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Abstract

The reflection of light from surfaces is a fundamental problem in computer graphics. Most
previous reflection models have been either empirical or based on the ray theory of light. In this
paper, conversely, we derive a new class of reflection models based on the wave theory modeling
the effects of diffraction. Diffraction occurs when the surface detail is comparable to the wave-
length of light. A good example is a compact disk. Our model properly models the subtle variation
in intensity and color of the light reflected off of these surfaces. Our method generalizes most
previous reflection models for metallic surfaces in computer graphics. In particular, we extend
the He-Torrance model to anisotropic surfaces. This is achieved by rederiving, in a more gen-
eral setting, results from surface wave physics which were taken for granted by other researchers.
Specifically, our use of Fourier analysis has enabled us to tackle the difficult task of computing the
reflected waves off of these surfaces. Our paper is of both theoretical and practical importance.
The renderings and animations accompanying our paper clearly demonstrate the novelty of our
approach.

1 Introduction

The modeling of the interaction of light with surfaces is one of the main goals of computer graph-
ics. Over the last thirty years many reflection models have been proposed that have considerably
improved the quality of computer graphics imagery. Almost all of these reflection models are ei-
ther empirical or based on the ray theory of light. Surprisingly little attention has been devoted
to the purely wave-like character of light. It is well known from physical optics that ray theory is
only an approximation of the more fundamental wave theory. Why then has wave theory been so
neglected ? The main reason is that the ray theory is sufficient to visually capture the reflected field
from many commonly occurring surfaces. This observation is usually true when the surface detail
is much larger than the wavelength of visible light (roughly0:5 microns (10�6 meters)). Another
reason for this neglect is the common belief that models based on wave theory are computationally
too expensive to be of any use in computer graphics. In this paper we challenge this point of view
by introducing a new class of analytical reflection models which simulate the effects ofdiffraction.
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Diffraction is a purely wave-like phenomenon which cannot be modeled using the standard ray the-
ory of light. Diffraction occurs when the surface detail is comparable to the wavelength of light. A
common example of a surface that produces visible diffraction patterns is the compact disk (CD).
By rotating a CD under a steady light source, one can fully appreciate the visual complexity of
diffraction. To capture these subtle changes in color and intensity requires a wave-like description
of light. In this paper we derive analytical reflection models based on wave theory that capture the
effects of diffraction. In addition, our model is both easy to implement as a standard “shader” and
computationally efficient. The derivation which leads to our new model, however, is not simple.
This is because the wave theory is mathematically much more complex than the ray theory of light.

Scanning through the computer graphics literature, we found only a few references which ex-
plicitly use the wave description of light. In 1981 Moravec proposed in solving the global illumi-
nation problem using the wave theory of light [18]. For his method to give acceptable results, both
a very fine resolution (on the order of the wavelength of light) and a large ensemble of simulations
(to model incoherent natural light sources) are required. This makes his approach unsuitable for
practical computer graphics applications. Later in 1985, Kajiya proposed to numerically solve the
Kirchhoff integral1 to simulate the light reflected from anisotropic surfaces [14]. His approach,
although less ambitious than Moravec’s, suffers from the same limitations. In this context it would
appear to be more promising to solve directly for the coherence functions associated with the
waves, which are second order statistical averages of the wave fields. Some work in this area has
been pursued by Tannenbaum et al. [30]. The coherence functions can also be employed to define
generalized radiances [33].

A more practical use of the wave theory in computer graphics is to employ it to derive analytical
reflection models. This approach, which has a long history in the applied optics literature, e.g.,
[3], was first seriously introduced to computer graphics by Bahar and Chakrabarti [2]. Using
Bahar’s full wave theory they were able to fit analytical distributions to their computations for
surfaces having a large isotropic surface roughness. The full wave theory has the advantage over
the Kirchhoff theory in that it takes into account the global shape of the object. However, in practice
analytical expressions are only known for simple objects such as spheres. Also theglobalshapes of
surfaces in computer graphical models are usually much larger than the wavelength of light. Later
in 1991, He and collaborators derived a general reflection model based on the electro-magnetic
wave theory to predict the reflection of light from isotropic surfaces of any surface roughness
[12]. At about the same time, a very similar model was proposed in the computer vision literature
by Nayar [20]. As in Kajiya’s work, these two models are essentially based on the Kirchhoff
approximation of surface reflection [3]. Subsequently He et al proposed a fast implementation
of their model [13]. We also mention here that Blinn already used some asymptotic results from
Beckmann’s monograph [4]. However, Blinn’s model does not account for wave-like effects.

Although the analytical models just discussed are based on wave theory, none of them is able
to capture the visual complexity of the light reflected off of a compact disk, for example. The
main reason is that these models assume the surface detail to be isotropic, i.e., the surface “looks
the same” in every direction. Interesting diffraction phenomena, however, occur mostly when the
surface detail is highlyanisotropic, viz. non-isotropic. Figure 1 shows that this is certainly the
case for the CD. Other examples include brushed metals and reflecting diffraction gratings used
to create colorful patterns on various objects. In the latter case, pieces of the grating are placed
in different orientations to create many colorful effects when the object is rotated. In computer

1This integral will be defined more precisely below.
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Figure 1: Close-up view of the micro-geometry of the surface of a compact disk.

graphics, both empirical and ray optics models have been proposed to model the reflection from
anisotropic surfaces [22, 24, 32]. However, since these models are not based on wave theory,
they failed to capture the effects of diffraction. To the best of our knowledge, reflection models
that handle colorful diffraction effects have not appeared in the computer graphics literature or in
any commercially available graphics software before. The phenomenon of diffraction was used,
however, by Nakamae et al to model the fringes caused when viewing bright light sources through
the pupil and eyelashes [19].

