
Semiautomatic Simplification

 Gong Li Benjamin Watson
 gongli@cs.ualberta.ca watson@nwu.edu
 Dept. Computing Science Dept. Computer Science
 Univ. Alberta Northwestern Univ.
 Edmonton, Alberta 1890 Maple Ave
 CANADA T6G 2H1 Evanston, IL 60201 USA

ABSTRACT
We present semisimp, a tool for semiautomatic simplification
of three dimensional polygonal models. Existing automatic
simplification technology is quite mature, but is not sensitive to
the heightened importance of distinct semantic model regions
such as faces and limbs, nor to simplification constraints imposed
by model usage such as animation. semisimp allows users to
preserve such regions by intervening in the simplification process.
Users can manipulate the order in which basic simplifications are
applied to redistribute model detail, improve the simplified
models themselves by repositioning vertices with propagation to
neighboring levels of detail, and adjust the hierarchical
partitioning of the model surface to segment simplification and
improve control of reordering and position propagation.

ACM Category and Subject Descriptor: I.3.5 [Computer
Graphics] Computational Geometry and Object Modeling -
hierarchy and geometric transformations

Additional Keywords: model simplification, multiresolution
modeling

1 MOTIVATION
Researchers have for several years recognized the need to reduce
the complexity of polygonal models, while at the same time
preserving their appearance and meaning. This has led to a large
and useful body of research on automating this process [6].
However, particularly when models are simplified to a few
thousands of vertices or less, automatic algorithms show their
limitations. Among these are:

• Semantic blurring. Automatic algorithms use fairly simple
error measures to guide simplification. These measures
cannot adequately gauge the impact of changes to the model
that may blur or completely remove features containing high
level perceptual or semantic meaning.

• Functional blurring. Models may be put to uses that cannot
be divined from their geometry, topology or attributes. Such
uses may impose certain constraints on the simplification
process. For example, when models are animated with
articulated skeletons, simplification across the joints of the

skeleton can be extremely problematic.

• Inadequate control. It may be possible for users to embed
additional information into the model to enable automatic
simplification to avoid semantic and functional blurring.
Nevertheless, users would ultimately like to have this control
themselves, particularly when simplified models have a
manageable number of faces. Current algorithms offer only
the most indirect sort of control through command line
parameters.

These limitations have led us to create the semiautomatic
simplification tool semisimp, which provides control of the
simplification process and enables avoidance of both semantic
and functional blurring.

2 OVERVIEW
semisimp is a unique synthesis of simplification and
multiresolution modeling functions, emphasizing the
improvement of aggressively simplified models. It begins by
accepting a fully detailed model as input and applying an
automatic simplification algorithm to construct a simplification
hierarchy. Users can then edit and improve this hierarchy for
their target application in three ways:

• Order manipulation. Users can adjust the distribution of
detail on simplified models by changing the order in which
model regions are simplified. This is accomplished through
matching changes in the order in which the simplification
hierarchy is traversed.

• Geometric manipulation. Users can improve the positions of
vertices in simplified models. These improvements can be
automatically propagated to both simpler and more detailed
models. Propagation to more detailed models can be
attenuated to preserve the shape of the original model.

• Hierarchy manipulation. Users can halt the simplification,
modify the partitioning of the original model described by the
partial simplification hierarchy to match semantics and
intended model use, and continue simplification in a
segmented fashion. Since both geometric and order
manipulation operate in the context of the simplification
hierarchy, their effectiveness is greatly increased.

Having improved the simplification hierarchy, users can extract
discrete levels of detail from this hierarchy, or output the
hierarchy itself for use in applications that dynamically adjust
level of detail [10,14,19].

3 CONTRIBUTIONS
These combined functions offer users a new degree of control
over model simplification, and enable users to manually improve
heavily simplified models with automatic assistance. By

repartitioning the model, redistributing detail, and improving
simplified geometry, users can effectively reduce semantic and
functional blurring. Novel components of the system include:

• Propagation of repositioned vertices to neighboring levels of
detail in a simplification hierarchy, with attenuation of this
propagation to preserve the shape of the original model.

• Manual restructuring of the simplification hierarchy, allowing
segmented simplification of the model and improved control
of simplification order and geometry propagation.

In the remainder of this paper, we review related work (section 4),
the functions of semisimp (section 5), and give examples of
semisimp’s usage (section 6).

