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1. INTRODUCTION

1.1 Motivation

In 3D computer graphics, polygonal models are often used to represent individual objects
and entire environments. Planar polygons, especialy triangles, are used primarily because
they are easy and efficient to render. Their smple geometry has enabled the development of
custom graphics hardware, currently capable of rendering millions or even tens of millions of
triangles per second. In recent years, such hardware has become available even for personal
computers. Due to the availability of such rendering hardware and of software to generate
polygonal models, polygons will continue to play an important role in 3D computer graphics

for many years to come.

However, the ssimplicity of the triangle is not only its main advantage, but its main disad-
vantage as well. It takes many triangles to represent a smooth surface, and environments of
tens or hundreds of millions of triangles or more are becoming quite common in the fields of
industrial design and scientific visualization. For instance, in 1994, the UNC Department of

Computer Science received a model of a notional submarine from the Electric Boat division

Figure 1: The auxiliary machine room of a notional submarine model: 250,000 triangles



of General Dynamics, including an auxiliary machine room composed of 250,000 triangles
(see Figure 1) and a torpedo room composed of 800,000 triangles. In 1997, we received from
ABB Engineering a coarsely-tessellated model of an entire coal-fired power plant, composed
of over 13,000,000 triangles. It seems that the remarkable performance increases of 3D
graphics hardware systems cannot yet match the desire and ability to generate detailed and
realistic 3D polygona models.

1.2 Polygonal Simplification

This imbalance of 3D rendering performance to 3D model size makes it difficult for
graphics applications to achieve interactive frame rates (10-20 frames per second or more).
Interactivity is an important property for applications such as architectural walkthrough,
industrial design, scientific visualization, and virtual reality. To achieve this interactivity in

spite of the enormity of data, it is often necessary to trade fidelity for speed.

We can enable this speed/fidelity tradeoff by creating a multi-resolution representation of
our models. Given such a representation, we can render smaller or less important objects in
the scene at a lower resolution (i.e. using fewer triangles) than the larger or more important
objects, and thus we render fewer triangles overall. Figure 2 shows a widely-used test model:
the Stanford bunny. This model was acquired using a laser range-scanning device; it contains
over 69,000 triangles. When the 2D image of this model has afairly large area, this may be a
reasonable number of triangles to use for rendering the image. However, if the image is
smaller, like Figure 3 or Figure 4, this number of triangles is probably too large. The right-
most image in each of these figures shows a bunny with fewer triangles. These complexities
are often more appropriate for image of these sizes. Each of these images is typically some

small piece of amuch larger image of a complex scene.

For CAD models, such representations could be created as part of the process of building
the original model. Unfortunately, the robust modeling of 3D objects and environments is
already a difficult task, so we would like to explore solutions that do not add extra burdens to
the original modeling process. Also, we would like to create such representations for models
acquired by other means (e.g. laser scanning), models that already exist, and models in the

process of being built.



Figure 2: The Stanford bunny model: 69,451 triangles
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Figure 3: Medium-sized bunnies.
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Figure 4: Small-sized bunnies.



Smplification is the process of automatically reducing the complexity of a given model.
By creating one or more simpler representations of the input model (generally called levels of
detail), we convert it to a multi-resolution form. This problem of automatic simplification is
rich enough to provide many interesting and useful avenues of research. There are many
issues related to how we represent these multi-resolution models, how we create them, and
how we manage them within an interactive graphics application. This dissertation is con-
cerned primarily with the issues of level-of-detail quality and rendering performance. In
particular, we explore the question of how to preserve the appearance of the input models to
within an intuitive, user-specified tolerance and still achieve a significant increase in render-

ing performance.

1.3 TopicsCovered

This paper reviews some fundamental concepts necessary to understand algorithms for
simplification of polygonal models at a high level. These concepts include optimal/near-
optimal solutions for the ssimplification problem, the use of local simplification operations,
topology preservation, level-of-detail representations for polygonal models, error measures
for surface deviation, and the preservation of appearance attributes. This is not a complete
survey of the field of polygonal model simplification, which has grown to be quite large (for
more information, several survey papers are available [Erikson 1996, Heckbert and Garland
1997]). In particular, this paper does not provide much coverage of algorithms specialized
for ssimplifying polygonal terrains, nor does it cover simplification and compression algo-

rithms geared towards progressive transmission applications.

2. OPTIMALITY

There are two common formulations of the simplification problem, described in

[Varshney 1994], to which we may seek optimal solutions:

Min-# Problem: Given some error bound, e, and an input model, I, compute the mini-
mum complexity approximation, A, such that no point of A isfarther than e distance away
from | and vice versa (the complexity of A is measured in terms of number of vertices or

faces).



Min-e Problem: Given some target complexity, n, and an input model, |, compute the

approximation, A, with the minimum error, e, described above.

In computational geometry, it has been shown that computing the min-# problem is NP-
hard for both convex polytopes [Das and Joseph 1990] and polyhedral terrains [Agarwal and
Suri 1994]. Thus, agorithms to solve these problems have evolved around finding polyno-

mial-time approximations that are close to the optimal.

Let ko be the size of a min-# approximation. An algorithm has been given in [Mitchell
and Suri 1992] for computing an e-approximation of size O(ko log n) for convex polytopes of
initial complexity n. This has been improved by Clarkson in [Clarkson 1993]; he proposes a
randomized agorithm for computing an approximation of size O(ko log ko) in expected time
O(kon™*%) for any d > 0 (the constant of proportionality depends on d, and tends to +¥ asd
tends to 0). In [Brénnimann and Goodrich 1994] Bronnimann and Goodrich observed that a
variant of Clarkson's algorithm yields a polynomial-time deterministic algorithm that com-
putes an approximation of size O(ko). Working with polyhedral terrains, [Agarwa and Suri
1994] present a polynomial-time algorithm that computes an e-approximation of size
O(ko log ko) to apolyhedral terrain.

Because the surfaces requiring ssimplification may be quite complex (tens of thousands to
millions of triangles), the simplification algorithms used in practice must be o(n?) (typically
O(n log n)) for the running time to be reasonable. Due to the difficulty of computing near-
optimal solutions for general polygonal meshes and the required efficiency, most of the
algorithms described in the computer graphics literature employ local, greedy heuristics to
achieve what appear to be reasonably good simplifications with no guarantees with respect to

the optimal solution.

3. LOCAL SIMPLIFICATION OPERATIONS

Simplification is often achieved by performing a series of local operations. Each such op-
eration serves to coarsen the polygonal model by some smal amount. A simplification
algorithm generally chooses one of these operation types and applies it repeatedly to its input

surface until the desired complexity is achieved for the output surface.



Figure5: Vertex remove oper ation

3.1 Vertex Remove

The vertex remove operation involves removing from the surface mesh a single vertex
and all the triangles touching it. This removal process creates a hole that we then fill with a
new set of triangles. Given a vertex with n adjacent triangles, the removal process creates a
hole with n sides. The hole filling problem involves a discrete choice from among a finite
number of possible retriangulations for the hole. The n triangles around the vertex are re-
placed by this new triangulation with n-2 triangles. The Catalan sequence,
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describes the number of unique ways to triangulate a convex, planar polygon with i+2 sides
[Dorrie 1965, Plouffe and Sloan 1995]. This provides an upper bound on the number of non-
self-intersecting triangulations of a hole in 3D. For example, holes with 3 sides have only 1
triangulation, and holes with 4, 5, 6, 7, 8, and 9 sides have up to 2, 5, 14, 42, 132, and 429
triangulations, respectively.

Both [Turk 1992] and [ Schroeder et al. 1992] apply the vertex remove approach as part of
their simplification algorithms. Turk uses point repulsion (weighted according to curvature)
to distribute some number of new vertices across the original surface, then applies vertex
remove operations to remove most of the original vertices. Holes are retriangulated using a
planar projection approach. Schroeder also uses vertex remove operations to reduce mesh

complexity, employing arecursive loop splitting algorithm to fill the necessary holes.



Figure 6: Edge collapse operation

3.2 EdgeCollapse

The edge collapse operation has become popular in the graphics community in the last
several years. The two vertices of an edge are merged into a single vertex. This process
distorts all the neighboring triangles. The triangles that contain both of the vertices (i.e. those
that touch the entire edge) degenerate into 1-dimensional edges and are removed from the

mesh. This typically reduces the mesh complexity by 2 triangles.

Whereas the vertex remove operation amounts to making a discrete choice of triangula
tions, the edge collapse operation requires us to choose the coordinates of the new vertex
from a continuous domain. Common choices for these new coordinates include the coordi-
nates of one of the two original vertices, the midpoint of the collapsed edge, arbitrary points

along the collapsed edge, or arbitrary pointsin the neighborhood of the collapsed edge.

Not only is the choice of new vertex coordinates for the edge collapse a continuous prob-
lem, but the actual edge collapse operation may be performed continuously in time. We can
linearly interpolate the two vertices from their original positions to the final position of the
new vertex. This allows us to create smooth transitions as we change the mesh complexity.
As described in [Hoppe 1996], we can even perform geomorphs, which smoothly transition
between versions of the model with widely varying complexity by performing many of these

interpolations simultaneously.

In terms of the ability to create identical simplifications, the vertex removal and edge
collapse operations are not equivalent. If we collapse an edge to one of its original vertices,
we can create n of the triangulations possible with the vertex remove, but there are ill
C(n+2)-n triangulations that the edge collapse cannot create. Of course, if we alow the edge
collapse to choose arbitrary coordinates for its new vertex, it can create infinitely many

simplifications that the vertex remove operation cannot create. For a given input model and



Figure 7: Face collapse operation

desired output complexity, it is not clear which type of operation can achieve a closer ap-

proximation to the input model.

The edge collapse was used by [Hoppe et al. 1993] as part of a mesh optimization process
that employed the vertex remove and edge swap operations as well (the edge swap is a
discrete operation that takes two triangles sharing an edge and swaps which pair of opposite
vertices are connected by the edge). In [Hoppe 1996], the vertex remove and edge swaps are
discarded, and the edge collapse alone is chosen as the ssmplification operation, allowing a
simpler system that can take advantage of the features of the edge collapse. Although systems
employing multiple ssimplification operations might possibly result in better simplifications,
they are generally more complex and cannot typically take advantage of the inherent features

of any one operation.

3.3 Face Collapse

The face collapse operation is similar to the edge collapse operation, except that it is more
coarse-grained. All three vertices of a triangular face are merged into a single vertex. This
causes the original face to degenerate into a point and three adjacent faces to degenerate into
line segments, removing a total of four triangles from the model. The coarser granularity of
this operation may allow the simplification process to proceed more quickly, at the expense
of the fine-grained local control of the edge collapse operation. Thus, the error is likely to
accumulate more quickly for a comparable reduction in complexity. [Hamann 1994, Gieng et
a. 1997] use the face collapse operation in their smplification systems. The new vertex
coordinates are chosen to lie on alocal quadratic approximation to the mesh. Naturaly, it is
possibly to further generalize these collapse operations to collapse even larger connected
portions of the input model. It may even be possible to reduce storage requirements by

grouping nearby collapse operations with similar error bounds into larger collapse operations.



Figure 8: Vertex Cluster operation

Thus, the fine-grained control may be traded for reduced storage and other overhead require-

mentsin certain regions of the model.

3.4 Vertex Cluster

Unlike the preceding simplification operations, the vertex cluster operation relies solely
on the geometry of the input (i.e. the vertex coordinates) rather than the topology (i.e. the
adjacency information) to reduce the complexity. Like the edge and face collapses, severd
vertices are merged into a single vertex. However, rather than merging a set of topologically
adjacent vertices, a set of “nearby” vertices are merged [Rossignac and Borrel 1992]. For
instance, one possibility is to merge al vertices that lie within a particular 3D axis-aligned
box. The new, merged vertex may be one of the original vertices that “best represents’ the
entire set, or it may be placed arbitrarily to minimize some error bound. An important prop-
erty of this operation is that it can be robustly applied to arbitrary sets of triangles, whereas

all the preceding operations assume that the triangles form a connected, manifold mesh.

The effects of this vertex cluster are similar to those of the collapse operations. Some tri-
angles are distorted, whereas others degenerate to a line segment or a point. In addition, there
may be coincident triangles, line segments, and points originating from non-coincident
geometry. One may choose to render the degenerate triangles as line segments and points, or
one may simply not render them at all. Depending on the particular graphics engine, render-
ing aline or a point may not be much faster than rendering a triangle. This is an important
consideration, because achieving a speed-up is one of the primary motivations for simplifica-

tion.

There is no point in rendering several coincident primitives, so multiple copies are fil-
tered down to a single copy. However, the question of how to render coincident geometry is

complicated by the existence of other surface attributes, such as normals and colors. For



instance, suppose two triangles of wildly different colors become coincident. No matter what

color we render the triangle, it may be noticeably incorrect.

[Rossignac and Borrel 1992] use the vertex clustering operation in their simplification
system to perform very fast simplification on arbitrary polygonal models. They partition the
model space with a uniform grid, and vertices are collapsed within each grid cell. [Luebke
and Erikson 1997] build an octree hierarchy rather than a grid at a single resolution. They
dynamically collapse and split the vertices within an octree cell depending on the current size

of the cell in screen space as well as silhouette criteria.

Figure 9: Generalized edge collapse operation

3.5 Generalized Edge Collapse

The generalized edge collapse (or vertex pair) operation combines the fine-grained con-
trol of the edge collapse operation with the generality of the vertex cluster operation. Like the
edge collapse operation, it involves the merging of two vertices and the removal of degener-
ate triangles. However, like the vertex cluster operation, it does not require that the merged
vertices be topologically connected (by atopologica edge), nor does it require that topologi-
cal edges be manifold.

[Garland and Heckbert 1997] apply the generalized edge collapse in conjunction with er-
ror quadrics to achieve simplification that gives preference to the collapse of topological
edges, but also allows the collapse of virtual edges (arbitrary pairs of vertices). These virtua
edges are chosen somewhat heuristically, based on proximity relationships in the original
mesh.

Figure 10: Unsubdivide operation



3.6 Unsubdivide

Subdivision surface representations have also been proposed as a solution to the multi-
resolution problem. In the context of simplification operations, we can think of the “unsubdi-
vide” operation (the inverse of a subdivision refinement) as our simplification operation. A
common form of subdivision refinement is to split one triangle into four triangles. Thus the
unsubdivide operation merges four triangles of a particular configuration into a single trian-

gle, reducing the triangle count by three triangles.

[DeRose et al. 1993] shows how to represent a subdivision surface at some finite resolu-
tion as a sequence of wavelet coefficients. The sequence of coefficientsis ordered from lower
to higher frequency content, so truncating the sequence at a particular point determines a
particular mesh resolution. [Eck et a. 1995] presents an agorithm to turn an arbitrary topol-
ogy mesh into one with the necessary subdivision connectivity. They construct a base mesh
of minimal resolution and guide its refinement to come within some tolerance of the original
mesh. This new refined subdivision mesh is used in place of the origina mesh, and its

resolution is controlled according to the wavelet formulation.

4. TOPOLOGICAL CONSIDERATIONS

4.1 Manifold vs. Non-manifold M eshes

Polygonal simplification algorithms may be distinguished according to the type of input
they accept. Some algorithms require the input to be a manifold triangle mesh, while others
accept more genera triangle sets. In the continuous domain, a manifold surface is one that is
everywhere homeomorphic to an open disc. In the discrete domain of triangle meshes, such a
surface has two topological properties. First, every vertex is adjacent to a set of triangles that
form a single, complete cycle around the vertex. Second, each edge is adjacent to exactly two
triangles. For a manifold mesh with borders, these restrictions are dlightly relaxed. A border
is simply a chain of edges with adjacent triangles only to one side. In a manifold mesh with
borders, a vertex may be surrounded by a single, incomplete cycle (i.e. the beginning need

not meet the end). Also, an edge may be adjacent to either one or two triangles.



A mesh that does not have the above properties is said to be non-manifold. Such meshes
may occur in practice by accident or by design. Accidents are possible, for example, during
either the creation of the mesh or during conversions between representation, such as the
conversion from a solid to a boundary representation. The correction of such accidents is a
subject of much interest [Barequet and Kumar 1997, Murali and Funkhouser 1997]. They
may occur by design because such a mesh may require fewer triangles to render than a
visually-comparable manifold mesh or because such a mesh may be easier to create in some
situations. If the non-manifold portions of a mesh are few and far between, we may refer to

the mesh as mostly manifold.

At the extreme, some data sets take the form of a set of triangles, with no connectivity
information whatsoever (sometimes referred to as a “triangle soup”). Such data might turn
out to be manifold or non-manifold if we were to attempt to reconstruct the connectivity
information. In generd, if any conversion has been performed on the original data, it's safe

to assume that a naive reconstruction will result in at least some non-manifold regions.

The most robust algorithms, based on vertex clusters, operate as easily on a triangle soup
as on a perfectly manifold mesh [Rossignac and Borrel 1992], [Luebke and Erikson 1997].
This advantage cannot be stressed enough and is extremely important in the case where the
simplification user has no control over the data. The ability to view an large, unfamiliar data
set interactively is invaluable in the process of learning its ins and outs, and these algorithms

allow one to get up and running quickly.

However, these very general algorithms do not typically create ssmplifications that ook
as attractive as those produced by algorithms that operate on manifold meshes. These
algorithms, which rely on operations such as the vertex remove or edge collapse, respect the
topology of the original mesh and avoid catastrophic changes to the surface and its appear-
ance. The manifold input criterion does limit the applicability of these algorithms to some
real-world models, but many of these algorithms may be modified to handle mostly manifold
meshes by avoiding simplification of the non-manifold regions. This can be an effective

strategy until the non-manifold regions begin to dominate the surface complexity.



The vertex pair and edge collapse operations can both operate on non-manifold meshes as
well as manifold ones. Vertex-pair algorithms must deal with the non-manifold meshes they
are bound to create by merging non-adjacent vertices. Edge collapse algorithms can operate
on non-manifold meshes, but it may be difficult to adapt the most rigorous error metrics for

manifold meshes to use on non-manifold meshes.

4.2 Topology Preservation

The topological structure of a polygonal surface typicaly refers to features such asits ge-
nus (number of topological holes, e.g. O for a sphere, 1 for a torus or coffee mug) and the
number and arrangement of its borders. These features are fully determined by the adjacency
graph of the vertices, edges, and faces of a polygonal mesh. For manifold meshes with no

borders (i.e. closed surfaces), the Euler equation holds:
F- E+V=2-G, 2

where F is the number of faces, E is the number of edges, V is the number of vertices, and G

isthe genus.

In addition to this combinatorial description of the topological structure, the embedding
of the surface in 3-space impacts its perceived topology in 3D renderings. Generally, we

expect the faces of a surface to intersect only at their shared edges and vertices.

Most of the simplification operations described in section 3 (all except the vertex cluster
and the generalized edge collapse) preserve the connectivity structure of the mesh. If a
simplification algorithm uses such an operation and also prevents local self-intersections
(intersections within the adjacent neighborhood of the operation), we say the algorithm
preserves local topology. If the agorithm prevents any self-intersections in the entire mesh,

we say it preserves global topology.

If the smplified surface is to be used for purposes other than rendering (e.g. finite ele-
ment computations), topology preservation may be essential. For rendering applications,
however, it is not aways necessary. In fact, it is often possible to construct simplifications

with fewer polygons for a given error bound if topological modifications are alowed.



However, some types of topological modifications may have a dramatic impact on the
appearance of the surface. For instance, many meshes are the surfaces of solid objects. For
example, consider the surface of a thin, hollow cylinder. When the surface is modified by
more than the thickness of the cylinder wall, the interior surface will intersect the outer
surface. This can cause artifacts that cover a large area on the screen. Problems also occur

when polygons with different color attributes become coincident.

Certain types of topological changes are clearly beneficial in reducing complexity, and
have a smaller impact on the rendered image. These include the removal of topological holes
and thin features (such as the antenna of a car). Topological modifications are encouraged in
[Rossignac and Borrel 1992], [Luebke and Erikson 1997], [Garland and Heckbert 1997] and
[Erikson and Manocha 1998] and controlled modifications are performed in [He et al. 1996]
and [El-Sanaand Varshney 1997].

5. LEVEL-OF-DETAIL REPRESENTATIONS

We can classify the possible representations for level-of-detail models into two broad
categories: static and dynamic. Static levels of details are computed totally off-line. They are
fully determined as a pre-process to the visualization program. Dynamic levels of detail are
typically computed partially off-line and partially on-line within the visualization program.

We now discuss these representations in more detail .

5.1 Static Levelsof Detail

The most straightforward level-of-detall representation for an object is a set of independ-
ent meshes, where each mesh has a different number of triangles. A common heuristic for the
generation of these meshesis that the complexity of each mesh should be reduced by a factor
of two from the previous mesh. Such a heuristic generates a reasonable range of complexi-

ties, and requires only twice as much total memory as the original representation.

It is common to organize the objects in a virtual environment into a hierarchical scene
graph [van Dam 1988, Rohlf and Helman 1994]. Such a scene graph may have a special type
of node for representing an object with levels of detail. When the graph is traversed, this



level-of-detail node is evaluated to determine which child branch to traverse (each branch
represents one of the levels of detail). In most static level-of-detail schemes, the children of
the level-of-detail nodes are the leaves of the graph. [Erikson and Manocha 1998] presents a
scheme for generating hierarchical levels of detail. This scheme generates level-of-detail
nodes throughout the hierarchy rather than just at the leaves. Each such interior level-of-detail
node involves the merging of objects to generate even simpler geometric representations.
This overcomes one of the previous limitations of static levels of detail 3% the necessity for

choosing a single scale at which objects are identified and simplified.

The transitions between these levels of detail are typically handled in one of three ways:
discrete, blended, or morphed. The discrete transitions are instantaneous switches; one level
of detail is rendered during one frame, and a different level of detail is rendered during the
following frame. The frame at which this transition occurs is typicaly determined based on
the distance from the object to the viewpoint. This technique is the most efficient of the three

transition types, but also results in the most noticeable artifacts.

Blended transitions employ apha-blending to fade between the two levels of detail in
guestion. For several frames, both levels of detail are rendered (increasing the rendering cost
during these frames), and their colors are blended. The blending coefficients change gradually
to fade from one level of detail to the other. It is possible to blend over a fixed number of
frames when the object reaches a particular distance from the viewpoint, or to fade over a
fixed range of distances [Rohlf and Helman 1994]. If the footprints of the objects on the

screen are not identical, blending artifacts may still occur at the silhouettes.

Morphed transitions involve gradually changing the shape of the surface as the transition
occurs. This requires the use of some correspondence between the two levels of detail. Only
one representation must be rendered for each frame of the transition, but the vertices require
some interpolation each frame. For instance, [Hoppe 1996] describes the geomor ph transition
for levels of detail created by a sequence of edge collapses. The simpler level of detail was
originally generated by collapsing some number of vertices, and we can create a transition by
simultaneously interpolating these vertices from their positions on one level of detail to their

positions on the other level of detail. Thus the number of triangles we render during the



transition is equal to the maximum of the numbers of trianglesin the two levels of detail. It is
also possible to morph using a mutual tessellation of the two levels of detail, as in [Turk

1992], but this requires the rendering of more triangles during the transition frames.