In this paper, we derive various analytical anisotropic reflection models using the scalar Kirch-
hoff wave theory and the theory of random processes. In particular, we show that the reflected
intensity is equal to the spectral density of a simple functionp = ei�h of the (random) surface
heighth. We show that the spectral density can be computed for a large class of surfaces not con-
sidered in previous models. We believe that our approach is novel, since the “classic” monographs
on scattering from statistical surfaces do not mention such an approach [3, 21]. Although we did
not consult the entire literature on this subject, we have found some related work. Sheppard and
collaborators, for example, used a three-dimensional Fourier transform to compute the reflection
from various surfaces [26]. However, they did not apply it to the reflection from highly anisotropic
surfaces. The chapter on surface scattering in the standardHandbook of Opticsonly discusses a
very simplified version of our model [6]. The simplificationp � 1+i� leads to thefirst order Born
approximationwhich implies that the reflected field is proportional to the spectral density of the
surface, not the functionp used in our work. We have found, however, that the Born approximation
is too coarse to visually capture colorful diffraction phenomena.

Diffraction should not be confused with the related phenomenon ofinterference. Interference
produces colorful effects due to the phase differences caused by a wave traversing thin media of
different indices of refraction. The most common example is that of a soap bubble. Interference
effects, unlike diffraction, can be modeled using the ray theory of light alone. Smits and Meyer,
for example, proposed such a model [28]. Later Gondek et al. used Monte-Carlo simulations to
produce interference effects from various media such as paints [10]. This is achieved by adding
a phase to every ray. The diffraction effects shown in this paper, however, could not have been
generated with their model.

The remainder of this paper is organized as follows. Due to the mathematical complexity of
the wave theory, some parts of our paper cannot be followed easily without some background in
Fourier analysis, wave theory and the theory of random processes. We have provided two ap-
pendices that summarize the main results from these fields. A reader who is interested solely in
implementing our new shaders can go directly to Section 6 where the model is stated “as is”. Sec-
tion 2 summarizes the main results from wave theory which are required in this paper. Section
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3 presents our derivation. Subsequently, Sections 4 and 5 present several applications of our new
reflection model. Section 6 addresses implementation issues and can be read without any advanced
mathematical knowledge. Section 7 discusses several results created using our new shaders. Fi-
nally, Section 8 concludes and outlines promising directions for future research.

2 Wave Theory and Computer Graphics

In this section we briefly outline some results and concepts from the wave theory necessary to
understanding the derivation of our reflection model. We employ the so-called “scalar wave theory
of diffraction” [5]. In this approximation the light wave is assumed to be a complex valued scalar
disturbance . This theory completely ignores the polarization of light, so its results are therefore
restricted to unpolarized light. Fortunately, most common light sources such as the sun and light
bulbs are totally unpolarized. The waves generated by these sources also have the property that
they fluctuate very rapidly over time. Typical frequencies for such waves are on the order of1014

s�1. In practice this means that we cannot take accurate “snapshots” of a wave. Light waves
are thus essentially random and only statistical averages of the wave function have any physical
significance. The averaging, denoted byh:i, can be interpreted either as an average over a long
time period or equivalently (via ergodicity) as an ensemble average. An example of a statistical
quantity associated with waves is the flux of radiant energy per unit area defined by:

I = hj j2i:

The quantityI is important in computer graphics and is known as theirradiance in the radiative
heat transfer literature [27].

We also assume that the waves emanating from the source are stationary. This means that the
wave is a superposition of independent monochromatic waves and consequently we can restrict
our analysis to a wave having a definite wavelength� associated with it. For visible light, the
wavelengths range from the ultraviolet (0:3 microns) to the infrared (0:8 microns) region. Each of
these waves satisfies a Helmholtz’s wave equation:

r2 + k2 = 0;

wherek is thewavenumberassociated with the wavelength

k =
2�

�
:

The main task in the theory of diffraction is to solve this wave equation for different geometries.
In our case we are interested in computing the reflected waves from various types of surfaces. More
precisely, we want to compute the wave 2 equal to the reflection of an incoming planar monochro-
matic wave 1 = eikk̂1�x traveling in the direction̂k1 from a surfaceS. Figure 2 illustrates this
situation. The equation relating the reflected field to the incoming field is known as theKirchhoff
integral. This equation is a formalization of Huygen’s well-known principle that states that if one
knows the wavefront at a given moment, the wave at a later time can be deduced by considering
each point on the first wave as the source of a new disturbance. This principle is used to relate
the wave S on the surface to the field reflected off of it at a pointxp. Mathematically, Huygen’s
principle translates into a surface integral:

 2(xp) =
1
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Figure 2: Basic geometry of the surface wave reflection problem.

where @
@n

denotes the derivative along the normal to the surface ands is the distance of the points
on the surface to the “observation” pointxp. Equation 1 shows that, in principle, once the field on
the surface is known, the field everywhere else away from the surface can be computed. The field
on the surface is usually related to the incoming field 1 using thetangent planeapproximation.
For a planar surface, the wave theory predicts that a fractionF of the incoming light is specularly
reflected. The fractionF is equal to the Fresnel factor for unpolarized light (see p. 48 of [5]).
The tangent approximation states that the wave field on the surface is equal to the incoming field
plus the field reflected off of the tangent plane at the surface point. Using this relation and the
assumption that the “observation point” is sufficiently far removed from the surface, the Kirchhoff
integral is ([3], p. 22):

 2 =
ikeikR

4�R
(Fv � p) �

Z
S
n̂ eikv�s ds; (2)

whereR is the distance from the center of the patch to the receiving pointxp, n̂ is the normal of
the surface ats and the vectors

v = k̂1 � k̂2

p = k̂1 + k̂2:

The vector̂k2 is equal to the unit vector pointing from the origin of the surface towards the point
xp. To obtain this result it is also assumed that the Fresnel coefficientF is replaced by its average
value over the normal distribution of the surface and can thus be taken out of the integral. Equation
2 is the starting point for our derivation. We will show below that it can be evaluated analytically
for a large class of interesting surface profiles. Before we do so, we will also outline how the
reflected wave is related to the usual reflection nomenclature used in computer graphics.

