
Advanced Issues InAdvanced Issues In
Level Of DetailLevel Of Detail

Course IntroductionCourse Introduction

 Level of detailLevel of detail ((LODLOD) methods provide a) methods provide a
powerful way to manage scene complexity powerful way to manage scene complexity

 A standard tool for the graphics developer A standard tool for the graphics developer
to control rendering speedto control rendering speed

 This course will adress advanced issues in This course will adress advanced issues in
using and developing LOD algorithms, with using and developing LOD algorithms, with
a focus on polygonal mesh simplificationa focus on polygonal mesh simplification

Course PrerequisitesCourse Prerequisites

 We assumeWe assume
– Knowledge of the basic LOD conceptKnowledge of the basic LOD concept
– Experience with interactive graphicsExperience with interactive graphics

 Target audienceTarget audience
– Developers wishing to become Developers wishing to become

sophisticated LOD userssophisticated LOD users
– Researchers wishing to broaden their Researchers wishing to broaden their

knowledge of the fieldknowledge of the field

Course TopicsCourse Topics

 Generation Generation
LOD frameworks & creationLOD frameworks & creation

 TheoryTheory
Measuring & controlling fidelityMeasuring & controlling fidelity

 ApplicationsApplications
Important real-world applications Important real-world applications

Course ScheduleCourse Schedule

8:308:30 Welcome, Introductions Welcome, Introductions
LuebkeLuebke

8:508:50 FrameworksFrameworks Luebke Luebke

 Discrete, continuous, & view-dependent LODDiscrete, continuous, & view-dependent LOD

10:1510:15 BreakBreak

10:3010:30 AlgorithmsAlgorithms Varshney, CohenVarshney, Cohen

 Algorithms and approaches for simplificationAlgorithms and approaches for simplification
 Appearance-preserving simplification Appearance-preserving simplification

1212:15:15 LunchLunch

Course ScheduleCourse Schedule

1:301:30 FidelityFidelity Cohen, Reddy, Watson Cohen, Reddy, Watson

 Measuring geometric and attribute error Measuring geometric and attribute error
 Understanding and applying visual perception Understanding and applying visual perception
 Balancing fidelity and performance Balancing fidelity and performance

3:153:15 BreakBreak

3:303:30 ApplicationsApplications Huebner, Reddy, Watson Huebner, Reddy, Watson

 Gaming optimizationsGaming optimizations
 Terrain visualization Terrain visualization
 Out-of-core simplification Out-of-core simplification

55 ConclusionConclusion LuebkeLuebke

SpeakersSpeakers
In Order of AppearanceIn Order of Appearance

 David Luebke, University of VirginiaDavid Luebke, University of Virginia
 Jon Cohen, Johns Hopkins UniversityJon Cohen, Johns Hopkins University
 Amitabh Varshney, University of MarylandAmitabh Varshney, University of Maryland
 Martin Reddy, SRI InternationalMartin Reddy, SRI International
 Ben Watson, Northwestern UniversityBen Watson, Northwestern University
 Rob Huebner, Nihilistic SoftwareRob Huebner, Nihilistic Software

 I will discuss basic LOD frameworks:I will discuss basic LOD frameworks:
– Discrete LOD: the traditional approachDiscrete LOD: the traditional approach
– Continuous LOD: encoding a continuous Continuous LOD: encoding a continuous

spectrum of detail from coarse to finespectrum of detail from coarse to fine
– View-dependent LOD: adjusting detail across View-dependent LOD: adjusting detail across

the model in response to viewpointthe model in response to viewpoint
 I will focus on view-dependent LODI will focus on view-dependent LOD

Frameworks for LODFrameworks for LOD

Frameworks for LODFrameworks for LOD

 Questions I will address:Questions I will address:
– What is view-dependent simplification?What is view-dependent simplification?
– Why is it better than traditional simplification? Why is it better than traditional simplification?

 When is it worse? When is it worse?
– How is it implemented efficiently?How is it implemented efficiently?

 Questions I will leave for the others:Questions I will leave for the others:
– How can we control visual fidelity?How can we control visual fidelity?
– How much simplification is appropriate?How much simplification is appropriate?

Motivation:Motivation:
Preaching To The ChoirPreaching To The Choir

 Interactive rendering of large-scale Interactive rendering of large-scale
geometric datasets is importantgeometric datasets is important
– Scientific and medical visualizationScientific and medical visualization
– Architectural and industrial CADArchitectural and industrial CAD
– Training (military and otherwise)Training (military and otherwise)
– EntertainmentEntertainment

Motivation:Motivation:
Big ModelsBig Models

 The problem:The problem:
– Polygonal models are often too complex to Polygonal models are often too complex to

render at interactive ratesrender at interactive rates
 Even worse:Even worse:

– Incredibly, models are getting bigger as fast Incredibly, models are getting bigger as fast
as hardware is getting faster…as hardware is getting faster…

Courtesy General Dynamics, Electric Boat Div.

