V\ ANTO/V/

SIGGRAPH
+=20D2=+

Advanced Issues In
Level Of Detall

_,5:,-3

%L Course Introduction

® | evel of detail (LOD) methods provide a
powerful way to manage scene complexity

® A standard tool for the graphics developer
to control rendering speed

® This course will adress advanced issues in
using and developing LOD algorithms, with
a focus on polygonal mesh simplification

SIGGRAPH
=22

2

'f@f*’ @, Course Prerequisites

® \We assume
— Knowledge of the basic LOD concept
— Experience with interactive graphics

® Target audience

— Developers wishing to become
sophisticated LOD users

— Researchers wishing to broaden their
knowledge of the field

SIGGRAPH
=22

8 Course Topics

L]

® Generation
L OD frameworks & creation

® Theory

Measuring & controlling fidelity
® Applications

Important real-world applications

SIGGRAPH
=22

8 Course Schedule

h-L

-

8:30
Luebke
3:50

10:15
10:30

12:15

Welcome, Introductions

Frameworks Luebke

Discrete, continuous, & view-dependent LOD
Break

Algorithms Varshney, Cohen

Algorithms and approaches for simplification
Appearance-preserving simplification

Lunch

SIGGRAPH
=22

3:15
3:30

.:DL Course Schedule

Fidelity Cohen, Reddy, Watson

Measuring geometric and attribute error

Understanding and applying visual perception
Balancing fidelity and performance

Break
Applications Huebner, Reddy, Watson
Gaming optimizations

Terrain visualization
Out-of-core simplification

Conclusion Luebke

‘Q ANTO/V

SIGGRAPH
+=20D2=+-

2

L7

:_- “@L

Speakers
=7 In Order of Appearance

® David Luebke, University of Virginia

® Jon Co
® Amitab

nen, Johns Hopkins University
n Varshney, University of Maryland

® Martin

Reddy, SRI International

® Ben Watson, Northwestern University
® Rob Huebner, Nihilistic Software

SIGGRAPH
=22

@,ﬁ —
8 Frameworks for LOD

® | will discuss basic LOD frameworks:
— Discrete LOD: the traditional approach

— Continuous LOD: encoding a continuous
spectrum of detail from coarse to fine

— View-dependent LOD: adjusting detalil across
the model in response to viewpoint

® | will focus on view-dependent LOD

SIGGRAPH
=22

’
8 Frameworks for LOD

® Questions | will address:
— What is view-dependent simplification?

— Why is it better than traditional simplification?
When is it worse?

— How is it implemented efficiently?
® Questions | will leave for the others:
— How can we control visual fidelity?
— How much simplification is appropriate?

SIGGRAPH
=22

. Motivation:

o Preachlng To The Choir

® |nteractive rendering of large-scale
geometric datasets is important

— Scientific and medical visualization
— Architectural and industrial CAD

— Training (military and otherwise)

— Entertainment

SIGGRAPH
=22

» . Motivation:
Bl ’E‘Blg Models

® The problem:

— Polygonal models are often too complex to
render at interactive rates

® Even worse:

— Incredibly, models are getting bigger as fast
as hardware is getting faster...

SIGGRAPH
=22

Big Models:

“.2" Submarine Torpedo Room

® 700,000 polygons

Courtesy General Dynamics, Electric Boat Div.

Big Models:

«.2% Coal-fired Power Plant

(Anonymous)

@a;} ‘o
u,gg@

=
%
S
L1
0
Q
Y
S
<)
S
—
@
i)
=
Q
S~
=
—

YRea
h

oF

1etal
..J"#

sséen

L")

F *

ik "
EU

D

;. ' Big Models:
«.” Double Eagle Container Ship

® 82 million polygons

g .I,_..,,u;fm!!mﬂ'.'.'ﬁﬁ

Courtesy Newport News Shipbuilding

LR
G

o . Models:

>* The Digital Michelangelo Project

® David:
96,230,343 polygons

® St. Matthew:
372,422,615 polygons

é .. Level of Detail:

i p F' iy I.. 1

1 1 LA,

2 \.h"'i I-
¢ i
e o
.ﬂ["

-”The Basic ldea

® One solution:

— Simplify the polygonal geometry of small or
distant objects

— Known as Level of Detail or LOD

B A k.a. polygonal simplification, geometric
simplification, mesh reduction, multiresolution
modeling, ...

