measure the relative inference performance of artifi-
cial intelligence machines

Tables showing the comparison of the results of these metricsfor anumber of architectures can be found
in several books, for example [32, 37].

Cost is seldom an issue that can be ignored when purchasing a high performance computer. The de-
sirability of a particular computer or even the number of processors within a system may be offset by the
extraordinarily high costs associated with many high performance architectures. This prompted an early
“law” by Grosch that the speed of a computer is proportional to its cost [25, 24]. Fortunately, although
thisis no longer completely true, multiprocessor machines are nevertheless typically more expensive than
their general purpose counterparts. The parallel computer eventually purchased should provide acceptable
computation times for an affordable price, that is maximise: “the bangs per buck’(performance per unit
price).
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Chapter 2

Task Scheduling

The efficient solution of a problem on a parallel system requires the computational performance of the
processing elements to be fully utilised. Any processing element that is not busy performing useful compu-
tations is degrading overall system performance. Task scheduling strategies may be used to minimise these
potential performance limitations.

2.1 Problem Decomposition

A problem may be solved on a parallel system by either exploiting the parallelism inherent in the algo-
rithm, known as algorithmic decompositigror by making use of the fact that the algorithm can be applied
to different parts of the problem domain in parallel, which is termed domain decompositionThese two

decomposition methods can be further categorised as shown in figure 2.1.

Decomposition method

/\

Algorithmic Domain
Fork & Join Data Flow Data Driven Demand Driven

Figure 2.1: Methods of decomposing a problem to exploit parallelism

Over the years, an abundance of algorithms have been developed to solve a multitude of problems on
sequential machines. A great deal of time and effort has been invested in the production of these sequential
algorithms. Users are thus loathed to undertake the development of novel parallel algorithms, and yet still
demand the performance that multiprocessor machines have to offer.

Algorithmic decomposition approachesto this dilemma have led to the development of compilers, such
asthosefor High Performance Fortran, which attempt to parallelise automatically these existing a gorithms.
Not only do these compilers have to identify the parallelism hidden in the algorithm, but they also need to
decide upon an effective strategy to place the identified segments of code within the multiprocessor system
so that they can interact efficiently. This has proved to be an extremely hard goal to accomplish.

The domain decomposition approach, on the other hand, requireslittle or no modification to the existing
sequential algorithm. Thereisthus no need for sophisticated compiler technology to analyse the algorithm.
However, therewill beaneed for aparallel framework in the form of system softwareto support the division
of the problem domain amongst the parallel processors.
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2.1.1 Algorithmic decomposition

In algorithmic decomposition the algorithm itself is analysed to identify which of its features are capable
of being executed in paralel. The finest granularity of paralelism is achievable at the operation level.
Known asdataflow at thislevel of parallelismthedata“flows’ betweenindividual operandswhich are being
executed in parallel [1]. An advantage of this type of decomposition is that little data space is required per
processor [29], however, the communication overheads may be very large due to the very poor computation
to communication ratio.

Fork & join parallelism, on the other hand, allocates portions of the algorithm to separate processors
as the computation proceeds. These portions are typically several statements or complete procedures. The
difference between the two a gorithmic forms of decomposition is shown for asimple case in figure 2.2.

Sample problem

Begin
a=5+6
b:=(6+4) * 2
c:=a+b

End fork

5 6 4 2 e @

join

@ ®

Figure 2.2: Algorithmic decomposition: (a) dataflow (b) fork & join

2.1.2 Domain decomposition

Instead of determining the parallelism inherent in the algorithm, domain decomposition examines the prob-
lem domain to ascertain the parallelism that may be exploited by solving the algorithm on distinct data
itemsin parallel. Each parallel processor in this approach will, therefore, have a complete copy of the algo-
rithm and it is the problem domain that is divided amongst the processors. Domain decomposition can be
accomplished using either adata driven or demand driven approach.

Asweshall see, given thisframework, the domain decomposition approachis applicableto awiderange
of problems. Adoption of this approach to solve a particular problem in parallel, consists of two steps:

1. Choosing the appropriate sequential algorithm.

Many a gorithms have been honed over a number of yearsto ahigh level of perfection for implemen-
tation on sequential machines. The data dependencies that these highly sequential agorithms exhibit
may substantially inhibit their use in a parallel system. In this case alternative sequential algorithms
which are more suitabl e to the domain decomposition approach will need to be considered.

2. Analysis of the problem in order to extract the criteria necessary to determine the optimum
system software.
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The system software provides the framework in which the sequential algorithm can execute. This
system software takes care of ensuring each processor is kept busy, the datais correctly managed, and

any communication within the parallel system is performed rapidly. To provide maximum efficiency,

the system software needs to be tailored to the requirements of the problem. Thereis thus no general
purposeparallel solution using the domain decomposition approach, but, as we shall see, a straight-

forward analysis of any problem’s parallel requirements, will determine the correct construction of

the system software and |ead to an efficient parallel implementation.

Before commencing the detail ed description of how we intend to tackle the solution of realistic rendering
problemsin parallel, it might be useful to clarify some of the terminology we shall be using.

2.1.3 Abstract definition of a task

The domain decomposition model solves a single problem in parallel by having multiple processors apply
the same sequential algorithm to different data items from the problem domain in parallel. The lowest unit
of computation within the parallel system is thus the application of the algorithm to one data item within
the problem domain.

The data required to solve this unit of computation consists of two parts:

1. the principal data itemgor PDIs) on which the algorithm is to be applied; and
2. additional data itemgor ADIs) that may be needed to complete this computation on the PDIs.

For example, in ray tracing, we are computing the value at each pixel of our image plane. Thus these
pixelswould form our PDIs, while all the data describing the scene would constitutethe ADIs. The problem
domain is thus the pixels plusthe scene description.

The application of the algorithm to a specified principal data item may be regarded as performing a
single task The task forms the elemental unit of computation within the parallel implementation. Thisis
shown diagrammatically in figure 2.3.

Problem domain = All data items associated with the problem

Principal data
item specified Lo
by the task

| Additional
; dataitems
: required

Application of agorithm [5.

Result

Figure 2.3: A task: the processing of a principal dataitem

2.1.4 System architecture

Thistutorial is concentrating on implementing realistic rendering techniques on distributed memory systems
(either a dedicated parallel machine or a distributed system of workstations). These processors may be
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connected together in some manner to form a configuration A processis a segment of code that runs
concurrently with other processes on a single processor. Several processes will be needed at each processor
to implement the desired application and provide the necessary system software support. A processing
elementonsists of a single processor together with these application and system processes and is thus the
building block of the multiprocessor systen{We shall sometimes use the abbreviation PE for processing
element in the figures and code segments.) When discussing configurations of processing elements, we
shall use the term links to mean the communi cation paths between processes.

Structure of the system controller

To provide a useful parallel processing platform, a multiprocessor system must have access to input/output
facilities. Most systems achieve this by designating at least one processing element as the system controller
(SC) with the responsibilities of providing thisinput/output interface, as shownin figure 2.4. If the need for
input/output facilities becomes a serious bottleneck then more than one system controller may be required.
Other processing elements perform the actual computation associated with the problem.

Figure 2.4: The system controller as part of a parallel system

In addition to providing the input/output facilities, the system controller may also be used to collect and
collate results computed by the processing elements. In this case the system controller is in the useful posi-
tion of being able to determine when the computation is complete and gracefully terminate the concurrent
processes at every processing element.

2.2 Computational M odels

The computational model chosen to solve a particular problem determines the manner in which work is
distributed across the processors of the multiprocessor system. In our quest for an efficient parallel imple-
mentation we must maximise the proportion of time the processors spend performing necessary computa-
tion. Any imbalance may result in processors standing idle while others struggle to complete their allocated
work, thus limiting potential performance. Load balancing techniques aim to provide an even division of
computational effort to all processors.

The solution of a problem using the domain decomposition model involves each processing element
applying the specified algorithm to a set of principal data items. The computational model ensures that
every principal dataitem is acted upon and determines how the tasks are allocated amongst the processing
elements. A choice of computation model exists for each problem. To achieve maximum system perfor-
mance, the model chosen must see that the total work load is distributed evenly amongst the processing
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elements. This balances the overheads associated with communicating principal data items to processing
elements with the need to avoid processing element idle time. A simplified ray tracing example illustrate
the differences between the computational models.

A sequential solution to this problem may be achieved by dividing the image plane into twenty-four
distinct regions, with each region constituting asingle principal dataitem, as shown in figure 2.5, and then
applying the ray tracing algorithm at each of these regionsin turn. There are thus twenty-four tasks to be
performed for this problem where each task isto compute the pixel value at one area of the image plane. To
understand the computational models, it is not necessary to know the details of the algorithm suffice to say
that each principal dataitem represents an area of the image plane on which the algorithm can be applied to
determine the value forthat position. We will assume that no additional data items are required to complete
any task.

Problem domain

Principal T Tl
Dataltems ~ __---""~ el
- -
Air flow
- -
N
- -

Duct

Figure 2.5: Principal dataitemsfor calculating the pixelsin the image plane

2.2.1 Datadriven modd

The data driven model allocates all the principal dataitems to specific processing elements before compu-
tation commences. Each processing element thus knows a priori the principal dataitemsto which they are
required to apply the algorithm. Providing there is sufficient memory to hold the allocated set at each pro-
cessing element, then, apart from theinitial distribution, there is no further communication of principal data
items. If thereis insufficient local memory, then the extraitems must be fetchedas soon as memory space
allows. Thisfetching of remote dataitems will be discussed further when data management is examined in
Chapter 3.

Balanced data driven

In balanced data driven systems (also known as geometric decompositions), an equal number of principal
dataitemsis alocated to each processing element. This portion is determined simply by dividing the total
number of principa dataitems by the number of processing elements:

number of principal dataitems
number of PEs

portion at each PE =

If the number of principal dataitemsis not an exact multiple of the number of processing elements, then

(number of principal data iterns) MOD (number of PES)
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will each have one extra principal dataitem, and thus perform one extratask. The required start task and
the number of tasks is communicated by the system controller to each processing element and these can
then apply the required algorithm to their allotted principal dataitems. Thisis similar to the way in which
problems are solved on arrays of SIMD processors.

In this example, consider the simpleray tracing calculation for an empty scene. The principal dataitems
(the pixels) may be allocated equally to three processing elements, labelled PE,, PE> and PE3, as shown
in figure 2.6. In this case, each processing element is allotted eight principal dataitems.

! PE, PE, PE|

PDIs " PDIs “ PDIs

for PE{ for PE, for PE 5
- -
- B ——

Air flow
- -
- B ——
Duct

Figure 2.6: Equal allocation of data items to processing elements

Asno further principal dataitem allocation takes place after theinitial distribution, abalanced work |oad
is only achieved for the balanced data driven computational model if the computational effort associated
with each portion of principal data items isidentical If not, some processing elements will have finished
their portions while others still have work to do. With the balanced data driven model the division of
principal data items amongst processing elements is geometric in nature, that is each processing element
simply may be allocated an equal number of principal data items irrespective of their position within the
problem domain. Thus, to ensure abalanced work load, this model should only be used if the computational
effort associated with each principal data item is the same, and preferably where the number of principal
dataitemsis an exact multiple of the number of processing elements. Thisimpliesa priori knowledge, but
given this, the balanced data driven approach is the simplest of the computational models to implement.

Using figure 2.6, if the computation of each pixel 1 time unitto complete, then the sequential solution
of this problem would take 24 time units The parallel implementation of this problem using the three
processing elements each allocated eight tasks should take approximately 8 time units a third of the time
required by the sequential implementation. Note, however, that the parallel solution will not be exactly one
third of the sequentia time as this would ignore the time required to communicate the portions from the
system controller to the processing elements. This also ignores time required to receive the results back
from the processing elements and for the system controller to collate the solution. A balanced data driven
version of this problem on the three processing el ements would more accurately take:

L C 24 .
Solution time = initial distribution + (E] + result collation

Assuming low communication times, thismodel givesthe solution in approximately onethird of thetime
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of the sequential solution, close to the maximum possible linear speed-up. Solution of the same problem on
five processing elements would give:

S e 24 .
Solution time = initia distribution + (E] + result collation

This will be solved in even longer than the expected 4.8 time unitsas, in this case, one processing
element is allocated 4 principal data items while the other four have to be apportioned 5. As computation
draws to a close, one processing element will be idle while the four others complete their extrawork. The
solution time will thus be slightly more than 5 time units

Unbalanced data driven

Differencesin the computational effort associated with the principal dataitemswill increase the probability
of substantial processing element idletime if the simplistic balanced data driven approach is adopted. If the
individual computation efforts differ, and are known a priori, then this can be exploited to achieve optimum
load balancing.

The unbalanced data driven computational model allocates principal data items to processing elements
based on their computational requirements. Rather than simply apportioning an equal number of tasks to
each processing element, the principal dataitems are allocated to ensure that each processing element will
completeits portion at approximately the same time

For exampl e, the complexity introduced into the ray tracing cal cul ations by placing object into the scene,
as shown in figure 2.7, will cause an increased computational effort required to solve the portions allocated
to PE, and PE, in the balanced data driven model. Thiswill result in these two processing elements still
being busy with their computations long after the other processing element, PE3, has completed its less
computationally complex portion.

Individual task
computation times
1 1 = 1 1 1
_ 1\ 1 2 1 1 1 _
3 6 Air flow
- 1o ’ 5 | 1 | 1 _
5 3 “2 4 1 1 1 _
Aerofail Duct

Figure 2.7: Unegual computational effort due to presence of objectsin the scene

Should a priori knowledge be availabl e regarding the computational effort associated with each principal
data item then they may be allocated unequallyamongst the processing elements, as shown in figure 2.8.
The computational effort now required to process each of these unequal portions will be approximately the
same, minimising any processing element idle time.

The sequential time required to solve the ray tracing with objects in the scene is now 42 time units
To balance the work load amongst the three processing elements, each processing element should compute
for 14 time units Allocation of the portions to each processing element in the unbalanced data driven
model involves a preprocessing step to determine precisely the best way to subdivide the principal data
items. The optimum compute time for each processing element can be obtained by simply dividing the
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Processing Elements

‘\\ PE]. PE2 PE3 /:
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Figure 2.8: Unequal allocation of dataitemsto processing elementsto assist with load balancing

total computation time by the number of processing elements. If possible, no processing element should be
alocated principal data items whose combined computation time exceeds this optimum amount. Sorting
the principal dataitemsin descending computation times can facilitate the subdivision.

Thetotal solution time for a problem using the unbalanced data driven model is thus:

Solutiontime = preprocessing + distribution
+longest portion time + result collation

So comparing the naive balanced distribution from section 2.2.1

Balanced solutiontime = distribution + 21 +
result collation

Unbalanced solution time =
preprocessing + distribution + 14 + result collation

The preprocessing stage is a simple sort requiring far less time than the ray tracing calculations. Thus,
in this example, the unbalanced data driven model would be significantly faster than the balanced model
dueto the large variationsin task computational complexity.

The necessity for the preprocessing stage means that this model will take more time to use than the
balanced data driven approach should the tasks have the same computation requirement. However, if there
are variations in computational complexity and they are known, then the unbalanced data driven model is
the most efficient way of implementing the problem in paralldl.
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2.2.2 Demand driven model

The data driven computational models are dependent on the computational requirements of the principal
data items being known, or at least being predictable, before actual computation starts. Only with this
knowledge can these data items be allocated in the correct manner to ensure an even load balance. Should
the computational effort of the principal dataitems be unknown or unpredictable, then serious load balanc-
ing problemscan occur if the datadriven models are used. In this situation the demand driven computational
model should be adopted to allocate work to processing elements evenly and thus optimise system perfor-
mance.

In the demand driven computational model, work is allocated to processing elements dynamicallyas
they become idle, with processing elements no longer bound to any particular portion of the principal data
items. Having produced the result from one principal data item, the processing elements demand the next
principal data item from some work supplier process. Thisis shown diagrammatically in figure 2.9 for the
simple ray tracing calculation.

~ Processing Elements

demands
for tasks

Task supplier

"Pool" of available tasks

- -
- B ——
Air flow
- ’4 -
- B ——
Aerofail Duct

Figure 2.9: A demand driven model for a simple ray tracing calculation

Unlike the data driven models, there is no initial communication of work to the processing elements,
however, there is now the need to send requests for individual principal data items to the supplier and
for the supplier to communicate with the processing elements in order to satisfy these requests. To avoid
unnecessary communication it may be possible to combine the return of the results from one computation
with the request for the next principal dataitem.

The optimum time for solving a problem using this simple demand driven model is thus:

Solutiontime =

2 x total communication time +
total computation time for al PDIs

number of PEs
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total computation ti me for all PDIs

This optimum computation time, Umber , will only be possibleif the work can
be alocated so that all processi ng elements complete tﬁe last of the|r tasks at exactly the same time. If
this is not so then some processing elements will still be busy with their final task while the others have
completed. It may also be possible to reduce the communication overheads of the demand driven model by
overlapping the communication with the computation in some manner. This possibility will be discussed
later in section 2.3.

On receipt of arequest, if thereis still work to be done, thework supplier respondswith the next available
task for processing. If there are no more tasks which need to be computed then the work supplier may safely
ignore the request. The problem will be solved when all principal data items have been requested and all
the results of the computations on these items have been returned and collated. The dynamic allocation
of work by the demand driven model will ensure that while some processing elements are busy with more
computationally demanding principal data items, other processing elements are available to compute the
less complex parts of the problem.

Using the computational times for the presence of objectsin the scene as shown in figure 2.8, figure 2.10
shows how the principal dataitems may be allocated by the task supplier to the processing elements using
a simple serial alocation scheme. Note that the processing elements do not complete the same number
of tasks. So, for example, while processing elements 2 and 3 are busy completing the computationally
complex work associated with principal dataitems 15 and 16, processing elements 1 can compute the less
computationally taxing tasks of principal dataitems 17 and 18.

Processing Elements

Task alocated
. to PE
Order of "Pool" of available tasks . S
task allocation ~<|___ 4
\\‘\I::\“ £~
_ PEY TP, PE; | PE; [PE, | el _
© ©INE (2) (5) (6)
PE PE PE PE PE PE
N 1 2 3 1 2 1 -
GG Gl mhe @
PE, |PE3 Air flow
PE, PE, | PE, | PE,
= chmemllc ol BN B
PE; | PEg | PE, | PEg | PR, | b,
U @ D 2) =) (23)
Task allocated Task allocated Duct
to PE 4 toPE ,

Figure 2.10: Allocation of principal dataitems using a demand driven model

The demand driven computational model facilitates dynamic load balancing when there is no prior
knowledgeasto the complexity of the different parts of the problem domain. Optimum load balancingisstill
dependent on al the processing elements completing the last of the work at the same time. An unbalanced
solution may still result if a processing element is allocated a complex part of the domain towards the end
of the solution. This processing element may then still be busy well after the other processing elements
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have completed computation on the remainder of the principal data items and are now idle as there is
no further work to do. To reduce the likelihood of this situation it is important that the computationally
complex portions of the domain, the so called hot spotsare alocated to processing elements early onin the
solution process. Although there is no a priori knowledge as to the exact computational effort associated
with any principal dataitem (if there were, an unbalanced data driven approach would have been adopted),
nevertheless, any insight as to possible hot spot areas should be exploited. The task supplier would thus
assign principal dataitems from these areasfirst.

In the ray tracing example , while the exact computational requirement associated with the principal
dataitems in proximity of the objects in the scene may be unknown, it is highly likely that the solution of
the principal items in that area will more complex than those elsawhere. In this problem, these principal
dataitems should be allocated first.

If no insight is possible then a simple serial allocation, as shown in figure 2.10, or spira allocation,
as shown in figure 2.11 or even a random allocation of principa data items will have to suffice. While
arandom allocation offers perhaps a higher probability of avoiding late alocation of principal data items
from hot spots, additional effort is required when choosing the next principal dataitem to allocate to ensure
that no principal dataitem is allocated more than once.

Processing Elements

Order of '
task dlocation ~.[
S \\?\:\:\\ U N N : : =
Y NN 8 9 ©10 o2
- T R R N : -
9 o8] T~ 1 L2 "
‘ 3 ! § Air flow
- | | -
18 5 4 3 L2 L2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i
- -
17 16 15 14 13 2
Duct

Figure 2.11: Allocation of principal dataitemsin a spiral manner

Aswith all aspects of parallel processing, extralevels of sophistication can be added in order to exploit
any information that becomes available as the parallel solution proceeds. Identifying possible hot spotsin
the problem domain may be possible from the computation time associated with each principal data item
as these become known. If thistime is returned along with the result for that principal data item, the work
supplier can build a dynamic profile of the computational requirements associated with areas of the domain.
This information can be used to adapt the allocation scheme to send principal dataitems from the possible
hot spot regions. Thereis, of course, atrade off here between the possible benefits to load balancing in the
early allocation of principal dataitems from hot spots, and the overhead that is introduced by the need to:

¢ time each computation at the processing elements;
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e return thistimeto the work supplier;
o develop thetime profile at the work supplier; and,

o adapt the allocation strategy to take into account this profile.

The benefits gained by such an adaptive scheme are difficult to predict as they are dependent on the
problem being considered and the efficiency of the scheme implementation. The advice in these mattersis
aways: “implement a simple scheme initially and then add extra sophistication should resultant low system
performance justify it

2.2.3 Hybrid computational model

For most problems, the correct choice of computational model will either be one of the data driven strategies
or the demand driven approach. However, for a number of problems, a hybrid computational model, ex-
hibiting properties of both data and demand driven models, can be adopted to achieve improved efficiency.
The class of problem that can benefit from the hybrid model is one in which aninitial set of principal data
items of known computational complexity may spawn an unknown quantity of further work.

In this case, the total number of principal data items required to solve the problem is unknownat the
start of the computation, however, there are at least a known number of principal data items that must be
processed first. If the computational complexity associated with theseinitial principal dataitemsisunknown
then a demand driven model will suffice for the whole problem, but if the computational complexity is
known then one of the data driven models, with their lower communication overheads, should at least be
used for these initial principa dataitems. Use of the hybrid model thus requires the computational model
to be switched from data driven to demand driven mode as required.

2.3 Task Management

Task management encompasses the following functions:

the definition of atask;

e controlling the allocation of tasks;

distribution of the tasks to the processing elements; and,

collation of the results, especialy in the case of a problem with multiple stages.

2.3.1 Task definition and granularity

An atomic elemeninay be thought of as a problem’s lowest computational element within the sequential
algorithm adopted to solve the problem. Asintroduced in section 2.1.2, in the domain decomposition model
asingle task is the application of this sequential algorithm to a principal data item to produce a result for
the sub-parts of the problem domain. The task is thus the smallest element of computation for the problem
within the paralel system. The task granularity(or grain sizg§ of a problem is the number of atomic
elements, which are included in one task. Generally, the task granularity remains constant for al tasks, but
in some cases it may be desirable to alter dynamically this granularity as the computation proceeds. A task
which includes only one atomic element is said to have the finest granularity while a task which contains
many is coarser grainedor has a coarser granularity The actual definition of what constitutes a principal
dataitem is determined by the granularity of the tasks.

A pardllel system solves a problem by its constituent processing el ements executing tasksin parallel. A
task packets used to inform a processing element which task, or tasks, to perform. This task packet may
simply indicate which tasks require processing by that processing element, thus forming the lowest level of
distributed work. The packet may include additional information, such as additional data items, which the
tasks requirein order to be completed.

To illustrate the differences in this terminology, consider again the simple ray tracing problem. The
atomic element of a sequential solution of this problem could be to perform a single ray-object intersection
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test. The principal data item is the pixel being computed and the additional data item required will be
object being considered. A sequential solution of this problem would be for a single processing element to
consider each ray-object intersection in turn. The help of several processing elements could substantially
improve the time taken to perform the ray tracing.

The finest task granularity for the parallel implementation of this problem is for each task to complete
one atomic element, that is perform one ray-object intersection. For practical considerations, it is perhaps
more appropriate that each task should instead be to trace the complete path of asingle ray. The granularity
of each task is now the number of ray-object intersections required to trace this single ray and each pixel is
aprincipa dataitem. A sensibletask packet to distribute the work to the processing elementswould include
details about one or more pixels together with the necessary scene data (if possible, see Chapter 3).

To summarise our choices for this problem:

atomic element: to perform one ray-object intersection;

task: to trace the complete path of one ray (may consists of a number of atomic elements);
PDI: the pixel location for which we are computing the colour;

ADI: the scene data; and,

task packet: oneor more raysto be computed.

Choosing the task granularity for the parallel implementation of a problem is not straightforward. Al-
though it may be fairly easy to identify the atomic element for the sequential version of the problem, such
afine grain may not be appropriate when using many processing elements. Although the atomic element
for ray tracing was specified as computing a single ray-object intersection in the above example, the task
granularity for the parallel solution was chosen as computing the complete colour contribution at a particu-
lar pixel. If one atomic element had been used as the task granularity then additional problemswould have
introduced for the parallel solution, namely, the need for processors to to exchange partial results. This
difficulty would have been exacerbated if, instead, the atomic element had been chosen as tracing a ray
into a voxel and considering whether it does in fact intersect with an object there. Indeed, apart from the
higher communication overhead this would have introduced, the issue of dependencies would aso have to
be checked to ensure, for example, that aray was not checked against an object more than once.

As well as introducing additional communication and dependency overheads, the incorrect choice of
granularity may also increase computational complexity variations and hinder efficient load balancing. The
choice of granularity is seldom easy, however, anumber of parameters of the parallel system can providean
indication as to the desirable granularity. The computation to communication ratio of the architecture will
suggest whether additional communication is acceptable to avoid dependency or load balancing problems.
Asageneral rule, where possible, data dependencies should be avoided in the choice of granularity as these
imply unnecessary synchronisation points within the parallel solution which can have a significant effect on
overall system performance.

2.3.2 Task distribution and control

The task management strategy controls the distribution of packets throughout the system. Upon receipt, a
processing element performs the tasks specified by a packet. The composition of the task packet is thus
an important issue that must be decided before distribution of the tasks can begin. To complete a task a
processing element needs a copy of the algorithm, the principal dataitem(s), and any additional dataitems
that the algorithm may require for that principal dataitem. The domain decomposition paradigm provides
each processing element with a copy of the algorithm, and so the responsibility of the task packet is to
provide the other information.

The principal data items form part of the problem domain. If there is sufficient memory, it may be
possible to store the entire problem domain as well as the algorithm at each processing element. In this
case, the inclusion of the principal data item as part of the task packet is unnecessary. A better method
would be simply to include the identification of the principal dataitem within the task packet. Typically, the
identification of a principal dataitem is considerably smaller, in terms of actual storage capacity, than the
item itself. The communication overheads associated with sending this smaller packet will be significantly
less than sending the principal dataitem with the packet. On receipt of the packet the processing element
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could use the identification simply to fetch the principal dataitem from its local storage. The identification
of the principal dataitem is, of course, also essential to enable the results of the entire parallel computation
to be collated.

If the additional dataitems required by the task are known then they, or if possible, their identities, may
also be included in the task packet. In this case the task packet would form an integral unit of computation
which could be directly handled by a processing element. However, in reality, it may not be possible to
store the whole problem domain at every processing element. Similarly, numerous additional data items
may be required which would make their inclusion in the task packet impossible. Furthermore, for alarge
number of problems, the additional data items which are required for a particular principal data item may
not be known in advance and will only become apparent as the computation proceeds.

A task packet should contain as a minimum either the identity, or the identity and actual principal data
items of thetask. Theinability to include the other required information in the packet meansthat the parallel
system will have to resort to some form of data managementhistopic is described fully in Chapter 3.

2.3.3 Algorithmic dependencies

The agorithm of the problem may specify an order in which the work must be undertaken. This implies
that certain tasks must be completed before others can commence. These dependencies must be preserved
in the parallel implementation. In the worst case, algorithmic dependencies can prevent an efficient parallel
implementation, as shown with the tower of toy blocksin figure 1.2. Amdahl’slaw, described in section 1.4,
shows the implications to the algorithmic decomposition model of parallel processing of the presence of
even a small percentage of purely sequential code. In the domain decomposition approach, algorithmic
dependencies may introduce two phenomenawhich will have to be tackled:

e synchronisation pointahich have the effect of dividing the parallel implementation into a number of
distinct stages; and,

¢ data dependenciashich will require careful data management to ensure a consistent view of the data
to all processing elements.

Multi-stage algorithms

Many problems can be solved by a single stage of computation, utilising known principal dataitemsto pro-
duce the desired results. However, the dependencies inherent in other algorithms may divide computation
into a number of distinct stages. The partial resultsproduced by one stage become the principal dataitems
for the following stage of the algorithm, as shown in figure 2.12. For example, many scientific problems
involve the construction of a set of simultaneous equations, a distinct stage, and the subsequent solution of
these equations for the unknowns. The partia results, in this case elements of the simultaneous equations,
become the principal datafor the tasks of the next stage.

Even a single stage of a problem may contain a number of distinct substages which must first be com-
pleted before the next substage can proceed. An example of thisisthe use of an iterative solver, such asthe
Jacobi method [22, 35], to solve a set of simultaneous equations. An iterative method starts with an approx-
imate solution and uses it in a recurrence formulato provide another approximate solution. By repeatedly
applying this process a sequence of solutions is obtained which, under suitable conditions, converges to-
wards the exact solution.

Consider the problem of solving a set of six equations for six unknowns, Az = b. The Jacobi method
will solvethis set of equations by calculating, at each iteration, a new approximation from the values of the
previousiteration. So the value for the z;’s at the n'" iteration are calculated as:

SU? _ b; — a12x371 — .. a16$271
ai
b; — a21$?71 — .. a26x271
Ty =
Q22
zn _ bi — (lﬁl.’L’?il — ... (l651'371
a6
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Figure 2.12: The introduction of partial results due to algorithmic dependencies
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Figure 2.13; Solving an iterative matrix solution method on two processing el ements

A parallel solution to this problem on two processing elements could alocate three rows to be solved
to each processing element as shown in figure 2.13. Now PE; can solve the nt" iteration values z7, z7
and 2% in paralel with PE, computing the values of 2}, = and z7. However, neither processing element
can proceed onto the (n + 1)t iteration until both have finished the n'" iteration and exchanged their new
approximations for the z?*’s. Each iteration is, therefore, a substage which must be completed before the
next substage can commence. This point isillustrated by the following code segment from PE}:

PROCEDURE Jacobi() (* Executing on PE 1 *)
Begin
Estimate x[1] ... X[6]
n := 0 (* Iteration number *)
WHILE solution_not_converged DO
Begin
n:=n+1
Calculate new x[1], x[2] & X[3] using old x[1] ... X[6]
PARALLEL
SEND new Xx[1], x[2] & X[3] TO PE_2
RECEIVE new x[4], X[5] & x[6] FROM PE.2
End
End (* Jacobi *)

Data dependencies

The concept of dependencies was introduced in section 1.1.1 when we were unable to construct a tower of
blocksin parallel asthisrequired astrictly sequential order of task completion. Inthe domain decomposition
model, data dependencies exist when atask may not be performed on some principal dataitem until another
task has been completed. There is thus an implicit ordering on the way in which the task packets may be
allocated to the processing elements. This ordering will prevent certain tasks being allocated, even if there
are processing elementsidle, until the tasks on which they are dependent have compl eted.

A linear dependency exists between each of the iterations of the Jacobi method discussed above. How-
ever, no dependency existsfor the calculation of each =, for all ¢, asall the valuesthey require, x;?‘l , Vi #
i, will already have been exchanged and thus be available at every processing element.

The Gauss-Seidd iterative method has long be preferred in the sequential computing community as an
aternativeto Jacobi. The Gauss-Seidel method makes use of new approximationsfor the z; as soon as they
are available rather than waiting for the next iteration. Provided the methods converge, Gauss-Seidel will
converge more rapidly than the Jacobi method. So, in the example of six unknowns above, in the nt* the
value of =7 would still be calculated as:

—1 —1
n_bi—amxg —...—alﬁxg
Ty = )
ai1
but the 2 value would now be calculated by:
—1 —1
2" = bi — (lzlxlf — (l23.1’g — ... (lgﬁl'g
N =
22
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Although well suited to sequential programming, the strong linear dependency that has been introduced,
makes the Gauss-Seidel method poorly suited for parallel implementation. Now within each iteration no
valueof z}' can be calculated until all the valuesfor z7, j < i are available; astrict sequential ordering of
thetasks. Theless severe data dependencieswithin the Jacobi method thus make it amore suitable candidate
for parallel processing than the Gauss-Seidel method which is more efficient on a sequential machine.

It is possible to implement a hybrid of these two methods in parallel, the so-called “Block Gauss-Seidel
- Global Jacobi” method. A processing element which is computing several rows of the equations, may
use the Gauss-Seidel method for these rows as they will be computed sequentially within the processing
element. Any values for z* not computed locally will assume the values of the previous iteration, asin
the Jacobi method. All new approximations will be exchanged at each iteration. So, in the example, PE,
would calculate the values of 7}, 2 and zf} asfollows:

n _
Ty =

n—1 n—1 n—1 n—1 n—1
bi — Q11T — Q12T — a13%3 — Q15T — A16Tg

Q44

n—1 n—1 n—1 n n—1
b; — @117 — a12T> — a13T3 — 14Xy — Q16T

55

n—1 n—1 n—1
bi — Q11T — Q12T — 1373 — L7,14X§11 — 0,15X'51

66

2.4 Task Scheduling Strategies

2.4.1 Datadriven task management strategies

In a data driven approach, the system controller determines the allocation of tasks prior to computation
proceeding. With the unbalanced strategy, this may entail an initial sorting stage based on the known com-
putational complexity, as described in section 2.2.1. A singletask-packet detailing the tasksto be performed
is sent to each processing element. The application processes may return the results upon completion of
their allocated portion, or return individual results as each task is performed, as shown in this code segment:

PROCESS Application_Process()
Begin
RECEIVE task_packet FROM SC via R
FOR i = start_task-id TO finish_task_id DO
Begin
result[i] := Perform_Algorithm(task([i])
SEND result[i] TO SCvia R
End
End (* Application_Process *)

In a data driven model of computation a processing element may initially be supplied with as many
of its allocated principal data items as its local memory will alow. Should there be insufficient storage
capacity asimple datamanagement strategy may be necessary to prefetch the missing principal dataitemsas
computation proceedsand local storage allows. Thisis discussed further when considering the management
of datain Chapter 3.

2.4.2 Demand driven task management strategies

Task management within the demand driven computational model is explicit. The work supplier process,
which forms part of the system controller, is responsiblefor placing the tasks into packets and sending these
packets to requesting processing elements. To facilitate this process, the system controller maintains a pool
of already constituted task packets. On receipt of a request, the work supplier simply dispatches the next
available task packet from thistask pool, as can be seenin figure 2.14.
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Figure 2.14: Supplying task packets from atask pool at the system controller

The advantage of atask pooal is that the packets can beinserted into it in advance, or concurrently as the
solution proceeds, according to the allocation strategy adopted. Thisis especially useful for problems that
create work dynamically, such as those using the hybrid approach as described in section 2.2.3. Another
advantage of the task pool isthat if ahot spot in the problem domain is identified, then the ordering within
the task pool can be changed dynamically to reflect this and thus ensure that potentially computationally
complex tasks are allocated first.

More than one task pool may be used to reflect different levels of task priority. High priority tasks
contained in the appropriate task pool will always be sent to a requesting processing element first. Only
once this high priority task pool is (temporarily) empty will tasks from lower priority pools be sent. The
multiple pool approach ensures that high priority tasks are not ignored as other tasks are allocated.

In the demand driven computational model, the processing elements demand the next task as soon as
they have completed their current task. Thisdemand istranslated into sending arequest to the work supplier,
and the demand is only satisfied when the work supplier has delivered the next task. Thereisthus adefinite
delay period from the time the request is issued until the next task is received. During this period the
processing element will be computationally idle. To avoid thisidletime, it may be useful to include abuffer
at each processing element capable of holding at least one task packet. This buffer may be considered as
the processing element’s own private task pool. Now, rather than waiting for a request to be satisfied from
the remote system controller, the processing element may proceed with the computation on the task packet
already present locally. When the remote request has been satisfied and a new task packet delivered, this
can be stored in the buffer waiting for the processing element to compl ete the current task.

Whilst avoiding delays in fetching tasks from a remote task pool, the use of a buffer at each process-
ing element may have serious implications for load balancing, especially towards the end of the problem
solution. We will examine these issues in more detail after we have considered the realisation of task
management for a simple demand driven system - the processor farm.
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A first approach: The processor farm

Simple demand driven models of computation have been implemented and used for a wide range of appli-
cations. One readlisation of such a model, often referred to in the literature, is that implemented by May
and Shepherd [47]. This simple demand driven model, which they term a processor farmhas been used
for solving problemswith high computation to communication ratios. The model proposes asingle system
controller and one or more processing elements connected in alinear configuration, or chain. The structure
of aprocessing element in this model is shown in figure 2.15.

= — —
SC PE 1= \PE ol e PE n
1 N
! R Key:
| N SC - System Controller
) \\\ AP - Application Process
; N TR - Task Router
! RR - Result Router

Figure 2.15: A processing element for the processor farm model

The application process performs the desired computation, while the communication within the system
is dealt with by two router processes, the Task Router (TR) and the Result Router (RR). As their names
suggest, the task router is responsible for distributing the tasks to the application process, while the result
router returns the results from the completed tasks back to the system controller. The system controller
containstheinitial pool of tasksto be performed and collates the results. Such a communication strategy is
simple to implement and largely problem independent.

To reduce possible processing element idle time, each task router process contains a single buffer in
which to store a task so that a new task can be passed to the application process as soon as it becomesidle.
When a task has been completed the results are sent to the system controller. On receipt of a result, the
system controller releases a new task into the system. This synchronised releasing of tasks ensures that
there are never more tasks in the system than there is space available.

On receipt of anew task, the task router process either:

1. passesthetask directly to the application processif it is waiting for atask; or
2. placesthetask into its buffer if the buffer is empty; or, otherwise
3. passes the task onto the next processing element in the chain.

The processor farm is initialised by loading sufficient tasks into the system so that the buffer at each task
router is full and each application process has a task with which to commence processing. Figure 2.16
shows the manner in which task requests are satisfied within a simple two processing element configured in
achain.

The simplicity of this realisation of a demand driven model has contributed largely to its popularity.
Notethat because of the balance maintai ned within the system, the only instance at which thelast processing
element is different from any other processing element in the chainisto ensurethecl osedown _conmmand
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does not get passed any further. However, such amodel does have disadvantages which may limit its use
for more complex problems.

The computation to communication ratio of the desired application is critical in order to ensure an
adequate performance of a processor farm. If thisratio is too low then significant processing element idle
time will occur. Thisidletime occurs because the computation time for the application processto complete
its current task and the task buffered at the task router may be lower than the combined communication
time required for the results to reach the system controller plus the time for the new tasks released into the
system to reach the processing el ement. This problem may be partially aleviated by the inclusion of several
buffers at each task router instead of just one. However, without a priori knowledge as to the computation
to communication ratio of the application, it may be impossible to determine precisely what the optimum
number of buffers should be. This analysisis particularly difficult if the computational complexity of the
tasks vary; precisely the type of problem demand driven models are more apt at solving. The problem
independence of the system will also be compromised by the use of any a priori knowledge.

If the number of buffers chosen is too small, then the possibility of application process idle time will
not be avoided. Provision of too many bufferswill certainly remove any immediate application processidle
time, but will re-introduce the predicament as the processing draws to a close. This occurs once the system
controller has no further tasks to introduce into the system and now processing must only continue until all
tasks still buffered at the processing elements have been completed. Obviously, significant idle time may
occur as some processing el ements struggle to complete their large number of buffered tasks.

The computation to communication ratio of the processor farm is severely exacerbated by the choice
of the chain topology. The distance between the furthest processing element in the chain and the system
controller grows linearly as more processing elements are added. This means that the combined communi-
cation time to return aresult and receive a new task aso increases. Furthermore, this communication time
will aso be adversely affect by the message traffic of al the intermediate processing elements which are
closer to the system controller.

2.4.3 Task manager process

The aim of task management within a parallel system is to ensure the efficient supply of tasks to the pro-
cessing elements. A Task Manager process (TM) is introduced at each processing element to assist in
maintaining a continuous supply of tasks to the application process. The application process no longer
deals with task requests directly, but rather indirectly using the facilities of the task manager. The task
manager process assumes the responsibility for ensuring that every request for additional tasks from the
application process will be satisfied immediately. The task manager attemptsto achievethis by maintaining
alocal task pool.

In the processor farm, the task router process contains a single buffered task in order to satisfy the next
local task request. Aslong as this buffer is full, task supply isimmediate as far as the application process
is concerned. The buffer isrefilled by a new task from the system controller triggered on receipt of aresult.
The task router acts in a passivemanner, awaiting replenishment by a new task within the farm. However,
if the buffer is empty when the application process requests a task then this process must remain idle until
anew task arrives. Thisidle time is wasted computation time and so to improve system performance the
passive task router should be replaced by a “intelligent” task manager process more capable of ensuring
new tasks are always available locally.

Thetask management strategiesimplemented by the task manager and outlined in the following sections
are active dynamically requesting and acquiring tasks during computation. The task manager thus assumes
the responsibility of ensuring local availability of tasks. This means that an application process should
alwayshaveits request for atask satisfied immediately by the task manager unless:

o at the start of the problem the application processes make a request before the initial tasks have been
provided by the system controller;

¢ there are no more tasks which need to be solved for a particular stage of the parallel implementation;
or,

o the task manager’s replenishment strategy has failed in some way.



A local task pool

To avoid any processing element idletime, it isessential that the task manager has at |east onetask available
locally at the moment the application process issues a task request. This desirable situation was achieved
in the processor farm by the provision of a single buffer at each task router. As we saw, the single buffer
approach is vulnerable to the computation to communication ratio within the system. Adding more buffers
to the task router led to the possibility of serious load imbalances towards the end of the computation.