4 RELATED RESEARCH
Automatic model simplification is by now a mature area of
research, with dozens of very effective algorithms. We will not
attempt a comprehensive review of these algorithms, but will
instead focus on those algorithms of particular relevance in our
research context. For an excellent comprehensive review, see [6].
semisimp can be used with a large number of automatic

simplification algorithms that implement what we call the greedy
search paradigm. These algorithms work by identifying a number
of possible primitive simplifications and choosing among them,
using an iterative, greedy search algorithm. This is achieved by
estimating the error each primitive simplification would introduce
using a simplification error measure, and inserting it into a
primitive simplification queue that is sorted by error. During each
iteration, the primitive simplification that would introduce the
least error is removed from the front of the queue, the complex
surface it removes is approximated using a simplification filter,
and the queue is updated to include the new primitive
simplifications possible in the affected model neighborhood. The
history of this process when allowed to run to completion
describes a simplification hierarchy with the original model in its
leaves, and simplified versions of the model in its interior nodes.

There are many simplification algorithms that fit this paradigm,
and they use a variety of primitive simplifications. The algorithm
described by Schroeder, Zarge and Lorenson in [17] removes one
vertex at a time. Algorithms that remove (collapse) an edge in
each primitive simplification include those by Hoppe [9], Ronfard
and Rossignac [15] and Garland and Heckbert [4]. Hamann’s
algorithm [7] removes one face at a time. Brodsky and Watson
remove vertex clusters [1].

Simplification algorithms that do not describe and traverse a
simplification hierarchy during simplification cannot easily be
used with semisimp, though they might conceivably produce
hierarchy by being chained to simplify previously simplified
output. These include vertex clustering algorithms by Rossignac
and Borrel [16] and Low and Tan [13], face merging algorithms
[8,11], Turk’s retiling algorithm [18], and the simplification
envelopes algorithm [3]. Some semisimp functions make use
of certain components of the greedy search paradigm (see below
for details). In particular, semisimp makes use of the
simplification filter and error measure, and manipulates the
primitive simplification queue. Adapting semisimp for use
with automatic simplification algorithms lacking one or more of
these components would require finding or generating substitutes
for these paradigm components.

We are aware of only one other tool for semiautomatic
simplification, the Zeta tool from Cignoni, Montani, Rocchini and
Scopigno [2]. Zeta saves the order in which primitive
simplifications are performed, and allows users to manipulate that
order. Since Zeta does not make use of simplification hierarchy,

there are few order manipulation constraints. However, lacking
hierarchy, Zeta does not support propagated geometry
manipulation, nor allow segmentation of the simplification
process by model region through hierarchy manipulation.

Because it enables users to manipulate geometry in the
multiresolution context of the simplification hierarchy,
semisimp is related to research on multiresolution modeling
[12,20]. However, while the focus of multiresolution modeling is
editing of the original model with control of scale, our focus is the
improvement of simplified versions of the original model.
Geometric manipulations made with semisimp will typically be
much more minor than edits made with multiresolution modelers.
Functions unique to our simplified focus include user control of
detail distribution through order manipulation, attenuation of
geometric manipulation propagation, and partitioning control with
hierarchy manipulation.

5 semisimp

semisimp is a semiautomatic simplification tool that allows
modelers to intervene manually in the simplification process.
Users begin by loading the model to be simplified into
semisimp, at which point an automatic simplification algorithm
is applied. Users can then inspect the results of this algorithm at
all levels of detail, improve them where appropriate, and save the
results to a file. Saved results may be either a discrete level of
detail, or the entire simplification hiearchy.

We implemented semisimp in a Linux environment with
OpenGL and Motif libraries. We currently use qslim [4] to
perform automatic simplification. The version of qslim we
apply considers mesh boundaries and vertex attributes such as
texture coordinates and normals during simplification [5]. Input
models need not be manifold or closed, though semisimp works
most effectively when models are manifold. Our current
implementation of semisimp uses the edge collapse as its
primitive simplification, and so works best when models are
largely topologically connected.

Below we describe in detail the order, geometry and hierarchy
manipulations which allow users to implement model
simplification improvements. We begin with a brief review of
terminology and data structures.

