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Chapter 1

The Lore of the TDs

Tony Apodaca
Pixar
aaa@pixar.com

Before prospective feature film production technical directors in charge of computer graphics
imagery (“CGI TDs"), such as yourselves, can start making the knockout special effects that we've
come to expect from individuals of your caliber and future reputation, there are a few basics you
need to know.

Okay, let’s be honest. Being a superstar TD requires a lot more than extensive training, straight
As in all your math and programming courses, and memorization of all of Frank Oz’s lines in
Episode 5 In fact, being a superstar TD doesn't requargy of those things. No, it requires being
steeped in the secret knowledge, there of the TDs There is much that the mere 3D Modeling
Artist does not know. There is much that the mere Production Supervisor cannot grasp. Only you,
who are willing to devote your life to the mysterious ways of the TD can hope to one day reach the
nirvana, the pinnacle of knowledge, the celebrated gurudom, that Efibets Supervisor

If you are destined to be one of the chosen ones, then perhaps this course, this 90 minute lecture,
this moment of inspiration, will help you make your first step to a larger wérld.

1.1 Basic Computer Graphics

This morning, we’'ll start with a basic grounding in some fundamental concepts of computer graph-
ics. There are innumerable textbooks on computer graphics, mathematics, optics and physics which
have information relevant in your travails as a production TD. In all likelihood, you have a couple

of those textbooks on your shelves already. However, experience has shown us that most of those
textbooks are also filled to the brim with information you won't ever need. Breshenham'’s circle
drawing algorithm, anyone? And sometime the key bits of knowledge and lore are buried so deeply
in that information overload that they get overlooked. While a short lecture such as this can’t pos-
sibly cover in detail every concept that you'll have to master, | thought | would highlight the ones
that | find most relevant on a day-to-day basis. If | gloss over details, or just simply confuse you, |
apologize in advance. Consult the standard tomes for more depth.

1.1.1 Trigonometry and Vector Algebra

To quote one of America’s most famous and enduring icons, “Math is hard.” Yes, it is. Fortunately,
despite appearances, TDs only rarely use math more complex than trigonometry in their day to day

10ops, sorry, that was Alec Guinnessin
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lives. And since | assume everyone in this audience graduated high school (or at least college) with a
semester of calculus under their belts, trigonometry should be a snap. Well, trigonometry and vector
algebra. Okay, the occasional integral equation, but really, only occasionally....

Trig

The single most important mathematical equation that you could hope to know, that will solve the
deepest mysteries of computer graphics, is this one:

U-V = [U[|V] cos(bu—v)

It says that the dot product of two vectors is equal to the product of the magnitude of the two
vectors times the cosine of the angle between them. If you completely understand this equation, you
understand most of the important parts of trigonometry. So, let’s take it apart.

First, there is no problem with what a vector is, right?

V = V- X+ VY +V.-Z
= V,-(1,0,0) + V,-(0,1,0) + V.-(0,0,1)
= (Vansz)

A vectoris quantity which is composed of two or maremponentsThe number of components that
a vector contains is called itimensionality In our notation, we use a capital letter to represent a
vector, and a subscripted capital letter to represent one of the components. In our case, we are often
interested in three-dimensionditection vectorswhose components represent distances along the
X,Y andZ axes. A quantity with only one component, a normal real number, is often called a
scalarby vector algebraists, because multiplying a direction vector by a scalar lengthens or “scales”
the vector. Adding vectors is done by adding the components. Real simple.

Second, do we remember what the dot product of two vectors is? Sure we do. It is the sum of
the products of the elements.

UV =U- Vo +U,-V, +U,- V)

There are two different ways to multiply two vectors together. Multiplying the two vectors compo-
nentwise, and summing the results, gives us a scalar which totheroduct This is the simplest
way you can multiply two vectors, since you just have to multiply the elements and add. The only
tricky bit is that the result is a scalar. The other way to multiply two vectors is calledrtss
product and that has its uses which we’ll talk about later.

Next, what do the vertical bars mean? Magnitude. That is, the length of the vectors. Any time
a vector is written between two bars like thig|, this refers the the length of the vector, which,

thanks to Pythagoras, we know\i/évf + Vy2 + V.2. A vector whose length is exactly equal to
1.0 (akaunit length is called anormalizedvector (not to be confused withreormal vecto), and is
often written with a bar over it like sd7 .

Finally, we know what the cosine of the angle between two vectors means. But what if the
vectors are located far apart from each other? What if one is over here, and the other is way over
there. How do you measure the angle between them? Well, the answer is, there is no such thing as
“way over there” for direction vectors. Direction vectors are only directions, their “positions” don’t
matter, or even exist! You can move their starting point to whereever you want without changing
them. So, to measure the angle between two vectors, you just think of them starting from the same
point, and measure that angle. Capish? If the vectors point in the same direction, the angle between
them is 0.0. The cosine of 0.0 is 1.0. If the vectors point in opposite directions, the angle is 180
degrees, also known asradians, and the cosine of that is -1.0. If the vectors are perpendicular to
each other, the angle is 90 degregsadians, and the cosine of that angle is 0.0.
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So, putting it all together. The dot product of two vectors is a scalar. It is proportional to the
length of the vectors, and to the cosine of the angle between them. And because we can rearrange
the master equation into this:

u-v
Oy_y = cos ! ——
U V]
we now have the single most common way of computing andglésit is why the dot product so
important to computer graphics.

Homogeneous Coordinates

In your work as TDs, you will spend most of your professional career worrying about three very
similar, yet totally distinct, types of 3-dimensional vectors. If you understand how and why they are
different from each other, you'll be way ahead of your less erudite peers.

Pointsare vectors, and in our case they are 3-dimensional vectors. They represent positions in
3-D. Direction vectorsare also 3-dimensional vectors. Generally if someone says casually that some
guantity is a “vector”, they mean a direction vector. We can measure both the “direction” and the
“magnitude” of a direction vector, and it is often the case that we only care about one or the other in
the equations that we are juggling. Points and direction vectors are related by a simple and elegant
fact: the values of the components of a point are identical to the values of the direction vector that
points from the origin to the point.

(Pzzz7Py7Pz) = (07070) + (VmVyaVz)
whereP, = V,, etc.

A long time ago, eons ago, back in ancient days before Nathan Vegdahl was born, a group of
computer graphics practitioners noticed that a lot of the math that had to be done with points and
vectors, like transforming them from one coordinate system to another, was easier if the points and
vectors were represented in 4-dimensions. No, they were not atidia¢p the mix. Instead, they
were appealing to a particularly elegant 4-dimensional space knoworasgeneous coordinates
Homogeneous coordinates are elegant because it handles perspective projection with the same math
that it handles normal translation or rotation. Homogeneous math doesn'’t get hung up on the prob-
lem that perspective projections make parallel lines intersect, which totally screws up our nice clean
Euclidean 3-dimensional space.

Now, hereis the magic. To put a point into 4-dimensional homogeneous coordinates, you merely
tack on a 1.0 as the fourth (usually calkejicomponent. To put a direction vector into homogeneous
coordinates, you merely tack on, stay with me here, a 0.0 ag tt@mponent. Got that? So now,
the pedestrian equation above becomes:

(P, P,,P.,1.0) = (0,0,0,1) + (V,,V,,V.,0.0)

Et voila!

Suddenly, much that was mysterious comes into focus. Why are transformations always speci-
fied as4 x 4 matrices instead &f x 3, or perhaps 8 x 4? Because they are specifying homogeneous
transformations. Consider the math involved with 3-dimensional transformation matrices. In order
to transform a point by &8 x 4 rotation and translation matrix as you'd find in a CG textbook, you
have to know to multiply the point by the “upp8rx 3", and then add in the translation from the
bottom row. If you transform a direction vector, you don’t bother to add the translation. When you
put a point through a perspective projection, you calculate tiwedy components, and then “divide
by z”. You simply can't put a direction vector through perspective. Instead, you must transform two
points and then subtract them. So many special rules to remember!
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With a homogeneous transformation matrix, all these little tricks go away. Points and vectors
transform identically through the transformation matrix. The 0.0 or 1.0 inctiteemponent handle
the “translation problem”. Perspective? No problem, just go for it.

You've probably heard little rules of thumb like “You can add two vectors, but you can’t add two
points” or “You can subtract two points, but you get a vector”. But does it make sense to multiply a
point by a scalar? Such questions are a lot easier to answer in homogeneous coordinates. Oh, you

need to know one other thing: by definitid,, y, 2,t) == (%,%,%,1)
(x,y,2,0)+ (r,s,t,00 = (z+r,y+s,z+1t0) Avector!
(@,9,2,1) + (r,s,t,1) = (z+ry+s2+t2)
= (Zr uls =) The midpoint?!
(z,y,2,1) = (r,s,t,1) = (zr—ry—s,2z—1t,0) Avector!

Normal Vectors? Hardly!

The oddest of our triumverate of 3-vectors is t@mal vector Normal vectors are not called
normal because they are straightforward, because they are not. They are not called normal because
they are normalized (unit length) because they don't have to be. They are called normal because
“normal” is a synonym for “perpendicular”. Normal vectors are perpendicular to a surface. That is,
they are perpendicular to the tangent plane at the surface.

What is a tangent plane, you might rightfully ask. Believe me, you probably understand what
a normal vector is better than you'll understand my goofy explanation of what the tangent plane is.
The idea of a tangent line is easier — it is a line that just touches the surface at the point, but doesn’t
penetrate the surface (at least, not near the point). The tangent plane is a plane that does the same.
It represents the orientation of the surface. So, the normal vector in some sense points as far away
from the surface as is possible.

How are normal vectors computed? For most primitives, it is relatively easy to compute a couple
vectors in the tangent plane, because the tangents are related to the derivatives of the equations of
the surface. Once you have two tangents, you apply theroks productrick.

Remember we said there was another way to multiply two vectors? Here itis. The cross product
is harder to compute than the dot product, but not that difficult once you learn the trick. The point
is that it produces a vector, not a scalar like dot product. In fact, the vector that it produces is
perpendicular to both of the original vectors. This is a very cool property, because generating an
axis vector that is perpendicular to something is a very useful thing to be able to do. For example,
consider when | have two vectors, both in the tangent plane. The surface normal is perpendicular to
the tangent plane, and so by definition it is perpendicular to every vector in the tangent plane. Yep,
just cross those two vectors and I've got the surface normal.

One of the hardest things to understand about normal vectors is how to transform them. It is
a constant source of frustration and postings on the Highend3D mailing list. Here is the problem.
They don't transform like points. They also don’t transform like direction vectors. They are a special
case, because they aren't really directions, per se. Surface normals need to stay perpendicular to the
tangent plane, and so the right way to compute them is to transform the tangent plane, and then see
where the surface normal ended up. To see why, look at this diagram:
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Figure 1.1: Transforming a point, direction vector and surface normal.

As you can see, if you transform a circle by a stretching transformation, points on the surface
stretch into an ellipse, direction vectors stretch the same way, but surface normals actually contract.
If you measure carefully, you would discover that they shrink by the reciprocal of the stretch. If the
circle stretched by 3, the surface normals would contragt to

Lots of math far beyond the scope of this lecture leads smart mathematicians to the conclusion
that you can transform surface normilgou use the transpose of the inverse of the transformation
matrix. Even more math proves that this is exactly the same as the inverse of the transpose of the
transformation matrix. Sadly, a little more math yet proves that the inverse transposeisatiex
equalto the matrix. Just not always. Which is why people think they can get away with transforming
normal vectors the same way as direction vectors — sometimes it just happens to work. But if you
want to be a pro that never has to deal with bizarre inexplicable shading mistakes on objects the
first time they squash and stretch, always remember that normal vectors transform differently than
direction vectors. Keep track of which of your vectors are directions and which are normals, always
use the right transformation function. You'll be glad you did.

1.1.2 Topology

So, if you think that vector algebra is difficult mathematics, wait 'til you hear about topology. At
the layman’s level (and believe me, we are not going to get into this any deeper than the layman’s
level), topology is the mathematics of shapes. Since computer graphics is all about drawing pictures
of shapes, you'd think that a thorough of topology would be important for doing great computer
graphics. Fortunately for us, that's not the case. But understanding a few of the buzzwords that we
topology novices throw around is important for polishing that superstar TD aura.

First and foremost, there is the tetopologyitself, as it is used to describe different shapes.
Shapes are divided into classes, and all shapes that share certain a certain property are together
in a class. The property in question is that they can be “continuously deformed” into each other.
By continuously deformed, they mean stretching, shrinking, bending, and otherwise reshaping the
object, but absolutely not cutting, poking holes, filling holes or pushing the surface through itself
(self-intersection). For example, if you take a normal six-sided closed cube, smash down the corners
and push in the edges, you can get something that looks like a die (singular of dice). If you keep
pushing and molding and deforming it, eventually you can get a sphere. So, a cube, a die and a
sphere are aliopologically equivalentA torus, on the other hand, cannot be smashed or deformed
in any way into a sphere, because of the hole in the middle. Therefore, it is in a different topological
class. Topological equivalence has nothing to do with how many sides an object has, how wildly
twisted its limbs are, or how much volume it fills.

In computer graphics, since we're not studying the subtle mathematics of topological equiva-
lence classes and their relationship to Fermat'’s last theorem, we tend to use this term very loosely.
For better or for worse, we sometimes use the word topology to describe the connectivity of the
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Figure 1.2: One of these things is not like the others.

edges of our objects. For example, we might say that a cube and an octahedron have different topol-
ogy because they have different numbers of faces, edges and their vertices are connected together
differently. This is important to us because our rendering algorithms must treat the object differently
due to these connectivity differences, so for us, they are not “equivalent”.

Another bastardized but common use of the word topology is in describing texture mapping
coordinate systems. A hemisphere, for example, is topologically equivalent to a disk, and hence to
a square. So is a sphere which is 99% closed with just a tiny hole at the top. But a topologist would
claim that a closed sphere is not topologically equivalent because it is missing the hole. Well, for
texture mapping, that's a small detail. We probably built our texture mapping coordinate system for
the hemisphere using polar coordinates, or with some other trick, as though the whole sphere existed
anyway. We certainly would do that with the 99% sphere. So a 100% sphere is just slightly larger,
no big deal. In other words, we like to say that two geometric primitives are “texture mappingly
equivalent” if you can slice it and unfold it, and then squash and strech and bend and whatever
until you get two shapes on a plane that are the same. So, a sphere can be sliced down the “prime
meridian”, unwrapped, and with the appropriate stretching at the poles, teased into a square. But a
cube can’t be. A cube unfolds into a cross shape.

Well, now, the odd thing is that, of course, it easily could be. | meancpaldslice a cube the
same way you slice the sphere, from the center of the top face to the center of the bottom face, then
unwrapping, streching the poles and making a square. Sure, you could. But you wouldn’t. Computer
graphicists have an intuitive understanding that such a trick would introduce odd discontinuities in
the texture coordinates on the top and bottom faces that weren't there in the original geometry. A
slice has been made where there wasn'’t originally an edge. It is justwvellg in some odd but
universally understood way. So we say that in our line of work, a cube is not topologically a sphere,
and anyone who creates projections that make them equivalent is performing a trick or is cheating
or is gonna get themselves into a heap of trouble.

Another topology term that I've been talking aroundmanifold It's stuffy, haughty sounding

term that usually only college professors use. But the term is occasionally useful in polite conver-
sation, and the concept is extremely important. A manifold is a connected set of points which is
topologically the same dimension. For example, all the points that lie on a line segment, or in a
bounded region of a plane. The important details are that all the points within some neighborhood
are included, there are no arbitrary discontinuities, and that the dimensionality is uniform. At any
point on the manifold there is a reasonable local coordinate system, and adjacent neighboring points
all have similar local coordinate systems. Mathematicians call this “locally Euclidean”. Manifolds
are not restricted to shapes that are “globally Euclidean”, because that excludes anything that is
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curved, like a sphere, since the local coordinate system at every point on the manifold is different.

So, a manifold corresponds to what we generally think of as a “geometric primitive”. It might
be two dimensional, like a sheet, or three dimensional, like a spherical volume, It might be (in fact,
often is)embeddedn a space which has a higher dimension (a plane sitting in 3D). The fact that
our geometric primitives correspond to mathematical manifolds is very useful when it comes to
calculating various properties of the surface, like tangents, surface normals or texture coordinates.
In fact, the computer graphics concept of topology is more akin to equivalent manifolds than to true
topological equivalence, since we are always aware of and dealing with places where discontinuities
mess up the local coordinate systems.

1.1.3 Walking the Transformation Stack

Most modern graphics APIs, RenderMan included, have a hierarchical transformation stack. This
stack allows objects to be placed in the universe “relative” to their parent, grandparent and all their
ancestors who came before, back to the mother of all coordinate systemsvertdecoordinate
system. At every node in the transformation stack, the API maintains a transformation matrix which
permits points (and direction vectors and normal vectors) to be transformed from the then-current
“local” coordinate system back to world coordinates, and vice versa. This matrix is generally re-
ferred to as theurrent transformation matrixThe API calls which modify the current transforma-

tion matrix move the local coordinate system, so that objects which are added to the scene descrip-
tion can be in different locations and orientations.

In many modern graphics APIs, RenderMan included, there is a strange relationship between
the position of the camera, and the position of the “world”. Although TDs generally think of the
camera as being an object to be placed in the world, and typically modeling packages generally
maintain it as such, the renderer takes a slightly different view. Since the point of rendering is to
figure out what is visible to the camera and make a picture of it, the camera is quite special. In fact,
it is so special that it gets the priviledge of having the world laid out at its feet. In these immediate-
mode APIs, theamera coordinate systeimthe Aristotlean center of the universe, while the world
coordinate system is merely a convenient reference point from which to @lacgthing elsén the
scene description.

From the mathematical point of view these are exactly equivalent. Everythietpis/e, after
all. The matrix which puts the world in front of the camera is simply the inverse of the matrix
that would have put the camera into the world. But by providing it in this camera-centric way, the
immediate-mode API has the camera information it needs early enough to satisfy the requirement
that the renderer knows everything that is needed about each geometric primitive when that primitive
arrives.

So, a typical scene description contains a complicated sequence of stacked transformations that
place all of the objects in the scene. If a modeling program is writing the sequence, and a rendering
program is reading the sequence, this is all fine because the authors of both programs have figured out
how to talk to each other using the API. But imagine the TD needs to listen in on the conversation.
Or the TD wants to write his own transformation sequence by hand (horrors!). Reading a long
sequence of transformations seems like it should be pretty straightforward, but for some reason it
never really is, and your object always ends up being in Kalamazoo instead of in front of the camera.
Why is that? Well, there are two equally valid styles of reading a sequence of transformations. Both
ways lead to the same resulting view. However, it is very easy to get confused if you don't realize
the difference between the two styles, and stick with the one that makes more sense to you.

The first style (which is my personally preferred style) is camera-centric. Your eyes are the
camera, and your left hand out in front of your face is the “current coordinate system”. Stick your
fingers out in the official TD salute (thumb and index finger pointed like a gun, as toed y
axes, respectively, and raise your middle finger half way, and in that uncomfortable but noninsulting
position it is thez axis). You read sequences of transformations from the top down, and each one
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moves your hand around just as the transformation says. In this style, rotations spin your hand,
and directions are always based on the current orientation of your hand. So if you rotate and then
translate, you move your hand in a different direction than if you only translated. When you then
place an object into the scene, it goes into your hand. The camera sees the object just as your eyes
see it.

In the second style (which is Steve Upstill’s favorite, in case you've reacCtirapanionand
been confused by him) is object-centric. You imagine the object to be at the origin of a large gridded
space — its local coordinate system. You read sequences of transformations from the bottom up,
and each one moves the object relative to the grid. In this style, directions are always relative to
the stationary grid, so rotating the object revolves it about the origin of thergstdround its own
center, and does not change future directions of travel. When you reach the top of the sequence, the
object is in its final place. The camera is then placed at the origin, and looks out oveaxieat
the object.

As you can see, the main difference between these styles is the effects of rotation. In camera-
centric style, your coordinate system spins around its own center. In object-centric style, objects
revolve around a fixed center. In either case, always remember the alphabetical rule of rotation. A
positive rotation around the axis carriegy towardz, position rotation aroung carriesz towardz,
and positive rotation aroundcarriesz towardy.

In both of these of these styles, you have to be able to dealmiitbr transformations transfor-
mations that change the directions of the fundamental axes. There are two types of mirror transfor-
mations. Scaling an axis by a negative number reverses its direction. Transformation matrices can
also be used to swap (exchange) the directions of any two axes. In both cases, mirror transformations
are said to change theandednessf the local coordinate system. In camera-centric style, chang-
ing handedness literally means changing hands. When a left-handed coordinate system is mirrored,
your right hand can then be used to point the correct directions. In object-centric style, changing
handedness means redrawing the stationary grid, so that the axes point in the new directions.

1.1.4 Color Science

In nature, the color of light is represented by an energy spectrum. In CGl, the color of light is
represented by three numbers. You might think that this is completely unlikely to work, and yet we
all know that it does. Why is that? Let’s try to find out.

Color Models

The representation of color a three numbers, talséimulus valuesis common to almost all color
representations. The most common one that we TDs are familiar wR& & which is semispectral
in the sense that red, green and blue are colors that have representations in the spectrum. Artists, on
the other hand, are much more likely to be comfortable @ilhY, cyan, magenta and yellow, even
though they almost certainly call them red, blue and yellow.

The fundamental difference between these two color spaces is that RGRlditive colors,
while CMY aresubtractivecolors. Here “additive” refers to the fact that our display devices emit
some red, some green and some blue, and the result that we see is due to the combination (addition)
of all three lights together. So, as we are all aware, if you have something which is glowing red,
and you add some glowing green, you get glowing yellow. “Subtractive” refers to the fact that with
mixed paints or dyes, the color that you see is what is left from white after you've applied a paint
that absorbs (subtracts) various colors. If you have something with everything but magenta removed,
you see magenta, and then you add cyan, which removes everything but cyan (including magenta),
you are left with a really dark (generally brownish) smudge.

There are many other mathematical models for color floating around the CG biz. For example,
artists who have a hard time understanding that red plus green equals yellow sometiniS\ind
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hue, saturation and value more intuitive since it corresponds to concepts from their color theory
classes. Sometimes color models are hardware dependent, such as¥h@ widdel, which is the
trivalue color model that is used for encoding NTSC television signals.

Metamers

So, why three? Well, each of those models has three for different peculiar reasons. But RGB has
three for a very specific reason related to human color perception. In your eyeball, on your retina,
there are three types of cells calledneswhich respond to spectral energy from certain narrow
regions of the visible spectrum — one sensitive to reds, one sensitive to greens and one sensitive to
blues. In other words, you actually “see” in RGB. This leads to an interesting phenomena: there
are a variety of spectra which are different, but which stimulate the cones in an identical way. So,
they are physically different colors, but they look exactly the same to us. Such colors are called
metamers So, if a display device wants us to see a particular color, it doesn’t have to generate the
exactly correct spectrum. It only has to create a spectrum which is a metamer of the correct one. By
tuning the red, green and blue phosphors of a CRT display (or whatever color generating bits there
are in displays of other technologies) to roughly match the sensitivity of your cones, the display can
create anything your cones can see — anything you can see.

Well, this is all fine and dandy, but it doesn’t work perfectly. First off, people are different (or so
my father keeps saying). Second, it's really hard to match the cones with arbitrary technology even
if we knew exactly what everyone’s eyes did. Third, display devices can't generate as much pure
honkin’ power as the real world does, so displays are extremely limited in the overall brightness they
can simulate. The result of all that is that the display can't really display every color you can see.
The range of colors that ¢anproduce is called itgamut The gamut of a television is reasonably
large, in comparision to say a printer, but is smaller than that of motion picture positive film, but it
is really very small in comparison human perception.

Edge Detection

In addition to gamut problems, the special features of the human eye cause our beautiful CG images
problems in another way, too. It turns out that the human eye is not terribly sensitive to absolute
intensity, because the epecomodateameaning that it has a fancy autoexposure feature known as
your pupil which allows you to see easily in a wide range of absolute brightness levels. It is not
terribly sensitive to absolute color either, because your brain is really good at “filtering out” overall
color shifts that might be due to the light sources not being purely white. And it is a lot less sensitive
to color changes in the blues than in the greens, due to the way the cones are organized in your
retina.

But it doesnotice contrast, relative changes in brightness from one part of the scene to another.
In fact, the human eye is extremely sensitive to relative brightness changes. It goes so far as to
accentuate them just to call attention to them. Is this some genetic throwback from the days when
humans lived in trees in the jungle and had to see predators hiding in the grass? Who knows. But it
is true that edges between differing contrast levels are enhanced perceptually, so that it appears that
there is an even greater difference that there actually is.

On the “dark” side of the edge, there is a narrow band that looks even darker. On the “light” side
of the edge, there is a narrow band that looks even lighter. These bands arévtaadleiandsand
while they are very difficult to print in a book such as this (because the halftoning messes up the
edge), they are pretty easy to see on a display. Frightfully easy. Actually, they are so easy that it is
hard to make the damn things go away!

Mach bands elimination is the main reason that renderers hali¢her their images. Images
are generally computed in full floating point precision, but when they go into the file or onto the
screen, they have to be quantized down to the 256 or so integer input levels per color that the display
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can handle. An image which has a slow ramp might be perfectly smooth in floating point, but in an
8-bit integer form it's all one value for a while, then suddenly jumps up to the next level, etc. in a
stairstepping kind of way. Humans can easily see the contrast difference between these levels, and
it looks awful. Hence dithering. Every floating point pixel is tweaked by a tiny random amount,
generally half of one display level, before it is quantized. This means that some pixels will be
artificially to bright, others artificially too dark. That will cause the stairstep edge to fuzz out, going

up and down a couple times before finally going up for good. That’s usually enough to turn off our
perceptual edge-detection machinery, and the Mach band vanishes.

1.1.5 Local lllumination Models

Obijects reflect light. Of course, they don’t completely reflect all the light that strikes them. They
absorb some, reflect some, and sometimes reemit some. The color of the light that leaves the surface
of an object and gets into our eyes — the color that we see when we look at an object — this is the color
that we say an object “is”. Many things influence the behavior of light as it reflects off of an object
made from a particular material. Some of these influences are purely geometric: which direction
did the light come from; what is the shape of the object at the point of reflection; etc. Many of the
influences are physical properties of the material itself: is it metallic, plastic, painted; how rough is
the surface; does the surface have layers; etc.

The BRDF

If you were to take an object, and experimentally measure its light reflection properties, you could
build a 4-D graph known as lai-directional reflection distribution functigror BRDFfor short. A
BRDF is a function of two directions: an incoming light direction and an outgoing light direction. It
tells you, for every incoming light direction, what fraction of light arriving from that direction will
be reflected in each possible outgoing light direction. It is important to understand that the BRDF
only cares about behavior at the point of reflection. Any other factors that may influence light — the
intensity of the light source, the amount of fog in the scene, the sensitivity of the viewer to light,
the color of nearby objects — do not influence the BRDF. The BRDF is only about the physics that
occurs right at the spot where light is hitting and reflecting off of the surface. For this reason, the
BRDF is the most general form oflacal illumination model

A local illumination model is a method (usually a straightforward mathematical equation, but it
could be a more complicated algorithm) that estimates how much light leaves in a particular outgoing
direction of interest, given the amount of light arriving from the directions that the renderer says it
is arriving from. In other words, it tells us what color we would “see”, if our eye was sitting along
the outgoing direction. The history of computer graphics is littered with local illumination models.
Some are famous, many are relegated to obscure Siggraph papers that noone references anymore.
Probably every paper that proposes a local illumination model does so by defining a whole new set
of obscure Greek symbols to represent specific geometric quantities or material properties which
influence the model. But generally speaking, the model has something to do with these kinds of
guantities:

the color and intensity of the incoming light;

the angle between the incoming light direction and the surface normal,
the angle between the outgoing viewing direction and the surface normal;
some measure of the roughness of the surface;

some measure of the intrinsic color of the material;

other material properties, like the index of refraction; etc.

Some local illumination models claim to be based in some way on real physics, by speculating
that at a microscopic level the material has certain properties, and then determining precisely how
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photons would react when interacting with such a surface. Other models are purely empirical,
coming up with some function that seems to fit the data and then providing enough fudge factors
to tweak to cover a range of possibilities. There are so many local illumination models because
the physics of light interaction with materials is so complex that none of them are right. Each one
does a reasonable job of approximating the BRDF of particular kinds of materials, under particular
conditions, given certain assumptions. Some handle exotic materials with special properties really
well, while others handle common materials very fast. For this reason, itis common for TDs to like
to use one model when rendering plastic, another for metals, for wood, for skin, etc.

Reading BRDF Diagrams

At the end of any such paper, there will generally be diagrams which purport to show the intensity of
the outgoing light that arises from a handful of incoming directions. In 2-D, one of these diagrams
might look like this:

—-/2 L R /2
polar plot rectangular plot

Figure 1.3: A typical BRDF diagram.

The question is: just what the heck do those bumps mean? For a very long time, | didn't
understand these diagrams because | couldn't grok what the coordinate system was, and noone
bothered to mention it after about 1978. The trick is that thes¢aliar diagrams. The axes are
not “left” and “up” like most graphs, but rather “angle” and “length”. In particular, the independent
variable is the direction of the outgoing light vector, represented as an angle around the point of
reflection, which is oriented so that the surface normal points straight up. The dependent variable
is intensity of the outgoing light, which is represented by the length of the outgoing vector. The
graph is the dotted line, which indicates the length (intensity) at each angle (outgoing direction).
The graph also indicates the incoming light vectby for which this graph pertains, since generally
the graph is very different at different incoming angles. Sometimes the mirror reflection v&ytor (
is also shown, just for reference, as in this example.

Sometimes you'll see these graphs in 3-D, but usually they are in 2-D because they are generally
the same if you rotate the whole diagram around the surface normal. In the uncommon cases where
that is not true, the surface is callagisotropic because it is not (“an”) the same (“iso”) when
rendered in Hawaii (“tropics”).

Diffuse and Specular

For most materials, the BRDF is dominated by two almost separable components. There is a general
scattering of light in all directions, so that all viewers, no matter where they stand, generally see a
little bit of somethingvhen they look at an object. This scattering is known aslifiesecomponent.

Then there is a very focused, mirror reflection. Many materials which do not seem to reflect a
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recognizable image (in other words, materials which are not mirrors) still reflect bright lights with a
noticable “shiny spot”. This focused reflection is known asgpecularcomponent.

Diffuse reflection is generally very evenly distributed. It is also the dominant reflection com-
ponent for rough objects. One of the original approximations made at the very dawn of 3-D raster
computer graphics was to assume that the light reflecting off of objects was in fact completely evenly
distributed, and the local illumination model of choice in 1974 was Lambertian diffuse reflection.
Lambert’s model of diffuse reflection says that the reflectivity of an object is not dependent on ori-
entation — neither orientation of the incoming light direction nor of the outgoing light direction. It
reflects photons equally in from all directions, to all directions. The brightness of any given spot on
the object only depends on how small it appears to the light source — the cross-sectional area. This is
always confusing the first (or second) time, so think of it this way: consider two equal sized little re-
gions on the surface of the object. One region faces the light, and so it appears large from the light's
point of view. It has a large cross-sectional area, and will get hit by lots of photons. The other region
is edge-on to the light, so it appears small, like a little sliver. It has a small cross-sectional area, and
collects only a few photons. So, even though the individual photons get scattered uniformly in all
directions, the first region will appear brighter because it has more photons to scatter. This is why
Lambert’s equation usesV - L), because the cross-sectional area is directly related to the angle
betweenV andL.

Speculareflection, on the other hand, is very focused. Light that comes in from one direction
leaves almost entirely in some other one direction, or in a small neighborhood around it. The size
of the beam is a function of the roughness of the surface. Because the light is restricted to a narrow
outgoing beam, it is very bright if the viewer is in that beam, and nonexistent if the viewer is
outside that beam. The most common effect caused by specular reflectigpeardar highlights
Specular highlights are, in fact, the mirror reflection images of the light sources in the scene. So,
if the light sources are spheres, like light bulbs or suns, the specular highlights should be circular.
But if the light sources are bright windows, perhaps the specular highlights ought to be squares.
Interestingly, they often are not rendered that way. This is because the early crude approximations
for specular reflection, such as Phong’s original model, actually simulated fuzzy reflections of a
point light source, rather than true mirror reflections of an area light source, which is the way the
real world works. The highlight was round because the function used to shape the beam fades out
in concentric circles determined only by the angle from the central reflection axis. Now, it is true
that a rough surface has naturally fuzzy reflections, and this will cause a true mirror reflection of a
round light bulb to fade out in a nice smooth way. But a fuzzy mirror reflection would also take into
account the size and closeness of the light. Typically, specular functions just fake it by giving the
user the ability to crank up the surface roughness much larger than it really ought to be, which means
you can get the hack the model to get a believable look, even if it is not right. A wide variety of
specular illumination models have been developed since Phong’s groundbreaking but nevertheless
hacky original, so it is baffling to me that people still like to use Phong specular. | guess they'll
never be guru TDs like you!

