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Abstract

The desireto augmentour 3-dimensionaberceptionandthe needto understandnultivariateproblems
spavnedseveral multidimensionalisualizationmethodologies Startingfrom early successesf visual-
ization,like Dr. J. Snonv’sdot mapin 1854shaving theconnectiorof cholerato awaterpumpin London,
Scattemlots, Chernof faces,Andrews plots, ProjectionPursuit,Perceptualizationf data,Datadensity
Treesand Castles,Kinematic displays, Bertin PermutationMatricesand other multivariatetechniques
have beendeveloped(seeBibliographyA in the Appendix). Someof thesewill bereviewedin orderto
establishthe connectionbetweenmultivariateproblemsand multidimensionageometry Understanding
the underlyinggeometryof a multivariateproblemprovidesimportantinsightsinto whatis possibleand
whatis not. For the unambiguouwisualizationof multidimensionalgeometryand,in turn, multivariate
relationsParallel Coordinates- the leadingMultidimensionalVis Methodology- is introducedandrigor-
ously developed. RelationsamongN real variablesare mappeduniquelyinto subsetf 2-spacehaving
geometricapropertiesnablingthevisualizationof the correspondingN-dimensionahypersuréces.
After the basicrepresentatiomesults,associatedlgorithmsfor constructionsintersectionstransforma-
tions, containmentjueries,proximity and otherswill be presented.The developmentis interlacedwith
applicationsof therelevantresultsstartingwith demonstrationsf DataMining onrealdatasetgi.e. Fea-
ture extraction from LandSatdata, Financial, ProcessControl, Pilot Selection,Raisingthe Yield and
Quiality of VLSI chips,andothers). They arefollowed by Collision AvoidanceAlgorithmsfor Air Traf-
fic Control which are basedon the representatiomf linesin multidimensionalspace. The detectionof
coplanarmpointsandthe representationf planesandhyperplaneseadto someapplicationan Computer
Vision, GeometridModelingandelsavhere.More examplesof VisualDataMining aregiven. An efficient
geometricautomaticclassifier algorithmis motivatedandis demonstratedn somechallengingdatasets
Finally, the representationf curvesandhypersurcesis taken up togetherwith interactve applications
to Proces<Control, InstrumentatiorandHeuristicOptimization. NonlinearVISUAL models,in termsof
hypersuracesareconstructedrom dataandusednteractvely for DecisionSupport,Sensitvity Analysis,
studyingfeasibility andeffect of constraintsaaswell astrade-of analysis.

NOTE: Do not be intimidatedby the formalisticlanguage The organizeris alsowell known for numero-
logical anecdotesand palindromicdiversions. Valuableprizeswill be distributedin real-timeto those
contributing memorableandnotevorthy digressions.

KEYW ORDS: Multidimensional Geometry, Multidimensional/Multi variate Visualization, Infor-
mation Visualization, Parallel Coordinates, Visual & Automatic Data Mining, Intelligent Process
Control & Instrumentation, Nonlinear Modeling, DecisionSupport.
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VISUALIZA TION - An Intr oduction

Insight through Images— in the spirit of Hamming’s “we compute to gain
insight not numbers”. Over half of our sensoryneuronsare devoted to vision.
A goal of Visualization is to incorporate our tremendouspattern-recognition

ability in our problem-solvingloop.

Emerging Field with Huge Potential — Propelled by TechnologicalAdvances

and the needto Visualizethe “Unseen”.

SeminalReport Visualizationin Scienti fic Computing, ACM SIGGRAPH 1987

promoted Scientific Visualization and indir ectly Visualization in other fields.

Techniquesare ad hoc and application specific. Roughly speakingthe field

consistsof a collection of mappings:

Problem(s) Class — Visual Models

“Escaping flatland is the essentialtask of ernvisioning information - for all
the interesting worlds (physical, biological, imaginary, human) that we seek
to understand are inevitably and happily MULTIVARIATE in nature. Not
flatlands” — E. R. Tufte prefacein Envisioning Information, Graphic Press,

Cheshire, Conn. 1990.



**

**

**

Our goal is the visualization of complex problems with many parameters —
Multivariate Visualization or equivalently Multidimensional Visualization we

shall emphasizelnf ormation Visualization

Believe it or not, the fascination with Dimensionality may predate Aristotle

and Ptolemy who argued that spacecan only have thr eedimensions. By the
nineteenth century, mathematicians like Riemann, Lobachevsky and Gauss
unshackled our imagination and higher-dimensional and non-Euclidean ge-
ometries cameinto their own. The intellectual challenge,limited by our 3-
dimensional perceptual experience,and the abundance of multi variate prob-
lems, spawnedvarious methodologiesto represent(encode)finite setsof mul-
tivariate data points asindicated in bibliography (APPENDIX A)(It is worth-
while doing a search on WWW for “Multi variate, or Multidimensional or In-

formation Visualization”).

What is neededs a conceptual breakthrough to enablethe visualization not only

of Multivariate Data but alsoof RELATIONSwithout Lossof Information.



MUL TIDIMENSION AL VISUALIZA TION

We focus on the leading multidimensional methodology for the visual pre-
sentation of relationships between many variables. It is basedon a system of
Parallel Coordinates (abbr. ||-coords)and providesa a systematicand rigor ousway
of visualizing N-Dimensionalgeometry. This is in the Spirit of Descartes whoseco-
ordinate systemenablesusto tranform relationsbetween2 and 3 variables (dimen-
sions)to geometric models— their graphs. However, rather than using orthogonal
axeswe placethem in parallel for orthogonality “usesup” the plane very fast. It
Is Parallelism rather than orthogonality which is the fundamental conceptin Ge-
ometry, and contrary to popular belief the conceptsare not equivalen. A notion of
angleis required for orthogonality whereasfor parallelism what is neededarelines
without points in common.

Basedon the experienceacccumulatedthus far the propertieswhich a desirable
multidimensional visualization methodoly should have are listed next. You are en-

couragedto contribute your own ideasand requirements.



WANTED!
A Multidimensional Visualization Methodology which

displays multi variate/multidimensional relations

without lossof information, and low representationalcomplexity (i.e. for Par-
allel Coordinatesthe complexity is O(N) while for the commonscatterplot ma-
trix it is O(N?)),

which works for any number of dimensionshariables,
and tr eatsevery variable in the sameway,

enablesthe object being displayed to be recognizedunder projective transfor-

mations (i.e. translations, rotations, scalingand perspective),

suchthat the propertiesof the relation uniquely correspondto the properties

of its image,and

Is basedon a body of rigor ous mathematical and algorithmic results (that is

theoremson how certain objectsare displayed rather than ad hoc heurestics).
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FORMAL OVERVIEW

This part is for the more mathematicaly inclined.
Don’t let the notation intimidate you!
A RELATION betweenN real variables x;,X,,... , Xy is a subsetF of RN —the

Euclidean N - Dimensional Spacei.e. F ¢ R\,

In order not to loseinformation we want to map F uniquely into a planar pat-

tern i.e. a subsetof R —which is arelation betweenx,, X,.