SIGGRAPH
=22

@ .. Level of Detall:
«“2* Traditional Approach

® Create levels of detail (LODs) of objects:

69,451 polys 2,502 polys 251 polys 76 polys

Courtesy Stanford 3D Scanning Repository

@ .. Level of Detail:
«.* Traditional Approach

® Distant objects use coarser LODs:

SIGGRAPH
=22

"ﬁ Traditional Approach:
+. Discrete Level of Detail

® Traditional LOD in a nutshell:

— Create LODs for each object separately
IN a preprocess

— At run-time, pick each object's LOD
according to the object’s distance (or
similar criterion)

® Since LODs are created offline at fixed
resolutions, | refer to this as Discrete LOD

SIGGRAPH
=22

- : .
@ o Discrete LOD:
“." Advantages

® Simplest programming model; decouples

simplification and rendering

— LOD creation need not address real-time
rendering constraints

— Run-time rendering need only pick LODs

SIGGRAPH
=22

@ 4 Discrete LOD:

e Advantages

® Fits modern graphics hardware well

— Easy to compile each LOD into triangle
strips, display lists, vertex arrays, ...

— These render much faster than unorganized
polygons on today’s hardware (3-5 x)

SIGGRAPH
=22

@ .. Discrete LOD:
‘!l; 1

o Dlsadvantages

® So why use anything but discrete LOD?

® Answer: sometimes discrete LOD not
suited for drastic simplification

® Some problem cases:
— Terrain flyovers
— Volumetric isosurfaces
— Super-detailed range scans
— Massive CAD models

SIGGRAPH
=22

Al Ju! li-|r|| @?ﬁ?

Courtesy IBM and ACOG

% Drastic Simplification:
“."*The Problem With Small Objects

SIGGRAPH
Courtesy Electric Boat 4%-.2@2%;*

& Drastic Simplification

.ﬂ' . -T"

® For drastic simplification:
— Large objects must be subdivided
— Small objects must be combined

® Difficult or impossible with discrete
LOD

® So what can we do?

SIGGRAPH
=22

8 Continuous Level of Detail

® A departure from the traditional static
approach:

— Discrete LOD: create individual LODs in a
preprocess

— Continuous LOD: create data structure from
which a desired level of detail can be
extracted af run time.

SIGGRAPH
=22

2

e‘g “%L Continuous LOD:

* Advantages

® Better granularity > better fidelity

— LOD is specified exactly, not chosen from a
few pre-created options

— Thus objects use no more polygons than
necessary, which frees up polygons for other
objects

— Net result: better resource utilization, leading
to better overall fidelity/polygon

SIGGRAPH
=22

2

e‘g ﬁ Continuous LOD:
~~* Advantages

® Better granularity > smoother transitions

— Switching between traditional LODs can
iIntroduce visual “popping” effect

— Continuous LOD can adjust detail gradually
and incrementally, reducing visual pops
B Can even geomorph the fine-grained

simplification operations over several frames to
eliminate pops [Hoppe 96, 98]

SIGGRAPH
=22

@ .. Continuous LOD:

4N f'
1 (] e
i ; 1
| qu‘\."' ad I_
; -
. 4

~* Advantages

® Supports progressive transmission

— Progressive Meshes [Hoppe 97]
— Progressive Forest Split Compression [Taubin 98]

® | eads to view-dependent LOD

— Use current view parameters to select best
representation for the current view

— Single objects may thus span several levels
of detail

SIGGRAPH
=22

A
®
-1
=
()
©
-
O
O
O
0
=
[©
=

Examples

® Show nearby portions of o

igher

bject at hi
jons

Istant port

ion than d

resolut

O

o p—

>

O
>

\i

7))

o

—

M

I=

N N———

SRR =
= =
SN D
e

O

o

G

O

oy

x.w\ V

)
N X
Sy

ﬁ/& ,
]
>

W
N
Rl

@ .. /liew-Dependent LOD:
-‘i};‘ P

Examples

® Show silhouette regions of object at
higher resolution than interior regions

SIGGRAPH
=22

= View-Dependent LOD:

“. " Examples

® Show more detail where the user is
looking than in their peripheral vision:.

34,321 triangles

@ View-Dependent LOD:

%:-1_-5 “* Examples

® Show more detail where the user is
looking than in their peripheral vision:.

