
Concepts and Algorithms for Polygonal Simplification
Jonathan D. Cohen

 Department of Computer Science, The Johns Hopkins University

1. INTRODUCTION

1.1 Motivation

In 3D computer graphics, polygonal models are often used to represent individual objects

and entire environments. Planar polygons, especially triangles, are used primarily because

they are easy and efficient to render. Their simple geometry has enabled the development of

custom graphics hardware, currently capable of rendering millions or even tens of millions of

triangles per second. In recent years, such hardware has become available even for personal

computers. Due to the availability of such rendering hardware and of software to generate

polygonal models, polygons will continue to play an important role in 3D computer graphics

for many years to come.

However, the simplicity of the triangle is not only its main advantage, but its main disad-

vantage as well. It takes many triangles to represent a smooth surface, and environments of

tens or hundreds of millions of triangles or more are becoming quite common in the fields of

industrial design and scientific visualization. For instance, in 1994, the UNC Department of

Computer Science received a model of a notional submarine from the Electric Boat division

Figure 1: The auxiliary machine room of a notional submarine model: 250,000 triangles

of General Dynamics, including an auxiliary machine room composed of 250,000 triangles

(see Figure 1) and a torpedo room composed of 800,000 triangles. In 1997, we received from

ABB Engineering a coarsely-tessellated model of an entire coal-fired power plant, composed

of over 13,000,000 triangles. It seems that the remarkable performance increases of 3D

graphics hardware systems cannot yet match the desire and ability to generate detailed and

realistic 3D polygonal models.

1.2 Polygonal Simplification

This imbalance of 3D rendering performance to 3D model size makes it difficult for

graphics applications to achieve interactive frame rates (10-20 frames per second or more).

Interactivity is an important property for applications such as architectural walkthrough,

industrial design, scientific visualization, and virtual reality. To achieve this interactivity in

spite of the enormity of data, it is often necessary to trade fidelity for speed.

We can enable this speed/fidelity tradeoff by creating a multi-resolution representation of

our models. Given such a representation, we can render smaller or less important objects in

the scene at a lower resolution (i.e. using fewer triangles) than the larger or more important

objects, and thus we render fewer triangles overall. Figure 2 shows a widely-used test model:

the Stanford bunny. This model was acquired using a laser range-scanning device; it contains

over 69,000 triangles. When the 2D image of this model has a fairly large area, this may be a

reasonable number of triangles to use for rendering the image. However, if the image is

smaller, like Figure 3 or Figure 4, this number of triangles is probably too large. The right-

most image in each of these figures shows a bunny with fewer triangles. These complexities

are often more appropriate for image of these sizes. Each of these images is typically some

small piece of a much larger image of a complex scene.

For CAD models, such representations could be created as part of the process of building

the original model. Unfortunately, the robust modeling of 3D objects and environments is

already a difficult task, so we would like to explore solutions that do not add extra burdens to

the original modeling process. Also, we would like to create such representations for models

acquired by other means (e.g. laser scanning), models that already exist, and models in the

process of being built.

Figure 2: The Stanford bunny model: 69,451 triangles

69,451 triangles 2,204 triangles

Figure 3: Medium-sized bunnies.

69,451 triangles 575 triangles

Figure 4: Small-sized bunnies.

Simplification is the process of automatically reducing the complexity of a given model.

By creating one or more simpler representations of the input model (generally called levels of

detail), we convert it to a multi-resolution form. This problem of automatic simplification is

rich enough to provide many interesting and useful avenues of research. There are many

issues related to how we represent these multi-resolution models, how we create them, and

how we manage them within an interactive graphics application. This dissertation is con-

cerned primarily with the issues of level-of-detail quality and rendering performance. In

particular, we explore the question of how to preserve the appearance of the input models to

within an intuitive, user-specified tolerance and still achieve a significant increase in render-

ing performance.

1.3 Topics Covered

This paper reviews some fundamental concepts necessary to understand algorithms for

simplification of polygonal models at a high level. These concepts include optimal/near-

optimal solutions for the simplification problem, the use of local simplification operations,

topology preservation, level-of-detail representations for polygonal models, error measures

for surface deviation, and the preservation of appearance attributes. This is not a complete

survey of the field of polygonal model simplification, which has grown to be quite large (for

more information, several survey papers are available [Erikson 1996, Heckbert and Garland

1997]). In particular, this paper does not provide much coverage of algorithms specialized

for simplifying polygonal terrains, nor does it cover simplification and compression algo-

rithms geared towards progressive transmission applications.

2. OPTIMALITY

There are two common formulations of the simplification problem, described in

[Varshney 1994], to which we may seek optimal solutions:

• Min-# Problem: Given some error bound, ε, and an input model, I, compute the mini-

mum complexity approximation, A, such that no point of A is farther than ε distance away

from I and vice versa (the complexity of A is measured in terms of number of vertices or

faces).

• Min-εε Problem: Given some target complexity, n, and an input model, I, compute the

approximation, A, with the minimum error, ε, described above.

In computational geometry, it has been shown that computing the min-# problem is NP-

hard for both convex polytopes [Das and Joseph 1990] and polyhedral terrains [Agarwal and

Suri 1994]. Thus, algorithms to solve these problems have evolved around finding polyno-

mial-time approximations that are close to the optimal.

Let k0 be the size of a min-# approximation. An algorithm has been given in [Mitchell

and Suri 1992] for computing an ε-approximation of size O(k0 log n) for convex polytopes of

initial complexity n. This has been improved by Clarkson in [Clarkson 1993]; he proposes a

randomized algorithm for computing an approximation of size O(k0 log k0) in expected time

O(k0n
1+δ) for any δ > 0 (the constant of proportionality depends on δ, and tends to +∞ as δ

tends to 0). In [Brönnimann and Goodrich 1994] Brönnimann and Goodrich observed that a

variant of Clarkson's algorithm yields a polynomial-time deterministic algorithm that com-

putes an approximation of size O(k0). Working with polyhedral terrains, [Agarwal and Suri

1994] present a polynomial-time algorithm that computes an ε-approximation of size

O(k0 log k0) to a polyhedral terrain.

Because the surfaces requiring simplification may be quite complex (tens of thousands to

millions of triangles), the simplification algorithms used in practice must be o(n2) (typically

O(n log n)) for the running time to be reasonable. Due to the difficulty of computing near-

optimal solutions for general polygonal meshes and the required efficiency, most of the

algorithms described in the computer graphics literature employ local, greedy heuristics to

achieve what appear to be reasonably good simplifications with no guarantees with respect to

the optimal solution.

3. LOCAL SIMPLIFICATION OPERATIONS

Simplification is often achieved by performing a series of local operations. Each such op-

eration serves to coarsen the polygonal model by some small amount. A simplification

algorithm generally chooses one of these operation types and applies it repeatedly to its input

surface until the desired complexity is achieved for the output surface.

3.1 Vertex Remove

The vertex remove operation involves removing from the surface mesh a single vertex

and all the triangles touching it. This removal process creates a hole that we then fill with a

new set of triangles. Given a vertex with n adjacent triangles, the removal process creates a

hole with n sides. The hole filling problem involves a discrete choice from among a finite

number of possible retriangulations for the hole. The n triangles around the vertex are re-

placed by this new triangulation with n-2 triangles. The Catalan sequence,

C() * *
()!

!()!
*

()!

! !

()!

()! !
i

i

i

i i

i

i i i i

i

i i

i

i i
=

+






 =

+ −
=

+
=

+
1

1

2 1

1

2

2

1

1

2 2

1
 , (1)

describes the number of unique ways to triangulate a convex, planar polygon with i+2 sides

[Dörrie 1965, Plouffe and Sloan 1995]. This provides an upper bound on the number of non-

self-intersecting triangulations of a hole in 3D. For example, holes with 3 sides have only 1

triangulation, and holes with 4, 5, 6, 7, 8, and 9 sides have up to 2, 5, 14, 42, 132, and 429

triangulations, respectively.

Both [Turk 1992] and [Schroeder et al. 1992] apply the vertex remove approach as part of

their simplification algorithms. Turk uses point repulsion (weighted according to curvature)

to distribute some number of new vertices across the original surface, then applies vertex

remove operations to remove most of the original vertices. Holes are retriangulated using a

planar projection approach. Schroeder also uses vertex remove operations to reduce mesh

complexity, employing a recursive loop splitting algorithm to fill the necessary holes.

Figure 5: Vertex remove operation

3.2 Edge Collapse

The edge collapse operation has become popular in the graphics community in the last

several years. The two vertices of an edge are merged into a single vertex. This process

distorts all the neighboring triangles. The triangles that contain both of the vertices (i.e. those

that touch the entire edge) degenerate into 1-dimensional edges and are removed from the

mesh. This typically reduces the mesh complexity by 2 triangles.

Whereas the vertex remove operation amounts to making a discrete choice of triangula-

tions, the edge collapse operation requires us to choose the coordinates of the new vertex

from a continuous domain. Common choices for these new coordinates include the coordi-

nates of one of the two original vertices, the midpoint of the collapsed edge, arbitrary points

along the collapsed edge, or arbitrary points in the neighborhood of the collapsed edge.

Not only is the choice of new vertex coordinates for the edge collapse a continuous prob-

lem, but the actual edge collapse operation may be performed continuously in time. We can

linearly interpolate the two vertices from their original positions to the final position of the

new vertex. This allows us to create smooth transitions as we change the mesh complexity.

As described in [Hoppe 1996], we can even perform geomorphs, which smoothly transition

between versions of the model with widely varying complexity by performing many of these

interpolations simultaneously.

In terms of the ability to create identical simplifications, the vertex removal and edge

collapse operations are not equivalent. If we collapse an edge to one of its original vertices,

we can create n of the triangulations possible with the vertex remove, but there are still

C(n+2)-n triangulations that the edge collapse cannot create. Of course, if we allow the edge

collapse to choose arbitrary coordinates for its new vertex, it can create infinitely many

simplifications that the vertex remove operation cannot create. For a given input model and

Figure 6: Edge collapse operation

desired output complexity, it is not clear which type of operation can achieve a closer ap-

proximation to the input model.

The edge collapse was used by [Hoppe et al. 1993] as part of a mesh optimization process

that employed the vertex remove and edge swap operations as well (the edge swap is a

discrete operation that takes two triangles sharing an edge and swaps which pair of opposite

vertices are connected by the edge). In [Hoppe 1996], the vertex remove and edge swaps are

discarded, and the edge collapse alone is chosen as the simplification operation, allowing a

simpler system that can take advantage of the features of the edge collapse. Although systems

employing multiple simplification operations might possibly result in better simplifications,

they are generally more complex and cannot typically take advantage of the inherent features

of any one operation.

3.3 Face Collapse

The face collapse operation is similar to the edge collapse operation, except that it is more

coarse-grained. All three vertices of a triangular face are merged into a single vertex. This

causes the original face to degenerate into a point and three adjacent faces to degenerate into

line segments, removing a total of four triangles from the model. The coarser granularity of

this operation may allow the simplification process to proceed more quickly, at the expense

of the fine-grained local control of the edge collapse operation. Thus, the error is likely to

accumulate more quickly for a comparable reduction in complexity. [Hamann 1994, Gieng et

al. 1997] use the face collapse operation in their simplification systems. The new vertex

coordinates are chosen to lie on a local quadratic approximation to the mesh. Naturally, it is

possibly to further generalize these collapse operations to collapse even larger connected

portions of the input model. It may even be possible to reduce storage requirements by

grouping nearby collapse operations with similar error bounds into larger collapse operations.

Figure 7: Face collapse operation

Thus, the fine-grained control may be traded for reduced storage and other overhead require-

ments in certain regions of the model.

3.4 Vertex Cluster

Unlike the preceding simplification operations, the vertex cluster operation relies solely

on the geometry of the input (i.e. the vertex coordinates) rather than the topology (i.e. the

adjacency information) to reduce the complexity. Like the edge and face collapses, several

vertices are merged into a single vertex. However, rather than merging a set of topologically

adjacent vertices, a set of “nearby” vertices are merged [Rossignac and Borrel 1992]. For

instance, one possibility is to merge all vertices that lie within a particular 3D axis-aligned

box. The new, merged vertex may be one of the original vertices that “best represents” the

entire set, or it may be placed arbitrarily to minimize some error bound. An important prop-

erty of this operation is that it can be robustly applied to arbitrary sets of triangles, whereas

all the preceding operations assume that the triangles form a connected, manifold mesh.

The effects of this vertex cluster are similar to those of the collapse operations. Some tri-

angles are distorted, whereas others degenerate to a line segment or a point. In addition, there

may be coincident triangles, line segments, and points originating from non-coincident

geometry. One may choose to render the degenerate triangles as line segments and points, or

one may simply not render them at all. Depending on the particular graphics engine, render-

ing a line or a point may not be much faster than rendering a triangle. This is an important

consideration, because achieving a speed-up is one of the primary motivations for simplifica-

tion.

There is no point in rendering several coincident primitives, so multiple copies are fil-

tered down to a single copy. However, the question of how to render coincident geometry is

complicated by the existence of other surface attributes, such as normals and colors. For

Figure 8: Vertex Cluster operation

instance, suppose two triangles of wildly different colors become coincident. No matter what

color we render the triangle, it may be noticeably incorrect.

[Rossignac and Borrel 1992] use the vertex clustering operation in their simplification

system to perform very fast simplification on arbitrary polygonal models. They partition the

model space with a uniform grid, and vertices are collapsed within each grid cell. [Luebke

and Erikson 1997] build an octree hierarchy rather than a grid at a single resolution. They

dynamically collapse and split the vertices within an octree cell depending on the current size

of the cell in screen space as well as silhouette criteria.

Figure 9: Generalized edge collapse operation

3.5 Generalized Edge Collapse

The generalized edge collapse (or vertex pair) operation combines the fine-grained con-

trol of the edge collapse operation with the generality of the vertex cluster operation. Like the

edge collapse operation, it involves the merging of two vertices and the removal of degener-

ate triangles. However, like the vertex cluster operation, it does not require that the merged

vertices be topologically connected (by a topological edge), nor does it require that topologi-

cal edges be manifold.

[Garland and Heckbert 1997] apply the generalized edge collapse in conjunction with er-

ror quadrics to achieve simplification that gives preference to the collapse of topological

edges, but also allows the collapse of virtual edges (arbitrary pairs of vertices). These virtual

edges are chosen somewhat heuristically, based on proximity relationships in the original

mesh.

Figure 10: Unsubdivide operation

3.6 Unsubdivide

Subdivision surface representations have also been proposed as a solution to the multi-

resolution problem. In the context of simplification operations, we can think of the “unsubdi-

vide” operation (the inverse of a subdivision refinement) as our simplification operation. A

common form of subdivision refinement is to split one triangle into four triangles. Thus the

unsubdivide operation merges four triangles of a particular configuration into a single trian-

gle, reducing the triangle count by three triangles.

[DeRose et al. 1993] shows how to represent a subdivision surface at some finite resolu-

tion as a sequence of wavelet coefficients. The sequence of coefficients is ordered from lower

to higher frequency content, so truncating the sequence at a particular point determines a

particular mesh resolution. [Eck et al. 1995] presents an algorithm to turn an arbitrary topol-

ogy mesh into one with the necessary subdivision connectivity. They construct a base mesh

of minimal resolution and guide its refinement to come within some tolerance of the original

mesh. This new refined subdivision mesh is used in place of the original mesh, and its

resolution is controlled according to the wavelet formulation.

4. TOPOLOGICAL CONSIDERATIONS

4.1 Manifold vs. Non-manifold Meshes

Polygonal simplification algorithms may be distinguished according to the type of input

they accept. Some algorithms require the input to be a manifold triangle mesh, while others

accept more general triangle sets. In the continuous domain, a manifold surface is one that is

everywhere homeomorphic to an open disc. In the discrete domain of triangle meshes, such a

surface has two topological properties. First, every vertex is adjacent to a set of triangles that

form a single, complete cycle around the vertex. Second, each edge is adjacent to exactly two

triangles. For a manifold mesh with borders, these restrictions are slightly relaxed. A border

is simply a chain of edges with adjacent triangles only to one side. In a manifold mesh with

borders, a vertex may be surrounded by a single, incomplete cycle (i.e. the beginning need

not meet the end). Also, an edge may be adjacent to either one or two triangles.

A mesh that does not have the above properties is said to be non-manifold. Such meshes

may occur in practice by accident or by design. Accidents are possible, for example, during

either the creation of the mesh or during conversions between representation, such as the

conversion from a solid to a boundary representation. The correction of such accidents is a

subject of much interest [Barequet and Kumar 1997, Murali and Funkhouser 1997]. They

may occur by design because such a mesh may require fewer triangles to render than a

visually-comparable manifold mesh or because such a mesh may be easier to create in some

situations. If the non-manifold portions of a mesh are few and far between, we may refer to

the mesh as mostly manifold.

At the extreme, some data sets take the form of a set of triangles, with no connectivity

information whatsoever (sometimes referred to as a “triangle soup”). Such data might turn

out to be manifold or non-manifold if we were to attempt to reconstruct the connectivity

information. In general, if any conversion has been performed on the original data, it’s safe

to assume that a naïve reconstruction will result in at least some non-manifold regions.

The most robust algorithms, based on vertex clusters, operate as easily on a triangle soup

as on a perfectly manifold mesh [Rossignac and Borrel 1992], [Luebke and Erikson 1997].

This advantage cannot be stressed enough and is extremely important in the case where the

simplification user has no control over the data. The ability to view an large, unfamiliar data

set interactively is invaluable in the process of learning its ins and outs, and these algorithms

allow one to get up and running quickly.

However, these very general algorithms do not typically create simplifications that look

as attractive as those produced by algorithms that operate on manifold meshes. These

algorithms, which rely on operations such as the vertex remove or edge collapse, respect the

topology of the original mesh and avoid catastrophic changes to the surface and its appear-

ance. The manifold input criterion does limit the applicability of these algorithms to some

real-world models, but many of these algorithms may be modified to handle mostly manifold

meshes by avoiding simplification of the non-manifold regions. This can be an effective

strategy until the non-manifold regions begin to dominate the surface complexity.

The vertex pair and edge collapse operations can both operate on non-manifold meshes as

well as manifold ones. Vertex-pair algorithms must deal with the non-manifold meshes they

are bound to create by merging non-adjacent vertices. Edge collapse algorithms can operate

on non-manifold meshes, but it may be difficult to adapt the most rigorous error metrics for

manifold meshes to use on non-manifold meshes.

4.2 Topology Preservation

The topological structure of a polygonal surface typically refers to features such as its ge-

nus (number of topological holes, e.g. 0 for a sphere, 1 for a torus or coffee mug) and the

number and arrangement of its borders. These features are fully determined by the adjacency

graph of the vertices, edges, and faces of a polygonal mesh. For manifold meshes with no

borders (i.e. closed surfaces), the Euler equation holds:

F E V G− + = −2 , (2)

where F is the number of faces, E is the number of edges, V is the number of vertices, and G

is the genus.

In addition to this combinatorial description of the topological structure, the embedding

of the surface in 3-space impacts its perceived topology in 3D renderings. Generally, we

expect the faces of a surface to intersect only at their shared edges and vertices.

Most of the simplification operations described in section 3 (all except the vertex cluster

and the generalized edge collapse) preserve the connectivity structure of the mesh. If a

simplification algorithm uses such an operation and also prevents local self-intersections

(intersections within the adjacent neighborhood of the operation), we say the algorithm

preserves local topology. If the algorithm prevents any self-intersections in the entire mesh,

we say it preserves global topology.

If the simplified surface is to be used for purposes other than rendering (e.g. finite ele-

ment computations), topology preservation may be essential. For rendering applications,

however, it is not always necessary. In fact, it is often possible to construct simplifications

with fewer polygons for a given error bound if topological modifications are allowed.

However, some types of topological modifications may have a dramatic impact on the

appearance of the surface. For instance, many meshes are the surfaces of solid objects. For

example, consider the surface of a thin, hollow cylinder. When the surface is modified by

more than the thickness of the cylinder wall, the interior surface will intersect the outer

surface. This can cause artifacts that cover a large area on the screen. Problems also occur

when polygons with different color attributes become coincident.

Certain types of topological changes are clearly beneficial in reducing complexity, and

have a smaller impact on the rendered image. These include the removal of topological holes

and thin features (such as the antenna of a car). Topological modifications are encouraged in

[Rossignac and Borrel 1992], [Luebke and Erikson 1997], [Garland and Heckbert 1997] and

[Erikson and Manocha 1998] and controlled modifications are performed in [He et al. 1996]

and [El-Sana and Varshney 1997].

5. LEVEL-OF-DETAIL REPRESENTATIONS

We can classify the possible representations for level-of-detail models into two broad

categories: static and dynamic. Static levels of details are computed totally off-line. They are

fully determined as a pre-process to the visualization program. Dynamic levels of detail are

typically computed partially off-line and partially on-line within the visualization program.

We now discuss these representations in more detail.

5.1 Static Levels of Detail

The most straightforward level-of-detail representation for an object is a set of independ-

ent meshes, where each mesh has a different number of triangles. A common heuristic for the

generation of these meshes is that the complexity of each mesh should be reduced by a factor

of two from the previous mesh. Such a heuristic generates a reasonable range of complexi-

ties, and requires only twice as much total memory as the original representation.

It is common to organize the objects in a virtual environment into a hierarchical scene

graph [van Dam 1988, Rohlf and Helman 1994]. Such a scene graph may have a special type

of node for representing an object with levels of detail. When the graph is traversed, this

level-of-detail node is evaluated to determine which child branch to traverse (each branch

represents one of the levels of detail). In most static level-of-detail schemes, the children of

the level-of-detail nodes are the leaves of the graph. [Erikson and Manocha 1998] presents a

scheme for generating hierarchical levels of detail. This scheme generates level-of-detail

nodes throughout the hierarchy rather than just at the leaves. Each such interior level-of-detail

node involves the merging of objects to generate even simpler geometric representations.

This overcomes one of the previous limitations of static levels of detail  the necessity for

choosing a single scale at which objects are identified and simplified.

The transitions between these levels of detail are typically handled in one of three ways:

discrete, blended, or morphed. The discrete transitions are instantaneous switches; one level

of detail is rendered during one frame, and a different level of detail is rendered during the

following frame. The frame at which this transition occurs is typically determined based on

the distance from the object to the viewpoint. This technique is the most efficient of the three

transition types, but also results in the most noticeable artifacts.

Blended transitions employ alpha-blending to fade between the two levels of detail in

question. For several frames, both levels of detail are rendered (increasing the rendering cost

during these frames), and their colors are blended. The blending coefficients change gradually

to fade from one level of detail to the other. It is possible to blend over a fixed number of

frames when the object reaches a particular distance from the viewpoint, or to fade over a

fixed range of distances [Rohlf and Helman 1994]. If the footprints of the objects on the

screen are not identical, blending artifacts may still occur at the silhouettes.

Morphed transitions involve gradually changing the shape of the surface as the transition

occurs. This requires the use of some correspondence between the two levels of detail. Only

one representation must be rendered for each frame of the transition, but the vertices require

some interpolation each frame. For instance, [Hoppe 1996] describes the geomorph transition

for levels of detail created by a sequence of edge collapses. The simpler level of detail was

originally generated by collapsing some number of vertices, and we can create a transition by

simultaneously interpolating these vertices from their positions on one level of detail to their

positions on the other level of detail. Thus the number of triangles we render during the

transition is equal to the maximum of the numbers of triangles in the two levels of detail. It is

also possible to morph using a mutual tessellation of the two levels of detail, as in [Turk

1992], but this requires the rendering of more triangles during the transition frames.

5.2 Dynamic Levels of Detail

Dynamic levels of detail provide representations that are more carefully tuned to the

viewing parameters of each particular rendered frame. Due to the sheer number of distinct

representations this requires, each representation cannot simply created and stored independ-

ently. The common information among these representations is used to create a single

representation for each simplified object. From this unified representation, a geometric

representation that is tuned to the current viewing parameters is extracted. The coherence of

the viewing parameters enables incremental modifications to the geometry rendered in the

previous frame; this makes the extraction process feasible at interactive frame rates.

[Hoppe 1996] presents a representation called the progressive mesh. This representation

is simply the original object plus an ordered list of the simplification operations performed on

the object. It is generally more convenient to reverse the order of this intuitive representation,

representing the simplest base mesh plus the inverse of each of the simplification operations.

Applying all of these inverse operations to the base mesh will result in the original object

representation. A particular level of detail of this progressive mesh is generated by perform-

ing some number of these operations.

In [Hoppe 1997], the progressive mesh is reorganized into a vertex hierarchy. This hierar-

chy is a tree that captures the dependency of each simplification operation on certain previous

operations. Similar representations include the merge tree of [Xia et al. 1997], the multire-

solution model of [Klein and Krämer 1997], the vertex tree of [Luebke and Erikson 1997],

and the multi-triangulation of [DeFloriani et al. 1997]. Such hierarchies allow selective

refinement of the geometry based on various metrics for screen-space deviation, normal

deviation, color deviation, and other important features such as silhouettes and specular

highlights. A particular level of detail may be expressed as a cut through these graphs, or a

front of vertex nodes. Each frame, the nodes on the current front are examined, and may

cause the graph to be refined at some of these nodes.

[DeFloriani et al. 1997] discuss the properties of such hierarchies in terms of graph char-

acteristics. Examples of these properties include compression ratio, linear growth, logarith-

mic height, and bounded width. They discuss several different methods of constructing such

hierarchies and test these methods on several benchmarks. For example, one common heuris-

tic for building these hierarchies is to choose simplification operations in a greedy fashion

according to an error metric. Another method is to choose a set of operations with disjoint

areas of influence on the surface and apply this entire set before choosing the next set. The

former method does not guarantee logarithmic height, whereas the latter does. Such height

guarantees can have practical implications in terms of the length of the chain of dependent

operations that must be performed in order to achieve some particular desired refinement.

[DeRose et al. 1993] present a wavelet-based representation for surfaces constructed with

subdivision connectivity. [Eck et al. 1995] make this formulation applicable to arbitrary

triangular meshes by providing a remeshing algorithm to approximate an arbitrary mesh by

one with the necessary subdivision connectivity. Both the remeshing and the filter-

ing/reconstruction of the wavelet representation provide bounded error on the surfaces

generated. [Lee et al. 1998] provide an alternate remeshing algorithm based on a smooth,

global parameterization of the input mesh. Their approach also allows the user to constrain

the parameterization at vertices or along edges of the original mesh to better preserve impor-

tant features of the input.

5.3 Comparison

Static levels of detail allow us to perform simplification entirely as a pre-process. The

real-time visualization system performs only minimal work to select which level of detail to

render at any given time. Because the geometry does not change, it may be rendered in

retained mode (i.e. from cached, optimized display lists). Retained-mode rendering should

always be at least as fast as immediate mode rendering, and is much faster on most current

high-end hardware. Perhaps the biggest shortcoming of using static levels of detail is that

they require that we partition the model into independent “objects” for the purpose of simpli-

fication. If an object is large with respect to the user or the environment, especially if the

viewpoint is often contained inside the object, little or no simplification may be possible.

This may require that such objects be subdivided into smaller objects, but switching the

levels of detail of these objects independently causes visible cracks, which are non-trivial to

deal with.

Dynamic levels of detail perform some of simplification as a pre-process, but defer some

of the work to be computed by the real-time visualization system at run time. This allows us

to provide more fine-tuning of the exact tessellation to be used, and allows us to incorporate

more view-dependent criteria into the determination of this tessellation. The shortcoming of

such dynamic representations is that they require more computation in the visualization

system as well as the use of immediate mode rendering. Also, the memory requirements for

such representations are often somewhat larger than for the static levels of detail.

6. SURFACE DEVIATION ERROR BOUNDS

Measuring the deviation of a polygonal surface as a result of simplification is an impor-

tant component of the simplification process. This surface deviation error gives us an idea of

the quality of a particular simplification. It helps guide the simplification process to produce

levels of detail with low error, determine when it is appropriate to show a particular level of

detail of a given surface, and optimize the levels of detail for an entire scene to achieve a high

overall image quality for the complexity of the models actually rendered.

6.1 Distance Metrics

Before discussing the precise metrics and methods used by several researchers for meas-

uring surface deviation, we consider two formulations of the distance between two surfaces.

These are the Hausdorff distance and the mapping distance. The Hausdorff distance is a well-

known concept from topology, used in image processing as well as surface modeling, and the

mapping distance is a commonly used metric for parametric surfaces.

6.1.1 Hausdorff Distance

 The Hausdorff distance is a distance metric between point sets. Given two sets of points,

A and B, the Hausdorff distance is defined as

H() max(h(),h())A,B A,B B,A= , (3)

where

h() maxminA,B a b
a A b B

= −
∈ ∈

. (4)

Thus the Hausdorff distance measures the farthest distance from a point in one point set

to its closest point in the other point set (notice that h(A,B) ≠ h(B,A)). Because a surface is a

particular type of continuous point set, the Hausdorff distance provides a useful measure of

the distance between two surfaces.

6.1.2 Mapping Distance

The biggest shortcoming of the Hausdorff distance metric for measuring the distance

between surfaces is that it makes no use of the point neighborhood information inherent in

the surfaces. The function h(A,B) implicitly assigns to each point of surface A the closest

point of surface B. However, this mapping may have discontinuities. If points i and j are

“neighboring” points on surface A (i.e. there is a path on the surface of length no greater than

ε that connects them), their corresponding points, i´ and j´, on surface B may not be neigh-

boring points. In addition, the mapping implied by h(A,B) is not identical to the mapping

implied by h(B,A).

For the purpose of simplification, we would like to establish a continuous mapping be-

tween the surface’s levels of detail. Ideally, the correspondences described by this mapping

should coincide with a viewer’s perception of which points are “the same” on the surfaces.

Given such a continuous mapping

F: A B→

the mapping distance is defined as

D(F) max F()= −
∈a A

a a . (5)

Because there are many such mappings, there are many possible mapping distances. The

minimum mapping distance is simply

min
F

D min D(F)=
∈M

, (6)

where M is the set of all such continuous mapping functions. Note that although Dmin and its

associated mapping function may be difficult to compute, all continuous mapping functions

provide an upper bound on Dmin.

6.2 Surface Deviation Algorithms

We now classify several simplification algorithms according to how they measure the sur-

face deviation error of their levels of detail.

6.2.1 Mesh Optimization

[Hoppe et al. 1993] pose the simplification problem in terms of optimizing an energy

function. This function has terms corresponding to number of triangles, surface deviation

error, and a heuristic spring energy. To quantify surface deviation error, they maintain a set of

point samples from the original surface and their closest distance to the simplified surface.

The sum of squares of these distances is used as the surface deviation component of the

energy function. The spring energy term is required because the surface deviation error is

only measured in one direction: it approximates the closest distance from the original surface

to the simplified surface, but not vice versa. Without this term, small portions of the simpli-

fied surface can deviate quite far from the original surface, as long as all the point samples

are near to some portion of the simplified surface.

6.2.2 Vertex Clustering

[Rossignac and Borrel 1993] present a simple and general algorithm for simplification

using vertex clustering. The vertices of each object are clustered using several different sizes

of uniform grid. The surface deviation in this case is a Hausdorff distance and must be less

than or equal to the size of grid cell used in determining the vertex clusters. This is a very

conservative bound, however. A slightly less conservative bound is the maximum distance

from a vertex in the original cluster to the single representative vertex after the cluster is

collapsed. Even this bound is quite conservative in many cases; the actual maximum devia-

tion from the original surface to the simplified surface may be considerably smaller than the

distance the original vertices travel during the cluster operation.

[Luebke and Erikson 1997] take a similar approach, but their system uses an octree in-

stead of a single-resolution uniform grid. This allows them to take a more dynamic approach,

folding and unfolding octree cells at run-time and freely merging nearby objects. The meas-

ure of surface deviation remains the same, but they allow a more flexible choice of error

tolerances in their run-time system. In particular, they use different tolerances for silhouette

and non-silhouette clusters.

6.2.3 Superfaces

[Kalvin and Taylor 1996] present an efficient simplification algorithm based on merging

adjacent triangles to form polygonal patches, simplifying the boundaries of these patches, and

finally retriangulating the patches themselves. This algorithm guarantees a maximum devia-

tion from vertices of the original surface to the simplified surface and from vertices of the

simplified surface to the original surface. Unfortunately, even this bidirectional bound does

not guarantee a maximum deviation between points on the simplified surface and points on

the original surface. For instance, suppose we have two adjacent triangles that share an edge,

forming a non-planar quadrilateral. If we retriangulate this quadrilateral by performing an

edge swap operation, the maximum deviation between these two surfaces is non-zero, even

though their four vertices are unchanged (thus the distance measured from vertex to surface is

zero).

6.2.4 Error Tolerance Volumes

[Guéziec 1995] presents a simplification system that measures surface deviation using

error volumes built around the simplified surface. These volumes are defined by spheres,

specified by their radii, centered at each of the simplified surface’s vertices. We can associate

with any point in a triangle a sphere whose radius is a weighted average of the spheres of the

triangle’s vertices. The error volume of an entire triangle is the union of the spheres of all the

points on the triangle, and the error volume of a simplified surface is the union of the error

volumes of its triangles. As edge collapses are performed, not only are the coordinates of the

new vertex computed, but new sphere radii are computed such that the new error volume

contains the previous error volume. The maximum sphere radius is a bound on the Hausdorff

distance of the simplified surface from the original, and thus provides a bound for surface

deviation in both 3D and 2D (after perspective projection).

6.2.5 Simplification Envelopes

The simplification envelopes technique of [Cohen and Varshney et al. 1996] bounds the

Hausdorff distance between the original and simplified surfaces without actually making

measurements during the simplification process. For a particular simplification, the input

surface is surrounded by two envelope surfaces, which are constructed to deviate by no more

than a specified tolerance, ε, from the input surface. As the simplification progresses, the

modified triangles are tested for intersection with these envelopes. If no intersections occur,

the simplified surface is within distance ε from the input surface. Similar constructions are

built to constrain error around the borders of bordered surfaces. By including extensive self-

intersection testing as well, the algorithm provides complete global topology preservation.

This algorithm does an excellent job at generating small-triangle-count surface approxima-

tions for a given error bound. The biggest limitations are the up-front processing costs

required for envelope construction (for each level of detail to be generated) and the conserva-

tive nature of the envelopes themselves, which do not expand beyond the point of self-

intersection.

6.2.6 Error Quadrics

[Ronfard and Rossignac 1996] describe a fast method for approximating surface devia-

tion. They represent surface deviation error for each vertex as a sum of squared distances to a

set of planes. The initial set of planes for each vertex are the planes of its adjacent faces. As

vertices are merged, the sets of planes are unioned. This metric provides a useful and efficient

heuristic for choosing an ordering of edge collapse operations, but it does not provide any

guarantees about the maximum or average deviation of the simplified surface from the

original.

[Garland and Heckbert 1997] present some improvements over [Ronfard and Rossignac

1996]. The error metric is essentially the same, but they show how to approximate a vertex’s

set of planes by a quadric form (represented by a single 4x4 matrix). These matrices are

simply added to propagate the error as vertices are merged. Using this metric, it is possible to

choose an optimal vertex placement that minimizes the error. In addition, they allow the

merging of vertices that are not joined by an edge, allowing increased topological modifica-

tion. [Erikson and Manocha 1998] further improve this technique by automating the process

of choosing which non-edge vertices to collapse and by encouraging such merging to pre-

serve the local surface area.

6.2.7 Mapping Error

[Bajaj and Schikore 1996] perform simplification using the vertex remove operation, and

measure surface deviation using local, bijective (one-to-one and onto) mappings in the plane

between points on the surface just before and just after the simplification operation. This

approach provides a fairly tight bound on the maximum deviation over all points on the

surface, not just the vertices (as does [Guéziec 1995]) and provides pointwise mappings

between the original and simplified surfaces.

A similar technique is employed by [Cohen et al. 1997], who perform mappings in the

plane for the edge collapse operation. They present rigorous and efficient techniques for

finding a plane in which to perform the mapping, as well as applying the mapping and

propagating error from operation to operation. The computed mappings are used not only to

guide the simplification process in its choice of operations, but also to assign texture coordi-

nates to the post-collapse vertices and to control the switching of levels of detail in interac-

tive graphics applications.

6.2.8 Hausdorff Error

[Klein et al. 1996] measure a one-sided Hausdorff distance (with appropriate locality re-

strictions) between the original surface and the simplified surface. By definition, this ap-

proach produces the smallest possible bound on maximum one-sided surface deviation, but

the one-sided formulation does not guarantee a true bound on overall maximum deviation. At

each step of the simplification process, the Hausdorff distance must be measured for each of

the original triangles mapping to the modified portion of the surface. The computation time

for each simplification operation grows as the simplified triangles cover more and more of

the mesh, but of course, there are also fewer and fewer triangles to simplify. [Klein and

Krämer 1997] present an efficient implementation of this algorithm.

6.2.9 Memory-efficient Simplification

[Lindstrom and Turk 1998] demonstrate the surprising result that good simplifications are

possible without measuring anything with respect to the original model. All errors in this

method are measured purely as incremental changes in the local surface. The error metric

used preserves the total volume while minimizing volume changes of each triangle. Another

interesting aspect of this work is that they perform after-the-fact measurements to compare

the “actual” mean and maximum simplification errors of several algorithm implementations.