In computer graphics the reflected properties are often modeled using the bidirectional reflec-
tion distribution function (BRDF) which is defined as the ratio of the reflected radiance to the
incoming irradiance. In this paper we will provide in every case the BRDF corresponding to our
reflection model. In the applied optics literature, when dealing with scattered waves from a surface,
one does not usually define the BRDF but rather the differential scattering cross-section defined by
(e.g., [15], p. 8):

�0 = 4� lim
R!1

R2 hj 2j
2i

hj 1j2i
: (3)
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The relationship between the BRDF and the scattering cross section can be shown to be equal to
[31]:

BRDF =
1

4�

1

A

�0

cos �1 cos �2
; (4)

whereA is the area of the surface and�1 and�2 are the angles that the vectorsk̂1 andk̂2 make with
the vertical direction (see Figure 2).

3 Derivation

In this section we demonstrate that the Kirchhoff integral of Equation 2 can be computed analyti-
cally. In this paper, as in related work, we restrict ourselves to the reflection of waves from height
fields. We assume that the surface is defined as an elevation over the(x; y) plane. Each surface
point is then parameterized by the equation

s! s(x; y) = (x; y; h(x; y)); (5)

whereh(x; y) is a (random) function. The normal to the surface at each point then admits an
analytical expression in terms of the partial derivativeshx andhy of the height function:

n̂ ds! n̂(x; y) ds = (�hx(x; y);�hy(x; y); 1) dxdy:

Introducing the notationv = (u; v; w), it then follows directly that the integral in Equation 2
acquires the following form:

I(ku; kv) =
Z Z

(�hx;�hy; 1) e
ikwheik(ux+vy) dx dy: (6)

The integrand can be further simplified by noting that:

(�hx;�hy; 1)e
ikwh =

1

ikw
(�px;�py; ikwp);

where
p(x; y) = eikwh(x;y): (7)

We now use the common assumption (e.g., [3, 12]) that the integration can be extended over
the entire plane. This assumption is usually justified on the grounds that the surface detail is much
smaller than the distances over which the surface is viewed. In doing so we observe that the integral
of Eq. 6 is now a two-dimensional Fourier transform:

I(ku; kv) =
Z Z 1

ikw
(�px;�py; ikwp)e

ik(ux+vy) dx dy:

This important observation can be implemented. LetP (ku; kv) be the Fourier transform of the
function p. We observe from Appendix C that differentiation with respect tox (resp. y) in the
Fourier domain is equivalent to a multiplication of the Fourier transform by�iku (resp.�ikv).
This leads to the simple relationship

I(ku; kv) =
1

w
P (ku; kv) v:
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We have thus related the integral of Equation 2 directly to the Fourier transform of the functionp.
Now, since

(Fv� p) � v = 2F (1� k̂1 � k̂2);

the scattered wave of Eq. 2 is equal to

 2 =
ikeikR

2�R

F (1� k̂1 � k̂2)

w
P (ku; kv): (8)

This result shows that the scattered wave field is proportional to the Fourier transform of a simple
function of the surface height. Consequently, from Equations 3 and 4 of the previous section, it
follows that the BRDF of the surface is

BRDF =
k2F 2G

4�2Aw2
hjP (ku; kv)j2i; (9)

where

G =
(1� k̂1 � k̂2)

2

cos �1 cos �2
: (10)

This result and the derivation that leads to it are remarkably simple when compared to derivations
that do not employ the Fourier transform, e.g., [3]. More importantly, this treatment is more
general, since we have not made any assumptions regarding the functionP yet.

We now specialize our results for a homogeneous random function ([23] and Appendix D).
Homogeneity is a natural assumption since we are interested in the bulk reflection from a large
portion of the surface having a certain profile. For example, the portion of the CD depicted in
Figure 1 could have been taken from any part of the CD. However, and this is important, we do not
assume that the surface is isotropic. This is mainly where we depart from previous wave physics
models in computer graphics. Referring again to Fig. 1 we observe that the CD is clearly not
isotropic.

From the definition of the functionp (Eq. 7) it follows immediately that this function is also
homogeneous. In particular, its correlation function depends only on the separation between two
locations:

Cp(x
0; y0) = hp�(x; y)p(x+ x0; y + y0)i � jhpij2;

independently of the location(x; y). The Fourier transform of the correlation function is known as
thespectral density([23], p. 338):

Sp(u; v) =
ZZ

Cp(x
0; y0)ei(ux

0+vy0) dx0 dy0:

The spectral density is a non-negative function which gives the relative contribution of each wavenum-
ber (u; v) to the entire energy. We now show that the average in Eq. 9 is directly related to the
spectral density. Indeed,

hjP (ku; kv)j2i = hP �(ku; kv)P (ku; kv)i =
ZZ ZZ

hp�(x; y)p(s; t)i e�ik(ux+vy) eik(us+vt) dxdy dsdt:

With the change of variable(s; t) = (x + x0; y + y0), this integral becomesZZ ZZ
hp�(x; y)p(x+ x0; y + y0)i eik(ux

0+vy0) dxdy dx0dy0 =ZZ
dxdy

ZZ
(Cp(x

0; y0) + jhpij2) eik(ux
0+vy0) dx0dy0 = A (Sp(ku; kv) + 4�2�(ku; kv));
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       (a)                  (b)                (c)                 (d)                 (e)

Figure 3: Effect of the correlation function on the appearance of a random surface. The pictures at
the top show plots of different correlation functions with a realization of the corresponding random
surface below. The surface types are: (a) isotropic Gaussian, (b) anisotropic Gaussian, (c) isotropic
fractal, (d) anisotropic fractal and (e) another type of fractal anisotropy. See the text for the exact
definitions of these correlation functions.

where� is the two-dimensional Dirac delta function. Consequently, the average in Eq. 9 is a
function of the spectral density of the functionp:

1

A
hjP (ku; kv)j2i = Sp(ku; kv) + 4�2jhpij2�(ku; kv):

Substituting this result back into Eq. 9 we get:

BRDF =
F 2G

w2

 
k2

4�2
Sp(ku; kv) + jhpij2�(u; v)

!
; (11)

where we have used the fact that�(ku; kv) = �(u; v)=k2 [34]. Eq. 11 is the main theoretical result
of this paper. It shows that the reflection from a random surface is proportional to the spectral
density of the random functioneikwh. In the next two sections we apply this result to the derivation
of reflection models for various types of surfaces.

