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Course IntroductionCourse Introduction

 Level of detailLevel of detail ( (LODLOD) methods provide a ) methods provide a 
powerful way to manage scene complexity powerful way to manage scene complexity 

 A standard tool for  the graphics developer A standard tool for  the graphics developer 
to control rendering speedto control rendering speed

 This course will adress advanced issues in This course will adress advanced issues in 
using and developing LOD algorithms, with using and developing LOD algorithms, with 
a focus on polygonal mesh simplificationa focus on polygonal mesh simplification



Course PrerequisitesCourse Prerequisites

 We assumeWe assume
– Knowledge of the basic LOD conceptKnowledge of the basic LOD concept
– Experience with interactive graphicsExperience with interactive graphics

 Target audienceTarget audience
– Developers wishing to become Developers wishing to become 

sophisticated LOD userssophisticated LOD users
– Researchers wishing to broaden their Researchers wishing to broaden their 

knowledge of the fieldknowledge of the field



Course TopicsCourse Topics

 Generation Generation 
LOD frameworks & creationLOD frameworks & creation  

 TheoryTheory
Measuring & controlling fidelityMeasuring & controlling fidelity

 ApplicationsApplications
Important real-world applications Important real-world applications 



Course ScheduleCourse Schedule

8:308:30 Welcome, Introductions Welcome, Introductions           
LuebkeLuebke

8:508:50 FrameworksFrameworks      Luebke     Luebke

        Discrete, continuous, & view-dependent LODDiscrete, continuous, & view-dependent LOD

10:1510:15 BreakBreak

10:3010:30 AlgorithmsAlgorithms           Varshney, CohenVarshney, Cohen

      Algorithms and approaches for simplificationAlgorithms and approaches for simplification
    Appearance-preserving simplification    Appearance-preserving simplification

1212:15:15 LunchLunch



Course ScheduleCourse Schedule

1:301:30 FidelityFidelity  Cohen, Reddy, Watson Cohen, Reddy, Watson

        Measuring geometric and attribute error Measuring geometric and attribute error 
     Understanding and applying visual perception     Understanding and applying visual perception
     Balancing fidelity and performance     Balancing fidelity and performance

3:153:15 BreakBreak

3:303:30 ApplicationsApplications          Huebner, Reddy, Watson         Huebner, Reddy, Watson

        Gaming optimizationsGaming optimizations
     Terrain visualization     Terrain visualization
     Out-of-core simplification     Out-of-core simplification

55 ConclusionConclusion LuebkeLuebke



SpeakersSpeakers
In Order of AppearanceIn Order of Appearance

 David Luebke, University of VirginiaDavid Luebke, University of Virginia
 Jon Cohen, Johns Hopkins UniversityJon Cohen, Johns Hopkins University
 Amitabh Varshney, University of MarylandAmitabh Varshney, University of Maryland
 Martin Reddy, SRI InternationalMartin Reddy, SRI International
 Ben Watson, Northwestern UniversityBen Watson, Northwestern University
 Rob Huebner, Nihilistic SoftwareRob Huebner, Nihilistic Software



 I will discuss basic LOD frameworks:I will discuss basic LOD frameworks:
– Discrete LOD: the traditional approachDiscrete LOD: the traditional approach
– Continuous LOD: encoding a continuous Continuous LOD: encoding a continuous 

spectrum of detail from coarse to finespectrum of detail from coarse to fine
– View-dependent LOD: adjusting detail across View-dependent LOD: adjusting detail across 

the model in response to viewpointthe model in response to viewpoint
 I will focus on view-dependent LODI will focus on view-dependent LOD

Frameworks for LODFrameworks for LOD



Frameworks for LODFrameworks for LOD

 Questions I will address:Questions I will address:
– What is view-dependent simplification?What is view-dependent simplification?
– Why is it better than traditional simplification? Why is it better than traditional simplification? 

 When is it worse? When is it worse?
– How is it implemented efficiently?How is it implemented efficiently?

 Questions I will leave for the others:Questions I will leave for the others:
– How can we control visual fidelity?How can we control visual fidelity?
– How much simplification is appropriate?How much simplification is appropriate?