11,726 triangles

@ View-Dependent LOD:

* Advantages

® Even better granularity

— Allocates polygons where they are most
needed, within as well as among objects

— Enables even better overall fidelity
® Enables drastic simplification of

very large objects

— Example: stadium model

— Example: terrain flyover

SIGGRAPH
=22

r An Aside:
. Hierarchical LOD

® \View-dependent LOD solves the
Problem With Large Objects

® Hierarchical LOD can solve the
Problem With Small Objects

— Merge objects into assemblies

— At sufficient distances, simplify assemblies, not
individual objects

® Note that hierarchical LOD implies a topology-
modifying algorithm

SIGGRAPH
=22

ag ﬁ An Aside:
.. * Hierarchical LOD

® Hierarchical LOD dovetails nicely with
view-dependent LOD

— Treat the entire scene as a single object to be
simplified in view-dependent fashion

® Hierarchical LOD can also sit atop

traditional discrete LOD schemes
— Imposters [Maciel 95]
— HLODs [Erikson 01]

SIGGRAPH
=22

& .. View-Dependent LOD:

L "]!I LT

i . LY

PR 1 i

3) |
-fr"
-

ﬁ-‘

«~." Algorithms

® Many good published algorithms:

— Progressive Meshes by Hoppe
[SIGGRAPH 96, SIGGRAPH 97, ...]

— Merge Trees by Xia & Varshney [visualization 96]

— Hierarchical Dynamic Simplification by
Luebke & Erikson [SIGGRAPH 97]

— Multitriangulation by DeFloriani et al
— Others...

SIGGRAPH
=22

@ .. Overview:
)

> The VDS Algorithm

® |’ll mostly describe my own work
— Algorithm: VDS Implementation: VDSIib
— Similar in concept to most other algorithms

® Amitabh will give his take on some
related issues later

SIGGRAPH
=22

” r Overview:
“. " The VDS Algorithm

® Overview of the VDS algorithm:

— A preprocess builds the vertex tree,
a hierarchical clustering of vertices

— At run time, clusters appear to grow and
shrink as the viewpoint moves

— Clusters that become too small are
collapsed, filtering out some triangles

SIGGRAPH
=22

24
p -t .

,«p Data Structures

W

® The vertex tree
— Represents the entire model
— Hierarchy of all vertices in model
— Queried each frame for updated scene

® The active triangle list
— Represents the current simplification
— List of triangles to be displayed

— Triangles added and deleted by operations on vertex
tree

SIGGRAPH
=22

2

'f@f*’ “%L The Vertex Tree

® Each vertex tree node supports a subset
of the model vertices

— Leaf nodes support a single vertex from the
original full-resoluton model

— The root node supports all vertices

® For each node we also assign a
representative vertex or proxy

SIGGRAPH
=22

@ .. The Vertex Tree:

L
| ey

“¥ Folding And Unfolding

® Folding a node collapses its vertices to
the proxy

® Unfolding the node splits the proxy back
Into vertices

Fold Node A
g 7
V\/
Unfold Node A

Triangles in active list Vertex tree

Triangles in active list Vertex tree

Triangles in active list Vertex tree

N

Triangles in active list Vertex tree

Triangles in active list Vertex tree

Triangles in active list Vertex tree

Triangles in active list Vertex tree

;@; Vertex Tree Example

' ilh-ﬂ_—-f

10

Triangles in active list Vertex tree

Triangles in active list Vertex tree

;@; Vertex Tree Example

ilh-ﬂ_—-f

Triangles in active list Vertex tree

;@; Vertex Tree Example

ilh-ﬂ_—-f

Triangles in active list Vertex tree

@ Vertex Tree Example

R

Vo AAL

Triangles in active list Vertex tree

58 Vertex Tree Example

Triangles in active list Vertex tree

The Vertex Tree:

«. ” Livetris and Subtris

® Two categories of triangles affected:

Fold Node A
7
"\/
Unfold Node A

Node->Subtris: triangles that disappear upon folding
: triangles that just change shape

@ .. The Vertex Tree:

il I_

T
: :" .
1 1 i,
2 \.h"\:
Fa
i’ _.ar
. -‘_-'

«»* Livetris and Subtris

® The key observation:

— Each node’s subtris can be computed offline
to be accessed quickly at run time

— Each node’s livetris can be maintained at run
time, or lazily evaluated upon rendering

SIGGRAPH
=22

. View-Dependent
Slmpllflcatlon

® Any run-time criterion for folding and unfolding
nodes may be used

® Examples of view-dependent simplification
criteria:
— Screenspace error threshold
— Silhouette preservation
— Triangle budget simplification