The plan, then, is to construct a mapping

727" 5 27" X Indexsat

where 2% = {B | B C A} is the power set of A, which maps subsetsof PN, the
Projective rather than the than Euclidean N - spaceinto subsetsof 2-space.

The reasondor using the Projective spaceaswell asthe Index Setwill be ex-

plained shortly.

Further, _# shouldbeone—to—one sothat ¢ (F,) = ¢ (F,) & F, =F,. By the
way, sincethe cardinality of 2P" and 2P° arethe sameiit is in principle possible
to constructan ¢ satisfyingthis requirement.

It will be shown that it is possibleto construct sucha mapping, ¢, recursively

11



on the dimensionality of the object being represented. That is, starting
with points (0-dimensional) — this the non-recursive part directly from the
definition, then successiely taking the ervelopesof the polygonal lines (1-
dimensional), p-flats (p-dimensional planes0 < p < N — 1), then certain hy-

persurfaces.In this the indexing plays a crucial role.

A subsetF of PN is then represented by its image F = F (F). Wewould like
F to have geometrical properties which will aid our intuition to discover the
properties of the N-dimensional subsetF that it represents.This, of course,is

a cognitive and subjective requirement.

All this formalism will be clarified in the ensuing There are a couple of miscon-
ceptions,however, that are worth clearing up at this stage.

Occassionaly mappings between N-space and M-space, where N > M,
are erroneously referred to as projections;, but not all such mappings are
projections.  Specifically a projection from N to M space takes a point
P(xl,xz,...,xM,x(MH),...,xN) into the point P'(Xy,X,,...,Xy). Henceit only hasin-
formation aboutthe M variablesit retains. Sofor our purposesprojectionsare not
desirablesincethey loseall information about the N-M missingvariables. Here ¢

IS not a projection and, in fact, is not even a point-to-point mapping. This is par-

12



ticularly relevant to scatterplotswhich are a very important technique commonly
usedin multi variate visualization. When the number of variablesis N, a scatterplot
matrix consistsof the N(N — 1)/2 projections of the N variables taken pairwise.
Unfortunately, even sucha plethora of projections may loseinformation about the
N-dimensional object it portrays. In 3-D for example,considerthe symmetric in-
tersectionof 3 cylinders having the sameradius r. The 3 pairwise projectionsof this
object areidentical to thoseof a sphere with radius r, and hencethesetwo relatively
simple objectscan not be distinguished by their projections. It is worth comingup

with your own examples.

Also don't let the name fool you, the Projective Plane, which we will be occas

sionally mentioning is not relatedto projective mappings.

PARALLEL COORDINATES — Definition

In the Euclidean plane with xy-Cartesian coordinates,N copiesof the real line la-
beled X, X,,...,Xy are placed equidistant (e.g one unit apart) and perpendicu-
lar to the x-axis. They are the axesof the parallel coordinate systemfor N-space
all having the samepositive orientation asthe y-axis. A point C with coordinates

(c,C,, ... ,Cy) isrepresentedby the complete polygonal line 5(i.e. the lines of

13
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Figurel: Thepolygonalline C representshe point (c,, c,, C3,C,, Cs).

which only the local segmentsare usually showvn) whoseN verticesare at (i — 1,¢;)
onthe K-axisfor I =1,...,Nasshowvn in Fig. 1. In this way, a 1-1 correspondence
betweenpoints in N-spaceand planar polygonal lines with vertices on the paral-
lel axesis established. The definition is deceptiely simple and many people stop

here without realizing the power of Parallel Coordinates which is really a whole

METHODOLOGY .

In Fig. 2, N = 7 with r = r, being the required distance. One of the points

shown is the origin though the construction is valid in general.

Here there will be a static display of a multi variate datasetwith 35 parameters

and thousandsof data items. Then a setof LandSat data will be examinedshowing

14
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Figure2: Constructinghe EuclideanDistancebetweertwo points.
how feature extraction can be accomplishedinteractively.

REPRESENTING RELATIONS —START WITH 2-D

What distinguishes||-coordsfrom Nomography, “Pr ofiles”, “Glyphs”, “N-M plots”,
“Andrews Curves”, “Chernoff’s faces”, etc is the ability to representand display
not only points but alsomulti variate relations without losing information. We start
our exploration in 2-D not only becauset is the simplest, but alsobecausewe can

contrast ||-coordswith Cartesian coordinates.

As we seefrom Fig. 3 a point is representedby a line line. And it is, therefore,

natural to ask“how is aline represented”?

15
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Figure3: A Point,(3,-1), in 2-Dis representetly aline
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In Fig. 4, the distancebetweenthe parallel axesisd. Theline
| 2%, = mx; +Db, (1)

is a collection of its points A. In tur n, the points arerepresentedin ||-coordsby the
infinite collection of lines A on the xy plane. Remarkably, when m # 1 theselines

intersectat the point with xy-coordinates:

B d b
"Ml—-m'1l-m

) 2)

This motivatesthe tentative (which will be modified aswe go along — seeRecur-

sive Definition in the previous section)definition on the representationof relations.
Namely, a relation, typically involving infinitely many points, will be represented
by the envel ope of the correspondinginfinite family of polygonallinesrepresenting
the points of the relation.

The point (2) representsthe linear relation, Equation (1), and is, in fact, the
envelope of the family of lines A. This point, all by itself, sufficesto representthe
line for the two parameters m and b specify completely both | and l. In effect, |-
coordsin 2-D induce a Point = Line duality (i.e. mapping points into lines and
vice versa— this is examinedmore thoroughly in the next section). But thereis a
“little problem” when m= 1. Despiteappearancesthe point | doesnot “blow up”

asm— 1. Rather, when the limiting processs done carefully, one seeshat I_goes

18
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Figure5: Thex-coordinateof £ depend®nly onthe slopeof ¢

farther out but in the specificdir ection whoseslopeis b/d. Solineswith m=1 are
not mappednto a point but into a directionand still all the information isthere! The
fact that it is a dir ection tells us that m= 1 while the slopeof the dir ection givesus
the value of b. What is going on? Well, dualities properly residein the Projective
and not the Euclidean Plane. The “dir ections” are in fact points (called “ideal”) of
the Projective Plane—which will be describedshortly. One doesnot needexpertise

in Projective Geometryto do ||-coordsbut awarenessds advisableto avoid blunders.
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In Fig. 5 we seean important property of the duality, namely the horizontal
location of | revealsthe slopeof |. Soparallel lines, having the sameslope,arerep-
resentedby points onthe samevertical line (seeFig. 7) and that enablesusto recog-

nize (i.e. “eyeball”) parallelism in |

-coords. Further, lines with slopem “meet” at

the ideal point denotedby Py whoseimagePs, is the vertical line at x = 1/(1—m).