The task manager process maintains alocal task pool of tasks awaiting computation by the application
process. Thispool issimilar to the task pool at the system controller, as shown in figure 2.14. However, not
only will thislocal pool be much smaller than the system controller’stask pool, but also it may be desirable
to introduce some form of “status’ to the number of available tasks at any point in time.

Satisfying a task request will free some space in the local task pool. A simple replenishment strategy
would be for the task manager immediately to request a new task packet from the system controller. This
reguest has obvious communication implications for the system. If the current message densities within the
system are high and aslong as there are still tasks available in the local task pool, this request will place and
unnecessary additional burden on the aready overloaded communication network.

As an active process, it is quite possible for the task manager to delay its replenishment request until
message densities have diminished. However, this delay must not be so large that subsequent application
process demandswill deplete the local task pool before any new tasks can be fetched causing processor idle
time to occur. There are a number of indicators which the task manager can use to determine a suitable
delay. Firstly, thisdelay is only necessary if current message densities are high. Such information should
be available for the router. Given a need for delay, the number of tasks in the task pool, the approximate
computation time each of these tasks requires, and the probable communication latency in replenishing the
tasks should all contribute to determining the request delay.

In ademand driven system, the computational complexity variations of the tasks are not known. How-
ever, the task manager will be aware of how long previous tasks have taken to compute (the time between
application process requests). Assuming some form of preferred biased allocation of tasks in which tasks
from similar regions of the problem domain are allocated to the same processing element, as discussed in
section 2.4.5, the task manager will be able to build up a profile of task completion time which can be used
to predict approximate completion times for tasksin the task pool. Thetimesrequired to satisfy previousre-
plenishment requests will provide the task manager with an idea of likely future communication responses.
These values are, of course, mere approximations, but they can be used to assist in determining reasonable
tolerance levels for the issuing of replenishment requests.
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Figure 2.17: Status of task manager’stask pool

The task manager’'stask pool is divided into three regions: green orangeand red. The number of tasks
available in the pool will determine the current status level, as shown in figure 2.17. When faced with the
need to replenish the task pool the decision can be taken based on the current status of the pool:

green: Only issue the replenishment request if current message traffic density is low;
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orange: |Issue the replenishment request unless the message density is very high; and,
red: Always issue the replenishment request.

The boundaries of these regions may be altered dynamically asthe task manager acquires moreinforma
tion. At the start of the computation the task pool will be all red. The computation to communication ratio
is critical in determining the boundaries of the regions of the task pool. The better this ratio, that is when
computation times are high relative to the time taken to replenish a task packet, the smaller the red region
of the task pool need be. Thiswill provide the task manager with greater flexibility and the opportunity to
contribute to minimising communication densities.

Neighbouring

Processing Processing System
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Figure 2.18: Task request propagating towards the system controller

2.4.4 Distributed task management

One handicap of the centralised task pool systemisthat all replenishment task requests from the task man-
agers must reach the system controller before the new tasks can be allocated. The associated communication
delay in satisfying these requests can be significant. The communication problems can be exacerbated by
the bottleneck arising near the system controller. Distributed task management allows task requests to be
handled at a number of |ocations remote from the system controller. Although all the tasks originate from
the system controller, requests from processing elements no longer have to reach there in order to be satis-
fied.

The closest location for a task manager to replenish a task packet is from the task pool located at the
task manager of one of its nearest neighbours. In this case, a replenishment request no longer proceeds
directly to the system controller, but smply via the appropriate routers to the neighbouring task manager.
If this neighbouring task manager is able to satisfy the replenishment request then it does so from its task
pool. This task manager may now decide to in turn replenish its task pool, depending on its current status
and so it will also request another task from one of its neighbouring task managers, but obviously not the
same neighbour to which it has just supplied the task. One sensible strategy is to propagate these requests
in a“chain like” fashion in the direction towards the main task supplier at the system controller, as shown
infigure 2.18.

Thisdistributed task management strategy is referred to as aproducer-consumeamnodel. The application
processistheinitial consumer and its local task manager the producer. If a replenishment request is issued
then this task manager becomes the consumer and the neighbouring task manager the producer, and so
on. The task supplier process of the system controller is the overall producer for the system. If no further
tasks exist at the system controller then the last requesting task manager may change the direction of the
search. This situation may occur towards the end of a stage of processing and facilitates load balancing
of any tasks remaining in task manager buffers. As well as reducing the communication distances for
task replenishment, an additional advantage of this “chain reaction” strategy is that the number of request
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messages in the system is reduced. Thiswill play a major rdle helping maintain a lower overall message
density within the system.

If atask manager is unable to satisfy a replenishment request as its task pool is empty, then to avoid
“starvation” at the requesting processing element, this task manager must ensure that the request is passed
on to another processing element.

A number of variants of the producer-consumer model are also possible:

¢ Instead of following a path towards the system controller, the “ chain reaction” could follow a prede-
termined Hamiltonian path (the system controller could be one of the processors on this path).

Aside: A Hamiltonian path is a circuit starting and finishing at one processing element. This circuit
passes through each processor in the network once only.

Such a path would ensure that a processing element would be assured of replenishing atask if there
was one available and there would be no need to keep track of the progress of the “chain reaction” to
ensure no task manager was queried more than once per chain.

¢ Inthe course of its through-routing activities a router may handle a task packet destined for a distant
task manager. If that router’slocal task manager has an outstanding “red request” for atask thenitis
possible for the router to poachthe “en route task” by diverting it, so satisfying itslocal task manager
immediately. Care must be taken to ensure that the task manager for whom the task was intended is
informed that the task has been poached, so it may issue another request. In general, tasks should
only be poached from “red replenishment” if to do so would avoid local application processidletime.

245 Preferred biastask allocation

The preferred bias method of task management is a way of allocating tasks to processing elements which
combines the simplicity of the balanced data driven model with the flexibility of the demand driven ap-
proach. To reiterate the difference in these two computational models as they pertain to task management:

e Tasks are alocated to processing elements in a predetermined manner in the balanced data driven
approach.

¢ In the demand driven model, tasks are allocated to processing elements on demand. The requesting
processing element will be assigned the next available task packet from the task pool, and thus no
processing element is bound to any area of the problem domain.

Provided no data dependencies exist, the order of task completion is unimportant. Once all tasks have
been computed, the problem is solved. In the preferred bias method the problem domain is divided into
equal regions with each region being assigned to a particular processing element, asis donein the balanced
data driven approach. However, in this method, these regions are purely conceptualn nature. A demand
driven model of computation is still used, but the tasks are not now allocated in an arbitrary fashion to
the processing elements. Rather, atask is dispatched to a processing element from its conceptual portion.
Once all tasks from a processing element’s conceptual portion have been completed, only then will that
processing element be allocated its next task from the portion of another processing element which has yet
to complete its conceptual portion of tasks. Generaly this task should be allocated from the portion of the
processing element that has completed the least number of tasks. So, for example, from figure 2.19, on
completion of the tasks in its own conceptual region, PE3; may get allocated task number 22 from PE5’s
conceptual region. Preferred bias allocation is sometimes al so referred to as conceptual task allocation

Theimplications of preferred bias allocation are substantial. The demand driven model’s ability to deal
with variations in computational complexity is retained, but now the system controller and the processing
elements themselves know to whom atask that they have been allocated conceptually belongs. As we will
seein section 3.6, this can greatly facilitate the even distribution of partial results at the end of any stage of
amulti-stage problem.

The exploitation of data coherence is a vital ploy in reducing idle time due to remote data fetches.
Preferred bias allocation of tasks can ensure that tasks from the same region of the problem are allocated to
the same processing element. This can greatly improve the cache hit ratio at that processing element.
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Chapter 3

Data M anagement

The data requirements of many problems may be far larger than can be accommodated at any individual
processing element. Rather than restricting ourselves to only solving those problems that fit completely
within every processing element’s local memory, we can make use of the combined memory of al pro-
cessing elements. The large problem domain can now be distributed across the system and even secondary
storage devicesif necessary. For this class of application some form of data management will be necessary
to ensure that data items are available at the processing elements when required by the computations.

Virtua shared memory regards the whole problem domain as a single unit in which the data items
may be individually referenced. This is precisely how the domain could be treated if the problem was
implemented on a shared memory multiprocessor system. However, on a distributed memory system, the
problem domainisdistributed acrossthe system and hencetheterm virtual. Virtual shared memory systems
may be implemented at different levels, such asin hardware or at the operating system level. In this chapter
we will see how the introduction of a data manager process at each processing element can provide an
elegant virtual shared memory at the system software level of our parallel implementation.

3.1 World Model of the Data: No Data M anagement Required

Not al problems possess very large data domains. If the size of the domain is such that it may be accom-
modated at every processing element then we say that the processing elements have a“world model” of the
data. A world model may also exist if al the tasks allocated to a processing element only ever require a
subsetof the problem domain and this subset can be accommodated completely. In the world model, all
principal and additional data items required by an application process will always be available locally at
each processing element and thus thereis no need for any dataitem to be fetched from another remote loca-
tion within the system. If thereis no requirement to fetch data items from remote locations as the solution
of the problem proceeds then there is no need for any form of data management.

The processor farm described in section 2.4.2 is an example of aparallel implementation which assumes
aworld model. In this approach, tasks are allocated to processing elementsin an arbitrary fashion and thus
there is no restriction on which tasks may be computed by which processing element. No provision is
made for data management and thus to perform any task, the entire domain must reside at each processing
element.

Data items do not always have to be present at the processing element from the start of computation to
avoid any form of data management. As discussed in section 2.3.1, both principal and additional dataitems
may be included within a task packet. Provided no further data items are required to complete the tasks
specified in the task packet then no data management is required and this situation may also be said to be
demonstrating aworld data model.

3.2 Virtual Shared Memory

Virtual shared memory provides all processors with the concept of a single memory space. Unlike a tradi-
tional shared memory model, this physical memory is distributed amongst the processing elements. Thus,
avirtual shared memory environment can be thought of providing each processing el ement with a virtual
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world modelof the problem domain. So, asfar asthe application processis concerned, thereis no difference
between requesting a data item that happens to be local, or remote; only the speed of access can be (very)
different.

Virtua shared memory can be implemented at any level in the computer hierarchy. |mplementations at
the hardwarelevel provideatransparent interfaceto software devel opers, but requires a specialised machine,
such asthe DASH system [43]. There have also been implementations at the operating system and compiler
level. However, as we shall see, in the absence of dedicated hardware, virtual shared memory can also be
easily provided at the system software level. At thislevel, agreat deal of flexibility is available to provide
specialised support to minimise any implementation penalties when undertaking the solution of problems
with very large data requirements on multiprocessor systems. Figure 3.1 gives four levels at which virtua
shared memory (VSM) can be supported, and examples of systems that implement VSM at that particular
level.

Higher level | System Software | Provided by the Data Manager process
Compiler High Performance Fortran[36], ORCA[ 6]
Operating System | Coherent Paging[45]

Lower level | Hardware DDM [61], DASH [43], KSR-1[38]

Figure 3.1: Thelevelswhere virtual shared memory can be implemented.

3.2.1 Implementing virtual shared memory

At the hardware levelirtual shared memory intercepts all memory traffic from the processor, and decides
which memory accesses are serviced locally, and which memory accesses need to go off-processor. This
means that everything above the hardware level (machine code, operating system, etc.) seesavirtual shared
memory with which it may interact in exactly the same manner as a physically shared memory. Provid-
ing this, so called, transparency to the higher levels, means that the size of data is not determined by the
hardware level. However, in hardware, a data item becomes a fixed consecutive number of bytes, typically
around 16-256. By choosing the size to be a power of 2, and by aligning data items in the memory, the
physical memory address can become the concatenation of the “item-identifier” and the “byte selection”.
This strategy is easier to implement in hardware.

31 6 5 .. 0
| Item identifier | byte-selection |

In this example, the most significant bits of a memory address locates the data item, and the lower hits
address a byte within the item. The choice of using 6 hits as the byte selection in this example is arbitrary.

If adata structure of some higher level language containing two integers of four bytes each happened
to be alocated from, say, address ...1100 111100 to ...1101 000100, then item ...1100 will contain the first
integer, and item ...1101 will contain the other one. This means that two logically related integers of data
are located in two physically separate items (although they could fit in asingle dataitem).

Considered another way, if two unrelated variables, say x andy areallocated at addresses...1100 110000
and ...1100 110100, then they reside in the same dataitem. If they are heavily used on separate processors,
this can cause inefficiencies when the machine tries to maintain sequentially consistent copies of x and y
on both processors. The machine cannot put X on one processor and y on the other, because it does not
recognisex andy as different entities; the machine observesit as a single item that is shared between two
processors. |f sequential consistency has to be maintained the machine must update every write to x and
y on both processors, even though the variables are not shared at all. This phenomenon is known as false
sharing

Virtual shared memory implemented at the operating system levelso use afixed size for data items,
but these are typically much larger than at the hardware level. By making an item as large as a page of the
operating system (around 1-4 KByte), data can be managed at the page level. This is cheaper, but slower
than a hardware implementation.

When the compiler supports virtual shared memory, a data item can be made exactly as large as any
user data structure. In contrast with virtual shared memory implementations at the hardware or operating
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system level, compiler based implementations can keep logically connected variablestogether and distribute
others. The detection of logically related variables is in the general case very hard, which means that
applications written in existing languages such as C, Modula-2 or Fortran cannot be compiled in this way.
However, compilers for specially designed languages can provide some assistance. For example, in High
Performance Fortran the programmer indicates how arrays should be divided and then the compiler provides
the appropriate commands to support data transport and data consistency.

Implementing virtual shared memory at the system softwarkevel providesthe greatest flexibility to the
programmer. However, this requires explicit devel opment of system featuresto support the manipulation of
the distributed data item. A data manageprocess is introduced at each processing element especially to
undertake this job.

3.3 TheData Manager

Virtual shared memory is provided at the system softwarelevel by adatamanager processat each processing
element. The aim of data management within the parallel system is to ensure the efficient supply of data
items to the processing elements. The data manager process manages data items just as the task manager
was responsible for maintaining a continuous supply of tasks. Note that the data items being referred to
here are the principal and additional data items as specified by the problem domain and not every variable
or constant the application process may invoke for the completion of atask.

The application process now no longer deals with the principal and additional data items directly, but
rather indirectly using the facilities of the data manager. The application process achieves this by issuing
a data request to the data manager process every time a data item is required. The data manager process
assumes the responsibility for ensuring that every request for a data item from the application process will
be satisfied. The data manager attempts to satisfy these requests by maintaining alocal data cache.

The data management strategies implemented by the data manager and outlined in the following sec-
tions are active dynamically requesting and acquiring data items during computation. This means that an
application process should alwayshave its request for a dataitem satisfied immediately by the data manager
unless:

o at the start of the problem the application processes make requests before any initial dataitems have
been provided by the system controller;

¢ the data manager’'s data fetch strategy hasfailed in some way.

3.3.1 Thelocal data cache

The concept of data sharingmay be used to cope with very large data requirements[14, 23]. Data sharing
implementsvirtual shared memory by allocating every dataitem in the problem domain an uniqueidentifier.
This allows arequired item to be “located” from somewhere within the system, or from secondary storage
if necessary. The size of problem that can now be tackled is, therefore, no longer dictated by the size of the
local memory at each processing element, but rather only by the limitations of the combined memory plus
the secondary storage.

The principal data item required by an application process is specified by the task it is currently per-
forming. Any additional dataitem requirements are determined by the task and by the algorithm chosen to
solve the problem. These additional dataitems may be known a priori by the nature of the problem, or they
may only become apparent as the computation of the task proceeds.

To avoid any processing element idle time, it is essential that the data manager has the required data
item available locally at the moment the application processissues arequest for it. In an attempt to achieve
this, the data manager maintains a local cache of dataitems as shown in figure 3.2. The size of this cache,
and thus the number of dataitems it can contain, is determined by the size of a processing element’s local
memory.

Each data item in the system is a packet containing the unique identifier, shown in figure 3.2 asi d,
together with the actual datawhich makes up the item. The dataitems may be permanently located at a spe-
cific processing element, or they may be free to migrate within the system to where they are required. When
a data manager requires a particular dataitem which is not already available locally, this dataitem must be
fetched from some remote location and placed into the local cache. This must occur before the application
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Figure 3.2: Thelocal cache at the data manager

process can access the dataitem. The virtual shared memory of the system is thus the combination of the
local caches at all the processing elements plus the secondary storage which is under the control of thefile
manager at the system controller.

In certain circumstances, as will be seen in the following sections, rather than removing the data item
from the local cache in which it was found, it may be sufficient simply to take a copy of the dataitem and
return this to the local cache. This is certainly the case when the data items within the problem domain
are read-only that is the values of the data items are not altered during the course of the parallel solution
of the problem (and indeed the same would be true of the sequential implementation). This means that it
is possible for copies of the same data item to be present in a number of local caches. Note that it is no
advantage to have more than one copy of any dataitem in one local cache.

There is a limited amount of space in any local cache. When the cache is full and another data item
is acquired from a remote location, then one of the existing data items in the local cache must be replaced
by this new dataitem. Care must be taken to ensure that no data item is inadvertently completely removed
from the system by being replaced in al local caches. If this does happen then, assuming the data item
is read-only, a copy of the entire problem domain will reside on secondary storage, from where the data
items were initially loaded into the local caches of the parallel system. This means that should a dataitem
being destroyed within the system, another copy can be retrieved from the file manager (FM) of the system
controller.

If the data items are read-writethen their values may be altered as the computation progresses. In this
case, the data managers have to beware of consistency issues when procuring a dataitem. The implications
of consistency will be discussed in section 3.4.

As we will now see, the strategies adopted in the parallel implementation for acquiring data items and
storing them in the local caches can have a significant effect on minimising the implementation penalties
and thus improving overall system performance. The onus is on the data manager process to ensure these
strategies are carried out efficiently.
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3.3.2 Requesting data items

The algorithm being executed at the application process will determine the next dataitem required. If the
dataitems were all held by the application process, requesting the data item would be implemented within
the application process as an “assignment statement”. For example arequest for dataitemi would simply
be written as x : = data_ itenfi]. When al the data items are held instead by the data manager
process, this “assignment statement” must be replaced by arequest from the application processto the data
manager for the data item followed by the sending of a copy of the data item from the local cache of the
data manager to the waiting application process, as shown in figure 3.3.

X ;= data_item[i]
y:=x*5

SEND i TODM
RECEIVE x FROM DM

y:=x*5

i ] cataitem ]

RECEIVE i FROM AP
SEND data item[i] TO AP

@ (b)

Figure 3.3: Accessing adataitem (@) with, and (b) without a data manager

The data item’s unique identifier enables the data manager to extract the appropriate item from its local
cache. If a data item requested by the application process is available, it is immediately transferred, as
shown in figure 3.4(a). The only dlight delay in the computation of the application process will occur by
the need to schedul e the concurrent data manager and for this process to send the data item from its local
cache. However, if the dataitem is not available locally then the data manager must “locate” thisitem from
elsewhere in the system. Thiswill entail sending a message via the router to find the data item in another
processing element’s local cache, or from the file manager of the system controller. Having been found, the
appropriateitem is returned to the requesting data manager’s own local cache and then finally a copy of the
item is transferred to the application process.

If the communicated request from the application process is asynchronous and this process is able to
continue with its task while awaiting the data item then no idle time occurs. However, if the communication
with the data manager is synchronous, or if the data item is essential for the continuation of the task then
idle time will persist until the data item can be fetched from the remote location and a copy given to the
application process, as shown in figure 3.4(b). Unless otherwise stated, we will assume for the rest of this
chapter that an application processis unable to continue with its current task until its data item request has
been satisfied by the data manager.

3.3.3 Locating dataitems

When confronted with having to acquire a remote data item, two possibilities exist for the data manager.
Either it knows exactly thelocation of the dataitem within the system, or thislocation is unknown and some
form of search will have to be instigated.
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Resident sets

Knowing the precise location of the requested data item within the system enables the data manager to
instruct the router to send the request for the data item, directly to the appropriate processing element.

One of the simplest strategies for allocating data items to each processing element’s local cache is
to divide all the data items of the problem domain evenly amongst the processing elements before the
computation commences. Providing there is sufficient local memory and assuming there are n. processing

elements, this means that each processing element would be allocated %th of thetotal number of dataitems.
If there isn’t enough memory at each processing element for even this fraction of the total problem domain
then as many as possible could be allocated to the local caches and the remainder of the data items would
be held at the file manager of the system controller. Such a simplistic scheme has its advantages. Provided
these data items remain at their predetermined local cache for the duration of the computation, then the
processing element from which any data item may found can be computed directly from the identity of the
dataitem.

For example, assume there are twelve data items, given the unique identification numbers 1, ..., 12,
and three processing elements, PE;, PE,, and PE5;. A predetermined alocation strategy may allocate
permanently dataitems1,...,4 to PE,, dataitems5,...,8t0 PE, and9,...,12 to PE;. Should PE;
wish to acquire a copy of dataitem 10, it may do so directly from the processing element known to have
that dataitem, in thiscase PEs.

It is essential for this simple predetermined allocation strategy that the data items are not overwritten
or moved from the local cache to which they are assigned initially. However, it may be necessary for a
processing element to also acquire copies of other data items as the computation proceeds, as we saw with
PE, above. Thisimpliesthat the local cache should be partitioned into two distinct regions:

e aregion containing data items which may never be replaced, known as the resident setand,
e aregion for dataitems which may be replaced during the parallel computation.

The size of the resident set should be sufficient to accommodate all the pre-allocated data items, as
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Figure 3.5: Resident set of thelocal cache

shown for PE> from the above example in figure 3.5. The remaining portion of the local cache will be
as large as allowed by the local memory of the processing element. Note that this portion needs to have
sufficient space to hold aminimum of onedataitem as thisis the maximum that the application process can
require at any specific point during a task’s computation. To complete a task an application process may
regquire many data items. Each of these data items may in turn replace the previously acquired one in the
single available space in the local cache.

The balanced data driven model of computation is well suited to a simple pre-determined even data
item allocation scheme. In this model the system controller knows prior to the computation commencing
precisely which tasks are to be assigned to which processing el ements. The same number of tasksisassigned
to each processing element and thus the principal data items for each of these tasks may be pre-allocated
evenly amongst the local caches of the appropriate processing elements. Similar knowledgeis available to
the system controller for the unbal anced data driven model, but in this case the number of tasks all ocated to
each processing element is not the same and so different numbers of principal dataitemswill be loaded into
each resident set. Note that the algorithm used to solve the problem may be such that, even if adatadriven
model is used and thus the principal dataitems are known in advance, the additional dataitems may not be
known a priori. In this case, these additional dataitemswill have to be fetched into the local caches by the
data managers as the computation proceeds and the data requirements become known.

More sophisticated pre-allocation strategies, for example some form of hashing function, are possible
to provide resident sets at each processing element. It is also not necessary for each dataitem to be resident
at only one processing element. Should space permit, the same data item may be resident at several local
caches.

The pre-allocation of resident sets allows the location of a data item to be determined from its unique
identifier. A pre-allocated resident set may occupy a significant portion of a local cache and leave little
space for other data items which have not been pre-allocated. The shortage of space would require these
other data items to be replaced constantly as the computation proceeds. It is quite possible that one data
item may be needed often by the same application process either for the same task or for severa tasks. If
this data item is not in the resident set for that processing element, then there is the danger that the data
item will be replaced during the periodsthat it is not required and thus will have to be re-fetched when it is
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required once more. Furthermore, despite being pre-allocated, the data items of a resident set may in fact
never be required by the processing element to which they were allocated. In the example given earlier,
PE, has aresident set containing dataitems 5, ..., 8. Unless there is a priori knowledge about the data
regquirements of the tasks, there is no guarantee that P E» will ever require any of these dataitems fromits
resident set. In this case, a portion of PE,’s valuable local cache is being used to store data items which
are never required, thus reducing the available storage for data items which are needed. Those processing
elements that do require dataitems 5, . .., 8 are going to have to fetch them from PE,. Not only will the
fetches of these dataitemsimply communication delaysfor the requesting data managers, but also, the need
for PE,’s data manager to service these requests will imply concurrent activity by its data manager which
will detract from the computation of the application process.

The solution to this dilemmais not to pre-all ocate resident sets, but to build up such a set as computation
proceeds and information is gained by each data manager as to the data items most frequently used by its
processing element. Profiling can also assist in establishing these resident sets, as explainedin section 3.5.3.
The price to pay for this flexibility is that it may no longer be possible for a data manager to determine
precisely where a particular data item may be found within the system.

Sear ching for data at unknown locations

Acquiring a specific data item from an unknown location will necessitate the data manager requesting the
router process to “search” the system for thisitem. The naive approach would be for the router to send the
reguest to the data manager process of each processing element in turn. If the requested data manager has
the necessary data item it will return a copy and then there is no need for the router to request any further
processing elements. |If the requested data manager does not have the data item then it must send back a
not _f ound message to the router, whereupon the next processing element may be tried. The advantages
of this one-to-onescheme is that as soon as the required data item is found, no further requests need be
issued and only one copy of the dataitem will ever be returned. However, the communication implications
of such a scheme for a large parallel system are substantial. If by some quirk of fate (or Murphy’s law),
the last processing element to be asked is the one which has the necessary data item, then one request will
have resulted in 2 x (number of PEs — 1) messages, a quite unacceptable number for large systems.
Furthermore, the delay before the data item is finally found will be large, resulting in long application
processidle time.

An alternative to this communication intensive one-to-oneapproach, is for the router process to issue a
global broadcast of the request; a one-to-manynethod. A bus used to connect the processing elementsis
particularly suited to such a communication strategy, although, as discussed in section 1.2.1, a bus is not
an appropriate interconnection method for large multiprocessor systems. The broadcast strategy may aso
be used efficiently on a more suitable interconnection method for large systems, such as interconnections
between individual processors. In this case, the router issues the request to its directly-connected neigh-
bouring processing elements. If the data managers at these processing elements have the required data item
then it isreturned, if not then these neighbouring processing elements in turn propagate the request to their
neighbours (excluding the one from which they received the message). In this way, the requests propagates
through the system like ripples on a pond. The message density inherent in this approach is significantly
less than the one-to-onepproach, however one disadvantageis that if the requested dataitem is replicated
at several local caches, then several copies of the same data item will be returned to the requesting data
manager, when only oneis required.

For very large multiprocessor systems, even this one-to-manyapproach to discovering the unknown
location of adataitem may betoo costly interms of communication latency and its contribution to message
density within the system. A compromise of the direct access capabilities of the pre-allocated resident set
approach and the flexibility of the dynamic composition of the local caches is the notion of a directory of
dataitem locations.

In this approach, it is not necessary to maintain a particular dataitem at a fixed processing element. We
can introduce the notion of a homeprocessing element that knows where that data item is, while the data
item is currently located at the ownerprocessing element. The home-processing element is fixed and its
address may be determined from the identifier of the dataitem. The home processing element knows which
processing element is currently owning the data item. Should this data item be subsequently moved and
the one at the owner-process removed, then either the home-processing el ement must be informed as to the
new location of the dataitem or the previous owner-processing el ement must now maintain a pointer to this
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new location. The first scheme has the advantage that a request message may be forwarded directly from
the home-processing element to the current owner, while the second strategy may be necessary, at least for
a while after the data item has been moved from an owner, to cope with any requests forwarded by the
home-processing element beforeit has received the latest location update.

Finally, it is also possible to do away with the notion of a home-processing element, by adding a hier-
archy of directories. Each directory on a processing element “knows’ which data items are present on the
processing element. |If the required data item is not present, a directory higher up in the hierarchy might
know if it is somewhere nearby. If that directory does not know, yet another directory might if it is further
away. Thisis much like the organisation of libraries: you first check the local library for a book, if they
do not have it you ask the central library, and so on until you finally query the national library. With this
organisation there is always a directory that knows the whereabout of the dataitem, but it is very likely that
the location of the dataitem will be found long before asking the highest directory. (The Data Diffusion
Machine[61] and KSR-1[38] used a similar strategy implemented in hardware).

3.4 Consistency

Copies of read-onlydata items may exist in numerous local caches within the system without any need to
“keep track” of where all the copies are. However, if copies of read-writedata items exist then, in avirtua
shared memory system, there is the danger that the data items may become inconsistent The example in
figure 3.6 illustrates this problem of inconsistency. Suppose that we have two processing elements PE; and
PE,, and adataitemy with avalueO, that islocated at processing element PE;. Processing Element PE,
needsy, so it requests and gets a copy of y. The data manager on processing element P E, decidesto keep
this copy for possible future reference. When the application at processing element P E updates the value
of y, for example by overwriting it with the value 1, processing element P E, will have a stalecopy of y.
Thissituation is called inconsistentif the application running at processing element PE; requestsy it will
get the new value (1), while the application at processing element P E- will still read the old value of y (0).
This situation will exist until the data manager at processing element P Es decidesto evicty from itslocal
memory.

The programming model of a physical shared memory system maintains only one copy of any dataitem;
the copy in the shared memory. Because there is only one copy, the data items cannot become inconsistent.
Hence, naive virtual shared memory differs from physicalshared memory in that virtual shared memory
can become inconsistent.

To maintain consistency all copies of the dataitemswill have to be “tracked down” at certain times dur-
ing the parallel computation. Once again tone-to-one or many-to-one methods could be used to determine
the unknown locations of copies of the dataitems. If the directory approachisused then it will be necessary
to maintain a complete “linked list” through all copies of any data item, where each copy knows where the
next copy is, or it knows that there are no more copies. A consistency operation is performed on thislist by
sending a message to the first copy on the list, which then ripples through the list. These operations thus
take atime linear in the number of copies. Thisis expensive if there are many copies, so it can be more
efficient to use a tree structure (where the operation needs logarithmic time). (A combination of a software
and hardware tree directory of thisform is used in the LimitLESS directory [12].)

There are several ways to deal with this inconsistency problem. We will discuss three options. data
items are kept consistent at all times (known as sequential consistency); the actual problem somehow copes
with the inconsistencies (known as weak consistency); and finally, inconsistent data items are allowed to
live for awell defined period (the particular scheme discussed here is known as release consistency).

3.4.1 Keepingthe dataitems consistent

The first option is that the data manager will keep the data items consistent at all times. To see how the
dataitems can be kept consistent, observe first that there are two conditions that must be met before a data
item can become inconsistent. Firstly, the data item must be duplicated; as long as there is only a single
copy of the dataitem, it cannot be inconsistent. Secondly, some processing element must update one of the
copies, without updating the other copies. This observation leads to two protocols that the data manager
can observe to enforce consistency, while still allowing copiesto be made:
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Figure 3.6: An example how an inconsistency arises. There are two processing elements, PE, and PE;
and adataitemy. PFE> keepsacopy of y, whiley isupdated at PE .
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1. Ensure that there is not more than a single copy of the dataitem when it is updated. This means that
before a write all but one of the copies must be deleted. This solution is known as an invalidating
protocol

2. Ensure that all copies of the data item are replaced when it is updated. This solution is known as an
updating protocal

It is relatively straightforward to check that the invalidating option will always work: all copies are
alwaysidentical, because awrite only occurs when thereis only asingle copy. In the example, the copy of
y at processing element P E> will be destroyed beforey is updated on processing element PE .

For the updating protocol to be correct, the protocol must ensure that all copies are replaced “at the
same time”. Suppose that thisis not the case: in the example the value on processing element PE; might
be updated, while processing element P E, still has an old value for y. If the data managers running on
processing elements PFE, and PE> communicate, they can find out about this inconsistency. In order for
the update protocol to work, the updating data manager must either ensure that no other data manager is
accessing the data item while it is being updated, or that it is impossible for any communication (or other
update) to overtake this update.

It is not easy to decide in general whether an invalidating or an updating protocol is better. Below are
two examples that show that invalidating and updating protocols both have advantages and disadvantages.
In both cases we assume that the problem is running on a large number of processing elements, and that
thereis asingle shared dataitem that isinitially replicated over all processing elements.

1. A task, or tasks, being performed by an application process at one processing element might require
that the data item be updated at this data manager many times, without any of the other processing
elementsusing it. An updating protocol will updateall copieson all processing elements during every
update, even though the copies are not being used on any of the other processing elements.

An invalidating protocol is more efficient, because it will invalidate all outstanding copies once,
whereupon the application process can continue updating the data item without extracommunication.

2. Suppose that instead of ignhoring the data item, all other processing elements do need the updated
value. An invalidating protocol will invalidate all copies and update the data item, whereupon all
other processing elements have to fetch the value again. This fetch is on demand, which means that
they will have to wait on the data item.

An updating protocol does a better job since it distributes the new value, avoiding the need for the
other processing elements to wait for it.

Thereis a case for (and against) both protocols. It is for this reason that these two protocols are some-
times combined. This gives a protocol that, for example, invalidates all copies that have not been used
since the last update, and updates the copies that were used since the last update. Although these hybrid
protocols are potentially more efficient, they are unfortunately often more complex than a pure invalidating
or updating protocol.

3.4.2 Weak consistency: repair consistency on request

The option to maintain sequential consistency is an expensive one. In general, an application process is
allowed to proceed with its computation only after the invalidate or update has been completed. In the
example of the invalidating protocol, al outstanding copies must have been erased and the local copy must
have been updated before the application process can proceed. This idle time may be an unacceptable
overhead. One of the waysto reducethis overheadis to forget about maintaining consistency automatically.
Instead, the local cache will stay inconsistent until the application process orders the data manager to repair
the inconsistency.

There are two important advantages of weak consistency. Firstly, the local cache is made consistent at
certain pointsin the task execution only, reducing the overhead. Secondly, local caches can be made con-
sistent in parallel. Recall for example, the updating protocol of the previous section. In aweakly consistent
system we can envisage that every write to a dataitem is asynchronously broadcasted to all remote copies.
Asynchronously means that the processing element performing the write continues whether the update has
been completed or not. Only when a consistency-command is executed must the application process wait

[-60



until all outstanding updates are completed. In the same way, a weakly consistent invalidating protocol can
invalidate remote copies in parallel. These optimisations lead to further performance improvement. The
disadvantage of weak consistency is the need for the explicit commands within the algorithm at each ap-
plication process so that when a task is being executed, at the appropriate point, the data manager can be
instructed to make the local cache consistent.

3.4.3 Repair consistency on synchronisation: Release consistency

A weak consistency model as sketched above requires the programmer of the algorithm to ensure consis-
tency at any moment in time. Release consistency is based on the observation that al gorithms do not go from
one phase to the other without first synchronising. So it suffices to make the local caches consistent during
the synchronisation operation. This means that immediately after each synchronisation the local caches are
guaranteed to be consistent. Thisisin general dightly more often than strictly necessary, but it is far less
often than would be the case when using sequential consistency. More importantly, the application process
itself does not have to make the local caches consistent anymore, it is done“invisibly”.

Note that although invisible, consistency is only restored during an explicit synchronisation operation;
release consistency behaves still very differently from sequential consistency. Asan example, an application
process at PE; can poll adataitem in aloop, waiting for the data item to be changed by the application
process at PFE,. Under sequential consistency any update to the data item will be propagated, and cause
the application process at PE; to exit the loop. Under release consistency updates do not need to be
propagated until a synchronisation point, and because it does not recognise that the polling loop is actually
a synchronisation point the application process at P E; might be looping forever.

3.5 Minimising the Impact of Remote Data Requests

Failure to find a required data item locally means that the data manager has to acquire this data item from
elsewhere within the system. The time to fetch this data item and, therefore, the application process idle
time, can be significant. This latencyis difficult to predict and may not be repeatable due to other factors,
such as current message densities within the system. The overall aim of data management is to maximise
effective processing element computation by minimising the occurrence and effects of remote data fetches.
A number of techniques may be used to reduce thislatency by:

Hiding the Latency: - overlapping the communication with the computation, by:

Prefetching - anticipating dataitems that will be required

Multi-threading - keeping the processing element busy with other useful computation during the
remote fetch

Minimising the Latency: - reducing the time associated with aremote fetch by:

Caching & profiling - exploiting any coherence that may exist in the problem domain

3.5.1 Prefetching

If it is known at the start of the computation which data items will be required by each task then these
data items can be prefetchedby the data manager so that they are available locally when required. The
data manager thus issues the requests for the data items beforethey are actually required and in this way
overlapsthe communication required for the remote fetches with the ongoing computation of the application
process. Thisisin contrast with the simple fetch-upon-demand strategy where the data manager only issues
the external request for a data item at the moment it is requested by the application process and it is not
found in the local cache.

By treating its local cache asa*circular buffer” the data manager can be loading prefetched dataitems
into one end of the buffer while the application process is requesting the data items from the other end, as
shownin figure 3.7. The “speed” at which the data manager can prefetch the dataitems will be determined
by the size of the local cache and the rate at which the application processis “using” the dataitems.
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Figure 3.7: Storing the prefetched dataitems in the local cache

This knowledge about the data items may be known a priori by the nature of problem. For example,
in aparallel solution of the hemi-cube radiosity method, the data manager knows that each task, that is the
computation of a single row of the matrix of form factors, requires all the environment’s patch data. The
order in which these data items are considered is unimportant, as long as all data items are considered.
The data manager can thus continually prefetch those data items which have yet to be considered by the
current task. Note that in this problem, because all the dataitems are required by every task and the order is
unimportant (we are assuming that the local cacheis not sufficiently big to hold all these data items), those
data items which remain in the local cache at the end of one task are also required by the subsequent task.
Thus, at the start of the next task, the first dataitem in the local cache can be forwarded to the application
process and prefetching can commence once more as soon as this has happened.

The choice of computation model adopted can al so providetheinformation required by the data manager
in order to prefetch. The principal dataitems for both the balanced and unbalanced data driven models will
be known by the system controller before the computation commences. Giving this information to the
data manager will enableit to prefetch these dataitems. A prefetch strategy can aso be used for principal
data items within the preferred bias task allocation strategy for the demand driven computation model, as
described in section 2.4.5. Knowledge of its processing element’s conceptual region can be exploited by the
data manager to prefetch the principa dataitems within this region of the problem domain.

3.5.2 Multi-threading

Any failure by the data manager to have the requested dataitem available locally for the application process
will result in idle time unless the processing element can be kept busy doing some other useful computation.

One possihility isfor the application processto save the current state of atask and commenceanew task
whenever arequested dataitem is not availablelocally. When the requested dataitem isfinally forthcoming
either this new task could be suspended and the original task resumed, or processing of the new task could
be continued until it is completed. This new task may be suspended awaiting a data fetch and so the
original task may be resumed. Saving the state of atask may require alarge amount of memory and indeed,
severa states may need to be saved before one requested data item finally arrives. Should the nature of
the problem allow these stored tasks to in turn be considered as task packets, then this method has the
additional advantage that these task packets could potentially be completed by another processing element
in the course of load balancing, as explained in the section 2.4.4 on distributed task management.

Another possible option is multi-threading. In this method there is not only one, but several application
processes on each processing element controlled by an application process controller (APC), as shown in
figure 3.8. Each application process is known as a separate thread of computation. Now, athough one
thread may be suspended awaiting a remote data item, the other threads may still be able to continue. It
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may not be feasible to determine just how many of these application processes will be necessary to avoid
the case where all of them are suspended awaiting data. However, if there are sufficient threads(and of
course sufficient tasks) then the processing element should always be performing useful computation. Note
that multi-threading is similar to the Bulk Synchronous Parallel paradigm [60].

Key:
AP - Application Process
APC - Application Process Controller
TM - Task Manager
LC - Local Controller
DM - Data Manager
R - Router

/N

Figure 3.8: Several application processes per processing element

One disadvantage of this approach is the overhead incurred by the additional context switching between
all the application processes and the application process controller, as well as the other system software
processes. the router, task manager and the data manager, that are all resident on the same processor. A
variation of multiple active threads is to have several application processes existing on each processing
element, but to only have oneof them active at any time and have the application process controller man-
age the scheduling of these processes explicitly from information provided by the data manager. When an
application processes’ data item request cannot be satisfied locally, that process will remain descheduled
until the data item is forthcoming. The data manager is thus in a position to inform the application process
controller to activate another application process, and only reactivate the original application process once
the required data has been obtained. Note the application process controller schedules a new application
process by sending it atask to perform. Having made itsinitial demand for a task to the application pro-
cess controller (and not the task manager as discussed in section 2.4.2) an application process will remain
descheduled until explicitly rescheduled by the application process controller.

Both forms of multi-threading have other limitations. Thefirst of theseisthe extramemory requirements
each thread places on the processing elements local memory. The more memory that each thread will
require, for local constants and variables etc, the less memory there will be available for the local cache and
thus fewer data items will be able to be kept locally by the data manager. A “catch 22" (or is that “cache
22") situation now arises as fewer local data items implies more remote data fetches and thus the possible
need for yet more threadsto hide thisincrease in latency. The second difficulty of alarge number of threads
running on the same processing element is the unacceptably heavy overhead that may be placed on the data
manager when maintaining the local cache. For example, a dilemma may exist as to whether a recently
fetched dataitem for one thread should be overwritten beforeit has been used if its“slot” in thelocal cache
isrequired by the currently active thread.

Figure 3.9 shows resultsfor amulti-threaded application. The graph showsthetimein secondsto solvea
complex parallél ray tracing problem with large data requirements using more than one application process
per processing element. As can be seen, increasing the number of application processes per processing
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Figure 3.9: Problem solution time in seconds

element produces a performance improvement until a certain number of threads have been added. Beyond
this point, the overheads of having the additional threads are greater than the benefit gained, and thus the
times to solve the problem once moreincrease. The number of threads at which the overheads outweigh the
benefits gained is lower for larger numbers of processing elements. This is because the more application
processes there are per processing element, the larger the message output from each processing element
will be (assuming an average number of remote fetches per thread). As the average distances the remote
datafetches haveto travel in larger systemsis greater, the impact of increasing numbers of messages on the
overall system density is more significant and thus the request latency will be higher. Adding more threads
now no longer helps overcome communication delays, but in fact, the increasing number of messages
actually exacerbates the communication difficulties. Ways must be found of dynamically scheduling the
optimum number of application processes at each processing element depending on the current system
message densities.

