
Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling

William A. McNeely Kevin D. Puterbaugh James J. Troy

The Boeing Company*

Abstract
A simple, fast, and approximate voxel-based approach to 6-

DOF haptic rendering is presented. It can reliably sustain a 1000
Hz haptic refresh rate without resorting to asynchronous physics
and haptic rendering loops. It enables the manipulation of a mod-
estly complex rigid object within an arbitrarily complex environ-
ment of static rigid objects. It renders a short-range force field
surrounding the static objects, which repels the manipulated object
and strives to maintain a voxel-scale minimum separation distance
that is known to preclude exact surface interpenetration. Force dis-
continuities arising from the use of a simple penalty force model
are mitigated by a dynamic simulation based on virtual coupling.
A generalization of octree improves voxel memory efficiency. In a
preliminary implementation, a commercially available 6-DOF
haptic prototype device is driven at a constant 1000 Hz haptic
refresh rate from one dedicated haptic processor, with a separate
processor for graphics. This system yields stable and convincing
force feedback for a wide range of user controlled motion inside a
large, complex virtual environment, with very few surface inter-
penetration events. This level of performance appears suited to
applications such as certain maintenance and assembly task simu-
lations that can tolerate voxel-scale minimum separation distances.

CR Categories and Subject Descriptors:H.5.2 [User Inter-
faces]: Haptic I/O, I.3.5 [Computational Geometry and Object
Modeling]: Physically Based Modeling.

Additional Keywords: force feedback, voxel representations,
virtual environments.

1. INTRODUCTION
The problem of simulating real-world engineering tasks — for

example, objectives like design-for-assembly and design-for-main-
tenance — has been exacerbated by the modern transition from
physical mockup to virtual mockup. Physical mockup provides
natural surface constraints that prevent tools and parts from inter-
penetrating, whereas virtual mockup requires the user to satisfy
such constraints by receiving collision cues and making appropri-
ate body postural adjustments, which is usually tedious and may
yield dubious results. In order to emulate the natural surface con-
straint satisfaction of physical mockup, one must introduce force

feedback into virtual mockup. Doing so shifts the burden of physi-
cal constraint satisfaction onto a haptic subsystem, and the user
becomes free to concentrate on higher-level problems such as path
planning and engineering rule satisfaction.

Tool and part manipulation inherently requires six degree-of-
freedom (6-DOF) haptics, since extended objects are free to move
in three translational and three rotational directions. Affordable
high-bandwidth 6-DOF devices are becoming available, but 6-
DOF haptic rendering remains an outstanding problem. It is con-
siderably more difficult than 3-DOF point-contact haptic render-
ing. One can compare haptics with collision detection, since they
share some technical similarity. Real-time collision detection is a
challenging problem [13], but 6-DOF haptics adds stringent new
requirements such as:

• Detect all surface contact (or proximity, for a force field),
instead of stopping at the first evidence of it.

• Calculate a reaction force and torque at every point or extended
region of contact/proximity.

• Reliably maintain a 1000 Hz refresh rate, independent of posi-
tion and orientation of the manipulated object.

• Control geometry driven haptic instabilities, such as forcing an
object into a narrow wedge-shaped cavity.

To address the needs of our targeted engineering applications,
we adopt the following additional goals:

• Minimize the interpenetration of exact surface representations.

• Handle complex static scenes, e.g., those containing several
hundred thousand triangles, with reasonable memory efficiency.

• The haptic rendering algorithm should parallelize easily.

Furthermore, we accept the limitation of voxel-scale accuracy. For
example, a common engineering rule is to design at least 0.5 inch
clearance into part removal paths, whenever possible, in order to
accommodate tool access and human grasping and to serve as a
cushion against assembly tolerance buildup.

We describe an approach that formally meets most of these
requirements. It demonstrates the ability to drive a commercially
available 6-DOF prototype device at a reliable 1000 Hz haptic
refresh rate without the aid of asynchronous physics and haptic
rendering loops. It supports the manipulation of a single rigid
object within an arbitrarily rich environment of static rigid objects
by rendering a half-voxel-deep force field that surrounds the static
objects and serves to block potential interpenetration of the exact
surface representations, as described in section 4.2. Given a prede-
termined spatial accuracy (i.e., voxel size), rendering performance
depends linearly on the total exposed surface area of the manipu-
lated object. There is also a relatively minor dependence on the
instantaneous amount of contact/proximity, with a worst-case per-
formance (e.g., maximum contact/proximity) of about half that of
the best-case performance.