Motivation:Motivation:
Preaching To The ChoirPreaching To The Choir

 Interactive rendering of large-scale Interactive rendering of large-scale 
geometric datasets is importantgeometric datasets is important
– Scientific and medical visualizationScientific and medical visualization
– Architectural and industrial CADArchitectural and industrial CAD
– Training (military and otherwise)Training (military and otherwise)
– EntertainmentEntertainment



Motivation:Motivation:
Big ModelsBig Models

 The problem:The problem:
– Polygonal models are often too complex to Polygonal models are often too complex to 

render at interactive ratesrender at interactive rates
 Even worse:Even worse:

– Incredibly, models are getting bigger as fast Incredibly, models are getting bigger as fast 
as hardware is getting faster…as hardware is getting faster…



Courtesy General Dynamics, Electric Boat Div.

Big Models:Big Models:
Submarine Torpedo RoomSubmarine Torpedo Room

 700,000 polygons700,000 polygons



(Anonymous)

Big Models:Big Models:
Coal-fired Power PlantCoal-fired Power Plant

 13 million polygons13 million polygons



 16.7 million polygons (sort of)16.7 million polygons (sort of)

Big Models:Big Models:
Plant Ecosystem SimulationPlant Ecosystem Simulation

Deussen et al: Deussen et al: Realistic Modeling of Plant EcosystemsRealistic Modeling of Plant Ecosystems  



Big Models:Big Models:
Double Eagle Container ShipDouble Eagle Container Ship

 82 million polygons82 million polygons

Courtesy Newport News ShipbuildingCourtesy Newport News Shipbuilding



Big Models:Big Models:
The Digital Michelangelo ProjectThe Digital Michelangelo Project

 David:David:
56,230,343 polygons56,230,343 polygons

 St. Matthew:St. Matthew:
 372,422,615 polygons 372,422,615 polygons

Courtesy Digital Michelangelo Project, Stanford University



Level of Detail: Level of Detail: 
The Basic IdeaThe Basic Idea

 One solution:One solution:
– Simplify the polygonal geometry of small or Simplify the polygonal geometry of small or 

distant objectsdistant objects
– Known as Known as Level of DetailLevel of Detail  or or LODLOD

 A.k.a. polygonal simplification, geometric A.k.a. polygonal simplification, geometric 
simplification, mesh reduction, multiresolution simplification, mesh reduction, multiresolution 
modeling, …modeling, …



Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:Level of Detail:
Traditional ApproachTraditional Approach

 CreateCreate levels of detail (LODs) of objects:



 Distant objects use coarser LODs:Distant objects use coarser LODs:

Level of Detail:Level of Detail:
Traditional ApproachTraditional Approach



Traditional Approach: Traditional Approach: 
Discrete Level of DetailDiscrete Level of Detail

 Traditional LOD in a nutshell:Traditional LOD in a nutshell:
– Create LODs for each object separately Create LODs for each object separately 

in a preprocessin a preprocess
– At run-time, pick each object’s LOD At run-time, pick each object’s LOD 

according to the object’s distance (or according to the object’s distance (or 
similar criterion)similar criterion)

 Since LODs are created offline at fixed Since LODs are created offline at fixed 
resolutions, I refer to this as resolutions, I refer to this as Discrete LODDiscrete LOD



Discrete Discrete LOD:LOD:
AdvantagesAdvantages

 Simplest programming model; decouples Simplest programming model; decouples 
simplification and renderingsimplification and rendering
– LOD creation need not address real-time LOD creation need not address real-time 

rendering constraintsrendering constraints
– Run-time rendering need only pick LODsRun-time rendering need only pick LODs



Discrete Discrete LOD:LOD:
AdvantagesAdvantages

 Fits modern graphics hardware wellFits modern graphics hardware well
– Easy to compile each LOD into triangle Easy to compile each LOD into triangle 

strips, display lists, vertex arrays, …strips, display lists, vertex arrays, …
– These render These render muchmuch faster than unorganized  faster than unorganized 

polygons on today’s hardware (3-5 x)polygons on today’s hardware (3-5 x)



Discrete LOD:Discrete LOD:
DisadvantagesDisadvantages

 So why use anything but discrete LOD?So why use anything but discrete LOD?
 Answer: sometimes discrete LOD not Answer: sometimes discrete LOD not 

suited for suited for drastic simplificationdrastic simplification
 Some problem cases:Some problem cases:

– Terrain flyoversTerrain flyovers
– Volumetric isosurfacesVolumetric isosurfaces
– Super-detailed range scansSuper-detailed range scans
– Massive CAD modelsMassive CAD models



Drastic Simplification: Drastic Simplification: 
The Problem With Large ObjectsThe Problem With Large Objects

Courtesy IBM and ACOG



Drastic Simplification: Drastic Simplification: 
The Problem With Small ObjectsThe Problem With Small Objects

Courtesy Electric Boat



Drastic SimplificationDrastic Simplification

 For drastic simplification:For drastic simplification:
– Large objects must be subdividedLarge objects must be subdivided
– Small objects must be combinedSmall objects must be combined

 Difficult or impossible with discrete Difficult or impossible with discrete 
LODLOD

 So what can we do?So what can we do?



