Course 01

Mathematics and Physics
for Coding Motion and
Interactivity in Web Graphics

Organizer

James M ohler

Department of Computer Graphics Technol ogy
Purdue University

Presenter

Nishant Kothary

Department of Computer Graphics Technol ogy
Purdue University

29th International Conference on Computer Graphics and Interactive
Techniques

Conference: 21-26 July 2002

Exhibition: 23-25 July 2002

San Antonio, Texas USA

Coding Motion and Interactivity- Mohler & Kothary

Table of Contents

Course Introduction
COUIrSE SUMIMAIY ... et e e e e et e e e e e e e eaeeneens

3
PrereqUISItES ..o 3
SYHADUS ... 3
Thoughtsfrom the Presenterscoooieiiiii i 5
ADOUL thISCOUISEoviiie e 5
AboUt the COUrSE NOLESe e 6
AboUt the AULNOIS ... 7
COUrSE SHABS. .. .ttt e e e e 8-174
Supplementary Materials
MatNEMELICS ...e e e e e 175
PR SICS o 198
Appendix A: Flash ResourcesontheWebcooeeii. 212
Appendix B: Math and Physics ResourcesontheWeb 215
Appendix C: OOP Primer for FlashMX ..., 217

Appendix D: Further Reading and References 229

Coding Motion and Interactivity- Mohler & Kothary 3

Course Summary
This course isintended for the intermediate web devel oper working with
emerging web technologies. The application that will be used in this course
isMacromedia Flash MX. The course will provide an overview of the
significance of mathematics and physics to multimedia devel opment.
Mathematics concepts, such as coordinate systems, linear algebra,
trigonometry and vectors, will be covered in brief with interactive
examples.

The course will aso include an explanation of relevant kinematics, in
particular — displacement, speed, velocity, acceleration and the equations of
motion in two dimensions— and learn how to apply these concepts
effectively in interactive media

Prerequisites
The courseisintended to be of interest to beginner to intermediate level
multimedia, web-application and new media developers. Individuals
interested in learning how to effectively use mathematics and physicsin
their Flash M X applications will benefit greatly from this course.
Participants are expected to have afair amount of experience coding with
ActionScript (Flash's ECMA 262-based scripting language) and familiarity
with high-school level mathematics and physics.

Syllabus
Module 1
Mathematics in Multimedia
8:30-8:45 15 mins Introduction — Mohler

Approaching motion and interactivity in multimedia
Significance and relevance in industry

8:45-9:00 15 mins Multimedia authoring trends — Kothary
Frame-based development
Object-oriented Programming
Scripting: Not just event handling

9:00-9:30 30 mins Introductory Algebra — Mohler
Re-visiting basics
Cartesian to Flash
Linear Transformations

9:30-9:45 15 mins
Dynamic linear slider construction

Coding Motion and Interactivity- Mohler & Kothary

9:45-10:15 30 mins

10:15-10:30

10:30-11:00 30 mins

11:00-11:15 15 mins

11:15-11:30 15 mins

11:30-11:40 10 mins

11:40-11:50 10 mins

11:50-12:00 10 mins

12:00-12:15 15 mins

Trigonometry and Vectors — Kothary
Degrees and Radians
Functions, identities, and theorems
Vector primer

Break

Module 2
Kinematics in Multimedia

Elementary Kinematics — Kothary
Learning applied physics
Theoretical concepts and coded synonyms
Displacement and Distance
Speed and Velocity
Acceleration
Gestalt and Newton
Pseudo-dynamics in new media: An extension of kinematics

Two-dimensional frame-based motion — Kothary
Vector components and transformations in 2D
Re-formulating the equations of motion

Interactive class problem:
Unrestricted OOP-based motion: Tank

An overview of 3D in new media — Mohler
Flash: Draw functions
Director: Shockwave 3D
Essential math skills

What to expect — Kothary
Web-delivered Inverse kinematics
3D engines and navigation systems

Conclusion — Mohler
Approaching advanced motion-based programming

Research and discovery tactics

Questions and Answers

Coding Motion and Interactivity- Mohler & Kothary 5

Thoughts from the Presenters

The recent popularity of user-friendly software to create rich, interactive
and compl ete multimedia experiences has opened up creative avenues for
many in today’ s design world. Concepts, such as object oriented
programming and encapsulation, that were alien to most non-programmers
have become frequently-used terms amongst those planning to sustain
stability in computer graphics for the years to come. By “everyone” we are
referring to graphic designers, game programmers, web devel opers,
multimedia creators, and freelancers.

The growth of the Internet in the mid-90’s marked aturning point in the
history of information exchange. Similarly, it's evident that new mediais
starting arevolution as we write this prologue — a revolution of creativity
and hi-fidelity information exchange. The advent of technologies such as
Flash have made it easier for the intermediate web devel oper to create a
visually appealing and media-rich experience without having to worry about
the intricacies of well-formed programming constructs or even necessary
syntax.

However, when you start talking about media-rich experiences, you have to
start dealing with life-like motion, animated sequences, and event-driven
kinematics. All sciences are intertwined and this particular Situation best
illustrates the dependency of multimedia devel opment on age-old laws of
physics and theorems of mathematics. As much as one would like to deny it,
mathematics and physics supply the syntax for interactivity and animation.
Astime progresses, one may expect to see alarger part of the graphics
population have access to the devel opment tools necessary to create such
interactive experiences. At some point in the future, these tools will assume
at least some intermediate knowledge of math and physics foundation on the
part of the developer. It isup to the devel oper to embrace the beauty, logic
and simplicity of these concepts and their application in multimedia and
hypermedia devel opment.

About this Course

This course isintended for the intermediate web devel oper working with
emerging web technol ogies such as Flash and Director. We will not be
working with Director, but many of the concepts remain constant and are
transferable to other software applications.

Y ou will benefit from this course if

Y ou are a new media developer struggling to find the right direction
in achieving intelligent development skills based on necessary
mathematics and physics.

Coding Motion and Interactivity- Mohler & Kothary

Y ou are coming from mainstream game development. This course
should be useful in making a smooth transition into ssmple game
theory in frame-based devel opment environments such as Flash.

Y ou have no experience with Flash or multimedia development. In
general, this course should definitely kindle in you some excitement
about the new media revolution and what is possible in applications
such as Flash.

In short, if you are interested in new media, basic kinematics and
mathematics in multimedia development, or simply want to get better with
Flash and other similar new media development products, then this course
isfor you.

About the Course Notes

This documentation contains three main parts: the introductory materials,
course slides and supplementary material. The supplementary material
includes an overview of important mathematics and physics concepts that
will be used and demonstrated in the hands-on course. Y ou will note that
most of thisinformation is theory-oriented. Within the course we will apply
this within various examples.

In addition to the body of the supplementary materias, there are three
appendices. Appendix A provides alisting of some of the most useful Flash
resources available on the web at the time we compiled this document.
During the session we will likely append to thislist, asthe list of Flash
oriented development sites grows daily.

Appendix B provides alisting of helpful math and physics resourceson the
web. If these are topics you' re comfortable with or ones that challenge you,
you'll find many of these sites helpful in learning more about math and
physics. We have to limit the topics we can touch in the course simply
because there is just too much. These web resources will be helpful in your
guest to learn more about math and physics for multimedia devel opment.

Finally, appendix C provides abrief introduction to object-oriented
programming in Flash MX and appendix D provides further readings and
references. If you have made the transition from Flash 5 (or are still doing
so) you are undoubtedly aware of the major changesin ActionScript coding.
We decided to include Appendix C because OOP in Flash is sometimes
tricky, particularly if you are not used to the OOP approach.

Coding Motion and Interactivity- Mohler & Kothary 7

About the Authors

JamesL . Mohler isan Associate Professor in the
Department of Computer Graphics Technology at
Purdue University. He has authored or coauthored
16 textsrelated to multimedia and hypermedia
development, presented over 40 papers and
workshops at national and international
conferences and written 20 articles for academic
and trade publications. He has been awarded
several teaching awards and was recently chosen
asthe Fulbright Distinguished Chair in
Multimediafor 2002. James can be contacted at
jImohler @tech.purdue.edu.

Nishant Kothary is afreelance multimedia
developer specializing in web design. He teaches
courses at Purdue University dealing with the
fundamental s of scripting and tagging, and
currently serves as web devel oper for the Office
of Technology Commercialization at Purdue
University. Due to his background in computer
science, mathematics and computer graphics,
Nishant has been able to develop a progressive
approach to the implementation of kinematics
and mathematicsin ActionScript. Nishant can be
contacted at kothary@purdue.edu.

Coding Motion and Interactivity — Mohler & Kothary

Course Slides

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

MATHEMATICS
AND PHYSICS
FOR CODING MOTION
AND INTERACTIVITY

10 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

James L. Mohler
Purdue University

Nishant Kothary

Purdue University

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Iintroduction

== What is Multimedia?
:: What is Interactivity?
:: What is User-interaction?

11

12 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

NEW MEDIA

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

WHERE DOES FLASH
FIT IN?
:: Web Sites ?
:: Animations ?
:: Databases & E-commerce ?
:: Application ?

13

14 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

ERYNRERE

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

approach

1. Programming Skills
2. Graphic Design Skills
3. Inter-disciplinary Skills

15

16 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

programming

:: Object Oriented Programming
classes
objects
inheritance
encapsulation

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

programming

2 Frame-based Animation
distance
speed
velocity
acceleration

17

18 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

graphic design
:: Interface Design

:: Usability

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

19

20 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

interdisciplinary

:: Algebra and Geometry
:: Kinematics

:: Dynamics

:: Application methods

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

INDUSTRY

:: Better technology

:: Cross-platform solutions
:: Wireless and Handhelds
:: Flexible Applications

21

22 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

MATRENATICS

multimedia authoring trends

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Frame-Based

:: Frames are a function
of time
linear
uniform

23

24 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Time:

Frames

4| wlw| B Clff s [rzops [242 4 i

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Frame-Based

Pros
:: Lesser processor utilization
:: Popular and customary
:: Preferred method

25

26 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Frame-Based

Cons

:: User-device dependent
Tricky to implement
: Not uniform over platforms

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Time-Based

Time-based animation utilizes
true units of time

Must be programmed
artificially

27

28 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

fiperforms time-based motion calculation
furnction mwovel] 1
then = getTimer ()
elapsed = then - rooC.nhow;
num3ecs = elapsed / 1000; // converts msSecs Lo sSecs
mowvelist = numSecs ¥ speed:

Siperforms actual motion
this. x += movelist ¥ getCos():
this. ¥ += moveDist ¥ getl3in();

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Time-Based

Pros
:: Uniform over platforms
:: Processor independent
:: Accurate

29

30 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Time-Based

Cons
= Processor intensive
:: Not applicable to everything

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

31

32

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

TIME-BASED

Quiz, time-limit based
games, etc.

FRAME-BASED

Animations, strategy
games, etc.

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

B CT
T

33

34 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

ActionScript

:: ECMA-script core
:: Prototype-based
:z Similar to OOP

:: Better in MX

Coding Motion and Interactivity — Mohler & Kothary 35

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Prototype-based

:: Pseudo-Classes - Prototypes
:: Objects
:: Methods and Functions

36 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Anti-Events

:: Events are good for simple
actions

:: For rich applications, you
need to learn OOP

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

MATRENATICS

revisting the basics

37

38 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

OVERVIEW

:: Coordinate systems
:: Important concepts
:: Solving Equations

:: Linear sliders

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Cartesian

:: Most common system

:: Ordered pair - (x,y)

39

40

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

|G @ (xy)=(3,5)

cartesian coordinates +4

x:_favx;'s

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Flash space

2z Origin (0,0) - top left corner
of stage

i 'x' positive towards right

= 'y' positive downwards

41

42

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

¥+ y-axis

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Cartesian

== Global Coordinates

== Local Coordinates

43

44 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Cartesian

:: Global Coordinates
== World coordinate system

== Origin at (0,0) on global axes

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Cartesian

:: Local coordinates
== Coordinates system of object
== Origin at (0,0) + (x,y) wrt

global origin

45

46

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Pythagoras

:: Relates the sides of a right
triangle

a’+b* =c?