— Gaze-directed perceptual simplification (discussed
by Martin later)

SIGGRAPH
=22

)
.
©
O
)
S
s O
i () e i °
T = * g
- = 5 N
)
2 NS
| G

O 24§

0 2 35
aebem
pr narug
0 C %nsu.nnv
n_l o =
O hdww
eo O v v I
O 859
Cr%SOr_m
S_I_I_ OUNU

_ Z | |

-;__:' \ A

" Silhouette Preservation

® Retain more detail near silhouettes

— A silhouette node supports triangles on the
visual contour

— Use tighter screenspace thresholds when
examining silhouette
nodes

. Triangle Budget
”Slmpllflcatlon

® Minimize error within specified number of
triangles

— Sort nodes by screenspace error

— — Unfold node with greatest error, putting
children into sorted list

Repeat until budget is reached

SIGGRAPH
=22

. View-Dependent Criteria:
’5‘ Other Possibilities

#

® Specular highlights: Xia describes a fast
test to unfold likely nodes

® Surface deviation: Hoppe uses an
elegant surface deviation metric that
combines silhouette preservation and
screenspace error threshold

SIGGRAPH
=22

-. :'afd
__

. View-Dependent Criteria:
“» Other Possibilities

® Sophisticated surface deviation metrics:
See Jon’'s talk!

® Sophisticated perceptual criteria:
See Martin's talk!

® Sophisticated temporal criteria:
See Ben'’s talk!

SIGGRAPH
=22

;;@ Implementing VDS:

* Optimizations

® Asynchronous simplification
— Parallelize the algorithm

® Exploiting temporal coherence
— Scene changes slowly over time

® Maintain memory coherent geometry
— Optimize for rendering
— Support for out-of-core rendering

SIGGRAPH
=22

@ Asynchronous Simplification

® Algorithm partitions into two tasks:

A
A
Simplify ﬁ A ‘ Render
Task ; Task
A
Vertex Tree Active Triangle List
® Run them in parallel
SIGGRAPH

+=20D2=¢

o{
b7
& .

%8 Asynchronous Simplification

® |f S = time to simplify, R = time to render:
— Single process = (S + R)
— Pipelined = max(S, R)
— Asynchronous =R

® The goal: efficient utilization of GPU/CPU
—e.g., NV Vertex Array Range (VAR) rendering

SIGGRAPH
=22

3; Temporal Coherence

.ﬂ' . -T"

® Exploit the fact that frame-to-frame
changes are small

® Three examples:
— Active triangle list

— Vertex tree
— Budget-based simplification

SIGGRAPH
=22

. Exploiting
" Temporal Coherence

w L

® Active triangle list
— Could calculate active triangles every frame

— But...few triangles are added or deleted
each frame

— ldea: make only incremental changes to an
active triangle list

B Simple approach: doubly-linked list of triangles
B Better: maintain coherent arrays with swapping

SIGGRAPH
=22

@« .. Exploiting
-?l; Temporal Coherence

® \/ertex Tree

— Few nodes change per frame
— Don't traverse whole tree

— Do local updates only
at boundary nodes

Unftolded
Nodes

Boundary Nodes

f
@ Temporal Coherence:
" Triangle Budget Simplification

® Exploiting temporal coherence in budget-
based simplification

— Introduced by ROAM [Duchaineau 97]

— Start with tree from last frame, recalculate
error for relevant nodes
— Sort into two priority queues

® One for potential unfolds, sorted on max error
® One for potential folds, sorted on min error

SIGGRAPH
=22

@ .. Temporal Coherence:
“ *"5 Triangle Budget Simplification

® Then simplify:
— — While budget is met, unfold max node

® This is the node whose folding has created the most
error in the model

— While budget is exceeded, fold min node

B This is the node that introduces the least error when
folded

— Insert parents and children into queues
Repeat until error__ < error_.

SIGGRAPH
=22

:‘,E: q_]]]]
:;g}Optlmlzmg For Rendering

® |dea: maintain geometry in coherent arrays

Active triangles Inactive triangles

J

Unfolded nodes 1 Boundary nodes Inactive nodes

o
P
F
.