5.2 Dynamic L evels of Detail

Dynamic levels of detaill provide representations that are more carefully tuned to the
viewing parameters of each particular rendered frame. Due to the sheer number of distinct
representations this requires, each representation cannot simply created and stored independ-
ently. The common information among these representations is used to create a single
representation for each simplified object. From this unified representation, a geometric
representation that is tuned to the current viewing parameters is extracted. The coherence of
the viewing parameters enables incremental modifications to the geometry rendered in the

previous frame; this makes the extraction process feasible at interactive frame rates.

[Hoppe 1996] presents a representation called the progressive mesh. This representation
issimply the original object plus an ordered list of the simplification operations performed on
the object. It is generally more convenient to reverse the order of this intuitive representation,
representing the simplest base mesh plus the inverse of each of the simplification operations.
Applying al of these inverse operations to the base mesh will result in the original object
representation. A particular level of detail of this progressive mesh is generated by perform-

ing some number of these operations.

In [Hoppe 1997], the progressive mesh is reorganized into a vertex hierarchy. This hierar-
chy isatree that captures the dependency of each simplification operation on certain previous
operations. Similar representations include the merge tree of [Xia et a. 1997], the multire-
solution model of [Klein and Kramer 1997], the vertex tree of [Luebke and Erikson 1997],
and the multi-triangulation of [DeFloriani et al. 1997]. Such hierarchies alow selective
refinement of the geometry based on various metrics for screen-space deviation, normal
deviation, color deviation, and other important features such as silhouettes and specular
highlights. A particular level of detail may be expressed as a cut through these graphs, or a
front of vertex nodes. Each frame, the nodes on the current front are examined, and may

cause the graph to be refined at some of these nodes.



[DeFloriani et a. 1997] discuss the properties of such hierarchies in terms of graph char-
acteristics. Examples of these properties include compression ratio, linear growth, logarith-
mic height, and bounded width. They discuss several different methods of constructing such
hierarchies and test these methods on several benchmarks. For example, one common heuris-
tic for building these hierarchies is to choose ssmplification operations in a greedy fashion
according to an error metric. Another method is to choose a set of operations with digjoint
areas of influence on the surface and apply this entire set before choosing the next set. The
former method does not guarantee logarithmic height, whereas the latter does. Such height
guarantees can have practical implications in terms of the length of the chain of dependent

operations that must be performed in order to achieve some particular desired refinement.

[DeRose et a. 1993] present a wavelet-based representation for surfaces constructed with
subdivision connectivity. [Eck et a. 1995] make this formulation applicable to arbitrary
triangular meshes by providing a remeshing algorithm to approximate an arbitrary mesh by
one with the necessary subdivision connectivity. Both the remeshing and the filter-
ing/reconstruction of the wavelet representation provide bounded error on the surfaces
generated. [Lee et a. 1998] provide an alternate remeshing algorithm based on a smooth,
global parameterization of the input mesh. Their approach also allows the user to constrain
the parameterization at vertices or along edges of the original mesh to better preserve impor-

tant features of the input.

5.3 Comparison

Static levels of detail allow us to perform simplification entirely as a pre-process. The
real-time visualization system performs only minimal work to select which level of detail to
render at any given time. Because the geometry does not change, it may be rendered in
retained mode (i.e. from cached, optimized display lists). Retained-mode rendering should
aways be at least as fast as immediate mode rendering, and is much faster on most current
high-end hardware. Perhaps the biggest shortcoming of using static levels of detail is that
they require that we partition the model into independent “objects” for the purpose of simpli-
fication. If an object is large with respect to the user or the environment, especidly if the

viewpoint is often contained inside the object, little or no ssmplification may be possible.



This may require that such objects be subdivided into smaller objects, but switching the
levels of detail of these objects independently causes visible cracks, which are non-trivial to
deal with.

Dynamic levels of detail perform some of simplification as a pre-process, but defer some
of the work to be computed by the real-time visualization system at run time. This allows us
to provide more fine-tuning of the exact tessellation to be used, and allows us to incorporate
more view-dependent criteria into the determination of this tessellation. The shortcoming of
such dynamic representations is that they require more computation in the visualization
system as well as the use of immediate mode rendering. Also, the memory requirements for

such representations are often somewhat larger than for the static levels of detail.

6. SURFACE DEVIATION ERROR BOUNDS

Measuring the deviation of a polygonal surface as a result of simplification is an impor-
tant component of the simplification process. This surface deviation error gives us an idea of
the quality of a particular simplification. It helps guide the simplification process to produce
levels of detail with low error, determine when it is appropriate to show a particular level of
detail of agiven surface, and optimize the levels of detail for an entire scene to achieve ahigh

overall image quality for the complexity of the models actually rendered.

6.1 Distance Metrics

Before discussing the precise metrics and methods used by several researchers for meas-
uring surface deviation, we consider two formulations of the distance between two surfaces.
These are the Hausdorff distance and the mapping distance. The Hausdorff distance is awell-
known concept from topology, used in image processing as well as surface modeling, and the

mapping distance is a commonly used metric for parametric surfaces.

6.1.1 Hausdorff Distance

The Hausdorff distance is a distance metric between point sets. Given two sets of points,
A and B, the Hausdorff distance is defined as

H(A,B) = max(h(A,B),h(B,A)), (3)



where

h(AB) = maxmin||a- b. (4)

alA bl B

Thus the Hausdorff distance measures the farthest distance from a point in one point set
to its closest point in the other point set (notice that h(A,B) ! h(B,A)). Because a surface is a
particular type of continuous point set, the Hausdorff distance provides a useful measure of

the distance between two surfaces.

6.1.2 Mapping Distance

The biggest shortcoming of the Hausdorff distance metric for measuring the distance
between surfaces is that it makes no use of the point neighborhood information inherent in
the surfaces. The function h(A,B) implicitly assigns to each point of surface A the closest
point of surface B. However, this mapping may have discontinuities. If pointsi and j are
“neighboring” points on surface A (i.e. there is a path on the surface of length no greater than
e that connects them), their corresponding points, i” and j°, on surface B may not be neigh-
boring points. In addition, the mapping implied by h(A,B) is not identical to the mapping
implied by h(B,A).

For the purpose of simplification, we would like to establish a continuous mapping be-
tween the surface's levels of detail. Ideally, the correspondences described by this mapping
should coincide with a viewer’s perception of which points are “the same” on the surfaces.

Given such a continuous mapping
FFA® B
the mapping distance is defined as
D(F) = rga/lx" a- Fa)|. (5)
Because there are many such mappings, there are many possible mapping distances. The
minimum mapping distance is simply

Dumin = MinD(F), (6)

Fi M



where M is the set of al such continuous mapping functions. Note that although Dy, and its
associated mapping function may be difficult to compute, all continuous mapping functions

provide an upper bound on Dpn,

6.2 Surface Deviation Algorithms

We now classify severa simplification algorithms according to how they measure the sur-

face deviation error of their levels of detail.

6.2.1 Mesh Optimization

[Hoppe et al. 1993] pose the simplification problem in terms of optimizing an energy
function. This function has terms corresponding to number of triangles, surface deviation
error, and a heuristic spring energy. To quantify surface deviation error, they maintain a set of
point samples from the original surface and their closest distance to the smplified surface.
The sum of sguares of these distances is used as the surface deviation component of the
energy function. The spring energy term is required because the surface deviation error is
only measured in one direction: it approximates the closest distance from the original surface
to the simplified surface, but not vice versa. Without this term, small portions of the simpli-
fied surface can deviate quite far from the original surface, as long as al the point samples

are near to some portion of the ssmplified surface.

6.2.2 Vertex Clustering

[Rossignac and Borrel 1993] present a simple and general algorithm for simplification
using vertex clustering. The vertices of each object are clustered using several different sizes
of uniform grid. The surface deviation in this case is a Hausdorff distance and must be less
than or equal to the size of grid cell used in determining the vertex clusters. This is a very
conservative bound, however. A dlightly less conservative bound is the maximum distance
from a vertex in the original cluster to the single representative vertex after the cluster is
collapsed. Even this bound is quite conservative in many cases; the actual maximum devia
tion from the origina surface to the simplified surface may be considerably smaller than the

distance the original verticestravel during the cluster operation.



[Luebke and Erikson 1997] take a similar approach, but their system uses an octree in-
stead of a single-resolution uniform grid. This allows them to take a more dynamic approach,
folding and unfolding octree cells at run-time and freely merging nearby objects. The meas-
ure of surface deviation remains the same, but they allow a more flexible choice of error
tolerances in their run-time system. In particular, they use different tolerances for silhouette

and non-silhouette clusters.

6.2.3 Superfaces

[Kalvin and Taylor 1996] present an efficient simplification algorithm based on merging
adjacent triangles to form polygonal patches, simplifying the boundaries of these patches, and
finally retriangulating the patches themselves. This algorithm guarantees a maximum devia-
tion from vertices of the original surface to the simplified surface and from vertices of the
simplified surface to the original surface. Unfortunately, even this bidirectional bound does
not guarantee a maximum deviation between points on the ssimplified surface and points on
the original surface. For instance, suppose we have two adjacent triangles that share an edge,
forming a non-planar quadrilateral. If we retriangulate this quadrilateral by performing an
edge swap operation, the maximum deviation between these two surfaces is non-zero, even
though their four vertices are unchanged (thus the distance measured from vertex to surfaceis

zero).

6.2.4 Error ToleranceVolumes

[Guéziec 1995] presents a simplification system that measures surface deviation using
error volumes built around the simplified surface. These volumes are defined by spheres,
specified by their radii, centered at each of the smplified surface’s vertices. We can associate
with any point in atriangle a sphere whose radius is a weighted average of the spheres of the
triangl€e’ s vertices. The error volume of an entire triangle is the union of the spheres of all the
points on the triangle, and the error volume of a simplified surface is the union of the error
volumes of its triangles. As edge collapses are performed, not only are the coordinates of the
new vertex computed, but new sphere radii are computed such that the new error volume

contains the previous error volume. The maximum sphere radius is a bound on the Hausdorff



distance of the ssimplified surface from the original, and thus provides a bound for surface

deviation in both 3D and 2D (after perspective projection).

6.2.5 Simplification Envelopes

The ssimplification envelopes technique of [Cohen and Varshney et a. 1996] bounds the
Hausdorff distance between the original and simplified surfaces without actually making
measurements during the simplification process. For a particular simplification, the input
surface is surrounded by two envel ope surfaces, which are constructed to deviate by no more
than a specified tolerance, e, from the input surface. As the simplification progresses, the
modified triangles are tested for intersection with these envelopes. If no intersections occur,
the simplified surface is within distance e from the input surface. Similar constructions are
built to constrain error around the borders of bordered surfaces. By including extensive self-
intersection testing as well, the algorithm provides complete global topology preservation.
This agorithm does an excellent job at generating small-triangle-count surface approxima-
tions for a given error bound. The biggest limitations are the up-front processing costs
required for envelope construction (for each level of detail to be generated) and the conserva-
tive nature of the envelopes themselves, which do not expand beyond the point of self-

intersection.

6.2.6 Error Quadrics

[Ronfard and Rossignac 1996] describe a fast method for approximating surface devia
tion. They represent surface deviation error for each vertex as a sum of squared distancesto a
set of planes. The initial set of planes for each vertex are the planes of its adjacent faces. As
vertices are merged, the sets of planes are unioned. This metric provides a useful and efficient
heuristic for choosing an ordering of edge collapse operations, but it does not provide any
guarantees about the maximum or average deviation of the simplified surface from the

original.

[Garland and Heckbert 1997] present some improvements over [Ronfard and Rossignac
1996]. The error metric is essentialy the same, but they show how to approximate a vertex’'s
set of planes by a quadric form (represented by a single 4x4 matrix). These matrices are

simply added to propagate the error as vertices are merged. Using this metric, it is possible to



choose an optimal vertex placement that minimizes the error. In addition, they allow the
merging of vertices that are not joined by an edge, allowing increased topological modifica-
tion. [Erikson and Manocha 1998] further improve this technique by automating the process
of choosing which non-edge vertices to collapse and by encouraging such merging to pre-

serve the local surface area

6.2.7 Mapping Error

[Bajg and Schikore 1996] perform simplification using the vertex remove operation, and
measure surface deviation using local, bijective (one-to-one and onto) mappings in the plane
between points on the surface just before and just after the ssimplification operation. This
approach provides a fairly tight bound on the maximum deviation over al points on the
surface, not just the vertices (as does [Guéziec 1995]) and provides pointwise mappings

between the original and simplified surfaces.

A similar technique is employed by [Cohen et a. 1997], who perform mappings in the
plane for the edge collapse operation. They present rigorous and efficient techniques for
finding a plane in which to perform the mapping, as well as applying the mapping and
propagating error from operation to operation. The computed mappings are used not only to
guide the simplification process in its choice of operations, but also to assign texture coordi-
nates to the post-collapse vertices and to control the switching of levels of detail in interac-

tive graphics applications.

6.2.8 Hausdorff Error

[Klein et al. 1996] measure a one-sided Hausdorff distance (with appropriate locality re-
strictions) between the original surface and the simplified surface. By definition, this ap-
proach produces the smallest possible bound on maximum one-sided surface deviation, but
the one-sided formulation does not guarantee a true bound on overall maximum deviation. At
each step of the simplification process, the Hausdorff distance must be measured for each of
the original triangles mapping to the modified portion of the surface. The computation time
for each simplification operation grows as the ssimplified triangles cover more and more of
the mesh, but of course, there are also fewer and fewer triangles to simplify. [Klein and

Kramer 1997] present an efficient implementation of this algorithm.



6.2.9 Memory-efficient Simplification

[Lindstrom and Turk 1998] demonstrate the surprising result that good simplifications are
possible without measuring anything with respect to the original model. All errors in this
method are measured purely as incremental changes in the local surface. The error metric
used preserves the total volume while minimizing volume changes of each triangle. Another
interesting aspect of this work is that they perform after-the-fact measurements to compare
the “actual” mean and maximum simplification errors of several algorithm implementations.
These measurement use the Metro geometric comparison tool [Cignoni et al. 1996], which
uniformly samples the simplified surface, computes correspondences with the original

surface, and measures the error of the samples.

7. APPEARANCE ATTRIBUTE PRESERVATION

We now classify several algorithms according to how they preserve the appearance attrib-

utes of their input models.

7.1 Scalar Field Deviation

The mapping algorithm presented in [Bajgj and Schikore 1996] allows the preservation of
arbitrary scalar fields across a surface. Such scalar fields are specified at the mesh vertices
and linearly interpolated across the triangles. Their approach computes a bound on the
maximum deviation of the scalar field values between corresponding points on the original

surface and the ssimplified surface.

7.2 Color Preservation

[Hughes et a. 1996] describes a technique for ssmplifying colored meshes resulting from
global illumination algorithms. They use alogarithmic function to transform the vertex colors
into a more perceptualy linear space before applying simplification. They also experiment
with producing mesh elements that are quadratically- or cubically-shaded in addition to the
usual linearly-shaded elements.

[Hoppe 1996] extends the error metric of [Hoppe et al. 1993] to include error terms for

scalar attributes and discontinuities as well as surface deviation. Like the surface deviation,



the scalar attribute deviation is measured as a sum of squared Euclidean distances in the
attribute space (e.g. the RGB color cube). The distances are again measured between sampled
points on the original surface and their closest points on the simplified surface. This metric is
useful for prioritizing simplification operations in order of increasing error. However, it does
not provide much information about the true impact of attribute error on the final appearance
of the simplified object on the screen. A better metric should incorporate some degree of area

weighting to indicate how the overall illuminance of the final pixels may be affected.

[Erikson and Manocha 1998] present a method for measuring the maximum attribute de-
viation in Euclidean attribute spaces. Associated with each vertex is an attribute volume for
each attribute being measured. The volume is a disc of the appropriate dimension (i.e. an
interval in 1D, acirclein 2D, a spherein 3D, etc.). Each attribute volumes is initially a point
in the attribute space (an n-disk with radius zero). As vertex pairs are merged, the volumes

grow to contain the volumes of both vertices.

[Garland and Heckbert 1998] extend the algorithm of [Garland and Heckbert 1997] to
consider color and texture coordinate error as well as geometry. The error quadrics are lifted
to higher dimensions to accommodate the combined attribute spaces (e.g. 3 dimensions for
RGB color and 2 dimensions for texture coordinates). The associated form matrices grow
quadratically with the dimension, but standard hardware-accelerated rendering models
typically require a dimension of 9 or less. The error is thus measured and optimized for all
attributes simultaneously. The method makes the ssimplifying assumption that the errors in

all these attribute values may be measured as in a Euclidean space.

[Certain et a. 1996] present a method for preserving vertex colorsin conjunction with the
wavelet representation for subdivision surfaces [DeRose et al. 1993]. The geometry and color
information are stored as two separate lists of wavelet coefficients. Coefficients may be
added or deleted from either of these lists to adjust the complexity of the surface and its
geometric and color errors. They also use the surface parameterization induced by the subdi-
vision to store colorsin texture maps to render as textured triangles for machines that support

texture mapping in hardware.



[Bastos et a. 1997] use texture maps with bicubic filtering to render the complex solu-
tions to radiosity illumination computations. The radiosity computation often dramatically
increases the number of polygons in the input mesh in order to create enough vertices to store
the resulting colors. Storing the colors instead in texture maps removes unnecessary geome-

try, reducing storing requirements and rasterization overhead.

The appearance-preserving simplification technique of [Cohen et a. 1998] is in some
sense a generalization of this “radiosity as textures” work. Colors are stored as texture maps
before the simplification is applied. Mappings are computed as in [Cohen et a. 1997], but
this time in the 2D texture domain, effectively measuring the 3D displacements of a texture
map as a surface is simplified. Whereas [Bastos et al. 1997] reduces geometry complexity to
that of the pre-radiositized mesh, [Cohen et al. 1998] simplify complex geometry much
farther, quantifying the distortions caused by the simplification of non-planar, textured
surfaces. [Cignoni et al. 98] describe a method for compactly storing attribute values into

map structures that are customized to a particular simplified mesh.

7.3 Normal Vector Preservation

[Xia et a. 1997] associate a cone of normal vectors with each vertex during their simpli-
fication preprocess. These cones initially have an angle of zero, and grow to contain the
cones of the two vertices merged in an edge collapse. Their run-time, dynamic simplification
scheme uses this range of normals and the light direction to compute a range of reflectance
vectors. When this range includes the viewing direction, the mesh is refined, adapting the
simplification to the specular highlights. The results of this approach are visualy quite
compelling, though they do not allow increased simplification of the highlight area as it gets

smaller on the screen (i.e. as the object gets farther from the viewpoint).

[Klein 1998] maintains similar information about the cone of normal deviation associated
with each vertex. The refinement criterion takes into account the spread of reflected normals
(i.e. the specular exponent, or shininess) in addition to the reflectance vectors themselves.
Also, refinement is performed in the neighborhood of silhouettes with respect to the light

sources as well as specular highlights. Again, this normal deviation metric does not allow



increased simplification in the neighborhood of the highlights and light silhouettes as the

object gets smaller on the screen.

[Cohen et al. 1998] apply their appearance-preserving technique to normals as well as
colors by storing normal vectors in norma maps. Figure 11 shows a view of a complex
“armadillo” model. Applying the appearance-preserving algorithm to this model generates the
simplified versions of Figure 12 and Figure 13, in which it is nearly impossible to distinguish
the simplifications from the original. Compared this to the bunnies in Figure 3 and Figure 4.
Although the positions of the surfaces are preserved quite well, as evidenced by the similarity
of the silhouettes of the bunnies, the shading makes it quite easy to tell which bunnies have

been simplified and which have not (i.e. the appearance has not been totally preserved).

The appearance-preserving approach to normal preservation has the advantage that the
normal values need not be considered in the simplification process — only texture distortion
error constrains the smplification process. In fact, the error in the resulting images can be
characterized entirely by the number of pixels of deviation of the textured surface on the
screen. The major disadvantage to this approach is that it assumes a per-pixel lighting model
is applied to shade the normal-mapped triangles. Per-pixel lighting is still too computation-
ally expensive for most graphics hardware, though support for such lighting is making its way

into standard graphics APIs such as OpenGL.



249,924 triangles 7,809 triangles
Figure 12: Medium-sized “armadillos’

249,924 triangles 975 triangles
Figure 13: Small-sized “armadillos’



8. CONCLUSIONS

As is the case for many classes of geometric algorithms, there does not seem to be any
single best simplification algorithm or scheme. An appropriate scheme depends not only on
the characteristics of the input models, but also the final application to which the muilti-
resolution output will be applied.

For poorly-behaved input data (mostly non-manifold or triangle soups), the vertex clus-
tering algorithms [Rossignac and Borrel 1992], [Luebke and Erikson 1997] should yield the
fastest and most painless success. For cleaner input data, one of the many methods which

respect topology will likely produce more appealing results.

When even pre-computation time is of the essence, a fast algorithm such as [Garland and
Heckbert 1997] may be appropriate, while applications required better-controlled visual
fidelity should invest some extra pre-computation time in an algorithm such as [Cohen et al.
1998], [Guéziec 1995], or [Hoppe 1996], to achieve guaranteed or at least higher quality.

For applications and machines with extra processing power to spare, dynamic level of
detail techniques such as [Hoppe 1997] and [Luebke and Erikson 1997] can provide smooth
level-of-detail transitions with minimal triangle counts. However, for applications requiring
maximal triangle throughput (including display lists) or need to actually employ their CPU(s)
for application-related processing, static levels of detail (possibly with geomorphs between
levels of detail) are often preferable (they also add less complexity to application code).

The construction and use of levels of detaill have become essential tools for accelerating
the rendering process. The field has now reached alevel of maturity at which thereisarich
“bag of tricks’ from which to choose when considering the use of levels of detail for a
particular application. Making sense of the available techniques as well as when and how
well they work is perhaps the next step towards answering the question, “What is a good

simplification?’, both statically, and over the course of an interactive application.
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Abstract

Multi-resolution hierarchies of polygons and more recently of
points are familiar and useful tools for achieving interactive
rendering rates. We present an algorithm for tightly integrating
the two into a single hierarchical data structure. The trade-off
between rendering portions of a model with points or with
polygons is made automatically.

Our approach to this problem is to apply a bottom-up simplifi-
cation process involving not only polygon simplification opera-
tions, but point replacement and point simplification operations as
well. Given one or more surface meshes, our algorithm produces a
hybrid hierarchy comprising both polygon and point primitives.
This hierarchy may be optimized according to the relative
performance characteristics of these primitive types on the
intended rendering platform. We also provide a range of aggres-
siveness for performing point replacement operations. The most
conservative approach produces a hierarchy that is better than a
purely polygonal hierarchy in some places, and roughly equal in
others. A less conservative approach can trade reduced complex-
ity at the far viewing ranges for some increased complexity at the
near viewing ranges.