47

438 Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Sl[il;‘r'[-.l.A FH
Pythagoras Theorem

=a +b

2
C
5=3+4"

Coding Motion and Interactivity — Mohler & Kothary 49

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Distance Formula

:: Calculates the distance
between 2 points in a plane

d(P,,P,) =~/(x, = %)’ = (¥, = 1)’

50 Coding Motion and Interactivity — Mohler & Kothary

LU FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH
= 2002 =t

Distance Formula

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

51

52

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Equations

Definition
Types
lHHlustrations
Solutions

Coding Motion and Interactivity — Mohler & Kothary 53

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Equations

:: A statement of equality
between two quantities

y=mx+c

54 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Equations

:: Linear (covered)
:: Quadratic (brief)

:: Trigonometric (covered)

Coding Motion and Interactivity — Mohler & Kothary 55

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Linear

:: Any equation with the general
formax +b =0

:: Used extensively in
programming in the form of

y=hkx +b

56 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Linear

A horizontal slider that ranges
from 0 to 260 along X needs to
control a media element on a
sliding position of -100 to 100...
What’s the equation?

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Linear
BAD APPROACH

“Just make your slider size
-100 to 100 (200 pixels) and
ignore the math”

57

58 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Linear solution

Identify your points...
:: 0 yields -100

:: 130 yields O

1: 260 yields 100

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Linear solution

== Let slider be X and
element be Y...

= Apply y=kx +b

59

60 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

X= 0 130 260
Y =-100 0 100
Solve for b Solve for k

y=kx+b . y=kx-100

-100=k0+b 0=130k-100

-100=b 100=130k
10/13=k

Coding Motion and Interactivity — Mohler & Kothary 61

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Check result
y=10/13x-100
100=10/13*260-100
Is it true?
100=100

Application:
_element._x=10/13(slider._x)-100

62 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Primary Rule
Must be linear (ratio) scale -
a defined zero point and ratio
(equidistant) scaling

Applies to most interface controls
that use coordinate values for
determination

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

63

64 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

MATRENATICS

trigonometry and vectors

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Overview

Basics

Radians and Degrees
Trigonometry
Vectors

65

66

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Basics

Points

Lines

Angles

Properties of Angles

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Basics

:: Sum of angles of a triangle
is 180 degrees

:: Obtuse, Scalene, and
Isosceles triangles

67

68 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Measuring angles

:: Degrees

== Radians

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Degrees

:: Unit measure for angles

:: 1°= 1/360 of a full rotation

:: Used extensively in
actionscript calculations

69

70 Coding Motion and Interactivity — Mohler & Kothary

LU FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH
= 2002 =t

Coding Motion and Interactivity — Mohler & Kothary 71

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Radian

:: Central angle of a circle
subtended by an arc equal
in length to the radius of the
circle

72 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Radian Measure

>
P

1 radian 2 radians

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Radian

2 Unit-free

:: Independent of radius of
circle

:: Used for trigonometric
calculations

73

74

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Relationship

:: Radian - Degree
pi radian = 180°

:: Degree - Radian
1° = pi/180° radian

75

76 Coding Motion and Interactivity — Mohler & Kothary

SIGGRAFPH

FMathernatics And Physics For Coding Motion And Interactivity

To change

Multiply by

Degrees to radians

Radians to degrees

n/ 180°

180°/ &

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

77

78

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Polar

Cartesian

:: 0 to 360° counter-clockwise
== Intuitive and traditional

Coding Motion and Interactivity — Mohler & Kothary 79

LU FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH
= 2002 =t

80 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Polar in Flash

:z 0 to 180° counter-clockwise

= 0 to -179° clockwise

2z Unintuitive

:: Requires workaround functions

Coding Motion and Interactivity — Mohler & Kothary 81

LU FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH
= 2002 =t

82

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Trigonometry

:: Basis of all interactivity

:: Faciliates advanced concepts

:: Foundation for most
programmatic math

83

84 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Trigonometry

:: Trigonometry is the study
of triangles, angles and
relationships

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Trig Functions

:: Relate the sides of a right
triangle using established
ratios

:: Faciliate calculation of sides
and angles based on given
values

85

86

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Trigonometric functions

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

87

88 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Reciprocal Relationships

:: Relate trig functions as
reciprocals of each other
:: Very useful in conversions
when other functions are

unavailable

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Reciprocal relations

. 1
m &= ——0
osc & -
1 sind < 1
CDSE:gecg cos 8 1
1
tam?:E gecd > 1
1 cscd > 1
cotf= ——
tan @
seC #= L
cos &
u:su:|§'=.L
s

89

90 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Quotient Relationships

:: Relate trig functions as
quotients of each other

tan 8= sImE

cos &

cotf= C?S g
SR

== Useful to know

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Vecftors

:: What are they?

:: Why are they important?

:: How much do we need to
know?

91

92 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Scalars

:: Any quantity that may be
described completely by
magnitude alone

ex. speed, temperature

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Vectors

:: Any quantity that needs
magnitude and direction to
describe it.

ex. velocity, displacement

93

94 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Concept of a vector

:: Represents the motion of an
object accurately via means
of a directed line segment

Motion:

:: Magnitude - length of vector

:: Direction - direction of vector

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Representation

:: A vector is represented by
a small alphabet with a
bar above it

ex.u, v

95

96

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Understanding a vector -

Coding Motion and Interactivity — Mohler & Kothary 97

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Important Concepts
:: Calculating length (magnitude)

:: Vector Components (direction)

98 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Magnitude

:: Magnitude of vector represents
displacement of object

== Use distance formula to
calculate magnitude

Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Magnitude of a vector

] = (x, — 2,0 = (3, — 3,

99

100 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Components

== What?
:: Why?
== How

Coding Motion and Interactivity — Mohler & Kothary 101

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Components

:: Perpendicular projections of
vector onto x and y axes

:: Represent "horizontal” and
“vertical™ motion of object

:: Basis of all motion in CG

102 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Components

:: Only way to move objects in CG
:: Position on canvas is described
as ordered pair of coordinates
:: Dynamic motion is impossible
without vector components

Coding Motion and Interactivity — Mohler & Kothary 103

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Concept: Components

:: When an object is moved from
A to B, it's equivalent to
moving object 'x' amount along
x-axis and then 'y’ amount
along y-axis

104

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Concept: Components

Components give us these X’

and 'y' amounts

'x' component is called

horizontal component and ‘y’

component is called vertical
component

Coding Motion and Interactivity — Mohler & Kothary 105

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Resolving Components

:: Fancy way of saying - "to find
x and y components for a
vector

:: Trigonometric Method (look in
notes for conceptual overview)

106 Coding Motion and Interactivity- Mohler & Kothary

SIGGRAFPH

%

RP = sin (60") QP
QR = cos (60") QP

2

A, =A sin(60°)
A =A cos(60")

sin (60°) = g
cos (60)= OR
OF

FMathernatics And Physics For Coding Motion And Interactivity

Coding Motion and Interactivity — Mohler & Kothary 107

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

BREAK

108 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

KINEWATICS

conceptual physics

Coding Motion and Interactivity — Mohler & Kothary 109

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

OVERVIEW

:: What is kinematics?
: Why is it important?
:: Theory

:: Some Dynamics

110 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Kinematics

:: Kinematics deals with
concepts that are required
to describe motion without
reference to the forces
causing it

Coding Motion and Interactivity — Mohler & Kothary 111

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Kinematics

:: In multimedia, forces are
generally faked

:: Hence, kinematics is very
applicable to CG

112 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Kinematics - why?

:: To clone realism

:: To enhance interactivity and
therefore, user-experience

:: To bring to life!

Coding Motion and Interactivity — Mohler & Kothary 113

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Important Concepts

:: Displacement
:: Distance

= Speed

:: Velocity

:: Acceleration

114 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Displacement

:: Displacement is the
length (magnitude) of the
shortest path between two
points.

Coding Motion and Interactivity — Mohler & Kothary 115

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Displacement

116 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Displacement

Coding Motion and Interactivity — Mohler & Kothary 117

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Representation

:: Displacement is different
from distance

:: Denoted by letter 's’ or Ax

118 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Displacement Vector

:: Useful for finding other
quantities such as velocity

:: Use trigonometric resolution
of vector components

Coding Motion and Interactivity — Mohler & Kothary 119

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Example

120 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Distance

:: Total path traveled by an
object

:: Not necessarily equal to
displacement

Coding Motion and Interactivity — Mohler & Kothary 121

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Distance

122 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Speed

:: Distance traveled in unit time
:: Scalar quantity

:: Speed with direction - velocity

Coding Motion and Interactivity — Mohler & Kothary 123

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Speed

Speed = Distance Traveled
Elapsed Time

124 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Velocity

:: Displacement in unit time
:: Vector quantity

:: Most applicable to us

Coding Motion and Interactivity — Mohler & Kothary 125

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Velocity

Velocity = Displacement
Elapsed Time

126 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Velocity Vector

:: Magnitude
Xp— X, :.ﬁx

T —

=

:= Direction
Same as direction of
displacement vector

Coding Motion and Interactivity — Mohler & Kothary 127

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Application

:: Intuition says:
“"Apply velocity and object
will move™

:: Flash says:
"1 don't know what you‘re
talking about”

128 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Application

:: How to achieve velocity

in Flash?
:: Define a velocity variable

:: Add it to position of object

Coding Motion and Interactivity — Mohler & Kothary 129

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Example

130 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Acceleration

:: Rate of change of velocity
:: Vector quantity

== Adds realism to motion

Coding Motion and Interactivity — Mohler & Kothary 131

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Acceleration

Acceleration = Change in v
Elapsed Time

132 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Acceleration Vector

:: Magnitude

=
T —

== Direction
user-defined

Coding Motion and Interactivity — Mohler & Kothary 133

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Example

134 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

KINEMATICS

Gestalt and Newton

Coding Motion and Interactivity — Mohler & Kothary 135

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Gestalt Psychology

= Parts make a whole

== Understand the individual
parts to form the whole

136 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Newton

:: Equations of motion

:: Understand underlying
concepts rather than
memorize

Coding Motion and Interactivity — Mohler & Kothary 137

FMathernatics And Physics For Coding Motion And Interactivity

DYNAWICS

Elasticity and Springs

SIGGRAFPH

138 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Dynamics

:: Study of motion as it relates
to the forces causing it

:: Forces may be artificially
created with Actionscript
or any other programming
language

Coding Motion and Interactivity — Mohler & Kothary 139

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Good choice?

:: Interactivity and multimedia
don't necessarily demand
force-driven programming

:: Best solution - imitate via
kinematics

140 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Elasticity

:: Property of a body to restore
itself to its original state after
a force has been applied to it

:: Kinematically - scaling and
transformation

Coding Motion and Interactivity — Mohler & Kothary 141

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Hooke's Law

A restoring force is one that
tries to restore a spring or
elastic object to its original
state

142 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Hooke's Law

The restoring force of a
spring is given by Hooke's Law
F = -kx
k = spring constant
x = displacement

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

143

144 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

APPLICATION

2D Frame-based motion design

Coding Motion and Interactivity — Mohler & Kothary 145

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Overview

:: Applying Vector components

== Applying an equation of motion
:: Translation

:: Example

146 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Vector components

2z Allow dynamic motion

:: Declare a velocity vector
of some magnitude

:: Change direction on keyPress
using user-input

Coding Motion and Interactivity — Mohler & Kothary

SIGGRAFPH

%

RP = sin (60") QP
QR = cos (60") QP

2

A, =A sin(60°)
A =A cos(60")

sin (60°) = g
cos (60)= OR
OF

FMathernatics And Physics For Coding Motion And Interactivity

147

148

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Example

Coding Motion and Interactivity — Mohler & Kothary 149

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Equation of motion

:: How to apply?
v = vo+ at

:: Build on what we already have

150 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Equation of motion

:: Given:
:: Motion is time independent
(key-press)
:: X (displacement) = v*t
VvV =vet at
(for constant acceleration)

Coding Motion and Interactivity — Mohler & Kothary 151

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Equation of motion

Application:

Xx=v*t and vV =v, + at
No time...

X=v and V=Eve+a
Hence...

X = v, + a (to accelerate)
X = Vv, - a (to decelerate)

152 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Example

Coding Motion and Interactivity — Mohler & Kothary 153

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Remember...