Big Models:Big Models:
Submarine Torpedo RoomSubmarine Torpedo Room

 700,000 polygons700,000 polygons

(Anonymous)

Big Models:Big Models:
Coal-fired Power PlantCoal-fired Power Plant

 13 million polygons13 million polygons

 16.7 million polygons (sort of)16.7 million polygons (sort of)

Big Models:Big Models:
Plant Ecosystem SimulationPlant Ecosystem Simulation

Deussen et al: Deussen et al: Realistic Modeling of Plant EcosystemsRealistic Modeling of Plant Ecosystems

Big Models:Big Models:
Double Eagle Container ShipDouble Eagle Container Ship

 82 million polygons82 million polygons

Courtesy Newport News ShipbuildingCourtesy Newport News Shipbuilding

Big Models:Big Models:
The Digital Michelangelo ProjectThe Digital Michelangelo Project

 David:David:
56,230,343 polygons56,230,343 polygons

 St. Matthew:St. Matthew:
 372,422,615 polygons 372,422,615 polygons

Courtesy Digital Michelangelo Project, Stanford University

Level of Detail: Level of Detail:
The Basic IdeaThe Basic Idea

 One solution:One solution:
– Simplify the polygonal geometry of small or Simplify the polygonal geometry of small or

distant objectsdistant objects
– Known as Known as Level of DetailLevel of Detail or or LODLOD

 A.k.a. polygonal simplification, geometric A.k.a. polygonal simplification, geometric
simplification, mesh reduction, multiresolution simplification, mesh reduction, multiresolution
modeling, …modeling, …

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:Level of Detail:
Traditional ApproachTraditional Approach

 CreateCreate levels of detail (LODs) of objects:

 Distant objects use coarser LODs:Distant objects use coarser LODs:

Level of Detail:Level of Detail:
Traditional ApproachTraditional Approach

Traditional Approach: Traditional Approach:
Discrete Level of DetailDiscrete Level of Detail

 Traditional LOD in a nutshell:Traditional LOD in a nutshell:
– Create LODs for each object separately Create LODs for each object separately

in a preprocessin a preprocess
– At run-time, pick each object’s LOD At run-time, pick each object’s LOD

according to the object’s distance (or according to the object’s distance (or
similar criterion)similar criterion)

 Since LODs are created offline at fixed Since LODs are created offline at fixed
resolutions, I refer to this as resolutions, I refer to this as Discrete LODDiscrete LOD

Discrete Discrete LOD:LOD:
AdvantagesAdvantages

 Simplest programming model; decouples Simplest programming model; decouples
simplification and renderingsimplification and rendering
– LOD creation need not address real-time LOD creation need not address real-time

rendering constraintsrendering constraints
– Run-time rendering need only pick LODsRun-time rendering need only pick LODs

Discrete Discrete LOD:LOD:
AdvantagesAdvantages

 Fits modern graphics hardware wellFits modern graphics hardware well
– Easy to compile each LOD into triangle Easy to compile each LOD into triangle

strips, display lists, vertex arrays, …strips, display lists, vertex arrays, …
– These render These render muchmuch faster than unorganized faster than unorganized

polygons on today’s hardware (3-5 x)polygons on today’s hardware (3-5 x)

Discrete LOD:Discrete LOD:
DisadvantagesDisadvantages

 So why use anything but discrete LOD?So why use anything but discrete LOD?
 Answer: sometimes discrete LOD not Answer: sometimes discrete LOD not

suited for suited for drastic simplificationdrastic simplification
 Some problem cases:Some problem cases:

– Terrain flyoversTerrain flyovers
– Volumetric isosurfacesVolumetric isosurfaces
– Super-detailed range scansSuper-detailed range scans
– Massive CAD modelsMassive CAD models

Drastic Simplification: Drastic Simplification:
The Problem With Large ObjectsThe Problem With Large Objects

Courtesy IBM and ACOG

Drastic Simplification: Drastic Simplification:
The Problem With Small ObjectsThe Problem With Small Objects

Courtesy Electric Boat

Drastic SimplificationDrastic Simplification

 For drastic simplification:For drastic simplification:
– Large objects must be subdividedLarge objects must be subdivided
– Small objects must be combinedSmall objects must be combined

 Difficult or impossible with discrete Difficult or impossible with discrete
LODLOD

 So what can we do?So what can we do?

Continuous Level of DetailContinuous Level of Detail

 A departure from the traditional static A departure from the traditional static
approach:approach:
– Discrete LOD: create individual LODs in a Discrete LOD: create individual LODs in a

preprocesspreprocess
– Continuous LOD: create data structure from Continuous LOD: create data structure from

which a desired level of detail can be which a desired level of detail can be
extracted extracted at run timeat run time..