We demonstrate our approach on a number of input models,
achieving primitive counts that are 1.3 to 4.7 times smaller than
those of triangle-only simplification.

Keywords: rendering, simplification, multi-resolution, tri-
angles, points, hybrid.

1 INTRODUCTION

Interactive visualizations, which maintain a steady feedback loop
with the application user, rely on the ability of the computer and,
in particular, the graphics engine to produce images at a high
frame rate. Applications with this requirement include the
exploration of data through scientific visualization, enhancement
of medical procedures through computer-integrated surgery,
terrain visualization, production of mechanical systems through
CAD visualization and rapid prototyping, and of course the
pursuit of entertainment through the high-end video games which
have driven the consumer graphics market in recent years.

Most such applications today employ some form of multi-
resolution rendering to achieve the necessary balance between the
conflicting goals of smooth, interactive performance and useful,
high-quality imagery. Multi-resolution rendering uses a hierarchy
of rendering primitives, allowing the application to distribute its
rendering budget across a complex geometric model to produce
such an optimized result.

The rendering primitives used generally depend on the appli-
cation domain and the method of model design or acquisition. For
example, models built from complex polygonal meshes lend
themselves to the construction of polygonal hierarchies (some
forms are often referred to as levels of detail), built through a
process of polygonal simplification. On the other hand, models
acquired as a set of points in some form, such as from a camera,
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laser range-finder, or other device for sampling the physical
world, lend themselves naturally to the construction of a point
hierarchy through the use of octree-based or other proximity-
based point merging schemes. Although these points are in a pure
geometric sense infinitesimal, they are usually defined with a
radius of extent. Thus, they can be thought of as spheres in world
space and, as a matter of rendering efficiency, are typically
rasterized as circles or squares in screen space.

In some sense, these representations are interchangeable; both
are capable of representing and rendering the same data given a
sufficiently high representational resolution. Some applications
do, in fact, choose to switch from one domain to another. Point
samples may be meshed to produce polygonal models, and
polygonal models may be point-sampled and these samples stored
to facilitate future rendering. The process of rasterization is itself
a conversion from polygons to a set of point samples, so we can
clearly establish useful correspondences between triangles and
their associated samples, sometimes using them interchangeably.

Both of these representations have merit, but neither is superior
for all geometric models under all viewing conditions. Adaptive,
view-dependent refinement schemes already employ these multi-
resolution representations to adjust the number of primitives used
across the model environment to suit the needs of the applica-
tion’s current viewing parameters. So it is natural to consider
adapting not only the number of primitives but also the fype of
primitives rendered for a particular set of viewing parameters to
produce a well-optimized balance of performance and quality.
Such a hybrid approach to rendering may produce a system with
improved scalability and a wider range of applicability.

1.1 Main Contribution

In this paper, we present a simplification paradigm to tightly
integrate polygon-based and point-based rendering. Our approach
begins with a polygonal model as input, which we proceed to
simplify using a standard, greedy simplification procedure (our
system employs edge collapse operations). The same optimization
criteria that guide the polygon simplification process also trigger
the substitution of one or more points for individual triangles as
the situation warrants. These points are also merged to produce a
complete, hybrid hierarchy. This hierarchy, built entirely as a
preprocess, may then be used to perform interactive rendering
using adaptive, view-dependent refinement.
Our algorithm provides the following capabilities:

o Automatic selection: The algorithm automatically determines
where and when a subset of a model is better rendered as trian-
gles or as points.

e Seamless transition: The adaptive refinement procedure
transitions between triangles and points at a fine granularity.

e Topology modification: Multiple manifold surfaces may be
merged (and thus more drastically reduced) during the point
simplification phase.

¢ Error management: Polygon simplification and point merging
are selected as appropriate to reduce geometric error growth
within the hierarchy, and guaranteed geometric error bounds
from the original surface are provided throughout.
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The broader goal of this research is to explore the relative
strengths and weaknesses of polygon and point representations, as
well as the situations where each is most useful. We also consider
how the relative capability of graphics hardware in rendering
points versus polygons affects the hierarchies we build. In the
long term, we aim to bridge the gap between polygon-based and
image-based rendering. Images are essentially specially organized
collections of points, and so this research is a stepping stone along
the way, providing some useful tools and insights.

1.2 Paper Organization

We proceed by describing in Section 2 some related work in the
areas of polygonal simplification and point-based rendering,
followed by an overview of our integrated approach in Section 3.
After that we review our central data structure, the multi-
resolution graph, and the off-line and on-line portions of our
algorithm in Sections 4, 5, and 6. We conclude with a look at our
results, and a discussion of the issues they raise.

2 RELATED WORK

This research draws on previous work in the areas of polygonal
simplification and point-based rendering. We now review the
most relevant topics in each of these fields.

2.1 Polygonal Simplification

A number of existing polygonal simplification algorithms use
priority queue driven, bottom-up decimation strategies [Guéziec
1995, Hoppe 1996, Cohen et al. 1997, Garland and Heckbert
1997]. Of these algorithms, several provide guaranteed bounds on
the resulting error between all points on the original surface and
all points on the simplified surface (the tightest possible measure
being the Hausdorft distance) [Guéziec 1995, Klein et al. 1996,
Cohen et al. 1997, Lee et al. 1998]. Our error measure happens to
be based on the projection algorithm of [Cohen et al. 1997], but
any of this class of guaranteed error measures would do equally
well for the purpose of this research.

Several algorithms and hierarchical data structures allow for
fine-grained, view-dependent refinement of polygonal models in
an interactive setting [Rossignac and Borrel 1993, DeFloriani et
al. 1997, Hoppe 1997, Luebke and Erikson 1997, Xia et al. 1997].
Of these, we have found the multi-triangulation data structure of
[DeFloriani et al. 1997] to be the most compatible with our
current research goals.

The benefits of this research and the properties of our hierar-
chical models bear some resemblance to those of simplification
algorithms that provide for topological modification [Rossignac
and Borrel 1993, El-Sana and Varshney 1997, Schroeder 1997,
Garland and Heckbert 1998] and merging of low-resolution
objects [Erikson and Manocha 1999]. However, none of the
existing algorithms provides both fine-grained progressive control
and guaranteed surface-to-surface error bounds (other than the
most conservative approach of tracking the maximum separation
between collapsed vertices).

An interesting piece of research that seems quite similar to ours
is the progressive simplicial complex [Popovic and Hoppe 1997].
This data structure, like our multi-resolution graph, also allows
for primitives of different types, namely simplices of arbitrary
dimension. This general approach allows the simplices to collapse
to progressively lower dimension. Our work, in contrast, does not
require that triangle vertices be merged to become points, but
rather allows this conversion to take place at an arbitrary sam-
pling rate. This allows the hierarchy to be tuned according to a
system’s relative polygon and point rendering performance
characteristics.

2.2 Point-based Rendering

Using points as rendering primitives has a long history in com-
puter graphics [Levoy and Whitted 1985]. Early computer
graphics systems used points to render clouds, explosions, and
other fuzzy objects [Reeves 1983]. More recently, together with
the advent of faster general-purpose CPUs, point rendering has
been used to model and render trees, polygonal meshes, and
volumetric models [Hoppe et al. 1992, Max and Ohsaki 1995].

The fundamental difficulty of using points is to create a con-
tinuous (on-screen) reconstruction of the underlying model.
Algorithms leverage the simple rendering calculations of points
[Grossman and Dally 1998] to cover surfaces with a sufficient
number to samples. Image-Based Rendering (IBR) exploits the
screen-coherence of projected points to further accelerate point
rendering. By ordering points on a grid and performing incre-
mental computations [McMillan and Bishop 1995], IBR methods
can re-project a large number of points (or pixels) each frame.

In our case, we have full knowledge of the underlying model
and can choose, a priori, the points to render a model at a desired
error tolerance. Thus, we do not need to reconstruct the model.
Furthermore, by establishing an error metric over the surface of
the model, we have a criterion to sample the model and generate
points for an interactive point rendering system [Pfister et al.
2000, Rusinkiewicz and Levoy 2000]. The challenge for our work
is to compute, for every neighborhood of a model, when we
achieve a win with polygonal rendering and when point rendering
is more advantageous.
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Figure 1: Components of a hybrid multi-resolution
rendering system.

3 OVERVIEW

There are many approaches one could take to produce a tight
integration of polygons and points in a multi-resolution frame-
work. For example, one could construct two complete hierarchies,
one for polygons and one for points, with some type of links
describing the mappings between the two. Then all this informa-
tion would be available at the time of rendering for the best
combination of polygons and points to be selected in a view-
dependent fashion.

We have opted, at the expense of some flexibility, to pursue a
more practical approach of using view-independent information to
construct a single hierarchy comprising both polygons and points.
Thus all of the important decisions regarding the tradeoffs
between the two primitive types have been made before the
rendering even begins. This predetermination of the tradeoffs
could have negative consequences on how well the decisions are
made for any given viewing parameters, but it allows us to build a



simple run-time system based on a foundation of well-known
algorithms and data structures.

Figure 1 depicts the components of our system. Our hybrid
simplification process may be seen at a high level as a simplifica-
tion algorithm supporting three different simplification opera-
tions: polygon simplification (e.g. edge collapse), point replace-
ment, and point simplification. These operations are performed
repeatedly in an appropriate order to ultimately produce a hierar-
chy. Each operation replaces some subset of the model primitives
with a new set of primitives, reducing their complexity and
perhaps changing their type. In particular, the point replacement
operation converts a triangle into one or more points, which may
then be further reduced through point merging operations. The set
of operations performed, along with the affected primitives and
associated error bounds are all stored in a multi-resolution graph
data structure.

The interactive rendering system uses the viewing parameters
for a given rendering frame to select an appropriate set of primi-
tives from the multi-resolution graph. This set of primitives
completely covers the original model (i.e. the entire model is
represented by this set) and provides an appropriate resolution.
Our current system allows the user to choose a screen-space error
tolerance, and the primitives are chosen to be just complex
enough to avoid exceeding this tolerance. Because the set of
primitives selected is that which lies along a particular cut
through the graph, and this cut may be modified incrementally
from frame to frame, this selection process is referred to as
“adapting the cut”. Once the primitives are selected, they are
rendered to produce the final image. We next present the essential
details of this multi-resolution graph before proceeding to the
description of the simplification algorithm.

4 MULTI-RESOLUTION GRAPH

Our multi-resolution graph (MRQG) data structure is an extension
to the elegant multi-triangulation (MT) data structure described in
detail in [DeFloriani et al. 1997, DeFloriani et al. 1998] (Because
the extension is to permit the inclusion of new primitive types, the
original name is no longer appropriate). The MRG is a simplifi-
cation hierarchy in the form of a directed acyclic graph. The
graph is represented by a set of nodes, N, connected by a set of
arcs, 4. There is a unique source node at the root of the graph, and
a unique drain node at the bottom. A small example is shown in
Figure 2.

Each node of the MRG represents a change to an underlying
geometric model — a refinement if we are traversing downward, or
a simplification if we are traversing upward. Thus, as we build
this graph (from drain to source, in bottom-up simplification),
each of our simplification operations is stored along with its
associated error bound as a node.

The primitives of the model are stored with the arcs. The
primitives removed from the model by an operation are associated
with the child arcs of the operation’s node, and those inserted by
the operation are associated with its parent arcs (one or more
primitives may be stored with an arc). From the arc’s perspective,
the node beneath it (its end node) produces its primitives, and the
node above it (its start node) consumes them (assuming we are
traversing upward).

The arcs represent the dependencies of one mesh operation on
another. So, for example, if we wish to perform the refinement
indicated by a node, we must first perform the refinement indi-
cated by all of the node’s parents. Performing the node’s opera-
tion amounts to replacing the primitives of a node’s parent arcs
with those of its child arcs, or vice versa. The model coverage of
these two sets of primitives are generally the same to avoid local
cracks (i.e. missing surface coverage) or multiple coverage (which

Figure 2: A small multi-resolution graph (11 original
triangles). The letters indicate the various node types:
D (drain), S (source), TS (triangle simplification), PR
(point replacement), and PS (point simplification).
The cut contains 2 triangles and 4 points.

may be inefficient, but not necessarily incorrect) across the
model.

To extract a connected, consistent representation of the surface,
we generate a cut of the graph. A cut is a set of arcs that partitions
the nodes of the MRG, leaving the source node above the cut, and
the drain node below it. In addition, if the cut contains arc a, then
it must not contain any ancestor or descendent of a. The triangles
of such a cut represent our input surface at some resolution. In
general, we find such a cut by performing a graph traversal
starting from the source, testing the error of each visited node
against a particular error threshold to decide whether to continue.
We can also begin the traversal with an existing cut and move
portions of the nodes upward or downward across the cut to
modify the local resolution of the surface.

We choose to use this MRG as our simplification graph repre-
sentation because it has a couple of desirable properties which it
inherits directly from the MT.

First, the graph fully specifies all the primitives to be used for
all surface resolutions as well as the dependencies between all
changes in resolution. Because all the primitives that may be used
as part of the rendered model are known in advance, we can
provide rigorous bounds on their quality. Not all simplification
hierarchies have this property. For example, the well-known
simplification hierarchies of [Hoppe 1997] and [Luebke and
Erikson 1997] do not have these properties. Looser dependencies
may give these hierarchies greater flexibility, because the order-
ing of vertex merges is not quite so fixed. But the particular
triangles that can be extracted from these hierarchies are not
known in advance, and vary depending on the order of vertex
merges.

Second, the MRG allows for explicit representation of its
primitives and a single, general replacement operator. This is
incredibly convenient for research purposes when the goal is to
explore different primitive types. This very general operation
specifies to replace the primitives in set 4 with the primitives in
set B, without any specific knowledge of the primitive types
involved. Operators that allow a more implicit representation of



this primitive conversion may produce a more compact data
structure, but they are not so convenient for exploration.

5 HYBRID SIMPLIFICATION

As mentioned in Section 3, our simplification process comprises
three simplification operations: polygon simplification, point
replacement, and point simplification. Although the simplification
optimization process could be implemented directly using a single
priority queue or queue for each type of operation, we actually
separate the simplification process into three distinct components,
performing them one after the other in their entirety.

The polygon simplification process explicitly maintains a pri-
ority queue of edge collapses that can be used to replace a set of
triangles with a smaller set of triangles. A point replacement
queue is maintained implicitly in the following way. After
computing the optimization value of an edge collapse operation,
we evaluate the optimization value of the point replacement
operations associated with each of its triangles. If any of these
point replacements takes precedence over the edge collapse, we
remove the edge collapse from the queue. When the polygon
simplification process is finished, point replacement operations
are performed on all the remaining triangles. This produces the
same result as would an explicit point replacement queue.

Once all the point replacements have been performed, the point
simplification process begins. We apply an octree-guided point
merging process to simplify the points produced by the replace-
ment operations. The result may differ from a priority-driven
point simplification process, but it is efficient and works well in
practice.

As the entire simplification process proceeds, we build an
MRG from the bottom up (as shown in Figure 2). Each operation
we perform adds a node to the graph, and the geometric error
bound for the operation is stored with that node. The operation
also enables us to create and connect the node’s child arcs. The
creation of parent arcs is delayed, however, until we know which
nodes will consume the primitives created by this operation. If
multiple nodes consume these new primitives, then the node gets
multiple parents. Notice that each point replacement node has a
single child arc containing one triangle, and produces one or more
points. Each point simplification node, on the other hand, has at
least two child points and produces only a single point. Thus the
point simplification nodes can have only one parent arc, and the
top portion of our graph is actually a tree.

Now we shall discuss the optimization function used to deter-
mine the order of triangle simplification and point replacement
operations. We follow this with a more detailed description of
each of the three simplification operations.

5.1 Queue Optimization Function

For a given simplification operation, we compute its optimization
value as its cost divided by its benefit. The cost is the increase in
error, Ag, and the benefit is the decrease in number of primitives,
-Ap, that would occur as a result of performing the operation in
question. In fact, we can plot the number of primitives versus the
error for the entire simplification process (as in Figure 7), and this
optimization function is just the slope of that curve. Thus we
attempt to produce a curve in which the error grows as slowly as
possible by choosing the operation with the smallest optimization
value.

For simplification algorithms that perform only one type of
operation, the benefit factor is often unnecessary because it is a
constant for all the operations in the process (although for models
with borders, operations taking place on the borders generally
provide less benefit than those on the interior do).

By ordering both triangle simplification and point replacement
operations according to this optimization function, we generally
produce error curves that stay entirely below that of a triangle-
only simplification process. This outcome relies on the fact that
the slope of the point simplification portion of the curve is
generally the lowest of all.

However, this conservative ordering delays the introduction of
points into the hierarchy, leaving less time to benefit from the
small slope of the point simplification. Thus in the interest of
producing the best overall curve rather than one which is every-
where beneath the triangle-only simplification curve, we may
wish to allow a more aggressive schedule for initiating point
replacement operations. To achieve this, we introduce a user-
specifiable transition factor, t, which scales the optimization
values of all the triangle simplification operations. Setting 7 to 1
achieves the same result as the cost/benefit optimization we have
already described, whereas setting it to a value greater than 1 will
introduce points sooner.

The parameter 7 is used to trade an increased primitive count in
the lower error ranges for a decreased primitive count in the
higher error ranges (seen as a hump in the curve in Figure 8). This
is desirable for models of large environments where efficiency for
distant portions of the model may be almost as important or more
important than efficiency for near portions of the model (because
respecting a constant screen-space error tolerance across the
model allows greater world-space error for distant portions of the
model).

5.2 Triangle Simplification

Our triangle simplification operation is an edge collapse, which
merges the two existing vertices of an edge into a single, new
vertex. Our implementation is based on the algorithm described in
[Cohen et al. 1997], which measures the error of an edge collapse
using planar projections. This error is a bound on the Hausdorff
distance (a max of min distances) between the original triangles
and the simplified triangles. This particular algorithm operates
only on manifold surfaces and preserves topology, but this is not a
requirement for our hybrid simplification. The only properties we
require of a triangle simplification operation is that it provide a
guaranteed error bound. (Unfortunately, most operations that
allow topology modification or non-manifold inputs do not
provide guaranteed error bounds). Thus, a number of other
existing algorithms are applicable and may compare favorably
[Guéziec 1995, Klein et al. 1996, Lee et al. 1998].

As described earlier, for each edge collapse operation, we also
compute the optimization cost of the point replacement of each of
its triangles. If any of these point replacements has priority over
the edge collapse, the edge collapse is removed from considera-
tion.

5.3 Point Replacement

The point replacement operation provides a means of transitioning
from triangles to points in our multi-resolution hierarchy. An
important question to consider is how many points we should use
to replace a triangle. In a correct MRG, the error always increases
as we move upward in the hierarchy. As a matter of principle, we
wish to guarantee that the rendering complexity always decreases
at the same time. Thus one can always move down the hierarchy
to increase quality or up the hierarchy to increase performance.
With this in mind, we should never replace a triangle with so
many points that the performance is decreased.

To help our system meet this performance constraint, we intro-
duce a system-specific performance ratio, k, which is the ratio of
point-rendering performance to triangle-rendering performance on
a particular system. Specifying this ratio correctly should make it



possible to generate a hierarchy that is well tuned for the system
in question. Now it is clear that we never wish to replace a
triangle with more than |, | points, because this would actually

decrease performance. Notice that if k¥ <1, then a point replace-
ment can never directly increase performance. Using this defini-
tion of x, we can now refer to a number of primitives in this
system, as:

points

primitives = triangles +
K
In practice, we want to perform the point replacement such that it
minimizes the optimization value for the operation. Using k we
find that the benefit for a point replacement operation is:

replacement points
benefit = 1 - "LACEMEN pomnts

This benefit is just the resulting change in primitive count as we
replace a single triangle primitive with a number of points
equivalent to a fraction of a triangle primitive. The cost of the
point replacement is the associated increase in error due to
replacing a triangle with points. We can show that if we com-
pletely cover the triangle, this cost is just the point radius.

The main tool we have to work with to solve this discrete opti-
mization problem is a procedure for generating a set of replace-
ment samples, given a specified sampling distance. We next
describe this sampling procedure and then a method for optimiz-
ing the choice of sampling distance for a triangle.

5.3.1 Sampling Procedure

The sampling procedure takes as input a sampling distance and
generates a set of point samples that entirely covers a triangle. For
a given sampling distance, we wish to generate as few points as
possible to optimize performance. These are the main considera-
tions for the sampling algorithm to work well.

As mentioned above, each sampling point can be treated as a
sphere, specified by a center (the sample location) and a radius
(the sample’s range of coverage). It is intuitively clear that a set
of spheres (or circles in the plane of the triangle) must overlap
somewhat to completely cover the triangle. Squares, on the other
hand, tile the plane quite nicely without overlap. Thus we can tile
the plane with circular discs that circumscribe these square tiles.
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Figure 3: Squares vs. circles to cover a region.

Figure 3 depicts the case in which squares (or circles) just cover
the region (i.e. any further separation would lead to a hole). In
this sense, it’s quite reasonable to use squares to address the
sampling problem.

To make the algorithm easy to implement as well as to mini-
mize the number of points, we proceed to sample the triangle one
row at a time, as shown in Figure 4. We begin by choosing a
coordinate frame such that the largest edge is considered to be
horizontal at the bottom of the triangle.

We start the sampling from the left side of edge AB, and make
the first sampling point cover as much of the triangle as possible
but without introducing any gap or hole at the bottom and left
side. The following points will be sampled in the same row,
which is parallel to edge AB, until all the triangle space in that
row is covered. This procedure is repeated until the whole triangle
is covered. Notice that each row may shift left-to-right with

respect to the previous rows, so our sampling does not exactly
follow a 2D grid.

.
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Figure 4: The first row of a triangle is sampled.

In addition to computing the sample’s center, we may also wish to
sample other attributes, such as color. To make it possible to
interpolate rather than extrapolate, we ensure that all the sample
centers are located inside or on the edge of the triangle. In Figure
4, if the sampling square has a center outside of the triangle
(above edge AC), we will push down the square to make the
center just located on the edge AC. The similar case will occur
when the sampling point is close to edge BC. To the right side
sampling point, we will first move it as left as possible (just cover
vertex B), then we will adjust it up or down to make it inside the
triangle. It is important to get these special boundary conditions
right, because when we sample a triangle with a small number of
points, all the points may exhibit some boundary condition.
Finally, we need to compute the error bound for a point. In
terms of the two-sided Hausdorff distance measure, we know that
every point on the triangle is zero distance from a sample sphere,
and every point on a sample sphere is within the sphere’s radius
from a point on the triangle. Thus the incremental error due to
sampling is the sphere radius, r. If the sampled triangle already
has some error bound &,, then the total error bound of the point is:

E,=r+¢,

Given the neighboring sample distance, d, the radius of the
circumscribing circle is just:

=Y

5.3.2 Computing Optimum Sample Distance

Now that we can generate a set of samples or, using the same
procedure, count the number of samples generated for a given
triangle and sampling distance, it is possible to effectively
optimize the sample distance using a fairly simplistic approach.