5.1 Terminology and Data Structures
semisimp saves and uses as its core data structure the hierarchy
created by automatic simplification algorithms using the greedy
search paradigm. A model that approximates the original model
in its entirety describes a cut across the simplification hierarchy
(see Figure 1). Each hierarchy node in a cut represents a portion

Figure 1: A cut across a simple simplification hierarchy.

of the original model, called a patch. Taken collectively, all the
nodes in a cut describe a partitioning of the original model.

Though the simplification hierarchy is a partial ordering of
primitive simplifications (a parent node’s simplification must be
made after its child’s), it is not a complete ordering. semisimp
records the order in which simplifications are to be applied in its
order list. Each element of this list refers to a node in the
simplification hierarchy, and the ordering of this list describes a
complete ordering of all primitive simplifications. We call the
end of the list containing the first several simplifications the early
end, while we refer to the other end of the list with the last several
simplifications the late end.

The current level of detail at which the model is viewed is
indicated by the LOD position. In pointing at the kth element of
an order list, the LOD position indicates that the first k primitive
simplifications should be performed. Each possible LOD position
corresponds to a cut across the simplification hierarchy.

5.2 Order Manipulation
After the original model is loaded into semisimp, the original
model is automatically simplified, and the order list filled. Each
element of the order list refers to a node in the automatically
generated simplification hierarchy, and the order of those
elements mirrors the order in which the automatic simplification
algorithm applied its primitive simplifications. Users can
navigate through the various levels of detail in the current
simplification hierarchy and order list by using a slider to change
the LOD position (see Figure 2).

Often a user will be dissatisfied with the distribution of detail
provided by the automatic simplification algorithm. For example,
on the Stanford bunny, users may wish to exchange a decrease in
triangles on the leg for more triangles on the head. semisimp

allows users to act on this wish by reordering the elements in the
order list. Users can effect a refining reordering by moving a
primitive simplification to a later position in the order list,
delaying the simplification. Conversely, users can effect an
simplifying reordering by moving a list element to an earlier order
list position, performing the simplification more promptly.

In adjusting positions of order list elements, care must be taken
to maintain the partial ordering of primitive simplifications
defined by the simplification hierarchy. During a refining
reordering, a list element c is moved from early position i to late
position k, where i < k. If the parent p of c is located at the
position j, where i < j < k, it is moved to position k+1 in the order
list. Similar actions are taken for any other ancestors of c found
in the range (j,k). During a simplifying reordering, if the child c
of the relocated order list element p is found between starting
position k and new position i, it is relocated to position i-1.
Similar actions are taken for any other children or descendents of
p found in the same range.
semisimp offers the user several interaction techniques for

accomplishing both refining and simplifying reordering. With
local simplification and local refinement, users can move the
parents or children of a node visible in the current cut to the
current LOD position. While viewing the current cut, users
highlight a single vertex, a series of edges, or a patch. They then
indicate that they would like the highlighted nodes(s) simplified
(or refined). All highlighted nodes are visually replaced in the
current cut with their parents (children) in the simplification
hierarchy. In the case of local simplification, other unhighlighted
nodes may also be replaced along with their highlighted siblings.
Local simplification is illustrated in Figure 3.

With feature preservation and feature elimination, users can
move the node(s) visible in one LOD position to another LOD
position. Users highlight one or more visible nodes in the current
cut as above, and then navigate to a different LOD position and
indicate that they would like these nodes to be visible there. For
feature preservation, users move from an early, detailed LOD
position to a later, simplified one. For feature elimination, users
move from a late LOD position to an earlier one. Feature
preservation is presented (exaggerated for illustration) in Figure 4.

5.3 Geometric Manipulation
When viewing a certain cut across the simplification hierarchy,

semisimp allows users to improve the position of vertices in the
cut using the mouse. To maintain smoothness in the current cut
and across different levels of detail, changes in position can be

Figure 2: Viewing different levels of detail. Here, the cow on
the left has 10,000 vertices, the cow on the right 100.

Figure 4: Feature preservation along the bunny’s leg.

Figure 3: Local simplification of the bunny’s leg.

Figure 5: The combined effects of neighbor, descendant and
ancestor propagation during geometric manipulation. At the
top is the manipulated level of detail, followed by affected
higher and lower levels of detail.

Figure 6: The effects of geometric propagation to children
(finer levels of detail) with attenuation. As the detail becomes
finer, the manipulation fades away.