* Bill McNeely, The Boeing Company, P.O. Box 3707, M/S 7L-43, Seattle, WA
98124, (bill.mcneely@boeing.com)

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page or initial screen of the
document. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper can be found in the "papers/mcneely" directory.

Our approach is distinguished primarily by its high haptic ren-
dering speed, which is derived primarily from:

• A simple penalty force scheme called the tangent-plane force
model, explained in section 3.

• A fixed-depth voxel tree, explained in section 4.3.

• A voxel map that collectively represents all static objects,
explained in section 4.4.

Although the simplicity of our force model is critically impor-
tant to performance, it is so simple that it generates force magni-
tude discontinuities (but not force direction discontinuities),
especially under sliding motion. In 3-DOF point-contact haptics,
force discontinuities can be devastating to force quality and stabil-
ity, but under our 6-DOF approach there is a stochastic effect that
lessens their impact. However, it proved necessary to introduce
various measures to explicitly enhance force quality and stability,
such as:

• A single-body dynamic model based on virtual coupling

• Pre-contact braking forces

All such measures are explained in section 5.
Data storage is often a secondary consideration in haptics work,

because it is tempting to trade memory efficiency for higher per-
formance. However, voxels are so relatively inefficient as geomet-
ric modeling elements that we improve their memory efficiency by
generalizing the octree method, as explained in section 4.3.

2. PREVIOUS WORK
Although largely the result of unpublished work, there are

numerous examples of 6-DOF haptic rendering for scenarios con-
taining a very limited number of geometrically well behaved vir-
tual objects, for example [6,7,24]. Our approach differs from this
work primarily in its ability to render considerably more complex
6-DOF scenarios with no formal constraints on object shape,
although at reduced accuracy.

Our approach includes a collision detection technique based on
probing a voxelized environment with surface point samples.
Voxel-based methods have been applied to non-haptic collision
detection [12,15,16] and to 3-DOF haptics [3,18]. Sclaroff and
Pentland [22] apply surface point sampling to implicit surfaces.

Intermediate representations for haptics were suggested by Ada-
chi et al. [1], and have been subsequently elaborated [17]. This
involves using a simple haptics proxy that approximates the exact
scene and is simple enough to update the forces at the required
high refresh rate, while a slower but more exact collision detection
and/or dynamic simulation runs asynchronously and updates the
proxy’s parameters. Our work differs by tightly integrating colli-
sion detection, the force model, and the dynamic model into a sin-
gle loop that updates forces directly at 1000 Hz.

There has been much work in multibody dynamic simulation for
physically based modeling, for example [4,23]. Mirtich and Canny
[19] track the contacts found from an iterative collision detection
method and use this information to generate constant-size
impulses. In general, such work is characterized by its emphasis
on accuracy over rendering performance, and consequently it
relies on methodology such as exact-surface collision detection
and simultaneous surface constraint satisfaction, which currently
fall far short of 6-DOF haptics performance requirements.

Our dynamic model adopts the practice of using an artificial
coupling between the haptic display and virtual environment, as

originally proposed by Colgate et al. [10] and recently elaborated
by Adams and Hannaford [2]. We also adopt a version of the “god
object” concept suggested by Zilles and Salisbury [25] and others
[21], generalized to 6-DOF and modified to use penalty forces that
only approximately satisfy surface constraints. In addition, we use
the concept of pre-contact braking force suggested by Clover [9].

Hierarchical techniques, such as employed by Gottschalk [13],
can be used to alleviate convex-hull bounding box limitations for
objects in very close proximity by recursively generating a tree of
bounding volumes around finer features of the object. While this
technique speeds collision detection, it also introduces indetermi-
nacy in the cycle rate due to the varying cost of traversing the tree
structure to an unknown depth to check each colliding polygon
against object polygons. Cycle-rate should not only be fast but
should also have a rate that is as constant as possible.

Temporal and spatial coherence can also be exploited [4,5,8] by
assuming that objects move only slightly within each time step,
thus allowing extrapolation from the previous state of the system.
The number of polygon tests carried out at each time step is effec-
tively reduced, increasing cycle-rate at the cost of introducing
indeterminacy. With certain configurations or motions of objects,
however, there are often noticeable drops in performance — a situ-
ation which is unacceptable in a real-time simulation.

