
Out of Core Simplification

Benjamin Watson

Dept. Computer Science

Northwestern University

watson@cs.northwestern.edu



Models are getting bigger

Models now ride Moore’s Law
Major source: 3D scanning

Example: Digital Michelangelo

Sizes currently in the 300 millions

Well beyond most core memories



Can’t we do “big”?

Maybe, but not “massive”
That is, models not fitting in core
Previous limit less than 10 million faces

What’s the problem with out of core?
Requires slow disk access
So must minimize disk access
Most simplification algs don’t



For good out of core performance, use
Locality (reducing working set)

Reuse (minimizing swapping)

Most existing algorithms poor at both
Locality not guaranteed in model formats

Most algorithms are greedy -- poor reuse

Out of core strategies



Demo: bunny vs. dragon

RSimp on bunny



Demo: bunny vs. dragon

RSimp on dragon



Solutions: Lindstrom

Modification of Rossignac & Borrel

Adds locality by deref’ing to create “soup”
Done w/ little thrashing in linear time

Hashes vertices on each input face
Add normal to quadric in each vertex hash entry

Retain face if 3 vertices hash differently

Output retained faces, quadric mins



Solutions: Lindstrom

Advantages
Extremely fast: single linear pass on “soup”

56 million faces in several minutes

Can handle 100s millions of faces

Disadvantages
Poor accuracy: a non-adaptive algorithm

Not sensitive to topology



Solutions: Lindstrom

(2K faces) (20K faces) (200K faces)



Solutions: Shaffer & Garland

Addition to Lindstrom’s approach

First, apply Lindstrom’s algorithm
Resulting model fits in core memory

Then, adaptively simplify
Using refining algorithm similar to RSimp

(We discuss RSimp shortly)



Solutions: Shaffer & Garland

Advantages
Improved mean accuracy about 35%

Disadvantages
Somewhat slower

Not sensitive to topology

Introduces spurious topological joins

Limited output size



Solutions: Shaffer & Garland

(2K faces) (20K faces) (200K faces)



Solutions: VMRSimp

Modification of RSimp by Brodsky & Watson

RSimp refined toward desired output size by
Define a poor 8 patch (vertex) approximation

Repeat

Choose patch with most normal variation

Split patch according to normal variation

Until desired number vertices reached



Solutions: VMRSimp

Modification makes simplification a sort
Each patch a range on input array

Splitting patch means sorting into subranges

Thus locality is built and refined
Allows reliance on virtual memory

Added modification allows quality/reuse tradeoff

56M faces in 32 bit address space



Advantages
Mean accuracy improves additional 30%

Maximum error reduced 2-5 times

Topological sensitivity (boundaries, joins)

Very large output sizes (10M+) possible

Disadvantages
About twice as slow as Shaffer & Garland

Can reach 32 bit address space limits

Solutions: VMRSimp



0

20

40

60

80

100

120

0 5 10 15 20 25 30

Input Size (millions of vertices)

Si
m

pl
if

ic
at

io
n 

T
im

e 
(m

in
s)

VMRSimp

RSimp

Lindstrom

Accuracy control improves times 25%

Solutions: VMRSimp

1 GHz PIII
RH Linux 7.1
1 GB Mem



Solutions: VMRSimp

Output 
Tris Lindstrom 

Schaffer and 
Garland VMRSimp 

 mean max mean max mean max 

1K 0.4549 26.10 0.4821 25.91 0.3450 14.89 

10K 0.0986 24.35 0.0946 24.43 0.0598 12.80 

100K 0.0266 24.47 0.0164 24.17 0.0119 10.45 
 

Metro error as % of model bounding box



(2K faces) (20K faces) (200K faces)

Solutions: VMRSimp



Shaffer & Garland

VMRSimpLindstrom

Solutions: comparison


	Out of Core Simplification
	Models are getting bigger
	Can’t we do “big”?
	Out of core strategies
	Demo: bunny vs. dragon
	Slide 6
	Solutions: Lindstrom
	Slide 8
	Slide 9
	Solutions: Shaffer & Garland
	Slide 11
	Slide 12
	Solutions: VMRSimp
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Solutions: comparison