First, we would like the ability to find the smallest sampling
distance, d, which produces no more than a given number of
samples, s. We can initialize d to a value that makes the total area
of's square samples equal to the triangle area:

[4
Area, =sd*> —d = 2%
s

This is the theoretical minimum sampling distance to generate no
more than s samples. Then we double d until it produces more
than s samples and finally binary search within the resulting
interval to find the best sample distance to within some relative
tolerance.

Given this discrete function for d as a function of s, we can
now optimize for the d that produces the smallest cost/benefit
value. The cost value is just the radius, which we have seen in
Section 5.3.1 is just a constant multiple of d. The benefit value
varies with the number of replacement points, s. Because s as a
function of d is a step function, this optimum d will occur just at
the top of one of these steps. Thus the most straightforward way
to compute the optimum sampling distance is to find d for each
integer step with s<k (which we have just described above), and
choose the one resulting in the smallest cost/benefit. This works
in practice for small values of k. For larger values, we may wish
to estimate a derivative of this step function to provide a faster
optimization.



5.4 Point Simplification

After the priority queue has emptied and all remaining point
replacements have been applied, we begin the point simplification
process by inserting all the original sampling points into the cells
of an octree according to the position of the sample center. We
then use the octree cells to indicate which sets of points to merge.
Each merge can combine up to eight children, and produces
exactly one parent point. The center and radius of the new point
are chosen such that the parent sphere contains all the child
spheres, as shown in Figure 5 (we do not currently use the optimal
algorithm, but a simple heuristic). The color of the parent point is
a weighted average of those of its children with weights assigned
according to surface area.

— parent

— child

Figure 5: 3 children points are merged into 1 parent
point.

Each node of the octree corresponds to one node of the MRG with
a single parent arc. As in the case of the original point samples,
the radius is only a part of the error bound for the merged point
and its generating node; it must be combined with any existing
triangle error to compute the total error bound. The total error
bound for a point is just its radius plus the maximum triangle error
bound component associated with its children (this component is
just the child point’s error minus its radius). The creation of the
root node completes the MRG data structure and the hybrid
simplification process.

6 INTERACTIVE DISPLAY

Our interactive display system allows the user to navigate through
a 3D environment described by a multi-resolution graph. The
model is statically pre-lit with diffuse illumination so that no
normals are required for the point primitives (this is still common
practice in the image-based rendering community, although
current research is gradually reducing this limitation).

The user can select either a screen-space error tolerance, in
terms of pixels of deviation, or an object-space error tolerance in
terms of a percentage of the length of the environment’s bounding
box diagonal. Choosing a screen-space tolerance invokes view-
dependent refinement every frame as the user navigates the
environment. Alternatively, selecting an object-space tolerance
causes a one-time refinement to the specified tolerance. This is
useful for looking at the various model resolutions up close, and
allows navigation without any changes in the model primitives.

As described in Section 4, the set of primitives to be rendered
is determined by finding a cut through the graph; the primitives
associated with the arcs on the cut are rendered. The cut is
adapted by evaluating an error criterion to determine if a node is
above or below the current error threshold. For an object-space
error tolerance, the stored error is divided by the length of the
MRG’s bounding box diagonal for comparison with the threshold.
For a screen-space threshold, the arc’s screen-space depth is
computed using a conservative bounding sphere approximation (a
bounding sphere is stored with each arc). From this depth, a
scaling factor is computed to convert the error length from object-
space coordinates to a screen-space pixel distance, which is now
comparable with the specified pixel threshold. The same scaling

factor is used to convert a point primitive’s radius to a screen
space radius for rendering as a circle.

Our current implementation renders OpenGL points on a SGI
InfiniteReality II platform. Other more efficient point rendering
systems have been developed [Grossman and Dally 1998, Pfister
et. al 2000, Rusinkiewicz and Levoy 2000], some of which
include texture filtering. Any of these can readily be used in the
context of our hybrid simplification framework. We hope to take
more of a 3D image warping approach in the future, incorporating
some form of LDI tree [Chang et al. 1999] or a derivative of it, in
order to achieve greater point performance (and thus a larger ).

7 RESULTS

We have implemented both the hierarchical simplification and
interactive display algorithms described in Sections 5 and 6, and
tested them on several models. These models are listed in Figure
6. Most of the preprocessing time is spent in the evaluation and
prioritization of potential edge collapses. This time is increased
somewhat by the optimization of sampling distances for potential
point replacement operations, but not excessively for small values
of the input parameter k. The time required for actually generat-
ing the samples and performing the octree-based point simplifica-
tion is typically quite small compared to the rest of the algorithm.

Model Input MRG MRG Simp
Tris Tris Points Time
Armadillo 1,999,404 | 8,962.427 | 154,651 111:29
Bunny 69,451 308,738 10,825 1:56
Bronco 74,308 257,694 70,841 2:29
Horse 96,966 432,878 10,429 2:45

Figure 6: Test Models (data reported for x=3, t=1;
simplification time in minutes:seconds).

It is informative to observe the behavior of the curves produced
by plotting the number of primitives versus the object-space error
for various choices of the k and t parameters. Figure 7 shows
such a plot for the Bronco model, with a fixed value of k=3 and a
several different values of the transition factor, t. Notice that
setting t=1 achieves a curve that is everywhere less than or equal
to the curve of triangle simplification alone (this is not actually
guaranteed by this non-optimal greedy process). However, if we
relax this constraint by increasing t, we reduce the error values
for the lower primitive counts at the expense of increasing it for
some of the higher primitive range.

Looking at Figure 8 shows us that the bunny model does not
benefit as much from point replacement as much as the Bronco.
This is not surprising, because the bunny is a single, highly
tessellated manifold surface, while the Bronco comprises 339
individual manifolds, which are not so highly tessellated to begin
with. These manifolds are not merged in the triangle domain by
our polygon simplification algorithm, so for this reason as well,
they benefit from the transition to points.

Figure 9 examines changing the system performance ratio, ,
for a fixed value of t (t=1.0). This plot demonstrates, not sur-
prisingly, that if we develop systems with increased levels of
point-rendering performance, our hierarchies will directly benefit
by switching to points sooner in the simplification process.

In Figures 10 and 11, we report the simplification results for a
fixed screen-space error of 3 pixels. We fly-through an environ-
ment consisting of 73 Bronco models and record the number of
primitives for hybrid simplification with k=3, t=1, for hybrid
simplification with k=3, t=5, and for triangle-simplification only.
We are able to reduce the primitive count by an average factor of
1.6 (minimum 1.3, maximum 4.7). As expected, the simplification
for =5 is slightly better when most of the environment is in the
distance (e.g. beginning of the path) and slightly worse when the



viewer is mostly surrounded by the environment (e.g. middle of
the path).
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Figure 7: Varying t for the bronco with x=3.
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Figure 8: Varying t for the bunny model with x=3.
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Figure 9: Varying x for the bunny model, with 1=1.

These graphs show us the nature of error growth in the hierar-
chies, but they cannot portray the localization of point replace-
ments or the geometric configurations where point replacement is
called for. We get a much better intuition for these characteristics
from rendered images of the test models.

Performance Comparison
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Figure 10: Total primitive counts for a fly-through
of the Bronco environment. Hybrid T1/TS5 refers to a
hybrid simplification using k=3, 1=1 and k=3, =5,
respectively. Triangles refer to a pure triangle sim-
plification.
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Figure 11: We show the decomposition of the hybrid
primitives during the example fly-through of the
Bronco model.

Figure 12 shows the bunny being gradually covered by points as
it recedes into the distance. The first points appear around the
sharp tips of the ears and the curves of the toes, then clusters of
points appear in the ridges of the neck and hindquarters, and
finally the rest of the triangles are consumed by this phenomenon.
The last places to remain triangles are the back and rear of the
bunny, which are the flattest. It is pretty clear that the points
benefit the most in the regions of high curvature, where simplifi-
cation is most limited. This occurs primarily when the dihedral
angles between faces become small and the mesh is the coarsest.
Figure 15 shows the simplification by increasing an object-space
error tolerance; thus the rendered points nearer to the eye position
are larger, with larger screen-space error.

Figures 13, 14, and 17 show similar transitions for the Bronco,
horse, and armadillo models. The Bronco in particular suffers
from self-penetration artifacts due to many surfaces with different
colors and tight tolerances. We have shown it for a system with
k=10 rather than k=3 because such a system can reduce these
artifacts somewhat by using finer point samples. Triangle simpli-
fication alone also suffers from such artifacts on a model like this,
but they may be less pronounced than those of the fatter point
primitives are.

Figure 16 shows captured frames from the Bronco environment
fly-through and also a comparison to a frame with a screen-space
error of one pixel rendered using triangle-only simplification.



8 DISCUSSION AND FUTURE WORK

To our knowledge, the hybrid simplification framework presented
is the first system that tightly integrates polygon and point
rendering into a single multi-resolution hierarchy. This hierarchy
is optimized according to the relative performance characteristics
of the primitive types on a particular architecture. For a given
error bound, it achieves a greater reduction in the overall primi-
tive count as compared to a single-representation hierarchy. As
part of this research, we have explored two parameters that
influence the characteristics of the hierarchy we build, and we
have investigated how the replacement of triangles with points
manifests itself in the context of several models.

As future work, we plan to use our hierarchy with a data struc-
ture such as an LDI tree. The exact arrangement of the images we
warp may differ from other 3D image warping applications
because our points are being dynamically added to and removed
from inclusion in the warp. One challenge will be to keep our
images dense enough with points for warping that we still benefit
from the additional efficiency it provides over the transformation
of individual points.

Another interesting avenue for exploration is the construction
of such a hybrid system in conjunction with a topology-modifying
simplification operator. Allowing topological modifications in the
polygon domain may “level the playing field” due to their ability
to continue simplifying longer. It will be interesting to see how
the comparison plays out when both operators can merge objects.

And finally, the system we have presented here only takes into
account the geometric deviation of the simplification. It does not
account for color error, texture error, nor does it provide for
illumination of points. Although measuring the error of attributes
is somewhat well understood in their own domains, it is much less
clear how to combine them into a useful screen-space metric.
Thus attribute errors may be used to guide the off-line optimiza-
tion, but their use in the interactive display system is a more
open-ended problem.
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Figure 15: Bunny model with object space deviation
of 1%, 2%, 3%, and 4% of its bounding box diago-
nal (=3, t=5).

Figure 12: Bunny model with screen-space error of 5
pixels (k=3, 1=5). (wireframe indicates triangles)

Hybrid simplification — 3 pixels of deviation (x=3, t=1)

Figure 16: One frame from the Bronco environment
fly-through.

Figure 13: Bronco model with 5 pixels of deviation
and zoomed in at 20 pixels of deviation (x=10, 1=1).

Figure 17: Hybrid simplification of armadillo with 3

Figure 14: View of the horse model with 20 pixels of pixels of deviation (=3, 7=5).

deviation (x=10, 1=1).
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Abstract

We present a new algorithm for appearance-preserving simplifi-
cation. Not only does it generate a low-polygon-count approxi-
mation of a model, but it also preserves the appearance. This is
accomplished for a particular display resolution in the sense that
we properly sample the surface position, curvature, and color
attributes of the input surface. We convert the input surface to a
representation that decouples the sampling of these three attrib-
utes, storing the colors and normals in texture and normal maps,
respectively. Our simplification algorithm employs a new texture
deviation metric, which guarantees that these maps shift by no
more than a user-specified number of pixels on the screen. The
simplification process filters the surface position, while the run-
time system filters the colors and normals on a per-pixel basis. We
have applied our simplification technique to several large models
achieving significant amounts of simplification with little or no
loss in rendering quality.

CR Categories: 1.3.5: Object hierarchies, 1.3.7: Color, shad-
ing, shadowing, and texture

Additional Keywords: simplification, attributes, parameteri-
zation, color, normal, texture, maps

1 INTRODUCTION

Simplification of polygona surfaces has been an active area of
research in computer graphics. The main goal of simplification is
to generate a low-polygon-count approximation that maintains the
high fidelity of the original model. This involves preserving the
model’s main features and overall appearance. Typically, there are
three appearance attributes that contribute to the overall appear-
ance of apolygonal surface:

1. Surface position, represented by the coordinates of the
polygon vertices.

2.  Surface curvature, represented by a field of normal
vectors across the polygons.

3. Surface color, also represented as a field across the
polygons.

The number of samples necessary to represent a surface accurately
depends on the nature of the model and its area in screen pixels
(which is related to its distance from the viewpoint). For a
simplification algorithm to preserve the appearance of the input
surface, it must guarantee adequate sampling of these three
attributes. If it does, we say that it has preserved the appearance
with respect to the display resolution.

e-mail: { cohenj,dm} @cs.unc.edu, olano@engr.sgi.com
WWW: http://www.cs.unc.edu/~geom/APS

The majority of work in the field of simplification has focused
on surface approximation agorithms. These algorithms bound the
error in surface position only. Such bounds can be used to
guarantee a maximum deviation of the object’s silhouette in units
of pixels on the screen. While this guarantees that the object will
cover the correct pixels on the screen, it says nothing about the
final colors of these pixels.

Of the few simplification algorithms that deal with the remain-
ing two attributes, most provide some threshold on a maximum or
average deviation of these attribute values across the model.
While such measures do guarantee adequate sampling of all three
attributes, they do not generaly allow increased simplification as
the object becomes smaller on the screen. These threshold metrics
do not incorporate information about the object’s distance from
the viewpoaint or its area on the screen. As aresult of these metrics
and of the way we typically represent these appearance attributes,
simplification algorithms have been quite restricted in their ability
to simplify a surface while preserving its appearance.

1.1 Main Contribution

We present a new algorithm for appearance-preserving simplifi-
cation. We convert our input surface to a decoupled representa-
tion. Surface position is represented in the typical way, by a set of
triangles with 3D coordinates stored at the vertices. Surface colors
and normals are stored in texture and normal maps, respectively.
These colors and normals are mapped to the surface with the aid
of a surface parameterization, represented as 2D texture coordi-
nates at the triangle vertices.

The surface position is filtered using a standard surface ap-
proximation algorithm that makes local, complexity-reducing
simplification operations (e.g. edge collapse, vertex removal, etc.).
The color and normal attributes are filtered by the run-time system
at the pixel level, using standard mip-mapping techniques [1].

Because the colors and normals are now decoupled from the
surface position, we employ anew fexture deviation metric, which
effectively bounds the deviation of a mapped attribute value's
position from its correct position on the origina surface. We thus
guarantee that each attribute is appropriately sampled and mapped
to screen-space. The deviation metric necessarily constrains the
simplification algorithm somewhat, but it is much less restrictive
than retaining sufficient tessellation to accurately represent colors
and normals in a standard, per-vertex representation. The preser-
vation of colors using texture maps is possible on all current
graphics systems that supports rea-time texture maps. The
preservation of normals using norma maps is possible on proto-
type machines today, and there are indications that hardware

"'-u«u') O "'uun‘/
Figure 1: Bumpy Torus Model. Lefi: 44,252 triangles
full resolution mesh. Middle and Right: 5,531 triangles,

0.25 mm maximum image deviation. Middle: per-vertex
normals. Right: normal maps
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support for real-time normal maps will become more widespread
in the next severa years.

One of the nice properties of this approach is that the user-
specified error tolerance, e, is both simple and intuitive; it is a
screen-space deviation in pixel units. A particular point on the
surface, with some color and some normal, may appear to shift by
at most e pixels on the screen.

We have applied our algorithm to several large models. Figure
1 clearly shows the improved quality of our appearance-
preserving simplification technique over a standard surface
approximation algorithm with per-vertex normals. By merely
controlling the switching distances properly, we can discretely
switch between afew statically-generated levels of detail (sampled
from a progressive mesh representation) with no perceptible
artifacts. Overall, we are able to achieve a significant speedup in
rendering large models with little or no loss in rendering quality.

1.2 Paper Organization

In Section 2, we review the related work from severa areas.
Section 3 presents an overview of our appearance-preserving
simplification algorithm. Sections 4 through 6 describe the
components of this algorithm, followed by a discussion of our
particular implementation and results in Section 7. Finally, we
mention our ongoing work and conclude in Section 8.

2 RELATED WORK

Research areas related to this paper include geometric levels-of-
detail, preservation of appearance attributes, and map-based
representations. We now briefly survey these.

2.1 Geometric Levels-Of-Detail

Given a polygona model, a number of algorithms have been
proposed for generating levels-of-detail. These methods differ
according to the local or global error metrics used for simplifica-
tion and the underlying data structures or representations. Some
approaches based on vertex clustering [2, 3] are applicable to al
polygonal models and do not preserve the topology of the original
models. Other algorithms assume that the input model is a valid
mesh. Algorithms based on vertex removal [4, 5] and local error
metrics have been proposed by [6-10]. Cohen et a. [11] and Eck
et a. [12] have presented algorithms that preserve topology and
use a global error bound. Our appearance-preserving simplifica-
tion algorithm can be combined with many of these.

Other simplification algorithms include decimation techniques
based on vertex removal [4], topology modification [13], and
controlled simplification of genus [14]. All of these agorithms
compute static levels-of-detail. Hoppe [15] has introduced an
incremental representation, called the progressive mesh, and
based on that representation view-dependent algorithms have been
proposed by [16, 17]. These algorithms use different view-
dependent criteria like local illumination, screen-space surface
approximation error, and silhouette edges to adaptively refine the
meshes. Our appearance preserving simplification agorithm
generates a progressive mesh, which can be used by these view-
dependent a gorithms.

2.2 Preserving Appearance Attributes

Bajg and Schikore [18] have presented an agorithm to simplify
meshes with associated scalar fields to within a given tolerance.
Hughes et al. [19] have presented an agorithm to simplify
radiositized meshes. Erikson and Manocha[20] grow error
volumes for appearance attributes as well as geometry. Many
algorithms based on multi-resolution analysis have been proposed
as well. Schroeder and Sweldens [21] have presented algorithms
for simplifying functions defined over a sphere. Eck et al. [12]

apply multi-resolution analysis to simplify arbitrary meshes, and
Certain et a. [22] extend this to colored meshes by separately
analyzing surface geometry and color. They make use of texture
mapping hardware to render the color at full resolution. It may be
possible to extend this approach to handle other functions on the
mesh. However, algorithms based on vertex removal and edge
collapses [11, 15] have been able to obtain more drastic simplifi-
cation (in terms of reducing the polygon count) and produce
better looking simplifications [15].

Hoppe [15] has used an optimization framework to preserve
discrete and scalar surface appearance attributes. Currently, this
algorithm measures a maximum or average deviation of the scalar
attributes across the model. Our approach can be incorporated
into this comprehensive optimization framework to preserve the
appearance of colors and normals, while allowing continued
simplification as an object's screen size is reduced.

2.3 Map-based Representations

Texture mapping is a common technique for defining color on a
surface. It isjust one instance of mapping, a general technique for
defining attributes on a surface. Other forms of mapping use the
same texture coordinate parameterization, but with maps that
contain something other than surface color. Displacement maps
[23] contain perturbations of the surface position. They are
typically used to add surface detail to a ssmple model. Bump maps
[24] are similar, but instead give perturbations of the surface
normal. They can make a smooth surface appear bumpy, but will
not change the surface’s silhouette. Normal maps [25] can aso
make a smooth surface appear bumpy, but contain the actual
normal instead of just a perturbation of the normal.

Texture mapping is available in most current graphics systems,
including workstations and PCs. We expect to see bump mapping
and similar surface shading techniques on graphics systems in the
near future [26]. In fact, many of these mapping techniques are
aready possible using the procedural shading capabilities of
PixelFlow[27].

Several researchers have explored the possibility of replacing
geometric information with texture. Kgjiya first introduced the
"hierarchy of scale" of geometric models, mapping, and light-
ing[28]. Cabral et. a. [29] addressed the transition between bump
mapping and lighting effects. Westin et. al. [30] generated BRDFs
from a Monte-Carlo ray tracing of an idealized piece of surface.
Becker and Max [31] handle transitions from geometric detail in
the form of displacement maps to shading in the form of bump
maps. Fournier [25] generates maps with normal and shading
information directly from surface geometry. Krishnamurthy and
Levoy [32] fit complex, scanned surfaces with a set of smooth B-
spline patches, then store some of the lost geometric information
in a displacement map or bump map. Many agorithms first
capture the geometric complexity of a scene in an image-based
representation by rendering several different views and then
render the scene using texture maps [33-36].

Representation A ) .
Polygonal Conversion Simplification Progressive
rface Mesh
Surface
Surfa;e ) || Approximation
Parameterization I Texture and
T Texture Normal Maps
; Deviation
Creation .
! Metric

Figure 2: Components of an appearance-preserving
simplification system.



3 OVERVIEW

We now present an overview of our appearance-preserving
simplification algorithm. Figure 2 presents a breakdown of the
algorithm into its components. The input to the algorithm is the
polygona surface, My, to be simplified. The surface may come
from one of awide variety of sources, and thus may have avariety
of characteristics. The types of possibleinput modelsinclude:

CAD models, with per-vertex normals and a single color
Radiositized models, with per-vertex colors and no normals
Scientific visualization models, with per-vertex normals and
per-vertex colors

Textured models, with texture-mapped colors, with or
without per-vertex normals

To store the colors and normals in maps, we need a parameteriza-
tion of the surface, Fo(X): Mq® P, where P is a 2D texture domain
(texture plane), as shown in Figure 3. If the input model is already
textured, such a parameterization comes with the model. Other-
wise, we create one and store it in the form of per-vertex texture
coordinates. Using this parameterization, per-vertex colors and
normals are then stored in texture and norma maps.

The original surface and its texture coordinates are then fed to
the surface simplification algorithm. This algorithm is responsible
for choosing which simplification operations to perform and in
what order. It calls our texture deviation component to measure
the deviation of the texture coordinates caused by each proposed
operation. It uses the resulting error bound to help make its
choices of operations, and stores the bound with each operation in
its progressive mesh output.

We can use the resulting progressive mesh with error bounds to
create a static set of levels of detail with error bounds, or we can
use the progressive mesh directly with a view-dependent simplifi-
cation system at run-time. Either way, the error bound allows the
run-time system to choose or adjust the tessellation of the models
to meet a user-specified tolerance. It is also possible for the user
to choose a desired polygon count and have the run-time system
increase or decrease the error bound to meet that target.

4 REPRESENTATION CONVERSION

Before we apply the actual simplification component of our
algorithm, we perform a representation conversion (as shown in
Figure 2). The representation we choose for our surface has a
significant impact on the amount of simplification we can perform
for a given level of visua fidelity. To convert to a form which
decouples the sampling rates of the colors and normals from the
sampling rate of the surface, we first parameterize the surface,
then store the color and normal information in separate maps.

