The Design and | mplementation of Direct
Manipulation in 3D

Course organizer

Paul S Srauss
Pixar Animation Sudios

Speakers

Paul Isaacs
Eyematic Interfaces, Inc.

John Schrag
Alias|Wavefront, Inc.

Paul S Srauss
Pixar Animation Sudios

The popularity of direct—-manipulation interfaces in 3D applications has increased steadily over
the last decade. A direct manipulation interface allows a user to use a pointing device to "reach in
and grab" objects in a 3D scene and move or change them in a natural, intuitive manner. This
course is intended for application developers who would like to incorporate direct manipulation
into their programs.

It is fairly simple to design and implement rudimentary 3D manipulation. This course will help
developers create truly useful and intuitive interfaces by presenting solutions to several subtle
problems.

This course concentrates primarily on manipulators for affine transformations. It covers design
issues such as using modes, creating a consistent graphic language, dealing with visibility and
collision, and choosing useful interaction behavior. The implementation module covers issues
such as the relationship between the manipulator and the model, projecting input events onto
geometric shapes, locate highlighting, maintaining geometric integrity, and constraining motion.

SicerarH 2002 Course NoTes Al 3D Direct MANIPULATION

Contents

| — Course Notes

A. Front Matter

B. Introduction

C. Designing Good Manipulators

D. Implementing Suites of 3D Ul Tools

Il = Supplementary Material (Printed and CDROM)

E. An Architecture for Direct Manipulation of 3D Objects, by Paul Isaacs, Rikk Carey,
Howard Look, and David Mott.

F. Techniques for Handling Complexity and Robustnessin 3D Widgets, by Paul Isaacs,
Alain Dumesny, and Rikk Carey.

G. A Manipulator for 3D Transformations, by Paul S. Strauss and Paul Isaacs.
11l = Supplementary Material (CDROM only)

H. Color slides for Introduction

I. motionParallax.mpg: A demonstration of how motion parallax provides depth
information.

J. rotationParallax.mpg: A demonstration of how rotational parallax provides depth
information.

SicerarH 2002 Course NoTes A2 3D Direct MANIPULATION

Prerequisites
First Module: Design

Participants should have basic knowledge of user interface design ideas. They should un-
derstand terms like "affordances” and "modes”. Some high—school mathematics may be
required.

Second Module: Implementation

Attendees should be familiar with basic scene graph concepts, coordinate systems and
transformations, and fundamentals of programming interactive applications (such as
picking, selection, and dragging).

Presenter | nfor mation

Paul Isaacs works for Eyematic Interfaces in San Francisco, where he is Product Manager and
Senior Architect for Shout3D, a java—based 3D toolkit. Prior to this he worked at SGI, where his
focus was on 3D user interface. Paul architected, designed, and implemented the 3D Ul for SGI’s
Inventor Toolkit, InPerson, and CosmoWorlds products. Earlier work included development of
techniques for combining physics with keyframe animation, and a stint as Technical Director at
Digital Productions. Paul received his Bachelor degree from Harvard and a Master’s from Cor-
nell.

John Schrag is an interaction designer for Alias|Wavefront in Toronto, Canada, where he has
worked for eleven years. During that time he has worked primarily on the Ul design and archi-
tecture of new products for 3d animation and visualization, and has taught several courses on
user—interface design and usability practices.

Paul S. Strauss works on internal system architecture as a graphics software engineer in the
Studio Tools group at Pixar Animation Studios. Before joining Pixar, he worked at SGI, where
he was one of the principal architects of the Inventor scene graph toolkit and the Webspace
Author/CosmoWorlds products. Paul received a Bachelor’s degree from Brown University, a
Master’s from the University of California, and a Ph.D. from Brown.

SicerarH 2002 Course NoTes A3 3D Direct MANIPULATION

Syllabus

First Module: Design

* Introduction (30 min) Strauss
— What is 3D direct manipulation?
— Advantages
— Challenges
— History

» Design Issues (75 min) Schrag
— What makes a manipulator good?
— Temporal and spatial modes
— Manipulator appearance
— Designing useful transformation behavior
— Usability

Second Module: Implementation

* Implementation Issues (105 min) Isaacs
— Using scene geometry: landmarks, follow—the—cursor

— Maintaining consistency: look and feel, underlying architecture, commands,
manipulators, constraints

— Providing variety
— Avoiding modes

SicerarH 2002 Course NoTes A4 3D Direct MANIPULATION

The Design and Implementation of
Direct Manipulation in 3D

Introduction

Paul S. Strauss
Pixar Animation Studios

What Is Direct Manipulation?

* WYSIWYG interaction with visual data
= [Schneiderman '82]

« "Direct": interaction is in same visual context
as data

* "Manipulation": mapping from input valuator
to changes to data

» Typically uses a manipulator

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Why Is It A Good Thing?

* Result directly coupled to input motion
* User’s focus stays in work area

» Can guide/constrain interaction in natural
ways

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

B-3

‘Haven’t | Seen This Before?

e Common in 2D

= Handle boxes in drawing programs for scale,
stretch, rotate, and drag

= Drag—and-drop

* Becoming more common in 3D
= View navigation

= Manipulators for transforming/editing objects

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

B-4

Isn’t It Pretty Easy?

* Easyin 2D

= One-to—one mapping from cursor position to
spatial domain

= Easy intersection testing
= Straightforward interpretation of motion
= No perspective distortion

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Why Is It Hard in 3D?

» 2D view of virtual 3D world

* Ambiguity — infinite mappings from cursor
position to spatial domain (line)

* Even worse when motion is considered

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Ambiguous Input Mapping in 3D

Which motion does the user want?

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

‘Is That All?

* Perspective problems
= How large handles appear relative to data

= How large handles appear relative to each other

* Occlusion problems
= Handles obscured by data

= Entire manipulator obscured

* Precision problems
= How to deal with exact placement

= Mathematical instabilities

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

A Little Ancient History

« 3D dragging
= Softimage ['88]; Snap—dragging [Bier '90]

Direct rotation

= Virtual sphere [Chen et al. '88];
Arcball [Shoemake '92]

Direct general 3D transformation
= Inventor [Strauss/Carey '92]

Other 3D manipulation
= 3D Widgets [Conner et al. '92, Snibbe et al. '92]

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Related Areas

* Immersive environments (VR)
* Two—handed input

* Haptics

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Design and Implementation of Direct Manipulation in 3d

Designing good manipulators

John Schrag
Alias | Wavefront

(these Images courtesy of Paul Strauss, Pixar)

C-1

Designing good manipulators

This module of the course talks about how to design the appearance and behavior of your manipulators.
It is easy to design a manipulator, but it takes some thought and work to design a good manipulator.

What is a manipulator?
For the purposes of this course:

A manipulator is a visible graphic representation of an operation on, or state of, an object, that
is displayed together with that object. This state or operation can be controlled by clicking and
dragging on the graphic elements (handles) of the manipulator.

What makes a manipulator good?

A good manipulator:

e fits naturally into the 3d (or 2d) world

e displays its functionality to you clearly

e supports, rather than obscures, your view of your work
e feels natural when you operate it

e provides immediate and clear feedback as to what it is doing

Assumptions:
For the purposes of this course, I'm going to assume that you are working on standard systems with

keyboatd, screen and mouse only. If you have things like six-degrees-of-freedom input devices, or
trackballs, or other fancy stuff, the rules change a bit --- sometimes a lot.

Why build manipulators?

Manipulators are generally used to replace tools, dialog boxes, menu items, or other kinds of 2d UI
element. Here are some of the advantages of manipulators:

e Manipulators are located in the scene with the objects they control. This means that when you edit

these objects, your locus of attention stays with the object, not off to the side with the tools. This
reduces the amount of mouse traffic, and reduces mode error.

C-2

e When you use a well-designed manipulator, you have a number of different controls available at the
same time, so you can perform any one of several related operations at any time without an extra
click to change tools. This gives you a more satisfying sense of control, and cuts the number of
clicks significantly. It can also reduce memory load, since all the possible controls are displayed
right where they are needed.

The same functions, done with tools and with a manipulator. On the left, your cursor has to move back
and forth quite a bit; on the right, all the functions are available right where you are working.

e Manipulators can graphically show you what they are operating on and how they will work. They
take full advantage of your visual perception to give you operational feedback, in the context of the
work being done. If you want to know which control will make the object go "up", you can tell at a
glance. You can also see how far you need to move it. This is particularly important in 3d graphics.

nurbsSphere1

~i[wo[~ P
i | oo =
@[£
iR o

Which way is up? On the left, you have to know what field you need to type in to move the sphere in a
particular way --- and you need to know what number to type in. On the right, you just grab the obvious
handle, and pull it the right distance.

e Manipulators can show you what operations are possible, in a given context, and can give you
additional feedback about intermediate states. They can often use real-wortld physical analogies that
make their operation obvious. This reduces training time and errors, and increases user confidence.

e Manipulators invite experimentation. They make using the software more enjoyable.

C-3

What we will cover today (75 minutes)
A little user interface theory: Temporal Modes and Spatial Modes (5 min)
A little perceptual psychology: How we perceive 3d (5 min)
Applying the above: How manipulators should look (15 min)
And: How manipulators should behave (20 min)
Basic usability: Making Manipulators Great

Finally: Some exercises (20 min) and questions (10min)

C-4

Temporal modes and spatial modes

What are modes in Ul design?

Think about all the 3d software you've seen or used. You take the mouse, click and drag in the window,
and something happens. You may be changing the view, or creating a new object, or moving something
in space, or applying color.

In all these cases you're providing the same input -—- a click and a drag --- but different things result.
Each mapping of an input to a possible output is a mode. For example, in one mode, a click and
drag moves something. In another mode, a click and drag paints a line of color.

Why does software need modes?

Software needs modes because we have very limited channels of communication to our computers. Our
computers can talk to us with big full color shaded images, stereo sound, and formatted text. But the
only way we can talk to them is with keystrokes, a few buttons on the mouse, and the mouse position.
That's a very narrow channel of communication. So we need to make our limited input channels go a
long way.

Temporal modes and spatial modes

Tools are called temporal modes, because the program behavior is determined by time. When you
select a tool, that selection decides the behavior of the program for the next while --- until you select
another tool. When you click and drag in the 3d window, the result depends on what tool was last
selected --- or, in other words, on the time that you clicked.

The alternative to temporal modes is spatial modes. In a spatially-moded system, it doesn't matter
when you click, it matters where you click.

For an example of this, instead of looking at the 3d workspace, look at the tool palette itself. When you
click in the tool palette, what will happen? Well, that depends on where you click. If you click in one
region, you select the brush tool. If you click in a different region, you select the eraser tool. Time

doesn't matter — you can change tools at any time --- but where you click on the palette does.

Manipulators are a way of replacing temporal modes with spatial modes in the 3d view.

C-5

What's wrong with temporal modes?

Temporal modes are a fine way of separating unrelated activities. But they are often used when you
want to do a set of closely related activities, forcing you to switch back and forth between them. For
these tasks temporal modes can be frustrating. Here's why:

¢ Too much mouse traffic. Often when you are editing something, you want to do a seties of
related tasks, and need to switch back and forth between them. This is especially true of operations
like sizing and positioning, where one adjustment affects the other. With temporal modes you must
always perform an explicit tool-switch between each operation. This can mean a lot of back-and-
forth with the mouse, and a lot of extra clicks that don't mean anything other than "I'm going to do
X next".

¢ Temporal modes put a burden on human memory --- you have to remember what mode you're
in all the time. How often have you clicked in a program and been surprised because you had the
wrong tool selected? I do it all the time.

You also have to remember the different mappings in the tools --- for example, what the different
mouse buttons do in the tool, not to mention the modifier keys.

(These problems can be ameliorated somewhat by use of good mode feedback, such as changing the
shape of the cursor)

e Complex operations can trap you. Some software makes you go through a series of steps to do
an operation. Finishing each step pushes you into the next mode, which requires more input, and
there is not always a clear way to escape or go back. If you do abort, your partial input may be lost.
Even when this works, you get the sense that the computer is driving the operation, not you.

C-6

How we perceive 3d

A good manipulator fits naturally into the 3d world. To make manipulators that look right,
designers need to understand how people perceive 3d. If you don't, you can end up with manipulators
that are completely misleading as to their position in space or their operation.

How do humans perceive 3d? Our eyes are cameras -- they see flat, 2d images like photographs. And
yet, our perception of what is around us has depth. Everything we perceive is a construct of our brains,
created from the information provided by all of our senses. Where our sensory input is incomplete, our
brains can fill in missing areas. For example, we don't really see much color around the edge of our
visual field, but we perceive it to be there --- our brain interpolates from other things in our visual field.
Similarly, our brain generates the perception of depth from what we see, what we hear, and even
kinesthetic cues.

Most of us learned in school that the brain uses binocular disparity to determine depth. Binocular
disparity is the difference in the images that you see in your left and your right eyes. Since the eyes ate
spaced apart, each sees the world from a different angle. Your brain looks at the differences between
the images and determines the distance of objects relative to whatever object you are looking at.

Binocular disparity. Left and right eyes see the same objects from different angles, and your brain
combines the pictures to create a sense of depth

But binocular disparity is only one of the cues that your brain uses to perceive depth, and it's not even
the strongest. There are many other cues available. Knowing what they are can help you design
manipulators with a good sense of location in space, and avoid optical illusions which can affect their

usability.

C-7

Here are some other depth-cues!:

Interposition: One object partially blocks the view of another, so you know which one is
closer.

i

The objects are the same size in each image, but interposition makes one appear to be in front of the
other.

Linear perspective: parallel lines appear to converge on the horizon. Objects farther away
appear smaller than objects close up.

Linear perspective. Smaller sphere appears farther away, all else being equal.

! This information taken from a much more comprehensive description in: David Drascic and Paul
Milgram Perceptual Issues in Augmented Reality. Published in SPIE Volume 2653: Stereoscopic Displays
and Virtual Reality Systems 111, San Jose, California, USA, January - February 1996 pp 123-134

C-8

Texture perspective: Objects that are farther away seem to be more densely textured

The spheres are a similar size, but the texture density makes the sphere on the right appear to be larger
and farther away.

Aerial (atmospheric) perspective: Objects that are farther away lose clarity and their color
shifts towards grey-blue as the atmosphere between
scatters light.

Atmospheric perspective: objects fade into the distance. Notice how the faded sphere appears larger
and farther away.

Shading and shadowing: The way that shadows fall across objects give clues as to its shape.
Also, where shadows are cast can give important clues about the
relative positions of objects.

Just by changing the shadows on the object surface, the same circle can have many shapes.

C-9

Shadows also give important cues to help us figure out depth.

Relative motion parallax: When you are moving, distant objects appear to follow you while
closer ones move away.

Rotational parallax: When an observed thing is rotating, different parts of it move at
different rates and directions relative to other parts. This is a very

strong depth cue.

Motion perspective: When a set of objects is moving together, the difference in their
perceived speeds provides depth information.

There are other depth cues that we can't make reasonably make use of, such as:

Convergence: When you look at a particular object, your eyes both need to point at
it. The angle that your eyes have to converge tells you how far away
the object is.

Convergence. The angle between the eyes tells you how far away the object of focus is.

C-10

Accommodation: When you look at a close object, the muscles in your eye pull to flatten the
lens so that you can focus on it. For distant objects, these muscles relax.

Your brain uses even this tiny bit of information to help it create a 3d world
of the perceptions around you.

Your eye tenses and relaxes muscles that warp the lens, allowing you to focus on objects at various
distances.

As was stated above, some of these depth cues (such as convergence and accommodation) can't be
controlled on a computer display. And others (such as binocular disparity) would require additional

equipment with today's technology. But we can make use of many of the other depth cues, such as
color, interposition, shading, and shadowing,

The next section shows you how.

How manipulators should look

You should be able to distinguish the manipulator from the data

The users of your software should be able to tell at a glance which things in the scene are your data or
your model, and which things in the scene are manipulators. The manipulators should visually invite the
user to click on their different hotspots. The trick is to make the manipulators look different enough to
be distinguishable, while still fitting into the scene. There are several strategies for differentiating:

Shading When you are choosing a shading model for your manipulator, you probably want a flat
shading model of some kind. If you use a shading model that has "hot spots", you can easily
end up with a hot spot over a manipulator handle, or manipulator lines that disappear against
hot spots in the background.

It is important to have shading, though. If you work without a shading model, the
manipulator will look flat and not a part of the scene. (Remember that shading is one of our
depth-cues)

Shading

Lighting Manipulators can be lit consistently at all times, ignoring whatever light sources are in the
scene. This is probably a good idea in any case; if your manipulators use scene lighting, you
can get into situations where they are lost in shadow, and therefore unusable. Consistent
lighting (say, from the camera) allows your manipulator to have a natural look, but stand out
from other objects in the scene. (The manipulator is still shaded, providing a 3d sense, even
if it is not shaded by the same lights)

Color

Style

Lighting

You can also give manipulator a slight glow, but be careful about this --- too much glow will
make it look like the unshaded manipulator above.

Depending on your application, it may be feasible to use color to distinguish your
manipulators. Usually 3d graphical data comes in a vatiety of colors, so I wouldn't count on
it. You must also take into consideration the fact that a significant proportion of humans are
color-blind, so you should never encode critical information in hue alone. (If your colors are
differentiated by brightness, too, that can work)

You can draw your manipulator to look very different — perhaps more sketchy --- than
objects in the scene. For example, you could draw it with dashed lines, or in thin wireframe
when the rest of the data is smooth shaded. Be careful, however --- If you are using dashed
lines, it can really ruin the illusion of 3d unless you can get the dashes to be closer together
as the line recedes.

The dashes don't get smaller as they recede into the background; this somewhat "flattens" the

manipulator. Dots would have worked better. (It also doesn't help that the back handles are the same

size as the front ones!)

Rollover You can set up your manipulator so that parts of it light up when the cursor moves over it.

There are a number of good reasons to do this. First, it alerts the user that there is
something special about that spot. Second, it encourages the user to click and find out what

C-13

that is. This can lead users who haven't seen manipulators before into using them properly.
Also, systems with this kind of rollover are perceived by users as being much more
interactive and responsive.

The different handles "light up" as the cursor passes over them. This lets the user know which handle will
be picked if she clicks on the mouse button.

X-Ray Should you be able to see a manipulator when it is behind an object? This can be a tough
problem. The fact is that interposition is one of the strongest of all the depth cues, so if you
draw your manipulator right through an object, it can completely destroy the 3d illusion.

But sometimes you need to have access to those controls on the back. One solution that
works pretty well is to draw the obscured parts of the manipulator in a kind of "ghosted"
fashion. This creates the illusion that the object itself is partly transparent, but maintains the
sense of interposition.

Opaque draw-over loses X-ray mode still
3d effect looks okay

Drawing manipulators through objects (x-ray)

Environments Many 3d software programs provide multiple ways of viewing the 3d data. This can
include wireframe and smooth shaded modes, x-ray modes, false color, etc. You need
to check if your manipulator will work in each of these environments, and adjust it
appropriately for each.

C-14

Use a consistent graphic language

Find out what other software your target users frequently use. If you can use visual cues from that
software, use them. It will reduce training time and errors when they use yours.

Standard "scaling” manipulator, used in most 2d graphics software.

Manipulator handles that look the same should behave the same. And vice-versa. This lets your
users build up some confidence that they know what will happen if they click on any particular handle,
and how they should move it.

One handle should do one thing. Sometimes it will occur to an engineer that it would be efficient to
pack a lot of functionality into just a few handles, by allowing different ways of interacting with each
handle. This is just asking for trouble and confusion --- putting modes on modes.

Other recommendations

Don't be too subtle. It's very easy to get caught up in metaphor design, and how you can encode a lot
of information into the shape and color of each handle so that a clever user can decode it.

Don't draw more than you need to. When you are designing a manipulator, draw only what needs to
be there to visually communicate with the user. For example, when the manipulator is not being used,
the user needs to see all the handles (to know what functions are available). But while she is dragging
the manipulator, the other handles are superfluous, so you can hide them (if that is not visually
distracting).

Similarly, you may choose to only draw numeric feedback while the user is dragging. You may also add
additional lines during drag, perhaps showing the path of a constrained handle, or showing the original
position of the handle to allow the user to get back to it more easily.