Many modern local illumination models still have components that are fundamentally diffuse
and specular, even though the specific equations and behaviors of those two components are not as
naively uniform as the originals. These two components represent opposite ends of the spectrum
in terms of photonic identity — diffuse represents energy coming from all directions, mixing and
bouncing off uniformly in all directions, a melange of indistinguishable photons; specular represents
the life of individual photons as they travel well-charted paths from a specific light source, bouncing
around the scene and eventually reaching the viewer's eye. Because of this, different rendering
algorithms specialize in simulating the effects of each. The study of new rendering algorithms
is always partly driven by finding new and better ways of simulating either diffuse or specular
reflection, or things in between.
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1.1.6 Aliasing and Antialiasing

Everyone has heard afiasingandantialiasing Everyone has probably heard of Alfgéavefront,

too, but that's a different thing. Just why do computer graphics images alias, what is an alias,
why does antialiasing antialias, and since when is “alias” a verb? These are the truest mysteries of
computer graphics.

Aliasing

Aliasing is a term that is borrowed from signal processing, a branch of electrical engineering which
predates computer graphics by several generations, so they understand it a lot better than we do. An
“alias” of an intended signal occurs when equipment that is processing the signal can’t handle it for
some reason, and so mangles it, and makes it look like an entirely different signal. That different
signal is called the alias.

The most common reason that signal processing equipment cannot handle a signal is because
of its frequency spectrum. Any piece of electronic equipment, analog or digital, can only handle
signals within particular frequency ranges. Commercial AM radios can only receive transmissions
between 530kHz and 1700kHz. Stereo amplifiers can only amplify signals between about 20Hz and
20kHz. Outside these design ranges, their effectiveness falls off rapidly. Biological equipment has
the same problem — the human eye can only register signals between 400 and 790 terraHz.

Digital electronic equipment often useamplingto capture analog signals. By sampling, we
mean measuring and storing the amplitude of the signal at some regular interval, like say, 44100
times per second. The problem with sampling is that it doesn’t store the whole signal. It only stores
those sampled amplitudes, like a series of dots on a page, under the assumption that you'll be able to
“connect the dots” later on and get the original signal back. Or at least, something that you consider
to be close enough to the original signal that it's worth it to spend time downloading it off the Net.
That process of connecting the dots is knowmeg®nstruction Reconstruction is a very important
subject, because if you do it badly, you can screw up a perfectly good mp3. And good reconstruction
is not always easy, as we’'ll see later. But at this point, we'll skip one hundred years of math due to
some smart, but non-TD guys, like Fourier and Nyquest and Shannon, and get to the punchline: even
if you have the absolutely perfect method of reconstruction, you can never get the original signal
back if you don't sample often enough. You've just thrown away too much of the original. Which
brings us back to aliasing: your intended signal has been mangled and now it comes out sounding
like something entirely different — an alias. Ta da!

Reconstruction

We've mentioned reconstruction, so let's look at this step more carefully. Reconstruction is the
process of creating a continuous signal out of the sampled version. Reconstruction is generally done
with filters, which are equations that specify, for every point in the continuous output, how to add
up some linear combination of nearby samples to create the output value. Filters are identified by
their shape, that is, the graph of the equation, and their width, the span of the non-zero portion of the
graph, which in turn identifies how many nearby samples will be necessary to do the calculation.
Filters are applied to a series of samples with a process knowara®lution Convolution is
tricky to explain. The basic idea is that you slide the filter continuously along the axis that contains
the samples, and at every point along the axis, the output of the filter is the sum for all samples of the
product of the height of the sample with the height of the filter that is covering that sample. Since the
filter is nonzero only in a fixed region, and the samples are nonzero only at their sampled positions,
this is just a simple finite sum. If either were nonzero over a broader space, we’'d have to call it an
integral (bleah!).
So, for example, consider the simplest filtehax filterof width 1.0. A box filter looks like the
shape in the center of the top row of the diagram. It is zero everywhere except between -0.5 and 0.5,
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where its value is 1.0. Because of this shape, it always covers exactly one sample no matter where
it is on the axis, so when it is convolved with (slid over) the samples, it spreads each sample out to
cover the entire region betweet0.5 around the sample. In the middle row of the diagram, we see a
triangle filter with width 2.0. This filter always covers two samples, and as it slides towards a sample
the filter increases, making that sample add more to the value. As it slides away from a sample the
filter decreases again, making that sample contribute less. This means the output ramps between the
samples.
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Figure 1.4: Convolution with simple filters.

Signal processing experts know much about the characteristics of various filters. For example,
they know that the most perfect filter is a sync filter with infinite width. By “most perfect” we
mean that it always does the theoretically best possible job of recreating the input signal given the
samples. Unfortunately, infinite width means teatrysample has at least a small contribution to
everyoutput value. That makes it pretty impractical for everyday use. But it means also means that
any other filter we might choose is in some way suboptimal. For example, box ffilterthe output
more than they need to. Filters that counteract the blurring by trying to stay sharp will imstgad
meaning that the output oscillates and can't stay steady. Every filter will have some balance between
blurring and ringing.

Some reconstruction filters have a property knowneggative lobesas we see in the bottom row
of the diagram. These occur when the graph of the filter has some values less than zero. These filters
are the ones that ring, which is not necessarily a bad thing if a small amount of ringing can be traded
for removing a large amount of blurring. However, some people specifically refuse to use a negative
lobe filter because the oscillation of the ringing can make output values of the filter go negative
when the input samples are very low/quiet/dark. They cannot abide by the thought of a negative
pixel value, and all the horrible things that will happen to the universe if a negative value were to
collide with a positive value and annihilate each other in a massive matter-antimatter explosion. (By
the way, those perfect sync filters have negative lobes, in case anyone asks.)

Chosing a reconstruction filter is always a delicate balance between evils. Some filters blur,
some ring, some do some of both, some are definitely better than others, and you can never find
one that is perfect. But finding a good one is critical to doing good antialiasing, because doing way
excellent sampling gets you nowhere if you mess up all those beautiful samples by passing them
through a crappy reconstruction filter. Try a few and decide which you like best.
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Pixels

Now let’'s apply all that to computer graphics. Let's start with examining your computer screen.
Yep, you've got that superhigh-res ultrasmall-dot microblack TFT-LCD with XJ-17. Your monitor
has a resolution of nearly 2000 pixels horizontally and 1500 pixels vertically, at a magnificent 85
dpi. State of the art. This means that you are giving your eyes the veritable feast of a whopping
10kHz of visual signal information (assuming you sit about as far from your monitor as | do). My
goodness, that seems a bit low, don’t you think? | mean, you give your ears four times that much
data, and even then people complain that they can hear the “digital artifacts” in the music. Surely
your eyes deserve more respect that that!

This is the source of almost all of our problems. Our eyes are extremely sensitive devices, and
our visual acuity is easily good enough to see a single isolated pixel on the screen. After all, printers
are considered passe’ if they don't do at least 600 dpi. This low-frequency device is not capable of
handling stored visual signals higher than about 5kHz, and so mangles them, and presents us with
aliasesof the intended visual signal.

The most common form of pixel aliasing jisggies This is the artifact that causes a perfectly
straight line or edge to appear as a stairstep pattern. In fact, jaggies are actually a reconstruction
problem, not a sampling problem. If you look at the reconstruction filter diagram again, you can
see that box filters turn samples into output signals with sharp jumps. Because our visual accuity is
good enough that we can see the individual pixels, we can see these sharp jumps, and these are the
jaggies. Using a wider box filter creates a related problem cabgithess where a continuous line
appears to turn into a rope-like spiral pattern.

Figure 1.5: Jaggies, ropiness and Momatterns.

Another common form of pixel aliasing Idoiré patterns Moiré patterns occur when a group

of parallel lines become very thin and close together in the distance, and when the sampling pattern
can no longer capture them they start to come out as odd curves, dotted lines, thick line segments,
and other obviously aliased patterns. This is classical aliasing because the problem is that the visual
frequency of the thin lines increases dramatically as the lines converge in perspective, and at some
point the sampling grid can no longer sample them appropriately. The frequency of the sampling
beatsagainst the frequency of the lines, so every distance will get its own alias, the beat frequency
at that distance.

The obvious way to solve this problem is to increase the frequency of the samples. With more
samples, you can capture a higher frequency signal, and you should be golden, right? Alas, this will
only help sometimes. As the lines approach the vanishing point, their visual frequency increases
without bound. You can never sample enough to capture them. (And this is generally true of com-
puter graphics, not just goofy special cases like Mpiatterns. There are almost always frequencies
present that are higher than whatever you would reasonably be willing to sample for.)
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Other Aliasing Artifacts

Hopefully by now you understand that aliasing artifacts are a direct and inevitable result of sampling
and reconstruction. This means that any other process that renderers perform that involve sampling
can, and do, exhibit aliasing artifacts. Let’s consider a few common ones.

For example, in modeling, you digitize a finite set of points on the surface of a clay model,
and then in the computer you reconstruct them by connecting the points with polygons or some
curved spline surface. Clearly, if you don't sample often enough, such that you skip over some
high-frequency oscillations on the surface, then you will create an alias of the original surface. You
might lose some interesting wiggly groove patterns on the surface, for example. If you do a really
bad job, you might skip right over serious indentations or cracks in the surface. But even if you do a
good job, but you look at the object too closely, your samples will get far apart, and you'll depend on
the reconstruction to create data that isn't there. In other words, it will guess. If your reconstruction
is poor, like with straight lines, then you'll see “polygonal artifacts”. If your reconstruction is with
fancy splines, you might get a surface that wobbles around near the original surface but doesn’t
actually lie flat upon it. Of course, you'll never know that if the object is so small on the screen that
the samples you took fit nicely inside the pixels; in other words, if your sampling rate is higher than
the pixel's sampling rate.

Probably everyone in this business has heartepfporal aliasing This occurs in animation
when our camera samples time discretely. The classic example of this phenomenavagtime
wheeleffect. A camera is photographing a fast spinning wheel, at regularly spaced intervals (gener-
ally every ;th of a second). If the wheel is rotating around so that it makes a complete revolution
in exactly2—14 of a second, then the camera will see it in exactly the same position in every frame.
It will look exactly like it is standing perfectly still. The signal of the wheel spinning very fast as
been converted (aliased) into a signal of a stationary wheel. If the wheel spins just slightly slower,
the wheel appears to move slovidgckwardsan even more humorous aliasing artifact.

Temporal aliasing is generally combatted by the techniqueaifon blur Motion blur certainly
helps the problem, since it replaces discrete sampling of time with area sampling. But despite
common wisdom to the contrary, it does maivethe temporal aliasing problem. After all, as we
just saw, motion picture cameras alias, too! All motion blur does is change the artifact from one we
laugh at (strobbing) into one that we are used to seeing (blurry streaks).

Another example is color. In computer graphics we almost always represent our colors with
three values. Sometimes we LR&B sometimes we usdSVor XYZor LAB, and sometimes we
even deign to borrow from television and UK. Nature, on the other hand, represents color with
a continuous spectrum. So, it is natural to guess that if we sample this continuous spectrum with
only three samples, we will sometimes gelor aliasing A spectrum is sampled, some type of
processing occurs on the samples, then the color is reconstructed, and the color comes out looking
entirely different. Some people think that this phenomena is uncommon in computer graphics, that
somehow because RGB is as old as the industry, or because of metamers, or because “experiments
with 9-channel color were done and it didn’t help”, that somehow three channels is the divinely
chosen number. They couldn’t be more wrong. Anyone who has ever struggled with monitor gamma
correction, color matching of displayed images with printed images, or even just seen their images
projected on television, knows that reconstruction from three sampled values to physical color is
quite literally never the same twice, and is a terrible problem.

Now consider software which attempts to simulate the changes of colors as they reflect off of or
transmit through surfaces of a different color. In the real world, this process is effectively multiplying
two whole spectra together. In CG, we just multiply our three lonely sample points. It should be
obvious that any interesting interactions and subtle variations that happen in the full spectrum in
between our samples, will go completely unnoticed by the sparcely sampled version. Have you ever
seen a truly believable photorealistic image of stained glass? Yes, color aliasing is with us all the
time.
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As you can see, anytime a continuous signal is sampled, aliasing can and will occur. The artifacts
can be somewhat ameliorated by wise choices in sampling rates, or special sampling techniques
or clever reconstruction, that converts “unacceptable artifacts” into “less objectionable” or “more
familiar” artifacts, but information is always lost and signals are always changed. That is the nature
of aliasing.

1.1.7 Antialiasing

So, we don’t want to see all these aliases. What do we do about it? Well, if we can’t display an
image with all of the frequency content that exists, let's consider what the next best picture might
be.

Go back to the Mok pattern generator, parallel black and white lines receeding to the vanishing
point. It seems like the best solution that you'd want would be getting a sort of uniform grey that
represented the average color of the black and white lines in the right proportions. That just cannot
happen with normal uniform sampling and standard reconstruction. There is no way to force the
samples to hit the lines and hit the background with exactly the right percentages everywhere. They
land where they land, and you're stuck with it.

One approach would be to look at small regions of the floor, and analyze how much black
and how much white are in that region, and return the appropriate grey. This technique is called
area sampling It is very appropriate if you can choose the size of the regions wisely (such as,
the amount of the floor that all is visible in the same pixel), and if your model of the lines lends
itself to calculating the areas of the intersections of the pattern pieces with the region. If your lines
were made of long black and white strip objects, for example, you might be able to mathematically
calculate the area of overlap. But if the stripes were the result of running some equation at any given
point on the surface to see if it was black or white, well, it might be very difficult to determine the
area within which the equation would always return the same answer.

Another popular technique is known asefiltering In this technique, whatever function is
generating the pattern is simply not allowed to create a pattern with frequencies that are too high.
For example, the black and white strips might not be allowed to be thinner than a certain width,
and as they go back in distance they are forced to become thicker and thicker to compensate for the
shrinking in perspective. Whatever function generates them would have to figure out how to handle
the fact that they would start to overlap, and “do the right thing”. If the mathematical equation
was used, it would have to be tweaked so that points that were close together could not have very
different values, and therefore the color couldn’t change rapidly enough to cause the aliasing. This
is in many ways the best solution, because it removes high frequencies before they even exist, and
hence no aliasing is possible. Of course, as you may have guessed, it is very difficult for the pattern
generators to “figure out what to do” and make sure that in all cases “points that are close together
don't have very different values”.

The final popular technique is to remove the restriction that the sampling happens at a pre-
dictable, regular interval. Instead, take the same number of samples, but spray them all over the
place at random and see what they hit. This technique is csitadhastic samplingand was de-
veloped by Pixar in the mid 1980s. The idea is that if there is no way to force uniform samples
to hit the black and the white with the right percentages everywhere, just fire at random and you'll
get something close to the right answer. You'll never get exactly the right answer, but since there is
no pattern to your sampling, there will be no pattern to your errors either. You won't get & Moir
pattern, but rather you'll get a jumble obise

If you remember the Mach band discussion, the human eye is pretty sensitive to seeiag Moir
patterns and other contrasty edges. But it’s not terribly sensitive to noisiness, which | guess our jun-
gle perception just interprets as haze or something. Some say it has to do with the natural noisiness
in the pattern of rods and cones on our retina, but I'm not sure. In any case, the result is, if you ask
100 people, 95 will say that the noise iteas objectionable artifadhan the aliasing.
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Unquestionably, antialiasing CGI is an art, not a science. In the afternoon sessions, various
speakers will touch on the need to, and the techniques for, antialiasing various types of patterns in
shaders. Listen carefully and read their notes twice. Doing antialiasing well is what separates the
men from the boys.

1.1.8 Rendering Algorithms and Pipelines

For our purposes, we'll define a rendering algorithm as an algorithm which takes an abstract de-
scription of a scene, and of a camera in that scene, and creates a 2-dimensional image of what that
scene would look like from that camera’s point of view. It creates a synthetic photograph of the
virtual scene. In order to make this picture, the rendering algorithm has two basic functions: it must
determine what object is visible in each pixel; and it must determine what color that object is at that
pixel. The first question can be calletsible surface determinatigor alternativelyhidden surface
elimination or simplyhiding for short. The second problemsfading

Hidden Surface Elimination

Computer graphics practitioners have been writing rendering software and building rendering hard-
ware for nearly 30 years. As you might imagine, in that time, a lot of different techniques have
been tried. Relatively early on, a very brilliant practitioner observed that the fundamental difference
between the many different hidden surface elimination algorithms that were being espoused at the
time was that they sorted their scene description database in different orders. He was the first to
recognize that “computer graphics is just sorting.”

In time, computers got faster, memories got larger, scene databases got much larger, and our
requirements for realism and features got much much stronger. Many of the early hidden surface
algorithms didn’t scale well, generally because they didn’t sort in the right order. Nowadays the
popular hidden surface algorithms can be divided into two categaigsct-order andpixel-order.

An object-order algorithm proceeds as follows:

for each object in the database
determine which pixels it might be in
for each such pixel
calculate how far away the object is in that pixel
if it is closer than any object yet seen
put this object in the pixel
endif
done
done

Object-order algorithms are quite common. You probably have a hardware implementation of
one of the oldest such algorithms in your PC at home — the Z-buffer. Reyes, the algorithm used
by PhotoRealistic RenderMais also an object-order algorithm. The differences between such
algorithms lie in how they deal with the details of “which pixels it might be in” and “put the object
in”.

As you might expect, pixel-order algorithms proceed like this:

for each pixel on the screen
determine which objects might be in the pixel
for each such object
determine how far away that object is
done
sort the distance results
put the closest object in the pixel
done
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The most common pixel-order algorithm is, you guessed it, ray tracing. However, many different
variations of ray tracing exist, based on how they deal with “which objects might be in” and how
they manage the sort.

Shading

In modern renderers, whether software or hardware based, the main features that make its images
appear to be “photorealistic” are features which enhance the power or scope of its shading engine.
It is completely true that the appearance of an object is as important, or even more important than,
the shape of the object when it comes to making believable images. For this reason, a renderer’s
ability to create great images is fundamentally tied up with the power of its shading engine. Shad-
ing algorithms can also be divided into two categoriegal illumination andglobal illumination
algorithms.

Local illumination algorithms are algorithms which compute the color of objects based only on
the local illumination model of the object itself. The renderer may have a wide variety of material
properties and geometric quantities of the object at its disposal while computing its color, and also
generally will have access to a common database of light sources and their properties, but it does
not have access to the properties or characteristics of any other object in the scene. Each object
stands alone, reflects light directly from the light sources towards the viewer using its own local
illumination model, and has no knowledge or interaction with any other object in the database.
Z-buffers are examples of such algorithms that shade each object in isolation.

Global illumination algorithms, on the other hand, are able to access information about how light
is moving around the scene globally, such as how it is reflecting off of other objects in the scene.
From this information, it can process not only light that is coming directly from lights, but also light
that arrives indirectly after having interacted with other objects in the scene. I'm sure everyone is
well aware that ray tracers and photon mappers are both considered global illumination algorithms,
because they can process various forms of indirect illumination. Global illumination algorithms
can be further categorized by how many levels of which kinds of indirect light interactions can be
detected by the algorithm. Some handle only indirect specular light, while others handle indirect
diffuse.

Another way a rendering algorithms’ shading engine can be categorized is whether it is fixed
or procedural. In a fixed shading model, the designers of the renderer have determined what the
local illumination model will be, what parameters it will have, and by what methods and under what
conditions those parameters can be manipulated. For example, an OpenGL renderer might support
8 lights, either distant or spot lights, with a Fast Phong lighting model on vertices with 7 surface
parametersdolor, opacity, Ka, Kd, Ks, roughness, specularcolor) plus texture-based color
and reflection mapping on a per-pixel basis.

Alternatively, a renderer might have a procedural shading system, where for every object in
the scene, a program is loaded which calculates the color at every point on the surface of the object.
Such systems are extremely flexible from the user’s point of view, since the user can write a program
to do bizarre shading that no renderer implementer would have ever thought of. They are the heart
of many photorealistic software renderers. Unfortunately, they are not practical in some renderer
implementations, particularly hardware renderers that run their graphics computations on specially
designed but inflexible GPUs.

Pipeline Order

There is one additional variable in the design of rendering algorithms. This is the question of when
in the pipeline shading occurs. In particular, an important factor in managing the speed and memory
efficiency of a rendering algorithm is to determine whether shading should happen before hiding or
after hiding.



20 CHAPTER 1. THE LORE OF THE TDS

For example, in a standard ray tracer, the renderer doesn’t bother to calculate the color of a ray hit
until it has determined that it is the frontmost hit along that ray. Therefore, the shading of the object
occurs only after the visible surface has been determined — shafferdniding. In a conventional
Gouraud-shaded Z-buffer algorithm, the vertices of polygons are shaded immediately after they are
transformed, and these colors are copied into any of the pixels that the Z-buffer determines should
be visible — shadingeforehiding.

Some algorithms do not fit so easily into such naive categorization. For example, modern in-
teractive graphics cards divide their shading calculations into phases, some of which happen before
hiding and some after. This merely goes to show that in the constant battle to design graphics
pipelines that are fast and efficient as well as powerful and flexible, the question of which sorting
order is “best” will never be answered.

1.1.9 Texture

The desire to make rendered images of objects look more complex, less symmetrical and generally
morerealistic than our simple geometric primitives and straightforward local illumination models
allow has been true from the early days of computer graphics. Over the years, the lore has accu-
mulated a great variety of ways to apply texture to the surface of objects in order to enhance their
realism. These techniques are the breakfast cereal of serious superstar TDs, so let's make sure we've
all had our USDA-approved balanced breakfast.

Texture Maps

In the beginning there werexture mapsand they were good. Unfortunately, they were badly
named. When texture maps were invented in the late 1970's, they were simple color images that
were pasted onto (parametric) primitives, like posters on a wall. The bad thing was that these
images didn't really add “texture” in the artistic or architectural or any other sense, but the name
stuck anyway, so now many people commonly call images that apply diffuse color to a surface a
“texture map”. Fortunately, those of us in the photorealism business have seen enough other tricks
with images that we apply the name “texture mapping” to generically mean the application of any
image in any part of the shading calculation. What the unwashed would call texture maps we call
diffuse color maps

A couple years later, computer graphics was introduced to its first truly spectacular shading trick,
thebump map With this technique, a texture is used to alter the direction of the surface normal just
prior to calculation of the local illumination model. Because the local illumination model uses the
surface normal to determine the orientation relative to the light source, tweaking it caused the surface
to look bumpy. The first published image of a bump mapped object was of an orangethdrew
was some texture!

In the early 1980’s, an obscure little computer graphics research facility in Long Island called
NYIT made a series of fundamental contributions to computer graphics trickery. One of the most
lasting was theeflection map With this technique, a 360 degree photograph of the space around
an object is captured by some means (for example, photographing a gazing sphere). The object is
shaded by first calculating the mirror reflection angle off of the surface and then using that direction
to index into the map. Fake reflection, with no ray tracing needed! Another similar technigque which
was lost for decades but recently rediscovered wadltimination map where a picture of the light
sources and other bright spots all around each object is created, and this map is used instead of
normal light sources to illuminate the object. Fast environmental lighting, no light sources needed!

The mid 1980’s was a hotbed of new uses of texture maps. We saw the first discugsivacsf
tion mapswhere a reflection map image was indexed by the refracted ray direction (computed from
Snell's Law) rather than the reflected ray direction, in order to compute better looking transparent
objects. People started applying texture maps to other parameters of the local illumination model.
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For example, if the local illumination model had a specular coeffidientthen replace a stodgy

old constanks with a value from a texture map that varies over the whole surface. This could be
called aspecular mapand would give you an object which was more specular in some places than
in others. Similarly, you could havediffuse maparoughness mapetc. Eventually people realized
that all parameters of the illumination function could be textured, and should be. We would now call
this entire class of texturggmrameter maps

Textures that make the object more transparent in some parts and more opaque in other parts
are known aopacity maps The first use of opacity maps was a spectacular Siggraph paper that
simulated clouds in a flight simulator. It was the first paper to definitively prove that complex
photorealistic images could be made with extremely simple shapes that had subtle shading.

Displacement mapwere introduced to replace bump maps. The main disadvantage to a bump
map is that it doesn’t actually change the silhouette of the object. The orange looks bumpy, because
the normals point as though the surface had protrusions and dimples, but the silhouette is still pre-
cisely circular. Displacement maps solve this problem because they actually move the surface itself,
rather than just tweak the surface normal. However, since moving the surface means changing which
bit of the object is visible in each pixel, use of this technique requires a renderer that does shading
beforehiding. Renderers that do hiding before shading must make special (and usually painful)
accomodations for objects that use displacement mapping.

Another very useful texture map is tleenditional map Consider an object which has parts
made of two different materials, for example, a wooden box with a pearl inlay. The appropriate way
to create the diffuse color and illumination parameters for the wooden parts and the pearl parts are
very different, so it probably is insufficient to merely have all of the texture maps contain appropriate
values at the various parts. Instead, the object can be shaded once as though it were all wood, and
again as though it were all pearl, and the texture map is used to control which of the two versions is
shown at each point on the surface.

On the lighting side, one of the most dramatic developments wasthdow map In this
technique, an image is created from the point of view of the light source, but it does not contain
colors but rather the contents of the depth buffer (specifically, the distance to the nearest object in
each pixel). When computing the contribution of that light to the main image, every point being
shaded is compared to the values in the shadow map. If the point is farther way from the light than
the value in the shadow map, then it is obscured by something (is in its shadow), and receives no
light. If the point is closer to the light than the shadow map value, then the object is fully illuminated.
This way we get shadows in our scenes, with no ray tracing needed!

Another lighting trick is the use ofookiesor slides These are texture maps that are used to
modify the color and intensity of a light source as it shines onto the scene. The name “cookie”
derives from the theatrical lighting teroucaloris which is a board with holes in it that you place
in front of a spot light. Stage lighting has lots of tricks — barn doors, bounce cards, gels, gobos, etc.
— which are used to subtly control lighting. And one way or another all of these tricks have made
their way into the virtual lighting setups of computer graphics. The name “slide” derives from the
thing you stick in a slide projector, of course.

Procedural Textures

Inthe old days, textures were always precomputed, painted or captured, and stored as images. Nowa-
days we call such images texture maps, to distinguish them from a very powerful technique first
developed in the mid 1980’s callgnocedural texturesA procedural texture is used the same way

as a texture map, in that it provides a value that can be used to tweak a normal, modify a parameter,
scale a light parameter, etc. The difference is the way that value is generated. Rather than indexing
into an existing rectangular 2-D image, a small program is run which generates the value. Proce-
dural textures take parameters, like any other program, which can be the position of the point to be
textured, parametric coordinates, multiple sets of parametric coordinates, or any other values that
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might be interesting in making patterns.

Procedural texturing has certain great advantages over traditional texture mapping. The first is
scale independence. Texture maps have limited size and limited resolution. If you want to make
a picture of a very large object, you might have to repeatti(ey a texture map many times to
cover it. Such repeats are generally very visible in the final image. If you render a closeup view
of an object, you might see a single texture pixek€) spread out over a large region, again very
obvious. Procedural textures can be independent of scale because programs can easily be designed
to generate a different value at every point in space, whether these points are far apart or very very
close together.

The second advantage is size. Traditional texture maps can be megabytes of data to be stored on
disk and loaded into the renderer. Procedural textures are typically a few to a few dozen (or perhaps
at most a few hundred) lines of code. They are small, as even the most complex procedural texture
ever written is described in fewer bytes than even a trivial diffuse color map. Natural textures which
are often three-dimensional, like the rings of a tree, the density of water vapor in a cloud, or the
striations of veins in marble, are extremely difficult to model realistically with a 2D texture map.
You could try to use a 3D volume map, but they are almost impossibly huge. 3D savvy procedural
textures, however, are no larger or more complex than 2D ones.

The third advantage is source. Texture maps come from somewhere else. Some painter painted
it, or some photographer photographed it, or some art director provided an image from a book to
scan. How completely boring! Procedural textures come from the studly programming prowess of
superstar TDs, honing their skills, working day and night for the high five that follows the unveiling
of a particularly cool image. Painters? We don’t need no stinkin’ painters!

There are certain disadvantages to procedural textures, though. The first is that they are difficult
to antialias. The problem of antialiasing of texture maps was essentially solved about 20 years ago,
and while not every renderer does exactly the right thing with reconstruction, they are generally
good enough to use. Procedural textures need procedural antialiasing, a black art which is subtle
and difficult and still developing. This afternoon we will spend a lot of time discussing antialiasing
of patterns, and shader writers spend much of their lives working with this problem.

The second idirectability. Directors are fickle. They never like our beautiful procedural textures
just as they are. They always want it a little less orange on this bit, or a extra dimple right here beside
the thingamabob, and lose the dark splotch here between the guy’s upper left and lower left eyes,
because it looks like another eye is trying to pop out of the skin. Procedural textures are often very
difficult to control to such exacting requirements. Rewriting the program to get rid of the splotch
without getting rid of all the splotches everywhere, or without making a new splotch appear under
the lower right eye instead, is often very difficult.

As appearance modelers, the tension between use of canned texture maps and procedural textures
is another subtle battleground. In the end, a combination of techniques is usually used, depending
on scale, importance, ease of programming and freedom from artifacts.

Texture Projections

Whether texture maps or procedural textures are used, one of the main questions in applying the
texture to the surface is quite simply how to identify which points on the surface get which bit
of texture. Since texture is commonly two dimensional, and the surface of the object is a two
dimensional manifold embedded in a three dimensional space (etybu that word would come
in handy), it seems like it would be pretty straightforward to make a correspondence between the
surface and the texture. In fact, it is so easy that there are probably half a dozen common ways to do
it.

The most common way is texture coordinates attached to the vertices that define the surface.
These texture coordinates, commonly referred to asdt, are assigned by the modeling system to
each vertex of the geometric primitives, whether they be polygonal meshes, patches or subdivision
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meshes. At all points between the vertices, the renderer is responsible for appropriately interpolating
the values of the surrounding vertices, to get a texture space which is beautifully continuous and free
of undesired stretching, kinking or other artifacts. For parametric primitives, the obvious texture
coordinate system is simply the parametric coordinataedv themselves, since these are known

by the mathematics to be a reasonably artifact-free space.

The other most common way is to take advantage of the position of the object in 3D, and convert
the 3D coordinates of points on the surface into 2D coordinates of positions in the texture. Such
conversions of 3D into 2D are callgnlojections There are any variety of ways to project textures,
based entirely on the mathematical equation that is used to convert the three position coordinates (
y, z) into the two texture coordinates,(t). The simplest is thaxis-aligned planar projectionin
that projection, you simply drop one of the spatial coordinates. All points that differ in only that one
coordinate get the same bit of texture. Slightly more complex ig#meral planaror orthographic
projection where each point is characterized by its position on a some plane that is parallel to the
projection plane.

| visualize planar projections by imagining an image rectangle moving through space, dropping
bits of texture as it is dragged along. Using that analogy, you could easily imagine other projections
where the image rectangle moves not along a straight line, but on some curved path. As long as it
doesn’t rock back and forth (the plane stays parallel to itself as it moves), there remains a unique
mapping of every point in 3D to a point in 2D, and you still have a valid (if harder to compute)
planar projection.

Obviously if you can do orthographic projections of texture, you can similarlpetspective
projectionsbased on any field-of-view. These are computed by dividing two of the components by
the third, just as our perspective camera projections dividedy by z.

A small step up in complexity arguadric projectionsin particular thesphericalandcylindrical
projections In these projections, every point is characterized by its position on some sphere/cylinder
that is concentric to the projection sphere/cylinder. Another way of looking at it is that the projection
sphere grows from a dot (cylinder from a line) dropping bits of texture as it expands. The point on
the texture map is then equal to the parametric coordinates of the corresponding point on the sphere.
Generally, the spherical projection calls upon the polar coordinates, which are sometimes called
latitude andlongitude Hence, texture maps that are accessed with spherical polar coordinates are
sometimes callethtitude-longitudeor lat-long maps. Again, using the expanding balloon analogy,
it is easy to see that you could project with any convex shape that grows and covers all of space, as
long as every point in space is touched only once.

Of course, if it is not obvious, the 3D point that you use as the input to these projections can be
in any coordinate system that is appropriate. For example, it is pretty common to do a perspective
projection in the coordinate system of a spot light in order to access a shadow map or a cookie.
Simply transform the point or vector into the most useful coordinate system right before projection.

1.2 RenderMan Terminology

Okay, so the title of this course supposedly had something to do with RendEfNarmaybe we
can hear something about that, now, please? What is it, how do | use it, why should | use it?

1.2.1 Standards and Implementations

RenderMaris a name which is greatly overloaded. It can refer, at times, to a document, a specifica-
tion, a language, a class of rendering programs, a specific rendering program, or a way of life. Just
to clear the air, let’s set all these things straight.