These measurement use the Metro geometric comparison tool [Cignoni et al. 1996], which

uniformly samples the simplified surface, computes correspondences with the original

surface, and measures the error of the samples.

7. APPEARANCE ATTRIBUTE PRESERVATION

We now classify several algorithms according to how they preserve the appearance attrib-

utes of their input models.

7.1 Scalar Field Deviation

The mapping algorithm presented in [Bajaj and Schikore 1996] allows the preservation of

arbitrary scalar fields across a surface. Such scalar fields are specified at the mesh vertices

and linearly interpolated across the triangles. Their approach computes a bound on the

maximum deviation of the scalar field values between corresponding points on the original

surface and the simplified surface.

7.2 Color Preservation

[Hughes et al. 1996] describes a technique for simplifying colored meshes resulting from

global illumination algorithms. They use a logarithmic function to transform the vertex colors

into a more perceptually linear space before applying simplification. They also experiment

with producing mesh elements that are quadratically- or cubically-shaded in addition to the

usual linearly-shaded elements.

[Hoppe 1996] extends the error metric of [Hoppe et al. 1993] to include error terms for

scalar attributes and discontinuities as well as surface deviation. Like the surface deviation,

the scalar attribute deviation is measured as a sum of squared Euclidean distances in the

attribute space (e.g. the RGB color cube). The distances are again measured between sampled

points on the original surface and their closest points on the simplified surface. This metric is

useful for prioritizing simplification operations in order of increasing error. However, it does

not provide much information about the true impact of attribute error on the final appearance

of the simplified object on the screen. A better metric should incorporate some degree of area

weighting to indicate how the overall illuminance of the final pixels may be affected.

[Erikson and Manocha 1998] present a method for measuring the maximum attribute de-

viation in Euclidean attribute spaces. Associated with each vertex is an attribute volume for

each attribute being measured. The volume is a disc of the appropriate dimension (i.e. an

interval in 1D, a circle in 2D, a sphere in 3D, etc.). Each attribute volumes is initially a point

in the attribute space (an n-disk with radius zero). As vertex pairs are merged, the volumes

grow to contain the volumes of both vertices.

[Garland and Heckbert 1998] extend the algorithm of [Garland and Heckbert 1997] to

consider color and texture coordinate error as well as geometry. The error quadrics are lifted

to higher dimensions to accommodate the combined attribute spaces (e.g. 3 dimensions for

RGB color and 2 dimensions for texture coordinates). The associated form matrices grow

quadratically with the dimension, but standard hardware-accelerated rendering models

typically require a dimension of 9 or less. The error is thus measured and optimized for all

attributes simultaneously. The method makes the simplifying assumption that the errors in

all these attribute values may be measured as in a Euclidean space.

[Certain et al. 1996] present a method for preserving vertex colors in conjunction with the

wavelet representation for subdivision surfaces [DeRose et al. 1993]. The geometry and color

information are stored as two separate lists of wavelet coefficients. Coefficients may be

added or deleted from either of these lists to adjust the complexity of the surface and its

geometric and color errors. They also use the surface parameterization induced by the subdi-

vision to store colors in texture maps to render as textured triangles for machines that support

texture mapping in hardware.

[Bastos et al. 1997] use texture maps with bicubic filtering to render the complex solu-

tions to radiosity illumination computations. The radiosity computation often dramatically

increases the number of polygons in the input mesh in order to create enough vertices to store

the resulting colors. Storing the colors instead in texture maps removes unnecessary geome-

try, reducing storing requirements and rasterization overhead.

The appearance-preserving simplification technique of [Cohen et al. 1998] is in some

sense a generalization of this “radiosity as textures” work. Colors are stored as texture maps

before the simplification is applied. Mappings are computed as in [Cohen et al. 1997], but

this time in the 2D texture domain, effectively measuring the 3D displacements of a texture

map as a surface is simplified. Whereas [Bastos et al. 1997] reduces geometry complexity to

that of the pre-radiositized mesh, [Cohen et al. 1998] simplify complex geometry much

farther, quantifying the distortions caused by the simplification of non-planar, textured

surfaces. [Cignoni et al. 98] describe a method for compactly storing attribute values into

map structures that are customized to a particular simplified mesh.

7.3 Normal Vector Preservation

[Xia et al. 1997] associate a cone of normal vectors with each vertex during their simpli-

fication preprocess. These cones initially have an angle of zero, and grow to contain the

cones of the two vertices merged in an edge collapse. Their run-time, dynamic simplification

scheme uses this range of normals and the light direction to compute a range of reflectance

vectors. When this range includes the viewing direction, the mesh is refined, adapting the

simplification to the specular highlights. The results of this approach are visually quite

compelling, though they do not allow increased simplification of the highlight area as it gets

smaller on the screen (i.e. as the object gets farther from the viewpoint).

[Klein 1998] maintains similar information about the cone of normal deviation associated

with each vertex. The refinement criterion takes into account the spread of reflected normals

(i.e. the specular exponent, or shininess) in addition to the reflectance vectors themselves.

Also, refinement is performed in the neighborhood of silhouettes with respect to the light

sources as well as specular highlights. Again, this normal deviation metric does not allow

increased simplification in the neighborhood of the highlights and light silhouettes as the

object gets smaller on the screen.

[Cohen et al. 1998] apply their appearance-preserving technique to normals as well as

colors by storing normal vectors in normal maps. Figure 11 shows a view of a complex

“armadillo” model. Applying the appearance-preserving algorithm to this model generates the

simplified versions of Figure 12 and Figure 13, in which it is nearly impossible to distinguish

the simplifications from the original. Compared this to the bunnies in Figure 3 and Figure 4.

Although the positions of the surfaces are preserved quite well, as evidenced by the similarity

of the silhouettes of the bunnies, the shading makes it quite easy to tell which bunnies have

been simplified and which have not (i.e. the appearance has not been totally preserved).

The appearance-preserving approach to normal preservation has the advantage that the

normal values need not be considered in the simplification process – only texture distortion

error constrains the simplification process. In fact, the error in the resulting images can be

characterized entirely by the number of pixels of deviation of the textured surface on the

screen. The major disadvantage to this approach is that it assumes a per-pixel lighting model

is applied to shade the normal-mapped triangles. Per-pixel lighting is still too computation-

ally expensive for most graphics hardware, though support for such lighting is making its way

into standard graphics APIs such as OpenGL.

Figure 11: “Armadillo” model: 249,924 triangles

249,924 triangles 7,809 triangles

Figure 12: Medium-sized “armadillos”

249,924 triangles 975 triangles

Figure 13: Small-sized “armadillos”

8. CONCLUSIONS

As is the case for many classes of geometric algorithms, there does not seem to be any

single best simplification algorithm or scheme. An appropriate scheme depends not only on

the characteristics of the input models, but also the final application to which the multi-

resolution output will be applied.

For poorly-behaved input data (mostly non-manifold or triangle soups), the vertex clus-

tering algorithms [Rossignac and Borrel 1992], [Luebke and Erikson 1997] should yield the

fastest and most painless success. For cleaner input data, one of the many methods which

respect topology will likely produce more appealing results.

When even pre-computation time is of the essence, a fast algorithm such as [Garland and

Heckbert 1997] may be appropriate, while applications required better-controlled visual

fidelity should invest some extra pre-computation time in an algorithm such as [Cohen et al.

1998], [Guéziec 1995], or [Hoppe 1996], to achieve guaranteed or at least higher quality.

For applications and machines with extra processing power to spare, dynamic level of

detail techniques such as [Hoppe 1997] and [Luebke and Erikson 1997] can provide smooth

level-of-detail transitions with minimal triangle counts. However, for applications requiring

maximal triangle throughput (including display lists) or need to actually employ their CPU(s)

for application-related processing, static levels of detail (possibly with geomorphs between

levels of detail) are often preferable (they also add less complexity to application code).

The construction and use of levels of detail have become essential tools for accelerating

the rendering process. The field has now reached a level of maturity at which there is a rich

“bag of tricks” from which to choose when considering the use of levels of detail for a

particular application. Making sense of the available techniques as well as when and how

well they work is perhaps the next step towards answering the question, “What is a good

simplification?”, both statically, and over the course of an interactive application.

9. ACKNOWLEDGMENTS

We gratefully acknowledge Greg Angelini, Jim Boudreaux, and Ken Fast at the Electric

Boat division of General Dynamics for the submarine model; the Stanford Computer Graph-

ics Laboratory for the bunny and model; and Venkat Krishnamurthy and Marc Levoy at the

Stanford Computer Graphics Laboratory and Peter Schröder for the “armadillo” model.

Thanks to Amitabh Varshney of the State University of New York at Stonybrook for the

original material for the section on optimality. Finally, thanks to Dinesh Manocha, my

advisor, for the continued guidance that led to the completion of my dissertation.

10. REFERENCES

Agarwal, Pankaj K. and Subhash Suri. Surface Approximation and Geometric Partitions.
Proceedings of 5th ACM-SIAM Symposium on Discrete Algorithms. 1994. pp. 24-33.

Bajaj, Chandrajit and Daniel Schikore. Error-bounded Reduction of Triangle Meshes with
Multivariate Data. SPIE. vol. 2656. 1996. pp. 34-45.

Barequet, Gill and Subodh Kumar. Repairing CAD Models. Proceedings of IEEE Visualiza-
tion '97. October 19-24. pp. 363-370, 561.

Bastos, Rui, Mike Goslin, and Hansong Zhang. Efficient Rendering of Radiosity using
Texture and Bicubic Interpolation. Proceedings of 1997 ACM Symposium on Interactive
3D Graphics.

Brönnimann, H. and Michael T. Goodrich. Almost Optimal Set Covers in Finite VC-
Dimension. Proceedings of 10th Annual ACM Symposium on Computational Geometry.
1994. pp. 293-302.

Certain, Andrew, Jovan Popovic, Tony DeRose, Tom Duchamp, David Salesin, and Werner
Stuetzle. Interactive Multiresolution Surface Viewing. Proceedings of SIGGRAPH 96.
pp. 91-98.

Cignoni, Paolo, Claudio Montani, Claudio Rocchini, and Roberto Scopigno. A General
Method for Recovering Attribute Values on Simplified Meshes. Proceedings of IEEE
Visualization '98. pp. 59-66, 518.

Cignoni, Paolo, Claudio Rocchini, and Roberto Scopigno. Metro: Measuring Error on
Simplified Surfaces. Technical Report B4-01-01-96, Instituto I. E. I.- C.N.R., Pisa, Italy,
January 1996.

Clarkson, Kenneth L. Algorithms for Polytope Covering and Approximation. Proceedings of
3rd Workshop on Algorithms and Data Structures. 1993. pp. 246-252.

Cohen, Jonathan, Dinesh Manocha, and Marc Olano. Simplifying Polygonal Models using
Successive Mappings. Proceedings of IEEE Visualization '97. pp. 395-402.

Cohen, Jonathan, Marc Olano, and Dinesh Manocha. Appearance-Preserving Simplification.
Proceedings of ACM SIGGRAPH 98. pp. 115-122.

Cohen, Jonathan, Amitabh Varshney, Dinesh Manocha, Gregory Turk, Hans Weber, Pankaj
Agarwal, Frederick Brooks, and William Wright. Simplification Envelopes. Proceedings
of SIGGRAPH 96. pp. 119-128.

Das, G. and D. Joseph. The Complexity of Minimum Convex Nested Polyhedra. Proceedings
of 2nd Canadian Conference on Computational Geometry. 1990. pp. 296-301.

DeFloriani, Leila, Paola Magillo, and Enrico Puppo. Building and Traversing a Surface at
Variable Resolution. Proceedings of IEEE Visualization '97. pp. 103-110.

DeRose, Tony, Michael Lounsbery, and J. Warren. Multiresolution Analysis for Surfaces of
Arbitrary Topology Type. Technical Report TR 93-10-05. Department of Computer Sci-
ence, University of Washington. 1993.

Dörrie, H. Euler's Problem of Polygon Division. 100 Great Problems of Elementary Mathe-
matics: Their History and Solutions. Dover, New York.1965. pp. 21-27.

Eck, Matthias, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery, and
Werner Stuetzle. Multiresolution Analysis of Arbitrary Meshes. Proceedings of
SIGGRAPH 95. pp. 173-182.

El-Sana, Jihad and Amitabh Varshney. Controlled Simplification of Genus for Polygonal
Models. Proceedings of IEEE Visualization'97. pp. 403-410.

Erikson, Carl. Polygonal Simplification: An Overview. Technical Report TR96-016. De-
partment of Computer Science, University of North Carolina at Chapel Hill. 1996.

Erikson, Carl and Dinesh Manocha. Simplification Culling of Static and Dynamic Scene
Graphs. Technical Report TR98-009. Department of Computer Science, University of
North Carolina at Chapel Hill. 1998.

Garland, Michael and Paul Heckbert. Simplifying Surfaces with Color and Texture using
Quadric Error Metrics. Proceedings of IEEE Visualization '98. pp. 263-269, 542.

Garland, Michael and Paul Heckbert. Surface Simplification using Quadric Error Bounds.
Proceedings of SIGGRAPH 97. pp. 209-216.

Gieng, Tran S., Bernd Hamann, Kenneth I. Joy, Gregory L. Schlussmann, and Isaac J. Trotts.
Smooth Hierarchical Surface Triangulations. Proceedings of IEEE Visualization '97. pp.
379-386.

Guéziec, André. Surface Simplification with Variable Tolerance. Proceedings of Second
Annual International Symposium on Medical Robotics and Computer Assisted Surgery
(MRCAS '95). pp. 132-139.

Hamann, Bernd. A Data Reduction Scheme for Triangulated Surfaces. Computer Aided
Geometric Design. vol. 11. 1994. pp. 197-214.

He, Taosong, Lichan Hong, Amitabh Varshney, and Sidney Wang. Controlled Topology
Simplification. IEEE Transactions on Visualization and Computer Graphics. vol. 2(2).
1996. pp. 171-814.

Heckbert, Paul and Michael Garland. Survey of Polygonal Simplification Algorithms.
SIGGRAPH 97 Course Notes.1997.

Hoppe, Hugues. Progressive Meshes. Proceedings of SIGGRAPH 96. pp. 99-108.

Hoppe, Hugues. View-Dependent Refinement of Progressive Meshes. Proceedings of
SIGGRAPH 97. pp. 189-198.

Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh
Optimization. Proceedings of SIGGRAPH 93. pp. 19-26.

Hughes, Merlin., Anselmo Lastra, and Eddie Saxe. Simplification of Global-Illumination
Meshes. Proceedings of Eurographics '96, Computer Graphics Forum. pp. 339-345.

Kalvin, Alan D. and Russell H. Taylor. Superfaces: Polygonal Mesh Simplification with
Bounded Error. IEEE Computer Graphics and Applications. vol. 16(3). 1996. pp. 64-77.

Klein, Reinhard. Multiresolution Representations for Surface Meshes Based on the Vertex
Decimation Method. Computers and Graphics. vol. 22(1). 1998. pp. 13-26.

Klein, Reinhard and J. Krämer. Multiresolution Representations for Surface Meshes. Pro-
ceedings of Spring Conference on Computer Graphics 1997. June 5-8. pp. 57-66.

Klein, Reinhard, Gunther Liebich, and Wolfgang Straßer. Mesh Reduction with Error Con-
trol. Proceedings of IEEE Visualization '96.

Krishnamurthy, Venkat and Marc Levoy. Fitting Smooth Surfaces to Dense Polygon Meshes.
Proceedings of SIGGRAPH 96. pp. 313-324.

Lindstrom, Peter and Greg Turk. Fast and Memory Efficient Polygonal Simplification.
Proceedings of IEEE Visualization '98. pp. 279-286, 544.

Luebke, David and Carl Erikson. View-Dependent Simplification of Arbitrary Polygonal
Environments. Proceedings of SIGGRAPH 97. pp. 199-208.

Mitchell, Joseph S. B. and Subhash Suri. Separation and Approximation of Polyhedral
Surfaces. Proceedings of 3rd ACM-SIAM Symposium on Discrete Algorithms. 1992. pp.
296-306.

Murali, T. M. and Thomas A. Funkhouser. Consistent Solid and Boundary Representations
from Arbitrary Polygonal Data. Proceedings of 1997 Symposium on Interactive 3D
Graphics. April 27-30. pp. 155-162, 196.

O'Rourke, Joseph. Computational Geometry in C. Cambridge University Press 1994. 357
pages.

Plouffe, Simon and Neil James Alexander Sloan. The Encyclopedia of Integer Sequences.
Academic Press 1995. pp. 587.

Rohlf, John and James Helman. IRIS Performer: A High Performance Multiprocessing
Toolkit for Real--Time 3D Graphics. Proceedings of SIGGRAPH 94. July 24-29. pp. 381-
395.

Ronfard, Remi and Jarek Rossignac. Full-range Approximation of Triangulated Polyhedra.
Computer Graphics Forum. vol. 15(3). 1996. pp. 67-76 and 462.

Rossignac, Jarek and Paul Borrel. Multi-Resolution 3D Approximations for Rendering.
Modeling in Computer Graphics. Springer-Verlag1993. pp. 455-465.

Rossignac, Jarek and Paul Borrel. Multi-Resolution 3D Approximations for Rendering
Complex Scenes. Technical Report RC 17687-77951. IBM Research Division, T. J. Wat-
son Research Center. Yorktown Heights, NY 10958. 1992.

Schikore, Daniel and Chandrajit Bajaj. Decimation of 2D Scalar Data with Error Control.
Technical Report CSD-TR-95-004. Department of Computer Science, Purdue University.
1995.

Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen. Decimation of Triangle
Meshes. Proceedings of SIGGRAPH 92. pp. 65-70.

Turk, Greg. Re-tiling Polygonal Surfaces. Proceedings of SIGGRAPH 92. pp. 55-64.

van Dam, Andries. PHIGS+ Functional Description, Revision 3.0. Computer Graphics. vol.
22(3). 1988. pp. 125-218.

Varshney, Amitabh. Hierarchical Geometric Approximations. Ph.D. Thesis. Department of
Computer Science. University of North Carolina at Chapel Hill. 1994.

Xia, Julie C., Jihad El-Sana, and Amitabh Varshney. Adaptive Real-Time Level-of-Detail-
Based Rendering for Polygonal Models. IEEE Transactions on Visualization and Com-
puter Graphics. vol. 3(2). 1997. pp. 171-183.a

$EVWUDFW
0XOWLðUHVROXWLRQý KLHUDUFKLHVý RIý SRO\JRQVý DQGý PRUHý UHFHQWO\ý RI
SRLQWVý DUHý IDPLOLDUý DQGý XVHIXOý WRROVý IRUý DFKLHYLQJý LQWHUDFWLYH
UHQGHULQJý UDWHVïý:Hý SUHVHQWý DQý DOJRULWKPý IRUý WLJKWO\ý LQWHJUDWLQJ
WKHý WZRý LQWRý Dý VLQJOHý KLHUDUFKLFDOý GDWDý VWUXFWXUHïý 7KHý WUDGHðRII
EHWZHHQý UHQGHULQJý SRUWLRQVý RIý Dý PRGHOý ZLWKý SRLQWVý RUý ZLWK
SRO\JRQVýLVýPDGHýDXWRPDWLFDOO\ï
2XUýDSSURDFKýWRýWKLVýSUREOHPýLVýWRýDSSO\ýDýERWWRPðXSýVLPSOLILð

FDWLRQý SURFHVVý LQYROYLQJý QRWý RQO\ý SRO\JRQý VLPSOLILFDWLRQý RSHUDð
WLRQVñýEXWýSRLQWýUHSODFHPHQWýDQGýSRLQWýVLPSOLILFDWLRQýRSHUDWLRQVýDV
ZHOOïý*LYHQýRQHýRUýPRUHýVXUIDFHýPHVKHVñýRXUýDOJRULWKPýSURGXFHVýD
K\EULGý KLHUDUFK\ý FRPSULVLQJý ERWKý SRO\JRQý DQGý SRLQWý SULPLWLYHVï
7KLVý KLHUDUFK\ý PD\ý EHý RSWLPL]HGý DFFRUGLQJý WRý WKHý UHODWLYH
SHUIRUPDQFHý FKDUDFWHULVWLFVý RIý WKHVHý SULPLWLYHý W\SHVý RQý WKH
LQWHQGHGýUHQGHULQJýSODWIRUPïý:HýDOVRýSURYLGHýDý UDQJHýRIýDJJUHVð
VLYHQHVVý IRUý SHUIRUPLQJý SRLQWý UHSODFHPHQWý RSHUDWLRQVïý 7KHýPRVW
FRQVHUYDWLYHý DSSURDFKý SURGXFHVý Dý KLHUDUFK\ý WKDWý LVý EHWWHUý WKDQý D
SXUHO\ýSRO\JRQDOýKLHUDUFK\ý LQýVRPHýSODFHVñýDQGýURXJKO\ýHTXDOý LQ
RWKHUVïý$ýOHVVýFRQVHUYDWLYHýDSSURDFKýFDQýWUDGHýUHGXFHGýFRPSOH[ð
LW\ýDWýWKHýIDUýYLHZLQJýUDQJHVýIRUýVRPHýLQFUHDVHGýFRPSOH[LW\ýDWýWKH
QHDUýYLHZLQJýUDQJHVï
:Hý GHPRQVWUDWHý RXUý DSSURDFKý RQý Dý QXPEHUý RIý LQSXWý PRGHOVñ

DFKLHYLQJýSULPLWLYHýFRXQWVý WKDWýDUHýìïêý WRýéïæý WLPHVý VPDOOHUý WKDQ
WKRVHýRIýWULDQJOHðRQO\ýVLPSOLILFDWLRQï
.H\ZRUGVãý UHQGHULQJñý VLPSOLILFDWLRQñý PXOWLðUHVROXWLRQñý WULð

DQJOHVñýSRLQWVñýK\EULGï

ìý ,1752'8&7,21
,QWHUDFWLYHýYLVXDOL]DWLRQVñýZKLFKýPDLQWDLQýDýVWHDG\ýIHHGEDFNýORRS
ZLWKýWKHýDSSOLFDWLRQýXVHUñýUHO\ýRQýWKHýDELOLW\ýRIýWKHýFRPSXWHUýDQGñ
LQý SDUWLFXODUñý WKHý JUDSKLFVý HQJLQHý WRý SURGXFHý LPDJHVý DWý Dý KLJK
IUDPHý UDWHïý $SSOLFDWLRQVý ZLWKý WKLVý UHTXLUHPHQWý LQFOXGHý WKH
H[SORUDWLRQýRIýGDWDý WKURXJKýVFLHQWLILFýYLVXDOL]DWLRQñýHQKDQFHPHQW
RIý PHGLFDOý SURFHGXUHVý WKURXJKý FRPSXWHUðLQWHJUDWHGý VXUJHU\ñ
WHUUDLQý YLVXDOL]DWLRQñý SURGXFWLRQý RIý PHFKDQLFDOý V\VWHPVý WKURXJK
&$'ý YLVXDOL]DWLRQý DQGý UDSLGý SURWRW\SLQJñý DQGý RIý FRXUVHý WKH
SXUVXLWýRIýHQWHUWDLQPHQWýWKURXJKýWKHýKLJKðHQGýYLGHRýJDPHVýZKLFK
KDYHýGULYHQýWKHýFRQVXPHUýJUDSKLFVýPDUNHWýLQýUHFHQWý\HDUVï
0RVWý VXFKý DSSOLFDWLRQVý WRGD\ý HPSOR\ý VRPHý IRUPý RIý PXOWLð

UHVROXWLRQýUHQGHULQJýWRýDFKLHYHýWKHýQHFHVVDU\ýEDODQFHýEHWZHHQýWKH
FRQIOLFWLQJý JRDOVý RIý VPRRWKñý LQWHUDFWLYHý SHUIRUPDQFHý DQGý XVHIXOñ
KLJKðTXDOLW\ýLPDJHU\ïý0XOWLðUHVROXWLRQýUHQGHULQJýXVHVýDýKLHUDUFK\
RIý UHQGHULQJýSULPLWLYHVñý DOORZLQJý WKHý DSSOLFDWLRQý WRýGLVWULEXWHý LWV
UHQGHULQJý EXGJHWý DFURVVý Dý FRPSOH[ý JHRPHWULFýPRGHOý WRý SURGXFH
VXFKýDQýRSWLPL]HGýUHVXOWï
7KHý UHQGHULQJý SULPLWLYHVý XVHGý JHQHUDOO\ý GHSHQGý RQý WKHý DSSOLð

FDWLRQýGRPDLQýDQGýWKHýPHWKRGýRIýPRGHOýGHVLJQýRUýDFTXLVLWLRQïý)RU
H[DPSOHñý PRGHOVý EXLOWý IURPý FRPSOH[ý SRO\JRQDOý PHVKHVý OHQG
WKHPVHOYHVý WRý WKHý FRQVWUXFWLRQý RIý SRO\JRQDOý KLHUDUFKLHVý õVRPH
IRUPVý DUHý RIWHQý UHIHUUHGý WRý DVý OHYHOVý RIý GHWDLOôñý EXLOWý WKURXJKý D
SURFHVVý RIý SRO\JRQDOý VLPSOLILFDWLRQïý 2Qý WKHý RWKHUý KDQGñý PRGHOV
DFTXLUHGýDVýDýVHWýRIýSRLQWVýLQýVRPHýIRUPñýVXFKýDVýIURPýDýFDPHUDñ

ODVHUý UDQJHðILQGHUñý RUý RWKHUý GHYLFHý IRUý VDPSOLQJý WKHý SK\VLFDO
ZRUOGñý OHQGý WKHPVHOYHVý QDWXUDOO\ý WRý WKHý FRQVWUXFWLRQý RIý Dý SRLQW
KLHUDUFK\ý WKURXJKý WKHý XVHý RIý RFWUHHðEDVHGý RUý RWKHUý SUR[LPLW\ð
EDVHGýSRLQWýPHUJLQJýVFKHPHVïý$OWKRXJKýWKHVHýSRLQWVýDUHýLQýDýSXUH
JHRPHWULFý VHQVHý LQILQLWHVLPDOñý WKH\ý DUHý XVXDOO\ý GHILQHGý ZLWKý D
UDGLXVýRIýH[WHQWïý7KXVñýWKH\ýFDQýEHýWKRXJKWýRIýDVýVSKHUHVýLQýZRUOG
VSDFHý DQGñý DVý Dý PDWWHUý RIý UHQGHULQJý HIILFLHQF\ñý DUHý W\SLFDOO\
UDVWHUL]HGýDVýFLUFOHVýRUýVTXDUHVýLQýVFUHHQýVSDFHï
,QýVRPHýVHQVHñý WKHVHý UHSUHVHQWDWLRQVýDUHý LQWHUFKDQJHDEOHâýERWK

DUHý FDSDEOHýRIý UHSUHVHQWLQJýDQGý UHQGHULQJý WKHý VDPHýGDWDýJLYHQý D
VXIILFLHQWO\ý KLJKý UHSUHVHQWDWLRQDOý UHVROXWLRQïý 6RPHý DSSOLFDWLRQV
GRñý LQý IDFWñý FKRRVHý WRý VZLWFKý IURPýRQHý GRPDLQý WRý DQRWKHUïý 3RLQW
VDPSOHVý PD\ý EHý PHVKHGý WRý SURGXFHý SRO\JRQDOý PRGHOVñý DQG
SRO\JRQDOýPRGHOVýPD\ýEHýSRLQWðVDPSOHGýDQGýWKHVHýVDPSOHVýVWRUHG
WRýIDFLOLWDWHýIXWXUHýUHQGHULQJïý7KHýSURFHVVýRIýUDVWHUL]DWLRQýLVýLWVHOI
DýFRQYHUVLRQýIURPýSRO\JRQVýWRýDýVHWýRIýSRLQWýVDPSOHVñýVRýZHýFDQ
FOHDUO\ý HVWDEOLVKý XVHIXOý FRUUHVSRQGHQFHVý EHWZHHQý WULDQJOHVý DQG
WKHLUýDVVRFLDWHGýVDPSOHVñýVRPHWLPHVýXVLQJýWKHPýLQWHUFKDQJHDEO\ï
%RWKýRIýWKHVHýUHSUHVHQWDWLRQVýKDYHýPHULWñýEXWýQHLWKHUýLVýVXSHULRU

IRUýDOOýJHRPHWULFýPRGHOVýXQGHUýDOOýYLHZLQJýFRQGLWLRQVïý$GDSWLYHñ
YLHZðGHSHQGHQWýUHILQHPHQWýVFKHPHVýDOUHDG\ýHPSOR\ý WKHVHýPXOWLð
UHVROXWLRQýUHSUHVHQWDWLRQVýWRýDGMXVWýWKHýQXPEHUýRIýSULPLWLYHVýXVHG
DFURVVý WKHý PRGHOý HQYLURQPHQWý WRý VXLWý WKHý QHHGVý RIý WKHý DSSOLFDð
WLRQ©Vý FXUUHQWý YLHZLQJý SDUDPHWHUVïý 6Rý LWý LVý QDWXUDOý WRý FRQVLGHU
DGDSWLQJý QRWý RQO\ý WKHýQXPEHUý RIý SULPLWLYHVý EXWý DOVRý WKHý W\SHý RI
SULPLWLYHVý UHQGHUHGý IRUý DýSDUWLFXODUý VHWýRIýYLHZLQJýSDUDPHWHUVý WR
SURGXFHý Dý ZHOOðRSWLPL]HGý EDODQFHý RIý SHUIRUPDQFHý DQGý TXDOLW\ï
6XFKýDýK\EULGýDSSURDFKýWRýUHQGHULQJýPD\ýSURGXFHýDýV\VWHPýZLWK
LPSURYHGýVFDODELOLW\ýDQGýDýZLGHUýUDQJHýRIýDSSOLFDELOLW\ï

ìïìý 0DLQý&RQWULEXWLRQ
,Qý WKLVý SDSHUñý ZHý SUHVHQWý Dý VLPSOLILFDWLRQý SDUDGLJPý WRý WLJKWO\
LQWHJUDWHýSRO\JRQðEDVHGýDQGýSRLQWðEDVHGýUHQGHULQJïý2XUýDSSURDFK
EHJLQVý ZLWKý Dý SRO\JRQDOý PRGHOý DVý LQSXWñý ZKLFKý ZHý SURFHHGý WR
VLPSOLI\ý XVLQJý Dý VWDQGDUGñý JUHHG\ý VLPSOLILFDWLRQý SURFHGXUHý õRXU
V\VWHPýHPSOR\VýHGJHýFROODSVHýRSHUDWLRQVôïý7KHýVDPHýRSWLPL]DWLRQ
FULWHULDý WKDWýJXLGHýWKHýSRO\JRQýVLPSOLILFDWLRQýSURFHVVýDOVRý WULJJHU
WKHý VXEVWLWXWLRQýRIýRQHýRUýPRUHýSRLQWVý IRUý LQGLYLGXDOý WULDQJOHVý DV
WKHýVLWXDWLRQýZDUUDQWVïý7KHVHýSRLQWVýDUHýDOVRýPHUJHGýWRýSURGXFHýD
FRPSOHWHñý K\EULGý KLHUDUFK\ïý 7KLVý KLHUDUFK\ñý EXLOWý HQWLUHO\ý DVý D
SUHSURFHVVñý PD\ý WKHQý EHý XVHGý WRý SHUIRUPý LQWHUDFWLYHý UHQGHULQJ
XVLQJýDGDSWLYHñýYLHZðGHSHQGHQWýUHILQHPHQWï
2XUýDOJRULWKPýSURYLGHVýWKHýIROORZLQJýFDSDELOLWLHVã

xý$XWRPDWLFý VHOHFWLRQãý 7KHý DOJRULWKPý DXWRPDWLFDOO\ý GHWHUPLQHV
ZKHUHýDQGýZKHQýDýVXEVHWýRIýDýPRGHOýLVýEHWWHUýUHQGHUHGýDVýWULDQð
JOHVýRUýDVýSRLQWVï

xý6HDPOHVVý WUDQVLWLRQãý 7KHý DGDSWLYHý UHILQHPHQWý SURFHGXUH
WUDQVLWLRQVýEHWZHHQýWULDQJOHVýDQGýSRLQWVýDWýDýILQHýJUDQXODULW\ï

xý7RSRORJ\ý PRGLILFDWLRQãý 0XOWLSOHý PDQLIROGý VXUIDFHVý PD\ý EH
PHUJHGý õDQGý WKXVý PRUHý GUDVWLFDOO\ý UHGXFHGôý GXULQJý WKHý SRLQW
VLPSOLILFDWLRQýSKDVHï

xý(UURUýPDQDJHPHQWãý3RO\JRQýVLPSOLILFDWLRQýDQGýSRLQWýPHUJLQJ
DUHý VHOHFWHGý DVý DSSURSULDWHý WRý UHGXFHý JHRPHWULFý HUURUý JURZWK
ZLWKLQý WKHý KLHUDUFK\ñý DQGý JXDUDQWHHGý JHRPHWULFý HUURUý ERXQGV
IURPýWKHýRULJLQDOýVXUIDFHýDUHýSURYLGHGýWKURXJKRXWï

+\EULGý6LPSOLILFDWLRQã
&RPELQLQJý0XOWLðUHVROXWLRQý3RO\JRQýDQGý3RLQWý5HQGHULQJ

-RQDWKDQý'ïý&RKHQ 'DQLHOý*ïý$OLDJD :HLTLDQJý=KDQJ
FRKHQ#FVïMKXïHGX DOLDJD#EHOOðODEVïFRP]KDQJZT#FVïMKXïHGX

-RKQVý+RSNLQVý8QLYHUVLW\ /XFHQWý7HFKQRORJLHVý%HOOý/DEV -RKQVý+RSNLQVý8QLYHUVLW\

Bibliographic Information
Cohen, Jonathan D., Daniel G. Aliaga, and Weiqiang Zhang. "Hybrid Simplification: Combining Multi-resolution Polygon and Point Rendering." Proceedings of IEEE Visualization 2001. pp. 37-44 and 539.