Continuous LOD:Continuous LOD:
AdvantagesAdvantages

 Better granularity Better granularity  better fidelity better fidelity
– LOD is specified exactly, not chosen from a LOD is specified exactly, not chosen from a

few pre-created optionsfew pre-created options
– Thus objects use no more polygons than Thus objects use no more polygons than

necessary, which frees up polygons for other necessary, which frees up polygons for other
objects objects

– Net result: better resource utilization, leading Net result: better resource utilization, leading
to better overall fidelity/polygonto better overall fidelity/polygon

Continuous LOD:Continuous LOD:
AdvantagesAdvantages

 Better granularity Better granularity  smoother transitions smoother transitions
– Switching between traditional LODs can Switching between traditional LODs can

introduce visual “popping” effectintroduce visual “popping” effect
– Continuous LOD can adjust detail gradually Continuous LOD can adjust detail gradually

and incrementally, reducing visual popsand incrementally, reducing visual pops
 Can even Can even geomorphgeomorph the fine-grained the fine-grained

simplification operations over several frames to simplification operations over several frames to
eliminate pops [Hoppe 96, 98]eliminate pops [Hoppe 96, 98]

Continuous LOD:Continuous LOD:
AdvantagesAdvantages

 Supports progressive transmissionSupports progressive transmission
– Progressive Meshes [Hoppe 97]Progressive Meshes [Hoppe 97]
– Progressive Forest Split Compression [Taubin 98]Progressive Forest Split Compression [Taubin 98]

 Leads to Leads to view-dependent LODview-dependent LOD
– Use current view parameters to select best Use current view parameters to select best

representation representation for the current viewfor the current view
– Single objects may thus span several levels Single objects may thus span several levels

of detailof detail

View-Dependent LOD: View-Dependent LOD:
ExamplesExamples

 Show nearby portions of object at higher Show nearby portions of object at higher
resolution than distant portionsresolution than distant portions

View from eyepoint Birds-eye view

View-Dependent LOD: View-Dependent LOD:
ExamplesExamples

 Show silhouette regions of object at Show silhouette regions of object at
higher resolution than interior regionshigher resolution than interior regions

View-Dependent LOD:View-Dependent LOD:
ExamplesExamples

 Show more detail where the user is Show more detail where the user is
looking than in their peripheral vision:looking than in their peripheral vision:

34,321 triangles

View-Dependent LOD:View-Dependent LOD:
ExamplesExamples

 Show more detail where the user is Show more detail where the user is
looking than in their peripheral vision:looking than in their peripheral vision:

11,726 triangles

View-Dependent LOD:View-Dependent LOD:
AdvantagesAdvantages

 Even better granularityEven better granularity
– Allocates polygons where they are most Allocates polygons where they are most

needed, within as well as among objectsneeded, within as well as among objects
– Enables even better overall fidelityEnables even better overall fidelity

 Enables drastic simplification of Enables drastic simplification of
very large objectsvery large objects
– Example: stadium modelExample: stadium model
– Example: terrain flyoverExample: terrain flyover

An Aside: An Aside:
Hierarchical LODHierarchical LOD

 View-dependent LOD solves the View-dependent LOD solves the
Problem With Large ObjectsProblem With Large Objects

 Hierarchical LODHierarchical LOD can solve the can solve the
Problem With Small ObjectsProblem With Small Objects
– Merge objects into assembliesMerge objects into assemblies

– At sufficient distances, simplify assemblies, not At sufficient distances, simplify assemblies, not
individual objects individual objects

 Note that hierarchical LOD implies a topology-Note that hierarchical LOD implies a topology-
modifying algorithmmodifying algorithm

An Aside:An Aside:
Hierarchical LODHierarchical LOD

 Hierarchical LOD dovetails nicely with Hierarchical LOD dovetails nicely with
view-dependent LODview-dependent LOD
– Treat theTreat the entire scene entire scene as a single object to be as a single object to be

simplified in view-dependent fashionsimplified in view-dependent fashion

 Hierarchical LOD can also sit atop Hierarchical LOD can also sit atop
traditional discrete LOD schemestraditional discrete LOD schemes
– Imposters [Maciel 95]Imposters [Maciel 95]
– HLODs [Erikson 01]HLODs [Erikson 01]

View-Dependent LOD: View-Dependent LOD:
AlgorithmsAlgorithms

 Many good published algorithms:Many good published algorithms:
– Progressive MeshesProgressive Meshes by Hoppe by Hoppe

[SIGGRAPH 96, SIGGRAPH 97, …][SIGGRAPH 96, SIGGRAPH 97, …]

– Merge TreesMerge Trees by Xia & Varshney by Xia & Varshney [Visualization 96][Visualization 96]

– Hierarchical Dynamic SimplificationHierarchical Dynamic Simplification by by
Luebke & Erikson Luebke & Erikson [SIGGRAPH 97][SIGGRAPH 97]

– MultitriangulationMultitriangulation by DeFloriani et al by DeFloriani et al
– Others…Others…

 I’ll mostly describe my own workI’ll mostly describe my own work
– Algorithm: Algorithm: VDS VDS Implementation: Implementation: VDSlibVDSlib
– Similar in concept to most other algorithmsSimilar in concept to most other algorithms

 Amitabh will give his take on some Amitabh will give his take on some
related issues laterrelated issues later