Draw additional lines where needed. Not very part of a manipulator needs to be a selectable handle.
We can draw additional lines to show relationships between the parts of a manipulator, or to indicate
operation (such as the path along which a handle will travel). This may seem to contradict the
recommendation not to over-draw, but it doesn't --- the idea is to think about the information that the
user needs at any given moment, and give her precisely that information and nothing else.

Position handles carefully. In many manipulators, the position of a handle can seem like an arbitrary
choice. But often having a good algorithm for placing the handle can make the difference between a
usable and a hard-to-use manipulator. If you have a choice, ensure handles are on-screen, and if
possible close to the cursor, which is the user's locus of attention.

Make sure your handles are big enough. It's very tempting to make tiny little handles that look nice,
but are just about impossible to hit with a mouse. Remember Fitt's Law, which basically says that bigger
targets are easier to hit.? Sometimes you will find that targets that are big enough to be hit easily may
look pretty ugly. You can deal with this by having the active zone (hittable area) be larger than the
displayed size of the handle. You can find the "right" size by user-testing --- it's often surprisingly large.

display size

size for picking

The handles are drawn small and pretty, but when picking they can be treated as if they are larger.

Problems and illusions

In what scale should manipulator handles be drawn? Manipulators are usually a funny mix of sizes.
Some of the elements of the manipulator represent real-world sizes (such as the extents of a bounding
box) and therefore must be drawn to real-world scale. But the handles are there for the user to interact
with, and have no "real" size.

If you draw manipulator handles using fixed size in world-space, you have a problem. The objects you
are manipulating can be big or tiny, and you may be looking at them from far away or from close-up ---
so if the handle size is fixed, you can end up with handles that are too small to see, or too big to be
manipulated.

2 Actually, it says a lot more than that, and provides a mathematical treatment of the subject. See Fitts,
P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal
of Experimental Psychology, 47, 381-391.

How big should handles be drawn?

One way to deal with this is to use screen-based sizes. You draw the handles of your manipulators so
that they are a constant size in screen pixels. This can work pretty well in many cases.

However, this solution can result in a nasty illusion when your manipulator contains handles both close-
up and farther off - because of perspective, the handles in the back appear unnaturally large, which
messes up the 3d illusion.

This isn't a real manipulator, just a diagram to illustrate a point.

You can solve this by calculating the screen-based size once for the manipulator, and then drawing all
the handles at a size relative to that. For example, you calculate that in the middle of the manip, 50
pixels equals 3 units in world space. Then you draw all the handles as 3 units in world space. This
produces a pleasing result in most circumstances, with no handle too big or too small, and perspective
preserved.

Handles that are farther away are drawn smaller --- but the size is calculated in screen space once per
object.

How do you give your manipulators a sense of location in space? Manipulators are often hovering
in place in a scene, not clearly related to any particular object. This is especially true of manipulators that
move things. Itis very easy to move a manipulator handle somewhere, and be completely mislead as to
where it ended up.

To solve this, we go back to our 3d perceptual cues. Unfortunately, we can't use the really strong cues
(such as rotational parallax), but we can use a number of other cues.

One good strategy is to connect the manipulator to objects in the scene whose positions are known.
This can be done by casting a shadow, or by drawing some kind of connecting lines.

Where is the sphere, and how big? You need more information than is provided in the first picture. In the
second picture, a connecting line gives you the answer.

This sphere looks the same in the first picture, but the connecting line shows you it is both bigger and
farther away.

How do you deal with collisions? One of the problems with having interactive controls live in your
3d space it that from certain perspectives, the handles will obscure each other, or there will be two
handles on top of each other. This frequently leads to usability problems, as people click on the handle
they want, end up getting the wrong handle, and are totally frustrated by the result.

One way to deal with this is to have the handles that are behind disappear when they are obscured. This
should make it clear to the user that the functionality isn't available, but it doesn't always work well in
practice — people often learn where handles are by their position on the manipulator, and will make the
mistake anyhow. After they do, they can be frustrated because the handle they want isn't available.

Another solution is to have the handles automatically move out of the way of each other when they get
close. This can be a very nice solution, but it is a coding nightmare to get right, and the handles can
sometimes end up in funny locations.

Another solution is handle priority. If you know that one handle will be used much more frequently,
give it picking preference.

The best solution to this I've used is rollover. When the cursor gets over the handles, one of them lights
up, so the user knows what will happen when she clicks the mouse button. People quickly learn to jiggle
the mouse until the handle they want lights up before clicking.

What do you do when handles go off-screen? Sometimes when you need to get a closer view of an
object to do an operation, some of the manipulator handles will be pushed off-screen. I do not have a
good general-purpose solution for this; I haven't found one that works better than letting people back
off a little.

There are cases where a manipulator handle could feasibly be located in one of several different places.
In these cases, the manipulator draw code should check how "good" each potential location is (based on
location, collision, size, angle of view) and choose the best one. (You may also wish to hide handles that
are unusable in the current point of view)

C-19

What do you do when your manipulators block the data? This can happen when you have a dense
manipulator, or when you try to manipulate too many things at once.

Break down the functionality into groups, or just re-think your whole manipulator. Do you really think
you user needs all of those controls at the same time? There is more about this in the next section.

Too many simultaneous handles can make a manipulator hard to use.

C-20

How manipulators should behave

Mappings

When you click on a manipulator, where you click determines what operation is performed. After that,
you drag the pointer to control how much, or how far, or what direction, depending on the operation.

The fundamental problem of manipulator design is this: how do you map a fundamentally 2d input
device --- a mouse --- into all those different operations with different degrees of freedom? This section
looks at specific mapping strategies, and makes some recommendations.

Getting the right mapping is critical to building natural, intuitable manipulators.

Positioning

The simplest manipulation is positioning -- moving an object from one place to another. In 2d graphics
packages, the mapping is trivial --- the 2d position of the mouse maps to the 2d position on the screen.
In 3d, things are never that simple.

1d positioning

Let's say you have an object that only has one degtree of freedom --- it can only move along a line. The
obvious mapping in this case is the correct one; you take the cursor position, find the closest point on
the path line, and continuously move the object to that point. That will give the user a very natural
sense of control.

drag to here
L3

click

As you drag the cursor, the handle is constrained to a line. It moves to the point on that line closest to the
cursor (as seen from the user's perspective)

Of course, there's always a catch. This strategy works well only when the path line is not too parallel to
the view direction. When the path line is close to the view direction, the mapping can become extreme -
-- a movement of only a few pixels can push the object a hundred meters away, or fling it behind the

C-21

camera. In these cases, users often have no idea what just happened; it seems to them that the object

disappeared.

The best strategy for dealing with this is to make the manipulator vanish when it gets too close to the
view direction. This works well, because it encourages the user to rotate the whole view to a better
position to use the manipulator.

i ’

The manipulator handle vanishes when it gets too close to being parallel to the view direction. This
prevents ridiculous mapping where the motion of a few pixels sends the object flying into space.

Another strategy that seems reasonable at first is to change the mapping in the extreme cases, to cap the
amount of the motion to a reasonable value. This strategy doesn't work as well, because it becomes
difficult to tell how much you have moved the object from that point of view. I don't recommend it.

Zooming

Zooming or dollying the view in and out is a special case of 1d positioning. We have to map the
up/down/left/right motion of the mouse into a forwards-backwards motion of the camera. How do we
do that?

You can argue that any choice is as good as any other. In older software made by my company, if you
drag the mouse left, you zoom out, and when you drag it right, you zoom in. This works well enough,
but it turns out it wasn't necessarily the best choice.

There is another issue when dollying closer and farther. It turns out that if you map the cursor motion
directly to camera motion, the result looks wrong. Things seem to come towards you way too fast, and
they don't back off far enough or fast enough.

Think about zooming in to an object. What you really want is for the object to get closer and closer to
you, without ever actually hitting you, sort of like Zeno's paradox. Another way of looking at it is this:
you want to map the cursor motion to the apparent size of objects on the screen. That is, every unit you
move the cursor should make the object look one unit bigger.

C-22

To create a zoom that "feels" right, the camera needs to move asymptotically towards the object. This
makes the size of the object (in screen space) grow linearly.

2d positioning
Let's say you have an object or handle that can move in 2 dimensions on a plane. Once again, the

obvious mapping is the right one. You project the cursor point onto the plane, and move the object to
the intersection.

The handle is constrained to a plane. As you drag the cursor, the handle can stay with it, since there is
an obvious mapping from the cursor position to a point on the plane.

C-23

Again we have the perspective problem. What do you do when you're looking at the plane of motion
edge-on, or close to edge on? You end up in a situation where a tiny motion of the cursor can cause
huge unexpected changes in the model.

There are two strategies for dealing with this; the first one is to make the manipulator disappear when
seen close to edge-on. Again, this strategy encourages the user to rotate the whole view to a more useful
orientation. (However, it may prevent the manipulator from ever showing up, which would be bad.)

A better strategy is to limit the motion of the manipulator in the extreme case. When you are looking at
the plane-of-motion edge on, limit motion to a line that runs through the plane, at right angles to the
view direction. This works surprisingly well; users don't expect things to move towards and away from
them when that dimension of motion isn't visible.

-
L

Ly

click

5

drag to here

The handle here is also constrained to a plane, but in this case we are looking at that plane edge-on. In

this case, the handle should never move towards or away from the user; instead we map its motion to a

single line, which is the intersection of the plane of motion with a plane perpendicular to the camera view
direction, passing through the original handle location.

3d positioning

Let's say you have an object that is free to move in 3 dimensions freely when you click and drag on it.
This poses a real problem, because the mouse is only giving you 2 degrees of input, and you are using
them to control 3 degrees of freedom. So your manipulator must provide this extra information.

An object can move any direction in 3d, but the mouse that controls it can only move up, down, left, or
right.

C-24

T/I drag to here

qa‘m L3

In this case, the handle is free to move in all three directions (x, y, z). You can drag it to a new location,
and it seems to follow the cursor. Seems easy, right? But the trouble is that there are an infinite number
of possible positions for this handle that satisfy the 2d-to-3d mapping.

o 0

/

T~

For example, did the handle move mainly back and a little bit over, or did it move right and up? In user
testing, we found that users assumed that the object moved where they intended it to move, even when
perspective in the image indicated otherwise. User expectations are also non-constant, even across the

same task.

There are a number of strategies you can employ:

e Don'tdoit. For many applications, I think this is the best strategy. What you do instead is provide
a plane handle and a 1-d handle, or three 1-d handles. This forces the user to make deliberate
choices when moving the object.

e Move the object in the current view-plane. This approach is appealing to engineers, because it is
non-atbitrary and mathematically clean. The trouble is, unless you are looking at a scene in a very
dead-on way, this results in a motion that is completely non-intuitive, and frequently misleading. In
usability testing, our testers never ended up putting the objects where they thought they were
putting them.

C-25

A common, but not very good solution. The 2d motion of the mouse is used to move objects parallel to
the 2d plane of the screen. This looks okay, but objects end up in unexpected positions.

e Use obvious structures in the scene to determine the plane of motion. For example, if there is a

drawing plane, move objects parallel to it. If you are positioning something on a surface, then "snap
to" that surface. This kind of solution depends on the application domain.

e Guess, based on initial cursor movement. Any kind of guess would require you to come up with a
heuristic for determining which way to go, and these are always risky. It is possible to use heuristics
that guess the uset's intentions nine times out of ten, or even nineteen out of twenty, but those
remaining cases can be very frustrating.

If you do decide to use a heutistic, then it should have these properties: first, it should make its guess
very soon after the cursor starts to move (or else users will perceive the delay as a non-functional
handle or annoying lag), and second, once it makes a guess it should stick to it. This is to provide a
good isomorphic mapping. (More on this below).

If you are looking at your data in an orthographic projection, you should limit any motion to the plane
of that projection.

Rotation

Rotation around an axis

Let's say you have an object that is constrained to rotate around a fixed axis. This is one degree of
freedom, so we're okay. There are two basic strategies.

e Radial mapping. Project the cursor onto the plane of rotation, and get the radial distance it travels
around the axis. Rotate the object by that amount. This has the advantage of allowing you be as

precise as you want by holding the cursor far from the axis (giving you a longer movement arm). It
also feels very natural.

C-26

q;:lic:k o .E&

&

draq to here

The handle is constrained to rotate around a fixed axis. Project the cursor onto the plane of rotation, and
draw a line from it to the axis to calculate the new handle position.

But once again we have the edge-on problem. When we are too close to the edge, radial mapping
produces unhappy results; things jump around or get stuck.

e Linear mapping. In this case, the distance the cursor travels left or right determines the amount of
rotation. Some number of pixels equals a fixed amount of rotation. This works pretty well, but
doesn't give you quite the same sense of control that radial mapping does, since you're one step
removed from the rotation. The trick to this one is figuring out how much cursor motion maps to
how much rotation.

There are a few different ways to do this; one fairly natural-feeling one is the unwinding-thread
algorithm. If the object being manipulated has an obvious circumference, then you can let that distance
map to a 360 rotation. (You may also wish to "amplify" this somewhat, possibly speeding up the spin as
you get farther from the object. If you do this, make sure you preserve the isomorphic quality of the

mapping)

As the hand (mouse) pulls to the left, the object rotates. The rate of its rotation depends on its
circumference. This produces a natural-feeling rotation for edge-on cases.

Radial mapping and linear mapping also work together quite well. You can use radial mapping until the
plane of rotation gets close to an edge case, then switch to the other algorithm. You might think that
would be confusing but it works very well in usability testing.

C-27

Free rotation

Let's say you have an object that can rotate freely in 3 dimensions. You could obviously put three
rotation handles on it, one for each axis, and in fact that works very well, and gives people a good sense
of control.

Simple three-axis rotation manipulator. (The yellow circle is an additional forth handle that lets you rotate
the object in the view-plane --- an action that is almost always a bad idea.)

But there are ways to allow free rotation --- controlling 3 degrees of rotation with our 2-degrees-of-
freedom mouse.

e Arcball. The Arcball’ is a very elegant way of doing free rotation of an object, based on quaternion
math. The idea is pretty simple; you have a spherical manipulator; you click on one part of it and
drag to any other part. The object rotates along the shortest path between these points. This demos
really well, but I have found it to be problematic in actual testing. When people try to use it for real
positioning tasks, objects can quickly end up in funny tilted orientations, and users seem to find it
difficult to get the objects just to where they want for precise positioning tasks.

In Maya, where we provide both Arcball and axis rotate handles, the rotate handles are used almost
exclusively in practice.

e Latitude/longitude rotation. (azimuth/elevation)This can work well in situations where the
object you are manipulating has a natural "up" direction, something you'd probably like to be able to
get back to. What you do here is map horizontal cursor motion to rotation around the vertical axis,
and vertical cursor motion is mapped to "tilt" --- bringing the north pole down to the equator.

Since this mapping only allows 2 degrees of freedom, you cannot get all possible rotations, but for
many applications you can get all you need. The interaction feels very natural, but can be frustrating
if you are trying to get to one of the "disallowed" orienations.

3 Ken Shoemake, ARCBALL, Proceedings of the conference on Graphics interface '92, p 151-156,
September 1992, Vancouver, Canada

C-28

Scaling

Scaling in 1d

Let's say you have an object, and it can grow or shrink along one axis. This is one degtee of freedom, so
it should be pretty straightforward. However, there is a basic question you must ask before you can
design any scaling manipulator. Are you controlling the scale of the object, or its size, or its limits?
These are not the same thing. Imagine your users making the following statements.

e "I want to make these objects 30% longer"

e "I want these objects to be 5 meters long"

e "I want to move the right edge of these objects to be here"

These are all scaling operations, but they require different inputs and have different results. If your

application needs to support more than one of these operations, you might consider having different
ways of doing the different operations.

Different kinds of scaling

Before \
| 1

1. Make 30% bigger (relative
scale)

2. hake it 5 units long
(absolute scale)

3. Move right edge to
specified location (set
extents)

S

For this discussion, I'm going to use #3, wanting to control the extent of the object. This concept is
familiar to just about anyone using a graphics program, because you've all seen it done beautifully in 2d.

C-29

Standard 2d scaling manipulator, found in many drawing packages.

We all know how to operate this manipulator, and this metaphor can be extended into 3d. By the way,
notice how the different manipulator handles limit the operation --- some allow 1d dragging, and some
2d.

3d

What happens when you extend this to 3d? In Alias Sketchl, a program that was originally released 10
years ago, we provided a cubic manipulator. You could drag on a face to scale in 1d, or on an edge to
scale in 2d, very naturally.

But what if you dragged on a corner? You'd want to scale in 3d, but by how much in each direction?
This is exactly equivalent to the problem of positioning in 3d. In the 3d case, we decided that the scaling
would always be proportional. (As it turns out, people don't really want to control three axes of scaling
in one operation; that's just too hatd in general.)

Pivots

Scaling and rotation operations requite one more piece of information --- a pivot. It's not only a
question of scaling how much, but of scaling how much around what point.

The cheap way of dealing with this is to say that the center of the world is always the pivot. That's a lazy
programmer solution, and doesn't generally lead to happy users.

For scaling, it is often enough just to provide a variety of pivots in useful places. If you take another
look at the standard 2d scale box, you will see that the different handles all perform the same operation,
but picking different handles explicitly chooses different pivot points. There is a bit more to it than that,
which we'll get to in the next section.

C-30

Fick here...

Pick here...

.and pivat is here,

_.and pivot is here.

Every handle does the same thing — scaling — but different handles implicitly set different pivot points.

For rotation, things are a little different. Usually an object will have a natural point or axis of rotation.
(Think of a model of a wrist, or a car door) So in computer models of real-world objects, it usually
makes sense for the pivot location to be a property of the object being manipulated, and not the
manipulator itself.

But when you do need to exactly control a pivot, how do you do it? Putting a manipulator on the pivot
point can be confusing — the user doesn’t know if she's moving the object or the manipulator. For this
we can go back to our basic principles; we can make the handle look different in some way than the
move handle, and make the pivot very visible when it is being moved.

Other mappings

e Constrained mappings: This can be a point constrained to follow a line, a curve, or a surface.
These mappings are straightforward, since they are 1d or 2d --- just map the handle to the part of
the curve or surface closest to the cursor position.

e Color control: This is unusual, but in some cases it can work. You can have a little color swatch
manipulator on an object. 1f you do this:

e Draw the swatch in 2d, ignoring all lighting, shading, etc.

e When you click on the swatch and a color-chooser window opens, try to make sure it doesn't
open up on top of everything you are working on.

e Options: Itis possible to have a manipulator handle control an option or a state, but this is tricky
to get right. The form of the handle needs to somehow visually represent the state (unless its
position is sufficient). For example, a lock/unlock toggle handle could look like a lock, in one of
two states. (Use a 2d icon for this sort of representation; a 3d version will not be clearly
recognizable at some angles in some scenes)

C-31

A concept sketch of a "lock" handle in a manipulator. You click on it to toggle the other handles from a
locked to an unlock state. Question: should the button show the state the object is in, or the state it will
switch to?

If you want to represent more than 2 states, I don't think a manipulator is an effective way of doing it.
You could have a button that steps through all the states, but most people expect buttons to either
toggle states or initiate actions. You could also have a small pop-up menu. I have not tried this, so I
can't comment on how well it would work.

e Actions: Sometimes you want to put a "GO" button of some kind into a manipulator. This can be
useful when the manipulator is being used to set up the parameters of a complex procedure that will
take a while to calculate. First you manipulate everything into place, then you click GO.

In these cases, I recommend that the button only be visible when the action is ready to be performed. It
should look like other buttons in the system, even if it is located in the 3d view. It should be at a fixed
position on the screen, out of the way, rather than up on your object blocking the view of it. (If you put
the GO button off to one side, or in another dialog, it will probably be missed by many users.) Let the
Return or Enter key be equivalent to pressing the button.

The arrows can be dragged around to indicate start and end points for a "snap together" operation. When
the arrows are in place, you click on the "snap together" button to make it happen. In this case, the
manipulator is controlling the parametric inputs of a complex function.

C-32

Temporal modes in a manipulator

Sometimes there is enough functionality in a manipulator that you can't reasonably have a handle for
every function. In that case there may be a strong temptation to use temporal modes to allow you
manipulator handles to support multiple functions, or to swap out one set of handles for another set
doing a different job.