The RenderMan Interface Specificatitsa document, first published by Pixar in 1989 and up-
dated a couple times since then. It was the work of a number of bright individuals, the brightest
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of whom was Pat Hanrahan, Chief Architect. The document described a standardized API (appli-
cations programming interface), by which computer graphics modeling programs would transmit
scene descriptions to rendering programs. This interface was originally described in C, although we
knew that over time, support for multiple programming languages would eventually be needed. The
document was created because the bright individuals at Pixar and various allied companies, thought
that it was nigh time for the burgeoning pleathora of modeling programs to have a standard way
to communicate with the burgeoning pleathora of rendering programs, in a way similar to the way
that such programs had a standard way (well, several standard ways, as it turns out) to talk to in-
teractive 3D graphics hardware. The difference was that RenderMan was positioned as an interface
for photorealistic image generation, while all the existing standard interfaces were aimed clearly
at interactive image generation on then-current hardware platforms. The RenderMan Interface was
originally intended to be a multi-platform, multi-vendor, multi-language high-end solution to proac-
tively stabilize the balkanization which had not yet happened in photorealistic rendering, but which
clearly was about to.

Well, things didn’t work out that way.

The first rendering program to support the RenderMan Interface Specification was released by
Pixar in 1990, and for marketing reasons it was calédtoRealistic RenderMamr PRManfor
short. Unfortunately, no modelers and no other renderer vendors followed suit, and foPjRlslian
was the only RenderMan-compliant renderer. As a result, many people to this da3Riddn
“RenderMan” in conversation.

In 2002, however, things have finally changed. There are now several renderers which advertise
that they are “RenderMan-compatible”, and several modeling programs which converse with these
renderers through direct or third-party interface modules. It is important to note, however, that
when these programs advertise their compatibility, they are making claims of utility, not proven
scientific facts. Neither Pixar nor any other organization attempts to verify that programs (even
PRMan rigorously implement the current version of the RenderMan Interface Specification. Rather,
“RenderMan-compatible” now colloquially means “generally does what you expect from reading the
RendeMan CompanicendAdvanced RenderMapooks, and generally understands the commands
that the current version of PixaBRManunderstands.” It is up to the purchaser and user to decide
whether the programs they are using are “compatible enough”.

1.2.2 Tenets

So, what makes RenderMan a good and useful specification? Why is it so much better than the
alternatives? What are the basic philosophical maxims that | need to understand in order to grok the
RenderMan religion?

The fundamental, overarching, guiding concept in the design of the RenderMan Interface is
embrace photorealismEvery choice that was made was held up to this one guiding principle —
is this idea/concept/description going to make it possible for renderers to create ever-more realistic
images as techniques and algorithms grow beyond the imaginings of the original designers? Or does
this idea limit the choices a renderer has, and force it to make images less real or more noticably
imperfect than it is capable of? 12 years later, with hindsight, we know that we were not 100%
perfect judges of which ideas were propelling and which were hindering. But generally were were
successful.

From the principle of photorealism came three cornerstone tenets that fundamentally defined
the appearance and structure of the Interface: modeling-level description; immediate-mode; and
extensibility.
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Modeling-Level Description

The RenderMan Interface allows the modeler to describe the features of a scene. The scene descrip-
tion sayswhatis in the scene, what objects, what materials, what animation, and does riavgay
it is to be rendered.

For example, all of RenderMan’s geometric primitives are high-level modeling primitives, not
drawing primitives. Thatis to say, the RenderMan Interface allows modelers to describe their models
as they store them internally. We outfitted RenderMan with high-order curved surfaces of every
variety we could think of, so that modelers could pass them directly to the renderer with no loss of
fidelity.

In contrast, drawing primitives are simple or low-level picture elements such as lines, 2-D shapes
or 3-D polygons described as vertex and color lists. These primitives are designed to be easy for the
renderer (often hardware renderer) to draw directly, but require the modeler to convert their internal
curved surface primitives into renderer-specific approximations. These approximations sacrifice
fidelity, and limit the eventual image quality. In RenderMan, the onus is on the renderer to convert
high-level primitives into whatever renderer-specific drawing primitives the renderer’s algorithms
can best handle, making the modelers easier to write and the scene descriptions more general.

Of course, there may be interesting modeling primitives that some modelers have which are
not part of RenderMan’s built-in set. For example, a modeler might have a surface of revolution
primitive, or a tree primitive, or an articulated cowboy pull-string doll with or without hat primitive.
Should RenderMan be extended to include every such primitive? Well, no, obviously it can’t support
everything in the universe. The set RenderMan has is supposed to be general enough that anything
that a modeler uses as fundamental primitives can be converted into RenderMan modeling primitives
without loss of precisionMoreover, the set was built to give renderers primitives that might be easier
or more efficient to process. For example, some renderers can handle spheres more efficiently than
they can quadratic NURB patch meshes, so even though it is possible to describe a sphere in the form
of a NURB, we still let RenderMan have a separate sphere call — for the benefit of that renderer.

Immediate-Mode

RenderMan Interface is a strictly hierarchical, immediate-mode interface. This means several things.
First, and most importantly, there are no display lists in the RenderMan Interface. The scene descrip-
tion given to a RenderMan renderer is a complete description of the model to be rendered for a single
frame. Unlike current versions of OpenGL, it does not have provisions for rendering the same thing
again, but with this one thing changed. Why? Because display list interfaces assume that essentially
the same image will be rerendered multiple times, with minor (or no) changes between frames, and
that the time to describe the scene dwarfs the time it takes to render the scene. Moreover, it assumes
that the memory it takes to describe a scene is small enough that storing it for future reuse is easy.
Neither of these things are true in a truly photorealistic scene, where scene descriptions are huge,
rendering time is (unfortunately still) long, and where most of the database changes in some way
from one frame to the next.

With this choice comes the corrollary that no forward references are allowed in the scene de-
scription. That is, everything that you need to know to render an object, its position relative to the
camera, shape and geometric attributes, color and material properties, interactions with lights, etc.
areall known when the object is handed to the renderer. The renderer does not need to wait for
some unknown amount of time for the object description to be finalized by later information. For
example, the camera description is the first thing in the scene description, so that all objects already
know their place as soon as they are added to the scene.
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Extensibility

In 1989, we knew that we had no idea how fast or in what direction rendering technology would
progress in the near, let alone distant, future. But we wanted an interface that would last, at least a
few years. Fundamentally, it had to be extensible. This is a common buzzword for software design,
of course, so we had two specific goals in mind: it needed to be extensible by renderer writers, so
that new techniques could be described by the interface without disrupting the basic structure of
the interface; it needed to be extensible by the renderer users, so that users could invent their own
techniques without requiring a rewrite of the renderer every time they wanted one little feature.

There are two extremely powerful ways that the RenderMan Interface is extensible by the user.
The most obvious is the programmable RenderMan Shading Language. With the introduction of
the Shading Language, appearance and material modeling became first class citizens, with a special
language as powerful as that provided for shape and animation modeling. The vast majority of
the expertise that makes a RenderMan-savvy TD so valuable is intimate knowledge of the Shading
Language: both its syntax and its subtle but powerful programming paradigms. As a result, much
of the rest of this course will concentrate on exploiting the Shading Language in a variety of unique
but compatible rendering systems.

The second nod to extensibility is specific support for an open-ended set of attributes applied to
geometric primitives. Most graphics APIs have a fixed set of 5 or 17 or 29 interesting bits of data
that you can pass to the renderer (e.g., color, opacity, Phong normal, 4 sets of texture coordinates
for each of the texturing pipeline stages), with specific API calls to pass each of these bits of data.
RenderMan, on the other hand, has extengialeameter lists Parameter lists are arbitrary length
lists of token-value pairs The token of each pair identifies the name and type of the data being
supplied. The value of each pair is an array of data of the correct type. Certain common pieces
of data have predefined token names, liRe for vertex positions andCi" for vertex colors. But
there is a syntax for defining new tokens, and with them, new and unique bits of data that allow the
user to extend and customize his rendering environment.

Thanks to these two modes of extensibility, the RenderMan modeling and shading APls are
nearly the same now as they were 14 years ago, despite great improvements in the capabilities
and breadth of application of the RenderMan renderers. This can hardly be said of any alternative
graphics system.

1.2.3 Language Bindings

The RenderMan Interface Specification was originally written to be linked directly to modeling
programs and make pictures in their windows. For this reason, the first description of the API was
described as a C subroutine library. In computer-science-speak, this is known@dathguage
binding Not long afterwards, it was realized that the most useful way to use a renderer that took
hours to create a picture was as an offline batch process, driven by a scene description stored in a
file. At that point,RIB, the RenderMan Interface Bytestream was developed. RIBristafile a
transcription of calls to the C API. The most common way to create a RIB file (other than using
emacs, of course) is to call the normal C API from a modeling program, but the parameters and data
given to each of the calls are just stored in a file.

Because the RIB version of Rl and the C version of RI are nearly identical (by design), it is
common to give examples in RIB, which is compact and doesn't suffer some of C’s inconvenient
syntactic idiosyncrasies. Thdvanced RenderMdpook does this, as do these course notes. Take
it as read that anything you do in RIB can be done equally well in C. And although none have been
officially sanctioned by Pixar, there are a variety of unofficial language bindings to other program-
ming languages and file formats have been publicly proposed. Java, Python and Tcl come to mind
immediately. Note to self: while the C binding currently serves as a C++ binding, a true C++ binding
would be a welcome improvement to the official document.
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1.2.4 Coordinate Systems

In every hierarchical scene description such as the RenderMan Interface, there is a naturally a hier-
archical transformation stack, which allows the modeler to place objects relative to parent objects.
Each node in this stack definetogal coordinate systemvhich is different from the parent’s by the
transformations that have been applied to that node. It is common for objects need to refer to various
globally-useful coordinate systems, such as the coordinate system that the camera was defined in.
These coordinate systems are defined by name, and there are transformation functions which can
transform points, vectors and surface normals (differently, remember?) between any two coordinate
systems by their names.

The RenderMan Interface predefines several key coordinate systems, so that they are always
available for use. These include:

world - the world coordinate system;

camera - the camera is at the origin, looking out over thaxis;

object - the local coordinate system that a primitive was defined in;
shader - the local coordinate system that a shader was defined in;
raster - the coordinate system of pixels on the display.

In a photorealistic scene description, though, it is relatively common for objects to have rela-
tionships with arbitrary objects in the scene, such as with lights attached to other objects, multiple
cameras in the scene, or objects that reflect them or reflect in them. Distances between objects,
relative scale of different objects, or angles of separation from important directions might need to
be computed. The RenderMan Interface provides a general system for specifying and querying such
outside-the-hierarchy transformation relationships by allowing the user to give a unique name to
any local coordinate system at any point in the hierarchical scene description. These are known as
named coordinate systems

Once a named coordinate system is established, other objects can reference it by transforming
points and vectors into or out of it. A common example is to calculate the distance to a light source by
referring to the origin of the named coordinate system where a light was defined. Another example
would be to transform a unit vector from one coordinate system into another coordinate system,
in order to compare lengths (and therefore scales). Any object in any part of the hierarchy can
access a named coordinate system equally well, no parent, sibling or common ancestor relationship
is required.

1.2.5 Shaders

Perhaps the most important contribution that RenderMan has made to computer graphics is the
RenderMan Shading Language. While the idea of a shading language was not new, the RenderMan
Interface was the first to insist that a well-designed language for material description was available
as a fundamental feature of a photorealistic renderer.

Shading Paradigm

A photorealistic scene description must includes not only the locations and shapes of all of the
geometric primitives in the scene, but must also include some definition of the material properties
of those primitives, as well as the locations and attributes of the lights in the scene. The RenderMan
Interface describes both of these appearance properties as small programs written in the RenderMan
Shading Language.

The RenderMan Shading Language is a C-like language which is specially designed to make
shading and geometric calculations easier to write. The basic data types of the language are not the
general purposent, float andchar, but rathetpoint, vector, color andmatrix. The language
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has built-in operators to add, multiply, interpolate, and transform these data types, to access texture
maps, and to evaluate light sources, since those are the types of operations that are common in a
program that computes texture patterns, BRDFs and ultimately object colors.

Programs written in the Shading Language are calleatlers Four basic types of shaders can
be written in Shading Language, and then used in the scene description:

e surface — describes the material properties of an object;

e displacement — describes the bumpiness of an object’s surface;

e atmosphere — describes how light is attenuated as it travels through space;
e light source — describes the intensity of light emitted by light sources.

Each of these is written in the Shading Language. The differences between them are based entirely
on their intended function in the appearance description, and the effect that that has on which geo-
metric parameters are needed to accomodate that function. A program wouldn't be very powerful
if it didn’t have parameters, and shaders are no different. Shader parameters can be set in the scene
description, to control their behavior on an object-by-object basis.

Since shaders are written in a programming language, there must be some process by which
the programs are compiled and loaded into the render for eventual execution. According to the
RenderMan Interface Specification, the method that a renderer uses to accomplish this is entirely up
to the implementation of the renderer. In practice, essentially all RenderMan renderers have used
essentially the same technique. The shader is compiled by a custom Shading Language compiler
into Shading Language object cadeset of assembly language instructions for a mythical SL CPU.
The renderer contains an interpretter for this assembly language, which is able to simulate the SL
CPU one instruction at a time. Naturally the compiled object code for one renderer is unique to that
renderer (or at least, unique to the compatible products of a single company).

Shader Evaluation

Shading Language programs are evaluated at points on the surface of geometric primitives. The
renderer is responsible for deciding which points on the primitive need to be shaded, depending on a
wide variety of scene description parameters. Although the user has some control over the renderer
by manipulating its global scene description parameters, such as image resolution or fidelity, the
user does not directly choose which or how many points on surface will be shaded, nor in which
order.

Once the renderer has determined a point on the primitive which it wants to be shaded, it com-
putes a set of “global” geometric values to describe that point to the shader. Obviously the position
of the point is quite valuable, as well as the surface normal, the surface tangents, parametric and tex-
ture coordinates, etc. These are global in the sense that they are determined from the mathematical
description of the geometric primitive itself. Also, any predefined or user-defined vertex data which
was attached to the geometric primitive in the scene description is interpolated according to the rules
of its class, in order to determine a value specific to the point in question.

Once all of this data is computed, the shaders are executed. Each geometric primitive in the
scene description has exactly one surface, one displacement and one atmosphere shader bound to
it, in order to describe its visual appearance. In addition, the scene description has any number of
light sources, each of which is described by a light source shader. Individual lights can be turned
on or turned off for any given primitive, so the number of light source shaders that are bound to an
individual primitive can vary. Each shader uses the global data, vertex data and the object-specific
values of their parameters to compute their contribution to the appearance of the object.

First to execute is the displacement shader. The displacement shader calculates bump mapping
or displacement mapping. The output of this shader is a new position and surface normal for the
point. In some renderers, or in some circumstances, displacement maps are not possible (generally
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due to “shading after hiding” issues), in which case only the modified surface normal affects future
calculations.

Second to execute is the surface shader, which is often coloquially referrediteeabader,
since everyone knows it is the main shader. The surface shader takes all the precomputed geometric
input, plus the potentially modified position and surface normal output by the displacement shaders.
Its function is to compute the actual color of the object. The surface shader generally spends most
of its time evaluating parameters of the local illumination function, such as diffuse surface color,
specular maps, reflection vectors, etc. This step, calculating the material characteristics and patterns
visible on the surface of the primitive, is by far the most time consuming part of the entire shading
calculation (both for the renderer and for the Shading Language programmers), many days could be
spent lecturing on the hows, whys and wherefores of doing this well. In the interest of time, | won’t
get do that now.

The surface shader runs the local illumination function on these parameters to determine the
outgoing color and object opacity in the direction of view. There are a variety of built-in simple local
illumination functions, such as Lambertian diffuse and Phong specular, but most realistic surface
shaders nowadays have custom functions.

In order to evaluate local illumination, the intensity of the light arriving at the point must be
known. The surface shader’s invocation of illumination functions causes the evaluation of all of the
light source shaders that are turned on for the object. Light source shaders use their parameters and
global inputs to determine the color, intensity, and incoming direction of light that arrives at the
point that the surface shader is shading.

Once the surface shader has completed, there is one more stage. The atmosphere shader’s job
is to compute the affect of any atmospheric or volumetric effects that occur between the object and
the camera, and it modifies both the color and opacity of the object to take into account any changes
that those effects might cause. Often those affects vary with depth.

Having completed the shading of a particular point on a primitive, the renderer may have many
more points to shade on the same primitive or on other primitives. Depending on the specific al-
gorithm of the renderer, it might shade each point on the primitive one at a time, or it might shade
many points simultaneously in parallel. In either case, the shader is written as though it is processing
one point at a time. In Shading Language there is very little access to any information about charac-
teristics of other places on the same primitive or on other primitives. The language supports a very
powerful set of derivative operators, so it is possible to compute how global variables, or the results
of complex calculations, change in the immediate neighborhood of the point being shaded. However,
the language does not have operations for arbitrary queries about nearby or distant surfaces.

That being said, some rendering algorithms do exist that can provide a variety of information
about nearby or distant neighbors. Such capabilities are often available in global illumination algo-
rithms like ray tracers, so the language has facilities for tracing rays and probing the environment
with them. Rendering algorithms that cannot provide this information simply do nothing if asked to
trace a ray.

Once shaders have been run on all the relevant points on the geometric primitives, the colors that
have been computed eventually make it into the pixels of the output image. As such, shader writers
have complete control over the colors in the output image, and this control comes in very handy as
a TD, as many of the speakers throughout the day will attest.

Why a Special Purpose Language?

Nearly 15 years after the design of the RenderMan Interface, a common question is, why have a
Shading Language at all? Why not just program shaders in C? There is no definitive answer to this
guestion, because we know that C-based shading extensions to photorealistic renderers can and do
exist. However, the RenderMan choice still appears the superior choice to its devotees, for a number
of reasons.
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The RenderMan Shading Language is a “small language,” in that it is a special purpose language
with data types and semantic structure designed to solve a particular problem: calculating the color
of objects in a photorealistic rendering. Despite its obvious syntactic similarities to C, it is not a
general-purpose programming language like C or C++. Operations that are common in shading
calculations can be described succinctly, while operations that have nothing to do with shading can’t
be described at all. This is a conscious choice. While it doesn’'t have many of the powerful data
structures or programming flexibility of a modern general-purpose language, it also doesn’t have the
semantic complexity of one.

The existence of the Shading Language is also a recognition of the fact that the implementors of
rendering systems are computer graphics specialists, not compiler theory professionals, and that the
graphics hardware that the compiled code will be running on is similarly not a general-purpose CPU.
As mentioned above, in most software RenderMan implementations, the graphics hardware that runs
Shading Language programs is not a real CPU at all, but a virtual machine which is implemented as
a simulator in the renderer. The basic assembly language of this shading virtual machine is not add,
register move, branch if not equal, like a modern CPU. Rather it is transform a point, grab a texture,
trace a ray. The power of having these as the lowest-level operators in your assembly language far
exceeds the minor programming hassles of not having user-defined data structures or pass-by-value
subroutine calls.

Of course, in the 21st century, it may be common to expect that a modern uberlanguage like
C++ could subsume the semantics of a Shading Language, providing the same descriptive power
without the syntactic limitations. This may be true, from the point of view of the Shading Language
programmer. However, in the end, the reason that a small private language is better for shading is
the same reason that JavaScript or Tcl or SQL exist. Software systems which contain embedded
languages always need to exercise some control over the data structures, breadth of atomic oper-
ations, and security features of the language in order to provide a stable, predictable and bug-free
environment within which they can run. It is very difficult to crash a renderer by providing a buggy
Shading Language program. The same cannot be said for renderers whose shaders have dynamically
allocated memory, reference arbitrary memory locations through unchecked pointers, and can make
system calls (fire a ray into the Internet, anyone?)

1.3 Scene Modeling

In order to provide a scene description to the RenderMan renderer, one has to model the scene.
There are many good modeling packages out there, and most have some form of model translator
than can get their data into a RenderMan renderer. But when TDs are chosing the best (the most
efficient, best looking, most artifact-free) way of modeling particular objects in the scene, there are
many choices and many tradeoffs that they must keep in mind.

1.3.1 Polygonal Meshes

The most common primitive in use in computer graphics, 20 years ago or today, is the polygon.
Polygons are easy to understand, flexible in use, and common to a variety of modeling and rendering
systems. RenderMan breaks polygonal models down into 4 categories, based on the complexity of
the topology of the model.

First, RenderMan classifies polygons as being eitloewexor concave Convex polygons are,
loosely, ones which have no indentations of any kind in their boundary. More specifically, a line
drawn between any two points on the edges of the polygon stays inside the polygon and never
crosses an edge. Concave polygons are anything else: polygons with indentations or protrusions in
their boundary or polygons with holes in their interior. RenderMan calls concave polggoesal
polygons The distinction between convex and concave is done only for efficiency considerations
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inside the renderer, as many rendering algorithms are faster if it is known ahead of time that the
polygons being processed are convex.

The second division of polygon types is a packaging consideration. RenderMan allows polygons
to be described one at a time, or in groups with shared vertices (adgtzedronor polygon mesh
A polygon mesh is defined as a set of polydanes each of which has any number of vertices.

The vertices are identified by indices into a common table of vertex positions, so that faces that

share a vertex can duplicate the index and do not have to duplicate the vertex data itself. This is for
compactness and efficiency of description, since the faces of a polygon mesh typically reuse a vertex
many times, so it is more efficient in space and processing time to specify it once and share it.

So, in summary, RenderMan supports four types of polygonal primitives, lone convex poly-
gons, lone general polygons, polyhedra made of convex polygons, and polyhedra made of general
polygons.

Polygons have certain advantages for interactive hardware renderers, such as their straightfor-
ward description and simple equations that make hardware implementation compact and fast. How-
ever, for photorealistic renderings, they are very problematic — there are a number of unhappy
polygonal artifactghat degrade our images.

To begin with, there is the problem of discontinuity. At the edge where two polygons meet, the
surface has a sharp bend. This bend is known@s discontinuity, which means that the slope of
the surface changes abruptly. This leads to two problems. First, the silhouette has corners where
it abruptly changes direction. Second, the surface normals of the primitive are all the same on one
facet, and then abruptly change on the next facet. This means there are shading discontinuities.
The solution to these surface normal direction discontinuities is, of coBtseng interpolation
which smooths out the obvious shading discontinuities. But generally this is only a partial fix, since
the interpolated normals themselves often don't quite look right, behave unexpectedly at silhouette
boundaries, and cause problems for bump and displacement mapping.

The next problem is one of fixed resolution. The set of vertices that describe the polygon mesh
are generally appropriate for looking at the object at a particular scale, or size on screen. If the
object is much smaller than that size, the polygons are individually very very small, and cannot be
rendered efficiently. The amount of data that it takes to describe the object, and the amount of time
that it takes to render the object, is not proportional to the importance of such a small object.

If the object is much bigger than the appropriate size, then the individual polygons are very large
on screen, which accentuates the polygonal discontinuities and robs the image of its believability.
As we will see, there are other primitives that can fill in with curves between vertices, and make it
look smoother and more continuous as the object gets larger on screen. You simply can't fill in a
polygonal mesh.

Finally, getting good smooth shading on a polygonal mesh is difficult. On a polygonal mesh
there is no smooth, continuous 2-D coordinate system that covers the entire primitive. There might
be small 2-D coordinate systems that cover pieces of the mesh, such as one of the triangular facets,
but generally speaking there is no single equation that covers the whole thing. Therefore, applying
texture maps or other shading features that span many facets in a smooth and unkinked way is
not straightforward. Moreover, every geometric quantity on the primitive, not merely the surface
normals, suffer from the discontinuities at the polygonal edges. So for example, if your shading
equation relies on tangents, or just the scale of the local 2-D coordinate system (for texture filtering),
these quantities will also abruptly change at polygon edges, leading to more artifacts.

The advantage of polygonal meshes, of course, is that it is extremely easy to create arbitrary
shapes with them. Digitization technology is very advanced, making it easy to acquire and mesh
together large numbers of vertices. They can handle complicated topologies, such as protrusions,
holes or even Klein bottles just as easily as they can handle simple topologies like planes and spheres.
Moreover, when it comes to animation, it is easy to move and deform polygonal objects into desired
positions because you are working with the vertices directly. The animation software doesn'’t have
to concern itself with the odd mathematical equations of the parametric surface, and guess how to



32 CHAPTER 1. THE LORE OF THE TDS

modify the parameters to get the right shape.

1.3.2 Parametric Primitives

Parametricgeometric primitives are primitives which can be described by mathematical equations
with parameters That is, an equation of the forl® = f(a,b,c) In 3-D computer graphics, we
are generally interested in parametric primitives whose equations have 2 parameters, which we con-
ventionally denotax andv. Typically we are interested in a subset of the range of the equation, for
example, all the points whereandv range between 0.0 and 1.0.

The primitive generated by these equations are two-dimensional (it forms a surface, not a line or
a volume), and a wide variety of useful and important geometric primitives are parametric surfaces.
For example, a plane has a simple parametric equation:

P = u'%+v"7i+Porigin

A sphere (that is, the outside shell of a sphere) has a very simple parametric equation:

P, = sinu-sinv
P, = cosu-sinv
P, = —cosv

In RenderMan, all of the quadric surfaces, patches and patch meshes, and NURBS are parametric
surfaces. Parametric surfaces are good surfaces for rendering for three reasons. First, the parametric
equation makes it very easy to locate and draw all of the points on the surface. We simply use a
pair of loops over the two parameters to generate as many points as we want. If our algorithm needs
to find additional points on the surface that lie between two points we already have (for example,
finding the midpoint of an arc), we just generate the point in the middle of the parametric range.
Such points are always correctly on the surface, and we can generate as many as we need no matter
how close we get to the object. Recall that on a polygonal primitive, we could only interpolate
vertices with straight lines.

Second, the parametric equation makes it very easy to compute other valuable geometric quanti-
ties about the surface that we need for shading. For example, we generally need to know the surface
normal for our local illumination equation, and probably need the surface tangents for antialiasing
purposes. The derivatives of the parametric equation of the surface give us the tangents directly and
exactly. The cross product of the tangents gives us the normal. Nothing could be simpler.

Third, parametric surfaces have a natural 2-D coordinate system drawn on them, thanks to their
two parameter equations. You can grid the surface with lines that have equal values ofieither
or v, and these lines are callégsbparams This 2-D coordinate system is very handy for shading
purposes, most obviously for texture mapping. You just put the piel)(of the texture map onto
point (u, v) of the parametric surface. Even if your texture is not being laminated directly onto the
parametric primitive, the fact that the smooth, continuous, unkinked 2-D coordinate system exists
makes most shading operations easier.

The big problem with parametric surfaces is that they are always rectangles. If you want to
create more complicated shapes, you must stitch together a bunch of parametric primitives into a
mesh a “quilt” of rectangles that wrap around non-rectangular features of the object. This usually
means breaking up our handy continuous 2-D coordinate system into a less convenient piecewise
continuous coordinate system. Moreover, for a lot of shapes, such as objects with protrusions (like
fingers) or with holes, covering the surface with this mesh of rectangles is not always easy. Itis often
the case that these meshes suffer from discontinuities or cracks at the edges, or that the rectangles
end up being vastly different sizes in order to accomodate the shape of the object.
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1.3.3 Subdivision Meshes

Recently, the computer graphics community has been looking to a hybrid technology to solve the
problems of polygonal meshes without introducing the topological restrictions of parametric sur-
faces. Interestingly, the technology we were looking for was under our noses for nearly 20 years,
but it was ignored and forgotten until it was rediscovered in the late 1990s by researchers at the Uni-
versity of Washington. This magical new geometric primitive is known astielivision surface

(In RenderMan, we prefer the tersabdivision meshn order to avoid confusing the word “surface”

with the shader concept of a “surface”.)

The easiest way to think about subdivision meshes is that they are polygon meshes with rounded
corners. Imagine a polygon mesh that you dropped into a rock tumbler, and it came out all smoothed
out and shiny. Because of this, they have a lot of the advantages of polygon meshes, but with many
of the defects of polygon meshes removed. First, structurally, they are very similar to concave
polygon meshes. You define a subdivision mesh as a group of faces, each of which has any number
of vertices, and the vertices are shared between adjacent faces. Because of this, you can model any
topology with subdivision meshes that you can with polygon meshes. They are as easy to digitize
and animate as polygon meshes. And they can be easily converted to and from polygon meshes in
modeling packages that are behind the times and don’t handle them directly.

Second, due to their automatic smoothing properties, they don’t suffer from polygonal artifacts
the way that normal polygon meshes do. There is no discontinuity of tangents or surface normal at
edge or corners, and there is no straight lines on silhouettes. Phong interpolation of surface normals
is not necessary, since they have beautifully smooth normals already. They don’t have discontinuous
texture coordinate sizes across edges, either.

They do still suffer from the problem that their texture coordinates themselves change across the
edge between two faces. This problem, as with polygon meshes, is a direct result of their general
topology, since they can model objects which cannot be “unfolded” into a rectangular 2-D plane like
a parametric patch can. However, like polygon meshes, user-defiaedt coordinates are often
attached to the vertices to solve this problem.

RenderMan’s subdivision meshes have an additional feature over basic subdivision meshes,
known ascreasing Every edge or corner point can be given a parameter which describes just
how smooth it should be. With this control, it is possible to add back the hard edges or corners
that polygons have, or to go somewhere in-between (like a tightly beveled edge on a wooden table).
Recent releases of Maya and other modeling packages have similar creasing or pinching controls
which are similar to those in RenderMan.

1.3.4 Procedural Primitives

Another powerful modeling concept that is fully supported by RenderMan is thptookdural
primitives The idea behind a procedural primitive is to break away from the use of predefined,
modeled geometry to describe the objects in a scene, and to let a program create geometry on the
fly as the scene is being rendered. For example, rather than have a person individually model the
thousands of trees in a forest, a program could be written that creates tree models, and that program
could be run by the renderer to get as many trees as necessary. There are two big advantages of letting
a program generate complex models. First, the program can take parameters which alter the model
generation, so that each individual in the group looks slightly different. Such parameterized models
can create an infinite variety of similar but different individuals, which looks much more natural
and photorealistic than endless carbon copies of the same hand-carved model. Second, because the
renderer asks for the model data, rather than having the data force fed to it, it can delay asking until it
has determined that the model is relevant to the scene. In modeled sets and environments with large
numbers of objects, it is not uncommon for many of these to be off-screen or otherwise irrelevant
to making a particular image. If the renderer knows that, it needn’t ask for the data, saving time in
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both model generation and rendering.

Interestingly, the renderer rarely needs as much data as procedural primtives are capable of
churning out. A program can create a whole forest, but we only see a few of the trees up close,
and a lot more trees really far away. Fortunately, procedural primitives can take that into account,
too. Since the renderer asks for a model when it is relevant to the image being rendered, one of the
parameters to the model generation can be its eventual size on screen. In RenderMan, we call this the
detail size Trees with large detail sizes will be scrutinized by the audience, so the program makes a
very, er, detailed, version of the tree. Trees in the distance have small detail sizes, and the program
can know that a simple approximation is perfectly acceptable. The request from the renderer to the
procedural primitive program includes the detail size as one of the parameters, so that the program
can tailor the output to the particular use.
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Figure 1.6: A procedural primitive at differing detail sizes.

RenderMan does not provide a Procedural Modeling Language with which to write procedural
primitives, in the way it provides a Shading Language to write materials. Instead, RenderMan ren-
derers rely on connecting to external programs written in normal programming languages. Different
renderers will create these connections in different ways, such as statically linking the procedural
primitive libraries into the renderer, dynamically linking those libraries into the renderer executable
at runtime, or using interprocess communication to transmit data over channels.

1.3.5 \Vertex Data

All of the modeling primitives available in RenderMan, whether they are polygonal meshes, para-
metric meshes, or something more exotic, are fundamentally described by a set of vertices — points
in 3-D.

Historically in computer graphics, renderers have found it useful to have more information at
each vertex than just the position. For example, when shading a polygon mesh, it is generally
valuable to have a Phong normal at every vertex which can be interpolated across the surface of the
facets for better shading. Similarly, it is quite common to attasture coordinates andt to each
vertex, or apply a color to each vertex.

One of RenderMan’s powerful extension mechanisms, the parameter list, allows us to break free
of a restrictive, predefined set of such data, and permit us arbitrary data attached to the primitives. In
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RenderMan, it is trivially easy to define a new piece of data and attach it to the vertices of a primitive.
This data is carried along with the primitive throughout its travails through the rendering pipeline,
and in particular, is available to the shaders that are attached to the object. It is quite common for
those shaders to compute shading based not merely on the standard, built-in, geometric quantities
like the surface normal and tangents, but also upon these custom-designed per-vertex parameters.
We call these parametevertex data

RenderMan’s mechanism for creating vertex data is very general. Syntactically, there are eight
typesof data which can be defined:

e float — a single floating point number;

e color —an RGB triple;

e point —a 3-D position;

e vector —a 3-D direction vector;

e normal — a 3-D surface normal vector;

e string — a quoted character string;

e matrix — a4 x 4 transformation matrix;

e mpoint — a position represented as a coordinate system (used only on implicit surfaces).