4.1 Surface Parameterization

To store a surface's color or normal attributes in a map, the
surface must first have a 2D parameterization. This function,
Fo(X): Mg® P, maps points, X, on the input surface, My, to points,
x, on the texture plane, P (see Figure 3). The surface is typically
decomposed into several polygonal patches, each with its own
parameterization. The creation of such parameterizations has been
an active area of research and is fundamental for shape transfor-
mation, multi-resolution analysis, approximation of meshes by
NURBS, and texture mapping. Though we do not present a new
algorithm for such parameterization here, it is useful to consider

" Capital letters (e.g. X) refer to pointsin 3D, while lowercase letters
(e.g. x) refer to pointsin 2D.

Figure 3: A look at the ith edge collapse. Computing
Vgen determines the shape of the new mesh, M,. Com-
puting vge, determines the new mapping F;, to the tex-
ture plane, P.

the desirable properties of such a parameterization for our algo-
rithm. They are:

1. Number of patches: The parameterization should use as few
patches as possible. The triangles of the simplified surface
must each lie in asingle patch, so the number of patches places
abound on the minimum mesh complexity.

2. Vertex distribution: The vertices should be as evenly distrib-
uted in the texture plane as possible. If the parameterization
causes too much area compression, we will require a greater
map resolution to capture all of our original per-vertex data.

3. One-to-one mapping: The mapping from the surface to the
texture plane should be one-to-one. If the surface has folds in
the texture plane, parts of the texture will be incorrectly stored
and mapped back to the surface

Our particular application of the parameterization makes us
somewhat |less concerned with preserving aspect ratios than some
other applications are. For instance, many applications apply
F(x) to map a pre-synthesized texture map to an arbitrary
surface. In that case, distortions in the parameterization cause the
texture to look distorted when applied to the surface. However, in
our application, the color or normal data originates on the surface
itself. Any distortion created by applying F(X) to map this data
onto P is reversed when we apply F(x) to map it back to M.

Algorithms for computing such parameterizations have been
studied in the computer graphics and graph drawing literature.

Computer Graphics: In the recent computer graphics litera-
ture, [12, 37, 38] use a spring system with various energy termsto
distribute the vertices of a polygonal patch in the plane. [12, 32,
38, 39] provide methods for subdividing surfaces into separate
patches based on automatic criteria or user-guidance. This body of
research addresses the above properties one and two, but unfortu-
nately, parameterizations based on spring-system algorithms do
not generally guarantee a one-to-one mapping.

Graph Drawing: The field of graph drawing addresses the
issue of one-to-one mappings more rigorously. Relevant topics
include straight-line drawings on a grid [40] and convex straight-
line drawings [41]. Battista et al. [42] present a survey of the
field. These techniques produce guaranteed one-to-one mappings,
but the necessary grids for a graph with V vertices are worst case
(and typicaly) O(V) width and height, and the vertices are
generally unevenly spaced.

To break a surface into polygonal patches, we currently apply
an automatic subdivision algorithm like that presented in [12].
Their application requires a patch network with more constraints
than ours. We can generally subdivide the surface into fewer
patches. During this process, which grows Voronoi-like patches,
we simply require that each patch not expand far enough to touch
itself. To produce the parameterization for each patch, we employ



Figure 4: A patch from the leg
of an armadillo model and its
associated normal map.

a spring system with uniform weights. A side-by-side comparison
of various choices of weights in [12] shows that uniform weights
produce more evenly-distributed vertices than some other choices.
For parameterizations used only with one particular map, it is also
possible to allow more area compression where data values are
similar. While this technique will generally create reasonable
parameterizations, it would be better if there were a way to also
guarantee that F(X) is one-to-one, as in the graph drawing
literature.

Figure 5: Lion
model.

4.2 Creating Texture and Normal Maps

Given a polygonal surface patch, Mg, and its 2D parameterization,
F, it is straightforward to store per-vertex colors and normals into
the appropriate maps using standard rendering software. To create
a map, scan convert each triangle of My, replacing each of its
vertex coordinates, Vj, with F(V)), the texture coordinates of the
vertex. For a texture map, apply the Gouraud method for linearly
interpolating the colors across the triangles. For a norma map,
interpolate the per-vertex normals across the triangles instead
(Figure 4).

The most important question in creating these maps is what the
maximum resolution of the map images should be. To capture all
the information from the original mesh, each vertex's data should
be stored in a unique texel. We can guarantee this conservatively
by choosing 1/d x 1/d for our map resolution, where d is the
minimum distance between vertex texture coordinates:

— ; . 1
d=_ min [F(V)- (V)| @

If the vertices of the polygonal surface patch happen to be a
uniform sampling of the texture space (e.g. if the polygona
surface patch was generated from a parametric curved surface
patch), then the issues of scan conversion and resolution are
simplified considerably. Each vertex color (or normal) is simply
stored in an element of a 2D array of the appropriate dimensions,
and the array itself is the map image.

It is possible to trade off accuracy of the map data for run-time
texturing resources by scaling down the initial maps to a lower
resolution.

5 SIMPLIFICATION ALGORITHM

Once we have decomposed the surface into one or more parame-
terized polygona patches with associated maps, we begin the
actual simplification process. Many simplification agorithms
perform a series of edge collapses or other local simplification
operations to gradually reduce the complexity of the input surface.

Figure 6: Texture coordinate deviation and correction
on the lion’s tail. Left: 1,740 triangles full resolution.
Middle and Right: 0.25 mm maximum image deviation.
Middle: 108 triangles, no texture deviation metric.
Right: 434 triangles with texture metric.

The order in which these operations are performed has a large
impact on the quality of the resulting surface, so simplification
algorithms typically choose the operations in order of increasing
error according to some metric. This metric may be local or global
in nature, and for surface approximation algorithms, it provides
some bound or estimate on the error in surface position. The
operations to be performed are typically maintained in a priority
queue, which is continually updated as the simplification pro-
gresses. This basic design is applied by many of the current
simplification algorithms, including [6-8, 15].

To incorporate our appearance-preservation approach into such
an algorithm, the original algorithm is modified to use our texture
deviation metric in addition to its usua error metric. When an
edge is collapsed, the error metric of the particular surface
approximation algorithm is used to compute a value for Ve, the
surface position of the new vertex (see Figure 3). Our texture
deviation metric is then applied to compute a value for vy, the
texture coordinates of the new vertex.

For the purpose of computing an edge’s priority, there are sev-
eral ways to combine the error metrics of surface approximation
along with the texture deviation metric, and the appropriate choice
depends on the algorithm in question. Several possibilities for
such a fotal error metric include a weighted combination of the
two error metrics, the maximum or minimum of the error metrics,
or one of the two error metrics taken alone. For instance, when
integrating with Garland and Heckbert's agorithm [6], it would
be desirable to take a weighted combination in order to retain the
precedence their system accords the topol ogy-preserving collapses
over the topology-modifying collapses. Similarly, a weighted
combination may be desirable for an integration with Hoppe's
system [15], which already optimizes error terms corresponding to
various mesh attributes.

The interactive display system later uses the error metrics to
determine appropriate distances from the viewpoint either for
switching between static levels of detail or for collapsing/splitting
the edges dynamically to produce adaptive, view-dependent
tessellations. If the system intends to guarantee that certain
tolerances are met, the maximum of the error metrics is often an
appropriate choice.

6 TEXTURE DEVIATION METRIC

A key element of our approach to appearance-preservation is the
measurement of the texture coordinate deviation caused by the
simplification process. We provide a bound on this deviation, to



(a) (b)

Figure 7: (a) Aninvalid choice for v, in P, causing the
new triangles extend outside the polygon. (b) Valid
choices must lie in the shaded kernel.

be used by the simplification algorithm to prioritize the potential
edge collapses and by the run-time visualization system to choose
appropriate levels of detail based on the current viewpoint. The
lion's tail in Figure 6 demonstrates the need to measure texture
coordinate deviation. The center figure is smplified by a surface
approximation algorithm without using a texture deviation metric.
The distortions are visible in the areas marked by red circles. The
right tail is simplified using our texture deviation metric and does
not have visible distortions. The image-space deviation bound
now applies to the texture as well asto the surface.

For a given point, X, on simplified mesh M,, this deviation is
the distance in 3D from X to the point on the input surface with
the same texture coordinates:

T.(X) =X - F; (X)) @

We define the texture coordinate deviation of a whole triangle to
be the maximum deviation of all the points in the triangle, and
similarly for the whole surface:

T,(D) = Q?Iag T,‘ (X), T,' (M,) = r;g?}[)’( Ti (X) 3

To compute the texture coordinate deviation incurred by an edge
collapse operation, our algorithm takes as input the set of triangles
before the edge collapse and Ve, the 3D coordinates of the new
vertex generated by the collapse operation. The algorithm outputs
vgen, the 2D texture coordinates for this generated vertex, and a
bound on T;(D) for each of the triangles after the collapse.

6.1 Computing New Texture Coordinates

We visualize the neighborhood of an edge to be collapsed in the
texture plane, P, as shown in Figure 3. The boundary of the edge
neighborhood is a polygon in P. The edge collapse causes us to
replace the two vertices of the edge with a single vertex. The 3D
coordinates, Vg, of this generated vertex are provided to us by the
surface approximation algorithm. The first task of the texture
deviation algorithm is to compute vge,, the 2D texture coordinates
of this generated vertex.

For vge to be valid, it must lie in the convex kernel of our
polygon in the texture plane [43] (see Figure 7). Meeting this
criterion ensures that the set of triangles after the edge collapse
covers exactly the same portion of the texture plane as the set of
triangles before the collapse.

Given a candidate point in the texture plane, we efficiently test
the kernel criterion with a series of dot products to seeiif it lieson
the inward side of each polygon edge. We first test some heuristic
choices for the texture coordinates — the midpoint of the origina
edge in the texture plane or one of the edge vertices. If the
heuristic choices fail we compute a point inside the kernel by
averaging three corners, found using linear programming tech-
niques [43].

6.2 Patch Borders & Continuity

Unlike an interior edge collapse, an edge collapse on a patch
border can change the coverage in the texture plane, either by
cutting off some of texture space or by extending into a portion of
texture space for which we have no map data. Since neither of

Figure 8: (a) An overlay in P determines the mapping
between M;; and M,. (b) A set of polygona mapping
cells, each containing a dot.

these is acceptable, we add additional constraints on the choice of
Vgen & patch borders.

We assume that the area of texture space for which we have
map data is rectangular (though the method works for any map
that covers a polygonal area in texture space), and that the edges
of the patch are also the edges of the map. If the entire edge to be
collapsed lies on a border of the map, we restrict vge, to lie on the
edge. If one of the vertices of the edge lies on a corner of the map,
we further restrict vge, to lie at that vertex. If only one vertex ison
the border, we restrict v, to lie at that vertex. If one vertex of the
edge lies on one border of the map and the other vertex lieson a
different border, we do not allow the edge collapse.

The surface parameterization component typically breaks the
input model into several connected patches. To preserve geomet-
ric and texture continuity across the boundary between them, we
add further restrictions on the simplifications that are performed
along the border. The shared border edges must be simplified on
both patches, with matching choices of Ve, and vge.

6.3 Measuring Texture Deviation

Texture deviation is a measure of the parametric distortion caused
by the simplification process. We measure this deviation using a
method similar to the one presented to measure surface deviation
in [8]. The main difference is that we now measure the deviation
using our mapping in the texture plane, rather than in the plane of
some planar projection. While [8] presents an overview of this
technique, we present it more formally.

Given the overlay (see Figure 8(a)) in the texture plane, P, of
two simplified versions of the surface, M; and M;, we define the
incremental texture deviation between them:

E,,(0)=[F (- F(x) ()

This is the deviation between corresponding 3D points on the
surfaces, both with texture coordinates, x. Between any two
sequential surfaces, M; and M., differing only by an edge col-
lapse, the incremental deviation, E; . 1(x), is only non-zero in the
neighborhood of the collapsed edge (i.e. only in the triangles that
actualy move).

The edges on the overlay in P partition the region into a set of
convex, polygonal mapping cells (each identified by a dot in
Figure 8(b)). Within each mapping cell, the incremental deviation
function is linear, so the maximum incremental deviation for each
cell occurs at one of its boundary points. Thus, we bound the
incremental deviation using only the deviation at the cell vertices,
Vk:

E (P)=maxE, ,(x)=max E, ,(v,) ©)

In terms of the incremental deviation, the total texture deviation,
defined in (2) (the distance from points on M, to corresponding
points on the original surface, My) is

T,(X)=E,(F, (X)) ©)

We approximate E; o(x) using a set of axis-aligned boxes. This
provides a convenient representation of a bound on T;(X), which



we can update from one simplified mesh to the next without
having to refer to the original mesh. Each triangle, D, in M;, has its
own axis-aligned box, b, such that at every point on the triangle,
the Minkowski sum of the 3D point with the box gives a region
that contains the point on the origina surface with the same
texture coordinates.

" X1 D,, F;F(X))1 XA b, @)

Figure 9(a) shows an origina surface (curve) in black and a
simplification of it, consisting of the thick blue and green lines.
The box associated with the blue line, b, o, is shown in blue, while
the box for the green line, b, 4, is shown in green. The blue box
dlides along the blue line; at every point of application, the point
on the base mesh with the same texture coordinate is contained
within the translated box. For example, one set of corresponding
pointsis shown in red, with its box also in red.

From (2) and (7), we produce T/(X), a bound on the total tex-
ture deviation, T;(X). This our texture deviation output.

T.(X) £ T(X)= Jnex [X- X¢ ®

:I:,-(X) is the distance from X to the farthest corner of the box at X.
This will always bound the distance from X to F(F,(X)). The
maximum deviation over an edge collapse neighborhood is the
maximum T,(X) for any cell vertex.

The boxes, b;;, are the only information we keep about the
position of the original mesh as we simplify. We create a new set
of boxes, b;.1;, for mesh M, using an incremental computation
(described in Figure 10). Figure 9(b) shows the propagation from
M, to M,,;. The blue and green lines are simplified to the pink line.
The new box, b,.1 is constant as it slides across the pink line. The
size and offset is chosen so that, at every point of application, the
pink box, b1, contains the corresponding blue or green boxes,
b;oorb;;.

If X isapoint on M; in triangle k, and Y is the point with the
same texture coordinate on M;,;, the containment property of (7)
holds:

F;'(F.(Y))1 XAb, 1 YAb,,, ©

For example, all three red dots Figure 9(b) have the same texture
coordinates. The red point on M, is contained in the smaller red
box, X A b, ,, which is contained in the larger red box, Y A b,,10.
Because each mapping cell in the overlay between M; and M;,;
islinear, we compute the sizes of the boxes, b;.; -, by considering
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Figure 9: 2D illustration of the box approximation to
total deviation error. a) A curve has been simplified to
two segment, each with an associated box to bound the
deviation. b) As we simplify one more step, the ap-
proximation is propagated to the newly created seg-
ment.

PropagateError():
foreach cell vertex, v
foreach triangle, Toq, iNn M.1 touching v
foreach triangle, Tnews in M touching v
Propagat eBox(Vv, Toid, Tnew)
PropagateBox(v, Toid, Tnew?:
Porg = Fi-1>1(V)y Prew = Fi~ (V)
Enl arge Toid. box so that Te 4. box applied at
Poig contains Tnew box applied at Prew

Figure 10: Pseudo-code for the propagation of deviation
error from mesh M;_; to mesh M;.

only the box correspondences at cell vertices. In Figure 9(b), there
are three places we must consider. If the magenta box contains the
blue and green boxes in al three places, it will contain them
everywhere.

Together, the propagation rules, which are simple to imple-
ment, and the box-based approximation to the texture deviation,
provide the tools we need to efficiently provide a texture devia
tion for the simplification process.

7 IMPLEMENTATION AND RESULTS

In this section we present some details of our implementation of
the various components of our appearance-preserving simplifica-
tion algorithm. These include methods for representation conver-
sion, smplification and, finally, interactive display.

7.1 Representation Conversion

We have applied our technique to severa large models, including
those listed in Table 1. The bumpy torus model (Figure 1) was
created from a parametric equation to demonstrate the need for
greater sampling of the normals than of the surface position. The
lion model (Figure 5) was designed from NURBS patches as part
of amuch larger garden environment, and we chose to decorate it
with a marble texture (and a checkerboard texture to make texture
deviation more apparent in static images). Neither of these models
required the computation of a parameterization. The armadillo
(Figure 12) was constructed by merging severa laser-scanned
meshes into a single, dense polygon mesh. It was decomposed
into polygonal patches and parameterized using the agorithm
presented in [32], which eventually converts the patches into a
NURBS representation with associated displacement maps.

Because all these models were not only parameterized, but
available in piecewise-rationa parametric representations, we
generated polygonal patches by uniformly sampling these repre-
sentations in the parameter space. We chose the original tessella-
tion of the models to be high enough to capture al the detail
available in their smooth representations. Due to the uniform
sampling, we were able to use the simpler method of map creation
(described in Section 4.2), avoiding the need for a scan-
CONVersion process.

7.2 Simplification

We integrated our texture deviation metric with the successive
mapping algorithm for surface approximation [8]. The error
metric for the successive mapping algorithm is simply a 3D
surface deviation. We used this deviation only in the computation
of Vgen. Our total error metric for prioritizing edges and choosing
switching distances is just the texture deviation. This is sensible
because the texture deviation metric is also a measure of surface
deviation, whose particular mapping is the parameterization.
Thus, if the successive mapping metric is less than the texture
deviation metric, we must apply the texture deviation metric,
because it is the minimum bound we know that guarantees the
bound on our texture deviation. On the other hand, if the succes-
sive mapping metric is greater than the texture deviation metric,



the texture deviation bound is till sufficient to guarantee a bound
on both the surface deviation and the texture.

To achieve a simple and efficient run-time system, we apply a
post-process to convert the progressive mesh output to a static set
of levels of detail, reducing the mesh complexity by a factor of
two at each level.

Our implementation can either treat each patch as an independ-
ent object or treat a connected set of patches as one object. If we
simplify the patches independently, we have the freedom to switch
their levels of detail independently, but we will see cracks be-
tween the patches when they are rendered at a sufficiently large
error tolerance. Simplifying the patches together alows us to
prevent cracks by switching the levels of detail simultaneously.

Table 1 gives the computation time to simplify several models,

Figure 11: Levels of detail of the armadillo model
shown with 1.0 mm maximum image deviation. Trian-
gle counts are: 7,809, 3,905, 1,951, 975, 488

=

2

249,924 triangles
0.05 mm max image deviation

62,480 triangles

Model Patches | Input Tris Time Map Res.

Torus 1 44,252 4.4 512x128
Lion 49 86,844 7.4 N.A.

Armadillo 102 2,040,000 190 128x128

0.25 mm max image deviation

Table 1. Severa models used to test appearance-
preserving simplification. Simplification time isin min-
utes on a MIPS R10000 processor.

as well as the resolution of each map image. Figure 11 and Figure
12 show results on the armadillo model. It should be noted that
the latter figure is not intended to imply equal computational costs
for rendering models with per-vertex normals and norma maps.
Simplification using the normal map representation provides
measurable quality and reduced triangle overhead, with an
additional overhead dependent on the screen resol ution.

7.3 Interactive Display System

We have implemented two interactive display systems: one on top
of SGI's IRIS Performer library, and one on top of a custom
library running on a PixelFlow system. The SGI system supports
color preservation using texture maps, and the PixelFlow system
supports color and normal preservation using texture and normal
maps, respectively. Both systems apply a bound on the distance
from the viewpoint to the object to convert the texture deviation
error in 3D to anumber of pixels on the screen, and allow the user
to specify a tolerance for the number of pixels of deviation. The
tolerance is ultimately used to choose the primitives to render
from among the statically generated set of levels of detail.

Our custom shading function on the PixelFlow implementation
performs a mip-mapped look-up of the norma and applies a

7,809 triangles
1.3 mm max image deviation

975 triangles
6.6 mm max image deviation

Figure 12: Close-up of severa levels of detail of the armadillo model. Top: normal maps Bottom: per-vertex normals



Phong lighting model to compute the output color of each pixel.
The current implementation looks up normals with 8 bits per
component, which seems sufficient in practice (using [44])

8 ONGOING WORK AND CONCLUSIONS

There are several directions to pursue to improve our system for
appearance-preserving simplification. We would like to experi-
ment more with techniques to generate parameterizations that
allow efficient representations of the mapped attributes as well as
guarantee a one-to-one mapping to the texture plane.

It would be nice for the simplification component to do a better
job of optimizing the 3D and texture coordinates of the generated
vertex for each edge collapse, both in 3D and the texture plane.
Also, it may be interesting to allow the attribute data of a map to
influence the error metric. We would aso like to integrate our
technique with a simplification algorithm like [6] that deals well
with imperfect input meshes and alows some topological
changes. Finaly, we want to display our resulting progressive
meshes in a system that performs dynamic, view-dependent
management of LODs.

Our current system demonstrates the feasibility and desirability
of our approach to appearance-preserving simplification. It
produces high-fidelity images using a small number of high-
quality triangles. This approach should complement future
graphics systems well as we strive for increasingly realistic real-
time computer graphics.
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Abstract:

We present the use of mapping functions to automatically
generate levels of detail with known error bounds for polygo-
nal models. We develop a piece-wise linear mapping function
for each simplification operation and use this function to mea-
sure deviation of the new surface from both the previous level
of detail and from the original surface. In addition, we use the
mapping function to compute appropriate texture coordinates if
the original map hastexture coordinates at its vertices. Our over-
all algorithm uses edge collapse operations. We present rigorous
procedures for the generation of local planar projections as well
asfor the selection of anew vertex position for the edge collapse
operation. Ascompared to earlier methods, our algorithmisable
to compute tight error bounds on surface deviation and produce
an entire continuum of levels of detail with mappings between
them. We demonstrate the effectiveness of our algorithm on
several models: a Ford Bronco consisting of over 300 parts and
70, 000 triangles, a textured lion model consisting of 49 parts
and 86, 000 triangles, and a textured, wrinkled torus consisting
of 79, 000 triangles.

CR Categories and Subject Descriptors: 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling —
Curve, surface, solid, and object representations.

Additional Key Words and Phrases:. model simplification,
levels-of-detail, surface approximation, projection, linear pro-
gramming.

1 Introduction

Automatic generation of levels of detail for polygonal data sets
has become a task of fundamental importance for real-time ren-
dering of large polygonal environmentson current graphics sys-
tems. Many detailed models are obtained by scanning physical
objects using range scanning systems or created by modeling
systems. Besides surface geometry these models, at times, con-
tain additional information such as normals, texture coordinates,
color etc. Asthe field of model simplification continues to ma-
ture, many applications desire high quality simplifications, with
tight error bounds of various types across the surface being sim-

plified.