Clutched modes

If the additional functionality is just a variation on the existing functionality, used clutched modes. A
clutched mode is a mode that you can switch into by pressing a key, such as Shift or Control. As soon
as you let go of the button, you switch back to the regular mode. Clutched modes are superior to
switched modes (such as tools) because they don't requite the extra mouse movement; they take
advantage of 2-handed input, and you don't get mode etrors. People don't forget they're holding down
the Option or Shift key, because they have the constant physiological feedback from their fingers.

Clutched modes are used very effectively and consistently in programs like Photoshop and Illustrator.
In these cases, the mode is always a modification of the existing handle functions. And these
modifications are constant across tools. For examples, Shift always means "constrain to be
proportional", and Alt means "put the pivot at the center".

A disadvantage of clutched modes is that they are invisible to the user. To help with this problem,
consider having the appearance of the manipulator change in some way to reflect the state of the
modifiers. So when you press the Alt key, for example, you see the pivot point jump. This is useful
because people often know there is a modifier, but they are not sure which modifier to use, so they try
pressing different ones. It's nice to give them a clue as to what is going to happen. Also, it contributes
to the nice sense of interactivity in the program.

The meaning of your modifiers should be consistent with those in other programs used by your target
users.

Switched Modes

If you must support multiple functions in one manipulator, one option is to display a set of radio
buttons that show all the modes. These could be in a dialog, or floating in in the view. This display
should have these properties: first, it should show all the possible states. Second, it should show the
currently selected state. Third, it should be clear what each mode is, and functionality should be
grouped by the user's task.

It is tempting for engineers to groups operations together that are related by the internal structure of the
data. But that's the wrong approach. Find out what tasks and sub-tasks your users are likely to be

doing, and group together the manipulator functionality needed for that task. Then name that
manipulator mode for that task.

General recommendations for manipulator behavior

e Use isomorphic mappings: Once you click on a manipulator handle and begin to drag, every place
on the screen should map to a specific value in the manipulator. What I mean is, if you drag from A

C-33

to B you should get the same result, no matter what route you take to get there. And, if you drag
back to A before you let go, the manipulator should return to its original value.*

Rate-control manipulators are also a bad idea. These are manipulators where your mouse motion
controls how fast the action happens, rather than how much. You return the mouse to its original
position to stop the motion. (Think of how your gas pedal works; you hold it still to provide
constant motion.) Rate control is very difficult to do with a mouse, which is an isotonic input device.
If you had a joystick as a controller, it would be a different story.

Provide numeric feedback: In cases where eyeballing is not accurate enough, consider providing
numeric feedback too. If you do, draw the numbers in screen space, not 3d, and make sure that
they are readable on any color background. (Or draw your own background just for the numbers).
I do not recommend using XOR for this; on textured backgrounds it becomes almost impossible to
read. Numeric feedback needs to be provided close to the uset's locus of attention, or it won't be
noticed.

Constrain interactively: In cases where the value being controlled by a manipulator handle is
constrained, you should constrain the handle movement to match. For example, if the object can't
get any bigger, then the scale handle would seem to run into a wall. (You might even add a little
sound effect). This feels better than allowing the handle free motion, while constraining the value.
The latter practice gives the impression that the manipulator is broken.

Provide snapping: Manipulators should snap to commonly-used values or positions. (For
example, 45 or 90-degree rotations, or back to the initial position). Which values should be snapped

to (if any) depends on the particular application, of course.

Always provide undo.

4 In recent years there has been some research about using non-isomorphic mappings for many of these

tasks, especially rotation. However, this work seems to mostly be done on 3DOF or 6DOF input
devices. For an example of such a study, see Ivan Poupyrev , Suzanne Weghorst , Sidney Fels, No#-
Isomorphic 3d Rotational Technigues, Proceedings of the CHI 2000 conference on Human Factors in
computing systems, April 2000.

C-34

Making sure your manipulators are great

Usability is in the details.

In the section on mapping, we talked a lot about making the manipulators feel natural and responsive.
You can design everything right, but you will never know if your manipulator has that slick quality until
you test it with real users doing real tasks.

Every manipulator I have tested in this way was improved, usually by minor adjustments to the mapping
ot the form-factor. (I only wish we'd had the time to do this kind of work on all the manipulators we've
released!)

When you are planning your development time for a manipulator, I recommend scheduling as much
time for tweaking as you do for initial developing, if not more. Consider it patt of the basic design, not a
nice extra.

Be aware that different user populations will react very differently to the same manipulators. This is
especially true between users who have experience in 3d, and those who have only learned to work in 2d
(such as graphic artists). Just because your manipulator tests well with your engineers, that doesn't mean
it will test will with your target users --- unless your target users are engineers.

Consider working with a designer to make your manipulators beautiful. In our testing, we've noted that
aesthetically pleasing designs are perceived to be more usable, even when the behavior is no different.

Most importantly, always think about the task that your users are trying to accomplish, not the data you
are trying to manipulate. This should be governing your design choices.

C-35

Exercises

Heuristic evaluation: What's wrong with this picture?

£

The Spotlight manipulator in Alias Maya 3.0. This has a number of problems in its design. How many
can you find?

Design: Build a better deforming manipulator

C-36

Design and Implementation of Direct Manipulation in 3D

Implementing Suites of 3D Ul Tools

Paul Isaacs
pauli@pauliface.com

Implementing Suites of 3D Ul Tools

The previous module of this course presented techniques for the design of individual
manipulators. This module presents approaches for designing and implementing suites of 3D
tools to be used together in an application setting.

Limitations and context

Device limitations

As in the previous module of this course, the techniques are targeted to a system with just a
keyboard and a mouse with one button. Moreover, the only keyboard keys used are the
control and shift modifiers. This frees all other keys for use by other parts of the application.

Task set

The types of 3D manipulation discussed herein are restricted to translations, rotations, and
scales. The operations are applicable to all kinds of objects, such as groups, whole shapes,
sets of points, cameras, and lights. Other types of tasks are not addressed (e.qg., shape
deformation, color editing, animation paths). The techniques discussed here can be extended
to apply to these other kinds of tasks.

CosmoWorlds

The tools presented in this module are from a program called CosmoWorlds. CosmoWorlds
is a web—oriented authoring tool, and the modeling tools are specifically oriented towards the
creation of low—polygon scenes. CosmoWorlds was created by Cosmo Software, a now
defunct subsidiary of SGI. CosmoWorlds is currently owned by Computer Associates and is
no longer commercially available. However, the techniques and principles of its design and
implementation serve as a useful example for anyone creating a 3D user interface.

D-3

Overview and goals

In an application, you’ll want to move many different types of objects in a variety of ways.
The ideal suite of tools allows you to perform these tasks in a consistent way. This talk is
organized in four sections, corresponding to goals that move toward that end:

@ Leverage scene geometry
Geometric objects can serve as guides for motion, placement, or alignment. A 3D
scene may contain multiple lines, planes, directions and coordinate systems. Multiple
views present an even greater range of options. Make the tools leverage these spatial
landmarks so that users can turn the scene itself into a tool.

®@ Beconsistent
Different tools don’t necessarily require different paradigms. They should share
consistent behavior and a consistent visual language. Also, different types of objects
don’t necessarily require different tools. A consistent underlying software
architecture makes your application easier to write and easier to use.

@ Provideavariety of tools
Different tasks require different tools. Provide a suite of tools instead of forcing all
functionality into just one or two.

@ Avoid temporal modes
An individual manipulator helps avoid temporal modes because multiple handles
simultaneously present a variety of functions. Similarly, a set of tools,
simultaneously visible, provides access to the full variety of tasks without resorting to
temporal modes.

Leveraging scene geometry

This section shows how geometry in the scene can be used to enhance the functionality of
3D tools. The information is presented in three parts:

e Introduction to landmarks
* Implementing landmarks
e Follow-the—cursor

Leveraging scene geometry 1.

Introduction to landmarks

Selection—aligned manipulators: The previous module discussed how handles can be
arranged into manipulators that center about an object. These enable tasks that relate to the
coordinate frame and bounding box of the object itself. The papers that are included in the
final section of the course notes elaborate further on how to create such manipulators.

Grids and spaces: Some modeling applications provide tools that allow you to use grids for
snapping and alignment; and some allow you to change the alignment of manipulators so
that you are working in a variety of spaces, such as local space, world space, and the parent
space of an object.

Introducing landmarks: Tools that let you work directly with features and landmarks in a
3D scene are less common. Each object in a scene may have several points, lines, curves,
and planes of interest. In addition, each of these features has a natural set of related
directions. When these features and directions are accessible through the 3D tools, new
opportunities arise for placing and moving objects.

landmarks on primitives

Landmarks on primitives: Each type of primitive object has a natural set of landmarks.
For example, a cone has a ring at the base. It also has a mid—level ring and lines that
represent the intersection of the cone with its xy, xz, and yz planes. The intersections of
these lines and circles, as well as the center of the base, comprise a set of points that also
serve as landmarks.

D-6

landmarks on polygonal objects

Landmarkson polygonal objects:. Every polygon in a polygonal object has a set of
landmarks. These are the vertices, the edges, and the midpoints of the edges. Together they
present landmarks over the entire topology of the object.

Landmarkson other types of objects. CosmoWorlds does not have a way to model patches
or spline surfaces; but these, too, have natural landmarks. Every time you create a new type
of object, there is an opportunity to present a new set of landmarks.

directions align to the nearest edge

3related directions: The useful directions at any landmark relate to the model itself. One
direction is the normal to the model at that point. The other two are perpendicular to each

other and lie in the normal plane. Of these two, one aligns with the line or circle closest to
the point in question. The last direction is orthogonal to the first two.

A coordinate frame at each landmark: The location of a landmark, together with the 3
orthogonal directions, forms a coordinate frame. These coordinate frames form the basis of
landmark based interaction.

D-8

Leveraging scene geometry 2:

Implementing landmarks

An object oriented approach: The implementation of landmark finding involves two tasks:
finding the landmarks and presenting good feedback to the user. In an object oriented
application, this burden is shouldered by each type of object individually. The assumption is
made here that each type of selectable object stems from a base class of object upon which
virtual methods may be defined. Thus, a CubeObject and a PolygonalObject have
independent implementations, but the required methods can be invoked on either object (cast
to the base class), without knowing which type of object it is.

Finding landmarks

Finding the landmarkswith getLandmark(): Each type of object needs to implement a
getLandmark() method. Typically, a picking utility is invoked first to determine what object
and location were beneath the cursor. Next, the selected object’s getLandmark() method is
called to get the details about the landmark. In order to allow users to disable or enable
snapping to the various points and lines on the object, an isSnapping flag is passed into the
method. The selected landmark location and directions are passed back as a result.

Snapping to features. Each type of object knows where the key features lie and how they
are oriented. For example, the cone knows the locations of the key points, lines, and rings. If
snapping has been requested, the object needs to determine whether or not the picked point is
within a certain threshold of a key feature. These calculations are best done in screen space,
with the threshold expressed in pixels. Otherwise, features that are farther from the camera
are harder to pick.

Prioritiesin picking: Points should be easier to find than the lines on which they lie, so
they should be given preference and checked first. If the cursor is not close enough to any of
the key points, then the lines and circles should be checked. Failing this, the unsnapped
location below the cursor should be used. In practice, it is best to use a larger pixel threshold
for the points than the lines and circles.

When snapping isdisabled: When snapping is disabled, getLandmark() skips the snapping
step and just finds the correct directions for the point that is directly below the cursor.

Displaying feedback

Feature feedback versuslandmark feedback: There are two parts to the feedback
information. The first is a display of the features on the object. The second is a display of the

D-9

landmark’s location and directions. The first is handled by the selected object, the second by
the 3D Ul tool.

Displaying feature feedback with showFeatureFeedback(): Each type of object must
implement showFeatureFeedback(). This method takes information about the selected
landmark as input. In response, it displays feedback that reveals its key features. Once
again, the object itself has the best information; it knows how to draw its own feature
feedback. In general, the object displays all the key features in one color (white in
CosmoWorlds) and displays any snapped feature in a different color (yellow in
CosmoWorlds). The object should not display the landmark feedback (location and
directions). This is left to the 3D Ul tool, since different tools may wish to represent this
information in different ways.

K eep showFeatur eFeedback() separate from getLandmark(): It’s best not to just show
feedback as a side effect of getLandmark(). This leaves it up to the 3D Ul tool that’s in use
to decide whether or not the feature feedback should be displayed.

landmark feedback with the Plane and Wheel Tools

Displaying landmark feedback: The display of the landmark location and directions is left
to the 3D Ul tool. Two examples are illustrated above. In the first, a Plane Tool is being
used to determine a plane of motion. It calls getFeedback(), showFeatureFeedback(), and
then draws a lightweight indication of that plane. In the second, the Wheel Tool is being
moved so that it aligns with a feature in the scene. Its feedback is the Wheel Tool itself,
which moves and orients to indicate the new position.

D-10

Leveraging scene geometry 3:

Follow—-the—cursor

Reaping the benefits: The above infrastructure is a lot of work. But it lays the groundwork
for an application to implement numerous new tools. Since these tools are all based on the
same infrastructure, they share a common look and feel throughout the application.

Follow—-the—cursor defined: Follow—the—cursor is a term used to describe the act of
finding the landmarks below the cursor as it is moved across the scene. It’s done by calling
getLandmark() and showFeatureFeedback() each time the cursor is moved to a new location.

Placing new objects: The operations of import, paste, and shape creation all introduce new
objects into a scene. Sometimes it’s useful to place new objects at the origin. When pasting,
it might be desirable to paste over the location of the original object that was copied. And
when importing, there might be a location already in the file that should remain unchanged.

placing a new cone with follow—the—cursor

Using follow—the—cursor to place new objects: Follow—the—cursor provides another way
to introduce objects into the scene. Landmarks provide convenient locations and orientations
for placing new objects. Using follow—the—cursor, a new object can be moved across the
surface of objects in the scene, prior to committing to a location for the object.

D-11

relocating a Wheel Tool with follow—the—cursor

Using follow—the—cursor to relocate existing objects: Some tools in CosmoWorlds have
white octahedral handles. Throughout the application, this type of handle may be click—
dragged to move an object in follow—-the—cursor style. Once this handle is clicked, and for as
long as it is dragged, the tool relocates and reorients the object to align with the selected
landmark.

(@) (b) (©)

freezing the orientation during follow—the—cursor

Freezing the orientation: The landmark directions at a desired location don’t always match
the desired orientation. For example, in figure (a) above, the orientation at the corner of a
box is directed normal to the vertex. It is a diagonally outward direction and is not parallel
to any side of the box. But what if you want to position an object at a corner of the box,
facing upward? Instead of doing this in two operations (place the object, then align it some
other way), tools can freeze the orientation and save it for later, all during one motion of the
mouse. This is achieved using a clutched mode as discussed in the prior module. When the
user presses the control key, the tools can save the current orientation and reuse it as long as
the key is depressed. So, the selection can be aligned by moving it over the top of the box, as
in figure (b), freezing the orientation with the control key, and then moving it until it snaps

D-12

into position at the corner, as in figure (c). When placed, it will have a location at the corner,
but an orientation that aligns with the top of the box.

Using follow—the—cursor for translation tasks: In CosmoWorlds, a Plane Tool allows a
selected object to be moved parallel to any plane in the scene. This permits motion in
directions that do not align with the selection’s bounding box. The desired plane is selected
with follow—the—cursor; prior to clicking the mouse button, the Plane Tool displays axes that
align with the feature below the cursor. Once that feedback indicates a desired plane of
motion, the user can click—drag to move the selection parallel to that plane. Later in this
presentation, we’ll show how the Plane Tool uses clutched modes to permit motion normal
to the plane or parallel to an edge.

Room

placing a cone on a surface that is occluded in the primary view

Multiple views show you more: Different landmarks may be hidden and visible in different
views of a multi—view application. Since follow-the—cursor allows you to find landmarks
in any view, you can sometimes avoid changing your perspective camera’s view (to reveal a
hidden landmark) by placing the object in one of the other windows.

D-13

Being consistent

This section shows how consistency is achieved both through a uniform look and feel, and a
well designed application architecture. Techniques are presented that break down the
implementation of 3D user interfaces into simpler parts; parts that interact to form a complex
and rich set of tools. The information is presented in the 9 parts:

* Look and feel

* Underlying architecture

» Command-based architectures

» Dragger + Commands + Selection = Manipulator

* One set of commands for all draggers

e More on motion commands

» One set of commands for all selections

* Motion commands, snapping and constraints

* Motion commands make it easier to write new tools

D-14

Being consistent 1.

Look and feel

The first module of the course stressed the importance of a consistent graphical language, as
well as consistent use of clutched modes. The tools presented here share this goal.

Graphical language: Throughout the tool set, white cubes indicate scale handles, green
spheres are rotation handles, and white octahedra are follow—the—cursor handles. Translation
is generally indicated by planes whose perimeters highlight and/or a pair of yellow axes.
You can of course choose your own graphical language; just be consistent.

Clutch modes: Shift—-dragging (holding the shift key while dragging) is used to toggle
between constrained and unconstrained modes. This is such a widespread convention that |
don’t recommend straying from it. Control-dragging (holding the control key while
dragging), on the other hand, has no universal meaning. In CosmoWorlds, it can serve a
variety of functions depending on the tool. Beyond this, if you feel you’ve run out of
available modes and want to use another modifier key, chances are you’re trying to pack too
much functionality into one tool; you should consider breaking it down into two separate
tools.

choosing a 1D scale direction with gesture—selection

Gesture-selection: Sometimes there is more than one "good" direction a tool might want to
use. For example, shift-dragging a scale handle of the Box Tool initiates 1D scaling. But
which direction is best? One approach is to provide separate handles for each direction, but
this could crowd the manipulator or limit the number of available directions for a given point
of view. An alternative is gesture—selection. When the handle is shift—clicked, three axes
are displayed simultaneously. By convention, the color orange is used to indicate a choice for

D-15

gesture—selection. As soon as the user moves the cursor, the direction of cursor motion is
noted and compared, in screen space, to the available directions. Whichever one most
closely matches the gesture becomes the direction of scale. This same convention is used

consistently throughout the tool set, so if the user sees these orange arrows, he knows that it
is time to make a gesture selection.

D-16

Being consistent 2:

Underlying architecture

There is more to being consistent than just the outer look and feel of your 3D tools. The
underlying architecture of your application has a huge effect on both how easy it is to
program and how the result feels to your users. A well-designed architecture is object
oriented and shares code in a consistent way, and this ultimately is reflected in the usability
of the application.

Follow-the—cursor: We’ve already seen how one pair of methods, getLandmark() and
showFeatureFeedback(), can be implemented in an object oriented way. These methods then
enable a multitude of tasks to rely on follow—the—cursor. The result is shared code and
consistent look and feel.

Inside the manipulators: Different 3D tools share code to achieve many of the design
benefits described in the previous module of this course. Each bullet below describes a
common technique and the classes that are used to encapsulate them.

» Different styles of motion mapping (i.e., mapping 2D cursor motion to translations,
scales, and rotations) are used repeatedly in the toolset. A set of classes called
Projectors encapsulates these different mappings.

* Round manipulators and round feedback appear squished when rendered within a
nonuniformly scaled or sheared space. A class called the AntiSquish node is used to
make such objects round again. The AntiSquish node analyzes the current
transformation matrix and appends a new matrix that undoes the squishing, while
leaving the translation and rotation intact.

» Some tools need to surround a selection. These are always initially scaled as a
canonical 2x2x2 unit cube. The SurroundScale node calculates the bounding box of
the selection. It then appends a matrix to the current transformation matrix that
translates and scales the tool to fit around the selection.

» Handles need to be kept within a reasonable range of sizes. The MinSizeMaxSize
node contains parameters, expressed in pixels, that specify the largest and smallest
permissible size on screen . It analyzes the current transformation matrix to
determine the size of the handle in screen space, then appends a scaling matrix that
keeps it within the acceptable range of sizes.

* Some tools need to appear different in different viewports. For example, you might
show certain feedback only in the view that currently has the user’s focus. Rather
than have different scene graphs on hand to display in the different views, tools
employ a ViewportSwitch node. This node has different subgraphs to display
depending on which view is being rendered.