Continuous Level of DetailContinuous Level of Detail

 A departure from the traditional static A departure from the traditional static 
approach:approach:
– Discrete LOD: create individual LODs in a Discrete LOD: create individual LODs in a 

preprocesspreprocess
– Continuous LOD: create data structure from Continuous LOD: create data structure from 

which a desired level of detail can be which a desired level of detail can be 
extracted extracted at run timeat run time..



Continuous LOD:Continuous LOD:
AdvantagesAdvantages

 Better granularity Better granularity  better fidelity better fidelity
– LOD is specified exactly, not chosen from a LOD is specified exactly, not chosen from a 

few pre-created optionsfew pre-created options
– Thus objects use no more polygons than Thus objects use no more polygons than 

necessary, which frees up polygons for other necessary, which frees up polygons for other 
objects objects 

– Net result: better resource utilization, leading Net result: better resource utilization, leading 
to better overall fidelity/polygonto better overall fidelity/polygon



Continuous LOD:Continuous LOD:
AdvantagesAdvantages

 Better granularity Better granularity  smoother transitions smoother transitions
– Switching between traditional LODs can Switching between traditional LODs can 

introduce visual “popping” effectintroduce visual “popping” effect
– Continuous LOD can adjust detail gradually Continuous LOD can adjust detail gradually 

and incrementally, reducing visual popsand incrementally, reducing visual pops
 Can even Can even geomorphgeomorph the fine-grained  the fine-grained 

simplification operations over several frames to simplification operations over several frames to 
eliminate pops [Hoppe 96, 98]eliminate pops [Hoppe 96, 98]



Continuous LOD:Continuous LOD:
AdvantagesAdvantages

 Supports progressive transmissionSupports progressive transmission
– Progressive Meshes [Hoppe 97]Progressive Meshes [Hoppe 97]
– Progressive Forest Split Compression [Taubin 98]Progressive Forest Split Compression [Taubin 98]

 Leads to Leads to view-dependent LODview-dependent LOD
– Use current view parameters to select best Use current view parameters to select best 

representation representation for the current viewfor the current view
– Single objects may thus span several levels Single objects may thus span several levels 

of detailof detail



View-Dependent LOD: View-Dependent LOD: 
ExamplesExamples

 Show nearby portions of object at higher Show nearby portions of object at higher 
resolution than distant portionsresolution than distant portions

View from eyepoint Birds-eye view



View-Dependent LOD: View-Dependent LOD: 
ExamplesExamples

 Show silhouette regions of object at Show silhouette regions of object at 
higher resolution than interior regionshigher resolution than interior regions



View-Dependent LOD:View-Dependent LOD:
ExamplesExamples

 Show more detail where the user is Show more detail where the user is 
looking than in their peripheral vision:looking than in their peripheral vision:

34,321 triangles



View-Dependent LOD:View-Dependent LOD:
ExamplesExamples

 Show more detail where the user is Show more detail where the user is 
looking than in their peripheral vision:looking than in their peripheral vision:

11,726 triangles



View-Dependent LOD:View-Dependent LOD:
AdvantagesAdvantages

 Even better granularityEven better granularity
– Allocates polygons where they are most Allocates polygons where they are most 

needed, within as well as among objectsneeded, within as well as among objects
– Enables even better overall fidelityEnables even better overall fidelity

 Enables drastic simplification of Enables drastic simplification of 
very large objectsvery large objects
– Example: stadium modelExample: stadium model
– Example: terrain flyoverExample: terrain flyover



An Aside: An Aside: 
Hierarchical LODHierarchical LOD

 View-dependent LOD solves the View-dependent LOD solves the 
Problem With Large ObjectsProblem With Large Objects

 Hierarchical LODHierarchical LOD can solve the  can solve the 
Problem With Small ObjectsProblem With Small Objects
– Merge objects into assembliesMerge objects into assemblies

– At sufficient distances, simplify assemblies, not At sufficient distances, simplify assemblies, not 
individual objects individual objects 

 Note that hierarchical LOD implies a topology-Note that hierarchical LOD implies a topology-
modifying algorithmmodifying algorithm