4 Diffraction From Anisotropic Rough Surfaces

4.1 General Case

Every surface shown in Figure 3 is a realization of aGaussian random process. These processes
have the property that they are entirely defined by their corresponding correlation function depicted
in the upper part of Figure 3. From the figure it is clear that the correlation function determines the
general appearance of the random surface. Radially symmetrical correlation functions correspond
to isotropic surfaces, c.f., surfaces (a) and (c), while the behavior of the correlation function at the
origin also determines how smooth the surfaces are. Consequently, surfaces (a) and (b) are smooth,
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while surfaces (c), (d) and (e) have a fractal appearance. In this section we further clarify the fact
that the reflection from these surfaces is intimately related to the correlation function. Gaussian
random processes have the nice property that their characteristic functions admit analytical ex-
pressions (see Appendix D). These functions are exactly what we require in order to compute the
spectral densitySp and the variancejhpij2 appearing in Equation 11. Indeed, for Gaussian random
processes these quantities are related to their surface height counterparts as follows. Firstly, we
have the following identities ([23], p. 255):

hpi = heikwhi = e�g=2 and (12)

Cp(x; y) = e�g
�
egCh(x;y) � 1

�
; (13)

where
g = (kw�h)

2;

and�h is the standard deviation of the height fluctuations. Secondly, the spectral densitySp is the
Fourier transform of the correlation functionCp ([23], p. 338). To compute this Fourier transform
analytically we use the usual expansion of the exponential function into an infinite series [3]:

egCh(x;y) =
1X

m=0

gm

m!
Ch(x; y)

m:

By the linearity of the Fourier transform we then have that

Sp = FfCpg = e�g
1X

m=1

gm

m!
Ff(Ch)

mg: (14)

This requires the computation of the Fourier transform of the surface correlation to a powerm.
We now give analytical results for the three correlation functions corresponding to the surfaces
depicted in Figure 3. These surfaces are defined by the following three correlation functions:

C1(x; y) = e
�
x2

T2x
�
y2

T2y ; C2(x; y) = e
�

r
x2

T2x
+ y2

T2y and C3(x; y) = e
�

jxj
Tx
�

jyj
Ty :

In all three cases, thecorrelation lengthsTx andTy control the anisotropy of the surface. Figures
3.(a) and (b) both correspond to the correlation functionC1. This function is infinitely smooth
at the origin, which accounts for the smoothness of the corresponding surfaces. In Figure 3.(a)
Tx = Ty and the surfaces are isotropic. Most previous wave-based models considered only the
isotropic case. Figures 3.(c) and (d) correspond to the correlation functionC2. The corresponding
surfaces have a fractal appearance. They are thus good models for very rough materials. In the
result section we will see that these surfaces give rise to reflection patterns which are visually
different from the smooth case. The correlation functionC3 is anisotropic even whenTx = Ty. A
corresponding realization is depicted in Figure 3.(e).

For each correlation function, we can compute its Fourier transforms to a powerm analytically.
ForC1, C2 andC3 they are equal to [1]:

D1;m =
�TxTy
m

e�(U
2+V 2)=4m; D2;m =

2�TxTym

(m2 + U2 + V 2)3=2
and D3;m =

2 Tx m

m2 + U2
�
2 Ty m

m2 + V 2
;

(15)
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respectively, where
U = kuTx and V = kvTy:

By substituting these expressions back into the infinite sum of Equation 14, we get an analytical
expression for the BRDF:

BRDF =
F 2G

w2
e�g

 
k2

4�2

1X
m=1

gm

m!
Dm + �(u; v)

!
; (16)

whereDm is any one of the functions of Equation 15.

4.2 Discussion

We demonstrate that our results are related to most previous analytical reflection models in com-
puter graphics. Various approximations of our model are obtained by taking limiting cases for the
parametersg, Tx andTy. The parameterg is dimensionless and characterizes the “roughness” of
the surface. This parameter depends on the wavelength� of the incident wave, the height fluctua-
tions�h of the surface and the incoming and viewing directions, sincew = � cos �1 � cos �2. For
the cases wheng << 1 or wheng >> 1, we can derive much simpler expressions for the spectral
densitySp of Equation 14.

Born Approximation

Wheng << 1, the infinite sum appearing in Equation 14 can be truncated to its first term. This is
equivalent to the approximationeikwh � 1 + ikwh often taken in physical theories. This approxi-
mation should be valid whenever the scales of the surfaces are much smaller than the wavelength
of light. This is the exact opposite of the geometrical optics approximation discussed below. This
approximation leads to the following BRDF:

BRDFBorn = F 2G e�g
 
�2hk

4

4�2
Sh(ku; kv) + �(u; v)

!
:

This is the result that is described in theHandbook of Optics[6]. Notice that the BRDF is propor-
tional to the fourth power of the inverse of the wavelength. This means that “bluish” light is more
strongly scattered than “reddish” light. These surfaces should therefore have a bluish appearance.
An interesting feature of this approximation is that one could actually “see” the spectral density
of the random surface in its highlight, i.e., any of the plots in Figure 3 (top). This is reminiscent
of Fourier optics where the diffraction pattern is related to the Fourier transform of the aperture
causing it [5]. The Born approximation does not restrict the surface to be isotropic. It is interesting
to note the strong similarity of this result to the theory of light scattering from very small particles
[8]. The latter result is known as Rayleigh scattering and partly explains why the sky appears blue.