Despite these shortcomings, multi-threading does work well, especially for low numbers of threads and
isauseful technique for avoiding idle time in the face of unpredictable data item reguirements. Remember
that multiple threads are only needed at a processing element if a prefetch strategy is not possible and the
data item required by one thread was not available locally. If ways can be found to try and guess which
dataitems are likely to required next then, if the data manager is right at least some of the time, the number
of remote fetches-on-demand will be reduced. Caching and profiling assist the data manager with these
predictions.

3.5.3 Profiling

Although primarily a task management technique, profiling is used explicitly to assist with data manage-
ment, and so is discussed here. At the start of the solution of many problems, no knowledge exists as to
the data requirements of any of the tasks. (If this knowledge did exist then a prefetching strategy would
be applicable). Monitoring the solution of a single task provides a list of all the data items required by
that task. If the same monitoring action is carried for al tasks then at the completion of the problem, a
complete “picture” of the data requirements of all tasks would be known. Profiling attempts to predict the



data requirements of future tasks from the list of data requirements of completed tasks.

Any spatial coherence in the problem domain will provide the profiling technique with a good estimate
of the future data requirements of those tasks from a similar region of the problem domain. The data
manager can now use this profiling information to prefetchthose data items which are likely to be used by
subsequent tasks being performed at that processing element. If the data manager is always correct with its
prediction then profiling provides an equivalent situation to prefetching in which the application processis
never delayed awaiting a remote fetch. Note in this case there is no need for multi-threading.

A simple example of spatial coherence of the problem domain isin shown in figure 3.10. Thisfigureis
derived from figure 2.3 which showed how the principal dataitem (PDI) and additional dataitems (ADISs)
made up atask. In figure 3.10 we can see that task ¢ and task j come from the same region of the problem
domain and spatial coherence of the problem domain has meant that these two tasks have three additional
dataitemsin common. Task k, on the other hand, is from a different region of the problem domain, requires
only one additional dataitem whichis not common to either task 7 or task j.

Problem domain = All data items associated with problem

PDI for PDI for : : PDI for

task i task i i taskck
Les Application of algorithm Application of algorithm [<-------~ Application of algorithm R
e =] [ 1 ADI for
ADlIsfor ADlIsfor task k
task i task j
Result Result Result
task i task j task k

Figure 3.10: Common additional dataitems due to spatial coherence of the problem domain

Thus, the more successful the predictions are from the profiling information, the higher will be the
cache-hit ratios. From figure 3.10 on page 65 we can see that if the completion of task ¢ was used to profile
the dataitem requirementsfor task j then, thanks to the spatial coherence of task i to task j in the problem
domain, the data manager would have a 66% success rate for the additional dataitemsfor task j. However,
a similar prediction for the additional data items for task & would have a 0% success rate and result in a
100% cache-miss, that is al the additional dataitems for task & would have to be fetched-on-demand.

3.6 Data Management for Multi-Stage Problems

In section 2.3.3 we discussed the algorithmic and data dependenciesthat can arise in problemswhich exhibit
more than one distinct stage. In such problems, the results from one stage become the principa dataitems
for the subsequent stage as was shown in figure 2.12. So, in addition to ensuring the application processes
are kept supplied with data items during one stage, the data manager also needs to be aware as to how the
partial results from one stage of the computation are stored at each processing element in anticipation of the
following stage.

This balancing of partia result storage could be achieved statically by all the results of a stage being
returned to the system controller. At the end of that current stage the system controller isin a position to
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distribute this data evenly as the principal and additional dataitems for the next stage of the problem. The
communication of these potentially large data packets twice, once during the previous stage to the system
controller and again from the system controller to specific processing elements, obviously may impose
an enormous communication overhead. A better static distribution strategy might be to leave the results
in place at the processing elements for the duration of the stage and then have them distributed from the
processing elements in a manner prescribed by the system controller. Note that in such as scheme the local
cache of each processing element must be able to hold not only the principal and additional dataitems for
the current stage, but also have space in which to store these partial resultsin anticipation of the forthcoming
stage. It isimportant that these partial results are kept separate so that they are not inadvertently overwritten
by dataitems during the current stage.

In a demand driven model of computation the uneven computational complexity may result in a few
processing elements completing many more tasks than others. This produces a flaw in the second static
storage strategy. The individual processing elements may simply not have sufficient space in their loca
cache to store more than their fair share of the partial results until the end of the stage.

Two dynamic methods of balancing this partial result data may also be considered. Adoption of the
preferred bias task management strategy, as discussed in section 2.4.5, can greatly facilitate the correct dis-
tribution of any partial results. Any results produced by one processing element from another’s conceptual
portion, due to task load balancing, may be sent to directly to this other processing element. The initial
conceptua allocation of tasks ensures that the destination processing element will have sufficient storage
for the partial result.

If this conceptual allocation is not possible, or not desirable, then balancing the partial results dynami-
cally requires each processing element to be kept informed of the progress of all other processing elements.
This may be achieved by each processing element broadcasting a short message on completion of every
task to all other processing elements. To ensure that this information is as up to date as possible, it is ad-
visable that these messages have a specia high priority so that they may be handled immediately by the
router processes, by-passing the normal queue of messages. Once a data manager’s local cache reachesits
capacity the results from the next task are sent in the direction of the processing element that is known to
have completed the least number of tasks and, therefore, the one which will have the most available space.
To further reduce the possible time that this data packet may exist in the system, any processing element on
its path which has storage capacity available may absorb the packet and thus not route it further.
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Section I Classification of Parallel Rendering
Systems

In the preceding chapters, we have reviewed the fundamental concepts of parallel processing and
given some indication of how it might be effectively used in graphics rendering. Since many types of
paralel rendering have been investigated [Gree9l] [Whit92], classifying the various schemes is
important to characterize the behavior of each. A parallel rendering system can be classified according to
the method of task subdivision and/or by the hardware used to implement the scheme. Often, the choice
of one influences the other.

Classifying by task subdivision refers to the method in which the original rendering task is broken
into smaller pieces to be processed in parallel. Obviously, such subdivision strongly depends on the type
of rendering employed. A task for rendering polygons will offer a different set of subdivision
opportunities than a ray tracing task. Also included in these decisions is the type of load balancing
technique to employ.

Ultimately the rendering scheme is implemented within some sort of paralel environment. The
system may run on parallel hardware (e.g., a general multiprocessor or specialized hardware) or in a
distributed computing environment (a group of individual machines working together to solve a single
problem). The advantages and disadvantages associated with each environment are discussed below.

1  Classification by Task Subdivision

In this section, we will look at two different types of rendering (polygon-based rendering and ray
tracing) and various methods for subdividing the original task into subtasks for parallel processing.
Although many subdivision techniques exist for each, we will focus on the schemes most widely used.
For each technique, recall that our goal is to subdivide the original task in such a way as to maximize
parallelism, while not creating excessive overhead.

-2



Graphics database traversal

'

Geometry

G| G| |G||C Processing

R R|...|R R Rasterization
Display

Figure 1 Polygon rendering pipeline

1.1 Polygon Rendering

For polygon rendering, we often deal with a very large number of primitives (e.g., triangles) which
can often be processed in a parallel manner. To handle this type of rendering, a graphics pipeline is
usually employed (see Figure 1). Stagesin this pipeline include geometry processing and rasterization.

Geometry processing comprises transformation, clipping, lighting, and other tasks associated with a
primitive. A straightforward method for parallelizing geometry processing is to assign each processor a
subset of primitives (or objects) in the scene to render. In rasterization, scan-conversion, shading, and
visibility determination are performed. To parallelize this processing, each processor could perform the
pixel calculations for asmall part of the final image.

One way to view the processing of primitives is as a problem of sorting primitives to the screen
since a graphics primitive can fall anywhere on or off the screen [MoIn94]. For a parallel system, we
need to distribute data across processors to keep the load balanced. Actualy, this sort can occur
anywhere in the rendering pipeline:

- during geometry processing (sort-first)
- between geometry processing and rasterization (sort-middie)
- during rasterization (sort-last)

The structure of the paralel rendering system is determined by the location of this sort. The following
discussion follows that in [Moln94].
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Figure 2 Sort-first polygon rendering scheme

1.1.1 Sort-First

The main idea behind sort-first is to distribute primitives early (during geometry processing) in the
rendering pipeline (see Figure 2). The screen is divided into regions of equal size (see Figure 3), and
each processor (or renderer) is assigned a region. Each processor is responsible for al the pixel
calculations that are associated with its screen region.

In an actual implementation, primitives would initially be assigned to processorsin an arbitrary way.
Each renderer then performs enough transformation processing to determine the screen region into which
the primitive fals. If this region belongs to another processor, the primitive is sent over the
interconnection network to that processor for rendering. After each primitive has been placed with the
proper renderer, al of the processors can work in parallel to complete the final image.

With this method, each processor implements the entire rendering pipeline for its portion of the
screen.  Communication costs can be kept comparatively low compared with other methods if features
such as frame coherence are properly exploited. For rendering a single frame, however, amost all the
primitives will have to be redistributed after the initial random assignment. Some duplication of effort
may occur if a primitive falls into more than one region, or if the results of the original geometry
processing are not sent with the primitive when it is transmitted to the appropriate renderer. Also, the
system is susceptible to load imbalance since primitives may be concentrated into particular regions or
may simply take longer to render. Both of these situations will cause the affected processor to consume
more time in processing its screen region. Very few, if any, sort-first renderers have been built.
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Figure 3 Image space subidivision

1.1.2 Sort-Middle

In a sort-middle renderer, primitives are sorted and redistributed in the middle of the pipeline: between
geometry processing and rasterization (see Figure 4). By this point, the screen coordinates of the primitives have
been determined through transformation processing, but the primitives have not yet been rasterized. This point isa
natural breaking position in the rendering pipeline.

In an actual implementation, primitives are arbitrarily assigned to processors as before. The geometry
processors perform transformation, lighting, and other processing on the primitives originally assigned to them, and
then classify the primitives according to screen region. Screen-space primitives are then sent to the appropriate

Graphics database
(arbitrarily partitioned)

G G G G
Redistribute screen-space primitives
R R R R

Display

Geometry
Processing

Rasterization

Figure 4 Sort-middle polygon rendering scheme
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rasterizing processors, which have been assigned unique regions of the screen, for the remaining processing.

The sort-middle strategy is general and straightforward and has been implemented in both hardware (including
Pixel-Planes 5 [Fuch89] and the SGI Reality Engine [Akel93]) and software [Whit94] [EllsO4]. Like sort-firgt,
however, this method is susceptible to load imbalance due to the uneven distribution of primitives across screen
space. Communication times can be higher under certain conditions. Also, primitives that overlap regions may
reguire some additional processing.

1.1.3 Sort-Last

Under the sort-last strategy, sorting is deferred until the end of the rendering pipeline (see figure 5).
Primitives are rasterized into pixels, samples, or pixel fragments, which are then transmitted to the
appropriate processor for visibility determination.

Graphics database
(arbitrarily partitioned)

vy

Geometry
Processing
R R e R R Rasterization
Redistribute pixels, samples, or
fragments
l_+—_l I?l ? I?\ (Compositing)
Display

Figure 5 Sort-last polygon rendering scheme

In practice, primitives are initially distributed to processors in an arbitrary manner, as in the other
methods. Each renderer then performs the operations necessary to compute the pixel values for its
primitives, regardless of where those pixels may reside on the screen. These values are then sent to the
appropriate processors according to screen location. At this point, the rasterizing processors perform
visibility calculations and composite the pixels for final display.

Asin sort-first, each processor implements the entire graphics pipeline for its primitives. While the
overall technique is less prone to load imbalance, the pixel traffic in the final sort can be very high.
Numerous rendering systems using the sort-last method have been constructed in various forms,
including [Evan92] and [Kubo93].

-6



1.2 Ray Tracing

Ray tracing is a powerful rendering technique that can produce high-quality graphics images,
however, this quality comes at a price of intensive calculation and long rendering times. Even relatively
simple ray-traced animations can prohibitively expensive to render on a single processor. For longer,
more complex animations, the rendering time can be intractable. Fortunately, ray tracing is a prime
candidate for parallelization since its processing is readily amenable to subdivision. Specifically, ray
tracing inherently contains a large amount of parallelism due to the independent nature of its pixel
calculations [Whit80]; therefore, most ray tracing rendering algorithms lend themselves to parallelization
in screen space.

Other partitioning schemes are employed in ray tracing as well. Instead of dividing the image space,
the object space can be split into smaller regions, or the objects themselves may be assigned to individual
processors. These techniques are discussed more fully below.

1.2.1 Image Space Partitioning

Using this scheme, the viewing plane is divided into regions, each of which is completely rendered
by an individual processor (see Figure 3). That is, for each pixel in aregion, the processor assigned to
that region computes its entire ray tree. While this technique is conceptually straightforward, the entire
database of scene objects must be accessible to every processor.

The benefits of this approach are simplicity and low interprocessor communication as compared with
other partitioning methods; the largest drawback is its limitation to multiprocessor architectures with
significant local processor memory. Another potential problem is load imbalance, since image detall
may be concentrated in certain regions of the screen. To combat this situation, the load balancing
algorithm may further subdivide complex regions to provide idle processors with additional tasks.

1.2.2 Object Space Partitioning

Here the 3-dimensional space where the scene objects reside is divided into subvolumes, or voxels.
Voxels may not be equally sized in order to achieve better load balancing. In the initialization phase of
ray tracing, each voxel is parceled out to a particular processor. When rays are cast during rendering,
they are passed from processor to processor as they travel through the object space. Each processor,
therefore, needs only the scene information associated with its assigned voxels.

While this technique may not suffer from frequent load imbalance, it does incur costs in other ways.
First, as new rays are shot, they must tracked through voxel space; this processing is not required for
other schemes. Additionally, since potentially millions of rays are fired for each image, communication
could be become excessive as rays enter and exit regions of object space during rendering.



1.2.3 Object Partitioning

This partitioning scheme parallelizes the rendering task by assigning each object to an individual
processor. As in object space partitioning, rays are passed as messages between processors, which in
turn test the ray for intersection with the objects they are assigned. Object partitioning also shares some
of the benefits and detriments of object space partitioning. Specifically, the load may be fairly well-
balanced, but the communication costs may be high due to the large amount of ray message traffic.

1.2.4 Load Balancing Scheme

Finally, parallel rendering schemes can be classified according to their load balancing method. Of
course, the primary goal of any load balancing scheme is to distribute the work among processors as
evenly as possible and thus exploit the highest degree of parallelism available in the application. Many
different types of load balancing schemes exist, but each falls into one of two categories:

e Satic Load Balancing. In this scheme, partitioning is performed up front and processors are
assigned subtasks for the entire duration of the rendering process. In this way, overhead is
minimized later in the rendering; however, a good deal of care must be taken to ensure that the
load will be balanced. Otherwise, the algorithm will suffer from poor performance.

* Dynamic Load Balancing. With this scheme, some processing assignments are determined at the
start, but later assignments are demand-driven. That is, when a processor determines that it
needs more work to do, it will request a new assignment. In this way, processors will never be
idle as long as more work is left to do. The key here is to distribute the load as evenly as
possi ble without incurring excessive overhead.

1.25 Comments

Hybrid schemes have also been proposed, combining image space partitioning with object space
partitioning [Bado94] and image space partitioning with object partitioning [Kim96]. When choosing a
partitioning scheme, the architecture of the parallel machine should be considered. For instance, an
image space partitioning algorithm will perform better on aMIMD machine than on a SIMD machine. In
general, tradeoffs exist between the type of partitioning algorithm used and the architecture chosen.
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2  Classfication by Hardware

As previoudy stated, for some computationally intensive rendering tasks, parallel processing
provides the only practical means to a solution. One way to perform parallel rendering isto use asingle
multiprocessor machine, such as a Thinking Machines CM-5, Intel Paragon, Cray T3E, or specialized
parallel processor. In these machines, enormous computing power is provided by up to tens of
thousands of processing elements able to access many gigabytes of memory and to work in concert
through a high-speed interconnection network. Multiprocessors are the most powerful computers in the
world and play an active role in solving Grand Challenge problems, such as weather prediction, fluid
dynamics, and drug design [Hwan93].

An aternative to using traditional multiprocessor systems for paralel processing is to employ a
network of workstations acting as a single machine. This approach, termed distributed or cluster
computing, is conceptually similar to a multiprocessor, but each processing element consists of an
independent machine connected to a network usually much slower than a multiprocessor interconnection
network. While this network can be of any type (e.g., Ethernet, ATM) or topology, the computers
connected to it are generally UNIX-based machines which support some type of distributed programming
environment, such as Parallel Virtual Machine (PVM) [Geis94] or Message Passing Interface (MPI)
[Grop94]. Many types of applications can benefit from distributed computing, including computation-
intensive graphics tasks, such as ray tracing [ Sung96].

This section focuses on past work that has been documented using traditional multiprocessors and
clusters of machines to accomplish graphics rendering tasks, particularly in the area of ray tracing.
Included in this discussion is relevant background concerning PVM and MPI, as well as motivation for
using these systemsin a clustered environment.

2.1 Paralled Hardware

Since rendering consumes such a large amount of computing resources and time, a good dea of
effort has gone into exploring parallel solutions on multiprocessor machines. Some of the schemes
proposed are designed to run on general-purpose parallel machines, such as the CM-5, while others rely
on specialized hardware built especially for ray tracing rendering. A brief survey of these techniques
appears in the following sections. Although current research continues in the design and implementation
of parallel rendering systems, aflurry of activity in this area occurred in the 1ate1980s and early 1990s, as
reflected in many of the references.

2.1.1 General-Purpose Multiprocessors

In [Plun85], a vectorized ray tracer is proposed for the CDC Cyber 205. In a given execution cycle,
rays awaiting processing are distributed to individual processors and ray-object calculations are



performed object by object in alock-step SIMD fashion.

Similarly, [Crow88] implements a SIMD ray tracing algorithm, but for the Connection Machine
(CM-2). Image subdivision is used with one pixel being assigned to each of the 16K processors to
produce a 128x128 image, with ray-object intersections performed on an object by object basis. The
algorithm proposed by [Schr92] also runs on a CM-2, but uses an object-space subdivision coupled with
processor remapping capabilities to achieve dynamic load balancing.

Rounding out the SIMD field, [Goel96] describes a ray casting method developed on the MasPar
MP-1 for volume rendering, another computation-intensive graphics application used for viewing
complex structures in medical imaging and other forms of scientific visualization. To handle the large
amount of data and processing involved, machines are assigned portions of the volume to render, which
are composited to produce a final image. This system allows users to rotate a volume, magnify areas of
interest, and perform other viewing operations.

In the MIMD category, [Reis97] employs an IBM SP/2 running an image-space partitioning scheme
with dynamically adjustable boundaries to render frames of an animation progressively. In this form of
rendering, termed progressive rendering, an image is initially rendered quickly at low resolution and
progressively refined when little or no user interaction takes place. Progressive rendering is useful in
interactive environments where frame generation rate is important. The goal of [Keat95] aso involves
progressive rendering, although their renderer makes use of object-space partitioning on the Kendall
Square Research KSR1 machine.

Severa research efforts have focused on the Intel iPSC machines as the architectural environment
for implementing a parallel ray tracer. Interestingly, whether the partitioning scheme is image-based
[1sle91] [Silvo4], object space-based [Prio88] [Prio89] or a hybrid of the two [Akti94] [Bado94], the load
balancing scheme is aimost aways of a static nature ([Isle91] also tests a dynamic scheme). This choice
results from a concern that dynamic load balancing schemes produce a large number of messages, which
in turn, may dramatically affect the performance of a distributed machine [Prio89].

In the area of transputer-based machines, [Gree90] uses an image subdivision technique combined
with memory and cache local to each processor to deal with the many required accesses to the scene
description database. Here, the granularity of paralelism is controlled through the size of the image
subregion, which also relates directly to the effectiveness of the dynamic load balancing scheme. To
render ray-traced animations, [Maur93] use a static object-space partitioning scheme on a system of 36
transputers. Progressive ray tracing and volume rendering on transputers is addressed by [Sous90] and
[Pito93], respectively.

2.1.2 Specialized Multiprocessors

Probably one of the most noteworthy examples of a specialized multiprocessor for polygon
rendering is the series of Pixel-Planes machines developed at UNC-Chapel Hill. The Pixel-Planes 4
machine [Eyle88] is a SIMD machine with three basic components. a host workstation, a graphics
processor, and a frame buffer. Each of the customized processors is responsible for a column of display
pixels. For itstime, it provided good performance; however, the system used processors with slow clock
speeds and did not provide effective load balancing.
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Pixel-Planes 5 [Fuch89 provided some improvements over Pixel-Planes 4 by incorporating faster
procesors and employing a more flexible MIMD architedure. The system implemented a sort-middle
algorithm, with ead procesor in charge of a particular region o the screen. To handle the
communication, a ring architedure cgable of handing eight messages smultaneously is employed.
Ulti mately, the ring network impases a limit on scaability.

The PixelFlow machine [Moln92 was developed to overcome the limitations of the previous
architedures through perallel image composition. Each individual processor works to creae afull-
screen image using only the primitives assgned to it. All of these images are mlleded and compasited
to form the final display.

For ray tradng, [Lin9]1] employs a spedalized SIMD machine to perform stochastic ray tradng.
The stochastic method adds extra processng to the ray tradng agorithm to handle atialiasing, an
important aspeda of any renderer. To overcome some of the inefficiencies found in aher SIMD
approadies, a cmmbination d image space partitioning and oljed spacepartitioning is used. That is, a
block of pixelsisrendered by casting rays and using scene aherenceto restrict the parts of objed space
which must be tested.

In [Gaud89 a spedal-purpose MIMD architedure using image spacesubdvision and a static load
distributionis described. To overcome the problem of having the entire objed database resident at eat
procesor, a ceitral broadcast processor isales data padkets describing the objed database oyclicdly.
Here, the procesors make requests for various pieces of the database, and orly those parts are broadcast
in a given cycle. Using a somewhat different approad, [Shen95 uses objed space partitioning on
clusters of processors, but ead procesor operates in a pipelined fashion, a scheme previously explored
in the LINKS-1 architecure [Nish83.

One of the few multiprocessor architedures which alocaes work based on oljed subdvision
combined with image subdvision is proposed by [Kim96]. Ead processor handles ray-objed
intersedion tests with its asdgned oljeds, which are spread aaossthe objed space If the load becomes
unbalanced, oljeds are dynamicdly transferred to ather processors.

Other spedalized multiprocessor madines of note ae the Pixel Madine [Potm89] (useful for
several types of rendering including ray tradng and the RayCasting Engine [Meno94 (spedficdly built
for CSG modeling).

2.1.3 Distributed Computing Environments

Parallel rendering using distributed computing environments continues to grow in popuarity,
espedaly in the fields of entertainment and scientific visuaization. Below are afew interesting
examples.

Perhaps the most popuar example is the Disney film, Toy Sory, which used a network of 117 Sun
workstations and the Pixar Renderman system to produce the animation [Henn9q. To generate its
144,000individual frames, Toy Story required abou 43 yeas of CPU time. If not for the many madines
participating in the computation, the movie's production could na be redized. For some tasks, such as
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applying surface textures, one machine was chosen as a server for the rest. For other tasks, such as final
rendering, the machines were basically used independently to render individual frames.

Another entertainment application used a network of 40 Amiga machines to render special effects
for the television series SeaQuest [Worl93]. Although the delivered product contained only two to three
minutes of computer graphics per episode (3,600 to 5,400 frames of animation), the rendering activity
was so time-intensive that the team struggled to deliver the graphics within its weekly deadline.

For the average user, some popular commercial animation packages (e.g., Alias’Wavefront, Maya,
and 3D Studio) employ coarse-grain parallelism to allow rendering of individual frames of an animation
across a network of machines. This technique can mean the difference between an animation being ready
in hours or in days. POV-Ray has also been ported to run in a clustered environment; however, the
parallelization scheme works on single images only.

Other computation-intensive graphics problems have taken advantage of the processing power of
distributed computing, specifically volume rendering and virtual reality. Although real-time interaction
in these systems is constrained by the relatively slow network connecting the machines, significant
speedups have been reported using a network of IBM RS6000 machines for volume rendering [Gier93]
[Ma93], and a network of Sun Sparcstations and HP workstations for virtual environments [Pan96].

Distributed computing is also being applied to computer vision algorithms [Judd94], afield closely
related to graphics. Here, researchers use PVYM on a cluster of 25 Sun Sparcstations for an edge-
detection agorithm. One remarkable result of their experiments is that they achieved superlinear
speedup on the cluster over the sequential version. This result is due to the large aggregate memory of
the clustered machines, which reduced the amount of paging as compared to the single processor.

Not nearly as much research has been conducted concerning ray tracing in distributed computing
environments as in traditional multiprocessor machines. Perhaps this fact is due to the relatively recent
introduction of PVYM and MPI. Regardless of the reason, more advanced parallel ray tracing algorithms
combined with a distributed computing environment remain a largely unexplored area. Severa related
proj ects are summarized below.

For single images, [Jeva39] uses a dynamic load balancing technique with spatial partitioning and a
novel warp synchronization method. At the other end of the spectrum, [Ris94] applies a static load
balancing scheme using object partitioning on a network composed of both sequential workstations and
parallel computers. Surprisingly few systems use an image partitioning scheme in a distributed
computing environment, even though it represents the technique with the highest potential for speedup
[Clea86] and overcomes the problems of limited local memory that exist in traditional multiprocessors.

For animations, [DeMa92] describes the DESIRe (Distributed Environment System for Integrated
Rendering) system, which incorporates a coarse-level dynamic load balancing scheme that distributes
individual frames of an animation to networked workstations. The goa of [Stob88] is similar, except
that the system is designed to run without affecting the regular users of the workstations. By stealing idle
cycles from 22-34 workstations, a ray-traced animation lasting five minutes (7550 frames) was rendered
in two months, although the overall task was estimated at 32 CPU-months.

The work presented in [Cros95] uses a relatively small (three-machine) distributed environment for
ray tracing animations in virtual reality applications. Here, each of the machines has a special task
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assigned to it according to its processing specialty. In order to achieve close to interactive rates, the
system, which takes advantage of progressive refinement, is composed of fairly powerful individual
processors connected by an ATM network.

2.2 Discussion of Architectural Environments

For parallel processing tasks, the fastest systems will generally be the specialized multiprocessor
machines, since they are built with a specific task in mind. Next will be general-purpose multiprocessor
machines. Although distributed environments may provide the same number of processors as a
multiprocessor machine, computations will be performed more quickly on multiprocessors due to their
high-speed interconnection networks. Even so, several factors have motivated a trend toward distributed
computing.

First, and perhaps most importantly, not many organizations can afford a parallel machine, which
can easily cost millions of dollars [Geis94]. Many sites, however, already have some type of network of
computers. Second, multiprocessors often employ specialized or exotic hardware and software resources
that significantly increase the complexity, and hence the cost, of the machine; conversely, great expense
is rarely incurred to perform distributed computing because the network and the machines are usually
already in place. Surprisingly, distributed computing has proven to be so cost-effective that networks of
standard workstations have been purchased specifically to run parallel applications that were previously
executed on more expensive supercomputers [Grop94].

Due to the fact that networks of workstations are loosely coupled, distributed computing
environments allow the network to grow in stages and take advantage of the latest network technology.
As CPUs evolve to faster speeds, workstations can be swapped out for the latest model. Such flexibility
in network and processor choice is not usually available on a multiprocessor. Another consideration is
system software: operating system interface, editors, compilers, debuggers, etc. A benefit of workstation
platforms is that they remain relatively stable over time, allowing programmers to work in familiar
environments. To use multiprocessor systems, devel opers may have to climb a steep learning curve.

Additionally, in a distributed computing networked environment, the interconnected computers
often consist of awide variety of architectures and capabilities. This heterogeneity leads to arich variety
of machine combinations and computing possibilities, which can be tailored to specific applications to
reduce overall execution time. On the other hand, a multiprocessor machine does not spend processing
time converting data between various machine types, as a distributed computing environment might.

Finally, while utilization and efficiency are extremely important in the multiprocessor world, users
on a network of traditional machines rarely consider these issues. The results are under-utilized
computers which spend much of their time idle. With distributed computing, some of those idle cycles
can be put to good use without impacting the primary users of the machines.
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2.3 Message-Passing Softwar e for Distributed Computing Environments

To redize distributed computing, computers in a network must suppat some type of distributed
programming environment that allows users to write parallel applications for networked madiines. This
programming environment shoud provide a @mmon interfacefor developers to pass messages easily
aaossvarious network types and between madhines of differing architedures. Although many additi onal
fedures are usualy included, a distributed programming environment need orly provide aminimum set
of cagpabiliti esto be useful [Grop94:

* First, some method must exist to start up and initi ali ze the parall el processes on all participating
machines. This procedure may be a& smple & fedfying eah machine and an asciated
command in a static file, or spawning the processes diredly within the program of the master
process Here, the master processrefers to a user-initiated processresporsible for delegating
work and compasiting results; conversely, slave processes perform only the work assgned to
them and report results badk to the master.

* Once start-up is complete, a process $ioud be ale to identify itself, as well as other proceses
running on the loca madine or remote machines participating in the work. Such identification
isuseful for spedfying the source and cestination d transmitted messages.

e Since adistributed computing environment often consists of madines with widely varying
architedures, messge transmisson must acourt for differing data formats  that all
computers on the network understand the data exchanged between them. This capability is often
built into the programming library, which first transforms the data into a common format that
can be eaily demded onthe recaver's sde. For this reason, among others, a version d the
distributed programming environment must exist for every type of machine achitedure
participating in the computation.

* Finaly, ornce a application is complete, some way of terminating all the processes must be
avail able.

Many distributed programming environments have recaved attentionin the last five yeas, including
p4 [Butl94], Express [Flow94], Linda [Carr94], and TCGMSG [Harr91]; however, by far the most
popuar systems are PVM and MPI. PVM was developed at Emory University and Oak Ridge National
Laboratory and was first released in 1991. The MPI standard, an international eff ort, was introduced in
1993.

Both the PVYM and MPI message-passng environments, fredy available on the world-wide web,
provide cmmon interfaces for communication on boh multiprocessors and retworks of workstations.
Both run onmany different macines, all owing networked computers of diverse achitedures to emulate
a distributed-memory multi processor. Eadh of the madhines in the network may be asingle-processor or
multi procesor system.

A running process in either PVM or MPI can view a network of computers as a single, virtua

machine, ignoring architecural details, or as a set of spedalized procesors with urique computational
abilities. The master process runs on a single computer from which other tasks participating in the
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computation are initiated. Processes, or tasks, roughly correspond to UNIX processes and operate
independently and sequentially, performing both communication and computation. Multiple tasks can
run on multiple machines, on a single machine, or a combination of the two.

PVM and MPI are not programming languages; rather, they provide libraries specifying the names,
parameters, and results of Fortran and C routines used in message passing. Any program making use of
these routines can be compiled with standard compilers by linking in the PVM or MPI library. Note that
the developer controls the parallelism in the program by writing master and slave tasks and explicitly
specifying the high-level message passing protocol between them. Both PVM and MPI support functional
parallelism, in which each task is assigned one function of a larger process, data paralelism, in which
identical tasks solve the same problem but for small subsets of the data; or a combination of either
approach.
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[11.1 Introduction

It is our belief that in the near future ray tracing will become the de facto standard
for interactive rendering. For certain applications, multi-processor ray tracing already
out-performs hardware based solutions [5, 19,29, 30]. Whereas hardware rendering
becomes ever more complex to keep up with todays demands, ray tracing is easily im-
plemented in software, scales sub-linearly with scene-complexity and (nearly) linearly
with the number of processors used. These are indeed favorable conditions.

Research has shown that using current high-end general purpose hardware, interac-
tive ray tracing is possible for moderately complex scenes and scales well to reasonably
large numbers of processors, albeit using fairly small image sizes (typically 512 by 512
pixels). One of the key features of such interactive ray tracing systems is that the in-
herent parallelism of ray tracing is exploited as much as possible. In other words, it
is paramount that the complexity of the algorithm needs to be kept as low as possible.
A simple algorithm is better than a complex one. Small data structures are better than
large ones.

The choice of hardware is also quite important. High level choices such as inter-
connection network and memory topology can make or break an interactive ray tracing
project. While shared-memory architectures are said to not scale beyond a certain num-
ber of processors due to the buss-architecture commonly employed, we believe that
with current technology the latency and network throughput experienced in distributed
memory systems just is not good enough for the purposes of interactive ray tracing. So
this section of the course will be exclusively targeted at shared memory architectures.
In fact, the interactive ray tracer described here is implemented on a Silicon Graphics
Origin 2000 and results in the following chapters are shown using a Silicon Graphics
Origin 3800. Both are shared memory machines with a (cache-coherent) non-uniform
memory access (ccCNUMA) architecture. Hardware selection and its implications are
further discussed in section 111.1.1

Another key feature is that at the code level the algorithm needs to be optimized
as far as possible. The particular features of the hardware on which the algorithm is
going to run, need to be exploited as much as possible. Low level optimization is an
extremely important aspect of interactive ray tracing. Given the choice of hardware, in
Chapter 111.2 we show which issues should be considered to optimize the ray tracing
process. We would also like to refer to Siggraph 2001 course 13 which contains a more
elaborate discussion of these issues [25].

After optimizing the ray tracer, one may want to extent the feature set of the ray
tracer. Walking through a scene at interactive rates is useful, but being able to interact
with it is even more useful. While ray tracing is traditionally good at rendering static
scenes, we show that it is possible to render animated scenes, or even interact with the
scene in real-time. This requires some basic modifications to the ray tracing algorithm
(in particular the spatial subdivisions need a tweak) that are easy to implement, incur a
small performance penalty, but allow animation to take place interactively and give the
user the ability to manoeuvre objects. Chapter 111.3 shows the details.

A second wish users will have once they’ve implemented their interactive ray tracer,
is that it would be great if it could deal with higher scene complexity and/or larger
image sizes. As the ray tracer is already fully optimized, it is unlikely that further low-
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level tweaks are going to significantly improve performance. A high-level optimization
is required. One approach would be to try and implement techniques that allow results
from previous frames to be reused. There are a number of techniques in existence
that can be employed. Reusing previous results involves displaying pixels at a higher
frame-rate than new pixels can be produced. Storing pixels in a 3D point cloud and
reprojecting the points for each new frame is one such method. Several choices need to
be made to optimize such reprojection techniques, including strategies to decide which
pixels to render for the next frame, whether frames are going to be used in the first place
or whether the algorithm is to operate in asynchronous mode (frameless rendering), and
whether the point reprojection is also going to operate in parallel or not. Chapter 111.4
presents an implementation and discusses its merits and weaknesses.

[11.1.1 Hardware considerations

As discussed briefly above, the choice of hardware is important. Ray tracing can be
implemented to perform interactively, but the first thing that appears to be required is
some form of parallelism. Without it, the options are extremely limited. Assuming
that parallel hardware is available, the next question to ask is whether this hardware is
suitable or not.

We limit the discussion about what hardware to use to general purpose hardware
and leave dedicated hardware solutions to others. General purpose hardware can gen-
erally be grouped into two broad categories: distributed and shared memory architec-
tures. Putting this distinction before any others is no coincidence: its impact on the
performance of our interactive ray tracer will be profound. Whereas distributed mem-
ory architectures (either as parallel machines or as networks of workstations) can be
cheap, they do exhibit a few disadvantages that are more or less important depending
on the application. The first of these is the fact that fetching a data item from a remote
processor’s local memory can be a couple of orders of magnitude slower than a local
memory access, especially on clusters of workstations. Rendering large scenes using
distributed memory architectures would therefore require the scene database to be repli-
cated. Even then, after each frame is rendered, the pixel data needs to be transferred to
a framebuffer which is typically not distributed. It therefore requires communication of
all pixel data to one processor which holds the frame buffer. Given the relatively high
latency and low throughput which one can expect from distributed memory systems,
this is unlikely to be a fruitful approach. One solution would be to research the use of
distributed frame buffers, which may make distributed memory interactive ray tracing
feasible.

As far as we are aware, currently there are no distributed memory systems with
distributed framebuffers commercially available. This is likely to change in the future,
though. When this happens, the above arguments will have to be re-evaluated.

As a result, a solution with the necessary latency and throughput figures, is cur-
rently available by using shared memory systems. Although presented to the user
as containing just one contiguous block of memory, these machines usually employ
caching mechanisms to further speed-up memory accesses. Hence, there is still a dis-
tinction between local and remote memory accesses, albeit that the time figures for
these accesses are much better than for distributed memory machines.
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Another advantage of such systems is that in theory, programming is much simpler
than programming on a distributed memory architecture. On shared memory architec-
tures, a sequential program may run unaltered. If the performance is unsatisfactory,
the inner loops can be parallelized incrementally. There is no need to parallelize the
full code in one go. After each incremental step, the program could be tested for cor-
rectness and performance. Also, within the shared memory paradigm, loops can be
parallelized without knowledge about where the data resides that is accessed within
the loop. These are facilities that make programming on a shared-memory architecture
relatively straightforward.

In practice, however, ease of programming is strongly related to the level of op-
timization desired. As ray tracing is extremely computationally intensive, we cannot
afford to waste computer cycles and we therefore have to pay careful attention to per-
formance optimization. Unfortunately, this negatively affects ease of programming.
On the hardware architecture described in Appendix I11A, the memory is physically
distributed, although it is presented to the programmer as one block of contiguous
memory, having a single address space. This means that it is faster to access some
parts of the memory than it is to access other parts of the memory. Thus, there is
a performance gain to be had from anticipating where data is located. Although the
parallelized program will work without such knowledge, its performance will not be
optimal.

We have now stated our case for shared memory architectures. It is motivated by the
nature of our application, which requires extremely fast communication, just to get the
pixels to the screen. For other applications, the choice of hardware may be different and
for coarse grain applications, it may be extremely cost effective to choose distributed
memory machines. If, for example, the lighting simulation is to include diffuse inter-
reflection, the cost of rendering a single frame may be prohibitively expensive. Using
a distributed memory system is then an attractive alternative to turn a nearly intractable
problem into a feasible one.

Whereas we’ve so far considered memory architectures in general, the interactive
ray tracer described in this course is actually implemented on a particular shared mem-
ory system: a Silicon Graphics Origin 2000. In Appendix I11A we describe this archi-
tecture in some detail, as knowledge of this hardware allows our code to be optimized
further at a later stage. Note also that the results presented in the following chapters
were obtained on a faster Silicon Graphics Origin 3800. From a programmer’s point
of view, the differences are small, although the algorithms run around 1.7 times faster
than on the Origin 2000.
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[11.2 Interactiveray tracing

In this section we focus on the basics of interactive ray tracing. The general approach
is to keep the algorithm as simple as possible. In practice this means that a master-slave
configuration is employed. The slaves produce pixels, which are displayed by a single
display thread, which also doles out new tasks.

The display thread uses double buffering. While one set of pixels is being dis-
played, another pixel array is filled by the renderers. Once the new frame is complete,
the display thread swaps the two pixel arrays and displays the new frame.

[11.2.1 Organization of the algorithm

For the renderers, a task consists of rendering a number of neighboring pixels. The task
size is chosen such that the pixel data in a single task fits on a cache line. Because the
pixels are close to each other in screen space, their associated rays are likely to intersect
the same objects, thus improving cache performance by minimizing the amount of
object data that needs to be fetched from memory.

New tasks are doled out starting from the top of the image. Tasks near the bottom
of the image, which are computed later during the current frame, consist of fewer pixels
than the ones near the top. This ensures a good load balance, while also keeping the
total number of tasks executed per frame small. The latter is important, because there
is inevitably some overhead associated with each task and fewer tasks may improve
cache coherence.

[11.2.2 Framelessrendering

An alternative strategy is to abandon the concept of frames and switch to frameless
rendering [4, 8,19, 33], where pixels are displayed as soon as they are rendered. Here,
a task consists of a single ray, which for each processor is chosen randomly. Although
the latency between computing a pixel and displaying it is reduced, the time required
to render the equivalent of a complete frame is increased. Thus, from a performance
point of view, this is a less successful organization of the algorithm. Cache coherence
is preserved less well and extra overhead is incurred. However, when scene complex-
ity increases, frame-based rendering would slow down to the point where the frame
rate would be too slow for practical purposes. Although frameless rendering is in
fact slightly slower than frame-based rendering, the effect of randomizing the order in
which pixels are traced, and splatting the pixels on screen as soon as results become
available, gives the impression of smooth movement long after frame-based rendering
ceased to be effective. In Chapter I11.4 this technique is compared with other mech-
anisms to increase the production of pixels in an interactive ray tracing context. This
technique is discussed further in Section 111.2.4.

[11.2.3 Tracingasingleray

Tracing each ray is optimized in the usual way by employing a spatial subdivision.
While the exact type of spatial subdivision is not fixed, in our system it is either a grid,
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which may be nested to accommaodate local scene complexity, or a hierarchical spatial
subdivision such as a bounding volume hierarchy or an octree. More elaborate schemes
are possible, but we have obtained good results with the above spatial subdivisions. We
will therefore not go into great detail describing them, with the exception of the discus-
sion in Chapter 111.3 where object animation has a direct impact on the organization of
any spatial subdivision.