Fixed length arrays of any of these types can also be defined. There are five levels of granularity, or
storage classesvhich allow the data to be applied and interpolated differently across the surface of
the primitive:

e constant — exactly one value, identical over the whole primitive;

e uniform— one value per facet, constant over the facet;

e varying — one value per vertex, interpolated parametrically over the facets;

e facevarying - one value per vertex per facet, interpolated parametrically over the facet, but
discontinuous between facets (newly inventedd&ManRelease 10);

vertex — one value per vertex, interpolated identically to position.

1.3.6 Level of Detall

In realistically modeled scenes, the geometric and shading complexity is enormous. Photorealistic
images requires the extremely fine detail that is found in nature, or the illusion will be broken. Dirt,
smudges, tiny paint chips, fabric wearing patterns, the list is endless. However, not every object will
be rendered in closeup, so not every object in the scene needs to have the same high level of detail.
Objects seen in the background may be so small, or poorly lit, or even out of focus, that they only
need cursory treatment to be “good enough”. Doing so will have great advantages in rendering time,
since giving the renderer large amounts of geometry and shading information to process when just
a little does the trick is, well, wasteful, of time and memory.

However, sadly, it is not always easy to tell ahead of time which objects will be in the foreground
of a scene and which will be in the background. Camera angles change with the whimsy of the
photographer, objects move in animation, lighting may change, etc. It is easily possible that objects
that are close in one part of an animation are in the distance in another part of the animation. It
seems clear that for such objects to render efficiently in all cases, multiple versions of the object
would be useful.

One approach to deploying these varied versions is completely manual. When the scene is built
and layed out for the camera, highly detailed versions of the foreground objects are used, while rough
or simple versions of unimportant background objects are used. As the objects and the camera move
through the scene, object versions can be manually swapped out at the appropriate time to make sure
that the right version is in front of the camera at all times.

Of course, this is tedious and somewhat error prone. It is hard to guess exactly the right ver-
sion without seeing the rendered result, and managing the swapping must be done with great care.
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However, the renderer “knows” which objects are close and which are far, so in theory it is quite
capable of knowing which versions of each object to use. If the renderer could swap them in and out
automatically, it would be a lot easier for the photographer.

The RenderMan Interface supports this requirement with the concdptelf of detail For
each object in the scene description, the modeler can specify a variety of different representations
of that object. With each representation of the object comes a metric which identifies when that
representation should be used. The renderer examines the metrics attached to each representation,
and chooses from them the one that is best to use in that particular rendering. As the camera or
objects move, the renderer may chose a different representation in the next frame. The metric is a
measure of importance we've seen before — the size on screen, a.k.a. detail size.

It all works like this: for each object in the scene, the modeler specifies a box in the world to
use as a ruler. The scene description then contains any number of different representations of the
object, and with each one specifies a range of detail sizes of the ruler for which this description is
relevant. When the renderer encounters this object in the scene description, it examines the ruler
and computes how large it actually is on screen. This provides a number for the actual detail size of
the ruler. Then, the renderer compares that to the various detail size ranges of the descriptions, and
renders the relevant one. All of the irrelevant descriptions are merely thrown away.

As it turns out, if you always pick exactly one description for every object, you get artifacts. In
particular, if you watch an object shrink as it slowly drifts away, you can see a sudden visual change
at the point in the animation where the renderer decides to change representations. This is called a
“pop”, and is very distracting and unhappy all around. The solution for this is for the renderer to
fade in and out representations, so that there is never a pop. For this to work, the detail ranges of
representations must overlap, so that the renderer has transition ranges where two representations
are relevant, and the renderer can blend or fade between them.

In the RenderMan Interface scene description, you are allowed to use different geometry and
different shaders in your level of detail representations. A high detail representation might be a
complex subdivision mesh with a primo shader that uses displacement maps and subtle texturing. A
midrange representation might be a very blocky subdivision mesh with a plastic shader that texture
maps on a color and specular coefficient. A low detail representation might be a square with a pho-
tograph of the object textured on. Even though the object entirely changes both geometric topology
and shader types, a fully-featured RenderMan renderer will make a smooth transition between the
different representations.

Building sucessful level of detail representations and managing their transition ranges for “in-
visible fades” is a bit of an art, which will be discussed in greater detail in the afternoon sessions.

1.3.7 Modeling vs. Shading

In many animation and special effects studios, the team or individual who is responsible for cre-
ating the models in the scene is responsible for both their shape and their appearance. There is a
natural tension between modeling shape and modeling appearance for photorealistic scene descrip-
tions. There are two reasons. First, the appearance modeler generally needs some sort of easily
parameterized, discontinuity free, smooth and elegant primitives onto which they can apply their
shaders. Attractive shading is heavily dependent on procedural or image-based texture maps, which
are difficult to apply if the primitive has unusual parameterization or discontinuous texture coordi-
nates. These requirements place restrictions on the choice of geometric primitives and modeling
techniques that can be used to create the shape, and it is not uncommon for the simplest or most
elegant way to make a shape in modern modeling packages to create serious problems for shading.
Second, there are many situations where a particular feature of the intended object can be real-
ized either by modifying shape or by enhancing the shader, and deciding which way is “best” is often
a difficult choice. A hole can be put into an object by rebuilding the mesh and creating a geometric
hole, or by modifying the shader to make a part of the existing geometry transparent. Bumps and
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pits on an object’s surface can be made by undulating the geometry, or by writing a displacement
shader. | have been in meetings where technical directors jokingly suggested that every prop in the
show should just be spheres or cubes, and the shader writers would be responsible for making the
spheres look like cars, trees, buildings, tables, doorknobs and people. It seemed laughable at the
time, but as you'll hear this afternoon, it turns out this is not always such a bad idea.

In fact, every large studio has modeling studs who can easily create holes and bumps, and spi-
raled screws with Philips heads and rock strewn landscapes and amazingly detailed mechanisms
that'll look completely realistic with even the simplest metal shader attached. They also have shad-
ing studs who can create the same holes and bumps, and screws and landscapes and mechanisms,
from spheres and planes by using amazingly subtle displacements, procedural shading tricks and
custom illumination models. There is rarely only one solution that will work. The question that
art directors and modeling supervisors must answer is what’s the cheapest way to get a look that is
“good enough”, given the size, importance and screen time of the prop, and the relative complexity
of one side’s requirements on the other side.

1.4 Life in CGI Production

The rest of this course is going to get beyond the background material, terminology review and
history lessons, and deal with the real reason that everyone is here today — to learn the ropes.
To understand the practices, techniques, methodologies, tricks that working animation and special
effects TDs apply every day in their pursuit of the perfect on-screen image. We haven't written
the story, we didn’t design the look of the universe, we don’t do the animation or lend voice to the
characters. We just make it all real. We make the images — 24 per second, 86400 per hour — that
make the audience believe that what they see on-screen is all really happening.

Before the other speakers get started on the technical details of various tasks, techniques and
operating paradigms, | want to provide a little background on how TDs work — the very foundations
of the practice of the Lore of the TDs.

1.4.1 Photosurrealism

For more than 20 years, one of the stated goals of the computer graphics research community has
been to solve the problem of making tripiotorealisticimages. We have strived to make the CG
image, as much as possible, look exactly like a photograph of the scene, were that virtual scene to
actually exist. Much of this work was done very specifically so that CGI could be used in films.
Solving such problems as accurate light reflection models, motion blur, depth of field, and the han-
dling of massive visual complexity was motivated by the very demanding requirements of the film
industry.

Movies, however, are illusions. They show us a world that does not exist, and use that world
to tell a story. The goal of the flmmaker is to draw the audience into this world and to get the
audience tesuspend its disbelieind watch the story unfold. Every element of the movie — the
dialog, costumes and makeup, sets, lighting, sound and visual effects, music, and so on — is there
to support the story and must help lead the viewer from one story point to the next. In order for the
audience to understand and believe the movie’s world, it clearly must be realistic. It cannot have
arbitrary, nonsensical rules, or else it will jar and confuse the viewers and make them drop out of
the experience. However, movie realism and physical realism are two different things. In a movie,
it is realistic for a 300-foot-tall radioactive hermaphroditic lizard to destroy New York City, as long
as its skin looks like lizard skin we are familiar with. Some things we are willing to suspend our
disbelief for, and some things we are not!

There are two people who are primarily responsible for determining what the audience sees when
they watch a movie. The director is responsible for telling the story. He determines what message
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(or “story point”) the audience should receive from every scene and every moment of the film. The
cinematographer (cinema photographer) is responsible for ensuring that the photography of the film
clearly portrays that message.

Over time, filmmakers have developed a visual language that allows them to express their stories
unambiguously. This language helps the flmmaker to manipulate the imagery of the film in subtle
but important ways to focus the audience’s attention on the story points. Distracting or confusing
details, no matter how realistic, are summarily removed. Accenting and focusing details, even if
physically unrealistic, are added in order to subtly but powerfully keep the audience’s attention
focused on what the director wants them to watch. The job and the art of the cinematographer is to
arrange that this is true in every shot of the film. The result is that live-action footage does not look
like real-life photography. Itis distilled, focused, accented, boldedamer than life In short, film
images manipulate reality so that it better serves the story.

Our computer graphics images must, therefore, also do so. Perhaps even more than other parts of
the filmmaking process, CGlI special effects are there specifically to make a story point. The action
is staged, lit, and timed so that the audience is guaranteed to see exactly what the director wants
them to see. When a CG special effect is added to a shot, the perceived realism of the effect is more
influenced by how well it blends with the existing live-action footage than by the photorealism of
the element itself. What the director really wants are images that match as closely as possible the
other not-quite-real images in the film. They are based in realism, but they bend and shape reality to
the will of the director. Computer graphics imagery musphetosurrealistic

In a CG production studio, the role of the cinematographer is filled by the TDs, whose jobs
include geometric modeling, camera placement, material modeling, lighting, and renderer control.
Computer graphics gives the TDs a whole host of new tools, removes restrictions and provides an
interesting and growing bag of tricks with which to manipulate reality. Jim Blinn once called these
tricks “The Ancient Chinese Art of Chi-Ting” Technical directors now call them “getting work
done.”

Altering Reality

One of the best cheats is to alter the physics of light. This technique is based on the observation
that the movie viewer generally does not know where the lights are located in a scene, and even if
he does, his limited 2D view does not allow him to reason accurately about light paths. Therefore,
there is no requirement that the light paths behave realistically in order to ensure that an image is
believable.

This situation is exploited by the live-action cinematographer in his placement of special-purpose
lights, filters, bounce cards, and other tricks to illuminate objects unevenly, kill shadows, create
additional specular highlights, and otherwise fudge the lighting for artistic purposes. Everyone who
has ever seen a movie set knows that even in the middle of the day, every shoot has a large array of
artificial lights that are used for a variety of such purposes.

However, the live-action cinematographer, despite his best tricks, cannot alter the physics of the
light sources he is using. Computer graphics can do better. Creating objects that cast no shadow,
having lights illuminate some objects and not others, and putting invisible light sources into the
scene near objects are all de rigueur parlor tricks. Things get more interesting when even more
liberties are taken. Consider, for example,

¢ alight that has negative intensity, and thus dims the scene

¢ a light that casts light brightly into its illuminated regions, but into its “shadowed” regions
casts a dim, blue-tinted light

e a spotlight that has at its source not simply 2D barndoors to control its shape, but instead has
full 3D volumetric control over the areas that it illuminates and doesn't illuminate, and at what
intensities
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e a light that contributes only to the diffuse component of a surface’s bidirectional reflection
distribution function (BRDF) or only to the specular component

e a light that has independent control over the direction of the outgoing beam, the direction
toward which the specular highlight occurs, and the direction that shadows cast from the light
should fall.

In fact, such modifications to light physics in CGl are so common that the production community
does not think of them as particularly special or noteworthy tricks. They are standard, required
features of their production renderers. Other, even more nonphysical cheats, such as curved light
rays, photons that change color based on what they hit, lights that alter the physical characteristics
of the objects they illuminate, or even lights that alter the propagation of other lights’ photons, are
all useful tricks in the production setting.

Another interesting cheat is to alter the physics of optics, or more generally all reflection and re-
fraction, to create images with the appropriate emphasis and impact. Much of the trickery involving
manipulating optical paths is descended, at least in part, from limitations of early rendering systems
and the techniques that were invented to overcome these limitations. For example, for over 20 years,
most CGI was created without the benefit of ray tracing to determine the specular interreflection of
mirrored and transparent objects.

As before, the limited knowledge of the viewer comes to our rescue. Because the viewer cannot
estimate accurately the true paths of interreflection in the scene, approximations generally suffice.
In place of exact reflection calculations, texture maps are used. Use of environment maps, planar
reflection maps and refraction maps ratyer than true ray tracing lead to slight imperfections. But,
experience has shown that viewers have so little intuition about the reflection situation that almost
any approximation will do. Only glaring artifacts, such as constant colored reflections, inconsistency
from frame to frame, or the failure of mirrors to reflect objects that touch them, will generally be
noticed. In fact, experience has shown that viewers have so very, very little intuition about the
reflection situation that wildly and even comically inaccurate reflections are perfectly acceptable.
For example, it is common for production studios to have a small portfolio of “standard reflection
images” (such as someone’s house or a distorted photo of someone’s face) that they apply to all
objects that are not perfect mirrors.

Even more nonphysically, viewers are generally unaware of the difference between a convex and
a concave mirror, to the director’s delight. Convex mirrors are generally more common in the world,
such as automobile windshields, computer monitors, metal cans, pens, and so on. However, mirrors
that magnify are generally more interesting objects cinematographically. They help the director
focus attention on some small object, or small detail, onto which it would otherwise be difficult to
direct the viewers’ attention. Unfortunately for the live-action cinematographer, magnifying mirrors
are concave and are extremely difficult to focus. But this is no problem in CGIl. Because the reflection
is generally a texture map anyway (and even if it is not, the reflected rays are under the control
of the technical director), it is quite simple (and even quite common) for a convex (minifying)
mirror to have a scaling factor that is not merely arbitrarily independent of its curvature, but actually
magnifying— completely inverted from reality.

Similarly, refractions are extremely difficult for viewers to intuit, and they generally accept al-
most anything as long as it is vaguely similar to the background, distorted, and more so near the
silhouette of the refracting object. They typically are blissfully unaware of when a real refraction
would generate an inverted image and are certainly unable to discern if the refraction direction is
precisely in the right direction.

The goal of the CGI image, and therefore the goal of the TD, is to accentuate the action and
clearly and unambigously present the story point. Only secondarily is it to create a beautiful artistic
setting within which to stage the action. Film blasts by at 24 frames per second, and the audience
doesn’t have time to look for tiny flaws, inconsistencies with known physics, or minor continuity
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Figure 1.7: Looking at a convex and concave mirror.

problems. If the image looks real, in the Hollywood sense of the word, if it is appropriately photo-
surrealistic, then the TD has won.
Long live the Art of Chi-Ting!

1.4.2 Special Effects Shaders on Custom Geometry

A special effect is any trick that adds something visual to a scene that wasn't there when it was shot
normally on film. It might be as simple as filming a miniature version of a vehicle, or as complex as
adding a computer generated actor to a shot. In an all-CGI movie, you could say that the entire film
is one large special effect, but the Academy of Motion Picture Arts and Sciences has decided that
this is not considered to be the case. Well, that's fine with me, because | consider a special effect in
an all-CGil film to be a trick that adds something visual to a scene that wouldn't be there if it was
rendered with all the normal sets, props and characters using their standard shaders.

One very common case for computer generated special effects is rendering the whispy and ethe-
rial, things that add visually to the image, but don't have a hard surface made of a conventional
material. RenderMan renderers require, however, a geometric primitive with a shader attached,
for anything they are going to compute and render. So, TDs create custom geometry with effects
shaders. These pieces of geometry will not, in the final image, be identifiable as themselves, in the
sense that you will see a sphere sitting there with a texture map of fire on it. Rather, the geometry
is merely a mechanism for the effects shader writer to get his desired colors into the specific pixels
that need to be covered by the effect.

For example, a bright light source might be surrounded by an aura or glow, caused by the light
illuminating particles in the air near the light, or perhaps caused by diffraction effects in the eye
of the viewer or lens of the camera. In either case, these effects cause colors to appear in the
image in places where there is no geometry to be shaded. So, we add some geometry to hold the
shading effect. A sphere around the light source which is not lit in the conventional way (that is,
has no local illumination model), but instead merely puts color directly into the pixels, works nicely.
Conventionally, it would be mostly transparent, and would fade to obscurity with on-screen distance
from the light source.

Another example are clouds, smoke and explosion effects. Geometrically such objects would
be impossibly complex to model. Instead, they rely on shader tricks. Typically the models for
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these phenomena are extremely simple — some spheres or planes — which are animated by a particle
system or some other dynamic animation system. The shaders again rely on transparency and special
illumination models to make them look less like surface primitives and more like volumes, and to
take direct control of their contributions to the pixels on the screen.

1.4.3 Layers

The first rule of comping iseparate everything into layer3he first rule of writing shaders o
everything in layersThe first rule of building a believable universe is, well, you get the idea.

The complexity of nature is a very difficult thing to simulate with mathematical equations and
little programs. The reason is because there is far too much going on simultaneously to grok all
at once. Nature uses a wide range of disperate processes to create and modify the shapes and
appearances of everything we see. It should not be surprising, then, that well written shaders and
special effects rely on the same diversity of process to simulate those shapes and appearances.

When developing a look, think about things from the outside in, starting from the largest basic
features and working your way down towards the most subtle. Don't try to get subtleties worked
in in the early stages of development, because fixing bugs in the larger features will probably break
the underpinnings for the subtle work, and you'll have to do it over again from scratch. Yes, it may
seem boring and slow to do it that way, because success is measured by getting a cool picture, and
working on subtle effects in a vacuum gets cool pictures fast. But sadly, those cool pictures rarely
look right outside of their vacuum. Getting the “right” cool picture will go faster if you have a strong
foundation to build subtlety upon.

Consider if we are actually looking at multiple separate things that each can be handled indepen-
dently and then combined. Nature does this a lot. An asphault road has the asphault itself as the main
visual element, but it is also covered with a variety of other substances which make it believable as a
road. There’s paint and Botz Dots dividing the lanes, rain water collecting in pools, spilled gasoline
and oil floating on the pools reflecting iridescently, dirt and grass clippings which blew in from the
median strip, litter and trash thrown out by reckless teenagers, tire marks from recent skids, bits of
broken headlight glass from the accident, a little pile of dust from the burned out warning flare, and
of course the occassional dead armadillo has left his mark. These are all layered upon each other in
the real world, and so should be layered upon each other in the CG world as well.

But each of these layers itself is a temporal layering of a variety of processes that affect their
appearance. The asphault was slick black pebbles of tar when laid, but over time it has sagged
and heaved, cracked and pitted, worn smooth in the tire lanes and accumulated tire stains there, but
weathered to a faded grey between them. A smart TD will find ways to build up his appearance by
layering these effects as well. Having independent control of these layers makes it easier to satisfy
the whim of the director when he wants more tire stains but less smoothing.

And every layer itself will have a variety of characteristics which define them, and a variety of
effects on the overall appearance they create. The two tire lanes in each traffic lane are not straight
lines, but seem to weave a little. They are not uniformly colored, but are generally darker in their
centers (although the actual appearance maybe is of overlapping stripes). The tire stains obviously
affect the color of the road surface, but also affect the diffuse and specularity of the underlying tar.
They also clearly affect the bumpiness of the tar, and also seem to be correlated to the long thin
cracks as well. And those armadillos tend to be found just outside the stripes. Why is that?

Consider the layers, and the layers within layers. Even if you don’t understand how nature made
something look as it does, at least try to see what features correlate with what other features, and
what features are independent of each other. Don’t make the mistake of thinking that example you're
looking at is the prototypical object to be emulated perfectly, because the director wants lots of them
and they all have to look different.
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1.4.4 Bang for the Buck

As a TD working in feature film production, television production, video game production, or
CD/ROM production (oops, | guess not), one single factor will rule your life more than any other.
You are behind schedule. You juae. You were behind schedule when before you even started, the
deadline has been moved up for marketing reasons, even if your supervisor thinks you can't finish
in time you still cannot get more time because another department is waiting for you to finish the
model, the director needs to buy off on it tomorrow morning before the big meeting, and, oh, by the
way, can you get this other high priority fix done before the end of the day?

For this reason, the seasoned and skillful TD understands the art of always getting the most bang
for the buck. The basic rules are: don’t do anything from scratch; don't twiddle too much; don’t do
it all yourself.

First of all, very few objects in the universe are totally unique and unlike anything else in the
world. Whenever you are starting a new project, see if there is something that already works which
is a good starting point. Gee, that leather couch | need to do has a lot in common with the shrivelled
orange that | did last week. Since you're doing things in layers, it might be that just one of the layers
is helpful. In normal software engineering, code reuse is pretty common, but in Shading Language
programming it seems to be less so. Fight that. One of the most productive shading TDs | know was
able to shade dozens of objects “in record time” because she had a private library of half a dozen
modular, generic material shaders lying around that could be tweaked to get a variety of really neat
results. In the afternoon session, speakers will discuss the needs and techniques for making modular
shader libraries. Soak that stuff up.

Second, don't get too detailed and finicky. Our shaders are extremely complex beasts, and they
have lots of knobs. There is a natural tendency to sit hunched in front of your workstation and create
hundreds of pictures with tiny changes in the knobs, comparing them at the pixel level to decide
which is “best”. Don’t succumb to the siren’s call of perfection. It is a waste of precious time for
two reasons: (A), the director doesn’t want what you think is best — he wantshettaibks is best;
and (B), if you can barely see the differences staring carefully at your monitor, and are even diffing
images to compare them, then there is no way that the differences will survive the blurring, color
mangling and other image destruction which film out and conversion to NTSC has in store. Take a
stab at reasonable values for your knobs, and be prepared to make adjustments. Give a reasonable
number of layers, and be prepared to add more controls later. Iterate until time runs out.

Third, don't carry the weight of the world on your shoulders. Don't do it all yourself. There’s
lots of code to steal, from previous productions, books, Web sites and course notes. Use it! There
are many times when giving a texture layer to a digital painter and having them create something
will be vastly better than anything you can reasonably code up procedurally. Take advantage of
their skills! Let the director make the hard decisions on which knob settings look best. Give the
director 4 variations of grey on the wing tip, and 3 different bumpinesses around the nostril hole on
the beak. This is calledracketing The more pedestrian work that someone else does for you, the
less mindless and unsatisfying work you have to do yourself, and the more time is left for you to
plus it.

1.4.5 Plussing and Leaving your Mark

One of the most ridiculous verbified adjectives in the movie businessphis Plussing is taking
something that exists, and making it better. If there is a joke, make it funnier. If there is an emotional
story point, make it more heartwrenching. If there is a budget, make it bigger.

As TDs, one of the best ways to get job satisfaction, high fives all around, and recognition of
your potential as a future Effects Supervisor is to plus a prop, shader or effect. Sure, the art director
told you what he thought it should look like, but he doesn’t know nearly as much about what is and
what is not possible in CGI as you do. Besides, he probably told you in very specific terms like
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“ want it scary, with lots of ooze, a real Alien feel, only with more heart. A kind of Incredible
Dissolving Man meets ET kind of look . . . but pink.”

Now, really, you cannot just go off on your own artistic self-expression and make an Incredible
Shrinking Woman meets Pokemon, in pink, because yowatréhe Director, and yowvill get in
trouble. However, you can plus it by going the extra mile, making the ooze slightly more refrac-
tive and slimey, making the blood vessles throb gently under the skin, and giving the director four
different saturations of pink so that he can feel like he’s making decisions.

One important thing to remember, however, is that very likely you will never see these tweaks on
the screen. They are almost always subtle enough that editors and color timers and bad conversion
to NTSC will hide them.Do not be disappointed they weren't for the audience anyway. They
were for you and your friends and for showing at Users Group Meetings at Siggraph, and they look
great on your reel.

Another TD passtime iaving your markThis is not the same gissing on everythingvhich
is a sure way of getting your peers to hate you. Leaving your mark is finding a way to subtly,
inobtrusively, putting your name into an image. For example, a racing car you've modeled has a
bunch of decals with fake company names plastered all over it. Gee, one of the companies just
happens to be named after you! Imagine that!

Again, you have to be subtle. You can’t go change the name of the hotel from “Hotel Bates” to
“Hotel Jonathan Christiansen” without someone noticing who is in a position to fire you. If you're
in good with the art director for giving him lots of different pinks to choose from, you might actually
get permission to stick your name as the author of one of the books on the shelf. Its all about finding
a place where it doesn’t matter. Be aware, though, that some directors have been known to take even
innocent fun with a very ill humor. Know your limits. If you get fired because you scrawled your
name in the specularity map of the left engine pod of the space ship, and it caught a perfect highlight
and blazed your name across the screen for one frame in dailies and you got your ass fired, well,
don’t come running to me.

1.4.6 Thinking Out of the Box

The final advice | have for you, as nascent superstar CGI TDs, is quite simply, forget everything
you've ever been told cannot be done. Tool many times I've senior TDs insist something couldn’t
be done until some junior TD who doesn’t know any better simply does it. Think out of the box.
Most importantly, don’t be constrained by the solutions to problems that have been proposed
in those books and Web sites whose code you are grabbing. If the illumination models you have
are not working very well, don’t be afraid to write a new one. If you can't figure out how to get a
texture to stick onto the right parts of an object you're shading, consider whether you have the right
model for that object. Perhaps you need a totally different kind of geometry, or some type of custom
vertex data attached to the geometry, or a brand new form of texture mapping projection. Animated
texture maps which contain the texture coordinates for another texture projection? Generating a
hold-out matte for comping from an animated piece of geometry, with a shader that makes of the
object opaque only near their silhouettes? Two depth maps, one from the light and one from the
camera, to calculate the length of the optical path of illumination through the interior of the object?
The Art of Chi-Ting means just that. Cheat. Whenever possible. Users groups sponsor “Stupid
Tricks” presentations in order to inspire you to think of even crazier solutions to intractable prob-
lems. The only thing that matters is the color of the pixels in the final image, so whatever sideways,
upsidedown, chewing gum and bailing wire solution you can find that gets those right pixels is legal.
Another way to think out of the box is to think about using the renderer for processes other than
computing the final image. Now, it is not uncommon for people to render in multiple passes, such
as rendering reflection maps and shadows before the beauty pass, or rendering the final image in
layers for compositing. But there could be so much more! The renderer is an extremely powerful
piece of software that has matrix manipulation, spline evaluation, convolution and filtering operators,
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bounding box evaluation, ray intersection, and a hundred other useful graphics algorithms coded up,
debugged, working and available for your use. There’s also a very powerful interpretted language
which efficiently parallel processes numerical calculations. Seems like a lot of cool stuff just waiting
to be taken advantage of.

What if you used RIB and Shading Language to write models and shaders whose which would
compute interesting information, for use not just in rendering, but in modeling, animation or dynam-
ics? Consider, could you use the renderer:

e to evaluate the curvature of a piece of cloth to see if it is folding more than the thickness
permits?

o for collision detection between two subdivision surfaces?

e to drive a particle system based on noisy forces?

e to draw schematic diagrams of motion paths and their projections onto an uneven ground
plane?

¢ to call your spouse and tell them you'll be late again tonight?

The list seems endless, and is only limited by your imagination.

1.4.7 Conclusion

If you've made it this far, you truly have the stuff that TDs are made of. You are standing on the
shoulders of all the TDs who came before you (and of the CGI researchers who toiled before TDs
existed), many of whose work has been referenced in my spiel. The Lore is a dynamic, growing
body of knowledge, and those of us who have drawn deeply of it in the past expect that you will use
it, spread it and add to it as we all have. Your destiny, it is!

And always remember,

The Audience Is Watching!
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2.1 Introduction and Problem Statement

Bakingis common parlance in production circles to mean taking complex, expensive, and data-
heavy operations that would ordinarily be done at render-time, and pre-computing the operations and
stashing the results in texture maps or other data structures that can be quickly and easily referenced
at render time.

Many surface and displacement shaders, upon inspection, reveal themselves to be easily par-
titioned into (a) fairly expensive, usually view-independent, almost always lighting-independent,
code, and (b) simpler, usually view-dependent, generally lighting-dependent code. Without loss
of generality, let’s call (a) the “pattern” section of the shader, and (b) the “lighting” section of the
shader. Given the way people think about and develop shaders, it's often quite simple to spot a single
line in a shader that has the property that all pattern code precedes that point, while all lighting code
follows the point.

If the pattern computations are extremely expensive, it is very tempting to want to pre-compute
the operations once, store them in a texture map, and replace the entire pattern section of the shader
with a simpletexture () lookup (or a small number ofexture () lookups) on all subsequent
executions of the shader.

There are several excellent reasons why you might want to bake complex computations into
texture maps:

e Baking can speed up render-time shader execution by replacing a section of expensive view-
independent and lighting-independent computations with a small numbexofire () calls.
For patterns that are truly dependent on only parametric (or reference-space) position, and
have no time-dependence at all, a single baking can be reused over many shots. This means
that it's okay for the original computations to be absurdly expensive, because that expense
will be thinly spread across all frames, all shots, for an entire production.

e RenderMan-compatible renderers do an excellent job of automatically antialiasing texture
lookups. High-res baking can therefore effectively antialias patterns that have resisted all
the usual attempts to analytically or phenomenologically antialiasXdeanced RenderMan
chapter 11, for an overview of techniques.)
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e Modern graphics hardware can do filtered texture map lookups of huge numbers of polygons
in real time. Although the programmability of GPU’s in rapidly increasing, they are still
years away from offering the full flexibility offered by RenderMan Shading Language. But
by pre-baking complex procedural shaders with an offline renderer, those shaders can be re-
duced to texture maps that can be drawn in real-time environments. This revitalizes renderers
such as Entropy or PRMan as powerful tools for game and other realtime graphics content
development, even though those renderers aren’t used in the realtime app itself.

As a case in point, consider that you could &sgropy(or another renderer with Gl capabili-
ties) to bake out the contribution of indirect illumination into “light maps.” Those light maps
can be used to speed up Gl appearance in offline rendering, or to give a Gl lighting look to
realtime-rendered environments.

2.2 Approach and Implementation

2.2.1 Theory of Operation

The basic approach | will use for texture baking involves three steps:

1. The scene is pre-rendered, possibly from one or more views unrelated to the final camera
position. During this pass, the shaders on the baking object compute the “pattern” and save
(s,t,val) tuples to a temporary file. Thes,t) coordinates may be any way of referencing
the values by 2D parameterization, and need not be the sutface s,t parameters (though
they usually are).

2. The pile of(s, t, val) tuples is then used to derive a 2D texture map at a user-specified resolu-
tion.

3. During the “beauty pass,” the shader recognizes that it should simply look up the data from
the texture map, rather than recomputing.

Furthermore, to make the system robust and easy to use, we also assume the following additional
design constraints:

e This scheme should work witfiloat, point, vector, normal, Or color data.

e The 2D texture map should be of high fidelity and should easily handle data that are oddly-
spaced if(s, t).

e It should be very easy to understand and modify a shader to utilize the baking scheme.

2.2.2 Saving baked data to a sample file

The first component we need is a way to efficiently write the, val) tuples to a given file. We
accomplish this with a “DSO Shadeop.” A DSO (DLL on Windows) is a compiled code module that
may be linked at runtime. WitEntropy, PRMan and other renderers, you DSO Shadeops allow
you to write functions in C or C++ that may be called from your shaders. See the user manual for
your renderer of choice for more information on writing DSO shadeops. It is necessary to write the
baking function in C only because Shading Language does not have a convenient way to write to
arbitrary files.

The shadeop we will implement is calledke (), and takes four arguments: the name of the
filename to write to, the and¢ coordinates, and the value to save. The value may boat,
color, point, vector, Ornormal.
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In our implementation, it is completely up to the user to choose the filename in such a way as
to allow easy lookup on the same patch when rendering the beauty pass. It's also up to the user to
be sure that different values (such as diffuse reflectivity, bump amount, or whatever) are stored in
different files without mixing up the data.

The implementation of theake () function is straightforward: it writes the tuples to the given
filename. To minimize disk I/O, tuples are batched and written to the file only when several thou-
sand have been accumulated (or when all renderer operations are completed and the DSO'’s cleanup
routine is called). There’s a separate buffer for each file, which are distinguished by the filename
passed.

In order to keep multiple simultaneous threads from overwriting each otlehmead mutex
is utilized to ensure that This may only be necessary only for Entropy; I'm not aware of any other
compatible renderers that support multithreading. It's still up to the user to ensure that there aren'’t
multiple simultaneous renders all trying to write to the same bake files (be sure to run the baking
pass in isolation).