An Aside:An Aside:
Hierarchical LODHierarchical LOD

 Hierarchical LOD dovetails nicely with Hierarchical LOD dovetails nicely with 
view-dependent LODview-dependent LOD
– Treat theTreat the entire scene entire scene as a single object to be  as a single object to be 

simplified in view-dependent fashionsimplified in view-dependent fashion

 Hierarchical LOD can also sit atop Hierarchical LOD can also sit atop 
traditional discrete LOD schemestraditional discrete LOD schemes
– Imposters [Maciel 95]Imposters [Maciel 95]
– HLODs [Erikson 01]HLODs [Erikson 01]



View-Dependent LOD: View-Dependent LOD: 
AlgorithmsAlgorithms

 Many good published algorithms:Many good published algorithms:
– Progressive MeshesProgressive Meshes by Hoppe  by Hoppe 

[SIGGRAPH 96, SIGGRAPH 97, …][SIGGRAPH 96, SIGGRAPH 97, …]

– Merge TreesMerge Trees by Xia & Varshney  by Xia & Varshney [Visualization 96][Visualization 96]

– Hierarchical Dynamic SimplificationHierarchical Dynamic Simplification by  by 
Luebke & Erikson Luebke & Erikson [SIGGRAPH 97][SIGGRAPH 97]

– MultitriangulationMultitriangulation by DeFloriani et al by DeFloriani et al
– Others…Others…



 I’ll mostly describe my own workI’ll mostly describe my own work
– Algorithm: Algorithm: VDS  VDS  Implementation: Implementation: VDSlibVDSlib
– Similar in concept to most other algorithmsSimilar in concept to most other algorithms

 Amitabh will give his take on some Amitabh will give his take on some 
related issues laterrelated issues later

Overview: Overview: 
TheThe VDS Algorithm VDS Algorithm



Overview: Overview: 
The VDS AlgorithmThe VDS Algorithm

 Overview of the VDS algorithm:Overview of the VDS algorithm:
– A preprocess builds the A preprocess builds the vertex treevertex tree, , 

a hierarchical clustering of verticesa hierarchical clustering of vertices
– At run time, clusters appear to grow and At run time, clusters appear to grow and 

shrink as the viewpoint movesshrink as the viewpoint moves
– Clusters that become too small are Clusters that become too small are 

collapsed, filtering out some trianglescollapsed, filtering out some triangles



Data StructuresData Structures

 The The vertex treevertex tree
– Represents the entire modelRepresents the entire model

– Hierarchy of all vertices in modelHierarchy of all vertices in model

– Queried each frame for updated sceneQueried each frame for updated scene

 The The active triangle listactive triangle list
– Represents the current simplificationRepresents the current simplification

– List of triangles to be displayedList of triangles to be displayed

– Triangles added and deleted by operations on vertex Triangles added and deleted by operations on vertex 
treetree



The Vertex TreeThe Vertex Tree

 Each vertex tree node Each vertex tree node supportssupports a subset  a subset 
of the model verticesof the model vertices
– Leaf nodes support a single vertex from the Leaf nodes support a single vertex from the 

original full-resoluton modeloriginal full-resoluton model
– The root node supports all vertices The root node supports all vertices 

 For each node we also assign a For each node we also assign a 
representative vertex or representative vertex or proxyproxy



The Vertex Tree:The Vertex Tree:
Folding And UnfoldingFolding And Unfolding
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A

3

Fold Node A

Unfold Node A

 FoldingFolding a node collapses its vertices to  a node collapses its vertices to 
the proxythe proxy

 UnfoldingUnfolding the node splits the proxy back  the node splits the proxy back 
into verticesinto vertices



Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example

9

8

10

54

6

1 2 7 4 5 6 8 9

B C10

D

3

E

R

A

3
A

Triangles in active list Vertex tree



Vertex Tree ExampleVertex Tree Example

9

8

10

54

6

1 2 7 4 5 6 8 9

B C10

D

3

E

R

A

3

B

A

Triangles in active list Vertex tree



Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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Vertex Tree ExampleVertex Tree Example
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The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

3
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A

3

Fold Node A

Unfold Node A

Node->Subtris: triangles that disappear upon folding
Node->Livetris: triangles that just change shape

 Two categories of triangles affected:Two categories of triangles affected:



The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

 The The key observationkey observation::
– Each node’s subtris can be computed offline Each node’s subtris can be computed offline 

to be accessed quickly at run timeto be accessed quickly at run time
– Each node’s livetris can be maintained at run Each node’s livetris can be maintained at run 

time, or lazily evaluated upon renderingtime, or lazily evaluated upon rendering



View-Dependent View-Dependent 
SimplificationSimplification

 Any run-time criterion for folding and unfolding Any run-time criterion for folding and unfolding 
nodes may be usednodes may be used

 Examples of view-dependent simplification Examples of view-dependent simplification 
criteria:criteria:
– Screenspace error thresholdScreenspace error threshold
– Silhouette preservationSilhouette preservation
– Triangle budget simplificationTriangle budget simplification
– Gaze-directed perceptual simplification (discussed Gaze-directed perceptual simplification (discussed 

by Martin later)by Martin later)



Screenspace Screenspace 
Error ThresholdError Threshold

 Nodes chosen by projected areaNodes chosen by projected area
– User sets screenspace size thresholdUser sets screenspace size threshold
– Nodes which grow larger than threshold are Nodes which grow larger than threshold are 

unfoldedunfolded



Silhouette PreservationSilhouette Preservation

 Retain more detail near silhouettesRetain more detail near silhouettes
– A A silhouette nodesilhouette node supports triangles on the  supports triangles on the 

visual contourvisual contour
– Use tighter screenspace thresholds when Use tighter screenspace thresholds when 

examining silhouette examining silhouette 
nodesnodes



Triangle Budget Triangle Budget 
SimplificationSimplification

 Minimize error within specified number of Minimize error within specified number of 
trianglestriangles
– Sort nodes by screenspace errorSort nodes by screenspace error
– Unfold node with greatest error, putting Unfold node with greatest error, putting 

children into sorted listchildren into sorted list

Repeat until budget is reached Repeat until budget is reached 



View-Dependent Criteria:View-Dependent Criteria:
Other PossibilitiesOther Possibilities

 Specular highlightsSpecular highlights: Xia describes a fast : Xia describes a fast 
test to unfold likely nodestest to unfold likely nodes

 Surface deviationSurface deviation: Hoppe uses an : Hoppe uses an 
elegant surface deviation metric that elegant surface deviation metric that 
combines silhouette preservation and combines silhouette preservation and 
screenspace error thresholdscreenspace error threshold



View-Dependent Criteria:View-Dependent Criteria:
Other PossibilitiesOther Possibilities

 Sophisticated surface deviation metrics:Sophisticated surface deviation metrics:  
See Jon’s talk!See Jon’s talk!

 Sophisticated perceptual criteriaSophisticated perceptual criteria: : 
See Martin’s talk!See Martin’s talk!

 Sophisticated temporal criteriaSophisticated temporal criteria: : 
See Ben’s talk!See Ben’s talk!



Implementing VDS: Implementing VDS: 
OptimizationsOptimizations

 Asynchronous simplificationAsynchronous simplification
– Parallelize the algorithmParallelize the algorithm

 Exploiting temporal coherenceExploiting temporal coherence
– Scene changes slowly over timeScene changes slowly over time

 Maintain memory coherent geometry Maintain memory coherent geometry 
– Optimize for renderingOptimize for rendering
– Support for out-of-core renderingSupport for out-of-core rendering



 Algorithm partitions into two tasks:Algorithm partitions into two tasks:

 Run them in parallelRun them in parallel

Simplify

Task

Render

Task

Active Triangle List

…

Asynchronous SimplificationAsynchronous Simplification

Vertex Tree



Asynchronous SimplificationAsynchronous Simplification

 If If SS = time to simplify,  = time to simplify, RR = time to render: = time to render:
– Single process Single process = (= (SS +  + RR))
– Pipelined Pipelined = = maxmax((SS, , RR))
– Asynchronous Asynchronous = = R R 

 The goal: efficient utilization of GPU/CPUThe goal: efficient utilization of GPU/CPU
– e.g., NV Vertex Array Range (VAR) renderinge.g., NV Vertex Array Range (VAR) rendering



Temporal CoherenceTemporal Coherence

 Exploit the fact that frame-to-frame Exploit the fact that frame-to-frame 
changes are smallchanges are small

 Three examples:Three examples:
– Active triangle listActive triangle list
– Vertex treeVertex tree
– Budget-based simplificationBudget-based simplification