While the above discusses some important design decisions, a simple screen space
subdivision combined with a standard spatial subdivision does not explain why this al-
gorithm is capable of achieving interactive rates. The performance gain for this type of
rendering on SGI Origin 2000 and 3800 architectures lies in the low level optimization
employed. This is the topic of the following sections.

[11.2.4 Low level optimization

In this section, we discuss simple ways to optimize data structures. Efficiency can be
gained by optimizing data access patterns as well as by ensuring that data structures fit
on a single cache line as much as possible.

Ray tracing in general can be quite efficient in terms of data access patterns. Neigh-
boring primary rays have a reasonable probability of intersecting the same objects.
Hence, if neighboring rays are traced one after the other, chances are that the objects
fetched for the first ray, still reside in the local cache when tracing the second ray.
Such data coherence can for example be exploited by tiling the screen into sufficiently
large tiles and assign these tiles as tasks to processors. Although this improves cache
coherence, such tiling approaches reduce the number of tasks available per frame. By
making tiles too large, load balancing issues may appear. In the interactive ray tracer
a trade-off is reached by assigning large tiles at the start of the frame and reducing tile
sizes when the frame progresses. This ensures high cache efficiency throughout most
of the computations associated with a frame, while at the same time the workload is
well balanced since the processors are likely to finish their work for the current frame
roughly at the same time.

In the case of frameless rendering, results are displayed as soon as they become
available. This is in contrast with standard frame-based rendering where the results of
the current frame are displayed as soon as the complete frame is finished. Frameless
rendering therefore has the advantage that most of the results are displayed quicker
than in frame-based rendering of the same scene. However, to achieve fluidity, task
assignment will have to be randomized. Because of this, cache coherence is effec-
tively destroyed and the time taken to render the equivalent of a complete frame would
therefore take longer than it would take to compute a single frame using frame-based
rendering. One advantage of frameless rendering is that for slightly more complex
scenes, the animation or walk-through is perceived more fluid and responsive where in
frame-based rendering the update rate of the display would become distractingly slow.
Frameless rendering is compared to other optimization strategies in Chapter I11.4.

Assuming frame-based rendering for now, the data structures employed can be op-
timized by noting that on the Origin 2000, a cache line is 128 bytes long. When a cache
invalidation occurs, a whole cache line is swapped out, to be replaced by a new one.
If two different data items reside on a single cache line, and one gets invalidated, by
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necessity the other data item will also be removed from the cache. This may incur a
performance penalty that can be fairly easily avoided.

Many data structures routinely employed for ray tracing can be cast in the form of
an array of structs. If this is the case, then the size of each of these structs should be
considered. In general, it is recommended that the size of these structures is as small as
possible. One could ensure that cache lines are completely filled by making the size of
these structures a power of two. Those data structures that are crucial to performance
can be artificially increased in size to be multiples of 128 bytes by adding a character
array with the required size to make the whole struct 128 bytes long. As a result, these
padded data items can never be removed from the cache because another item on the
same cache line is invalidated. Such padding is therefore an important weapon in the
arsenal of the programmer, but should nonetheless be used with care. Before and after
padding such data structures, one should profile the result to establish if the effect was
beneficial or not.

Finally, source code in general can be optimised by minimising the number of
branch instructions that occur. This is especially the case for branch instructions that
are located within inner loops. With the advent of branch prediction facilities, branch-
ing is less detrimental to performance than it once was, but still should be considered
an opportunity for optimization.

[11.2.5 Profiling

Other non-trivial reasons for suboptimal performance may be determined using profil-
ing and can result from unoptimized code, unoptimized memory access patterns and
perhaps even a lack of understanding of the underlying architecture. As it can be diffi-
cult to predict where unnecessary performance penalties are incurred, a thorough anal-
ysis of the implementation can be useful. Rather than giving a detailed analysis of the
profiling steps undertaken to make the interactive ray tracer faster, we would like to
refer to appendices I11A and 111B which describe the SGI Origin 2000 architecture in
some detail and provide a tutorial on profiling on these machines.

[11.26 Memory and CPU placement

As it is realized that even in architectures that are presented to the programmer as
shared memory configurations, the memory is in fact physically distributed, perfor-
mance can be gained by matching memory with processors. Normally, memory is al-
located using system calls, which means that the operating system decides which part
of the address space to use for each particular memory allocation. Therefore, unhappy
memory allocations may occur where the process requesting the memory is physically
located far away from the memory.

If it is known in advance that a particular data structure will be predominantly ac-
cessed by a particular process, it may be advantageous to actively place the memory
and the processors on fixed locations, rather than leaving this placement up to the op-
erating system. For such an undertaking to be successful, knowledge of the machine’s
physical architecture is necessary. For the Silicon Graphics Origin 2000, the archi-
tecture is described in Appendix I1A. Briefly summarizing: the machine consists of

-9



nodes which are interconnected using hubs. Each node contains a block of memory
and two processors (four on the Origin 3800). Each processor has a separate primary
and secondary cache. Memory access is therefore fastest if the data item requested is
located in a local cache. Second fastest are memory accesses within the node. Memory
that is located with other nodes are slowest to access.

If an algorithm causes many cache misses and if profiling has revealed that this
is not easily fixable, then mapping the data structures that cause the cache misses to
specific nodes may improve performance. One way to achieve this is to use mmap to
place memory on a node close to the requesting process and can be achieved using:

devzero_ fd = open ("/dev/zero", O RDWR) ;

local_memory = (localmemory t *) mmap (0, sizeof (localmemory t),
PROT _READ | PROT WRITE,
MAP PRIVATE | MAP_LOCAL,
devzero fd, 0);

For further information, we would like to refer to the mmap manual page. A less
involved method for placing memory with specific nodes is described in the dplace
manual page.

If the mmap mechanism is used for memory placement, it may be advantageous to
also pin processes to specific CPU’s. This can be achieved with the sysmp and sproc
commands (see the sysmp and sproc manual pages). To spawn a new process on a
specific processor, the followinf statements may be used:

sysmp (MP_MUSTRUN, cpu) ;
pid = sproc (render process, PR_SALL);
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1.3 Animation and interactiveray tracing

A fully optimized ray tracer which allows interactive walk-throughs is attractive over
other real-time rendering algorithms because it allows a large set of effects to be ren-
dered which are more difficult or even impossible to obtain using graphics hardware. In
addition, ray tracing scales sub-linearly in the number of objects due to the use of spa-
tial subdivisions. It also scales sub-linearly in the number of pixels rendered, provided
cache coherency can be exploited fully.

To make interactive ray tracing more attractive, we have looked into ways to en-
able objects to be manipulated in real-time ([23], reproduced with permission in Ap-
pendix 111C). In the following we assume that animation paths are not known prior to
the rendering, and so updates to the scene need to be achieved in real-time with as little
overhead as possible. In addition it is important that the effect of time-varying scenes
on the performance of the renderer is as small as possible.

Changing the coordinates of an object in real-time is not particularly difficult to
achieve, so we will not address this issue in any detail. However, an object’s change
in location, size or rotation does imply that after the transformation, the object may
occupy a different portion of space. In the absence of a spatial subdivision to speed up
the intersection tests, this would not constitute a problem.

However, the current speed of the hardware, combined with the number of compu-
tations required to ray trace an image, does not allow us to do away with spatial subdi-
visions altogether. Additionally, spatial subdivisions are usually built as a pre-process
to rendering. The cost of building a spatial subdivision is not negligible. Hence, spatial
subdivisions are required to obtain interactive frame-rates, but at the same time they
are not flexible enough to accommodate time-varying data.

In this section we describe a simple adaptation to both grid and octree spatial sub-
divisions which caters for a small number of animated objects. These objects can either
be animated according to pre-defined motion splines or they can be picked up by the
user and placed elsewhere in the scene. Animating all objects at the same time in a com-
plex scene is not yet possible. It would require rebuilding the entire spatial subdivision
for each frame and this is too costly to achieve using current technology. Focusing on
just a small number of objects to be animated/manipulated allows the design of spatial
subdivisions which can be incrementally updated after each frame.

In the following sub-sections the basic idea is explained (Section 111.3.1) and re-
sults are shown (Section 111.3.2). We would also like to refer to Appendix 111C which
includes a full publication regarding this subject. The results presented in this chap-
ter are obtained using an SGI Origin 3800, while appendix I11C contains older results
using an SGI Origin 2000.

[11.3.1 Algorithm

In this section modifications to grid and octree spatial subdivisions are discussed. The
octree is a hierarchical extension to the grid. We assume the reader is familiar with
these spatial subdivisions [1,6,9,11,13, 15,17, 18, 28, 32].

Grid spatial subdivisions for static scenes, without any modifications, are already
useful for animated scenes, as traversal costs are low and insertion and deletion of
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objects is reasonably straightforward. Insertion and deletion are considered basic op-
erations necessary for the animation of objects. The general approach is to remove an
object from the spatial subdivision, modify its coordinates and the re-insert the object
into the acceleration structure. Insertion is usually accomplished by mapping the axis-
aligned bounding box of an object to the voxels of the grid. The object is inserted into
all voxels that overlap with this bounding box. Deletion can be achieved in a similar
way.

However, when an object moves outside the extent of the spatial subdivision, the
acceleration structure would normally have to be rebuilt. As this is too expensive to
perform repeatedly, we propose to logically replicate the grid over space. If an object
exceeds the bounds of the grid, the object wraps around before re-insertion. Ray traver-
sal then also wraps around the grid when a boundary is reached. In order to provide
a stopping criterion for ray traversal, a logical bounding box is maintained which con-
tains all objects, including the ones that have crossed the original perimeter. As this
scheme does not require grid re-computation whenever an object moves far away, the
cost of maintaining the spatial subdivision will be substantially lower. On the other
hand, because rays now may have to wrap around, more voxels may have to be tra-
versed per ray, which will slightly increase ray traversal time.

During a pre-processing step, the grid is built as usual. We will call the bounding
box of the entire scene at start-up the *physical bounding box’. If during the animation
an object moves outside the physical bounding box, either because it is placed by the
user in a new location, or its programmed path takes it outside, the logical bounding
box is extended to enclose all objects. Initially, the logical bounding box is equal
to the physical bounding box. Insertion of an object which lies outside the physical
bounding box is accomplished by wrapping the object around within the physical grid,
as depicted in Figure 111.1 (left).

As the logical bounding box may be larger than the physical bounding box, ray
traversal now starts at the extended bounding box and ends if an intersection is found
or if the ray leaves the logical bounding box. In the example in Figure 111.1 (right), the
ray pointing to the sphere starts within a logical voxel, voxel (0, -2), which is mapped to
physical voxel (0, 2). The logical coordinates of the sphere are checked and found to be
outside of the currently traversed voxel and thus no intersection test is necessary. The
ray then progresses to physical voxel (1, 2). For the same reason, no intersection with
the sphere is computed again. Traversal then continues until the sphere is intersected
in logical voxel (4, 2), which maps to physical voxel (0, 2).

Obijects that are outside the physical grid are tagged, so that in the above example,
when the ray aimed at the triangle enters voxels (0, 2) and (1, 2), the sphere does not
have to be intersected. Similarly, when the ray is outside the physical grid, objects
that are within the physical grid need not be intersected. As most objects will initially
lie within the physical bounds, and only a few objects typically move away from their
original positions, this scheme speeds up traversal considerably for parts of the ray that
are outside the physical bounding box.

When the logical bounding box becomes much larger than the physical bounding
box, there is a tradeoff between traversal speed (which deteriorates for large logical
bounding boxes) and the cost of rebuilding the grid. In our implementation, the grid
is rebuilt when the length of the diagonals of the physical and logical bounding boxes
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Logical bounding box
—— Physical bounding box

Figure 111.1: Grid insertion (left). The sphere has moved outside the physical grid,
now overlapping with voxels (4, 2) and (5, 2). Therefore, the object is inserted at the
location of the shaded voxels. The logical bounding box is extended to include the
newly moved object. Right: ray traversal through extended grid. The solid lines are the
actual objects whereas the dashed lines indicate voxels which contain objects whose
actual extents are not contained in that voxel.

differ by a factor of two. This heuristic aims to provide a trade-off between traversal
speed and the frequency with which the spatial subdivision needs to be re-generated.

Hence, there is a hierarchy of operations that can be performed on grids. For small
to moderate expansions of the scene, wrapping both rays and objects is relatively quick
without incurring too high a traversal cost. For larger expansions, rebuilding the grid
will become a more viable option.

This grid implementation shares the advantages of simplicity and cheap traversal
with commonly used grid implementations. However, it adds the possibility of increas-
ing the size of the scene without having to completely rebuild the grid every time there
is a small change in scene extent.

The cost of deleting and inserting a single object is not constant and depends largely
on the size of the object relative to the size of the scene. The size of an object relative to
each voxel in a grid influences how many voxels will contain that object. This in turn
negatively affects insertion and deletion times. Hence, it would make sense to find a
spatial subdivision whereby the voxels can have different sizes. If this is accomplished,
then insertion and deletion of objects can be made independent of their sizes and can
therefore be executed in constant time. Such spatial subdivisions are not new and are
known as hierarchical spatial subdivisions. Octrees, bintrees and hierarchical grids
are all examples of hierarchical spatial subdivisions. However, normally such spatial
subdivisions store all their objects in leaf nodes and would therefore still incur non-
constant insertion and deletion costs. We extend the use of hierarchical grids in such
a way that objects can also reside in intermediary nodes or even in the root node for
objects that are nearly as big as the entire scene.

Because such a structure should also be able to deal with expanding scenes, our
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efforts were directed towards constructing a hierarchy of grids (similar to Sung [28]),
thereby extending the functionality of the grid structure presented in the previous sec-
tion. Effectively, the proposed method constitutes a balanced octree.

Object insertion now proceeds similarly to grid insertion, except that the grid level
needs to be determined before insertion. This is accomplished by comparing the size
of the object in relation to the size of the scene. A simple heuristic is to determine the
grid level from the diagonals of the two bounding boxes. Specifically, the length of the
grid’s diagonal is divided by the length of the object’s diagonal, the result determining
the grid level. Insertion and deletion progresses as explained above.

The gain of better control over insertion time is offset by a slightly more compli-
cated traversal algorithm. Hierarchical grid traversal is effectively the same as grid
traversal with the following modifications. Traversal always starts at a leaf node which
may first be mapped to a physical leaf node as described earlier in this section. The ray
is intersected with this voxel and all its parents until the root node is reached. This is
necessary because objects at all levels in the hierarchy may occupy the same space as
the currently traversed leaf node. If an intersection is found within the space of the leaf
node, then traversal is finished. If not, the next leaf node is selected and the process is
repeated.

This traversal scheme is wasteful because the same parent nodes may be repeatedly
traversed for the same ray. To combat this problem, note that common ancestors of the
current leaf node and the previously intersected leaf node, need not be traversed again
(Figure 111.2). If the ray direction is positive, the current voxel’s number can be used to
derive the number of levels to go up in the tree to find the common ancestor between
the current and the previously visited voxel. For negative ray directions, the previously
visited voxel’s number is used instead. Finding the common ancestor is achieved using
simple bit manipulation, as detailed in Figure 111.3.

Grid Levels between leaf and previously
Index | checked common ancestor

4 (root)

~NOoOURAWNREO
PNRPWR NP

0o 1 2 3 4 5 6 7
Lowest level grid indices

Figure I11.2: Hierarchical grid traversal. Assuming that ray traversal starts at node O
and goes in positive direction, then after each step, the common ancestor is found n
levels above the leaf node as indicated in the table.

As the highest levels of the grid may not contain any objects, ascending all the
way to the highest level in the grid is not always necessary. Ascending the tree for a
particular leaf node can stop when the largest voxel containing objects is visited.

This hierarchical grid structure has the following features. The traversal is only
marginally more complex than standard grid traversal. In addition, wrapping of objects
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bitmask = (raydir x > 0) ? x : x + 1
forall levels in hierarchical grid

{

cell = hgrid[level] [x>>level] [y>>level] [z>>1level]
forall objects in cell
intersect (ray, object)
if (bitmask & 1)
return
bitmask >>= 1

}

Figure 111.3; Hierarchical grid traversal algorithm in C-like pseudo-code. The bitmask
is set assuming that the last step was along the x-axis.

in the face of expanding scenes is still possible. If all objects are the same size, this
algorithm effectively defaults to grid traversal. Insertion and deletion times are much
better controlled than for the interactive grid®.

[11.3.2 Results

The grid and hierarchical grid spatial subdivisions were implemented using an interac-
tive ray tracer [19], which runs on an SGI Origin 3800 with 32 processors and 16GB
of main memory?. Each processor is an R12k running at 400Mhz and manages an
8MB secondary cache. We have chosen to use 30 processors for rendering and one
extra thread to take care of user input, displaying the frames, and also for updating and
rebuilding the spatial subdivision when necessary (one processor remained unused by
our application to allow for system processes to run smoothly). The reason to include
the scene update routines with the display thread is that querying the keyboard and
displaying the images takes very little time. The remainder of the time to calculate
a frame could therefore easily be spent animating objects. In addition, it is important
that the scene updates are completed within the time to compute a new frame, as longer
update times would either cause delays or result in jerky movement of objects. As the
frame rate depends on both the scene complexity and the number of processors that
participate in the calculation, the time to update the scene is dependent on both of these
parameters.

For evaluation purposes, two test scenes were used. In each scene, a humber of
objects were animated using pre-programmed motion paths. The scenes as they are at
start-up are depicted in Figure 111.21 (top, Appendix I1IC). An example frame taken
during the animation is given for each scene in Figure 111.21 (bottom, Appendix I1IC).
All images were rendered at a resolution of 5122 pixels.

Traversal performance - static scenes

The performance penalty incurred by the new grid and hierarchical grid implementa-
tions are assessed by comparing these with a standard grid implementation. The stan-

INote that this also obviates the need for mailbox systems to avoid redundant intersection tests.
2Note that the original work, presented in Appendix I11C, reported results obtained on a slower Origin
2000.
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dard grid data structure consists of a single array of object pointers. This design allows
better cache efficiency on the SGI Origin series. Finally, we have also implemented
a hierarchical grid with a higher branching factor. Instead of subdividing a voxel into
eight children, here nodes are split into 64 children (4 along each axis).

From here on we will refer to the new grid implementation as ‘interactive grid’ to
distinguish between the two grid traversal algorithms. As all these spatial subdivision
methods have a user defined parameter to set the resolution (voxels along one axis
and maximum number of grid levels, respectively), various settings are evaluated. The
overall performance is given in Figure I111.4 and is measured in frames per second.

Sphereflake model Triangles model
T T T T
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—
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Figure I11.4: Performance (in frames per second) for the grid, the interactive grid and
the hierarchical grids for two static scenes.

The extra flexibility gained by both the interactive grid and hierarchical grid imple-
mentations results in a somewhat slower frame rate. This is according to expectation, as
the traversal algorithm is a little more complex and the Origin’s cache structure cannot
be exploited as well with either of the new grid structures. The graphs in Figure I11.4
should be compared to our previous results given in Figure 111.19 in Appendix IIIC.
For the hierarchical grid with the higher branching factor, the observed frame rates are
very similar to the hierarchical grid.

Object update rate - dynamic scenes

The object update rates were slightly better for the sphereflake and triangle scenes,
because the size differences between the objects matches this acceleration structure
better than both the interactive grid and the hierarchical grid.

The non-zero cost of updating the scene effectively limits the number of objects that
can be animated within the time-span of a single frame. However, for both scenes, this
limit was not reached. For each of these tests, the hierarchical grid is more efficiently
updated than the interactive grid, which confirms its usefulness.

The size difference between different objects should cause the update efficiency to
be variable for the interactive grid, while remaining relatively constant for the hierar-
chical grid. In order to demonstrate this effect, both the ground plane and one of the
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triangles in the triangle scene was interactively repositioned during rendering. Simi-
larly, in the sphereflake scene one of the large spheres and one of the small spheres
were interactively manipulated. The update rates for different size parameters for both
the interactive grid and the hierarchical grid, are presented in Figure I111.5. Comparing
the grid size of 16 for the interactive grid with the size parameter of 4 for the interac-
tive grid in this figure, shows that for similar numbers of voxels (at the deepest level
of the hierarchical grid) along each axis, the update rate varies much more dependent
on object size for the interactive grid than for the hierarchical grid. Hence, the hierar-
chical grid copes much better with objects of different sizes than the interactive grid.
Dependent on the number of voxels in the grid, there is one to two orders of magnitude
difference between inserting a large and a small object. For larger grid sizes, the update
time for the ground plane of the triangles scene is roughly half a frame. This leads to
visible artifacts when using the interactive grid, as during the update the processors that
are rendering the next frame temporarily cannot intersect this object (it is simply taken
out of the spatial subdivision). In practice, the hierarchical grid implementation does
not show this disadvantage.

x10* Triangles scene - interactive grid x10° Triangles scene - hierarchical grid

Triangle

Triangle

Update rate (Hz)
n
Update rate (Hz)
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Figure 111.5: Update rate as function of grid size for the interactive and hierarchical
grids.. We compare the update rates for a small as well as a large object in both the
triangles model (top) and the sphereflake model (bottom).
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The time to rebuild a spatial subdivision from scratch is expected to be considerably
higher than the cost of re-inserting a small number of objects. For the triangles scene,
where 200 out of 201 objects were animated, the update rate was still a factor of two
faster than the cost of completely rebuilding the spatial subdivision. This was true for
both the interactive grid and the hierarchical grid. A factor of two was also found for
the animation of 81 spheres in the sphereflake scene. When animating only 9 objects
in this scene, the difference was a factor of 10 in favor of updating. We believe that
the performance difference between rebuilding the acceleration structure and updating
all objects is largely due to the cost of memory allocation, which occurs when rebuild-
ing. The cost of rebuilding the spatial subdivision will become prohibitive when much
larger scenes are rendered.

Traversal cost - dynamic scenes

In the case of expanding scenes, the logical bounding box will become larger than the
physical bounding box. The number of voxels that are traversed per ray will therefore
on average increase. This is the case in the triangles scene. The variation over time of
the frame rate is given in Figure 111.6. In this example, the objects are first stationary. At
some point the animation starts and the frame rate drops because the scene immediately
starts expanding. For the sphereflake scene, the animated objects do not cause the scene
to expand, and therefore no drop in framerate is observed.

Spheres model Triangles model
T T T

Interactive grid

20 \ ] )
\

Hierarchical grid

Start animation
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Figure 111.6: Framerate as function of time for the triangles scene and the sphereflake
scene. Note that the sphereflake scene does not expand over time and therefore starting
the animation does not appreciably affect the framerate.

Animating clusters of objects

For many applications it will be necessary to animate clusters of objects in a coherent
manner. For example, if a teapot such as depicted in Figure 111.7, needs to be repo-
sitioned, it would not make sense to individually move each of its 25,000 individual
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polygons. Encapsulating the teapot within its own spatial subdivision will improve
rendering time but will not improve insertion and deletion time, as after moving the
teapot, all its polygons would still require updating. Here, the use of instancing pro-
vides a good solution as only the transformation matrix specifying where the teapot
is positioned in space will need to be updated. For this example, updating the spatial
subdivision as well as the transformation matrix can be performed around 2400 times
per second. The benchmark for this scene resulted in a frame rate of 12.1 fps®.

Figure 111.7: Example of instancing. Moving the teapot requires a cheap update of a
transformation matrix.

Finally, Figure 111.22 shows that interactively updating scenes using drag and drop
interaction is feasible.

11.3.3 Discussion

When objects are interactively manipulated and animated within a ray tracing appli-
cation, much of the work that is traditionally performed during a pre-processing step
becomes a limiting factor. Especially spatial subdivisions which are normally built
once before the computation starts, do not exhibit the flexibility that is required for an-
imation. The insertion and deletion costs can be both unpredictable and variable. We
have argued that for a small cost in traversal performance flexibility can be obtained
and insertion and deletion of objects can be performed in a well controlled amount of
time.

By logically extending the (hierarchical) grids into space, these spatial subdivisions
deal with expanding scenes rather naturally. For modest expansions, this does not
significantly alter the frame rate. When the scenes expand a great deal, rebuilding the
entire spatial subdivision may become necessary. For large scenes this may involve a
temporary drop in frame rate. For applications where this is unacceptable, it would be
advisable to perform the rebuilding within a separate thread (rather than the display
thread) and use double buffering of the scene to minimize the impact on the rendering
threads.

3Result obtained on a 32-node SGI Origin 2000.

11-19



[11.4 Samplereusetechniques

As argued in previous chapters, interactive Whitted-style ray tracing has recently be-
come feasible on high-end parallel machines [16,19]. However, such systems only
maintain interactivity for relatively simple scenes or small image sizes, due to the brute-
force nature of these approaches. While keeping the algorithm as simple as possible is
an important factor for their succes, reasonably straightforward extensions have been
deviced to improve visual appearance for much larger image sizes and scene complex-
ities. After a brief overview, one such system is explored further in this chapter.

By reusing samples instead of relying on brute force approaches, the limitations in
scene complexity and image size can be overcome. There are several ways to reuse
samples. All of them require interpolating between existing samples as the key part of
the process. First, rays can be stored along with the color seen along them. The color
of new rays can be interpolated from existing rays [3, 14]. Alternatively, the points in
3D where rays strike surfaces can be stored and then woven together as displayable
surfaces [24]. This method was designed to display course results by a display pro-
cessor while new samples are created by a rendering back-end which can consist of
one or more renderers. As new results become available to the display processor, the
image is refined and redisplayed. Finally, stored points can be directly projected to the
screen, and holes can be filled in using image processing heuristics [31]. All techiques
that re-use samples rely on the fact that the reprojection step is much cheaper than
the generation of new samples and are therefore typically employed in cases where
sample generation is too slow for creating interactive results. In the case of Simmons’
work, this occurred because the lighting simulation is too complex for interactive dis-
play [24]. Walter’s point reprojection algorithm is directed towards interactive display
of scenes that are too complex to display interactively otherwise.

Another method to increase the interactivity of ray tracing is frameless render-
ing [4,8,19,33]. Here, a master processor farms out single pixel tasks to be traced
by the slave processors. The order in which pixels are selected is random or quasi-
random. Whenever a renderer finishes tracing its pixel, it is displayed directly. As pixel
updates are independent of their display, there is no concept of frames. During cam-
era movements, the display will deteriorate somewhat, which is visually preferable to
slow frame-rates in frame-based rendering approaches. It can therefore handle scenes
of higher complexity than brute force ray tracing, although no samples are reused.

The main thrust of this chapter is the use of parallelism to increase data reuse and
thereby increase allowable scene complexity and image size without affecting per-
ceived update rates. The remainder of this chapter uses the render cache of Walter
et al. [31] and applies to it the concept of frameless rendering. By distributing this
algorithm over many processors we are able to overcome the key bottleneck in the
original render cache work. We demonstrate our system on a variety of scenes and
image sizes that have been out of reach for previous systems. The work described in
this chapter is currently under submission for the IEEE 2001 Symposium on Parallel
and Large-Data Visualization and Graphics [22].
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Figure 111.8: The serial render cache algorithm[31].

[11.4.1 Render cachealgorithm

The basic idea of the render cache is to save samples in a 3D point cloud, and reproject
them when viewing parameters change [31]. New samples are requested all over the
screen, with most samples concentrated near depth discontinuities. As new samples
are added old samples are eliminated from the point cloud.

The basic process is illustrated in Figure 111.8. The front-end CPU handles all
tasks other than tracing rays. Its key data structure is the cache of colored 3D points.
The front end continuously loops, first projecting all points in the cache into screen
space. This will produce an image with many holes, and the image is processed to
fill these holes in. This filling-in process uses sample depths and heuristics to make
the processed image look reasonable. The processed image is then displayed on the
screen. Finally, the image is examined to find “good” rays to request to improve future
images. These new rays are traced by the many CPUs in the “rendering farm”. The
current frame is completed after the front end receives the results and inserts them into
the point cloud.

From a parallel processing point of view, the render cache has the disadvantage of a
single expensive display process that needs to feed a number of renderers with sample
requests and is also responsible for point reprojection. The display process needs to
insert new results into the point cloud, which means that the more renderers are used,
the heavier the workload of the display process. Hence, the display process quickly
becomes a bottleneck. In addition, the number of points in the point cloud is linear in
image size, which means that the reprojection cost is linear in image size.
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The render cache was shown to work well on 256x256 images using an SGI Origin
2000 with 250MHz R10k processors. At higher resolutions than 256x256, the front
end has too many pixels to reproject to maintain fluidity.

[11.4.2 Parallel render cache

Ray tracing is an irregular problem, which means that the time to compute a ray task
can vary substantially depending on depth complexity. For this reason it is undesirable
to run a parallel ray tracing algorithm synchronously, as this would slow down render-
ing of each frame to be as slow as the processor which has the most expensive set of
tasks. On the other hand, synchronous operation would allow a parallel implementation
of the render cache to produce exactly the same artifacts as the original render cache.
We have chosen responsiveness and speed of operation over minimization of artifacts
by allowing each processor to update the image asynchronously.

Our approach is to distribute the render cache functionality with the key goal of not
introducing synchronization, which is analogous to frameless rendering. In our system
there will be a number of renderers which will reproject point clouds and render new
pixels, thereby removing the bottleneck from the original render cache implementation.
Scalability is therefore assured.

We parallelize the render cache by subdividing the screen into a number of tiles. A
random permutation of the list of tiles could be distributed over the processors, with
each renderer managing its set of tiles independently from all other renderers. Alterna-
tively, a global list of tiles could be maintained with each processor choosing the tile
with the highest priority whenever it needs a new task to work on. While the latter op-
tion may provide better (dynamic) load balancing, we have opted for the first solution.
Load balancing is achieved statically by ensuring that each processor has a sufficiently
large list of tiles. The reason for choosing a static load balancing scheme has to do
with memory management on the SGI Origin 3800, which is explained in more detail
in Section 111.4.3 and Appendix I11A.

Each tile has associated with it a local point cloud and an image plane data struc-
ture. The work associated with a tile depends on whether or not camera movement
is detected. If the camera is moving, the point cloud is projected onto the tile’s local
image plane and the results are sent to the display thread for immediate display. No
new rays are traced, as this would slow down the system and the perceived smooth-
ness would be affected. This is at the cost of a degradation in image quality, which is
deemed more acceptable than a loss of interaction. It is also the only modification we
have applied to the render cache concept.

If there is no camera movement, a depth test is performed to select those rays that
would improve image quality most. Other heuristics such as an aging scheme applied
to the points in the point cloud also aid in selecting appropriate new rays. Newly traced
rays are both added to the point cloud and displayed on screen. The point cloud itself
does not need to be reprojected.

The renderers each loop over their allotted tiles, executing for each tile in turn the
following main components:

1. Clear tile Before points are reprojected, the tile image is cleared.
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Figure 111.9: The parallel render cache algorithm.

2. Add points Points that previously belonged to a neighboring tile but have been pro-
jected onto the current tile are added to the point cloud.

3. Project point cloud The point cloud is projected onto the tile image. Points that
project outside the current tile are temporarily buffered in a data structure that is
periodically communicated to the relevant neighboring tiles.

4. Depth test A depth test is performed on the tile image to determine depth disconti-
nuities. This is then used to select new rays to trace.

5. Tracerays The rays selected by the depth test function, are traced and the results
added to the local point cloud.

6. Display tile The resulting tile is communicated to the display thread. This function
also performs hole-filling to improve the image’s visual appearance.

If camera movement has occurred since a tile was last visited, items 1, 2, 3 and 6 in
this list are executed for that tile. If the camera was stationary, items 1, 2, 3 and 6 are
executed. The algorithm is graphically depicted in Figure 111.9

While tiles can be processed largely independently, there are circumstances when
interaction between tiles is necessary. This occurs for instance when a point in one
tile’s point cloud projects to a different tile (due to camera movement). In that case,
the point is removed from the local point cloud and is inserted into the point cloud
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associated with the tile to which it projects. The more tiles there are, the more often
this would occur. This conflicts with the goal of having many tiles for load balancing
purposes. In addition, having fewer tiles that are larger causes tile boundaries to be
more visible.

As each renderer produces pixels that need to be collated into an image for display
on screen, there is still a display process. This display thread only displays pixels
and reads the keyboard for user input. Displaying an image is achieved by reading an
array of pixels that represents the entire image, and sending this array to the display
hardware using OpenGL. When renderers produce pixels, they are buffered in a local
data structure, until a sufficient number of pixels has been accumulated for a write into
the global array of pixels. This buffering process ensures that memory contention is
limited for larger image sizes.

Finally, the algorithm shows similarities with the concept of frameless rendering,
in the sense that tiles are updated independently from the display process. If the size of
the tiles is small with respect to the image size, the visual effect is like that of frameless
rendering. The larger the tile size is chosen, the more the image updating process starts
to look like a distributed version of the render cache.

[11.4.3 Implementation details

The parallel render cache algorithm is implemented on a 32 processor SGI Origin 3800.
While this machine has a 16 GB shared address space, the memory is physically dis-
tributed over a total of eight nodes. Each node features four 400 MHz R12k processors
and one 2 GB block of memory. In addition each processor has an 8 MB secondary
cache. Memory access times are determined by the distance between the processor and
the memory that needs to be read or written. The local cache is fastest, followed by
the memory associated with a processor’s node. If a data item is located at a different
node, fetching it may incur a substantial performance penalty.

A second issue to be addressed is that the SGI Origin 3800 may relocate a rendering
process with a different processor each time a system call is performed. Whenever this
happens, the data that used to be in the local cache is no longer locally available. Cache
performance can thus be severely reduced by migrating processes.

These issues can be avoided on the SGI Origin 3800 by actively placing memory
near the processes and disallowing process migration. This can, for example, be ac-
complished using the dplace library or the mmap system call (see also Section 111.2.6).
Associated with each tile in the parallel render cache is a local point cloud data struc-
ture and an image data structure which are mapped as close as possible to the process
that uses it. Such memory mapping assures that if a cache miss occurs for any of these
data structures, the performance penalty will be limited to fetching a data item that is in
local memory. As argued above, this is much cheaper than fetching data from remote
nodes. For this reason, using a global list of tiles as mentioned in the previous section
is less efficient than distributing tiles statically over the available processors.

Carefully choreographing the mapping of processes to processors and their data
structures to local memory enhances the algorithm’s performance. Cache performance
is improved and the number of data fetches from remote locations is minimized.
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Figure 111.10: Test scenes. The teapot (top) consists of 32 bezier patches, while the
room scene consists of 846,563 primitives and 80 point light sources.

[11.4.4 Measuring scalability

The main loops of the renderers consist of a number of distinct steps. During each
iteration a subset of these steps is executed dependent on whether camera movement
has occurred or not (see Section 111.4.2). Standard speed-up measurements would under
these circumstances produce unreliable results, since the measured speed-up would
depend on how often the user moves the camera. The user cannot be expected to move
the camera in exactly the same way for each measurement.

For this reason each of the steps making up the complete algorithm are measured
separately. To assess scalability, the time to execute each step is measured, summed
over all invocations and processors and subsequently divided by the number of invoca-
tions and processors. The result is expressed in events per second per processor, which
for a scalable system should be independent of the number of processors employed.
Hence, using more processors would then not alter the measurements. In case this
measure varies with processor count, scalability is affected.

If the number of events per second per processor drops when adding processors,
sublinear scalability is measured, whereas an increase indicates super-linear speed-up
for the measured function. Also note that the smaller the number, the more costly
the operation will be. Using this measure provides better insight into the behavior
of the various parts of the algorithm than a standard scalability computation would
give, especially since only a subset of the components of the render cache algorithm is
executed during each iteration.
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Figure 111.11: Scalability of the render cache components for the teapot scene ren-
dered at 5122 pixels (left) and 10242 pixels (right). Negative slopesindicate sub-linear
scalability, whereas horizontal lines show linear speed-ups.

[11.45 Results

Our implementation uses the original render cache code of Walter et al [31]*. Two
test scenes were used: a teapot with 32 bezier patches® and one point light source, and
a room scene with 846,563 geometric primitives and area light sources approximated
by 80 point light sources (Figure 111.10). For the teapot scene, the renderer is limited
by the point reprojection algorithm, while for the room scene, tracing new rays is the
slowest part of the algorithm. The latter scene is of typical complexity in architectural
applications and usually cannot be interactively manipulated.

In the following subsection, the different components making up the parallel ren-
der cache are evaluated (Section 111.4.5), the performance as function of task size is
assessed (Section 111.4.5) and the parallel render cache is compared with other meth-
ods to speed up interactive ray tracing (Section 111.4.5).

Parallel render cache evaluation

The results of rendering the teapot and room models on different numbers of processors
at a resolution of 5122 and 10242 pixels are depicted in Figures I11.11 and 111.12.
While most of the components making up the algorithm show horizontal lines in
these graphs, meaning that they scale well, the “Clear tiles” and “Add point” compo-
nents show non-linear behavior. Clearing tiles is a very cheap operation which appears
to become cheaper if more processors are used. Because more processors result in each

4The original code has since been improved (Walter, personal communication) but we have not ported
that improved code. However, we expect that any improvements to the serial code would transfer to our
parallel version since the serial code runs essentially as a black box.

5These bezier patches are rendered directly using the intersection algorithm from Parker et. al [19].
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Figure 111.12: Scalability for the room scene, rendered at 5122 pixels (Ieft) and 10242
pixels (right). Horizontal lines indicate linear scalability, whereas a fall-off means
sub-linear scalability.

processor having to process fewer tiles, this super-linear behavior may be explained by
better cache performance. This effect is less pronounced for the 10242 pixel render-
ings, which also points to a cache performance issue as here each processor handles
more data.

The “Add point” function scales sub-linearly with the number of processors. Be-
cause the total number of tiles was kept constant between runs, this cannot be explained
by assuming that different numbers of points project outside their own tile and thus
have to be added to neighboring tiles. However, with more processors there is an in-
creased probability that a neighboring tile belongs to a different processor and may
therefore reside in memory which is located elsewhere in the machine. Thus projecting
a point outside the tile that it used to belong to, may become more expensive for larger
numbers of processors. This issue is addressed in the following section.

Note also that despite the poor scalability of “Add points”, in absolute terms its
cost is rather low, especially for the room model. Hence, the algorithm is bounded
by components that scale well (they produce more or less horizontal lines in plots) and
therefore the whole distributed render cache algorithm scales well, at least up to 31 pro-
cessors (see also Section 111.4.5). In addition, the display of the results is completely
decoupled from the renderers which produce new results and therefore the screen is
updated at a rate that is significantly higher than rays can be traced and is also much
higher than points can be reprojected. This three-tier system of producing new rays at
a low frequency, projecting existing points at an intermediate frequency and display-
ing the results at a high frequency (on the Origin 3800 at a rate of around 290 frames
per second for 5122 images and 75 frames per second for 10242 images, regardless
of number of renderers and scene complexity) ensures a smooth display which is per-
ceived as interactive, even if new rays are produced at a rate that would not normally
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Figure 111.13: Scalability for the roommodel (left) and teapot scene (right) as function
of tile size (322, 642 and 1282 pixels per tile). The image size is 10242 pixels and for
these measurements 31 processors were used. These graphs should be interpreted the
same asthosein Figures|11.11 and I11.12.

allow interactivity.

By abandoning ray tracing altogether during camera movement, the system shows
desirable behavior even when fewer than 31 processors are used. For both the room
scene and the teapot model, the camera can move smoothly if 4 or more processors
are used. During camera movement, the scene deteriorates because no new rays are
produced and holes in the point cloud may become visible. During rapid camera move-
ment, tile boundaries may become temporarily visible. After the camera has stopped
moving, these artifacts disappear at a rate that is linear in the number of processors em-
ployed. We believe that maintaining fluid motion is more important than the temporary
introduction of some artifacts, which is why the distributed render cache is organized
as described above.

For those who would prefer a more accurate display at the cost of a slower sys-
tem response, it would be possible to continue tracing rays during camera movement.
Although the render cache then behaves differently, the scalability of the separate com-
ponents, as given in Figures 111.11 and I11.12, would not change. However, the fluidity
of camera movement is destroyed by an amount dependent on scene complexity.

Task size

In section 111.4.2 it was argued that the task size, i.e. the size of the tiles, is an impor-
tant parameter which defines both speed and the occurrence of visual artifacts. The
larger the task size, the better artifacts become visible. However, at the same time,
the reprojections that cross tile-boundaries are less likely to occur, resulting in higher
performance. In Figure I11.13 the scalability of the parallel render cache components
as function of task size is depicted. Task sizes range from 322 pixels to 1282 pixels
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Figure I11.14: Samples per second (left) and point reprojections per second (right) for
the teapot model.

and the measurements were all obtained using 31 processors on 10242 images. Larger
tile sizes are thus impossible, as the total number of tasks would become smaller than
the number of processors. Task sizes smaller than 322 pixels resulted in unreasonably
slow performance and were therefore left out of the assessment.

As in the previous section, the “Add points” and “Clear tile” components show
interesting behavior. As expected, for larger tasks, the “Add points” function becomes
cheaper. This is because the total length of the tile boundaries diminishes for larger
task sizes, and so the probability of reprojections occurring across tile boundaries is
smaller.

The “Clear tile” component also becomes less expensive for larger tiles. Here,
we suspect that resetting one large block of memory is less expensive than resetting a
number of smaller blocks of memory.

Although Figure 111.13 suggests that choosing the largest task size as possible
would be appropriate, the artifacts visible for large tiles are more unsettling than for
smaller task sizes. Hence, for all other experiments presented in this paper, a task size
of 322 pixels is used, which is based on an assessment of both artifacts and perfor-
mance.

Comparison with other speed-up mechanisms

In this section, the parallel render cache is compared with other state-of-the-art render-
ing techniques. All make use of the interactive ray tracer of Parker et. al. [19], either
as a back-end or as the main algorithm. The comparison includes the original render
cache algorithm [31], the parallel render cache algorithm as described in this paper,
the interactive ray tracer (rtrt) without reprojection techniques and the interactive ray
tracer using the frameless rendering concept [19]. In the following we will refer to the
original render cache as “serial render cache” to distinguish it from our parallel render
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cache implementation. All renderings were made using the teapot and room models
(Figure 111.10) at a resolution of 10242 pixels.