3. TANGENT-PLANE FORCE MODEL
In our tangent-plane force model, dynamic objects are repre-

sented by a set of surface point samples, plus associated inward
pointing surface normals, collectively called a point shell. During
each haptic update the dynamic object’s motion transformation is
applied to every point of the point shell. The environment of static
objects is collectively represented by a single spatial occupancy
map called a voxmap, which is illustrated in Figure 1. Each hapti-
cally rendered frame involves sampling the voxmap at every point
of the point shell.

Figure 1. Voxmap colliding with point shell.

When a point interpenetrates a voxel (assumed for now to be a
surface voxel) as shown in Figure 2, a depth of interpenetration is
calculated as the distanced from the point to a plane within the
voxel called the tangent plane.

The tangent plane is dynamically constructed to pass through
the voxel’s center point and to have the same normal as the point’s
associated normal. If the point has not penetrated below that plane
(i.e., closer to the interior of the static object), thend is zero. Force
is simply proportional tod by Hooke’s law (). We call

the “force field stiffness,” since the voxel represents a half-

Voxmap

Point Shell
and Normals

Original
Objects

F K ff d=
K ff

voxel-deep force field. The net force and torque acting on the
dynamic object is obtained as the sum of all force/torque contribu-
tions from such point-voxel intersections.

Figure 2. Tangent-plane force model.

The tangent-plane force model was inspired by the fact that the
surfaces of contacting objects are tangent at an osculation point. It
is important that the force takes its direction from a precomputed
surface normal of the dynamic object. This proves to be consider-
ably faster than the common practice of dynamically computing it
from the static object’s surface, or in the case of a force field,
dynamically taking the gradient of a potential field.

One can see that this simple model has discontinuities in force
magnitude when a point crosses a voxel boundary, for example,
under sliding motion. Section 5 describes how discontinuities can
be mitigated for haptic purposes.

4. VOXEL DATA STRUCTURES
This section outlines the creation and usage of voxel-based data

structures that are required under our approach. Exact (polygonal)
surface penetration and memory usage will also be discussed.

4.1 Voxmap and Point Shell
One begins by selecting a global voxel size,s, that meets the vir-

tual scenario’s requirements for accuracy and performance. The
performance aspect is that the force model requires traversing a set
of point samples, ands determines the number of such points.
Consider a solid object such as the teapot in Figure 3(a). It parti-
tions space into regions of free space, object surface, and object
interior. Now tile this space into a volume occupancy map, or vox-
map, as in Figure 3(b). The collection of center points of all sur-
face voxels constitutes the point shell needed by the tangent-plane
force model, as in Figure 3(c).

Figure 3. Teapot: (a) polygonal model, (b) voxel model, (c)
point shell model.

This method for creating the point shell is not optimal, but it is
convenient. Its accuracy may be improved by choosing points that
lie on the exact geometrical representation.

Each voxel is allocated two bits of memory that designate it as a
free space, interior, surface, or proximity voxel. The 2-bit voxel
types are defined in Table 1 and illustrated by an example in
Figure 4.

A neighbor voxel is defined as sharing a vertex, edge, or face
with the subject voxel. Each voxel has 26 neighbors. It is impor-
tant that each static object be voxelized in its final position and ori-

entation in the world frame, because such transformations cause its
voxelized representation to change shape slightly.

Figure 4. Assignment of 2-bit voxel values.

By the nature of 3D scan conversion, voxmaps are insensitive to
surface imperfections such as gaps or cracks that are smaller than
the voxel width. However, identifying the interior of a voxmap can
be difficult. We adopt the practice of (1) scan-converting to create
surface voxels, (2) identifying free-space voxels by propagating
the voxelized walls of the object’s bounding box inward until sur-
face voxels are encountered, and (3) declaring all other voxels to
be interior voxels. This ensures that objects with open surfaces
will be voxelized instead of “leaking” and filling all voxels.

4.2 Avoiding Exact Surface Interpenetration
In the tangent-plane force model shown in Figure 2, the exact

surfaces of colliding objects are allowed to interpenetrate by
voxel-scale distances during a point-voxel intersection. While this
may be acceptable for some applications, we seek instead to pre-
clude exact-surface interpenetration. We do this by offsetting the
force field outward away from the surface by two voxel layers, as
shown in Figure 5. (In this figure, the rotated boxes represent the
surface voxels associated with the points of a pointshell, viewed as
surface bounding volumes.) The offset force layer then serves to
maintain a minimum object separation that provably precludes
exact-surface interpenetration.