Exploiting Exploiting 
Temporal CoherenceTemporal Coherence

 Active triangle listActive triangle list
– Could calculate active triangles every frameCould calculate active triangles every frame
– But…few triangles are added or deleted But…few triangles are added or deleted 

each frameeach frame
– Idea: make only incremental changes to an Idea: make only incremental changes to an 

active triangle listactive triangle list
 Simple approach: doubly-linked list of trianglesSimple approach: doubly-linked list of triangles
 Better: maintain coherent arrays with swappingBetter: maintain coherent arrays with swapping



Unfolded
Nodes

Boundary Nodes

Exploiting Exploiting 
Temporal CoherenceTemporal Coherence

 Vertex TreeVertex Tree
– Few nodes change per frameFew nodes change per frame
– Don’t traverse whole treeDon’t traverse whole tree
– Do local updates only Do local updates only 

at at boundary nodesboundary nodes



Temporal Coherence:Temporal Coherence:
Triangle Budget SimplificationTriangle Budget Simplification

 Exploiting temporal coherence in budget-Exploiting temporal coherence in budget-
based simplificationbased simplification
– Introduced by ROAM [Duchaineau 97]Introduced by ROAM [Duchaineau 97]
– Start with tree from last frame, recalculate Start with tree from last frame, recalculate 

error for relevant nodeserror for relevant nodes
– Sort into two priority queues Sort into two priority queues 

 One for potential unfolds, sorted on max error One for potential unfolds, sorted on max error 
 One for potential folds, sorted on min errorOne for potential folds, sorted on min error



Temporal Coherence:Temporal Coherence:
Triangle Budget SimplificationTriangle Budget Simplification

 Then simplify:Then simplify:
– While budget is met, unfold max nodeWhile budget is met, unfold max node

 This is the node whose folding has created the most This is the node whose folding has created the most 
error in the modelerror in the model

– While budget is exceeded, fold min nodeWhile budget is exceeded, fold min node
 This is the node that introduces the least error when This is the node that introduces the least error when 

foldedfolded

– Insert parents and children into queuesInsert parents and children into queues

Repeat until errorRepeat until errormaxmax < error < errorminmin



Optimizing For RenderingOptimizing For Rendering

 Idea: maintain geometry in coherent arraysIdea: maintain geometry in coherent arrays

Active triangles Inactive triangles

Unfolded nodes Inactive nodesBoundary nodes



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Swap D with F



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Move Unfolded/Boundary Marker



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)



Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)



Optimizing For RenderingOptimizing For Rendering
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Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)



Optimizing For Rendering:Optimizing For Rendering:
Vertex ArraysVertex Arrays

 Biggest win: vertex arraysBiggest win: vertex arrays

– Actually, keep separate parallel arrays for Actually, keep separate parallel arrays for 
rendering data (coords, colors, etc)rendering data (coords, colors, etc)

Unfolded nodes Inactive nodesBoundary nodes

Vertex array!



Optimizing For Rendering:Optimizing For Rendering:
Vertex Arrays on GeForce2Vertex Arrays on GeForce2
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Out-of-core RenderingOut-of-core Rendering

 Coherent arrays lend themselves to out-Coherent arrays lend themselves to out-
of-core simplification and rendering:of-core simplification and rendering:

…

These need to be in memory… These do not



Out-of-core RenderingOut-of-core Rendering

 Coherent arrays lend themselves to out-Coherent arrays lend themselves to out-
of-core simplification and rendering:of-core simplification and rendering:
– Only need active portions of triangle and Only need active portions of triangle and 

node arraysnode arrays
– Implement arrays as memory-mapped filesImplement arrays as memory-mapped files

 Let virtual memory system manage pagingLet virtual memory system manage paging
 A prefetch thread walks boundary nodes, bringing A prefetch thread walks boundary nodes, bringing 

their children into memory to avoid glitchestheir children into memory to avoid glitches



Summary: Summary: 
VDS ProsVDS Pros

 Supports drastic simplification!Supports drastic simplification!
– View-dependent;  handles the View-dependent;  handles the 

Problem With Large ObjectsProblem With Large Objects
– Hierarchical; handles the Hierarchical; handles the 

Problem With Small ObjectsProblem With Small Objects
– Robust; does not require (or preserve) Robust; does not require (or preserve) 

mesh topologymesh topology



Summary: Summary: 
VDS ProsVDS Pros

 Rendering can be implemented efficiently Rendering can be implemented efficiently 
using vertex arraysusing vertex arrays

 Supports rendering of models much Supports rendering of models much 
larger than main memorylarger than main memory