“Let nooneignorantof Geometryenter”.... At entrancdo Plato’s Academy

A MODEL OF THE PROJECTIVE PLANE

The Projective Plane can be thought of asthe Euclidean Planewith a points at
infinity assignedin ewery direction. Theseare the “ideal” points. The ideal point
in the dir ection with slopem is denotedby Pg. It' simage, P, is the vertical line
at x = 1/(1—m) and which representsall parallel lines with slopem. With the
stereographicprojection shown in Fig. 6 to every point of the Euclidean Plane(i.e.
a “r egular” point) correspondsa unique point on the hemisphele. Imagining the
limiting processas a point goesfarther away from the origin (point of tangency
with the plane) in a constantdir ection having slopem, yields that an ideal point is
representedby the diameter, on the top disk with dir ectionhaving slopem. Further,
as shown in Fig 7, Lines map into great semi-circles. Semi-circles representing

parallel lines share the same diameter (i.e. “meet at the ideal point corresponding
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Figure6: Model of the Projective Plane

totheir direction*).
For a changeof pacehere we will interactively study a financial dataset.We will
seesomeoccurrencesand the significanceof the duality in real data. Also we will

discussthe permutations of the axis in the display and discover somesurprising

evidenceabout the gold market.
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Figure7: ParallelLinesarerepresentedy pointson averticalline
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DETECTING ORTHOGONALITY

With the following two constructionswe show that the information on orthogonality

is alsopresewedin ||-coords.

pe AY [

Figure8: Reflectionaboutx = 1/2. Pointsrepresentindineswith slopem arereflectedto pointsrepre-

sentinglineswith slopel/m

E]oo Yi §1:?1 p_of
m

741\
o \ /

£
L

Figure9: Circle InversionandReflection. Pointsrepresentindines with slopem are“inverted”topoints

representingineswith slope—m.
Hencethe reflectionshown in Fig. 8 together with the circle inversion provide

the points representingmutually orthogonal families of lines.
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THE DUALITY AS A LINEAR TRANSFORMATION
In Homogeneous Coordinates

the triple ¢ : [a;,a,,a5] arethe line coordinates of the line

which is mappedinto the point ¢ : (da,, —ag,a, + a,).

Considering the triples for ¢ and ¢ as column vectors yields the
correlation (not to be confusedwith the sameterm usedin Statistics— In the

languageof Projective Geometry this meansa linear transformation between

line coordinatesand point coordinates):

=N, 0 =AY

where
0d o -—1/d 01
A=|o00-1|A*=]| 1/d 00
11 0] | 0-10

and d is the horizontal distancebetweenthe parallel axes
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Figure10: Duality of Transformations

Rotations of a line about a point and translations of a point alongaline are dual.

Picture of a square (a), cubein 3-D (b) and Cubein 5-D (c) all having unit side.
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X
YA 2
1 C
(a)
AD
— X 1
° Xg A Ixg
YA E:(1,0,0
indicated by = = =
1
\
X1 X2

Ya _
A F.0.00,1,0)

indicated by = = =

X X2 X3 X4 X5

Figurell: HypercubeRepresentatiom Parallel Coordinates
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“Out of nothing | have created a strange new universe”

Bolyai 1823 .... On discovering non-Euclidean Geometry

MUL TIDIMENSION AL LINES

REPRESENTATIONS & CONSTRUCTION ALGORITHMS

A line ¢ in RY is represented by N — 1 points with two indices

i,j €11,2,...,N].
There aretwo commonwaysto describelines.

Either in terms of ad jacent variables:

bio © X = MpX + by

by @ X3 = MgX, + by

biigj =% = MX_;+0h

NN XN = MyXyog + by
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or in terms of a singlevariable, the base variable which canbe takenasx;, i.e.

lip T X = mpxy + b

. 1
b3 1 X3 = mMgx + b3

by o % = mx + by

On T XN = MyXy + b

The N — 1 indexedpoints (in homogeneougoordinates)are:

in the first case
bqy = ((1I-2)(1-m) + 1, b, 1-m),
and in the secondcase
£ = (i—1, b}, 1-m).

The indexing of the points is an essentialpart of the representationand it is
crucially usedin the subsequentlgorithms. Thoughthe indexing is often not showvn

to save display space,t needsto be accessible.
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WIS

N\

/

7 \N

7,

AN

T10
X1 X2 '3 . X

>

6 X7

>

° X9 X10

Figure12: Interval onaline in R0
The polygonal lines through all the points representpoints on on the line with
the heavier polygonal lines indicating the endpoints. The points shown here rep-
resentingthe line correspondto the adjacent variables parametrization. Here the
indexing, of the points representingthe line, canbe found fr om the intersecting seg-
mentsof the polygonalline. For example,if 6_1’2 wasshown it would lie to the right

of the X2 axis, 6_7 g liesbetweenthe X7 and X8 axesetc.
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(i=1,p; 5)

=

lik

Figure13: Collinearity of thepointsZ_Lj , Kj’k, Ei,k.

The threepoint collinearity property plays a fundamental role in the represen-
tation algorithms for higher dimensional objects. It is found by an application of
Desamguestheorem of Projective Geometry . The two triangles shown are in per-

spectve with respectto the ideal point in the vertical dir ection.
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[12 525

Figurel4d: The pointé_z’5 foundby construction

For aline ¢ in R\ the linear relation betweenany pair of variables can be found
geometricaly fromthe N — 1 points representingthe line. Hereé_2 5 IS constructedas
the intersection of the segmentgoining the coordinatesof two points (on the line)

on the X, and X; axes.

/ (12 7
23 Las - X
/.

Figurel5: Rotationof aline aboutoneof it’s points
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“It wasrecentlydiscoveredthattheringsof Saturnaremadeof lostairline

luggage... that'swhy moreof themarediscoveredevery week!”