7KHý EURDGHUý JRDOý RIý WKLVý UHVHDUFKý LVý WRý H[SORUHý WKHý UHODWLYH
VWUHQJWKVýDQGýZHDNQHVVHVýRIýSRO\JRQýDQGýSRLQWýUHSUHVHQWDWLRQVñýDV
ZHOOýDVýWKHýVLWXDWLRQVýZKHUHýHDFKýLVýPRVWýXVHIXOïý:HýDOVRýFRQVLGHU
KRZý WKHý UHODWLYHý FDSDELOLW\ý RIý JUDSKLFVý KDUGZDUHý LQý UHQGHULQJ
SRLQWVý YHUVXVý SRO\JRQVý DIIHFWVý WKHý KLHUDUFKLHVý ZHý EXLOGïý ,Qý WKH
ORQJýWHUPñýZHýDLPýWRýEULGJHý WKHýJDSýEHWZHHQýSRO\JRQðEDVHGýDQG
LPDJHðEDVHGýUHQGHULQJïý,PDJHVýDUHýHVVHQWLDOO\ýVSHFLDOO\ýRUJDQL]HG
FROOHFWLRQVýRIýSRLQWVñýDQGýVRýWKLVýUHVHDUFKýLVýDýVWHSSLQJýVWRQHýDORQJ
WKHýZD\ñýSURYLGLQJýVRPHýXVHIXOýWRROVýDQGýLQVLJKWVï

ìïëý 3DSHUý2UJDQL]DWLRQ
:HýSURFHHGýE\ýGHVFULELQJýLQý6HFWLRQýëýVRPHýUHODWHGýZRUNýLQý WKH
DUHDVý RIý SRO\JRQDOý VLPSOLILFDWLRQý DQGý SRLQWðEDVHGý UHQGHULQJñ
IROORZHGýE\ýDQýRYHUYLHZýRIýRXUýLQWHJUDWHGýDSSURDFKýLQý6HFWLRQýêï
$IWHUý WKDWý ZHý UHYLHZý RXUý FHQWUDOý GDWDý VWUXFWXUHñý WKHý PXOWLð
UHVROXWLRQý JUDSKñý DQGý WKHý RIIðOLQHý DQGý RQðOLQHý SRUWLRQVý RIý RXU
DOJRULWKPýLQý6HFWLRQVýéñýèñýDQGýçïý:HýFRQFOXGHýZLWKýDýORRNýDWýRXU
UHVXOWVñýDQGýDýGLVFXVVLRQýRIýWKHýLVVXHVýWKH\ýUDLVHï

ëý 5(/$7('ý:25.
7KLVý UHVHDUFKýGUDZVýRQýSUHYLRXVýZRUNý LQý WKHý DUHDVý RIý SRO\JRQDO
VLPSOLILFDWLRQý DQGý SRLQWðEDVHGý UHQGHULQJïý :Hý QRZý UHYLHZý WKH
PRVWýUHOHYDQWýWRSLFVýLQýHDFKýRIýWKHVHýILHOGVï

ëïìý 3RO\JRQDOý6LPSOLILFDWLRQ
$ý QXPEHUý RIý H[LVWLQJý SRO\JRQDOý VLPSOLILFDWLRQý DOJRULWKPVý XVH
SULRULW\ý TXHXHý GULYHQñý ERWWRPðXSý GHFLPDWLRQý VWUDWHJLHVý >*Xp]LHF
ìääèñý +RSSHý ìääçñý &RKHQý HWý DOïý ìääæñý *DUODQGý DQGý +HFNEHUW
ìääæ@ïý2IýWKHVHýDOJRULWKPVñýVHYHUDOýSURYLGHýJXDUDQWHHGýERXQGVýRQ
WKHýUHVXOWLQJýHUURUýEHWZHHQýDOOýSRLQWVýRQý WKHýRULJLQDOýVXUIDFHýDQG
DOOýSRLQWVýRQýWKHýVLPSOLILHGýVXUIDFHýõWKHýWLJKWHVWýSRVVLEOHýPHDVXUH
EHLQJý WKHý+DXVGRUIIý GLVWDQFHôý >*Xp]LHFý ìääèñý.OHLQý HWý DOïý ìääçñ
&RKHQýHWýDOïýìääæñý/HHýHWýDOïýìääå@ïý2XUýHUURUýPHDVXUHýKDSSHQVýWR
EHýEDVHGýRQý WKHýSURMHFWLRQýDOJRULWKPýRIý >&RKHQýHWýDOïýìääæ@ñýEXW
DQ\ýRIý WKLVýFODVVýRIýJXDUDQWHHGýHUURUýPHDVXUHVýZRXOGýGRýHTXDOO\
ZHOOýIRUýWKHýSXUSRVHýRIýWKLVýUHVHDUFKï
6HYHUDOý DOJRULWKPVý DQGý KLHUDUFKLFDOý GDWDý VWUXFWXUHVý DOORZý IRU

ILQHðJUDLQHGñý YLHZðGHSHQGHQWý UHILQHPHQWý RIý SRO\JRQDOýPRGHOVý LQ
DQý LQWHUDFWLYHý VHWWLQJý >5RVVLJQDFý DQGý%RUUHOý ìääêñý'H)ORULDQLý HW
DOïýìääæñý+RSSHýìääæñý/XHENHýDQGý(ULNVRQýìääæñý;LDýHWýDOïýìääæ@ï
2IýWKHVHñýZHýKDYHýIRXQGýWKHýPXOWLðWULDQJXODWLRQýGDWDýVWUXFWXUHýRI
>'H)ORULDQLý HWý DOïý ìääæ@ý WRý EHý WKHý PRVWý FRPSDWLEOHý ZLWKý RXU
FXUUHQWýUHVHDUFKýJRDOVï
7KHýEHQHILWVý RIý WKLVý UHVHDUFKý DQGý WKHý SURSHUWLHVý RIý RXUý KLHUDUð

FKLFDOýPRGHOVý EHDUý VRPHý UHVHPEODQFHý WRý WKRVHý RIý VLPSOLILFDWLRQ
DOJRULWKPVý WKDWý SURYLGHý IRUý WRSRORJLFDOý PRGLILFDWLRQý >5RVVLJQDF
DQGý %RUUHOý ìääêñý (Oð6DQDý DQGý 9DUVKQH\ý ìääæñý 6FKURHGHUý ìääæñ
*DUODQGý DQGý +HFNEHUWý ìääå@ý DQGý PHUJLQJý RIý ORZðUHVROXWLRQ
REMHFWVý >(ULNVRQý DQGý 0DQRFKDý ìäää@ïý +RZHYHUñý QRQHý RIý WKH
H[LVWLQJýDOJRULWKPVýSURYLGHVýERWKýILQHðJUDLQHGýSURJUHVVLYHýFRQWURO
DQGý JXDUDQWHHGý VXUIDFHðWRðVXUIDFHý HUURUý ERXQGVý õRWKHUý WKDQý WKH
PRVWýFRQVHUYDWLYHýDSSURDFKýRIý WUDFNLQJý WKHýPD[LPXPýVHSDUDWLRQ
EHWZHHQýFROODSVHGýYHUWLFHVôï
$QýLQWHUHVWLQJýSLHFHýRIýUHVHDUFKýWKDWýVHHPVýTXLWHýVLPLODUýWRýRXUV

LVýWKHýSURJUHVVLYHýVLPSOLFLDOýFRPSOH[ý>3RSRYLFýDQGý+RSSHýìääæ@ï
7KLVý GDWDý VWUXFWXUHñý OLNHý RXUý PXOWLðUHVROXWLRQý JUDSKñý DOVRý DOORZV
IRUý SULPLWLYHVý RIý GLIIHUHQWý W\SHVñý QDPHO\ý VLPSOLFHVý RIý DUELWUDU\
GLPHQVLRQïý7KLVýJHQHUDOýDSSURDFKýDOORZVýWKHýVLPSOLFHVýWRýFROODSVH
WRýSURJUHVVLYHO\ýORZHUýGLPHQVLRQïý2XUýZRUNñýLQýFRQWUDVWñýGRHVýQRW
UHTXLUHý WKDWý WULDQJOHý YHUWLFHVý EHý PHUJHGý WRý EHFRPHý SRLQWVñý EXW
UDWKHUý DOORZVý WKLVý FRQYHUVLRQý WRý WDNHý SODFHý DWý DQý DUELWUDU\ý VDPð
SOLQJý UDWHïý 7KLVý DOORZVý WKHý KLHUDUFK\ý WRý EHý WXQHGý DFFRUGLQJý WRý D
V\VWHP©Vý UHODWLYHý SRO\JRQý DQGý SRLQWý UHQGHULQJý SHUIRUPDQFH
FKDUDFWHULVWLFVï

ëïëý 3RLQWðEDVHGý5HQGHULQJ
8VLQJý SRLQWVý DVý UHQGHULQJý SULPLWLYHVý KDVý Dý ORQJý KLVWRU\ý LQý FRPð
SXWHUý JUDSKLFVý >/HYR\ý DQGý :KLWWHGý ìäåè@ïý (DUO\ý FRPSXWHU
JUDSKLFVý V\VWHPVý XVHGý SRLQWVý WRý UHQGHUý FORXGVñý H[SORVLRQVñý DQG
RWKHUý IX]]\ýREMHFWVý >5HHYHVýìäåê@ïý0RUHý UHFHQWO\ñý WRJHWKHUýZLWK
WKHý DGYHQWý RIý IDVWHUý JHQHUDOðSXUSRVHý &38Vñý SRLQWý UHQGHULQJý KDV
EHHQý XVHGý WRý PRGHOý DQGý UHQGHUý WUHHVñý SRO\JRQDOý PHVKHVñý DQG
YROXPHWULFýPRGHOVý>+RSSHýHWýDOïýìääëñý0D[ýDQGý2KVDNLýìääè@ï
7KHý IXQGDPHQWDOý GLIILFXOW\ý RIý XVLQJý SRLQWVý LVý WRý FUHDWHý Dý FRQð

WLQXRXVý õRQðVFUHHQôý UHFRQVWUXFWLRQý RIý WKHý XQGHUO\LQJý PRGHOï
$OJRULWKPVý OHYHUDJHý WKHý VLPSOHý UHQGHULQJý FDOFXODWLRQVý RIý SRLQWV
>*URVVPDQý DQGý 'DOO\ý ìääå@ý WRý FRYHUý VXUIDFHVý ZLWKý Dý VXIILFLHQW
QXPEHUý WRý VDPSOHVïý ,PDJHð%DVHGý 5HQGHULQJý õ,%5ôý H[SORLWVý WKH
VFUHHQðFRKHUHQFHý RIý SURMHFWHGý SRLQWVý WRý IXUWKHUý DFFHOHUDWHý SRLQW
UHQGHULQJïý %\ý RUGHULQJý SRLQWVý RQý Dý JULGý DQGý SHUIRUPLQJý LQFUHð
PHQWDOýFRPSXWDWLRQVý>0F0LOODQýDQGý%LVKRSýìääè@ñý,%5ýPHWKRGV
FDQýUHðSURMHFWýDýODUJHýQXPEHUýRIýSRLQWVýõRUýSL[HOVôýHDFKýIUDPHï
,QýRXUý FDVHñýZHýKDYHý IXOOý NQRZOHGJHýRIý WKHýXQGHUO\LQJýPRGHO

DQGýFDQýFKRRVHñýDýSULRULñýWKHýSRLQWVýWRýUHQGHUýDýPRGHOýDWýDýGHVLUHG
HUURUý WROHUDQFHïý 7KXVñýZHý GRý QRWý QHHGý WRý UHFRQVWUXFWý WKHýPRGHOï
)XUWKHUPRUHñý E\ý HVWDEOLVKLQJý DQý HUURUýPHWULFý RYHUý WKHý VXUIDFHý RI
WKHýPRGHOñýZHýKDYHýDýFULWHULRQýWRýVDPSOHýWKHýPRGHOýDQGýJHQHUDWH
SRLQWVý IRUý DQý LQWHUDFWLYHý SRLQWý UHQGHULQJý V\VWHPý >3ILVWHUý HWý DOï
ëíííñý5XVLQNLHZLF]ýDQGý/HYR\ýëííí@ïý7KHýFKDOOHQJHýIRUýRXUýZRUN
LVý WRý FRPSXWHñý IRUý HYHU\ý QHLJKERUKRRGý RIý Dý PRGHOñý ZKHQý ZH
DFKLHYHýDýZLQýZLWKýSRO\JRQDOýUHQGHULQJýDQGýZKHQýSRLQWýUHQGHULQJ
LVýPRUHýDGYDQWDJHRXVï

+\EULG ý6 LPSOLILFDWLRQ
õSUHFRPSXWDWLRQô

3RO\JRQ
6 LP SOLILFDWLRQ

3R LQ W
5 HSODFHP HQW

3R LQ W
6 LP SOLILFDWLRQ

3R O\JRQDO
6XUIDFHV

,QWHUDFWLYHý' LVS OD\
õUXQ ýWLP Hô

0XOWLð
UHVROXWLRQ
* UDSK $GDSW

&XW

5 HQGHU
3ULP LWLYHV

9 LHZ LQJ
3DUDP HWHUV

,P DJH

)LJXUHý ìãý &RPSRQHQWVý RIý Dý K\EULGýPXOWLðUHVROXWLRQ
UHQGHULQJýV\VWHPï

êý 29(59,(:
7KHUHý DUHý PDQ\ý DSSURDFKHVý RQHý FRXOGý WDNHý WRý SURGXFHý Dý WLJKW
LQWHJUDWLRQý RIý SRO\JRQVý DQGý SRLQWVý LQý Dý PXOWLðUHVROXWLRQý IUDPHð
ZRUNïý)RUýH[DPSOHñýRQHýFRXOGýFRQVWUXFWýWZRýFRPSOHWHýKLHUDUFKLHVñ
RQHý IRUý SRO\JRQVý DQGý RQHý IRUý SRLQWVñý ZLWKý VRPHý W\SHý RIý OLQNV
GHVFULELQJýWKHýPDSSLQJVýEHWZHHQýWKHýWZRïý7KHQýDOOý WKLVý LQIRUPDð
WLRQý ZRXOGý EHý DYDLODEOHý DWý WKHý WLPHý RIý UHQGHULQJý IRUý WKHý EHVW
FRPELQDWLRQý RIý SRO\JRQVý DQGý SRLQWVý WRý EHý VHOHFWHGý LQý Dý YLHZð
GHSHQGHQWýIDVKLRQï
:HýKDYHýRSWHGñýDWýWKHýH[SHQVHýRIýVRPHýIOH[LELOLW\ñýWRýSXUVXHýD

PRUHýSUDFWLFDOýDSSURDFKýRIýXVLQJýYLHZðLQGHSHQGHQWýLQIRUPDWLRQýWR
FRQVWUXFWýDýVLQJOHýKLHUDUFK\ýFRPSULVLQJýERWKýSRO\JRQVýDQGýSRLQWVï
7KXVý DOOý RIý WKHý LPSRUWDQWý GHFLVLRQVý UHJDUGLQJý WKHý WUDGHRIIV
EHWZHHQý WKHý WZRý SULPLWLYHý W\SHVý KDYHý EHHQý PDGHý EHIRUHý WKH
UHQGHULQJý HYHQý EHJLQVïý 7KLVý SUHGHWHUPLQDWLRQý RIý WKHý WUDGHRIIV
FRXOGýKDYHýQHJDWLYHýFRQVHTXHQFHVýRQýKRZýZHOOý WKHýGHFLVLRQVýDUH
PDGHýIRUýDQ\ýJLYHQýYLHZLQJýSDUDPHWHUVñýEXWýLWýDOORZVýXVýWRýEXLOGýD

VLPSOHý UXQðWLPHý V\VWHPý EDVHGý RQý Dý IRXQGDWLRQý RIý ZHOOðNQRZQ
DOJRULWKPVýDQGýGDWDýVWUXFWXUHVï
)LJXUHý ìý GHSLFWVý WKHý FRPSRQHQWVý RIý RXUý V\VWHPïý 2XUý K\EULG

VLPSOLILFDWLRQýSURFHVVýPD\ýEHýVHHQýDWýDýKLJKýOHYHOýDVýDýVLPSOLILFDð
WLRQý DOJRULWKPý VXSSRUWLQJý WKUHHý GLIIHUHQWý VLPSOLILFDWLRQý RSHUDð
WLRQVãý SRO\JRQý VLPSOLILFDWLRQý õHïJïý HGJHý FROODSVHôñý SRLQWý UHSODFHð
PHQWñý DQGý SRLQWý VLPSOLILFDWLRQïý 7KHVHý RSHUDWLRQVý DUHý SHUIRUPHG
UHSHDWHGO\ýLQýDQýDSSURSULDWHýRUGHUýWRýXOWLPDWHO\ýSURGXFHýDýKLHUDUð
FK\ïý(DFKýRSHUDWLRQýUHSODFHVýVRPHýVXEVHWýRIýWKHýPRGHOýSULPLWLYHV
ZLWKý Dý QHZý VHWý RIý SULPLWLYHVñý UHGXFLQJý WKHLUý FRPSOH[LW\ý DQG
SHUKDSVýFKDQJLQJý WKHLUý W\SHïý ,QýSDUWLFXODUñý WKHýSRLQWý UHSODFHPHQW
RSHUDWLRQýFRQYHUWVýDýWULDQJOHýLQWRýRQHýRUýPRUHýSRLQWVñýZKLFKýPD\
WKHQýEHýIXUWKHUýUHGXFHGýWKURXJKýSRLQWýPHUJLQJýRSHUDWLRQVïý7KHýVHW
RIý RSHUDWLRQVý SHUIRUPHGñý DORQJýZLWKý WKHý DIIHFWHGý SULPLWLYHVý DQG
DVVRFLDWHGýHUURUýERXQGVýDUHýDOOýVWRUHGý LQýDýPXOWLðUHVROXWLRQýJUDSK
GDWDýVWUXFWXUHï
7KHý LQWHUDFWLYHý UHQGHULQJý V\VWHPýXVHVý WKHý YLHZLQJý SDUDPHWHUV

IRUýDýJLYHQýUHQGHULQJýIUDPHýWRýVHOHFWýDQýDSSURSULDWHýVHWýRIýSULPLð
WLYHVý IURPý WKHý PXOWLðUHVROXWLRQý JUDSKïý 7KLVý VHWý RIý SULPLWLYHV
FRPSOHWHO\ý FRYHUVý WKHý RULJLQDOý PRGHOý õLïHïý WKHý HQWLUHý PRGHOý LV
UHSUHVHQWHGý E\ý WKLVý VHWôý DQGý SURYLGHVý DQý DSSURSULDWHý UHVROXWLRQï
2XUýFXUUHQWýV\VWHPýDOORZVýWKHýXVHUýWRýFKRRVHýDýVFUHHQðVSDFHýHUURU
WROHUDQFHñý DQGý WKHý SULPLWLYHVý DUHý FKRVHQý WRý EHý MXVWý FRPSOH[
HQRXJKý WRý DYRLGý H[FHHGLQJý WKLVý WROHUDQFHïý %HFDXVHý WKHý VHWý RI
SULPLWLYHVý VHOHFWHGý LVý WKDWý ZKLFKý OLHVý DORQJý Dý SDUWLFXODUý FXW
WKURXJKý WKHý JUDSKñý DQGý WKLVý FXWý PD\ý EHý PRGLILHGý LQFUHPHQWDOO\
IURPý IUDPHý WRý IUDPHñý WKLVý VHOHFWLRQý SURFHVVý LVý UHIHUUHGý WRý DV
¦DGDSWLQJý WKHý FXW§ïý 2QFHý WKHý SULPLWLYHVý DUHý VHOHFWHGñý WKH\ý DUH
UHQGHUHGýWRýSURGXFHýWKHýILQDOýLPDJHïý:HýQH[WýSUHVHQWýWKHýHVVHQWLDO
GHWDLOVý RIý WKLVý PXOWLðUHVROXWLRQý JUDSKý EHIRUHý SURFHHGLQJý WRý WKH
GHVFULSWLRQýRIýWKHýVLPSOLILFDWLRQýDOJRULWKPï

éý 08/7,ð5(62/87,21ý*5$3+
2XUýPXOWLðUHVROXWLRQýJUDSKý õ05*ôýGDWDýVWUXFWXUHýLVýDQýH[WHQVLRQ
WRýWKHýHOHJDQWýPXOWLðWULDQJXODWLRQýõ07ôýGDWDýVWUXFWXUHýGHVFULEHGýLQ
GHWDLOýLQý>'H)ORULDQLýHWýDOïýìääæñý'H)ORULDQLýHWýDOïýìääå@ýõ%HFDXVH
WKHýH[WHQVLRQýLVýWRýSHUPLWýWKHýLQFOXVLRQýRIýQHZýSULPLWLYHýW\SHVñýWKH
RULJLQDOýQDPHý LVýQRý ORQJHUýDSSURSULDWHôïý7KHý05*ý LVý Dý VLPSOLILð
FDWLRQý KLHUDUFK\ý LQý WKHý IRUPý RIý Dý GLUHFWHGý DF\FOLFý JUDSKïý 7KH
JUDSKý LVý UHSUHVHQWHGýE\ýDý VHWýRIýQRGHVñý1ñý FRQQHFWHGýE\ýDý VHWýRI
DUFVñý$ïý7KHUHýLVýDýXQLTXHýVRXUFHýQRGHýDWýWKHýURRWýRIýWKHýJUDSKñýDQG
DýXQLTXHýGUDLQýQRGHýDWýWKHýERWWRPïý$ýVPDOOýH[DPSOHýLVýVKRZQýLQ
)LJXUHýëï
(DFKý QRGHý RIý WKHý05*ý UHSUHVHQWVý Dý FKDQJHý WRý DQý XQGHUO\LQJ

JHRPHWULFýPRGHOý¤ýDýUHILQHPHQWýLIýZHýDUHýWUDYHUVLQJýGRZQZDUGñýRU
Dý VLPSOLILFDWLRQý LIý ZHý DUHý WUDYHUVLQJý XSZDUGïý 7KXVñý DVý ZHý EXLOG
WKLVý JUDSKý õIURPý GUDLQý WRý VRXUFHñý LQý ERWWRPðXSý VLPSOLILFDWLRQôñ
HDFKý RIý RXUý VLPSOLILFDWLRQý RSHUDWLRQVý LVý VWRUHGý DORQJý ZLWKý LWV
DVVRFLDWHGýHUURUýERXQGýDVýDýQRGHï
7KHý SULPLWLYHVý RIý WKHý PRGHOý DUHý VWRUHGý ZLWKý WKHý DUFVïý 7KH

SULPLWLYHVýUHPRYHGýIURPýWKHýPRGHOýE\ýDQýRSHUDWLRQýDUHýDVVRFLDWHG
ZLWKýWKHýFKLOGýDUFVýRIýWKHýRSHUDWLRQ©VýQRGHñýDQGýWKRVHýLQVHUWHGýE\
WKHý RSHUDWLRQý DUHý DVVRFLDWHGý ZLWKý LWVý SDUHQWý DUFVý õRQHý RUý PRUH
SULPLWLYHVýPD\ýEHýVWRUHGýZLWKýDQýDUFôïý)URPýWKHýDUF©VýSHUVSHFWLYHñ
WKHýQRGHýEHQHDWKýLWýõLWVýHQGýQRGHôýSURGXFHVýLWVýSULPLWLYHVñýDQGýWKH
QRGHý DERYHý LWý õLWVý VWDUWý QRGHôý FRQVXPHVý WKHPý õDVVXPLQJýZHý DUH
WUDYHUVLQJýXSZDUGôï
7KHýDUFVýUHSUHVHQWýWKHýGHSHQGHQFLHVýRIýRQHýPHVKýRSHUDWLRQýRQ

DQRWKHUïý 6Rñý IRUý H[DPSOHñý LIý ZHýZLVKý WRý SHUIRUPý WKHý UHILQHPHQW
LQGLFDWHGý E\ý Dý QRGHñýZHýPXVWý ILUVWý SHUIRUPý WKHý UHILQHPHQWý LQGLð
FDWHGýE\ýDOOýRIý WKHýQRGH©VýSDUHQWVïý3HUIRUPLQJý WKHýQRGH©VýRSHUDð
WLRQý DPRXQWVý WRý UHSODFLQJý WKHý SULPLWLYHVý RIý Dý QRGH©Vý SDUHQWý DUFV
ZLWKýWKRVHýRIýLWVýFKLOGýDUFVñýRUýYLFHýYHUVDïý7KHýPRGHOýFRYHUDJHýRI
WKHVHýWZRýVHWVýRIýSULPLWLYHVýDUHýJHQHUDOO\ýWKHýVDPHýWRýDYRLGýORFDO
FUDFNVýõLïHïýPLVVLQJýVXUIDFHýFRYHUDJHôýRUýPXOWLSOHýFRYHUDJHýõZKLFK

PD\ý EHý LQHIILFLHQWñý EXWý QRWý QHFHVVDULO\ý LQFRUUHFWôý DFURVVý WKH
PRGHOï
7RýH[WUDFWýDýFRQQHFWHGñýFRQVLVWHQWýUHSUHVHQWDWLRQýRIýWKHýVXUIDFHñ

ZHýJHQHUDWHýDýFXWýRIýWKHýJUDSKïý$ýFXWýLVýDýVHWýRIýDUFVýWKDWýSDUWLWLRQV
WKHýQRGHVýRIýWKHý05*ñýOHDYLQJýWKHýVRXUFHýQRGHýDERYHýWKHýFXWñýDQG
WKHýGUDLQýQRGHýEHORZýLWïý,QýDGGLWLRQñýLIýWKHýFXWýFRQWDLQVýDUFýDñýWKHQ
LWýPXVWýQRWýFRQWDLQýDQ\ýDQFHVWRUýRUýGHVFHQGHQWýRIýDïý7KHýWULDQJOHV
RIý VXFKý Dý FXWý UHSUHVHQWý RXUý LQSXWý VXUIDFHý DWý VRPHý UHVROXWLRQïý ,Q
JHQHUDOñý ZHý ILQGý VXFKý Dý FXWý E\ý SHUIRUPLQJý Dý JUDSKý WUDYHUVDO
VWDUWLQJý IURPý WKHý VRXUFHñý WHVWLQJý WKHý HUURUý RIý HDFKý YLVLWHGý QRGH
DJDLQVWýDýSDUWLFXODUýHUURUýWKUHVKROGýWRýGHFLGHýZKHWKHUýWRýFRQWLQXHï
:Hý FDQý DOVRý EHJLQý WKHý WUDYHUVDOý ZLWKý DQý H[LVWLQJý FXWý DQGýPRYH
SRUWLRQVý RIý WKHý QRGHVý XSZDUGý RUý GRZQZDUGý DFURVVý WKHý FXWý WR
PRGLI\ýWKHýORFDOýUHVROXWLRQýRIýWKHýVXUIDFHï
:HýFKRRVHýWRýXVHýWKLVý05*ýDVýRXUýVLPSOLILFDWLRQýJUDSKýUHSUHð

VHQWDWLRQýEHFDXVHýLWýKDVýDýFRXSOHýRIýGHVLUDEOHýSURSHUWLHVýZKLFKý LW
LQKHULWVýGLUHFWO\ýIURPýWKHý07ï
)LUVWñýWKHýJUDSKýIXOO\ýVSHFLILHVýDOOýWKHýSULPLWLYHVýWRýEHýXVHGýIRU

DOOý VXUIDFHý UHVROXWLRQVý DVý ZHOOý DVý WKHý GHSHQGHQFLHVý EHWZHHQý DOO
FKDQJHVýLQýUHVROXWLRQïý%HFDXVHýDOOýWKHýSULPLWLYHVýWKDWýPD\ýEHýXVHG
DVý SDUWý RIý WKHý UHQGHUHGý PRGHOý DUHý NQRZQý LQý DGYDQFHñý ZHý FDQ
SURYLGHý ULJRURXVý ERXQGVý RQý WKHLUý TXDOLW\ïý 1RWý DOOý VLPSOLILFDWLRQ
KLHUDUFKLHVý KDYHý WKLVý SURSHUW\ïý)RUý H[DPSOHñý WKHý ZHOOðNQRZQ
VLPSOLILFDWLRQý KLHUDUFKLHVý RIý >+RSSHý ìääæ@ý DQGý >/XHENHý DQG
(ULNVRQýìääæ@ýGRýQRWýKDYHýWKHVHýSURSHUWLHVïý/RRVHUýGHSHQGHQFLHV
PD\ýJLYHý WKHVHýKLHUDUFKLHVýJUHDWHUý IOH[LELOLW\ñýEHFDXVHý WKHýRUGHUð
LQJý RIý YHUWH[ý PHUJHVý LVý QRWý TXLWHý VRý IL[HGïý %XWý WKHý SDUWLFXODU
WULDQJOHVý WKDWý FDQý EHý H[WUDFWHGý IURPý WKHVHý KLHUDUFKLHVý DUHý QRW
NQRZQý LQý DGYDQFHñý DQGý YDU\ý GHSHQGLQJý RQý WKHý RUGHUý RIý YHUWH[
PHUJHVï
6HFRQGñý WKHý 05*ý DOORZVý IRUý H[SOLFLWý UHSUHVHQWDWLRQý RIý LWV

SULPLWLYHVý DQGý Dý VLQJOHñý JHQHUDOý UHSODFHPHQWý RSHUDWRUïý 7KLVý LV
LQFUHGLEO\ý FRQYHQLHQWý IRUý UHVHDUFKý SXUSRVHVýZKHQý WKHý JRDOý LVý WR
H[SORUHý GLIIHUHQWý SULPLWLYHý W\SHVïý 7KLVý YHU\ý JHQHUDOý RSHUDWLRQ
VSHFLILHVý WRýUHSODFHý WKHýSULPLWLYHVý LQýVHWý$ýZLWKý WKHýSULPLWLYHVý LQ
VHWý %ñý ZLWKRXWý DQ\ý VSHFLILFý NQRZOHGJHý RIý WKHý SULPLWLYHý W\SHV
LQYROYHGïý2SHUDWRUVý WKDWý DOORZý DýPRUHý LPSOLFLWý UHSUHVHQWDWLRQý RI

'''ý
''ý

'''ý
'''

''ý'ý ''ý '''ý

���ý
'ý 'ý 'ý 'ý

�ý

�ý

��ý
'ý ��ý

�ý

�ý

��ý
�ý

�ý

�ý

�ý

'ý

6ý

76ý76ý

76ý 76ý

76ý
35ý35ý

35ý

35ý

36ý

36ý 36ý

36ý
36ý

36ý

FXWý

)LJXUHýëãý$ýVPDOOýPXOWLðUHVROXWLRQýJUDSKýõììýRULJLQDO
WULDQJOHVôïý7KHýOHWWHUVýLQGLFDWHýWKHýYDULRXVýQRGHýW\SHVã
'ýõGUDLQôñý6ýõVRXUFHôñý76ýõWULDQJOHýVLPSOLILFDWLRQôñý35
õSRLQWý UHSODFHPHQWôñý DQGý 36ý õSRLQWý VLPSOLILFDWLRQôï
7KHýFXWýFRQWDLQVýëýWULDQJOHVýDQGýéýSRLQWVï

WKLVý SULPLWLYHý FRQYHUVLRQý PD\ý SURGXFHý Dý PRUHý FRPSDFWý GDWD
VWUXFWXUHñýEXWýWKH\ýDUHýQRWýVRýFRQYHQLHQWýIRUýH[SORUDWLRQï

èý +<%5,'ý6,03/,),&$7,21
$VýPHQWLRQHGý LQý6HFWLRQýêñýRXUý VLPSOLILFDWLRQýSURFHVVýFRPSULVHV
WKUHHý VLPSOLILFDWLRQý RSHUDWLRQVãý SRO\JRQý VLPSOLILFDWLRQñý SRLQW
UHSODFHPHQWñýDQGýSRLQWýVLPSOLILFDWLRQïý$OWKRXJKýWKHýVLPSOLILFDWLRQ
RSWLPL]DWLRQýSURFHVVýFRXOGýEHýLPSOHPHQWHGýGLUHFWO\ýXVLQJýDýVLQJOH
SULRULW\ý TXHXHý RUý TXHXHý IRUý HDFKý W\SHý RIý RSHUDWLRQñý ZHý DFWXDOO\
VHSDUDWHýWKHýVLPSOLILFDWLRQýSURFHVVýLQWRýWKUHHýGLVWLQFWýFRPSRQHQWVñ
SHUIRUPLQJýWKHPýRQHýDIWHUýWKHýRWKHUýLQýWKHLUýHQWLUHW\ï
7KHýSRO\JRQý VLPSOLILFDWLRQýSURFHVVý H[SOLFLWO\ýPDLQWDLQVý Dý SULð

RULW\ýTXHXHýRIýHGJHýFROODSVHVýWKDWýFDQýEHýXVHGýWRýUHSODFHýDýVHWýRI
WULDQJOHVý ZLWKý Dý VPDOOHUý VHWý RIý WULDQJOHVïý $ý SRLQWý UHSODFHPHQW
TXHXHý LVý PDLQWDLQHGý LPSOLFLWO\ý LQý WKHý IROORZLQJý ZD\ïý $IWHU
FRPSXWLQJý WKHýRSWLPL]DWLRQýYDOXHýRIý DQýHGJHýFROODSVHýRSHUDWLRQñ
ZHý HYDOXDWHý WKHý RSWLPL]DWLRQý YDOXHý RIý WKHý SRLQWý UHSODFHPHQW
RSHUDWLRQVý DVVRFLDWHGý ZLWKý HDFKý RIý LWVý WULDQJOHVïý ,Iý DQ\ý RIý WKHVH
SRLQWý UHSODFHPHQWVý WDNHVý SUHFHGHQFHý RYHUý WKHý HGJHý FROODSVHñýZH
UHPRYHý WKHý HGJHý FROODSVHý IURPý WKHý TXHXHïý :KHQý WKHý SRO\JRQ
VLPSOLILFDWLRQý SURFHVVý LVý ILQLVKHGñý SRLQWý UHSODFHPHQWý RSHUDWLRQV
DUHý SHUIRUPHGý RQý DOOý WKHý UHPDLQLQJý WULDQJOHVïý 7KLVý SURGXFHVý WKH
VDPHýUHVXOWýDVýZRXOGýDQýH[SOLFLWýSRLQWýUHSODFHPHQWýTXHXHï
2QFHýDOOýWKHýSRLQWýUHSODFHPHQWVýKDYHýEHHQýSHUIRUPHGñýWKHýSRLQW

VLPSOLILFDWLRQý SURFHVVý EHJLQVïý :Hý DSSO\ý DQý RFWUHHðJXLGHGý SRLQW
PHUJLQJýSURFHVVý WRý VLPSOLI\ý WKHýSRLQWVý SURGXFHGýE\ý WKHý UHSODFHð
PHQWý RSHUDWLRQVïý 7KHý UHVXOWý PD\ý GLIIHUý IURPý Dý SULRULW\ðGULYHQ
SRLQWýVLPSOLILFDWLRQýSURFHVVñýEXWý LWý LVýHIILFLHQWýDQGýZRUNVýZHOOý LQ
SUDFWLFHï
$Vý WKHý HQWLUHý VLPSOLILFDWLRQý SURFHVVý SURFHHGVñý ZHý EXLOGý DQ

05*ýIURPýWKHýERWWRPýXSýõDVýVKRZQýLQý)LJXUHýëôïý(DFKýRSHUDWLRQ
ZHý SHUIRUPý DGGVý Dý QRGHý WRý WKHý JUDSKñý DQGý WKHý JHRPHWULFý HUURU
ERXQGý IRUý WKHý RSHUDWLRQý LVý VWRUHGýZLWKý WKDWý QRGHïý 7KHý RSHUDWLRQ
DOVRýHQDEOHVýXVý WRý FUHDWHý DQGý FRQQHFWý WKHýQRGH©Vý FKLOGý DUFVïý7KH
FUHDWLRQýRIýSDUHQWýDUFVýLVýGHOD\HGñýKRZHYHUñýXQWLOýZHýNQRZýZKLFK
QRGHVý ZLOOý FRQVXPHý WKHý SULPLWLYHVý FUHDWHGý E\ý WKLVý RSHUDWLRQïý ,I
PXOWLSOHýQRGHVýFRQVXPHýWKHVHýQHZýSULPLWLYHVñýWKHQýWKHýQRGHýJHWV
PXOWLSOHý SDUHQWVïý1RWLFHý WKDWý HDFKý SRLQWý UHSODFHPHQWý QRGHý KDVý D
VLQJOHýFKLOGýDUFýFRQWDLQLQJýRQHýWULDQJOHñýDQGýSURGXFHVýRQHýRUýPRUH
SRLQWVïý(DFKýSRLQWý VLPSOLILFDWLRQýQRGHñýRQý WKHýRWKHUýKDQGñýKDVýDW
OHDVWýWZRýFKLOGýSRLQWVýDQGýSURGXFHVýRQO\ýDýVLQJOHýSRLQWïý7KXVýWKH
SRLQWýVLPSOLILFDWLRQýQRGHVýFDQýKDYHýRQO\ýRQHýSDUHQWýDUFñýDQGý WKH
WRSýSRUWLRQýRIýRXUýJUDSKýLVýDFWXDOO\ýDýWUHHï
1RZýZHýVKDOOýGLVFXVVý WKHýRSWLPL]DWLRQý IXQFWLRQýXVHGý WRýGHWHUð

PLQHý WKHý RUGHUý RIý WULDQJOHý VLPSOLILFDWLRQý DQGý SRLQWý UHSODFHPHQW
RSHUDWLRQVïý :Hý IROORZý WKLVý ZLWKý Dý PRUHý GHWDLOHGý GHVFULSWLRQý RI
HDFKýRIýWKHýWKUHHýVLPSOLILFDWLRQýRSHUDWLRQVï

èïìý 4XHXHý2SWLPL]DWLRQý)XQFWLRQ
)RUýDýJLYHQýVLPSOLILFDWLRQýRSHUDWLRQñýZHýFRPSXWHýLWVýRSWLPL]DWLRQ
YDOXHýDVýLWVýFRVWýGLYLGHGýE\ýLWVýEHQHILWïý7KHýFRVWýLVýWKHýLQFUHDVHýLQ
HUURUñý'HñýDQGýWKHýEHQHILWýLVýWKHýGHFUHDVHýLQýQXPEHUýRIýSULPLWLYHVñ
ð'Sñý WKDWýZRXOGýRFFXUý DVý Dý UHVXOWý RIý SHUIRUPLQJý WKHýRSHUDWLRQý LQ
TXHVWLRQïý,QýIDFWñýZHýFDQýSORWýWKHýQXPEHUýRIýSULPLWLYHVýYHUVXVýWKH
HUURUýIRUýWKHýHQWLUHýVLPSOLILFDWLRQýSURFHVVýõDVýLQý)LJXUHýæôñýDQGýWKLV
RSWLPL]DWLRQý IXQFWLRQý LVý MXVWý WKHý VORSHý RIý WKDWý FXUYHïý 7KXVý ZH
DWWHPSWýWRýSURGXFHýDýFXUYHýLQýZKLFKýWKHýHUURUýJURZVýDVýVORZO\ýDV
SRVVLEOHýE\ýFKRRVLQJýWKHýRSHUDWLRQýZLWKýWKHýVPDOOHVWýRSWLPL]DWLRQ
YDOXHï
)RUý VLPSOLILFDWLRQý DOJRULWKPVý WKDWý SHUIRUPý RQO\ý RQHý W\SHý RI

RSHUDWLRQñý WKHý EHQHILWý IDFWRUý LVý RIWHQý XQQHFHVVDU\ý EHFDXVHý LWý LVý D
FRQVWDQWýIRUýDOOýWKHýRSHUDWLRQVýLQýWKHýSURFHVVýõDOWKRXJKýIRUýPRGHOV
ZLWKý ERUGHUVñý RSHUDWLRQVý WDNLQJý SODFHý RQý WKHý ERUGHUVý JHQHUDOO\
SURYLGHýOHVVýEHQHILWýWKDQýWKRVHýRQýWKHýLQWHULRUýGRôï

%\ýRUGHULQJýERWKýWULDQJOHýVLPSOLILFDWLRQýDQGýSRLQWýUHSODFHPHQW
RSHUDWLRQVý DFFRUGLQJý WRý WKLVý RSWLPL]DWLRQý IXQFWLRQñýZHý JHQHUDOO\
SURGXFHý HUURUý FXUYHVý WKDWý VWD\ý HQWLUHO\ý EHORZý WKDWý RIý Dý WULDQJOHð
RQO\ý VLPSOLILFDWLRQý SURFHVVïý7KLVý RXWFRPHý UHOLHVý RQý WKHý IDFWý WKDW
WKHý VORSHý RIý WKHý SRLQWý VLPSOLILFDWLRQý SRUWLRQý RIý WKHý FXUYHý LV
JHQHUDOO\ýWKHýORZHVWýRIýDOOï
+RZHYHUñýWKLVýFRQVHUYDWLYHýRUGHULQJýGHOD\VýWKHýLQWURGXFWLRQýRI