:: All values are in pixels

:: Higher frame rates lead
to smoother motion

:: Experiment with values

154 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Class Example

Coding Motion and Interactivity — Mohler & Kothary 155

FMathernatics And Physics For Coding Motion And Interactivity

3 DINENSIONS

Drawing APl and Math

SIGGRAFPH

156 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Drawing API

“The new drawing APl enhances the
object-oriented programming power
of ActionScript by offering a set
of shape-drawing capabilities
through the MovieClip object, allowing
for programmatic control over the Flash
rendering engine.”

- Flash MX Help

Coding Motion and Interactivity — Mohler & Kothary 157

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Drawing API

:: Allows drawing without having
to make graphical elements

:: Macromedia's first step to
make the Flash environment
capable of real 3D

158 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Drawbacks
:: Uses the MovieClip object -
CPU intensive and inefficient
:: Flash 6 player is essentially
the same as earlier version -
no increase in performance

Coding Motion and Interactivity — Mohler & Kothary 159

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Possibilities
:: Simple 3D games
:: Interesting and complex
programmatic graphics
:: Influx of programmers into
Flash developement arena

160

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Examples

Coding Motion and Interactivity — Mohler & Kothary 161

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Skills you need...

= Vector math in 3D
:: Matrix manipulations

:: Perspective and illustrative
skills

:: Some traditional game theory

162 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

What to expect

Coding Motion and Interactivity — Mohler & Kothary 163

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Where Flash is going

:: Macromedia is aiming to
make Flash an application
development tool for the
web

:: Macromedia also wants to
attract the Java developers

164 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Where Flash is going

:: Expect to see very complex
applications

:: Expect to see Inverse
Kinematics

:: Expect to see basic first
person games

Coding Motion and Interactivity — Mohler & Kothary 165

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Interactivity?

:: OOP enables you with
advanced interactivity
features

:: Both navigation and content
will become more interactive

166 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Eye-candy?
:: Expect to see a lot less
eye-candy
:: You will need more than
cel-animation or cut-paste
actionscript skills to sell
yourself

Coding Motion and Interactivity — Mohler & Kothary 167

FMathernatics And Physics For Coding Motion And Interactivity

CONCLUSION

Where to go from here?

SIGGRAFPH

168 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Conclusion

:: How do you become a good
all-round Flash developer?

:: How do you teach yourself
new skills?

Coding Motion and Interactivity — Mohler & Kothary 169

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Take the time

:: Take time to learn your
math and physics

:: Use available resources -
suggested web sites, books,
colleagues, etc.

170 Coding Motion and Interactivity — Mohler & Kothary

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Outcome

:: Time invested in climbing
the learning curve will pay
back ten-fold in the future

:: Everyone can program,
everyone can animate...
market lacks individuals with
both skills

Coding Motion and Interactivity — Mohler & Kothary 171

Mg FMathernatics And Physics For Coding Motion And Interactivity
SIGGRAFPH

Last words

:: The moment the bandwidth
barrier is broken, only web
developers with diverse skills
will survive

:: Math and physics skills will
simply be taken for granted

172 Coding Motion and Interactivity — Mohler & Kothary

FMathernatics And Physics For Coding Motion And Interactivity

Q&A

Questions and Answers

SIGGRAFPH

Coding Motion and Interactivity — Mohler & Kothary 173

Supplementary Materials

174

Coding Motion and Interactivity — Mohler & Kothary

MATHEMATICS

Introduction

For some reason, the mention of the word “math” intimidates most people.
It's much like the phenomenon of Classical Conditioning, atechnique first
developed by Ivan Pavlov, a prominent Russian psychologist back in the
day. For the benefit of those who have never been exposed to psychology,
let us elaborate on Pavlov’ sinteresting work.

Pavlov was very interested in digestive processes, namely how dogs
salivated in the presence of different foods. People salivate when food is
placed in their mouths, and the same istrue for dogs. Pavlov's studies lead
him to formulate his theories of Classical Conditioning. According to
Pavlov, the unconditioned response of drooling was adirect result of the
unconditioned stimulus, namely, the placement of food in the mouth.
Unconditioned responses are not learned responses, but governed by reflex
actions. However, Pavlov noticed that dogs often begin to drool before the
food isactually placed in their mouths, merely by the sight or smell of it, or
even hearing the footsteps of the bearer. Thisled him to coin the term
Conditioned Response. The dogs learnt that if they saw the food, smelled it,
or even heard somebody’ s footsteps approaching with the food dish, they
were probably going to be fed. Hence, they began to salivate in anticipation
on ameal. Thisresponse iswhat Pavlov called Conditioned Response, asit
was learnt over a span of time.

Seeing this, Pavlov hypothesized that such associations could easily be
manipulated. His studies show that the process of learning is based on
associations. Undesirable stimuli typically cause negative responses. For
example, if math was always presented to you in an uninteresting manner
and you were forced to complete difficult homework problems all through
school, then it would be natural for you to have devel oped a bad taste for
mathematics. In its natural form however, mathematics is much like the
anticipated meal fed to Pavlov’s dog — desirable, tasty, satisfying and last
but not the least, necessary. We have been conditioned into believing that
math is not fun and hopefully, this course should at least recondition you to
reverse some potentially bad memories.

This section deals with basic math concepts that you MUST know. They
will beinvaluable to you if you decided to take this course a step further by
taking some traditional game design and theory courses, or smply plan to
indulge in some advanced programming. This section coversthe bare
essentials. It does not offer you programmatic solutions to problems. We
thought best to separate theory from application, for theory isforever,
whereas application isforever changing.

Coding Motion and Interactivity — Mohler & Kothary 175

2D Space

Thisisatopic that needs to be addressed for the benefit of those who
haven't revisited math since high school.

Cartesian Coordinate System
To define an object in a plane, the 2D Cartesian coordinate system is used.
This consists of 2 perpendicular axes that intersect at the origin. Every point
in the planeis assigned an ordered pair (X, y) to determine itslocation as
shown in figure 1.1.

A y-axis
T7
16

45 @ (X,y) = (315)

-axis

(xy) = (-55) L

Fig. 1.1 The Cartesian Coordinate System

Infig. 1.1, note that:

x = perpendicular distance of object from y-axis
y = perpendicular distance of object from x-axis

Coordinate system used in Flash and similar products
Now, you’ re probably wondering where the origin islocated on the main
stage in your Flash movie. The top left corner of the main stage isthe origin
(asshowninfig. 1.2). This means:

The top edge of the stage is the x-axis
The left edge of the stage is the y-axis

176 Coding Motion and Interactivity — Mohler & Kothary

Hence, we can extrapolate the following:

A positive x coordinate refersto a point on theright of they-
axis (similar to the Cartesian system.)

A positive y coordinate refers to a point below the x-axis
(contrary to what the Cartesian coordinate system follows.)

e i | B | [SETE TR | |]

y: + y-axis J

Figure 1.2 Flash’ s coordinate system.

Y ou can still use the Cartesian coordinate system to calculate the position of
your object, etc. by flipping the y-axis.

Pythagorean Theorem
Pythagoras was probably one of the most influential mathematicians that
lived. However, he is was al so one of the most mysterious and |east
documented of all. Most of you probably know the Pythagorean theorem. It
is beyond the scope of this course to provide the proof for the theorem.
However, it isimportant to mention asit is foundational to many tasks.

The theorem, in its ssmplest form, relates the length of the three sides of a
right triangle with the following identity:

a’+b*=c?

where, c isthe side opposite to the right angle (called the hypotenuse,) and a
and b are the sides adjacent to the right angle. Figure 1.3 shows agraphical
example.

Coding Motion and Interactivity — Mohler & Kothary 177

c=a’ +b’
5=34+4"

a
Figure 1.3 The Pythagorean theorem

The Pythagorean theoremis one of the most useful identitiesin
mathematics, as you will observe in the sectionsto follow. One very useful
application of thistheorem is the distance formula, used to calculate the
distance between two points.

Distance Formula
The distance formula states that the distance d (P1, P>) between point Py (X,
y1) and point P, (X2, y2) inaplane, is given by the relation:

d(PLP,) = (% - %)%~ (¥ - Vi)

This can be presented graphically as shown in Figure 1.4.

P(x, ¥)

iR, B)= =0) = (-)

P0s.)

Figure 1.4 This distance between two points.

Keep in mind that d (P1, P2) = d (P2, P1) and hence the order in which the x
and y coordinates are subtracted isimmaterial. In essence, the line can be
calculated beginning at either point.

178 Coding Motion and Interactivity — Mohler & Kothary

BODMAS
Having studied in a Catholic school following aBritish curriculum, I’ ve
been through some rigorous math in my school days. We were never
allowed to use a calculator, and if you were ever caught with one, the
teacher would march you off to the Principal’ s office. And believe me that
was hever good!

In 2" grade | had to take 3 math classes— arithmetic, geometry and lastly,
mental mathematics. Mental mathematics, now that | ook back, was realy
the most helpful. The ideawas to make the kids learn their multiplication
tables from one to twenty really well. The tests and quizzes consisted of
several simple problems like:

4+5*6/3

Here sthe twist — we'd get 100 problems on each test and about an hour to
complete them. The problems got progressively tougher towards the end of
the tests. We were allowed to use nothing but a pencil, an eraser and our
heads. It wasillegal to have a sheet to do rough work on. The only way to
do well wasto know your tables, and your math rules really well. | cannot
emphasize how unpopular that class was amongst the students! Now that |
look back I'm glad we had to take it because it’ s quite convenient to know
what 19 times 12 is off the top of your head.

This classwas where | wasfirst introduced to a technique that can be
abbreviated BODMAS. BODMAS stands for “Brackets Order Division,
Multiplication, Addition, and Subtraction.” BODMAS assigns priority to
mathematical operators. “Order” isan old English way to say “raised to” or
“to the power.”

Let’s see how thisworks. Take the above example4 +5* 6/ 3. There are
severa waysto solve this problem, and each onewould give different
answers. A few permutations are:

4+5=99*6=54,54/3=18
5*6=30,30+4=34,34/3=11.34

Asyou can see, the process could go on and on and each time it could give
you adifferent answer. So, what isreally correct? Thisiswhere BODMAS
can savethe day. If you follow the order of priority i.e. DMAS, you can
never go wrong. According to BODMAS, the above problem would work
out asfollows:

6/3=2,2*5=10,10+4=14

Coding Motion and Interactivity — Mohler & Kothary 179

BODMAS s ahandy tool when you don’t have a calculator around. The
application of thisrule is seen in our day-to-day lives. And sometimes, you
get aproblem that you can’t punch into your calculator, so you can apply
BODMAS quite easily. It works for any type of math. Many computer
languages follow a similar pattern of “operator precedence.”

Basic Trigonometry
The word trigonometry is derived from the two Greek wordstrigonon
(triangle) and metria (measurement). The applications of trigonometry are
found in our day-to-day lives, forming the basis for many physics and math
topics. We will be looking at some basics to help us understand
supplementary concepts in kinematics.

Radian Measure

One radian is the measure of the central angle of a circle subtended by an
arc equal in length to the radius of the circle. The radian measureis
independent of the size of the circle. It isfound by determining how many
times the length of the radius of the circleis contained in the length of the
subtended arc. If we consider acircle of radiusr, then an angle O with a
measure of 1 radian intercepts an arc AB having lengthr, asillustrated in
figure 1.5.

1 radian 2 radians

Figure 1.5 Understanding the radian

180

Coding Motion and Interactivity — Mohler & Kothary

One important relationship you must remember is that between radians and
degrees. Table 1.1 shows this basic relationship.

180° = p radian

1° = p/180° radian @0.0175 radian

Table 1.1 The relationship between radians and degrees.

Radian measure has no units in representation. So, if an angle has radian
measure 22, we write O = 22.

Converting Radians to Degrees and Vice Versa

Thisisavery important section because of its direct application in
ActionScript, and programming in general. Several functions used in
ActionScript return the degree measure for rotation. Due to familiarity (if

for no other reason), most of the time we use degrees as our base unit for
manipulations. However, Flash's trigonometric functions (sin, cosine, and so
on) require radian values. Y ou can obviously see the implications of
mistaking aradian for adegree. A possible scenario would be your
spaceship turning left when you intended to make it go higher. Not good!