Figure 5. Criterion for exact-surface interpenetration.

d

Force Vector Along
Point Normal

Point
Shell

Static
Surface

Tangent
Plane

(a) (b) (c)

Table 1. Voxel types (2-bit)

Value Voxel type Description

0 Free space Encloses only free-space volumes

1 Interior Encloses only interior volumes

2 Surface Encloses a mix of free-space, sur-
face, and interior volumes

3 Proximity Free-space neighbor of a surface
voxel

1

1

1

1

2

2

1

1

2

3

2

2

3

3

3

3

0

0

0

0

Exact Surface

1

1

2

Surface Layer

Force Layer{Offset Layers

OK BAD

Exact Surface

The voxel legend described by Table 1 and Figure 4 is corre-
spondingly redefined so that “surface” and “value 2” now refer to
the offset force-layer voxels instead of geometric surface voxels,
and similarly for the other voxel types. (Offset proximity voxels
and free-space voxels are omitted from Figure 5, but they would
occupy additional layers at the top of the figure.)

Force-layer offsetting is implemented as a final step of voxeliza-
tion, in which the geometric surface voxel layer is grown outward
by a process of promoting proximity voxels to surface values and
demoting original surface voxels to interior values. This process is
repeated to achieve the desired two-layer offset. (If voxels were
allocated more than two bits, it would not be necessary to “recy-
cle” voxel values in this manner, and there are other advantages to
wider voxels that we are beginning to explore.)

Force-layer offsetting also serves to prevent any spike-like fea-
ture in the static object from generating a linear column of voxels
that the point shell could completely fail to penetrate for certain
orientations of the dynamic object. The force layer has no such
features, because voxel values are propagated to 26 connected
neighbors during the offsetting process.

4.3 Voxel Tree
A natural next step is to impose an octree organization on the

voxels for the sake of memory efficiency and scalability. However,
the need for a consistently fast haptic refresh rate is at odds with
the variability in the tree traversal time. To address this, we have
devised a hierarchy that represents a compromise between mem-
ory efficiency and haptic rendering performance. It is a generaliza-
tion of octree with a tree depth that is limited to three levels,
explained as follows.

At each level of the tree, the cubical volume of space is divided
into 23N sub-volumes, whereN is a positive integer. (N is unity for
an octree.) We have discovered that the most memory-efficient
value forN may be at higher values, depending on the sparseness
of the geometry. Figure 6 illustrates a study of the total memory
consumed by a 23N-tree as a function ofN for geometry that is typ-
ical to our work. It has a minimum atN=3, which might be called a
512-tree.

Figure 6. Memory usage of 23N tree as a function of N.

We further limit tree depth by fixing both the minimum and
maximum dimensions of the bounding volumes in the tree. The
minimum dimension is the size of voxels at the leaf level, and the
maximum dimension is given implicitly by creating only three lev-
els above the leaf level. The minimum-size requirement means that
smaller features may not be adequately represented, but we funda-
mentally accept a global accuracy limitation, analogous to the

practice of accepting a fixed tessellation error in polygonal surface
representations. The maximum-size requirement impacts memory
efficiency and scalability, because one must cover all remaining
space with the largest-size bounding volumes. However, these
effects are mitigated by the use of 23N-tree, since for a fixed num-
ber of levels, higher values ofN increase the dynamic range of the
bounding volume dimensions.

4.4 Merged Scene Voxmap
Our approach is limited to the case of a single dynamic rigid

object interacting with an arbitrarily rich environment of static
rigid objects. If it were necessary to separately calculate the inter-
action force for each ofN static objects, then the computing bur-
den would grow linearly withN. However, there is no inherent
need to separately compute such interactions on a pairwise basis.
For example, there is no need to identify the type of a contacted
object in order to apply different material properties, since all
static objects are treated as rigid. Furthermore, under our force-
field approach, objects are never actually contacted in the sense of
undergoing surface intersections. Therefore, we merge all static-
object voxel representations together as if they were a single static
object, applying straightforward precedence rules to merged voxel
values and recalculating a voxel tree for the voxmap.

5. DYNAMIC MODEL
For the dynamic model, we use an impedance approach, in

which user motion is sensed and a force/torque pair is produced.
We further adopt what is called the “virtual coupler” scheme,
which connects the user’s haptic motions with the motions of the
dynamic object through a virtual spring and damper. This is a well
known method for enhancing haptic stability [2].