Overview: Overview:
TheThe VDS Algorithm VDS Algorithm

Overview: Overview:
The VDS AlgorithmThe VDS Algorithm

 Overview of the VDS algorithm:Overview of the VDS algorithm:
– A preprocess builds the A preprocess builds the vertex treevertex tree, ,

a hierarchical clustering of verticesa hierarchical clustering of vertices
– At run time, clusters appear to grow and At run time, clusters appear to grow and

shrink as the viewpoint movesshrink as the viewpoint moves
– Clusters that become too small are Clusters that become too small are

collapsed, filtering out some trianglescollapsed, filtering out some triangles

Data StructuresData Structures

 The The vertex treevertex tree
– Represents the entire modelRepresents the entire model

– Hierarchy of all vertices in modelHierarchy of all vertices in model

– Queried each frame for updated sceneQueried each frame for updated scene

 The The active triangle listactive triangle list
– Represents the current simplificationRepresents the current simplification

– List of triangles to be displayedList of triangles to be displayed

– Triangles added and deleted by operations on vertex Triangles added and deleted by operations on vertex
treetree

The Vertex TreeThe Vertex Tree

 Each vertex tree node Each vertex tree node supportssupports a subset a subset
of the model verticesof the model vertices
– Leaf nodes support a single vertex from the Leaf nodes support a single vertex from the

original full-resoluton modeloriginal full-resoluton model
– The root node supports all vertices The root node supports all vertices

 For each node we also assign a For each node we also assign a
representative vertex or representative vertex or proxyproxy

The Vertex Tree:The Vertex Tree:
Folding And UnfoldingFolding And Unfolding

3

1

2

9

8 7

10

54

6

A

9

8

10

54

6

A

3

Fold Node A

Unfold Node A

 FoldingFolding a node collapses its vertices to a node collapses its vertices to
the proxythe proxy

 UnfoldingUnfolding the node splits the proxy back the node splits the proxy back
into verticesinto vertices

Vertex Tree ExampleVertex Tree Example

1

3

2

9

8 7

10

54

6

1 2 7 4 5 6 8 9

A B C10

D

3

E

R

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

3

1

2

9

8 7

10

54

6

1 2 7 4 5 6 8 9

A B C10

D

3

E

R

A

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

9

8

10

54

6

1 2 7 4 5 6 8 9

B C10

D

3

E

R

A

3
A

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

9

8

10

54

6

1 2 7 4 5 6 8 9

B C10

D

3

E

R

A

3

B

A

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

10

1 2 7 4 5 6 8 9

C10

D

3

E

R

A

3

B

8

9

A B

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

10

1 2 7 4 5 6 8 9

C10

D

3

E

R

A

3

B

C

8

9

A B

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

10

1 2 7 4 5 6 8 9

10

D

3

E

R

A

3

B

C

A B C

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

E
10

1 2 7 4 5 6 8 9

10

D

3

R

A

3

B

C E

A B C

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

10

1 2 7 4 5 6 8 9

C10

D

3

R

A

B

E

A B

E

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

1 2 7 4 5 6 8 9

C10 3

R

B

E

D
A

10

A B

D E

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

1 2 7 4 5 6 8 9

A C10 3

R

B

E

D

B

D E

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

1 2 7 4 5 6 8 9

A C10 3

R

R

B

E

D

B

D E

Triangles in active list Vertex tree

Vertex Tree ExampleVertex Tree Example

1 2 7 4 5 6 8 9

A B C10

D

3

E

R

R

Triangles in active list Vertex tree

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

3

1

2

9

8 7

10

54

6 9

8

10

54

6

A

3

Fold Node A

Unfold Node A

Node->Subtris: triangles that disappear upon folding
Node->Livetris: triangles that just change shape

 Two categories of triangles affected:Two categories of triangles affected:

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

 The The key observationkey observation::
– Each node’s subtris can be computed offline Each node’s subtris can be computed offline

to be accessed quickly at run timeto be accessed quickly at run time
– Each node’s livetris can be maintained at run Each node’s livetris can be maintained at run

time, or lazily evaluated upon renderingtime, or lazily evaluated upon rendering

View-Dependent View-Dependent
SimplificationSimplification

 Any run-time criterion for folding and unfolding Any run-time criterion for folding and unfolding
nodes may be usednodes may be used

 Examples of view-dependent simplification Examples of view-dependent simplification
criteria:criteria:
– Screenspace error thresholdScreenspace error threshold
– Silhouette preservationSilhouette preservation
– Triangle budget simplificationTriangle budget simplification
– Gaze-directed perceptual simplification (discussed Gaze-directed perceptual simplification (discussed

by Martin later)by Martin later)