Table 1.2 illustrates the conversion between the two angle measurements,
while table 1.3 shows some commonly occurring degree to radian
conversions:

| Tochange Multiply by Degrees | Radians

Degreesto radians p/180° 0 0
30 p/6
Radians to degrees 180°/ p 45 pl4
60 p/3
Table 1.2 Converting between radians 90 p/2
and degrees. 120 2p/3
135 3p/4
150 5p/6

180 p
270 3p/2

360 2p

Table 1.3 Common degree to
radian conversions.

Coding Motion and Interactivity — Mohler & Kothary 181

Flash and Radians

It isimportant to know how to determine anglesin Flash and other
programs. Flash's polar setup issimilar in peculiarity to its coordinate
system setup. Figure 1.6 illustrates aregular coordinate axes with respective

angles of rotation.

180

y-axis

90

0 x-axis

R
N

360

270

Figure 1.6 Regular coordinate axes.

This should be familiar to most of you. Traditionaly, the positive x-axisis
considered to be at 0°, with the angle increasing in the counter-clockwise
direction. One whole revolution (or rotation, depending on how you are
looking at it) accounts for 360 degrees of rotation in natural numbers. In
contrast, examine the Flash coordinate system, asillustrated in Figure 1.7.

180

y-axis

90

0 x-axis

-179

4k

-90

Figure 1.7 Flash’ s coordinate system.

182 Coding Motion and Interactivity — Mohler & Kothary

Asyou can see, Flash has a peculiar setup for rotation angles. Though the
starting point is the same (positive x-axis,) everything elseis not quite
intuitive. The angle increases in the clockwise direction until it reaches
180°. However, once you get back in the second quadrant, it starts
increasing from avalue of -179° (mind you, increasing in negative integers
means getting closer to 0.) Hence, the first and second quadrants are simply
negative reflections of the third and fourth. Although this may be unclear at
this point, once you start using Flash’s _rotation property, aswell asits
transformation tools, thiswill be more evident.

A simple way to overcome this peculiarity isto add 2p radians to a negative
rotation result asfollows:

if (dy <0){
radians = Math.atan2(dy, dx) + (2* Math.Pl);
}

In severa examples you will seethis applied. The key isto remember that
Flash uses negative numbers in certain rotation measurements.

Trigonometric Functions
Trigonometric functions relate the sides of aright triangle using established
ratios. Any triangleisaright triangle if one of its angles equals 90°.
Consider figure 1.8.

Figure 1.8 A basicright triangle.

If ?isany acute angle of right triangle abc, then the most vital ratios to be
considered are:

Trigonometric functions establish the fact that these ratios are dependent
only on ?, and not the actual size of the triangle. For each ?, the six ratios

Coding Motion and Interactivity — Mohler & Kothary 183

have unique values. Since the ratios are dependent on ?, they are called
functions of ?. These are termed trigonometric functions. Aswe go on, the
importance of trigonometric functions will become all to clear to you.
However, for the time being, we need to get the technical aspects out of the
way.

Different Trigonometric Identities
The six important trigonometric functions are shown in table 1.4. These
become the basic for many operations on graphic objectsin Flash.

sinq :_Opp = 9
hyp ¢

ad _a
cosq=—=—
hyp ¢

tng =20 -0
ad a

cotq :ﬂ :E
opp b
_hyp_c

ad a

Cscq :M) :E
opp b

Table 1.4 The six important trigonometric functions.

Reciprocal Relations
It is often useful to define trigonometric identities in terms of reciprocals of

each other as shown in table 1.5.

: 1
angq =——
cscq
1
cosq =——
tanqg = i
cotq
1
cotq =——
tanqg
1
secq =——
coy
1
cscq =——
S14[0]

Table 1.5 Reciprocal relationsor trigonometric identities.

184

Coding Motion and Interactivity — Mohler & Kothary

So what does all this mean? It's very simple. The best way to remember
these relations is to remember the underlying diagram behind the idea. So
figure 1.8 showsit once again.

%)
-

a
Figure 1.8 Remembering thisfigure isimportant!

In terms of the figure 1.8,

side ¢ = hyp (hypotenuse)
side b = opp (side 'opposite to ?)
sidea= adj (side 'adjacent’ to ?)

Since the hypotenuse of atriangle is aways greater than its other sides, you
can deduce certain relationships of trigonometric identities, as shown in
table 1.6.

sng <1 secq >1
cosq <1 cscq >1

Table 1.6 Deductions concer ning trigonometric identities.

Quotient Relations

The following relations are called quotient relations since theright side is
eguated to the left side as a quotient, as shown in table 1.7. Quotient
relations are simply toolsto interrelate trigonometric functions.

tanq :ﬂ
cosg
Cth :C_O_Sq
S1p[e]

Table 1.7 Quotient relations

Quadrants and signs

Once you get into some devel opment, you will realize that trigonometric
values aren't always positive in sign. Quite to the contrary, most of the
trigonometric values you will have to deal with will be negative. The signs

Coding Motion and Interactivity — Mohler & Kothary 185

of the values depend on the positions of the arms of the triangle with respect
to quadrants. You may refer to the table 1.8 to determine the sign of a
trigonometric value. Figure 1.9 shows the quadrant labeling order.

First + + + + + +
Second + - - - - +
Third - - + + - -
Fourth - + - - + -

Table 1.8 Signs of trigonometric values with respect to quadrants.

y-axis

X-axis

'V

Figure 1.9 Quadrant Labeling.

Thereisavery ssimple way to remember the signs related to quadrants—
actualy, there are a couple of smple ways. Y ou could remember the
acronym "ASTC" which standsfor "All - Sine - Tangent - Cosine"
respectively. This denotes the positive valuesin order of quadrants.

For instance, al values are positive in the first quadrant, only sine values
are positive in the second quadrant, and so on. If you remember your
reciprocal identities (seetable 1.5), you can easily figure out the signs for
the remaining three functions. Always remember, sin isthe reciprocal of
csc, cosisreciproca of sec, and tan isthe reciprocal of cot. Hence, they

have the same signs.

186 Coding Motion and Interactivity — Mohler & Kothary

Another way to remember the tableisto think of it logically. In the example
triangle shown in figure 1.10(a), the adjacent side is arm x, and the opposite
sideisthearmy.

y-axis

X-axis

@ (b)
Figure 1.10 Comparing the right triangle (@) to the ASTC idea (b).

The sinefunctionistheratio of y tor. y isaways positive above the x-axis,
and hence, the sine function always has positive valuesin the first and
second quadrants.

The cosine function istheratio of x tor. x isaways positive on the right of
the y-axis and hence, the cosine function has positive valuesin the first and
fourth quadrants.

The tangent function isthe ratio of y to x. y and x have the same signs in the
first and third quadrants, and hence, the tangent function has positive values
in these quadrants.

Similarly, the remaining signs may be derived using the reciprocal identities
table. All reciprocal functions have the same signs.

Constructing A Special Value Trigonometric Table

We decided to put this section in at the last minute. It's very useful to know
some common trigonometric values without having to use a calculator,
especially when you are debugging code. If you know the sine values that
correspond to the common angles like 0°, 30°, 45°, 60°, and 90°, you can
extract all the others from those.

Let's construct the table. Thefirst thing you need to do is draw a barebones
table similar to the onein table 1.9.

Coding Motion and Interactivity — Mohler & Kothary 187

0° 30° | 45° 60° 90°

sin

COos
tan
cot

CSsC

Table 1.9 The basic table.

Now, fill in each column in the first row with O, 1, 2, 3, and 4, respectively:

0° 30° | 45° 60° 90°
sin 0 1 2 3 4
COos
tan
cot

CSsC

Table 1.10 Number the cells.

Divide all the cellsyou filled in by 4. Y ou get:

0° 30° | 45° 60° 90°
sin 0 1 1 3 1
4 2 4
cos
tan
cot
sec
csc

Table 1.11 Divide each cell by 4.

188 Coding Motion and Interactivity — Mohler & Kothary

Calculate the square root of each cell:

0° 30° | 45° 60° 90°

sin 0 E 1 ﬁ 1
2 | N2 | 2

cos
tan
cot
sec
csc

Table 1.12 Determine the square root.

Now, let'sfill in the remaining cells starting with cosine. The graph of the
cosine function looks identical to the sine function graph with one major
difference - it is shifted. Thisresultsin a shifted set of values. Simply copy
the sine values backwards, by filling them in descending order by angle as

shown:
0° 30° | 45° 60° 90°
1
sin 0 E — ﬁ 1
2 | J2 | 2
1
cos 1 ﬁ — E 0
> | J2 | 2
tan
cot
sec
csc
Table1.13

Here'sthe real test to whether you learnt your tables of identities. We
established in table 1.7 that:

tanqg = ——
cosq

Hence, filling up the tan table is simply a matter of dividing the
corresponding sin and cos values, and filling in the result. The values you
should end up with are shown intable 1.14.

Coding Motion and Interactivity — Mohler & Kothary 189

0° 30° | 45° 60° 90°

. 1] 1|3

sin 0 — — | ¥ 1
2 | V2 | 2
Bl 1]

cos 1 2 —= — 0
> | J2 | 2
1

tan 0 — 1 ¥
N NE

cot

sec

CSC

Table 1.14 Resulting values for tan.

Y ou could fill in thelast three identitiesin asimilar manner. Use Tablel.7
for reference. Table 1.15 shows the completed table.

0° 30° | 45° 60° 90°
: 1 1 \/§
sin 0 — — | X2 1
2 | V2| 2
\/§ 1 1
cos 1 2 —= — 0
2 | V2| 2
1
tan 0 — 1 ¥
7 J3
1
cot ¥ @ 1 E 0
2
Sec 1 — 2 2 ¥
B | 2
2
CSC ¥ 2 \/E E 1
Table 1.15 The completed table.

The purpose of this section was not just to help you memorize thetable. We
hope that the method employed here showed you the rel ationships between
different trigonometric identities. This may seem monotonous at first, but as
you move on to more complex sections, it will become crucia for you to
know your trigonometric identities off the top of your head. We strongly
encourage you to spend some time learning how to construct the table,
simply to strengthen your grasp of trigonometric identities and their
relationships with each other.

190

Coding Motion and Interactivity — Mohler & Kothary

Vectors

Vectors are a programmer’ s best friends. They represent concepts like
displacement, velocity, acceleration, or whatever else requires depiction of
motion. In most books, you' |l find that vectors are defined as physical
guantities that have magnitude, as well as direction, and are represented by
aline with a starting point and an ending point. Well, what does that mean?

Figure 1.11 Understanding vectors.

In the figure, the tank has moved 5 miles from A to B. Now, if you were
asked to describe the displacement of the tank, you might respond by
saying, “ The tank has moved 5 miles.” But all thiswould tell someoneis
that the tank is 5 miles from its starting point. This could mean that the tank
could lie anywhere on the circumference of acircle with a5 mileradius
with A asorigin.

However, if you used avector like the one in the figure, you could pinpoint
the exact location of the displaced tank. Y our answer would look something
like; “ The tank has moved a distance of 5 miles (magnitude of the vector) in
adirection 45? North of East (direction of the vector.) This may seem like a
lot to say when it comes to our little tank, but it makeslife alot easier when
we start dealing with a tank moving around in the 2D plane of a computer

Coding Motion and Interactivity — Mohler & Kothary 191

game, and representing a point in 3D space simply becomes close to
impossible without using a vector.

Aswe move further on you will slowly grasp the concept of vectorsif you
haven't already. It's a concept that isn’t something you can visualize
immediately because of its abstract nature. Keep reading on and it will
make more sense in the context of real examples. But before we get our feet
wet with some kinematics, we need to dig up afew more concepts.

Properties of vectors

Vectors are very useful to aprogrammer. Y ou can add them, and subtract
them and do a bunch of other neat things with them. We will briefly
describe some of the important properties, and for the really motivated ones,
you'll find additional links to resources that go deeper into the subject.

Representation
We use PQ to denote a vector with initial point P and terminal point Q. We
use letters like u and v to denote vectors with no terminal point.

Length or Magnitude

The Length of avector is simply the distance from the origin to the tip of
the vector. It is denoted by |u| and read as “the length of u.” Asyou can see
infigure 1.12, you can use the Distance Formula to find the length of a
vector.

- (Y- Y,)°

Figure 1.12 Applying the distance formula.