Figure 7: The head of the bunny is made a separate partition
and subtree, then order manipulation simplifies the head
without any blurring at the neck.

Figure 8: An illustration of hierarchy manipulation. The user
identifies nodes A B and C as a new partition, resimplification
then begins to generate a subtree over the partition.

propagated to topological neighbors in the current cut, as well as
to ancestors and descendants of the affected nodes in the cut. We
should note that semisimp is not a full multiresolution modeling
tool, and need only support fairly minor edits designed to make a
simplified model look more like the original it represents.
Therefore the filtering and smoothing techniques we use here are
fairly modest, and do not include more advanced filtering and
fairing techniques like those described in [20] and [12].

Propagation to topological neighbors of the manipulated vertex
m is accomplished by simply interpolating the vector of position
change → across a topological circle with user defined radius r
(vertices within r edges of the repositioned vertex are affected by
the change). Users can control the shape of the propagated
change by manipulating a Bezier curve B defined on the number
of edges, with B(0) = 1 and B(r) = 0. Thus the vector of change

i
→ for a vertex i edges away from the manipulated vertex is: i

→
= B(i) →.

To propagate position change to hierarchical ancestors of m, we
use the simplification filter implemented by the automatic
simplification algorithm (see section 4). The simplification filter
in qslim is the quadric, the sum of the squared plane equations
of the faces being summarized, which is minimized to find an
approximating vertex position (see [4] for details). We redefine
the quadric Qm of m using the planes of the surrounding simplified
faces. The quadric Qp minimized to find the adjusted position of
the parent p of m is then recalculated by once again summing the
quadrics of p’s children (including Qm). The quadrics of more
distant ancestors of m are also recalculated with new sums.

We also provide propagation of the position change to the
children of m. The propagation can be direct, allowing
modification of the original model; or attenuated, preserving the
shape of the original model while allowing some position change
at levels of detail close to the manipulated cut.

Direct propagation to descendents is achieved by calculating an
orthogonal local coordinate frame for m in its unmanipulated
state, and then transforming the global coordinates of m’s
descendents into detail vectors in the resulting local coordinate
space. After m is manipulated, a new local frame is found, and
the detail vectors combined with the new frame to generate new
global coordinates for m’s descendents. We calculate m’s frame
before and after manipulation by averaging the normal vectors of
the faces surrounding m in the current cut to find a vector z→,
projecting one of the edges connected to m onto plane orthogonal
to z→ to find y→, and setting x→ to y→ × z→. Thus descendents of
m are not only translated, but also reoriented. We considered
nested reorientation with calculation of a local frame for every
descendent; however, our simplification optimized hierarchies are
not balanced and organized into successive frequency bands for
multiresolution modeling like those in [20] and [12], making it
unclear which faces surround each descendent and frame
calculation somewhat arbitrary.

We cast attenuated propagation to descendents as an
interpolation problem. If the difference in global position of one
of m’s descendents c before and after direct propagation is d→,
then the attenuated difference in position of c will be td→, where 0
≤ t ≤ 1, with t = 1 at m and t = 0 at any descendent which is a leaf
node on the simplification hierarchy. We were tempted to link the
value of t to the number of hierarchical generations between c and
m, but that proved inappropriate, since our simplification
hierarchies are usually unbalanced, with leaves having many
different depths. We found it most effective to link t to geometry
by using the automatic simplification algorithm’s simplification
error measure (see again section 4). In qslim this measure is the
value ε returned by the minimization of the quadric used as the
simplification filter. Since the quadrics represent the sum of

squared distances, if εc and εm are the error measures of the
simplifications that produced c and m, we set t = sqrt(εc/εm).

We have found geometric manipulation most effective with all
three sorts of propagation: to neighbor, ancestor, and descendant.
Figure 5 shows the effects of such a combined propagation. We
demonstrate attenuation in Figure 6. Again, in both cases we
exaggerate the edit for the purposes of illustration.

5.4 Hierarchy Manipulation
To reduce semantic and functional blurring, semisimp allows
users to halt automatic simplification, correct the current
partitioning of the model, and then continue simplification in a
segmented fashion. In this way, the head on the Stanford bunny
might be simplified separately from the body (see Figure 7). We
call this hierarchy manipulation because it changes the structure
of the simplification tree by constructing a simplification subtree
containing and simplifying the user defined patch. Users gain a
new degree of control over both order and geometric
manipulation. In the case of order manipulation, hierarchy
manipulation sidesteps the constraints of the partial ordering
imposed by the automatically defined simplification hierarchy.
Hierarchy manipulation improves geometry manipulation by
giving users explicit control of propagation to ancestors and
descendants.