D-17

Resourcesfor " Inside the manipulators': The first three techniques are described in more
detail in the following resources. The others are not covered, but should be relatively
straightforward to implement.
» The three papers included at the end of these course notes.
* Open Inventor source code, which is available at the following locations:
http://0ss.sgi.com/projects/inventor/
http://www.studierstube.org/openinventor/
* Any new information | find or create after these course notes go to press will be at:
http://www.pauliface.com/Sigg02/index.html
* Me! I’ll help you out, within reason. pauli@pauliface.com

D-18

Being consistent 3:

Command-based architectures

Use a command based ar chitecture: Using a command based architecture in your
application is the one single thing you should do to keep it consistent, clean, and bug—free.
We’ll see how commands help for 3D Ul in the next part of this section, but first I’ll
describe a command architecture in general terms.

Commands: A Command is a base class with two methods, do() and undo(). When do() is
invoked, the command is performed. When undo() is invoked, the command returns things
to how they were before the command was performed.

Command parameters. Each subclass of Command contains parameters to assist the
command in performing do(). For example, an AddCone command has translation, rotation,
and scale parameters to indicate where the cone object should go. It also has a parent
parameter which specifies the group node under which it is placed. When you call do() on
the AddCone command, it inserts the cone object in the scene graph, below the parent, then
sets the cone object’s transform fields accordingly. When you call undo(), it removes the
cone from the scene.

CommandM anager: The CommandManager is a separate class that takes care of executing
commands. The application has just one instance of CommandManager. When a user
performs an action, a command is created and submitted to the CommandManager. Later, at
the appropriate time (usually just before the next render occurs), the application tells the
CommandManager to perform all pending commands.

Every action must occur through a command: No matter what the user does, whether
through a button, key, or mouse, the action must be performed by using a command.

Benefits: The above architecture yields the following benefits:

» Congstency: The same type of command can be called through different means. For
example, a keyboard shortcut, a 3D tool, or an icon button can all execute the same
kind of command. The code for the command gets reused and the result of the
command is consistent regardless of how it was initiated.

* Infiniteundo/redo: The CommandManager can keep a list of all commands that
have been executed once the application starts up. Infinite undo is achieved by
calling undo() on each command in the list, in reverse order. Redo() is achieved by
calling do() once again, in forward order.

* Logsenabledebugging: The CommandManager can write the commands and their
parameters to a file and update that file each time a command is performed. This
produces a log of all user actions. If the program crashes, the user can submit the log
file with his bug report. The log file then makes it a simple matter to reproduce the

D-19

bug and determine the reason for the crash. Each command in the log is fed in turn to
the CommandManager, and at the last command the error is reproduced.

Regression testing: By saving all the error logs from past bug reports and running all
of them when the code base changes, engineers can make determine whether old bugs
have crept back into the code.

Monkey testing: This is a term that invokes the image of a monkey banging at the
keyboard. You can write a utility that randomly generates commands and parameters
for those commands, then hands them to the CommandManager one after the other.
This will throw a whole variety of unlikely combinations at the application and reveal
problems that might not turn up in ordinary user testing.

D-20

Being consistent 4.

Dragger+Commands+Selection = Manipulator

In the previous module, a manipulator was defined as follows:

A manipulator isa visible graphic representation of an operation on, or state of, an
object, that isdisplayed together with that object. Thisstate can be controlled by
clicking and dragging on the graphic elements (handles) of the manipulator.

This overall description can be broken down further within the context of a command based
architecture.

Dragger: A dragger is a visible graphic representation that can be clicked and dragged to
generate one or more types of MotionCommand.

MotionCommand: A MotionCommand is a subclass of Command that specifies a rotation,
translation, or scale.

Selection: A selection is the entity in the application that is currently selected. It can be a
primitive, polygonal object, group, light, etc. It can also be a subselection, such as a set of
points, lines, or polygons.

Selections watch for execution of commands: When a selection is established, it can
register with the CommandManager to be notified via callback when a new command is
executed. The selection is free to respond however it wishes.

Putting it all together: The dragger is a visible graphic representation. When you click—-

drag the dragger, it generates a command. When the command is executed, the selection
responds with a change of state. Taken as a whole, this forms a manipulator.

D-21

Being consistent 5:

One set of commands for all draggers

I solating the dragger’ stasks: Decoupling the commands and the selection from the dragger
saves work, shares code, and makes things consistent. The MotionCommand classes only
need to be written once. All a dragger needs to know how to do is generate them. Granted,
this is a tough task, but at least the task has been isolated. The dragger does not even need to
know what kind of selection is listening. Different draggers invoke commands based on
different handles and different mouse mappings, but the result is always one of these
commands.

An exhaustive list: The 3D Ul tools presented in this module are all implemented with the
same eight MotionCommand classes:
» translatelnLine

* translatelnPlane

e scalelD

e scale2D

» scaleUniform
e rotatelD

e rotate3D

e rotateAndTranslate

Parameters: The motion command parameters describe the motion to be applied to the
current selection. For example, TranslatelnLine has parameters describing the line origin
and direction, as well as the distance traveled along the line. The full description of the line
is used instead of just a simple translation triplet, because snapping can be implemented
more effectively this way. Advanced snapping techniques are out of scope for today’s
discussion, but for now keep in mind that a snap tool can only draw feedback of the line of
travel if a full description of the line is available.

Coordinate frame parameter: Each motion command has a parameter describing the
coordinate frame in which the command is expressed. In this way, a selection that responds
to the command knows whether or not it needs to transform the command into its own local
space before applying the command.

D-22

Being consistent 6:

More on motion commands

Every motion command contains information in addition to what’s available in the base
Command class.

Start, Move, Finish: Since motion commands are based on a click—drag-release action,
they contain extra information indicating which stage of motion the command represents.
Selections that listen for motion commands typically save their current state upon Start.
When responding to Move and Finish, they change their state based on the given motion,
relative to the starting state.

Matrices. Motion commands contain methods that return matrices calculated based on their
parameters. The getMotionMatrix() method returns a matrix representing the command as
expressed in the command’s local space. For example, the TranslatelnLine command returns
a translation matrix. The getLocal ToWorldMatrix() method returns a matrix that transforms
between the command’s local space (as given by its coordinate frame parameter) and world
space. The getWorldToLocalMatrix() returns the inverse of the localToWorld matrix.

D-23

Being consistent 7:

One set of commands for all selections

Isolating the selection’ stasks: Each type of selection needs to implement an appropriate
response to each of the eight types of motion command. Again, this is significant work. But
these eight responses enable a selection to be controlled by any type of dragger. The
selection does not need to know what kind of dragger initiated the command, nor is any new
code required when new types of draggers are added to the application.

Transforming the motion command to local space: Each type of selection needs to transform
the motion command’s motionMatrix into its own local space in order to process it correctly.
To do this, the selection needs the motion command’s three matrices, as well as its own
localToWorld and worldToLocal matrices. The equation for transforming the motion matrix
is as follows:
[localMotionMatrix] = [selectionLocalToWorld]*[commandWorldToLocal]*
[motionMatrix]*
[commandLocal ToWorld]*[selectionWorldToLocal]

rotating a TransformObject with the Box Tool

How transforms respond: A TransformODbject is used to contain primitive, polygonal, and
group objects. It interprets motion commands by updating its rotation, translation, scale,
scaleOrientation and center fields. TransformObjects respond to motion commands by
adjusting their fields to represent the incremental change represented by the
localMotionMatrix:

» Calculate the localMotionMatrix (as above)

» Append localMotionMatrix to a matrix representing the field values saved from when

the command was initiated.
» Decompose the combined matrix into the five fields to get new field values

D-24

Decomposing the matrix is tricky, but the Open Inventor source code contains a method to
do this for you. The method to look for is in SbMatrix.c++, and it’s called
SbMatrix::factor().

rotating a LightObject with the Box Tool

How lightsand camerasrespond: Lights and cameras have their own object types. When
they are selected, the response is similar to a TransformObject. The differences are as

follows:
» Neither lights nor cameras contain a scale field. So this component is ignored when
the final matrix is decomposed.
» Point lights contain no rotation, so they must throw out any rotation component.
» The parameters have different names. Position instead of translation, direction
instead of rotation, etc.

rotating a set of points with the Box Tool

How selected sets of pointsrespond: When a polygonal object is being edited to alter its
shape, the selection is specified as a set of points. For such selections, the response to a
motion command is not to edit the fields of the Transform that contains the object, because
that would affect all points equally. The object instead responds thus:

D-25

Calculate the localMotionMatrix (as above)

Transform only the selected points by that matrix

This has the net effect of moving the selected points relative to the other points in the
shape. Even when the matrix contains rotations or scales, this is the correct behavior.
The points move to positions that reflect the applied rotation or scale.

D-26

Being consistent 8:

Motion commands, snapping and constraints

Snapping and constraints are used to modify a transformation subject to certain criteria. This
IS a big topic; | touch upon it briefly here to show how it fits into a command based
architecture..

Constraint classesregister with CommandM anager : Just as selections register to be
notified when new commands are executed, so do any classes that wish to constrain motion.

Congtraintsare notified first: When a motion command is executed, the
CommandManager notifies constraint classes before it notifies selections.

Constraints can modify the motion command: Constraints modify motion commands by
examining their parameters, performing calculations, and changing the command’s
parameters if needed. For example, a grid constraint looks at a translatelnLine command
and attempts to snap the selection so it aligns with the grid. If a translation by the given
distance (parameter) along the line brings the selection within a snappable neighborhood of
one of the lines of the grid, the grid constraint changes the distance parameter to a value that
produces a perfect snap.

Selectionsrespond to the modified commands: Constraints occur before selections
respond to them. Selections respond in the same manner as when the command is not
constrained. If the command has been modified by a constraint, the selection moves by the
constrained amount, as desired.

Draggersrespond to the modified commands: If constraints are not used, draggers can
move themselves and send out motion commands to influence the current selection. But
when constraints are used, draggers should not move themselves based on the command they
generate, since that command is likely to be modified. The result would be a dragger that
moves out of sync with the selection. Instead, draggers register with the CommandManager
the same way that selections do. After generating motion commands, they wait to be
notified by the CommandManager, and move themselves to match the parameters in the
motion command. This way, the draggers also base their motion on the constrained
command.

D-27

Being consistent 9:

Motion commands make it easier to write new
tools

We’ve seen how splitting up manipulators into draggers, motion commands, and selections
decouples the constituent parts of a manipulator. The net result of all this is that it’s easier to
extend the application to do new things.

Creating new draggers. Under this command based architecture, new tools are created by
implementing new draggers. The draggers need to be able to generate motion commands, but
they do not need to know how selections will respond.

Creating new types of selection: Similarly, a new type of selection can be added to the

system by implementing responses to motion commands. The selections do not need to
know about the draggers that create those commands.

D-28

Providing variety

Today’s presentation is limited to rotation, translation, and scaling. Even within that limited
context, there are different ways to think about the problem. This section describes four
tools from CosmoWorlds. Each performs a different type of interactive task. In each
description, it is shown how the implementation relates to the techniques that have been
presented.

The four tools are:
« ABoxTool:
for operations that relate to the selection’s coordinate frame
e A Whed Tool:

for scaling and rotating about locations and directions that do not relate to the
selection’s coordinate frame

e A PlaneTool:

for translating parallel to directions that do not relate to the selection’s coordinate
frame

A Dot Tool:
for carrying objects to sit upon and align with landmarks in the scene

D-29

Providing variety 1.

A Box Tool

a Box Tool

A Box Tool enables operations that align with the selection’s coordinate
frame

This box-style tool surrounds a selected object. It lets you perform tasks that relate to the
coordinate frame of the selection itself. The various handles rotate, translate, or scale the
object. The modifier keys allow you to vary the way you perform these tasks as you drag.

Implementation overview: The Box Tool borrows from the infrastructure we’ve described
as follows:

» Cursor mapping techniques, like the ones discussed in the first module of this class,
are used to generate motion commands. Projector classes perform these mappings.

» SurroundScale and MinSizeMaxSize nodes scale and place the box around the
selection.

» AntiSquish nodes keep the circular feedback round regardless of context.

* MinSizeMaxSize nodes keep the handles to a workable size.

» Shift-dragging and control-dragging provide alternate ways of performing the tasks.

» Gesture—selection aids in selecting directions for 1D scaling, translation, and rotation.

Trandation: All translation operations occur relative to the planes of the bounding box. The
available operations are:

» Click—drag a side of the box to perform 2D translation freely within a plane parallel
to that side of the box.

» Shift-drag to translate along a 1D line within that plane. Gesture—selection is used to
pick between the two directions in the plane.

D-30

» Control—drag to translate normal to the selected plane.
» The above three operations combine to allow translation in all three directions,

regardless of the plane that is used. This means you don’t need to rotate the camera to
get at a handle for the direction you need.

Rotation: Round green handles let you rotate the object. Rotations occur about the 3 axes of
the object’s local space. The center of rotation is located at the intersection of the green
posts containing the rotation handles. Each post represents a rotation axis.
* Click-drag a round handle to rotate. When you click, two orange arrows appear.
These represent choices between two 1D rotations; one about each of two posts you
did not click. Gesture—select to initiate 1D rotation about one of these two axes.
» Shift—-drag to perform 3D rotation about the center, using an ArcBall.

Scaling: The white box—shaped handles let you scale the object. The center of scaling is the
same as the center of rotation. The directions for 1D scaling are parallel to the edges of the
box.

* Click—drag to perform uniform scale.

» Shift—drag to perform 1D scale. Gesture—selection lets you pick between all three
scale directions.

» Control-drag to perform uniform scale using the opposite corner as the center of
scaling. This lets you push or pull the handle toward the opposite corner, leaving the
opposite corner fixed.

» Control-Shift—drag (both together) to perform 1D scale about the opposite side. This
lets you stretch an object, leaving the opposite side frozen in place.

Changing the center of rotation and scale: The rotation and scale operations occur about
the center of the rotation assembly. By default, this is located at the middle of the object’s
bounding box. The rotation assembly, and hence the center of rotation and scaling, is
adjustable; you can translate it (parallel to the sides of the box) by control-dragging the
rotation handles.
» Control-drag a round handle to translate the rotation assembly, and hence the center
of rotation and scaling. The motion is a 2D translation
» Control-Shift drag a round handle to move the rotation assembly via a 1D
translation. Gesture—select to choose between the two available directions.

D-31

Providing variety 2:

A Wheel Tool

A Wheel Tool enables rotation and scale about landmarks in the scene

This wheel-style tool lets you rotate and scale about arbitrary points and with respect to
arbitrary directions. You can position the Wheel, follow—the—cursor style, to align with
landmarks in the scene. After this, rotation and scale operations occur relative to the axes of
the Wheel.

The Wheel is useful in cases where the object’s bounding box doesn’t contain the point you
want to transform about, or where the axis you want does not align with the object’s
bounding box.

laying out a ring of columns with the Wheel Tool

Example: Creating aring of columns

Let’s say you are arranging columns in a circle. An easy way to arrange them is to plop a
bunch of them down in one spot, and then rotate them one by one about the center of the
ring. You can’t do this with the Box tool unless you move the Box’s rotation assembly (and
hence its center of rotation) out of the bounding box, which is kind of unnatural. A column’s
natural rotation center is really inside the column. The Wheel tool makes such a task simple.
Start by placing the Wheel at the center of rotation. Then select and rotate each column in
turn, using the Wheel Tool.

D-32

Implementation overview: The Wheel Tool borrows from the infrastructure we’ve
described as follows:

* Follow-the—cursor is used to position and align the Wheel.

» Cursor mapping techniques generate the scale and rotation commands. Projector

classes perform these mappings.

» AntiSquish nodes keep the circular feedback round regardless of context.

* MinSizeMaxSize nodes keep the handles to a workable size.

» Shift-dragging and control-dragging provide alternate ways of performing the tasks.

Placement: Place the Wheel by click—dragging the white octahedron at the center of the
Wheel.

» Click-drag to move and align the Wheel using follow-the—cursor.

» Shift-drag to disable snapping to key features.

» Control-drag to freeze the orientation while moving.

Rotation: Rotation is just like in the Box Tool, except that only one direction is available for
1D rotation. This rotation is in the direction of the visible green ring.

» Click—drag a round handle to perform 1D rotation.
» Shift-drag to perform 3D rotation about the center, using an ArcBall.

Scaling: The box—shaped handles let you scale the object. The center of scaling is the
center of the Wheel.
» Click—drag to perform uniform scale.
» Shift-drag to perform 1D scale. The direction will be parallel to the white axis
connecting the two scale handles.
» Control-drag to perform 2D scale. This scales evenly in the plane defined by the
ring, but does not stretch along the white axis.

D-33

Providing variety 3:

A Plane Tool

A Plane Tool enables translation parallel to any edge or plane in the
scene

This plane-style tool lets you translate parallel to planes and edges that are not aligned with
the bounding box of your selection.

(a) (b) (©)
Trandating a chimney parallel to a roof’ s ope with the Plane Tool
(a) selecting the plane
(b) selecting the direction
(c) trandating parallel to the ope

Example: You might have a chimney on the sloped roof of a house. The slope of the house
does not align with any plane of the chimney’s bounding box. The Plane Tool lets you
relocate the chimney by translating it parallel to the surface of the roof.

Implementation overview: The Plane Tool borrows from the infrastructure we’ve described
as follows:

» Follow-the—cursor is used to select the directions of translation.

» Cursor mapping techniques generate the translation commands once the directions are
established. Projector classes perform these mappings.

* A MinSizeMaxSize node keeps the feedback to a workable size.

» Shift-dragging and control—dragging provide alternate ways of performing the tasks.

D-34

» Gesture—selection aids in selecting directions for 1D translation.

Trandation: With this tool, the world is your handle. Any time you move the mouse,
follow—-the—cursor is used to find a landmark and its directions. The exception is when the
mouse is over the handle of another tool, in which case the Plane Tool defers and lets the
other tool respond to the mouse. The two directions within the landmark’s plane are
displayed with yellow arrows. As you move the cursor, the arrows skitter and play over the
surfaces in the scene.

» Click—drag to perform 2D translation parallel to the plane you’ve selected.

» Shift-drag and the yellow arrows turn orange. Gesture—select to perform 1D
translation parallel to the selected direction. This technique allows you to move
parallel to edges in the scene, as opposed to planes.

» Control-drag to perform a 1D translation in a direction normal to the selected plane.

D-35

Providing variety 4.

A Dot Tool

a Dot Tool

A Dot Tool enables you to carry the selection to sit atop a landmark in
the scene

This dot-style tool lets you rotate and translate an object simultaneously to sit atop and align
with another surface in the scene. Placement of the Dot Tool on the selection marks a point
on the selection. When the Dot Tool and the selection are carried together, that marked point
serves as the point of connection by which you carry and place the selection.

D-36

positioning the Dot Tool on a glass in the top view

moving the glass up the leg and onto the top of a table

Example: Let’s say you want to move a glass so it sits atop a table. First, you click—drag
the white octahedron to place the Dot at the center of the bottom of the glass. Then, you
click—drag the pink post to move the Dot and the glass together onto the surface of the table.

Implementation overview: The Dot Tool borrows from the infrastructure we’ve described

as follows:
» Follow-the—cursor is used to both for placing the dot on the object and carrying the

object to a landmark.
* A MinSizeMaxSize node keeps the handles to a workable size.
» Shift-dragging and control-dragging provide alternate ways of performing the tasks.

Placing the Dot Tool: The white octahedron is used to place the Dot Tool. This marks a
spot on the selection.
» Click-drag to move and align the Dot using follow-the—cursor.

» Shift-drag to disable snapping to key features.

D-37

» Control-drag to freeze the orientation while moving.

Carrying the selection: The pink post is used to carry the selection. Click—drag it and the
Dot Tool moves together with the selection. As the pair of objects follows the cursor, the
marked location, which is also the center of the Dot, is moved to coincide with the feature
below the cursor. The pair of objects also rotates to aligns so that the post is normal to the
surface of the landmark.

* Click-drag to move and align both the Dot Tool and the selection using follow-the-

cursor.
» Shift-drag to disable snapping to key features.
» Control-drag to freeze the orientation while moving.