192

Coding Motion and Interactivity — Mohler & Kothary

Vector Components

Vector components are the most useful tools that vectors provide uswith.
They facilitate the creation of very ssmple to extremely sophisticated
motion based graphics programming. Understanding this concept itself is
half the battle, as the rest that followsis simply application of these rules.

By definition, the perpendicular projections of the vector onto the x- and y-
axes are called the components of the vector. The components of a vector u
are simply two mutually perpendicular vectors, uy and uy that are parallel to
the x and y axes respectively such that u = uy + uy. The component parallel to
the x-axisis called the horizontal component, and the component parallel to
the y-axisis called the vertical component. Take alook at the figure and it
will make more sense.

Figure 1.13 Components of the vector.

Let us explain with an illustration using our tank example. When our tank
moves from A to B, its displacement vector isu. Now, if you draw a vector,
uy from A to C (parallel to the x-axis) and uy from C to B (parallel tothe Y
axis, to form aright triangle of vectors ABC, then we call the vectors uy and
uy the components of vector u. Asyou can see in the figure, uy and uy are
mutually perpendicular. This opens up aworld of opportunitiesfor usto
manipulate, and also supplies us with some invaluable relationships to make
different calculations and transformations.

y axis

Coding Motion and Interactivity — Mohler & Kothary 193

Concept: Resolving a vector

Physics and math books provide some of the most comprehensive
explanations about resolving vector components (that’ s the techical way to
say that you' re going to figure out a vector’ s components.) But what does
that mean in simple English? Asfar as we' re concerned, we have a vector
and we need to figure out its components.

Here's an unconventional, but extremely simple method you may use to
resolve avector.

X axis g
Figure 1.14 Resolving a vector

Step 1. Locate your problem vector i.e. vector u in this case.

Step 2: Draw PR and QR as shown to form aright angle triangle.

194

Coding Motion and Interactivity — Mohler & Kothary

Step 3: Draw arrows as shown. Keep in mind, the arrows of each
component trace a path from the initial point to the terminal point of the
parent vector.

Step 4: Y our vector has been resolved into the components uy and uy.

Y ou’ re probably wondering why we moved the y component to the origin
of u. That ishow it’s done conventionally. Theideais that each component
translates the motion of the object assuming the absence of the other
component. The x component tells you how the object would move asiif
there wasn’'t any movement in they direction and vice versa. It’sjust
simpler to think in terms of the right triangle and then move the vectors to
the origin keeping the magnitude and direction the same.

Resolving a vector’'s components using trigonometry

In the previous section we noticed that aright triangle’ sarms play an
important role in the formation of vector components. That should scream
out one word to you — “Trigonometry!”

R

Figure 1.15 A closer look

Takealook at the figure 1.15. It's avector diagram similar to the ones we
looked at awhile ago. Now, just for afew minutes, think of it asasimple
right triangle PQR with angle PQR equal to 607.

Coding Motion and Interactivity — Mohler & Kothary 195

By definition:
sin (60°) = RP
QP
cos(60°) = R
QP
Simplifying it:

RP =sin (60°) >QP
QR = cos (60°) xQP

If we think of thisin terms of our vectors, we get,

A, =A>sin(60°)
A, =A xcos(60°)
The beauty of thisisthat if you know a vector’s magnitude and it’s

direction, you can easily compute its components using basic trigonometry.
Here' s the definition of the above process:

Given magnitude (r) of a vector A and itsdirection (?) with respect to the x-
axis, its components are given by the equations shown in table 1.16:

A, =r>sin(q)

A, =rxcos(Q)

Table 1.16 Deter mining the components of a vector

Function Graphs

When dealing with animation and movement, as a computer graphics
developer, you need to concern yourself with several kinds of functions.
Some of the most important ones are:

» Linear: y=nmx+c
— 2
= Quadratic; y=ax +bx+c
= Cubic: y = axd +b* +cx+d

= Trigonometric: y = asin(x)

196

Coding Motion and Interactivity — Mohler & Kothary

Getting into these functions in detail is beyond the scope of this course.
However, we would like to highlight one important use of these functions.
When graphed, most of these functions depict arelationship between two
variables. For instance, the graph shown in figure 1.16 depicts alinear
relationship between Velocity and Time. Hence, as time progresses, the
velocity of the object increasesin alinear fashion.

speed

time
Figure 1.16 A linear relationship between velocity and time.

It isimportant to be able to plot functions. Most of the times, when you are
trying to achieve some sort of complex motion, it can easily be plotted on a
scientific calculator such as the T1-89, because motion is governed by
functions and equations. If you can understand the graph of afunction, you
don't need to predict the motion it will produce. This makes for some
extremely efficient conceptualization. If you plan to devise your own
tweening functions with custom easing parameters, it will be crucial for you
to have astrong base in Liner algebra and polynomial functions.
Furthermore, if you can master plotting functions on a calculator, coding
motion will become alot simpler for you, and probably alot more effective.

Coding Motion and Interactivity — Mohler & Kothary 197

PHYSICS

Introduction

When you think of physics asit isrelated to multimedia, it's quite tough to
pin down only those concepts that are important. Physicsis avery broad
science, and itsimplications to man are virtualy endless. Similarly, the
importance of physicsin interactive multimedia, game programming, and
motion-rich presentations is immeasurable. New technologies such as Flash
provide developers with a blank canvas and awide array of programming
tools to incorporate real world kinematics and dynamicsinto their creations.

Unfortunately, Flashisin its teenage years on the maturity continuum. The
genera population of developersis content with key-frame based animation
and cut-and-paste functions. While these definitely enhance presentations
and applications, they fall short of actually harnessing the available
infrastructure provided by the scripting language. As discussed earlier, the
power of Flash and any other product similar to it, liesin an inter-
disciplinary knowledge of incorporating mathematics, physics, and
computer science in the final product.

One does not need to be arocket scientist to achieve ahigh level of inter-
disciplinary skills. Quite to the contrary, an individual with basic math and
physics skills, some level of programming experience and a considerable
amount of common sense, may easily master the art of blending these
different variables into the final equation of a presentation, web site, game,
or any type of media-rich experience. Y ou must smply develop awide
knowledge base in these various areas and learn how to maximize on what
you know and what is available to you.

The following sections were intended to serve as areview and reference of
essential physics concepts. However, they are far from complete. We have
simply documented the most basic concepts for you. Also, we do not intend
to give you a series of cut-and-paste scripts in these course notes, for those
are availablein plenty over the Internet. We ssimply hope to give you agoal,
direction and a head start to achieving that goal.

198

Coding Motion and Interactivity — Mohler & Kothary

Mechanics

Motion, in abroad sense, has two main aspects. One aspect isthe
movement itself. For instance, isit fast or slow? The other aspect deals with
the cause or origin of the motion. Both aspects are equally important to
multimedia. However, the representation of both aspectsis quite different in
multimedia.

Mechanics is the branch of physics that focuses on the motion of objects
and the underlying causes (forces) for the motion. Mechanics may be
classified into two broad categories - kinematics, and dynamics. Kinematics
deals with concepts that are required to describe motion without reference
to the forces causing it. Dynamics, on the other hand, deals with how forces
cause motion.

MECHANICS

Kinematics Dynamics

Figure 2.1 An overview of mechanics.

For the large part, we do not need to worry about dynamics for development
at thislevel. Representation of forcesis an abstract and advanced concept,
best left to professional game developers. For our purposes, most any kind
of motion, may it be linear, circular, hyperbolic, oscillatory, projectile, and
S0 on, can be produced by manipulating variables.

The best part isthat all the work has already been done for us. Each and
every equation and concept of kinematics applies to the world of
programming and multimedia. The key liesin knowing how to manipulate
existing equations and concepts. Most people give up even if they know the
concepts and have a sufficient amount of programming experience simply
because they can't tie the two together. Our goal isto be ableto develop a

Coding Motion and Interactivity — Mohler & Kothary 199

problem-solving model that can help ustie these skillstogether to produce
effective applications, games, or presentations.

Conceptual Kinematics

Kinematics deals with concepts that are required to describe motion without
reference to the forces causing it. We will cover the following concepts:

Displacement — shortest path of travel or final position minus
initial position

Distance — length of path traveled

Speed — change in distance divided by the changein time
Velocity — magnitude and direction of speed.

Acceleration — change in velocity divided by changein time

After we understand what the above concepts are, we will learn how to
apply them in simple game programming techniques and interactive
multimediato produce redlistic results. Again, our main am isto provide
you with afirm idea of how things work, not to give you code snippets. Of
course, there will be afew snippets to help conceptualize various routines,
but we believe that with a strong understanding of kinematics, you will be
able to use therest of the techniques you' ve learned to produce your own
code.

The mathematical quantities used to describe the above keywords of
kinematics may be classified into two broad categories:

Scalar Quantities- These are fully described by their magnitude
alone.

Vector Quantities - These are described by their magnitude as
well astheir direction.

Examples of scalars and vectors

The following examples should clarify the difference between ascalar and a
vector:

22 km/hr - Scalar. Thereis no direction specified

22 km/hr, NE - Vector. The direction is specified.

1024 KB - Scalar. Thereis no direction specified

520 Amps- Scalar. Thereis no direction specified

5 pixels per second, 45degrees- Vector. The direction is
specified.

200 Coding Motion and Interactivity — Mohler & Kothary

Displacement

Consider acar in motion ashown in figure 2.2. The car moves from point A

to point B. The difference ‘X' between points A and B gives the value of the

displacement of the car. Simply put, displacement isthe length (magnitude)
of the shortest path between two points.

= x miles

Figure 2.2 A car in motion.

Now, let’s say the same car moves from point A to point C, but via point B,
asshowninfigure 2.3.

Figure 2.3 Adding a point to the movement.

Our first instinct would be to say that the displacement is the sum of the
distances AC (x) and BC (y). ThisisINCORRECT. The displacement in
this case is simply the magnitude of AC (?x). Always remember, the path

Coding Motion and Interactivity — Mohler & Kothary 201

of the motion is not taken into consideration, only theinitial and final
positions of the object.

We shall denote displacement by ‘ ?x’

Displacement Vector

The displacement vector is simply avector that points from an object’s
initial position to itsfinal position. The distance between theinitial and final
points gives its magnitude.

Figure 2.4 The displacement vector.

In the above figure, note that:
Displacement (?x) = Final position (Xs) - Initial position (Xo)

‘?x’ simply means “changein position.” *?’ isthe nickname for “difference
between” or “changein.”

Quick Review

Given,
Xo = initia position of object
xt = final position of object
?x = displacement of object (change in position of object)

Then,
?X =X - Xo

202

Coding Motion and Interactivity — Mohler & Kothary

Distance
Distance is a scalar quantity that represents the total path traveled by an
object. If we take the above example, the distance traveled would be:

Distance(d) = x+y

It isimportant to be able to make a distinction between distance and
displacement. Several of the following sections will require you to use
either distance or displacement in their definitions. If they are interchanged,
you will yield an incorrect solution.

Speed
Speed is the amount of time it takes to do something. When dealing with
kinematics, speed is defined as the distance traveled in unit time.

Speed = Distance Traveled
Elapsed Time

The key point to remember is that we are dealing with “distance” and not
“displacement.” Speed isavery useful concept in understanding velocity,
because like distance and displacement, speed and velocity are very similar,
and often are terms used interchangeably. However, speed isnot velocity
and vice versa

Speed isascalar quantity i.e. it has magnitude, but no direction. Hence,
speed does not require avector for its representation. Speed can be
represented completely by a number and a unit. For example, one can say
that the speed of the plane is 200 mph. But what if we need to find out how
fast the plane ismoving aswell asthe direction itismoving in? Thisis
where we are introduced to the concept of velocity.

Velocity

Velocity is defined asthe displacement of an object in unit time. Notice, the
word “displacement.”

Velocity = Displacement
Elapsed Time

Due to the presence of displacement (?x) in the formula, velocity becomes
avector quantity. Recall, avector quantity is one that has magnitude, as
well asdirection.

Velocity Vector
The magnitude of the velocity vector is given by the formula:

Coding Motion and Interactivity — Mohler & Kothary 203

Velocity = Displacement

Elapsed Time @
We aready know that,
Displacement ?X = Xt - Xo 2

Now let:

to = time when motion started (time at X,)
tr = time when motion ended (time at X¢)

Then:
Elapsed time (?t) = t;- to 3

Substituting (3) and (2) in (1), we get,

The direction of the velocity vector isthe same as the direction of its
displacement vector. We already |learned how resolve a vector's components
in an earlier section.