Screenspace Screenspace
Error ThresholdError Threshold

 Nodes chosen by projected areaNodes chosen by projected area
– User sets screenspace size thresholdUser sets screenspace size threshold
– Nodes which grow larger than threshold are Nodes which grow larger than threshold are

unfoldedunfolded

Silhouette PreservationSilhouette Preservation

 Retain more detail near silhouettesRetain more detail near silhouettes
– A A silhouette nodesilhouette node supports triangles on the supports triangles on the

visual contourvisual contour
– Use tighter screenspace thresholds when Use tighter screenspace thresholds when

examining silhouette examining silhouette
nodesnodes

Triangle Budget Triangle Budget
SimplificationSimplification

 Minimize error within specified number of Minimize error within specified number of
trianglestriangles
– Sort nodes by screenspace errorSort nodes by screenspace error
– Unfold node with greatest error, putting Unfold node with greatest error, putting

children into sorted listchildren into sorted list

Repeat until budget is reached Repeat until budget is reached

View-Dependent Criteria:View-Dependent Criteria:
Other PossibilitiesOther Possibilities

 Specular highlightsSpecular highlights: Xia describes a fast : Xia describes a fast
test to unfold likely nodestest to unfold likely nodes

 Surface deviationSurface deviation: Hoppe uses an : Hoppe uses an
elegant surface deviation metric that elegant surface deviation metric that
combines silhouette preservation and combines silhouette preservation and
screenspace error thresholdscreenspace error threshold

View-Dependent Criteria:View-Dependent Criteria:
Other PossibilitiesOther Possibilities

 Sophisticated surface deviation metrics:Sophisticated surface deviation metrics:
See Jon’s talk!See Jon’s talk!

 Sophisticated perceptual criteriaSophisticated perceptual criteria: :
See Martin’s talk!See Martin’s talk!

 Sophisticated temporal criteriaSophisticated temporal criteria: :
See Ben’s talk!See Ben’s talk!

Implementing VDS: Implementing VDS:
OptimizationsOptimizations

 Asynchronous simplificationAsynchronous simplification
– Parallelize the algorithmParallelize the algorithm

 Exploiting temporal coherenceExploiting temporal coherence
– Scene changes slowly over timeScene changes slowly over time

 Maintain memory coherent geometry Maintain memory coherent geometry
– Optimize for renderingOptimize for rendering
– Support for out-of-core renderingSupport for out-of-core rendering

 Algorithm partitions into two tasks:Algorithm partitions into two tasks:

 Run them in parallelRun them in parallel

Simplify

Task

Render

Task

Active Triangle List

…

Asynchronous SimplificationAsynchronous Simplification

Vertex Tree

Asynchronous SimplificationAsynchronous Simplification

 If If SS = time to simplify, = time to simplify, RR = time to render: = time to render:
– Single process Single process = (= (SS + + RR))
– Pipelined Pipelined = = maxmax((SS, , RR))
– Asynchronous Asynchronous = = R R

 The goal: efficient utilization of GPU/CPUThe goal: efficient utilization of GPU/CPU
– e.g., NV Vertex Array Range (VAR) renderinge.g., NV Vertex Array Range (VAR) rendering

Temporal CoherenceTemporal Coherence

 Exploit the fact that frame-to-frame Exploit the fact that frame-to-frame
changes are smallchanges are small

 Three examples:Three examples:
– Active triangle listActive triangle list
– Vertex treeVertex tree
– Budget-based simplificationBudget-based simplification

Exploiting Exploiting
Temporal CoherenceTemporal Coherence

 Active triangle listActive triangle list
– Could calculate active triangles every frameCould calculate active triangles every frame
– But…few triangles are added or deleted But…few triangles are added or deleted

each frameeach frame
– Idea: make only incremental changes to an Idea: make only incremental changes to an

active triangle listactive triangle list
 Simple approach: doubly-linked list of trianglesSimple approach: doubly-linked list of triangles
 Better: maintain coherent arrays with swappingBetter: maintain coherent arrays with swapping

Unfolded
Nodes

Boundary Nodes

Exploiting Exploiting
Temporal CoherenceTemporal Coherence

 Vertex TreeVertex Tree
– Few nodes change per frameFew nodes change per frame
– Don’t traverse whole treeDon’t traverse whole tree
– Do local updates only Do local updates only

at at boundary nodesboundary nodes

Temporal Coherence:Temporal Coherence:
Triangle Budget SimplificationTriangle Budget Simplification

 Exploiting temporal coherence in budget-Exploiting temporal coherence in budget-
based simplificationbased simplification
– Introduced by ROAM [Duchaineau 97]Introduced by ROAM [Duchaineau 97]
– Start with tree from last frame, recalculate Start with tree from last frame, recalculate

error for relevant nodeserror for relevant nodes
– Sort into two priority queues Sort into two priority queues

 One for potential unfolds, sorted on max error One for potential unfolds, sorted on max error
 One for potential folds, sorted on min errorOne for potential folds, sorted on min error

Temporal Coherence:Temporal Coherence:
Triangle Budget SimplificationTriangle Budget Simplification

 Then simplify:Then simplify:
– While budget is met, unfold max nodeWhile budget is met, unfold max node

 This is the node whose folding has created the most This is the node whose folding has created the most
error in the modelerror in the model