Summary: Summary: 
VDS ConsVDS Cons

 Increases CPU, memory overheadIncreases CPU, memory overhead
 Fastest rendering mode currently Fastest rendering mode currently 

restricted to 65K vertices (April 2001) restricted to 65K vertices (April 2001) 



Summary: Summary: 
VDS ConsVDS Cons

 Be aware of Be aware of mesh foldovers:mesh foldovers:
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Summary: Summary: 
VDS ConsVDS Cons

 Be aware of Be aware of mesh foldovers:mesh foldovers:
– These can be very distracting artifactsThese can be very distracting artifacts

– Amitabh will talk about how to prevent themAmitabh will talk about how to prevent them



View-Dependent Versus View-Dependent Versus 
Discrete LODDiscrete LOD

 View-dependent LOD is superior to View-dependent LOD is superior to 
traditional discrete LOD when:traditional discrete LOD when:
– Models contain very large individual objects Models contain very large individual objects 

(e.g., terrains)(e.g., terrains)
– Simplification must be completely automatic Simplification must be completely automatic 

(e.g., complex CAD models)(e.g., complex CAD models)
– Experimenting with view-dependent Experimenting with view-dependent 

simplification criteriasimplification criteria



View-Dependent Versus View-Dependent Versus 
Discrete LODDiscrete LOD

 Discrete LOD is often the better choice:Discrete LOD is often the better choice:
– Simplest programming modelSimplest programming model
– Reduced run-time CPU loadReduced run-time CPU load
– Easier to leverage hardware:Easier to leverage hardware:

 Compile LODs into vertex arrays/display listsCompile LODs into vertex arrays/display lists
 Stripe LODs into triangle stripsStripe LODs into triangle strips
 Optimize vertex cache utilization and suchOptimize vertex cache utilization and such



View-Dependent Versus View-Dependent Versus 
Discrete LODDiscrete LOD

 Applications that may want to use:Applications that may want to use:
– Discrete LODDiscrete LOD

 Video games (but much more on this later…)Video games (but much more on this later…)
 SimulatorsSimulators
 Many walkthrough-style demosMany walkthrough-style demos

– Dynamic and view-dependent LODDynamic and view-dependent LOD
 CAD design review toolsCAD design review tools
 Medical & scientific visualization toolkitsMedical & scientific visualization toolkits
 Terrain flyovers (much more later…)Terrain flyovers (much more later…)



Continuous LOD: Continuous LOD: 
The Sweet Spot?The Sweet Spot?

 Continuous LOD may be the right Continuous LOD may be the right 
compromise on modern PC hardwarecompromise on modern PC hardware
– Benefits of fine granularity without the cost of Benefits of fine granularity without the cost of 

view-dependent evaluationview-dependent evaluation
– Can be implemented efficiently with regard toCan be implemented efficiently with regard to

 MemoryMemory
 CPU CPU 
 GPUGPU



 Implementation: Implementation: VDSlibVDSlib
– A public-domain view-dependent A public-domain view-dependent 

simplification and rendering packagesimplification and rendering package
– Flexible C++ interface lets users:Flexible C++ interface lets users:

 Construct vertex trees for objects or scenesConstruct vertex trees for objects or scenes
 Specify with callbacks how to simplify, cull, Specify with callbacks how to simplify, cull, 

and render themand render them

– Available at Available at http://vdslib.virginia.eduhttp://vdslib.virginia.edu

VDSlibVDSlib



VDSlib:VDSlib:
Ongoing WorkOngoing Work

 Ongoing research projects using VDSlib:Ongoing research projects using VDSlib:
– Out-of-core LOD for interactive rendering of Out-of-core LOD for interactive rendering of 

trulytruly massive models massive models
– Perceptually-guided view-dependent LOD, Perceptually-guided view-dependent LOD, 

including gaze-directed techniquesincluding gaze-directed techniques
– Non-photorealistic rendering using VDSlib as Non-photorealistic rendering using VDSlib as 

a frameworka framework



The EndThe End



Appendix:Appendix:
Related WorkRelated Work

 Hoppe: Progressive Meshes (SIGGRAPH 96, Hoppe: Progressive Meshes (SIGGRAPH 96, 
SIGGRAPH 97, other papers)SIGGRAPH 97, other papers)
– Edge collapse vs. vertex mergingEdge collapse vs. vertex merging
– Pros:Pros:

 Dynamic, view-dependent simplificationDynamic, view-dependent simplification
 Elegant scheme for mesh attributesElegant scheme for mesh attributes