Listing 2.1 gives the complete code for theke DSO shadeop. It was tested &ntropy, but
should work without modification with any of several compatible renderers.

Listing 2.1: C++ code for the bake DSO shadeop.

// bake.C -- code for an Entropy DSO shadeop implementing the "bake" function.
//

// The function prototype for bake is:

// void bake (string file, float s, float t, TYPE val)

// where TYPE may be any of {float, color, point, vector, normal}.
// The bake function writes (s,t,val) tuples to the given filename,
// which may later be processed in a variety of ways.

/!

// "bake" is (c) Copyright 2002 by Larry Gritz. It was developed
// for the SIGGRAPH 2002, course #16, "RenderMan in Production."

// This code may be modified and/or redistributed, but only if it
// contains the original attribution above and a reference to the
// SIGGRAPH 2002 course notes in which it appears.

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <map>
#include <string>
#include <pthread.h>

LITITTTITIT I 77777777777777777777777777777777777777
// Declarations -- this is all boilerplate and is necessary for the

// shader compiler and renderer to understand what functions are

// implemented in this DSO and what arguments they take.

LITITTTTIT I 77777 777777777777777777777777777777777777777777

#include "dsoshadeop.h"
extern "C" {

EXPORT int protocol_version = DS_PROTOCOL_VERSION;
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EXPORT DS_DispatchTableEntry bake_shadeops[] = {
{ "void bake_f (string, float, float, float)", "bake_init", "bake_done" },
{ "void bake_3 (string, float, float, color)", "bake_init", "bake_done" 1},
{ "void bake_3 (string, float, float, point)", "bake_init", "bake_done" },
{ "void bake_3 (string, float, float, vector)", "bake_init", "bake_done" 1},
{ "void bake_3 (string, float, float, normal)", "bake_init", "bake_done" },
{ e, ne, w3

};

EXPORT void #*bake_init (int, void *);

EXPORT void bake_done (void *data);

EXPORT int bake_f (void *data, int nargs, void **args);
EXPORT int bake_3 (void *data, int nargs, void **args);

}; /* extern "C" x/

L1771777777777777777777777777777777777777777777777777777777777777777777777
// Implementation

LITITTT TP 777777777777777777777777777777777777777
const int batchsize = 10240; // elements to buffer before writing

// Make sure we’re thread-safe on those file writes
static pthread_mutex_t mutex;
static pthread_once_t once_block = PTHREAD_ONCE_INIT;

static void ptinitonce (void)
{

pthread_mutex_init (&mutex, NULL);
}

class BakingChannel {
// A "BakingChannel" is the buffer for a single baking output file.
// We buffer up samples until "batchsize" has been accepted, then
// write them all at once. This keeps us from constantly accessing
// the disk. Note that we are careful to use a mutex to keep
// simultaneous multithreaded writes from clobbering each other.
public:
// Constructors
BakingChannel (void) : filename(NULL), data(NULL), buffered(0) { }
BakingChannel (const char *_filename, int _elsize) {
init (_filename, _elsize);

}

// Initialize - allocate memory, etc.

void init (comnst char *_filename, int _elsize) {
elsize = _elsize+2;
buffered = 0;
data = new float [elsizex*batchsize];
filename = strdup (_filename);
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pthread_once (&once_block, ptinitonce);

// Destructor: write buffered output, close file, deallocate
“BakingChannel () {

writedata();

free (filename);

delete [] data;

// Add one more data item
void moredata (float s, float t, float *newdata) {
if (buffered >= batchsize)

writedata();
float *f = data + elsizexbuffered;
f[0] = s;
f[1] = t;

for (int j = 2; j < elsize; ++j)

f[j] = newdatal[j-2];
++buffered;
}
private:
int elsize; // element size (e.g., 3 for colors)
int buffered; // how many elements are currently buffered
float *data; // pointer to the allocated buffer (new’ed)

char *filename; // pointer to filename (strdup’ed)

// Write any buffered data to the file
void writedata (void) {
if (buffered > 0 && filename '= NULL) {
pthread_mutex_lock (&mutex);
FILE *file = fopen (filename, "a");
float *f = data;
for (int i = 0; i < buffered; ++i, f += elsize) {
for (int j = 0; j < elsize; ++j)
fprintf (file, "V%g ", £[j1);
fprintf (file, "\n");
}
fclose (file);
pthread_mutex_unlock (&mutex);
}
buffered = 0;

typedef std::map<std::string, BakingChannel> BakingData;
// We keep a mapping of strings (filenames) to bake data (BakingChannel).

// DSO shadeop Initilizer -- allocate and return a new BakingData
EXPORT void *bake_init (int, void *)
{
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BakingData *bd = new BakingData;
return (void *)bd;

// DSO shadeop cleanup -- destroy the BakingData
EXPORT void bake_done (void *data)
{
BakingData *bd = (BakingData *) data;
delete bd; // Will destroy bd, and in turn all its BakingChannel’s

// Workhorse routine -- look up the channel name, add a new BakingChannel
// if it doesn’t exist, add one point’s data to the channel.
void
bake (BakingData *bd, const std::string &name,
float s, float t, int elsize, float *data)
{
BakingData::iterator found = bd->find (name);
if (found == bd->end()) {
// This named map doesn’t yet exist
(*¥bd) [name] = BakingChannel();
found = bd->find (name);
BakingChannel &bc (found->second);
bc.init (name.c_str(), elsize);
bc.moredata (s, t, data);
} else {
BakingChannel &bc (found->second);
bc.moredata (s, t, data);

// DSO shadeop for baking a float -- just call bake with appropriate args
EXPORT int bake_f (void *data, int nargs, void **args)

{
BakingData *bd = (BakingData *) data;
std::string name (x((char *x) args[1]));
float *s = (float *) args([2];
float *t = (float *) args[3];
float *bakedata = (float *) args[4];
bake (bd, name, *s, *t, 1, bakedata);
return O;

}

// DSO shadeop for baking a triple -- just call bake with appropriate args
EXPORT int bake_3 (void *data, int nargs, void **args)
{

BakingData *bd = (BakingData *) data;

char *xname = (char *x) args[1];
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float *s = (float *) args[2];

float *t = (float *) argsl[3];

float *bakedata = (float *) args[4];
bake (bd, *name, *s, *t, 3, bakedata);
return O;

2.2.3 Processing the bake file into a texture map

After running the shaders that calike (), you will end up with a huge file containing data like this:

0.0625 0.0625 0.658721 0.520288 0.446798
0.0669643 0.0625 0.634662 0.523097 0.457728
0.0714286 0.0625 0.609961 0.52505 0.466174

Each line consists of am value, at value, and data for that point (in the above example, 3-
component data such as a color). The next task is to process all that data and get it into a texture
map. The implementation of this step is straightforward, but can be long and very dependent on
your exact software libraries, so | will present only the pseudocode below:

Listing 2.2: Pseudocode for converting the bake samples to a texture map.

xres,yres= desired resolution of the texture map
imagel0..yres — 1,0..zres — 1] = 0; [* clear the image */
F = filter function

fory = 0to yres — 1 do:
for z = 0to zres — 1 do:
r=2; [* filter radius */
again:
S = all samples with(s - zres) € (x —r,x +r) and(t - yres) € (y —r,y +r)
totalweight = 0;
v=0;
for all samples € S do:
w= F(s; - xres — x,t; - yres — y);
totalweight = totalweight + w;
v=v+w- val;
if totalweight = 0 then

r=2r; [* try again with larger filter */
goto again;
else

imagely, x] = v/totalweight;

write imageas a texture file;
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The pseudocode probably needs very little explanation. Please note that the pix¢lsabge
from 0 to the resolution, but thi, ¢) values in the tuples ranged from 0 to 1. Also note that the step
that must find all samples underneath the filter region for each pixel can be tremendously sped up
by use of an appropriate spatial data structure to store the tuples and retrieve only those close to the
pixel. Even simple binning can be considerably helpful in reducing the search.

2.3 Using Texture Baking

Listing 2.3 Example shader using texture baking.

surface expensive (float Ka = 1, Kd = 0.5, Ks = 0.5, roughness = 0.1;
color specularcolor = 1;

string bakename = "bake")
{
string objname = "";
attribute ("identifier:name", objname);
string passname = "";
option ("user:pass", passname);
float bakingpass = match ("bake", passname);
color foo;
if (bakingpass != 0) {
foo = color noise(s*10,t*10);
string bakefilename = concat (objname, ".", bakename, ".bake");
bake (bakefilename, s, t, foo);
} else {
string filename = concat (objname, ".", bakename, ".tx");
foo = color texture (filename, s, t);
}
color Ct = Cs * foo;
normal Nf = faceforward (normalize(N),I);
Ci = Ct * (Ka*ambient() + Kd*diffuse(Nf)) +
specularcolor * Ks*specular(Nf,-normalize(I),roughness);
0i = 0s; Ci *= 0i;
}

Listing 2.3 shows a sample shader that use#ke () function. The shader takes the name of the
value to bake as a parameteskename. It also asks the renderer for the name of the object (set by
Attribute "identifier" "name") and the name of theass(set byOption "user" "string
pass").!

If the "user:pass" option is set t0'bake", the data (in this case, jusbise () for demonstra-
tion purposes) is written via theake DSO shadeop to the filtobjectname.bakenaneke". For
the beauty pass (whehiser:pass" is not set to"bake"), the data is looked up from the texture
file named"objectname.bakename.". (It's assumed that thebake file has been converted to a
texture file in the interim between the two passes.)

Thebakepass shader parameter allows for multiple “layers” or “passes” for the baking scheme.
Also, if you are properly naming your objectattribute "identifier" "name"), this will
make a separate bake/texture for each object. It should be clear how to extend this technique to
name files differently for each patch, if so desired.

1Both Entropy3.1 andPRMan10, and probably other renderers by now, support user options and attributes in this manner.
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Listing 2.4 TheBAKE macro for even easier texture baking.
/* bake.h - helper macro for texture baking */

#define BAKE(name,s,t,func,dest) \
{ \
string objname = ""; \
attribute ("identifier:name", objname); \
string passname = ""; \
option ("user:pass", passname); \
float bakingpass = match ("bake", passname); \
color foo; \
if (bakingpass != 0) { \
dest = func(s,t); \
string bakefilename = concat (objname, ".", bakename, ".bake"); \
bake (bakefilename, s, t, dest); \
} else { \
string filename = concat (objname, ".", bakename, ".tx"); \
dest = texture (filename, s, t); \
}
}

As a further simplification to minimize impact on shader coding, consideBAKE macro in
Listing 2.4. TheBAKE macro encapsulates all of the functionality and mechanism used for List-
ing 2.3, but computes the actual baked value as the result of a function whose name is passed to
the macro. The function is assumed to have only two parameteasid¢. If other data (such
as shader params, locals, etc.) are needed, they may be referenced from the outer scope with the
extern keyword, and simply using the lexical scoping rules of locally-defined functions in SL (as
per RenderMan Interface Specification 3.2). Listing 2.5 shows how simple a baking shader can be
when using this handy macro.

Listing 2.5 Example shader using texture baking with the BAKE macro.
#include "bake.h"

surface expensive2 (float Ka = 1, Kd = 0.5, Ks = 0.5, roughness = 0.1;
color specularcolor = 1;
string bakename = "bake")

color myfunc (float s, t) {
return color noise (s, t);

}

color Ct;
BAKE (bakename, s, t, myfunc, Ct);

normal Nf = faceforward (normalize(N),I);
Ci = Ct * (Kaxambient() + Kdxdiffuse(Nf)) +

specularcolor * Ks*specular(Nf,-normalize(I),roughness);
0i = O0s; Ci *= 0i;
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2.4 Helpful Renderer Enhancements

The code and methods presented in this chapter should work just fine for any of the largely compat-
ible renderers discussed in this courseEhtropy3.2, we have added a few minor helpful features
to make this scheme even easier to use.

First, an attribute has been added to force a particular fixed subdivision rate (expressed as the
number of grid steps per unit afandv):

Attribute "dice" "float[2] fixed" [1024 1024]

Although our method of recombining the samples is quite robust with respect to uneven distribution
of samples (which would naturally happen with the adaptive grid dicing found in most renderers),
at times locking down the exact dicing resolution for the baking pass is helpful.

Second, we address the problem of needing to ensure that all parts of the surface are shaded.
This can sometimes be tricky since the renderer tries to cull occluded or off-screen objects before
shading, and is usually solved by doing several baking passes with different camera views in order
to get full object coverage. So we added an attribute that forces the entire object to be shaded,
regardless of occlusion or other factors that would ordinarily cull it:

Attribute "render" "forceshade" [1]

Finally, themkmip program has been modified to acceptake command (followed by and
y resolutions) of the texture map) to create texture files from the bake samples. It implements a
method similar to the one outlined in Listing 2.2, For example,

mkmip -bake 1024 1024 pattern.bake pattern.tex

2.5 Conclusion

The vast majority of shaders are not worth turning into baking shaders. The Shading Language
interpreters in most of the RenderMan-compatible renderers tend to be efficient enough to make it
convenient to simple code all computations into the shader. It's rarely worth modifying the workflow,
or juggling the bake and texture files, just to speed up the shaders a bit. Furthermore, there are many
cases when “patterns” are view-, lighting-, or time-dependent, and thus are not amenable to baking.
We're assuming that you generatlpn’t want to bake textures, but when you do, it sure is handy
to have a simple, reliable method. This chapter presented a method of baking data into textures
which is easy to use, minimally invasive of your existing shader code, inexpensive, and should work
with several compatible renderers with minimal modification. We also sketched out a number of
circumstances when texture baking is very useful and can save large amounts of computation and
aggravation.
We look forward to hearing your baking success stories, seeing your modifications and improve-
ments to our method, and learning about new and unique uses for this technology. Enjoy the code!
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3.1 Introduction

This section of the course notes will focus on the interaction between lights and surfaces in Render-
Man, specifically how light and surface shaders work together to compute the final color values of
surfaces. General familiarity with Rl and the shading language is assumed, but expert knowledge is
not necessary.

The first half of the notes will cover how surface reflection is defined in surface shaders. Surface
shaders typically have two main phases: they first compute the values of patterns over the surface,
making liberal use of shading language calls suchexsure (), noise (), etc. The second phase
then describes light reflection from the surface, taking the information about the pattern values at
particular points on the surface, combining it with information about the illumination arriving at the
surface, and computing the final color value at that point. We will focus on this second phase in
these notes.

The second half of these notes will then discuss light shaders in detail. It will start with a review
of the semantics of lights in Rl and the shading language syntax and constructs for describing lights.
We will describe a number of applications of these constructs. The remainder of the section will
wrap up by considering the role of lights in affecting the behavior of surfaces in more ways than just
computing how much light is shining on them.

3.2 Surface Reflection Background

When one first starts writing surface shaders, one is usually using either the built-in functions
(like diffuse(), specular(), etc.), or pre-written functions (like the ones in the ARM book:
LocIllumOrenNayar (), etc.) to describe the way light reflects from the surface. Under the covers,
these functions are all constructed withluminance loops, which allow a shader to compute how
the surface reacts to light.

When a surface shader hits alluminance statement (or its equivalent viadaffuse () call,
etc.), the renderer loops over the light sources bound to the surface, executing each in turn. After
the first light has finished running, the surface shader’suminance loop runs with the color
variableCl1 and light direction vector variable set appropriately for the incident intensity and its

55
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Figure 3.1: General setting farlluminance loops. A point on a surface is being shaded; the
surface shader needs to compute the coloat the point as seen along the viewing directioifhe
surface normal i and the direction of incident illumination is

Vi Vs

Figure 3.2: Two vectors; andv,, and the angle between thefn,

direction for the light. The surface shader uses this information along with the viewing dir&ction
and the surface normalto compute the additional light reflected from the surface due to the light's
illumination; see Figure 3.1. Then the next light is executed andtheminance loop runs again,
until all lights have been processed.

The single most important piece of math to know for writing and understanding illuminance
loops is how the dot product works. For two vectorsandwvs,

(1}1 "Ug) = |’U1| |1}2| cos

where- signifies the dot producty| signifies the length of a vector, afids the angle between the
two vectors. In short, given two normalized vectors (ie. = 1), the dot product gives you the
cosine of the angle between them; see Figure 3.2.

The dot product is computed by accumulating the sum of products of the components of the
vectors:

(v1 - v2) = x(v1)z(v2) + Y(v1)y(v2) + 2(V1)2(V2)

wherez(v) maps the vector to its floating-point x component value.

Recall thatcos 0 = 1 andcos 7/2 = 0 (with angles measured in radians). In other words, given
two normalized vectors pointing in the same direction, their dot product is one; two perpendicular
vectors have a dot product of zero, and vectors pointing in directly opposite directions have a dot
product of -1. Thus, what the dot product gives you is a smoothly varying sense of how closely
aligned two normalized vectors are, ranging from -1 to 1.

The dot product is a sufficiently basic operation that the shading language providgsesator
for it:

vector vi, v2;
float dot = vl . v2;
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Figure 3.3: Specifying the cone of directions of illumination to consider inJdruminance loop:
for most surfaces the hemisphere centered around the surface normal is all that is necessary.

Armed with this knowledge, we can understand how d¢héfuse () function would be im-
plemented with an illuminance loop—see Listing 3dli.ffuse () describes a surface that equally
reflects incoming light in all directions—a Lambertian reflector. The color at each point on such a
surface doesn’t change as you change your viewing position—this is in contrast to glossy surfaces,
for example, where the specular highlight moves around as you look at it from different directions.

Listing 3.1 Theilluminance loop corresponding to the built-ii f fuse () function.
normal Nf = normalize(faceforward(N, I));
illuminance (P, Nf, PI/2) {
Ci += C1 * (Nf . normalize(L));

}

The code starts out with the standard preamblélfbuminance loops; the normal is nor-
malized and flipped if need be, so that it is facing outward toward the viewer.iTheninance
loop then specifies the position to gather light at (hereBughie point being shaded), and a cone of
directions to gather light over—here the hemisphere centered around the surface normal, given by the
directionNf and the angle in radians that the cone spreads out attisske Figure 3.3.

The contribution for each light1, is accumulated int6i, the final output color of the shader.
We multiply C1 by the cosine of the angle between the incoming light's direction and the surface
normal—-this is the expression bémbert’'s Law which says that the amount of light arriving at a
point on a surface from a light source of given power is proportional to the cosine of the angle of
incidence of the light. See Figure 3.4 for an intuitive sense of why this is so. Fortunately, the dot
product operator gives us exactly the cosine we're looking for.

The dot product also plays a key role in glossy reflection models. The heart of an illuminance
loop implementing the Phong specular model is given in Listing 3.2.

Listing 3.2 llluminance loop implementing the Phong reflection model. The cosine of the angle
between the light direction and the reflected direcias used to determine the size of the specular
highlight.
normal Nf = normalize(faceforward(N, I));
vector R = normalize(reflect(I, Nf));
illuminance (P, Nf, PI/2) {
float cosr = max(0, R . normalize(L));
Ci += C1 * pow(cosr, 1/roughness);

The Phong model starts by computing the reflection vektevhich gives the mirror reflection
direction for the viewing directiom; see Figure 3.5. Itthen computes the cosine of the angle between
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Figure 3.4: The cosine law for light arriving at a surface: as a light moves from being directly above
the surface toward the horizon, the energy arriving at a point is given by the cosine of the angle
between the light vector and the surface normal. This can be understood intuitively by seeing how
the light inside the cone of a spotlight is spread out over a larger area of the surface as it heads
toward grazing angles; at any particular point in the cone, less light energy is arriving.
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Figure 3.5: Phong model setting. The incident direcfiaa reflected about the normal to compute
a reflected directioR. The angle between this and the light direction determines the highlight size.

that direction and the direction the light is coming from. Recalling the intuition of the dot product,
it is computing a value that reaches a maximum value of 1 when the light is arriving exactly along
the mirror direction but then decreases as the light direction deviates from this.

This cosine value is arbitrarily raised to a exponent determined from the user-suppligthess
value (which should be in the range, 1]). The higher the exponent, the smaller the highlight will
be-this is just because the more times you multilyr with itself, the more quickly it falls off to
zero along the edges (recall thatsr is always between 0 and 1 in the above code.)

3.3 llluminance Loop Trickery

In illuminance loops, a few dot products will get you a long way. We will now explore a number
of wacky things to do in1luminance loops to get unusual shading effects.

3.3.1 Diffuse Falloff

It's sometimes handy to be able to control the falloff of the diffuse shading model, varying the effect
of the (N . L) term of Lambert’s Law. This is a completely non-physical thing to do, but it's
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Figure 3.6: Graphs of the bias and gain functions. These are two handy functions that can be used
to remap values between 0 and 1 to new values between 0 and 1. Providing reasonably intuitive
handles to vary the behavior of the remapping, these functions have a lot of use in shaders.

a useful control to make available so that the falloff of light on a surface can be tightened up or
expanded to happen over a shorter or larger area of the surface.

In order to put an intuitive handle on this control, we’'ll first look at two handy shader functions
developed by Ken Perligain () andbias (). These both remap values in the range zero to one to
new values in the range. Both smoothly vary over that range, are monotonic, and always map the
value zero to zero and the value one to one-all desirable properties for such functions. Source code
for the functions is given in Listing 3.3.

Listing 3.3 Implementation of th&ias () andgain() functions

float bias(varying float value, b) {
return (b > 0) ? pow(value, log(b) / log(0.5)) : O;

}

float gain(float value, g) {
return .5 * ((value < .5) 7 bias(2*value, 1-g) :
(2 - bias(2-2xvalue, 1-g)));

The behavior of the functions is best understood by looking at their graphs—see Figure 3.6.
bias() pushes the input values higher or lower-bias values less than 0.5 push the input values
down from where they were, and bias values over 0.5 push them higher. Rather than pushing all
values in a particular directiogrin () can be used to push the input values toward the middle of the
range, around 0.5 (with a low gain), or can push the input values toward the extremes—0 and 1-with
a gain greater than 0.5.

To control the diffuse falloff of an object, we can just run the cosine term from Lambert’s law
through the bias function—see Listing 3.4. Figure 3.7 shows a few spheres shaded with this model.
With alowfalloff value of 0.2 (left), there is a quick transition from the illuminated region to the
unilluminated region—the transition region has been tightened up substantially, leading to an almost
cartoon-like look. The center image has a falloff of 0.5, which means thaiahe() function is
no effect—the result is the standatiif fuse () model. On the right, the falloff is 0.8, which gives a
more spread-out and diffused transition between them.
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Listing 3.4 Shader implementing a modified diffuse model with control over the falloff between the
lit and un-lit regions of the surface.
surface matteFalloff(float Ka = 1, Kd = 1, falloff = 0.5) {

normal Nf = normalize(faceforward(N, I));

illuminance(P, Nf, PI/2)

Ci += Kd * Cl1 * gain(Nf . normalize(L), clamp(falloff, 0, 1));
Ci += Ka * ambient();
Ci *= Cs;

Figure 3.7: The effect of varying the falloff control in the matteFalloff shader. From left, falloff
values of 0.2, 0.5, and 0.8. The falloff value of 0.5 has no effect on the falloff zone, and gives the
same effect as the builtidi £ fuse () function.

3.3.2 Specular Highlight Control

Similarly, it can be handy to have more precise control about how specular highlights fall off with
glossy models likespecular(). The ARM book includes a glossy reflection model that adds a
sharpness parameter?, p. 231]; as with in the built-in model, aoughness value determines

the size of specular highlights, whiharpness describes how the highlight fades in and out; see
Listing 3.5.

This code starts with a model based on Jim Blinn’s half-angle specular formulation. The main
idea is that a normalized half-angle vectiads computed that represents the average of the light and
viewing directions. The cosine of the angle between this and the surface normal is then raised to a
power, similar to the Phong model above. Like the Phong model, this cosine reaches a maximum
value of 1 when the light direction is equal to the reflection of the incident direction around the
surface normal. The falloff beyond this is slightly different, however.

The result of the exponentiation is then run througtvothstep(). The idea is that if the
cosine term is below a threshold value, it goes to zero, above another threshold value it just goes
to one, with a smooth transition in between-very different behavior than the standard model where
the contribution smoothly varies from zero to one, only reaching one for a single incident lighting
direction (rather than for a number of them, as in the new model.) The result is in Figure 3.8; by
sharpening up the highlight transition zone, we have given the surface a substantially different look.

3.3.3 Rim Lighting

It is often desirable to use lighting to visually separate an object from the backgr@ushép-

ter 13]; by having lights behind objects that illuminate their edges as seen by the viewer, the objects
stand out better. Rather than placing lots of lights just so, a little help from the shader can make this
task easier.
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Listing 3.5 Sharpened specular highlight model. Rather than running the cosine of the angle be-
tween thell vector and the normal througow (), it is thresholded witlsmoothstep (), giving a
more abbreviated transition from no highlight to full highlight, and increasing the area of maximum
highlight value.
surface sharpSpecular(float Ka=1, Kd=1, Ks=1, sharpness = .1,
roughness = .1; color specularcolor = 1) {
normal Nf = normalize(faceforward(N, I));
vector In = normalize(I);
float w = .18 * (1-sharpness);
illuminance(P, Nf, PI/2) {
vector Ln = normalize(L);
vector H = normalize(Ln + -In);
Ci += Cl1 * specularcolor * Ks *
smoothstep(.72-w, .72+w, pow(max(H . Nf, 0), 1/roughness));

}
Ci += Ka * ambient() + Kd * diffuse(Nf);
Ci *= Cs;

The rim lighting shader shown in Listing 3.6 is a simple example of such a shader. This shader
extends the standard diffuse model by computing an additiatpgScale term. Define the viewing
vectorV to be-I, the vector back toward the viewer from the point being shaded. The dot product
of v and the normalif tends toward zero as we approach the edges of the surface as seen by the
viewer. Take one minus this value to give us something that is larger around the edges and then
spiff it up a bit to give an edge scale factor. This edge scale is then just used to scale to the standard
diffuse shading model up or down a bit; the result is shown in Figure 3.9.

Listing 3.6 Rim lighting shader. An extra kick is added to brighten glancing edges, as detected by
thel1 - (v . Nf) term. This is boosted to enhance its effect and used to scale the brightness in the
standard diffuse model.
surface rim(float Ka=1, Kd=1, edgeWidth = .2) {

normal Nf = normalize(faceforward(N, I));

vector V = -normalize(I);

illuminance(P, Nf, PI/2) {
vector Ln = normalize(L);
float edgeScale = bias(1 - (V . Nf), edgeWidth);
edgeScale = max (.7, 4xedgeScale);
Ci += Cl * Kd * (Ln . Nf) * edgeScale;
}
Ci += Ka * ambient();
Ci *= Cs;

Note that not all of the edges of the object are brightened up in the image—the ones at the very
bottom right of it, for example. One might want to try to add rim lighting all around, by removing
the (Ln . Nf) term from the shader entirely—this is the part that is making those edges go black.
This just replaces a slightly undesirable effect with an actual artifact, however—the problem is that
that part of the model is in a transition zone between being lit and in a shadow. Betagses to
zero in the shadowed region, there’s nothing we can do with a scale term that will brighten it up.

There are a few ways this problem could be worked-around. For one, we could make the extra
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Figure 3.8: Glossy control with theharpSpecular shader. On the left is an implementation of

the standard Blinn model, while on the right it has been augmented with a sharpness control as
in Listing 3.5. This has made it possible to tighten up the broad transition zones of the specular
highlights for a sharper effect.

Figure 3.9: Rim lighting example. On the left, a standasdte shader has been applied, while on
the right the rim lighting model was used, emphasizing the lighting along the glancing edges.

edge effect an additive term, rather than a multiplicative scale factor. This way, the lightctolor
could just be ignored. This makes us unable to control the brightness of the edge effects by turning
up or down the light brightness, however. Another option would be to have a separate set of lights
that don't cast shadows and that are only used for rim lighting; light categories, which are described
in the next section, give a convenient way have special sets of lights like this.

3.3.4 Retro-Reflection

Steve Westin has written a shader that descnibre-reflectivesurfaces; we will describe the me-
chanics of its operation with the dot-product-intuition in mind. Most surfaces—plastics, metals,
etc.—preferentially scatter light along the reflected direction of the incident ray. Some surfaces pref-
erentially scatter light back toward the direction it came from; the moon and some fabrics are two
examples. Westin's shader, shown in Listing 3.7, is an empirical model of retro-reflection, based on
actual research results.

This shader computes two terms. The first is a Phong-style glossy lobe, but where the cosine of
the angle between theandL vectors is raised to a power—see Figure 3.10. The closer these two are
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Figure 3.10: Retro model setting

together, the more retro-reflection there is. Next, the sine of the angle betivesetv is computed;
when these two are perpendicular, the since is one, thus emphasizing the edges. This also is raised
to a power to adjust the rate of its falloff. Results are shown in Figure 3.11.

Listing 3.7 Velvet shader source code. A glossy retro-reflective lobe is combined with extra edge-
scattering effects to give the appearance of a velvet-like sheen.
surface
velvet (float Ka = 0.05, Kd = 0.1, Ks = 0.1; float backscatter = 0.1,
edginess = 10; color sheen = .25; float roughness = .1) {
float sqr(float f) { return f*f; }

normal Nf = faceforward (mnormalize(N), I);
vector V = -normalize (I);

color shiny = 0;
illuminance (P, Nf, PI/2) {
vector Ln = normalize ( L );
float cosine = max ( Ln.V, 0 );
shiny += Cl * sheen * pow (cosine, 1.0/roughness) * backscatter;

cosine = max ( Nf.V, 0 );
float sine = sqrt (1.0-sqr(cosine));
shiny += Cl * sheen * pow (sine, edginess) * (Ln . Nf);

}
0i = Os;
Ci = Os * (Kaxambient() + Kd*diffuse(Nf)) * Cs + shiny;

3.3.5 Anisotropic Reflection

We're not yet done finding things to take dot products with. We can develop a basic anisotropic
shader by using this machinery as well. Anisotropic surfaces are surfaces that have glossy specular
reflection, but where the shape and brightness of the highlights vary as the orientation of the surface
varies. Brushed metal and phonograph records are classic examples of anisotropic surfaces.
Anisotropy in these surfaces is generally due to their having many small cylindrical grooves or
bumps on them; these features all share the same (or very similar) orientation. This is in contrast to
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Figure 3.11: Velvet shaded object. Note emphasized edge effects and retro-specular highlights.

Figure 3.12: Anisotropic model with varying rotations of the direction of anisotropy

most specular surfaces, which are modeled as bumpy surfaces but with no dominant orientation of
the bumps.
The shader in Listing 3.8 shows a basic anisotropic model. We start with a oriendation
which gives the direction of the grooves in the surface. In case the user has given a direction that
is not perpendicular to the surface normal, we take the cross product of the given direction with the
normal, giving a direction that is guaranteed to be perpendicular to both the normal and the given
direction, and then take another cross product, to give us a direction perpendicular to that. If the
original direction was in fact perpendicular to the normal, this should be a no-op; otherwise it gives
us a direction close to the original one but that lies on the tangent plane at the point being shaded.
We then compute a half-angle vectbfsimilar to the Blinn model) and look at the angle between
that and the groove direction. When they are perpendicular, the model should be maximally bright,
while as they become closer to parallel, it darkens. The images in Figure 3.12 shows this shader in
action. The same object has been rendered twice, with two different values targthe parameter
to the shader.

3.3.6 Parting thoughts

There’s a lot of fun to be had fooling around withluminance loops; the key is having the right
building blocks and developing an intuition about how the various vectors involved can be mixed to-
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Listing 3.8 Anisotropic surface shader. The user supplies an orientation direction for the grooves in
the surface as well as an option angle to rotate it by. The shader computes the effects of anisotropic
reflection using the deviation between a half-angle vector and the groove direction.
surface aniso(float Ka=1, Kd=1, Ks=1, roughness=.02;
uniform float angle = 0; color specularcolor = 1;
varying vector dir = dPdu) {
float sqr(float f) { return fxf; }

normal Nf = normalize(faceforward(N, I));
vector V = -normalize(I);

vector anisoDir = dir;

if (angle != 0) {
matrix rot = rotate(matrix 1, radians(angle), Nf);
anisoDir = vtransform(rot, anisoDir);

}

anisoDir = normalize((anisoDir ~ Nf) ~ Nf);

illuminance(P, Nf, PI/2) {
vector Ln = normalize(L);
vector H = normalize(Ln + -In);
float aniso = pow(l-sqr(H . anisoDir), 1/roughness);
Ci += Cl * specularcolor * (Nf . Ln) * Ks * aniso / max(.1, (V . Nf));
}
Ci += Ka * ambient() + Kd * diffuse(Nf);
Ci *= Cs;

gether in ways that give the effect you're looking for. As the examples in this section have shown, the
dot productgain(), bias (), pow() andsmoothstep() functions are among the most important
for shaping the results of computations with tiduminance vectors.