DISPLAYING AIR TRAFFIC INFORMATION

|1 II®2:3

TIME X1 X2 X3

Figurel16: Path(left)andtrajectory(Right)of anaircraft

The 3-D pictur e shonsthe path and position while the polygonalline in parallel
coordinatesshaws the position at a giventime. The point T : 1 representshe linear
relation betweentime T and the X;-coordinate while 1: 2 and 2 : 3 representthe

path, i.e. the pairwise linear relation betweenx, , X, , X5 .
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Figurel7: Closestapproachof two aircraft

The time at which this occurs and their correspondingpositions. On the four
parallel axesa polygonal line shows the time, value on the T-axis, when the two

positionsin (X, , X, , X3 ) is attained.
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Figure18: Two aircraftflying the samepathwith the samevelocity

34

T:1
////
(4
1:2
T:1 10 4
2:3
T X1 X2

Note that the 1: 2, 2: 3 points indicated by boxes(theseare the I's) are shared
indicating that the pathsin 3-D are the same.When that occurs,the leftmost T : 1
correspondsto the greater speed. Here the airplaneshave the samevelocity since

thetwo T : 1 points have the samehorizontal position.




: )
of:1 oT:11 .
I . 2:3@
1:2 6] :
o)z
T:1o G 2:3
X
02:3
ol:2
01:2
- Vi Vi S _ 02:3
oT:1 T X1 X2 X3 °

Figurel9: Angulardeviationsfor assignedrajectories

A deviation of +£6 degreestransforms into a lateral deviation centered about the
appropriate point. Hereadeviation of &5 degreesin ground headingis shovn when

X is the altitude scale.
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DISTANCE & PROXIMITY PROPERTIES

INTERSECTIONS

The pair of lines?, ¢ givenby

G 1 % = mMx + b

glv lli - X = lT{Xl + bf?

and representedn xy-coordinatesby the points

7y — i—1 b
= .. i-1 B bf
Uy 0 X 1—n‘(’y_1—n1
intersectwith /N/¢ =P <
b — b.
QG =——>-=p,,Vi=2..,N
I rr(_rni 1

wherex,(P) = p;.

Analogouscriteria existfor differ ent parametrizations.
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Figure20: Two linesintersectingn R® - first example

Common parameter is X;. One line, ¢ is representedby the points Zli and the
other, ¢ by ¢; fori = 2, 3, 4, 5. The two lines intersect < the linesP", joining 0
and lei, intersectat the samepoint of the x;-axis. The polygonalline representsthe

point of intersection.
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Figure21: Two linesintersectingn R® - secondexample

Here the representationis basedon consecutve adjacent pairs of coordinates.
Thetwolines/, ¢’ arerepresentedby the points ¢, i 1and ?f’iﬂi =123 4. The

two lines intersect < the line P, joining ¢ .., and Zf’ i+1, Intersectsthe x.-axis

i, i+

—i+1i+2

at the samepoint asthe line P ,joining joining 4, ;,, and ZfH’ i10, for alli.

The polygonalline shown representsthe point of intersection.

38



“Law of Attractionof UnfortunateEvents”

“Unfortunateeventstendto attractothersof theirkind”.......................

MINIMUM DISTANCE BETWEEN TWO LINES
For the pair of lines? , ¢’ previously describedin terms of the basevariable x,
the L, distancebetweentwo points oneon eachof the linesis givenby :
N N
Lig) = 3 =X 1= 3 |am |1 —a
1= 1=
The minimum of L;(x,) occursatanx; = a;.

The value of x; at which the minimum EuclideandistancelL, occursis

a* o ZGiAn}Z
Y

where the summationis only over thosevaluesof i where Am, # O.

It turns out that the minimum L, occursvery closeor at a*.

For comparisonthe minimum L, distanceoccursat x;, = a*. The | Am | are
addedonthe bar chart (to the right of the x; axis)in the order 6, 2, 4, 3, 6 obtained
fromthe order of increasinga (asshown onthe x;-axis). The | where the mid-point
valueofthe 3 | Am | occursprovidesthe correctx, = a,. Here| A, | dominatesthe

sumyielding | = 4.

All joint interceptsare equal.
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N1

Figure22: Findingx; = a; minimizingthel, distancebetweertwo lines

Figure23: HerethelL, andL, minimacoincide
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Figure24: Intersectindinesin 4-D

T1

-~

Figure25: Non-intersectiobetweertwo linesin 4-D. Heretheminimumdistancds 20 andoccursattime
= .9. Note the maximumgapon the T-axis formedby the linesjoining the £'s with the samesubscript.

The polygonallinesrepresentinghe pointswherethe minimumdistanceoccursareshaovn.
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by Y

D=10T=1.6

X3

=
Xt

2

Ry

Figure26: Non-intersectiobetweertwo linesin 4-D. Heretheminimumdistancds 10andoccursattime
= 1.6. Note the the diminishingmaximumgapon the T-axis formedby the lines joining the £'s with the
samesubscriptandcomparewith Fig. 25. Thepolygonallinesrepresentinghepointswheretheminimum

distanceoccursareshown.

D=15T=1.

-F Xl XZ X3

Figure27: Nearintersectionbetweentwo linesin 4-D. Herethe minimum distanceis 1.5 andoccursat
time = 1.8. Note the the diminishedmaximumgapon the 'I?-axisformedby thelinesjoining the £'s with
the samesubscript. The polygonallines representinghe pointswherethe minimum distanceoccursare

shown.
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“Law of Inopportuneliming”

“If afortunateeventoccursatall it tendsto happera bit too soonor a bit too late”

CONFLICT DETECTION & RESOLUTION FOR AIR TRAF-

FIC CONTROL

THE BASIC ALGORITHM

tangent to safety airspace

Figure28: Protectedhirspacen 3-D
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X2

intersection at t-tB
ik

intersection at t-tFik

X1

0
=X, at t=0
e

Figure29: Determiningthefront andbackscrapes

At t = 0 all particles on the vertical line x, = p3, are poisedto move with the
samevelocity asAC,. Particles which just scrapethe circle from the front (i.e. start-
ing at x, = f2) and back (i.e. starting at x, = b definethe limiting trajectories.

Herethereis a conflict betweenAC, and AC, since f} < p9, < b.

Y
2, Bty
N Py o
t-0 ‘ <U fik 72 R y
P22
- va Po V2 1:2
T X1 X2 :

Figure30: Thelimiting trajectoriegscrapesjnformationin parallelcoordinates

The ordinates of the points P,, and P,, are the coordinatesof the intersection of

B, with the conflict parallelogram.
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t=0
(k3,0)

X1

TR0

ACK 1 (K3, k3

(. f5)

Figure31: RelationBetweenManeuer-Speedcand Turn-Angle
Maneuver with no speed change can be done with turn angle a. Turn angles

greateror lessthan a require a slower or faster speedrespectvely than |V, |.
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RESOLUTION OF A CONFLICT SCENARIO

Figure32: Six aircraftfrom scenaridlying atthe samealtitude

Initial positions(T = 0 sec.)and circlescentered at eachaircraft with radius 2.5
nm (5 nm separationstandard) are shown to scalewith arr owsrepresentingvelocity

vectors.