– Cons:Cons:
 Requires clean mesh topologyRequires clean mesh topology
 Slow preprocess (though not implicit to PM)Slow preprocess (though not implicit to PM)
 Still per-object LODStill per-object LOD



Appendix: Appendix: 
Web ResourcesWeb Resources

 VDSlib: VDSlib: http://vdslib.virginia.eduhttp://vdslib.virginia.edu
– A public-domain view-dependent simplification libraryA public-domain view-dependent simplification library

 My work on view-dependent simplification: My work on view-dependent simplification: 
http://www.cs.virginia.edu/~luebke/simplification.htmlhttp://www.cs.virginia.edu/~luebke/simplification.html
– A SIGGRAPH paperA SIGGRAPH paper
– My dissertation on VDSMy dissertation on VDS
– The attached tech report on VDS for CAD applicationsThe attached tech report on VDS for CAD applications
– A survey of LOD algorithms written for graphics developersA survey of LOD algorithms written for graphics developers



Appendix: Appendix: 
Web ResourcesWeb Resources

 Hughes Hoppe’s work on progressive meshes:Hughes Hoppe’s work on progressive meshes:
http://www.research.microsoft.com/~hhoppehttp://www.research.microsoft.com/~hhoppe

– 2 SIGGRAPH papers2 SIGGRAPH papers

– A paper on efficient implementation of progressive meshesA paper on efficient implementation of progressive meshes

– A paper on terrain rendering using progressive meshesA paper on terrain rendering using progressive meshes

– Much more…Much more…
 Michael Garland’s work on quadric error metrics:Michael Garland’s work on quadric error metrics:

http://www.uiuc.edu/~garlandhttp://www.uiuc.edu/~garland

– A SIGGRAPH paperA SIGGRAPH paper

– Garland’s dissertation on QEMGarland’s dissertation on QEM

– Follow-up papers, e.g. extending QEM to surface attributesFollow-up papers, e.g. extending QEM to surface attributes

– Public domain code for generating LODs with QEMPublic domain code for generating LODs with QEM



Appendix: Appendix: 
Web ResourcesWeb Resources

 The Multi-Tesselation (MT) home page:The Multi-Tesselation (MT) home page:
http://www.disi.unige.it/person/MagilloP/MT/http://www.disi.unige.it/person/MagilloP/MT/
– A different approach to dynamic and view-dependent A different approach to dynamic and view-dependent 

simplification by De Floriani, Magillo, and Puppo. simplification by De Floriani, Magillo, and Puppo. 
– Includes code and sample softwareIncludes code and sample software



 David Luebke.  David Luebke.  Robust View-Dependent Simplification Robust View-Dependent Simplification 
For Very Large-Scale CAD VisualizationFor Very Large-Scale CAD Visualization,  University of ,  University of 
Virginia Tech Report CS-99-33.Virginia Tech Report CS-99-33.
– An updated version of the original SIGGRAPH ‘97 paper An updated version of the original SIGGRAPH ‘97 paper 

describing the view-dependent simplification framework describing the view-dependent simplification framework 
presented here.  presented here.  

Appendix: Appendix: 
Attached PapersAttached Papers



 David Luebke, Jonathan Cohen,Nathaniel Williams, David Luebke, Jonathan Cohen,Nathaniel Williams, 
Mike Kelley, Brenden Schubert .  Mike Kelley, Brenden Schubert .  Perceptually Perceptually 
Guided Simplification of Lit, Textured Meshes.Guided Simplification of Lit, Textured Meshes.    
University of Virginia Tech Report CS-2002-07.University of Virginia Tech Report CS-2002-07.
– Describes ongoing work applying perceptual metrics (see Describes ongoing work applying perceptual metrics (see 

Martin’s talk) to view-dependent polygonal simplification.  Martin’s talk) to view-dependent polygonal simplification.  

Appendix: Appendix: 
Attached PapersAttached Papers



The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

 Computing livetris and subtris:Computing livetris and subtris:
– node->livetrisnode->livetris = triangles with exactly  = triangles with exactly 

one corner vertex supported by nodeone corner vertex supported by node
– node->subtrisnode->subtris = triangles with: = triangles with:

 Two or three corners in different subnodes Two or three corners in different subnodes 
 No two corners in the same subnodeNo two corners in the same subnode



The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

A Node

Subnodes



The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

This is a 
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the node



The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

This is a 
subtri of 
the node



The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

This is neither. 

  It’s a subtri 
  of this subnode
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