To manipulate hierarchy, users identify a collection of nodes in
the currently viewed cut that should be formed into a new patch
and separate subtree s of the hierarchy (see Figure 8). s is formed
by recreating the state of the automatic simplification algorithm at
the moment it reached the cut (this state may in fact never have
been reached if the user has manipulated simplification order),
and then modifying that state so that the nodes of s cannot be
merged with the remainder of the hierarchy. The automatic
simplification algorithm is then restarted and executed until s has
been reduced to a single node. At this point, the simplification
algorithm’s state is again modified to allow the newly formed root
of s to be merged with the remainder of the hierarchy, and the
simplification algorithm is executed to completion.
semisimp recreates simplification state by creating a primitive

simplification queue that corresponds to the current cut. With
qslim, this means the queue contains one primitive
simplification entry for each edge in the current cut, sorted by the
current simplification error measure. We then ensure that the user
defined patch and matching subtree s will not be merged with the
remainder of the simplification hierarchy by removing all
primitive simplifications crossing the patch boundary from the
primitive simplification queue (vertices on the patch boundary are
assigned to the patch surround). When qslim has simplified the
patch to a single node, the primitive simplifications previously
removed are reinserted into the primitive simplification queue,
minus any that have become redundant during the preceding
simplification. Further simplification then incorporates the fully
simplified patch.

Care must be taken when using hierarchy manipulation, since it
completely rebuilds the higher levels of the simplification
hierarchy, making all previous order and geometry manipulations
obsolete.

6 USAGE EXAMPLES
In this section we present several examples demonstrating the
combined application of order, geometric, and hierarchy
manipulation with semisimp. Figure 9 illustrates the reduction
of semantic blurring in a cow model. In the upper row is the
original model. The middle row shows the results of automatic
simplification with qslim. The bottom row shows the results of

improvement with semisimp. Preservation of the semantically
important head and udder has been improved. Users were able to
achieve this improvement (and the others discussed in this
section) with interactions only at the regions of interest, rather
than across the entire model.

Semantic regions may also have an important functional
distinction in the target application. For example in animation,
regions on articulated models are matched to segments of their
skeletons. Automatic simplification can blur the boundaries
between these regions. Figure 7 illustrates the use of semisimp
to preserve a boundary that could have both semantic and
functional significance: the neck of the bunny. The head and the
body are simplified differently around this boundary.

Finally, Figure 10 illustrates the use of semisimp to prevent a
different kind of functional blurring: the distortion of a visual
discontinuity inside a texture. Such a discontinuity is difficult to
detect automatically from model attributes. The first part of the
figure shows the original horse model with a single texture
applied to it. Although the texture covers the entire model, there
is an oval spot in the middle of the texture. After automatic
simplification (with texture coordinate preservation), the spot is
somewhat distorted. The final part of the figure shows the results
after semiautomatic improvement of the simplification with
semisimp. The oval spot is well preserved.

7 FURTHER RESEARCH
Many improvements and extensions of semisimp are possible.
In particular, geometric manipulations propagated to descendants
can easily introduce discontinuities in the model surface when the
manipulations deviate significantly from the shape of the input
model. It may be possible to reduce these discontinuities with
more advanced filtering and smoothing schemes. Propagated
geometric manipulations can also alter previously made geometric
manipulations. A more elaborate interpolation scheme between
manipulated nodes of the simplification hierarchy might be able to
solve this problem. More complex editing facilities allowing
insertion and deletion of vertices and perhaps editing of non-
geometric attributes would be a valuable extension. Finally,
although semiautomatic simplification of extremely large models
was not our goal, optimization of semisimp to handle larger
models would be useful. With our current implementation,
certain operations (e.g. changing the LOD position) can take
several seconds when input models contain several tens of
thousands of polygons.