The measurements presented in this section consist of the number of new samples
produced per second by each of the systems and the number of points reprojected per
second (for the two render cache algorithms). These numbers are summed over all
processors and should therefore scale with the number of processors employed. The
results for the teapot model are given in Figure 111.14 and the results for the room model
are presented in Figure 111.15.

The graphs on the left of these figures show the number of samples generated per
second. All the lines are straight, indicating scalable behavior. In these plots, steeper
lines are the result of higher efficiency and therefore, the real-time ray tracer would be
most efficient, followed by the parallel render cache. The frameless rendering concept
looses efficiency because randomizing the order in which pixels are generated destroys
cache coherence. The parallel render cache does not suffer from this, since the screen
is tiled and tasks are based on tiles. The serial render cache appears to perform well
for complex scenes and poorly for simple scenes. For scenes that lack complexity, the
point reprojection front-end becomes the bottleneck, especially since the image size
chosen causes the point cloud to be quite large. Thus, the render cache front-end needs
to reproject a large number of points for each frame and so constitutes a bottleneck.

Although the parallel render cache does not produce as many new pixels as the
real-time ray tracer by itself does, this loss of efficiency is compensated by its ability to
reproject large numbers of points, as is shown in the plots on the right of Figures 111.14
and 111.15. The point reprojection component of the parallel render cache shows good
scalability, and therefore the goal of parallelizing the render cache algorithm is reached.
The point reprojection part of the serial render cache does not scale because it is serial
in nature.
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[11.4.6 Discussion

While it is true that processors get ever faster and multi-processor machines are now
capable of real-time ray tracing, scenes are getting more and more complex while at
the same time frame sizes still need to increase. Hence, Moore’s law is not likely to
allow interactive full-screen brute-force ray tracing of highly complex scenes anytime
soon.

Interactive manipulation of complex models is still not possible without the use of
sophisticated algorithms that can efficiently exploit temporal coherence. The render
cache is one such algorithm that can achieve this. However, for it not to become a
bottleneck itself, the render cache functionality needs to be distributed over the proces-
sors that produce new samples. The resulting algorithm, presented in this paper, shows
superior reprojection capabilities that enables smooth camera movement, even in the
case where the available processing power is much lower than would be required in a
brute force approach. It achieves this for scene complexities and image resolutions that
are not feasible using any of the other algorithms mentioned in the previous section.

While smoothness of movement is an important visual cue, our algorithm neces-
sarily produces other artifacts during camera motion. These artifacts are deemed less
disturbing than jerky motion and slow response times. The render cache attempts to fill
small holes after point reprojection. For larger holes, this may fail and unfilled pixels
may either be painted in a fixed color, or can be left unchanged from previous repro-
jections. Either approach causes artifacts inherent to the algorithm and is present both
in the original render cache and in our parallel implementation of it.

The parallel render cache produces additional artifacts due to the tiling scheme
employed. During camera movement, tile boundaries may temporarily become visible,
because there is some latency between points being reprojected from neighboring tiles
and this reprojection becoming visible in the current tile. A further investigation to
minimize these artifacts is in order, which we reserve for future work. Currently, the
parallel render cache algorithm is well suited for navigation through highly complex
scenes to find appropriate camera positions.

It has been shown that even with a relatively modest number of processors, the
distributed render cache can produce smooth camera movement at resolutions typi-
cally sixteen times higher than the original render cache. The system as presented
here scales well up to 31 processors. Its linear behavior suggests that improved perfor-
mance is likely beyond 31 processors, although if this many processors are available, it
would probably become sensible to devote the extra processing power to produce more
samples, rather than increase the speed of reprojection.
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[11.5 Summary and discussion

In this chapter we have explained some of the issues involved in implementing an
interactive ray tracer. Using general purpose hardware, currently shared memory ar-
chitectures appear the most attractive solution, since distributed memory architectures
do not allow pixel data to be communicated to the display quickly enough. Distributed
memory systems are better suited for coarse grain applications, such as ray tracing with
diffuse interreflection [21].

Modern shared memory systems often have a single shared address space, but the
memory is still physically distributed. Knowing the architecture for which code is
written, may help reduce memory access bottleneck. Mapping memory close to the
processes that most often access this memory, can be advantageous, especially if the
volume of data that is read from memory is large compared with the local cache size.
In that case, cache misses will cause local main memory to be read rather than remote
main memory.

Other optimizations that are important include cache optimization. Important data
structures should fit on a single cache line. Smaller data structures can be padded to
occupy a single cache line. This has the advantage that when a cached item is swapped
out because it has not been used for a while, it can not affect other data on the same
cache line that is still in use.

While the basic interactive ray tracer described in this chapter is based on such low
level optimizations, algorithmic extensions to this basic ray tracer can be employed to
allow much larger images to be computed or have scenes of much higher complexity
rendered interactively. Point reprojection techniques do not allow rays to be produced
quicker, but rely on frame coherence by reusing samples computed for previous frames.
For complex scenes, reprojection of existing results is much faster than tracing new
rays and so point reprojection allows for smooth movement between camera points for
scenes that are too complex for other algorithms to smoothly advance from one camera
position to the next.

In this chapter extensions to spatial subdivisions are discussed as well. Normally,
spatial acceleration structures are built as a preprocess and are therefore not flexible
enough to accomodate interactively placed or moved objects. Extending grid and octree
data structures to enable user interaction with the scene interactively have a modest
impact on speed of rendering which is acceptable given their ability to allow objects to
be moved within and even outside the extent of the scene.

Interactive ray tracing is now feasible and for certain types of application, such as
interactive rendering of the visible female data set [20], it is a better choice than other
forms of rendering, including z-buffer techniques. With increasing available computa-
tional power, the range of applications for interactive ray tracing is likely to grow and
become possible on cheaper hardware.
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IITA  SGI Origin 2000

In this section, the SGI Origin 2000 architecture is described, along with the R10k pro-
cessor and its facilities for profiling. This will constitute basic knowledge for those who
want to write optimized code on this hardware platform. The following subsections are
extracted from the SGI document “Origin2000 and Onyx2 Performance Tuning and
Optimization Guide” [7].

[1TA.1 TheMIPSR10000 processor

The R10000 has a two-level cache hierarchy. Located on the microprocessor chip are
a 32 KB, two-way set associative level-1 instruction cache and a 32 KB, two-way set
associative, two-way interleaved level-1 (L1) data cache. Off-chip is a two-way set
associative, unified (instructions and data) level-2 (L2) cache. This secondary cache
may range in size from 512 KB to 16 MB; the size of the secondary cache in the
Origin 2000 is 4 MB for 195 MHz systems, and 1 MB for 180 MHz systems. The L1
instruction cache uses a line size of 64 bytes, while the L1 data cache has a line size
of 32 bytes. The line size of the L2 cache may be either 64 or 128 bytes; in the Origin
2000 it is 128 bytes. Both the L1 data cache and the L2 unified cache employ a least
recently used (LRU) replacement policy for selecting in which set of the cache to place
a new cache line.

[ITA.2 Origin 2000 layout

To understand how the Origin2000’s scalable shared memory multiprocessor (S2MP)
architecture works, we first look at how the building blocks of an Origin system are
connected. This is diagrammed in figure 111.16. This figure represents Origin systems
ranging from 2 to 16 processors. We start by considering the two-processor system in
the upper left-hand corner. This is a single Origin 2000 node. It consists of one or two
processors, memory, and a device called the hub. The hub is the piece of hardware that
carries out the duties that a bus performs in a bus-based system; namely, it manages
each processor’s access to memory and 1/0. This applies to accesses that are local to
the node containing the processor, as well as to those that must be satisfied remotely in
multi-node systems.

The smallest Origin systems consist of a single node. Larger systems are built by
connecting multiple nodes. A two-node system is shown in the upper middle of the
figure. Since information flow in and out of a node is controlled by the hub, connecting
two nodes means connecting their hubs. In a two-node system this simply means wiring
the two hubs together. The bandwidth to local memory in a two-node system is double
that in a one-node system: the hub on each of the two nodes can access its local memory
independently of the other. Access to memory on the remote node is a bit more costly
than access to local memory since the request must be handled by both hubs. A hub
determines whether a memory request is local or remote based on the physical address
of the data accessed.

When there are more than two nodes in a system, their hubs cannot simply be
wired together. In this case, additional hardware is required to control information
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Figure 111.16: Building blocks of the SGI Origin 2000.

flow between the multiple hubs. The hardware used for this in Origin systems is called
a router. A router has six ports, so it may be connected to up to six hubs or other
routers. In a two-node system, one may employ a router to connect the two hubs
rather than wiring them directly together; this is shown adjacent to the other two-node
configuration in the figure. These two different configurations behave identically, but
because of the router in the second configuration, information flow between the two
hubs takes a little more time. The advantage, though, of the configuration with the
router is that it may be used as a basic building block from which to construct larger
systems.

In the upper right corner of the figure, a four-node — or, equivalently, eight-
processor — system is shown. It is constructed from two of the two-node-with-router
building blocks. Here, the connection between the two routers allows information to
flow and, hence, the sharing of memory between any pair of hubs in the system. Since
a router has six ports, it is possible to connect all four nodes to just one router, and
this one-router configuration can be used for small systems. That is a special case, and
in general the two-router implementation is used since it conveniently scales to larger
systems.

Two such larger systems are shown on the lower half of the figure; these are 12-
and 16-processor systems, respectively. From these diagrams you can begin to see how
the router configurations scale: each router is connected to two hubs, routers are then
connected to each other forming a binary n-cube, or hypercube, where n, the dimen-
sionality of the router configuration, is the base-2 logarithm of the number of routers.
For the four-processor system, n is zero, and for the eight-processor system, the routers
form a linear configuration, and n is one. In both the 12- and 16-processor systems,
n is two and the routers form a square; for the 12-processor system, one corner of the
square is missing. Larger systems are constructed by increasing the dimensionality of
the router configuration and adding up to two hubs with each additional router. Sys-
tems with any number of nodes may be constructed by leaving off some corners of the
n-dimensional hypercube. We will see these larger configurations later.
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The key thing here is that the hardware allows the physically distributed memory of
the system to be shared, just as in a bus-based system, but since each hub is connected
to its own local memory, memory bandwidth is proportional to the number of nodes.
As a result, there is no inherent limit to the number of processors that can be used
effectively in the system. In addition, since the dimensionality of the router configura-
tion grows as the systems get larger, the total router bandwidth also grows with system
size (proportional to n2n, where n is the dimensionality of the router configuration).
Thus, systems may be scaled without fear that the router connections will become a
bottleneck.

To allow this scalability, however, one nice characteristic of the bus-based shared
memory systems has been sacrificed; namely, the access time to memory is no longer
uniform: it varies depending on how far away the memory being accessed is in the
system. The two processors in each node have quick access through their hub to their
local memory. Accessing remote memory through an additional hub adds an extra
increment of time, as does each router the data must travel through. But several factors
combine to smooth out these nonuniform memory access (NUMA) times:

1. The hardware has been designed so that the incremental costs to access remote
memory are not large. The choice of a hypercube router configuration means
that the number of routers information must pass through is at most n + 1, where
n is the dimension of the hypercube; this grows only as the logarithm of the
number of processors. As a result, the average memory access time on even
the largest Origin system is no more than the uniform memory access time on a
Power Challenge 10000 system. We’ll see a detailed table of these costs later.

2. The R10000 processors operate on data that are resident in their caches. If programs
use the caches effectively, the access time to memory, whether it is local or re-
mote, is unimportant since the vast majority of memory accesses are satisfied
from the caches.

3. Through operating system support or programming effort, the memory accesses of
most programs can be made to come primarily from local memory. Thus, in
the same way that the caches can make local memory access times unimportant,
remote memory access costs can be reduced to an insignificant amount.

4. The R10000 processors can prefetch data that are not cache resident. Other work
can be carried out while these data move from local or remote memory into the
cache; thus the access time can be hidden.

The architecture of the Origin 2000 system, then, provides shared memory hard-
ware without the limitations of traditional bus-based designs.
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[11B  Profiling on the SGI Origin 2000

The hardware counters in the R10000 CPU make it possible to profile the behavior of
a program in many ways without modifying the code. The software tools are perfex,
which runs a program and reports exact counts of any two selected events from the
R10000 counters. Alternatively, it time-multiplexes all 32 countable events and reports
extrapolated totals of each. Perfex is useful for identifying what problem (for example,
secondary data cache misses) is hurting the performance of your program the most.
(see timex for simple timing functionality.) The Perfex functions are also available
as callable library functions in libperfex. Similarly, for speedshop, the ssapi library
is available. Speedshop (actually, the ssrun command), which runs a program while
sampling the state of the program counter and stack, and writing the sample data to a
file for later analysis. You select the timebase for the sampling and the particular type of
information to be sampled. SpeedShop is useful for locating where in your program the
performance problems occur. Prof, which analyzes a Speedshop data file and displays
it in a variety of formats. Dprof, which, like Speedshop, samples a program while it
is executing but records memory access information as a histogram file. It identifies
which data structures in the program are involved in performance problems. Use these
tools to find out what constrains the program and which parts of it consume the most
time. Through the use of a combination of these tools, it is possible to identify most
performance problems.

The profiling tools depend for most of their features on the R10000’s performance
counter registers. These on-chip registers can be programmed to count hardware events
as they happen, for example, machine cycles, instructions, branch predictions, floating
point instructions, or cache misses. There are only two performance counter registers.
Each can be programmed to count machine cycles or 1 of 15 other events, for a total
of 32 events that can be counted (30 of which are distinct). The specific events are
summarized in Table 111.1, which can be obtained by using the command perfex -h.

The counters are 64-bit integers. When a counter overflows, a hardware trap occurs.
The kernel can preload a counter with 264 — » to cause a trap after n counts occur. The
profiling tools use this capability. For example, the command ssrun -gi_hwc programs
the graduated instruction counter (event 17) to overflow every 32 K counts. Each time
the counter overflows, ssrun samples the program counter and stack state of the subject
program. The reference page r10k_counters(5) gives detailed information on how the
counters can be accessed through the /proc interface. This is the interface used by the
profiling tools. The interface hides the division of events between only two registers
and allows the software to view the counters as a single set of thirty-two 64-bit counters.
The operating system time-multiplexes the active counters between the events being
counted. This requires sampling and scaling, which introduce some error when more
than two events are counted. In general, it is better to access the counters through the
profiling tools. A program that uses the counter interface directly cannot be profiled
using perfex or using ssrun for any experiment that depends on counters. When a
program must access counter values directly, the simplest interface is through libperfex,
documented in the libperfex reference page.
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0 Cycles 16 Cycles
1 Instructions issued to functional units 17  Instructions graduated
2 Memory data access (load, prefetch, | 18 Memory data loads graduated
sync, cacheop) issued
3 Memory stores issued 19 Memory data stores graduated
4 Store conditionals issued 20  Store conditionals graduated
5 Store conditionals failed 21  Floating point instructions graduated
6 Branches decoded 22 Quadwords written back from L1 cache
7 Quadwords written back from L2 cache | 23  TLB refill exceptions
8 Correctable ECC errors on L2 cache 24 Branches mispredicted
9 L1 cache misses (instruction) 25 L1 cache misses (data)
10 L2 cache misses (instruction) 26 L2 cache misses (data)
11 L2 cache way mispredicted (instruc- | 27 L2 cache way mispredicted (data)
tion)
12  External intervention requests 28  External intervention request hits in L2
cache
13  External invalidate requests 29 External invalidate request hits in L2
cache
14  Instructions done (formerly, virtual co- | 30  Stores, or prefetches with store hint, to
herency condition) CleanExclusive L2 cache blocks
15 Instructions graduated 31 Stores, or prefetches with store hint, to
Shared L2 cache blocks.

Table 111.1: Hardware counters of the RLO000 processor.

[11B.1 Performance analysisusing perfex

The simplest profiling tool is perfex, documented in the perfex reference page. It runs
a subject program and records data about the run, similar to timex:

% perfex [options] command [arguments]

The subject program and its arguments are given. perfex sets up the counter in-
terface and forks the subject program. When the program ends, perfex writes counter
data to standard output. perfex gathers its information with no modifications to your
existing program. Although this is convenient, the data obtained come from the entire
run of the program. If you only want to profile a particular section of the program,
you need to use the library interface to perfex, libperfex(3). To use this interface, insert
a call to initiate counting into your program’s source code and another to terminate
it; a third call prints the counts gathered. The program must then be linked with the
libperfex library:

% cc -0 program -lperfex

Since you can use SpeedShop to see where in a program various event counts come
from, libperfex is not described in detail. More information can be found in its refer-
ence page.

[11B.2 Absolute counts of one or two events

Use perfex options to specify what is to be counted. You can specify one or two
countable events. In this case, the counts are absolute and accurate. For example, the
command
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% perfex -e15-e21 adi2

runs the subject program and reports the exact counts of graduated instructions and
graduated floating point instructions. You use this mode to explore specific points of
program behavior.

[11B.3 Statistical counts of all events

When you specify option -a (all events), perfex multiplexes all 32 events over the pro-
gram run. Each count is active 1/16 of the time and then scaled by 16. The resulting
counts have some statistical error. The error is small (and the counts sufficiently repeat-
able) provided that the subject program runs in a stable execution mode for a number of
seconds. When the program runs for a short time, or shifts between radically different
regimes of instruction or data use, the counts are less dependable and less repeatable.
Nevertheless, perfex -a usually gives a good overview of program operation. Here is
the perfex command line and output applied to a sample program called adi2:

% perfex -a-x adi2

WARNING: Multiplexing events to project totals--inaccuracy possible.

Time: 7.990 seconds

Checksum: 5.6160428338E+06

[T o B0 = = 1645481936
1 Issued InSErUCEIONS. ... ittt e e et et ettt e e 677976352
2 IssUEd L1OaAS . v v ittt ittt e e e e e e e e e e e e e e e e e e 111412576
3 ISSUEd SLOTES .t vttt ittt et e e e e e e e e e e e e e e 45085648
4 Issued store conditionals........ ...t 0
5 Failed store conditionalsS...........iiiiiiiennenennenn.. 0
6 Decoded branches.......... ... ...t 52196528
7 Quadwords written back from scache............ ... .. ........ 61794304
8 Correctable scache data array ECC €rrors..............ceu.o.. 0
9 Primary instruction cache misses......... ... ... ... .. ... 8560
10 Secondary instruction cache misses........... ... ... 304
11 Instruction misprediction from scache way prediction table.. 272
12 External interventions......... ...ttt e 6144
13 External invalidations.......... ...t 10032
14 Virtual coherency conditions........ ..., 0
15 Graduated INSEXUCELIONS. ... ...ttt ittt i e 371427616
T B = 1645481936
17 Graduated InNStrUCELIONS. .. ... ...ttt i 400535904
18 Graduated 1oads. ... ...ttt ittt e e e e 90474112
19 Graduated StoresS. .. ...ttt e e e e e 34776112
20 Graduated store conditionals........... ..., 0
21 Graduated floating point instructions....................... 28292480
22 Quadwords written back from primary data cache.............. 32386400
23 TLB MiS S S . i it ittt e e et e e e e e e e e e e e e e e e e e e e 5687456
24 Mispredicted branches. ... .. ... ...ttt 410064
25 Primary data cache misses...... ... ... i 16330160
26 Secondary data cache misses........... ... ... ... . .. ... 7708944
27 Data misprediction from scache way prediction table......... 663648
28 External intervention hits in scache........................ 6144
29 External invalidation hits in scache........... ... ... ... .... 6864
30 Store/prefetch exclusive to clean block in scache........... 7582256
31 Store/prefetch exclusive to shared block in scache.......... 8144
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The -x option requests that perfex also gather counts for kernel code that handles
exceptions, so the work done by the OS to handle TLB misses is included in these
counts.

[11B.4 Analytic output with the -y option

The raw event counts are interesting, but it is more useful to convert them to elapsed
time. Some time estimates are simple, for example, dividing the cycle count by the
machine clock rate gives the elapsed run time (1645481936 / 195 MHz = 8.44 seconds).
Other events are not as simple and can only be stated in terms of a range of times. For
example, the time to handle a primary cache miss varies depending on whether the
needed data are in the secondary cache, in memory, or in the cache of another CPU.
Analysis of this kind can be requested using perfex -a -x -y. When you use -a , -X,
and -y, perfex collects and displays all event counts, but it also displays a report of
estimated times based on the counts. Here is an example, again, of the program adi2:

% perfex -a-x -y adi2

WARNING: Multiplexing events to project totals--inaccuracy possible.

Time: 7.996 seconds
Checksum: 5.6160428338E+06

Based on 196 MHz IP27

Typical Minimum Maximum
Event Counter Name Counter Value Time (sec) Time (sec) Time (sec)
0 1639802080 8.366337 8.366337 8.366337
16 1639802080 8.366337 8.366337 8.366337
26 Secondary data cache misses 7736432 2.920580 1.909429 3.248837
23 TLB misses.............. 5693808 1.978017 1.978017 1.978017
7 Quadwords written back from scache. 61712384 1.973562 1.305834 1.973562
25 Primary data cache misses....................... 16368384 0.752445 0.235504 0.752445
22 Quadwords written back from primary data cache.. 32385280 0.636139 0.518825 0.735278
2 Issued loads 109918560 0.560809 0.560809 0.560809
18 Graduated loads.... 88890736 0.453524 0.453524 0.453524
6 Decoded branches 52497360 0.267844 0.267844 0.267844
3 Issued stores 43923616 0.224100 0.224100 0.224100
19 Graduated stores 33430240 0.170562 0.170562 0.170562
21 Graduated floating point instructions 28371152 0.144751 0.072375 7.527040
30 Store/prefetch exclusive to clean block in scache.... 7545984 0.038500 0.038500 0.038500
24 Mispredicted branches 417440 0.003024 0.001363 0.011118
9 Primary instruction cache misses. e 8272 0.000761 0.000238 0.000761
10 Secondary instruction cache misses................. 768 0.000290 0.000190 0.000323
31 Store/prefetch exclusive to shared block in scache. 15168 0.000077 0.000077 0.000077
1 Issued instructions 673476960 0.000000 0.000000 3.436107
4 Issued store conditionals 0 0.000000 0.000000 0.000000
5 Failed store conditionals.. 0 0.000000 0.000000 0.000000
8 Correctable scache data array ECC errors . 0 0.000000 0.000000 0.000000
11 Instruction misprediction from scache way prediction table.. 432 0.000000 0.000000 0.000002
12 External interventionms.. .. 6288 0.000000 0.000000 0.000000
13 External invalidationms.. 9360 0.000000 0.000000 0.000000
14 Virtual coherency conditions. . .. 0 0.000000 0.000000 0.000000
15 Graduated instructions.. .. 364303776 0.000000 0.000000 1.858693
17 Graduated instructions.. 392675440 0.000000 0.000000 2.003446
20 Graduated store conditionals.. 0 0.000000 0.000000 0.000000
27 Data misprediction from scache way prediction table.. 679120 0.000000 0.000000 0.003465
28 External intervention hits in scache 6288 0.000000 0.000000 0.000000
29 External invalidation hits in scache 5952 0.000000 0.000000 0.000000
Statistics
Graduated instructions/cycle.. 0.222163
Graduated floating point instructions/cycle.. 0.017302
Graduated loads & stores/cycle........................ 0.074595
Graduated loads & stores/floating point instruction 5.422486
Mispredicted branches/Decoded branches 0.007952
Graduated loads/Issued loads.... 0.808696
Graduated stores/Issued stores.. 0.761099
Data mispredict/Data scache hits 0.078675
Instruction mispredict/Instruction scache hits.. 0.057569
L1 Cache Line 6.473003
L2 Cache Line 1.115754
L1l Data Cache 0.866185
L2 Data Cache 0.527355



Time accessing memory/Total EimMe.............c.uiiniiniinninerneenaenannannns 0.750045
L1--L2 bandwidth used (MB/s, average Per PrOCESS) ..........uwuinunnenenennns 124.541093
Memory bandwidth used (MB/S, average Per PrOCESS) . ............evuernernarnn. 236.383187
MFLOPS (BVETage PET DTOCESS) -ttt e vvveannte e et e et e e et e e et ennas 3.391108

”Maximum,” “minimum,” and “typical” time cost estimates are reported. Each is
obtained by consulting an internal table which holds the maximum, minimum, and typ-
ical costs for each event, and multiplying this cost by the count for the event. Event
costs are usually measured in terms of machine cycles, and so the cost of an event
generally depends on the clock speed of the processor, which is also reported in the
output. The maximum value in the table corresponds to the worst-case cost of a single
occurrence of the event. Sometimes this can be a pessimistic estimate. For example,
the maximum cost for graduated floating point instructions assumes that every float-
ing point instruction is a double-precision reciprocal square root since it is the most
costly R10000 floating point instruction. Because of the latency-hiding capabilities of
the R10000, the minimum cost of virtually any event could be zero since most events
can be overlapped with other operations. To avoid simply reporting minimum costs
of zero, which would be of no practical use, the minimum time reported by perfex -y
corresponds to the best-case cost of a single occurrence of the event. The best-case
cost is obtained by running the maximum number of simultaneous occurrences of that
event and averaging the cost. For example, two floating point instructions can complete
per cycle, so the best case cost is 0.5 cycles per floating point instruction. The typical
cost falls somewhere between minimum and maximum and is meant to correspond to
the cost you see in average programs. perfex -y prints the event counts and associated
cost estimates sorted from most costly to least costly. Although resembling a profiling
output, this is not a true profile. The event costs reported are only estimates. Further-
more, since events do overlap with one another, the sum of the estimated times will
usually exceed the program’s run time. This output should only be used to identify
which events are responsible for significant portions of the program’s run time and to
get a rough idea of what those costs might be. In the example above, the program
spends a significant fraction of its time handling secondary cache and TLB misses. To
make a significant improvement in the run time of this program, the tuning measures
need to concentrate on reducing those cache misses. In addition to the event counts
and cost estimates, perfex -y also reports a number of statistics derived from the typi-
cal costs. The meaning of many of the statistics is self-evident, for example, Graduated
instructions/cycle. Below is a list of those statistics whose definitions require more
explanation:

Data mispredict/Data scache hits The ratio of the counts for data misprediction from
scache way prediction table and secondary data cache misses.

Instruction mispredict/I nstruction scache hits The ratio of the counts for instruc-
tion misprediction from scache way prediction table and secondary instruction
cache misses.

L1 CacheLineReuse The number of times, on average, that a primary data cache
line is used after it has been moved into the cache. It is calculated as graduated
loads plus graduated stores minus primary data cache misses, divided by primary
data cache misses.
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L2 CacheLine Reuse The number of times, on average, that a secondary data cache
line is used after it has been moved into the cache. It is calculated as primary
data cache misses minus secondary data cache misses, divided by secondary data
cache misses.

L1 Data Cache Hit Rate The fraction of data accesses that are satisfied from a cache
line already resident in the primary data cache. It is calculated as 1.0 - (primary
data cache misses divided by the sum of graduated loads and graduated stores).

L2 Data Cache Hit Rate The fraction of data accesses that are satisfied from a cache
line already resident in the secondary data cache. It is calculated as 1.0 - (sec-
ondary data cache misses divided by primary data cache misses).

Time accessing memory/Total time The sum of the typical costs of graduated loads,
graduated stores, primary data cache misses, secondary data cache misses, and
TLB misses, divided by the total program run time. The total program run time is
calculated by multiplying cycles by the time per cycle (inverse of the processor’s
clock speed).

L 1 2 bandwidth used (M B/s, average per process) The amount of data moved be-
tween the primary and secondary data caches, divided by the total program run
time. The amount of data moved is calculated as the sum of the number of pri-
mary data cache misses multiplied by the primary cache line size and the number
of quadwords written back from primary data cache multiplied by the size of a
quadword (16 bytes). For multiprocessor programs, the resulting figure is a per-
process average since the counts measured by perfex are aggregates of the counts
for all the threads. Multiply by the number of threads to get the total program
bandwidth.

Memory bandwidth used (M B/s, average per process) The amount of data moved
between the secondary data cache and main memory, divided by the total pro-
gram run time. The amount of data moved is calculated as the sum of the number
of secondary data cache misses multiplied by the secondary cache line size and
the number of quadwords written back from secondary data cache multiplied by
the size of a quadword (16 bytes). For multiprocessor programs, the resulting
figure is a per-process average since the counts measured by perfex are aggre-
gates of the counts for all the threads. Multiply by the number of threads to get
the total program bandwidth.

MFLOPS (MB/s, average per process) The ratio of the graduated floating point in-
structions and the total program run time. Note that although a multiply-add
carries out two floating point operations, it only counts as one instruction, so this
statistic may underestimate the number of floating point operations per second.
For multiprocessor programs, the resulting figure is a per-process average since
the counts measured by perfex are aggregates of the counts for all the threads.
Multiply by the number of threads to get the total program rate.

These statistics give you a quick way to identify performance problems in your
program. For example, the cache hit-rate statistics tell you how cache friendly your
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program is. Since a secondary cache miss is much more expensive than a cache hit,
the L2 Data Cache Hit Rate needs to be close to 1.0 to indicate that the program is
not paying a large penalty for the cache misses. Values of +0.96 and above indicate
good cache performance. Note that, for the above example, the rate is 0.53, further
confirmation of the cache problems in this program.

[11B.5 Using SpeedShop

The purpose of profiling is to find out exactly where a program is spending its time, that
is, in precisely which procedures or lines of code. Then you can concentrate your ef-
forts on the (usually small) areas of code where there is the most to be gained. Profiling
using the SpeedShop package supports these methods:

e Sampling, in which the subject program is frequently interrupted; the program
counter (PC) and stack are recorded on each interruption. The more frequently
the PC is found in a particular procedure, the more execution time that procedure
costs.

e SpeedShop can sample on a variety of time bases: the system timer or any of the
R10000 performance counters. ldeal counting, in which a copy of the subject
program binary is modified with trap instructions at the end of each basic block.
During execution, the exact number of uses of each basic block is counted.

e Exception trace, not really a profiling method, records only floating point excep-
tions and their locations.

The SpeedShop package has three parts:

e ssrun performs experiments and collects data.
e prof processes data and prepares reports.

e The ssapi interface allows you to insert caliper points into a program to profile
specific sections of code or phases of execution.

These programs are documented in the following reference pages: speedshop doc-
uments the types of experiments, as well as a number of environment variables you
can set. ssrun documents specific options of ssrun. You need both speedshop(1) and
ssrun(l) to run an experiment. prof documents the report types and the options you
use to get them. ssapi documents the three library calls you can use.

[11B.6 PC sampling profiling

The accuracy of sampling depends on the time base that sets the sampling interval.
In each case, the time base is the independent variable and the program state is the
dependent variable. Select from the sampling methods summarized in Table 111.2. Each
time base finds the program PC more often in the code that consumes the most units of
that time base:
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ssrun Option

Time Base

Comments

-usertime

-pcsamp[x] -fpcsamplx]

-gilhwe  -fgi_hwe

-cy-hwec  -fcy_hwe

-ic_hwe -fic_hwe

-isc_.hwc  -fisc_hwe

-dc_hwc  -fdc_hwce

-dsc_hwc -fdsc_hwc
-tlb_.hwec  -ftib_hwc
-gfp_hwe  -fgfp_hwe

-prof_hwc

30 ms timer

10 ms timer 1 ms timer

32771 insts 6553 insts

16411 clocks 3779 clocks
2053 icache miss 419 icache miss

131 scache miss 29 scache miss

2053 dcache miss 419 dcache miss
131 scache miss 29 scache miss

257 TLB miss 53 TLB miss
32771 fp insts 6553 fp insts

user-set

Fairly coarse resolution; experiment
runs quickly and output file is small;
some bugs noted in speedshop(1).
Moderately coarse resolution; functions
that cause cache misses or page faults
are emphasized. Suffix x for 32-bit
counts.

Fine-grain resolution based on gradu-
ated instructions. Emphasizes func-
tions that burn a lot of instructions.
Fine-grain resolution based on elapsed
cycles. Emphasizes functions with
cache misses and mispredicted
branches.

Emphasizes code that doesn't fit in L1
cache.

Emphasizes code that doesn't fit in L2
cache. Should be coarse-grained mea-
sure.

Emphasizes code that causes L1
cache data misses.

Emphasizes code that causes L2
cache data misses.

Emphasizes code that causes page
faults.

Emphasizes code that performs heavy
FP calculation.

Hardware counter and overflow value
from environment variables.

Table 111.2;: Sampling methods.
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e The time bases that reflect actual elapsed time (-usertime, -pcsamp, -cy_hwc)
find the PC more often in the code where the program spends elapsed time. The
time may be spent in that code because it is executed a lot, or it might be spent
there because those instructions are processed slowly owing to cache misses,
memory contention, or failed branch prediction. Use these to get an overview of
the program and to find major trouble spots.

e The time bases that reflect instruction counts (-gi_hwec, -gfp_hwc) find the PC
more often in the code that actually performs the most instructions. Use these to
find the code that could benefit most from algorithmic changes.

e The time bases that reflect data access (-dc_hwec, -sc_hwec, -tlb_hwc) find the PC
more often in the code that has to wait for its data to be brought in from another
memory level. Use these to find memory access problems.

e The time bases that reflect code access (-ic_hwec, -isc_hwc) find the PC more
often in the code that has to be fetched from memory when it is called. Use these
to pinpoint functions that could be reorganized for better locality, or to see when
automatic inlining has gone too far.

It is easy to perform an experiment. Here is the application of an experiment to
program adi2:

% ssrun -fpcsamp adi2

Time: 7.619 seconds
Checksum: 5.6160428338E+06

The output file of samples is left in a file with the default name of ./command.experiment.pid.
In this case the name was adi2.fpcsamp.4885. It is often more convenient, however, to
dictate the name of the output file. You can do this by putting the desired filename and
directory in environment variables. Using this csh script you can run an experiment,
passing the output directory and filename on the command line, for example

% ssruno -d /var/tmp -0 adi2.cy -cy_hwc adi2
ssrun -cy\_hwc adi2 ......... . ... i
Time: 9.644 seconds
Checksum: 5.6160428338E+06

.................................. ssrun ends.
-YW-r--r-- 1 guest guest 18480 Dec 17 16:25 /var/tmp/adi2.cy

[11B.7 Using prof

Regardless of which time base you use for sampling, you display the result using prof.
By default, prof displays a list of procedures ordered from the one with the most sam-
ples to the least:

% prof adi2.fpcsamp.4885
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Profile listing generated Sat Jan 4 10:28:11 1997

with: prof adi2.fpcsamp.4885
samples time CPU FPU Clock N-cpu S-interval Countsize
8574 8.6s R10000 R10010 196.0MHz 1 1.0ms 2 (bytes)

Each sample covers 4 bytes for every 1.0ms ( 0.01% of 8.5740s)

-plrocedures] using pc-sampling.
Sorted in descending order by the number of samples in each procedure.
Unexecuted procedures are excluded.

samples time (%) cum time (%) procedure (dso:file)

6688 6.7s( 78.0) 6.7s( 78.0) zsweep (adi2:adi2.f)

671 0.67s( 7.8) .4s( 85.8) xsweep (adi2:adi2.f)

662 0.66s( 7.7) 8s( 93.6) ysweep (adi2:adi2.f)

208 0.21s( 2.4) 8.2s( 96.0) fake adi (adi2:adi2.f)

178 0.18s( 2.1) 8.4s( 98.1) irand_ (/usr/lib32/libftn.so:../../libF77/rand_.c)
166 0.17s( 1.9) 8.6s(100.0) rand  (/usr/1lib32/libftn.so:../../1ibF77/rand_.c)

1 0.001ls( 0.0) 8.6s(100.0) __oserror (/usr/lib32/libc.so.l:oserror.c)

8574 8.6s5(100.0) 8.65(100.0) TOTAL

This profile indicates that you should focus on the routine zsweep, since it con-
sumes almost 80% of the run time of this program. For finer detail, use the -heavy
option. This supplements the list of procedures with a list of individual source line
numbers, ordered by frequency:

-h[eavy] using pc-sampling.
Sorted in descending order by the number of samples in each line.
Lines with no samples are excluded.

samples time (%) cum time (%) procedure (file:line)
3405 3.4s( 39.7) 3.4s( 39.7) zsweep (adi2.f:122)
3226 3.2s( 37.6) 6.6s( 77.3) zsweep (adi2.f:126)
425 0.42s( 5.0) 7.1s( 82.3) xsweep (adi2.f:80)
387 0.39s( 4.5) 7.4s( 86.8) ysweep (adi2.f:101)
273 0.27s( 3.2) 7.7s( 90.0) ysweep (adi2.f:105)
246 0.25s( 2.9) 8s( 92.9) xsweep (adi2.f:84)

167 0.17s( 1.9) 8.1s( 94.8) irand_ (../../libF77/rand_.c:62)
163 0.16s( 1.9) 8.3s( 96.7) fake adi (adi2.f:18)

160 0.16s( 1.9) 8.5s( 98.6) rand_ (../../libF77/rand_.c:69)
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45
32
21
11

RIS

8574

0.045s( 0.5) 8.5s( 99.1)
0.032s( 0.4) 8.5s( 99.5)
0.021s( 0.2) 8.5s( 99.7)
0.011s( 0.1) 8.6s( 99.8)
0.006s( 0.1) 8.6s( 99.9)
0.004s( 0.0) 8.6s(100.0)
0.001s( 0.0) 8.6s(100.0)
0.001s( 0.0) 8.6s(100.0)
0.001s( 0.0) 8.6s(100.0)

8.6s5(100.0) 8.6s(100.0)

fake adi
zsweep
zsweep

irand
rand_

zsweep
ysweep
ysweep

__oserror

TOTAL

(adi2.f:59)

(adi2.£:113)

(adi2.£:121)
(../../1libF77/rand_.c:63)
(../../1ibF77/rand_.c:67)
(adi2.f:125)

(adi2.f:104)

(adi2.f:100)
(oserror.c:127)

From this listing it is clear that lines 122 and 126 warrant further inspection. Even
finer detail can be obtained with the -source option, which lists the source code and
disassembled machine code, indicating sample hits on specific instructions.

[11B.8

Ideal time profiling

The other type of profiling is called ideal time, or basic block, profiling. Basic block
is a compiler term for a section of code that has only one entrance and one exit. Any
program can be decomposed into basic blocks. To obtain an ideal profile, ssrun copies
the executable program and modifies the copy to contain code that records the entry
to each basic block. Not only the executable itself but also all dynamic shared objects
(DSOs; for more information, see dso(5)) that it links to are copied and instrumented.
The instrumented executable and libraries are statically linked and run:

% ssrun -ideal adi2

Beginni

Ending
Time:
Checks

ng libraries
/usr/1ib32/1ibssrt.so
/usr/1ib32/1libss.so
/usr/1ib32/1ibfastm.so
/usr/1ib32/1libftn.so
/usr/1ib32/1libm.so
/usr/1ib32/libc.so.1
libraries, beginning "adi2"

8.291 seconds
um: 5.6160428338E+06

The number of times each basic block was encountered is recorded. The output
data file is displayed using prof, just as for a sampled run. The report ranks source and
library procedures from most to least used:

% p

Prof run

rof adi2.ideal .4920

at: Sat Jan 4 10:34:06 1997

Command line: prof adi2.ideal.4920

2

2

85898739: Total number of cycles
1.45867s: Total execution time
85898739: Total number of instructions executed
1.000: Ratio of cycles / instruction
196: Clock rate in MHz
R10000: Target processor modeled



Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

cycles (%) cum % secs instrns calls procedure (dso:file
68026368(23.79) 23.79 0.35 68026368 32768 xsweep(adi2.pixie:adi2.f
68026368(23.79) 47.59 0.35 68026368 32768 ysweep(adi2.pixie:adi2.f
68026368(23.79) 71.38 0.35 68026368 32768 zsweep(adi2.pixie:adi2.f
35651584 (12.47) 83.85 0.18 35651584 2097152 rand_(./libftn.so.pixn32:../../1ibF77/rand_.c)
27262976( 9.54) 93.39 0.14 27262976 2097152 irand_(./libftn.so.pixn32:../../1ibF77/rand_.c)
18874113 ( 6.60) 99.99 0.10 18874113 1 fake_adi(adi2.pixie:adi2.f)
11508 ( 0.00) 99.99 0.00 11508 5 memset (./libc.so.1.pixn32:/slayer x1v0/ficussg-nov05/work/irix/lib/libc/libc_n32_M4/strings/bzero.s
3101( 0.00) 99.99 0.00 3101 55 _ flsbuf(./libc.so.1l.pixn32: flsbuf.c
2446( 0.00) 100.00 0.00 2446 42 x_putc(./libftn.so.pixn32:../../1ibI77/wsfe.c
1234( 0.00) 100.00 0.00 1234 2 x_WwEND(./libftn.so.pixn32:../../1ibI77/wsfe.c
1047( 0.00) 100.00 0.00 1047 1 f_exit(./libftn.so.pixn32:../../1ibI77/close.c
1005( 0.00) 100.00 0.00 1005 5 fflush(./libc.so.1.pixn32:flush.c
639( 0.00) 100.00 0.00 639 4 do_fio64_mp(./libftn.so.pixn32:../../1ibI77/fmt.c
566 ( 0.00) 100.00 0.00 566 3 wrt_AP(./libftn.so.pixn32:../../1ibI77/wrtfmt.c
495( 0.00) 100.00 0.00 495 6 map_luno(./libftn.so.pixn32:../../1ibI77/util.c
458( 0.00) 100.00 0.00 458 14 op_gen(./libftn.so.pixn32:../../1ibI77/fmt.c
440( 0.00) 100.00 0.00 440 9 gt_num(./libftn.so.pixn32:../../1ibI77/fmt.c
414( 0.00) 100.00 0.00 414 1 getenv(./libc.so.1.pixn32:getenv.c

The -heavy option adds a list of source lines, sorted by their consumption of ideal
instruction cycles. An ideal profile shows exactly and repeatedly which statements
are most executed and gives you an exact view of the algorithmic complexity of the
program. An ideal profile does not necessarily reflect where a program spends its time
since it cannot take cache and TLB misses into account. Consequently, the results of
the ideal profile are startlingly different from that of the PC sampling profile. These
ideal results indicate that zsweep should take exactly the same amount of run time as
ysweep and xsweep. These differences can be used to infer where cache performance
issues exist. On machines without the R10000’s hardware profiling registers, such
comparisons are the only profiling method available to locate cache problems.