>

Figure33: Conflictsamongthe six aircraft

A conflict occurswhenthe separationbetweenany two aircraft is lessthan 5 nm
(i.e. two circlesintersect). Several conflicts occur within the first 5 minutes (time

elapsedin secondss indicated in the lower left hand corner).
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260 132
250 4B T=580 659
240
3F T1518.7 597.7
230
220
210
200
55 Ti308 9 5oz g o8 174108 514.7
190 F T=316.5 395.6
180 4F T=319.9 399
F T=285.7 389.6
170 68 T=237.9 317
1 L
160 F T$207.6 311.3
150 3B T$200.1 271.6

AIRCRAFT 1 VERSUS THE REMAINDER

Figure34: Conflictintervals(CI)
Using the data of conflict scenariothe Cl;, , k = 2,3,4,5,6 (i.e. of aircraft
2,3,4,5,6versus 1) are plotted. Vertical scaleunits of distance are representing

specific paths parallel to thoseof aircraft 1. Timesshown indicate entry and exit

from correspondingconflict parallelogram.

\

Figure35: Conflict Parallelograms

]
i
1
i
T
i
i
1
1
1
i
i
I
.
1
i

Parallelograms are with respectto aircraft 4 where the two dashedlines (repre-

sentingthe “particle” lines)intersectand for circleswhoseradius is doubl ed.
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T = 3317

Figure36: Threepairsof tangentcircles

Resolutionwith equal speedparallel offset maneuvers.

T = 421.%

Figure37: Triple tangeng
Scraping circlesindicate that the minimum displacementfr om original courseis

used.
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Figure38: Resolutionn 3 dimensions

Air craft are at differ ent altitudes and the protectedspaceis cylindrical.
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Planes,Flats & Hyperplanes

REPRESENTING HYPERPLANES WITH VERTICAL LINES
Y 2 }{3
w
5 \
/ ¥
4 .

e

yl
X1Y1 X2Ye X3 X1

1

Figure39: In P2 planesarerepresentedly two verticallinesanda polygonalline A

This generalizedo N-dimensionswhere hyperplanesarerepresentedoy N-1 par-

allel lines and a polygonalline representingone of its points.

Figure40: Setof coplanaron aregulargrid pointsin 3-D
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EXAMPLE —INDUSTRIAL DATA

Figure43: R111vs. R112linearrelationbetweerthese2 andanothemparameter
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DUALITY BETWEEN TRANSLATIONS OF A POINT ALONG A LINE AND ROTATIONS OF

A LINE ABOUT A POINT

Y
A

Figure44: A line £ onaplaner is representetdy onepoint n,, in termsof the pIanarcoordinateé?1 and

Y, whichis collinearwith it' s two pointé_12 and£_23.
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Figure45: Rotationof a planeaboutaline «» Translationof a pointalongaline.
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REPRESENTING FLATS BY INDEXED POINTS

From Ph. D. Thesisof J. Eickemeyer @ UCLA

A p— flat in RN specifiedby N — p linearly independentequationsof the form

p+1

Z Cikxik = Co

(p+1) =1

TG, i

canberepresentedby the (N — p) % p points :

p+1 p+1
Th. d‘c , co, C
17 I(p+1) (kgl heZiy 0 kgl I )
forO<p<N
where
1. eachvariable x. appearson two parallel axesX; and X';,
2. d* is the distancefr om the y-axis to the X; axes,
3. Permutations suchasij,i, ... iq consistsof unique integersin [1, 2, ...
4. andig = i, whenj<korig =i, for j >k
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DETECTING RANDOMLY CHOSEN COPLANAR POINTS

Figure46: Onthefirst 3 axesa setof randomlychosedcoplanarmointsis shovn

>

71N

Figure47: Coplanarity

Fromthe pointsin Fig. 46the two point representationof the linesis constructed.
The lineson thesepoints form the pencil of linesshown in Fig. 47 —this occurrs only

the original points are coplanar.
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b

.

X1 X2 X3 X1’

Figure48: A planein 3-dimensionss representetly 2 points

Secondpoint is generatedby translating the X, to the Y’l axis and repeatingthe

process.

274 I

Figure49: Four pointsgeneratedrom the coplanarpoints

The points are generatedwith the X, (i = 1,2,3) axes.
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X1’
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X3’

Figure50: Readingthe equationof a planefrom its representation

A plane : ¢;X; + CX, + C3X3 = Co. The coefficientsarethe distancesbetween

adjacent (by indices) points.

Figure51: Randomlychosedpointson anapproximateplane(“slab”) in 3-dimension®n left 3 axes
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|

X1 X2 X3 X

Figure52: Approximatecoplanarityobtainedusingthe pointsshown in Fig. 51.

X1 X2 X3 X1’

Figure53: The point clustersandicatingthe approximateplane— from the pointsshovn in Fig. 51.
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X1 X2 X3

Figure54: Detectionof severalapproximateplanes(slabs)

Starting from a set of points, representedby polygonal lines, lines are formed.

No pattern is seensincepoints are not from a singleslab.

Y
1
1
1
"1 1 1
1 L .
1 .- 1ot
qit.y L da 1 1. 4o 1
T TR R I U SO S U V7P N = B | :
td- Lt =yt d o 1l -1 bl 1 3 17 2 1
'J.1."f'£11‘:1iqliml-"'.i')l!j.3:‘:1“1}'11'111 IR 1 .12 G
LAPENTIT I L e T L !
T 2R S 11 . 1 M
RS ot 4
: 1
1
1
X X2 X3

Figure55: Detectingseveralslabsfrom randomlychosernpoints
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A histogram giving the number of intersectionsper point.

¥

X1 X2 X3

Figure56: Original pointsbelongedo 3 slabs

Histogram is queried for points with more than 2 hits.

HIGHER DIMENSION AL EXAMPLES

¥

Figure57: Points(0-flats)on anapproximatenyperplanen 6-dimensions
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Figure58: Portionsof Lines (1-flats)formedfrom the previous points

No “structur e” is evident

e D e N a
/—‘/ H\\\ T
//.
/
//

¥ X2 %3 X4

Figure59: Portionsof planes(2-flats)formedfrom the previouslines

Again no pattern is seen.
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Figure60: Portionsof 3-Flatsformedfrom the previous 2-flats

No apparent “structur e”

Y

[

SNE A
j

X1 X2 X3 X4 X5 X6

Figure61: Portionsof 4-Flatsformedfrom the previous 3-flats

Pencil of lines showving that the original points are very near to a hyperplane

(5-Flat) in 6-dimensions.
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Figure62: Pointsrepresentinghe hyperplaneén R®

Repeatingthe processan terms of the auxiliary axesYi' ,1 =12, ...,6yieldsthe
points representingthe hyperplane. As in the 3-D examplethe distancebetweenad-

jacent by index pair of points providesthe coefficientsof the hyperplanesequation.