SRLQWVý LQWRý WKHý KLHUDUFK\ñý OHDYLQJý OHVVý WLPHý WRý EHQHILWý IURPý WKH
VPDOOý VORSHý RIý WKHý SRLQWý VLPSOLILFDWLRQïý 7KXVý LQý WKHý LQWHUHVWý RI
SURGXFLQJý WKHýEHVWýRYHUDOOýFXUYHý UDWKHUý WKDQýRQHýZKLFKý LVýHYHU\ð
ZKHUHý EHQHDWKý WKHý WULDQJOHðRQO\ý VLPSOLILFDWLRQý FXUYHñý ZHý PD\
ZLVKý WRý DOORZý Dý PRUHý DJJUHVVLYHý VFKHGXOHý IRUý LQLWLDWLQJý SRLQW
UHSODFHPHQWý RSHUDWLRQVïý 7Rý DFKLHYHý WKLVñý ZHý LQWURGXFHý Dý XVHUð
VSHFLILDEOHý WUDQVLWLRQý IDFWRUñý Wñý ZKLFKý VFDOHVý WKHý RSWLPL]DWLRQ
YDOXHVýRIýDOOý WKHýWULDQJOHýVLPSOLILFDWLRQýRSHUDWLRQVïý6HWWLQJýWý WRýì
DFKLHYHVýWKHýVDPHýUHVXOWýDVýWKHýFRVWîEHQHILWýRSWLPL]DWLRQýZHýKDYH
DOUHDG\ýGHVFULEHGñýZKHUHDVýVHWWLQJýLWýWRýDýYDOXHýJUHDWHUýWKDQýìýZLOO
LQWURGXFHýSRLQWVýVRRQHUï
7KHýSDUDPHWHUýWýLVýXVHGýWRýWUDGHýDQýLQFUHDVHGýSULPLWLYHýFRXQWýLQ

WKHý ORZHUý HUURUý UDQJHVý IRUý Dý GHFUHDVHGý SULPLWLYHý FRXQWý LQý WKH
KLJKHUýHUURUýUDQJHVýõVHHQýDVýDýKXPSýLQýWKHýFXUYHýLQý)LJXUHýåôïý7KLV
LVýGHVLUDEOHýIRUýPRGHOVýRIýODUJHýHQYLURQPHQWVýZKHUHýHIILFLHQF\ýIRU
GLVWDQWýSRUWLRQVýRIýWKHýPRGHOýPD\ýEHýDOPRVWýDVýLPSRUWDQWýRUýPRUH
LPSRUWDQWýWKDQýHIILFLHQF\ýIRUýQHDUýSRUWLRQVýRIýWKHýPRGHOýõEHFDXVH
UHVSHFWLQJý Dý FRQVWDQWý VFUHHQðVSDFHý HUURUý WROHUDQFHý DFURVVý WKH
PRGHOýDOORZVýJUHDWHUýZRUOGðVSDFHýHUURUýIRUýGLVWDQWýSRUWLRQVýRIýWKH
PRGHOôï

èïëý 7ULDQJOHý6LPSOLILFDWLRQ
2XUý WULDQJOHý VLPSOLILFDWLRQý RSHUDWLRQý LVý DQý HGJHý FROODSVHñý ZKLFK
PHUJHVý WKHý WZRý H[LVWLQJý YHUWLFHVý RIý DQý HGJHý LQWRý Dý VLQJOHñý QHZ
YHUWH[ïý2XUýLPSOHPHQWDWLRQýLVýEDVHGýRQýWKHýDOJRULWKPýGHVFULEHGýLQ
>&RKHQýHWýDOïýìääæ@ñýZKLFKýPHDVXUHVýWKHýHUURUýRIýDQýHGJHýFROODSVH
XVLQJýSODQDUýSURMHFWLRQVïý7KLVý HUURUý LVý DýERXQGýRQý WKHý+DXVGRUII
GLVWDQFHý õDýPD[ýRIýPLQýGLVWDQFHVôý EHWZHHQý WKHýRULJLQDOý WULDQJOHV
DQGý WKHý VLPSOLILHGý WULDQJOHVïý 7KLVý SDUWLFXODUý DOJRULWKPý RSHUDWHV
RQO\ýRQýPDQLIROGýVXUIDFHVýDQGýSUHVHUYHVýWRSRORJ\ñýEXWýWKLVýLVýQRWýD
UHTXLUHPHQWýIRUýRXUýK\EULGýVLPSOLILFDWLRQïý7KHýRQO\ýSURSHUWLHVýZH
UHTXLUHý RIý Dý WULDQJOHý VLPSOLILFDWLRQý RSHUDWLRQý LVý WKDWý LWý SURYLGHý D
JXDUDQWHHGý HUURUý ERXQGïý õ8QIRUWXQDWHO\ñý PRVWý RSHUDWLRQVý WKDW
DOORZý WRSRORJ\ý PRGLILFDWLRQý RUý QRQðPDQLIROGý LQSXWVý GRý QRW
SURYLGHý JXDUDQWHHGý HUURUý ERXQGVôïý 7KXVñý Dý QXPEHUý RIý RWKHU
H[LVWLQJý DOJRULWKPVý DUHý DSSOLFDEOHý DQGý PD\ý FRPSDUHý IDYRUDEO\
>*Xp]LHFýìääèñý.OHLQýHWýDOïýìääçñý/HHýHWýDOïýìääå@ï
$VýGHVFULEHGýHDUOLHUñýIRUýHDFKýHGJHýFROODSVHýRSHUDWLRQñýZHýDOVR

FRPSXWHýWKHýRSWLPL]DWLRQýFRVWýRIýWKHýSRLQWýUHSODFHPHQWýRIýHDFKýRI
LWVý WULDQJOHVïý ,IýDQ\ýRIý WKHVHýSRLQWý UHSODFHPHQWVýKDVýSULRULW\ýRYHU
WKHýHGJHýFROODSVHñý WKHýHGJHý FROODSVHý LVý UHPRYHGý IURPýFRQVLGHUDð
WLRQï

èïêý 3RLQWý5HSODFHPHQW
7KHýSRLQWýUHSODFHPHQWýRSHUDWLRQýSURYLGHVýDýPHDQVýRIýWUDQVLWLRQLQJ
IURPý WULDQJOHVý WRý SRLQWVý LQý RXUý PXOWLðUHVROXWLRQý KLHUDUFK\ïý $Q
LPSRUWDQWýTXHVWLRQýWRýFRQVLGHUýLVýKRZýPDQ\ýSRLQWVýZHýVKRXOGýXVH
WRýUHSODFHýDýWULDQJOHïý,QýDýFRUUHFWý05*ñýWKHýHUURUýDOZD\VýLQFUHDVHV
DVýZHýPRYHýXSZDUGýLQýWKHýKLHUDUFK\ïý$VýDýPDWWHUýRIýSULQFLSOHñýZH
ZLVKýWRýJXDUDQWHHýWKDWýWKHýUHQGHULQJýFRPSOH[LW\ýDOZD\VýGHFUHDVHV
DWýWKHýVDPHýWLPHïý7KXVýRQHýFDQýDOZD\VýPRYHýGRZQýWKHýKLHUDUFK\
WRý LQFUHDVHý TXDOLW\ý RUý XSý WKHý KLHUDUFK\ý WRý LQFUHDVHý SHUIRUPDQFHï
:LWKý WKLVý LQý PLQGñý ZHý VKRXOGý QHYHUý UHSODFHý Dý WULDQJOHý ZLWKý VR
PDQ\ýSRLQWVýWKDWýWKHýSHUIRUPDQFHýLVýGHFUHDVHGï
7RýKHOSýRXUýV\VWHPýPHHWýWKLVýSHUIRUPDQFHýFRQVWUDLQWñýZHýLQWURð

GXFHýDýV\VWHPðVSHFLILFýSHUIRUPDQFHýUDWLRñýNñýZKLFKýLVýWKHýUDWLRýRI
SRLQWðUHQGHULQJýSHUIRUPDQFHýWRýWULDQJOHðUHQGHULQJýSHUIRUPDQFHýRQ
DýSDUWLFXODUýV\VWHPïý6SHFLI\LQJýWKLVýUDWLRýFRUUHFWO\ýVKRXOGýPDNHýLW

SRVVLEOHýWRýJHQHUDWHýDýKLHUDUFK\ýWKDWýLVýZHOOýWXQHGýIRUýWKHýV\VWHP
LQý TXHVWLRQïý 1RZý LWý LVý FOHDUý WKDWý ZHý QHYHUý ZLVKý WRý UHSODFHý D
WULDQJOHýZLWKýPRUHý WKDQý ¬ ¼N ý SRLQWVñý EHFDXVHý WKLVýZRXOGý DFWXDOO\

GHFUHDVHýSHUIRUPDQFHïý1RWLFHýWKDWý LIý ìdN ñý WKHQýDýSRLQWýUHSODFHð
PHQWýFDQýQHYHUýGLUHFWO\ý LQFUHDVHýSHUIRUPDQFHïý8VLQJý WKLVýGHILQLð
WLRQý RIý Nñý ZHý FDQý QRZý UHIHUý WRý Dý QXPEHUý RIý SULPLWLYHVý LQý WKLV
V\VWHPñýDVã

N
SRLQWV

WULDQJOHVSULPLWLYHV ò

,QýSUDFWLFHñýZHýZDQWýWRýSHUIRUPýWKHýSRLQWýUHSODFHPHQWýVXFKýWKDWýLW
PLQLPL]HVý WKHý RSWLPL]DWLRQý YDOXHý IRUý WKHý RSHUDWLRQïý8VLQJýNýZH
ILQGýWKDWýWKHýEHQHILWýIRUýDýSRLQWýUHSODFHPHQWýRSHUDWLRQýLVã

N
SRLQWVýWUHSODFHPHQ

EHQHILW ð ì

7KLVýEHQHILWý LVý MXVWý WKHýUHVXOWLQJýFKDQJHýLQýSULPLWLYHýFRXQWýDVýZH
UHSODFHý Dý VLQJOHý WULDQJOHý SULPLWLYHý ZLWKý Dý QXPEHUý RIý SRLQWV
HTXLYDOHQWý WRý Dý IUDFWLRQý RIý Dý WULDQJOHý SULPLWLYHïý 7KHý FRVWý RIý WKH
SRLQWý UHSODFHPHQWý LVý WKHý DVVRFLDWHGý LQFUHDVHý LQý HUURUý GXHý WR
UHSODFLQJý Dý WULDQJOHý ZLWKý SRLQWVïý:Hý FDQý VKRZý WKDWý LIý ZHý FRPð
SOHWHO\ýFRYHUýWKHýWULDQJOHñýWKLVýFRVWýLVýMXVWýWKHýSRLQWýUDGLXVï
7KHýPDLQýWRROýZHýKDYHýWRýZRUNýZLWKýWRýVROYHýWKLVýGLVFUHWHýRSWLð

PL]DWLRQýSUREOHPý LVý DýSURFHGXUHý IRUýJHQHUDWLQJý Dý VHWý RIý UHSODFHð
PHQWý VDPSOHVñý JLYHQý Dý VSHFLILHGý VDPSOLQJý GLVWDQFHïý :Hý QH[W
GHVFULEHýWKLVýVDPSOLQJýSURFHGXUHýDQGýWKHQýDýPHWKRGýIRUýRSWLPL]ð
LQJýWKHýFKRLFHýRIýVDPSOLQJýGLVWDQFHýIRUýDýWULDQJOHï

èïêïìý 6DPSOLQJý3URFHGXUH
7KHý VDPSOLQJý SURFHGXUHý WDNHVý DVý LQSXWý Dý VDPSOLQJý GLVWDQFHý DQG
JHQHUDWHVýDýVHWýRIýSRLQWýVDPSOHVýWKDWýHQWLUHO\ýFRYHUVýDýWULDQJOHïý)RU
DýJLYHQýVDPSOLQJýGLVWDQFHñýZHýZLVKý WRýJHQHUDWHýDVý IHZýSRLQWVýDV
SRVVLEOHý WRýRSWLPL]HýSHUIRUPDQFHïý7KHVHýDUHý WKHýPDLQýFRQVLGHUDð
WLRQVýIRUýWKHýVDPSOLQJýDOJRULWKPýWRýZRUNýZHOOï
$VýPHQWLRQHGý DERYHñý HDFKý VDPSOLQJýSRLQWý FDQýEHý WUHDWHGý DVý D

VSKHUHñý VSHFLILHGý E\ý Dý FHQWHUý õWKHý VDPSOHý ORFDWLRQôý DQGý Dý UDGLXV
õWKHýVDPSOH©VýUDQJHýRIýFRYHUDJHôïý ,Wý LVý LQWXLWLYHO\ýFOHDUý WKDWýDýVHW
RIý VSKHUHVý õRUý FLUFOHVý LQý WKHý SODQHý RIý WKHý WULDQJOHôýPXVWý RYHUODS
VRPHZKDWýWRýFRPSOHWHO\ýFRYHUýWKHýWULDQJOHïý6TXDUHVñýRQýWKHýRWKHU
KDQGñýWLOHýWKHýSODQHýTXLWHýQLFHO\ýZLWKRXWýRYHUODSïý7KXVýZHýFDQýWLOH
WKHýSODQHýZLWKýFLUFXODUýGLVFVýWKDWýFLUFXPVFULEHýWKHVHýVTXDUHýWLOHVï

6DPSOLQJ
SRVLWLRQ

U

)LJXUHýêãý6TXDUHVýYVïýFLUFOHVýWRýFRYHUýDýUHJLRQï

)LJXUHýýêýGHSLFWVýWKHýFDVHýLQýZKLFKýVTXDUHVýõRUýFLUFOHVôýMXVWýFRYHU
WKHý UHJLRQý õLïHïý DQ\ý IXUWKHUý VHSDUDWLRQýZRXOGý OHDGý WRý Dý KROHôïý ,Q
WKLVý VHQVHñý LW©Vý TXLWHý UHDVRQDEOHý WRý XVHý VTXDUHVý WRý DGGUHVVý WKH
VDPSOLQJýSUREOHPï
7RýPDNHý WKHýDOJRULWKPýHDV\ý WRý LPSOHPHQWý DVýZHOOý DVý WRýPLQLð

PL]HýWKHýQXPEHUýRIýSRLQWVñýZHýSURFHHGýWRýVDPSOHýWKHýWULDQJOHýRQH
URZý DWý Dý WLPHñý DVý VKRZQý LQý)LJXUHý éïý:Hý EHJLQý E\ý FKRRVLQJý D
FRRUGLQDWHý IUDPHý VXFKý WKDWý WKHý ODUJHVWý HGJHý LVý FRQVLGHUHGý WRý EH
KRUL]RQWDOýDWýWKHýERWWRPýRIýWKHýWULDQJOHï
:HýVWDUWýWKHýVDPSOLQJýIURPýWKHýOHIWýVLGHýRIýHGJHý$%ñýDQGýPDNH

WKHýILUVWýVDPSOLQJýSRLQWýFRYHUýDVýPXFKýRIýWKHýWULDQJOHýDVýSRVVLEOH
EXWý ZLWKRXWý LQWURGXFLQJý DQ\ý JDSý RUý KROHý DWý WKHý ERWWRPý DQGý OHIW
VLGHïý 7KHý IROORZLQJý SRLQWVý ZLOOý EHý VDPSOHGý LQý WKHý VDPHý URZñ
ZKLFKý LVý SDUDOOHOý WRý HGJHý$%ñý XQWLOý DOOý WKHý WULDQJOHý VSDFHý LQý WKDW
URZýLVýFRYHUHGïý7KLVýSURFHGXUHýLVýUHSHDWHGýXQWLOýWKHýZKROHýWULDQJOH
LVý FRYHUHGïý 1RWLFHý WKDWý HDFKý URZý PD\ý VKLIWý OHIWðWRðULJKWý ZLWK

UHVSHFWý WRý WKHý SUHYLRXVý URZVñý VRý RXUý VDPSOLQJý GRHVý QRWý H[DFWO\
IROORZýDýë'ýJULGï

$ %

&

)LJXUHýéãý7KHýILUVWýURZýRIýDýWULDQJOHýLVýVDPSOHGï

,QýDGGLWLRQýWRýFRPSXWLQJýWKHýVDPSOH©VýFHQWHUñýZHýPD\ýDOVRýZLVKýWR
VDPSOHý RWKHUý DWWULEXWHVñý VXFKý DVý FRORUïý 7Rý PDNHý LWý SRVVLEOHý WR
LQWHUSRODWHý UDWKHUý WKDQýH[WUDSRODWHñýZHýHQVXUHý WKDWýDOOý WKHý VDPSOH
FHQWHUVýDUHýORFDWHGýLQVLGHýRUýRQýWKHýHGJHýRIýWKHýWULDQJOHïý,Qý)LJXUH
éñý LIý WKHý VDPSOLQJý VTXDUHý KDVý Dý FHQWHUý RXWVLGHý RIý WKHý WULDQJOH
õDERYHý HGJHý$&ôñý ZHý ZLOOý SXVKý GRZQý WKHý VTXDUHý WRý PDNHý WKH
FHQWHUý MXVWý ORFDWHGý RQý WKHý HGJHý$&ïý 7KHý VLPLODUý FDVHýZLOOý RFFXU
ZKHQý WKHý VDPSOLQJý SRLQWý LVý FORVHý WRý HGJHý%&ïý 7Rý WKHý ULJKWý VLGH
VDPSOLQJýSRLQWñýZHýZLOOýILUVWýPRYHýLWýDVýOHIWýDVýSRVVLEOHýõMXVWýFRYHU
YHUWH[ý%ôñýWKHQýZHýZLOOýDGMXVWýLWýXSýRUýGRZQýWRýPDNHýLWýLQVLGHýWKH
WULDQJOHïý ,Wý LVý LPSRUWDQWý WRýJHWý WKHVHý VSHFLDOý ERXQGDU\ý FRQGLWLRQV
ULJKWñýEHFDXVHýZKHQýZHýVDPSOHýDýWULDQJOHýZLWKýDýVPDOOýQXPEHUýRI
SRLQWVñýDOOýWKHýSRLQWVýPD\ýH[KLELWýVRPHýERXQGDU\ýFRQGLWLRQï
)LQDOO\ñý ZHý QHHGý WRý FRPSXWHý WKHý HUURUý ERXQGý IRUý Dý SRLQWïý ,Q

WHUPVýRIýWKHýWZRðVLGHGý+DXVGRUIIýGLVWDQFHýPHDVXUHñýZHýNQRZýWKDW
HYHU\ýSRLQWýRQýWKHýWULDQJOHýLVý]HURýGLVWDQFHýIURPýDýVDPSOHýVSKHUHñ
DQGýHYHU\ýSRLQWýRQýDýVDPSOHýVSKHUHý LVýZLWKLQý WKHýVSKHUH©VýUDGLXV
IURPý Dý SRLQWý RQý WKHý WULDQJOHïý 7KXVý WKHý LQFUHPHQWDOý HUURUý GXHý WR
VDPSOLQJý LVý WKHý VSKHUHý UDGLXVñý Uïý ,Iý WKHý VDPSOHGý WULDQJOHý DOUHDG\
KDVýVRPHýHUURUýERXQGýH'ñýWKHQýWKHýWRWDOýHUURUýERXQGýRIýWKHýSRLQWýLVã

'ò HH US

*LYHQý WKHý QHLJKERULQJý VDPSOHý GLVWDQFHñý Gñý WKHý UDGLXVý RIý WKH
FLUFXPVFULELQJýFLUFOHýLVýMXVWã

ë
GU

èïêïëý &RPSXWLQJý2SWLPXPý6DPSOHý'LVWDQFH
1RZý WKDWý ZHý FDQý JHQHUDWHý Dý VHWý RIý VDPSOHVý RUñý XVLQJý WKHý VDPH
SURFHGXUHñý FRXQWý WKHý QXPEHUý RIý VDPSOHVý JHQHUDWHGý IRUý Dý JLYHQ
WULDQJOHý DQGý VDPSOLQJý GLVWDQFHñý LWý LVý SRVVLEOHý WRý HIIHFWLYHO\
RSWLPL]HýWKHýVDPSOHýGLVWDQFHýXVLQJýDýIDLUO\ýVLPSOLVWLFýDSSURDFKï
)LUVWñý ZHýZRXOGý OLNHý WKHý DELOLW\ý WRý ILQGý WKHý VPDOOHVWý VDPSOLQJ

GLVWDQFHñý Gñý ZKLFKý SURGXFHVý QRý PRUHý WKDQý Dý JLYHQý QXPEHUý RI
VDPSOHVñýVïý:HýFDQýLQLWLDOL]HýGýWRýDýYDOXHýWKDWýPDNHVýWKHýWRWDOýDUHD
RIýVýVTXDUHýVDPSOHVýHTXDOýWRýWKHýWULDQJOHýDUHDã

V

$UHD
GVG$UHD '

' o ë

7KLVýLVýWKHýWKHRUHWLFDOýPLQLPXPýVDPSOLQJýGLVWDQFHýWRýJHQHUDWHýQR
PRUHý WKDQý Vý VDPSOHVïý 7KHQý ZHý GRXEOHý Gý XQWLOý LWý SURGXFHVýPRUH
WKDQý Vý VDPSOHVý DQGý ILQDOO\ý ELQDU\ý VHDUFKý ZLWKLQý WKHý UHVXOWLQJ
LQWHUYDOý WRý ILQGý WKHý EHVWý VDPSOHý GLVWDQFHý WRýZLWKLQý VRPHý UHODWLYH
WROHUDQFHï
*LYHQý WKLVý GLVFUHWHý IXQFWLRQý IRUý Gý DVý Dý IXQFWLRQý RIý Vñý ZHý FDQ

QRZý RSWLPL]Hý IRUý WKHý Gý WKDWý SURGXFHVý WKHý VPDOOHVWý FRVWîEHQHILW
YDOXHïý 7KHý FRVWý YDOXHý LVý MXVWý WKHý UDGLXVñýZKLFKýZHý KDYHý VHHQý LQ
6HFWLRQý èïêïìý LVý MXVWý Dý FRQVWDQWýPXOWLSOHý RIýGïý 7KHý EHQHILWý YDOXH
YDULHVýZLWKý WKHýQXPEHUýRIý UHSODFHPHQWý SRLQWVñý Vïý%HFDXVHý Vý DVý D
IXQFWLRQýRIýGýLVýDýVWHSýIXQFWLRQñýWKLVýRSWLPXPýGýZLOOýRFFXUýMXVWýDW
WKHýWRSýRIýRQHýRIý WKHVHýVWHSVïý7KXVýWKHýPRVWýVWUDLJKWIRUZDUGýZD\
WRýFRPSXWHý WKHýRSWLPXPýVDPSOLQJýGLVWDQFHý LVý WRý ILQGýGý IRUý HDFK
LQWHJHUýVWHSýZLWKýVáNý õZKLFKýZHýKDYHý MXVWýGHVFULEHGýDERYHôñýDQG
FKRRVHý WKHýRQHý UHVXOWLQJý LQý WKHý VPDOOHVWý FRVWîEHQHILWïý7KLVýZRUNV
LQýSUDFWLFHýIRUýVPDOOýYDOXHVýRIýNïý)RUýODUJHUýYDOXHVñýZHýPD\ýZLVK
WRý HVWLPDWHý Dý GHULYDWLYHý RIý WKLVý VWHSý IXQFWLRQý WRý SURYLGHý Dý IDVWHU
RSWLPL]DWLRQï

èïéý 3RLQWý6LPSOLILFDWLRQ
$IWHUý WKHý SULRULW\ý TXHXHý KDVý HPSWLHGý DQGý DOOý UHPDLQLQJý SRLQW
UHSODFHPHQWVýKDYHýEHHQýDSSOLHGñýZHýEHJLQýWKHýSRLQWýVLPSOLILFDWLRQ
SURFHVVýE\ýLQVHUWLQJýDOOýWKHýRULJLQDOýVDPSOLQJýSRLQWVýLQWRýWKHýFHOOV
RIý DQý RFWUHHý DFFRUGLQJý WRý WKHý SRVLWLRQý RIý WKHý VDPSOHý FHQWHUïý:H
WKHQýXVHýWKHýRFWUHHýFHOOVýWRýLQGLFDWHýZKLFKýVHWVýRIýSRLQWVýWRýPHUJHï
(DFKý PHUJHý FDQý FRPELQHý XSý WRý HLJKWý FKLOGUHQñý DQGý SURGXFHV
H[DFWO\ýRQHýSDUHQWýSRLQWïý7KHýFHQWHUýDQGýUDGLXVýRIý WKHýQHZýSRLQW
DUHý FKRVHQý VXFKý WKDWý WKHý SDUHQWý VSKHUHý FRQWDLQVý DOOý WKHý FKLOG
VSKHUHVñýDVýVKRZQýLQý)LJXUHýèýõZHýGRýQRWýFXUUHQWO\ýXVHýWKHýRSWLPDO
DOJRULWKPñýEXWýDýVLPSOHýKHXULVWLFôïý7KHýFRORUýRIýWKHýSDUHQWýSRLQWýLV
DýZHLJKWHGýDYHUDJHýRIýWKRVHýRIýLWVýFKLOGUHQýZLWKýZHLJKWVýDVVLJQHG
DFFRUGLQJýWRýVXUIDFHýDUHDï

SDUHQW

FKLOG

)LJXUHýèãýêýFKLOGUHQýSRLQWVýDUHýPHUJHGýLQWRýìýSDUHQW
SRLQWï

(DFKýQRGHýRIýWKHýRFWUHHýFRUUHVSRQGVýWRýRQHýQRGHýRIýWKHý05*ýZLWK
DýVLQJOHýSDUHQWýDUFïý$Vý LQý WKHýFDVHýRIý WKHýRULJLQDOýSRLQWý VDPSOHVñ
WKHýUDGLXVý LVýRQO\ýDýSDUWýRIý WKHýHUURUýERXQGýIRUý WKHýPHUJHGýSRLQW
DQGý LWVý JHQHUDWLQJý QRGHâý LWýPXVWý EHý FRPELQHGýZLWKý DQ\ý H[LVWLQJ
WULDQJOHý HUURUý WRý FRPSXWHý WKHý WRWDOý HUURUý ERXQGïý 7KHý WRWDOý HUURU
ERXQGýIRUýDýSRLQWýLVýMXVWýLWVýUDGLXVýSOXVýWKHýPD[LPXPýWULDQJOHýHUURU
ERXQGýFRPSRQHQWýDVVRFLDWHGýZLWKýLWVýFKLOGUHQýõWKLVýFRPSRQHQWý LV
MXVWý WKHýFKLOGýSRLQW©VýHUURUýPLQXVý LWVý UDGLXVôïý7KHýFUHDWLRQýRIý WKH
URRWý QRGHý FRPSOHWHVý WKHý 05*ý GDWDý VWUXFWXUHý DQGý WKHý K\EULG
VLPSOLILFDWLRQýSURFHVVï

çý ,17(5$&7,9(ý',63/$<
2XUýLQWHUDFWLYHýGLVSOD\ýV\VWHPýDOORZVýWKHýXVHUýWRýQDYLJDWHýWKURXJK
Dý ê'ý HQYLURQPHQWý GHVFULEHGý E\ý Dý PXOWLðUHVROXWLRQý JUDSKïý 7KH
PRGHOý LVý VWDWLFDOO\ý SUHðOLWý ZLWKý GLIIXVHý LOOXPLQDWLRQý VRý WKDWý QR
QRUPDOVýDUHýUHTXLUHGýIRUýWKHýSRLQWýSULPLWLYHVýõWKLVýLVýVWLOOýFRPPRQ
SUDFWLFHý LQý WKHý LPDJHðEDVHGý UHQGHULQJý FRPPXQLW\ñý DOWKRXJK
FXUUHQWýUHVHDUFKýLVýJUDGXDOO\ýUHGXFLQJýWKLVýOLPLWDWLRQôï
7KHý XVHUý FDQý VHOHFWý HLWKHUý Dý VFUHHQðVSDFHý HUURUý WROHUDQFHñý LQ

WHUPVýRIýSL[HOVýRIýGHYLDWLRQñýRUýDQýREMHFWðVSDFHýHUURUýWROHUDQFHýLQ
WHUPVýRIýDýSHUFHQWDJHýRIýWKHýOHQJWKýRIýWKHýHQYLURQPHQW©VýERXQGLQJ
ER[ý GLDJRQDOïý &KRRVLQJý Dý VFUHHQðVSDFHý WROHUDQFHý LQYRNHVý YLHZð
GHSHQGHQWý UHILQHPHQWý HYHU\ý IUDPHý DVý WKHý XVHUý QDYLJDWHVý WKH
HQYLURQPHQWïý $OWHUQDWLYHO\ñý VHOHFWLQJý DQý REMHFWðVSDFHý WROHUDQFH
FDXVHVý Dý RQHðWLPHý UHILQHPHQWý WRý WKHý VSHFLILHGý WROHUDQFHïý 7KLVý LV
XVHIXOýIRUý ORRNLQJýDWý WKHýYDULRXVýPRGHOýUHVROXWLRQVýXSýFORVHñýDQG
DOORZVýQDYLJDWLRQýZLWKRXWýDQ\ýFKDQJHVýLQýWKHýPRGHOýSULPLWLYHVï
$VýGHVFULEHGýLQý6HFWLRQýéñýWKHýVHWýRIýSULPLWLYHVýWRýEHýUHQGHUHG

LVý GHWHUPLQHGýE\ý ILQGLQJý Dý FXWý WKURXJKý WKHýJUDSKâý WKHý SULPLWLYHV
DVVRFLDWHGý ZLWKý WKHý DUFVý RQý WKHý FXWý DUHý UHQGHUHGïý 7KHý FXWý LV
DGDSWHGýE\ýHYDOXDWLQJýDQýHUURUýFULWHULRQýWRýGHWHUPLQHýLIýDýQRGHýLV
DERYHý RUý EHORZý WKHý FXUUHQWý HUURUý WKUHVKROGïý)RUý DQý REMHFWðVSDFH
HUURUý WROHUDQFHñý WKHý VWRUHGý HUURUý LVý GLYLGHGý E\ý WKHý OHQJWKý RIý WKH
05*©VýERXQGLQJýER[ýGLDJRQDOýIRUýFRPSDULVRQýZLWKýWKHýWKUHVKROGï
)RUý Dý VFUHHQðVSDFHý WKUHVKROGñý WKHý DUF©Vý VFUHHQðVSDFHý GHSWKý LV
FRPSXWHGýXVLQJýDýFRQVHUYDWLYHýERXQGLQJýVSKHUHýDSSUR[LPDWLRQýõD
ERXQGLQJý VSKHUHý LVý VWRUHGý ZLWKý HDFKý DUFôïý)URPý WKLVý GHSWKñý D
VFDOLQJýIDFWRUýLVýFRPSXWHGýWRýFRQYHUWýWKHýHUURUýOHQJWKýIURPýREMHFWð
VSDFHýFRRUGLQDWHVýWRýDýVFUHHQðVSDFHýSL[HOýGLVWDQFHñýZKLFKý LVýQRZ
FRPSDUDEOHýZLWKý WKHý VSHFLILHGýSL[HOý WKUHVKROGïý7KHý VDPHý VFDOLQJ

IDFWRUý LVý XVHGý WRý FRQYHUWý Dý SRLQWý SULPLWLYH©Vý UDGLXVý WRý Dý VFUHHQ
VSDFHýUDGLXVýIRUýUHQGHULQJýDVýDýFLUFOHï
2XUý FXUUHQWý LPSOHPHQWDWLRQý UHQGHUVý2SHQ*/ýSRLQWVý RQý Dý6*,

,QILQLWH5HDOLW\ý ,,ý SODWIRUPïý2WKHUýPRUHý HIILFLHQWý SRLQWý UHQGHULQJ
V\VWHPVýKDYHýEHHQýGHYHORSHGý>*URVVPDQýDQGý'DOO\ýìääåñý3ILVWHU
HWïý DOý ëíííñý 5XVLQNLHZLF]ý DQGý /HYR\ý ëííí@ñý VRPHý RIý ZKLFK
LQFOXGHý WH[WXUHýILOWHULQJïý$Q\ýRIý WKHVHýFDQý UHDGLO\ýEHýXVHGý LQý WKH
FRQWH[WýRIýRXUýK\EULGýVLPSOLILFDWLRQýIUDPHZRUNïý:HýKRSHýWRýWDNH
PRUHýRIýDýê'ýLPDJHýZDUSLQJýDSSURDFKýLQýWKHýIXWXUHñýLQFRUSRUDWLQJ
VRPHýIRUPýRIý/',ýWUHHý>&KDQJýHWýDOïýìäää@ýRUýDýGHULYDWLYHýRIýLWñýLQ
RUGHUýWRýDFKLHYHýJUHDWHUýSRLQWýSHUIRUPDQFHýõDQGýWKXVýDýODUJHUýNôï

æý 5(68/76
:Hý KDYHý LPSOHPHQWHGý ERWKý WKHý KLHUDUFKLFDOý VLPSOLILFDWLRQý DQG
LQWHUDFWLYHýGLVSOD\ýDOJRULWKPVýGHVFULEHGýLQý6HFWLRQVýèýDQGýçñýDQG
WHVWHGýWKHPýRQýVHYHUDOýPRGHOVïý7KHVHýPRGHOVýDUHýOLVWHGýLQý)LJXUH
çïý0RVWýRIý WKHýSUHSURFHVVLQJý WLPHý LVý VSHQWý LQý WKHý HYDOXDWLRQý DQG
SULRULWL]DWLRQý RIý SRWHQWLDOý HGJHý FROODSVHVïý 7KLVý WLPHý LVý LQFUHDVHG
VRPHZKDWýE\ýWKHýRSWLPL]DWLRQýRIýVDPSOLQJýGLVWDQFHVýIRUýSRWHQWLDO
SRLQWýUHSODFHPHQWýRSHUDWLRQVñýEXWýQRWýH[FHVVLYHO\ýIRUýVPDOOýYDOXHV
RIýWKHýLQSXWýSDUDPHWHUýNïý7KHý WLPHýUHTXLUHGýIRUýDFWXDOO\ýJHQHUDWð
LQJýWKHýVDPSOHVýDQGýSHUIRUPLQJýWKHýRFWUHHðEDVHGýSRLQWýVLPSOLILFDð
WLRQýLVýW\SLFDOO\ýTXLWHýVPDOOýFRPSDUHGýWRýWKHýUHVWýRIýWKHýDOJRULWKPï

0RGHO ,QSXW
7ULV

05*
7ULV

05*
3RLQWV

6LPS
7LPH

$UPDGLOOR ìñäääñéíé åñäçëïéëæ ìèéñçèì ìììãëä
%XQQ\ çäñéèì êíåñæêå ìíñåëè ìãèç
%URQFR æéñêíå ëèæñçäé æíñåéì ëãëä
+RUVH äçñäçç éêëñåæå ìíñéëä ëãéè
)LJXUHý çãý7HVWý0RGHOVý õGDWDý UHSRUWHGý IRUý NNNN êñý WWWW ìâ
VLPSOLILFDWLRQýWLPHýLQýPLQXWHVãVHFRQGVôï

,WýLVýLQIRUPDWLYHýWRýREVHUYHýWKHýEHKDYLRUýRIýWKHýFXUYHVýSURGXFHG
E\ýSORWWLQJýWKHýQXPEHUýRIýSULPLWLYHVýYHUVXVýWKHýREMHFWðVSDFHýHUURU
IRUý YDULRXVý FKRLFHVý RIý WKHý Ný DQGý Wý SDUDPHWHUVïý)LJXUHý æý VKRZV
VXFKýDýSORWýIRUýWKHý%URQFRýPRGHOñýZLWKýDýIL[HGýYDOXHýRIýN êýDQGýD
VHYHUDOý GLIIHUHQWý YDOXHVý RIý WKHý WUDQVLWLRQý IDFWRUñý Wïý 1RWLFHý WKDW
VHWWLQJýW ìýDFKLHYHVýDýFXUYHýWKDWýLVýHYHU\ZKHUHýOHVVýWKDQýRUýHTXDO
WRý WKHý FXUYHý RIý WULDQJOHý VLPSOLILFDWLRQý DORQHý õWKLVý LVý QRWý DFWXDOO\
JXDUDQWHHGýE\ý WKLVýQRQðRSWLPDOýJUHHG\ýSURFHVVôïý+RZHYHUñý LIýZH
UHOD[ý WKLVý FRQVWUDLQWý E\ý LQFUHDVLQJý WñýZHý UHGXFHý WKHý HUURUý YDOXHV
IRUý WKHý ORZHUýSULPLWLYHýFRXQWVýDWý WKHýH[SHQVHýRIý LQFUHDVLQJý LWý IRU
VRPHýRIýWKHýKLJKHUýSULPLWLYHýUDQJHï
/RRNLQJý DWý)LJXUHý åý VKRZVýXVý WKDWý WKHý EXQQ\ýPRGHOý GRHVý QRW