Most of the literature on simplification has focused purely
on surface approximation. Many of these techniques give guar-
anteed error bounds on the deviation of the simplified surface
from the original surface. Such bounds are useful for providing
a measure of the screen-space deviation from the original sur-
face. A few techniques have been proposed to preserve other
attributes such as color or overall appearance. However, they
are not able to give tight error bounds on these parameters. At
timesthe errors accumulated in all these domains may causevis-
ible artifacts, even though the surface deviation itself is properly
constrained. We believe the most promising approach to mea-
suring and bounding these attribute errorsis to have a mapping
between the original surface and the simplified surface. With
such amapping in hand, we are free to devise suitable methods
for measuring and bounding each type of error.

Main Contribution: In this paper we present a new simpli-
fication algorithm, which computes a piece-wise linear mapping
between the original surface and the simplified surface. The al-
gorithm uses the edge collapse operation due to its simplicity,
local control, and suitability for generating smooth transitions
between levels of detail. We also present rigorous and complete
algorithms for collapsing an edge to a vertex such that there are
no local self-intersections. The algorithm keepstrack of surface
deviation from both the current level of detail aswell asfrom the
original surface. The main features of our approach are:

1. Successive Mapping: This mapping between the levels of
detail is a useful tool. We currently use the mapping in
several ways: to measure the distance between the levels
of detail before an edge collapse, to choose alocation for
the generated vertex that minimizes this distance, to accu-
mulate an upper bound on the distance between the new
level of detail and the original surface, and to map surface
attributes to the simplified surface.

2. Tight Error Bounds: Our approach can measure and min-
imize the error for surface deviation and is extendible to
other attributes. These error bounds give guarantees on the
shape of the simplified object and screen-space deviation.

3. Generality: Portions of our approach can be easily com-
bined with other algorithms, such as simplification en-
velopes [5]. Furthermore, the algorithm for collapsing an
edgeinto avertex israther general and does not restrict the
vertex to lie on the original edge.

4. SurfaceAttributes: Givenan original surfacewith texture
coordinates, our algorithm uses the successi ve mapping to
compute appropriate texture coordinates for the simplified
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mesh. Other attributes such as color or surface normal can
also be maintained with the mapping.

5. Continuum of Levels of Details: The algorithm incre-
mentally produces an entire spectrum of levels-of-details
as opposed to afew discrete levels. Furthermore, the algo-
rithm incrementally stores the error bounds for each level.
Thus, the simplified model can be stored as a progressive
mesh [12] if desired.

The algorithm has been successfully applied to a number of
models. These models consist of hundreds of parts and tens of
thousands of polygons, including a Ford Bronco with 300 parts,
atextured lion model and atextured wrinkled torus.

Organization: Therest of the paper is organized as follows.
In Section 2, we survey related work on model simplification.
We give an overview of our algorithm in Section 3. Section 4
discusses the types of mappings computed by the algorithm and
describes the algorithm in detail. In Section 5, we present ap-
plications of these mapping. Theimplementation is discussedin
Section 6 and its performancein Section 7. Finally, in Section 8
we compare our approach to other algorithms.

2 PreviousWork

Automatic simplification has been studied in both the compu-
tational geometry and computer graphics literature for several
years[1, 3,5,6,7,8,9,10, 12, 11, 15, 16, 17, 18, 19, 21, 22, 24].
Some of the earlier work by Turk [22] and Schroeder [19] em-
ployed heuristics based on curvature to determine which parts
of the surface to simplify to achieve a model with the desired
polygon count. Other work includethat of Rossignac and Borrel
[16] where vertices close to each other are clustered and a vertex
is generated to represent them. This algorithm has been used in
the Brush walkthrough system [18]. A dynamic view-dependent
simplification algorithm has been presented in [24].

Hoppe et a. [12, 11] posed the model simplification prob-
lem into aglobal optimization framework, minimizing the least-
squares error from a set of point-sampleson the original surface.
Later, Hoppe extended this framework to handle other scalar at-
tributes, explicitly recognizing the distinction between smooth
gradients and sharp discontinuities. He a so introduced the pro-
gressivemesh [12], whichisessentially astored sequenceof sim-
plification operations, allowing quick construction of any desired
level of detail along the continuum of simplifications. However,
the algorithm in [12] provides no guaranteed error bounds.

There is considerable literature on model simplification us-
ing error bounds. Cohen and Varshney et a. [5, 23] have used
envelopes to preserve the model topology and obtain tight error
bounds for a simple simplification. But they do not produce an
entire spectrum of levels of detail. Guéziec [9] has presented
an agorithm for computing local error bounds inside the sim-
plification process by maintaining tolerance volumes. However,
it does not produce a suitable mapping between levels of de-
tail. Bajgj and Schikore[1, 17] have presented an agorithm for
producing a mapping between approximations and measure the
error of scalar fields acrossthe surface based on vertex-removals.
Some of the results presented in this paper extend thiswork non-
trivially to edge collapse operation. A detailed comparison with
these approachesis presented in Section 8.

An elegant solution to the polygon simplification problem has
been presented in [7, 8] where arbitrary polygonal meshes are
first subdivided into patches with subdivision connectivity and
then multiresolution wavelet analysis is used over each patch.
These methods preserve global topology, give error bounds on

the simplified object and provide a mapping between levels of
detail. In [3] they have been further extended to handle colored
meshes. However, the initial mesh is not contained in the level
of detail hierarchy, but can only be recovered to within an e-
tolerance. In some cases this is undesirable. Furthermore, the
wavel et based approach can be somewhat conservative and for a
given error bound, algorithms based on vertex removal and edge
collapses[5, 12] have been empirically able to simplify more (in
terms of reducing the polygon count).

3 Overview

Our simplification approach may be seen as a high-level ago-
rithm which control sthe simplification processwith alower-level
cost function based on local mappings. Next we describe this
high-level control algorithm and theideaof using local mappings
for cost evaluation.

3.1 High-level Algorithm

At abroad level, our simplification algorithm is a generic greedy
algorithm. Our simplification operation is the edge collapse.
We initialize the algorithm by measuring the cost of all possible
edge collapses, then we perform the edge collapses in order
of increasing cost. The cost function tries to minimize local
error bounds on surface deviation and other attributes. After
performing each edge collapse, we locally re-compute the cost
functions of all edges whose neighborhoods were affected by
the collapse. This process continues until none of the remaining
edges can be collapsed.

The output of our algorithm is the origina model plus an
ordered list of edge collapses and their associated cost functions.
This progressive mesh [12] represents an entire continuum of
levelsof detail for the surface. A graphicsapplication can choose
to dynamically create levels of detail or to statically allocate a set
of levels of detail to render the model with the desired quality or
speed-up.

3.2 Local Mappings

The edge collapse operation we perform to simplify the surface
contracts an edge (the collapsed edge) to a single, new vertex
(the generated vertex). Most of the earlier algorithms position
the generated vertex to one of the end vertices or mid-point of
the collapse edge. However, these choices for generated vertex
position may not minimize the deviation or error bound and can
result in alocal self-intersection. We choose a vertex position
in two dimensions to avoid self-intersections and optimize in
the third dimension to minimize error. This optimization of the
generated vertex position and measurement of the error are the
keys to simplifying the surface without introducing significant
error.

For each edge collapse, we consider only the neighborhood
of the surface that is modified by the operation (i.e. those faces,
edges and vertices adjacent to the collapsed edge). There is
a natural mapping between the neighborhood of the collapsed
edge and the neighborhood of the generated vertex. Most of the
triangles incident to the collapsed edge are stretched into corre-
sponding trianglesincident to the generated vertex. However, the
two triangles that share the collapsed edge are themselves col-
lapsed to edges (see Figure 1). These natura correspondences
are one form of mapping

This natural mapping has two weaknesses.



Figure 1: The natural mapping primarily maps triangles to
triangles. Thetwo greytriangles map to edges, and the collapsed
edge maps to the generated vertex

1. Thedegeneracy of the triangles mapping to edges prevents
us from mapping points of the simplified surface back to
unique pointson the original surface. Thisalsoimpliesthat
if we have any sort of attribute field across the surface, a
portion of it disappears as aresult of the operation.

2. Theerror implied by this mapping may be larger than nec-
essary.

We measure the surface deviation error of the operation by
the distances between corresponding points of our mapping. |If
we use the natural mapping, the maximum distance between any
pair of pointsis defined as:

maz(distance(Vi, Vgenerated), distance(Va, Vgenerated)),

wherethe collapsed edge correspondsto (v1, v2) and Vgenerated
isthe generated vertex.

If we place the generated vertex at the midpoint of the col-
lapsed edge, thisdistance error will be half the length of the edge.
If we place the vertex at any other location, the error will be even
greater.

We can create mappingsthat arefree of degeneraciesand often
imply less error than the natural mapping. For simplicity, and to
guarantee no self-intersections, we perform our mappings using
planar projections of our local neighborhood. We refer to them
as successive mappings.

4 Successive Mapping

In this section we present an algorithm to compute the mappings
and their error bounds, which guide the simplification process.
We present efficient and complete algorithms for computing a
planar projection, finding agenerated vertex inthe plane, creating
amapping in the plane, and finally placing the generated vertex
in 3D. The resulting algorithms utilize a number of techniques
from computational geometry and are efficient in practice.

4.1 Computing a Planar Projection

Given a set of trianglesin 3D, we present an efficient algorithm
to compute a planar projection which is one-to-one to the set of
triangles. Thealgorithmisguaranteed to find aplane, if it exists.

The projection we seek should be one-to-one to guarantee
that the operations we perform in the plane are meaningful. For
example, suppose we project a connected set of triangles onto
a plane and then re-triangulate the polygon described by their
boundary. The resulting set of triangles will contain no self-
intersections, so long asthe projection isone-to-one. Many other
simplification a gorithms, such as those by Turk [22], Schroeder
[19] and Cohen, Varshney et al. [5], al so used such projectionsfor

Direction of Projection

Not one-to-one on thisinterval

Figure 2: A 2D example of an invalid projection

vertex removal. However, they would choose a likely direction,
such as the average of the normal vectors of the triangles of
interest. To test the validity of the resulting projection, these
earlier algorithms would project al the triangles onto the plane
and check for self-intersections. This process can be relatively
expensive and is not guaranteed to find a one-to-one projecting
plane.

We improve on earlier brute-force approaches in two ways.
First, we present a simple, linear-time algorithm for testing the
validity of agiven direction. Second, we present aslightly more
complex, but still expected linear-time, algorithm which will find
avalid direction if one exists, or report that no such direction
exists for the given set of triangles.

4.1.1 Validity Test for Planar Projection

In this section, we briefly describe the algorithm which checks
whether a given set of triangles have a one-to-one planar projec-
tion. Assume that we can calculate a consistent set of normal
vectors for the set of trianglesin question (if we cannot, the sur-
face is non-orientable and cannot be mapped onto a plane in a
one-to-one fashion). If the angle between a given direction of
projection and the normal vector of each of the trianglesis less
than 90°, then the direction of projection is valid, and defines a
one-to-one mapping from the 3D trianglesto a set of trianglesin
the plane of projection (any plane perpendicular to the direction
of projection). Note that for a given direction of projection and a
given set of triangles, thistest involves only a single dot product
and asign test for each triangle in the set.

The correctness of the validity test can be established rigor-
ously [4]. Dueto spacelimitations, wedo not present thedetailed
proof here. Rather, we give a short overview of the proof.

Figure 2 illustrates our problem in 2D. We would like to
determineif the projection of thecurve ontothelineisone-to-one.
Without loss of generality, assume the direction of projection is
the y-axis. Each point on the curve projects to its x-coordinate
on theline. If we traverse the curve from its left-most endpoint,
we can project onto a previously projected location if and only
if we reverse our direction aong the x-axis. This can only
occur when the y-component of the curve's normal vector goes
from a positive value to a negative value. Thisis equivalent to
our statement that the normal will be more than 90° from the
direction of projection. With a little more work, we can show
that this characterization generalizesto 3D.

4.1.2 Findingavalid direction

The validity test in the previous section provides a quick method
of testing the validity of alikely direction as a one-to-one map-
ping projection. But the wider the spread of the normal vectors
of our set of triangles, the less likely we are to find a valid di-
rection by using any sort of heuristic. It is possible, in fact, to
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Figure 3: A 2D example of the valid projection space. a) Two
line segments and their normals. b) The 2D Gaussian circle, the
planes corresponding to each segment, and the space of valid
projection directions.

compute the set of al valid directions of projection for a given
set of triangles. However, to achieve greater efficiency and to
reduce the complexity of the software system we choose to find
only asingle valid direction, which istypically all we require.

The Gaussian sphere[2] isthe unit sphere on which each point
corresponds to a unit normal vector with the same coordinates.
Given a triangle, we define a plane through the origin with the
same normal as the triangle. For a direction of projection to
be valid with respect to this triangle, its point on the Gaussian
sphere must lie on the correct side of this plane (i.e. within the
correct hemisphere). If we consider two trianglessimultaneously
(shownin 2D in Figure 3) the direction of projection must lie on
the correct side of the planes determined by the normal vectors
of both triangles. This is equivalent to saying that the valid
directions lie within the intersection of half-spaces defined by
these two planes. Thus, the valid directions of projection for a
set of N triangles lie within the intersection of N half-spaces.

This intersection of half-spaces forms a convex polyhedron.
This polyhedron is a cone, with its apex at the origin and an
unbounded base (shown as a triangular region in Figure 3). We
can force this polyhedron to be bounded by adding more half-
spaces (we use the six faces of a cube containing the origin). By
finding a point on the interior of this cone and normalizing its
coordinates, we shall construct a unit vector in the direction of
projection.

Rather than explicitly calculating the boundary of the cone,
we simply find afew corners (vertices) and average themto find
apoint that is strictly inside. By construction, the origin is def-
initely such a corner, so we just need to find three more unique
corners to calculate an interior point. We can find each of these
corners by solving a 3D linear programming problem. Linear
programming allowsusto find apoint that maximizesalinear ob-
jective function subject to a collection of linear constraints [13].
The equations of the half-spaces serve as our linear constraints.
We maximizein the direction of avector to find the corner of our
cone that liesthe farthest in that direction.

As stated above, the origin is our first corner. To find the
second corner, we try maximizing in the positive-z direction.
If the resulting point is the origin, we instead maximize in the
negative-z direction. To find the third corner, we maximize
in a direction orthogona to the line containing the first two
corners. If the resulting point is one of the first two corners,
we maximize in the opposite direction. Finally, we maximize
in a direction orthogonal to the plane containing the first three
corners. Once again, we may need to maximize in the opposite
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Figure 4: The neighborhood of an edge as projected into 2D
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Figure 5: a) Aninvalid 2D vertex position. b) The kernel of a
polygon is the set of valid positions for a single, interior vertex
to be placed. It isthe intersection of a set of inward half-spaces.

directioninstead. Notethat it ispossibleto reduce the worst-case
number of optimizations from six to four by using the triangle
normals to guide the selection of optimization vectors.

We used Seidel’s linear time randomized algorithm [20] to
solve each linear programming problem. A public domain im-
plementation of this algorithm by Hohmeyer is available. It is
very fast in practice.

4.2 Placing the Vertex in the Plane

In the previous section, we presented an algorithm to compute
avalid plane. The edge collapse, which we use as our simplifi-
cation operation, entails merging the two vertices of a particular
edge into a single vertex. Thetopology of the resulting mesh is
completely determined, but we are free to choose the position of
the vertex, which will determine the geometry of the resulting
mesh.

When we proj ect thetriangl esneighboring the given edge onto
avalid plane of projection, we get a triangulated polygon with
two interior vertices, as shown in Figure 4. The edge collapse
will reduce this edge to a single vertex. There will be edges
connecting this generated vertex to each of the vertices of the
polygon. Inthe context of this mapping approach, wewould like
the set of triangles around the generated vertex to have a one-
to-one mapping with our chosen plane of projection, and thusto
have a one-to- one mapping with the original edge neighborhood
aswell.

In this section, we present linear time algorithms both to test
a candidate vertex position for validity, and to find a valid vertex
position, if one exists.

421 Validity test for Vertex Position

The edge collapse operation |eaves the boundary of the polygon
in the plane unchanged. For the neighborhood of the generated
vertex to have a one-to-one mapping with the plane, its edges
must lie entirely within the polygon, ensuring that no edge cross-
ings occur.



Figure 6: a) Edge neighborhood and generated vertex neigh-
borhood superimposed. b) A mapping in the plane, composed
of 25 polygonal cells (each cell contains a dot). Each cell maps
between a pair of planar elementsin 3D.

This 2D visibility problem has been well-studied in the com-
putational geometry literature [14]. The generated vertex must
have an unobstructed line of sight to each of the surrounding
polygon vertices (unlike the vertex shown in Figure 5a). This
condition holdsif and only if the generated vertex lieswithin the
polygon’s kernel, shown in Figure 5b. This kernel is the inter-
section of inward-facing half-planes defined polygon’s edges.

Given a potential vertex position in 2D, we test its validity
by plugging it into the implicit-form equation for each of the
polygon edges’ line. If the positionison theinterior with respect
to each line, the position isvalid, otherwiseit isinvalid.

4.2.2 Findinga Valid Position

Thevalidity test highlighted aboveisuseful if wewish totest out
alikely candidate for the generated vertex position, such as the
midpoint of the edge being collapsed. If such a heuristic choice
succeeds, we can avoid the work necessary to compute a valid
position directly.

Given the kernel definition for valid points, it is straightfor-
ward tofind avalid vertex position using 2D linear programming.
Each of the lines provides one of the constraints for the linear
programming problem. Using the same methods as in Section
4.1.2, we can find a point in the kernel with no more than four
cals to the linear programming routine. The first and second
corners are found by maximizing in the positive- and negative-z
directions. Thefinal corner isfound using avector orthogonal to
thefirst two corners.

4.3 CreatingaMappingin the Plane

After mapping the edge neighborhood to avalid plane and choos-
ing a valid position for the generated vertex, we must define a
mapping between the edge neighborhood and the generated ver-
tex neighborhood. We shall map to each other the pairs of 3D
points which project to identical points on the plane. These
correspondences are shown in Figure 6a.

We can represent the mapping by a set of map cells, shownin
Figure 6b. Each cell is a convex polygon in the plane and maps
a piece of a triangle from the edge neighborhood to a similar
piece of atriangle from the generated vertex neighborhood. The
mapping represented by each cell islinear.

The vertices of the polygonal cells fall into four categories:
vertices of the overall neighborhood polygon, vertices of the
collapsed edge, the generated vertex itself, and edge-edge inter-
section points. We aready know the locations of the first three
categories of cell vertices, but we must calculate the edge-edge
intersection points explicitly. Each such point is the intersection
of an edge adjacent to the collapsed edge with an edge adjacent to

the generated vertex. The number of such points can be quadratic
(in the worst case) in the number of neighborhood edges. If we
choose to construct the actual cells, we may do so by sorting
the intersection points along each neighborhood edge and then
walking the boundary of each cell.

4.4 Optimizing the 3D Vertex Position

Up to this point, we have projected the original edge neighbor-
hood onto a plane, performed an edge collapse in this plane,
and computed a mapping in the plane between these two local
meshes. We are now ready to choose the position of the gener-
ated vertex in 3D. This 3D position will completely determine
the geometry of the triangles surrounding the generated vertex.

To preserve our one-to-one mapping, it is necessary that all
the points of the generated vertex neighborhood, including the
generated vertex itself, project back into 3D along the direction of
projection (the normal to the plane of projection). Thisrestricts
the 3D position of the generated vertex to the line parallel to the
direction of projection and passing through the generated vertex's
2D position in the plane. We choose the vertex’s position along
this line such that it introduces as small a surface deviation as
possible, that isit minimizesthe maximum distance between any
two corresponding points of the edge collapse neighborhood and
the generated vertex neighborhood.

4.4.1 Distancefunction of the map

Each cell of our mapping determines a correspondence between
apair of planar elements. The maximum distance between any
pair of planar functions must be at the boundary. For these pairs
of polygons, the maximum distance must occur at a vertex. So
the maximum distance for the entire mapping will always be at
one of the interior cell vertices (because the cell vertices along
the boundary do not move).

We parameterize the position of the generated vertex along
its line of projection by a single parameter, ¢t. As ¢ varies, the
distance between the corresponding cell verticesin 3D varieslin-
early. Notethat these distanceswill alwaysbealong thedirection
of projection, because the distance between corresponding cell
verticesiszero in the other two dimensions (those of the plane of
projection). Becausethe distanceisalwayspositive, the distance
function of each cell vertex is actually apair of linesintersecting
on the x-axis (shaped likea“V”).

4.4.2 Minimizingthe distance function

Given the distance function, we would like to choose the param-
eter ¢ that minimizes the maximum distance between any pair of
mapped points. This point isthe minimum of the so-called upper
envelope. For a set of &k linear functions, we define the upper
envelope function as follows:

Uty ={ft) [ fi(t) > f(6) V4,5 1<4, 5 <k; 1# 3}

For linear functions with no boundary conditions, this function
is convex. Again we use linear programming to find the ¢ value
at which the minima occurs. We use this value of ¢ to calculate
the position of the generated vertex in 3D.

45 Accommodating Bordered Surfaces

Bordered surface are those containing edges adjacent to only a
single triangle, as opposed to two triangles. Such surfaces are



quite common in practice. Borders create some complications
for the creation of amappingin theplane. Theproblemisthat the
total shape of the neighborhood projected into the plane changes
as aresult of the edge collapse.

Bajg and Schikore [1], who employ a vertex-removal ap-
proach, deal with this problem by mapping the removed vertex
to a length-parameterized position along the border. This solu-
tion can be employed for the edge-collapse operation aswell. In
their case, a single vertex maps to a point on an edge. In ours,
three vertices map to points on a chain of edges.

5 Applying M appings

The previous section described the steps required to compute a
mapping using planar projections. Given such a mapping, we
would now like to apply it to the problem of computing high-
quality surface approximations. We will next discuss how to
bound the distance from the current simplified surface to the
original surface, and how to compute new values for scalar sur-
face attributes at the generated vertex.

5.1 Approximation of Original Surface
Position

In the process of creating a mapping, we have measured the
distance between the current surface and the surface resulting
from the application of one more simplification operation. What
we eventually desire is the distance between this new surface
and the original surface. One possible solution would be to in-
corporate the information from all the previous mappings into
an increasingly complex mapping as the simplification process
proceeds. While this approach has the potential for a high de-
gree of accuracy, the increasing complexity of the mappings is
undesirable.

Instead, we associate with every point on the current surface
a volume that is guaranteed to contain the corresponding point
on the original surface. Thisvolumeischosen conservatively so
we can use the same volumefor al pointsin atriangle. Thusthe
portion of the original surface corresponding to the triangle lies
within the convolution of the triangle and the volume.

Possible volume choices include axis-aligned boxes, triangle-
aligned prisms and sphere. For computational efficiency, we use
axis-aligned boxes. To improve the error bounds, we do not
require the box to be centered at the point of application.