8 CONCLUSION
We have presented semisimp, a tool for the semiautomatic
simplification of highly detailed models. This tool allows users to
improve the quality of aggressively simplified models by
manipulating the order in which primitive simplifications are
applied, the vertex positions of simplified models, and the
hierarchical partitioning of the model formed during
simplification. With these abilities, users can manually preserve
semantically and functionally distinct model regions that are
blurred by automatic simplification algorithms, including facial
details, regions bound to articulated skeletons, and details
embedded in texture mapped images.

9 ACKNOWLEDGEMENTS
Dr. John Buchanan, Director of Advanced Technology at
Electronic Arts, provided inspiration, financial support and 3D
models for this research. The Stanford bunny was provided
through the courtesy of the Stanford computer graphics lab.

10 REFERENCES
[1] D. Brodsky & B. Watson. Model simplification through

refinement. Proceedings Graphics Interface, pp. 221-228
[2] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno. Zeta: a

resolution modeling system. GMIP: Graphical Models and
Image Processing, 60(5), pp. 305-329.

[3] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.
Agarwal, F. Brooks, Jr. & W. Wright. Simplification
envelopes. Computer Graphics (SIGGRAPH 96 Proceedings),
pp. 119-128.

[4] M. Garland & P. Heckbert. Surface simplification using
quadric error metrics. Computer Graphics (SIGGRAPH 1997
Proceedings), pp. 209-216.

[5] M. Garland & P. Heckbert. Simplifying surfaces with color
and texture using quadric error metrics. Proceedings IEEE
Visualization, pp. 263-269.

[6] M. Garland. Multiresolution modeling: survey and future
opportunities. Eurographics ’99, State of the Art Report
(STAR).

[7] B. Hamann. A data reduction scheme for triangulated
surfaces. Computer Aided Geometric Design, 11.

[8] P. Hinker & C. Hansen. Geometric optimization. Proceedings
IEEE Visualization, pp. 189-195.

[9] H. Hoppe. Progressive meshes. Computer Graphics
(SIGGRAPH 1996 Proceedings), pp. 99-108.

[10] H. Hoppe. View-dependent refinement of progressive
meshes. Computer Graphics (SIGGRAPH 1997 Proceedings),
pp. 189-198.

[11] A. Kalvin & R. Taylor. Superfaces: polygonal mesh
simplification with bounded error. IEEE Computer Graphics &
Applications, 16(3), pp. 64-77

[12] L. Kobbelt, S. Campagna, J. Vorsatz, & H.-P. Seidel.
Interactive multiresolution modeling on arbitrary meshes.
Computer Graphics (SIGGRAPH 1998 Proceedings), pp. 105-
114.

[13] K. Low & T. Tan. Model simplification using vertex
clustering. Symposium on Interactive 3D Graphics, pp. 75-82.

[14] D. Luebke & C. Erikson. View-dependent simplification of
arbitrary polygonal environments. Computer Graphics
(SIGGRAPH 1997 Proceedings), pp. 199-208.

[15] R. Ronfard & J. Rossignac. Full range approximation of
triangulated polyhedra. Computer Graphics Forum, 15(3), pp.
67-76, 462.

[16] J. Rossignac & P. Borrel. Multiresolution 3D
approximations for rendering complex scenes. In Modeling and
Computer Graphics: Methods and Applications, pp. 455-465.
Springer Verlag: Berlin.

[17] W. Schroeder, J. Zarge & W. Lorenson. Decimation of
triangle meshes. Computer Graphics (SIGGRAPH 1992
Proceedings), pp.65-70.

[18] G. Turk. Re-tiling polygonal surfaces. Computer Graphics
(SIGGRAPH 1993 Proceedings), pp. 55-64.

[19] J. Xia & A. Varshney. Dynamic view-dependent
simplification for polygonal models. Proceedings IEEE
Visualization ’96.

[20] D. Zorin, P. Schroeder & W. Sweldens. Interactive
multiresolution mesh editing. Computer Graphics (SIGGRAPH
1997 Proceedings), pp. 259-268.

Figure 9: Using the combined functions of semisimp
to reduce semantic blurring of the head. On the top is
the original cow. In the middle, the automatically
simplified cow with 588 faces. At the bottom, the
manually improved cow, also with 588 faces. Notice
the strong similarity of the bottom and top models.

Figure 10: Using the combined functions of
semisimp to reduce functional blurring. Here, the
entire horse is covered with texture, but there is a strong
color discontinuity in the texture. The two lower
models have the same number of faces, with the middle
produced by qslim, the bottom with semisimp.