Quick Review

Speed = Distance Traveled
Elapsed Time

Given,
Xo = initia position of object
xt = final position of object
?x = displacement of object
to = initia time of object before motion
tr = final time of object after motion
?t = elapsed time

Magnitude of velocity vector =>

The velocity vector pointsin the same direction as its displacement vector.

204

Coding Motion and Interactivity — Mohler & Kothary

Acceleration

Constant velocity is not a practical phenomenon. It works well in theory,
but in reality amoving object’ s velocity is bound to change over time. For
example, the velocity of acar steadily increases when its driver steps on the
gas pedal. Varying velocity is something that can be explained by
acceleration.

Acceleration is defined asthe change in velocity of an object in unit time.

Acceleration = Changein Velocity
Elapsed Time

This concept is best explained by an example. Examine figure 2.5.

vo=0
Dt=0s

X 2
Figure 2.5 Understanding acceleration.

A car isat rest as shown in the figure 2.5(A). At some point the driver steps
on the gas pedal and the car begins to move with an acceleration factor of
10 km/hr/sec. This meansthat the car’ s velocity increases by 10 km/hr
every second. So, as shown in figure 2.5(B), after 1 second, it’s velocity is
10 km/hr and after 2 seconds, it is 20 km/hr. That’s all thereisto
acceleration.

Coding Motion and Interactivity — Mohler & Kothary 205

Acceleration Vector

We know that,
Acceleration = Change in Velocity @
Elapsed Time

Given,

Vo = Initia velocity
vi = Final velocity

Then,

Changein velocity (?Vv) = vi - Vo 2
We aready know that,

Elapsed Time (?t) =t - to 3

Substituting (3) and (2) in (1)

_ ViV, _Dv
|al_tf-t Dt

(o]

The acceleration vector pointsin the direction of the change in velocity and
has a magnitude equal to the change in velocity.

Negative Acceleration (Deceleration)

At times, the acceleration of an object is opposite to the direction of its
motion i.e. the direction of velocity. An example of thiswould be when a
car is braking. It moves ahead, but with reducing velocity. If you recall,
changeisvelocity over timeis known as acceleration. Hence, the braking
car satisfies this condition and is actually accelerating, even though it’s
coming to a halt. This sounds peculiar because we tend to pair acceleration
with increase in velocity. Thistype of acceleration is called deceleration.
Simple enough? Deceleration is also known as negative acceleration. The
following example (figure 2.6) should make it clear.

vf=20
t=0s

Figure 2.6 Negative acceleration.

206

Coding Motion and Interactivity — Mohler & Kothary

In the above figure, the car ismoving at 20m/s. Its brakes are applied with a
deceleration factor of —10 m/s”. This means that the car’ s velocity decreases
by 10 m/s per second (hence, s?in the denominator of the unit.) At that rate
the car will cometo acomplete halt in 2 seconds.

It isimportant to note that the ‘- sign does not actually imply a negative
number. It Simply denotes that the acceleration isin the opposite direction
of velocity.

Equations of Kinematics

There are four important equations of kinematics. We are not going to
derive these equations because it’ s beyond the scope of this course.
However, we are ssmply going to give you the equations and you' || have to
take our word for it that they’ re correct. At this point it is not important to
understand where they came from, but to know that they are very useful in
finding unknowns like velocity, time, displacement, and acceleration when
the acceleration is kept constant. If you feel really compelled, and are one of
those people, go ahead and memorize them! | assure you that it will help.

V=V, +at

=%(vo+vf)>¢

x:v0t+iat2
2

2 _ 2
VT =V, "+ 2ax

Where,
x = displacement
Vo = initia velocity
vi = final velocity
a= acceleration
t = time in seconds

Projectiles and Trajectories

Free Falling Bodies

To understand projectile motion, we first need to understand the term
gravity. Gravity, aswe al know, isthe natura phenomenon that causes all
bodies to fall downward (or towards each other, depending on the
perspective.) An important thing to remember about gravity isthat it hasthe

Coding Motion and Interactivity — Mohler & Kothary 207

same effect on all bodies, regardless of their size or mass. Thiswould imply
that arock and afeather, if dropped from the same height would fall
downward with the same acceleration. This probably won't happen if you
go out and try it because of the effects of air resistance on the objects.
However, in the absence of other factorslike air resistance, all bodiesfall
with the same accel eration val ue despite size and mass differences.

Bodies that fall under the influence of gravity are called free- falling bodies.
For practical purposes, the value of acceleration due to gravity (denoted by
the letter ‘g’) is 9.8 m/s>. That number doesn't mean anything to us yet. We
will take alook at the concept of gravity in the examples section.

All the equations of kinematics may be used for free falling bodies by
replacing the x withy. Thisis because essentially the body moves only in
they direction.

Projectile motion

A projectile isany body that is thrown or projected by some force (for
instance, an impulse) and continues in motion for a short period of time by
itsown inertia. The path traced by aprojectileis caled atrajectory. Ideally,
in the absence of all external factors such as gravity and air resistance, a
projectile would move with constant velocity. However, we can't avoid
gravity, and due to this most projectiles undergo accel eration.

The motion of a projectileisalittle complicated, but if you break it up into
logical parts, it'sjust like resolving avector. Infact, itisjust resolving a
vector. We must look at the vertical and the horizontal motions individually.

To understand aprojectile, let'slook at asimple example. Infigure 2.7 (A),
aball is shown rolling off acliff in the absence of gravity and hence, it
continuesit's motion in the horizontal direction. Y ou notice that the ball
covers equal distancesin equal intervals of time. In figure 2.7 (B), the same
ball is dropped off the edge of the cliff with gravity present. The ball falls
vertically under gravitational acceleration. Thistime the ball covers
successively larger distancesin equal intervals of time (becauseit is
accelerating due to gravity.)

Now, what would happen if we assumed that gravity was present and we
rolled the ball of the cliff with the same speed asin the first case? As shown
infigure 2.7(C), the ball covers the same horizontal distance asit covered in
the first case, whilefalling at the same rate asit fell in the previous case.
This makeslife smple for us. All we have to do in the case of programming
aprojectileis approach the horizontal and vertical components of motion
individually (asif the other were absent), and displace the ball an amount
egual to each component at instantaneous time/frame intervals.

208 Coding Motion and Interactivity — Mohler & Kothary

|
© 000
®C

@ © 0 00
O
©

Figure 2.7 Under standing projectile motion
To summarize projectile motion, here are afew important points:
. Traectories are always parabolic.

. A projectile achieves its maximum range when its
launch angle is 45°.

. The horizontal component of velocity is aways
constant for the trajectory.
= The vertical component of velocity for the trgectory is

variable based on the gravitational pull on the projectile.

. At its highest point, a projectile's vertical component
of velocity isO.

Coding Motion and Interactivity — Mohler & Kothary 209

For our purposes, we may resolve the components of projectile motion
using the formulae shown in table 2.1.

ToFind (instantaneous) | Formula
X (t) - horizontal displacement | (v, cosq)t
. gt?
y (t) - vertical displacement (V,sing)t - 7
Vy (t) - horizontal velocity v, CO
vy (t) - vertical velocity v,sing - gt

Table 2.1 Components of projectile motion.

Elasticity and Spring

Motion isincomplete without the effects of elasticity and spring. To
understand elasticity, we need to understand force. Force is simply anything
that brings about a change of state in an object. We cannot redlly delveinto
force too much, but it isan important concept for you to understand. We
recommend you a good physics book and just understand the concept,
rather than get tied down by dynamics equations.

Elasticity isthe property possessed by a body to restore itself after a
deformation or force has acted upon it. There are other definitions, but this
isthe one that applies to us the most. Elasticity is characterized by
something called arestoring force. Just as its name indicates, arestoring
forceisone that tries to restore a spring or elastic object to its original state.

The restoring force of aspring is given by Hooke's Law.
F =-kx

where k is the spring constant and x is the displacement of the spring from
itsorigina position. The spring constant is simply the strength with which
the spring recoils. The minus sign indicates that the restoring force always
points in the direction opposite to the displacement of the spring.

Ideally, in africtionless environment, a spring would never stop oscillating
after pulling and releasing it once. However, we can work around this. In

210 Coding Motion and Interactivity — Mohler & Kothary

computer graphics, Hooke's law can be manipulated into the following
form:

a=-k(dx)+cv

We will elaborate on thisformulain our examples.

Coding Motion and Interactivity — Mohler & Kothary 211

APPENDIX A

Flash Resources on the Web

The Internet isfilled with loads of great Flash resources. We've tried to
identify some of the most prominent and useful ones in this appendix:

Flash Kit

URL: http://www.flashkit.com/

Flash Kit isa collective of ideas and resources, and has established itself as
the largest resource for Flash movies over the past year. It is aplace where
the Flash community shares new ideas, techniques, and creations in open
source format. The web site has alarge array of archives ranging from
animation to 3D programming, with great tutorialsif you know how to
search its database. It also offers free sound loops, and awide variety of
other resources.

Flash Coders

URL : http://chattyfig.figleaf.com/flashcoders-wiki/

FlashCoders isamailing list that is focused on programming with
Macromedia Flash. Thelist isrun by Branden Hall and is hosted by his
employer, Fig Leaf Software. Thisis probably the best resource for
extremely technical and accurate information on advanced ActionScripting,
with topics ranging from OOP to inverse kinematics. If you are serious
about ActionScript, thisisthe place to go to.

Debreuil.com OOP pages

URL: http://www.debreuil.com/docy

If you are new to OOP and don't understand how prototypes work in Flash,
then this resource will answer all your questions. Hosted by Robin Debreuil,
thisisavery refreshing approach to understanding OOP in Flash. Robin
explains the conceptsin simple English, unlike most other resources. It isa
must for beginners, and experts, alike.

Motionculture.org

URL: http://www.motionculture.org/

" By definition, MotionCulture can best be described as; a community
comprised of artists, programmers, enthusiasts and professionals that share
a common philosophy about Web growth, development and the open
exchange of ideas, technigques and source files were as enriching our
community through a cooperative effort.” Just as quoted, Motionculture
makes up for the shortcomings of other sites. Their collection issmaller, yet
very helpful.

212

Coding Motion and Interactivity — Mohler & Kothary

Layer51

URL: http://www.layer51.com/

Aptly titled, thisis one of our favorite cut-and-paste resources for Flash
prototypes. If you are anything like us, then it probably helpsyou to see a
lot of examples before you completely grasp a concept. Thisisthe best
resource to grasp the concept of a"prototype" object if you're such a person.
The site offersawide array of prototype objects arranged very efficiently by
Flash object categories.

Levitated

URL: http://www.levitated.net/

Levitated isacombined effort of Jared Tarbell and Dr. LolaBrine. Every
moviein the archiveis open source (no technical support, though.) The
devel opers present some very unique and creative examples that deal with
isometric and three-dimensional Flash utilizing complex algorithms. We
recommend this site both for its technical and aesthetic values.

Were-Here Forums

URL: http://www.were-here.com/

Y et another great Flash community portal, were-here hosts a never-ending
string of useful threads where experts and amateurs discuss the best and
worst of Flash. If you have a question and time to search for it, you will
probably find an answer on were-here. If you don't, you'll have agood
reason to start a new thread on their web site.

Ultrashock

URL : http://www.ultrashock.com

Ultrashock isafairly new resource, but is growing fast. It offersafairly
decent range of example files and forums. Severa well-known Flash
devel opers serve as moderators on the Ultrashock forums.

FlashGuru

URL: http://www.flashguru.co.uk

Started by Guy Watson, FlashGuru.com is one of the better Flash
community sites on the Internet right now. Watson, who served as a beta-
tester for Flash M X, accumulates and shares the latest information about
Flash on FlashGuru. FlashGuru is much like FlashCoders with a slight
touch of casualness. Y ou should bookmark this site asit very frequently
updated and keeps in touch with the latest in the Flash world.

Moock.org

URL: http://www.mock.org

Colin Moock, the author of the infamous "Actionscript: The definitive
guide", hosts this great web site. Moock's web site has a great
knowledgebase of cross-disciplinary resources such as programmatic

Coding Motion and Interactivity — Mohler & Kothary 213

physics, trigonometry and database integration. Thisisaresourcefilled
with great resources, and hence, another must-see on our list.