EHQHILWý DVýPXFKý IURPýSRLQWý UHSODFHPHQWýDVýPXFKýDVý WKHý%URQFRï
7KLVý LVý QRWý VXUSULVLQJñý EHFDXVHý WKHý EXQQ\ý LVý Dý VLQJOHñý KLJKO\
WHVVHOODWHGý PDQLIROGý VXUIDFHñý ZKLOHý WKHý %URQFRý FRPSULVHVý êêä
LQGLYLGXDOýPDQLIROGVñýZKLFKýDUHýQRWýVRýKLJKO\ýWHVVHOODWHGýWRýEHJLQ
ZLWKïý7KHVHýPDQLIROGVý DUHýQRWýPHUJHGý LQý WKHý WULDQJOHýGRPDLQýE\
RXUýSRO\JRQý VLPSOLILFDWLRQý DOJRULWKPñý VRý IRUý WKLVý UHDVRQý DVýZHOOñ
WKH\ýEHQHILWýIURPýWKHýWUDQVLWLRQýWRýSRLQWVï
)LJXUHý äý H[DPLQHVý FKDQJLQJý WKHý V\VWHPý SHUIRUPDQFHý UDWLRñýNñ

IRUý Dý IL[HGý YDOXHý RIý Wý õW ìïíôïý 7KLVý SORWý GHPRQVWUDWHVñý QRWý VXUð
SULVLQJO\ñý WKDWý LIý ZHý GHYHORSý V\VWHPVý ZLWKý LQFUHDVHGý OHYHOVý RI
SRLQWðUHQGHULQJýSHUIRUPDQFHñýRXUýKLHUDUFKLHVýZLOOýGLUHFWO\ýEHQHILW
E\ýVZLWFKLQJýWRýSRLQWVýVRRQHUýLQýWKHýVLPSOLILFDWLRQýSURFHVVï
,Qý)LJXUHVýìíýDQGýììñýZHýUHSRUWýWKHýVLPSOLILFDWLRQýUHVXOWVýIRUýD

IL[HGýVFUHHQðVSDFHýHUURUýRIýêýSL[HOVïý:Hý IO\ðWKURXJKýDQýHQYLURQð
PHQWý FRQVLVWLQJý RIý æêý%URQFRýPRGHOVý DQGý UHFRUGý WKHý QXPEHUý RI
SULPLWLYHVý IRUý K\EULGý VLPSOLILFDWLRQý ZLWKý N êñý W ìñý IRUý K\EULG
VLPSOLILFDWLRQýZLWKýN êñýW èñýDQGýIRUýWULDQJOHðVLPSOLILFDWLRQýRQO\ï
:HýDUHýDEOHýWRýUHGXFHýWKHýSULPLWLYHýFRXQWýE\ýDQýDYHUDJHýIDFWRUýRI
ìïçýõPLQLPXPýìïêñýPD[LPXPýéïæôïý$VýH[SHFWHGñýWKHýVLPSOLILFDWLRQ
IRUýW èýLVýVOLJKWO\ýEHWWHUýZKHQýPRVWýRIý WKHýHQYLURQPHQWý LVý LQý WKH
GLVWDQFHýõHïJïýEHJLQQLQJýRIýWKHýSDWKôýDQGýVOLJKWO\ýZRUVHýZKHQýWKH

YLHZHUý LVýPRVWO\ý VXUURXQGHGýE\ý WKHý HQYLURQPHQWý õHïJïýPLGGOHýRI
WKHýSDWKôï

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

E
rr

or
 a

s
Pe

rc
en

t o
f

B
ou

nd
in

g
B

ox
 D

ia
go

na
l

Number of Primitives

Bronco Model Varying Tau

triangle simplification
tau = 1
tau = 5

tau = 10
tau = 100

)LJXUHýæãý9DU\LQJýWWWWýIRUýWKHýEURQFRýZLWKýNNNN êï

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

E
rr

or
 a

s
Pe

rc
en

t o
f

B
ou

nd
in

g
B

ox
 D

ia
go

na
l

Number of Primitives

Bunny Model Varying Tau

triangle simplification
tau = 1
tau = 5

tau = 10
tau = 100

)LJXUHýåãý9DU\LQJýWWWWýIRUýWKHýEXQQ\ýPRGHOýZLWKýNNNN êï

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

E
rr

or
 a

s
Pe

rc
en

t o
f

B
ou

nd
in

g
B

ox
 D

ia
go

na
l

Number of Primitives

Bunny Model Varying Kappa

triangle simplification
kappa = 3

kappa = 10
kappa = 100

)LJXUHýäãý9DU\LQJýNNNNýIRUýWKHýEXQQ\ýPRGHOñýZLWKýWWWW ìï

7KHVHý JUDSKVý VKRZý XVý WKHý QDWXUHý RIý HUURUý JURZWKý LQý WKHý KLHUDUð
FKLHVñý EXWý WKH\ý FDQQRWý SRUWUD\ý WKHý ORFDOL]DWLRQý RIý SRLQWý UHSODFHð
PHQWVýRUýWKHýJHRPHWULFýFRQILJXUDWLRQVýZKHUHýSRLQWýUHSODFHPHQWýLV
FDOOHGýIRUïý:HýJHWýDýPXFKýEHWWHUýLQWXLWLRQýIRUýWKHVHýFKDUDFWHULVWLFV
IURPýUHQGHUHGýLPDJHVýRIýWKHýWHVWýPRGHOVï

3HUIRUPDQFHý&RPSDULVRQ

í

ìííííí

ëííííí

êííííí

éííííí

èííííí

í ëí éí çí åí ìíí ìëí

)UDPH

&
R
X
Q
W

+\EULGý7ì

+\EULGý7è

7ULDQJOHV

)LJXUHý ìíãý 7RWDOý SULPLWLYHý FRXQWVý IRUý Dý IO\ðWKURXJK
RIýWKHý%URQFRýHQYLURQPHQWïý+\EULGý7ìî7èýUHIHUVýWRýD
K\EULGý VLPSOLILFDWLRQý XVLQJý NNNN êñý WWWW ìý DQGý NNNN êñý WWWW èñ
UHVSHFWLYHO\ïý7ULDQJOHVý UHIHUý WRý DýSXUHý WULDQJOHý VLPð
SOLILFDWLRQï

+\EULGý3ULPLWLYHý'HFRPSRVLWLRQ

í

ìííííí

ëííííí

êííííí

éííííí

èííííí

í ëí éí çí åí ìíí ìëí

)UDPH

&
R
X
Q
W

7ULDQJOHV

3RLQWV

)LJXUHýììãý:HýVKRZýWKHýGHFRPSRVLWLRQýRIýWKHýK\EULG
SULPLWLYHVý GXULQJý WKHý H[DPSOHý IO\ðWKURXJKý RIý WKH
%URQFRýPRGHOï

)LJXUHýìëýVKRZVýWKHýEXQQ\ýEHLQJýJUDGXDOO\ýFRYHUHGýE\ýSRLQWVýDV
LWý UHFHGHVý LQWRý WKHý GLVWDQFHïý 7KHý ILUVWý SRLQWVý DSSHDUý DURXQGý WKH
VKDUSý WLSVýRIý WKHýHDUVýDQGý WKHýFXUYHVýRIý WKHý WRHVñý WKHQýFOXVWHUVýRI
SRLQWVý DSSHDUý LQý WKHý ULGJHVý RIý WKHý QHFNý DQGý KLQGTXDUWHUVñý DQG
ILQDOO\ýWKHýUHVWýRIýWKHýWULDQJOHVýDUHýFRQVXPHGýE\ýWKLVýSKHQRPHQRQï
7KHý ODVWý SODFHVý WRý UHPDLQý WULDQJOHVý DUHý WKHý EDFNý DQGý UHDUý RIý WKH
EXQQ\ñý ZKLFKý DUHý WKHý IODWWHVWïý ,Wý LVý SUHWW\ý FOHDUý WKDWý WKHý SRLQWV
EHQHILWýWKHýPRVWýLQýWKHýUHJLRQVýRIýKLJKýFXUYDWXUHñýZKHUHýVLPSOLILð
FDWLRQý LVý PRVWý OLPLWHGïý 7KLVý RFFXUVý SULPDULO\ý ZKHQý WKHý GLKHGUDO
DQJOHVýEHWZHHQýIDFHVýEHFRPHýVPDOOýDQGýWKHýPHVKýLVýWKHýFRDUVHVWï
)LJXUHýìèýVKRZVýWKHýVLPSOLILFDWLRQýE\ýLQFUHDVLQJýDQýREMHFWðVSDFH
HUURUýWROHUDQFHâýWKXVýWKHýUHQGHUHGýSRLQWVýQHDUHUýWRýWKHýH\HýSRVLWLRQ
DUHýODUJHUñýZLWKýODUJHUýVFUHHQðVSDFHýHUURUï
)LJXUHVýìêñýìéñýDQGýìæýVKRZýVLPLODUýWUDQVLWLRQVýIRUýWKHý%URQFRñ

KRUVHñý DQGý DUPDGLOORý PRGHOVïý 7KHý %URQFRý LQý SDUWLFXODUý VXIIHUV
IURPýVHOIðSHQHWUDWLRQýDUWLIDFWVýGXHýWRýPDQ\ýVXUIDFHVýZLWKýGLIIHUHQW
FRORUVýDQGý WLJKWý WROHUDQFHVïý:HýKDYHý VKRZQý LWý IRUý Dý V\VWHPýZLWK
N ìíý UDWKHUý WKDQý N êý EHFDXVHý VXFKý Dý V\VWHPý FDQý UHGXFHý WKHVH
DUWLIDFWVýVRPHZKDWýE\ýXVLQJýILQHUýSRLQWýVDPSOHVïý7ULDQJOHýVLPSOLð
ILFDWLRQýDORQHýDOVRýVXIIHUVýIURPýVXFKýDUWLIDFWVýRQýDýPRGHOýOLNHýWKLVñ
EXWý WKH\ý PD\ý EHý OHVVý SURQRXQFHGý WKDQý WKRVHý RIý WKHý IDWWHUý SRLQW
SULPLWLYHVýDUHï
)LJXUHýìçýVKRZVýFDSWXUHGýIUDPHVýIURPýWKHý%URQFRýHQYLURQPHQW

IO\ðWKURXJKýDQGýDOVRýDýFRPSDULVRQýWRýDýIUDPHýZLWKýDýVFUHHQðVSDFH
HUURUýRIýRQHýSL[HOýUHQGHUHGýXVLQJýWULDQJOHðRQO\ýVLPSOLILFDWLRQï

åý ',6&866,21ý$1'ý)8785(ý:25.
7RýRXUýNQRZOHGJHñýWKHýK\EULGýVLPSOLILFDWLRQýIUDPHZRUNýSUHVHQWHG
LVý WKHý ILUVWý V\VWHPý WKDWý WLJKWO\ý LQWHJUDWHVý SRO\JRQý DQGý SRLQW
UHQGHULQJýLQWRýDýVLQJOHýPXOWLðUHVROXWLRQýKLHUDUFK\ïý7KLVýKLHUDUFK\
LVýRSWLPL]HGýDFFRUGLQJýWRýWKHýUHODWLYHýSHUIRUPDQFHýFKDUDFWHULVWLFV
RIý WKHý SULPLWLYHý W\SHVý RQý Dý SDUWLFXODUý DUFKLWHFWXUHïý)RUý Dý JLYHQ
HUURUýERXQGñý LWý DFKLHYHVýDýJUHDWHUý UHGXFWLRQý LQý WKHýRYHUDOOýSULPLð
WLYHý FRXQWý DVý FRPSDUHGý WRý Dý VLQJOHðUHSUHVHQWDWLRQý KLHUDUFK\ïý $V
SDUWý RIý WKLVý UHVHDUFKñý ZHý KDYHý H[SORUHGý WZRý SDUDPHWHUVý WKDW
LQIOXHQFHý WKHý FKDUDFWHULVWLFVý RIý WKHý KLHUDUFK\ý ZHý EXLOGñý DQGý ZH
KDYHý LQYHVWLJDWHGý KRZý WKHý UHSODFHPHQWý RIý WULDQJOHVý ZLWKý SRLQWV
PDQLIHVWVýLWVHOIýLQýWKHýFRQWH[WýRIýVHYHUDOýPRGHOVï
$VýIXWXUHýZRUNñýZHýSODQýWRýXVHýRXUýKLHUDUFK\ýZLWKýDýGDWDýVWUXFð

WXUHýVXFKýDVýDQý/',ýWUHHïý7KHýH[DFWýDUUDQJHPHQWýRIýWKHýLPDJHVýZH
ZDUSý PD\ý GLIIHUý IURPý RWKHUý ê'ý LPDJHý ZDUSLQJý DSSOLFDWLRQV
EHFDXVHýRXUýSRLQWVýDUHýEHLQJýG\QDPLFDOO\ýDGGHGý WRýDQGýUHPRYHG
IURPý LQFOXVLRQý LQý WKHý ZDUSïý 2QHý FKDOOHQJHý ZLOOý EHý WRý NHHSý RXU
LPDJHVýGHQVHýHQRXJKýZLWKýSRLQWVýIRUýZDUSLQJýWKDWýZHýVWLOOýEHQHILW
IURPýWKHýDGGLWLRQDOýHIILFLHQF\ýLWýSURYLGHVýRYHUýWKHýWUDQVIRUPDWLRQ
RIýLQGLYLGXDOýSRLQWVï
$QRWKHUý LQWHUHVWLQJý DYHQXHý IRUý H[SORUDWLRQý LVý WKHý FRQVWUXFWLRQ

RIýVXFKýDýK\EULGýV\VWHPýLQýFRQMXQFWLRQýZLWKýDýWRSRORJ\ðPRGLI\LQJ
VLPSOLILFDWLRQýRSHUDWRUïý$OORZLQJýWRSRORJLFDOýPRGLILFDWLRQVýLQýWKH
SRO\JRQýGRPDLQýPD\ý¦OHYHOýWKHýSOD\LQJýILHOG§ýGXHýWRýWKHLUýDELOLW\
WRý FRQWLQXHý VLPSOLI\LQJý ORQJHUïý ,WýZLOOý EHý LQWHUHVWLQJý WRý VHHý KRZ
WKHýFRPSDULVRQýSOD\VýRXWýZKHQýERWKýRSHUDWRUVýFDQýPHUJHýREMHFWVï
$QGýILQDOO\ñýWKHýV\VWHPýZHýKDYHýSUHVHQWHGýKHUHýRQO\ýWDNHVýLQWR

DFFRXQWýWKHýJHRPHWULFýGHYLDWLRQýRIýWKHýVLPSOLILFDWLRQïý,WýGRHVýQRW
DFFRXQWý IRUý FRORUý HUURUñý WH[WXUHý HUURUñý QRUý GRHVý LWý SURYLGHý IRU
LOOXPLQDWLRQýRIýSRLQWVïý$OWKRXJKýPHDVXULQJýWKHýHUURUýRIýDWWULEXWHV
LVýVRPHZKDWýZHOOýXQGHUVWRRGýLQýWKHLUýRZQýGRPDLQVñýLWýLVýPXFKýOHVV
FOHDUý KRZý WRý FRPELQHý WKHPý LQWRý Dý XVHIXOý VFUHHQðVSDFHý PHWULFï
7KXVýDWWULEXWHýHUURUVýPD\ýEHýXVHGýWRýJXLGHýWKHýRIIðOLQHýRSWLPL]Dð
WLRQñý EXWý WKHLUý XVHý LQý WKHý LQWHUDFWLYHý GLVSOD\ý V\VWHPý LVý Dý PRUH
RSHQðHQGHGýSUREOHPï

äý $&.12:/('*0(176
:Hý ZRXOGý OLNHý WRý WKDQNý 6XERGKý .XPDUý IRUý KHOSý ZLWKý WKHý 07
OLEUDU\ýDQGýYLHZHUýDSSOLFDWLRQVýDQGýWKHý%HOOý/DEVý0XOWLPHGLDý/DE
IRUýWKHLUýVXSSRUWýRIýWKLVýUHVHDUFKïý:HýDOVRýH[WHQGýRXUýJUDWLWXGHýWR
WKHý 6WDQIRUGý &RPSXWHUý *UDSKLFVý /DEý IRUý WKHý EXQQ\ý PRGHOñ
9LHZSRLQWý /DEVý IRUý WKHý %URQFRý PRGHOñý 9HQNDWý .ULVKQDPXUWK\ñ
0DUFý /HYR\ñý DQGý 3HWHUý 6FKU|GHUý IRUý WKHý DUPDGLOORý PRGHOñý DQG
&\EHUZDUHýIRUýWKHýKRUVHýPRGHOï

5()(5(1&(6
&KDQJñý&KXQð)Dñý*DU\ý%LVKRSñýDQGý$QVHOPRý/DVWUDïý/',ý7UHHãý$
+LHUDUFKLFDOý5HSUHVHQWDWLRQýIRUý,PDJHð%DVHGý5HQGHULQJïý3URFHHGLQJV
RIý6,**5$3+ýöääïýSSïýëäìðëäåï

&RKHQñý-RQDWKDQñý'LQHVKý0DQRFKDñýDQGý0DUFý2ODQRïý6LPSOLI\LQJ
3RO\JRQDOý0RGHOVýXVLQJý6XFFHVVLYHý0DSSLQJVïý3URFHHGLQJVýRIý,(((
9LVXDOL]DWLRQýöäæïýSSïýêäèðéíëï

&XUOHVVñý%ýDQGý0ý/HYR\ïý$ý9ROXPHWULFý0HWKRGýIRUý%XLOGLQJý&RPSOH[
0RGHOVýIURPý5DQJHý,PDJHVïý3URFHHGLQJVýRIý6,**5$3+ýöäçïýSSïýêíêð
êìëï

'H)ORULDQLñý/HLODñý3DRODý0DJLOORñýDQGý(QULFRý3XSSRïý%XLOGLQJýDQG
7UDYHUVLQJýDý6XUIDFHýDWý9DULDEOHý5HVROXWLRQïý3URFHHGLQJVýRIý,(((
9LVXDOL]DWLRQýöäæïýSSïýìíêðììíï

'H)ORULDQLñý/HLODñý3DRODý0DJLOORñýDQGý(QULFRý3XSSRïý(IILFLHQWý,PSOHPHQð
WDWLRQýRIý0XOWLð7ULDQJXODWLRQVïý3URFHHGLQJVýRIý,(((ý9LVXDOL]DWLRQýöäåï
SSïýéêðèíï

(Oð6DQDñý-LKDGýDQGý$PLWDEKý9DUVKQH\ïý&RQWUROOHGý6LPSOLILFDWLRQýRIý*HQXV
IRUý3RO\JRQDOý0RGHOVïý3URFHHGLQJVýRIý,(((ý9LVXDOL]DWLRQöäæïýSSïýéíêð
éìíï

(ULNVRQñý&DUOýDQGý'LQHVKý0DQRFKDïý*$36ãý*HQHUDOýDQGý$XWRPDWLF
3RO\JRQDOý6LPSOLILFDWLRQïý$&0ý6\PSRVLXPýRQý,QWHUDFWLYHýê'ý*UDSKLF
VýöääïýSSïýæäðååï

*DUODQGñý0LFKDHOýDQGý3DXOý+HFNEHUWïý6LPSOLI\LQJý6XUIDFHVýZLWKý&RORUýDQG
7H[WXUHýXVLQJý4XDGULFý(UURUý0HWULFVïý3URFHHGLQJVýRIý,(((ý9LVXDOL]Dð
WLRQýöäåïýSSïýëçêðëæíï

*DUODQGñý0LFKDHOýDQGý3DXOý+HFNEHUWïý6XUIDFHý6LPSOLILFDWLRQýXVLQJý4XDGULF
(UURUý%RXQGVïý3URFHHGLQJVýRIý6,**5$3+ýöäæïýSSïýëíäðëìçï

*URVVPDQñý-ý3ýDQGý:ý'DOO\ïý3RLQWý6DPSOHý5HQGHULQJïýäWKý(XURJUDSKLFV
:RUNVKRSýRQý5HQGHULQJýöäåñýSSïýìåìðìäëï

*Xp]LHFñý$QGUpïý6XUIDFHý6LPSOLILFDWLRQýZLWKý9DULDEOHý7ROHUDQFHïý3URð
FHHGLQJVýRIý6HFRQGý$QQXDOý,QWHUQDWLRQDOý6\PSRVLXPýRQý0HGLFDOý5Rð
ERWLFVýDQGý&RPSXWHUý$VVLVWHGý6XUJHU\ýõ05&$6ýöäèôïýSSïýìêëðìêäï

+RSSHñý+XJXHVïý3URJUHVVLYHý0HVKHVïý3URFHHGLQJVýRIý6,**5$3+ýöäçïýSSï
ääðìíåï

+RSSHñý+XJXHVïý9LHZð'HSHQGHQWý5HILQHPHQWýRIý3URJUHVVLYHý0HVKHVï
3URFHHGLQJVýRIý6,**5$3+ýöäæïýSSïýìåäðìäåï

+RSSHñý+ñý7ý'H5RVHñý7ý'XFKDPSñý-ý0F'RQDOGñýDQGý:ý6WXHW]OHïý6XUIDFH
5HFRQVWUXFWLRQýIURPý8QRUJDQL]HGý3RLQWVïý3URFHHGLQJVýRIý6,**5$3+
öäëïýSSïýæìðæåï

.OHLQñý5HLQKDUGñý*XQWKHUý/LHELFKñýDQGý:ROIJDQJý6WUD�HUïý0HVKý5HGXFWLRQ
ZLWKý(UURUý&RQWUROïý3URFHHGLQJVýRIý,(((ý9LVXDOL]DWLRQýöäçï

/HHñý$DURQý:ïý)ïñý:LPý6ZHOGHQVñý3HWHUý6FKU|GHUñý/DZUHQFHý&RZVDUñýDQG
'DYLGý'RENLQïý0$36ãý0XOWLUHVROXWLRQý$GDSWLYHý3DUDPHWHUL]DWLRQýRI
6XUIDFHVïý3URFHHGLQJVýRIý6,**5$3+ýöäåïýSSïýäèðìíéï

/HYR\ñý0DUFýDQGý7XUQHUý:KLWWHGïý7KHý8VHýRIý3RLQWVýDVýDý'LVSOD\ý3ULPLð
WLYHïý7HFKQLFDOý5HSRUWý75ýåèðíëëïý8QLYHUVLW\ýRIý1RUWKý&DUROLQDýDW
&KDSHOý+LOOïýìäåèï

/XHENHñý'DYLGýDQGý&DUOý(ULNVRQïý9LHZð'HSHQGHQWý6LPSOLILFDWLRQýRI
$UELWUDU\ý3RO\JRQDOý(QYLURQPHQWVïý3URFHHGLQJVýRIý6,**5$3+ýöäæïýSSï
ìääðëíåï

0D[ñý1ýDQGý.ý2KVDNLïý5HQGHULQJý7UHHVýIURPý3UHFRPSXWHGý=ð%XIIHU
9LHZVïý3URFHHGLQJVýRIý5HQGHULQJý7HFKQLTXHVýöäèïýSSïýéèðèéï

0F0LOODQñý/ýDQGý*ý%LVKRSïý3OHQRSWLFý0RGHOLQJãý$Qý,PDJHð%DVHG
5HQGHULQJý6\VWHPïý3URFHHGLQJVýRIý6,**5$3+ýöäèïýSSïýêäðéçï

3ILVWHUñý+ñý0ý=ZLFNHUñý-ýYDQý%DDUñýDQGý0ý*URVVïý6XUIHOVãý6XUIDFHý(OHPHQWV
DVý5HQGHULQJý3ULPLWLYHVïý3URFHHGLQJVýRIý6,**5$3+ýëíííïýSSïýêêèð
êéëï

3RSRYLFñý-RYDQýDQGý+XJXHVý+RSSHïý3URJUHVVLYHý6LPSOLFLDOý&RPSOH[HVï
3URFHHGLQJVýRIý6,**5$3+ýöäæïýSSïýëìæðëëéï

5HHYHVñý:ý7ïý3DUWLFOHý6\VWHPVãý$ý7HFKQLTXHýIRUý0RGHOLQJýDý&ODVVýRI
)X]]\ý2EMHFWVïý3URFHHGLQJVýRIý6,**5$3+ýöåêïýSSïýêèäðêæçï

5RVVLJQDFñý-DUHNýDQGý3DXOý%RUUHOïý0XOWLð5HVROXWLRQýê'ý$SSUR[LPDWLRQV
IRUý5HQGHULQJïý0RGHOLQJýLQý&RPSXWHUý*UDSKLFVïý6SULQJHUð9HUODJýìääêï
SSïýéèèðéçèï

5XVLQNLHZLF]ñý6ýDQGý0ý/HYR\ïý46SODWãý$ý0XOWLUHVROXWLRQý3RLQWý5HQGHULQJ
6\VWHPýIRUý/DUJHý0HVKHVïý3URFHHGLQJVýRIý6,**5$3+ýëíííïýSSïýêêçð
êèëï

6FKURHGHUñý:ïý$ý7RSRORJ\ð0RGLI\LQJý3URJUHVVLYHý'HFLPDWLRQý$OJRULWKPï
3URFHHGLQJVýRIý,(((ý9LVXDOL]DWLRQöäæïýSSïýëíèðëìëï

;LDñý-XOLHý&ïñý-LKDGý(Oð6DQDñýDQGý$PLWDEKý9DUVKQH\ïý$GDSWLYHý5HDOð7LPH
/HYHOðRIð'HWDLOð%DVHGý5HQGHULQJýIRUý3RO\JRQDOý0RGHOVïý,(((ý7UDQVð
DFWLRQVýRQý9LVXDOL]DWLRQýDQGý&RPSXWHUý*UDSKLFVïýYROïýêõëôïýìääæïýSSï
ìæìðìåêï

)LJXUHýìëãý%XQQ\ýPRGHOýZLWKýVFUHHQðVSDFHýHUURUýRIýè
SL[HOVýõNNNN êñýWWWW èôïýõZLUHIUDPHýLQGLFDWHVýWULDQJOHVô

)LJXUHý ìêãý%URQFRýPRGHOýZLWKý èý SL[HOVý RIý GHYLDWLRQ
DQGý]RRPHGýLQýDWýëíýSL[HOVýRIýGHYLDWLRQýõNNNN ìíñýWWWW ìôï

)LJXUHýìéãý9LHZýRIýWKHýKRUVHýPRGHOýZLWKýëíýSL[HOVýRI
GHYLDWLRQýõNNNN ìíñýWWWW ìôï

)LJXUHýìèãý%XQQ\ýPRGHOýZLWKýREMHFWýVSDFHýGHYLDWLRQ
RIýìøñýëøñýêøñýDQGýéøýRIýLWVýERXQGLQJýER[ýGLDJRð
QDOýõNNNN êñýWWWW èôï

7ULDQJOHýVLPSOLILFDWLRQýRQO\ý¤ýìýSL[HOýRIýGHYLDWLRQ

7ULDQJOHýVLPSOLILFDWLRQýRQO\ý¤ýêýSL[HOVýRIýGHYLDWLRQ

+\EULGýVLPSOLILFDWLRQý¤ýêýSL[HOVýRIýGHYLDWLRQýýõNNNN êñýWWWW ìô

)LJXUHýìçãý2QHýIUDPHýIURPýWKHý%URQFRýHQYLURQPHQW
IO\ðWKURXJKï

)LJXUHýìæãý+\EULGýVLPSOLILFDWLRQýRIýDUPDGLOORýZLWKýê
SL[HOVýRIýGHYLDWLRQýõNNNN êñýWWWW èôï

Abstract
We present a new algorithm for appearance-preserving simplifi-
cation. Not only does it generate a low-polygon-count approxi-
mation of a model, but it also preserves the appearance. This is
accomplished for a particular display resolution in the sense that
we properly sample the surface position, curvature, and color
attributes of the input surface. We convert the input surface to a
representation that decouples the sampling of these three attrib-
utes, storing the colors and normals in texture and normal maps,
respectively. Our simplification algorithm employs a new texture
deviation metric, which guarantees that these maps shift by no
more than a user-specified number of pixels on the screen. The
simplification process filters the surface position, while the run-
time system filters the colors and normals on a per-pixel basis. We
have applied our simplification technique to several large models
achieving significant amounts of simplification with little or no
loss in rendering quality.

CR Categories: I.3.5: Object hierarchies, I.3.7: Color, shad-
ing, shadowing, and texture

Additional Keywords: simplification, attributes, parameteri-
zation, color, normal, texture, maps

1 INTRODUCTION
Simplification of polygonal surfaces has been an active area of
research in computer graphics. The main goal of simplification is
to generate a low-polygon-count approximation that maintains the
high fidelity of the original model. This involves preserving the
model’s main features and overall appearance. Typically, there are
three appearance attributes that contribute to the overall appear-
ance of a polygonal surface:

1. Surface position, represented by the coordinates of the
polygon vertices.

2. Surface curvature, represented by a field of normal
vectors across the polygons.

3. Surface color, also represented as a field across the
polygons.

The number of samples necessary to represent a surface accurately
depends on the nature of the model and its area in screen pixels
(which is related to its distance from the viewpoint). For a
simplification algorithm to preserve the appearance of the input
surface, it must guarantee adequate sampling of these three
attributes. If it does, we say that it has preserved the appearance
with respect to the display resolution.

 e-mail: {cohenj,dm}@cs.unc.edu, olano@engr.sgi.com
WWW: http://www.cs.unc.edu/~geom/APS

The majority of work in the field of simplification has focused
on surface approximation algorithms. These algorithms bound the
error in surface position only. Such bounds can be used to
guarantee a maximum deviation of the object’s silhouette in units
of pixels on the screen. While this guarantees that the object will
cover the correct pixels on the screen, it says nothing about the
final colors of these pixels.

Of the few simplification algorithms that deal with the remain-
ing two attributes, most provide some threshold on a maximum or
average deviation of these attribute values across the model.
While such measures do guarantee adequate sampling of all three
attributes, they do not generally allow increased simplification as
the object becomes smaller on the screen. These threshold metrics
do not incorporate information about the object’s distance from
the viewpoint or its area on the screen. As a result of these metrics
and of the way we typically represent these appearance attributes,
simplification algorithms have been quite restricted in their ability
to simplify a surface while preserving its appearance.

1.1 Main Contribution
We present a new algorithm for appearance-preserving simplifi-
cation. We convert our input surface to a decoupled representa-
tion. Surface position is represented in the typical way, by a set of
triangles with 3D coordinates stored at the vertices. Surface colors
and normals are stored in texture and normal maps, respectively.
These colors and normals are mapped to the surface with the aid
of a surface parameterization, represented as 2D texture coordi-
nates at the triangle vertices.

The surface position is filtered using a standard surface ap-
proximation algorithm that makes local, complexity-reducing
simplification operations (e.g. edge collapse, vertex removal, etc.).
The color and normal attributes are filtered by the run-time system
at the pixel level, using standard mip-mapping techniques [1].

Because the colors and normals are now decoupled from the
surface position, we employ a new texture deviation metric, which
effectively bounds the deviation of a mapped attribute value’s
position from its correct position on the original surface. We thus
guarantee that each attribute is appropriately sampled and mapped
to screen-space. The deviation metric necessarily constrains the
simplification algorithm somewhat, but it is much less restrictive
than retaining sufficient tessellation to accurately represent colors
and normals in a standard, per-vertex representation. The preser-
vation of colors using texture maps is possible on all current
graphics systems that supports real-time texture maps. The
preservation of normals using normal maps is possible on proto-
type machines today, and there are indications that hardware

Appearance-Preserving Simplification

Jonathan Cohen Marc Olano Dinesh Manocha

University of North Carolina at Chapel Hill

Figure 1: Bumpy Torus Model. Left: 44,252 triangles
full resolution mesh. Middle and Right: 5,531 triangles,
0.25 mm maximum image deviation. Middle: per-vertex
normals. Right: normal maps

Bibliographic Information
Cohen, Jonathan, Marc Olano, and Dinesh Manocha. "Appearance-Preserving Simplification." Proceedings of SIGGRAPH 98. (Orlando, FL, July 19-24, 1998). pp. 115-122.

support for real-time normal maps will become more widespread
in the next several years.

One of the nice properties of this approach is that the user-
specified error tolerance, ε, is both simple and intuitive; it is a
screen-space deviation in pixel units. A particular point on the
surface, with some color and some normal, may appear to shift by
at most ε pixels on the screen.

We have applied our algorithm to several large models. Figure
1 clearly shows the improved quality of our appearance-
preserving simplification technique over a standard surface
approximation algorithm with per-vertex normals. By merely
controlling the switching distances properly, we can discretely
switch between a few statically-generated levels of detail (sampled
from a progressive mesh representation) with no perceptible
artifacts. Overall, we are able to achieve a significant speedup in
rendering large models with little or no loss in rendering quality.

1.2 Paper Organization
In Section 2, we review the related work from several areas.
Section 3 presents an overview of our appearance-preserving
simplification algorithm. Sections 4 through 6 describe the
components of this algorithm, followed by a discussion of our
particular implementation and results in Section 7. Finally, we
mention our ongoing work and conclude in Section 8.

2 RELATED WORK
Research areas related to this paper include geometric levels-of-
detail, preservation of appearance attributes, and map-based
representations. We now briefly survey these.

2.1 Geometric Levels-Of-Detail
Given a polygonal model, a number of algorithms have been
proposed for generating levels-of-detail. These methods differ
according to the local or global error metrics used for simplifica-
tion and the underlying data structures or representations. Some
approaches based on vertex clustering [2, 3] are applicable to all
polygonal models and do not preserve the topology of the original
models. Other algorithms assume that the input model is a valid
mesh. Algorithms based on vertex removal [4, 5] and local error
metrics have been proposed by [6-10]. Cohen et al. [11] and Eck
et al. [12] have presented algorithms that preserve topology and
use a global error bound. Our appearance-preserving simplifica-
tion algorithm can be combined with many of these.

Other simplification algorithms include decimation techniques
based on vertex removal [4], topology modification [13], and
controlled simplification of genus [14]. All of these algorithms
compute static levels-of-detail. Hoppe [15] has introduced an
incremental representation, called the progressive mesh, and
based on that representation view-dependent algorithms have been
proposed by [16, 17]. These algorithms use different view-
dependent criteria like local illumination, screen-space surface
approximation error, and silhouette edges to adaptively refine the
meshes. Our appearance preserving simplification algorithm
generates a progressive mesh, which can be used by these view-
dependent algorithms.

2.2 Preserving Appearance Attributes
Bajaj and Schikore [18] have presented an algorithm to simplify
meshes with associated scalar fields to within a given tolerance.
Hughes et al. [19] have presented an algorithm to simplify
radiositized meshes. Erikson and Manocha[20] grow error
volumes for appearance attributes as well as geometry. Many
algorithms based on multi-resolution analysis have been proposed
as well. Schroeder and Sweldens [21] have presented algorithms
for simplifying functions defined over a sphere. Eck et al. [12]

apply multi-resolution analysis to simplify arbitrary meshes, and
Certain et al. [22] extend this to colored meshes by separately
analyzing surface geometry and color. They make use of texture
mapping hardware to render the color at full resolution. It may be
possible to extend this approach to handle other functions on the
mesh. However, algorithms based on vertex removal and edge
collapses [11, 15] have been able to obtain more drastic simplifi-
cation (in terms of reducing the polygon count) and produce
better looking simplifications [15].

Hoppe [15] has used an optimization framework to preserve
discrete and scalar surface appearance attributes. Currently, this
algorithm measures a maximum or average deviation of the scalar
attributes across the model. Our approach can be incorporated
into this comprehensive optimization framework to preserve the
appearance of colors and normals, while allowing continued
simplification as an object's screen size is reduced.

2.3 Map-based Representations
Texture mapping is a common technique for defining color on a
surface. It is just one instance of mapping, a general technique for
defining attributes on a surface. Other forms of mapping use the
same texture coordinate parameterization, but with maps that
contain something other than surface color. Displacement maps
[23] contain perturbations of the surface position. They are
typically used to add surface detail to a simple model. Bump maps
[24] are similar, but instead give perturbations of the surface
normal. They can make a smooth surface appear bumpy, but will
not change the surface’s silhouette. Normal maps [25] can also
make a smooth surface appear bumpy, but contain the actual
normal instead of just a perturbation of the normal.

Texture mapping is available in most current graphics systems,
including workstations and PCs. We expect to see bump mapping
and similar surface shading techniques on graphics systems in the
near future [26]. In fact, many of these mapping techniques are
already possible using the procedural shading capabilities of
PixelFlow[27].

Several researchers have explored the possibility of replacing
geometric information with texture. Kajiya first introduced the
"hierarchy of scale" of geometric models, mapping, and light-
ing[28]. Cabral et. al. [29] addressed the transition between bump
mapping and lighting effects. Westin et. al. [30] generated BRDFs
from a Monte-Carlo ray tracing of an idealized piece of surface.
Becker and Max [31] handle transitions from geometric detail in
the form of displacement maps to shading in the form of bump
maps. Fournier [25] generates maps with normal and shading
information directly from surface geometry. Krishnamurthy and
Levoy [32] fit complex, scanned surfaces with a set of smooth B-
spline patches, then store some of the lost geometric information
in a displacement map or bump map. Many algorithms first
capture the geometric complexity of a scene in an image-based
representation by rendering several different views and then
render the scene using texture maps [33-36].

Surface
Parameterization

Map
Creation

Surface
Approximation

Texture
Deviation

Metric

Simplification
Representation

ConversionPolygonal
Surface

Progressive
Mesh

Texture and
Normal Maps

Figure 2: Components of an appearance-preserving
simplification system.