One last function that we haven’t yet usedfisesnel (); this function describes the effect of
Fresnel reflectiorfrom surfaces. Fresnel reflection is a physical phenomenon that describes what
happens to light at the boundaries between different media (such as air and a surface.) Some of the
arriving light enters the surface, is scattered inside it, and then exits in new directions, and some
just bounces off the surface in the reflected direction and keeps going. The effect can be seen on
many surfaces—for example, glass, where the parts that are facing the viewer head-on mostly let light
transmit through them, while the edges reflect more light than they transmit. Or look at a varnished
wood table from above and then notice the mirror-like reflection at glancing angles—both of these
are Fresnel reflection in action.

3.4 Lights and Surfaces, Working Together

A fancy illuminance loop is no good without something illuminating it, so each geometric prim-
itive in RI has a set of lights bound to it. In this section, we will look at how lights and surfaces
interact in RI, covering both basic operation and the more unusual ways they can work together.
When the surface shader for the primitive is executed to compute its final shaded color, the
bound light sources are executed to compute the amount of illumination on the surface. The lights
are responsible for doing shadow checks (if needed), in addition to whatever other computation is

appropriate. A number of basic light shaders are provided, including “pointlight”, “spotlight”, and
“distantlight”. Ronen Barzel's well-known “uberlight” shader is a particularly sophisticated light
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shader, with many tuning controls for tweaking the light’s effect.

Most light shaders use tha 1uminate or solar constructs to describe how they illuminate the
scene.illuminate is used for light coming from a particular point in the scene (e.g. the position
where a point light has been placed, or a point on an area light source), sshie is used for
“lights at infinity"—distant lights that are defined as casting illumination from a particular direction,
rather than a particular location.

illuminate andsolar both implicitly set the variablé that holds the vector along which
illumination is arriving at the point being shaded. The main remaining responsibility of the light
shader, then, is to computa, the color of light arriving at the shading point.

3.4.1 llluminate

illuminate is similar syntactically ta.1luminance in that it takes a position and optional direc-

tion and angle arguments. Light is cast from the given position, so the ligh#isiable is implicitly

set toPs-P, wherePs is the surface point being shaded. (The direction ofitivariable is flipped

after the light shader finishes, before the surface gets a hold of it.) The optional direction and angle
can be used to specify a cone that defines a limit to the volume of space that the light illuminates.

illuminate(P) { ... }
illuminate(P, direction, angle) { ... }
3.4.2 Solar

solar has two variants as well. When called with no arguments, it describes a light source that
illuminates from all directions. More commonly, it's called with a direction vector that describes
where the light is coming from and an angle (possibly zero) that specifies a cone of illumination
directions around the axis.

solar() { ... }
solar(axis, angle) { ... }

3.4.3 Scope and Binding

The RenderMan interface allows quite a bit of flexibility in terms of how lights are bound to surfaces.
When a geometric primitive is defined in a RIB file, any light source that has previously been defined
in the RIB stream can be bound to the surface.

Light sources behave differently than most other entities in RIB files in terms of how attribute
blocks affect them. After a light has been defined, it illuminates all of the primitives that follow it,
up until it is explicitly turned off or arittributeEnd statement is reached-see Listing 3.9.

Listing 3.9 RIB snippet that demonstrates light source binding rules.
AttributeBegin

LightSource "spotlight" 1234 "intensity" [100]

Sphere 1 -1 1 360 # 1lit by the light

Illuminate 1234 0 # turn it off

Sphere 1 -1 1 360 # not 1lit

Illuminate 1234 1  # turn it back on
AttributeEnd
Sphere 1 -1 1 360 # not 1lit by the light because of attribute end
Illuminate 1234 1 # turn it on; we can still refer to it
Sphere 1 -1 1 360 # 1it because the light was turned on
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This behavior in attribute blocks is different than almost everything else in RI; for example, if a
surface shader is defined inside an attribute block, it is completely forgotten MthetbuteEnd
is reached. After that point, there is no way to refer back to that shader and bind it to a new object
without having a nevBurface call in the RIB stream. The sections below will describe a number
of tricks that are possible thanks to the fact that lights have this greater flexibility.

3.4.4 Light Categories

Light categories add a new dimension to the light binding mechanism. Each light in the scene can
have one or more string category hames associated with it. i1 aminance loop, surfaces can
then limit the set of lights that are executed for that loop.

To associate a light source with one or more category names, the light needs to be declared to
have a string parameter namedategory (that's with two underscores).

light mylight(...; string __category = "") {
}

When this parameter is set, it associates the light with the given categories. To associate a light with
multiple categories, the names can just be separated with a comma.

An optional string parameter can be givenifidluminance calls in surface shaders to limit the
light categories to be considered for that illuminance loop.

illuminance("speciallLights", ...) {

}

All lights that have a category that matches the given string will be executed for that loop.
Alternatively, if the category string passed starts with a minus sign, “-", all lightseptthose
matching the given category name will be executed.

Light categories could be used, for example, to specify a special set of lights that only contribute
to rim lighting. The mainilluminance loops would exclude the lights in the “rimLights” category,
while the one for the rim term would only use the “rimLights”.

3.4.5 Message passing

In addition to selecting a set of lights with categories, surfaces and lights can also pass general data
back and forth between them. This allows the surface shader to pass information to the light shader,
the light shader to make use of it, and then the light shader to pass additional data back to the surface
shader, beyond theandC1 variables that are set by the light.

A classic use for message passing is for the light to pass additional shading parameters back
to the surface. For example, light sources in OpenGL have three colors associated with them: one
affects the object’s ambient component, one affects diffuse, and the last one affects specular. While
this can’'t be emulated directly with thel variable in the shading language, it can easily be done
with some message passing.

light openglPointLight(point from = point "shader" (0,0,0);
float intensity = 1; color amb = 1, diff = 1, spec = 1;
string shadowname = "";
output color ClAmbient = 0, ClDiffuse = 0, ClSpecular = 0) {
illuminate (from) {
float visibility = 1;
if (shadowname != "")
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visibility = 1 - shadow(shadowname, Ps);
ClAmbient = intensity * amb * visibility;
ClDiffuse = intensity * diff * visibility;
ClSpecular = intensity * spec * visibility;

A correspondingpenglSurface then justignore€l in its illuminance loop but instead can
use the appropriate light color value from the light shader, depending on whether it's doing ambient,
diffuse, or specular reflection. Inside theluminance loop, the surface calls thHeightsource ()
function:

illuminance ( ... ) {
color ClAmb = 0, ClDiff = 0, ClSpec = O;
lightsource("CLAmbient", ClAmb);
lightsource("CLDiffuse", ClDiff);
lightsource("CLSpecular", ClSpec;

}

lightsource() returns non-zero and sets the given variable if the named variable exists as an
output variable in the light. If there is no such output variable, zero is returned and the supplied
variable is left unchanged.

Light-controlled diffuse falloff

For a more interesting example, consider the diffuse falloff control described in Section 3.3.1; rather
than making this a parameter of the surface shader, we might want to be able to have it be a property
of the lights in the scene. This way, we could have two lights shining on an object, where the diffuse
falloff from the first light's contribution was quite sharp, but the falloff for the second one was
smoother. Without the ability to pass information between the lights and the surfaces, this would be
impossible to do, since the surface wouldn't be able to differentiate between the twa' lights.

What we need to do is to define another protocol for the surfaces and the lights. If the lights in
the scene optionally providefdoat diffuseFalloff value, and if the surfaces look for it and
make use of it in theit11luminance loops, then we can reach this goal.

First, the light shaders need to have an approptiateput float parameter in their declara-
tions:

light mylight(...; output float diffuseFalloff = 0.5)

diffuseFalloff can be bound to a particular value in thieghtSource call in the RIB file,
or it can be set by the light shader as the result of some computation. The surface shader, then, can
ask to see if the light source has passed a value called “diffuseFalloff”

illuminance (P, Nf, PI/2) {
uniform float falloff = 0.5; // default value
if (lightsource("diffuseFalloff", falloff) != 0) {
// the light passed us a value; it’s stored in falloff

}
Ci += C1 * gain(Nf . normalize(L), falloff) * Kd * Cs;

Thus, we can easily associate different falloff values with different lights and achieve the effect
we were interested in. As with light categories, this approach requires coordination between the
surface and light shaders in the scene; however, the flexibility that it offers is substantial.

10one might imagine a scheme based on light categories, where the first light belonged to a “sharpDiffuseFalloff” category
and the second belonged to a “smoothDiffuseFalloff” category. However, this isn’t a very flexible solution.
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Disabling shadows on a per-surface basis

This message passing can be bidirectional; the surface shader can also declare some of its parameters
to beoutput variables, and then the light source can access them withuheace () message

passing function. For example, a surface might want to request that lights not compute shadows for

it. It could just declare aputput float noShadows parameter. As long as lights look for this
parameter and act appropriately, then the desired result is achieved.

light mylight () {
float noShad = 0;
surface("noShadows", noShad) ;

Choosing a shadow method per-surface

Consider a surface with fine displacement-mapped geometry, where shadow maps were unable to
generate accurate shadows. If shadow maps were adequate for the rest of the objects in the scene,
we can use shadow maps for them and only do ray-traced shadows for the displaced object. The
surface shader for that object just needs to pass a value to the light shaders that directed them to
use ray-traced shadows for it instead of shadow maps. While this problem could be solved with
other approaches—e.g. having a completely separate set of lights for that object that had identical
parameters to the original set of lights but that traced shadow rays instead, but the message-passing
approach makes it much easier to switch between behaviors, just by changing a value bound to the
particular object.

Non-diffuse and non-specular lights

One widely-used instance of surface/light message passing is to flag lights as not contributing to the
diffuse component of the surface’s BRDF or not contributing to the specular component. For exam-
ple, a light that was just intended to cause a specular highlight would be flagged as not contributing
to diffuse lighting, or a light that was used to fake global illumination would be flagged to not cast a
specular highlight.

Light shaders are declared to have teutput float parameters namednondiffuse and
_nonspecular (again, with two underscores). Surface shaders then use these in their illuminance
loop; for example, the actual equivalent to the builtirf fuse () function is:

illuminance (P, Nf, PI/2) {
uniform float nondiff = 0;
lightsource("__nondiffuse", nondiff);
Ci += C1 * (Nf . normalize(L)) * Kd * Cs * (1-nondiffuse);

If the light source has nonondiffuse output variable, then theightsource () call leaves
nondiff untouched. Otherwise it is initialized appropriately. By treating it as a scale value, rather
than a binary on/off switch, we also have the ability to reduce (or increase!) a light’s contribution to
the diffuse channel in relation to the others.

Multiple lighting rigs

A more complex example shows how light message passing can be used to set up multiple lighting
rigs for the scene when doing global illumination. Lights can be identified as contributing only to
lighting for indirect lighting computations, only for direct lighting, or for both. One can imagine a
couple of reasons why it might be worth setting up a second set of lights for this:
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1. Efficiency: if there are many lights in the scene and their shaders are expensive to evaluate
(e.g. due to lots of ray-traced shadows, complex procedural lighting computations, etc.), then
setting up a second set of lights that light the scene in a generally similar way to the primary
lights but are much less expensive to evaluate may speed up rendering substantially.

2. Artistic: you may want to increase or decrease the overall brightness or tone of the indirect
lighting in the scene, shine more light on some objects so that they cast more indirect light on
other objects in the scene, etc.

The shader in Listing 3.10 shows how this might work in practice: lights in the scene have
output float variables associated with them call@tirectLight andindirectLight. When
computing direct illumination (i.eisindirectray() is zero), we grab at th&irectLight output
variable from the light. If there is no such output variable on the light, we use a default value of one.
We then modulate the light’s contribution by the valuelotectLight; for lights that are only for
the indirect rig, this value should be zero. We handle lights for indirect lighting only analogously.

Listing 3.10 Surface shader for multiple lighting rigs for direct and indirect lights. Depending
on whether the surface is being shaded for direct camera visibility or for indirect illumination, a
different set of lights can be used.
surface foo(color Kd = .5, Ks = .1; roughness = .1) {
normal Nf = faceforward(normalize(N), I);
vector In = normalize(I);
color brdf (normal Nf; vector In, Ln; color Kd, Ks; float roughness) {
vector H = normalize(In + Ln);
return Kd * (Nf . Ln) + Ks * pow(H.Nf, 1/roughness);

}

illuminance(P, Nf, PI/2) {
float direct = 1, indirect = 1;
lightsource("directLight", direct);
lightsource("indirectLight", indirect);

if (isindirectray() != 0)
Ci += C1 * indirect * brdf (Nf, In, normalize(L), Kd,
Ks, roughness);
else
Ci += Cl1 * direct * brdf(Nf, In, normalize(L), Kd,
Ks, roughness);

}

0i = Os;
Ci += Ka * ambient();
Ci *= Cs * 0i;

This approach does require coordination between surfaces and lights in the scene; conventions
need to be set up and naming schemes for the message-passed variables agreed upon ahead of time.
Unfortunately, this can mean that it isn't easy to directly re-use old shaders unchanged—for the
above example with the indirect lighting rig, all of the surface shaders in the scene would need to be
modified to pay attention to the light output variables in order for the scheme to work.

Example images showing the results of this approach are in Figure 3.13. On the leftis a Cornell
box scene illuminated with a standard single lighting setup for direct and indirect lights, and on the
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Figure 3.13: Indirect lighting with separate lighting rigs for direct and indirect lighting. On the left
is the basic image, with the same rig for both. On the right, the light source for the indirect rig has
been replaced with another light source that is 3 times as bright as the light used for direct lighting.
This makes it possible to brighten up the indirect lighting without blowing out the entire image.

right, the brightness of the light in the indirect setup has been increased in order to brighten up the
scene, particularly the shadow areas.

3.4.6 And beyond...

Once you get used to the idea that lights and surfaces can have rich inter-communication between
them, all sorts of new possibilities come to mind. One common use is for lights to tell surfaces the
filenames for environment maps to use. Special light sources that don't cast any illumination at all
just pass a string parameter to the surface:

light bindEnvironment (output string envName = "";
string __category = "envMaps") {
illuminate (point(0,0,0)) {
Cl = 0;
}
}

(We need a no-oplluminate loop in the shader so that the renderer doesn't flag this as an am-
bient light—ambient lights don’t show up illuminance loops, so message passing to them isn't
possible.)

In the RIB file, envName is bound to an appropriate environment map file. Then, the surface
shader has an additional illuminance loop:

vector R = reflect(In, Nf);
R = normalize(vtransform("world", R));
illuminance ("envMaps", P) {
string envname;
if (lightsource("envName", envname) != 0)
Ci += environment (envname, R);
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There are a number of reasons that this is a nice way to specify the environment maps for an
object. First, it's an easy way to be able to specify more than one environment map to be applied to
an object. While the surface shaders could be modified to take an array of strings to specify multiple
environment maps, arrays in the shading language must be of fixed length, so an upper limit would
need to be set ahead of time.

More generally, it's more intuitive and more flexible for a “light” to specify this information.
Consider a complex model stored in a RIB file to be reused over multiple frames, with a different
lighting environment in each frame (e.g. a real-world environment map changing in time, or a model
that's re-used in many different scenes) If the environment map is specified $ntliece line of
the RIB file, then a separate RIB file needs to be generated each time the environment map name
changes. With this approach of binding the map via a light source, all of the flexibility of light
source binding is available.

Having made this leap beyond the ustialuminate andsolar work of the light source, all
manner of bizarre things can be done. For example, consider lights in a special “scale” category
where surfaces loop over them after the other lights have been processedlthalues could
instead be interpreted as scale factors to be applied to the final color computed by the rest of the
shader. Though completely non-physical, this is an easy way to make individual objects darker or
brighter.
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Abstract

The Renderman interface offers many features for handling large scenes. But harnessing these
features, especially in the context of a large production with lots of division of labor, requires a
great deal of coordination. This section of the Advanced Renderman course will discuss some of
the considerations that need to be made, both technical and logistical, in the planning process for
rendering scenes with large crowds, complex sets, or both.

4.1 Introduction

| should start by admitting that very little of the material presented here is particularly new. A lot
of it has been said or written down before, especially in previous years of this course. My aim is to
collect and summarize tips and tricks which are specifically oriented towards issues that arise when
working with really complex scenes.

4.1.1 What do you mean, complex?

We'll be talking about scenes that don't fit in memory all at once, in any modeller or renderer or
animation package or what-have-you. We're talking multi-gigabytes here.

It's been observed that by the time you get to about 1 to 10 million control vertices or polygons,
you're not adding any visual detail to your film-resolution scene, which only has on the order of a
few million pixels. (In fact, the REYES rendering engine was originally designed with the goal of
rendering a million primitives in mind, based on this very reasoning.)

But while it's theoretically possible to hand-customize each frame of your animation so that
only a million or so primitives are on screen, it's just not practical. You may, for instance, have a
set composed of many small pieces, each of which is built in great detail for closeup work, but all
of which appear together in an establishing shot. Or you may have a creature which is designed for
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hero animation, which then must appear in a crowd of thousands. Either way, you can't just throw
all of your scene geometry and textures and shaders together and hope for the best: Your producer
will hunt you down and kill you before a single scanline of your render is completed...

Because these types of scenes just don't fit in memory all at once, you must carefully consider
the best way to work with them. You want the artists designing the models have the control they
need, but you also need to squeeze out a few thousand rendered frames before your show wraps.

This section of the course will discuss some of the strategies in use at Industrial Light and
Magic for handling these types of megascenes. There are certainly other approaches that will work;
consider this a sampling of philosophies. Once upon a time it was common to have lots of shots
with just one dinosaur or spaceship or whatever, but those days are long gone: Todays epic directors
demand episcopé And we lowly droids must serve their dark will...

4.2 Stating the Obvious

The best way to plan for complexity is start early This is painfully obvious, but widely ignored...
Still, it can't be restated often enough: The secret to smooth production is to think through the
processes as early as possible.

A typical production workflow might look like this:

Artist A:  Artwork/Designs

Artist B: Modelling/Skeletons/Skinning

Artist C:  Texturing/Shading

Artist D:  Animation

Artist E:  Lighting/Rendering/Compositing
Or, if you work in a large production environment, it might look like this!

Artist A,B,C: Designs

Artist D,E,F:  Artwork

Artist G:  Modelling

Artist H:  Skeletons

Artist I:  Skinning

Artist J:  Texturing

Artist K:  Shaders

Artist L,M,N,O,P: Animation

Artist Q: Setup Lighting

Artist R:  Shot Rendering

Artist S: Compositing
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In other words, by the time you even get to render your scene, it's probably been through
dozens of hands, all of whom are answering to a number of people who are very interested in
adding realistic details but not very interested in how difficult it's going to be for you to get the
movie/commercial/game/whatever finished.

So how can you convince everyone to listen? Just tell your producer it'll cost a lot of money
otherwise... and remind the other artists you are only helping them mak#nsirésion is acheived
on screen! I'm not going to give you any advice to use less detail for closeups, or change the models,
or do anything that would sacrifice their efforts... just advice on how to use it to best effect, without
bringing your renderfarm to its knees. (OK, you might do that anyway, but | guarantee it'll happen
sooner otherwise...)

OK, so hopefully you've convinced your producer to start thinking about rendering now, even
while you're in the design process. Now what?

There are two main concerns with rendering complex scenes:

1. They take a long time, and...

2. They use a lot of memory.
Correspondingly, there are really just three main ideas behind every technique I'm presenting:

1. Avoid loading data
2. Avoid doing computations

3. Postpone loading data

Obviously, it’s best if you only load the data you need and only do the computations you need.
But if you must load data, it's better to postpone doing this until you really really need it.

(Why didn’t I mention postponing computation? Well, mainly because it doesn’t help much...
you have to do it eventually. Whereas postponing loading data helps by spreading out the memory
needs of your render over the entire frame, so you don't get a big spike at the beginning that just
hogs your machine — or repeatedly swaps in and out. This is probably not as important now for your
average render as it was 5 years ago, but it still matters a great deal for big, complex scenes.)

4.3 Choose Your Weapons: Geometry and Textures

The first thing you can do is to make sure that your models are being built with an appropriate level
of geometric detail. The goal here is not to use the whizziest newfangled geometric representation,
but rather to have the mosbmpactrepresentation for your model. For instance, it’s often said that
Renderman handles patches better than polygons. While this is (somewhat) true, it would be more
accurate to say “Renderman does a better job with smooth objects represented as patches instead of
polygons.” If you are building the creatures from the planet Polyhedra, for heavens’ sake go ahead
and use polygons!

Having said that, however, it is generally true that most organic models can be represented more
compactly as patches or nurbs instead of poly meshes, and more compactly as subdivision-surfaces
than patches or nurbs. But don't ever forget that your goal is compactness: converting a triangle
mesh to patches by making every triangle into a bicubic patch isn’t going to help any.

Don't forget about Renderman’s lightweight primitives, tBeints andCurves aren't just for
physically tiny things dust, hair, or grass: Any geometry which is very small on screen due to either
size or distance is a candidate for one of these primitives. For example, if you have a very distant
crowd you might consider usirgpints or Curves to represent its memberBoints andCurves
are especially useful when included in a level-of-detail hierarchy... but we'll get there later.
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4.4 Procedural Primitives

Procedural primitives are a technique for delaying processing and data until it's needed. Rather than
including a complete description of a model in your scene, instead you leave a note that says: ask
me later. All procedurals come with a bounding box. This bounding box is a contract between
the renderer and the procedural that says: “l promise not to make any geometry outside this box.”
Procedurals come in three forms:

e DelayedReadArchive means “look in this file.” When the renderer gets to the part of the
screen that might be occupied by the procedural (based on the bounding box), a given RIB
file is loaded.

e RunProgram means (oddly enough) “run this program.” When the bounding box is crossed
onscreen, the program is run, generating more valid scene data.

e DynamicLoad actually loads a dynamic module (a dso or dll) into the program to generate
the RIB describing what's in the box. (This variant is especially powerful, but also pretty
dangerous: You can crash your entire render very easily with this, and it may be hard to make
it work on other platforms.)

Procedurals are absolutely essential for scenes with lots of geometry. For example, the frames
from Star Wars Episode II: Attack of the Clongisown in Figures 4.1 and 4.2 have tens of thousands
of primitives in them.

Figure 4.1: Industrial Might and Logic©)2002 Lucasfilm Ltd.

If we tried to stuff all this data into one giant RIB file for every frame, we'd spend a lot more
time writing rib files than actually rendering! Instead, we make rib files that just point to a bunch of
other prewritten rib files, and we use programs which manipulate preprocessed data to generate ribs
quickly from prefabricated parts.

Note that the more procedurals you have in a given scene, the more important it becomes that the
procedurals don’t take too long to compute. Even if it takes just 10 seconds tRutPAogram,
if you have 1000 of those objects in your scene, that will add up to almost 3 hours per frame, just
running your procedurals!

At ILM, we use a combination of procedurals for different situations. The ones which get run
a lot are written in C and are very very fast. (Some of them have been rewritten many times over
to improve their speed!) Some which get run only a few times per frame are written in python for
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Figure 4.2: A Rebel, Adrift in a Sea of Conformit§)2002 Lucasfilm Ltd.

more flexibility, though when working with lots of data it still sometimes makes sense to use a native
compiled language like C for efficiency.

e For objects like set pieces which don’t move and don’t change their appearance often, we use
DelayedReadArchive. The scene data that our animators work with consists mostly of lores
proxy geometry, which is replaced by tbelayedReadArchive call when the RIB file is
generated.

e For rigid objects which might appear multiple times with different appearances, (think cars,
asteroids, etc.) we useRanProgram which merges a geometry rib with a material file de-
scribing the shaders to apply to each piece of geometry within the object. That way we don't
have to have a separate file including all the same geometry for every possible appearance.

e For objects which have internal motion (ie. having different geometry on each frame) such
as walking or running creatures, we pregenerate a geometry rib file and an auxiliary data
file for each frame, and use particle systems to propel the objects around the scene. Then a
RunProgram instances that geometry according to the particle data. Generally each instance
of a creature has a separate material, soRhifProgram creates instances of the material-
replacemenkunProgram mentioned above: there are actually two tier8@iProgram.

More details about theskunPrograms were disclosed at this course in Siggraph 2001, so |
won’t go into detail on their operation here. You can find the relevant information in last year's
course notes, chapter 4. Working python code is presented: the particle replacement script is called
dataread.py, and the material replacement script is cabgd . py. Of course, for production use,
you would probably want to rewrite both of these scripts in C or C++ for speed.

4.5 Level of Detall

Level of detail (LOD) is one of those buzzwords which means all things to all people. It refers
both to some specific features of modelling and rendering systems, but also to a larger conceptual
notion of building CG objects according to how they will be viewed on screen. While Renderman
has a “level of detail” feature, I'll be focussing more on the latter definition, because it is a general
way of thinking about handling large data sets of any type. It's useful to think about level of detalil
throughout your production pipeline.
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The idea of level of detail is to use multiple versions of a model, choosing one depending on their
size on screen. Renderman supports this notion witRibetailRange call, which allows you to
specify multiple models in a single RIB. At render time, the renderer selects one of the models — or
dissolves between two of them — according to the size of the model onscreen, in pixels. (Actually
you can use any subpart of the model as your “pixel ruler”, but I'll ignore that for this discussion...
you can find complete details in Tony and Larry’s bddkvanced Rendermagn

Before starting work on any model which will appear in lots of scenes at lots of different scales,
it's best to gather to discuss how and where it will appear, and decide how many and what kind of
levels of detail you are going to build. Anyone who might be working on this model should attend
this gathering, because everyone needs to be on the same page. You'll probably hear some questions
like this:

"Won't it take a lot of extra effort?”

Some, but probably not as much as you think. We generally proceed by building our highest
level-of-detail models first, then simplifying them to make lower levels of detail. Thus, building
multiple levels of detail becomes a process of removing detail rather than adding it, so the hard
work has (mostly) been done already. Depending on what representation you use for your model,
it may also be possible to partially automate making lower levels of detail. (Subd-surfaces, for
example, can often be derezzed by omitting smaller subdivisions.) Nonetheless, it does take some
time, so be sure to budget time for building the lower levels of detail; don’t wait until you need it in
a shot to build it.

“OK, I'm game. How?”

Here are some suggestions for how to create levels of detail in all aspects of your model. It's
important that all disciplines have a shared understanding of how the models will be used in the
final film. Once you've agreed on how many levels of detail to use and how large they will be
onscreen, disseminate this information among the team! If you start by creating the highest res
first, as suggested above, one easy way to share this information is to render the high res creature
at the desired resolution, then shrink down the image to the desired scales for the other models.
By distributing this sort of image, all the artists have a shared understanding of the goals for each
resolution.

45.1 Models

The easiest thing to do to reduce the resolution of a model is to just delete pieces! In particular,
architectural models or vehicles often have a lot of “greeblies” which can just be removed for the
lower resolutions. It's usually not as easy to do for creature models, but sometimes separate pieces
like fingernails and clothing elements are good candidates for removal. Don'’t worry about their
coloration; this can be fixed in paint.

Secondly, reduce the span or polygon count. Your hires model may have lots of folds and
wrinkles that you won't see at lores... or maybe you can put that detail in displacement maps.
Most modelling tools have a function to reduce span count; in May&#lsuild Surfacelf you're
working with polys you’ll want to remove edges and vertices, particularly subtleties like bevelled or
smoothed edges. Some ILM modellers have been known to put bevels and threads on their bolts...

Finally, combine entire pieces. Especially on the lowest resolutions, you may be able to combine
fingers together into “mittens” or replace entire limbs with polygonal (or subdivision-surface) box
shapes.
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45.2 Paint

The first thing that might come to mind when creating paint for lower resolution models is to reduce
the size of the texture maps. While this won't hurt anything, it also won’t help much! That's because
the major implementations of Renderman already use a technique called mip-mapping which auto-
matically creates levels of detail for texture maps, and uses the appropriate level depending on the
size of the object being textured. So in many cases, you can and should use the exact same texture
maps as your high resolution model, even if you've rebuilt the surfaces to have fewer spans.

A bigger factor to consider is theumberof separate texture maps you have. You may want to
consider combining textures for your lower resolution models. For example, while your highest res
model may have a separate set of maps for each part of the body, you may want to combine parts
using projected maps. One quick way of creating these new projections is to render your creature
from orthogonal views using a strong ambient light. While this will create some texture stretching
in some areas, it may not be noticeable at lower resolutions.

4.5.3 Skeletons and Skinning

The one thing you probably don’t want to change between levels of detail is your skeleton, since
you'd like to be able to map the same animations onto all the resolutions of the model. But you might
be able to omit some smaller joints like fingers and toe joints as you switch to lower resolutions.

Also, at the smallest resolutions you may be able to eliminate skinning altogether and just use
pieces which intersect at the joints. This can save a lot of animation computation for big crowds,
though it won't make your renders themselves any faster.

45.4 Shaders and Materials

Just as the geometry and textures should be adjusted for lower-resolution models, there are lots
of ways you can improve the efficiency of your shaders for lower-resolutions models so they will
render quickly. Displacement can be replaced with bump, or eliminated entirely. Color maps can be
replaced with noise or even a constant color. Complex lighting models can be replaced with simpler
ones, or even no lighting at all!

For example, the terrain shader used in the Pod Race sequetardlars Episode I: The
Phantom Menacesed a complex blend of warped tiled textures for the foreground, but off at the
horizon where it was almost entirely covered up with haze and dust and heat-ripple, it dissolved to a
constant color with no texture or lighting at all!

Another way you can simplify your shaders is by baking a lot of procedural shading into texture
maps. This can be done using the “Renderman shader baking” technique presented by Jon Litt
and myself at the Siggraph 2001 Renderman User’'s Group meeting. Although the details of this
technique aren't available in published form yet, we hope to make them available before Siggraph
2002.

45,5 How many levels are enough?

The more shots you have with many creatures, the more benefit you will get from building multiple
levels of detail. As a high-resolution model gets smaller and smaller on screen, you start to pay a
higher and higher price per pixel, and at some point you want to switch completely away from that
hires model. | call this the “pain threshhold”!

Your pain threshhold may be different from mine, but my general rule of thurfdcisrs of 4
Once my hires model is reduced in size to one quarter the number of pixels it was designed to be
seen at, I'm spending about 16 times as much cpu time per pixel as | need! So | want to have a
different level of detail for every factor of 4 in pixel size.
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Here’s a breakdown of resolutions for a fictitious hero critter, along with the type of represen-
tations that might be needed at each resolution. Note that the names actually include an indication

of the intended screen-size; I've found that if you just use abbreviations like “hi”, “med”, and “lo”,
there can be a lot of confusion about how much detail should be included:

critter.1k - full hires model, paint and shaders

critter.2c - reduced resolution, paint, removed detail maps

critter.50 - merged geometry, removed/combined paint maps, replaced some shaders
critter.10 - block models? sprites?

critter.2 - dots?

4.5.6 How do | determine the exact detail ranges?

Even if you are targeting a specific resolution for a given model, it will either hold up better or worse
than you expected. Finding the exact detail ranges to switch between models is a delicate art. But
you don’t have to do a lot of expensive render tests to figure out where the boundary should lie: Just
render one zoom-in sequence of each model with paint and shaders, etc., then use a compositing
system to dissolve between levels. You can find out the detail ranges corresponding to each frame of
your zoom sequence by using a dumbPxpcedural which just prints out the detail for each frame.

You can find a code snippet in last year's Advanced Renderman course notes (listing 4.10) which
does exactly that.

4.5.7 Summary

Figures 4.3 and 4.4 show models using some techniques from all of the above. The high resolution
models on the left are used in closeups, and may be seen at resolutions over 1000 pixels high. The
medium resolution models in the middle have reduced span counts, and some geometry has been
omitted and/or merged with other pieces. The low resolution model on the right have omitted texture
maps, a simplified shader, and grossly merged geometry: note the “mittens” instead of hands for the
clone trooper. A fourth resolution, not shown here, was composed solely of 6-sided polyhedra for
each limb, with no texture maps or procedural noise.

4.6 Rendering Tips and Tricks

4.6.1 Renderingin layers

One obvious way to simplify a large and complex scene is to split it up into sections. This can be
done in a variety of ways. However, all of them usually improve memory usage at the expense of
some performance penalty.

Geometric groups

This is the simplest approach, as your scene is probably organized into separate groups of geometry
for animation purposes anyway. But it can also lead to inefficiencies, since you may have back layers
which are almost completely obscured by front layers. Do you really want to render that whole layer

if only a few pixels show up in the final image? One solution is to use holdout objects for the fore-
ground; inPRManand Entropy this will cause the background objects to be culled earlier, avoiding
lots of geometry processing, texture access, and shader calls. But this adds another kind of over-
head: Every time you render your background layer you're also rendering your foreground objects.
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Figure 4.3: Class Clone€)2002 Lucasfilm Ltd.