Macromedia Flash MX Application Development Center

URL : http://www.macromedia.com/desdev/mx/flash/

Straight from the guys who made Flash, this resource has a great array of
tutorials, articles and free stuff. A lot of tips and tricks, visionary articles
and intermediate to advanced tutorials make this resource an invaluable one
to the Flash community.

214

Coding Motion and Interactivity — Mohler & Kothary

APPENDIX B

Math and Physics Resources on the Web

The Physics Classroom

URL: http://www.glenbrook.k12.il.us/gbssci/phys/Class/BBoard.html
Thisisan invaluable resource for theoretical explanations with lots of
animated examples. Sections include 1-D Kinematics, 2-D Kinematics,
vector math, and alist of other important concepts that this course could not
cover. If you found the concepts covered in the course useful, then you will
love thisresource

GameDev.net

URL : http://www.gamedev.net/reference/list.asp?categoryid=44

Thisweb site contains articles dealing with traditional isometric game
design using different tiling systems. We simply managed to brush the tip of
the iceberg with thistopic in our course, but it is nonetheless avery
interesting and important topic. GameDev is not Flash-based, but all the
concepts are truly mathematical in nature and may be easily applied into
Flash.

Inverse Kinematics

URL : http://freespace.virgin.net/hugo.eliassrmodels/m_ik.htm

If you need an easy start on inverse kinematics, then thisis a great resource
for you. Inverse kinematics is becoming areality in Flash, especialy since
the introduction of Flash MX and itsdrawing API. Thistopic isfairly
complex and it would help for you to have some back ground in animation
to get better at it. Nevertheless, thisis avery valuable article.

Basic 2D and 3D Math

URL: http://www.geocities.com/SiliconV alley/2151/math2d.html
http://www.geocities.com/SiliconV alley/2151/math3d.html

Written by Mark Feldmen, these are great excerpts to understand the basics

of 2D and 3D math as they relate to game programming. They explain the

rel ationships between vectors and programming very well, and in simple

English.

MathTV

URL: http://www.mathtv.com/Trig/pages/toc.htm

Thisisthe great resource for whose of you who like a classroom approach.
Y ou simply browse through the sections of trigonometry concepts and click
on tutorial video clips. The site lacks in theory but has great visualization
examples. If you have afew hours to spare and want to reinforce the
concepts that you already know without really working with a book or on
paper, then login to MathTV, sit back, and simply listen.

Coding Motion and Interactivity — Mohler & Kothary 215

ExploreMath.com

URL: http://www.exploremath.com/

Providing comprehensive shockwave examples, this site is complete and
thorough. The nice thing about this siteisthat it offers completely free
services conditioned for an educator. All the lectures have been designed for
an audience of professors and teachers, explaining how the topic should be
taught. All you haveto do isregister and go through the lectures, labs and
examples. Wetook the liberty to set up adefault account for this course if
you would just like to get afeel for the site:

Login : siggraph
Password - siggraph

Flash Kit Physics and Math Forum

URL : http://board.flashkit.com/board/forumdisplay.php?orumid=63

A new forum that sprung up on Flash Kit just recently (we hopeit will
around by the time these course notes are released), it has some pretty neat
solutions and ideas. The search capabilities are weak, but if you have time
to browse through the threads, you will probably find your answer. If you
don't, you'll still learn something new every time. We did.

216

Coding Motion and Interactivity — Mohler & Kothary

APPENDIX C

OOP Primer for Flash MX

Introduction

Hash MX truly modelsitself after ECM A Script's Prototype and object
model. Contrary to what you may have heard, Flash is not a true object-
oriented language in the real sense of the term. Thisis because Flash doesn't
have "Classes', rather it uses something called a"Prototype." We will get
into the nitty-gritty of prototypes later in this section. First we need to
understand the prototype-based programming paradigm. For the remainder
of the section, prototype-based programming will simply be referred to as
OOP.

OOP: Understanding the concept

Object oriented programming, or OOP, is not really something that you can
get atutoria or asolid example on. Thisis because OOP isnot really a
programming language, or something that we can associate a solid object
with, but ssmply avery logical way of thinking about programming. In fact,
object oriented programming is so logical that it applies almost to every
aspect of computing. Without thinking about it, each one of you really uses
OOP inyour daily lives.

In its simplest form, OOP issimply a set of logical rulesthat facilitates the
re-use of programming code. In the good old days, programmers had only
one way to approach their programs known as the "Procedural Model."
Procedurally -written code ssimply allows a programmer linear freedom with
hislogic structure. We will leave it to you to read up about procedural
programming and its shortcomings, but to summarize them, here's why
there was a need for a new paradigm in programming:

= Procedura code can be interpreted only by its own programmer.
Dueto the length a program could attain by completion, itis
virtually impossible for someone else to go ook at the code and
know what's going on. This brought up several inconveniences.

= Procedural codeisnot portable. It cannot be re-used or shared. Also,
itisalot ower than OOP code.

There were several other reasons for the need of a paradigm shift, but these
were the main ones. With that said, let's understand OOP.

Coding Motion and Interactivity — Mohler & Kothary 217

Objects

If you hadn't guessed it already, the heart of OOP liesin the "Object." An
object isvery similar to objects we seein our lives everyday, like chairs,
tables, lamps, cats, etc. Objectsin programming (and inred life) are
characterized by two main attributes:

State
Behavior or Function

The State of an object is simply something that describes one of its physical
characteristics. For example, cats have state (name, weight, color, cranky,

deepy, etc.) The Behavior of an object is something that describes an action
performed by it. For instance, cats have behaviors (yawn, purr, scratch, etc.)

In programming, objects are characterized by state and behavior too.
Objects store their state in variables, while their behavior is stored in
methods and functions. If this seemstoo abstract, it'll become easier aswe
move along and examine solid examples.

Classes and Instances

A classissimply atemplate for an object. A class defines what state and
behavior that object will possess. It isn't really something that you can feel
or touch. For instance, think of the word dog as aclass. Y ou cannot really
touch the 'idea of adog becauseit issimply aset of states and behaviors
that define areal dog. Still don't get it? Read this paragraph again, and then
continue. The tough thing about OOP is that you have to change the way
you think. Once you can see thingsin an OOP way, it will open up
boundless opportunities for you as far as application development is
concerned.

Let's use asimple exampleto illustrate what a class, object and an instance
means. We haven't talked about instances yet, but they are better explained
with an example:

Dog = function (nane) {
t hi s. nanme = nane;
this.legs = "4";

}
myDogl = new Dog ("Bonzo");
myDog2 = new Dog ("Qiver");

trace (nmyDogl. nane); //Bonzo
trace (myDog2.nane); //diver
trace (myDogl.legs); //4
trace (nmyDog2.legs); //4

218

Coding Motion and Interactivity — Mohler & Kothary

The above example demonstrates some key OOP principles. Let'slook at
them one by one. First, we declared a Dog class. The Dog class defined the
following states:

Every dog will have aname. This name will be decided by the
creator of the dog.
This particular dog will have four legs.

After defining a class, we used some simple code to make an instance of the
Dog class. Instances are ssmply objects. Every instance may have
properties, variables and methods associated with it. In the above example,
we used made an instance of aDog class called "Bonzo" and stored it in the
object myDogl. We made another instance of Dog class called "Oliver" and
stored it in the object myDog2. Now myDogl and myDog2 are completely
different objects (instances) of the kind Dog.

For those who come from an OOP background, you must have already
noticed amgjor flaw in thiscode. It isalmost right... but not just quite yet.
To completely capitalize on the OOP programming structure we need to
look at afew more concepts.

The Flaw

Let'slook at the above code again.

Dog = function (nane) {
t hi s. nanme = nane;
this.legs = "4";

}
myDogl = new Dog ("Bonzo");
myDog2 = new Dog ("Qiver");

Let's stop to think about our dog class. We want to be able to name our dog
and we already provided a mechanism for that. However, we know that all
our dogs will have 4 legs. With the above approach, every time we make a
Dog object, we are creating a new instance for that Dog object's| egs
property. If we made a hundred dogs using the above code, we'd end up
using alot of memory to make a hundred instances of the legs property.
That ssimply makes for waste of space and slows your movie down.

Fortunately, there is a solution to this problem. And the solution is called
"Prototype."

Coding Motion and Interactivity — Mohler & Kothary 219

Prototype and Inheritance

Prototypes confuse even the best of OOP programmers. To understand a
prototype, we need to further understand a class. We already defined a class
as atemplate that objects use to instantiate (make an instance) themselves.
However, because of how a prototype-based language is set up, thereis no
way to access the properties of aclass. For instance, in the above example,
you couldn't just do the following.

Trace (Dog.legs); //undefined

So, what would we do if we needed to change the legs property for all dogs
to "5"? Thisis where the prototype comes into the picture. The prototype
object issimply a place where a class stores its properties. Everything that
isowned by aclassis stored in the prototype object. This makes for
efficient coding because it uses the concept of inheritance. Let's re-write the
above code to understand the concepts of inheritance and prototypes:

Dog = function (nane) {
t hi s. nanme = nane;
}

Dog. prototype.legs = "4";

myDogl = new Dog ("Bonzo");

myDog2 = new Dog ("QAiver");

trace (nyDogl. nane); /1 Bonzo
trace (nyDog2. nane); [1Aiver
trace (nyDogl. | egs); /14
trace (nyDog2.legs); /14

trace (Dog.prototype.legs); /14

Let's think about what we just did. As earlier, we made a Dog class. But this
time, al our class said:

Every dog will have aname. This name will be decided by the
creator of the dog.

Then we used the prototype object of the Dog class. We created a property
in the prototype object of aDog class called "legs' and assigned it avalue
of "4." By doing this, we created one master copy of the legs property for
all Dogs. Now, all dogs would have 4 legs, but the neat thing is that we do
not end up making a copy of the legs property for every new instance of a
Dog. Instead, we let every Dog inherit the legs property of its Class. So

220

Coding Motion and Interactivity — Mohler & Kothary

every time we call the legs property for an instance, it looksin the object's
prototypeto seeif legsexist and if it does, it returnsit.

It's tough to visualize a prototype. The ssimplest way to think of a prototype
isas awindow that lets you look into a Class. Think of a prototype as an
object that contains all the properties that a class possesses (that is, the ones
that you assigned to the prototype) and lets you manipul ate those properties.
Another way to look at it - a prototype is aticket that |ets you enter into a
Class and look at, add, delete, or manipulate stuff in the Class.

When should a prototype be used?

Even though the prototype is so powerful, it is best used in the following
circumstances:

When you would like to make something unique that will remain
constant for all instances of a Class ex. legs

When you need to define a static method available to al instances of
aClass ex. bark()

Inherited Methods

To take inheritance a step further, we can even assign methods to the
prototype object of a Class. For instance, we can do something like:

Dog = function (nane) {
t hi s. nanme = nane;
}

Dog. prototype.legs = "4";

/11 nherited Method

Dog. prototype. bark = function () {
return (this.name + " is barking!");

}

myDogl = new Dog ("Bonzo");
trace (nmyDogl. bark()); //Bonzo is barking!

What is the benefit of doing it thisway? Thisway we avoid making a bark
method for every instance of the Dog. Instead, by making abark method in
the prototype, we create the method universal to al Dogs and let aDog
borrow it every time it needs to bark. In fact, thisisthe preferred way to do
application programming.

Coding Motion and Interactivity — Mohler & Kothary 221

Overriding and Overwriting

These two terms are very common to programming, but are used quite
loosely. However, it isimportant to make a distinction between them so as
to understand more advanced concepts.

Overriding

So far, al our Dogs have their own names and four legs. Let's say that
Bonzo was a gifted Dog and got one extraleg. How do we achieve thisin
our code? We have already defined that al dogs have four legs, right? We
could do something like:

Dog. prototype.l egs = "5";

But thiswould make all dogs five-legged. That's not what we wanted to do.
So how does OORP let us give Bonzo five legs without changing the number
of legsfor every Dog? Here's how:

Dog = function (nane) {
t hi s. nanme = nane;
}

Dog. prototype.legs = "4";

myDogl = new Dog ("Bonzo");
trace (nmyDogl.legs); //4

myDogl.l egs = "5";
trace (nmyDogl.legs); //5

We gave all Dogs four legs. Then we said that Bonzo needsfive legs. This
processis caled overriding. It's all about hierarchy. When we request the
legs property, what Flash really doesislook for the closest instance of legs.
Thisimpliesthat Flash will search for the legs property within the object
itself and if it doesn't find it there, it will search in the object's parent. What
if itdidnt find it here?It'd look in that object's parent and so on.