To solve for the motion of the dynamic object, we perform a
numerical integration of the Newton-Euler equation, using a con-
stant time step corresponding to the time between force
updates, e.g., =1 msec for 1000 Hz haptic refresh rate. We also
must assign a massm to the dynamic object equal to the apparent
mass for the dynamic object that we want to feel at the haptic han-
dle (in addition to the haptic device’s intrinsic friction and inertia,
and assuming that its forces are not yet saturated). The net force
and torque on the dynamic object is the sum of contributions from
the spring-damper system, explained in section 5.1; stiffness con-
siderations, explained in section 5.2; and the pre-contact braking
force, explained in section 5.3.

5.1 A 6-DOF Spring-Damper System
Conceptually, a copy of the haptic handle is placed in the virtual

scene and is coupled to the dynamic object through a spring-
damper connection, as shown in Figure 7.

The real haptic handle controls the position and orientation of
its virtual counterpart. This influences the spring’s displacement,
which generates a virtual force/torque on the dynamic object and
an opposite force/torque on the real haptic handle. Spring dis-
placement also includes rotational motion, as shown in Figure 7 by
the spiral at the center of the dynamic object (suggestive of a clock
mainspring). Spring force is proportional to displacement, while
spring torque is proportional to the angle of rotation from an
equivalent-angle analysis and directed along an equivalent axis of
rotation [11].

1 2 3 4 5

10

20

30

40

50

60

70

M
em

or
y,

 M
B

Exponent, N

(Octree)

140

∆t
∆t

Figure 7. Dynamic model based on virtual coupling.

This 6-DOF spring makes the dynamic object tend to acquire
the same position and orientation of the virtual haptic handle,
assuming that the two objects are initially registered in some man-
ner, e.g., with the center of the handle located at the dynamic
object’s center of mass and the handle’s main axis aligned with
one of the dynamic object’s principal axes. The virtual object is
assigned mass properties, which are reflected at the haptic inter-
face as apparent mass that is added to the haptic device’s intrinsic
inertia. We operated at a small reflected mass of 12 g. The force
and torque equations used here are:

where

, = spring translational stiffness and viscosity

, = spring rotational stiffness and viscosity

 = equivalent-axis angle (including axis direction)

, = dynamic object’s relative linear and angular velocity.

Spring stiffness is set to a reasonably high value that is still
comfortably consistent with stable numerical behavior at the
known time sampling rate. Stiffness and viscosity are straightfor-
wardly related to obtain critically damped behavior. A limitation
of this simple formalism is that it is only valid for a dynamic
object having equal moments of inertia in every direction, such as
a sphere of uniform mass density. Since we were not interested in
reflected moments of inertia, and indeed sought to minimize them,
this was an acceptable limitation. It represents an implicit con-
straint on the virtual object’s mass density distribution but not on
its geometrical shape.

5.2 Virtual Stiffness Considerations
When the virtual object is in resting contact with the half-voxel-

deep force field described by stiffness , we want to prevent the
user from stretching the spring so far as to overcome the force field
and drag the dynamic object through it. The spring force is
clamped to its value at a displacement ofs/2, wheres is the voxel
size. In the worst case, this contact force is entirely due to a single
point-voxel interaction, which therefore determines an upper limit
on the spring force. This can be viewed as a modification of the
god-object concept [25], in which the god-object is allowed to
penetrate a surface by up to a half voxel instead of being analyti-
cally constrained to that surface.

Whenever many point-voxel intersections occur simultaneously,
the net stiffness may become so large as to provoke haptic instabil-
ities associated with fixed-time-step numerical integration. To
cope with this problem, we replace the vector sum of all point-
voxel forces by their average, i.e., divide the total force by the cur-
rent number of point-voxel intersections,N. This introduces force
discontinuities asN varies with time, especially for small values of
N, which degrades haptic stability. We mitigate this side effect by
deferring the averaging process untilN = 10 is reached:

 if

 if

and similarly for torque. is adjusted to assure reasonably sta-
ble numerical integration for the fixed time step and at least 10
simultaneous point-voxel intersections. While this heuristic leads
to relatively satisfactory results, we are investigating a hybrid of
constraint-based and penalty-based approaches that formally
address both the high-stiffness problem and its dual of low stiff-
ness but high mechanical advantage. Forcing an object into a nar-
row wedge-shaped cavity is an example of the latter problem.