D-38

Avoiding modes

Peaceful coexistence: The previous module of this class explained why temporal modes are
a bad thing. The set of tools presented here do not cause a problem in this regard. This is
because each tool occupies a place in space, and the handles may all be selected
independently from one and other. Hence, all the tools can peacefully coexist in the scene at
the same time and still be accessed. The tool you click determines the tool you want to use.

Toggling thetools on and off: There are cases where one tool may occlude another. And
you might not always want to have all the tools visible; they create unnecessary clutter if you
are not using them. For these reasons, the tools may be toggled on and off independently.
Thus, you can use them in any combination you choose. The net result is much like a real
life workbench. You can choose to leave a lot of tools strewn about, or you can put them
away.

How the Plane Tool combineswith the others: One tool that might seem to cause a
problem is the Plane Tool. Since it presents feedback each time you move the cursor, you
might think that it would interfere with the other tools, which have literal handles.
Fortunately, this is not the case. Event handling occurs (in most systems) in an order as the
scene is traversed. By placing the Plane Tool at the end of the scene, you can insure that it is
traversed last. Hence, when the cursor is over the handle of a different tool, the cursor
motion will elicit a response from that tool. If the cursor is over no other tool, then the Plane
Tool will get a chance to pick into the scene and display feedback.

D-39

Conclusion

A good underlying architecture supports the implementation of a suite of 3D Ul tools in a
consistent way. Standard cursor mapping techniques, landmark—-finding techniques, and a
well-designed set of motion commands provide such a framework.

Within this framework, tools may be constructed to address a variety of tasks. Some have
been presented here and related to the implementation framework.

The 3D tools presented have been restricted to a certain set of tasks relating to translation,
rotation and scale. Others types of tasks and means of manipulation remain to be designed

and implemented. Hopefully, the framework presented here will support the creation of these
new 3D tools as well.

D-40

An Architecture for Direct Manipulation of
3D Objects

Paul Isaacs
Rikk Carey
Howard Look
David Mott

Silicon Graphics Computer Systems
2011 North Shoreline Blvd.
Mountain View, CA 94039-7311

{ pauli | rikk | howardl | mott } @sgi.com

1 Abstract

This paper presents a comprehensive system architecture for the di-
rect manipulation of 3D objects. Previous work in the area of 3D in-
teraction has concentrated on specific 3D interaction techniques.
Our research has been aimed at developing an underlying architec-
ture that accommodates these techniques and facilitates the devel-
opment of new, reusable 3D interaction objects. The architecture
presented in this paper defines an extensible, object-oriented frame-
work for constructing a variety of object classes called manipula-
tors. Manipulators are 3D objects that reside within a scene and re-
spond to user input in an intuitive manner. In our architecture ma-
nipulators merge behavior directly with geometry. The persistent
behavior of these objects permits manipulators to work within ap-
plications that have no knowledge of the interaction techniques that
the manipulators employ. Our architecture defines a 3D composi-
tion model for constructing aggregate manipulators out of simpler
ones, paving the way for self-editing objects with embedded con-
trols. Means are provided for the end-user or programmer to easily
customize the shape or look of a manipulator according to personal
tastes or needs. The architecture has been implemented as part of
the IRIS Inventor ™ Toolkit.

2 Introduction

21

The value of 3D user interface has been clearly demonstrated in re-
cent years[1] [2] [3] [4][5] [8] [9][10] [11][12]. The advantage of
direct manipulation is apparent as soon as we see the difference be-
tween rotating an object indirectly, using a set of sliders or com-
mand line input, versus rotating that same object with a virtual
trackball surrounding the object. Immediately, the abstract notion
of correlating numbers to orientations vanishes; working with ob-
jects within the scene provides a context that is far more intuitive.
Furthermore, 3D interaction invites developers to explore much
more realistic and natural human interfaces, and encourages cre-
ative and expressive solutions that are not possible with traditional
2D interfaces. Interfaces composed of three dimensional objects
add new possibilities for realism, directions of motion, shape, and
rendering style. Interface objects can look and behave like their real

Motivation

world counterparts, instead of 2D reductions of those objects; this
alone presents many new avenues for user interface design. And, of
course, traditional 2D widgets can be implemented in 3D. The re-
sult is an expanded suite of tools without any loss of old function-
ality.

Note however that it is still extremely difficult to incorporate 3D in-
teraction techniques into applications. This is because the mathe-
matical algorithms and event distribution paradigms are varied and
complex; there is no common mechanism for working with all of
them. Furthermore, the creation of new interactive 3D objects
should not require the developer to understand the underlying algo-
rithms.

Our primary objectives in developing the architecture were to:
* Provide a framework for creating manipulators.

» Encapsulate geometry and interaction within manipulators so
that behavior is defined by the manipulators, not the application.

» Enable manipulator behavior to be persistent between applica-
tions.

» Provide an extensible event model that allows 3D objects to re-
spond to user input.

» Encapsulate a set of mathematical techniques that project 2D
user input into 3D motion.

» Provide a way to customize the look of manipulators.

* Define a mechanism which allows manipulators to be combined
into compound objects that have more complex functionality.

2.2 Related Work

Most of the previously published works on direct manipulation of
3D objects have concentrated on exploring new user interaction
techniques [1] [2] [3] [4] [5] [8] [9] [10][11]. These works, while
valuable, do not address the problem of building an underlying, ex-
tensible architecture for creating 3D interactive interfaces. Our
work has concentrated on the development of an easy-to-use frame-
work for 3D interaction which integrates with a typical 3D graphics
application. This work is critical in order to encourage experimen-
tation with 3D interaction techniques, and for these techniques to
find their way into mainstream applications.

There have been a few published works addressing system issues.
Tarlton and Tarlton’s framework presented a well developed ob-
ject-oriented 3D programming model, but separated the behavior of
objects from the 3D objects themselves [13]. The Interviews toolkit
[7] presents a solid object-oriented architecture for direct manipu-
lation interfaces, however it does not address 3D issues. The 3D
widgets of Conner, et. al., are similar in concept to our manipula-
tors, but take a different approach [3] [11]. Their papers provide
compelling arguments for the use of 3D widgets and motivate the
desire for a supporting architecture. They provide details about
their interaction model, but architectural details of the system are
not presented.

2.3 Overview

In this paper we describe an object-oriented framework for devel-
oping 3D direct manipulation that is easy to use, efficient and ex-
tensible. This system is implemented in C++ and is based on our
earlier work, the IRIS Inventor ™ Toolkit presented in [6][12].

The next section introduces manipulators. In section 4, we describe
how manipulators handle events. In section 5, we present projec-
tors, the engines that perform geometric calculations for manipula-
tors. Section 6 describes parts, the manifestations of projectors as
visible geometry in 3-space, and how they can be customized by us-
ers. Simple and compound manipulators are introduced in sections
7 and 8. A few interesting examples of higher order manipulators
are in section 9.

3

Manipulators are 3D objects that reside within a scene and respond
to user input in an intuitive manner. Typically, manipulators are
employed to edit some aspect of the user’s data, such as geometry,
layout, or appearance. For example, our system includes a Tr ack-
Bal | manipulator that is used to rotate and scale other geometric
objects in a scene (see Figure 1[b]).

Introduction to Manipulators

[a]

Figure 1. [a] Simple Manipulator, [b] Compound Manipulator
and [c] Contraption

Manipulators are composed of one or more parts, each of which is
a specific geometric entity with a built-in interaction behavior and
purpose. Each part may be picked with a mouse-down event. For
example, the geometry for each stripe of the Tr ackBal | manipula-
tor is a separate part. The geometry can be changed programmati-
cally or through a run-time resource mechanism. Although you can
change the geometry of any part, it will always move according to
the same paradigm. A real-world analogy is a dresser drawer; draw-
ers come in many different shapes and sizes, but they all slide in and
out.

Once a pick initiates manipulation, each subsequent mouse-motion
event is mapped into 3D motion in the scene. There are, of course,
a variety of ways to map 2D locations into 3D motion. Manipula-
tors employ projectors to help in that mapping. In the Tr ackBal | ,

projectors utilize virtual spheres and cylinders to produce rotations.

Each manipulator has fields, variables that users can examine to de-
termine its current state. For example, a Sl i der manipulator (see
Figure 1[a]) responds to events by moving along the X-axis of its
local coordinate space. It contains a field, t r ansl at i on, which al-
ways reflects its current position along that line. Field values can be
used to drive other changes in the scene. So, a Sl i der manipula-
tor’s translation can be connected to the position of a second object;
the result is a 3D slider that moves another object through 3-space.

Manipulators allow programmers to register callbacks, which are
executed at key points in its operation, such as when the user starts
or finishes manipulation.

Manipulators can be built out of other manipulators. A simple ma-
nipulator contains only one moving part. By grouping them into
compound manipulators, a single interactive object with many
moving parts can be constructed. Compound manipulators may
also contain other compound manipulators. The S| i der manipula-
tor is a simple manipulator, while the Tr ackbal | is a compound
manipulator.

Contraptions take this process a step further. A contraption is a self-
contained object that includes manipulators and other kinds of ob-
jects. The manipulators are connected internally to edit parts of the
contraption itself. For example, the “walking dinosaur” contraption
shown in Figure 1[c] has a Sl i der on its side that makes its legs
get longer or shorter. But the Sl i der is also a part of the dinosaur
itself, and is not considered an external interface.

4 Event Handling

Inventor’s event model is straightforward and is described in [6]
and [12]. We give a brief summary: In Inventor, 3D scenes are
stored as directed acyclic graphs of objects called nodes, which rep-
resent geometry, materials, lights, etc. Actions are operations which
can be applied to scene graphs. Event handling is initiated in re-
sponse to a user or system event, for instance a mouse button press,
by passing a message to the root object of the scene graph through
the Handl eEvent Act i on. The toolkit provides event classes so
that this mechanism works in any window system. Nodes in the da-
tabase are traversed in order until some node handles the event, or
all nodes have been visited. Any node may handle an event. A node
can also grab events; all future events will be sent directly to the
node without a database traversal, until the node releases the grab.
In Inventor, most nodes ignore events completely, but manipula-
tors, which are composed of nodes, respond to events.

A typical manipulator will handle an event if the event type is of in-
terest and the manipulator has input focus, that is., lies beneath the
locator. A manipulator can see if it lies beneath the locator by que-
rying the Handl eEvent Act i on. The action performs a pick on the
scene database using the locator position as the pick point, produc-
ing information about the object picked. This information is cached
so that subsequent requests do not initiate another pick operation.
In Inventor, this information is stored in a Det ai | , which con-
tains a path to the picked object, the intersection point, the surface
normal, and other items.

As discussed earlier, manipulators use projectors to map mouse lo-
cations into 3D motion. In response to a mouse-button press, a ma-
nipulator will set up a projector. In response to mouse-motion
events, a manipulator will use that projector to generate 3D motion.

5 Projectors

Projectors are classes that project 2D locations onto an abstract
mathematical 3D shape. They interpret successive intersections

with that surface as translations, scales or rotations. Each class of
projector performs these projections onto a different kind of shape.
The way the intersections with this shape are interpreted also varies
by class.

Table 1 shows the currently implemented classes of projectors, the
type of manipulation operation they are used for, the shape they
project onto, and the way the mouse position is interpreted.

5.1

In order to convert a mouse position into a ray, a projector must be
initialized with a view volume. In Inventor, a view volume can be
retrieved from any Caner a node.

Projecting the Mouse Position

By default, a projector’s shape is defined in world space. A work-
space matrix may be specified that places the projection shape with-
in another 3D space. For manipulators, the workspace is the matrix
that transforms from the manipulator’s local space into world
space. The mouse position ray is transformed by this workspace
matrix before intersecting it with the projector’s shape.

When its proj ect () method is called, a projector intersects the
transformed ray with the surface using common methods for ray in-
tersection, and returns the result.

mouse locations

projector surface

Figure 2. SphereSheetProjector with Two Projected Rays

Figure 2 illustrates a Spher eSheet Pr oj ect or with two mouse
positions being projected onto it. Refer to Appendix B for sample

Inventor code that sets up and performs these projections.

5.2

Projectors are used by manipulators to determine motion based on
successive mouse positions. In the case of a Pl anePr oj ect or,
the code fragment:

Interpreting Mouse Motion

Vec3f notion
= myProj - >get Vect or (nbusePt 1, nousePt 2) ;

gives the 3D translation within the plane. The get Vect or () meth-
od simply calls the pr oj ect () method twice, returning the differ-
ence between the two results.

Other projectors may perform more complicated calculations. For
example, the Spher eSheet Proj ect or class performs intersec-
tions with a hyperbolic sheet draped over a sphere. This surface is
useful for rotations because it is a continuous function; there are no
discontinuities when the mouse crosses the sphere’s edge (a tech-
nique similar to those described in [2] and [10]). The
Spher eSheet Proj ect or has a method get Rot ati on(), which
takes two mouse position arguments and returns a Rot at i on. Ge-
t Rotati on() computes the vector from the two intersections to
the center of the virtual sphere and returns a rotation equivalent to
the angle between them. For example, to calculate the rotation of an
object when mouse moves from A to B (as in Figure 2):

Rotation rot = myProj->getRotation(

nmousePt A, nousePt B) ;

Other rotational projectors project onto different geometry, so they
may determine a different rotation based on the same two mouse
positions. For example, a Spher eSect i onPr oj ect or has discon-
tinuities at the edge of the sphere, unlike the SphereSheet -
Proj ector. Each has its advantages in different situations.

6 Manipulator Parts

As discussed earlier, a manipulator has a collection of parts. Each
moving part has a characteristic interaction behavior. The geometry
of parts is customizable by the user or programmer. Active parts
can be changed to perform highlighting, providing better feedback

Class Use Geometry Behavior
Li neProj ect or 1D translation Projects onto closest point on line.
1D scale /

2D translation
2D scale
1-axis rotation

Pl anePr oj ect or

Projects onto plane.

Cyl i nder Pl anePr oj ect or 1-axis rotation

Projects onto infinite cylinder or plane.

Cyl i nder Sect i onPr oj ect or 1-axis rotation

Projects onto closest point on section of the cylinder.

Cyl i nder Sheet Proj ect or 1-axis rotation

Projects onto hyperbolic sheet draped over an infinite cyl-
inder.

Spher ePl anePr o ect or

3D rotation C 773

Projects onto sphere or plane.

Spher eSect i onProj ect or 3D rotation

Projects onto closest point on section of sphere.

Spher eSheet Pr oj ect or 3D rotation

Projects onto hyperbolic sheet draped over a sphere.

to the user.

6.1

The behavior of a part is determined by associating it with a projec-
tor. In Figure 3, the white shapes are the part geometries. When ma-
nipulated, the shapes will move along lines (Tr ans| at e1Mani ps
use Li neProj ect or s), within planes (Tr ans| at e2Mani ps use
Pl anePr oj ect ors), or around an axis (Rot at eCyl i ndri cal -
Mani ps use Cyl i nder Sheet Proj ect or s). The long arrows are
the projector lines and planes; the shaded cylinders are the projector
cylinders, centered about the axis of rotation.

i

cursor at
mouse-down

Behavior of Parts

projector lines

cursor at
mouse-down

TranslatelManips with
Different Geometries -Llinear Translations

projector planes

Translate2Manips with
Different Geometries - Planar Translations

projector

cylinders
_/V.

cursor

N

RotateCylindricalManips with
Different Geometries - Axial Rotations

Figure 3. Different Geometries, same Projectors

When the mouse button goes down over a part and manipulation be-
gins, the projector is initialized. The detail of the Handl eEven-
t Action (section 4) contains the pickPoint, or initial point of in-
tersection with the geometry. The pickPoint is used to set the pro-
jector’s shape parameters. For example, the radii of the projection
cylinders in Figure 3 are set to be the distance between the pick-
Point and the central axis of rotation. The further from the center the
pickPoint is, the larger the projection cylinder will be.

Once a projector has been initialized, and for the duration of the ma-
nipulation, the shape of the part geometry makes no difference;
only the shape of the projector affects the motion. As the mouse is
moved, its motion is interpreted by the projector as discussed in
section 5.2. For example, the Tr ans| at e2Mani p repeatedly calls
get Vect or () and uses the results to position itself.

6.2 Customizing Parts

Each manipulator class has a published list of named parts that us-
ers can change. For example, to change the “scal ePart” of the

Scal eUni f or mvani p into a cone:

nyScal eMani p- >set Part (

“scal ePart”, new Cone);

In Inventor, this modification to the manipulator can be described
in a file as follows:

#l nventor V2.0 ascii
Scal eUni f or mvani p {

DEF scal ePart Cone {}
}

6.3 Highlighting Parts

The simplest kind of part stays the same at all times. But what if you
want to highlight (e.g., change the shape or color of) the part while
it is in motion? The designer of a manipulator class can build this
sort of change into its structure.

“partlSwitch”
VAN VAN

“partlActive”

O
A

“partllnactive” “part2”

Figure 4. Manipulator Structure With Two-State and One-
State Parts (This and subsequent figures use Inventor scene
graph diagrams as defined in [6][12])

In Figure 4, “part1” has two states and “part2” has one state. The
customizable parts are “partlInactive,” “partlActive,” and “part2.”
The other parts are private, and therefore not customizable.

“Part1 Switch” is a switch used to select between “partlInactive”
and “part] Active.” When “partl” is not in motion, the switch is set
to display the inactive version. When manipulation begins, the ma-
nipulator flips the switch to display “partlActive.” When manipu-
lation ends, it flips the switch back.

“Part2” will always stay the same. In most of our simple manipula-
tors, there is one part which is pickable and moves, and one part
which is unpickable and serves as a visual reference for feedback
(such as an axis of rotation or center of scaling). The moveable part
has two states for highlighting while the feedback part does not
change.

Of course, there are other possibilities, such as three-state parts,
parts that animate autonomously when they are picked, and so on.

7 Simple Manipulators

As stated earlier, a simple manipulator is a manipulator with only
one moving part. Dr agMani p is the base class for simple manipu-
lators that move in 3-space in response to click-drag-release mouse
events. The base class has no parts or projectors. Each subclass adds
one projector, one moving part, a field reflecting the state of the
moving part, and perhaps a feedback part.

The base class Dr aghani p provides the “motionMatrix,” which
contains the cumulative transformation. When the manipulator cal-
culates motion based on the projector, it moves itself by updating
the “motionMatrix.” Dr agMani p also allows programmers to reg-

ister callbacks to be activated after click, drag, and release events.

manipulator root Callbacks:
startCallbacks
motionCallbacks
finishCallbacks

“motionMatrix”

Figure 5. DragManip

7.1

This manipulator is used to rotate about an axis. It contains two
parts. “RotatePart” is the geometry that the user picks on to rotate
the manipulator. “FeedbackPart” is unpickable feedback geometry
(for instance, an arrow along the Y axis). The manipulator updates
the rotation field and “motionMatrix” whenever it moves.

rotation field

Example: Rotating Disc Manipulator

manipulator root

rotatePart

& feedbackPart

“rotatePart” “feedbackPart”

“motionMatrix”

Figure 6. RotateDiscManip

manipulator root

“motionMatrix” C{%atePart”
xf

Figure 7. Rotating About a Corner of a Part - Just add a trans-
form to the “rotatePart.”.

Q
AN

“feedbackPart”

manipulator root

. rotation field
“motionMatrix” C{g i}
r “rotatePart”
X

“feedbackPart”

Outside Xf

Figure 8. Rotating About an Arbitrary Axis - Use a transform
to re-orient the entire manipulator.

Figure 6 shows the ingredients of this manipulator, while Figure 7
and Figure 8 show how it can be used in different situations (In re-
ality, the “rotatePart” is a two-state part as per section 6.3. For brev-

ity, the Figures depict it as a one-state part.)

7.2 Example: PushButton Manipulator

manipulator root

/C) [isDown field | buttonPart
\ _
O “buttonSwitch”
“motionMatrix’
Unpressed
E % buttonActivePart
“buttonPart” “buttonActivePart” %
Pressed

Figure 9. PushButton Manipulator

This simple manipulator shows how traditional 2D widgets can eas-
ily be brought into the 3D realm. By default, the isDown field of the
PushBut t onMani p is FALSE and the “buttonPart” is displayed.
When the manipulator is selected, the isDown field is changed to
TRUE and the manipulator switches to display the “buttonActive-
Part.” Nothing happens while the mouse is dragged over the screen.
When the button is released, the isDown field returns to FALSE and
the “buttonPart” is displayed once again. (The “motionMatrix” is
unused.)