The great thing about overriding is the fact that it does not write over the
original legs property. In fact, al dogs other than Bonzo will still have 4
legs. For instance, if you did something like this:

MyDog2 = new Dog ("Qiver");
trace (nmyDogl.legs); //4

222

Coding Motion and Interactivity — Mohler & Kothary

Overwriting

Overwriting on the other hand is destructive. To "overwrite" something
means to change its value permanently. If we wanted to return Bonzo to his
normal state (with 4 legs) we would overwrite his legs property that hasfive
legsin the following manner:

myDogl. | egs = "4";
trace (nmyDogl.legs); //4

Now Bonzo will have four legs for the remainder of the program, or till
someone overwrites Bonzo's legs property again.

SuperClasses and SubClasses

Often you need to share the methods and properties of a class with another
class. One way of doing thiswould be to simply declare all the methods and
properties all over again for the new class. However, this uses excess
memory and defeats the purpose of inheritance. Wouldn't it be nice to be
ableto inherit all the methods and properties of a classinto a new Class,

and then build on the new Class to customize it?

Let'suse anew illustration for the next few concepts. We are going to usea
Shape Classto serve as the SuperClass for all shapes. Its SubClasses would
be of type triangle, rectangle, circle, etc. Each one of these SubClasses may
have SubClasses of their own, for instance, right triangle, isosceles triangle,
etc. SuperClasses and SubClasses share a Parent-child relationship. Hence,
achild will have everything that a parent has, and more. Look at the
following code:

/1 Shape d ass
Shape = function() {}

/| Shape Met hod
Shape. prot ot ype. net hod = function() {

}

trace(" New Shape created!");

[/ Triangle O ass
Triangle = function () {}

[/ Triangle O ass inherits Shape d ass
Triangl e. prot ot ype = new Shape();

Coding Motion and Interactivity — Mohler & Kothary 223

/1 Triangl e Met hod

Triangl e. prototype. net hod = function() {
super . et hod();
trace("New Triangle created!");

}

/1 SubTriangl e d ass

SubTriangl e = function (nanme) {
t hi s. name = nane;

}

/1 SubTriangle Cass Inherits Triangle C ass
SubTri angl e. prototype = new Triangl e();

[/ SubTri angl e Met hod

SubTri angl e. prototype. method = function () {
super . et hod() ;
trace ("New SubTriangle created!");

}

/I Return nanme of SubTriangle
SubTri angl e. prot ot ype. get Nane = function() {

trace ("New SubTriangle is a " + this.nanme + "
triangle!l");

}

nmyRi ght Tri angl e = new SubTri angle("right");
myRi ght Tri angl e. net hod() ;
nyRi ght Tri angl e. get Nare() ;

/1 OQUTPUT

/'l New Shape creat ed!

/1 New Triangl e created!

/1 New SubTri angl e creat ed!

/1 New SubTriangle is a right triangle!

Let's dissect the above code:

/1 Shape d ass
Shape = function() {}

/| Shape Met hod

Shape. prot ot ype. net hod = function() {
trace(" New Shape created!");

}

224

Coding Motion and Interactivity — Mohler & Kothary

First we declare a Shape class. All Shapesinherit from this Class. Then we
assign the Shape Class an inheritable method called met hod. This method
simply traces a string indicating that a Shape has been instantiated.

[/ Triangle O ass
Triangle = function () {}

Then we create a Triangle Class.

[/ Triangle O ass inherits Shape d ass
Triangl e. prot ot ype = new Shape();

Sincethe Triangle class is a SubClass of the Shape Classit inherits all of
Shape Class's properties and methods using the Class's prototype object.

/1 Triangl e Met hod

Triangl e. prototype. nethod = function() {
super . et hod() ;
trace("New Triangle created!");

}

Then we override (actualy, thisis not truly overriding, but for our purposes
it'sfineto cal it that) the Shape Class method met hod using the super
keyword. We aso extend it by adding atrace function that indicates the
instantiation of a Triangle object.

/1 SubTriangl e O ass

SubTriangl e = function (nanme) {
t hi s. nanme = nane;

}

Similarily, we create a SubTriangle Class. This Class accepts an argument
called "name."

/1 SubTriangle Cass Inherits Triangle d ass
SubTri angl e. prototype = new Triangl e();

Consequently, the SubTriangle Class is simply atype of a Tringle Object,
so it inherits the Triangle Class properties and methods using the prototype
object.

[/ SubTri angl e Met hod

SubTri angl e. prototype. method = function () {
super . et hod() ;
trace ("New SubTriangle created!");

Coding Motion and Interactivity — Mohler & Kothary 225

Now, we override the Tringle method net hod in asimilar fashion to what
wedid earlier.

/I Return nanme of SubTriangle

SubTri angl e. prot ot ype. get Nane = function() {
trace ("New SubTriangle is a " + this.nane +

"triangle!");

}

We add a new method to the SubTriangle prototype object called
get Nanme. This method returns the name of the SubTriangle. We are now
done with our coding. Let'stest it.

nmyRi ght Tri angl e = new SubTri angle("right");
nyRi ght Tri angl e. met hod() ;
nyRi ght Tri angl e. get Nare() ;

We create aright angle triangle of type SubTriangle and passit a name.
Notice the output for the above code.

/1 OQUTPUT

/'l New Shape creat ed!

/1 New Triangl e created!

/1 New SubTriangl e creat ed!

/1 New SubTriangle is a right triangle!

The SubTriangle Classinherits the Triangle Class that in turn inherits the
Shape Class. Further, the SubTriangle net hod overridesthe Triangle
method and that in turn overrides the Shape met hod. Thisishow the
chain of objectsworksin OOP. It'svery logical, and efficient.

Building your own custom prototypes

Most of you must already be excited about how OOP works in Flash
because it gives you a chance to create extremely powerful and reusable
Classes. Not only that, you can even expand on the available Flash objects
such asMath, Array, etc. There are afew intricaciesinvolved, but on the
whole, it's very smple.

Let's create a simple custom method for the Math object that converts
degreesto radians. Here's the code to do it:

Mat h. radi an = function (degrees) {
return (degrees * Math.Pl/180);
1

This method would be called in the following manner:

226

Coding Motion and Interactivity — Mohler & Kothary

Mat h. radi an(180); //result - 3.14159265358979

However, thiswon't work with, say the MovieClip object. Let's make a
custom method for the MovieClip Object that finds the distance between
two clips on stage. Here is what the code would look like:

Movi eC i p. prototype. di stance = function (tc){

var dx = Math.floor (Math.sqgrt(((this._x -
tc. x) * (this. x - tc. _x))));

var dy = Math.floor (Math.sqgrt(((this._y -
tc. y) * (this. y - tc._vy))));

var distance = dx + dy;

return di stance;

}

The only thing different about this method from the last one is the manner
inwhich it is declared. Here's where we need to make the distinction. While
some objects require instantiation in Flash before they are used, others
don't. For instance, the Array object is used in the following manner:

M/Array = new Array ();

Now, if we need to make a custom method for the array object, we must
declareit in the following manner:

Array. prototype. nyMethod = function ([args]) {
/| code
}

On the other hand, if you are dealing with an object such aMath, where you
call methods simply by doing something like Math.sin(), then you need to
declare the method as follows:

Mat h. myMet hod = function ([args]) {
/'l code
1

Remember to include the custom method in any movie that you plan to use
itin. It'sbest toincludeit in the first frame of the movie using an include
statement such as

#i ncl ude nyMet hods. as

Coding Motion and Interactivity — Mohler & Kothary 227

Conclusion

Thiswas a quick and dirty introduction to OOP in Flash. We strongly
recommend that you get yourself some books and go through the
recommended web sites to get better with OOP. Good OOP skills come
from alot of experience and practice. It's not something that you can
develop overnight. However, once you get the hang of it, you will notice a
great increase of efficiency and portability in your code. If you are serious
about application development in Flash, you definitely need to be very
proficient with OOP techniques.

228

Coding Motion and Interactivity — Mohler & Kothary

APPENDIX D

Additional Readings and References

Nairne, James S. (1999). Psychology. The Adaptive Mind (2™ ed.).
California: Wadsworth/Thomson Learning.

Hewitt, Paul G. (1985). Conceptual Physics- A New Introduction. Boston:
Little, Brown and Company.

Swokowski, Jeffery A. Cole & Earl, W. (1997). Algebra and Trigonometry
with Analytic Geometry. California: Brooks/Cole Publishing Company.

Downing, Douglas. (2001). Trigonometry: the easy way (3rd ed.). New
Y ork: Barron's Educational Series, Inc.

Lehrman, Robert L. (1998). Physics: the easy way (3rd ed.). New Y ork:
Barron's Educational Series, Inc.

Hearn, Donad, & Baker, Pauline M. (1997). Computer Graphics, C version
(2nd ed.). New Jersey: Prentice Hall.

LaMothe, Andre. (1999). Tricks of the Windows Game Programming Gurus
- Fundamentals of 2D and 3D Game Programming. Indiana: Sams.

Mohler, James L. (2002). Flash MX: Graphics, Animation and I nteractivity.
New Y ork: OnWord Press.

Hudson, Ralph G. (1939). The Engineers Manual (2nd ed.). NewY ork:
John Wiley and Sons.

Gibilisco, Stan., & Crowhurst, Norman H. (1999). Mastering Technical
Mathematics (2nd ed.). New Y ork: McGraw-Hill.

Hodgman, Charles D. (1951). Mathematical Tables (9th ed.). Cleveland,
Ohio: Chemical Rubber Publishing Co.

Downing, Douglas. (1995). Dictionary of Mathematics Terms (2nd ed.).
New Y ork: Barron's Educational Series, Inc.

Cutnell, John D., & Johnson, Kenneth W. (2001). Physics (Val. 1).
NewY ork: John Wiley and Sons.

Vince, John. (2001). Essential mathematics for computer graphics fast.
New Y ork: Springer.

Coding Motion and Interactivity — Mohler & Kothary 229
Lafore, Robert. (1999). Object Oriented Programming in C++ (3r ed.).
Indianapolis, Indiana: Sams.

Bourg, David M. (2001). Physics for Game Developers. Cdifornia: O'Relly
and Associates.

Rice, Bernard J. (1986). Plane Trigonometry (4th ed.). Boston: Prindle,
Weber & Schmidt.

Lewis, John & Loftus, William. (1998). Java softwar e solutions:
foundations of program design. Massachusetts: Addison-Wesley.

Web sites:

Just What is OO Programming. Debreuil. Retrieved February 18, 2002,
from http://www.debreuil.com/docs/chO1_Intro.htm

[PROTO]type. Layer51. Retrieved February 22, 2002, from
http://www.layer51.com/proto/

Simple Object Oriented Glossary. FlashCoders. Retrieved March 10, 2002,
from http://chattyfig.figleaf.com/flashcoders-
wiki/index.php?Simpl €%6200bj ect-Oriented%20Gl ossary

Object Oriented Programming Part |. ProFlasher. Retrieved April 1, 2002,
from http://www.proflasher.com/index.php?sid=articles& aid=1

Object Oriented Programming Part I1. ProFlasher. Retrieved April 1, 2002,
from http://www.proflasher.com/index.php?sid=articles& aid=1

FlashGuru's Knowledge base. FlashGuru. Retrieved March 3, 2002, from
http://www.flashguru.co.uk/

Object-Oriented Programming Concepts. Java.sun.com. Retrieved March
14, 2002, from http://java.sun.com/docs/books/tutorial/java/concepts/

Vectors - Motion and Forces in Two Dimensions. The Physics Classroom.
Retrieved February 17, 2002, from
http://www.physi csclassroom.com/Class/vectors/vectoc.html

Weisstein, Eric. (2002). Eric Weisstein's World of Mathematics. Retrieved
March 11, 2002, from http://mathworl d.wolfram.com/