Geometrical Optics

In the opposite limit wheng >> 1, an approximate expression for the sum of Equation 14 can also
be derived. This situation corresponds to the case when the surface detail is much larger than the
wavelength of light. These assumptions are implicit in any reflection model which is not derived
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Figure 4: Plots of the BRDF fork ranging from the infrared (8:06��1) to the ultraviolet region
(16:53��1). The reflection is in the specular direction:�1 = �2 = 45o. The plots show the effect
of the standard deviation�h on the color of the reflection. For low deviations the reflection is
bluish, while for higher roughness it tends to flatten out. The dashed line is the geometrical optics
approximation.

from the wave theory but rather from the ray theory of light. For largeg, the Fourier integral only
depends on the behavior of the functionegCh near the origin (see [3, 2] for details):

egCh(x;y) � ege�g(x
2=T 2

x+y
2=T 2

y ):

The Fourier transform of this function can be computed analytically and is equal to:

Sp(ku; kv) =
�TxTy
g

e�
U2

4g e�
V 2

4g :

The BRDF in this case is equal to (e�g � 0):

BRDFgeom =
F 2G

4�w4rxry
e
�

u2

4w2r2x e
�

v2

4w2r2y ; (17)

where
rx =

�h
Tx

and ry =
�h
Ty
:

This distribution is a generalization of the isotropic distributions found in Blinn and Cook-Torrance
where there is only one roughness parameter “m”. In fact, our model closely resembles Ward’s
anisotropic reflection model [32]. As in the Cook-Torrance model,BRDFgeom is only dependent
on the wavelength of light through the Fresnel factorF , as there is no other explicit dependence
on wavelength:k does not explicitly appear in the distribution.

Isotropic Distributions

The He-Torrance [12] and the Nayar [20] reflection models are obtained when our model is re-
stricted to the class of isotropic surfaces corresponding to Figure 3.(a). Using our result for the
correlation functionC1 with Tx = Ty, we essentially recover both of these models. It is worth not-
ing that one of the versions of the He-Torrance model handles polarization effects while our model
doesn’t. This is because they used the vector valued version of the Kirchhoff integral. However,
in practice it seems He-Torrance have only used their unpolarized version to create the pictures
accompanying their paper. The dependence on wavelength (as in our model) is a function of the
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Figure 5: Each bump is defined as the multiplication of a functiong(x; y) with the product of
box-like functions.

Figure 6: Two different bump functions: (1) constant, (2) linear in one coordinate.

Fresnel factorF and the functionk2 Sp(ku; kv). In Figure 4 we illustrate the dependence of this
function on wavenumberk for different surface deviations�h. The reflection goes from ak2 de-
pendence to a flat spectrum. Notice that in the midrange we actually get a small yellowish hue.
The figure also demonstrates that for�h > 0:5 the geometrical optics model, shown as a dashed
line, is a very good approximation. In practice we have found that wheneverg > 10 the pictures
generated with the geometrical optics approximation are visually indistinguishable from pictures
generated using the exact model.

5 Diffraction from Periodic-like Surfaces

We now turn to an application that most clearly demonstrates the power of our new reflection
model.

Many surfaces have a micro-structure that is made out of similar “bumps”. A good example is
a compact disk which has small bumps that encode the information distributed over each “track”2.
Fig. 1 is a magnified view of the actual surface of a compact disk. Notice in particular that the
distribution of bumps is random along each track but that the tracks are evenly spaced. In this
section we derive general formulae for certain shapes of bumps, and then specialize the results for
a CD-shader.

We assume that the surface is given by a superposition of bumps:

h(x; y) =
1X

n=�1

1X
m=�1

b(x� xn; y � ym); (18)

2In reality there is only one long spiral-like track on a compact disk. In practice, this long track can be approximated
by many concentric tracks of decreasing radii.
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symbol description size
h0 height of a bump 0.15�m
a width of a bump 0.5�m
b length of a bump 1 �m
�x separation between the tracks 2.5�m
�y density of bumps on each track0.5(�m)�1

Table 1: Typical dimensions of a compact disk.

where the locations(xn; ym) are assumed to be either regularly spaced or randomly (Poisson)
distributed. To handle the two cases simultaneously, we assume thatxn is evenly spaced and that
yn is Poisson distributed. Extensions to the case where both locations are evenly spaced or where
both are Poisson distributed should be obvious from our results. Let�x be the constant spacing
between thex-locations: xn = n�x. The random Poisson distribution of the locationsym is
entirely specified by a density�y of bumps per unit length. The functionb(x; y) appearing in Eq.
18 is a “bump function”: a function with (small) finite support. We will assume that the bump
function has the following simple form:

b(x; y) = h0 g(x=a)rect(x=a)rect(y=b); (19)

wherea, b andh0 define the width, length and height of each bump respectively (a � �x). Typical
values of these parameters for a CD are provided in Table 1. The functionrect is the “rectangle”
function of support[�1=2; 1=2]:

rect(t) =

(
1 when jtj � 1=2
0 else

:

Figure 5 illustrates our definition of a bump. Our derivation is valid for arbitraryg, however, we
provide an analytical expression only for the following two functions:

g0(x) = 1 and g1(x) = 1=2 + x: (20)

The bumps corresponding to these functions are depicted in Figure 6. The functiong0 is a good
approximation of the bumps found on a CD and the functiong1 can be used to model diffraction
gratings.

The functionp(x; y) defined by Eq. 7 in our case is equal to:

p(x; y) = 1 +
1X

n=�1

1X
m=�1

�((x� xn)=a; (y � ym)=b); (21)

where
�(x; y) =

�
ei�g(x) � 1

�
rect(x)rect(y)

and� = kwh0. The constant term “1” accounts for the space between the bumps and adds a delta
spike in the specular direction. To simplify the following derivation we will drop this constant
term. This is amply justified by the fact that we are mainly interested in the diffraction caused by
the bumps (see also p. 353 of [17] for a related argument).
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A simple computation shows that the Fourier transform of the functionp(x; y) is equal to
(remembering that we are dropping the constant term “1” in Eq. 21)

P (u; v) = �x(u)�y(v) ab �(au; bv);

where�(u; v) is the Fourier transform of�(x; y) and

�x(u) =
1X

n=�1

eiun�x and �y(v) =
1X

m=�1

eivym : (22)

To compute the spectral density of Equation 11 we note that:

Sp(u; v) = (ab)2jF (au; bv)j j�x(u)j
2 S�y(v):

The spectral density and the average of the sum of random Poisson distributed locations are both
equal to the density�y (see [23] p. 561):

S�y(v) = �y and h�yi = �y:

The sum of evenly spaced locationxn is a bit harder to deal with. First we need the following two
results from the theory of distributions (see pp. 54-55 of reference [34]):

1X
n=�1

eiun = 2�
1X

n=�1

�(u� 2�n) and �(sz + t) =
1

s
�(z + t=s);

wheres > 0 and t are real numbers. The first of these two equalities is known as “Poisson’s
summation formula”. Using these results we can express the sum�x in terms of delta distributions
only:

�x(u) =
2�

�x

1X
n=�1

�(u� n2�=�x):

The square of this function is equal to

j�x(u)j
2 = �x(u)�x(u)

� =
(2�)2

�x2

1X
n=�1

1X
m=�1

�(u� 2�n=�x)�(u� 2�m=�x)

=
(2�)2

�x2

1X
n=�1

�(u� 2�n=�x):

We can now compute the spectral densitySp by putting all these computations together:

Sp(ku; kv) = b2�y�
1X

n=�1

j�n(kv)j
2�(u� n�=�x); (23)

where

j�n(kv)j
2 =

a2

�x2
j�(2�na=�x; kv)j2;

and we made use of the following identities

�(ku) =
1

k
�(u); and � =

2�

k
:
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The function� can be computed analytically for each of the simple bumps depicted in Figure
6 and defined in Equation 20:

�0(u; v) = (ei� � 1)sinc(u=2)sinc(v=2);

�1(u; v) = (ei�=2sinc((� + u)=2)� sinc(u=2))sinc(v=2);

where the “sinc” function is equal to

sinc(u) =
sin(u)

u
:

Their squares are equal to

j�0(au; bv)j2 = 2(1� cos(kwh0))sinc
2(au=2)sinc2(bv=2); (24)

j�1(au; bv)j2 =
�
sinc2((kwh0 + au)=2)� 2sinc((kwh0 + au)=2)sinc(au=2) �

cos(kwh0=2) + sinc2(au=2)
�
sinc2(bv=2): (25)

Putting all these pieces together we get the following expression for the BRDF:

BRDF =
F 2G

w2
b2�y

1X
n=�1

j�n(kv)j
2�(u� n�=�x)(k + �y�(u)): (26)

Had we assumed that the locationsxn were also Poisson distributed with density�x, then the
spectral density would have been equal to:

Sp(ku; kv) = (ab)2�x�yj�(aku; bkv)j
2;

a much simpler expression than when a regular spacing is present.

6 Implementation

We have implemented our reflection models as various shaders in our MAYA animation system.
Any model created in that package can be rendered using our new shaders. The fact that our shaders
have been included in a commercial product should be a sufficient proof of their practicality.

As in [14], we model the anisotropy of the surface by assigning an orthonormal frame at each
point of the surface. In the case of a parametric surface, the most natural choice for this frame is
to take the normal and the two vectors tangent to the iso-parameter lines. We have also added an
additional rotation angle to the frame around the normal. When this angle is texture mapped, it
allows us to create effects such as brushed metal (Fig. 9.(a)).

The general form of our shader is

BRDF(k1;k2; �) = jF (�01; �)j
2 G(k1;k2) S(k1;k2) (D(v; �) + rEnv) ;

whereF is the Fresnel factor [7],S is a shadowing function [12],G is a geometrical factor defined
by Equation 10 in Section 3 andD is a distribution function that is related to the micro-geometry of
the surface. The function “Env” returns the color in the mirror direction ofk2 from an environment
map and the factorr accounts for how much the surface reflects direct illumination. The vectorv =
(u; v; w) is the angle midway between�k1 andk2. The Fresnel factor is evaluated at the angle�01
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Figure 7: Spectral response curves for red, green and blue.

that the directionk1 makes with the vectorv. We do not use the He-Torrance shadowing function
since it is restricted to isotropic surfaces. Instead, we employ a model introduced by Sancer [25].
For convenience, we have included this model in Appendix A. The shadowing function accounts
for masking at glancing angles. The distributionD is the most important component of our model
and is now described in some more detail.

In the previous sections we have derived distribution functions for both the random surfaces
depicted in Figure 3 and for periodic-like profiles such as the one in Figure 1. When the surface
is random, the distribution is defined by three parameters�h, Tx andTy. The variance�2h models
the average height fluctuations of the surface and the parametersTx andTy model the amount
of correlation of the micro-surface in the directions of the local frame. See Section 3 for further
details on these quantities. WhenTx = Ty, the surface is isotropic. In the most general case,
the distributionD is computed by the infinite sum appearing in Equation 16. In Appendix B, we
provide a stable implementation of this sum. Alternatively the infinite sum can be approximated
with spline functions as in [13]. As pointed out in the previous section, the sum is very well
approximated by the geometrical optics approximation of Equation 17, wheng = (kw�h)

2 is large.
The factor “r” is equal toexp(�g). The smoother the surface, the more indirect illumination is
directly reflected off of it.

The implementation for periodic-like profiles giving rise to colorful diffraction patterns is dif-
ferent. When evaluating the distributionD, the valuesu andv (andw) are determined by the
incoming and outgoing angles. The incoming light is usually assumed to be an incoherent sum
of many monochromatic waves whose number is proportional to the distributionL(�) of the light
source. To determine the intensity and the color of the light that is reflected in the outgoing di-
rection, we first compute the wavelengths�n for whichL(�) is non zero and for which the delta
spikes in Eq. 23 are non-zero. This only occurs when:

�n =
�xu

n
;

wheren 6= 0. Whenn = 0, all wavelengths contribute intensities in the specular directionu = 0.
In general, visible light is comprised only of waves with wavelengths between�min = 0:4�m and
�max = 0:7�m. This means that the indicesn are constrained to lie in the range:

Nmin =
�xu

�max
� n �

�xu

�min
= Nmax

if u > 0 and

Nmin =
�xu

�min
� n �

�xu

�max
= Nmax
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whenu < 0. Once these wavelengths are determined the red, green and blue components of the
distributionD are computed as follows

Drgb = b2�y
NmaxX

n=Nmin

1

�n
Specrgb(�n)L(�n)

�����n

�
2�v

�n

�����
2

;

whereSpecrgb is a function that for each wavelength returns the corresponding color. This function
can be built using the spectral response curves shown in Figure 7, for example. See Equation 26
for a definition of the function�n.