[T

X1 X2 X3 X4 X5

Figure63: Detectingpointsbelongingto severalslabsin 5-D

Portions of 4-flats formed fr om original setof 5-D points.
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Figure64: Numberof intersectionper position
Y
21
4 1_3 ¥
X1 X X3 X4 X5

Figure65: Two “hits” with morethan1 intersectionPointsareon two hyperplanes

64



MORE ADVANCED DATAMINING

Visual Data Mining

SelectedExamples—an effort will be madeto match the audiences interests

A GeometricClassifier

Classification is a basic task in data analysisand pattern recognition and an al-
gorithm accomplishingit is called a Classifier The input is a datasetP and a
designatedsubsetS. The output is a characterization, that is a set of conditions
or rules, to distinguish elementsof S from all other membersof P. With paral-
lel coordinatesa datasetP with N variables is transformed into a setof points in
N-dimensional space. In this setting, the designatedsubsetS can be described by
meansof a hypersurfacewhich enclosegust the points of S. In practical situations
the strict enclosure requirementis dropped and somepoints of S may be omitted
(“false negatives”), and somepoints of P— S are allowed (“false positives”) in the
hypersurface. The description of such a hypersurfaceis equivalent to the rule for
identifying, within someacceptableerror, the elementsof S This is the geometrical

basisfor the classifier presentedhere. The algorithm accomplishingthis entails:
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useof an efficient “wrapping” algorithm to enclosethe points of Sin a hyper-
surface S; containing S and typically also somepoints of P—S soSC S, of

coursesuchan S, is not unique.

the pointsin (P— S NS, areisolatedand the wrapping algorithm is applied to

enclosethem, and usually also a few points of S, producing a new hypersur-

faceS, with SO (S, - S,),

the pointsin Snot included in S, — S, are next marked for input to the wrap-
ping algorithm, a new hypersurface S; is producedcontaining thesepoints as

well assomeother pointsin P— (S, —S,) resultingin SC (S, - S,) US;,

the processs repeatedalternatively producing upper and lower containment
boundsfor S termination occurswhen an error criterion (which can be user
specified)is satisfiedor when corvergenceis not achieved.

It can and doeshappen that the processdoesnot converge when P doesnot
contain sufficient information to characterize S. It may also happenthat Sis so
“por ous” (i.e. sponge-like) that an inordinate number of iterations are required.
On corvergencethe output is a description of the hypersurface containing S the
rule is given in terms of the minimum number of variables neededto describe S

without loss of information. Unlik e other methods, lik e the Principal Component
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Analysis (PCA), the classifier discards only the redundant variables. It is impor-
tant to clarify this point. A subsetSof a multidimensional setP is not necessarilyof
the samedimensionality asP. Sothe classifierfinds the dimensionality of Sin terms
of the original variables and retains only thosedescribing S. That is, it finds the
basisin the mathematical senseof the smallestsubspacecontaining S, or more pre-
ciselythe current approximation for it. This basisis the minimal setM; of variables
neededto describe S We call this dimensionality selectionto distinguish it from
dimensionality reductionwhich is usually done with lossof information. Retaining
the original variables is important in the applications where the domain experts
have developedintuition about the variables they measute. The classifier presents
M, orderedaccordingto a criterion which optimizesthe clarity of separation This
may be appreciatedwith the exampleprovided in the attachedfigure, in addition.
The implementation allows the user to selecta subsetof the available variables
and restrict the rule generationto thesevariables. In certain applications, asin
processcontrol, not all variables can be controlled and henceit would be useful
to have a rule involving suchvariables that are “accessible” in a meaningful way.

There are alsotwo options available :

either minimize the number of variablesusedin the rule, or
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minimize the number of steps,in terms of the unions and (relative) comple-

ments,in the rule.

The classifierprovides:

an approximate corvex-hull boundary for eachcavity is obtained,

utilizing properties of the representation of multidimensional objects in |-
coords,a very low polynomial worst casecomplexity of O(N?|P|?) in the num-
ber of variables N and datasetsize|P| is obtained; it is worth contrasting this
with the often unknown, or unstated,or very high (evenexponential)complex-

ity of other classifiers,

an intriguing prospect,due to the low complexity, is that the rule can be de-

rivedin near real-time making the classifieradaptive to changingconditions,

the minimal subsetof variables neededfor classificationis found,

the rule is given explicitly in terms of conditions on thesevariables, i.e. in-
cluded and excludedintervals, and provides*“a picture” shaving the complex
distrib utions with regionswhere there is data and “holes” with no data; that

can provide significant insights to the domain experts,
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ParallAX - D:/Program Files/DevStudio/MyProjects{parallax/datf MONKEY1.DAT
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Figure66: Themonkey dataseshowving theseparatiorachiezedby two of the9 out32 parametersbtained

from thedimensionalityselection.

The datasetchosento illustrate hastwo classedo be distinguished consistingof
pulsesmeasured on two typesof neuronsin a monkey’s brain (poor thing!). There

are 600 sampleswith 32 variables. Remarkably, corvergencewas obtained and
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required only 9 of the 32 parameters. The resulting ordering shows a striking sep-
aration. In the attached figure the first pair of variables x,,x, originally givenis
plotted shawing no separation. In the adjoining plot the bestpair x,,,X;,4, aschosen
by the classifier’s ordering, shows remarkable separation. The result shows that
the data consistsof two “banana-lik e”? clustersin 9-D one (the complementin this
case)enclosingthe other (classfor which the rule wasfound). Note that the clas-
sifier can actually describe highly complexregions. It can build and “carve” the
cavity shown. It is no wonder that separationattempts in terms of hyperplanesor
nearest-neighbortechniquescanfail badly on suchdatasets.The rule gavean error

of 3.92% using train-and-test with 66 % of the data for training).

Lperhapshe monkey wasdreamingaboutbananasluring this fatefulexperiment...
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CURVES

point-curve — line-curve— envelopeof it’ stangents.

Conicsmap into conicsin six differ ent ways.

Figure67: Ellipsesalwaysmapinto hyperbolasEachassymptotés theimageof apointwherethetangent

hasslopel.

Figure68: A parabolawhoseideal point doesnot have directionwith slopel always transformsto a
hyperbolawith a verticalassymptoteThe otherassymptoteés theimageof the point wherethe parabola

hastangentwith slopel.
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Figure69: A parabolavhoseideal pointhasdirectionwith slopel transformgo a parabola self-dual.