3 OVERVIEW
We now present an overview of our appearance-preserving
simplification algorithm. Figure 2 presents a breakdown of the
algorithm into its components. The input to the algorithm is the
polygonal surface, M0, to be simplified. The surface may come
from one of a wide variety of sources, and thus may have a variety
of characteristics. The types of possible input models include:

• CAD models, with per-vertex normals and a single color
• Radiositized models, with per-vertex colors and no normals
• Scientific visualization models, with per-vertex normals and

per-vertex colors
• Textured models, with texture-mapped colors, with or

without per-vertex normals

To store the colors and normals in maps, we need a parameteriza-
tion of the surface, F0(X): M0→P, where P is a 2D texture domain
(texture plane), as shown in Figure 3. If the input model is already
textured, such a parameterization comes with the model. Other-
wise, we create one and store it in the form of per-vertex texture
coordinates. Using this parameterization, per-vertex colors and
normals are then stored in texture and normal maps.

The original surface and its texture coordinates are then fed to
the surface simplification algorithm. This algorithm is responsible
for choosing which simplification operations to perform and in
what order. It calls our texture deviation component to measure
the deviation of the texture coordinates caused by each proposed
operation. It uses the resulting error bound to help make its
choices of operations, and stores the bound with each operation in
its progressive mesh output.

We can use the resulting progressive mesh with error bounds to
create a static set of levels of detail with error bounds, or we can
use the progressive mesh directly with a view-dependent simplifi-
cation system at run-time. Either way, the error bound allows the
run-time system to choose or adjust the tessellation of the models
to meet a user-specified tolerance. It is also possible for the user
to choose a desired polygon count and have the run-time system
increase or decrease the error bound to meet that target.

4 REPRESENTATION CONVERSION
Before we apply the actual simplification component of our
algorithm, we perform a representation conversion (as shown in
Figure 2). The representation we choose for our surface has a
significant impact on the amount of simplification we can perform
for a given level of visual fidelity. To convert to a form which
decouples the sampling rates of the colors and normals from the
sampling rate of the surface, we first parameterize the surface,
then store the color and normal information in separate maps.

4.1 Surface Parameterization
To store a surface's color or normal attributes in a map, the
surface must first have a 2D parameterization. This function,
F0(X): M0→P, maps points, X, on the input surface, M0, to points,
x,∗ on the texture plane, P (see Figure 3). The surface is typically
decomposed into several polygonal patches, each with its own
parameterization. The creation of such parameterizations has been
an active area of research and is fundamental for shape transfor-
mation, multi-resolution analysis, approximation of meshes by
NURBS, and texture mapping. Though we do not present a new
algorithm for such parameterization here, it is useful to consider

∗ Capital letters (e.g. X) refer to points in 3D, while lowercase letters
(e.g. x) refer to points in 2D.

the desirable properties of such a parameterization for our algo-
rithm. They are:

1. Number of patches: The parameterization should use as few
patches as possible. The triangles of the simplified surface
must each lie in a single patch, so the number of patches places
a bound on the minimum mesh complexity.

2. Vertex distribution: The vertices should be as evenly distrib-
uted in the texture plane as possible. If the parameterization
causes too much area compression, we will require a greater
map resolution to capture all of our original per-vertex data.

3. One-to-one mapping: The mapping from the surface to the
texture plane should be one-to-one. If the surface has folds in
the texture plane, parts of the texture will be incorrectly stored
and mapped back to the surface

Our particular application of the parameterization makes us
somewhat less concerned with preserving aspect ratios than some
other applications are. For instance, many applications apply
F-1(x) to map a pre-synthesized texture map to an arbitrary
surface. In that case, distortions in the parameterization cause the
texture to look distorted when applied to the surface. However, in
our application, the color or normal data originates on the surface
itself. Any distortion created by applying F(X) to map this data
onto P is reversed when we apply F-1(x) to map it back to M.

Algorithms for computing such parameterizations have been
studied in the computer graphics and graph drawing literature.

Computer Graphics: In the recent computer graphics litera-
ture, [12, 37, 38] use a spring system with various energy terms to
distribute the vertices of a polygonal patch in the plane. [12, 32,
38, 39] provide methods for subdividing surfaces into separate
patches based on automatic criteria or user-guidance. This body of
research addresses the above properties one and two, but unfortu-
nately, parameterizations based on spring-system algorithms do
not generally guarantee a one-to-one mapping.

Graph Drawing: The field of graph drawing addresses the
issue of one-to-one mappings more rigorously. Relevant topics
include straight-line drawings on a grid [40] and convex straight-
line drawings [41]. Battista et al. [42] present a survey of the
field. These techniques produce guaranteed one-to-one mappings,
but the necessary grids for a graph with V vertices are worst case
(and typically) O(V) width and height, and the vertices are
generally unevenly spaced.

To break a surface into polygonal patches, we currently apply
an automatic subdivision algorithm like that presented in [12].
Their application requires a patch network with more constraints
than ours. We can generally subdivide the surface into fewer
patches. During this process, which grows Voronoi-like patches,
we simply require that each patch not expand far enough to touch
itself. To produce the parameterization for each patch, we employ

Mi-1 Mi

P

edge collapse

Fi-1 Fi
-1

Vgen

vgen

Figure 3: A look at the ith edge collapse. Computing
Vgen determines the shape of the new mesh, Mi. Com-
puting vgen determines the new mapping Fi, to the tex-
ture plane, P.

a spring system with uniform weights. A side-by-side comparison
of various choices of weights in [12] shows that uniform weights
produce more evenly-distributed vertices than some other choices.
For parameterizations used only with one particular map, it is also
possible to allow more area compression where data values are
similar. While this technique will generally create reasonable
parameterizations, it would be better if there were a way to also
guarantee that F(X) is one-to-one, as in the graph drawing
literature.

4.2 Creating Texture and Normal Maps
Given a polygonal surface patch, M0, and its 2D parameterization,
F, it is straightforward to store per-vertex colors and normals into
the appropriate maps using standard rendering software. To create
a map, scan convert each triangle of M0, replacing each of its
vertex coordinates, Vj, with F(Vj), the texture coordinates of the
vertex. For a texture map, apply the Gouraud method for linearly
interpolating the colors across the triangles. For a normal map,
interpolate the per-vertex normals across the triangles instead
(Figure 4).

The most important question in creating these maps is what the
maximum resolution of the map images should be. To capture all
the information from the original mesh, each vertex's data should
be stored in a unique texel. We can guarantee this conservatively
by choosing 1/d x 1/d for our map resolution, where d is the
minimum distance between vertex texture coordinates:

d
i j i j

i j= −
∈ ≠

min () ()
, ,V V

F V F V
M 0

(1)

If the vertices of the polygonal surface patch happen to be a
uniform sampling of the texture space (e.g. if the polygonal
surface patch was generated from a parametric curved surface
patch), then the issues of scan conversion and resolution are
simplified considerably. Each vertex color (or normal) is simply
stored in an element of a 2D array of the appropriate dimensions,
and the array itself is the map image.

It is possible to trade off accuracy of the map data for run-time
texturing resources by scaling down the initial maps to a lower
resolution.

5 SIMPLIFICATION ALGORITHM
Once we have decomposed the surface into one or more parame-
terized polygonal patches with associated maps, we begin the
actual simplification process. Many simplification algorithms
perform a series of edge collapses or other local simplification
operations to gradually reduce the complexity of the input surface.

The order in which these operations are performed has a large
impact on the quality of the resulting surface, so simplification
algorithms typically choose the operations in order of increasing
error according to some metric. This metric may be local or global
in nature, and for surface approximation algorithms, it provides
some bound or estimate on the error in surface position. The
operations to be performed are typically maintained in a priority
queue, which is continually updated as the simplification pro-
gresses. This basic design is applied by many of the current
simplification algorithms, including [6-8, 15].

To incorporate our appearance-preservation approach into such
an algorithm, the original algorithm is modified to use our texture
deviation metric in addition to its usual error metric. When an
edge is collapsed, the error metric of the particular surface
approximation algorithm is used to compute a value for Vgen, the
surface position of the new vertex (see Figure 3). Our texture
deviation metric is then applied to compute a value for vgen, the
texture coordinates of the new vertex.

For the purpose of computing an edge’s priority, there are sev-
eral ways to combine the error metrics of surface approximation
along with the texture deviation metric, and the appropriate choice
depends on the algorithm in question. Several possibilities for
such a total error metric include a weighted combination of the
two error metrics, the maximum or minimum of the error metrics,
or one of the two error metrics taken alone. For instance, when
integrating with Garland and Heckbert’s algorithm [6], it would
be desirable to take a weighted combination in order to retain the
precedence their system accords the topology-preserving collapses
over the topology-modifying collapses. Similarly, a weighted
combination may be desirable for an integration with Hoppe’s
system [15], which already optimizes error terms corresponding to
various mesh attributes.

The interactive display system later uses the error metrics to
determine appropriate distances from the viewpoint either for
switching between static levels of detail or for collapsing/splitting
the edges dynamically to produce adaptive, view-dependent
tessellations. If the system intends to guarantee that certain
tolerances are met, the maximum of the error metrics is often an
appropriate choice.

6 TEXTURE DEVIATION METRIC
A key element of our approach to appearance-preservation is the
measurement of the texture coordinate deviation caused by the
simplification process. We provide a bound on this deviation, to

Figure 4: A patch from the leg
of an armadillo model and its
associated normal map.

Figure 5: Lion
model.

Figure 6: Texture coordinate deviation and correction
on the lion’s tail. Left: 1,740 triangles full resolution.
Middle and Right: 0.25 mm maximum image deviation.
Middle: 108 triangles, no texture deviation metric.
Right: 434 triangles with texture metric.

be used by the simplification algorithm to prioritize the potential
edge collapses and by the run-time visualization system to choose
appropriate levels of detail based on the current viewpoint. The
lion’s tail in Figure 6 demonstrates the need to measure texture
coordinate deviation. The center figure is simplified by a surface
approximation algorithm without using a texture deviation metric.
The distortions are visible in the areas marked by red circles. The
right tail is simplified using our texture deviation metric and does
not have visible distortions. The image-space deviation bound
now applies to the texture as well as to the surface.

For a given point, X, on simplified mesh Mi, this deviation is
the distance in 3D from X to the point on the input surface with
the same texture coordinates:

Ti i() F (F ())X X X= − −
0

1 (2)

We define the texture coordinate deviation of a whole triangle to
be the maximum deviation of all the points in the triangle, and
similarly for the whole surface:

T () max T (); T () max T ()i i i i i
i

∆
∆

= =
∈ ∈X X

X XM
M

(3)

To compute the texture coordinate deviation incurred by an edge
collapse operation, our algorithm takes as input the set of triangles
before the edge collapse and Vgen, the 3D coordinates of the new
vertex generated by the collapse operation. The algorithm outputs
vgen, the 2D texture coordinates for this generated vertex, and a
bound on Ti(∆) for each of the triangles after the collapse.

6.1 Computing New Texture Coordinates
We visualize the neighborhood of an edge to be collapsed in the
texture plane, P, as shown in Figure 3. The boundary of the edge
neighborhood is a polygon in P. The edge collapse causes us to
replace the two vertices of the edge with a single vertex. The 3D
coordinates, Vgen of this generated vertex are provided to us by the
surface approximation algorithm. The first task of the texture
deviation algorithm is to compute vgen, the 2D texture coordinates
of this generated vertex.

For vgen to be valid, it must lie in the convex kernel of our
polygon in the texture plane [43] (see Figure 7). Meeting this
criterion ensures that the set of triangles after the edge collapse
covers exactly the same portion of the texture plane as the set of
triangles before the collapse.

Given a candidate point in the texture plane, we efficiently test
the kernel criterion with a series of dot products to see if it lies on
the inward side of each polygon edge. We first test some heuristic
choices for the texture coordinates – the midpoint of the original
edge in the texture plane or one of the edge vertices. If the
heuristic choices fail we compute a point inside the kernel by
averaging three corners, found using linear programming tech-
niques [43].

6.2 Patch Borders & Continuity
Unlike an interior edge collapse, an edge collapse on a patch
border can change the coverage in the texture plane, either by
cutting off some of texture space or by extending into a portion of
texture space for which we have no map data. Since neither of

these is acceptable, we add additional constraints on the choice of
vgen at patch borders.

We assume that the area of texture space for which we have
map data is rectangular (though the method works for any map
that covers a polygonal area in texture space), and that the edges
of the patch are also the edges of the map. If the entire edge to be
collapsed lies on a border of the map, we restrict vgen to lie on the
edge. If one of the vertices of the edge lies on a corner of the map,
we further restrict vgen to lie at that vertex. If only one vertex is on
the border, we restrict vgen to lie at that vertex. If one vertex of the
edge lies on one border of the map and the other vertex lies on a
different border, we do not allow the edge collapse.

The surface parameterization component typically breaks the
input model into several connected patches. To preserve geomet-
ric and texture continuity across the boundary between them, we
add further restrictions on the simplifications that are performed
along the border. The shared border edges must be simplified on
both patches, with matching choices of Vgen and vgen.

6.3 Measuring Texture Deviation
Texture deviation is a measure of the parametric distortion caused
by the simplification process. We measure this deviation using a
method similar to the one presented to measure surface deviation
in [8]. The main difference is that we now measure the deviation
using our mapping in the texture plane, rather than in the plane of
some planar projection. While [8] presents an overview of this
technique, we present it more formally.

Given the overlay (see Figure 8(a)) in the texture plane, P, of
two simplified versions of the surface, Mi and Mj, we define the
incremental texture deviation between them:

E () F () F (),i j i jx x x= −− −1 1 (4)

This is the deviation between corresponding 3D points on the
surfaces, both with texture coordinates, x. Between any two
sequential surfaces, Mi and Mi-1, differing only by an edge col-
lapse, the incremental deviation, Ei,i-1(x), is only non-zero in the
neighborhood of the collapsed edge (i.e. only in the triangles that
actually move).

The edges on the overlay in P partition the region into a set of
convex, polygonal mapping cells (each identified by a dot in
Figure 8(b)). Within each mapping cell, the incremental deviation
function is linear, so the maximum incremental deviation for each
cell occurs at one of its boundary points. Thus, we bound the
incremental deviation using only the deviation at the cell vertices,
vk:

E () max E () max E (), , ,i i i i i i k
k

− ∈ − −= =1 1 1P
Px v

x v (5)

In terms of the incremental deviation, the total texture deviation,
defined in (2) (the distance from points on Mi to corresponding
points on the original surface, M0) is

() ()()T E Fi i, i=X X0 (6)

We approximate Ei,0(x) using a set of axis-aligned boxes. This
provides a convenient representation of a bound on Ti(X), which

(a) (b)

Figure 7: (a) An invalid choice for vgen in P, causing the
new triangles extend outside the polygon. (b) Valid
choices must lie in the shaded kernel.

Collapsed
Edge

Generated
Vertex

(a) (b)
Figure 8: (a) An overlay in P determines the mapping
between Mi-1 and Mi. (b) A set of polygonal mapping
cells, each containing a dot.

we can update from one simplified mesh to the next without
having to refer to the original mesh. Each triangle, ∆k in Mi, has its
own axis-aligned box, bi,k such that at every point on the triangle,
the Minkowski sum of the 3D point with the box gives a region
that contains the point on the original surface with the same
texture coordinates.

()()∀ ∈ ∈ ⊕−X X X∆k i i k, bF F ,0
1 (7)

Figure 9(a) shows an original surface (curve) in black and a
simplification of it, consisting of the thick blue and green lines.
The box associated with the blue line, bi,0, is shown in blue, while
the box for the green line, bi,1, is shown in green. The blue box
slides along the blue line; at every point of application, the point
on the base mesh with the same texture coordinate is contained
within the translated box. For example, one set of corresponding
points is shown in red, with its box also in red.

From (2) and (7), we produce T
~

i(X), a bound on the total tex-
ture deviation, Ti(X). This our texture deviation output.

()T T maxii ()
~

X X X X
X X

≤ = − ′
′∈ ⊕bi, j

(8)

T
~

i(X) is the distance from X to the farthest corner of the box at X.
This will always bound the distance from X to F 0

-1(Fi(X)). The
maximum deviation over an edge collapse neighborhood is the
maximum T

~
i(X) for any cell vertex.

The boxes, bi,k, are the only information we keep about the
position of the original mesh as we simplify. We create a new set
of boxes, bi+1,k’, for mesh Mi+1 using an incremental computation
(described in Figure 10). Figure 9(b) shows the propagation from
Mi to Mi+1. The blue and green lines are simplified to the pink line.
The new box, bi+1,0 is constant as it slides across the pink line. The
size and offset is chosen so that, at every point of application, the
pink box, bi+1,0, contains the corresponding blue or green boxes,
bi,0 or bi,1.

If X is a point on Mi in triangle k, and Y is the point with the
same texture coordinate on Mi+1, the containment property of (7)
holds:

()()F F , ,0
1

1 1
−

+ + ′∈ ⊕ ⊆ ⊕i i k i kY X Yb b (9)

For example, all three red dots Figure 9(b) have the same texture
coordinates. The red point on Mo is contained in the smaller red
box, X ⊕ bi,0, which is contained in the larger red box, Y ⊕ bi+1,0.

Because each mapping cell in the overlay between Mi and Mi+1

is linear, we compute the sizes of the boxes, bi+1,k’, by considering

only the box correspondences at cell vertices. In Figure 9(b), there
are three places we must consider. If the magenta box contains the
blue and green boxes in all three places, it will contain them
everywhere.

Together, the propagation rules, which are simple to imple-
ment, and the box-based approximation to the texture deviation,
provide the tools we need to efficiently provide a texture devia-
tion for the simplification process.

7 IMPLEMENTATION AND RESULTS
In this section we present some details of our implementation of
the various components of our appearance-preserving simplifica-
tion algorithm. These include methods for representation conver-
sion, simplification and, finally, interactive display.

7.1 Representation Conversion
We have applied our technique to several large models, including
those listed in Table 1. The bumpy torus model (Figure 1) was
created from a parametric equation to demonstrate the need for
greater sampling of the normals than of the surface position. The
lion model (Figure 5) was designed from NURBS patches as part
of a much larger garden environment, and we chose to decorate it
with a marble texture (and a checkerboard texture to make texture
deviation more apparent in static images). Neither of these models
required the computation of a parameterization. The armadillo
(Figure 12) was constructed by merging several laser-scanned
meshes into a single, dense polygon mesh. It was decomposed
into polygonal patches and parameterized using the algorithm
presented in [32], which eventually converts the patches into a
NURBS representation with associated displacement maps.

Because all these models were not only parameterized, but
available in piecewise-rational parametric representations, we
generated polygonal patches by uniformly sampling these repre-
sentations in the parameter space. We chose the original tessella-
tion of the models to be high enough to capture all the detail
available in their smooth representations. Due to the uniform
sampling, we were able to use the simpler method of map creation
(described in Section 4.2), avoiding the need for a scan-
conversion process.

7.2 Simplification
We integrated our texture deviation metric with the successive
mapping algorithm for surface approximation [8]. The error
metric for the successive mapping algorithm is simply a 3D
surface deviation. We used this deviation only in the computation
of Vgen. Our total error metric for prioritizing edges and choosing
switching distances is just the texture deviation. This is sensible
because the texture deviation metric is also a measure of surface
deviation, whose particular mapping is the parameterization.
Thus, if the successive mapping metric is less than the texture
deviation metric, we must apply the texture deviation metric,
because it is the minimum bound we know that guarantees the
bound on our texture deviation. On the other hand, if the succes-
sive mapping metric is greater than the texture deviation metric,

Figure 9: 2D illustration of the box approximation to
total deviation error. a) A curve has been simplified to
two segment, each with an associated box to bound the
deviation. b) As we simplify one more step, the ap-
proximation is propagated to the newly created seg-
ment.

PropagateError():
foreach cell vertex, v

foreach triangle, Told, in Mi-1 touching v
foreach triangle, Tnew, in Mi touching v

PropagateBox(v, Told, Tnew)

PropagateBox(v, Told, Tnew):
Pold = Fi-1

-1(v), Pnew = Fi
-1(v)

Enlarge Told.box so that Told.box applied at
Pold contains Tnew.box applied at Pnew

Figure 10: Pseudo-code for the propagation of deviation
error from mesh Mi-1 to mesh Mi.

the texture deviation bound is still sufficient to guarantee a bound
on both the surface deviation and the texture.

To achieve a simple and efficient run-time system, we apply a
post-process to convert the progressive mesh output to a static set
of levels of detail, reducing the mesh complexity by a factor of
two at each level.

Our implementation can either treat each patch as an independ-
ent object or treat a connected set of patches as one object. If we
simplify the patches independently, we have the freedom to switch
their levels of detail independently, but we will see cracks be-
tween the patches when they are rendered at a sufficiently large
error tolerance. Simplifying the patches together allows us to
prevent cracks by switching the levels of detail simultaneously.

Table 1 gives the computation time to simplify several models,

as well as the resolution of each map image. Figure 11 and Figure
12 show results on the armadillo model. It should be noted that
the latter figure is not intended to imply equal computational costs
for rendering models with per-vertex normals and normal maps.
Simplification using the normal map representation provides
measurable quality and reduced triangle overhead, with an
additional overhead dependent on the screen resolution.

7.3 Interactive Display System
We have implemented two interactive display systems: one on top
of SGI’s IRIS Performer library, and one on top of a custom
library running on a PixelFlow system. The SGI system supports
color preservation using texture maps, and the PixelFlow system
supports color and normal preservation using texture and normal
maps, respectively. Both systems apply a bound on the distance
from the viewpoint to the object to convert the texture deviation
error in 3D to a number of pixels on the screen, and allow the user
to specify a tolerance for the number of pixels of deviation. The
tolerance is ultimately used to choose the primitives to render
from among the statically generated set of levels of detail.

Our custom shading function on the PixelFlow implementation
performs a mip-mapped look-up of the normal and applies a

Model Patches Input Tris Time Map Res.
Torus 1 44,252 4.4 512x128
Lion 49 86,844 7.4 N.A.

Armadillo 102 2,040,000 190 128x128

Table 1: Several models used to test appearance-
preserving simplification. Simplification time is in min-
utes on a MIPS R10000 processor.

Figure 11: Levels of detail of the armadillo model
shown with 1.0 mm maximum image deviation. Trian-
gle counts are: 7,809, 3,905, 1,951, 975, 488

249,924 triangles 62,480 triangles 7,809 triangles 975 triangles
0.05 mm max image deviation 0.25 mm max image deviation 1.3 mm max image deviation 6.6 mm max image deviation

Figure 12: Close-up of several levels of detail of the armadillo model. Top: normal maps Bottom: per-vertex normals

Phong lighting model to compute the output color of each pixel.
The current implementation looks up normals with 8 bits per
component, which seems sufficient in practice (using [44])

8 ONGOING WORK AND CONCLUSIONS
There are several directions to pursue to improve our system for
appearance-preserving simplification. We would like to experi-
ment more with techniques to generate parameterizations that
allow efficient representations of the mapped attributes as well as
guarantee a one-to-one mapping to the texture plane.

It would be nice for the simplification component to do a better
job of optimizing the 3D and texture coordinates of the generated
vertex for each edge collapse, both in 3D and the texture plane.
Also, it may be interesting to allow the attribute data of a map to
influence the error metric. We would also like to integrate our
technique with a simplification algorithm like [6] that deals well
with imperfect input meshes and allows some topological
changes. Finally, we want to display our resulting progressive
meshes in a system that performs dynamic, view-dependent
management of LODs.

Our current system demonstrates the feasibility and desirability
of our approach to appearance-preserving simplification. It
produces high-fidelity images using a small number of high-
quality triangles. This approach should complement future
graphics systems well as we strive for increasingly realistic real-
time computer graphics.

ACKNOWLEDGMENTS
We would like to thank Venkat Krishnamurthy and Marc Levoy at
the Stanford Computer Graphics Laboratory and Peter Schröder
for the armadillo model, and Lifeng Wang and Xing Xing Com-
puter for the lion model. Our visualization system implementation
was made possible by the UNC PixelFlow Project and the Hewlett
Packard Visualize PxFl team. We also appreciate the assistance of
the UNC Walkthrough Project. This work was supported in part
by an Alfred P. Sloan Foundation Fellowship, ARO Contract
DAAH04-96-1-0257, NSF Grant CCR-9625217, ONR Young
Investigator Award, Honda, Intel, NSF/ARPA Center for Com-
puter Graphics and Scientific Visualization, and NIH/National
Center for Research Resources Award 2P41RR02170-13 on
Interactive Graphics for Molecular Studies and Microscopy.

REFERENCES
[1] L. Williams, “Pyramidal Parametrics,” SIGGRAPH 83 Conference Proceed-

ings, pp. 1--11, 1983.
[2] J. Rossignac and P. Borrel, “Multi-Resolution 3D Approximations for

Rendering,” in Modeling in Computer Graphics: Springer-Verlag, 1993, pp.
455--465.

[3] G. Schaufler and W. Sturzlinger, “Generating Multiple Levels of Detail from
Polygonal Geometry Models,” Virtual Environments'95 (Eurographics Work-
shop), pp. 33-41, 1995.

[4] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of Triangle
Meshes,” in Proc. of ACM Siggraph, 1992, pp. 65--70.

[5] G. Turk, “Re-tiling polygonal surfaces,” Comput. Graphics, vol. 26, pp. 55--64,
1992.

[6] M. Garland and P. Heckbert, “Surface Simplification using Quadric Error
Bounds,” SIGGRAPH'97 Conference Proceedings, pp. 209-216, 1997.

[7] A. Gueziec, “Surface Simplification with Variable Tolerance,” in Second
Annual Intl. Symp. on Medical Robotics and Computer Assisted Surgery
(MRCAS '95), November 1995, pp. 132--139.

[8] J. Cohen, D. Manocha, and M. Olano, “Simplifying Polygonal Models Using
Successive Mappings,” Proc. of IEEE Visualization'97, pp. 395-402, 1997.

[9] R. Ronfard and J. Rossignac, “Full-range approximation of triangulated
polyhedra,” Computer Graphics Forum, vol. 15, pp. 67--76 and 462, August
1996.

[10] R. Klein, G. Liebich, and W. Straßer, “Mesh Reduction with Error Control,” in
IEEE Visualization '96: IEEE, October 1996.

[11] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F.
Brooks, and W. Wright, “Simplification Envelopes,” in SIGGRAPH'96 Confer-
ence Proceedings, 1996, pp. 119--128.

[12] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle,
“Multiresolution Analysis of Arbitrary Meshes,” in SIGGRAPH'95 Conference
Proceedings, 1995, pp. 173--182.

[13] W. Schroeder, “A Topology Modifying Progressive Decimation Algorithm,”
Proc. of IEEE Visualization'97, pp. 205-212, 1997.

[14] J. El-Sana and A. Varshney, “Controlled Simplification of Genus for Polygonal
Models,” Proc. of IEEE Visualization'97, pp. 403-410, 1997.

[15] H. Hoppe, “Progressive Meshes,” in SIGGRAPH 96 Conference Proceedings:
ACM SIGGRAPH, 1996, pp. 99--108.

[16] H. Hoppe, “View-Dependent Refinement of Progressive Meshes,” SIG-
GRAPH'97 Conference Proceedings, pp. 189-198, 1997.

[17] J. Xia, J. El-Sana, and A. Varshney, “Adaptive Real-Time Level-of-detail-
based Rendering for Polygonal Models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 3, pp. 171--183, 1997.

[18] C. Bajaj and D. Schikore, “Error-bounded reduction of triangle meshes with
multivariate data,” SPIE, vol. 2656, pp. 34--45, 1996.

[19] M. Hughes, A. Lastra, and E. Saxe , “Simplification of Global-Illumination
Meshes,” Proceedings of Eurographics '96, Computer Graphics Forum, vol.
15, pp. 339-345, 1996.

[20] C. Erikson and D. Manocha, “Simplification Culling of Static and Dynamic
Scene Graphs,” UNC-Chapel Hill Computer Science TR98-009, 1998.

[21] P. Schroder and W. Sweldens, “Spherical Wavelets: Efficiently Representing
Functions on the Sphere,” SIGGRAPH 95 Conference Proceedings, pp. 161--
172, August 1995.

[22] A. Certain, J. Popovic, T. Derose, T. Duchamp, D. Salesin, and W. Stuetzle,
“Interactive Multiresolution Surface Viewing,” in Proc. of ACM Siggraph,
1996, pp. 91--98.

[23] R. L. Cook, “Shade trees,” in Computer Graphics (SIGGRAPH '84 Proceed-
ings), vol. 18, H. Christiansen, Ed., July 1984, pp. 223--231.

[24] J. Blinn, “Simulation of Wrinkled Surfaces,” SIGGRAPH '78 Conference
Proceedings, vol. 12, pp. 286--292, 1978.

[25] A. Fournier, “Normal distribution functions and multiple surfaces,” Graphics
Interface '92 Workshop on Local Illumination, pp. 45--52, 1992.

[26] M. Peercy, J. Airey, and B. Cabral, “Efficient Bump Mapping Hardware,”
SIGGRAPH'97 Conference Proceedings, pp. 303-306, 1997.

[27] M. Olano and A. Lastra, “A Shading Language on Graphics Hardware: The
PixelFlow Shading System,” SIGGRAPH 98 Conference Proceedings, 1998.

[28] J. Kajiya, “Anisotropic Reflection Models,” SIGGRAPH '85 Conference
Proceedings, pp. 15--21, 1985.

[29] B. Cabral, N. Max, and R. Springmeyer, “Bidirectional Reflection Functions
From Surface Bump Maps,” SIGGRAPH '87 Conference Proceedings, pp. 273-
-281, 1987.

[30] S. Westin, J. Arvo, and K. Torrance, “Predicting Reflectance Functions From
Complex Surfaces,” SIGGRAPH '92 Conference Proceedings, pp. 255--264,
1992.

[31] B. G. Becker and N. L. Max, “Smooth Transitions between Bump Rendering
Algorithms,” in Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, J.
T. Kajiya, Ed., August 1993, pp. 183--190.

[32] V. Krishnamurthy and M. Levoy, “Fitting Smooth Surfaces to Dense Polygon
Meshes,” SIGGRAPH 96 Conference Proceedings, pp. 313--324, 1996.

[33] D. G. Aliaga, “Visualization of Complex Models using Dynamic Texture-based
Simplification,” Proc. of IEEE Visualization'96, pp. 101--106, 1996.

[34] L. Darsa, B. Costa, and A. Varshney, “Navigating Static Environments using
Image-space simplification and morphing,” Proc. of 1997 Symposium on Inter-
active 3D Graphics, pp. 25-34, 1997.

[35] P. W. C. Maciel and P. Shirley, “Visual Navigation of Large Environments
Using Textured Clusters,” Proc. of 1995 Symposium on Interactive 3D Graph-
ics, pp. 95--102, 1995.

[36] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder, “Hierarchical
Image Caching for Accelerated Walkthroughs of Complex Environments,”
SIGGRAPH 96 Conference Proceedings, pp. 75--82, August 1996.

[37] J. Kent, W. Carlson, and R. Parent, “Shape transformation for polyhedral
objects,” SIGGRAPH '92 Conference Proceedings, pp. 47--54, 1992.

[38] J. Maillot, H. Yahia, and A. Veroust, “Interactive Texture Mapping,”
SIGGRAPH'93 Conference Proceedings, pp. 27--34, 1993.

[39] H. Pedersen, “A Framework for Interactive Texturing Operations on Curved
Surfaces,” in SIGGRAPH 96 Conference Proceedings, Annual Conference Se-
ries, H. Rushmeier, Ed., August 1996, pp. 295--302.

[40] H. d. Fraysseix, J. Pach, and R. Pollack, “How to Draw a Planar Graph on a
Grid,” Combinatorica, vol. 10, pp. 41--51, 1990.

[41] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa, “A Linear Algorithm for
Embedding Planar Graphs Using PQ-Trees,” J. Comput. Syst. Sci., vol. 30, pp.
54--76, 1985.

[42] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for drawing
graphs: an annotated bibliography,” Comput. Geom. Theory Appl., vol. 4, pp.
235--282, 1994.

[43] M. d. Berg, M. v. Kreveld, M. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications: Springer-Verlag, 1997.

[44] R. F. Lyon, “Phong Shading Reformulation for Hardware Renderer Simplifica-
tion,” Apple Computer #43, 1993.

Simplifying Polygonal Models Using Successive Mappings

Jonathan Cohen Dinesh Manocha Marc Olano
University of North Carolina at Chapel Hill

cohenj,dm,olano @cs.unc.edu

Abstract:
We present the use of mapping functions to automatically

generate levels of detail with known error bounds for polygo-
nal models. We develop a piece-wise linear mapping function
for each simplification operation and use this function to mea-
sure deviation of the new surface from both the previous level
of detail and from the original surface. In addition, we use the
mapping function to compute appropriate texture coordinates if
the original map has texture coordinates at its vertices. Our over-
all algorithm uses edge collapse operations. We present rigorous
procedures for the generation of local planar projections as well
as for the selection of a new vertex position for the edge collapse
operation. As compared to earlier methods, our algorithm is able
to compute tight error bounds on surface deviation and produce
an entire continuum of levels of detail with mappings between
them. We demonstrate the effectiveness of our algorithm on
several models: a Ford Bronco consisting of over 300 parts and
70 000 triangles, a textured lion model consisting of 49 parts
and 86 000 triangles, and a textured, wrinkled torus consisting
of 79 000 triangles.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling —
Curve, surface, solid, and object representations.
Additional Key Words and Phrases: model simplification,
levels-of-detail, surface approximation, projection, linear pro-
gramming.

1 Introduction
Automatic generation of levels of detail for polygonal data sets
has become a task of fundamental importance for real-time ren-
dering of large polygonal environments on current graphics sys-
tems. Many detailed models are obtained by scanning physical
objects using range scanning systems or created by modeling
systems. Besides surface geometry these models, at times, con-
tain additional information such as normals, texture coordinates,
color etc. As the field of model simplification continues to ma-
ture, many applications desire high quality simplifications, with
tight error bounds of various types across the surface being sim-

plified.
Most of the literature on simplification has focused purely

on surface approximation. Many of these techniques give guar-
anteed error bounds on the deviation of the simplified surface
from the original surface. Such bounds are useful for providing
a measure of the screen-space deviation from the original sur-
face. A few techniques have been proposed to preserve other
attributes such as color or overall appearance. However, they
are not able to give tight error bounds on these parameters. At
times the errors accumulated in all these domains may cause vis-
ible artifacts, even though the surface deviation itself is properly
constrained. We believe the most promising approach to mea-
suring and bounding these attribute errors is to have a mapping
between the original surface and the simplified surface. With
such a mapping in hand, we are free to devise suitable methods
for measuring and bounding each type of error.

Main Contribution: In this paper we present a new simpli-
fication algorithm, which computes a piece-wise linear mapping
between the original surface and the simplified surface. The al-
gorithm uses the edge collapse operation due to its simplicity,
local control, and suitability for generating smooth transitions
between levels of detail. We also present rigorous and complete
algorithms for collapsing an edge to a vertex such that there are
no local self-intersections. The algorithm keeps track of surface
deviation from both the current level of detail as well as from the
original surface. The main features of our approach are:

1. Successive Mapping: This mapping between the levels of
detail is a useful tool. We currently use the mapping in
several ways: to measure the distance between the levels
of detail before an edge collapse, to choose a location for
the generated vertex that minimizes this distance, to accu-
mulate an upper bound on the distance between the new
level of detail and the original surface, and to map surface
attributes to the simplified surface.

2. Tight Error Bounds: Our approach can measure and min-
imize the error for surface deviation and is extendible to
other attributes. These error bounds give guarantees on the
shape of the simplified object and screen-space deviation.

3. Generality: Portions of our approach can be easily com-
bined with other algorithms, such as simplification en-
velopes [5]. Furthermore, the algorithm for collapsing an
edge into a vertex is rather general and does not restrict the
vertex to lie on the original edge.

4. Surface Attributes: Given an original surface with texture
coordinates, our algorithm uses the successive mapping to
compute appropriate texture coordinates for the simplified

Bibliographic Information
Cohen, Jonathan, Dinesh Manocha, and Marc Olano. "Simplifying Polygonal Models Using Successive Mappings." Proceedings of IEEE Visualization '97. pp. 395-402, and 564.

mesh. Other attributes such as color or surface normal can
also be maintained with the mapping.

5. Continuum of Levels of Details: The algorithm incre-
mentally produces an entire spectrum of levels-of-details
as opposed to a few discrete levels. Furthermore, the algo-
rithm incrementally stores the error bounds for each level.
Thus, the simplified model can be stored as a progressive
mesh [12] if desired.

The algorithm has been successfully applied to a number of
models. These models consist of hundreds of parts and tens of
thousands of polygons, including a Ford Bronco with 300 parts,
a textured lion model and a textured wrinkled torus.

Organization: The rest of the paper is organized as follows.
In Section 2, we survey related work on model simplification.
We give an overview of our algorithm in Section 3. Section 4
discusses the types of mappings computed by the algorithm and
describes the algorithm in detail. In Section 5, we present ap-
plications of these mapping. The implementation is discussed in
Section 6 and its performance in Section 7. Finally, in Section 8
we compare our approach to other algorithms.