[11B.9 Operation counts

Since ideal profiling counts the instructions executed by the program, it can provide
all sorts of interesting information about the program. Already printed in the standard
prof output are counts of how many times each subroutine is called. In addition, you
may use the -op option to prof to get a listing detailing the counts of all instructions
in the program. In particular, this will provide an exact count of the floating point
operations executed:

% prof -op adi2.ideal.4920

Prof run at: Wed Jan 15 14:42:54 1997
Command line: prof -op adi2.ideal.4920

285898739: Total number of cycles
1.45867s: Total execution time
285898739: Total number of instructions executed
1.000: Ratio of cycles / instruction
196: Clock rate in MHz
R10000: Target processor modeled
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56590456: Floating point operations (38.796 Mflops @ 196 MHz)
105500230: Integer operations (72.3265 M intops @ 196 MHz)

Note that this is different from what you get using perfex. The R10000 counter #21
counts floating point instructions, not floating point operations. As a result, in a pro-
gram that executes a lot of multiply-add instructions — each of which carries out two
floating point operations — perfex’s MFLOPS statistic can be off by a factor of two.
Since prof -op records all instructions executed, it counts each multiply-add instruction
as two floating point operations, thus providing the correct tally. The MFLOPS figure it
calculates, however, is based on the ideal time; to calculate floating point performance,
divide the number of floating point operations counted by prof -op by wall clock time.
Either method of profiling, PC sampling or ideal, can be applied to multiprocessor
runs just as easily as it is applied to single-processor runs; each thread of an applica-
tion maintains its own histogram, and the histograms may be printed individually or
merged in any combination and printed as one profile.

[11B.10 Gprof

One limitation of the prof output for either PC sampling or ideal time is that the infor-
mation reported contains no information about the call hierarchy. That is, if the routine
zsweep in the above example were called from two different locations in the program,
you would not know how much time results from the call at each location; you would
only know the total time spent in zsweep. If you knew that, say, the first location was
responsible for the majority of the time, this could affect how you tune the program.
For example, you might try inlining the call into the first location, but not bother with
the second. Or, if you wanted to parallelize the program, knowing that the first loca-
tion is where the majority of the time is spent, you might consider parallelizing the
calls to zsweep there rather than trying to parallelize the zsweep routine itself. Speed-
Shop provides two methods of obtaining hierarchical profiling information. The first
method, which is called gprof, is used in conjunction with the ideal time profile. To
obtain the gprof information for the above example, simply add the flag -gprof to the
prof command:

% prof -gprof adi2.ideal.4920

Prof run at: Wed Jan 15 16:52:09 1997
Command line: prof -gprof adi2.ideal.4920

285898739: Total number of cycles
1.45867s: Total execution time
285898739: Total number of instructions executed
1.000: Ratio of cycles / instruction
196: Clock rate in MHz
R10000: Target processor modeled
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Procedures sorted in descending order of cycles executed.
Unexecuted procedures are not listed. Procedures
beginning with *DF* are dummy functions and represent
init, fini and stub sections.

cycles (%)

68026368
68026368

(23.79
(
68026368 (
(
(

)
3.79)
3.79)
2.47)
9.54)

2

2
35651584 (1
27262976

23.
47.
71.
83.
93.

79
59
38
85
39

0.35
0.35
0.35
0.18
0.14

instrns

68026368
68026368
68026368
35651584
27262976

All times are in milliseconds.

calls procedure (dso:file)

32768 xsweep(adi2.pixie:adi2.f)
32768 ysweep(adi2.pixie:adi2.f)
32768 zsweep(adi2.pixie:adi2.f)
2097152 rand_(./libftn.so.pixn32
2097152 irand_(./libftn.so.pixn3

:../../1ibF77/rand_.c)
2:../../1ibF77/rand_.c)

NOTE: any functions which are not part of the call
graph are listed at the end of the gprof listing

index cycles (%)

[1] 285895481(100.00%)

self

self (%)

self

57( 0.00%)

50

parents
index

name

children

_ start [1]
main [2]
_ istart

__readenv_sigfpe

[2] 285895419(100.00%)

50

50( 0.00%)

18874113

205

__start

main [2]
fake_adi

signal

[3] 285894558(100.00%)

18874113
18874113 ( 6.60%)
68026368
68026368
68026368
35651584

28

main [2]
fake_adi [3]
zsweep [4]

ysweep
xsweep

52

rand_

s_wsfe64
e_wsfe [17]

do_fioxrav [25]
do_fioxrsv [24]

[112]

[1]

[31

[44]

[s1
61

[71
3}

s_stop [28]

68026368
68026368 (100.00%)

kids called/total
kids (%) called+self
kids called/total
285895424 (100.00%) 0
285895369 1/1
0 1/1
0 1/1
285895369 1/1
285895369 (100.00%) 1
267020445 1/1
606 5/5
267020445 1/1
267020445 (93.40%) 1
0 32768/32768
0 32768/32768
0 32768/32768
27262976 2097152/20971
13486 2/2
5368 2/2
2610 1/1
2610 1/1
2428 1/1
44 2/2
0 32768/32768

0( 0.00%) 32768

68026368
68026368 (100.00%)

0 32768/32768
0( 0.00%) 32768

68026368
68026368 (100.00%)

0 32768/32768
0( 0.00%) 32768

dtime_ [68]
fake_adi [3]
zsweep [4]
fake_adi [3]
ysweep [5]
fake_adi [3]
xsweep [6]

This produces the usual ideal time profiling output, but following that is the hierar-
chical information. There is a block of information for each subroutine in the program.
A number, shown in brackets (e.g., [1]), is assigned to each routine so that the informa-
tion pertaining to it can easily be located in the output. Let’s look in detail at the block
of information provided; we’ll use fake_adi [3] as an example. The line beginning with

the number [3] shows, from left to right, the:

e Number of cycles consumed by this routine and the routines it calls (its descen-
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dants)

Number of cycles spent inside the routine, but not in any of its descendants

Number of cycles spent in its descendants

Total number of times the routine was called

Name of the routine, fake_adi [3]

Above this line are lines showing which routines fake_adi [3] was called from. In
this case, it is only called from one place, main [2], so there is just one line (in general,
there would be one line for each routine which calls fake_adi [3]). This line shows

e The proportion of the cycles spent inside fake_adi [3] as a result of the call from
main [2];

e The proportion of time spent in fake_adi [3]’s descendants as a result of the call
from main [2];

e How many calls there are to fake_adi [3] in main [2] / the total number of calls
to fake_adi [3] from all laces in the program

Since fake_adi [3] is only called once, all the time in it and its descendants is the
result of this one call. Below the line beginning with the number [3] are all the descen-
dants of fake_adi [3]. For each descendant you see:

e The proportion of the descendant’s cycles spent inside it.

e The proportion of the descendant’s cycles spent in its descendants (i.e., fake_adi
[3]’s grandchildren).

e How many calls to the descendant there are in fake_adi [3] / the total number of
calls to the descendant from all places in the program.

This block of information allows you to determine not just which subroutines but
which paths in the program are responsible for the majority of time. The only limitation
is that gprof reports ideal time, so cache misses are not represented.

[11B.11 Usertime profiling

gprof only reports ideal time. To get hierarchical profiling information that accurately
accounts for all the time in the program, the way PC sampling does, use usertime
profiling. For this type of profiling, the program is sampled during the run. At each
sample, the location of the program counter is noted and the entire call stack is traced to
record which routines have been called to get to this point in the program. From this, a
hierarchical profile is constructed. Since unwinding the call stack is an expensive oper-
ation, the sampling period is for usertime profiling is relatively long: 30 milliseconds.
usertime profiling is performed with the following command:
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% ssrun -usertime adi2

The output is written to a file called ./adi2.usertime.pid, where pid is the process
ID for this run of adi2. The profile is displayed using prof just as for PC sampling and
ideal time profiling:

% prof adi2.usertime.19572
The output is as follows:

Profile listing generated Wed Jan 15 16:57:10 1997

with: prof adi2.usertime.19572

Total Time (secs) : 9.99

Total Samples : 333

Stack backtrace failed: 0

Sample interval (ms) : 30

CPU : R10000

FPU : R10010

Clock : 196 .0MHz

Number of CPUs : 1
index $%Samples self descendents total name
[1] 100.0% 0.00 9.99 333 __start
[2] 100.0% 0.00 9.99 333 main
[3] 100.0% 0.09 9.90 333 fake_adi
[4] 80.8% 8.07 0.00 269 zsweep
[5] 7.5% 0.75 0.00 25 xsweep
(6] 6.9% 0.69 0.00 23 ysweep
[7] 3.9% 0.12 0.27 13 rand_
[8] 2.7% 0.27 0.00 9 irand

The information is less detailed than that provided by gprof, but when combined
with gprof, you can get a complete hierarchical profile for all routines which have run
long enough to be sampled.
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[I11C Dynamic Acceleration Structures for Interactive
Ray Tracing

Acceleration structures used for ray tracing have been designed and optimized for ef-
ficient traversal of static scenes. As it becomes feasible to do interactive ray tracing of
moving objects, new requirements are posed upon the acceleration structures. Dynamic
environments require rapid updates to the acceleration structures. In this paper we pro-
pose spatial subdivisions which allow insertion and deletion of objects in constant time
at an arbitrary position, allowing scenes to be interactively animated and modified.

[11C.1 Introduction

Recently, interactive ray tracing has become a reality [16, 19], allowing exploration of
scenes rendered with higher quality shading than with traditional interactive rendering
algorithms. A high frame-rate is obtained through parallelism, using a multiprocessor
shared memory machine. This approach has advantages over hardware accelerated
interactive systems in that a software-based ray tracer is more easily modified. One of
the problems with interactive ray tracing is that previous implementations only dealt
with static scenes or scenes with a small number of specially handled moving objects.
The reason for this limitation is that the acceleration structures used to make ray tracing
efficient rely on a significant amount of preprocessing to build. This effectively limits
the usefulness of interactive ray tracing to applications which allow changes in camera
position. The work presented in this paper is aimed at extending the functionality of
interactive ray tracing to include applications where objects need to be animated or
interactively manipulated.

When objects can freely move through the scene, either through user interaction, or
due to system-determined motion, it becomes necessary to adapt the acceleration meth-
ods to cope with changing geometry. Current spatial subdivisions tend to be highly op-
timized for efficient traversal, but are difficult to update quickly for changing geometry.
For static scenes this suffices, as the spatial subdivision is generally constructed during
a pre-processing step. However, in animated scenes pre-processed spatial subdivisions
may have to be recalculated for each change of the moving objects. One approach to
circumvent this issue is to use 4D radiance interpolants to speed-up ray traversal [2].
However, within this method the frame update rates depend on the type of scene ed-
its performed as well as the extent of camera movement. We will therefore focus on
adapting current spatial subdivision techniques to avoid these problems.

To animate objects while using a spatial subdivision, insertion and deletion costs
are not negligible, as these operations may have to be performed many times during
rendering. In this paper, spatial subdivisions are proposed which allow efficient ray
traversal as well as rapid insertion and deletion for scenes where the extent of the scene
grows over time.

The following section presents a brief overview of current spatial subdivision tech-
niques (Section I11C.2), followed by an explanation of our (hierarchical) grid modifica-
tions (Sections 111C.3 and 111C.4). A performance evaluation is given in Section 111C.5,
while conclusions are drawn in the final section.
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[11C.2 Acceleration Structuresfor Ray Tracing

There has been a great deal of work done on acceleration structures for ray tracing [13].
However, little work has focused on ray tracing moving objects. Glassner presented an
approach for building acceleration structures for animation [12]. However, this ap-
proach does not work for environments without a priori knowledge of the animation
path for each object. In a survey of acceleration techniques, Gaede and Giinther pro-
vide an overview of many spatial subdivisions, along with the requirements for various
applications [10]. The most important requirements for ray tracing are fast ray traversal
and adaptation to unevenly distributed data. Currently popular spatial subdivisions can
be broadly categorized into bounding volume hierarchies and voxel based structures.

Bounding volume hierarchies create a tree, with each object stored in a single node.
In theory, the tree structure allows O(log n) insertion and deletion, which may be fast
enough. However, to make the traversal efficient, the tree is augmented with extra
data, and occasionally flattened into an array representation [26], which enables fast
traversal but insertion or deletion incur a non-trivial cost. Another problem is that as
objects are inserted and deleted, the tree structure could become arbitrarily inefficient
unless some sort of rebalancing step is performed as well.

Voxel based structures are either grids [1, 9] or can be hierarchical in nature, such
as bintrees and octrees [11, 27]. The cost of building a spatial subdivision tends to be
O(n) in the number of objects. This is true for both grids and octrees. In addition, the
cost of inserting a single object may depend on its relative size. A large object generally
intersects many voxels, and therefore incurs a higher insertion cost than smaller objects.
This can be alleviated through the use of modified hierarchical grids, as explained in
Section 111C.4. The larger problem with spatial subdivision approaches is that the grid
structure is built within volume bounds that are fixed before construction. Although
insertion and deletion may be relatively fast for most objects, if an object is moved
outside the extent of the spatial subdivision, current structures would require a complete
rebuild. This problem is addressed in the next section.

[11C.3 Grids

Grid spatial subdivisions for static scenes, without any modifications, are already useful
for animated scenes, as traversal costs are low and insertion and deletion of objects is
reasonably straightforward. Insertion is usually accomplished by mapping the axis-
aligned bounding box of an object to the voxels of the grid. The object is inserted into
all voxels that overlap with this bounding box. Deletion can be achieved in a similar
way.

However, when an object moves outside the extent of the spatial subdivision, the
acceleration structure would normally have to be rebuilt. As this is too expensive to
perform repeatedly, we propose to logically replicate the grid over space. If an object
exceeds the bounds of the grid, the object wraps around before re-insertion. Ray traver-
sal then also wraps around the grid when a boundary is reached. In order to provide
a stopping criterion for ray traversal, a logical bounding box is maintained which con-
tains all objects, including the ones that have crossed the original perimeter. As this
scheme does not require grid re-computation whenever an object moves far away, the
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cost of maintaining the spatial subdivision will be substantially lower. On the other
hand, because rays now may have to wrap around, more voxels may have to be tra-
versed per ray, which will slightly increase ray traversal time.

During a pre-processing step, the grid is built as usual. We will call the bounding
box of the entire scene at start-up the *physical bounding box’. If during the animation
an object moves outside the physical bounding box, either because it is placed by the
user in a new location, or its programmed path takes it outside, the logical bounding
box is extended to enclose all objects. Initially, the logical bounding box is equal
to the physical bounding box. Insertion of an object which lies outside the physical
bounding box is accomplished by wrapping the object around within the physical grid,
as depicted in Figure 111.17 (left).

3 Al

Logical bounding box
—— Physical bounding box

Figure 111.17: Grid insertion (left). The sphere has moved outside the physical grid,
now overlapping with voxels (4, 2) and (5, 2). Therefore, the object is inserted at the
location of the shaded voxels. The logical bounding box is extended to include the
newly moved object. Right: ray traversal through extended grid. The solid lines are the
actual objects whereas the dashed lines indicate voxels which contain objects whose
actual extents are not contained in that voxel.

As the logical bounding box may be larger than the physical bounding box, ray
traversal now starts at the extended bounding box and ends if an intersection is found
or if the ray leaves the logical bounding box. In the example in Figure 111.17 (right), the
ray pointing to the sphere starts within a logical voxel, voxel (-2, 0), which is mapped to
physical voxel (0, 2). The logical coordinates of the sphere are checked and found to be
outside of the currently traversed voxel and thus no intersection test is necessary. The
ray then progresses to physical voxel (1, 2). For the same reason, no intersection with
the sphere is computed again. Traversal then continues until the sphere is intersected
in logical voxel (4, 2), which maps to physical voxel (0, 2).

Objects that are outside the physical grid are tagged, so that in the above example,
when the ray aimed at the triangle enters voxels (0, 2) and (1, 2), the sphere does not
have to be intersected. Similarly, when the ray is outside the physical grid, objects
that are within the physical grid need not be intersected. As most objects will initially
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lie within the physical bounds, and only a few objects typically move away from their
original positions, this scheme speeds up traversal considerably for parts of the ray that
are outside the physical bounding box.

When the logical bounding box becomes much larger than the physical bounding
box, there is a tradeoff between traversal speed (which deteriorates for large logical
bounding boxes) and the cost of rebuilding the grid. In our implementation, the grid
is rebuilt when the length of the diagonals of the physical and logical bounding boxes
differ by a factor of two.

Hence, there is a hierarchy of operations that can be performed on grids. For small
to moderate expansions of the scene, wrapping both rays and objects is relatively quick
without incurring too high a traversal cost. For larger expansions, rebuilding the grid
will become a more viable option.

This grid implementation shares the advantages of simplicity and cheap traversal
with commonly used grid implementations. However, it adds the possibility of increas-
ing the size of the scene without having to completely rebuild the grid every time there
is a small change in scene extent. The cost of deleting and inserting a single object
is not constant and depends largely on the size of the object relative to the size of the
scene. This issue is addressed in the following section.

[11C.4 Hierarchical grids

As was noted in the previous section, the size of an object relative to each voxel in a
grid influences how many voxels will contain that object. This in turn negatively affects
insertion and deletion times. Hence, it would make sense to find a spatial subdivision
whereby the voxels can have different sizes. If this is accomplished, then insertion
and deletion of objects can be made independent of their sizes and can therefore be
executed in constant time. Such spatial subdivisions are not new and are known as hi-
erarchical spatial subdivisions. Octrees, bintrees and hierarchical grids are all examples
of hierarchical spatial subdivisions. However, normally such spatial subdivisions store
all their objects in leaf nodes and would therefore still incur non-constant insertion and
deletion costs. We extend the use of hierarchical grids in such a way that objects can
also reside in intermediary nodes or even in the root node for objects that are nearly as
big as the entire scene.

Because such a structure should also be able to deal with expanding scenes, our
efforts were directed towards constructing a hierarchy of grids (similar to Sung [28]),
thereby extending the functionality of the grid structure presented in the previous sec-
tion. Effectively, the proposed method constitutes a balanced octree.

Object insertion now proceeds similarly to grid insertion, except that the grid level
needs to be determined before insertion. This is accomplished by comparing the size
of the object in relation to the size of the scene. A simple heuristic is to determine the
grid level from the diagonals of the two bounding boxes. Specifically, the length of the
grid’s diagonal is divided by the length of the object’s diagonal, the result determining
the grid level. Insertion and deletion progresses as explained in the previous section.

The gain of constant time insertion is offset by a slightly more complicated traversal
algorithm. Hierarchical grid traversal is effectively the same as grid traversal with
the following modifications. Traversal always starts at a leaf node which may first
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be mapped to a physical leaf node as described in the previous section. The ray is
intersected with this voxel and all its parents until the root node is reached. This is
necessary because objects at all levels in the hierarchy may occupy the same space as
the currently traversed leaf node. If an intersection is found within the space of the leaf
node, then traversal is finished. If not, the next leaf node is selected and the process is
repeated.

This traversal scheme is wasteful because the same parent nodes may be repeatedly
traversed for the same ray. To combat this problem, note that common ancestors of the
current leaf node and the previously intersected leaf node, need not be traversed again.
If the ray direction is positive, the current voxel’s number can be used to derive the
number of levels to go up in the tree to find the common ancestor between the current
and the previously visited voxel. For negative ray directions, the previously visited
voxel’s number is used instead. Finding the common ancestor is achieved using simple
bit manipulation, as detailed in Figure 111.18.

bitmask = (raydir x > 0) ? x : x + 1
forall levels in hierarchical grid

{

cell = hgrid[levell] [x>>level] [y>>level] [z>>1level]
forall objects in cell
intersect (ray, object)
if (bitmask & 1)
return
bitmask >>= 1

}

Figure 111.18: Hierarchical grid traversal algorithm in C-like pseudo-code. The bitmask
is set assuming that the last step was along the x-axis.

As the highest levels of the grid may not contain any objects, ascending all the
way to the highest level in the grid is not always necessary. Ascending the tree for a
particular leaf node can stop when the largest voxel containing objects is visited.

This hierarchical grid structure has the following features. The traversal is only
marginally more complex than standard grid traversal. In addition, wrapping of objects
in the face of expanding scenes is still possible. If all objects are the same size, this
algorithm effectively defaults to grid traversal. Insertion and deletion can be achieved
in constant time, as the number of voxels that each object overlaps is roughly constant®.

[11C.5 Evaluation

The grid and hierarchical grid spatial subdivisions were implemented using an interac-
tive ray tracer [19], which runs on an SGI Origin 2000 with 32 processors. For eval-
uation purposes, two test scenes were used. In each scene, a number of objects were
animated using pre-programmed motion paths. The scenes as they are at start-up are
depicted in Figure 111.21 (top). An example frame taken during the animation is given
for each scene in Figure 111.21 (bottom). All images were rendered on 30 processors at
a resolution of 5122 pixels.

6Note that this also obviates the need for mailbox systems to avoid redundant intersection tests.
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To assess basic traversal speed, the new grid and hierarchical grid implementations
are compared with a bounding volume hierarchy. We also compared our algorithms
with a grid traversal algorithm which does not allow interactive updates. Its internal
data structure consists of a single array of object pointers, which improves cache effi-
ciency on the Origin 2000.

From here on we will refer to the new grid implementation as ‘interactive grid’ to
distinguish between the two grid traversal algorithms. As all these spatial subdivision
methods have a user defined parameter to set the resolution (voxels along one axis
and maximum number of grid levels, respectively), various settings are evaluated. The
overall performance is given in Figure 111.19 and is measured in frames per second.
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Figure 111.19: Performance (in frames per second) for the grid, the interactive grid and
the hierarchical grid for two static scenes. The bounding volume hierarchy achieves a
frame rate of 8.5 fps for the static sphereflake model and 16.4 fps for the static triangles

model.

The extra flexibility gained by both the interactive grid and hierarchical grid imple-
mentations results in a somewhat slower frame rate. This is according to expectation,
as the traversal algorithm is a little more complex and the Origin’s cache structure
cannot be exploited as well with either of the new grid structures. The graphs in Fig-
ure 111.19 show that with respect to the grid implementation the efficiency reduction is
between 12% and 16% for the interactive grid and 21% and 25% for the hierarchical
grid. These performance losses are deemed acceptable since they result in far better
overall execution than dynamically reconstructing the original grid. For the sphere-
flake, all implementations are faster, for a range of grid sizes, than a bounding volume
hierarchy, which runs at 8.5 fps. For the triangles scene, the hierarchical grid performs
at 16.0 fps similarly to the bounding volume (16.4 fps), while grid and interactive grid
are faster.

The non-zero cost of updating the scene effectively limits the number of objects
that can be animated within the time-span of a single frame. However, for both scenes,
this limit was not reached. In the case where the frame rate was highest for the triangles
scene, updating all 200 triangles took less than 1/680th of a frame for the hierarchical
grid and 1/323th of a frame for the interactive grid. The sphereflake scene costs even
less to update, as fewer objects are animated. For each of these tests, the hierarchical
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grid is more efficiently updated than the interactive grid, which confirms its usefulness.

The size difference between different objects should cause the update efficiency to
be variable for the interactive grid, while remaining relatively constant for the hierar-
chical grid. In order to demonstrate this effect, both the ground plane and one of the
triangles in the triangle scene was interactively repositioned during rendering. The up-
date rates for different size parameters for both the interactive grid and the hierarchical
grid, are presented in Figure 111.20 (left). As expected, the performance of the hierar-
chical grid is relatively constant, although the size difference between ground plane and
triangle is considerable. The interactive grid does not cope with large objects very well
if these objects overlap with many voxels. Dependent on the number of voxels in the
grid, there is one to two orders of magnitude difference between inserting a large and a
small object. For larger grid sizes, the update time for the ground plane is roughly half
a frame. This leads to visible artifacts when using an interactive grid, as during the up-
date the processors that are rendering the next frame temporarily cannot intersect this
object (it is simply taken out of the spatial subdivision). In practice, the hierarchical
grid implementation does not show this disadvantage.
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Figure 111.20: Left: Update rate as function of (hierarchical) grid size. The plane is the
ground plane in the triangles scene and the triangle is one of the triangles in the same
scene. Right: Frame rate as function of time for the expanding triangle scene.

The time to rebuild a spatial subdivision from scratch is expected to be considerably
higher than the cost of re-inserting a small number of objects. For the triangles scene,
where 200 out of 201 objects were animated, the update rate was still a factor of two
faster than the cost of completely rebuilding the spatial subdivision. This was true for
both the interactive grid and the hierarchical grid. A factor of two was also found for
the animation of 81 spheres in the sphereflake scene. When animating only 9 objects
in this scene, the difference was a factor of 10 in favor of updating. We believe that the
performance difference between rebuilding the acceleration structure and updating all
objects is largely due to the cost of memory allocation, which occurs when rebuilding.

In addition to experiments involving grids and hierarchical grids with a branching
factor of two, tests were performed using a hierarchical grid with a higher branching
factor. Instead of subdividing a voxel into eight children, here nodes are split into 64
children (4 along each axis). The observed frame rates are very similar to the hierar-
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chical grid. The object update rates were slightly better for the sphereflake and trian-
gle scenes, because the size differences between the objects matches this acceleration
structure better than both the interactive grid and the hierarchical grid.

In the case of expanding scenes, the logical bounding box will become larger than
the physical bounding box. The number of voxels that are traversed per ray will there-
fore on average increase. This is the case in the triangles scene’. The variation over
time of the frame rate is given in Figure 111.20 (right). In this example, the objects are
first stationary. At some point the animation starts and the frame rate drops because
the scene immediately starts expanding. At some point the expansion is such that a
rebuild is warranted. The re-computed spatial subdivision now has a logical bounding
box which is identical to the (new) physical bounding box and therefore the number of
traversed voxels is reduced when compared with the situation just before the rebuild.
The total frame rate does not reach the frame rate at the start of the computation, be-
cause the objects are more spread out over space, resulting in larger voxels and more
intersection tests which do not yield an intersection point.

Finally, Figure 111.22 shows that interactively updating scenes using drag and drop
interaction is feasible.

[11C.6 Conclusions

When objects are interactively manipulated and animated within a ray tracing appli-
cation, much of the work that is traditionally performed during a pre-processing step
becomes a limiting factor. Especially spatial subdivisions which are normally built
once before the computation starts, do not exhibit the flexibility that is required for an-
imation. The insertion and deletion costs can be both unpredictable and variable. We
have argued that for a small cost in traversal performance flexibility can be obtained
and insertion and deletion of objects can be performed in constant time.

By logically extending the (hierarchical) grids into space, these spatial subdivisions
deal with expanding scenes rather naturally. For modest expansions, this does not
significantly alter the frame rate. When the scenes expand a great deal, rebuilding the
entire spatial subdivision may become necessary. For large scenes this may involve a
temporary drop in frame rate. For applications where this is unacceptable, it would be
advisable to perform the rebuilding within a separate thread (rather than the display
thread) and use double buffering to minimize the impact on the rendering threads.

"For this experiment, the ground plane of the triangles scene was reduced in size, allowing the rebuild to
occur after a smaller number of frames.
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Figure 111.21: Test scenes before any objects moved (top) and during animation (bot-
tom).

Figure 111.22: Frames created during interactive manipulation.
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Abstract

Kilauea, a revolutionary parallel renderer which has been developed at Square USA, will
be described. The goal of the R&D effort was to create a renderer which is able to render
extremely complex scenes with the consideration of global illumination. The renderer makes
massive use of multiple Linux PCs which are networked together to form a cluster of rendering
servers. This course note will illustrate the methods that were used to stabilize the parallel
renderer and optimize the parallel performance and final rendering speed in order to meet the
requirements of the production pipeline. We believe that the topics covered here will be useful
as a guideline for implementing parallel renderers.

1 Overview of the Kilauea Research Project

1.1 What is the Kilauea Research Project?

The Kilauea Research Project took place in the R&D division of Square USA’s Honolulu Studio
from March 1998 till March 2002, to design and implement a ground-breaking high-end renderer.
The development started fully from scratch — from all architectural design to the actual coding.
The name of the renderer developed in this project is Kilauea.

Two ultimate goals were set when the Kilauea Research Project began. The Kilauea renderer
aimed to render:

1. High quality images using global illumination;
2. Extremely complex and large scenes.

The global illumination computation methodology is an actively debated subject and various
ideas are proposed[2][9][3]. Kilauea chose a ray tracing based global illumination methodology
because this offers one robust algorithm which handles diverse scene types, primitives, and visual
effects such as motion blur, while allowing the overall system architecture to be clean and flexible.
Kilauea is designed to compute global illumination using final gathering and photon mapping,
which are based on Monte Carlo ray tracing.

However, ray tracing is inherently expensive, and tends to require all scene data to be expanded
into the memory. Thus, the algorithm has an evident disadvantage in rendering huge and complex
scenes. To achieve the goals of Kilauea, our approach is to take advantage of parallel processing.
While the cost of PC hardware is dropping, its performance is steadily increasing. The evolution
of cost performance is happening not just to inside PCs, but also to the network connecting them.
Kilauea obtains enormous computational resources at minimum expense by massively clustering
cost-efficient PCs running Linux.



1.2 Characteristics of Kilauea

Kilauea renders an image by the interaction of processes running on multiple machines. Essentially,
Kilauea is a parallel ray tracer with its basis on message passing. The rendering computation is
best described as the flow of data, where each Kilauea process sends data back and forth.

This type of parallel renderers is far more complex compared to sequential renderers, and
have numerous implementation issues specific to the nature of parallel computing. Please refer
to SIGGRAPH 2001 course #40[7] for the whole picture of the Kilauea architecture. This course
note aims to focus on various ideas, principles, and implementation tips and tricks collected in the
development process to improve Kilauea’s speed, stability, and usability as a parallel renderer.

The improvements to Kilauea presented here should be valuable as a guide to parallel ren-
dering or parallel processing in general, even if there is no preliminary knowledge on Kilauea’s
architecture.

2 Scene construction improvements

This section describes various ideas implemented to improve the scene construction in Kilauea.

2.1 Improving object distribution

How Kilauea distributes the scene data to multiple machines and techniques to improve its perfor-
mance are explained here.

2.1.1 Reading in scene data and rendering

Kilauea can assign WTask (task to read in the scene) and ATask (task to hold geometry data and
compute ray tracing) to separate machines. Depending on the size of the scene, the number of
machines to run these tasks can be adjusted. If the scene data is small enough to fit in the memory
of one machine, increasing the number of ATasks will increase the rendering speed accordingly.
Multiple ATasks may also be grouped together to hold extremely large scenes which cannot be
stored in the memory of one machine. These task configurations can be mixed together. For
example, if the scene is too large and needs to be shared among two machines and four machines
are available, the rendering speed can be doubled by using two sets of two machines. If six machines
are available, use three sets of two machines to triple the speed, and so on. This is the principal
mechanism to accomplish one of Kilauea’s goals to render complex and huge scenes. In order
to initiate such distributed renderings, the scene data must first be transferred properly to all
machines. This is an unavoidable overhead caused by the essential design of Kilauea and many
efforts are done to minimize it.

2.1.2 Scene data distribution: first implementation

Kilauea uses an original scene data format called ShotData. One of its characteristics is that it
is an incremental format storing only the difference from the previous frame. WTask constructs
the current frame data from the previous frame data and the difference data newly read in from
ShotData. WTask then sends the current frame data to available ATasks. After receiving the
scene data, ATasks start constructing acceleration grid for speeding up ray tracing. When multiple
ATasks are used for speed-up, WTask sends exact same copies of data to all ATasks. Even if the
scene does not fit in one machine and it is shared among multiple ATasks, these ATasks can be
considered as one group, and WTask sends exact same copies to all ATask groups (figure 1).

The scene data is divided into multiple data packets of constant size and are sent from WTask
to ATask in series. In most cases, acceleration grid construction at ATask takes longer than data
transmission. The queue for receiving data will overflow if WTask keeps on sending data without
waiting for them to be processed. To avoid this, ATask requests WTask to postpone sending
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Figure 1: Data distribution

data when the data queue size exceeds a certain size. When one WTask needs to send data to
multiple ATasks, WTask sequentially schedules the send requests to handle multiple send requests.
WTask creates multiple threads to process data send requests from ATasks. Even when all ATasks
requested WTask to wait, WTask keeps on creating send data packet until the memory exhausts.

2.1.3 Scene data distribution: improved version

The mechanism in the previous section works reasonably well when the number of ATasks is small.
However, as the number of ATasks increases, the number of threads in WTask for sending data
must also be increased. If WTask needs to send data to a large number of ATasks and the number
of send threads are relatively small, the first data packet sent to the first ATask will be processed
way before the packet is sent to the last ATask, and the first ATask needs to wait until all ATasks
are ready to receive the second data packet.

However, the number of threads cannot be increased unlimitedly without considering the net-
work bandwidth. Blindly increasing the number of send threads will simply saturate the network,
without improving the overall performance. Therefore, the number of send threads must be limited
by the network bandwidth. But then this will cause many ATasks to wait for data.

Here, notice that WTask is sending the same data to all ATasks. Because of this property,
ATasks which received the data can also send the data to other ATasks which have not received
the data yet. This is achieved by setting a constant limit to the number of ATasks to which WTask
directly sends data, and passing the routing information along with the scene data. Because ATasks
can now actively participate in the duty of WTask other than data packet generation, the CPU
load and network traffic is distributed evenly throughout the render farm. Another advantage of
this method is that CPUs on multi-CPU systems are utilized better than the previous method.
Because acceleration grid construction is essentially difficult to parallelize, it can only make use
of one CPU. Now that ATasks are also responsible for sending the scene data packets, CPUs not
running the acceleration grid construction have jobs to do.

Determining the optimal data routing path holds the key to maximizing the performance in
this method. The simplest yet effective routing is the binary/ternary tree distribution, as shown
in figure 2. WTask is the root of the tree, and ATasks are the tree nodes. Each node is allowed to
have two to three sub nodes.

Simple binary tree distribution improves the situation to the satisfactory level. However, one of
the problems with the method is that deeper tree levels suffer from the time lag in data distribution.
Apparently, the scene data take longer to get copied to the nodes at deeper levels. To a certain
extent, the lag also happens to the nodes at the same level because even if the send operations
are multi-threaded, the packets will eventually be serialized at low level system network layer. In
the current implementation, other than the adjustment of the number of sub nodes allowed at a
certain tree level according to the network bandwidth, partial tree depth control and additional
routing path creation are performed to minimize the lag.
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Figure 2: Data transfer in binary tree

2.1.4 Object distribution: first implementation

As previously mentioned, Kilauea can distribute a scene to several machines in order to render
extremely complex and large scenes. This section discusses the strategy to split the scene data to
multiple parts to be distributed.

The first implementation was the most straightforward one, where each triangle is randomly
distributed (figure 3).
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Figure 3: Random primitive distribution

All objects in the acceleration grid are stored as individual triangles transformed to the world
coordinate system. The objects read from the file must be transformed at some point, and in
the first implementation, WTask did all the transform of the local coordinate system to the world
coordinate system, then these objects were transferred to ATask. This maximizes the randomness
in the distribution of triangles to improve the parallel ray tracing performance. On the other hand,
because the data is expanded before the transfer, the data size of the WTask to ATask transfer will
increase. Primitives other than polygonal objects such as NURBS and subdivision surfaces also
had to be tessellated before the transfer, and this initial implementation was evidently a naive,
wasteful one.

2.1.5 Object distribution: improved version

Object-based random scene distribution is another straightforward approach over distribution
based on triangles or similar primitives. When the scene consists of many relatively simple objects,
scheduling the distribution to ATasks based on objects will suffice. This approach apparently fails
in an extreme case where the scene consists of one extremely complex object and another simple



object. When the scene is distributed to two ATasks, one will have millions of triangles whereas
the other only has a few triangles. Objects over certain complexity must be adequately partitioned
and then distributed (figure 4). With this method, only vertices at the border of the partitioned
pieces are duplicated and the partitioned pieces can be sent to ATasks while keeping the shared ver-
tices. This considerably reduces the memory requirement compared to the previous triangle-based
distribution.
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Figure 4: Random partition distribution

The instantiated objects may be expanded at WTask to increase the memory requirements and
communication overhead. When WTask performs the transform from the object local coordinate
system to the world coordinate system, all instantiated objects must be expanded. To avoid
the load, this operation is instead executed at ATasks. One of the features made possible by
this idea is the cycle animation. This is a mechanism to efficiently render crowd animation by
instantiating objects including animation composition. This feature exhibits its full strength when
the instantiated objects are expanded in ATasks.

2.2 Improvements to acceleration grid

Previous section dealt with how the scene data is read from the file and distributed to machines.
This section explains how the distributed scene data are processed to prepare for ray tracing.

2.2.1 Acceleration grid in Kilauea

Kilauea uses a hierarchical uniform grid for the acceleration grid. When the scene must be dis-
tributed across multiple ATasks, grid cell divisions must be a fixed number for the entire scene,
instead of being computed independently for each acceleration grid. This is necessary in order to
avoid problems that occur due to numerical imprecision (more on this in [7]).

2.2.2 Leaf node rule

Hierarchical uniform grid is a data structure that divides space into uniform pieces. Cells in the
grid may also be uniformly divided grids. When a primitive is added to a cell that already contains
primitives over a threshold, a new hierarchy is created by subdividing the cell. The primitives in
the subdivided cell are moved to a smaller cell at the bottom of the hierarchy. This method where
primitives are added only at the bottom of the hierarchy is referred to as the leaf node rule. The
advantage of this method is that intersection detection can be performed efliciently by starting
from the cell that contains the ray origin and traversing only the leaves of the tree (figure 5).
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Figure 5: Leaf node rule

2.2.3 Motion blur object

Almost every parameter in Kilauea may change over time. There are three cases where motion
blur is required when rendering an object: when the object is either moving or deforming, and
when the camera is moving. Of these cases, there is nothing the acceleration grid needs to do
when the camera is moving; the rays shot from the camera simply change over time, and the
individual ray tracing is handled in a normal way. Object deformation and motion can actually be
optimized individually, but here they are handled in the same way. When a primitive is moving
within a frame, its path creates a volume. When adding such primitives to the acceleration grid,
the primitive is added to every cell that include this volume (figure 6).

Frame Center (time : 0.5)

Frame Start (time : 0.0)

Figure 6: Motion blur object

2.2.4 Improved motion blur object

There are two issues that need to be dealt with in order to handle motion blur objects efficiently.
One is the methodology for optimizing the size and path of the volume to be added to the acceler-
ation grid, and the other is handling the intersection detection with the volume. When the object
is moving over a large distance, the volume of the path of the object also increases in proportion.
This means that such objects need to perform intersection detection with more rays. This is a
problem when computing whether a ray has intersected with the object at a specific point in time;
extra intersection computation must be done even though most of the volume has no chance of
intersecting with a ray.

To get around this problem, Kilauea subdivides the object path volume into several subvolumes
based on the camera shutter release time. When a subvolume is added to the grid, the time
information for that subvolume (start/end time) is added as well. If the time for a frame is between
0.0 to 1.0 and divided into four segments, the first subvolume specifies the volume between 0.0
to 0.25, second subvolume 0.25 to 0.5, and so on. Rays contain time information when being
rendered with motion blur. During ray tracing, the time information of the ray and the object
volume inside the cell can be compared to efficiently perform intersection detection at a specified
time. For example, if the ray specified the time 0.3 in the above example, only the second subvolume
from 0.25 to 0.5 need to be used for intersection calculation (figure 7).
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Figure 7: Optimized intersection calculation

The method of dividing the volume into subsections is also effective for optimizing the size
and path of the volume registered in the acceleration grid. When a primitive is moving along a
complex curve, describing its path as a single volume is inefficient. Such volumes can be optimized
by creating a minimal volume for each subsection of time.

2.2.5 Obsoleting leaf node rule

Grid level of the acceleration grid increases when many primitives are added to the same region. A
motion blur object that travels a large distance has a large volume that include many acceleration
grid cells. Therefore, to add such primitives into a region that employs the leaf node rule, large
numbers of leaf node cells will be required. For example, say that a single cell is subdivided
into 4x4x4 sub grids. If the volume of the path of some primitive completely encloses that cell,
that primitive will be registered into all 64 cells of the sublevel grid. Even triangles without
motion blur has the possibility of using a maximum of 16 subgrid cells in the worst case. Initial
implementation of Kilauea’s memory management system had a tendency to use too much memory
in such situations, and increase in memory usage were disproportionate to the increase in grid
levels. Memory was being used less effectively as scene complexity increased, and in the worst
case memory was being exhausted by one level of increase in the grid level even though almost
no memory was being used at the previous level. One workaround for this problem is to limit
the grid depth, but this increases the number of primitives registered in a single cell, significantly
decreasing the intersection detection efficiency of ray tracing.