Hopefully you're using a simpler shader for holdout objects (usually all you need is displacement
and opacity), but you still have to load all that geometry!

One trick you can use to avoid too much rerendering is to render your foreground layer first,
then use its alpha matte as a holdout object for the background layer! You can do this using a
shader on a clipping plane object (see Advanced Renderman, section 12.7), and the fractional matte
capability in recent versions &fRMan Where the foreground matte is solid, the renderer will try to
cull objects behind the matte before they are shaded (or if they're procedurals, before they're even
loaded!) resulting in a big potential savings for rendering the background layers.

Just to get you started implementing this on your own, the shader body would do something like
this...

point Pndc = transform("NDC", P);
0i = texture(map,xcomp(Pndc),ycomp(Pndc)) ;

... and the RIB fragment would look something like this:

AttributeBegin

CoordSysTransform "screen"

Surface "alphamatte" "map" "fgalpha.txt"

Matte 1

Patch "bilinear" "P" [ -2 20 220 -2-20 2-201]
AttributeEnd

There is a big caveat to this technique... if you do exactly what I've described you’ll end up with
a thin line between your foreground and background elements when you composite them together.
So in practice you'll want to shrink your foreground matte before using it in this way. This is easily
accomplished in most compositing systems by repeated applications of min-filters.
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Figure 4.4: Battle Droids(©2002 Lucasfilm Ltd.

Split into tiles

You might choose to take a large scene and split it horizontally or vertically, rendering each tile on a
separate cpu or just in sequence. While rendering tiles in sequence doesn't reduce the time it takes
to render a frame, it may be possible to render frames with more geometry using the same amount
of memory, since each tile only needs to load what's needed for its subframe.

This isn't hard to do; in fact there’s a RIB request calladpwindow which causes only a given
section of a frame to be rendered. If you're using procedurals this is an especially efficient way to
render a scene with limited memory, since each subframe’s RIB file isn't all that big, and each tile
will only load the geometry it needs when it needs it. The only drawback is there will be some pieces
of geometry that are effectively rendered two or more times, if they cross the boundary between tiles.

By the way, you may have heard a suggestion to split a scene in depth as well as horizontally and
vertically, using clipping planes. | don’t advise this unless you can be certain that no primitive will
be split in half by one of these clipping planes: Because each portion of the object is independently
pixel-filtered, it can sometimes be quite difficult to recombine renders split in this fashion.

Rendering sideways

Another approach to reducing memory usage for large shots is pretty simple (and pretty bizarre).
Render them sideways (ie. rotated 90 degrees)! This doglsvetyswork, and when it does it isn’t
dramatically different or better than splitting into multiple crop windows, but we have found this
useful for rendering crowd scenes at ILM.

Why does rendering sideways make any difference at all? Notic®Rsltanrenders its image
in buckets, top to bottom and left to right. Each time it reaches a bucket with a procedural bounding
box that intersects that bucket, it has to open up the procedural and load the geometry. But cinematic
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scenes are usually much wider than they are tall: sometimes as much as 2.35 times wider! So as
PRManmarches across the screen it must load lots and lots of geometry before it needs most of it:
maybe even the entire scene. By rendering sideways you are attempting to postpone the loading of
geometry until close to when it's really needed.

Usually this makes the biggest difference when rendering crowds. Crowds often consist of lots
of procedurals arranged mostly horizontally across the screen. Rendering the scene in the “usual’
orientation may cause every one of those procedurals to be loaded after the first row of buckets! By
rotating the render sideways, the creatures are loaded as needed, and the geometry is disposed of
after all its pieces have been rendered.

(Note: Entropy uses a different strategy for rendering buckets, where it may choose to render
them out of order. Although we haven’t done any tests to find out, it seems likely that rendering
sideways using Entropy might not make as big a difference in memory usage as it (btidam)

4.6.2 Motionfactor

Although motion blur has a reputation for being expensive, there’s an option you can insert inro
your rib file that can sometimes make your motion-blurred objects render faster than everything
else! This underadvertised “magic bullet” is called “motionfactor”:

Attribute "dice" "motionfactor" [1]

(Both entropy and®PRManalso support an older form using tld@ometricApproximation
RIB request. But the newartribute format is recommended.)

So what’s the magic? This attribute causes objects to automatically adjust their shading rate
depending on how fast they are moving across the screen! This tends to work because the object is
getting blurry anyway, so you probably won't notice if it gets a little blurrier than you expected. Of
course, you could do this manually if you wanted, but it's much easier to set the shading rate so that
it looks good when not in motion, and let the renderer adjust it for fast-moving pieces.

The motionfactor value is an arbitrary positive value: you can increase or decrease it to enhance
or diminish this effect. The exact formula that’s used to adjust the shading rate isn’'t published, but
a motionfactor value of 1 tends to work fine for most scenes.

The only exception may be when you have very tiny spots or streaks or other high-contrast
features in your textures. In the speeder chase sequenstioiVars Episode Il: Attack of the
Clones we found that the tiny windows in the texture maps of the giant Coruscant buildings were
getting blurred out of existence when the camera moved too fast! Since the cameras in this sequence
were always shaking around a lot, this resulted in a stroby appearance, where the lights would turn
on and off seemingly in sync with the speed of the camera motion. It took a while to track this
down but Jon Litt eventually discovered that motionfactor was the culprit. So we had to disable
motionfactor for most of the backgrounds in that sequence.

In spite of the occasional difficulty, motionfactor $® helpful at keeping render times under
control that we recently made it our default for every object in all our renders. It's my #1 favorite
timesaving trick!

4.6.3 Diagnosing texture thrashing

Sometimes you’ll get a scene which takes forever to render, and for no apparent reason. Sure, there’s
lots of geometry and textures, but the shaders are pretty simple, and the shadow buffers render in
about 10 minutes. Why does my beauty render take 5 hours?!?
Well, there could be a number of reasons, but one that | always look into first is texture thrashing.
Both Entropy andPRManuse a texture cache to avoid loading all the textures into memory
simultaneously. The way this works is when you request a texture pixel, the renderer looks first in
the cache to see if it's already loaded. If not, it loads that pixel (along with a bunch of nearby pixels)



84 CHAPTER 4. PREPRODUCTION PLANNING FOR RENDERING COMPLEX SCENES

into the cache. But here’s the problem: If the texture cache is full when this happens, the renderer
has to throw away some pixels already loaded into the cache. It tries to throw away the "oldest”
pixels first in the hopes they're no longer needed, but there's no guarantee they won't be needed
again soon! If they are, they will have to be loaded from disk again.

What this means is that even if you have 500M of texture data in your scene, you can end up
reading the same parts over and over again into memory, resulting in gigabytes and gigabytes worth
of disk access! This can really slow down a render, especially if the texture data is on a file server
and not on the machine you're rendering with.

If your textures are almost entirely procedural this probably won't affect you. But ILM has
always relied very heavily on painted and sampled textures, and the availability of good 3d painting
tools has made this practice even more widespread throughout the industry. (We hear rumours that
even Pixar sometimes paints textures nowadays!) The default texture cache $PRMadmand
Entropy are just too small for heavily texture-mapped scenes: 16M and 10M respectively. You can
increase these values using

Option "limits" "texturememory" [64000]

This sets the texture cache to 64M (it's measured in Kb), which is a much more reasonable size
for modern computers with 512M-1G of real memory. Note that this specifraaxamumcache
size, so it might be okay to increase this number even for relatively small scenes: the renderers
won't use the memory unless they really need it.

4.7 Unsolved problems with Renderman’s level of detalil

This section is labelled “unsolved problems” for a reason: | don’'t have any good answers for them!
I've included them here as a way to cast the gauntlet for the big brains at Pixar and Exluna to come
up with brilliant ways to address them.

Level of detall is your friend, but the Renderman implementation of level of detail can also be
your enemy. If you've worked at all with big crowd scenes using level of detail models you've had
the following problem:

You've got a camera right in the middle of a big crowd that's lit by direct sunlight. There are
creatures both in the foreground and background, at all levels of detail. But in your sunlight shadow
buffer, which is rendered from an orthographic camera, they're all the same size, and all the same
level of detail! So your foreground hero creatures are using shadow buffers rendered with lores
versions of those same creatures, and they don't line up! So you get weird self-shadowing artifacts
on your hero creatures.

The workaround is to split your sunlight shadow buffer into several different buffers, isolating
each to shadow just the creatures in a particular layer, at an appropriate resolution. Or, in worst
cases, you don't use Renderman’s level of detail functionality at all and choose a specific model
resolution manually for each creature, so that it's the same across all your shadow buffers. These
aren’t really satisfactory answers, and they can turn really hard shots into excruciatingly difficult
ones, just because of the number of lights and buffers and creatures you may have to keep track of.

(In fact this problem extends beyond just levels of detail; the pixels in your shadow buffer aren’t
dense enough in some places, and are too dense in others. So even without levels of detail you
may have difficulty getting your sunlight shadow buffer resolution high enough to work for your
foreground creatures. In Entropy you can always ray-trace your shadows, but this can be expensive,
especially for very large scenes.)

Another difficulty comes up when you start ray-tracing with different levels of detail using En-
tropy. You would probably like to use a lower level of detail for your ray-traced reflections than for
the camera-visible geometry, especially if your reflections are very blurry. But the Renderman spec
doesn’t provide a good mechanism for this. In this case, you have to insert both levels of detail into
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your rib, making the lower resolution visible to reflections and the higher resolution visible to the
camera:

AttributeBegin

Attribute "visibility" "camera" [1]
Attribute "visibility" "reflection" [0]
...insert hires model...

AttributeEnd

AttributeBegin

Attribute "visibility" "camera" [0]
Attribute "visibility" "reflection" [1]
...insert lores model...

AttributeEnd

But this has some of the same problems as with shadow buffers! Because your reflections are
seeing a different model than the camera, you may get grossly incorrect self-reflections. Ideally
you'd like to tell the renderer something like this: “for self-reflections use the hires model, but for
reflections of other objects use their lores model.” There’s no way at present to do that.

4.8 Conclusion

I hope this has been a useful summary of techniques for working with massively complex scenes.
The Renderman specification is one of the few scene description formats which explicitly handles
scenes which don't fit in memory, but it takes some careful forethought to take the best advantage of
it and the renderers which support it.
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Chapter 5

Production-Ready Global
lllumination

Hayden Landis,
Industrial Light + Magic

5.1 Introduction

Global illumination can provide great visual benefits, but we're not always willing to pay the price.
In production we often have constraints of time and resources that can make traditional global illumi-
nation approaches unrealistic. “Reflection Occlusion” and “Ambient Environments” have provided
us with several reasonably efficient and flexible methods for achieving a similar look but with a
minimum of expense.

This chapter will cover how Industrial Light and Magic (ILM) uses Reflection Occlusion and
Ambient Environment techniques to integrate aspects of global illumination into our standard Ren-
derMan pipeline. Both techniques use a ray-traced occlusion pass that is independent of the final
lighting. The information they contain is passed on to our RenderMan shaders where they are used
in the final lighting calculations. This allows lighting and materials too be altered and re-rendered
without having to recalculate the occlusion passes themselves.

We will show that when used together these two techniques have given us an integrated solution
for realistically lighting scenes. They allow us to decrease setup time, lighting complexity, and
computational expense while at the same time increasing the overall visual impact of our images.

5.2 Environment Maps

Reflection Occlusion and Ambient Environments are most effective when used with an accurate
environment map. We will also explain how standard light sources benefit from using these tech-
nigues, but environment maps still remain the easiest and most accurate way of lighting with either
technique. So let’s take a moment to discuss how we go about creating these environments.

Whenever possible we have traditionally shot a reflective “chrome” sphere and a diffuse “gray”
sphere on location as lighting reference (see Figure 5.1). They provide a way of calibrating the CG
lighting back at ILM with the lighting environment that existed on location.

87
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Figure 5.1: Chrome sphere, gray sphere, and Randy Jonsson on location in Hawaii.

While the gray sphere is most often used simply as visual reference, the chrome sphere can be
applied directly to our CG scene as a representation of the surrounding environment. As shown in
Figure5.2, we take the image of the chrome sphere and unwrap it into a spherical environment map.
This allows us to access the maps with a standard RenderMan environment call. At times unwanted
elements, like the camera crew for example, can be found hanging out in the reflection. These are
easily removed with a little paint work (see Figure 5.2, right).

Figure 5.2: Unwrapped chrome sphere environment texture and final painted version.

More than just a reference for reflections, the chrome sphere and it’s resulting environment map
give us a reasonably complete representation of incoming light on the location it was shot. If no
chrome sphere exists then it is up to the artist to construct their own environment maps from the
background plate or other photographed reference. It is also possible to use running footage in
environment maps to give you interactive lighting based on events taking place in the shot.

HDR Images

I’'m sure someone out there is asking: “What about High Dynamic Range Images?” There is no
reason we can't use HDR images with either of these techniques. However, in practice we are
usually lucky to get just a single chrome sphere image from location let alone a series of calibrated
exposures. I'm sure that sometime in the future we will start to use HDR images more often but they
are not always necessary. We have found that the single chrome sphere image can work just fine in
many cases.
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There is the issue of how to represent very bright areas and highlights in these environments.
Once you adjust reflection levels properly for an environment you often notice that you've lost the
brightest highlights and reflective areas of the environment. They become dull and washed out.
We have come up with a useful trick, shown in Listing 5.1, that allows us to retain these intense
reflection highlights. This works by taking the brightest parts of the image and expanding them to a
set intensity. While not as necessary for Ambient Environments, this technique comes in very handy
for reflection environments.

Listing 5.1 Example of expanding select ranges of an environment map.

float expandDynRange = 1.00; /* Expand specified range of the map to this max value.*/
float dynRangeStartLum = 0.50; /* Starting luminance for expansion to begin. */
float dynRangeExponent = 2.00; /* Exponent for falloff */
color Cenv = color environment (envMap, R, "blur", envBlur, "filter", "gaussian");
if (expandDynRange > 1) {
/* Luminance calculation, 0.3*Red + 0.59*Green + 0.11%Blue.*/
float lum = 0.3*comp(Cenv,0)+0.59%comp(Cenv,1)+0.11*comp(Cenv,2);
if (lum > dynRangeStartLum) {
/* remap lum values 0 - 1%/
lum = (lum - dynRangeStartLum)/(1.0 - dynRangeStartLum);
float dynMix = pow(lum,dynRangeExponent) ;
Cenv = mix(Cenv, Cenv*expandDynRange, dynMix);

5.3 Reflection Occlusion

First developed durin§peed lland enlisted into full time service dtar Wars: Episode,IReflec-
tion Occlusion has become an important tool for creating realistic looking reflections.

When you use an all encompassing reflection environment you have the problem of occluding
inappropriate reflections. Single channel Reflection Occlusion maps, like those shown in Figure 5.3,
allow us to attenuate reflections in areas that are either self occluding or blocked by other objects
in the scene. As illustrated in Figure 5.4, our surface shaders read these occlusion maps and then
attenuate the environment to provide us with more realistic reflections.

I
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Figure 5.3: Example of Reflection Occlusion passes: B25 and Spinosd0iuscas Digital Ltd.
LLC. All rights reserved.
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Figure 5.4: B25 rendered with reflections (left), and with the addition of reflection occlusion (right).
(©Lucas Digital Ltd. LLC. All rights reserved.

Reflection Blur

Reflection blur is another important component of Reflection Occlusion and is used to help simulate
various surface textures in the model. It is achieved by jittering the secondary rays around the main
reflection vector. Mirror surfaces get little or no blur while matte surfaces receive a more diffused
occlusion. As shown in Figure 5.5, glass surfaces, receive an almost mirror reflection while a rubber
surface has a very diffused occlusion. For a proper occlusion, transparent surfaces should be made
visible to primary rays but not secondary rays.

floy )ﬂ(
llv'
tl

Figure 5.5: The image to the left shows a perfectly mirrored reflection occlusion. The image on the
right shows differing blur amounts for reflective glass areas, diffuse paint, and more diffuse rubber
tires. ©Lucas Digital Ltd. LLC. All rights reserved.

Reflection occlusion gives us some of the advantages of doing a full ray-traced reflection pass
without all of the expense. As long as our animation doesn’t change we can keep reusing the same
occlusion pass for subsequent iterations of the final render. It allows us the convenience of using
standard RenderMan environments and reflections but gives them the illusion of a more complex
ray-traced scene. For reflective objects this solution allows us to bypass the expense and hassle of
a full ray-traced render unless it's absolutely necessary. An example reflection occlusion shader is
shown in Listing5.2.
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Listing 5.2 ref10ccl.sl: Example of an Entropy shader that produces a reflection occlusion im-
age.
#include "entropy.h"

surface reflOccl_srf (float rflBlurPercent = 0.00;

float rflBlurSamples = 4.00;)
{
0i = Os;
if (raylevel() > 0) {
Ci = 0i;
} else {
float rflBlur = rflBlurPercent/100;
normal NN = normalize(N);
vector IN = normalize(I);
vector R = reflect(IN,NN);
float occ = environment ("reflection", R, "blur", rflBlur,
"samples", rflBlurSamples);
Ci = (1-occ)*0i;
}
}

5.4 Ambient Environments

Lighting with fill lights involves guesswork and can take up a great deal of time if done correctly.
Ambient Environments is a technique that was developed to try and free us from the necessity of
wrangling lots of fill lights.

There are two components to an Ambient Environment. “Ambient Environment Lights” provide
illumination while “Ambient Occlusion” provides shadowing and important directional information
for looking up into the Ambient Environment map. Similar to Reflection Occlusion, Ambient Envi-
ronments also use a pre-rendered occlusion map accessed at render time to give our scene realistic
shadowing. We can conveniently use the same environment map for both our ambient environment
and our reflection environment.

Traditionally ambient lights have never been too popular in production because they simply add
a single overall color, a less than spectacular lighting effect. By naming this technique “Ambient
Environments,” we hope to help restore the good name of the much maligned ambient light.

Developed initially duringPearl Harbor this technique quickly spread to other shows and has
since become an important lighting tool for most productions at ILM.

5.4.1 Ambient environments defined

ambient ("fam-b{e-}-*nt)
Etymology: L i[ambient-], ifambiens], prp of ifambire] to go around, fr. ifambi-] + i[ire] to go
— more at ISSUE aj, surrounding on all sides: ENCOMPASSING

An “ambient environment” represents the diffuse fill light that surrounds an object. It's not
intended to represent direct light sources. These are left to standard RenderMan lights. The Ambi-
ent Environment’s job is to give us indirect “bounce” or “fill” light from the environment. Rather
than setting up multiple fill lights and guessing their color, intensity and direction, an ambient envi-
ronment light provides all of this relatively free. It's also necessary to provide shadowing from the
surrounding lighting environment. Points not fully exposed to the environment need to be attenuated
properly. This process is known as “Ambient Occlusion.” An example of the Ambient Environment
process is shown in Figure 5.6.
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Figure 5.6: Simple example of Ambient Environment process. Top: environment map and plastic
B25 illuminated with only an Ambient Environment Light. Bottom left: Ambient Environment
Light with occlusion and "bent normals”. Bottom right: The B25’s final beauty ren@kucas
Digital Ltd. LLC. All rights reserved.

5.4.2 Why ambient environments?
There are several advantages of using this method over traditional fill lighting techniques.

e Using a chrome sphere gives you a more accurate representation of the environment than plac-
ing fill lights by hand. There is little guess work involved and you get the exact environment
as reflected in the chrome sphere.

e The light completely surrounds an object. No dark patches or areas of missing illumination.
e Itis very efficient to set up and adjust - one light, one map.

e Fast! One ambient environment light replaces 3 or more fill lights. There are no multiple
shadow passes to render, only a single Ambient Occlusion pass is required. You save the time
it takes to compute the additional lights and shadow passes.

¢ View independent. If the environment’s orientation changes there is no need to re-render the
occlusion pass. If “baked” occlusion maps exist for a model, no shadow or occlusion renders
are necessary except for your key light and any other direct "hard shadowed” light sources.
Baked maps also free you from any dependence on camera or object orientation.

5.4.3 Ambient environment lights

An Ambient Environment Light is simply a modified environment reflection. Rather than using the
reflection vector
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R = reflect(IN,NN);
that we normaly use with an environment map, an Ambient Environment uses the surface normal
R = normalize( faceforward(NN,I) );

which is the direction of the greatest diffuse contribution, to gather illumination from the environ-
ment. This is illustrated by the top two images of Figure 5.7.

Since the RenderMan environment call conveniently blurs across texture seams, we can apply a
large map blur value (25%-30%) rather than sampling the environment multiple times as you might
do with a ray-traced approach. The blurred lookup into the environment map represents the diffuse
contribution of the environment for any point on the surface (see bottom image, Figure 5.7). This
has the speed advantage of sampling our environment only once rather than multiple times.

Figure 5.7: Top Left: Regular reflection environment lookup. Top right: Environment lookup using
surface normal. Bottom: Environment lookup using surface normal with 30%(juucas Digital
Ltd. LLC. All rights reserved.

5.4.4 Ambient occlusion

Ambient occlusion is a crucial element in creating a realistic ambient environment. It provides
the soft shadowing that we have come to expect from global illumination and other more complex
indirect lighting techniques. Surfaces not fully exposed to the environment need to be attenuated
properly so that they do not receive the full contribution of the ambient environment light. This is
one of the main attractions of using the Ambient Environment technique. In Figure 5.8 you can
begin to see some of the subtle visual cues that will eventually help convince us that the lighting is
real.
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Figure 5.8: Example Ambient Occlusion images. B25 bomber, Spinosaurus and Tyrannosaurus.
(©Lucas Digital Ltd. LLC. All rights reserved.

In order to get this effect, it is necessary to have an ambient occlusion render or “baked” ambi-
ent occlusion maps that represent this attenuation of outside light. Ambient occlusion is achieved
through the following process: For every surface point, rays are cast in a hemisphere around the
surface normal. The final occlusion amount is dependent on the number of rays that hit other sur-
faces or objects in the scene.

Figure 5.9: Simple illustration of surface sending out rays, some of which are blocked. Perhaps from
the B25 fuselage under the wing. Showing blocked rays from wing and engine naChligcas
Digital Ltd. LLC. All rights reserved.

Since the strongest diffuse contribution comes from the general direction of the surface normal,
the result is weighted to favor samples that are cast in that direction. If there is an object directly
parallel to the surface it will be occluded more than if the same object were placed to the side.
Transparent or glass materials should be excluded from the Ambient Occlusion render. If you have
opacity maps you want to make sure that your ambient occlusion shader takes this into account.
This pass can be rendered each frame for objects with internal animation. For solid objects with
few moving parts it can be rendered once and baked into texture maps. Baking the occlusion maps
gives you a huge advantage since they only need to be rendered once per object. This works because
unlike Reflection Occlusion, Ambient Occlusion is not dependent on orientation of the object or
environment. You can share the same maps amongst multiple instances of an object and in any
scene.

Bent normals

Another important component of Ambient Occlusion is the addition of an “average light direction
vector.” This represents the average direction of the available light arriving at any point on the
surface. The unoccluded rays from the initial occlusion calculation are averaged together to find the
difference between this “average light direction vector” and the original surface normal. This offset
is stored in the G, B and A channels of the Ambient Occlusion map (see Figure 5.10, right). This
vector is used to redirect the lookup into the ambient environment so that the color is gathered from
the appropriate direction. The surface normal originally used to lookup into the environment texture
will now be bent at render time to point in this new direction (see Figure 5.11). We use the term
“bent normals” to refer to this effect since it is difficult to say “average light direction vector” ten
times fast.
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These two components of the Ambient Occlusion render combine to give us realistic shadowing
as well as an accurate lookup into the Ambient Environment texture.

Figure 5.10: Raw materials: Ambient environment light render and an Ambient Occlusion render,
representing the stored occlusion and bent normal déducas Digital Ltd. LLC. All rights
reserved.

Figure 5.11: Final product: Plastic render of the B25 with an occluded ambient environment light.
The image on the right shows the final step of integrating the “bent norn@lkticas Digital Ltd.
LLC. All rights reserved.

Listing 5.3 is an example of an Ambient Occlusion shader. Listing shad:hayden:bendnorms
contains a pseudocode example of how we convert the bent normals stored in the Ambient Occlusion
maps back into a normal that the surface shader can use.

5.4.5 Other Ambient Environment light types

We can use the occlusion and directional information contained in the Ambient Occlusion map and
apply it to other light sources as well. If you take a standard point or spot light, pass it the "bent

normal” rather than the original surface normal and then attenuate it with the occlusion channel, you
will get a nice soft fill light source with no additional shadowing necessary (see Figure 5.12). This

makes it fairly cheap to add lights to an object already using Ambient Occlusion. These additional
lights allow you to add or subtract light from the base ambient environment.



96 CHAPTER 5. PRODUCTION-READY GLOBAL ILLUMINATION

Figure 5.12: Example of a spot light using standard shadows and a spot light using occlusion and
bent normals for shadowing®)Lucas Digital Ltd. LLC. All rights reserved.

5.4.6 Other uses for Ambient Occlusion

We've found several other useful applications for ambient occlusion. One of these is for creating
contact shadows (see Figure 5.13). Hiding shadow casting objects from primary rays but not sec-
ondary rays allows us to create contact shadows for objects that can then be applied in the render or
composite.

Figure 5.13: Example of Ambient Occlusion contact shadoiucas Digital Ltd. LLC. All rights
reserved.

5.5 Application

Combining Reflection Occlusion and Ambient Environments has allowed us to realistically light
complex scenes with a minimum of effort. The lighting of many final scenes has been accomplished
by using only three lights: Key, reflection, and Ambient Environment lights.

Figure 5.14 shows an example frdPearl Harbor. This shot required us to place 14 computer
generated B25 bombers next to four real B25 bombers on the deck of an aircraft carrier in Texas.
Then we had to place this landlocked carrier it in the middle of the Pacific Ocean.
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Figure 5.14: FroniPearl Harbor, two frames from the establishing shot of Doolittle’s rai@Lucas
Digital Ltd. LLC. All rights reserved.

One key to the success of this shot was the development of materials that were created in a
calibrated lighting environment. This environment was built using the gray and chrome sphere
references as well as photos of the real B25 bombers. If this is done correctly you can drop the
model and its’ materials into any other environment and soon have it looking right at home.

Armed with an environment map, reflection occlusion pass, baked ambient occlusion maps and
a good set of materials, it took only part of a day to tweak the final lighting for this shot. Only three
lights: Key, reflection environment, and ambient environment were used. Not every shot goes this
smoothly but it is a testament to the ease of using this simple but effective lighting setup.

On Jurassic Park lllwe had the task of creating realistic dinosaurs and used Ambient Envi-
ronments to create several interesting effects in addition to their regular lighting tasks. By adding
running footage of flames to an environment, a realistic and interactive lighting effect was created
for the Spinosaurus in this shot (see Figure 5.16).

5.6 Conclusion

| am sure that at some point we will be ray tracing complex scenes on our palm pilots. Until then
we’ll continue to create efficient cheats and tricks to get the visual advantages of global illumination
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Listing 5.3 occlusion.sl: Entropy Ambient Occlusion example shader.
#define BIG 1e20

color vector2color(vector v) {
return ((color v) + 1) / 2;

}

surface occlusion (float samples = 16;
float doBendNormal = 0;)
{

normal NN = normalize(N);
vector up = vector(0,1,0);
float sum 0;
float i;
vector dirsum = 0;
vector side = up ~ NN;
for (i = 0; i<samples; i = i+1) {
float phi = random()*2*PI;
float theta = acos(sqrt(random()));
vector dir = rotate(NN,theta,point(0),side);
dir = rotate(dir,phi,point(0),NN);
point Ph;
normal Nh;
if (rayhittest(P,dir,Ph,Nh) > BIG) {
sum = sum + 1;
dirsum = dirsum + dir;

}

}

sum /= samples;

dirsum = normalize(dirsum);

if (doBendNormal != 0) {
vector bend = dirsum - NN;
Ci = vector2color(bend);

} else {
Ci = sum;

}

Figure 5.15: Frames of the B25 in its look development environment composited over reference
photos of the real B25¢)Lucas Digital Ltd. LLC. All rights reserved.
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Figure 5.16: We used running footage from this background in our ambient environment map to
create interactive fire light on the Spinosaur@.ucas Digital Ltd. LLC. All rights reserved.

without the time and expense.

We continue to expand on the basic concepts of Ambient Environments. Some colleagues at
ILM have already been busy adding features that allow for self illumination and other more ad-
vanced lighting effects. At some point | am sure this will eventually migrate to full blown global
illumination.

For some shots it is true that you can get away with only the minimum of these lighting tools
alone. However, in production we unfortunately know that “real” is never quite good enough. For
other shots these techniques are not the “end all, be all” but a solid foundation on which to build
your final lighting. We hope you find these techniques useful and as much fun to work with as we
have had in developing them.
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Listing 5.4 This is an example of how we convert the information stored in the Ambient Occlusion
images back into occlusion and "bent normal” data that can be used by the surface shader.

uniform float ambOcclDensity; // Amount of the original occlusion you want
// to mix in (usually 1)

vector IN = normalize(I);
normal NN = normalize(N);
normal bentNormal = normalize( ntransform("object", faceforward(NN,IN)) );

color ambBendNormColor = 0;
Pndc = transform("NDC",P);

ambS = xcomp (Pndc) ;
ambT = ycomp(Pndc) ;
ambOccAmt = float texture(ambOcclMap[0], ambS, ambT);

ambOccAmt = mix(1, ambOccAmt, ambOcclDensity);

ambBendNormColor = color texture(ambOcclMap[1], ambS, ambT);
/*This line actually reads the "bent normal" channels 1-3 of the map,
not just channel 1 as it might appear. */

normal addNormal = -1 + 2 * (normal ambBendNormColor);
bentNormal = normalize(bentNormal + addNormal);

R = vtransform("object",environmentSpace,bentNormal) ;
R = normalize(R);
Cenv = color environment (envMap, R, "blur", blurAmount, "filter", "gaussian");

/* Note: We have come across a problem with the way RenderMan blurs

* across texture seams. Sometimes this shows up as a pixel wide line
* that appears in the results of your environment() calls. If you do run
* into this problem the following is a workaround.

*/

R = vtransform("object",environmentSpace,R);

vector R1 = R + Du(R)*du;

vector R2 = R + Dv(R)*dv;

vector R3 = R1 + R2 - R;

color Cenv = color environment (envMap, R,R1,R2,R3, "blur", blurAmount,

"filter", "gaussian");
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Renderman on Film

Combining CG & Live Action using Renderman
with examples from Stuart Little 2

Rob Bredow
Sony Pictures Imageworks
rob@85vf x. com

Abstract

We present a complete (albeit brief) summary of the digital production process used for creating computer
generated images in the context of alive action motion picture citing examples from the films Stuart Little
and Stuart Little 2. Special attention is paid to issues relating specifically to Renderman including
considerations for shading, lighting and rendering for usein feature film effects. We also touch on several
compositing techniques required to complete the production process.

Matchmove )
il

( Animation )

Figurel -Summary of the digital production pipeline

Draft - 3/16/2002



1.1 Pre-Renderman

There are several steps when working on alive action film that must take place before any rendering
can begin. For the purposes of this course we will skip over the many aspects of live-action
photography and editing and start with the digital production process.

1.1.1 Scanning

Once a shot has been in the editorial process asthe "take" that will be in the movie and requires an
effect, it can be scanned. Thisisgenerally done based on a series of keycode in and out points
designated by the editorial department. Each frameis scanned individually and stored in the computer
as a sequence of numbered images.

Thedigital film scanning process is designed to record as much of the information stored on the film
negative as possible while considering the downstream ramifications of creating extremely large files
for each frame. There are two aspects to consider when determining how much detail you are
interested in preserving from the original negative: 1mage resolution and color resolution.

Image resolution is simply the number of pixelsyou want to generate in the scanning process. An
image resolution of 4096 wide by 3112 tall is commonly referred to as a "4k" image and is often
considered the highest useful resolution scan for today's 35mm motion picture negative.

Color resolution isthe number of bits of data that you use to store each pixel. The most common
standard of 8 bitsfor each of the red, green, and blue channel (a 24-bit image) yields only 255 shades
of gray which is not sufficient to record all of the values that can be represented with film. A more
compl ete representation can be stored by doubling the storage to 16 bits for each of the channels
resulting in over 65,000 shades of gray which is more adequate to describe film's contrast range and
subtlety. Itismost common however to use the standard detailed by Kodak's Cineon file format (for
more information see the Kodak paper “ Conversion of 10-bit Log Film Data To 8bit Linear or Video
Datafor The Cineon Digital Film System”). Thisstandard is specified as scanning 10 bits of data per
channel and storing the datain alogarithmic space to preserve as much detail in the areas of the curve
that correspond to subtle gradations that the eye can clearly see.