2 Previous Work
Automatic simplification has been studied in both the compu-
tational geometry and computer graphics literature for several
years [1, 3, 5, 6, 7, 8, 9, 10, 12, 11, 15, 16, 17, 18, 19, 21, 22, 24].
Some of the earlier work by Turk [22] and Schroeder [19] em-
ployed heuristics based on curvature to determine which parts
of the surface to simplify to achieve a model with the desired
polygon count. Other work include that of Rossignac and Borrel
[16] where vertices close to each other are clustered and a vertex
is generated to represent them. This algorithm has been used in
the Brush walkthrough system [18]. A dynamic view-dependent
simplification algorithm has been presented in [24].

Hoppe et al. [12, 11] posed the model simplification prob-
lem into a global optimization framework, minimizing the least-
squares error from a set of point-samples on the original surface.
Later, Hoppe extended this framework to handle other scalar at-
tributes, explicitly recognizing the distinction between smooth
gradients and sharp discontinuities. He also introduced the pro-
gressive mesh [12], which is essentially a stored sequence of sim-
plification operations, allowing quick construction of any desired
level of detail along the continuum of simplifications. However,
the algorithm in [12] provides no guaranteed error bounds.

There is considerable literature on model simplification us-
ing error bounds. Cohen and Varshney et al. [5, 23] have used
envelopes to preserve the model topology and obtain tight error
bounds for a simple simplification. But they do not produce an
entire spectrum of levels of detail. Guéziec [9] has presented
an algorithm for computing local error bounds inside the sim-
plification process by maintaining tolerance volumes. However,
it does not produce a suitable mapping between levels of de-
tail. Bajaj and Schikore [1, 17] have presented an algorithm for
producing a mapping between approximations and measure the
error of scalar fields across the surface based on vertex-removals.
Some of the results presented in this paper extend this work non-
trivially to edge collapse operation. A detailed comparison with
these approaches is presented in Section 8.

An elegant solution to the polygon simplification problem has
been presented in [7, 8] where arbitrary polygonal meshes are
first subdivided into patches with subdivision connectivity and
then multiresolution wavelet analysis is used over each patch.
These methods preserve global topology, give error bounds on

the simplified object and provide a mapping between levels of
detail. In [3] they have been further extended to handle colored
meshes. However, the initial mesh is not contained in the level
of detail hierarchy, but can only be recovered to within an -
tolerance. In some cases this is undesirable. Furthermore, the
wavelet based approach can be somewhat conservative and for a
given error bound, algorithms based on vertex removal and edge
collapses [5, 12] have been empirically able to simplify more (in
terms of reducing the polygon count).

3 Overview
Our simplification approach may be seen as a high-level algo-
rithm which controls the simplification process with a lower-level
cost function based on local mappings. Next we describe this
high-level control algorithm and the idea of using local mappings
for cost evaluation.

3.1 High-level Algorithm
At a broad level, our simplification algorithm is a generic greedy
algorithm. Our simplification operation is the edge collapse.
We initialize the algorithm by measuring the cost of all possible
edge collapses, then we perform the edge collapses in order
of increasing cost. The cost function tries to minimize local
error bounds on surface deviation and other attributes. After
performing each edge collapse, we locally re-compute the cost
functions of all edges whose neighborhoods were affected by
the collapse. This process continues until none of the remaining
edges can be collapsed.

The output of our algorithm is the original model plus an
ordered list of edge collapses and their associated cost functions.
This progressive mesh [12] represents an entire continuum of
levels of detail for the surface. A graphics application can choose
to dynamically create levels of detail or to statically allocate a set
of levels of detail to render the model with the desired quality or
speed-up.

3.2 Local Mappings
The edge collapse operation we perform to simplify the surface
contracts an edge (the collapsed edge) to a single, new vertex
(the generated vertex). Most of the earlier algorithms position
the generated vertex to one of the end vertices or mid-point of
the collapse edge. However, these choices for generated vertex
position may not minimize the deviation or error bound and can
result in a local self-intersection. We choose a vertex position
in two dimensions to avoid self-intersections and optimize in
the third dimension to minimize error. This optimization of the
generated vertex position and measurement of the error are the
keys to simplifying the surface without introducing significant
error.

For each edge collapse, we consider only the neighborhood
of the surface that is modified by the operation (i.e. those faces,
edges and vertices adjacent to the collapsed edge). There is
a natural mapping between the neighborhood of the collapsed
edge and the neighborhood of the generated vertex. Most of the
triangles incident to the collapsed edge are stretched into corre-
sponding triangles incident to the generated vertex. However, the
two triangles that share the collapsed edge are themselves col-
lapsed to edges (see Figure 1). These natural correspondences
are one form of mapping

This natural mapping has two weaknesses.

Figure 1: The natural mapping primarily maps triangles to
triangles. The two grey triangles map to edges, and the collapsed
edge maps to the generated vertex

1. The degeneracy of the triangles mapping to edges prevents
us from mapping points of the simplified surface back to
unique points on the original surface. This also implies that
if we have any sort of attribute field across the surface, a
portion of it disappears as a result of the operation.

2. The error implied by this mapping may be larger than nec-
essary.

We measure the surface deviation error of the operation by
the distances between corresponding points of our mapping. If
we use the natural mapping, the maximum distance between any
pair of points is defined as:

1 2

where the collapsed edge corresponds to 1 2 and
is the generated vertex.

If we place the generated vertex at the midpoint of the col-
lapsed edge, this distance error will be half the length of the edge.
If we place the vertex at any other location, the error will be even
greater.

We can create mappings that are free of degeneracies and often
imply less error than the natural mapping. For simplicity, and to
guarantee no self-intersections, we perform our mappings using
planar projections of our local neighborhood. We refer to them
as successive mappings.

4 Successive Mapping
In this section we present an algorithm to compute the mappings
and their error bounds, which guide the simplification process.
We present efficient and complete algorithms for computing a
planar projection, finding a generated vertex in the plane,creating
a mapping in the plane, and finally placing the generated vertex
in 3D. The resulting algorithms utilize a number of techniques
from computational geometry and are efficient in practice.

4.1 Computing a Planar Projection
Given a set of triangles in 3D, we present an efficient algorithm
to compute a planar projection which is one-to-one to the set of
triangles. The algorithm is guaranteed to find a plane, if it exists.

The projection we seek should be one-to-one to guarantee
that the operations we perform in the plane are meaningful. For
example, suppose we project a connected set of triangles onto
a plane and then re-triangulate the polygon described by their
boundary. The resulting set of triangles will contain no self-
intersections, so long as the projection is one-to-one. Many other
simplification algorithms, such as those by Turk [22], Schroeder
[19] and Cohen, Varshney et al. [5], also used such projections for

Direction of Projection

Bad
Normals

Not one-to-one on this interval

Figure 2: A 2D example of an invalid projection

vertex removal. However, they would choose a likely direction,
such as the average of the normal vectors of the triangles of
interest. To test the validity of the resulting projection, these
earlier algorithms would project all the triangles onto the plane
and check for self-intersections. This process can be relatively
expensive and is not guaranteed to find a one-to-one projecting
plane.

We improve on earlier brute-force approaches in two ways.
First, we present a simple, linear-time algorithm for testing the
validity of a given direction. Second, we present a slightly more
complex, but still expected linear-time, algorithm which will find
a valid direction if one exists, or report that no such direction
exists for the given set of triangles.

4.1.1 Validity Test for Planar Projection

In this section, we briefly describe the algorithm which checks
whether a given set of triangles have a one-to-one planar projec-
tion. Assume that we can calculate a consistent set of normal
vectors for the set of triangles in question (if we cannot, the sur-
face is non-orientable and cannot be mapped onto a plane in a
one-to-one fashion). If the angle between a given direction of
projection and the normal vector of each of the triangles is less
than 90 , then the direction of projection is valid, and defines a
one-to-one mapping from the 3D triangles to a set of triangles in
the plane of projection (any plane perpendicular to the direction
of projection). Note that for a given direction of projection and a
given set of triangles, this test involves only a single dot product
and a sign test for each triangle in the set.

The correctness of the validity test can be established rigor-
ously [4]. Due to space limitations, we do not present the detailed
proof here. Rather, we give a short overview of the proof.

Figure 2 illustrates our problem in 2D. We would like to
determine if the projection of the curve onto the line is one-to-one.
Without loss of generality, assume the direction of projection is
the y-axis. Each point on the curve projects to its x-coordinate
on the line. If we traverse the curve from its left-most endpoint,
we can project onto a previously projected location if and only
if we reverse our direction along the x-axis. This can only
occur when the y-component of the curve’s normal vector goes
from a positive value to a negative value. This is equivalent to
our statement that the normal will be more than 90 from the
direction of projection. With a little more work, we can show
that this characterization generalizes to 3D.

4.1.2 Finding a valid direction

The validity test in the previous section provides a quick method
of testing the validity of a likely direction as a one-to-one map-
ping projection. But the wider the spread of the normal vectors
of our set of triangles, the less likely we are to find a valid di-
rection by using any sort of heuristic. It is possible, in fact, to

n2n1
n1

n2

a) b)

Figure 3: A 2D example of the valid projection space. a) Two
line segments and their normals. b) The 2D Gaussian circle, the
planes corresponding to each segment, and the space of valid
projection directions.

compute the set of all valid directions of projection for a given
set of triangles. However, to achieve greater efficiency and to
reduce the complexity of the software system we choose to find
only a single valid direction, which is typically all we require.

The Gaussian sphere [2] is the unit sphere on which each point
corresponds to a unit normal vector with the same coordinates.
Given a triangle, we define a plane through the origin with the
same normal as the triangle. For a direction of projection to
be valid with respect to this triangle, its point on the Gaussian
sphere must lie on the correct side of this plane (i.e. within the
correct hemisphere). If we consider two triangles simultaneously
(shown in 2D in Figure 3) the direction of projection must lie on
the correct side of the planes determined by the normal vectors
of both triangles. This is equivalent to saying that the valid
directions lie within the intersection of half-spaces defined by
these two planes. Thus, the valid directions of projection for a
set of N triangles lie within the intersection of N half-spaces.

This intersection of half-spaces forms a convex polyhedron.
This polyhedron is a cone, with its apex at the origin and an
unbounded base (shown as a triangular region in Figure 3). We
can force this polyhedron to be bounded by adding more half-
spaces (we use the six faces of a cube containing the origin). By
finding a point on the interior of this cone and normalizing its
coordinates, we shall construct a unit vector in the direction of
projection.

Rather than explicitly calculating the boundary of the cone,
we simply find a few corners (vertices) and average them to find
a point that is strictly inside. By construction, the origin is def-
initely such a corner, so we just need to find three more unique
corners to calculate an interior point. We can find each of these
corners by solving a 3D linear programming problem. Linear
programming allows us to find a point that maximizes a linear ob-
jective function subject to a collection of linear constraints [13].
The equations of the half-spaces serve as our linear constraints.
We maximize in the direction of a vector to find the corner of our
cone that lies the farthest in that direction.

As stated above, the origin is our first corner. To find the
second corner, we try maximizing in the positive- direction.
If the resulting point is the origin, we instead maximize in the
negative- direction. To find the third corner, we maximize
in a direction orthogonal to the line containing the first two
corners. If the resulting point is one of the first two corners,
we maximize in the opposite direction. Finally, we maximize
in a direction orthogonal to the plane containing the first three
corners. Once again, we may need to maximize in the opposite

v1

v2

edge

Figure 4: The neighborhood of an edge as projected into 2D

a) b)

Figure 5: a) An invalid 2D vertex position. b) The kernel of a
polygon is the set of valid positions for a single, interior vertex
to be placed. It is the intersection of a set of inward half-spaces.

direction instead. Note that it is possible to reduce the worst-case
number of optimizations from six to four by using the triangle
normals to guide the selection of optimization vectors.

We used Seidel’s linear time randomized algorithm [20] to
solve each linear programming problem. A public domain im-
plementation of this algorithm by Hohmeyer is available. It is
very fast in practice.

4.2 Placing the Vertex in the Plane
In the previous section, we presented an algorithm to compute
a valid plane. The edge collapse, which we use as our simplifi-
cation operation, entails merging the two vertices of a particular
edge into a single vertex. The topology of the resulting mesh is
completely determined, but we are free to choose the position of
the vertex, which will determine the geometry of the resulting
mesh.

When we project the triangles neighboring the given edge onto
a valid plane of projection, we get a triangulated polygon with
two interior vertices, as shown in Figure 4. The edge collapse
will reduce this edge to a single vertex. There will be edges
connecting this generated vertex to each of the vertices of the
polygon. In the context of this mapping approach, we would like
the set of triangles around the generated vertex to have a one-
to-one mapping with our chosen plane of projection, and thus to
have a one-to- one mapping with the original edge neighborhood
as well.

In this section, we present linear time algorithms both to test
a candidate vertex position for validity, and to find a valid vertex
position, if one exists.

4.2.1 Validity test for Vertex Position

The edge collapse operation leaves the boundary of the polygon
in the plane unchanged. For the neighborhood of the generated
vertex to have a one-to-one mapping with the plane, its edges
must lie entirely within the polygon, ensuring that no edge cross-
ings occur.

Collapsed
Edge

Generated
Vertex

a) b)
Figure 6: a) Edge neighborhood and generated vertex neigh-
borhood superimposed. b) A mapping in the plane, composed
of 25 polygonal cells (each cell contains a dot). Each cell maps
between a pair of planar elements in 3D.

This 2D visibility problem has been well-studied in the com-
putational geometry literature [14]. The generated vertex must
have an unobstructed line of sight to each of the surrounding
polygon vertices (unlike the vertex shown in Figure 5a). This
condition holds if and only if the generated vertex lies within the
polygon’s kernel, shown in Figure 5b. This kernel is the inter-
section of inward-facing half-planes defined polygon’s edges.

Given a potential vertex position in 2D, we test its validity
by plugging it into the implicit-form equation for each of the
polygon edges’ line. If the position is on the interior with respect
to each line, the position is valid, otherwise it is invalid.

4.2.2 Finding a Valid Position

The validity test highlighted above is useful if we wish to test out
a likely candidate for the generated vertex position, such as the
midpoint of the edge being collapsed. If such a heuristic choice
succeeds, we can avoid the work necessary to compute a valid
position directly.

Given the kernel definition for valid points, it is straightfor-
ward to find a valid vertex position using 2D linear programming.
Each of the lines provides one of the constraints for the linear
programming problem. Using the same methods as in Section
4.1.2, we can find a point in the kernel with no more than four
calls to the linear programming routine. The first and second
corners are found by maximizing in the positive- and negative-
directions. The final corner is found using a vector orthogonal to
the first two corners.

4.3 Creating a Mapping in the Plane
After mapping the edge neighborhood to a valid plane and choos-
ing a valid position for the generated vertex, we must define a
mapping between the edge neighborhood and the generated ver-
tex neighborhood. We shall map to each other the pairs of 3D
points which project to identical points on the plane. These
correspondences are shown in Figure 6a.

We can represent the mapping by a set of map cells, shown in
Figure 6b. Each cell is a convex polygon in the plane and maps
a piece of a triangle from the edge neighborhood to a similar
piece of a triangle from the generated vertex neighborhood. The
mapping represented by each cell is linear.

The vertices of the polygonal cells fall into four categories:
vertices of the overall neighborhood polygon, vertices of the
collapsed edge, the generated vertex itself, and edge-edge inter-
section points. We already know the locations of the first three
categories of cell vertices, but we must calculate the edge-edge
intersection points explicitly. Each such point is the intersection
of an edge adjacent to the collapsed edge with an edge adjacent to

the generated vertex. The number of such points can be quadratic
(in the worst case) in the number of neighborhood edges. If we
choose to construct the actual cells, we may do so by sorting
the intersection points along each neighborhood edge and then
walking the boundary of each cell.

4.4 Optimizing the 3D Vertex Position
Up to this point, we have projected the original edge neighbor-
hood onto a plane, performed an edge collapse in this plane,
and computed a mapping in the plane between these two local
meshes. We are now ready to choose the position of the gener-
ated vertex in 3D. This 3D position will completely determine
the geometry of the triangles surrounding the generated vertex.

To preserve our one-to-one mapping, it is necessary that all
the points of the generated vertex neighborhood, including the
generated vertex itself, project back into 3D along the direction of
projection (the normal to the plane of projection). This restricts
the 3D position of the generated vertex to the line parallel to the
direction of projection and passing through the generated vertex’s
2D position in the plane. We choose the vertex’s position along
this line such that it introduces as small a surface deviation as
possible, that is it minimizes the maximum distance between any
two corresponding points of the edge collapse neighborhood and
the generated vertex neighborhood.

4.4.1 Distance function of the map

Each cell of our mapping determines a correspondence between
a pair of planar elements. The maximum distance between any
pair of planar functions must be at the boundary. For these pairs
of polygons, the maximum distance must occur at a vertex. So
the maximum distance for the entire mapping will always be at
one of the interior cell vertices (because the cell vertices along
the boundary do not move).

We parameterize the position of the generated vertex along
its line of projection by a single parameter, . As varies, the
distance between the corresponding cell vertices in 3D varies lin-
early. Note that these distances will always be along the direction
of projection, because the distance between corresponding cell
vertices is zero in the other two dimensions (those of the plane of
projection). Because the distance is always positive, the distance
function of each cell vertex is actually a pair of lines intersecting
on the x-axis (shaped like a “V”).

4.4.2 Minimizing the distance function

Given the distance function, we would like to choose the param-
eter that minimizes the maximum distance between any pair of
mapped points. This point is the minimum of the so-called upper
envelope. For a set of linear functions, we define the upper
envelope function as follows:

1 ;

For linear functions with no boundary conditions, this function
is convex. Again we use linear programming to find the value
at which the minima occurs. We use this value of to calculate
the position of the generated vertex in 3D.

4.5 Accommodating Bordered Surfaces
Bordered surface are those containing edges adjacent to only a
single triangle, as opposed to two triangles. Such surfaces are

quite common in practice. Borders create some complications
for the creation of a mapping in the plane. The problem is that the
total shape of the neighborhood projected into the plane changes
as a result of the edge collapse.

Bajaj and Schikore [1], who employ a vertex-removal ap-
proach, deal with this problem by mapping the removed vertex
to a length-parameterized position along the border. This solu-
tion can be employed for the edge-collapse operation as well. In
their case, a single vertex maps to a point on an edge. In ours,
three vertices map to points on a chain of edges.

5 Applying Mappings
The previous section described the steps required to compute a
mapping using planar projections. Given such a mapping, we
would now like to apply it to the problem of computing high-
quality surface approximations. We will next discuss how to
bound the distance from the current simplified surface to the
original surface, and how to compute new values for scalar sur-
face attributes at the generated vertex.

5.1 Approximation of Original Surface
Position

In the process of creating a mapping, we have measured the
distance between the current surface and the surface resulting
from the application of one more simplification operation. What
we eventually desire is the distance between this new surface
and the original surface. One possible solution would be to in-
corporate the information from all the previous mappings into
an increasingly complex mapping as the simplification process
proceeds. While this approach has the potential for a high de-
gree of accuracy, the increasing complexity of the mappings is
undesirable.

Instead, we associate with every point on the current surface
a volume that is guaranteed to contain the corresponding point
on the original surface. This volume is chosen conservatively so
we can use the same volume for all points in a triangle. Thus the
portion of the original surface corresponding to the triangle lies
within the convolution of the triangle and the volume.

Possible volume choices include axis-aligned boxes, triangle-
aligned prisms and sphere. For computational efficiency, we use
axis-aligned boxes. To improve the error bounds, we do not
require the box to be centered at the point of application.

The initialbox at every triangle has zero size and displacement.
After computing the mapping in the plane and choosing the 3D
vertex position, we propagate the error by adjusting the size and
displacement of the box associated with each new triangle.

For each cell vertex, we create a box that contains the boxes of
the old triangles that meet there. The box for each new triangle
is then constructed to contain the boxes of all of its cell vertices.
By maintaining this containment property at the cell vertices, we
guarantee it for all the interior points of the cells.

The maximum error for each triangle is the distance between
a point on the triangle and the farthest corner of its associated
box. The error of the entire current mesh is the largest error of
any of its triangles.

5.2 Computing Texture Coordinates
The use of texture maps has become common over the last several
years, as the hardware support for texture mapping has increased.

Texture maps provide visual richness to computer-rendered mod-
els without adding more polygons to the scene.

Texture mapping requires two texture coordinatesat every ver-
tex of the model. These coordinates provide a parameterization
of the texture map over the surface.

As we collapse an edge, we must compute texture coordinates
for the generated vertex. These coordinates should reflect the
original parameterization of the texture over the surface. We
use linear interpolation to find texture coordinates for the corre-
sponding point on the old surface, and assign these coordinates
to the generated vertex.

This approach works well in many cases, as demonstrated in
Section 7. However, there can still be some sliding of the texture
across the surface. We can extend our mapping approach to also
measure and bound the deviation of the texture. This extension,
currently under development, will provide more guarantees about
the smoothness of transitions between levels of detail.

As we add more error measures to our system, it becomes
necessary to decide how to weight these errors to determine
the overall cost of an edge collapse. Each type of error at an
edge mandates a particular viewing distance based on a user-
specified screen-space tolerance (e.g. number of allowable pixels
of surface or texel deviation). We conservatively choose the
farthest of these. At run-time, the user can still adjust the overall
screen-space tolerance, but the relationships between the types
of error are fixed.

6 System Implementation
All the algorithms described in this paper have been implemented
and applied to various models. While the simplification process
itself is only a pre-process with respect to the graphics applica-
tion, we would still like it to be as efficient as possible. The most
time-consuming part of our implementation is the re-computation
of edge costs as the surface is simplified (Section 3.1). To reduce
this computation time, we allow our approach to be slightly less
greedy. Rather than recompute all the local edge costs after a
collapse, we simply set a dirty flag for these edges. If the next
minimum-cost edge we pick to collapse is dirty, we re-compute
it’s cost and pick again. This lazy evaluation of edge costs sig-
nificantly speeds up the algorithm without much effect on the
error across the progressive mesh.

More important than the cost of the simplification itself is
the speed at which our graphics application runs. To maximize
graphics performance, our display application renders simplified
objects only with display lists. After loading the progressive
mesh, it takes snapshots to use as levels of detail every time the
triangle count decreases by a factor of two. These choices limit
the memory usage to twice the original number of triangles, and
virtually eliminate any run-time cost of simplification.

7 Results
We have applied our simplification algorithm to four distinct
objects: a bunny rabbit, a wrinkled torus, a lion, and a Ford
Bronco, with a total of 390 parts. Table 1 shows the total input
complexity of each of these objects as well as the time needed to
generate a progressive mesh representation. All simplifications
were performed on a Hewlett-Packard 735/125 workstation.

Figure 7 graphs the complexity of each object vs. the number
of pixels of screen-space error for a particular viewpoint. Each set

Model Parts Orig. Triangles CPU Time (Min:Sec)
Bunny 1 69,451 9:05
Torus 1 79,202 10:53
Lion 49 86,844 8:52

Bronco 339 74,308 6:55

Table 1: Simplifications performed. CPU time indicates time
to generate a progressive mesh of edge collapses until no more
simplification is possible.

0
50

100
150
200
250
300
350
400
450
500

100 1000 10000 100000

Pi
xe

ls
 o

f
E

rr
or

Number of Triangles

"bunny"
"torus"
"lion"

"bronco"

Figure 7: Continuum of levels of detail for four models

of data was measured with the object centered in the foreground
of a 1000x1000-pixel viewport, with a 45 field-of-view, like
the Bronco in Plates 2 and 3. This was the easiest way for
us to measure the continuum. Conveniently, this function of
complexity vs. error at a fixed distance is proportional to the
function of complexity vs. viewing distance with a fixed error.
The latter is typically the function of interest.

Plate 1 shows the typical way of viewing levels of detail – with
a fixed error bound and levels of detail changing as a function of
distance. Plates 2 and 3 show close-ups of the Bronco model at
full and reduced resolution.

Plates 4 and 5 show the application of our algorithm to the
texture-mapped lion and wrinkled torus models. If you know
how to free-fuse stereo image pairs, you can fuse the torii or
any of the adjacent pairs of textured lion. Because the torii are
rendered at an appropriate distance for switching between the two
levels of detail, the images are nearly indistinguishable, and fuse
to a sharp, clear image. The lions, however, are not rendered at
their appropriate viewing distances, so certain discrepancies will
appear as fuzzy areas. Each of the lion’s 49 parts is individually
colored in the wire-frame rendering to indicate which of its levels
of detail is currently being rendered.

7.1 Applications of Projection Algorithm
We have also applied the technique of finding a one-to-one planar
projection to the simplification envelopes algorithm [5]. The
simplification envelopes method requires the calculation of a
vertex normal at each vertex that may be used as a direction
to offset the vertex. The criterion for being able to move a
vertex without creating a local self-intersection is the same as
the criterion for being able to project to a plane. The algorithm
presented in [5] used a heuristic based on averaging the face
normals.

By applying the projection algorithm based on linear program-
ming (presented in Section 4.1) to the computation of the offset

directions, we were able to perform more drastic simplifications.
The simplification envelopes method could previously only re-
duce the bunny model to about 500 triangles, without resulting
in any self-intersections. Using the new approach, the algorithm
can reduce the bunny to 129 triangles, with no self-intersections.

7.2 Video Demonstration

We have produced a video demonstrating the capabilities of
the algorithm and smooth switching between different levels-
of-details for different models. It shows the speed-up in the
frame rate for eight circling Bronco models (about a factor of
six) with almost no degradation in image quality. This is based
on mapping the object space error bounds to screen space, which
can measure the maximum error in number of pixels. The video
also highlights the performance on simplifying textured models,
showing smooth switching between levels of detail. The texture
coordinates were computed using the algorithm in Section 5.2.

8 Comparison to Previous Work

While concrete comparisons are difficult to make without careful
implementation of all the related approaches readily available,we
compare some of the features of our algorithm with that of others.
The efficient and complete algorithms for computing the planar
projection and placing the generated vertex after edge collapse
should improve the performance of all the earlier algorithms that
use vertex removals or edge collapses.

We compared our implementation with that of the simplifica-
tion envelopes approach [5]. We generated levels of detail of the
Stanford bunny model (70,000 triangles) using the simplification
envelopes method, then generated levels of detail with the same
number of triangles using the successive mapping approach. Vi-
sually, the models were comparable. The error bounds for the
simplification envelopes method were smaller by about a factor
of two, but the error bounds for the two methods measure dif-
ferent things. Simplification envelopes only bounds the surface
deviation in the direction normal to the original surface, while
the mapping approach prevents the surface from sliding around
as well. Also, simplification envelopes created local creases in
the bunnies, resulting in some shading artifacts. The successive
mapping approach discourages such creases by its use of planar
projections. At the same time, the performance of the simplifi-
cation envelopes approach (in terms complexity vs. error) has
been improved by our new projection algorithm.

Hoppe’s progressive mesh [12] implementation is more com-
plete than ours in its handling of colors, textures, and disconti-
nuities. However, this technique provides no guaranteed error
bounds, so there is no simple way to automatically choose switch-
ing distances that guarantee some visual quality.

The multi-resolution analysis approach to simplification [7, 8]
does, in fact, provide strict error bounds as well as a mapping
between surfaces. However, the requirements of its subdivision
topology and the coarse granularity of its simplification operation
do not provide the local control of the edge collapse. In particular,
it does not deal well with sharp edges. Hoppe [12] has compared
his progressive meshes with the multi-resolutionanalysis meshes.
For a given number of triangles, his progressive meshes provide
much higher visual quality. Therefore, for a given error bound,
we expect our mapping algorithm to be able to simplify more
than the multi-resolution approach.

Guéziec’s tolerance volume approach [9] also uses edge col-
lapses with local error bounds. Unlike the boxes used by the
successive mapping approach, Guéziec’s error volume can grow
as the simplified surface fluctuates closer to and farther away
from the original surface. This is due to the fact that it uses
spheres which always remain centered at the vertices, and the
newer spheres must always contain the older spheres. The boxes
used by our successive mapping approach are not centered on the
surface and do not grow as a result of such fluctuations. Also, the
tolerance volume approach does not generate mappings between
the surfaces for use with other attributes.

We have made several significant improvements over the sim-
plification algorithm presented by Bajaj and Schikore [1, 17].
First, we have replaced their projection heuristic with a robust
algorithm for finding a valid direction of projection. Second, we
have generalized their approach to handle more complex oper-
ations, such as the edge collapse. Finally, we have presented
an error propagation algorithm which correctly bounds the er-
ror in the surface deviation. Their approach represented error
as infinite slabs surrounding each triangle. Because there is no
information about the extent of these slabs, it is impossible to
correctly propagate the error from a slab with one orientation to
a new slab with a different orientation.

9 Future Work

We are currently working on bounding the screen-space deviation
of the texture coordinates. By bounding the error of the texture
coordinates, we will provide one type of bound on the deviation
of surface colors (from a texture map) or normals (from a bump
map). We also plan to measure and bound the deviation of colors
and normals specified directly at the polygon vertices.

There are cases where the projection onto a plane produces
mappings with unnecessarily large error. We only optimize sur-
face position in the direction orthogonal to the plane of projection.
It would be useful to generate and optimize mappings directly in
3D to produce better simplifications.

Our system currently handles non-manifold topologies by
breaking them into independent surfaces, which does not main-
tain connectivity between the components. Handling such non-
manifold regions directly may provide higher visual fidelity for
large screen-space tolerances.

10 Acknowledgments

We would like to thank Stanford Computer Graphics Labora-
tory for the bunny model, Stefan Gottschalk for the wrinkled
torus model, Lifeng Wang and Xing Xing Computer for the
lion model from the Yuan Ming Garden, and Division and
Viewpoint for the Ford Bronco model. Thanks to Michael
Hohmeyer for the linear programming library. We would also
like to thank the UNC Walkthrough Group and Carl Mueller.
This work was supported in part by an Alfred P. Sloan Foun-
dation Fellowship, ARO Contract DAAH04-96-1-0257, NSF
Grant CCR-9319957, NSF Grant CCR-9625217, ONR Young In-
vestigator Award, Intel, DARPA Contract DABT63-93-C-0048,
NSF/ARPA Center for Computer Graphics and Scientific Visual-
ization, and NIH/National Center for Research Resources Award
2 P41RR02170-13 on Interactive Graphics for Molecular Studies
and Microscopy.

References
[1] C. Bajaj and D. Schikore. Error-bounded reduction of triangle

meshes with multivariate data. SPIE, 2656:34–45, 1996.
[2] M.P. Do Carmo. Differential Geometry of Curves and Surfaces.

Prentice Hall, 1976.
[3] A. Certain, J. Popovic, T. Derose, T. Duchamp, D. Salesin, and

W. Stuetzle. Interactive multiresolution surface viewing. In Proc.
of ACM Siggraph, pages 91–98, 1996.

[4] J. Cohen, D. Manocha, and M. Olano. Simplifying polygonal
models using successive mappings. Technical Report TR97-011,
Department of Computer Science, UNC Chapel Hill, 1997.

[5] J. Cohen, A. Varshney, D. Manocha, and G. Turk et al. Simplifi-
cation envelopes. In Proc. of ACM Siggraph’96, pages 119–128,
1996.

[6] M.J. Dehaemer and M.J. Zyda. Simplification of objects rendered
by polygonal approximations. Computer and Graphics, 15(2):175–
184, 1981.

[7] T. Derose, M. Lounsbery, and J. Warren. Multiresolution analysis
for surfaces of arbitrary topology type. Technical Report TR 93-10-
05, Department of Computer Science, University of Washington,
1993.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Proc.
of ACM Siggraph, pages 173–182, 1995.

[9] A. Guéziec. Surface simplification with variable tolerance. In
Second Annual Intl. Symp. on Medical Robotics and Computer
Assisted Surgery (MRCAS ’95), pages 132–139, November 1995.

[10] P. Heckbert and M. Garland. Multiresolution modeling for fast
rendering. Proceedings of Graphics Interface ’94, pages 43–50,
May 1994.

[11] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle.
Mesh optimization. In Proc. of ACM Siggraph, pages 19–26, 1993.

[12] Hugues Hoppe. Progressive meshes. In SIGGRAPH 96 Conference
Proceedings, pages 99–108. ACM SIGGRAPH, Addison Wesley,
August 1996.

[13] B. Kolman and R. Beck. Elementary Linear Programming with
Applications. Academic Press, New York, 1980.

[14] J. O’Rourke. Computational Geometry in C. Cambridge University
Press, 1994.

[15] R. Ronfard and J. Rossignac. Full-range approximation of trian-
gulated polyhedra. Computer Graphics Forum, 15(3):67–76, 462,
Aug. 1996. Proc. Eurographics ’96.

[16] J. Rossignac and P. Borrel. Multi-resolution 3D approximations
for rendering. In Modeling in Computer Graphics, pages 455–465.
Springer-Verlag, June–July 1993.

[17] D. Schikore and C. Bajaj. Decimation of 2d scalar data with error
control. Technical report, Computer Science Report CSD-TR-95-
004, Purdue University, 1995.

[18] B. Schneider, P. Borrel, J. Menon, J. Mittleman, and J. Rossignac.
Brush as a walkthrough system for architectural models. In Fifth
Eurographics Workshop on Rendering, pages 389–399, July 1994.

[19] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Decimation of
triangle meshes. In Proc. of ACM Siggraph, pages 65–70, 1992.

[20] R. Seidel. Linear programming and convex hulls made easy. In
Proc. 6th Ann. ACM Conf. on Computational Geometry, pages
211–215, Berkeley, California, 1990.

[21] D. C. Taylor and W. A. Barrett. An algorithm for continuous res-
olution polygonalizations of a discrete surface. In Proc. Graphics
Interface ’94, pages 33–42, Banff, Canada, May 1994.

[22] G. Turk. Re-tiling polygonal surfaces. In Proc. of ACM Siggraph,
pages 55–64, 1992.

[23] A. Varshney. Hierarchical Geometric Approximations. PhD thesis,
University of N. Carolina, 1994.

[24] J.C. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-
detail-based rendering for polygonal models. IEEE Transactions on
Visualization and Computer Graphics, 3(2):171–183, June 1997.

Simplification Envelopes
Jonathan Cohen� Amitabh Varshneyy Dinesh Manocha� Greg Turk� Hans Weber�

Pankaj Agarwalz Frederick Brooks� William Wright�

http://www.cs.unc.edu/˜geom/envelope.html

Abstract

We propose the idea of simplification envelopes for gen-
erating a hierarchy of level-of-detail approximations for a
given polygonal model. Our approach guarantees that all
points of an approximation are within a user-specifiable
distance � from the original model and that all points of the
original model are within a distance � from the approxima-
tion. Simplificationenvelopes provide a general framework
within which a large collection of existing simplification
algorithms can run. We demonstrate this technique in con-
junction with two algorithms, one local, the other global.
The local algorithm provides a fast method for generating
approximations to large input meshes (at least hundreds of
thousands of triangles). The global algorithm provides the
opportunity to avoid local “minima” and possibly achieve
better simplifications as a result.

Each approximation attempts to minimize the total num-
ber of polygons required to satisfy the above � constraint.
The key advantages of our approach are:

� General technique providing guaranteed error bounds
for genus-preserving simplification

� Automation of both the simplification process and the
selection of appropriate viewing distances

� Prevention of self-intersection
� Preservation of sharp features
� Allows variation of approximation distance across dif-

ferent portions of a model

CR Categories and Subject Descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image Generation — Display
algorithms; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling — Curve, surface, solid,
and object representations.
Additional Key Words and Phrases: hierarchical approx-
imation, model simplification, levels-of-detail generation,
shape approximation, geometric modeling, offsets.

�Department of Computer Science, University of North Carolina,
Chapel Hill, NC 27599-3175.
fcohenj,weberh,manocha,turk,brooks,wrightg@cs.unc.edu

yDepartment of Computer Science, State University of New York,
Stony Brook, NY 11794-4400. varshney@cs.sunysb.edu

zDepartment of Computer Science, Duke University, Durham, NC
27708-0129. pankaj@cs.duke.edu

1 Introduction

We present the framework of simplification envelopes for
computing various levels of detail of a given polygonal
model. These hierarchical representations of an object can
be used in several ways in computer graphics. Some of
these are:

� Use in a level-of-detail-based rendering algorithm for
providing desired frame update rates [4, 9].

� Simplifyingtraditionallyover-sampled models such as
those generated from volume datasets, laser scanners,
and satellites for storage and reducing CPU cycles
during processing, with relatively few or no disadvan-
tages [10, 11, 13, 15, 21, 23].

� Using low-detail approximations of objects for illumi-
nation algorithms, especially radiosity [19].

Simplification envelopes are a generalization of offset
surfaces. Given a polygonal representation of an object,
they allow the generation of minimal approximations that
are guaranteed not to deviate from the original by more than
a user-specifiable amount while preserving global topol-
ogy. We surround the original polygonal surface with two
envelopes, then perform simplification within this volume.
A sample application of the algorithms we describe can be
seen in Figure 1.

Figure 1: A level-of-detail hierarchy for the rotor from a brake
assembly.

Bibliographic Information
Cohen, Jonathan, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks, and William Wright. "Simplification Envelopes." Proceedings of SIGGRAPH 96 (New Orleans, LA, August 4-9, 1996). pp. 119-128.