8 Compound Manipulators

As stated earlier, compound manipulators group other manipulators
together into a single aggregate. ConpoundMani p is the base class
for all compound manipulators. Its layout and available callbacks
are the same as for Dr aghani p.

Callbacks:

startCallbacks
motionCallbacks
finishCallbacks

manipulator root

“motionMatrix”

Figure 10. Compound Manipulator

ConpoundMani p includes support to make its child manipulators
move in a synchronized way. For instance, when you rotate one
stripe of the Tr ackbal | , all stripes rotate. This is achieved by the
following simple mechanism: the ConpoundMani p monitors the
fields of its child manipulators. When one of these fields changes,
the ConpoundMani p updates its “motionMatrix” based on that of
the child manipulator; it then sets the child’s “motionMatrix” to
identity. So the motion created by manipulating the child is trans-
ferred to a place where it affects the whole group. (Note that not all
child manipulators of a compoundManip must be synchronized in
this way. Unsynchronized children will simply move relative to the
others.)

Unlike Dr aghvani p, ConpoundMani p does not handle events by
default, but passes them on to its children. Subclasses of Com

poundMani p may choose to handle events. For example, they may
wish to have different child manipulators receive events, depending
on which modifier keys are held down. In this case the compound
manipulator would route the event to a specific child.

Subclasses typically provide output fields which reflect the state of
the manipulator. Often, this requires synthesizing information from
several child manipulators into one meaningful quantity or set of
quantities, such as a cumulative transform.

8.1

The Dr agBox manipulator (see Figure 11) is derived from Com
poundMani p and coordinates the motion of 6 Tr ans| at e2MVani ps
to move together as a single box. Transform nodes (xf in the dia-
gram) would place them relative to each other, so that they form a
cube.

Example: DragBox Manipulator

The translation field of the compoundManip contains the location
of the manipulator as a whole.

manipulator root

translation field

“motionMatrix”

Figure 11. DragBoxManip
9 Further Examples

9.1 Example: HandleBox Manipulator

Figure 12. A HandleBoxManip

The Handl eBoxMani p is a compound manipulator for editing

scales and translations. The 8 corners of the box perform uniform
3D scaling, using a Scal eUni f or mveini p. Each of the 3 axial
“dumbbells” (lines with a cube at either end) performs 1D scaling
along a primary axis with a Scal e1lMani p.

Each of the 6 faces is a Dr agPl aneMani p, a compound manipula-
tor that translates within a plane when no control keys are held
down, but which translates perpendicular to that plane when the
ALT key is held down. To do this, the Dr agPl aneMani p employs
aTransl ate2Mani p and a Tr ansl at e1lMani p. To route control
to the appropriate translation manipulator, the Dr agPl aneMani p
handles events as described in section 8.

9.2 Example: A Color Editor Manipulator

Figure 13. A Color Editor

Figure 13 shows a color editor written as a compound manipulator.
It is a composite of three simple manipulators. The planar motion
of the small sphere on the front face is interpreted as hue/saturation
of the selected color. The small circle is moved with a
Transl at e2Mani p. The value of the color is controlled be the le-
ver that runs around the edge, implemented as a Rot at eDi scMa-
ni pul at or. The button at the top is a PushBut t onMani p, and
when it is depressed the editor aligns itself with the screen. Note
that the children of this compound manipulator are unsynchronized.

9.3 Example: A Walking Elephant

Figure 14. A Walking Elephant

This elephant is an example of what we call a contraption (see sec-
tion 3). It is a persistent object with its own built-in interface, a con-
glomerate of manipulators and other objects.

The grey parts of the elephant are non-interactive shapes. Along the
back of the elephant are two buttons, an on/off switch, created with
a Toggl eBut t onMani p, and a reset button, made using a Push-
But t onMani p. The knob on the side of the elephant is a Di al Ma-
ni p: it has fields for a minimum, maximum, and current rotation,
and it raises and lowers the elephant’s trunk. The slider on the leg
of the elephant controls the length of its legs and height off the
ground. This slider is a Sl i der Mani p, and has minimum and
maximum fields as well. The elephant can be imported into any ap-
plication which uses the toolkit and the interaction behavior comes
for free.

9.4 Other Assorted Manipulators

The images on the color plates show other types of manipulators
and how we have used them.

10 Conclusions and Future Work

We have presented an architecture for designing and implementing
3D interactive objects called manipulators. The architecture accom-
modates a variety of interaction techniques and has been successful
in providing a system for creating a rich set of interaction tools. By
allowing simple objects to be combined and modified, we have
been able to produce a suite of tools with a wide range of function-
ality. These objects have encapsulated, persistent behavior whose
implementation is hidden from the application.

Directions for future research include creating an interactive pro-
gram for assembling compound manipulators and completing a 3D
suite of tools which replace common 2D widgets. The area of con-
strained motion also offers great opportunities and challenges. Con-
traptions have great potential as poseable objects for animation sys-
tems, as “working machinery” for use in a virtual modelling work-
shop, and for creating 3D analogs to the 2D tools now found
commonly on the computer desktop.

11 Acknowledgments

The other members of the team that helped design and document
the architecture presented in this paper are Ronen Barzel, Gavin
Bell, Alain Dumesny, Dave Immel, Paul Strauss and Josie Wer-
necke. Thanks to Mike Mohageg and Delle Maxwell for assistance
with usability testing and esthetics.

Appendix A: Inventor Manipulator Classes

Mani pul at or
Dr aghani p
Rot at eCyl i ndri cal Mani p
Rot at eDi scMani p
Rot at eSpheri cal Mani p
Scal elMani p
Scal e2Mani p
Scal eUni f or mvani p
Transl at elMani p
Sl i der Mani p
Transl at e2Mani p
Tr ansl at e3Mani p
PushBut t onMani p
Toggl eBut t onMani p
ConpoundMani p
Di al Mani p
Dr agPl aneMani p
Tr ansf or nEdi t Mani p
Handl eBoxMani p
JackMani p
Trackbal | Mani p
Tr ansf or nBoxMani p
Dr agCoor di nat e3Mani p
Di recti onal Li ght Mani p
Poi nt Li ght Mani p
Spot Li ght Mani p

Appendix B: Sample Code

The following is a pseudo-code version of Inventor’s handleEvent
method and associated routines for the Translate] Manip:
void
Transl at elMani p: : handl eEvent (
Handl eEvent Acti on *ha)

/'l get event fromthe action
event = ha->getEvent();

i f (MOUSE_PRESS EVENT(event, BUTTON1)) {

detail = ha->getDetail ();

if (detail !'= NULL &&

det ai | - >get Pat h() - >cont ai nsNode(this)){
mani pul ateStart();
ha- >set Grabber (thi s);
ha- >set Handl ed() ;

}

}
else if (MOUSE_MOTI ON_EVENT(event) &&
ha- >get Grabber () == this) {

mani pul ate() ;

ha- >set Handl ed() ;

}
el se if (MOUSE_RELEASE_EVENT(event, BUTTON1) &&
ha- >get Grabber () == this) {
mani pul at eFi ni sh();
ha- >r el easeG abber () ;
ha- >set Handl ed() ;
}
}

voi d
Transl at elMani p: : mani pul ateStart ()

/1 Set the two-state part to be active...
swi t chPart - >whi chChild = ACTI VE;

/'l Establish the projector line to translate
/1 along, an X axis with its origin at the
/1 point that was hit.
line = Line(hitPoint(),

hi t Poi nt () +Vec3f (1,0,
proj->setLine(line);

0));

/1 Remenber the initial hit...
prevMouse = get MousePosition();

start Cal | backs->i nvokeCal | backs(this);
}

voi d
Transl at elMani p: : mani pul at e()

/1 Initialize the projector
pr oj - >set Vi ewNol une(get Vi ewol une());
proj - >set Wor ki ngSpace(

get Local Towor |l dvatri x());

/1 Convert 2D nouse |ocations into 3D notion.
cur Mouse = get MousePosition();
noti on = proj->getVector(prevhuse, curhMuse);

/1 append translation matrix to notionMatri x
Matrix tm

tmsetTransl ate(motion);
nmotionMatrix->multRight(tm);

/'l store nouse location for next tine.
prevMouse = cur Mbuse;

not i onCal | backs- >i nvokeCal | backs(this);
}

voi d
Transl at elMani p: : mani pul at eFi ni sh()

/] Set the two-state part to be inactive...
swi t chPart - >whi chChild = | NACTI VE;

fini shCal | backs->i nvokeCal | backs(this);

12 References

[1]

(2]

3]

[4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

Eric Bier, “Skitters and Jacks: Interactive 3D
Positioning Tools”, Proceedings 1986 Work-
shop on Interactive Graphics, ACM, New
York, 1987, 151-169.

Michael Chen, S. Joy Mountford, and Abigail
Sellen. “A Study in Interactive 3-D Rotation
Using 2-D Control Devices”, Computer Graph-
ics (SIGGRAPH 1988 Proceedings), 22(4)
pp.121-129 (August 1988).

D. Brookshire Conner, Scott S. Snibbe, Ken-
neth P. Herndon, Daniel C. Robbins, Robert C.
Zeleznik, and Andries van Dam, “Three-
Dimensional Widgets” Computer Graphics
Special issue on 1992 Symposium on Interac-
tive 3D Graphics, pp. 183-188 (March 1992).

Michael Gleicher and Andrew Witkin,
“Through-the-Lens Camera Control”, Com-
puter Graphics (SIGGRAPH 1992 Proceed-
ings), 26(2) pp.331-340 (July 1992).

Stephanie Houde, “Iterative Design of an
Interface for Easy 3-D Direct Manipulation”,
Human Factors in Computing Systems(CHI
‘92 Proceedings) pp. 135-142

Iris Inventor Programming Guide, Silicon
Graphics Computer Systems, Mountain View,
CA, 1992.

Mark Linton, Paul Calder, John A. Interrante,
Steven Tang, and John M. Vlissides, “Inter-
views Reference Manual Version 3.1, Stanford
University, July 1992.

Jock D. Mackinlay, Stuart K. Card, and George
Robertson, “Rapid Controlled Movement
Through a Virtual 3D Workspace”, Computer
Graphics (SIGGRAPH 1990 Proceedings) 24(4)
pp. 171-176 (July, 1990).

Gregory Nielson and Dan Olsen Jr., “Direct
Manipulation Techniques for 3D Objects Using
2D Locator Devices”, Proceedings 1986 Work-
shop on Interactive Graphics, ACM, New
York, 1987, 175-182.

Shoemake, Ken, from “Math For SIGGRAPH”,
SIGGRAPH 1991 course notes #2

Scott S. Snibbe, Kenneth P. Herndon, Daniel C.
Robbins, D. Brookshire Conner and Andries
van Dam, “Using Deformations to Explore 3D
Widget Design”, Computer Graphics (SIG-
GRAPH 1992 Proceedings), 26(2) pp. 351-352
(July 1992).

Paul S. Strauss and Rikk Carey, “An Object-
Oriented 3D Graphics Toolkit”, Computer
Graphics (SIGGRAPH 1992 Proceedings), 26(2)
pp.341-347 (July 1992).

Mark Tarlton and P. Nong Tarlton, “A Frame-
work for Dynamic Visual Applications”, Com-
puter Graphics Special issue on 1992
Symposium on Interactive 3D Graphics, pp.
161-164 (March 1992).

Color Plates

Plate 1. Windmill with on/off switch.
Plate 2. Stopwatch with on/off and reset buttons
Plate 3. Three sliders controlling position of a sphere

Plate 4. Directional light editor - arrow changes direction, ball
moves icon

Plate 5. Point light editor - ball moves source of light

Plate 6. Spot light editor - ball moves source, arrow changes di-
rection, cone changes beam spread.

Plate 7. RotateBox: within circles rotates about axis, center of
circles drags center of rotation. faces translate, green tabs scals.

Plate 8. Jack manip: sticks rotate, cubes scale, object translates

Plate 9. Chain: each link can be directly rotated relative to the
previous link.

Plate 10. Alignment tool for layout application: picking differ-
ent arrows aligns the objects inside in different ways.

Plate 11. Clipping plane manip - arrow rotates, square trans-
lates

Plate 12. Viewing walls with shadow manipulators

-10-

Techniques for Handling Complexity and
Robustness in 3D Widgets

Paul Isaacs

Alain Dumesny
Rikk Carey

1 Abstract

As auser “approaches,” then “touches” and finally “drags™ a virtual
tool, he gets closer to the performance of a task. This paper presents
techniques to assure that [a] the user’s intent is confirmed through
increasingly informative feedback, and [b] the user is given early
warning and hence may back off before committing to the wrong
action.

To clarify the “approach” to a widget, we provide an algorithm for
3D locate highlighting. It is fast, fully rendered, and z-buffered.

For a useful “touch” phase, we discuss design principles for func-
tion-revealing feedback. A combination of “take-away” feedback,
sub-assemblies, additive feedback and color coding allow widget-
makers to imply the purpose and usage of a touched part before it is
dragged -- without adding visual weight to the widget.

For coherent feedback during the “dragging” phase, we present new
algorithms for mapping 2D gestures into 3-space motion along
lines and planes. The algorithms insure that user input has a well-
defined effect on the motion for all cursor locations in the view
plane, thus avoiding certain degenerate cases that have been previ-
ously ignored. We do so by calculating and taking into account the
locations of vanishing points and horizon lines.

2 Introduction

21

In recent years, 3D direct manipulation has come of age. Widgets
allow us to grab and move objects to perform spatial tasks that once
required us to type numbers or move out-of-the-window sliders.

Motivation

Research ranges from the presentation of individual widgets
[BIER][SNIB][ZHAI] to systems for creating customizable and ex-
tensible 3D widget sets [CONN][TARL][WERNI][WERN2].
While some commercial packages only feature indirect manipula-
tion through 1D and 2D sliders [WAVE][SOFT], others have begun
to utilize 3D direct manipulation [ALIA] [RADI] [CALI] [SGI1].
Even the line between “model” and “widget” has blurred as re-
searchers incorporate direct manipulation properties into objects
such as lights [[SAA1], windows and walls [KENT] and mecha-

nisms [ISAA2][ISAA3].

In this paper we provide solutions in two areas we feel have been
insufficiently addressed: complexity and robustness. With multi-
functional tools, problems in complexity arise as we try to keep the
widget visually lightweight. One option is to make simple widgets
and use out-of-scene buttons to change the mode of behavior
[ALIA][CALI]. We seek a modeless solution to avoid alternating
between button-panel and scene.

Examples exist of well made multi-functional 3D widgets. But try
adding rotations to the Open Inventor “HandleBox” [WERN1] or
allowing Brown’s “Rack” [SNIB] to perform independent twists
about each of the three axes. Extra, clearly differentiated parts re-
quire more polygons, pixel-space and cognitive mental space on the
part of the user.

Eventually we must lower the visual “weight” of the individual
parts. Techniques in this paper help make up for this lack of detail.
Locate highlighting makes it easier to choose between closely
spaced or small objects. Function-revealing feedback adds weight
and provides extra information only after a part has received the us-
er’s attention.

We also address problems in robustness that affect the way it
“feels” to drag a widget. Others have researched the mapping of 2D
cursor to 3D object motion [CHEN][GLEI][NIEL][SHOE]. But
none of these addresses errors in projecting onto lines and planes
that result from failing to consider vanishing points or horizon lines.
These errors can cause discontinuous motion when dragging wid-
gets; they are exhibited in all the major software products and sys-
tems that employ 3D widgets [ALIA]J[RADIJ[CA-
LIJ[SGI1][WERNI1][WERN2][CONN] [LOOK]. We present algo-
rithms to eliminate these errors.

2.2 User Model

We restrict our hardware setup to include mouse-driven widgets
rendered as 3D objects on a CRT. Here is our model for how a user
gets acquainted with a new multi-part widget (or set of widgets) on
the screen:

[1] “The Approach”

The user explores the scene with the cursor. As the cursor passes

over selectable parts of the object, they glow in a way that is con-
sistent across the application. During this exploration, the user be-
comes acquainted with how the larger objects are broken down into
smaller parts, as well as which parts of the object are “hot.”

[2] “The Touch”

The user touches a highlighted piece of the widget. If he does not
drag it, this is merely an information-gathering operation; it will not
cause action to be taken. As each part is selected, new feedback
emerges which conveys the function of that part and suggests pos-
sible directions for mouse motion. Clear feedback is provided when
a choice is to be made between movement in two directions, as well
as when a modifier key changes the behavior.

[3] “The Dragging”

The user drags a part. When he does, the widget goes where the user
expects. If there is a gesture-based choice between two directions,
the user’s gesture is interpreted properly. The widget follows any
guiding lines or planes without straying or doing anything unex-
pected. Objects moving along lines can progress toward the vanish-
ing point but may not travel past it. Objects moving in a plane may
approach, but not pass beyond, the horizon line for that plane. In ei-
ther case, no object translates so far away that it becomes too small
to select again. When the cursor strays from the guiding feedback
for the line or plane, the motion continues to relate to the cursor’s
position on screen.

2.3 Platform Restrictions and Requirements

Restrictions: We impose hardware restrictions that provide bound-
ary conditions to the user interface problem. We use a single button
mouse and a CRT, to comply with the most common hardware con-
figurations.

We use only two keys from the keyboard.We assume that the user
associates “Shift” with constraining and “Alt” with a related but al-
ternate behavior. We leave the Control key for use by the applica-
tion and consider all other keys too “esoteric” for novices.

Requirements: Our locate highlighting algorithm requires z-buft-
ering. There are no additional requirements on hardware or soft-
ware. We have implemented the work on Silicon Graphics ma-
chines using the Open Inventor toolkit, Motif and OpenGL. We
present all material in a general manner, with occasional tips direct-
ed at developers sharing our software platform.

2.4 The “Transformer”

Much of this research was born from an effort to perfect “t he
transforner,” (Figure 1) a do-it-all widget for rotation, transla-
tion and scaling of 3D geometries. The t r ansf or ner is so named
because it performs affine transformations, but also because it
transforms its own shape when different parts are touched. To be
truly all-purpose, the t ransf or mer must perform the following
tasks:

« translate - freely within the xz, yz, or Xy plane
« translate - independently along the X, y or z axis

* rotate - freely

* rotate - independently about the x, y or z axis

+ scale - uniformly

+ stretch - independently along the X, y or z axis

« center - be able to change the center of scaling or rotation

between various key points on the bounding box of
the object.
This is a complex design problem; too many parts are required to
permit detailed handles with clear affordances. Our solution is a

box-like structure with cubes at the corners and spheres protruding
from each face. The t r ansf or mer surrounds the geometry that it
affects. A single picture of the t r ansf or ner in its rest state does
not reveal how all the parts work. However, interacting with the
transf or ner brings out increasingly greater information.

Figure 1. A Transformer in its Rest State, surrounding a Pear

3 The “Approach” Phase

3.1 The Problem

Multi-purpose widgets can have many parts. Each may move inde-
pendently and perform a different function. Users must be able to
find the different parts and feel out their boundaries without com-
mitting to an action. We wish to provide feedback as the user ex-
plores with the cursor, before any part is selected. Clearly, some
form of locate highlighting is in order.

This highlighting must be as subtle as possible while still being rec-
ognizable, especially during transitions from one part to the next. A
single flick of the mouse can carry the cursor across several parts,
and should result in minimum “noise.” And of course it must be
fast. Ideally, rendering the highlight should ot require a redraw of
the entire scene.

These goals (and our solution) are relevant regardless of hardware
configuration. They hold with mouse or spaceball, with a 2D bit-
mapped cursor or a 3D in-the-scene cursor.

3.2 Rejected Solutions

Figure 2. Overlay Plane Highlighting

Overlay Planes:

Speed is crucial in locate highlighting. A natural approach is to use
overlay planes, if available, since they do not require a redraw of
the scene (See Figure 2). We see two disadvantages to this ap-
proach. First, the overlay planes pay no attention to depth informa-
tion. A partially occluded part will render in its entirety in the over-
lays. This creates visual noise when the cursor moves quickly
across the screen; stray lines or surfaces repeatedly appear and dis-
appear. Second, we are restricted to a small number of colors. Feed-
back in the overlays can not reflect material properties or properties
of shading.