Many visual effects films today will choose to work at aresolution of 2k and 10 bits per pixel. Often

thislevel of detail is high enough that the differences between the work print generated off of the
original cameranegative and a print generated from the "digital" negative are not perceptible.
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1.1.2 Dustbusting

Once the film has been scanned, it invariable has imperfections that need to be removed. Theseissues
can manifest themselves as scratches on the negative which show up as white lines or dots, lens
imperfections that need to be removed, or dark specs and lines that correspond to dust and hair. All of
these are removed in the dustbusting process that consists of a series of both automated tools and
careful frame-by-frame paintwork to prepare the plates for the downstream process.

Figure2 — Three samples of dust and scratches from negative damage

1.1.3 Stabilization

Even with advancesin steadying both the in-camera and scanning technology, most every plate
requires stabilization beforeit is ready to be enhanced with visual effects. Most frequently, the
stabilization processis simply required to take out asmall amount of weave inherent to the film
shooting and scanning process. This can be done with an automated 2-d tracking system and some
simple math to smooth the resulting curves that will "unshake" the footage on a frame-by-frame basis.

In some more complicated cases, there are bumps in the camera move or a shake introduce by along
boom arm or some other on-set tool that needsto be stabilized out or locked-down to improve the look
of ashot. Inthis case, an entire suite of tools may be needed to stabilize and perspective correct the

photography.

1.1.4 Color Correction

Scanning negative and viewing the resulting image directly does not generally result in aesthetically
pleasing image. The director of photography (D.P.) shoots a movie with the process of printing in
mind and being able to control the exposure level and color balance during that process. In order to be
ableto, later in the pipeline, match colors and exposures of computer-generated objects to the plate
photography, the plate must be "timed" or color corrected to match the DP's requirements.

Thisisaccomplished with a careful process of adjusting the exposure level and color balance with
digital tools that emulate their real-world counterpartsin the "print timing" process. These color
corrections are then filmed out and approved by the director of photography before any lighting work
can begin.
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Figure3 - Original scan (left) and color corrected plate (right)

1.1.5 Matchmove

The matchmove process is afundamental step when working on alive action effectsfilm. It involves
duplicating, in the digital environment, the complete shooting environment that was used on the set
including, most importantly, the camera.

Figure4 - 3d model of thelive action set

First, arelatively simple model of the set is generated in the computer whose proportions match as
closely as possible to the live action stage. This model will be used later in the processto help the
animators know where to place the characters and, in the rendering process, it will catch shadows and
reflections as needed.

The second major part isthe tracking of the camerain relation to this model. Thisisavery precise and

challenging task which consists of matching the lens and camera properties to the camera on set as
well as the camera's position and orientation over time for each frame of the plate.
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Figure5 - Camera placed in the virtual set

There are many tools (some semi -automated) that help in both the reconstruction of the digital set and
the tracking of the digital camerato this set. The specifics of which are too lengthy to detail here.

=R | a b grmgy sheloerre TR Thle 00 1T

Figure6 - Single finished matchmove frame

1.1.6 Animation

It would be naive to attempt to summarize in any meaningful was what takes place in the animation
step of the production processin our limited space. For our purposes, the design and movement of all
the props and characters can now be accomplished and approved before any rendering can take place.

1.2 Renderman

It's at this point that the Renderman related processes can begin. The "look development” process gets
things started by designing the shaders and setting the look for each of our characters and props. Once

the look has been established, the lighting can begin and the CG will be it to fit into the scene and then
be enhanced for dramatic effect as needed. Then the process of rendering the various passes can be

undertaken.

1.2.1 Shading

Thereis one key concept to keep in mind when writing shaders for visual effects: control. Most of the
lighting models that are mo st useful in production are based more on the fact that a lighter can predict
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what the shader will do in agiven case and less on physics or mathematical accuracy. This
methodology has lead to a class of lighting models that could be categorized as " Pseudo-realistic

lighting models.” We will detail a couple of useful lighting models that would fall into such a category
here.

1.2.1.1. Diffuse Controllability: Falloff start, end and rate.

Diffuse shading calculations are the most common and simple way to shade an object. Creating a
flexible diffuse shading model greatly increases controllability.

The figure below illustrates a standard Lambertian diffuse shading model.

standard difTuse lighting

-'\'.i -
|
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[
|
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Figure7 - Standard diffuse lighting model

1.2.1.1.1Falloff End (Wrap)

Thefirst step in generating soft and nicely wrapped lighting is to give the light the ability to reach
beyond the 90 degree point on the objects. This hasthe effect of softening the effect of the light on
the surface simulating an arealight. This can be done with controls added to the lights which specify
the end-wrapping-point in terms of degrees where awrap of 90 degrees corresponded to the standard
Lambertian shading model and higher values indicated more wrap. This control is natural for the
lighting TD'sto work with and yields predictable results.
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wrapped diffuse lighting

wrap = 1201°

asini ™ L) wrap = (L0
asind ML 1 wrap aeini ML wrap = 0.5

asin{ Ny Lwrap = 1.0

Figure8 -"Wrapped" diffuselighting

For wrapped lights to cal culate correctly, the third argument to the illuminance() statement must be
set to at |east the same degree as the wrap value for the highest light. Otherwise lights will be culled
out from the lighting cal culations on the back of the surface and the light will not correctly wrap. In
our implementation, the wrap parameter was set in each light and then passed into the shader (using
message passing) where we used the customized diffuse calculation to take into account the light

wrapping.

Asan aside, wrapping the light "more" actually makes the light contribute more energy to the scene.
If the desired effect isto keep the overall illumination constant, it will be necessary to reduce the
intensity light control while increasing the wrap.

1.2.1.1.2 Falloff Start

The natural opposite of the "Falloff End" parameter which controls wrap is the "Falloff Start"
parameter that controls the areathat is illuminated with 100% intensity from alight. The "Falloff
Start” parameter is also specified in degrees and is defaults to avalue of 0. By increasing this value,
the light's 100% intensity will be spread across alarger area of the object and the gradation from the
lit to the unlit are of the object will be reduced.

The "Falloff Start" parameter has no logical counterpart in real life and has fewer uses than the
"Falloff End" parameter previously discussed. The most common use that we found in production
was in the case of abacklight or arim around a character. When increasing the "Falloff End" or
wrap to a high value, sometimes the rim would not look strong enough or have a hard enough fallof f
(sinceit roughly simulates the effect of an arealight). By increasing the "Falloff Start", you get a
sharper falloff around the terminator of the object and effectively increase the sharpness of the rim
light.

1.2.1.1.3 Falloff Rate
Gammais one of the most useful and convenient functionsin computer graphics. When applied to
lighting, a gamma function leaves the white and the black points unchanged while modifying the rate
of the falloff of thelight. This has the effect of modifying the value of the sphere at the “N2” point
in the diagram above.

The apparent softness or sharpness of alight can be dialed in as needed using these three controls:
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"Falloff End", "Falloff Start",and "Falloff Rate".

1.2.1.1.4 Shadows
Thefirst problem we encountered when putting these controllable lights to practical use was
shadows. When you have shadow maps for an object, naturally the backside of the object will be

made dark because of the shadow call. This makesit impossible to wrap light onto the backside of
the object.

shadow problem

weap = | 200

prablem s that everything behim
thie 907 mark falls it shadow,
thus elimmating our baoutiful wrap

Figure9 - The shadow problem with wrapped lights

Fortunately Renderman affords afew nice abilities to get around this problem. One way to solve this
problem is by reducing the size of your geometry for the shadow map calculations. Thisway, the
object will continue to cast a shadow (albeit a slightly smaller shadow) and the areas that need to
catch the wrapped lighting are not occluded by the shadow map.

shadow solution

wrap = 121

wa solve by sflehly redducing the size of
e gedmetry during the shadow map cakculntions

Figure 10 - The solution to the shadow problem

Asapractical metter, shrinking an arbitrary object is not always an easy task. It can be done by
displacing the object inwards during the shadow map cal culations but this can be very expensive.

In the case of our hair, we wrote opacity controls into the hair shader that were used to drop the
opacity of the hair to 0.0 a certain percentage of the way down their length. It isimportant to note
that the surface shader for an object is respected during shadow map calculation and if you set the
opacity of ashading point to 0.0, it will not register in the shadow map. The valuethat is considered
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“transparent” can be set with the following rib command:

Option "limts" "zthreshold" [0.5 0.5 0.5]

Lastly and most simply, you can blur the shadow map when making the "shadow" call. If your
requirements are for soft shadows anyway thisis probably the best solution of all. It allowsfor the
falloff of the light to "reach around" the object and if there is any occlusion caused by the shadow, it
will be occluded softly which will be less objectionable.

For both Stuart Little 1 and 2, we used a combination of shortening the hair for the shadow map
calculations and blurring our shadows to be able to read the appropriate amount of wrap.

1.2.1.2. Hair controllability

Solving the problem of how to properly shade hair and fur in away that is both realistic and easy to
control isachallenging project. In our work on Stuart Little we experimented with conventional
lighting models before deciding to create amodel that was easier to control.

When using a more conventional lighting model for the fur (essentially a Lambert shading model
applied to avery small cylinder) we came across afew complications. First, adiffuse model that
integrates the contribution of the light asif the normal pointed in all directions around the cylinder
leaves fur dark when oriented towards the light. This may be accurate but does not produce images
that are very appealing. In our testing, we felt that the reason that this model didn't work as well was
because alot of thelight that fur receivesis aresults of the bounce of the light off other fur in the
character which could be modeled with some sort of global illumination solution, but would be very
computationally expensive.

The other major reason that we chose to develop a new diffuse lighting model for our fur was that it
was not intuitive for aTD to light. Most lighting TD's have become very good at lighting surfaces
and the rules by which those surfaces behave. So, our lighting model was designed to belitina
similar way that you would light a surface while retaining variation over the length of the fur whichis
essential to get arealistic look.

when the hair is exactly perpendicular to the surface, use surface_normal
when the hair is exactly tangent to the surface, use N_hair
otherwise, blend between the two normalsin alinear fashion

Figure 11 - Obtaining a shading normal
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In order to obtain a shading normal at the current point on the hair, we mix the surface normal vector
at the base of the hair with the normal vector at the current point on the hair. The amount with which
each of these vectors contributes to the mix is based on the angle between the tangent vector at the
current point on the hair, and the surface normal vector at the base of the hair. The smaller thisangle,
the more the surface normal contributes to the shading normal. We then use a Lambertian model to
calculate the intensity of the hair at that point using this shading normal. This has the benefit of
allowing the user to light the underlying skin surface and then get very predictable results when fur is
turned on. It also accounts for shading differences between individual hairs and along the length of
each hair.

Figure 12 - Finished Stuart Little 2 rendering with fur shading

1.2.1.3. "Ambient Occlusion" technique

In the past, most computer graphics lighting techniques have relied on avery simple model to
approximate the contribution from the ambient light which does not come from a specific light source
but rather bounces around a set and lights an object from all directions. Because modeling all of the
actual light bouncing throughout a set is very computationally expensive, many shaders substitute a
constant for this ambient value (commonly referred to asthe "Ka"'). This constant is generally dialed
in by the lighting artist and is arough approximation of the light from the bouncing from nearby
objects.
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The disadvantages of using such a simple ambient lighting model are obvious. All the different sides
of an object will get the same ambient contribution no matter which direction it is facing or what
shapeitis. That canlead to objects looking flat and uninteresting if the"Ka" is turned up too high.

One workaround that has been used for yearsin thisareaisto leave the "Ka" value set to 0.0 (or
nearly 0.0) and use more lightsto "fill" in the object from different directions. It is common when
lighting for visual effectsto have your primary lightsthat are the key, rim and fill and then
complement those lights with a set of bounce lights from the ground and any nearby objects. Thiscan
produce very convincing resultsin the hands of askilled lighting artist.

But in the case of rendering large flat objects with some small details (like a building), none of the
previously mentioned techniques give desirable results. The subtleties that we are used to seeing in
real life which include the darkening of surfaces when they are near convex corners and the soft
blocking of light from nearby objects are missing and the visual miscues are obvious.

Figure 13 - Building with texture, key light, and constant ambient

The"Ambient Occlusion” technique that we used for Stuart Little 2 gave us an accurate and
controllable simulation of the ambient contributions from the sky and the ground on our computer
generated objects. The technique, in concept, consists of placing two large arealights, one
representing the ground and the other for the sky, into the set and accurately modeling the
contribution of these lights on the object of interest.

These calculations are most convenient to implement with ray-traced shadows and arealights so we

chose Exluna's Entropy renderer to generate our "Ambient Occlusion” information. The setup simply
consists of two arealights (implemented as solar light shaders) and avery simple surface shader that
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samples those lights appropriately, taking into account the objects self-shadowing with ray-tracing.

Surface srf_diffuse_pref (
Varying Point Pref = (0,0,0);
float DiffuseFall of f Angl eEnd = 90;

poi nt PP = O;

vector NN, NF;
/* Initialize */

Pref;
nor mal i ze( Du( PP) "Dv(PP));

PP
NN
NF = NN;

/* Light Calculations */

G = 0.0;

illum nance (PP, NF, radians(Di ffuseFall of f Angl eEnd)) {
LN = normalize(L);
C += diffuse(NF);

}

O =1.0;

}

Given enough samples into the area lights, this process generates very smooth soft shadows and a
natural falloff of light into the corners of the object.
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Figure 14 - Test rendering of Pishkin with " Ambient Occlusion" lighting only

In the case of the Pishkin Building for Stuart Little 2 these lighting cal culations can be made once and
then stored for all future uses of the building since the building would not be moving or deforming
over time. Thiswas accomplished by pre-calculating the "Ambient Occlusion" pass and storing it as
aseries of textures— one texture for each patch or group of polygons on the building.

The Renderman implementation of this pipeline consisted of creating arib for each patch on the
building. Thisrib consisted one patch and a shadow object. In therib generation, the patch's " P"
coordinates were moved to be located directly in front of the camerawith it's coordinates normalized
to the screen space of the camera so that the patch completely filled the view. The unmoved vertices
of the patch were stored as " Pref" datafor shading purposes. The entire building object was stored in
therib as a shadow object.

The shader than ran the shading cal culations on the "Pref" geometry which took into account the
shadow object of the building and returned the resultsto " Ci" which effectively generated atexture
map for that patch.
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Figure15 - " Ambient Occlusion” texture mapsfor 2 sections of the Pishkin

In our implementation we generated a separate set of texture maps for the sky dome contribution and
the ground bounce contribution and then dialed the two new ambient levelsin the shading for the
building at the final rendering stage. If the sky was more blue or more overcast for a shot, the sky
dome contribution color could be changed on the fly at the final rendering stage without performing
any expensive calculations.

Figure 16 - Final version of the Pishkin as seen in Stuart Little 2

The end result was a more physically accurate shading model for ambient lighting which was both
controllable and efficient since the more expensive cal culations could be executed once and saved as

texture maps.
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1.2.2 Lighting

There are several things that provide input and reference to the lighting process including both on set
reference and the creative process that is controlled by the director and the visual effects supervisors.
In addition there are the technical aspects that are worth mentioning here including the lighting color

space and keeping objects from clipping when they get too bright.

1.2.2.1. Reference balls on the set

One of thefirst things we inspect when starting a new visual effects shot are the reference balls that
are shot on set. For each setup, the on set visual effects team clicks off afew frames of a 90% white
sphere, a50% gray sphere and a chrome sphere. These spheres can be visually inspected to tell you a
few things about the photography and the lighting setup on stage.

Figure 17 - Reference or bs photographed on set

The 90% white sphere and 50% gray sphere are very useful to see the general lighting directions of
the keys and fills and the relative color temperatures. Very soft lights and bounce cards will occlude

more softly and point lights will have sharper falloffs. The relative warms and cools of the various
lights can also be seen on these objects.

The chrome sphere is perhaps the most interesting of the three because it actually containsin it's
reflections a map of the entire shooting environment (missing only what isdirectly behind the sphere).
From this reference you can pinpoint with some degree of accuracy the direction from which the
lights are illuminating the set and even relative sizes of bounce cards and color temperatures. If a

C.G. sphereis matchmoved to the on set sphere, software can unwrap the sphere and give you an
accurate reflection map for the set.

1.2.2.2. Lighting cues from the photography

The next items to get serious attention when the lighting begins on a shot are the cues from the plates
themselves. Generally, the plates are carefully inspected by the lighting artist for any cues that help to
determining how the characters or objects should be it to fit into the plate. Shadow density and color,
location and orientation are all things that are checked for. Highlight and specular features are also
used to provide both spacial and color reference for the lighter. The plates are also examined for any
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shiny objects that should catch areflection of our character or bright objects that should bounce sorre
light onto the subjects.

Figure 18 - Reference material shot on set with Stuart " stand-in" model

Basically, common sense combined with careful observation are used to dissect the photography and
setup acomputer lighting environment that matches the set as closely as possible.

1.2.2.3. Creative input

Once the character and objects are basically integrated into the live action photography, the creative
process can really begin. Thisis probably most important aspect of the lighting process and it can be
provided by anumber of people on afilmincluding the director, visual effects supervisor, or
computer graphics supervisor and the lighting artist themselves. The goal isto enhance the mood and
the realism of the film by either reinforcing the set lighting or breaking the "rules" alittle and adding
alight that wouldn't have been possible on the set.
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Figure19 - Margaloin a can illustrating the use of “ creatively” driven lighting

For Stuart, the creativ e decision was made that he should have characteristic rim light with him at all
times. In some scenes, the lighter needed to be resourceful to find an excuse in the plate to rim light
the mouse to fit his heroic character. Since we had plenty of control over the computer generated
lighting, we could also do tricks like rim light only Stuart's head and top half of his clothesand let his
legs and feet more closely match the photograph of the plate to accomplish both the creative tasks and

the technical requirements at hand.
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Figure 20 - Rim lighting in all environmentsfor Stuart

Backlighting on the falcon was another opportunity to use lighting to an artistic advantage. Because
the feathers on the falcon had separate backlighting controlsin hiswings and various areas of his
body, the lighting could be used to accentuate a performance.

Figure 21 - Backlighting on the Falcon's wings
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1.2.2.4. Color space issues

The topic of lighting color space is one of much debate and concern on each show that | have been a
part of over the years and for good reason. The color space in which you choose to light controlsthe
way that the light will fall from bright to dark and every value in between. It isalso acomplicated
subject that could take many pagesto cover in athorough manner so the attempt here is to discuss the
topicin abrief and pragmatic way that will perhaps encourage you to investigate further if your
interest is piqued.

There are two significantly dif ferent color spaces that we will introduce briefly and then discuss how
these color spaces work in production.

1.2.2.4.1 Linear Color Space : Gamma 2.2

Gamma?2.2 isalso referred to as "linear color space” because, presuming a correctly calibrated
display device, doubling the intensity of a pixel value actually doubles the amount of energy coming
out of your monitor or bouncing off the screen at the front of atheater. This makes computer
graphics operations like blur and anti-aliasing correctly preserve energy.

For instance, if you take 1 pixel with avalue of 1.0 and spread it out over 2 pixels, both pixelswill
contain values of 0.5. If you sample the energy coming off of a calibrated display device in both the
before and after case, the energy should be the same. Thisis because you are working in alinear
color space.

The confusing thing about working in alinear color space isthat our eyes are not linear in the way
they perceive changesinintensity. For example, if you look at a 50-watt light bulb and compare it to
100-watt bulb, the 100-watt bulb will appear brighter. But when you compare a 100-watt bulb to a
200-watt bulb the relative difference in brightness will not be as great as the difference between the
50 and 100-watt bulbs. Thisis because our eyes are more sensitive to changesin dark valuesthan in
bright values.

So, when you are working in alinear color space, you find that in order to get a pixel value that
looks visually to be about 50% gray you need to use a val ue of approximately 22%. Thisresultsin
heavier use of the lower range of color values and necessitates rendering at least 16 bit imagesto
preserve color detail in the lower range.

It isinteresting to note that a point light illuminating a sphere from along distance when viewed at
gamma 2.2 looks just about right when compared to areal world experiment. Thisis because a
simple lighting model correctly models the falloff of alight in linear color space.

All of these are good reasons to light computer graphicsin alinear color space.

1.2.2.4.2 Logarithmic Color Space: Cineon
The color space defined by the Cineon format is another very useful color space. Rather than
attempting to produce a space that is mathematically linear, this spaceis designed around the
response of film negative to an exposure. Each time the amount of exposure is doubled, the Cineon
code valueisincreased by 90 points. Since Cineon files are stored with 10 bits of data per channel,

there is enough room to store the entire useful range of the negative in the Cineon format file.

Thisisavery useful format for color correction and other techniques that rely on adirect
correspondence to the response of film. For instance, if you wanted to preview what a shot would
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look like printed a stop brighter (effectively twice as bright), if your imageisin logarithmic color
space you simply add 90 Cineon code pointsto theimage.

1.2.2.4.3 Workflow

How does this work out in production? In our production environment we scan and color-time our
images in the Logarithmic color space using Cineon files. All of our computer-generated objects are
litin linear color space with agamma of 2.2 and stored as 16 bit linear images. |n the compositing
stage, the background plates are converted to linear color space, the conpositeis donein linear color
space, and then the images are converted back to Cineon files to be recorded back to film.

1.2.2.5. De-clipping

Now that we have introduced the issues of color space and color space conversion, we can do
something truly useful withit. A problem that is often encountered in computer graphicsrendering is
making colorful objects bright without letting them clip. Particularly when you are lighting in alinear
color space, in order to double the brightness intensity of an object, you have to multiply it's color by
afactor of 2. If your object already has ared value of 0.8 and the green and blue channel are each
0.4, thered channel is going to clip when the brightnessis doubled to avalue of 1.6. When you have
deeply saturated objects like abright yellow bird, these issues show up with great frequency.

Figure22 - Margalo's bright yellow color would tend to clip under
high intensity lights.
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The solution isto use alogarithmic space to handle the brightening of the objects that are likely to
clip. Our implementation was written into the Renderman shaders. Since shaders store colors as
floats they can exist outside of the 0.0- 1.0 range. Our de-clip shade op was fed floating point color
and returned a"de-clipped" version of that color by darkening the color by an automatically
determined multiplier, converting that color to logarithmic space, and then adding the appropriate
number of Cineon code points back to the color to preserve the original intensity. Thisresultsina
color that smoothly desaturates as it gets over-exposed and has avery filmic look.

Figure23 - " Declip" test which shows colors naturally desaturating with intensity

1.2.2.6. Multiple Passes

In order to have more control over both the rendering and the compositing process, it is common to
render out many passes for a single character and each of the propsin the scene.

Figure24 - From left to right, hands, jacket, head, eyes, pants, whiskers and tail

1.2.2.6.1 Separate shadow maps for each "type" of object

Not only do we render separate color passes for each type of object, but we also break out our
shadow mapsinto lots of passes. For instance, having one shadow map for Stuart's head and a
separate map for his clothes gives the artist more control over setting the blur and bias controls for
each. Because the fur isnot a hard surface, the blur and bias controls need to be pushed slightly
higher than for the clothes shadows to avoid objectionable and noisy self-shadows.
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1.2.2.6.2 Cloth beauty pass

The cloth isusually rendered on it's own. Usually the different layers of cloth can be rendered
together but sometimes they are also broken out into layers.

1.2.2.6.3 Character skin/fur beauty pass

The character's skin, fur and feathers are rendered together without any other elements. Sincethisis
generally the most expensive of the render passes, the goal isto only render these elements once or
twiceif possible. The skin and fur is rendered with the eyesand costume as a hold out so that
everything else can simply be layered behind in the composite stage.

1.2.2.6.4 Eye beauty pass
The eyes are rendered by themselves and placed behind the skin pass.

1.2.2.6.5 Cast and contact shadow passes

For each character we have several different types of shadow passes that are rendered out. Each
character has near and far contact shadows which are generated from a depth map rendered from
below the character and then projected onto the surface on which the characterswalk. Each
character also has various cast shadow elements that are rendered from the key lights and projected
from those lights onto the set geometry.

1.2.2.6.6 Reflection passes

If there are shiny objectsin the scene, areflection camerais set up to render the characters from the
perspective of the reflective object.

1.2.2.7. Tile-rendering when needed

Even with improved processing power and increases in memory configurations (our rendering
computers have 1 gigabyte of ram per processor) there are always some frames that just won't render.
In the cases where it isrelated to memory usage, we break the rendering problem down into tiles so
that Prman can work on just a section of the image at atime.

In some cases where the character or prop is motion blurring right by the camera, we may break a
single frame into more than 200 tiles to split up the job on many processors and reduce the memory
consumption. Once all of the individual tiles have been completed on the render farm, the
complementing scripts then re-assembl e the tiles back into a complete image and the frame isfinally
complete.

1.3 Post-Renderman

Invisual effectsfor live action, about half of the work is done in the lighting stage, and the other half
takes placein compositing. The various passes need to be combined and massaged into the plate. We
will detail here several of those 2d techniques which are widely used to integrate rendered images
onto live action photography.
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1.3.1 Compositing

1.3.1.1. Black and white levels/Color balancing

One of thefirst thingsthat is done at the compositing stage is to make sure that the computer rendered
images conform to the plate in the area of contrast and color temperature. Because the compositing
tools are both powerful and provide quicker feedback than rendering the complicated geometry, the
compositing stage is often the best place for these minor adjustments.

When composting a shot, one quick check isto see that the computer generated portion of the image
do not get any darker or brighter than any of the cuesin thelive action photography without good
reason. There can be exceptions but in general, the CG elements will pop if they don't match the
contrast range very closely.

In the case that a particular light beginsto feel out of balance with the others, it may require going to
back to the rendering stage to make an adjustment but in general, with a number of compositing tools
the color balancing can be accomplished efficiently.

1.3.1.2. Edge treatments

Almost nothing in real lifeis as crisp aswhat can be generated in the computer. Lines are generally
smooth and nicely anti-aliased and geometry tends to be alittle crisper than what we seein the real
world.

In order to match the CG to the plate we treat the edges of the geometry carefully. Before composting
we extract a matte of all of the edges of all of the CG elements.

Figure25 - Stuart's" Edge Treatment" area as generated in the composite
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Then, once the CG elements are composited over the live action background, then we use that "edge
matte" to soften the image inside that matte only to blend the artificial elements into the photography.

Figure 26 - Stuart as seen in thefinal composite with edge softening

1.3.1.3. Film grain

Every film stock hasit's own characteristic grain structure that introduces some noise into the scan.
This noise actually hasit's own response curve and shows up at different intensities depending on the
level of exposure. Generally afilmis shot on one or two different types of stocks so for each show
we dial in our grain matching parameters to add grain to our synthetic elements that should closely
match the grain in the plate. Each compositor also adjusts the grain parameters on a shot by shot and
sometimes an element-by-element basis as needed to match the individual plate.

1.3.1.4. Lens warp

Even with advances in lens technology, the wide lenses used for today's feature films are not perfectly
aspherical. They slightly warp the image near the corners of the frame and since the cameras used in

computer graphics are perfect perspective projections the images will not register perfectly in the
corners of the frame.

Thisis most noticeable in the case where you have long straight lines that are represented both in the
live action plate and in the CG elements. In this case, a 2d image warp which mimics the behavior of
the live action lens can help register the two more precisely to each other and solve the problem.

1.3.1.5. 2d contact shadows

One of the most useful tricks in the composting stepsis the ability to add little contact shadows
between elements. Often, because of the blur or the bias settings on a shadow from alight, or simply
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because of the positioning of the lightsin the scene, you don't get alittle dark shadow from one layer
of the cloth to another or from the cloth around the neck to the neck's skin and fur.

Fortunately, since the objects are already rendered as separate elements, generating a contact shadow
between two elementsis straightforward. The matte of the "top" element can be offset and used to
darken the color channels of the "below" element. If needed, the offset can be animated and the color
correction for the shadow can then be dialed in to taste.

1.3.1.6. Holdout "gap" filling

All of these separate elements give lots of control at the compositing stage but do come with one
drawback. Because the "expensive" renders of the skin, feather and fur are rendered with 3d holdout
objects or matte objects and the other renders are not, when you composite those images "over" each
other and they move significantly, the motion blur can cause gaps between the elements.

These gaps come from the fact that what we're doing is acheat. To be correct, each of the elements
should be rendered with all of the overlapping elements as a matte object and then the various passes
should be added together to form a solid matte and perfectly colored RGB channels.

Figure 27 - Before (left) and after (right) the" gaps' have been filled between the shirt and head

Thisis possible but not very cost-effective when you are talking about increasing the processing
resources by afactor or 4 to accomplish such aworkaround. In most casesit was adequate to find the
gap areas by pulling a matte of the gray areas of the matte and finding where that overlaps the
background objects. Then the fringing (whether it's showing up aslight or dark fringingin a
particular shot) can be color corrected to not be noticeable.

1.3.2 Film Recording

Oncethefinal compositeis completed, the shot is recorded back onto film with alaser recorder and
the negative is processed, awork print is generated and the work print can be screened generally the
next day to evaluate the work and hopefully final a shot!
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1.4 Conclusion

We have discussed the use of Renderman in the context of alive action feature film with examples from the
film Stuart Little 2. 1t is hoped that thisintroduction will serve as ajumping off point for of the topics
discussed.

It should also be noted that ateam of very talented artists are behind the examples and images presented
and much credit is due them for the ook and content of these notes.
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James P. Sullivan (Sulley)

* The top Scarer at Monsters, Inc.

e Covered in long fur

* Appears in about 800 shots

* Has over 2.3 million hairs

* Fur motion is dynamically simulated
* May have "things" in fur (e.g. snow)
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Modeling Fur

* Key hairs
One per vertex of subdivision mesh
Specify overall length, shape, and motion
Not rendered
10 CVs per hair (uniform B-spline)

* Grooming done with "hairbrush" tool
Sulley has about 25K key hairs
Use virtual hair brushes to comb hair
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Modeling Fur

* Inbetween hairs
Comprise the final fur coat
Overall shape derived from key hairs
Sulley has about 2.3 million
Grown new each frame

* Fur look specified procedurally using builders

MATION STUDI



Modeling Fur

* Builders
Analogous to shaders
Grow geometry on surfaces
For fur, they specify color, density, tapering,

opacity, clumping, scraggle, special animation,
etc. of each hair

* Motion (dynamics) is decoupled from look
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Animating Fur

* Physical simulation
Don't interfere with animation
Minimize user (TD) intervention

* Process
Sulley animated without fur
"Shots" department adds collision objects,

runs simulation, fixes defects
Simulator parameters can be adjusted per shot
Handed off to lighting and effects
J5oA P ¢ X A R
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Animating Fur

* Simulation challenges
Tangles, stretching, and explosions
Cartoon physics
Animation problems: bad knots, off screen horrors,
intentional intersections
No pre-roll
Obstacle courses
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Other Hairy Characters

* Boo
Hair sculpted in Alias Studio
Simulated ponytail

* Yeti
Fully procedural hair

* George

* Hairscare
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The Himalayas

* Wind and falling snow
* Impressions in snow
* Particle effects

e Snow in fur
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Snow in Fur

e About 1 million snowflakes (peak)
* Clusters of snowflakes created as hairs are grown
and animated
* Distribution controlled by
Wind direction
Time (accumulation)
3D paint
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Atmospheric Effects

* 80% of rendered shots
« Complex enviroment

¢ Interaction with hair

» Self shadowing

e Steam jels

* Snow storm
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Existing "fog" models

e Cone lights
Geometry with surface shader
Not volumetric
* Cheap fog
Atmosphere shader mixes in fog color
No illumination
Analytic and fast
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Existing "fog" models

* Foglights
Fog attached to a single light
Combine by addition
Limited volumetric effects
Expensive

Used for special effects (i.e. death ray)
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The atmosphere shader

* Step through space from the camera to the
shading sample (mp)

« Sample the fog density and illumination
* Accumulate the total fog contribution

el B AR



A new "fog" model

» Support for complex volume density functions
 Multiple fog objects can be illuminated

by multiple lights
* The contribution of all fog objects and

all lights is considered in a single pass
* The fog is not recomputed for every sample
 Caching allows fewer computations
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Fog Widgets

* Defines a density field over space.

 Several properties determine the appearance:
color, opacity, attenuation
4D fractal noise

 Each widget has a stepSize parameter
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Fog Widgets

* Atmospheric Fog

Camera-relative atmospheric fog
* Blobby Fog

Smooth ramp falloff

Can import particles from Maya
* Puffy Sticker

Height field fog

Smooth ramp falloff

[ & | P

TIOM STl



llluminating Fog

* Problem
In RenderMan, lights bind to surfaces,
not fog widgets
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llluminating Fog

* Solution:
The light category string specifies the fog
widgets to be illuminated
Lights that illuminate any fog widgets
must be illuminated onto all surfaces
at the same level
Deep shadow map support
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Fog-Only Lights

* Lights that illuminate fog are called fog-only lights
* By default, a fog-only light illuminates

all fog widgets.

* llluminaton of specific fog widgets can be
set via the lighting tool

» Each fog-only light has a fogStepSize control
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Fog Shadows

* Self-shadowing fog can add a lot of details

* This is done by rendering a fog deep shadow
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