– While budget is exceeded, fold min nodeWhile budget is exceeded, fold min node
 This is the node that introduces the least error when This is the node that introduces the least error when

foldedfolded

– Insert parents and children into queuesInsert parents and children into queues

Repeat until errorRepeat until errormaxmax < error < errorminmin

Optimizing For RenderingOptimizing For Rendering

 Idea: maintain geometry in coherent arraysIdea: maintain geometry in coherent arrays

Active triangles Inactive triangles

Unfolded nodes Inactive nodesBoundary nodes

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Move Unfolded/Boundary Marker

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For RenderingOptimizing For Rendering

 Idea: use swaps to maintain coherenceIdea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering:Optimizing For Rendering:
Vertex ArraysVertex Arrays

 Biggest win: vertex arraysBiggest win: vertex arrays

– Actually, keep separate parallel arrays for Actually, keep separate parallel arrays for
rendering data (coords, colors, etc)rendering data (coords, colors, etc)

Unfolded nodes Inactive nodesBoundary nodes

Vertex array!

Optimizing For Rendering:Optimizing For Rendering:
Vertex Arrays on GeForce2Vertex Arrays on GeForce2

~64,000 Vertex Torus

0

2

4

6

8

10

12

Immediate Mode Display List Vertex Arrays Per-rendering
Compiled

Vertex Arrays

Alw ays Locked
Compiled

Vertex Arrays

VAR Video
Memory (no

rew rite)

VAR AGP
Memory (no

rew rite)

VAR Regular
Memory (no

rew rite)

VAR Video
Memory

(rew ritten)

VAR AGP
Memory

(rew ritten)

VAR Regular
Memory

(rew ritten)

T
o

ta
l
R

e
n

d
e
ri

n
g

 S
e
c
o

n
d

s

Triangles Trianlge Strips Quads Quad Strips

Plain old triangles
Triangles using
vertex arrays

Vertex arrays
in fast memory

Out-of-core RenderingOut-of-core Rendering

 Coherent arrays lend themselves to out-Coherent arrays lend themselves to out-
of-core simplification and rendering:of-core simplification and rendering:

…

These need to be in memory… These do not

Out-of-core RenderingOut-of-core Rendering

 Coherent arrays lend themselves to out-Coherent arrays lend themselves to out-
of-core simplification and rendering:of-core simplification and rendering:
– Only need active portions of triangle and Only need active portions of triangle and

node arraysnode arrays
– Implement arrays as memory-mapped filesImplement arrays as memory-mapped files

 Let virtual memory system manage pagingLet virtual memory system manage paging
 A prefetch thread walks boundary nodes, bringing A prefetch thread walks boundary nodes, bringing

their children into memory to avoid glitchestheir children into memory to avoid glitches

Summary: Summary:
VDS ProsVDS Pros

 Supports drastic simplification!Supports drastic simplification!
– View-dependent; handles the View-dependent; handles the

Problem With Large ObjectsProblem With Large Objects
– Hierarchical; handles the Hierarchical; handles the

Problem With Small ObjectsProblem With Small Objects
– Robust; does not require (or preserve) Robust; does not require (or preserve)

mesh topologymesh topology

Summary: Summary:
VDS ProsVDS Pros

 Rendering can be implemented efficiently Rendering can be implemented efficiently
using vertex arraysusing vertex arrays

 Supports rendering of models much Supports rendering of models much
larger than main memorylarger than main memory

Summary: Summary:
VDS ConsVDS Cons

 Increases CPU, memory overheadIncreases CPU, memory overhead
 Fastest rendering mode currently Fastest rendering mode currently

restricted to 65K vertices (April 2001) restricted to 65K vertices (April 2001)

Summary: Summary:
VDS ConsVDS Cons

 Be aware of Be aware of mesh foldovers:mesh foldovers:

10

54

6

1

3

7

2

8

9

10

54

6

1

3

2

9
A

7

Summary: Summary:
VDS ConsVDS Cons

 Be aware of Be aware of mesh foldovers:mesh foldovers:

8

Summary: Summary:
VDS ConsVDS Cons

 Be aware of Be aware of mesh foldovers:mesh foldovers:

10

54

6
3

2

8

9
A

Summary: Summary:
VDS ConsVDS Cons

 Be aware of Be aware of mesh foldovers:mesh foldovers:
– These can be very distracting artifactsThese can be very distracting artifacts

– Amitabh will talk about how to prevent themAmitabh will talk about how to prevent them

View-Dependent Versus View-Dependent Versus
Discrete LODDiscrete LOD

 View-dependent LOD is superior to View-dependent LOD is superior to
traditional discrete LOD when:traditional discrete LOD when:
– Models contain very large individual objects Models contain very large individual objects

(e.g., terrains)(e.g., terrains)
– Simplification must be completely automatic Simplification must be completely automatic

(e.g., complex CAD models)(e.g., complex CAD models)
– Experimenting with view-dependent Experimenting with view-dependent

simplification criteriasimplification criteria

View-Dependent Versus View-Dependent Versus
Discrete LODDiscrete LOD

 Discrete LOD is often the better choice:Discrete LOD is often the better choice:
– Simplest programming modelSimplest programming model
– Reduced run-time CPU loadReduced run-time CPU load
– Easier to leverage hardware:Easier to leverage hardware:

 Compile LODs into vertex arrays/display listsCompile LODs into vertex arrays/display lists
 Stripe LODs into triangle stripsStripe LODs into triangle strips
 Optimize vertex cache utilization and suchOptimize vertex cache utilization and such

View-Dependent Versus View-Dependent Versus
Discrete LODDiscrete LOD

 Applications that may want to use:Applications that may want to use:
– Discrete LODDiscrete LOD

 Video games (but much more on this later…)Video games (but much more on this later…)
 SimulatorsSimulators
 Many walkthrough-style demosMany walkthrough-style demos

– Dynamic and view-dependent LODDynamic and view-dependent LOD
 CAD design review toolsCAD design review tools
 Medical & scientific visualization toolkitsMedical & scientific visualization toolkits
 Terrain flyovers (much more later…)Terrain flyovers (much more later…)

Continuous LOD: Continuous LOD:
The Sweet Spot?The Sweet Spot?

 Continuous LOD may be the right Continuous LOD may be the right
compromise on modern PC hardwarecompromise on modern PC hardware
– Benefits of fine granularity without the cost of Benefits of fine granularity without the cost of

view-dependent evaluationview-dependent evaluation
– Can be implemented efficiently with regard toCan be implemented efficiently with regard to

 MemoryMemory
 CPU CPU
 GPUGPU

 Implementation: Implementation: VDSlibVDSlib
– A public-domain view-dependent A public-domain view-dependent

simplification and rendering packagesimplification and rendering package
– Flexible C++ interface lets users:Flexible C++ interface lets users:

 Construct vertex trees for objects or scenesConstruct vertex trees for objects or scenes
 Specify with callbacks how to simplify, cull, Specify with callbacks how to simplify, cull,

and render themand render them

– Available at Available at http://vdslib.virginia.eduhttp://vdslib.virginia.edu

VDSlibVDSlib

VDSlib:VDSlib:
Ongoing WorkOngoing Work

 Ongoing research projects using VDSlib:Ongoing research projects using VDSlib:
– Out-of-core LOD for interactive rendering of Out-of-core LOD for interactive rendering of

trulytruly massive models massive models
– Perceptually-guided view-dependent LOD, Perceptually-guided view-dependent LOD,

including gaze-directed techniquesincluding gaze-directed techniques
– Non-photorealistic rendering using VDSlib as Non-photorealistic rendering using VDSlib as

a frameworka framework

The EndThe End

Appendix:Appendix:
Related WorkRelated Work

 Hoppe: Progressive Meshes (SIGGRAPH 96, Hoppe: Progressive Meshes (SIGGRAPH 96,
SIGGRAPH 97, other papers)SIGGRAPH 97, other papers)
– Edge collapse vs. vertex mergingEdge collapse vs. vertex merging
– Pros:Pros:

 Dynamic, view-dependent simplificationDynamic, view-dependent simplification
 Elegant scheme for mesh attributesElegant scheme for mesh attributes

– Cons:Cons:
 Requires clean mesh topologyRequires clean mesh topology
 Slow preprocess (though not implicit to PM)Slow preprocess (though not implicit to PM)
 Still per-object LODStill per-object LOD

Appendix: Appendix:
Web ResourcesWeb Resources

 VDSlib: VDSlib: http://vdslib.virginia.eduhttp://vdslib.virginia.edu
– A public-domain view-dependent simplification libraryA public-domain view-dependent simplification library

 My work on view-dependent simplification: My work on view-dependent simplification:
http://www.cs.virginia.edu/~luebke/simplification.htmlhttp://www.cs.virginia.edu/~luebke/simplification.html
– A SIGGRAPH paperA SIGGRAPH paper
– My dissertation on VDSMy dissertation on VDS
– The attached tech report on VDS for CAD applicationsThe attached tech report on VDS for CAD applications
– A survey of LOD algorithms written for graphics developersA survey of LOD algorithms written for graphics developers

Appendix: Appendix:
Web ResourcesWeb Resources

 Hughes Hoppe’s work on progressive meshes:Hughes Hoppe’s work on progressive meshes:
http://www.research.microsoft.com/~hhoppehttp://www.research.microsoft.com/~hhoppe

– 2 SIGGRAPH papers2 SIGGRAPH papers

– A paper on efficient implementation of progressive meshesA paper on efficient implementation of progressive meshes

– A paper on terrain rendering using progressive meshesA paper on terrain rendering using progressive meshes

– Much more…Much more…
 Michael Garland’s work on quadric error metrics:Michael Garland’s work on quadric error metrics:

http://www.uiuc.edu/~garlandhttp://www.uiuc.edu/~garland

– A SIGGRAPH paperA SIGGRAPH paper

– Garland’s dissertation on QEMGarland’s dissertation on QEM

– Follow-up papers, e.g. extending QEM to surface attributesFollow-up papers, e.g. extending QEM to surface attributes