8 Optimizing For Rendering

k<

® |dea: use swaps to maintain coherence

Unfolded nodes §j Boundary nodes Inactive nodes
A B CDEFGH I J KLIMNOP Q

Fold node D:

8 Optimizing For Rendering
® |dea: use swaps to maintain coherence

Inactive nodes
M N O P Q

Unfolded nodes
A B C D E F

Boundary nodes
GH I J K L

Fold node D:
Swap D with F

8 Optimizing For Rendering
® |dea: use swaps to maintain coherence

Inactive nodes
M N O P Q

Unfolded nodes

AIB CDEF
t]

Boundary nodes
GH I J K L

Fold node D:
Swap D with F

@, Optimizing For Rendering

® |dea: use swaps to maintain coherence

Inactive nodes

Unfolded nodes §j Boundary nodes
q M N O P Q

ABC.E GIH|I]|J]|K]L
t]

Fold node D:
Swap D with F

&

8 Optimizing For Rendering

:
L

® |dea: use swaps to maintain coherence

Inactive nodes
M N O P Q

Unfolded nodes
A B C F E

Boundary nodes
D GH I J K L

Fold node D:
Move Unfolded/Boundary Marker

8 Optimizing For Rendering

s
L

® |dea: use swaps to maintain coherence

Inactive nodes
M N O P Q

Unfolded nodes
A B C F E

Boundary nodes

DIGIH|I]|J]|K]L
t]

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

@, Optimizing For Rendering

® |dea: use swaps to maintain coherence

Unfolded nodes

Boundary nodes Inactive nodes
A B CF E q
)

DGH.JK MIN O P Q
t

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

&

8 Optimizing For Rendering

:
L

® |dea: use swaps to maintain coherence

Inactive nodes
| MN O P Q

Unfolded nodes
A B C F E

Boundary nodes
D GH L J K

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

8 Optimizing For Rendering
® |dea: use swaps to maintain coherence

Inactive nodes
| MN O P Q

Unfolded nodes
A B C F E

Boundary nodes
D GH L J K

T T

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

“8 Optimizing For Rendering

W e

® |dea: use swaps to maintain coherence
Boundary nodes Inactive nodes
DG|LJq|MNopQ

T

Unfolded nodes
A B C F E

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

&

8 Optimizing For Rendering

:
L

® |dea: use swaps to maintain coherence

Unfolded nodes roundary nodes Inactive nodes

A B CFEJDGK L JJH I M N O P Q

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

@ .. Optimizing For Rendering:
M

«.*Vertex Arrays

® Biggest win: vertex arrays

Unfolded nodes §j Boundary nodes | Inactive nodes

. J
Y

Vertex array!

— Actually, keep separate parallel arrays for
rendering data (coords, colors, etc)

Total Rendering Seconc

Plain old triangles

12

10 ~

Triangles using
/ vertex arrays

Vertex arrays

In fast memory

/

= Triangles ® Trianlge Strips T Quads [Quad Strips

i : / j i
Immediate Mode Display List Vertex Arrays Per-rendering Always Locked VARVideo VARAGP VAR Regular VAR Video VARAGP VAR Regular
Compiled Compiled Memory (no Memory (no Memory (no Memory Memory Memory
Vertex Arrays Vertex Arrays rew rite) rew rite) rew rite) (rew ritten) (rew ritten) (rew ritten)

b
e -.‘.. .

8 Out-of-core Rendering

L

® Coherent arrays lend themselves to out-
of-core simplification and rendering:

" '
These need to be in memory... These do not

2

‘%’

"@L Out-of-core Rendering

® Coherent arrays lend themselves to out-
of-core simplification and rendering:

— Only need active portions of triangle and
node arrays

— Implement arrays as memory-mapped files

B | et virtual memory system manage paging

B A prefetch thread walks boundary nodes, bringing
their children into memory to avoid glitches

SIGGRAPH
=22

@ .. Summary:

I'u
=

.
f')

«.."VDS Pros
® Supports drastic simplification!