Figure70: Hyperbolato ellipse— dual of caseshavnin Fig. 67
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Figure72: Hyperbolato hyperpola- self-dualcase.
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Algebraic Curves

From M.Sc. ThesisTsur Itshakian, CS Dept. Tel Aviv Univ. 2001
Degreen — n(n— 1) and lesswhenthere are singularities. An efficient algorithm
was found which givesthe exactequation of the image even for implicitly defined

polynomials.

X3 X,

Figure73: A 3rd degreecurve with singularitymapsto another3rd degreecurve.
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Figure74: A 3rd degreecurve with differentsingularitymapsinto a 4th degreecurve.



Generalizedconics— Gconics

Lik e conics,gconicsmap into gconicsin 6 different ways

Figure75: Gconics- threetypesof sections:(left) boundedconvex setbc, (right) unboundedtonvex set

uc and(middle) hyperbola-like gh regions.

Figure76: Generalizatiorof Fig. 67 — bc to gh.
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Figure77: uc to uc — self-dual

Figure78: ucto gh
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Figure79: ghto bc.

Figure80: gh to gh — self-dual
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Further Dualities
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Figure81: Cuspsaretransformednto inflectionpoints
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Figure82: Duality Cusps < Inflection Points
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Operational Dualities and Convexity Algorithms

Figure83: Interior andboundarypointsof boundeccorvex set

Figure84: Corvex-Hull construction

The boundary of the gh of a setcorrespondsto it' s CONVEX-HULL.
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LINE NEIGHBORHOODS

A Topologolyfor proximity of flats

How can measure “closeness’betweenlines and more generalbetweenplanes?

N
E
Z

Figure87: A family of line transformations
Fixing r and varying O definesa family of linestangentto the circlewhoseparal-
lel coordinate representationis a hyperbola while fixing © and varying r produces

vertical lines.
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Figure 88: Line neighborhoodn orthogonal(doest’'work) and parallel coordinates. The unbounded

region (ontheright) is replacedoy a boundedne.

Figure89: Severalline neighborhoodsHerethetransformedeighborhoodsredistinct.
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HYPERSURFACES
Y

X1 X2 X3 X4 X5

Figure90: A spherdan R® centeredat the origin (0,0,0,0,0).

Interior Point Construction Algorithm
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Figure91: The polygonalline representshe point found interior to the Hyperellipsoidin 6-D. The same

algorithmappliesto arny piecavise corvex hypersuréce.
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Application to ProcessControl and Intelligent Instrumentation

x1 x2 x4 x4 x5 x6 x7 x& x6 xioxiixio xiszxiaxisxie xi7 xisxis xz0

Figure92: Findinga FeasiblePoint— stateof thesystem-for a Procesfkepresentelly the Hypersurace.
A procesdeingarelationamongseveralvariablescanbe representetdy a hypersuréce.A feasiblestate
of the systeminvolved corresponddo an interior point of the hypersuréce— sinceall the constraints
aresatisfiedsimultaneously The intermediateernvelopeson both sidesof the polygonalline indicatethe
local curvatureof the hypersurécein a neighborhoodf the point. Notice thathereX,;, X;,, X;5 are
the critical variables sincethe available rangesinvolved — for maintainingcontrol — are the narravest.
Thedisplayshonvn cansene asthe systemdantrumentation.As a value of a variableis fixed the display

providestheavailable range for theremainingvariables.
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DETECTING CONVEX POLYTOPES

Ph.D. thesisA. Chatterjee @ USC

Figure93: Adjaceng relationshipof the 2-facesof the corvex 3-polytopein Parallel Coordinates
Thel123representationf the 6 2-flatscontainingthe 6 2-facesof the 3-polytopeis shavn. The3-polytope

in this examplebeingcorvex, all theadjacenyg relationshipsarerepresentetly line segments.
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Figure94: Adjaceng relationshipof the 2-facesof the non-cowvex 3-polytopein ParallelCoordinates

Thel23representationf the 6 2-flatscontainingthe 6 2-facesof the 3-polytopeis shavn. The3-polytope
in this examplebeingnon-covex hassomeadjaceny relationship 7,3 and T 3, Tho3 AN T g, o3

andﬁ‘l"zg,) which arerepresentedtly linesinsteadof line-segments.
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Representingsurfacesby their tangent planes— seealsonext section.
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Figure 95: A Spherein 3-D representedy its tangentplanes(points). The hyperbolicpatternof the

envelopesndicatesthatthe objectis corvex.

The conjectureis that with the tangentplanerepresentatiortorvex objectsin N-D are representedby

generalizedyperbolas- seegconics.
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REPRESENTING SURFACES IN TERMS OF THEIR

TANGENT PLANES

Chao-Kuei Hung @ USC

DEVELOPABLE SURFACES-QUADRICS

CONICS — CONICS

Figure96: Representatiois a pair of ellipses

Conevertex is (0,0,1),axisvectoris (6,8,7),circle centeris at (6,8,8),radiusis 5.
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Figure97: Representatiors a pair of parabolas

Conevertex is (0,0,1),axisvectoris (-0.6,0.8,5) circle centeris at (-0.6,0.8,6) radiusis 7.

Figure98: Representatiois a pair of hyperbolas

Conevertex is at(0,0,1),axisvectoris (6,8,7),circle centeris at (6,8,8),radiusis 1.
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Figure99: Representatiois a pair of hyperbolas

Representatioof cylinderwith axisdefinedby thepoints(2,2,2),(2,3,3),radiusis 5.

Ruled Surfaces

QOALH 7]
ST
Rl

Figure100: Hyperbolicparaboloid Samplingalongrulings givesmeshe®f straightlines— self-dual.
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VISUAL & COMPUTATIONAL DECISION SUPPORI SYSTEMS

Finally we illustrate the methodology’s ability to model multi variate relations in
terms of hypersurfaces— just as we model a relation betweentwo variables by a
planar region. Then by using the interior point algorithm, with the model we can
do trade-off analyses,discover sensitvities, understand the impact of constraints,
and in somecaseglo optimization. For this purposeweshall usea datasetconsisting
of the outputs of various economicsectorsand other expendituresof a particular
(and real) country. It consistsof the monetary values over several years for the
Agricultural, Fishing,and Mining sectoroutputs, Manufacturing and Construction
industries, together with Government, Miscellaneousspendingand resulting GNP;
eight variables altogether We will not take up the full ramifications of constructing
a model from data. Rather, we want to illustrate how ||-coords may be usedasa
modelingtool. Usingthe Least Squarestechniquewe “fit” afunction to this dataset
and we are not concemed at this stagewhether the choiceof function is a “good”
choiceor not. The function we obtained boundsa regionin R® and is represented

by the upper and lower curvesshown in Fig. 101.