To allow objects that cover many cells such as motion blur objects, tree nodes were modified to
allow adding of primitives at non-leaf nodes. This kept the primitive vs. cell usage ratio down to
a certain level. In the previous example, when the motion volume of a primitive completely covers
the cell and that cell needs to be subdivided, the primitive is not re-registered into all the subgrid
cells but rather left in the current level. In other words, nodes in the grid trees maintain their
functions as a cell even at the non-leaf levels, and at the same time function as a subtree parent
(figure 8).

Grid Level N Grid Level N + 1

A

Split

Used Cell = 1 Used Cells =2

Figure 8: Multi-level rule



This suppressed the memory usage increase to the minimal level, even when the scene contains
objects with large motion. Also, by allowing primitives to be registered in non-leaf nodes, large
primitives are added to a level close to the root and smaller primitives are added to a level close to
the leaf. This has the effect of the primitive size being reflected in the tree depth to a certain degree,
eliminating the extreme memory usage increase depending on the grid tree level specification.

2.2.6 Multi-level traversal

With the elimination of leaf node rule from the acceleration grid, the ray tracing methodology
must be changed as well. Basically, the traversal starts from the largest cell that include the ray’s
origin and contain a primitive, going down to the lead nodes in order. Intersection detection is
done at the intermediate nodes if there is a primitive registered. If the leaf node traversal hits
a grid boundary, then the traversal backs up to the previous level, and similar computation is
repeated.

When the two acceleration grid methodologies are compared, the grid that doesn’t use the
leaf node rule has an overhead of few percent in terms of ray tracing efficiency assuming that the
limit on tree depth is the same. This is because more intersection calculation being performed
due to the primitives that cover a large number of cells being registered at the higher grid level.
However, because memory usage was improved to reduce the memory footpriny by as much as
80% for motion blur objects and 20% for static objects, it is possible to create a tree with greater
depth with the same memory size, improving the overall ray tracing efficiency.

2.2.7 Issues on implementing other primitives

Multi-level rule grid without the leaf node rule also has advantages when handling primitives that
need to be adaptively tessellated at rendering time. Examples of such primitives are non-polygonal
primitives such as NURBS surfaces and primitives with displacement maps. Only the rough bound-
ing volumes of these primitives are known prior to tessellation. Therefore these primitives tend to
use the acceleration grid cells in a similar way as the motion blur objects. Also, these primitives
use a massive amount of memory if the data after tessellation is retained, requiring caching as
needed. Efficient caching can be done by creating a separate small grid that register only the
post-tessellation primitives, and adding and removing that primitive as a single item to/from the
parent grid.

If such subgrid registration were to be performed on a grid that employs a leaf node rule,
problems such as the rapid increase in memory consumption occur depending on the subgrid size
to be registered and level of subdivision of the parent grid. This is similar to the problems with
the previously mentioned motion blur objects. Multi-level grid can handle these cases in a flexible
way.

3 Threading improvements

Kilauea is structured as a complex, multi-level pipeline. All tasks are described as messages,
and these messages flow through various stages in the pipeline. At each stage, the messages are
processed to execute their responsible computation. Implementation of this pipeline is closely tied
to how the parallel processing is performed. This determines the overall system performance, as
well as the extensibility and the ease of code maintenance and debugging.

This section describes the implementation of pipeline processing, which is the heart of Kilauea.

3.1 Kilauea pipeline synopsis

As previously mentioned, Kilauea executes extremely complex pipeline. Let us have a look at an
example of Kilauea pipeline processing with the case of a simple rendering (figure 9).
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Figure 9: Simple rendering

The ray emitted from the camera traverses through space to detect the intersection with an
object. If it hits an object, a shading color is computed on the surface. If the object surface has
a specular property, a reflection ray is shot and another ray tracing starts. There will be a similar
shading computation involved at the intersection of the reflection ray. In some cases, the shadow
ray shooting may be necessary to detect if the surface is in the shadow. There may be a case where
multiple reflection rays, instead of only one, are shot from the surface.

The above procedure is executed for all samples in all pixels of the image to render the whole
image. The rendering computation is in turn enormous amount of space traversal computations
and shading computations at the intersection of rays and objects.

@ Shading Request
(R) Ray Tracing Request

Figure 10: Unit of parallel processing

In Kilauea, the unit in parallel processing are based on ray tracing and shading. Every ray
tracing computation is independently parallel processed from each other. Every shading is also
independently parallel processed from each other. A ray tracing and a shading computation are
also independent.

Because enormous amount of ray tracing and shading requests make up a typical rendering,
these tasks can be distributed to CPUs of multiple machines to be processed in parallel and increase
the computation speed. Because one parallel processing unit is a very small computation, all CPUs
can receive almost equal amount of work to process, resulting in a near-optimal load balancing
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(figure 10).

To implement these procedures, the data structures to represent such small parallel processing
unit are created. To be more specific, ray tracing request to represent one ray tracing, and shading
request to represent shading computation at object surfaces are defined. These data structures
are passed as messages between computation tasks. The data structures have all the information
needed for the computation, and thus each computation task can take them as inputs to execute
the computation.

This data only represents the information for one computational task. For the rendering of
the entire image, more data structures are necessary. The basic computation flow of Kilauea is
that a data item is stored in a queue, the method to process it takes out one data item at a
time, process it, and finally attach the result to another queue. Processing one stage is equivalent
to some computation getting executed, and relevant data structures getting updated accordingly.
The processed data structures are output to new data structures. For example, the computational
result of the ray tracing request data structure is placed in the ray tracing result data structure.
Similarly, the result for a shading request is placed in the shading result data structure. In a typical
rendering, the shading color computation is invoked according to the result of ray tracing, so the
ray tracing result is converted to the shading request. The camera ray computation typically
goes through data structure changes as shown in figure 11. In reality, this data processing is
further broken down to smaller data processing, and the actual steps in the computation is way
more complex. One of the characteristics of Kilauea is that a certain computation consists of this

multi-procedural pipeline.
RayTrace RayTrace Shading Shading RayTrace
Request Result Request Result Request
Figure 11: Data processing flow

> >

3.2 Pipeline procedures and parallel processing

The target execution environment of Kilauea is multi-CPU systems. This section will explain the
execution of this multi-level pipeline from the viewpoint of the execution efficiency on multi-CPU
systems.

Describing all computations as a single procedure is possible. This corresponds to implementing
all computations in a single sequential process. However, this will not improve performance on
multi-CPU systems because the task itself is not structured to be processed by multiple CPUs at
the same time.

How to assign procedures to each CPU in a multi-CPU system is extremely important to keep
it constantly busy. In the case of Kilauea, the procedures are broken down into multi-level pipeline,
and thus the assignment of these stages determines the efficiency in CPU usage.

In reality, the algorithm used in each stage of the pipeline and the actual execution environment
can be considered separately, and the optimal parallel processing design varies from case to case.
The Kilauea Research Project experimented on diverse parallel processing methodologies and they
are explained below.

3.3 First threading methodology: threads as stages

The implementation of the parallel pipeline processing has gone through a drastic change in the
course of four years of development. The idea used in the latest version is completely opposite
from the first one.
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In the early development stage after the initial architectural design of the multi-level pipeline,
one thread was simply assigned to process one pipeline stage (figure 12). This idea expresses
the pipeline algorithm in the most straightforward form. We had already decided to implement
threading on multi-CPU using Pthread, and Pthread standard has the priority boosting mechanism
to change the execution priority of each thread. Our first intention was to use this priority boost
to control the thread execution in high precision.

thread A ™. thread B thread C
S S
stage ): : [ stage ;
A : B

Figure 12: Threads as stages

The pipeline stages were designed with the focus on the following:
1. parallel processing elements

2. algorithmic structure

The first one mainly corresponds to the case where one machine sends data to multiple machines.
After some sequential computation, its result may have to be sent to multiple machines. This
communication can be written sequentially by processing the transmission of data to each machine
one by one, but parallel processing is logically more intuitive in this case. Thus, data transmission
stage is separated, and each stage only handles the transmission to the machine it is responsible
for. By structuring the stages in this way, algorithms are expressed in a more intuitive way and
the slow-down by such causes as blocking I/Os in each thread can be investigated independent of
each other

'x"—thread AT

send data ): »

»( Machine B

send data

Figure 13: Parallel Processing Stage Structure

The second one intends to design the stages using the algorithmic structure, and the premise for
this distinction is often quite vague. The expected benefit of this methodology is that by separating
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a sequential operation into multiple stages, a speed-up may be obtained by their parallel execution.
The stages were designed at the logical breaks in the computation. By designing the stages this
way, we believed that if the pipeline depth, that is, the number of stages, were greater than the
number of processors available, the benefits of parallel processing can be obtained easily.

Thread

Thread Thread

Figure 14: Threads Assignment to CPUs

As a result of this design, a very large number of stages were created. The result of a single
computation is obtained by passing through these stages in turn. Because each stage is handled
by separate CPUs, the benefit of parallel processing can be obtained.

3.4 Problems with the first implementation

In the end, we were unable to obtain the expected parallel processing performance. Although the
computation itself was executed correctly, we were unable to utilize fully all of the CPUs of a
multi-CPU machine.

The following factors contributed to this problem.

3.5 Unbalanced loads of stages

In order to efficiently execute a pipeline composed of multiple stages, the load at each stage must
be close to equal. If the computation load at a certain stage is excessively high, intuitively this
stage becomes a bottleneck, leading to reduced performance (figure 15).

The load of each stage must be estimated and designed such that there are they are balanced.
The estimation itself is difficult, and completely balancing the load is inherently impossible. As a
result, the load between the stages inevitable become unbalanced.

As the computation is executed, there are cases where the changes in the situation break
down the balance, causing one stage of the pipeline to become overloaded. An example of this
is the shading computation, whose load depends on the type of shading being performed. As
the execution progresses and the shading type on the surface hit by the ray changes, the shading
computation itself changes. This has the effect of changing the load of a particular stage within
the pipeline. Without exception, every image rendering task contains this uncertainty factor. This
shows that there is a stage whose load is uncertain until execution time, and thus load-balancing
cannot be done statically prior to execution.
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thread A thread C thread D

stage stage stage

Computationally expensive stage B becomes
the bottleneck when A, B, C and D receive
equal CPU resources.

Figure 15: Load of stages

3.6 Execution order of stages

Execution order of threads cause problems as well. Thread schedulers attempt to switch threads
intelligently when there are more threads than there are CPUs. The order in which CPU time is
allocated to threads is dependent on the scheduling policy internal to the threads themselves, and
this policy is very difficult to control directly from outside. This problem can also be illustrated
in an intuitive way. Suppose there are three threads A, B, and C, and each thread processes one
stage of a pipeline. Assume that the pipeline is executed in the order of A > B > C (figure 16).

thread A thread B thread C

stage stage

Figure 16: Stage A, B and C

If there are more than three CPUs, and each thread is constantly ready to be processed by the
CPU, then this pipeline is operating in an ideal way, and maximum performance is possible (figure
17).

thread A thread B thread C
stage stage
CPUA CPUB CPUC

Figure 17: Number of CPUs is enough

If only two CPUs are available, however, one of the threads do not have a CPU available at
any time. Thus, only a part of the pipeline is operating at any time (figure 18).
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Figure 18: Number of CPUs is not enough

Ideally, the computation is performed in the order A > B > C, and the thread execution should
be scheduled in such way. Unfortunately, the default execution scheduling of Pthreads will not
behave this way. As a result, queue structures between each thread will function to absorb this
scheduling problem. The queue must have enough depth to be able to hold the messages no matter
what order thread A, B, and C are executed in (figure 19).

thread A thread B thread C
stage ! stage
A B/

CPUA / \\ CPUB

(o000 ) (o000 )
Queue Queue

Figure 19: Queue between stages

If there are enough data in the queues, no fatal problems will occur no matter what order A,
B, and C are executed in. However, the time required for a message to pass through stage A and
finish at stage C will increase. In other words, the latency will tend to increase. Kilauea is able
to diligently continue executing even in high-latency situations, but ideally the latency should be
short. A breakthrough was necessary.

3.7 Dynamic assignment of thread priority

The problem is complicated further when the load of stages A, B, and C, change dynamically.
Suppose that the load of thread B doubled at some point. Prior to the change the CPU power was
balanced by allocating exactly 1/3 of the power to each thread (figure 20). This changes so that
threads A and C are allocated 1/4 each, and thread B 1/2 (figure 21).

thread A thread B thread C

stage stage
A > B >

1/3 1/3 1/3

Figure 20: Balanced load

If execution were to continue with equal allocation of CPU time to each thread, A and C will
be processed quickly as result. In other words, the output queue of A will grow while the input
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Figure 21: Unbalanced load

queue of C will shrink. If this continues to an excess, A will need a large amount of memory in
order to write its output into the queue. When the memory request exceeds a certain threshold,
the CPU will then become busy in order to handle the memory allocation. This reduces the CPU
power available to handle the original computation, reducing the processing speed significantly
(figure 22).

1/3

thread A

1/3

thread B

1/3
thread C

stage

CPU consumed by
memory allocation

Queue

Figure 22: CPU consumed for memory allocation

Such problems occurred frequently in the initial experimentation stages of Kilauea. The most
effective solution to this problem were to put the thread to sleep once the output queue size reaches
a certain threshold (figure 23). More on this topic can be found in [7].

Using this technique forces a thread whose execution is progressing too quickly to be paused,
allocating that CPU power elsewhere. This is very effective at circumventing worst-case situations,
but unfortunately does not help to increase overall performance. This method is basically a very
passive solution where a thread gives up its allocated CPU time to other threads. A method that
fine-tunes the thread scheduling directly is desirable.

Pthread allows a thread’s execution priority to be changed through a mechanism called priority
boosting. We can consider an improvement where in the previous example the priority of thread
B is boosted above the other threads, maintaining the optimal execution efficiency. However,
changing the priority of threads in this way is effective when the load of the thread is already
known, but it is difficult to control when the load itself changes dynamically and measuring the
changes precisely is difficult. This made controlling the pipelines inside Kilauea using priority
boost complex and difficult. Despite several experiments, we were unable to achieve good results.

Based on these findings, we needed to consider a more sophisticated way of parallelizing the
pipelines, especially the thread scheduling.
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Figure 23: Auto Cruising

3.8 Other problems related to threading

Other than the problems caused by varying loads of stages and thread scheduling, threading by
stages raised other problems.

Fundamentally, the pipeline consists of stages with queues in between. Every stage needs
to access the queue frequently. Under a multi-CPU environment, stages running within different
threads could be executing on different CPUs. This means that they really are executing in parallel
in a real timeline. In order to protect the coherency of the data inside the queue in such situations,
the queue itself clearly needs to be implemented in a multi-thread safe manner. For example,
locking /unlocking mechanisms for mutual exclusion and condition waiting mechanism to allow the
thread to run efficiently must be implemented.

Factors that cause problems in terms of efficiency are the lock collisions and race conditions
which occur when a thread that was waiting due to the condition lock mechanism is woken up.
When multiple threads are frequently accessing the queue, handling lock collisions become an issue
that can’t be ignored. In our case, we have made improvements in places where lock collisions
were reducing performance significantly by using try-locks and other experiments. Additionally,
we have created special queues that avoid race conditions as much as possible and optimized its
implementation. However, performance improved by only a few percent. Despite the improvement,
it was clear that we solve this problem at a more fundamental level. In other words, modify the
implementation so that it can execute without locks in the first place.

Allocating stages to threads also meant that a change in the thread code has a direct impact on
the number of threads created and their execution order. This means that the trial and error process
of merging dividing threads to change the number of threads involves an extremely complicated
coding. Because this part is a very important part the determine the final computation efficiency,
the difficulty of this work became a huge obstacle. We needed to somehow be able to easily perform
the various trial and error process.

3.8.1 Consideration of threading by stages

With these considerations in mind, fundamental improvements in executing the pipeline as threads
were implemented.
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The following goals for improving threading were set.

Dynamically follow the change in load of stages

e Full control in stage execution schedule

Minimize locks on queues between stages

Minimize latency

Fast and stable execution

Ease of debugging and profiling

After making major changes with the above goals in mind, the current Kilauea pipeline engine
was implemented. The goals were almost fully met, and runs very stably compared to the previous
version.

The details of the current implementation will be explained.

3.9 Improved threading methodology

Let us look at the problem from a completely different perspective. Solving the scheduling problem
while making every stage of the pipeline into a separate thread requires the deep intervention into
the thread implementation itself, which is undesirable. Also, this will not fundamentally solve
various problems associated to threads such as locking overhead.

3.9.1 Thread as an engine

Under the new idea, stage execution and threads are considered completely separately. A threads
is treated as an engine for computation, and stages inside the pipeline as a job that the engine
must process. The stages are connected by a queue data structure.

A thread is an engine for computation, so under a multi-CPU environment, the number of
engines launched are as many as the number of CPUs — i.e., launch two engine threads to execute
the computation on a dual CPU machine. Kilauea restricts these threads to handle only the
main pipelines, however, so in the end a Kilauea process executing on a given machine will launch
number of CPUs and additional three to four threads. These extra threads mostly handle tasks
such as processing the MPI layer communication or exchanging control commands with the master
Kilauea process. What is important is that the main image rendering pipeline are executed with
the number of threads restricted to the number of CPUs available.

Say that some pipeline is composed of three stages A, B, and C. An engine thread will try
to execute all of these stages. Inside Kilauea there exist many messages to be executed by this
pipeline. If multiple engine threads are launched under a multi-CPU environment, these threads
will be able to handle these messages in parallel (figure 24).

3.9.2 Execution of stages

Every pipeline stage was implemented as a class, and each stage executed its task by passing
messages around. This made modifications very easy to do. An engine thread need only call the
stages of the pipeline in turn. If only the top-level structures needed modification, the internal
implementation did not need to be touched. Each stage were implemented as a part of a pipeline
that read the input message contents, perform computation on them, and output the result. The
various stage execution can be looked at from two perspectives. This can also be considered to be
the stage execution scheduling problem.

1. In what order will the stages be executed
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Figure 24: Threads as engine

2. How long each stage will be executed

In what order the stages will be executed can be controlled with a very clear policy. This is
because all the stages have a clear order in which they should be executed, and the stages are
divided based on that information, making complete control possible.

The second problem of determining how long each stage will be executed can also be solved by
watching the input and output queue depth of a stage and controlling the stages so that the queue
depth are optimal.

After some thought, it is also possible to think of an implementation that solves both of these
problems at once. Each stage of the pipeline will be executed at a higher priority than the previous
one (figure 25). When the engine executes each of the stages with this policy, the internal queue
will only contain a single item. Therefore, execution will proceed with the smallest latency.

stage
A

-(Que)> StaBge ~(Que)>

Priority : 3 2 1

Figure 25: Priority of stages

In the example above with three stages A, B, and C, the stages are executed in the order
A > B > C, but their priorities are C > B > A. In other words, the engine thread executes the C
stage with the highest priority, then B, and finally A. By implementing the stage scheduling in this
way, messages sent to A will reach C as fast as possible, achieving minimum latency as a result.

Depending on the computation involved at each stage, sometimes handling individual messages
as a group of multiple messages, rather than actually handling them individually, is more efficient.
In such cases, modifying the stage scheduling while considering this characteristic is not difficult
at all. Kilauea dynamically switches the scheduling algorithm depending on the situation. This
feature is an extremely important element in determining the rendering efficiency, and fine-tuning
via thorough analysis yields worthwhile performance improvements.
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3.9.3 Independency of engines

Stages A, B, C exist within each engine thread, and a queue data structure exists between each
stage. In the initial implementation of Kilauea, such queue structures required a multi-thread safe
mechanism. With the integration of the stages into single engine thread, thread safety is no longer
needed. This frees the stages from any of the problems specific to threads such as locking /unlocking
or lock collisions. However, the parts of the engine thread that retrieves messages from outside
must be thread safe, with the attention to the possibility of multiple engine threads being launched
simultaneously. From the perspective of the entire system, however, this is only the entry and exit
points of the pipeline, which allows the logical structure to be much simpler, resulting in faster
execution (figure 26).
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Figure 26: Independency of engines

The multiple engine thread that will be launched will have a dependency as far as the input
and output queues are concerned, but they have no dependency whatsoever as far as the execution
of their internal processing goes. Compared to the previous thread execution environment, the
length of real time that one thread can execute without having any dependency on other threads
has increased significantly. This means that the independency between the threads are extremely
high, and once an engine thread starts operating on a message, that computation will be performed
totally independently inside the thread for a long amount of time. This is a very effective trait
in terms of parallel processing efficiency, allowing an ideal distribution of computation to multiple
CPUs.

As a result, threads are able to continue executing rapidly in a stable way, greatly increasing
the computation efficiency.

3.9.4 Debugging and profiling environment

Debugging and profiling environment acquire significant rewards from the new threading strategy
as well. The computation within a single engine thread is a sequential program, which allows
developers to take advantage of this characteristic to debug effectively.

Whenever the developers suspect a problem inside the engine thread, a program to isolate this
thread from Kilauea is used to debug under a single engine state. This program is single threaded,
which makes it a lot easier to debug using ordinary debugging methodology.

Also, the optimization of the logic made by profiling and analyzing this program is directly
applicable to the actual Kilauea runtime environment. And because the engine threads are highly
independent of each other, the results of the optimization is multiplied by the number of CPUs
available when running in a multi-CPU environment. Unfortunately, we are using only dual-
processor machines, so we must perform tests on systems with large number of CPUs, such as
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16-CPU systems, to verify whether Kilauea can achieve similar results on such systems. However,
even in such environment, the new threading strategy will perform better than the previous one,
without a doubt.

3.9.5 Results of the improvements

As a result of these improvements, Kilauea’s main pipeline processing efficiency has increased by a
factor of seven to ten compared to previous versions. Also, CPU load is sustained at almost 100%
on all CPUs in a multiprocessor system, showing that multiple CPUs are being used fully. We also
verified that the system runs in a very stable way under any kind of scene.

4 Multi-pass rendering

Kilauea renders images by reassembling the information from multi-pass computations. How Ki-
lauea executes this multi-pass rendering is explained in this section.

4.1 Rendering stages

Currently, Kilauea executes the rendering computation in four main stages:

0) Scene data construction;

1) Photon tracing;

2) Final gather estimation;

)
)
)
3) Final rendering.

Each stage is completely independent of each other, and the rendering is executed in the order
from 0 to 3. However, it is possible, for example, to interrupt the computation in the middle of
the final gather estimation stage and recompute it, or after the final rendering, start over from the

photon tracing (figure 27).

v
Stage 3

Figure 27: Rendering stages

This feature is made possible by Kilauea’s basic design that it stays resident after comput-
ing one frame, which is especially effective when adjusting the materials of objects in the scene.
Kilauea’s resident design allows users to repeatedly re-render while tuning parameters with high
responsiveness. The computation precision while rendering to adjust shaders or to get the final
image is the same. Therefore, the qualities obtained during the shader adjustment process and the
final rendering process match exactly, enhancing the productivity.
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Fach rendering stage is designed and implemented with full attention to parallel processing in
mind. At the rendering stages, appropriate parallel processing approaches are taken depending on
their problem types, and the resulting overall parallel performance is satisfactory.

The specifics of each rendering stage are explained in the following sections.

4.2 Stage 0: Scene data construction

Kilauea receives the scene data from Maya frontend in ShotData format (refer to [7]). This data is
written as the incremental data, so the scene to be rendered must be reconstructed in the system.
Also, such scene data must be converted to acceleration grid structure in order to perform ray
tracing. The details of the scene data construction stage has already been explained in section 2.1
and 2.2.

The computation in this stage is the most difficult to parallelize compared to the other stages.
The parallel processing methodology that Kilauea ultimately adopted is very different from the
ideas used in the other stages. This is because the computation itself is inherently not suitable
for parallel processing. However, as far as the performance of distributing the scene data is con-
cerned, Kilauea has achieved the performance and stability required for the production use, and
the algorithm has undergone many improvements, as previously mentioned.

From the perspective of generating images, the sequence of computation from reading scene
data, reconstructing the scene based on the incremental data, distributing of the scene, and con-
structing the acceleration grid structure can be grouped together as the “scene data construction”
stage.

In Kilauea, internal scene data and the acceleration grid data converted from it remain inside
the system without being freed, even after the rendering of one frame is complete. Therefore, in
the next rendering operation, such data do not need to be updated, nor does the scene need to
be read again. Viewed this way, stage 0 “scene data construction” can be considered as executed
only once when computing a new frame.

4.3 Stage 1: Photon tracing

When the scene data assembly stage completes, Kilauea can start executing the photon tracing. In
this rendering stage, basically large numbers of photons are shot from the light sources, and then
their behavior is observed in the scene using conventional ray tracing. In the end, photon map
data is constructed and irradiance precomputation is performed on this photon map data (refer to

[6])-

4.3.1 Parallel processing

The photon tracing computation shoots enormous amount of photons from the light sources, and
the photons are traced through their paths. The tracing algorithm is algorithmically the same as
ray tracing. Kilauea uses its ray tracing engine for photon tracing as well.

Fundamentally, photons are completely independent of each other, and therefore the path
tracing computation can be performed independently. This implies that photon tracing is extremely
suitable for parallel processing.

Kilauea executes the photon tracing in parallel. In other words, path tracings on the massive
number of photons that exist in the scene are executed completely independently on multiple CPUs
(figure 28. If a photon hits an object, then the photon behavior on that object surface is computed.
The shading computations for photons hitting this surface is also independent from each other,
and thus executed in parallel. This parallel mechanism is not just restricted to photon tracing,
but to every ray tracing computation.
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Figure 28: Parallel photon tracing

4.3.2 Computation result

Photons that end up being stored on some surfaces actually get stored in the kd-tree data structure.

If all photons to be stored completely fit in one machine, then all of the photon data will be
stored completely on that machine. In the end all photon map data on all machines becomes
identical. This is the simplest case.

If all photon data cannot be stored in one machine, the one photon map is stored across
multiple machines. The actual photon look-up will access the photon data distributed across
multiple machines in a clever way, performing the lookup as if the data were a single photon map.
Please refer to [6] for the details on the ideas used for accessing the photon map data distributed
across multiple machines.

In our experience, distributing the photon map is a very special case. In almost all cases, a
photon map is small enough to be stored in one machine.

In the actual photon tracing stage, all photons are independently computed on multiple CPUs
on multiple machines. To look at it from another perspective, each CPU will be performing a
photon tracing on the subset of the entire photons. At the same time, there is no way to know
about the result of a photon tracing that another CPU computed. Photon tracing is a completely
independent operation. Taking advantage of this characteristic, an implementation that has an
extremely high level of parallel processing independency and at the same time exert maximum
parallel processing performance is possible.

However, to finally construct the photon map data, photon data other than the ones that one
CPU computed will be required. When considering the options for how to store the photon map
data inside Kilauea, if the photon map fits inside one machine, then collecting all the photons from
other CPUs will be necessary. Exactly which photons must be collected will vary from machine
to machine. In order to construct an identical photon map data on each machine at the end,
somewhat complex photon data exchange will be necessary.

Kilauea handles this part as follows:

1. Store the photon tracing results that was computed locally into the machine’s local photon
map.

2. Distribute the photon tracing results to all other machines holding other photon maps.

3. When the photon tracing results are received from other machines, treat the data as if it
were computed locally, and store it in the local photon map.
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4. When all photon maps have finished computation, photon map on each machine should have
an identical copy. Start the irradiance precomputation on these photon maps.

Simply put, the algorithm distributes the local photon tracing results to all other machines
(figure 29).
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Figure 29: Photon distribution

When photon maps need to be shared across multiple machines, a more complex distribu-
tion processing is required, but the basic idea that the locally computed photon trace results are
distributed to others remains.

4.3.3 Independency from other stages

Basically, in every image generation, photon tracing stage is required immediately after the scene
data construction stage. There are at times where photon map reconstruction is not necessary
when computing the next frame. For example, if only the camera is moving, then it is possible
to use the photon map generated previously. Such requests are controlled by whether this photon
tracing stage is executed or not.

When interactively creating the materials, photon map reconstruction may be desirable. For
example, to get a rough idea of an image the number of photons to be used will be cut down to
1/10th, increasing the number of photons in steps.

Also, the number of photons required to get enough precision in the final rendering can be
speculated once all photons are shot, so the trial-and-error process only needs to be repeated a few
times to obtain the near-optimal number of photons.

To handle such requests, Kilauea’s ability to recompute the photon tracing stage without re-
straint is invaluable.

4.4 Stage 2: Final gather estimation

After the stages up to photon tracing is complete, Kilauea can then proceed to execute the final
gather estimation computation.

Initially, this stage did not exist in Kilauea. The computation performed in the final gather
estimation stage was previously performed inside the final rendering stage entirely. However, the
final rendering stage turned out to be too slow in many cases, and a separate stage to speed it up
was necessary.

4.4.1 Motivation

Thorough analysis of the final gather values over images confirmed that the changes in the final
gather values are smooth in most areas. This observation implies that the sampling rate required
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for accurate final gather values and the sampling rate required for the direct illumination, are
extremely different. With this in mind, the final gather estimation stage aims to compute only
the final gather values efficiently. Greg Ward’s irradiance cache[9] is the starting point of this final
gather estimation algorithm.

4.4.2 Mechanism

There are situations where computing final gather values in a separate stage will not make a
difference compared to computing them in the final rendering stage. In some cases it is even ad-
vantageous to compute final gather values in the final render stage. In the current implementation
of Kilauea, the emphasis is on computing final gather values in an efficient manner. If for some
reason the final gather values cannot be computed or the computation is terminated in certain
regions, they will be computed in a normal way at the final rendering stage. Therefore, no harm
will be done to the final rendered image.

The final gather values generated in this stage are computed with the attention to the screen
space coordinates of the object surface. In the end, they are computed as on-screen pixel values.
This allows Kilauea to avoid computing invisible final gather values as much as possible. If the
image is simple in terms of global illumination, the computation cost will be low. On the other
hand, computation cost will be high for a complex scene. The final gather values are not computed
at a smaller unit than a single pixel. There are cases where final gather values need to be computed
at a finer resolution than a pixel. However, the goal of this stage is to compute final gather values
in an efficient manner, so such computation will be terminated and resolved at the final rendering
stage.

Please refer to [8] for more detailed explanation regarding the final gather estimation stage.

4.4.3 Parallel processing

The final gather estimation stage will of course be computed in parallel in Kilauea. Since the
computation will proceed in a manner that is dependent of screen space coordinates, the parallel
computation also focuses more on screen space, compared to the methods used in the photon tracing
or final rendering stage. The current implementation divides the screen into small rectangular
buckets, and individual buckets are computed independently (figure 30).
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Figure 30: Parallel processing by bucketing
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The final gather estimation computation inside each region needs to perform final gathering,
so in this sense Kilauea’s normal parallel ray tracing computation is used.

The computational cost of final gather estimation stage depends on how the scene appears
within the bucket of the screen each processor is in charge of computing. Therefore the total
computation cost varies between different regions. At times, when a certain region is very com-
plex, only one CPU in charge of this region may be caught up, while other CPUs complete their
computation, causing CPUs to idle and waste resources when viewed as a whole rendering system.
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However, in the experiments, no fatal load balancing problem occurred unless the bucket size was
extremely large. When the bucket size is reasonable, the processing time for a bucket is short
enough to keep the load adequately balanced.

4.4.4 Final gather estimation results

When the final gather estimation for one bucket completes, final gather values of this bucket are
stored per pixel. If for some reason final gather estimation failed or terminated for a pixel, then a
flag denoting that it must be computed in the final stage is stored. These values are recorded as
on-screen pixel data. The final gather values computed in this stage will be referenced in the final
rendering stage. However, the final rendering stage has no information about how each pixel was
computed, what sampling method was used, on what CPU, in what order. The sampling order
may be somehow fixed beforehand, but doing so disables Kilauea’s flexible screen space sample
scheduling in the final rendering stage. To avoid such limitation, current implementation of Kilauea
distributes the locally computed final gather values in the bucket to all other machines. This is
the same idea as distributing the photon tracing results. In the end, all machines will store one
final gather value per pixel for the entire screen (figure 31).
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Distribute buckets processed by this machine
to other machines

Figure 31: Distribution of bucket results

Currently, the data size transmitted in order to send a 1024x768 image is around 8 to 10
Mbytes. Because the time required for transferring this data is about 1 or 2 seconds using 100
BaseT network, this overhead is almost negligible. The goal of final gather estimation is to complete
the estimation computation in around two to three minutes, so at present the network transfer
time does not inflict any major problems

However, because the resulting data size of the final gather estimation stage depends on the
screen size, greater image size leads to memory deficiency. Also, this data will be referenced in the
final rendering time, but not all of the values need to be accessed simultaneously.

The access pattern depends on how the final rendering stage will sample the screen.

If the final rendering stage samples the screen in a completely random pixel order, the final
gather values sampling also require that the database be sampled in a random order. However, if
the screen were to be rendered using some rule, such as sample the screen from the bottom left to
the upper right in scanline units, then the final gather values will also be sampled using this rule,
following the sampling order of the screen pixels. Currently, it is possible to freely choose the final
rendering pixel processing order from among several preset scheduling types. The ones currently
being used in real usage all sample the screen according to a set rule, and do not perform random
accesses on the entire screen. Usually the access concentrates to some area on the screen (32x32
pixels, for example).
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For this reason, there is no need to keep the final gather estimation results resident on memory.
Instead, the results are output to a file called TAB (Irradiance Array Binary). If Kilauea efficiently
reads the TAB files in small parts, then Kilauea should achieve good processing speed. As a result,
when the final gather estimation stage completes, IAB files are created on all machines as local
data, which contains all the final gather values of the image as screen pixel values. In the end,
identical TAB files will be created on each machine’s local disk. The size of this file is approximately
10Mbytes for a 1024 x 768 image (figure 32).

Machine A

- -~

Distribute buckets processed
by myself to other machines

.......

i

SCREEN

........

Machine C

Store all buckets received and
processed by myself into IAB file

Figure 32: IAB local file data

4.4.5 Independency from other stages

As previously mentioned, the final gather estimation stage must be performed after the photon
tracing stage. There are times when repeatedly executing this stage only is useful.

Final gather value calculation requires the information of the complete scene. This is under-
standable because the final gather values include distinguishing elements of global illumination,
such as color bleeding. Because of this, when the surface attributes of one object in the scene
is changed, the change does not only affect the color of the object surface but affect the whole
environment around it as well. There is no need to take such situations into account in a direct
illumination rendering, but must always be taken into account when using global illumination.
Therefore, when an object surface attribute has been changed, the final gather estimation stage
must be run again. In the same sense, the photon tracing stage must actually be executed again
as well.

Also, allowing to compute this stage repeatedly without restraint is important in trial and error
procedure to efficiently tune the final gather estimation parameters.

4.5 Stage 3: Final rendering

Once the final gather estimation stage is complete, it is finally possible to start the final rendering
stage.
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Final rendering stage generate the image using the stored photon map data and final gather
values in IAB format that were computed in the previous stages. This stage basically executes all
the elements of the rendering. In the current implementation of Kilauea, this stage performs the
following computations:

1. Ray tracing
2. Shading
3. Final gathering

4. Photon look-up

Kilauea computes these tasks in parallel, using multiple machines. The basic unit of parallel
processing is the ray tracing and the shading computation on the object surface. Enormous amount
of ray tracings required to generate an image are independent of each other, and computed in
parallel. Surface color computation will be performed on the object surface that was found as a
result of the ray tracing, and here parallel processing will be performed independently per sample
on multiple CPUs as well. Please refer to [7] on how the ray tracing is actually performed in
parallel and the specifics on the shading computation themselves.

The following sections discusses how the values computed in stages 1 and 2 are referenced in
this stage.

4.5.1 Referencing final gather values

Kilauea is a parallel processing renderer, but this does not change the basic image generation
methodology from ordinary sequential ray tracers. Rays are shot from the camera, intersection
with an object in the scene is computed, and if there is an intersection, the shading color at the
surface is determined. During this computation, if a shadow ray tracing is required to compute
the shadow, then another ray is shot toward the light to do a shadow determination. If a specular
reflection or refraction is required, then an another ray is shot and the object surface color is
determined once the results are returned. Additionally, an irradiance value is required on the
object surface. This is the global illumination element on the object surface, which is typically
faked by the ambient value in a direct illumination renderer. But in Kilauea the irradiance value
is determined through light simulation. Specifically, the irradiance value is the sum of final gather
values (irradiance from diffuse surfaces) and the caustic value (irradiance from specular surfaces)
at a point on a surface.

The caustic value on the object surface is determined by referencing the caustic photon map at
that point. This photon map has already been generated at rendering stage 1 (figure 33). Please
refer to [7] for the specifics on the look-up, and refer to [8] for the global illumination mechanism.

The final gather estimation values computed in rendering stage 2 is referenced to obtain the
final gather values. Final gather values are stored within IAB files, and an identical IAB file for
the entire image has already been distributed to every machine. In other words, by looking up in
the local TAB file, whether a final gather value has already been computed or not is determined.

As already explained, IAB files store final gather values in screen space coordinates. The final
gather value at a certain point on an object is computed by first projecting the point to the screen
space, and then looking up the corresponding coordinates in the TAB file. The look up operation
returns one of two possible results:

1. Estimation completed normally, and a final gather value exists.

2. Estimation did not complete for some reason or another, and final gather value was not
computed for this pixel.
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Figure 33: Pixel shading calculation

In the first situation, the final gather value for this surface has already been computed in
rendering stage 2, so this value is simply used in the proceeding shading computation. This allows
the computation to skip the final gather computation on that sample for the surface altogether,
contributing greatly to computation speed-up.

In the second case, however, final gather values were not computed in the rendering stage 2, so
final gathering must be done on that object surface to compute the final gather values.

In other words, the more pixels can be computed in the stage 2 final gather estimation stage,
the less final gathering computation performed in the final rendering stage, reducing the total
computation time.

The computational cost of final gather values in a pixel varies depending on the state of that
pixel. Through experimentation, obtaining final gather values from the final gather estimation
is known to be more efficient than actually doing the final gathering in an average case. This is
because the final gather estimation stage tries to compute the final gather values on screen with
the minimum number of samplings by considering the smooth change in the irradiance values,
whereas the final rendering stage unconditionally performs final gathering for every sampling.

One important goal of the final rendering stage is to sample the direct illumination values, and
the screen space sampling is performed in parallel at per sampling basis. The optimal sampling
pattern here is very different from the sampling pattern optimal to the final gather estimation
stage. Incorporating the sampling pattern optimal for the final gather estimation stage in the final
rendering stage is possible, but this is not worthwhile for its high complexity and reduced parallel
performance. Hence, the final gather estimation stage is separated from the final rendering stage.

Accesses to the TAB files complete within a single machine. If that machine was a multi-CPU
machine, however, there will be simultaneous accesses from multiple CPUs to that file. But since
this file is basically read-only, there is no need to implement anything complex. The current
implementation structures TAB files as small tiles, and create a CPU local cache that can contain
multiple tiles, and manage the cache independently for each CPU (figure 34). Tiles inside the
cache update the timestamp every time it is accessed, and the least recently used tiles are thrown
out first when the cache is full. Experiments show that accesses to IAB files are a very small
percentage of the computation in proportion to the total computation in the final rendering stage,
and satisfactory performance is achieved with a cache smaller than 512Kbytes.

4.5.2 Final gathering

If the final gather values on an object surface cannot be retrieved from the IAB data, Kilauea
computes that value in the traditional way. This is as follows:

IV-28



Machine

~

Read in each subtile from IAB file and process it independently
using CPU local cache

Figure 34: Accessing to IAB file

1. Start the final gather from that point
2. When the final gather ray hits an object, perform a photon map look-up at that point

There are many options regarding how the final gather will be performed. For example, shooting
a specified number of rays randomly, or unconditionally shoot nxn rays at a specified resolution.
In Kilauea, this is solely a problem of how the shader for the object surface is written. To put it
in another way, users can implement final gathering in any way at the shader level.

The final gather rays being shot may hit an another object after performing a ray tracing. If
it hits, then a photon lookup is performed at that point. Please refer to [7] regarding this photon
lookup operation.

For the specifics on how global illumination should be implemented using photon maps, please
refer to [§].

4.5.3 Final image

When all the samples have been taken from all the pixels on screen, the computation for that
frame is finished.

If the user intends to adjust the materials of this scene at this point, he may proceed to
tweak some parameters and start a rendering again. Depending on the parameter and its global
illumination effect, the rendering may need to start over from stage 1 or 2.

If this is the final rendering, the image is saved to the disk and proceeds to the next frame,
from stage 0.

4.6 Sampling efficiency and multi-pass rendering

Many levels of computation are required to render a single image. As explained so far, Kilauea
divides the rendering into four stages. The following is the summary of four stages and their
objectives.

1. Stage0: Scene data assembly

Refresh the scene and perform any necessary pre-computation

2. Stage 1: Photon tracing

Sample the scene from the light source

3. Stage 2: Final gather estimation

Sample the scene from the camera, while performing sampling optimized for global illumina-
tion.
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4. Stage 3: Final rendering

Again, sample the scene from the camera, but this time optimized for direct illumination.

Here, stage0 is considered to be the scene assembly stage, that is the preprocessing, and is
required unconditionally. Also, stage 1 is required when using photon map method.

Stages 2 and 3 can be worked with in terms of computation speed — i.e.; sampling rate. Here
I would like to make clear some of the key points in implementing these parts.

4.6.1 Final gather values and complexity inside the pixel

The changes in final gather values of a very smooth object surface tend to have smooth regions as
well. This is what allows the final gather estimation stage to be independent. But realistically, if
multiple objects are visible within a single pixel, the estimation computation is costly, and a major
amount of computation must be invested to obtain enough precision.

Final gather estimation algorithm attempts to fill as many pixels as possible with final gather
values computed by a simple interpolation. In other words, if the changes are smooth enough, final
gather sample points are placed only sparsely and compute the in-between values via interpolation
later. On the other hand, if the values are changing significantly, more final gather sample points
are placed.