Such an approach has several benefits in computer graph-
ics. First, one can very precisely quantify the amount of
approximation that is tolerable under given circumstances.
Given a user-specified error in number of pixels of devia-
tion of an object’s silhouette, it is possible to choose which
level of detail to view from a particular distance to maintain
that pixel error bound. Second, this approach allows one a
fine control over which regions of an object should be ap-
proximated more and which ones less. This could be used
for selectively preserving those features of an object that
are perceptually important. Third, the user-specifiable tol-
erance for approximation is the only parameter required to
obtain the approximations; fine tweaking of several param-
eters depending upon the object to be approximated is not
required. Thus, this approach is quite useful for automat-
ing the process of topology-preserving simplifications of a
large number of objects. This problem of scalability is im-
portant for any simplification algorithm. One of our main
goals is to create a method for simplification which is not
only automatic for large datasets, but tends to preserve the
shapes of the original models.

The rest of the paper is organized in the following man-
ner: we survey the related work in Section 2, explain our
assumptions and terminology in Section 3, describe the en-
velope and approximation computations in Sections 4 and
5, present some useful extentions to and properties of the
approximation algorithms in Section 6, and explain our im-
plementation and results in Section 7.

2 Background

Approximation algorithms for polygonal models can be
classified into two broad categories:

� Min-# Approximations: For this version of the ap-
proximation problem, given some error bound �, the
objective is to minimize the number of vertices such
that no point of the approximation A is farther than �
distance away from the input model I.

� Min-� Approximations: Here we are given the num-
ber of vertices of the approximationA and the objec-
tive is to minimize the error, or the difference, between
A and I.

Previous work in the area of min-# approximations has
been done by [6, 20] where they adaptively subdivide a
series of bicubic patches and polygons over a surface until
they fit the data within the tolerance levels.

In the second category, work has been done by several
groups. Turk [23] first distributes a given number of vertices
over the surface depending on the curvature and then re-
triangulates them to obtain the final mesh. Schroeder et
al. [21] and Hinker and Hansen [13] operate on a set of
local rules — such as deleting edges or vertices from almost
coplanar adjacent faces, followed by local re-triangulation.
These rules are applied iteratively till they are no longer
applicable. A somewhat different local approach is taken in
[18] where vertices that are close to each other are clustered
and a new vertex is generated to represent them. The mesh
is suitably updated to reflect this.

Hoppe et al. [14] proceed by iteratively optimizing an
energy function over a mesh to minimize both the distance
of the approximating mesh from the original, as well as the
number of approximating vertices. An interesting and ele-
gant solution to the problem of polygonal simplification by
using wavelets has been presented in [7, 8] where arbitrary
polygonal meshes are first subdivided into patches with

subdivision connectivity and then multiresolution wavelet
analysis is used over each patch. This wavelet approach
preserves global topology.

In computational geometry, it has been shown that com-
puting the minimal-facet �-approximation is NP-hard for
both convex polytopes [5] and polyhedral terrains [1]. Thus,
algorithms to solve these problems have evolved around
finding polynomial-time approximations that are close to
the optimal.

Let ko be the size of a min-# approximation. An
algorithm has been given in [16] for computing an �-
approximation of size O(ko logn) for convex polytopes.
This has recently been improved by Clarkson in [3]; he
proposes a randomized algorithm for computing an approx-
imation of size O(ko logko) in expected time O(kon

1+�)
for any � > 0 (the constant of proportionality depends on
�, and tends to+1 as � tends to 0). In [2] Brönnimann and
Goodrich observed that a variant of Clarkson’s algorithm
yields a polynomial-time deterministic algorithm that com-
putes an approximation of size O(k0). Working with poly-
hedral terrains, [1] present a polynomial-time algorithm
that computes an �-approximation of size O(ko logko) to a
polyhedral terrain.

Our work is different from the above in that it allows
adaptive, genus-preserving, �-approximation of arbitrary
polygonal objects. Additionally, we can simplify bordered
meshes and meshes with holes. In terms of direct compari-
son with the global topologypreserving approach presented
in [7, 8], for a given � our algorithm has been empirically
able to obtain “reduced" simplifications, which are much
smaller in output size (as demonstrated in Section 7). The
algorithm in [18] also guarantees a bound in terms of the
Hausdorff metric. However, it is not guaranteed to preserve
the genus of the original model.

3 Terminology and Assumptions
Let us assume thatI is a three-dimensional compact and ori-
entable object whose polygonal representation P has been
given to us. Our objective is to compute a piecewise-linear
approximationA of P. Given two piecewise linear objects
P andQ, we say thatP andQ are �-approximationsof each
other iff every point on P is within a distance � of some
point of Q and every point on Q is within a distance � of
some point ofP. Our goal is to outline a method to generate
two envelope surfaces surroundingP and demonstrate how
the envelopes can be used to solve the following polygonal
approximation problem. Given a polygonal representation
P of an object and an approximation parameter �, generate
a genus-preserving �-approximationA with minimal num-
ber of polygons such that the vertices of A are a subset of
vertices of P.

We assume that all polygons in P are triangles and that
P is a well-behaved polygonal model, i.e., every edge has
either one or two adjacent triangles, no two triangles inter-
penetrate, there are no unintentional “cracks" in the model,
no T-junctions, etc.

We also assume that each vertex ofP has a single normal
vector, which must lie within 90o of the normal of each of
its surrounding triangles. For the purpose of rendering,
each vertex may have either a single normal or multiple
normals. For the purpose of generating envelope surfaces,
we shall compute a single vertex normal as a combination
of the normals of the surrounding triangles.

The three-dimensional �-offset surface for a parametric
surface

f (s; t) = (f1(s; t); f2(s; t); f3(s; t));

whose unit normal to f is

n(s; t) = (n1(s; t); n2(s; t); n3(s; t));

is defined as f �(s; t) = (f�1 (s; t); f
�
2 (s; t); f

�
3 (s; t)), where

f�i (s; t) = fi(s; t) + �ni(s; t):

Note that offset surfaces for a polygonal object can self-
intersect and may contain non-linear elements. We define
a simplification envelope P(+�) (respectively P(��)) for
an object I to be a polygonal surface that lies within a dis-
tance of � from every point p on I in the same (respectively
opposite) direction as the normal to I at p. Thus, the simpli-
fication envelopes can be thought of as an approximation to
offset surfaces. Henceforth we shall refer to simplification
envelope by simply envelope.

Let us refer to the triangles of the given polygonal repre-
sentation P as the fundamental triangles. Let e = (v1; v2)
be an edge of P. If the normals n1;n2 to I at both v1 and
v2, respectively, are identical, then we can construct a plane
�e that passes through the edge e and has a normal that is
perpendicular to that of v1. Thus v1, v2 and their normals
all lie along �e. Such a plane defines two half-spaces for
edge e, say �+e and ��e (see Fig 2(a)). However, in general
the normals n1 and n2 at the vertices v1 and v2 need not
be identical, in which case it is not clear how to define the
two half-spaces for an edge. One choice is to use a bilinear
patch that passes through v1 and v2 and has a tangent n1 at
v1 and n2 at v2. Let us call such a bilinear patch for e as the
edge half-space �e. Let the two half-spaces for the edge e
in this case be �+e and ��e . This is shown in Fig 2(b).

e

v
1

v
2

−
e e

+
e

1
n

2
n

e
v
1

v
2

1
n

2
n−

e

e

e
+

(a) (b)

Figure 2: Edge Half-spaces

Let the vertices of a fundamental triangle be v1, v2, and
v3. Let the coordinates and the normal of each vertex v be
represented as c(v) andn(v), respectively. The coordinates
and the normal of a (+�)-offset vertex v+i for a vertex vi
are: c(v+i) = c(vi) + �n(vi), and n(v+i) = n(vi). The
(��)-offset vertex can be similarly defined in the opposite
direction. These offset vertices for a fundamental triangle
are shown in Figure 3.

Now consider the closed object defined by v+i and v�i ,
i = 1; 2; 3. It is defined by two triangles, at the top and
bottom, and three edge half-spaces. This object contains
the fundamental triangle (shown shaded in Figure 3) and
we will henceforth refer to it as the fundamental prism.

4 Envelope Computation
In order to preserve the input topology of P, we desire
that the simplification envelopes do not self-intersect. To
meet this criterion we reduce our level of approximation
at certain places. In other words, to guarantee that no
intersections amongst the envelopes occur, we have to be

v
1

v
2

v
3

v
3
+

v
3
−

v −

v −

v
+

1

2

v
+
2

1

1
n

n
2

n
3

Figure 3: The Fundamental Prism

content at certain places with the distance betweenP and the
envelope being smaller than �. This is how simplification
envelopes differ from offset surfaces.

We construct our envelope such that each of its trian-
gles corresponds to a fundamental triangle. We offset each
vertex of the original surface in the direction of its normal
vector to transform the fundamental triangles into those of
the envelope.

If we offset each vertex vi by the same amount �, to
get the offset vertices v+i and v�i , the resulting envelopes,
P(+�) and P(��), may contain self-intersections because
one or more offset vertices are closer to some non-adjacent
fundamental triangle. In other words, if we define a Voronoi
diagram over the fundamental triangles of the model, the
condition for the envelopes to intersect is that there be at
least one offset vertex lying in the Voronoi region of some
non-adjacent fundamental triangle. This is shown in Fig-
ure 4 by means of a two-dimensional example. In the figure,
the offset vertices b+ and c+ are in the Voronoi regions of
edges other than their own, thus causing self-intersection of
the envelope.

ε

ε

b

c

b

c

+

+
Offset Voronoi

Original
surface

edge

Figure 4: Offset Surfaces

Once we make this observation, the solution to avoid self-
intersections becomes quite simple — just do not allow
an offset vertex to go beyond the Voronoi regions of its
adjacent fundamental triangles. In other words, determine
the positive and negative � for each vertex vi such that
the vertices v+i and v�i determined with this new � do not
lie in the Voronoi regions of the non-adjacent fundamental
triangles.

While this works in theory, efficient and robust com-
putation of the three-dimensional Voronoi diagram of the
fundamental triangles is non-trivial. We now present two
methods for computing the reduced � for each vertex, the
first method analytical, and the second numerical.

4.1 Analytical � Computation
We adopt a conservative approach for recomputing the � at
each vertex. This approach underestimates the values for
the positive and negative �. In other words, it guarantees
the envelope surfaces not to intersect, but it does not guar-
antee that the � at each vertex is the largest permissible �.
We next discuss this approach for the case of computing
the positive � for each vertex. Computation of negative �
follows similarly.

Consider a fundamental triangle t. We define a prism
tp for t, which is conceptually the same as its fundamental
prism, but uses a value of 2� instead of � for defining the
envelope vertices. Next, consider all triangles ∆i that do
not share a vertex with t. If ∆i intersects tp above t (the
directions above and below t are determined by the direction
of the normal to t, above is in the same direction as the
normal to t), we find the point on ∆i that lies within tp and
is closest to t. This point would be either a vertex of ∆i,
or the intersection point of one of its edges with the three
sides of the prism tp. Once we find the point of closest
approach, we compute the distance �i of this point from t.
This is shown in Figure 5.

v
1

v
2 v

3

2

i t

tp

i

Figure 5: Computation of �i

Once we have done this for all ∆i, we compute the new
value of the positive � for the triangle t as �new = 1

2 mini �i.
If the vertices for this triangle t have this value of positive �,
their positive envelope surface will not self-intersect. Once
the �new(t)values for all the triangles thave been computed,
the �new(v) for each vertex v is set to be the minimum of
the �new(t) values for all its adjacent triangles.

We use an octree in our implementation to speed up the
identification of triangles ∆i that intersect a given prism.

4.2 Numerical � Computation
To compute an envelope surface numerically, we take an it-
erative approach. Our envelope surface is initially identical
to the input model surface. In each iteration, we sequen-
tially attempt to move each envelope vertex a fraction of
the � distance in the direction of its normal vector (or the
opposite direction, for the inner envelope). This effectively
stretches or contracts all the triangles adjacent to the vertex.
We test each of these adjacent triangles for intersection with
each other and the rest of the model. If no such intersections
are found, we accept the step, leaving the vertex in this new
position. Otherwise we reject it, moving the vertex back
to its previous position. The iteration terminates when all
vertices have either moved � or can no longer move.

In an attempt to guarantee that each vertex gets to move
a reasonable amount of its potential distance, we use an

adaptive step size. We encourage a vertex to move at least
K (an arbitrary constant which is scaled with respect to �
and the size of the object) steps by allowing it to reduce its
step size. If a vertex has moved less than K steps and its
move is been rejected, it divides its step size in half and tries
again (with some maximum number of divides allowed on
any particular step). Notice that if a vertex moves i steps
and is rejected on the (i+ 1)st step, we know it has moved
at least i=(i+ 1) % of its potential distance, so K=(K + 1)
which is a lower bound of sorts. It is possible, though rare,
for a vertex to move less than K steps, if its current position
is already quite close to another triangle.

Each vertex also has its own initial step size. We first
choose a global, maximum step size based on a global prop-
erty: either some small percentage of the object’s bounding
box diagonal length or �=K, whichever is smaller. Now
for each vertex, we calculate a local step size. This local
step size is some percentage of the vertex’s shortest incident
edge (only those edges within 90o of the offset direction are
considered). We set the vertex’s step size to the minimum
of the global step size and its local step size. This makes it
likely that each vertex’s step size is appropriate for a step
given the initial mesh configuration.

This approach to computing an envelope surface is ro-
bust, simple to implement (if difficult to explain), and fair
to all the vertices. It tends to maximize the minimum off-
set distance amongst the envelope vertices. It works fairly
well in practice, though there may still be some room for
improvement in generating maximal offsets for thin objects.
Figure 6 shows internal and external envelopes computed
for three values of � using this approach.

As in the analytical approach, a simple octree data struc-
ture makes these intersection tests reasonably efficient, es-
pecially for models with evenly sized triangles.

5 Generation of Approximation
Generating a surface approximation typically involves start-
ing with the input surface and iteratively making modifica-
tions to ultimately reduce its complexity. This process may
be broken into two main stages: hole creation, and hole
filling. We first create a hole by removing some connected
set of triangles from the surface mesh. Then we fill the hole
with a smaller set of triangles, resulting in some reduction
of the mesh complexity.

We demonstrate the generality of the simplification en-
velope approach by designing two algorithms. The hole
filling stages of these algorithms are quite similar, but their
hole creation stages are quite different. The first algorithm
makes only local choices, creating relatively small holes,
while the second algorithm uses global information about
the surface to create maximally-sized holes. These design
choices produce algorithms with very different properties.

We begin by describing the envelope validity test used to
determine whether a candidate triangle is valid for inclusion
in the approximation surface. We then proceed to the two
example simplification algorithms and a description of their
relative merits.

5.1 Validity Test
A candidate triangle is one which we are considering for
inclusion in an approximation to the input surface. Valid
candidate triangles must lie between the two envelopes.
Because we construct candidate triangles from the vertices
of the original model, we know its vertices lie between
the two envelopes. Therefore, it is sufficient to test the
candidate triangle for intersections with the two envelope

Inner Envelopes � Outer Envelopes
Figure 6: Simplification envelopes for various �

surfaces. We can perform such tests efficiently using a
space-partitioning data structure such as an octree.

A valid candidate triangle must also not cause a self-
intersection in our surface, Therefore, it must not intersect
any triangle of the current approximation surface.

5.2 Local Algorithm
To handle large models efficiently within the framework
of simplification envelopes we construct a vertex-removal-
based local algorithm. This algorithm draws heavily on
the work of [21], [23], and [14]. Its main contributions
are the use of envelopes to provide global error bounds as
well as topology preservation and non-self-intersection. We
have also explored the use of a more exhaustive hole-filling
approach than any previous work we have seen.

The local algorithm begins by placing all vertices in
a queue for removal processing. For each vertex in the
queue, we attempt to remove it by creating a hole (remov-
ing the vertex’s adjacent triangles) and attempting to fill it.
If we can successfully fill the hole, the mesh modification
is accepted, the vertex is removed from the queue, and its
neighbors are placed back in the queue. If not, the vertex is
removed from the queue and the mesh remains unchanged.
This process terminates when the global error bounds even-
tually prevent the removal of any more vertices. Once the
vertex queue is empty we have our simplified mesh.

For a given vertex, we first create a hole by removing
all adjacent triangles. We begin the hole-filling process by
generating all possible triangles formed by combinations

of the vertices on the hole boundary. This is not strictly
necessary, but it allows us to use a greedy strategy to favor
triangles with nice aspect ratios. We fill the hole by choos-
ing a triangle, testing its validity, and recursively filling the
three (or fewer) smaller holes created by adding that trian-
gle into the hole (see figure 7). If a hole cannot be filled
at any level of the recursion, the entire hole filling attempt
is considered a failure. Note that this is a single-pass hole
filling strategy; we do not backtrack or undo selection of a
triangle chosen for filling a hole. Thus, this approach does
not guarantee that if a triangulation of a hole exists we will
find it. However, it is quite fast and works very well in
practice.

A

B C

Figure 7: Hole filling: adding a triangle into a hole creates up
to three smaller holes

We have compared the above approach with an exhaus-
tive approach in which we tried all possible hole-filling tri-
angulations. For simplifications resulting in the removal of
hundreds of vertices (like highly oversampled laser-scanned
models), the exhaustive pass yielded only a small improve-
ment over the single-pass heuristic. This sort of confirma-
tion reassures us that the single-pass heuristic works well
in practice.

5.3 Global Algorithm
This algorithm extends the algorithm presented in [3] to
non-convex surfaces. Our major contribution is the use of
simplification envelopes to bound the error on a non-convex
polygonal surface and the use of fundamental prisms to
provide a generalized projection mechanism for testing for
regions of multiple covering (overlaps). We present only a
sketch of the algorithm here ; see [24] for the full details.

We begin by generating all possible candidate triangles
for our approximation surface. These triangles are all 3-
tuples of the input vertices which do not intersect either of
the offset surfaces. Next we determine how many vertices
each triangle covers. We rank the candidate triangles in
order of decreasing covering.

We then choose from this list of candidate triangles in a
greedy fashion. For each triangle we choose, we create a
large hole in the current approximation surface, removing
all triangles which overlap this candidate triangle. Now
we begin the recursive hole-filling process by placing this
candidate triangle into the hole and filling all the subholes
with other triangles, if possible. One further restriction in
this process is that the candidate triangle we are testing
should not overlap any of the candidate triangles we have
previously accepted.

5.4 Algorithm Comparison
The local simplification algorithm is fast and robust enough
to be applied to large models. The global strategy is the-
oretically elegant. While the global algorithm works well
for small models, its complexity rises at least quadratically,

envelope curve

envelope curve

original curve

approximating curve

Figure 8: Curve at local minimum of approximation

making it prohibitive for larger models. We can think of the
simplification problem as an optimization problem as well.
A purely local algorithm may get trapped in a local “min-
imum” of simplification, while an ideal global algorithm
will avoid all such minima.

Figure 8 shows a two-dimensional example of a curve for
which a local vertex removal algorithm might fail, but an
algorithm that globally searches the solutionspace will suc-
ceed in finding a valid approximation. Any of the interior
vertices we remove would cause a new edge to penetrate
an envelope curve. But if we remove all of the interior
vertices, the resulting edge is perfectly acceptable.

This observation motivates a wide range of algorithms of
which our local and global examples are the two extremes.
We can easily imagine an algorithm that chooses nearby
groups of vertices to remove simultaneously rather than
sequentially. This could potentially lead to increased speed
and simplification performance. However, choosing such
sets of vertices remains a challenging problem.

6 Additional Features

Envelope surfaces used in conjunction with simplification
algorithms are powerful, general-purpose tools. As we will
now describe, they implicitly preserve sharp edges and can
be extended to deal with bordered surfaces and perform
adaptive approximations.

6.1 Preserving Sharp Edges
One of the important properties in any approximation
scheme is the way it preserves any sharp edges or normal
discontinuities present in the input model. Simplification
envelopes deal gracefully with sharp edges (those with a
small angle between their adjacent faces). When the � tol-
erance is small, there is not enough room to simplify across
these sharp edges, so they are automatically preserved. As
the tolerance is increased, it will eventually be possible to
simplify across the edges (which should no longer be vis-
ible from the appropriate distance). Notice that it is not
necessary to explicitly recognize these sharp edges.

6.2 Bordered Surfaces
A bordered surface is one containing points that are home-
omorphic to a half-disc. For polygonal models, this corre-
sponds to edges that are adjacent to a single face rather than
two faces. Depending on the context, we may naturally
think of this as the boundary of some plane-like piece of a
surface, or a hole in an otherwise closed surface.

The algorithms described in 5 are sufficient for closed
triangle meshes, but they will not guarantee our global er-
ror bound for meshes with borders. While the envelopes
constrain our error with respect to the normal direction

of the surface, bordered surfaces require some additional
constraints to hold the approximation border close to the
original border. Without such constraints, the border of the
approximation surface may “creep in,” possibly shrinking
the surface out of existence.

In many cases, the complexity of a surface’s border
curves may become a limiting factor in how much we can
simplify the surface, so it is unacceptable to forgo simpli-
fying these borders.

We construct a set of border tubes to constrain the error
in deviation of the border curves. Each border is actually
a cyclic polyline. Intuitively speaking, a border tube is a
smooth, non-self-intersecting surface around one of these
polylines. Removing a border vertex causes a pair of border
edges to be replaced by a single border edge. If this new
border edge does not intersect the relevant border tube, we
may safely attempt to remove the border vertex.

To construct a tube we define a plane passing through
each vertex of the polyline. We choose a coordinate system
on this plane and use that to define a circular set of vertices.
We connect these vertices for consecutive planes to con-
struct our tube. Our initial tubes have a very narrow radius
to minimize the likelihood of self-intersections. We then
expand these narrow tubes using the same technique we
used previously to construct our simplification envelopes.

The difficult task is to define a coordinate system at
each polyline vertex which encourages smooth, non-self-
intersecting tubes. The most obvious approach might be to
use the idea of Frenet frames from differential geometry to
define a set of coordinate systems for the polyline vertices.
However, Frenet frames are meant for smooth curves. For
a jagged polyline, a tube so constructed often has many
self-intersections.

Instead, we use a projection method to minimize the
twist between consecutive frames. Like the Frenet frame
method, we place the plane at each vertex so that the normal
to the plane approximates the tangent to the polyline. This
is called the normal plane.

At the first vertex, we choose an arbitrary orthogonal pair
of axes for our coordinate system in the normal plane. For
subsequent vertices, we project the coordinate system from
the previous normal plane onto the current normal frame.
We then orthogonalize this projected coordinate system in
the plane. For the normal plane of the final polyline vertex,
we average the projected coordinate systems of the previous
normal plane and the initial normal plane to minimize any
twist in the final tube segment.

6.3 Adaptive Approximation
For certain classes of objects it is desirable to perform an
adaptive approximation. For instance, consider large ter-
rain datasets, models of spaceships, or submarines. One
would like to have more detail near the observer and less
detail further away. A possible solution could be to sub-
divide the model into various spatial cells and use a dif-
ferent �-approximation for each cell. However, problems
would arise at the boundaries of such cells where the �-
approximation for one cell, say at a value �1 need not nec-
essarily be continuous with the �-approximation for the
neighboring cell, say at a different value �2.

Since all candidate triangles generated are constrained
to lie within the two envelopes, manipulation of these en-
velopes provides one way to smoothly control the level of
approximation. Thus, one could specify the � at a given
vertex to be a function of its distance from the observer —
the larger the distance, the greater is the �.

As another possibility, consider the case where certain

features of a model are very important and are not to be
approximated beyond a certain level. Such features might
have human perception as a basis for their definition or
they might have mathematical descriptions such as regions
of high curvature. In either case, a user can vary the �
associated with a region to increase or decrease the level of
approximation. The bunny in Figure 9 illustrates such an
approximation.

Figure 9: An adaptive simplification for the bunny model.
� varies from 1/64% at the nose to 1% at the tail.

7 Implementation and Results

We have implemented both algorithms and tried out the
local algorithm on several thousand objects. We will first
discuss some of the implementation issues and then present
some results.

7.1 Implementation Issues

The first important implementation issue is what sort of
input model to accept. We chose to accept only manifold
triangle meshes (or bordered manifolds). This means that
each edge is adjacent to two (one in the case of a border)
triangles and that each vertex is surrounded by a single ring
of triangles.

We also do not accept other forms of degenerate meshes.
Many mesh degeneracies are not apparent on casual in-
spection, so we have implemented an automatic degener-
acy detection program. This program detects non-manifold
vertices, non-manifold edges, sliver triangles, coincident
triangles, T-junctions, and intersecting triangles in a pro-
posed input mesh. Note that correcting these degeneracies
is more difficult than detecting them.

Robustness issues are important for implementations of
any geometric algorithms. For instance, the analytical
method for envelope computation involves the use of bi-
linear patches and the computation of intersection points.

The computation of intersection points, even for linear el-
ements, is difficult to perform robustly. The numerical
method for envelope computation is much more robust be-
cause it involves only linear elements. Furthermore, it
requires an intersection test but not the calculation of inter-
section points. We perform all such intersection tests in a
conservative manner, using fuzzy intersection tests that may
report intersections even for some close but non-intersecting
elements.

Another important issue is the use of a space-partitioning
scheme to speed up intersection tests. We chose to use an
octree because of its simplicity. Our current octree im-
plementation deals only with the bounding boxes of the
elements stored. This works well for models with trian-
gles that are evenly sized and shaped. For CAD models,
which may contain long, skinny, non-axis-aligned triangles,
a simple octree does not always provide enough of a speed-
up, and it may be necessary to choose a more appropriate
space-partitioning scheme.

7.2 Results

We have simplified a total of 2636 objects from the auxiliary
machine room (AMR) of a submarine dataset, pictured in
Figure 10 to test and validate our algorithm. We reproduce
the timings and simplifications achieved by our implemen-
tation for the AMR and a few other models in Table 1.
All simplifications were performed on a Hewlett-Packard
735/125 with 80 MB of main memory. Images of these
simplifications appear in Figures 11 and 12. It is interest-
ing to compare the results on the bunny and phone models
with those of [7, 8]. For the same error bound, we are able
to obtain much improved solutions.

We have automated the process which sets the � value
for each object by assigning it to be a percentage of the
diagonal of its bounding box. We obtained the reductions
presented in Table 1 for the AMR and Figures 11 and 12 by
using this heuristic.

For the rotor and AMR models in the above results, the
ith level of detail was obtained by simplifying the i � 1th
level of detail. This causes to total � to be the sum of
all previous �’s, so choosing �0s of 1, 2, 4, and 8 percent
results in total �0s of 1, 3, 7, and 15 percent. There are two
advantages to this scheme:
(a) It allows one to proceed incrementally, taking advantage
of the work done in previous simplifications.
(b) It builds a hierarchy of detail in which the vertices at the
ith level of detail are a subset of the vertices at the i � 1th
level of detail.

One of the advantages of the setting � to a percent of
the object size is that it provides an a way to automate
the selection of switching points used to transition between
the various representations. To eliminate visual artifacts,
we switch to a more faithful representation of an object
when � projects to more than some user-specified number
of pixels on the screen. This is a function of the � for
that approximation, the output display resolution, and the
corresponding maximum tolerable visible error in pixels.

8 Future Work

There are still several areas to be explored in this research.
We believe the most important of these to be the generation
of correspondences between levels of detail and the moving
of vertices within the envelope volume.

Bunny Phone Rotor AMR
� % # Polys Time � % # Polys Time � % # Polys Time � % # Polys Time

0 69,451 N/A 0 165,936 N/A 0 4,735 N/A 0 436,402 N/A
1=64 44,621 9 1=64 43,537 31 1=8 2,146 3 1 195,446 171
1=32 23,581 10 1=32 12,364 35 1=4 1,514 2 3 143,728 61
1=16 10,793 11 1=16 4,891 38 3=4 1,266 2 7 110,090 61
1=8 4,838 11 1=8 2,201 32 1 3=4 850 1 15 87,476 68
1=4 2,204 11 1=4 1,032 35 3 3=4 716 1 31 75,434 84
1=2 1,004 11 1=2 544 33 7 3=4 688 1

1 575 11 1 412 30 15 3=4 674 1

Table 1: Simplification �’s and run times in minutes

8.1 Generating Correspondences
A true geometric hierarchy should contain not only repre-
sentations of an object at various levels of detail, but also
some correspondence information about the relationship
between adjacent levels. These relationships are neces-
sary for propagating local information from one level to the
next. For instance, this information would be helpful for
using the hierarchical geometric representation to perform
radiosity calculations. It is also necessary for performing
geometric interpolation between the models when using the
levels of detail for rendering. Note that the envelope tech-
nique preserves silhouettes when rendering, so it is also a
good candidate for alpha blending rather than geometric
interpolation to smooth out transitions between levels of
detail.

We can determine which elements of a higher level of
detail surface are covered by an element of a lower level of
detail representation by noting which fundamental prisms
this element intersects. This is non-trivial only because
of the bilinear patches that are the sides of a fundamental
prism. We can approximate these patches by two or more
triangles and then tetrahedralize each prism. Given this
tetrahedralization of the envelope volume, it is possible to
stab each edge of the lower level-of-detail model through
the tetrahedrons to determine which ones they intersect,
and thus which triangles are covered by each lower level-
of-detail triangle.

8.2 Moving Vertices
The output mesh generated by either of the algorithms we
have presented has the property that its set of vertices is
a subset of the set of vertices of the original mesh. If we
can afford to relax this constraint somewhat, we may be
able to reduce the output size even further. If we allow the
vertices to slide along their normal vectors, we should be
able to simplify parts of the surface that might otherwise
be impossible to simplify for some choices of epsilon. We
are currently working on a goal-based approach to mov-
ing vertices within the envelope volume. For each vertex
we want to remove, we slide its neighboring vertices along
their normals to make them lie as closely as possible to a
tangent plane of the original vertex. Intuitively, this should
increase the likelihood of successfully removing the vertex.
During this whole process, we must ensure that none of
the neighboring triangles ever violates the envelopes. This
approach should make it possible to simplify surfaces using
smaller epsilons than previously possible. In fact, it may
even enable us to use the original surface and a single en-
velope as our constraint surfaces rather than two envelopes.
This is important for objects with areas of high maximal
curvature, like thin cylinders.

9 Conclusion

We have outlined the notion of simplification envelopes and
how they can be used for generation of multiresolution hi-
erarchies for polygonal objects. Our approach guarantees
non-self-intersecting approximations and allows the user
to do adaptive approximations by simply editing the sim-
plification envelopes (either manually or automatically) in
the regions of interest. It allows for a global error toler-
ance, preservation of the input genus of the object, and
preservation of sharp edges. Our approach requires only
one user-specifiable parameter, allowing it to work on large
collections of objects with no manual intervention if so de-
sired. It is rotationallyand translationally invariant, and can
elegantly handle holes and bordered surfaces through the
use of cylindrical tubes. Simplification envelopes are gen-
eral enough to permit both simplification algorithms with
good theoretical properties such as our global algorithm, as
well as fast, practical, and robust implementations like our
local algorithm. Additionally, envelopes permit easy gen-
eration of correspondences across several levels of detail.

10 Acknowledgements

Thanks to Greg Angelini, Jim Boudreaux, and Ken Fast
at Electric Boat for the submarine model, Rich Riesen-
feld and Elaine Cohen of the Alpha 1 group at the Uni-
versity of Utah for the rotor model, and the Stanford
Computer Graphics Laboratory for the bunny and tele-
phone models.Thanks to Carl Mueller, Marc Olano, and
Bill Yakowenko for many useful suggestions, and to the
rest of the UNC Simplification Group (Rui Bastos, Carl
Erikson, Merlin Hughes, and David Luebke) for provid-
ing a great forum for discussing ideas. The funding for
this work was provide by a Link Foundation Fellowship,
Alfred P. Sloan Foundation Fellowship, ARO Contract P-
34982-MA, ARO MURI grant DAAH04-96-1-0013, NSF
Grant CCR-9319957, NSF Grant CCR-9301259, NSF Ca-
reer Award CCR-9502239, ONR Contract N00014-94-1-
0738, ARPA Contract DABT63-93-C-0048, NSF/ARPA
Center for Computer Graphics and Scientific Visualization,
NIH Grant RR02170, an NYI award with matching funds
from Xerox Corp, and a U.S.-Israeli Binational Science
Foundation grant.

References
[1] P. Agarwal and S. Suri. Surface approximation and geometric par-

titions. In Proceedings Fifth Symposium on Discrete Algorithms,
pages 24–33, 1994.

[2] H. Brönnimann and M. Goodrich. Almost optimal set covers in
finite VC-dimension. In Proceedings Tenth ACM Symposium on
Computational Geometry, pages 293–302, 1994.

[3] K. L. Clarkson. Algorithms for polytope covering and approxima-
tion. In Proc. 3rd Workshop Algorithms Data Struct., Lecture Notes
in Computer Science, 1993.

[4] M. Cosman and R. Schumacker. System strategies to optimize CIG
image content. In Proceedings of the Image II Conference, Scotts-
dale, Arizona, June 10–12 1981.

[5] G. Das and D. Joseph. The complexity of minimum convex nested
polyhedra. In Proc. 2nd Canad. Conf. Comput. Geom., pages 296–
301, 1990.

[6] M. J. DeHaemer, Jr. and M. J. Zyda. Simplification of objects
rendered by polygonal approximations. Computers & Graphics,
15(2):175–184, 1991.

[7] T. D. DeRose, M. Lounsbery, and J. Warren. Multiresolution analysis
for surface of arbitrary topological type. Report 93-10-05, Depart-
ment of Computer Science, University of Washington, Seattle, WA,
1993.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution analysis of arbitrary meshes. Computer
Graphics: Proceedings of SIGGRAPH’95, pages 173–182, 1995.

[9] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual en-
vironments. In Computer Graphics (SIGGRAPH ’93 Proceedings),
volume 27, pages 247–254, August 1993.

[10] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility.
In Computer Graphics: Proceedings of SIGGRAPH 1993, pages
231–238. ACM SIGGRAPH, 1993.

[11] T. He, L. Hong, A. Kaufman, A. Varshney, and S. Wang. Voxel-
based object simplification. In G. M. Nielson and D. Silver, editors,
IEEE Visualization ’95 Proceedings, pages 296–303, 1995.

[12] P. Heckbert and M. Garland. Multiresolution modeling for fast
rendering. Proceedings of Graphics Interface, 1994.

[13] P. Hinker and C. Hansen. Geometric optimization. In Gregory M.
Nielson and Dan Bergeron, editors, Proceedings Visualization ’93,
pages 189–195, October 1993.

[14] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Mesh optimization. In James T. Kajiya, editor, Computer Graphics
(SIGGRAPH ’93 Proceedings), volume 27, pages 19–26, August
1993.

[15] A. D. Kalvin and R. H. Taylor. Superfaces: Polyhedral approxi-
mation with bounded error. Technical Report RC 19135 (#82286),
IBM Research Division, T. J. Watson Research Center, Yorktown
Heights, NY 10958, 1993.

[16] J. Mitchell and S. Suri. Separation and approximation of polyhedral
surfaces. In Proceedings of 3rd ACM-SIAM Symposium on Discrete
Algorithms, pages 296–306, 1992.

[17] Kevin J. Renze and J. H. Oliver. Generalized surface and volume
decimation for unstructured tessellated domains. In Proceedings of
SIVE’95, 1995.

[18] J. Rossignac and P. Borrel. Multi-resolution 3D approximations
for rendering. In Modeling in Computer Graphics, pages 455–465.
Springer-Verlag, June–July 1993.

[19] H. E. Rushmeier, C. Patterson, and A. Veerasamy. Geometric sim-
plification for indirect illumination calculations. In Proceedings
Graphics Interface ’93, pages 227–236, 1993.

[20] F. J. Schmitt, B. A. Barsky, and W. Du. An adaptive subdivision
method for surface-fitting from sampled data. Computer Graphics
(SIGGRAPH ’86 Proceedings), 20(4):179–188, 1986.

[21] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation of
triangle meshes. In Edwin E. Catmull, editor, Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.

[22] G. Taubin. A signal processing approach to fair surface design. In
Proc. of ACM Siggraph, pages 351–358, 1995.

[23] G. Turk. Re-tiling polygonal surfaces. In Computer Graphics (SIG-
GRAPH ’92 Proceedings), volume 26, pages 55–64, July 1992.

[24] A. Varshney. Hierarchical geometric approximations. Ph.D. The-
sis TR-050-1994, Department of Computer Science, University of
North Carolina, Chapel Hill, NC 27599-3175, 1994.

Figure 10: Looking down into the auxiliary machine room
(AMR) of a submarine model. This model contains nearly 3,000
objects, for a total of over half a million triangles. We have sim-
plified over 2,600 of these objects, for a total of over 430,000
triangles.

Figure 11: An array of batteries from the AMR. All parts but the
red are simplified representations. At full resolution, this array
requires 87,000 triangles. At this distance, allowing 4 pixels of
error in screen space, we have reduced it to 45,000 triangles.

(a) bunny model: 69,451 triangles (e) phone model: 165,936 triangles (i) rotor model: 4,736 triangles

(b) � = 1=16%, 10; 793 triangles (f) � = 1=32%, 12; 364 triangles (j) � = 1=8%, 2; 146 triangles

(c) � = 1=4%, 2; 204 triangles (g) � = 1=16%, 4; 891 triangles (k) � = 3=4%, 1; 266 triangles

(d) � = 1%, 575 triangles (h) � = 1%, 412 triangles (l) � = 3 3=4%, 716 triangles

Figure 12: Level-of-detail hierarchies for three models. The approximation distance, �, is taken as a percentage of the bounding box
diagonal.