The pictureisin effecta simplistic visual model of the country’ seconomy incor-

porating it’ s capabilities, limitations and interelationshipsamongthe sectorsetc. A
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point interior to the region, satisfiesall the constraints simultaneously and there-
forerepresentqi.e. the 8-tuple of values)afeasibleeconomicpolicyfor that country.
Using the interior point algorithm we can construct suchpoints. It canbe donein-
teractively by sequentially choosingvaluesof the variables and we seethe result
of one such choicein Fig. 101. Once a value of the first variable is chosen(in this

casethe agricultural output) within it’ s range, the dimensionality of the regionis
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Figure101: Model of acountry’seconomy
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reducedby one. In fact, the upper and lower curves betweenthe 2nd and 3rd
axescorrespondto the resulting 7-dimensional hypersurface and show the avail-
ablerange of the secondvariable (Fishing) reducedby the constraint. In fact, this
can be seen(but not shown here) for the restof the variables. That is, due to the
relationship betweenthe 8 variables, a constraint on one of them impacts all the
remaining onesand restricts their range. The display allows us to experimentand
actually seethe impact of such decisions“downstream”. By interactively varying
the chosenvalue for the first variable we found, that it not possibleto have a policy

that favors Agricultur e without alsofavoring Fishing and vice versa.
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Figure102: Competitionfor laborbetweerthe Fiskygg& Mining sectors- comparewith previousfigure



Proceeding,a very high value from the available range of Fishing is chosenand
it correspondsto very low valuesof the Mining sector By contrast in Fig. 101 we
seethat alow valuein Fishing yields high valuesfor the Mining sector This inverse
correlation wasexaminedand it wasfound that the country in questionhasa large
number of migrating semi-skilledworkers. When the fishing industry is doing well
most of them are attracted to it leaving few available to work in the minesand vice
versa. The comparison betweenthe two figuresshows the competitionfor the same
resourcebetweenMining and Fishing. It is especiallyinstructive to discover this

interactively. The construction of the interior point proceeddn the sameway.

A theorem guaranteesthat a polygonal line which is in-betweenall the inter-
mediate curves/ewelopesrepresentsan interior point of the hypersurface and all
interior points canbefound in this way. If the polygonalline is tangentto anyoneof
the intermediate curvesthen it representsa boundarypoint, while if it crossesany-
oneof the intermediate curvesit representsan exteriorpoint. The later enablesusto
seejn an application, the first variable for which the construction failed and what is
neededto make corrections.By varying the choiceof value over the available range
of the variable interactively, sensitve regions(where small changesproducelarge

changesdownstream) and other properties of the model can be easily discovered.
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Once the construction of a point is completedit is possibleto vary the values of
eachvariable and seehow this effectsthe remaining variables. Soonecando trade-
off analysisin this way and provide a powerful tool for, DecisionSupport, Process
Control and other applications. As new data becomesavailable the model can be

updated with the DecisionMaking being basedon the mostrecentinformation.
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o Milestonesin the history of thematic cartography, statistical graph-
ics, and data visualization — M.Friendly and D. J. Denis 2001 —

http://www.math.yorku.ca/SCS/Gallery/milestone/
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Visualization of domain and concept descriptions — www-

ai.ijs.si/DunjaMladenic/papers/abstract/ascai92.html

Dir ections in Spatial Spectroscopy —

www.math.yorku.ca/Who/Faculty/Monette/pub/s-99a

Welcome to Starlight - Remote Sensing Group Project —

www.pnl.gov/remote/projects/starlight/theory.html

Breaking  the Barriers of 3D Visualization —

www.sv.vt.edu/future/muri/white/white.html

Extruded Parallel Coordinates — www.cgtuwien.ac.at/ ru-

bik/extruded.htm

Links to my Master’s Thesis —
www.ifs.tuwien.ac.at/ rk osara/thesislinks.html (In this site there

a particularly well organizedliteratur e review)

Hierar chical Parallel Coordinates —

avis.wpi.edu/matt/courses/parcoord

Parallel Coordinates for Power Stability —

www.caip.rutgers.edu/peskin/epriRpt/PowerStability.html
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Thermodynamic Cycle Data - www.caip.rutgers.edu/ pe-

skin/epriRpt/ThermoCycle.html

Parallel Coordinates in MATHLAB -

www.math.tau.ac.il/ nin/learn98/Nauman/paplot.html

The PARCOVI Project-The Parallel Coordinates Visualizer —
atkosoft.com/statparcovi.htm

Visualization of a THERMOPOT —

www.inf.ethz.ch/personal/lindenme/thermopot

DNA VISUAL AND ANALYTIC DATA MINING -
www.cs.uml.edu/phoffman/dnal

Kohonen neural network visualizations —
www.arnvilinf ormatics.com/portfolio/yeast/yeaste.html

A Visual Approach for Monitoring Logs —
www.usenix.omg/publications/library/pr oceedings/lisa98

Visualizing Large Datasets — www1.math.uni-augshurg.de/ un-
win/AntonyArts/visualising .html

Visualisation Techniques for Statistics — wwwl.math.uni-

augshurg.de/  unwin/AntonyArts/V isTechNTTS.html  (Excellent
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site)

Exploratory Data Visualiser — wwwl1.bell-

labs.com/user/gwills/ED/guide/guide/guide.html

Nonlinear Feature SpaceTransformations — www.cs.unc.edu/cog-

gins/Reseach/Nonlinear/NonlinearPaper.html

AN INVESTIGATION OF FUNDAMENT AL FREQUENCIES OF

LAMIN ATED CIRCULAR CYLINDERS- www.knowledgestorcom

Evaluation of Marine Data by visual means—www.egd.igd.fhgde

Manual Endmember Selection Tool —

cires.colorado.edu/csestseach

Vizcraft - Multidimensional Visualization of Air craft Design— cs-

grad.cs.vt.edu/agoel/vizcraft.ntml

Parallel Coordinates  Visualization Applet - Cs-

grad.cs.vt.edu/agoel/parallel-coordinates

Public Policy Analysis —www.ppm.ohio-state.edu/ppm/eseach-

groups/pubpolan.htmi

ACM Digital Library Reconnaissance sup-
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port for juggling multiple processing

www.acm.org/pubs/citations/proceedings/uist/192426/p27-lunzer
Inf ormation Visualization: Data Types

www.cs.umd.edu/hcil/pubs/pesentations/egshaveit/tsld013.htm

(This is an important site for InfoVis)
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