Figure 3. Bounding Box Highlighting

Bounding Boxes:

Another solution is to draw a bounding box around the part (See
Figure 3). If the box is drawn in the overlay planes, it suffers from
the problems outlined above. If drawn within the scene, perfor-
mance problems arise. When the cursor moves off of an object, how
do you “undo” the picture of the old box without redrawing the en-
tire scene? One must keep a list of all objects covered by the box
and then redraw them. Also any pixels where the box covered the
background must be redrawn. If the box covers many objects it can
cause much of the scene to redraw. This solution also ranks poorly
in terms of visual noise. Quick cursor motion causes boxes to rap-
idly pop up and disappear. Finally, this solution can be unclear;
when different parts have similar bounding boxes it is hard to tell
which is selected.

Text And Sound:

Annotating the selection with text is useful and we recommend it.
But it does not take the place of a change to the rendering itself. It
is distracting to keep track of out-of-the scene text messages for pri-
mary feedback. Sound feedback is useful, but also suffers from the
“bombardment of noise” problem when the cursor moves quickly.
Both of these techniques are labor intensive as they require unique
messages for each selectable object. The labor is increased if lan-
guage is used and internationalization is required.

3.3 Our Solution -- Z-Buffered Overwriting

Figure 4. Z-Buffered Overdrawn Highlighting

We propose a z-buffered algorithm for locate highlighting (Figure
4). The object in question is overdrawn in a different style. This
may be any style the programmer chooses. The only restriction is
that the regular and highlighted versions of the object both have the
same geometry. Hence when we redraw the object into the current
z-buffer we are assured that it will occupy the same exact pixels on
screen.

With this restriction in place, the algorithm becomes extremely ef-
ficient. Only the highlighted object needs to be redrawn, since no
other objects will be overwritten. Until the view changes, the high-
lighted object may be redrawn into the currently displayed buffer.
When the cursor moves off an object we overdraw that object in
“regular” style before highlighting any other object. This de-high-
lighting operation also touches only the relevant pixels of the
screen.

In Figure 4 the locate highlight is rendered as a golden glow -- half
emissive color and half diffuse. The feedback is noticeable without

being noisy. When the cursor is passed quickly over the scene, each
part is emphasized without jarring changes. The transitions are fast
because only small amounts are redrawn with each change.

3.4 Algorithm for Z-Buffered Overdrawn
Locate Highlighting

The algorithm is the innovation of XXX (Note to Reviewer: Name
withheld for blind evaluations).

Objects can render in two ways. Either normally or during an over-
draw pass. The overdraw pass occurs only when the cursor moves
onto or off of a highlightable object. It is a special render pass
where only one object is drawn into the front buffer. Objects must
know if they are rendering in an overdraw pass because this affects
how they set the z-buffer depth comparison function.

Figure 5. Parts with z-shared Pixels

Sometimes different objects, like the sides of the transformer, share
pixels with identical z-values(Figure 5) . Normal objects use a
lessThan depth test, so a previously drawn z-shared pixel is not re-
placed. During the overdraw pass, whether highlighting or de-high-
lighting, objects use the lessOrEqual test and replace every one of
their own old pixels. In addition, highlighted objects render using
lessOrEqual during normal rendering passes. This insures that they
will show up in any z-shared pixels.

Each object has two draw routines, regular or highlighted. As stated
earlier, both routines must render the same geometry. Each object
also has two boolean member variables highlighted and overdraw-
Pass, stored on a per-object basis.

void renderObject(renderState, object) {
oldFuncType = getDepthFunction();

if (shouldDrawHighlighted(object) or
object.overdrawPass)
setDepthFunction(lessOrEqual);

if (shouldDrawHighlighted(object))
drawHighlighted(renderState,object);
else
drawRegular(renderState, object);

// Restore old z buffer function
setDepthFunction(oldFuncType);

}
boolean shouldDrawHighlighted(object)

// This gets more complicated with multiple views
return (object.highlighted);

drawRegular() and drawHighlighted() are easiest to implement if
the software environment provides a way to temporarily override
elements of the state. Then drawHighlighted() merely pushes the
renderState, sets some property elements in override mode, invokes
drawRegular() and finally pops the renderState (Open Inventor pro-
grammers have this option). If property override is not available,
then drawHighlighted() must change variables used by drawRegu-
lar() prior to calling it, or else re-implement drawRegular() with

new properties. The example we saw in Figure 4 implemented
drawHighlighted() by overriding a combination of emissiveColor
and diffuseColor material properties.

The handleEvent() routine below relies on fast picking. The system
must be able to perform one pick per motion event at interactive
speeds. This is not a problem for toolkits like Open Inventor which
provide fast picking.

void handleEvent(eventState, object)

if (isMotionEvent(eventState)) {
// Perform pick and see if cursor is over object
// Toolkit should cache the picked point for each
// move of the mouse. New picks should be done
// on a per-event basis, not a per-object basis.
underCursor = isUnderCursor(eventState, object);

if (! object.highlighted && underCursor) {
// Transition into highlighted
doOverdrawPass(object, eventState, TRUE);

}
else if (object.highlighted && ! underCursor) {
// Transition out of highlighted
doOverdrawPass(object,eventState, FALSE);

// In an object oriented system, we need to call the
// base class handle event afterward
baseClassHandleEvent(eventState, object);

}

When the cursor moves onto or off of an object, we invoke
doOverdrawPass(). When turning on a highlight, it first checks if
“dethroning” a previous highlight. If so, we start by invoking an ex-
tra “de-highlight” overdraw pass on the previous highlight object.
(We keep track of previous highlights with the global variable pre-
vHighlightObject.)

After that, we make sure we’re drawing in the front buffer, set the
overdrawPass flag to TRUE and call renderSingleObject() to over-
draw just the one object in the appropriate style.

void doOverdrawPass(object, eventState, lightOn)
object.highlighted = lightOn;

// Turn off previous highlight first.
if (lightOn && prevHighlightObject '= NULL)
doOverdrawPass(prevHighlightObject,
eventState, FALSE);

/7 save alonelnfo for single-object drawing.
if (lightOn)
alonelnfo = getAlonelnfo(eventState, object);

// This routine is called while handling an event,
// not while drawing.. With multiple views, we'll
// need to set the current drawing context before
// issuing render commands. If single view, this
// can be commented out.

setDrawingContext(currentHighlightWidget);

// render into front buffer

whichBuffer = getCurrentBuffer();

if (whichBuffer != FRONT_BUFFER)
setCurrentBuffer(FRONT_BUFFER);

overdrawPass = TRUE;
renderSingleObject(alonelnfo);
overdrawPass = FALSE;

// restore the buffering type
setCurrentBuffer(whichBuffer);

// get rid of alonelnfo if we just turned off

if (! lightOn)
alonelnfo = NULL;
if (lightOn)
prevHighlightObject = object;
else

prevHighlightObject = NULL;

The member variable alonelnfo contains information needed to ren-
der the object alone. Extra data in alonelnfo might include trans-
formations and properties that must be set before rendering the ob-
jectin its local space. (In Open Inventor, alonelnfo would be a path,
while object would be a node.)

The renderSingleObject() routine takes alonelnfo as an argument.
It collects the extra transforms and properties and sets rendering
state in a “set-up” phase prior to calling renderObject(). (In Open
Inventor, this is like applying a renderAction to a path as opposed
to rendering a single node)

3.5 Special Details For Multiple Views

The algorithm as described above assumes a single view of the
scene. For multiple views, we must overdraw the highlight only
into the window/widget where the cursor is placed. We monitor the
current window by keeping track of when the cursor enters or
leaves the various scene-rendering windows. When overlay win-
dows are in use there may be two windows of the same view below
the cursor at the same time -- a full-rendering window and an over-
lay window for drawing on top. Here we must either watch both
windows or, if they share a parent window, we can monitor the par-
ent (this is the case with the Open Inventor toolkit’s SoXtRender-
Area).

When the cursor enters a new window, we set this to be our current
highlight window. When the cursor leaves a window and we have
drawn a highlight into that window, we first overdraw a regular ver-
sion of that object into the old window before carrying on. Finally,
it is possible that we may be drawing into a window for which we
have never received enter notification; as when the cursor is inside
that window when the application starts up. In this case we are
forced to either use window-system calls to calculate the current
cursor window or to simply make an assumption, such as using the
first view we drew into.

Once the current highlight window/widget is known, we assume
there are two global variables currentHighlightWidget and current-
DrawingWidget. Then the doOverdrawPass() must include the call
to setCurrentDrawingContext() (described within the pseudo-code)
and the code for shouldDrawHighlighted() changes to:

boolean shouldDrawHighlighted(object)

if (object.highlighted &&
(currentHighlightWidget == currentDrawingWidget))
return TRUE;
else
return FALSE;

4 The “Touch” Phase

4.1 The Problem

Complex 3D widgets do not always have room to render each part
with clear affordances. We have a window of opportunity to present
feedback during the “touch” phase -- the period of time after the

user has selected a part and before he has moved the cursor. How
can we best take advantage of this?

4.2 Function-Revealing Feedback

The following principles comprise an approach for clear, informa-
tive feedback. Because the feedback is temporary, we can take
somewhat drastic liberties with the widget’s form.

Figure 6. Sub-Assemblies of the Transformer

Sub-Assemblies

Group the widget into two or more sub-assemblies, each with a dis-
tinctive set of related operations. We divide the t r ansf or mer into
three sub-assemblies for rotating, translating and scale (Figure 6).

“Take-Away” Feedback

When a single part is touched, display only the sub-assembly con-
taining that part. Removing the others frees up room to add new
feedback without overloading the widget. Continued display of the
touched part makes the user feel he retains hold of the object.

Additive Feedback

Add new shapes that clarify the part’s function. Guidelines for cur-
sor motion are especially useful. The possiblities here are vast. Fig-
ure 7 illustrates our solutions for the t r ansf or ner .

Color Coding

Consistent color coding provides clear functional clues. Whatever

colors you choose, distinguish between the following types of ob-

jects. Our color choices, written below, are illustrated in Figure 7.

* Primary --Object you can touch to perform a task (white or
green)

* Highlight -- Selected object and/or directions of motion.(yellow)

* Choice -- Objects you choose between, as when you press the
shift key and may select between two directions of motion (or-
ange)

» Secondary Hints --Objects that guide, such as curves or lines you
follow with the mouse. Objects that inform, such as bounding
boxes for proportional scaling (purple)

The highlighted and choice colors should stand out. The secondary
hints color should recede.

4.3 A Note On Buttons

Buttons, when touched and released, effect an immediate reaction.
They must be clearly marked as buttons so that users will under-
stand this. Certain shapes, such as a light switch or raised rectangle,
can make this clear.

A 'y
N

Translate <Alt>+Translate
(within plane) (perpendicular to plane)

Rotate (choose
one of 2 directions)

<Shift>+Rotate
(free rotation)

Scale
(uniformly)

<Shift>+Scale
(choose one of 3 directions)

Figure 7. Response of the Transformer to Various “Touches”

5 The “Dragging” Phase

5.1 The Problem

When we touch and then drag an object, we expect the widget to
follow the cursor. However all screen locations do not map well to
a given line or plane of motion. In each case we must identify these
regions and specify coherent behavior when the cursor moves
through them.

5.2 Pitfalls In Motion Along Lines

NoVanishing One Vanishing Eye Looks
Point Point Down Line To
\ Vanishing Point
A B C

Figure 8. How Infinite Lines Project onto the View Plane
Lines fall into three catagories:

* [A] No vanishing points. The line is parallel to the view
plane (Figure 8A).

e [B] One vanishing point intersects the view plane (Figure 8B).

* [C] Eye looks directly down the line to the vanishing point..
The infinite line appears as a point (Figure 8C).

Lines are thin, so most screen locations do not fall directly on a giv-
en line. How we find the “closest” point to the cursor influences our

results. The easiest way is to project the cursor location as a line
into world space and then calculate the closest point between the
two world-space lines. Unfortunately, a disquieting effect occurs.
Figure 9 shows how a single straight line gesture can cause the
widget to move in one direction, then switch directions and double
back! This behavior occurs because in a perspective view, each pix-
el points in a different direction from the eye. As we sweep, say, left
to right, the points spray a fan of world-space lines. As this fan pass-
es across the location of a vanishing point on screen, the double-
back artifact will be witnessed.

Figure 9. Double-Back Artifact of Finding Line Point in World
Space: Widget goes Backward, then Forward as Cursor moves
Left to Right.

To fix this, we must calculate the nearest point in screen space. We
project the world-space line onto the screen, drop a perpendicular
from the cursor to the screen-space line, and then map that screen
point back onto the world-space line.

Even when we find the nearest point in screen space, we still get
strange motion (discontinuous jumps in depth) in case [B] if we do
not first find the vanishing point. As we drop perpendiculars, pixels
within the stippled area (Figure 10) will be closest to points that do
not map back onto the world-space line -- they are on the other side
of the vanishing point. Pixels within the first stripe map to locations
at infinite or near-infinite distances. We must come up with a
“good” width for that first stripe, then map all points in the stippled
region and the first stripe to the clamped vanishing point. This gives
a continuous mapping across the entire screen.

Vanishing Point

Stippled Pts Map
To Vanishing Pt

Pts within 1st Strip
Map to Very
Distant Locations

Pts on Parallel Lines
Map to Intersection

Clamped
With Thick Line anipe

Vanishing Pt.

Figure 10. Regions for Mapping Screen Locations onto a Line

5.3 Calculating the Vanishing Point

Given the following transformation matrices:

* affineMatrix -- World-space to affine-space. Rotate, translate
and scale so eye is at (0,0,0) looking down z axis at world scaled
to fit normalized box.

* projMatrix -- Affine-space to projection-space, performs per-
spective distortion. Projection space is a normalized (I1x1x1)
cube.

» screenMatrix -- Projection-space to screen-space. Screen space
coords range from (0,0,0) to (pixelWidth, pixelHeight,0).

screenMatrix must reflect the aspect ratio of the viewport, via
pixelWidth and pixelHeight, or screen-space choices will seem
to take place in a distorted space.
This method finds the screen space vanishing point for a line given
in world-space, returning the value in vanish. If line is parallel to
the view plane (case [A] of section 5.2), there is no vanishing point
and FALSE is returned.

boolean getVanishingPoint(line, &vanish)

{

// Get direction of line in affine space
affPtl = line.ptl * affineMatrix;
affPt2 = line.pt2 * affineMatrix;
affineLineDir = affPt2 - affPt1;
normalize(affineLineDir);

// s z-direction 0?
if (affineLineDir.Z==0)
return FALSE;

// Transform affineLineDir to screen
// space to get vanish (explained below)
vanish = affineLineDir * projMatrix * screenMatrix;

return TRUE;
}

If the z-component of affineLineDir is 0, then the line is parallel to
the view plane and there is no vanishing point.

All parallel world-space lines share the same vanishing point. Con-
sider the one line from this set that passes through the eye point.
The eye looks straight down along this line, so all points along it
map to the some point in screen-space. This screen point is there-
fore the vanishing point. In affine-space, the eye is at (0,0,0). The
line from (0,0,0) to a point located at affineLineDir must be parallel
to the original line, but pass through the eye. All points on the line
will map from affine-space into screen-space as the vanishing
point. We select affineLineDir and multiply by projMatrix and
screenMatrix to find vanish.

5.4 Calculating the Clamped Vanishing Point

We can’t just pick some number of pixels and move that distance
away from the vanishing point. Depending on the line, a fixed num-
ber of pixels maps to a wide range of distances. Instead we travel a
proportional distance from the vanishing point toward the appear-
ing point, defined as the screen space projection of where the line
intersects the near clipping plane (Figure 11). We call this propor-
tion VANISH_FACTOR. In our applications we use a value of 0.01

Vanishing Pt
-«—— Clamped Vanishing Pts

ad

. N

Appearing Pts

Figure 11. Vanishing and Appearing Points.

This method finds the screen space appearing point for a world-
space line and returns the result in appear. It intersects the line in
affine-space and then converts to screen space. It assumes that /ine
is not parallel to the view plane, so it should not be called if getVan-
ishingPoint() has failed on the same line.

void getAppearingPoint(line, &appear)
{

// Transform line into affine space
affPtl = line.ptl * affineMatrix;
affPt2 = line.pt2 * affineMatrix;
affLine = makeLine(affPtl, affPt2);

// Create the viewPlane in affine space.
affViewPlane = makePlane(nearViewDist, zAxis);

// intersect and transform result
affAppear = intersect(affViewPlane, affLine);
appear = affAppear * projMatrix * screenMatrix;

To calculate the clamped vanishing point, interpolate between van-
ish and appear by an amount of VANISH_FACTOR.

5.5 Projecting a Cursor onto a Line

The projectToLine() routine returns FALSE if the worldLine
passes through the eye (case [C] in section 5.2). In this case the
whole line maps to a single point and meaningful dragging is im-
possible.

boolean
projectToLine(worldLine, cursor,&result)

/7 Does line pass through eye? (case [C])
testPt = closestToPoint(worldLine, worldEyePoint)
if (testPt == worldEyePoint)

return FALSE;

// Find screen mapping, disregarding vanishing pt.
screenLine = getScreenSpaceLine(worldLine);
screenChoice = closestToPoint(screenLine, cursor);

hasVanish = getVanishingPoint(worldLine, vanish);

if (hasVanish) {
// One vanishing point (case [B]).

// Get clamped vanishing point.

getAppearingPoint(worldLine, appear);

clamp = interp(vanish, appear,
VANISH_FACTOR);

// Constrain our choice to lie between appear
// and clamp.
constrainBetween(appear, clamp, screenChoice);

else {
// No vanish point (case [A]). Needn't constrain.
}

// Project screen choice into world space and
//intersect with worldLine.
choiceWorldLine
= getWorldSpaceLine(screenChoice);
result = closestToLine(worldLine, choiceWorldLine);

return TRUE;
}

closestToPoint() finds the point on the line nearest the input
point. getScreenSpaceLine() creates a copy of the input line and
transforms it from world-space to screen-space. constrainBe-
tween() assumes three colinear inputs. It tests whether the third
point lies between the first two. If not it moves it to the closer end.
getWorldSpaceLine() creates a world-space line corresponding
to the ray from eye toward the input screen point. closestToLine()
finds the point on the first line nearest to the second line. In this
case, they should be close to intersecting since screenChoice is a

pixel atop the line.

5.6 Pitfalls In Motion Within Planes

Points on one side of the the horizon (Figure 12) will intersect
nicely with the plane. We need only cast the cursor location into
world space and intersect with the world-space plane. Screen loca-
tions above the horizon do not map onto the plane. If these locations
are cast into world-space lines and intersected with the plane, the
resulting point will be located behind the viewers head!

Undefined
Mapping B A

L \

Z/ i Ei (\ Horizon Line

Figure 12. Regions for Mapping Screen Locations on a Plane

Well Defined

To get around this, we map screen points in the “sky” to the closest
point on the horizon line. So as the cursor moves through the sky,
the widget drags back and forth on the horizon, tracking the cursor.
Note that screen points near the horizon map to near-infinite dis-
tances. As in the case of lines, we employ the VANISH_FACTOR to
select a clamping distance. This yields good, continuous results.

5.7 Projecting a Cursor onto a Plane

The method is a straightforward extension of the approach taken
with lines. Since all lines within a plane have vanishing points lo-
cated on the horizon, we construct the horizon line by finding two
unique lines in the plane, calculating their vanishing points, and
then connecting them. Care must be taken to find two lines that do
not lie within the view plane (lines in the view plane won’t vanish).

Next we find the appearing line. This is the line where the motion
plane intersects the screen and is analogous to the appearing point
discussed earlier. We find it by connecting the appearing points of
the two lines used to create our horizon.