– Public domain code for generating LODs with QEMPublic domain code for generating LODs with QEM

Appendix: Appendix:
Web ResourcesWeb Resources

 The Multi-Tesselation (MT) home page:The Multi-Tesselation (MT) home page:
http://www.disi.unige.it/person/MagilloP/MT/http://www.disi.unige.it/person/MagilloP/MT/
– A different approach to dynamic and view-dependent A different approach to dynamic and view-dependent

simplification by De Floriani, Magillo, and Puppo. simplification by De Floriani, Magillo, and Puppo.
– Includes code and sample softwareIncludes code and sample software

 David Luebke. David Luebke. Robust View-Dependent Simplification Robust View-Dependent Simplification
For Very Large-Scale CAD VisualizationFor Very Large-Scale CAD Visualization, University of , University of
Virginia Tech Report CS-99-33.Virginia Tech Report CS-99-33.
– An updated version of the original SIGGRAPH ‘97 paper An updated version of the original SIGGRAPH ‘97 paper

describing the view-dependent simplification framework describing the view-dependent simplification framework
presented here. presented here.

Appendix: Appendix:
Attached PapersAttached Papers

 David Luebke, Jonathan Cohen,Nathaniel Williams, David Luebke, Jonathan Cohen,Nathaniel Williams,
Mike Kelley, Brenden Schubert . Mike Kelley, Brenden Schubert . Perceptually Perceptually
Guided Simplification of Lit, Textured Meshes.Guided Simplification of Lit, Textured Meshes.
University of Virginia Tech Report CS-2002-07.University of Virginia Tech Report CS-2002-07.
– Describes ongoing work applying perceptual metrics (see Describes ongoing work applying perceptual metrics (see

Martin’s talk) to view-dependent polygonal simplification. Martin’s talk) to view-dependent polygonal simplification.

Appendix: Appendix:
Attached PapersAttached Papers

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

 Computing livetris and subtris:Computing livetris and subtris:
– node->livetrisnode->livetris = triangles with exactly = triangles with exactly

one corner vertex supported by nodeone corner vertex supported by node
– node->subtrisnode->subtris = triangles with: = triangles with:

 Two or three corners in different subnodes Two or three corners in different subnodes
 No two corners in the same subnodeNo two corners in the same subnode

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

A Node

Subnodes

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

This is a
livetri of
the node

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

This is a
subtri of
the node

The Vertex Tree:The Vertex Tree:
Livetris and SubtrisLivetris and Subtris

This is neither.

 It’s a subtri
 of this subnode

	Advanced Issues In Level Of Detail
	Course Introduction
	Course Prerequisites
	Course Topics
	Course Schedule
	Slide 6
	Speakers In Order of Appearance
	Frameworks for LOD
	Slide 9
	Motivation: Preaching To The Choir
	Motivation: Big Models
	Big Models: Submarine Torpedo Room
	Big Models: Coal-fired Power Plant
	Big Models: Plant Ecosystem Simulation
	Big Models: Double Eagle Container Ship
	Big Models: The Digital Michelangelo Project
	Level of Detail: The Basic Idea
	Level of Detail: Traditional Approach
	Slide 19
	Traditional Approach: Discrete Level of Detail
	Discrete LOD: Advantages
	Slide 22
	Discrete LOD: Disadvantages
	Drastic Simplification: The Problem With Large Objects
	Drastic Simplification: The Problem With Small Objects
	Drastic Simplification
	Continuous Level of Detail
	Continuous LOD: Advantages
	Slide 29
	Slide 30
	View-Dependent LOD: Examples
	Slide 32
	Slide 33
	Slide 34
	View-Dependent LOD: Advantages
	An Aside: Hierarchical LOD
	An Aside: Hierarchical LOD
	View-Dependent LOD: Algorithms
	Overview: The VDS Algorithm
	Slide 40
	Data Structures
	The Vertex Tree
	The Vertex Tree: Folding And Unfolding
	Vertex Tree Example
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	The Vertex Tree: Livetris and Subtris
	Slide 58
	View-Dependent Simplification
	Screenspace Error Threshold
	Silhouette Preservation
	Triangle Budget Simplification
	View-Dependent Criteria: Other Possibilities
	Slide 64
	Implementing VDS: Optimizations
	Asynchronous Simplification
	Slide 67
	Temporal Coherence
	Exploiting Temporal Coherence
	Slide 70
	Temporal Coherence: Triangle Budget Simplification
	Slide 72
	Optimizing For Rendering
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Optimizing For Rendering: Vertex Arrays
	Optimizing For Rendering: Vertex Arrays on GeForce2
	Out-of-core Rendering
	Slide 88
	Summary: VDS Pros
	Slide 90
	Summary: VDS Cons
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	View-Dependent Versus Discrete LOD
	Slide 97
	Slide 98
	Continuous LOD: The Sweet Spot?
	VDSlib
	VDSlib: Ongoing Work
	The End
	Appendix: Related Work
	Appendix: Web Resources
	Slide 105
	Slide 106
	Appendix: Attached Papers
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