7 Results

Once the shaders were implemented in MAYA, it was an easy task to generate results demonstrat-
ing the power of our new shading model. In Fig. 8 we show the effect of some of the parameters
of our model on the appearance of the surfaces. In each rendering we chose to have a spectrally
flat Fresnel factor to demonstrate the dependence of the distribution on wavelength. For the Gaus-
sian correlations the reflection is more bluish for small roughness and becomes whiter for larger
roughness, in accordance with the analysis of Section 4.2. The reflection from fractal surfaces is
quite interesting: bluish for small roughness, then yellowish for intermediate roughness and finally
white for large roughness. The third row of spheres exhibits the effect of the separation and twist
angle parameters of our diffraction shader. We used a different texture map for the twist angle of
each one of the three “diffraction cones” at the bottom of Fig. 8.

Fig. 9 shows several renderings created in this manner. In each case we have texture mapped
the directions of anisotropy to add more interesting visual detail. Fig. 9.(a) demonstrates that this
can be employed to create a “brushed metal” look. In Fig. 9.(b) we textured both the roughness and
the degree of anisotropy of the surface. Fig. 9.(c) is a picture of a CD illuminated by a directional
light source. Notice that all the highlights appear automatically in the correct places when the data
from Table 1 is used. Fig. 9.(d) is an example of the use of our diffraction grating model. Notice
all the subtle coloring effects that result (especially when viewing the corresponding animation).
These colorful effects would be hard to model by trial and error without properly modeling the
wave properties of light.

The effects of the anisotropy and of diffraction are most pronounced in an animation when
moving either the object or the light sources. For this reason we have included some animations
on the CDROM proceedings.

8 Conclusions

In this paper we have proposed a new class of reflection models that take into account the wave-
like properties of light. For the first time in computer graphics, we have derived reflection models
that properly simulate the effects of diffraction. We have shown that our models can be easily
implemented as standard shaders in our MAYA animation software. Our derivations, while mathe-
matically involved, are simpler and more general than previously published results in this area. In
particular, our use of the Fourier transform has proven to be a very powerful tool in deriving new
reflection models.
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In future work, we hope to extend our model to an even wider class of surfaces by relaxing
some of the assumptions in our model. Presently, our model only accounts for the reflection from
metallic surfaces and ignores multiple-scattering. It would be interesting to derive more general
models that take into account subsurface scattering by waves (Reference [11] does not use the
wave theory of light). It seems unlikely that the effects of multiple scattering might be captured
by an analytical model. An alternative would be to fit analytical models to either the results from
a Monte-Carlo wave simulation or experimentally measured data. The latter approach seems to be
the one currently pursued by the Cornell group [9].

As well, we wish to extend our work to the computation of the fluctuations of the intensity
field [16]. In this manner we can compute exact texture maps for given surface profiles. We
could achieve this by deriving analytical expressions for the higher order statistics of the reflected
intensity field. More specifically, we hope to extend our previous work on stochastic rendering of
density fields to surfaces [29].
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A A Shadowing Function

The shadowing function used in He’s model applies only to isotropic surfaces. For this reason we
have used a different model derived by Sancer [25]. The shadowing function is valid for a Gaussian
random surface having a correlation functionCh and standard deviation�h:

S =

8><
>:

(C1 + 1)�1 if u = v = 0 and �1 � �2
(C2 + 1)�1 if u = v = 0 and �2 � �1

(C1 + C2 + 1)�1 else

;

where

Ci =

s
2j�ij

�
tan �i exp

 
�
cot2 �i
2j�ij

!
� erfc

0
@ cot �iq

2j�ij

1
A

�i = �2h
�
Ch;xx(0; 0) cos

2 �i + Ch;xy(0; 0) sin 2�i + Ch;yy(0; 0) sin
2 �i

�
;

wherei = 1; 2. Since the derivatives of the correlation function depend on the correlation lengths
Tx andTy, this clearly shows that this shadowing function takes into account the anisotropy of the
surface.
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B Computing Infinite Sums

The following piece of code will compute the distribution of reflected light from the surface:

compute D ( lambda, u, v, w, sigma h, Tx, Ty )
k = 2*PI/lambda;
g = k*sigma h*w; g *= g;
if ( g > 10 ) return D geom(u,v,w,sigma h/Tx,sigma h/Ty);
tmp=1; sum=log g=0;
for ( m=1 ; abs(tmp)>EPS || m<3*g ; m++ ) f

log g += log(g/m); tmp = exp(log g-g);
sum += tmp*D(m,k*u,k*v,Tx,Ty);

g
return ( lambda*lambda*sum );

The functionD() is any one of the functions of Equation 15. This routine is a stable implemen-
tation of the infinite sum appearing in Equation 16. A naive implementation of the sum results in
numerical overflows. The condition “m<3*g” is there to make sure that we do not exit the loop
too early. This is an heuristic which has worked well in practice.

C Fourier Analysis

In this appendix we provide the main definitions and results from Fourier analysis required in this
paper. Although this material is known to most researchers in computer graphics, we have included
it since the steps in our derivation depend on a particular choice of the transform. Letf be a com-
plex valued function defined over the entire plane. By function here we actually mean a generalized
function or distribution since Fourier analysis has been extended to both [34]. In particular, this
will allow us to state many results without having to worry about problems of convergence. A
well known example of a generalized function is the two-dimensional delta function�2 which is
zero everywhere except at the origin and which integrates to unity. The two-dimensional Fourier
transform of the functionf is defined by

F (u; v) = Fff(x; y)g =
Z Z

f(x; y) ei(ux+vy) dx dy:

In general we will denote the Fourier transform of a function by the corresponding uppercase
roman literal. Conversely, the inverse transform of a functionF is defined by

f(x; y) = F�1fF (u; v)g =
1

4�2

Z Z
F (u; v) e�i(xu+yv) du dv:

The transform and its inverse when composed reduce to the identity transformation:

F (u; v) = F
n
F�1fF (u; v)g

o
and f(x; y) = F�1 fFff(x; y)gg :

Obviously the Fourier transform and its inverse are linear operators between function spaces. Let
fx andfy denote the partial differentiation with respect to thex and they variable respectively.
Then

Fffx(x; y)g = �iuF (u; v) and Fffy(x; y)g = �ivF (u; v): (27)
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In other words, differentiation becomes a simple multiplication in the Fourier domain. Another
property required is that the Fourier transform of the constant function1 is equal to the delta
function multiplied by4�2. Conversely the Fourier transform of the delta function is equal to the
constant function1:

4�2�2(u; v) = Ff1g and 1 = Ff�2(x; y)g: (28)

The Fourier transform of a complex vector valued function

f(x; y) = (f1(x; y); � � � ; fn(x; y))

is the vector of the Fourier transforms applied to each component:

F(u; v) = Fff(x; y)g = (F1(u; v); � � � ; Fn(u; v)) :

Finally we mention that if the function has the physical units ofU , then its Fourier transform has
units ofUm2, wherem is the unit of distance (meters).

D Random Functions

Here we provide a short introduction to the theory of random functions. This theory is crucial
to our model since both the surface and the waves scattered from it are random functions. The
theory of random functions is a vast subject, and we refer the reader to other sources for a more
comprehensive study, e.g., [23]. Before presenting the main results for random functions, it is
helpful to briefly introduce the concept of a random variable and state some key results that are
employed in the paper.

D.1 Random Variables

A complex random variableX is a function from a probability space into the complex numbers.
For each event! in the probability space, there corresponds a complex valueX(!). Although the
values of the variable are random, they are characterized by a probability density functionpX(c),
i.e., some values or more likely than others. This density allows us to compute the average value
of any (deterministic) function�(c) of the random variable3:

h�(X)iX =
Z
�(c)pX(c) dc;

where the integration is over the entire complex plane. Examples of averages are the mean�X and
the variance�2X of the random variable:

�X = hXiX and �2X = hjXj2iX :

Let Y be another random variable with probability density functionpY (c). The distribution of
both functions is then defined by the joint probability density functionpXY (c1; c2). In the case of
a single random variable, we can define the average value of any function'(c1; c2)

h'(X; Y )iXY =
Z Z

'(c1; c2)pXY (c1; c2) dc1 dc2:

3The case of real-valued random variables is contained in this definition by taking a distribution which is non-zero
only on the real axis.
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When the two variables are independent,pXY (c1; c2) = pX(c1)pY (c2). However, in general the
two variables are dependent. One way of measuring this dependence is through the variables’
correlation:

CXY =
hXY �iXY � �X�

�

Y

�X�Y
;

where “�” denotes complex conjugation. Other important average functions of the random vari-
ables are the characteristic functions defined by

�1(a) = heiaXiX

�2(a; b) = heiaXe�ibY iXY :

When the probability density functions of the random variablesX andY are bothGaussian(“bell
shaped”), the characteristic function have analytical expressions:

�1(a) = e�a
2�2

X
=2

�2(a; b) = e�a
2�2X

�
ea

2�2XCXY � 1
�
: (29)

These functions play an important role in our derivation. Obviously these definitions can be gen-
eralized to any finite number of random variables. However, for our purposes these definitions
suffice.

D.2 Homogeneous Random Functions

A two-dimensional random functionf is a mapping from the plane into the space of random vari-
ables introduced in the previous subsection. To each point(x; y) a random function associates a
complex random variablef(x; y). For particular values of the random variables, an ordinary func-
tion is obtained which is called arealizationof the random function. In general, the probability
density functionspf(x;y) of each variable can be arbitrary. For the class of functions we are inter-
ested in here, it is sufficient to assume that each variable has the same probability density function
p1(c). LetX = f(x; y) andY = f(x0; y0) be two random variables at different locations. As for
multiple random variates, we can define the joint probability density function of the variablesX
andY . Generally, this function will depend on both the locations(x; y) and(x0; y0). However, in
this paper we assume that the random function is homogeneous and therefore that the joint proba-
bility density functionp2(c1; c2; h; k) depends only on the difference(h; k) = (x0 � x; y0 � y) of
the variables. Using these densities we can define ensemble averages involving functions�(c) and
'(c1; c2):

h�(f(x; y))i1 =
Z
�(c)p1(c) dc

h'(f(x; y); f(x0; y0))i2 =
Z Z

'(c1; c2)p2(c1; c2; x
0 � x; y0 � y) dc1 dc2:

In the remainder of this appendix and in the rest of the paper, the dependence of the average on
the probability density will be dropped. Which average applies where should be obvious from
the context. With these averages we can define the mean, variance and correlation of a random
function as follows:

�f = hf(x; y)i; �2f = hjf(x; y)j2i and Cf(h; k) = hf(x; y)f �(x + h; x+ k)i � j�f j
2;
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respectively.
Homogeneous random functions have the property that their correlation function has a spectral

representation:

Cf (x; y) =
1

4�2

Z Z
Sf(u; v)e

�i(ux+vy) du dv;

whereSf � 0 is a positive function called thespectral densityof the random function. Conversely,
the spectral density is a Fourier transform of the correlation function.

Sf (u; v) =
Z Z

Cf(u; v)e
�i(ux+vy) dx dy:

This is a famous result in the theory of random processes, known as theWiener-Khinchin theorem.
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                                  Gaussian                                                                                               Fractal

 Roughness = 0.001                     0.05                              0.1                             0.001                               0.05                               0.1   

 Anisotropy = (0.3,0.3)          (1.0,0.3)                        (5.0,0.3)                        (0.3,0.3)                      (1.0,0.3)                        (5.0,0.3)  

                                  Gaussian                                                                                               Fractal

 Separation = 1.0                          2.5                               5.0                   Twist angle = 0                          30                                120

Figure 8: Effect of some of the parameters.
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(a) (b)

(c) (d)

Figure 9: More pictures.
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