The problem in implementing an algorithm like this is determining where to stop the sampling
rate at. In our case we use the pixel size of the screen. In other words, if the final gather values
change greatly between single pixel units, then we are unable to get any benefits of the final gather
estimation. If the values are changing rapidly at a single pixel level, then getting a final gather
value using supersampling and final gather is smaller in cost in terms of computation cost.

The following explanation should explain why doing the computation at the final rendering
stage is better if the changes are occurring at a single pixel level.

Kilauea’s final gather algorithm used in the final rendering stage is a simple Monte Carlo
algorithm, which means that it contains a very high frequency noise. Also, it can be noted that
pixels where final gather estimation didn’t function has more information within that pixel, and
therefore its looks are complex. For complex looking pixels such as this, high-quality final gathering
isn’t necessary. in most cases, because of the characteristic of the human eye, even if there were
some noise it wouldn’t be a problem because the pixel itself is already complex by nature. This
means that for areas where the internal structure of the pixel is complex, we can achieve acceptable
quality even if the final gather sampling rate is dropped. Currently our goal is to achieve an average
quality of 65x65 final gather rays in the final gather estimation stage. But in the final rendering
stage, similar quality can be achieved for areas with complex pixels with 27x27 or even 15x15
rays without problems.

This is why we don’t perform computation finer than 1 pixel resolution in the final gather
estimation stage.

For these reasons, the final gather estimation stage actually checks the complexity of each pixel
beforehand. First we render the primary ray only and generate a mask that shows how the scene
looks and how complex each pixel is. Based on this mask information, final gather estimation is
executed only on areas where the pixel internals are simple enough. At this time, areas where the
pixel internals have been determined to be complex will be processed using final gather + photon
map at the final rendering stage, and at that time the sampling rate used will be significantly lower
than the quality used in the final gather estimation stage. (see [§] for the details on final gather
estimation itself.)

4.6.2 Pixel sampling in final rendering

We have already explained that IAB data will be used to transfer the final gather values between
the stage 2 final gather estimation stage and stage 3 final rendering stage. There actually is one
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another data structure that will be used in the final stage. That is the data used to describe the
complexity inside each pixel.

Final gather estimation stage only performs its computation on areas where the pixel internals
are simple enough, but in order to do that it processes the primary ray and store many types of
information internally. By also recording the primary ray shading result at this time, it is possible
to record the direct illumination changes at pixel units, which allow the final rendering stage to
reference this data (refer to [8]). Current Kilauea implementation takes this direct illumination
color information and the final gather estimation computation results when determining the on-
screen sampling pattern in the final rendering stage.

For example, suppose that a 4x4 sampling will ultimately be required. Usually in Kilauea
the image is computed by shooting 4x4 rays for each pixel in a straightforward way. Using the
information computed in stage 2, it finds an area where point sampling is acceptable for each pixel,
and create a screen sampling schedule that changes 16 rays into one ray. By doing this, it allows
Kilauea to dramatically reduce the number of rays shot and the shading computation cost required
to generate the final image.

This is done in the following method. based on the direct illumination information created in
stage 2, we can determine which pixels have a greater color change from the adjacent pixels, based
on simple lookup. From this information, it is easy to find pixels where direct illumination can be
simplified to point sampling.

Also by looking at the final gather estimation values, we can determine which pixels already
have the final gather values, and we can skip the final gather value computation for those pixels
during the final rendering stage. This means that no supersampling needs to be done to compute
the final gather values during the final rendering stage, and as a result for pixels where the final
gather values have already been determined, point sampling is sufficient.

From these findings, we can determine for some pixel whether the pixel can use point sampling
or need to do super sampling at the final image generation time, and as a result allow us to improve
the computation speed significantly.

In other words, for simple cases like a simple flat object with a large area and its surface is a
single color, We can guarantee a satisfactory quality by just point sampling the pixels. Numbers
of such areas tend to increase as the resolution of the image to be rendered increases, so this is a
very powerful characteristic when considering a production pipeline.

As a result, it is now possible to plan the sampling for the final image efficiently by rendering
in multiple passes.

5 Kalapana — render farm control

Kilauea is a massively parallel renderer, designed to run separate processes across multiple ma-
chines which cooperate to compute the images. Naturally, some kind of batch system to automate
dispatching, controlling, and shutting down of Kilauea processes on proper machines with proper
parameters is demanded. The batch system specifically designed for the Kilauea renderer is called
Kalapana.

5.1 Kalapana objectives
Here are the key features of Kalapana.

1. Make Kilauea look like one huge process
Each Kilauea process is a separate entity, though it depends on each other for the rendering
computation. Ideally, the creation and destruction of these Kilauea processes would be much
easier to maintain if it were like a single process spanning over multiple machines. Kalapana
achieves this by hiding all booting, shutdown, and signal handling (SIGHUP, SIGKILL, etc)
from users.
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2. Distributed design

Kalapana does not rely on one powerful central server to maintain all job information. Rather,
job information is distributed across machines under the control of Kalapana. In a sense,
any machine can turn into the central job server. This distributed solution is more robust
and risk-free compared to the central server solution, where the failure of the central server
directly affects the entire system.

3. Fault-tolerant mechanism

Because Kilauea runs on many machines at the same time, the chance to encounter the
hardware or OS-level system instability multiplies. Kilauea has a built-in retry mechanism
within sample scheduler to complete the rendering, but if some error beyond the control of
the sample scheduler occurs, Kalapana shuts down and reboots the Kilauea processes, and
starts the rendering from the current frame.

4. Resource control

Kalapana keeps track of various system load information to find out which machines are
idle, busy, reserved by someone, etc. The load monitoring system also turned out to be a
crucial tool in the development process for troubleshooting and for checking if Kilauea is
appropriately load balanced.

5.2 Kalapana implementation

Kalapana is a fully multi-threaded batch system written in C++ supporting Linux and IRIX. It
consists of four programs: host server, info server, client, and executor.

e Host server

Each render farm machine runs one Kalapana host server. A Kalapana client always con-
nects to the host server running on the same machine for any transactions. Host servers
are responsible for booting Kalapana executor, which starts a job process and watches its
execution status. Host servers wake up every one second to gather system information and
send them to info servers.

e Info server
Info servers manage system information sent from host servers. In a typical render farm
setup, two info servers keep track of the entire render farm system information to distribute
the load.

e Client
Kalapana client is the interface between users and Kalapana system. Users send various
requests such as dispatching jobs and querying system information through the client.

e Executor

Kalapana executors are responsible for actually booting job processes and watching their
execution status. Executors act as the bridge between host servers and job processes, mainly
to avoid multi-thread incompatibility issues with some system calls.

All Kalapana executables listed above have the standard Kalapana binary command engine
built in, and they communicate with other Kalapana executables using this command protocol.
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Figure 35: Job dispatch mechanism in Kalapana

IV-33



5.2.1 Job dispatch mechanism

Figure 35 illustrates how a Kilauea rendering job is dispatched from the client. The client on
machine A first sends the job dispatch request along with the corresponding job table to the host
server running on the same machine. This host server then scans through the job table, and send
job execution request to hosts A, B and C, as listed in the table. The host servers on A, B, and
C receive the job execution requests and invoke Kalapana executors, and then these Kalapana
executors finally starts the job process, Kilauea in this case.

When a Kilauea job is submitted and accepted at a host, this host is marked as reserved by
the user who submitted the job. The job may be rejected if another user had already reserved it.
The client must choose another host to run Kilauea in this case.

In the figure 35, the client on machine A is the job master client, responsible for managing job
execution. The execution status of Kilauea processes are constantly monitored, and the information
in job master client get updated promptly. When the executor catches the termination signal of
the Kilauea process, the status is sent back to the host server, then to the job master client. When
the job master client receives the signal of one of Kilauea processes, it proceeds to clean up all
processes and release hosts reserved by this job. Depending on the type of received signal and the
user preference, the client may attempt to restart the job. More on this fault tolerance is discussed
in the next section.

Note that the job master client can run on any hosts. Unlike the central server strategy where all
job information is stored in one powerful master server, job information of Kalapana are dispersed
throughout the render farm. The weakness of the central server strategy is that everything fails
when the master server fails. Kalapana’s distributed design significantly reduces such risk.

5.2.2 Fault-tolerant mechanism

Because a typical Kilauea rendering job tends to use large number of machines, it is more susceptible
to hardware and software instabilities than conventional renderers. Two fault-tolerant mechanisms
exist in order to save Kilauea renderings from such unfortunate accidents.

The first mechanism is built into Kilauea. The sampling scheduler in Kilauea keeps track of
every one sample request. When a sample request gets lost somehow and the result does not back
after a certain period of time, it is rescheduled. This gives Kilauea another chance to complete
the rendering even when one of the worker machine freezes. If the rescheduled samples does not
get processed for a certain period of time, then Kilauea gives up and aborts, hoping that next
fault-tolerant mechanism will remedy the situation.

The second mechanism involves Kalapana. Upon receiving the abnormal termination signal of
one of Kilauea processes, the job master client first sends kill signal to all remaining job processes.
After the confirmation of the entire job termination, the client may proceed to resubmit the job.
The check-pointing and restart mechanism in Kilauea allows the restarted job to automatically
pick up the rendering from the frame where it left off.

Users may set the maximum number of restarts per frame or per sequence to avoid wasting
CPUs with jobs which always fail.

5.2.3 Obtaining host information — from info servers

One of the key features of Kalapana is the render farm resource management. Figure 36 illustrates
how info servers maintain the render farm system information.

Host servers running on all machines wake up every one second to send the heartbeat packets to
info servers. The heartbeat packets are basically just Kalapana commands with system information
embedded to update the host list information on info servers. The system information included in
the packet are Since the reliability of each packet is insignificant, it is sent in UDP to minimize the
communication overhead. The packet includes information such as CPU usage (user and system),
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Figure 36: Host information management mechanism

CPU model, CPU speed, memory usage (allocated, cached), total memory size, network usage,
disk access, OS version, reserve status, etc.

Heartbeat packets are literally used to keep track of whether a host is alive or not. After a
long time of inactivity, info servers mark the host as offline. Users are not allowed to submit jobs
to offline hosts. If a job process was running on the host detected as offline, the job master client
may proceed to terminate the entire job, if it is instructed by the user to do so.

The step-by-step execution of the Kalapana command IsHost, a command to retrieve the host
information from info servers, is explained in figure 37.
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Figure 37: Host information retrieval

1. Client sends host info retrieval command to host server
2. Host server sends host info retrieval command to info server
3. Info server sends back host info update command to host server

4. Host server sends back host info update command to client
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At step 2, the host server may send the command to either one of info servers. For every query
from the host server to the info server, an internal counter is incremented to decide which info
server to query next. This distributes the load on info servers.

One might wonder why the client does not directly query the info servers for the system infor-
mation. Please notice that more than one client may run on a certain host. Because clients always
communicate through the host server running on the same host, the host server may act as a proxy
for these clients to reduce the network traffic. This is another aspect of Kalapana’s distributed
design.

5.2.4 Obtaining host information — without info servers

The previous section explained how the client retrieves all host information from info servers.
However, users often want to only monitor the hosts running their job processes. Kalapana has an
efficient mechanism to retrieve only the necessary host information, without querying info servers.
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Figure 38: Host information retrieval without info servers

Figure 38 illustrates the case where machine A is the job master and Kilauea job processes
are running on machines A, B, and C. Upon sending heartbeat packets to info servers, the host
server also directs them to the master host server when job processes are running on this host
server. This keeps the host information at the master host always up to date. Thus, to retrieve
the host information of the hosts running jobs, the client only has to retrieve the information from
the host server. This mechanism effectively reduces the network traffic and CPU load, especially
when frequent update of the host information is needed.

5.3 Hawkeye — render farm resource monitor

Collecting system information in Kalapana is crucial for effectively managing computational re-
sources of the entire render farm. Users may need to keep their eyes on how well a Kilauea rendering
is performing, and manually tune parameters accordingly to maximize the resource usage. Also,
Kilauea developers highly demanded a tool to verify if newly implemented load balancing and par-
allel processing schemes are performing as expected, and if not, find out where is the bottleneck at
a glance. This was the main motivation for developing Hawkeye, the render farm resource monitor.
The following sections go over how Hawkeye was successfully built on top of the Kalapana system
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in a short amount of development time by integrating Ruby! scripting language.

5.3.1 Hawkeye development strategy

Hawkeye is essentially a special version of Kalapana client which retrieves the host information
every certain interval and displays it in an easy-to-see, real-time manner. The special Ul can be
written in C++4 just like Kalapana itself, but since building various interfaces suitable for diverse
situations was planned, we came to the conclusion that a scripting language should be integrated
into the Kalapana client to speed up the development. By making Kalapana’s features and data
accessible to a scripting language, major improvement in the development productivity is expected.

Scripting language integration is nothing new in this project. Kilauea renderer itself integrates
Tcl interpreter for scripting and for use as a command processor. Bufd, the image viewer to
receive pixel information from Kilauea, also integrates Tcl to provide a command processor and Tk
GUI. Hence, we were fully aware of the advantages in combining C/C++ and scripting languages
integration and it was a natural decision to integrate a scripting language in Kalapana also. The
question is, which scripting language should Kalapana use?

The main objective here is to speed up the development more than C++, so the language
should be a higher level language than C++, whose design leans toward more to machine than
human. The natural access to C++ objects from the scripting language is desirable, and thus the
language must be object-oriented. Also, the language should have powerful data structures and
readily available libraries to prepare various interfaces. With these conditions taken into account,
the language of the choice for Kalapana integration is Ruby.

Ruby is an object-oriented dynamic language with garbage collection, fully equipped with handy
data structures and libraries such as text processing, networking, and GUI toolkits. Compared
to other popular scripting languages, Ruby stands out from the crowd because of its consistent
object-oriented design, highly dynamic nature, existence of closures (called iterators in Ruby) built
into the language design, and easy-to-use extension API.

To summarize, the objectives in integrating Ruby into Kalapana for Hawkeye development are:

1. Seamless access to Kalapana functions and data from Ruby
2. Maximize the advantages of both scripting and compiled languages

3. Speed up development

5.3.2 Ruby integration into Kalapana client

When using a scripting language with C++-, there are usually choices of either making the C++
program available from the scripting language, or integrate the scripting language interpreter in
the C4++ program. Kalapana chose to integrate Ruby, because Kalapana makes use of special
malloc() developed for Kilauea to minimize memory fragmentation. If the Ruby interpreter run
as the main program to call the Kalapana module, then malloc() would not be overridden and
neither Kalapana nor Ruby would benefit from the special memory manager.

Making C++ classes available to Ruby is very easy. Many good documents for creating Ruby
extensions and understanding Ruby internals already exist, so the detail will not be covered here.
Although extending Ruby is intuitive and easy, making large number of C++ classes available to
Ruby is tedious and time consuming. For the Ruby-Kalapana integration, a program to automat-
ically create the bridge between C/C++ and various scripting languages called SWIG? was used
to speed up the process.

Lhttp://www.ruby-lang.org/
2http://www.swig.org/
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5.3.3 Ruby and multi-thread safety

The Ruby interpreter is not thread safe. Kalapana is, however, fully multi-threaded. Full attention
must be paid so that the interpreter will not be accessed by more than one thread at a time.
One approach is to properly lock every operation to the Ruby interpreter. This is not so easy to
accomplish, because a thread-safe wrapper must be written for all Ruby APIs used in the program.
Ruby-Kalapana guarantees the thread safety by redesigning the threading structure and making
sure that only one thread accesses the interpreter.

command queue

command
input

command

processor

send queue

Figure 39: Kalapana client thread structure
Normally, Kalapana client runs four threads (figure 39). Their responsibilities are:

1. Send packet;

2. Receive packet;

3. Process command queue;
4. Accept command input.

Threads 3 and 4 may access the Ruby interpreter at the same time. Ruby-Kalapana runs in
a special client mode where 3 and 4 are processed in the same native thread. The method to
process one command queue is made available to Kalapana, and in the Ruby interpreter, a Ruby
thread (non-native user-level thread) is created to invoke the command queue processing method
whenever the queue is available. In other words, native thread 3 is replaced by Ruby thread to
avoid the multi-thread issue (figure 40).

O-0-0-0

}

send queue

command
processor

Figure 40: Ruby-Kalapana thread structure

5.3.4 Existing Hawkeye interfaces

Three Hawkeye interfaces are developed on top of Ruby-Kalapana.
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1. Curses Hawkeye

This is a text-based lightweight load monitor intended for use on text consoles and less
powerful machines.

2. GTK Hawkeye (figure 41)

Figure 41: Screenshot of GTK-Hawkeye. CPUO usage, CPU1 usage, and memory usage are dis-
played for each host.

Using a graphical interface provided by GTK?, hundreds of render farm load information is
displayed as charts in real-time, updated every one second. The chart display allows users
to grasp how the load changed over past 64 seconds. Because of Ruby’s iterators, writing
signal handers for GTK widgets become very intuitive and easy to read.

3. Hawkeye::Web (figure 42)

Hawkeye::Web is an HTTP server to allow users to monitor and manipulate the render farm
using their favorite web browsers on their favorite platform. The server uses an excellent
Ruby library called WEBrick*, which is literally a building block for developing custom
network servers. The HTTP server built by WEBrick takes advantage of another wonderful
Ruby library called ERb®, which allows embedding of Ruby code into HTML. For example,
a stripped down HTML code below shows how Ruby is actually embedded.

<html><body>

Current time is <Y=Time.new’>.

claire01 CPUO usage is <%=Kalapana.hostHash["claire01"].cpulO].usage’>.
</body></html>

3http://www.gtk.org
4http://www.notwork.org/ipr /webrick/
Shttp://www2a.biglobe.ne.jp/ seki/ruby/erb.html
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; Hawkeye:Web — Microsoft Internet Explorer
PP BEE FTW BREAG YD AN |
e @R |BETS B
FHLAD | hetp// kalapanati 20900/ index. rhtml | eBE
B @ Microsoft E)Windows Update  &]Windows &8 —Fub GBS €1F voall A4 @2k Web @]V HnhaRz 3 it
505 total hosts: 502 online 67 reserved Mon Mar 04 17:15:54 GMT-5 2002 ||
Host Name [0S |CPUO |CPU1 Mem Swap Net Reserved by
boxx01 A 0.0%| 0Ok |3640MB / S05.0MB 72.1% GOMB S/ 6216MB  1.1% 796B/sec
boxx02 A 0.0%| 00K |3586MB /5018MB 71.5%| G62MB / S17.7MB 12.8% b48B/sec
boxx03 2] 00% | 00%|3249ME S S050ME G4.3% T4AMB /5177MB 1.4% 2886/ sec
boxx04 2] 0.0% 1.0% |288.4ME / 505.0MB  57.1% 54MB /S 5177MB 1.8% B48B/sec
boxx09 A | 455%| 62.4% [266.0MB / 505.0MB 52.7% GAMB /S S17IME 1.3%| 2.0KB/sec |madachi @ oc008
boxx06 A | 32.7%| 60.3% [263.8MB / 505.0MB  52.2% 9.8MB /S 517IME 1.1% 1.2KB/sec | madachi @ ac008
boxx07 M| 31.7%| 73.3% [252.8MB / 505.0MB  50.1% 39MB S 517IMB 1.1% 1.1KB/sec | madachi @ oc008
boxx08 M| 149% | 901% [2536ME / 505.0MB  502% TAMB /S 5177ME  1.4% | 11.0KB/sec | madachi @ oc008
boxx09 2] 0.0% 1.0% [361.6ME / S045MB  71.6% 59MB / 8453MEB 09% B48B/sec
boxx10 2] 0.0% 1.0% |286.6ME / S05.0MB  56.8% 49MB / 6448MB  0.8% 1.0KB/sec
boxx11 M | 99.0% [1000% [169.8MB / 5048MB  336% 36MB / 6453MB 06%| 7.5KB/sec|tendo @ duarcn8
boxx13 A [1000% | 99.0% [1649MB / 5048MB  32.7% 2.2MB / 845.3ME  03%| 82KB/sec |tendo @ duaron8
boxx19 A [1000% | 99.0% [1786MB / 5045MB  30.4% 1.8MB / 845.3ME  0.3%| 9.0KB/sec |tendo @ duaron8
claire09 A 9.9% 25.9MB / B05.0MB 5.1% 832.0KB / 1.0GB 01%| 85.1KB/sec
cietn @ ane Fronio s rom i 1198 | nianeo i 1nnp aielaiavo s | |
@ [T Eactser

Figure 42: Screenshot of Windows IE accessing Hawkeye::Web

When the above HTML file is accessed, the server evaluates the embedded Ruby code and
replace the text with the result of the Ruby code evaluation. In the example above, current
time and claire01’s CPU usage should be displayed.

The development of the initial version of Hawkeye::Web took only one hour, due to this
extremely helpful Ruby-embedded HTML feature.

Please note that the development of Ruby-Kalapana and three interfaces for Hawkeye took
only about one month, and most of the development time was spent on optimizing the real-time
display speed of GTK Hawkeye.

5.4 Achievements of Kalapana and Hawkeye

Kalapana succeeds to be a distributed solution to the render farm control. Its distributed design
minimizes the risk for failure, and also reduces network traffic and CPU load in various cases.
Kalapana allows users to see distributed Kilauea processes as single process to make proper booting
and shutdown much easier to control. Kalapana takes an important role in the fault-tolerance of
the Kilauea rendering to vastly increase the chance of completing animation sequence renderings.

Hawkeye provides an easy-to-use, real-time mean to monitor the render farm resources at a
glance to investigate the bottleneck quickly and make sure that the load is equally balanced.
GTK, web, and Curses interfaces are available to meet specific needs.

Ruby integration into multi-threaded C++ program is not difficult at all and definitely worth-
while for boosting development speed. Using Ruby-Kalapana, Kalapana host list and job table are
made accessible from Ruby array and hash. As a result, complex set operations to host list and job
table can be expressed in a very short, intuitive code, resulting in vastly increased productivity.
Ruby’s iterators are extremely helpful in writing more readable code, as proven especially while
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developing GTK Hawkeye. The dynamic nature of Ruby also greatly helped in speeding up the
development by reducing the code test cycle. Convenient libraries such as WEBrick and ERb
significantly reduced the development cost.

Hawkeye achieved to combine the fast, low-level backend engine implemented in C++ with
high-level, flexible interface scripted in Ruby to maximize the strengths of both languages.

6 User interface between Maya and Kilauea

Maya is used for creating scene data rendered by Kilauea. User interface for controlling Kilauea
from within Maya aims to integrate the Kilauea rendering seamlessly into Maya so that from
the user’s perspective, the user simply presses the “Render” button and appears as if Maya is
performing the rendering.

6.1 UI implementation using Maya and its problems

The Maya scene data is converted into a Kilauea-specific file format and then the image is rendered
from this data. Kilauea itself does not depend on a specific application for data creation. However,
the production workflow at Square USA is built around Maya, and the goal was to be able to easily
integrate Kilauea into this workflow.

As opposed to Maya which runs on each artist’s desktop machine, Kilauea is designed to run on
a Linux-based render farm over the network, managed by Kalapana (see section 5). For this reason,
some form of communication mechanism is necessary between Maya running on the desktop and
Kilauea running on the render farm. This communication needs to be bidirectional to exchange
data and commands between Maya and Kilauea.

Initially, Maya plug-in MEL commands implemented the link between Maya and Kilauea di-
rectly using sockets. This plug-in mainly provides three features:

1. Set up rendering environment
2. Output Kilauea scene data and configuration data

3. Startup and shutdown Kilauea through Kalapana

The rendering environment describes the various data that will be required when Kilauea starts
the rendering process. In addition to parameters required in ordinary renderers such as the screen
field-of-view, they also describe parameters required for global illumination.

Kilauea scene data is referred to as KIS (Kilauea Incremental Shotdata) files, which will be
described in detail later. Kilauea configuration data is a Tcl script file.

This workflow of launching Kilauea, sending the scene data to Kilauea, and rendering the image
has been tested for its effectiveness under the production environment, and some flaws were found.

Maya plug-in modules do not run in multiple threads, which limits the plug-ins to work as a
part of Maya’s sequential process, that is, as a part of a single thread. This resulted in limitations
such as not being able to continue modeling work in Maya while the commands are being executed.

During the production testing, users demanded to monitor Kilauea’s execution status such as
the progress of the rendering job or any error conditions. While it is possible to perform the
monitoring outside of Maya, many test users requested to integrate the feature within Maya.
In order to implement this directly in Maya, MEL commands must be issued frequently, or at
least periodically. This solution causes the undesirable side-effect of pausing Maya every time the
command is executed.

Focusing on the interactivity of sending commands directly from Maya to Kilauea raised an-
other problem with the strong dependency between Maya and Kilauea. For example, because the
startup and shutdown of Kilauea through Kalapana was controlled directly from Maya, sometimes
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it became impossible to control neither Maya nor Kilauea, if for some reason the commands to
Kilauea deadlocked.

The rendering flow between Maya and Kilauea was reorganized based on these problems found
in the production testing. As a result, some of the functions were separated from Maya; commands
are no longer sent directly from Maya, and the task of launching, shutting down, and monitoring
Kilauea are removed from Maya.

6.2 Management of rendering jobs

Maya interactive
session
v \
KSC file i
Kustodian KIS files J
' P
Koa || TCLscript | ] Kilauea
application
\/
images || = ----- - launch
—— input/output

Figure 43: Kilauea workflow from Maya interactive session

Maya scene Nene
file
— 3 \
KSC file i
Kustodian KIS files J
\T\‘/
Koa | TCLscript | || Kilauea
L
images

Figure 44: Kilauea workflow from Maya scene file using Nene

The current Kilauea workflow is shown in the figure 43. The task of launching, shutting down,
and monitoring Kilauea has been removed from Maya into an application called Kustodian (see
section 6.3). Likewise, the generation of rendering configuration file to be read by Kilauea (Tcl
script in figure 43) is taken care of by an application called Koa (see section 6.5). Kustodian
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communicates with both Maya and Kilauea, and is controllable from within Maya as a part of
Maya’s GUI.

In addition, an application called Nene was developed to convert Maya scene files (both Maya
ASCII and Maya binary) to KIS files. Although exporting KIS files directly from Maya is still
possible, using Nene as a stand-alone converter allows batch processing of KIS files, as shown in
figure 44.

Running Nene on a separate machine also has the advantage of decreasing the load of the host
Maya is running on.

6.3 Kustodian

Initial implementation to directly control Kilauea from Maya suffered from interruption of Maya
operations and troubles occurring when Kilauea became unstable. Kustodian intends to separate
the task to start-up and manage Kilauea jobs from Maya. Using Kustodian, job control becomes
completely independent from Maya, which means that there is no effect on the Kilauea jobs even
if Maya is working on something else, and conversely, no harm is done to Maya if the Kilauea
execution becomes unstable. This allows the users to continue on with their Maya operations
without worrying about the Kilauea job in progress. In the previous implementation, users were
unable to specify the CPUs to be used for the rendering job, nor launch multiple rendering jobs
simultaneously. When Kustodian receives a rendering job from Maya, it automatically assigns the
necessary number of CPUs, based on the information from a database of rendering CPUs, checking
for the currently running machines. Users need only specify the number of CPUs desired, without
considering the resource usage in the render farm. Additionally, the ability to simultaneously
execute and manage multiple jobs improved the usability.

When Kustodian receives the rendering command from Maya, it extracts the KSC (Kilauea
Scene Configuration) file name from the command and analyzes its contents. Based on this infor-
mation, Tcl file for Kilauea is generated, through a program named Koa (explained in section 6.5).
In the next step, the execution status of machines currently registered in the database is queried to
Kalapana, and Kustodian reserves the requested number of machines, excluding the ones currently
reserved or offline. After the machines are reserved, the display program is launched, and Kilauea is
launched via Kalapana. Once the Kilauea process is launched, the management of Kilauea itself is
handled by Kalapana. Kustodian constantly checks the log output from Kilauea, and displays the
rendering progress and any error status on screen. Once the rendering job completes, Kustodian
releases the CPUs used for the job from the database, allowing the next job to use them.

Rendering commands from Maya are registered into Kustodian’s internal database as rendering
jobs. A rendering job is divided into small stages such as the analysis of KSC files and reservation
of CPUs. A rendering job is treated as one object, and automatically saved to a file at every stage.
If for some reason Kustodian’s execution terminates, pending jobs will automatically be restored
when Kustodian is re-launched. In addition, jobs are saved as files unless explicitly deleted, allowing
them to be reexecuted at any time. The ability to resume a job is one of the most important feature
of Kustodian, making this a big advantage when managing a job that takes a long time to render.

Kustodian is developed using Ruby and GTK. The use of scripting language was planned from
the beginning, for the extensibility and maintainability. As already described in the previous
section on Kalapana, Ruby is an excellent object-oriented dynamic scripting language to speed
up the development. GTK is the toolkit of choice, because of its popularity, variety of available
widgets, and ease of use from Ruby.

Kustodian is structured as a client/server application. The client and server communicates
through a socket. Maya calls the Kustodian command which is the client, sending the KSC filename
(see section 6.5) to the Kustodian server which actually controls the rendering job. Kustodian
command is simple, consisting of the KSC file and a few options. This makes it easy to send
a rendering command from Maya to the Kustodian server. If necessary, other tools can start a
rendering job easily.
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When the Kustodian command is called, it checks for a running Kustodian server, and will
launch one if it isn’t already running. Also, the Kustodian server is designed so only one copy is
running on a single machine. Therefore, the caller does not need to think about the Kustodian
server at all.

By managing the rendering jobs through Kustodian, Kilauea and Maya were separated effec-
tively, making possible a flexible development and work environment.

6.4 KIS file

KIS is an acronym for Kilauea Incremental Shotdata. KIS files contain all the camera, light, and
renderable object data from Maya. A single KIS file may contain all the objects for all the frames,
or multiple KIS files may contain a specific object for a specific frame.

One important feature of KIS files is that, as its name implies, it is an incremental data format.
This is to say that the data of the first frame contains all the data of the scene, but only the
difference information is stored in the file for frame two and later. To avoid the problem of reading
all the proceeding frames in sequence just to get the last frame, KIS optionally allows to set the
full dump frame every several frames.

The main reason for using an incremental data format is above all that and in conjunction with
other compression schemes, the file size can be greatly reduced.

6.5 KSC file

In addition to the KIS file that describes the scene to be rendered, Kilauea requires a Tcl script
that controls the scene rendering as well. Using Tcl scripts allow the rendering parameters to be
manipulated in a flexible way, but the disadvantage of this method is that users must understand
Tecl scripting and Kilauea functions to be called. Actually, users did not need to write Tcl files
themselves, instead letting Maya generate the Tcl files and send to Kilauea. However, Kilauea
functions and parameters constantly undergo additions and modifications, so export tools con-
stantly needed to take this into account. This also caused compatibility problems between Tcl files
generated from different tools. Further, Running an older version of Tcl files on a newer version
of Kilauea caused problems with parameter mismatch. To solve these problems, a metafile format
called “KSC” is created to pass information from Maya to Kustodian, and developed a tool “Koa”
to generate a Tcl file from this format. KSC stands for “Kilauea Scene Configuration”. KSC
absorbs the difference between the version differences in the Tcl files. Programs that previously
generated Tcl programs no longer generate Tcl files directly, instead generating a KSC file and
execute Koa to generate the Tcl file. By doing so, it is possible to unify the version of Tcl files
generated by the various tools. KSC file format itself is a very simple, extensible format, and
developing other programs to output it is not a problem at all.

Koa, like Kustodian, is written in Ruby. In addition to the same reasons Ruby was used for
Kalapana and Kustodian, Ruby simplifies the coding of text processing using regular expressions,
which is crucial in the processing of KSC files and generation of complex Tcl files.

The introduction of KSC file format and Koa accomplished absorbing the version differences in
Kilauea Tcl commands. This improved the version control maintainability in developing Kilauea
plug-ins, resulting in more stable workflow.

6.6 Achievement of the new Ul

By deploying Kustodian, Nene, and Koa together, the usability of Kilauea + Maya and the overall
system stability including Maya has increased significantly.
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Figure 45: Kilauea rendering in progress from Maya
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7 Results

7.1 Summary of the project

Kilauea is a vast system. Brief explanation of the scale, special features of the project, etc. are
given here.

7.1.1 Scale

The following data outline the overall scale of the system.

e Duration of the development: 4 years (Mar 1998 to Feb 2002)
e Number of developers: 7

e Main programming language: C++

e Integrated interpreters: Tcl, Ruby

e Source code management: cvs

e Number of lines in the Kilauea renderer itself: 758,329
e Number of lines in the testsuite program: 187,041

e Total number of lines: 945,370

e Number of internal modules in Kilauea: 46

e Number of module-related testsuite programs: 239

e Number of task types during execution of Kilauea: 11

e Total number of test scenes: 80+

7.1.2 Features

The internals of Kilauea are divided according to their function. Kilauea is divided into several
groups of logically independent processes. Such group is referred to as module. Kilauea now
consists of 46 modules.

Interdependency between the modules is kept as low as possible. The concept of message
passing greatly aids in maintaining the low interdependency. Such separation of the modules was
thoroughly carried out to allow smooth development even when different groups of developers are
assigned to work on each module. Developers can concentrate on perfecting the module that they
are assigned to, and each module is designed so that it can be tested independently as a testsuite
by a small program. Currently, 46 modules of Kilauea are created as local library and linked
upon compilation. There exist 239 testsuite programs that are used to test one module or several
modules at the same time.

Conducting tests repeatedly to make sure that each module is thoroughly independent and
perfecting each module’s functionality by utilizing testsuite program is the least requirement for
assuring the stability of such enormous rendering system as Kilauea. Therefore, it becomes im-
portant that when a new module is installed or modification is made to a module, accompanying
testsuite is almost always updated or appended with a new program. Kilauea turned out to be
a system comprising of more than 750,000 lines in the end. However, as long as the developers
adhere to the same testing policy, the system can grow even larger and still have the same level of
stability.
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# || FG est. (hr:min:sec) Render (hr:min:sec) All (hr:min:sec)
1 0:32:17 1:14:39 1:51:24
2 0:15:27 0:35:37 0:53:58
3 0:10:15 0:23:30 0:37:40
4 0:07:36 0:17:22 0:29:02
5 0:06:14 0:14:04 0:24:17
6 0:05:09 0:11:41 0:20:51
7 0:04:26 0:10:01 0:18:29
8 0:04:12 0:09:13 0:17:49
9 0:03:43 0:08:02 0:16:32
10 0:03:11 0:07:09 0:15:00
11 0:03:04 0:06:36 0:14:21
12 0:02:49 0:06:00 0:13:08
13 0:02:36 0:05:35 0:12:41
14 0:02:29 0:05:10 0:12:14
15 0:02:17 0:04:47 0:11:37

Table 1: Town house: timing results

Before the distribution of the official version of Kilauea, thoroughly confirming that all impor-
tant functionalities are not broken using a pre-defined set of testsuite scenes is important. At the
moment, there are 80 types of test scenes that an official version of Kilauea must pass before it is
released.

7.1.3 Parallel performance timing results

e Test case 1: Town house

Figure 46, the town house scenery, is small enough to be stored in one machine, and Kilauea
will distribute identical copies of scene data to all machines participating in the rendering.
Three rendering times were recorded while changing the total number of machines:

A) All: total time from booting Kilauea to shutting down Kilauea
B) FG Est: final gather estimation stage
C) Render: final rendering stage

For this experiment, maximum of 15 machines with dual Pentium III 800 MHz, 512 Mbyte
memory, and 100 BaseT Ethernet are used.

Table 7.1.3 shows the timing results, and figure 47 is the plot of A), the total rendering time
including Kilauea initialization and clean up. Unfortunately, the initialization stages such as
booting tasks and reading in the scene data are essentially difficult to take the advantage of
parallel processing or parallelization is not thoroughly considered yet. Due to this, the graph
in figure 47 gradually falls off the optimal linear performance as the number of machines
increases.

Figure 48 is the plot of B), the final gather estimation stage. This stage performs parallel
computation by dividing up the screen space into rectangular buckets. It achieves adequate
parallel performance, though the varying processing time for each tiles starts to dominate
and affect the load balancing as the number of machines increases. By decreasing the size of
each bucket, better scalability may be attained.
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Figure 46: Town house: 732,058 triangles, one directional light, one sky light, four area lights in
the rooms, 650,000 photons emitted, 885,315 photons stored
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Figure 47: Town house: number of machines vs. overall rendering time
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Figure 48: Town house: number of machines vs. final gather estimation time
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Figure 49: Town house: number of machines vs. final rendering time

Figure 49 is the plot of C), the final rendering stage. This stage exhibits a superlinear
scalability, as the plots exceed the optimal values. This is speculated to be caused by caching
at various levels.

The final gather estimation stage and the final rendering stage both exhibit satisfactory par-
allel performance, meaning that the more machines invested, the more performance increase
achieved correspondingly. These two stages are the most repeated ones during the course of
adjusting surface materials and lighting, and their optimal scalability is a huge benefit in the
production work.

Only 15 machines were available to conduct this experiment, and there is no actual data for
using more machines. In theory, the network will be the bottleneck and the performance will
saturate at some point as the number of machines increases. In this test case, the only data
transferred through network are the final sampling results, and this overhead is very small.
Therefore, parallel rendering using more than 50 machines should not be a problem at all.

Test case 2: Fiat 500L x32

# || FG est. (hr:min:sec) Render (hr:min:sec) All (hr:min:sec)
2 0:13:12 2:24:45 2:43:06
4 0:06:23 1:12:52 1:23:27
6 0:04:13 0:46:31 0:54:28
8 0:03:08 0:34:49 0:41:25
10 0:02:26 0:28:45 0:34:46
12 0:02:01 0:23:44 0:29:28

Table 2: Fiat 500Lx32: timing results

This test intends to show the parallel performance of Kilauea when the scene data is shared
among multiple machines. The cars in figure 50 are exactly same, but for the purpose of
this experiment, they are intentionally duplicated, not instantiated, to make the scene larger.
Because one machine cannot hold this much data, the scene is shared among two machines.
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Figure 50: Fiat 500Lx32: 2,994,752 triangles, one directional light, one sky light, 700,000 photons
emitted, 756,492 photons stored
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Figure 51: Fiat 500Lx32: number of machines vs. overall rendering time
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Figure 52: Fiat 500L x32: number of machines vs. final gather estimation time
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Figure 53: Fiat 500Lx32: number of machines vs. final rendering time
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The same timing tests will be conducted. Because the minimum number of machines to hold
the scene is two, the number of machines will be increased by the multiple of two. The results
are shown in table 7.1.3.

Figure 51 is the plot for the entire rendering, including Kilauea initialization and clean-up.
Notice that the performance drop is not as drastic compared to the previous case. This is
because the final rendering stage is slow and thus dominates the timing results, compared to
initialization stages which are not-so-well parallelized.

Figure 52, showing the final gather estimation stage, is now also exhibiting superlinear behav-
ior. The scalability of the final rendering stage is also superb, as shown in figure 53. Overall,
the performance of the rendering stage increases as more machines are invested accordingly.

7.1.4 Discussion on parallel performance

So far, the final gather estimation stage and the final rendering stage show excellent scalability.
However, the parallel rendering performance will eventually saturate because the network commu-
nication starts to be the bottleneck as the number of participating machines are increased either
to speed up the rendering or to store larger scenes. Some of the solutions to remedy the situation
are:

1. Suppress network usage

2. Use network with broader bandwidth

One idea to achieve the first solution is to implement communication compression. Currently,
the compression is performed on certain data communication only. Applying compression to all
streaming data in Kilauea may somewhat improve the network traffic.

The second solution is to simply make use of the faster network such as Gigabit Ethernet,
whose price is rapidly dropping lately. This will push the saturation point even further away.
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7.2 Other sample images
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©2002 Square USA Rendered by Kilauea
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© 2002 Square USA Rendered by Kilauea

Figure 54: Town house at night
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8 Conclusions

As stated in the beginning, there were two objectives of the Kilauea Research Project: 1) rendering
of high quality images with the consideration of global illumination, and 2) ability to render
extremely complex scenes. Kilauea, as it exists now, can satisfactorily calculate high quality
scenes with full global illumination. By distributing the task among multiple machines, extremely
large scenes can be rendered. In this sense, we have achieved the original two goals of the project.

Furthermore, Kilauea is already at the level where it is stable enough to be used in the produc-
tion environment. Issues that may arise during the production work are taken into account as well.
For example, need for incorporation of various shaders is handled by providing shader API by C++.
The daemon that is responsible for dispatching, controlling and shutting down of the processes on
the Kilauea render farm is also at the level of testing for commercial viability. Although much
work has been accomplished, more improvements are needed to speed up the rendering further.
Overheads still exist for handling Kilauea’s intrinsic processes such as parallel processing, mes-
sage passing and distribution of scenes among multiple machines. If a scene is sufficiently simple,
processing speed of Kilauea is admittedly slower than conventional direct illumination renderers
without such overheads. It is regretful that the project is terminated at this point prematurely
with still much room for optimization in reducing the overheads, before the project’s full potential
is reached.

However, if the overheads were reduced to a permissible level, scenes can be rendered with a
flexible degree of processing power as needed. The concept of adding more machines when one
machine is inadequate to render a scene is a very effective means to increase processing power,
especially considering the low-cost and high-performance PCs readily available in today’s market,
and even more so in the future. On the contrary, the concept will take direct advantage of upcoming
technological advancements such as those in computer hardware, networking technology etc., and
will not be an impediment in the future. In that sense, Kilauea has succeeded in establishing a
core architecture that will endure for a very long time in the future.

It is clear that the need for rendering high quality, extremely complex scenes will increase in the
CG productions in the future. Although there may only be a handful of information and lessons
learned from the project, those are sure to be invaluable in contributing to the future of rendering
technology.
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