— View-dependent; handles the
Problem With Large Objects

— Hierarchical; handles the
Problem With Small Objects

— Robust; does not require (or preserve)
mesh topology

SIGGRAPH
=22

@ .. Summary:
+.2»\V/DS Pros

® Rendering can be implemented efficiently
using vertex arrays

® Supports rendering of models much
larger than main memory

SIGGRAPH
=22

;‘ﬁ

Summary:
~*VDS Cons

® Increases CPU, memory overhead

® Fastest rendering mode currently
restricted to 65K vertices (April 2001)

SIGGRAPH
=22

@ . Summary:
«..”VDS Cons

® Be aware of mesh foldovers:

SIGGRAPH
=22

@ . Summary:
«..”VDS Cons

® Be aware of mesh foldovers:

SIGGRAPH
=22

@ . Summary:

“Z# VDS Cons

® Be aware of mesh foldovers:

SIGGRAPH
=22

“ Summary:
VDS Cons

® Be aware of mesh foldovers:
— These can be very distracting artifacts

ﬂ'h_

— Amitabh will talk about how to prevent them

‘Q ANTO/V

SIGGRAPH
+=20D2=+-

-, View-Dependent Versus
«>*Discrete LOD

® \VView-dependent LOD is superior to
traditional discrete LOD when:

— Models contain very large individual objects
(e.g., terrains)

— Simplification must be completely automatic
(e.g., complex CAD models)

— Experimenting with view-dependent
simplification criteria

SIGGRAPH
=22

& .. View-Dependent Versus

L "
.
i

% Discrete LOD

® Discrete LOD is often the better choice:
— Simplest programming model
— Reduced run-time CPU load

— Easier to leverage hardware:
B Compile LODs into vertex arrays/display lists
B Stripe LODs into triangle strips
B Optimize vertex cache utilization and such

SIGGRAPH
=22

& .. View-Dependent Versus

L "
.
i

% Discrete LOD

® Applications that may want to use:
— Discrete LOD

® \/ideo games (but much more on this later...)
B Simulators
® Many walkthrough-style demos

— Dynamic and view-dependent LOD
B CAD design review tools
B Medical & scientific visualization toolkits
B Terrain flyovers (much more later...)

SIGGRAPH
=22

"hﬁ Continuous LOD:
“.7" The Sweet Spot?

® Continuous LOD may be the right
compromise on modern PC hardware

— Benefits of fine granularity without the cost of
view-dependent evaluation

— Can be implemented efficiently with regard to

® Memory
= CPU
= GPU

SIGGRAPH
=22

r 2t
o
“

£

. .
%@ VDSIib

® Implementation: VDSIib

— A pu
simp
— Flexi

olic-domain view-dependent
Ification and rendering package

ble C++ interface lets users:

B Construct vertex trees for objects or scenes

B Specify with callbacks how to simplify, cull,
and render them

— Avallable at http.//vdslib.virginia.edu

SIGGRAPH
=22

E ﬁ}' Ongoing Work

® Ongoing research projects using VDSIib:

— Out-of-core LOD for interactive rendering of
truly massive models

— Perceptually-guided view-dependent LOD,
iIncluding gaze-directed techniques

— Non-photorealistic rendering using VDSIib as
a framework

SIGGRAPH
=22

V\ ANTO/V

SIGGRAPH
+=20D2=+

The End

Appendlx
"’ Related Work

® Hoppe: Progressive Meshes (SIGGRAPH 96,
SIGGRAPH 97, other papers)

— Edge collapse vs. vertex merging
— Pros:
® Dynamic, view-dependent simplification
B Elegant scheme for mesh attributes
— Cons:
B Requires clean mesh topology
B Slow preprocess (though not implicit to PM)
® Still per-object LOD

‘* ANTO/V

SIGGRAPH
+=20D2=+-

_ ﬁ " _
“a Appendix:
««."\Web Resources

® \/DSIlib: htto://vdslib.virginia.edu
— A public-domain view-dependent simplification library

® My work on view-dependent simplification:
http.//www. cs.virginia.edu/~luebke/simplification. html
— A SIGGRAPH paper
— My dissertation on VDS
— The attached tech report on VDS for CAD applications
— A survey of LOD algorithms written for graphics developers

SIGGRAPH
=22

Appendlx

P f" \Web Resources

® Hughes Hoppe’s work on progressive meshes:
http.//www.research.microsoft.com/~hhoppe

— 2 SIGGRAPH papers
— A paper on efficient implementation of progressive meshes
— A paper on terrain rendering using progressive meshes
— Much more...
® Michael Garland’s work on quadric error metrics:
http.//www.uiuc.edu/~garland
— A SIGGRAPH paper
— Garland’s dissertation on QEM
— Follow-up papers, e.g. extending QEM to surface attributes
— Public domain code for generating LODs with QEM

‘* ANTO/V

SIGGRAPH
+=20D2=+-

’,’ Appendix:

«. *\Web Resources

® The Multi-Tesselation (MT) home page:
http.//www.disi.unige.it/person/MagilloP/MT/

— A different approach to dynamic and view-dependent
simplification by De Floriani, Magillo, and Puppo.