Theinitial box at every trianglehaszero sizeand displacement.
After computing the mapping in the plane and choosing the 3D
vertex position, we propagate the error by adjusting the size and
displacement of the box associated with each new triangle.

For each cell vertex, we create abox that contains the boxes of
the old triangles that meet there. The box for each new triangle
is then constructed to contain the boxes of all of its cell vertices.
By maintaining this containment property at the cell vertices, we
guaranteeit for al the interior points of the cells.

The maximum error for each triangle is the distance between
a point on the triangle and the farthest corner of its associated
box. The error of the entire current mesh is the largest error of
any of itstriangles.

5.2 Computing Texture Coordinates

The use of texture maps hasbecome common over thelast several
years, asthe hardware support for texture mapping hasincreased.

Texture maps provide visual richnessto computer-rendered mod-
els without adding more polygonsto the scene.

Texture mapping requirestwo texturecoordinatesat every ver-
tex of the model. These coordinates provide a parameterization
of the texture map over the surface.

Aswe collapse an edge, we must computetexture coordinates
for the generated vertex. These coordinates should reflect the
original parameterization of the texture over the surface. We
use linear interpolation to find texture coordinates for the corre-
sponding point on the old surface, and assign these coordinates
to the generated vertex.

This approach works well in many cases, as demonstrated in
Section 7. However, there can still be some diding of the texture
across the surface. We can extend our mapping approach to also
measure and bound the deviation of the texture. This extension,
currently under devel opment, will provide more guaranteesabout
the smoothness of transitions between levels of detail.

As we add more error measures to our system, it becomes
necessary to decide how to weight these errors to determine
the overall cost of an edge collapse. Each type of error at an
edge mandates a particular viewing distance based on a user-
specified screen-spacetol erance (e.g. number of allowablepixels
of surface or texel deviation). We conservatively choose the
farthest of these. At run-time, the user can till adjust the overall
screen-space tolerance, but the relationships between the types
of error arefixed.

6 System Implementation

All thealgorithmsdescribed inthis paper havebeenimplemented
and applied to various models. While the simplification process
itself is only a pre-process with respect to the graphics applica-
tion, we would still likeit to be as efficient as possible. The most
time-consuming part of our implementationisthere-computation
of edge costs asthe surfaceis simplified (Section 3.1). To reduce
this computation time, we allow our approach to be dightly less
greedy. Rather than recompute al the local edge costs after a
collapse, we simply set a dirty flag for these edges. If the next
minimum-cost edge we pick to collapseis dirty, we re-compute
it's cost and pick again. This lazy evaluation of edge costs sig-
nificantly speeds up the algorithm without much effect on the
error across the progressive mesh.

More important than the cost of the simplification itself is
the speed at which our graphics application runs. To maximize
graphics performance, our display application renders simplified
objects only with display lists. After loading the progressive
mesh, it takes snapshots to use as levels of detail every time the
triangle count decreases by a factor of two. These choices limit
the memory usage to twice the original number of triangles, and
virtually eliminate any run-time cost of simplification.

7 Results

We have applied our simplification agorithm to four distinct
objects: a bunny rabbit, a wrinkled torus, a lion, and a Ford
Bronco, with atotal of 390 parts. Table 1 shows the total input
complexity of each of these objects as well as the time needed to
generate a progressive mesh representation. All simplifications
were performed on a Hewlett-Packard 735/125 workstation.
Figure 7 graphsthe complexity of each object vs. the number
of pixelsof screen-space error for aparticular viewpoint. Each set



Model Parts | Orig. Triangles | CPU Time (Min:Sec)
Bunny 1 69,451 9:05
Torus 1 79,202 10:53
Lion 49 86,844 8:52
Bronco 339 74,308 6:55

Table 1. Smyplifications performed. CPU time indicates time
to generate a progressive mesh of edge collapses until no more
simplification is possible.
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Figure 7: Continuum of levels of detail for four models

of datawas measured with the object centered in the foreground
of a 1000x1000-pixel viewport, with a 45° field-of-view, like
the Bronco in Plates 2 and 3. This was the easiest way for
us to measure the continuum. Conveniently, this function of
complexity vs. error at a fixed distance is proportional to the
function of complexity vs. viewing distance with a fixed error.
The latter istypically the function of interest.

Plate 1 showsthetypical way of viewing levelsof detail —with
afixed error bound and levels of detail changing as afunction of
distance. Plates 2 and 3 show close-ups of the Bronco model at
full and reduced resolution.

Plates 4 and 5 show the application of our algorithm to the
texture-mapped lion and wrinkled torus models. If you know
how to free-fuse stereo image pairs, you can fuse the torii or
any of the adjacent pairs of textured lion. Because the torii are
rendered at an appropriatedistancefor switching between thetwo
levels of detail, theimages are nearly indistinguishable, and fuse
to asharp, clear image. The lions, however, are not rendered at
their appropriate viewing distances, so certain discrepancieswill
appear as fuzzy areas. Each of thelion's 49 partsisindividually
coloredin thewire-framerendering to indicatewhich of itslevels
of detail is currently being rendered.

7.1 Applicationsof Projection Algorithm

We have also applied the technique of finding a one-to-oneplanar
projection to the simplification envelopes algorithm [5]. The
simplification envelopes method requires the calculation of a
vertex normal at each vertex that may be used as a direction
to offset the vertex. The criterion for being able to move a
vertex without creating a local self-intersection is the same as
the criterion for being able to project to a plane. The algorithm
presented in [5] used a heuristic based on averaging the face
normals.

By applying the proj ection algorithm based on linear program-
ming (presented in Section 4.1) to the computation of the offset

directions, we were ableto perform more drastic simplifications.
The simplification envelopes method could previously only re-
duce the bunny model to about 500 triangles, without resulting
in any self-intersections. Using the new approach, the algorithm
can reduce the bunny to 129 triangles, with no self-intersections.

7.2 Video Demonstration

We have produced a video demonstrating the capabilities of
the algorithm and smooth switching between different levels-
of-details for different models. It shows the speed-up in the
frame rate for eight circling Bronco models (about a factor of
six) with almost no degradation in image quality. Thisis based
on mapping the object space error bounds to screen space, which
can measure the maximum error in number of pixels. The video
also highlights the performance on simplifying textured models,
showing smooth switching between levels of detail. Thetexture
coordinates were computed using the algorithm in Section 5.2.

8 Comparison to Previous Work

While concrete comparisonsare difficult to makewithout careful
implementation of all therel ated approachesreadily available, we
compare someof thefeaturesof our algorithmwith that of others.
The efficient and compl ete algorithms for computing the planar
projection and placing the generated vertex after edge collapse
should improve the performance of all the earlier algorithmsthat
use vertex removals or edge collapses.

We compared our implementation with that of the simplifica-
tion envel opes approach [5]. We generated levels of detail of the
Stanford bunny model (70,000 triangles) using the simplification
envel opes method, then generated levels of detail with the same
number of triangles using the successi ve mapping approach. Vi-
sualy, the models were comparable. The error bounds for the
simplification envelopes method were smaller by about a factor
of two, but the error bounds for the two methods measure dif-
ferent things. Simplification envelopes only bounds the surface
deviation in the direction normal to the original surface, while
the mapping approach prevents the surface from diding around
as well. Also, smplification envelopes created local creasesin
the bunnies, resulting in some shading artifacts. The successive
mapping approach discourages such creases by its use of planar
projections. At the same time, the performance of the simplifi-
cation envelopes approach (in terms complexity vs. error) has
been improved by our new projection agorithm.

Hoppe's progressive mesh [12] implementation is more com-
plete than ours in its handling of colors, textures, and disconti-
nuities. However, this technique provides no guaranteed error
bounds, so thereisno simpleway to automatically choose switch-
ing distances that guarantee some visual quality.

Themulti-resolution analysisapproach to simplification [ 7, 8]
does, in fact, provide strict error bounds as well as a mapping
between surfaces. However, the requirements of its subdivision
topology and the coarse granul arity of itssimplification operation
do not providethelocal control of the edge collapse. Inparticular,
it doesnot deal well with sharp edges. Hoppe[12] has compared
hisprogressive mesheswith the multi-resol ution analysismeshes.
For a given number of triangles, his progressive meshes provide
much higher visual quality. Therefore, for a given error bound,
we expect our mapping algorithm to be able to simplify more
than the multi-resol ution approach.



Guéziec's tolerance volume approach [9] also uses edge col-
lapses with local error bounds. Unlike the boxes used by the
successi ve mapping approach, Guéziec's error volume can grow
as the simplified surface fluctuates closer to and farther away
from the original surface. This is due to the fact that it uses
spheres which aways remain centered at the vertices, and the
newer spheres must always contain the older spheres. The boxes
used by our successi vemapping approach are not centered on the
surface and do not grow asaresult of such fluctuations. Also, the
tolerance volume approach does not generate mappings between
the surfaces for use with other attributes.

We have made several significant improvements over the sim-
plification algorithm presented by Bajaj and Schikore [1, 17].
First, we have replaced their projection heuristic with a robust
algorithm for finding a valid direction of projection. Second, we
have generalized their approach to handle more complex oper-
ations, such as the edge collapse. Finally, we have presented
an error propagation algorithm which correctly bounds the er-
ror in the surface deviation. Their approach represented error
as infinite slabs surrounding each triangle. Because thereis no
information about the extent of these dabs, it is impossible to
correctly propagate the error from a dab with one orientation to
anew slab with adifferent orientation.

9 FutureWork

Weare currently working on bounding the screen-spacedeviation
of the texture coordinates. By bounding the error of the texture
coordinates, we will provide onetype of bound on the deviation
of surface colors (from a texture map) or normals (from a bump
map). We a so plan to measure and bound the deviation of colors
and normals specified directly at the polygon vertices.

There are cases where the projection onto a plane produces
mappings with unnecessarily large error. We only optimize sur-
facepositioninthedirection orthogonal to the plane of projection.
It would be useful to generate and optimize mappings directly in
3D to produce better simplifications.

Our system currently handles non-manifold topologies by
breaking them into independent surfaces, which does not main-
tain connectivity between the components. Handling such non-
manifold regions directly may provide higher visual fidelity for
large screen-space tolerances.
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Plate 2: Bronco at Plate 3: 26 pixels of
full resolution error (4.4 mm)
74,000 triangles 9,000 triangles

Plate 1: 6 views of the Ford Bronco model,
all at 2 pixels of error (0.17 mm)

Triangle counts: 41,855 12,939 Plate 4: Wrinkled torus model at a transitional
27,970 8,385 distance for 1 pixel of error (0.085 mm)

20,922 4,766 39,600 triangles 19,800 triangles

Plate 5: 6 levels of detail for the lion (colors indicate levels of detail of individual parts)
0 pixels of error 1 pixel of error 3 pixels of error 23 pixels of error 76 pixels of error
0 mm of error 0.085 mm of error 0.25 mm of error 1.9 mm of error 6.4 mm of error
86,000 triangles 29,000 triangles 14,000 triangles 4,000 triangles 1,000 triangles
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Abstract

We propose the idea of simplification envel opes for gen-
erating a hierarchy of level-of-detail approximations for a
given polygona model. Our approach guarantees that all
points of an approximation are within a user-specifiable
distance e from the original model and that all pointsof the
origina model are within adistance ¢ from the approxima
tion. Simplificationenvel opes provideagenera framework
within which a large collection of existing simplification
algorithms can run. We demonstrate this technique in con-
junction with two agorithms, one local, the other global.
The local agorithm provides a fast method for generating
approximations to large input meshes (at least hundreds of
thousands of triangles). The globa agorithm providesthe
opportunity to avoid local “minima’ and possibly achieve
better ssimplifications as a result.

Each approximation attempts to minimize the total num-
ber of polygons required to satisfy the above ¢ constraint.
The key advantages of our approach are:

¢ Genera technique providing guaranteed error bounds
for genus-preserving simplification

¢ Automation of both the simplification process and the
selection of appropriate viewing distances

Prevention of self-intersection
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Allowsvariation of approximation distance across dif-
ferent portions of a model
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1 Introduction

We present the framework of simplification envel opes for
computing various levels of detail of a given polygonal
model. These hierarchical representations of an object can
brv]e used in several ways in computer graphics. Some of
these are;

e Usein alevel-of-detail-based rendering a gorithm for
providing desired frame update rates[4, 9].

o Simplifyingtraditionally over-sampled modelssuch as
those generated from volume datasets, laser scanners,
and satellites for storage and reducing CPU cycles
during processing, with relatively few or no disadvan-
tages[10, 11, 13, 15, 21, 23].

o Using low-detail approximationsof objectsfor illumi-
nation algorithms, especialy radiosity [19].

Simplification envelopes are a generalization of offset
surfaces. Given a polygonal representation of an object,
they allow the generation of minimal approximations that
are guaranteed not to deviatefromthe original by morethan
a user-specifiable amount while preserving global topol-
ogy. We surround the origina polygona surface with two
envel opes, then perform simplification within thisvolume.
A sample application of the algorithmswe describe can be
seenin Figure 1.

Figure 1: Alevel-of-detail hierarchy for the rotor froma brake
assembly.
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Such an approach has several benefitsin computer graph-
ics. First, one can very precisely quantify the amount of
approximation that is tolerable under given circumstances.
Given a user-specified error in number of pixels of devia-
tion of an object’ssilhouette, it is possibleto choose which
level of detail toview from aparticular distanceto maintain
that pixel error bound. Second, this approach allows one a
fine control over which regions of an object should be ap-
proximated more and which ones less. This could be used
for selectively preserving those features of an object that
are perceptually important. Third, the user-specifiable tol-
erance for approximation is the only parameter required to
obtai n the approximations; fine tweaking of severa param-
eters depending upon the object to be approximated is not
required. Thus, this approach is quite useful for automat-
ing the process of topology-preserving simplifications of a
large number of objects. This problem of scalabilityisim-
portant for any simplification agorithm. One of our main
goalsisto create a method for ssmplification which is not
only automatic for large datasets, but tends to preserve the
shapes of the original models.

The rest of the paper is organized in the following man-
ner: we survey the related work in Section 2, explain our
assumptions and terminology in Section 3, describe the en-
velope and approximation computationsin Sections 4 and
5, present some useful extentions to and properties of the
approximation algorithmsin Section 6, and explain our im-
plementation and resultsin Section 7.

2 Background

Approximation agorithms for polygonal models can be
classified into two broad categories:

e Min-# Approximations: For this version of the ap-
proximation problem, given some error bound ¢, the
objective is to minimize the number of vertices such
that no point of the approximation A is farther than ¢
distance away from the input model 7.

e Min-¢ Approximations: Here we are given the num-
ber of vertices of the approximation .4 and the objec-
ﬂlveiato minimizetheerror, or the difference, between

andZ.

Previous work in the area of min-# approximations has
been done by [6, 20] where they adaptively subdivide a
series of bicubic patches and polygons over a surface until
they fit the data within the tolerance levels.

In the second category, work has been done by several
groups. Turk [23] first distributesagiven number of vertices
over the surface depending on the curvature and then re-
triangul ates them to obtain the final mesh. Schroeder et
al. [21] and Hinker and Hansen [13] operate on a set of
local rules— such as del eting edges or verticesfrom almost
coplanar adjacent faces, followed by local re-triangulation.
These rules are applied iteratively till they are no longer
applicable. A somewhat different local approachistakenin
[18] whereverticesthat are close to each other are clustered
and a new vertex is generated to represent them. The mesh
is suitably updated to reflect this.

Hoppe et a. [14] proceed by iteratively optimizing an
energy function over a mesh to minimize both the distance
of the approximating mesh from the original, aswell asthe
number of approximating vertices. An interesting and ele-
gant solution to the problem of polygonal simplification by
using wavel ets has been presented in [7, 8] where arbitrary
polygonal meshes are first subdivided into patches with

subdivision connectivity and then multiresolution wavel et
analysis is used over each patch. This wavelet approach
preserves global topology.

In computational geometry, it has been shown that com-
puting the minimal-facet e-approximation is NP-hard for
both convex polytopes[5] and polyhedral terrains[1]. Thus,
algorithms to solve these problems have evolved around
finding polynomial-time approximations that are close to
the optimal.

Let k, be the size of a min-# approximation. An
algorithm has been given in [16] for computing an ¢-
approximation of size O(k,logn) for convex polytopes.
This has recently been improved by Clarkson in [3]; he
proposes arandomized al gorithmfor computing an approx-
imation of size O(k, logk,) in expected time O (k,n*?)
for any 4 > 0 (the constant of proportionality depends on
4, and tendsto +oo asd tendsto 0). In[2] Bronnimann and
Goodrich observed that a variant of Clarkson’s algorithm
yieldsapolynomial-timedeterministic algorithmthat com-
putes an approximation of size Oﬁko). Working with poly-
hedral terrains, [1] present a polynomial-time agorithm
that computes an e-approximation of size O (k, logk,) toa
polyhedral terrain.

Our work is different from the above in that it allows
adaptive, genus-preserving, e-approximation of arbitrary
polygonal objects. Additionally, we can simplify bordered
meshes and meshes with holes. In terms of direct compari-
sonwiththeglobal topol ogy preserving approach presented
in [7, 8], for a given ¢ our agorithm has been empirically
able to obtain “reduced" simplifications, which are much
smaller in output size (as demonstrated in Section 7). The
algorithm in [18] also guarantees a bound in terms of the
Hausdorff metric. However, it isnot guaranteed to preserve
the genus of the original modd.

3 Terminology and Assumptions

Let usassumethat 7 isathree-dimensiona compact and ori-
entabl e object whose polygonal representation P has been
given to us. Our objective isto compute a piecewise-linear
approximation .4 of P. Given two piecewise linear objects
P and Q, wesay that P and Q are e-approximationsof each
other iff every point on P is within a distance ¢ of some
point of Q and every point on Q iswithin a distance ¢ of
some point of 7. Our goa istooutlineamethodto generate
two envel ope surfaces surrounding 7 and demonstrate how
the envel opes can be used to solve the following polygonal
approximation problem. Given a polygona representation
P of an object and an approximation parameter ¢, generate
a genus-preserving e-approximation .4 with minima num-
ber of polygons such that the vertices of .4 are a subset of
vertices of P.

We assume that al polygonsin P are triangles and that
P isawell-behaved polygona model, i.e., every edge has
either one or two adjacent triangles, no two trianglesinter-
penetrate, there are no unintentional “ cracks' in the model,
no T-junctions, etc.

We also assume that each vertex of P hasasinglenormal
vector, which must lie within 90° of the normal of each of
its surrounding triangles. For the purpose of rendering,
each vertex may have either a single norma or multiple
normals. For the purpose of generating envel ope surfaces,
we shal compute a single vertex hormal as a combination
of the normals of the surrounding triangles.

'ghe three-dimensional e-offset surface for a parametric
surface

f(s’t) = (fl(s’t)’ fz(s,t), f3(5’t))’



whose unit normal tof is
H(S, t) = (77,1(8, t)’ nz(S, t)a n3(5a t)),
isdefined asf(s,t) = (fi(s,1), f5(s,1), f5(s,1)), where

(s, t) = fi(s,t) + en;(s, ).

Note that offset surfaces for a polygona object can self-
intersect and may contain non-linear elements. We define
a simplification envelope P (+¢) (respectively P(—¢)) for
an object 7 to be apolygonal surface that lieswithinadis-
tance of ¢ from every point p onZ inthe same (respectively
opposite) directionasthenormal to Z at p. Thus, thesimpli-
fication envel opes can be thought of as an approximationto
offset surfaces. Henceforth we shall refer to simplification
envel ope by simply envel ope.

Let usrefer to thetriangles of the given polygonal repre-
sentation P as the fundamental triangles. Let e = (vq, vp)
be an edge of P. If thenormasnj, n, to 7 a both v, and
vy, respectively, areidentical, then we can construct aplane
7. that passes through the edge e and has a normal that is
perpendicular to that of v1. Thus v1, v, and their normals
al lieaong 7.. Such a plane defines two half-spaces for
edgee, say 7+ and 7 (see Fig 2(a)). However, in genera
the normals n; and n; at the vertices v1 and v, need not
beidentical, in which case it is not clear how to define the
two half-spaces for an edge. One choiceistouseabilinear
patch that passes through v1 and v, and has atangent n; at
vy andny a vp. Let uscall such abilinear patch for e asthe
edge half-space /.. Let the two half-spaces for the edge e
inthiscase be 3+ and 5. ThisisshowninFig2(b).

Figure 2: EdgeHalf-spaces

Let the vertices of afundamenta triangle be v1, v,, and
vz. Let the coordinates and the normal of each vertex v be
represented asc(v) andn(v), respectively. Thecoordinates

and the normal of a (+e)-offset vertex v for a vertex v;
ae c(v+) = ¢(v;) + en(v;), and n(v;") = n(v;). The

(—e)-offlset vertex can be similarly defined in the opposite
direction. These offset vertices for afundamenta triangle

are shownin Figure 3.

Now consider the closed object defined by v and v,
i = 1,2,3. Itisdefined by two triangles, at the top and
bottom, and three edge haf-spaces. This object contains
the fundamental triangle (shown shaded in Figure 3) and
we will henceforth refer to it as the fundamental prism.

4 Envelope Computation

In order to preserve the input topology of P, we desire
that the simplification envelopes do not self-intersect. To
meet this criterion we reduce our level of approximation
at certain places. In other words, to guarantee that no
intersections amongst the envelopes occur, we have to be

Figure 3: The Fundamental Prism

content at certain placeswith thedistancebetween P andthe
envelope being smaller than ¢. Thisis how simplification
envel opes differ from offset surfaces.

We construct our envelope such that each of its trian-
gles corresponds to afundamental triangle. We offset each
vertex of the original surface in the direction of its normal
vector to transform the fundamental triangles into those of
the envel ope.

If we offset each vertex v; by the same amount ¢, to
get the offset vertices v and v;", the resulting envelopes,
P(+¢) and P%—e), may contain self-intersections because
one or more offset vertices are closer to some non-adjacent
fundamental triangle. Inother words, if we defineaVoronoi
diagram over the fundamenta triangles of the model, the
condition for the envelopes to intersect is that there be at
least one offset vertex lying in the Voronoi region of some
non-adjacent fundamental triangle. Thisis shown in Fig-
ure4 by means of atwo-dimensiona example. Inthefigure,
the offset vertices b+ and ¢t are in the Voronoi regions of
edges other than their own, thus causing sel f-intersection of
the envel ope.

Voronoi
edge

Ori gﬁ
surface

Figure 4. Offset Surfaces

Oncewe makethisobservation, the solution to avoid self-
intersections becomes quite simple — just do not allow
an offset vertex to go beyond the Voronoi regions of its
adjacent fundamental triangles. In other words, determine
the positive and negative ¢ for each vertex v; such that
the vertices v and v; determined with this new ¢ do not
liein the Voronoi regions of the non-adjacent fundamental
triangles.