The horizon and appearing lines are always parallel. The closer to-
gether they are, the nearer our view is to being edge-on. When they
are coincident, the plane is viewed exactly edge-on

cursor point__| gy, o

nearest \

Vanish Horizon Line
and Appear. ~—

Points

appear Line

Figure 13. Finding the Nearest Vanishing Point to the Cursor

To get the best placement of our widgets when the cursor is above
the horizon, we find the vanishing and appearing points nearest to
the cursor by dropping perpendiculars to these two lines (Figure
13) . We then constrain the cursor point to lie between them, mak-
ing sure to account for the VANISH_FACTOR. This assures a new
screen point below the horizon, which we may cast into world-
space and intersect with the plane.

projectToPlane() returns FALSE if the plane is edge on, since

each screen point maps to an infinite line and meaningful dragging
is impossible.

boolean
projectToPlane(widPlane, cursor, &result)

// To start, assume cursor is over plane.
screenChoice = cursor;

// s the plane parallel to the screen?

hasHorizon = areParallel(widPlane.normal,
wldEyeDir);

if (hasHorizon) {

// Find two vanishing points.
// noVanishDir lies in both viewPlane & wldPlane
noVanishDir = cross(wldEyeDir, widPlane.normal);

/7 These are not in the viewPlane. Both vanish when
// projected to screen, unless plane is edge-on to eye.
wldDirl = cross(noVanishDir, widPlane.normal);
wldDir2 = 0.5 * (noVanishDir + wldDirl);
normalize(wldDir2);

wldLinel = makeLine2(wldPlane.point, wildDir1l);
wldLine2 = makeLine2(wldPlane.point, wldDir2);
hasVanishl =getVanishingPoint(wldLinel,vanishl);
hasVanish2 =getVanishingPoint(wldLine2,vanish2);

// Unless both vanish, plane is edge-on
if (not(hasVanishl) or not (hasVanish2))
return FALSE;

horizon = makeLine(vanishl, vanish2);

// Connect appearing points for appearLine
getAppearingPoint(wldLinel, appearl);
getAppearingPoint(wldLine2, appear?);
appearLine = makeLine(appearl, appear?2);

// Find closest point on each line to screenChoice
vanish = closestToPoint(horizon, screenChoice);
appear = closestToPoint(appearLine,screenChoice);

// Plane is edge-on if these overlap
if (vanish == appear)
return FALSE;

// Get clamped point for our choice’s line.
clamp = interp(vanish, appear, VANISH_FACTOR);

// Constrain choice to lie between appear and clamp
constrainBetween(appear, clamp, screenChoice);

// Project choice to wld space, intersect with widPlane
choiceWldLine = getWorldSpaceLine(screenChoice);
result = closestToLine(wldPlane, choiceWIldLine);

return TRUE;

The routine makeLine2() creates a line from a point and a direc-
tion, whereas the earlier makeLine() creates a line from two
points.

6

We have presented methods that make it easier for users to under-
stand the usage of complex multi-function 3D widgets. We have
also given algorithms for making widgets move in a manner more
consistent with the user’s intent. Many challenging problems re-
main unsolved in this field. Of particular interest to these authors
are: How can we best use 3D widgets for scene assembly? How do

Conclusion

we allow users to constrain motion of 3D widgets to useful incre-
ments, and how can this notion be built into a clear user interface?
How can we provide a way for users to gracefully change their
frame of motion between different coordinate systems? Each of
these areas is ripe with challenges for both the visual designer and
the applied scientist.

7 References

[ALIA] Alias Research, “Alias Sketch”,Modeling Software.
Toronto, Canada. 1994

[BIER] Eric Bier, “Skitters and Jacks: Interactive 3D Position-
ing Tools”, Proceedings 1986 Workshop on Interactive
Graphics, ACM, New York, 1987, 151-169.

[CALI] Caligari, Inc. “TrueSpace,” Modeling Software.
Mountain View, CA. 1994

[CHEN] Michael Chen, S. Joy Mountford, and Abigail
Sellen. “A Study in Interactive 3-D Rotation Using 2-
D Control Devices”, Computer Graphics (SIGGRAPH
1988 Proceedings), 22(4) pp.121-129 (August 1988).

[CONN] D. Brookshire Conner, Scott S. Snibbe, Kenneth P.
Herndon, Daniel C. Robbins, Robert C. Zeleznik, and
Andries van Dam, “Three-Dimensional Widgets”
Computer Graphics Special issue on 1992 Sympo-
sium on Interactive 3D Graphics, pp. 183-188 (March
1992).

[GLEI] Michael Gleicher and Andrew Witkin, “Through-the-
Lens Camera Control”’, Computer Graphics (SIG-
GRAPH 1992 Proceedings), 26(2) pp.331-340 (Jul ‘92)

[ISAA1] Paul Isaacs, “Fun With Draggers: Building An Inter-
active Track Light”, Silicon Graphics Developer
News, August 1994

[ISAA2] Paul Isaacs, “Linkatron”, SGI Demo Program,1994

[ISAA3] Paul Isaacs, “Creating a 3D User Interface: the
Thief, the Industrial Designer, the Craftsman and the
Nerd”, Position Statement for Workshop on Chal-
lenges of 3D Interaction, CHI'94

[KENT] Jim Kent, “BluePrint”, SGI Demo Program, 1995

[LOOK]Howard Look, “Curve”, SGI Demo Program, 1990

[NIEL] Gregory Nielson and Dan Olsen Jr., “Direct Manipu-
lation Techniques for 3D Objects Using 2D Locator
Devices”, Proceedings 1986 Workshop on Interactive
Graphics, ACM, New York, 1987, 175-182.

[RADI] Radiance Software International, “EZ3D”, Modeling
Software. Berkeley, CA. 1994

[SGI1] Silicon Graphics “Showcase 3.0,” Drawing Software,
Mountain View, CA. 1993

[SHOE]Shoemake, Ken, from “Math For SIGGRAPH”, SIG-
GRAPH 1991 course notes #2

[SNIB] Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Rob-
bins, D. Brookshire Conner and Andries van Dam,
“Using Deformations to Explore 3D Widget Design”,
Computer Graphics (SIGGRAPH 1992 Proceedings),
26(2) pp. 351-352 (July 1992).

[SOFT] Softimage Software “Creative Environment” Soft-
ware, Montreal, Canada. 1994.

[TARL] Mark Tarlton and P. Nong Tarlton, “A Framework
for Dynamic Visual Applications”, Computer Graph-
ics Special issue on 1992 Symposium on Interactive
3D Graphics, pp. 161-164 (March 1992).

[WAVE] Wavefront Technologies “PowerAnimator”, Santa
Barbara, CA. ‘94.

[WERNU1] Josie Wernecke, The Inventor Mentor. 1994, Read-
ing, Ma: Addison-Wesley.

[WERNZ2] Josie Wernecke, The Inventor Toolmaker. 1994, Read-
ing, Ma: Addison-Wesley.

[ZHAI] Shumin Zhai et al, “The Silk Cursor”, CHI ‘94 Con-
ference Proceedings, pp. 459-464(April 1994)

A Manipulator for 3D Transformations

Paul S. Strauss Paul Isaacs
Pixar Animation Studios Shout Interactive
pss@pixar.com pauli@shoutinteractive.com

Abstract

This paper describes a direct manipulation interface (manipulator) for transforming objects in a three-dimensional
scene. The manipulator allows a user to transform, scale, or rotate an object using a single, integrated tool that was
improved over several years of user tests and customer feedback. The design of the interface and some implementa-
tion details are described.

Introduction

Direct manipulation refers to the use of an input device such as a mouse or pen to transform an object in a three-
dimensional scene so that device motion corresponds more or less directly to the desired transformation. There are
two basic approaches to direct manipulation interfaces. One is to use the object itself as a handle: a user can click and
drag on the object to move it, and modifier or “hot” keys can be used to access various transformation modes such as
translation, rotation, or scaling. The other approach adds geometric constructs, which we will call manipulators,
around or near the object to act as an interaction tool.

The latter approach has become widespread in recent years, due primarily to the less intimidating interface presented
to users. Intuitive affordances can guide users to the correct modes and motions, rather than relying on hidden key
sequences. Manipulators can also provide feedback about current size and orientation, as well as actions that will be
taken upon device motion.

We have designed and implemented a manipulator for transforming objects in three dimensions. The goals of its
design are:

+ Allow the user to scale, rotate, or translate an object with the same manipulator.
» Minimize the need to change views to perform any desired motion.
* Provide feedback about what action will be taken before the user initiates it.

+ Use modifier keys when necessary to alter the interaction behavior, but reserve unmodified motion
for the most common and useful actions.

» Keep the look and feel as consistent as possible within the constraints of the other goals.

A Brief History

The original work on manipulator design was part of the first incarnation of the Inventor toolkit from Silicon Graph-
ics [3]. Inventor offered a variety of simple manipulators that performed single tasks, such as scaling, rotation, or
translation, and also several compound manipulators that allowed several tasks to be accessed simultaneously. A sim-
ilar approach was also taken by researchers at Brown University [1,2].

Customer feedback and usability studies over a period of years have led to the improvements found in the manipula-
tor presented here. It has been used successfully in the Cosmo Worlds product for both SGI and Windows platforms.

Color and Feedback

The manipulator is shown being used to transform a cone in Figure 1a. The gray lines forming the manipulator box
form rectangular faces that are used for translation, the white cubes at the corners are used for scaling, and the green

knobs on the protruding sticks are used for rotation. Using locate highlighting, each of these interactive parts turns
orange when the cursor is over it, signaling that it will be active if the device button is pressed, as shown in Figure 1b.

Figure 1. (a) The 3D manipulator in its resting state; (b) Locate highlight indicat-
ing which part will be active when the mouse button is pressed.

Once the button is pressed to initiate an action, irrelevant parts of the manipulator are hidden and feedback geometry
is added. The feedback is updated when the state of the interaction changes. For example, Figure 2a shows the state of
the manipulator when the mouse button is pressed with the cursor over a rotation knob. The translation and scaling
affordances disappear, and the selected knob turns yellow to indicate it is active. Purple rings show the two possible
rotation circles prior to motion, and orange arrows indicate a choice of two directions to move the mouse to begin
rotating. Once a direction has been chosen, as in Figure 2b, the unused ring and arrow disappear, and the relevant
arrow turns yellow. When the button is released, the manipulator reassumes its normal appearance.

Figure 2. (a) Feedback for initiation of rotation gesture; (b) Feedback once the di-
rection of rotation has been determined from mouse motion..

The color scheme described above is used consistently throughout the rest of the interface. Orange indicates a choice
between options, and yellow indicates selection of one of those options. Purple is used for auxiliary feedback.

Interaction
The manipulator was designed to make default interaction perform the most common operations:
 Translation: Translate in the plane of the selected face.

* Rotation: Rotate around one of the two primary axes perpendicular to the selected knob, based on the
first user motion.

* Scaling: Scale uniformly about the center.
The Shift key is used to add or remove constraints to the above operations:

* Translation: Translate in one of the two principal directions in the selected face, based on the first
user motion.

* Rotation: Rotate freely to keep the selected knob near the cursor.

* Scaling: Scale (nonuniformly) about the center in one of the three principal directions, based on the
first user motion.

The Control key is used to access an alternative transformation:

* Translation: Translate perpendicular to the selected face. (Note that this allows the user to translate in
all three directions with one face.

* Rotation: Translate the center of rotation in the plane perpendicular to the selected knob. (The Shift
key constrains this to a single direction in that plane.)

* Scaling: Scale the object holding the corner opposite the selected knob fixed. With the Shift key
pressed, keep the opposite face fixed.

The user may press and release modifier keys during actions to switch modes without releasing the mouse button.

Implementation Details

Most of the implementation of the manipulator is straightforward, but there are a few tricky areas involving transfor-
mation of the manipulator geometry itself.

The size of the manipulator should relate to that of the object it is transforming. Given an aligned bounding box for
the object, it is simple to scale the manipulator geometry appropriately. However, it would be bad to scale all the indi
vidual pieces of the manipulator, since this could distort the shapes of the knobs and the angles between them. If the
manipulator is represented as a scene graph, this requires the insertion of nodes in the correct place to undo the non-
uniform scaling. We find that using the average size of the three dimensions as the uniform scale factor works well.

Another problem occurs when the relative size of the manipulator on the screen is too small or too large. The knobs
may be too tiny to click on in the former case and may take up too much space in the latter case, obscuring other
objects. To avoid these problems, we insert a scene graph node above each knob that scales the knob’s size to stay
within a fixed screen-space range. The scaling can be applied continuously or only when the mouse button is
released.

Care must also be taken when multiple views of a scene are visible simultaneously. When a manipulator appears in
more than one view, the locate highlighting feedback should be visible in only the view the cursor is over.

Acknowledgements

The work described in this paper could never have been done without the contributions of Howard Look, Mike
Mohageg, Rob Myers, Deb Galdes, David Mott, and the rest of the Inventor Team at Silicon Graphics. The authors
extend their thanks to all of them.

References

[1] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, Robert C. Zeleznik, and Andries
van Dam, “Three-Dimensional Widgets,” In Proceedings of the 1992 Symposium on Interactive 3D Graphics, pp.
183-188 (March/April, 1992).

[2] Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, D. Brookshire Conner, and Andries van Dam, “Using
Deformations to Explore 3D Widget Design,” Computer Graphics (SIGGRAPH 92 Proceedings) pp. 351-352
(July, 1992).

[3] Paul S. Strauss and Rikk Carey, “An Object-Oriented 3D Graphics Toolkit,” Computer Graphics (SIGGRAPH
'92 Proceedings) pp. 341-349 (July, 1992).

The Design and Implementation of
Direct Manipulation in 3D

Introduction

Paul S. Strauss
Pixar Animation Studios

What Is Direct Manipulation?

e WYSIWYG Interaction with visual data
= [Schneiderman '82]

"Direct": Interaction IS In same visual context
as data

"Manipulation™: mapping from input valuator
to changes to data

Typically uses a manipulator

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Why Is It A Good Thing?

e Result directly coupled to input motion

e User’s focus stays in work area

e Can guide/constrain interaction in natural
ways

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Haven't | Seen This Before?

e Common in 2D

= Handle boxes in drawing programs for scale,
stretch, rotate, and drag

= Drag—and-—drop

 Becoming more common in 3D
= View navigation

= Manipulators for transforming/editing objects

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Isn’t It Pretty Easy?

 Easyin 2D
= One—to—one mapping from cursor position to
spatial domain

= Easy intersection testing
= Straightforward interpretation of motion
= No perspective distortion

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Why Is It Hard in 3D?

e 2D view of virtual 3D world

 Ambiguity — infinite mappings from cursor
position to spatial domain (line)

e Even worse when motion Is considered

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Ambiguous Input Mapping in 3D

)
p,

Which motion does the user want?

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

s That All?

e Perspective problems
= How large handles appear relative to data

= How large handles appear relative to each other

e Occlusion problems
= Handles obscured by data

= Entire manipulator obscured

* Precision problems
= How to deal with exact placement

= Mathematical instabilities

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

A Little Ancient History

« 3D dragging
= Softimage ['88]; Snap—dragging [Bier '90]

Direct rotation

= Virtual sphere [Chen et al. '88];
Arcball [Shoemake '92]

Direct general 3D transformation
= |[nventor [Strauss/Carey '92]

Other 3D manipulation
= 3D Widgets [Conner et al. '92, Snibbe et al. '92]

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

Related Areas

* Immersive environments (VR)
 Two—handed input

e Haptics

Siggraph 2002 The Design and Implementation of Direct Manipulation in 3D

	C-Design.pdf
	Design and Implementation of Direct Manipulation in 3d
	Designing good manipulators
	Designing good manipulators
	Temporal modes and spatial modes
	How we perceive 3d
	How manipulators should look
	How manipulators should behave
	Making sure your manipulators are great
	Exercises

	E-Architecture.pdf
	Table 1. Implemented Projector Classes
	An Architecture for Direct Manipulation of 3D Objects
	1 Abstract
	2 Introduction
	2.1 Motivation
	2.2 Related Work
	2.3 Overview

	3 Introduction to Manipulators
	Figure 1. [a] Simple Manipulator, [b] Compound Manipulator and [c] Contraption

	4 Event Handling
	5 Projectors
	5.1 Projecting the Mouse Position
	Figure 2. SphereSheetProjector with Two Projected Rays

	5.2 Interpreting Mouse Motion

	6 Manipulator Parts
	6.1 Behavior of Parts
	Figure 3. Different Geometries, same Projectors

	6.2 Customizing Parts
	6.3 Highlighting Parts
	Figure 4. Manipulator Structure With Two-State and One- State Parts (This and subsequent figures ...

	7 Simple Manipulators
	Figure 5. DragManip
	7.1 Example: Rotating Disc Manipulator
	Figure 6. RotateDiscManip
	Figure 7. Rotating About a Corner of a Part - Just add a transform to the “rotatePart.”.
	Figure 8. Rotating About an Arbitrary Axis - Use a transform to re-orient the entire manipulator.

	7.2 Example: PushButton Manipulator
	Figure 9. PushButton Manipulator

	8 Compound Manipulators
	Figure 10. Compound Manipulator
	8.1 Example: DragBox Manipulator
	Figure 11. DragBoxManip

	9 Further Examples
	9.1 Example: HandleBox Manipulator
	Figure 12. A HandleBoxManip

	9.2 Example: A Color Editor Manipulator
	Figure 13. A Color Editor

	9.3 Example: A Walking Elephant
	Figure 14. A Walking Elephant

	9.4 Other Assorted Manipulators

	10 Conclusions and Future Work
	11 Acknowledgments

	Appendix A: Inventor Manipulator Classes
	Appendix B: Sample Code
	12 References
	Color Plates
	Plate 1. Windmill with on/off switch.
	Plate 2. Stopwatch with on/off and reset buttons
	Plate 3. Three sliders controlling position of a sphere
	Plate 4. Directional light editor - arrow changes direction, ball moves icon
	Plate 5. Point light editor - ball moves source of light
	Plate 6. Spot light editor - ball moves source, arrow changes direction, cone changes beam spread.
	Plate 7. RotateBox: within circles rotates about axis, center of circles drags center of rotation...
	Plate 8. Jack manip: sticks rotate, cubes scale, object translates
	Plate 9. Chain: each link can be directly rotated relative to the previous link.
	Plate 10. Alignment tool for layout application: picking different arrows aligns the objects insi...
	Plate 11. Clipping plane manip - arrow rotates, square translates
	Plate 12. Viewing walls with shadow manipulators

	F-Techniques.pdf
	Techniques for Handling Complexity and Robustness in 3D Widgets
	1 Abstract
	2 Introduction
	2.1 Motivation
	2.2 User Model
	2.3 Platform Restrictions and Requirements
	2.4 The “Transformer”
	Figure 1. A Transformer in its Rest State, surrounding a Pear

	3 The “Approach” Phase
	3.1 The Problem
	3.2 Rejected Solutions
	Figure 2. Overlay Plane Highlighting
	Overlay Planes:

	Figure 3. Bounding Box Highlighting
	Bounding Boxes:
	Text And Sound:

	3.3 Our Solution -- Z-Buffered Overwriting
	Figure 4. Z-Buffered Overdrawn Highlighting

	3.4 Algorithm for Z-Buffered Overdrawn Locate Highlighting
	Figure 5. Parts with z-shared Pixels

	3.5 Special Details For Multiple Views

	4 The “Touch” Phase
	4.1 The Problem
	4.2 Function-Revealing Feedback
	Figure 6. Sub-Assemblies of the Transformer
	Sub-Assemblies
	“Take-Away” Feedback
	Additive Feedback
	Color Coding

	4.3 A Note On Buttons
	Figure 7. Response of the Transformer to Various “Touches”

	5 The “Dragging” Phase
	5.1 The Problem
	5.2 Pitfalls In Motion Along Lines
	Figure 8. How Infinite Lines Project onto the View Plane
	Figure 9. Double-Back Artifact of Finding Line Point in World Space: Widget goes Backward, then F...
	Figure 10. Regions for Mapping Screen Locations onto a Line

	5.3 Calculating the Vanishing Point
	5.4 Calculating the Clamped Vanishing Point
	Figure 11. Vanishing and Appearing Points.

	5.5 Projecting a Cursor onto a Line
	5.6 Pitfalls In Motion Within Planes
	Figure 12. Regions for Mapping Screen Locations on a Plane

	5.7 Projecting a Cursor onto a Plane
	Figure 13. Finding the Nearest Vanishing Point to the Cursor

	6 Conclusion
	7 References