— Includes code and sample software

SIGGRAPH
=22

&4 Appendix:
«“." Attached Papers

® David Luebke. Robust View-Dependent Simplification
For Very Large-Scale CAD Visualization, University of
Virginia Tech Report CS-99-33.
— An updated version of the original SIGGRAPH ‘97 paper

describing the view-dependent simplification framework
presented here.

SIGGRAPH
=22

@ .. Appendix:

- Attached Papers

® David Luebke, Jonathan Cohen,Nathaniel Williams,
Mike Kelley, Brenden Schubert . Perceptually
Guided Simplification of Lit, Textured Meshes.
University of Virginia Tech Report CS-2002-07.

— Describes ongoing work applying perceptual metrics (see
Martin’s talk) to view-dependent polygonal simplification.

SIGGRAPH
=22

@ .. The Vertex Tree:

| i %
¥ . |

1 1 o W

2 "h." '.I-
_.-'. 5 &)
-

Livetris and Subtris

® Computing livetris and subtris:

—node->livetris = triangles with exactly
one corner vertex supported by node
—node->subtris = triangles with:
® Two or three corners in different subnodes
® No two corners in the same subnode

SIGGRAPH
=22

The Vertex Tree:

Livetris and Subtris

® o o® A Node
@ o ®

\\ -4, : ‘.. |
Wl 5_._Iq % Jo
'-ﬂ.hs:fr-

SIGGRAPH
=22

The Vertex Tree:

This is a
_——livetri of
the node

SIGGRAPH
=22

The Vertex Tree:

This is a
subtri of
the node

SIGGRAPH
=22

@ .. The Vertex Tree:
«. " Livetris and Subtris

- This I1s neither.

\

It's a subtri
of this subnode

SIGGRAPH
=22

	Advanced Issues In Level Of Detail
	Course Introduction
	Course Prerequisites
	Course Topics
	Course Schedule
	Slide 6
	Speakers In Order of Appearance
	Frameworks for LOD
	Slide 9
	Motivation: Preaching To The Choir
	Motivation: Big Models
	Big Models: Submarine Torpedo Room
	Big Models: Coal-fired Power Plant
	Big Models: Plant Ecosystem Simulation
	Big Models: Double Eagle Container Ship
	Big Models: The Digital Michelangelo Project
	Level of Detail: The Basic Idea
	Level of Detail: Traditional Approach
	Slide 19
	Traditional Approach: Discrete Level of Detail
	Discrete LOD: Advantages
	Slide 22
	Discrete LOD: Disadvantages
	Drastic Simplification: The Problem With Large Objects
	Drastic Simplification: The Problem With Small Objects
	Drastic Simplification
	Continuous Level of Detail
	Continuous LOD: Advantages
	Slide 29
	Slide 30
	View-Dependent LOD: Examples
	Slide 32
	Slide 33
	Slide 34
	View-Dependent LOD: Advantages
	An Aside: Hierarchical LOD
	An Aside: Hierarchical LOD
	View-Dependent LOD: Algorithms
	Overview: The VDS Algorithm
	Slide 40
	Data Structures
	The Vertex Tree
	The Vertex Tree: Folding And Unfolding
	Vertex Tree Example
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	The Vertex Tree: Livetris and Subtris
	Slide 58
	View-Dependent Simplification
	Screenspace Error Threshold
	Silhouette Preservation
	Triangle Budget Simplification
	View-Dependent Criteria: Other Possibilities
	Slide 64
	Implementing VDS: Optimizations
	Asynchronous Simplification
	Slide 67
	Temporal Coherence
	Exploiting Temporal Coherence
	Slide 70
	Temporal Coherence: Triangle Budget Simplification
	Slide 72
	Optimizing For Rendering
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Optimizing For Rendering: Vertex Arrays
	Optimizing For Rendering: Vertex Arrays on GeForce2
	Out-of-core Rendering
	Slide 88
	Summary: VDS Pros
	Slide 90
	Summary: VDS Cons
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	View-Dependent Versus Discrete LOD
	Slide 97
	Slide 98
	Continuous LOD: The Sweet Spot?
	VDSlib
	VDSlib: Ongoing Work
	The End
	Appendix: Related Work
	Appendix: Web Resources
	Slide 105
	Slide 106
	Appendix: Attached Papers
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