While this works in theory, efficient and robust com-
putation of the three-dimensiona Voronoi diagram of the
fundamental trianglesis non-trivial. We now present two
methods for computing the reduced ¢ for each vertex, the
first method analytical, and the second numerical.



4.1 Analytical e Computation

We adopt a conservative approach for recomputing the ¢ at
each vertex. This approach underestimates the vaues for
the positive and negative ¢. In other words, it guarantees
the envel ope surfaces not to intersect, but it does not guar-
antee that the ¢ a each vertex isthe largest permissible e.
We next discuss this approach for the case of computing
the positive ¢ for each vertex. Computation of negative e
followssimilarly.

Consider a fundamentd triangle ¢. We define a prism
t, for ¢, which is conceptually the same as its fundamental
prism, but uses a value of 2¢ instead of ¢ for defining the
envelope vertices. Next, consider al triangles A; that do
not share a vertex with ¢. If A; intersects ¢, above ¢ (the
directionsaboveand bel ow ¢ are determined by thedirection
of the normal to ¢, above is in the same direction as the
normal to ¢), wefind the point on 4; that lieswithint, and
is closest to ¢. This point would be either a vertex of A,
or the intersection point of one of its edges with the three
sides of the prism ¢,. Once we find the point of closest
approach, we compute the distance §; of this point from ¢.
Thisisshownin Figure5.

Figure 5: Computation of §;

Once we have donethisfor al A;, we compute the new
value of the positivece for thetrianglet asc¢,, e = % min; ;.
If theverticesfor thistrianglet have thisvalue of positivee,
thelir positive envel ope surface will not self-intersect. Once
thee, .., (t) vduesfor al thetrianglest havebeen computed,
the e,y (v) for each vertex v is set to be the minimum of
the e, (t) values for al its adjacent triangles.

We use an octree in our implementation to speed up the
identification of trianglesA; that intersect agiven prism.

4.2 Numerical ¢ Computation

To compute an envel ope surface numerically, we take an it-
erative approach. Our envelope surfaceisinitialyidentical
to the input model surface. In each iteration, we sequen-
tially attempt to move each envelope vertex a fraction of
the ¢ distance in the direction of its norma vector (or the
oppositedirection, for theinner envelope). This effectively
stretches or contractsall thetriangles adjacent to the vertex.
Wetest each of these adjacent trianglesfor intersectionwith
each other and therest of themode!. If no suchintersections
are found, we accept the step, leaving the vertex in thisnew
position. Otherwise we rgect it, moving the vertex back
to its previous position. The iteration terminates when all
vertices have either moved ¢ or can no longer move.

In an attempt to guarantee that each vertex gets to move
a reasonable amount of its potential distance, we use an

adaptive step size. We encourage a vertex to move at least
K (an arbitrary constant which is scaled with respect to e
and the size of the object) steps by alowing it to reduce its
step size. If avertex has moved less than K steps and its
moveisheenrejected, it dividesitsstep sizeinhaf andtries
again (with some maximum number of divides allowed on
any particular step). Noticethat if a vertex moves i steps
and isrejected on the (i + 1)st step, we know it has moved
atlesst i/ (i 4 1) % of itspotential distance, so K /(K + 1)
which isalower bound of sorts. It is possible, though rare,
for avertex to movelessthan K steps, if itscurrent position
isaready quite close to another triangle.

Each vertex also has its own initia step size. We first
choose aglobal, maximum step size based on aglobal prop-
erty: either some small percentage of the object’sbounding
box diagona length or ¢/ K, whichever is smaler. Now
for each vertex, we calculate alocal step size. Thisloca
step sizeissome percentage of thevertex’s shortest incident
edge (only those edges within 90° of the offset direction are
considered). We set the vertex’s step size to the minimum
of the globa step size and itslocal step size. This makes it
likely that each vertex's step size is appropriate for a step
given theinitia mesh configuration.

This approach to computing an envelope surface is ro-
bust, simple to implement (if difficult to explain), and fair
to all the vertices. It tends to maximize the minimum off-
set distance amongst the envel ope vertices. It worksfairly
well in practice, though there may still be some room for
improvement in generating maximal offsetsfor thin objects.
Figure 6 shows interna and externa envelopes computed
for three values of ¢ using this approach.

Asintheanalytical approach, asimple octree data struc-
ture makes these intersection tests reasonably efficient, es-
pecialy for modelswith evenly sized triangles.

5 Generation of Approximation

Generating asurfaceapproximationtypically involves start-
ing with the input surface and iteratively making modifica
tionsto ultimately reduce itscomplexity. This process may
be broken into two main stages. hole creation, and hole
filling. We first create a hole by removing some connected
set of trianglesfrom the surface mesh. Then wefill thehole
with a smaller set of triangles, resulting in some reduction
of the mesh complexity.

We demonstrate the generality of the simplification en-
velope approach by designing two algorithms. The hole
filling stages of these algorithms are quite similar, but their
hole creation stages are quite different. The first algorithm
makes only local choices, creating relatively small holes,
while the second agorithm uses global information about
the surface to creste maximally-sized holes. These design
choi ces produce a gorithmswith very different properties.

We begin by describing the envel ope validity test used to
determinewhether acandidatetriangleisvalidforinclusion
in the approximation surface. We then proceed to the two
exampl e simplification algorithmsand adescription of their
relative merits.

51 Validity Test

A candidate triangle is one which we are considering for
inclusion in an approximation to the input surface. Valid
candidate triangles must lie between the two envelopes.
Because we construct candidate triangles from the vertices
of the original model, we know its vertices lie between
the two envelopes. Therefore, it is sufficient to test the
candidate triangle for intersections with the two envelope
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surfaces. We can perform such tests efficiently using a
space-partitioning data structure such as an octree.

A vaid candidate triangle must aso not cause a self-
intersection in our surface, Therefore, it must not intersect
any triangle of the current approximation surface.

5.2 Local Algorithm

To handle large models efficiently within the framework
of simplification envelopes we construct a vertex-removal-
based local agorithm. This algorithm draws heavily on
the work of [21], [23], and [14]. Its main contributions
are the use of envelopes to provide global error bounds as
well astopol ogy preservation and non-self-intersection. We
have al so explored the use of amore exhaustive hole-filling
approach than any previouswork we have seen.

The loca agorithm begins by placing al vertices in
a queue for remova processing. For each vertex in the
gueue, we attempt to remove it by creating a hole (remov-
ing the vertex's adjacent triangles) and attempting to fill it.
If we can successfully fill the hole, the mesh modification
is accepted, the vertex is removed from the queue, and its
neighbors are placed back inthe queue. If not, the vertex is
removed from the queue and the mesh remains unchanged.
This processterminates when the global error boundseven-
tually prevent the removal of any more vertices. Once the
vertex queue is empty we have our simplified mesh.

For a given vertex, we first create a hole by removing
all adjacent triangles. We begin the hole-filling process by
generating all possible triangles formed by combinations

of the vertices on the hole boundary. This is not strictly
necessary, but it allows usto use a greedy strategy to favor
triangleswith nice aspect ratios. Wefill the hole by choos-
ing atriangle, testing its validity, and recursively filling the
three (or fewer) smaller holes created by adding that trian-
gleinto the hole (see figure 7). If a hole cannot be filled
at any level of the recursion, the entire holefilling attempt
is considered afailure. Note that thisis a single-pass hole
filling strategy; we do not backtrack or undo selection of a
triangle chosen for filling a hole. Thus, this approach does
not guarantee that if atriangulation of a hole exists we will
find it. However, it is quite fast and works very well in

practice.

Figure 7. Holefilling: adding a triangle into a hole creates up
to three smaller holes

We have compared the above approach with an exhaus-
tive approach in which we tried al possible hole-filling tri-
angulations. For simplificationsresulting in the removal of
hundredsof vertices(like highly oversampled | aser-scanned
models), the exhaustive pass yielded only a small improve-
ment over the single-pass heuristic. This sort of confirma-
tion reassures us that the single-pass heuristic works well
in practice.

5.3 Global Algorithm

This adgorithm extends the agorithm presented in [3] to
non-convex surfaces. Our major contribution is the use of
simplification envel opesto bound the error on anon-convex
polygonal surface and the use of fundamental prisms to
provide ageneralized projection mechanism for testing for
regions of multiple covering (overlaps). We present only a
sketch of the agorithm here ; see [24] for the full details.

We begin by generating al possible candidate triangles
for our approximation surface. These triangles are all 3-
tuples of the input vertices which do not intersect either of
the offset surfaces. Next we determine how many vertices
each triangle covers. We rank the candidate triangles in
order of decreasing covering.

We then choose from thislist of candidate trianglesin a
greedy fashion. For each triangle we choose, we creste a
large hole in the current approximation surface, removing
all triangles which overlap this candidate triangle. Now
we begin the recursive hole-filling process by placing this
candidate triangleinto the hole and filling @l the subholes
with other triangles, if possible. One further restrictionin
this process is that the candidate triangle we are testing
should not overlap any of the candidate triangles we have
previously accepted.

5.4 Algorithm Comparison

Thelocal simplificationagorithmisfast and robust enough
to be applied to large models. The global strategy is the-
oreticaly elegant. While the global agorithm works well
for small models, itscomplexity rises at least quadratically,
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making it prohibitivefor larger models. We can think of the
simplification problem as an optimization problem aswell.
A purely local agorithm may get trapped in alocal “min-
imum” of simplification, while an ideal global agorithm
will avoid al such minima.

Figure8 showsatwo-dimensional example of acurvefor
which a local vertex remova agorithm might fail, but an
algorithmthat globally searches the sol ution space will suc-
ceed in finding avalid approximation. Any of the interior
vertices we remove would cause a new edge to penetrate
an envelope curve. But if we remove al of the interior
vertices, the resulting edge is perfectly acceptable.

This observation motivates awide range of a gorithmsof
which our local and globa examples are the two extremes.
We can easily imagine an agorithm that chooses nearby
groups of vertices to remove simultaneoudy rather than
sequentially. This could potentially lead to increased speed
and simplification performance. However, choosing such
sets of vertices remains a challenging problem.

6 Additional Features

Envel ope surfaces used in conjunction with simplification
algorithmsare powerful, genera -purposetools. Aswewill
now describe, they implicitly preserve sharp edges and can
be extended to deal with bordered surfaces and perform
adaptive approximations.

6.1 Preserving Sharp Edges

One of the important properties in any approximation
scheme isthe way it preserves any sharp edges or normal
discontinuities present in the input model. Simplification
envelopes deal gracefully with sharp edges (those with a
small angle between their adjacent faces). When the ¢ tol-
erance issmall, thereisnot enough room to ssmplify across
these sharp edges, so they are automatically preserved. As
the tolerance isincreased, it will eventually be possibleto
simplify across the edges (which should no longer be vis-
ible from the appropriate distance). Notice that it is not
necessary to explicitly recognize these sharp edges.

6.2 Bordered Surfaces

A bordered surfaceis one containing pointsthat are home-
omorphic to a haf-disc. For polygonal models, this corre-
spondsto edges that are adjacent to asingleface rather than
two faces. Depending on the context, we may naturaly
think of this as the boundary of some plane-like piece of a
surface, or aholein an otherwise closed surface.

The agorithms described in 5 are sufficient for closed
triangle meshes, but they will not guarantee our global er-
ror bound for meshes with borders. While the envelopes
congtrain our error with respect to the norma direction

of the surface, bordered surfaces require some additional
congtraints to hold the approximation border close to the
original border. Without such constraints, the border of the
approximation surface may “creep in,” possibly shrinking
the surface out of existence.

In many cases, the complexity of a surface's border
curves may become a limiting factor in how much we can
simplify the surface, so it is unacceptable to forgo simpli-
fying these borders.

We construct a set of border tubesto constrain the error
in deviation of the border curves. Each border is actually
acyclic polyline. Intuitively speaking, a border tube is a
smooth, non-self-intersecting surface around one of these
polylines. Removing aborder vertex causes apair of border
edges to be replaced by a single border edge. If this new
border edge does not intersect the relevant border tube, we
may safely attempt to remove the border vertex.

To construct a tube we define a plane passing through
each vertex of the polyline. We choose a coordinate system
onthisplane and use that to defineacircular set of vertices.
We connect these vertices for consecutive planes to con-
struct our tube. Our initial tubes have a very narrow radius
to minimize the likelihood of sdlf-intersections. We then
expand these narrow tubes using the same technique we
used previously to construct our simplification envel opes.

The difficult task is to define a coordinate system at
each polyline vertex which encourages smooth, non-self-
intersecting tubes. The most obvious approach might be to
usetheidea of Frenet frames from differential geometry to
define a set of coordinate systems for the polyline vertices.
However, Frenet frames are meant for smooth curves. For
a jagged polyline, a tube so constructed often has many
self-intersections.

Instead, we use a projection method to minimize the
twist between consecutive frames. Like the Frenet frame
method, we place the plane at each vertex so that the normal
to the plane approximates the tangent to the polyline. This
is caled the normal plane.

At thefirst vertex, wechoose an arbitrary orthogonal pair
of axes for our coordinate system in the normal plane. For
subsequent vertices, we project the coordinate system from
the previous norma plane onto the current normal frame.
We then orthogonalize this projected coordinate system in
the plane. For the normal plane of thefina polylinevertex,
we average the proj ected coordinate systems of the previous
norma plane and the initial normal plane to minimize any
twist in thefina tube segment.

6.3 Adaptive Approximation

For certain classes of objectsit is desirable to perform an
adaptive approximation. For instance, consider large ter-
rain datasets, models of spaceships, or submarines. One
would like to have more detail near the observer and less
detail further away. A possible solution could be to sub-
divide the model into various spatia cells and use a dif-
ferent e-approximation for each cell. However, problems
would arise a the boundaries of such cells where the ¢-
approximation for one cell, say at avalue ¢; need not nec-
essarily be continuous with the e-approximation for the
neighboring cell, say at adifferent value c,.

Since dl candidate triangles generated are constrained
to lie within the two envel opes, manipulation of these en-
velopes provides one way to smoothly control the level of
approximation. Thus, one could specify the ¢ a a given
vertex to be afunction of its distance from the observer —
the larger the distance, the greater isthee.

As another possibility, consider the case where certain



features of a model are very important and are not to be
approximated beyond a certain level. Such features might
have human perception as a basis for their definition or
they might have mathematical descriptions such as regions
of high curvature. In either case, a user can vary the e
associated with aregion to increase or decrease thelevel of
approximation. The bunny in Figure 9 illustrates such an
approximation.

Figure 9: An adaptive simplification for the bunny model.
e varies from 1/64% at the noseto 1% at the tail.

7 Implementation and Results

We have implemented both algorithms and tried out the
local algorithm on severa thousand objects. We will first
discuss some of theimplementation issues and then present
some results.

7.1 Implementation Issues

The first important implementation issue is what sort of
input model to accept. We chose to accept only manifold
triangle meshes (or bordered manifolds). This means that
each edge is adjacent to two (one in the case of a border)
trianglesand that each vertex is surrounded by asinglering
of triangles.

We a so do not accept other forms of degenerate meshes.
Many mesh degeneracies are not apparent on casud in-
spection, so we have implemented an automatic degener-
acy detection program. This program detects non-manifold
vertices, non-manifold edges, dliver triangles, coincident
triangles, T-junctions, and intersecting triangles in a pro-
posed input mesh. Notethat correcting these degeneracies
Is more difficult than detecting them.

Robustness issues are important for implementations of
any geometric algorithms. For instance, the anaytical
method for envelope computation involves the use of bi-
linear patches and the computation of intersection points.

The computation of intersection points, even for linear d-
ements, Is difficult to perform robustly. The numerica
method for envelope computation is much more robust be-
cause it involves only linear elements. Furthermore, it
requires an intersection test but not the cal culation of inter-
section points. We perform al such intersection testsin a
conservative manner, using fuzzy intersection teststhat may
report intersectionseven for somecl osebut non-intersecting
elements.

Another important issueisthe use of aspace-partitioning
scheme to speed up intersection tests. We chose to use an
octree because of its simplicity. Our current octree im-
plementation deals only with the bounding boxes of the
elements stored. This works well for models with trian-
gles that are evenly sized and shaped. For CAD models,
which may containlong, skinny, non-axis-alignedtriangles,
asimple octree does not always provide enough of a speed-
up, and it may be necessary to choose a more appropriate
space-partitioning scheme.

7.2 Results

Wehavesimplified atotal of 2636 objectsfromtheauxiliary
machine room (AMR) of a submarine dataset, pictured in
Figure 10 to test and vaidate our algorithm. We reproduce
the timings and simplifications achieved by our implemen-
tation for the AMR and a few other models in Table 1.
All simplifications were performed on a Hewlett-Packard
735/125 with 80 MB of main memory. Images of these
simplifications appear in Figures 11 and 12. It isinterest-
ing to compare the results on the bunny and phone models
with those of [7, 8]. For the same error bound, we are able
to obtain much improved solutions.

We have automated the process which sets the ¢ value
for each object by assigning it to be a percentage of the
diagonal of its bounding box. We obtained the reductions
presented in Table 1 for the AMR and Figures 11 and 12 by
using this heurigtic.

For the rotor and AMR models in the above results, the
it" level of detail was obtained by simplifyingthe i — 1%
level of detail. This causes to total ¢ to be the sum of
al previous ¢'s, so choosing ¢'s of 1, 2, 4, and 8 percent
resultsintotal ¢'s of 1, 3, 7, and 15 percent. There are two
advantages to this scheme:

(a) It allowsoneto proceed incremental ly, taking advantage
of thework donein previous simplifications.
(b) It buildsahierarchy of detail inwhich theverticesat the

it" level of detail are a subset of the vertices at the i — 1"
level of detail.

One of the advantages of the setting ¢ to a percent of
the object size is that it provides an a way to automate
the sel ection of switching pointsused to transition between
the various representations. To eliminate visua artifacts,
we switch to a more faithful representation of an object
when ¢ projects to more than some user-specified number
of pixels on the screen. This is a function of the ¢ for
that approximation, the output display resolution, and the
corresponding maximum tolerable visible error in pixels.

8 FutureWork

There are till severa areas to be explored in this research.
We believe the most important of these to be the generation
of correspondences between level s of detail and the moving
of vertices within the envelope volume.
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€% [ #Polys| Time || ¢% [ #Polys | Time €% #Polys | Time || ¢% | #Polys | Time

0 69,451 | N/A 0 165,936 | N/A 0 4,735 | N/A 0 | 436,402 | N/A
1/64 | 44,621 9 1/64 | 43,537 31 1/8 2,146 3 1 | 195446 | 171
1/32 | 23,581 10 1/32 | 12,364 35 1/4 1,514 2 3 | 143728 | 61
1/16 | 10,793 11 1/16 | 4,891 38 3/4 1,266 2 7 | 110,090 | 61
1/8 | 4,838 11 1/8 2,201 32 13/4 850 1 15 | 87,476 68
1/4 | 2,204 11 1/4 1,032 35 33/4 716 1 31 | 75434 84
1/2 1,004 11 1/2 544 33 73/4 688 1

1 575 11 1 412 30 153/4 674 1

Table 1: Smplification ¢’sand run times in minutes

8.1 Generating Correspondences

A true geometric hierarchy should contain not only repre-
sentations of an object at various levels of detail, but aso
some correspondence information about the relationship
between adjacent levels. These relationships are neces-
sary for propagating local informationfrom onelevel tothe
next. For instance, this information would be helpful for
using the hierarchical geometric representation to perform
radiosity calculations. It is also necessary for performing
geometricinterpol ation between the model swhen using the
levels of detail for rendering. Note that the envelope tech-
nique preserves silhouettes when rendering, so it isaso a
good candidate for alpha blending rather than geometric
interpolation to smooth out transitions between levels of
detail.

We can determine which elements of a higher level of
detail surface are covered by an element of alower level of
detail representation by noting which fundamenta prisms
this element intersects. This is non-trivial only because
of the bilinear patches that are the sides of a fundamental
prism. We can approximate these patches by two or more
triangles and then tetrahedralize each prism. Given this
tetrahedralization of the envelope volume, it is possibleto
stab each edge of the lower level-of-detail model through
the tetrahedrons to determine which ones they intersect,
and thus which triangles are covered by each lower level-
of-detail triangle.

8.2 Moving Vertices

The output mesh generated by either of the agorithms we
have presented has the property that its set of vertices is
a subset of the set of vertices of the original mesh. If we
can afford to relax this constraint somewhat, we may be
able to reduce the output size even further. If we alow the
vertices to dide along their normal vectors, we should be
able to simplify parts of the surface that might otherwise
be impossibleto simplify for some choices of epsilon. We
are currently working on a goa-based approach to mov-
ing vertices within the envelope volume. For each vertex
we want to remove, we dide its neighboring vertices along
their normals to make them lie as closely as possible to a
tangent plane of the original vertex. Intuitively, this should
increase thelikelihood of successfully removing the vertex.
During this whole process, we must ensure that none of
the neighboring triangles ever violates the envelopes. This
approach should make it possibleto simplify surfacesusing
smaller epsilons than previoudly possible. In fact, it may
even enable us to use the original surface and a single en-
velope as our constraint surfaces rather than two envel opes.
This is important for objects with areas of high maximal
curvature, likethin cylinders.

9 Conclusion

We have outlined the noti on of simplification envelopesand
how they can be used for generation of multiresolution hi-
erarchies for polygonal objects. Our approach guarantees
non-sdlf-intersecting approximations and allows the user
to do adaptive approximations by simply editing the sim-
plification envelopes (either manually or automaticaly) in
the regions of interest. It allows for a global error toler-
ance, preservation of the input genus of the object, and
preservation of sharp edges. Our approach requires only
one user-specifiable parameter, alowingit towork onlarge
collections of objectswith no manual interventionif so de-
sired. Itisrotationally and trand ationally invariant, and can
elegantly handle holes and bordered surfaces through the
use of cylindrical tubes. Simplification envelopes are gen-
eral enough to permit both simplification agorithms with
good theoretical properties such asour globa agorithm, as
well as fast, practical, and robust implementationslike our
local agorithm. Additionally, envelopes permit easy gen-
eration of correspondences across severa levels of detail.
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Figure 10: Looking down into the auxiliary machine room
(AMR) of a submarine model. This model contains nearly 3,000
objects, for atotal of over half a million triangles. We have sim-
plified over 2,600 of these objects, for a total of over 430,000
triangles.

Figure11: Anarray of batteriesfromthe AMR. All partsbut the
red are simplified representations. At full resolution, this array
requires 87,000 triangles. At this distance, allowing 4 pixels of
error in screen space, we havereduced it to 45,000 triangles.



(i) rotor modd: 4,736 triangles

(f) e = 1/32%, 12, 364 triangles () ¢ = 1/8%, 2, 146 triangles

(k) e = 3/4%, 1, 266 triangles

(d) e = 1%, 575 triangles (h) € = 1%, 412 triangles () e = 33/4%, 716 triangles

Figure 12: Level-of-detail hierarchies for three models. The approximation distance, ¢, is taken as a percentage of the bounding box
diagonal.