Dynamic simulation is subject to the well studied problem of
non-passivity, which might be defined as the unintended genera-
tion of excessive virtual energy [2,10]. In a haptic system, non-
passivity manifests itself as distracting forces and motions (nota-
bly, vibrations) with no apparent basis in the virtual scenario. Non-
passivity is inherent in the use of time-sampled penalty forces and
in the force discontinuity that is likely to occur whenever a point
crosses a voxel boundary. Another potential source of non-passiv-
ity is insufficient physical damping in the haptic device [10]. Even
a relatively passive dynamic simulation may become highly non-
passive when placed in closed-loop interaction with a haptic
device, depending on various details of the haptic device’s design,
its current kinematic posture, and even the user’s motion behavior.

The most direct way to control non-passivity is to operate at the
highest possible force-torque update rate supported by the haptic
device, which for our work was the relatively high value of 1000
Hz. We also investigated the technique of computationally detect-
ing and dissipating excessive virtual energy. While this had some
success, it was eventually replaced by the simpler technique of
empirically determining the largest value of consistent with
stable operation over the entire workspace of the haptic device. As
a further refinement, we discovered some residual instability in the
dynamic object when it lies in free space. Whenever that occurs,
therefore, we apply zero force and torque to the haptic device
(overriding any non-zero spring values). A free-space configura-
tion is trivially detected as every point of the dynamic object inter-
secting a free-space voxel of the environment.

5.3 Pre-Contact Braking Force
The treatment of spring-force clamping in section 5.2 ignored

the fact that the dynamic object’s momentum may induce deeper
instantaneous point-voxel penetration than is possible under rest-
ing contact, thereby overcoming the force field. Currently, we do
not attempt to avoid this outcome in every instance. Instead, we
generate a force in the proximity voxel layer that acts to reduce the
point’s velocity, called the pre-contact braking force. In order to
avoid a surface stickiness effect, the force must only act when the
point is approaching contact, not receding from a prior contact. To
determine whether the point is approaching or receding, consult its

m

d

−Fspring

Haptic Handle

Dynamic Object

kR
Fspring

kT

bT

bR

Fspring kTd bTv–=

τspring kRθ bRω–=

kT bT

kR bR

θ

v ω

K ff

FNet FTotal= N 10<

FNet

FTotal

N 10⁄
---------------= N 10≥

K ff

K ff

associated inward-pointing surface normal, , and then calculate
the force:

, if

, if

whereb is a “braking viscosity,” is the velocity of the point
in the point shell, and is a unit vector along .

As a simple heuristic, therefore, adjustb so as to dissipate the
object’s translational kinetic energy along the direction of
approaching contact within one haptic cycle:

wherem andv are the dynamic object’s mass and velocity compo-
nent along , respectively, and the sum overi is understood to
traverse only points for which .

We have not yet implemented a braking torque. Calculating this
type of torque would be similar in form to the translational braking
viscosity equation above.

A weakness of the braking technique is that an individual
point’s velocity may become so large that the point skips over the
proximity voxel in a single haptic cycle, or even worse, over all
voxels of a thin object. We call this the “tunnelling problem.” This
is particularly likely to happen for points of a long dynamic object
that is rotated with sufficient angular velocity. One possible solu-
tion is to constrain the dynamic object’s translational and angular
velocities such that no point’s velocity ever exceeds .

6. RESULTS
The system configuration for our preliminary implementation is

illustrated in Figure 8. Haptic rendering is performed on a dedi-
cated haptics processor, which asserts updated force and torque
information to the haptic device and reads position and orientation
of the haptic handle in a closed loop running at 1000 Hz.

Figure 8. System Configuration.

In a separate asynchronous open loop, the haptics processor
transmits UDP packets containing position and orientation infor-
mation to a dedicated graphics processor, which renders the
updated scene at about 20 Hz. This section provides more details
on the system components and presents some preliminary results.

6.1 Haptics Device
We used a desk-mounted system called the PHANTOM Pre-

mium 6-DOF Prototype (shown in Figure 9), made by SensAble
Technologies, Inc. This system includes the mechanism, its power
electronics, a PCI interface card, and the GHOST® Software
Developer’s Kit (SDK). Force feedback in three translational
degrees-of-freedom is provided by a vertical 2-link planar struc-
ture, with a third orthogonal rotational axis at the base. Cable

transmission actuators drive linkages from the base. Its peak force
is 22 N and the nominal positioning resolution is 0.025 mm at the
end effector. The translational range of motion is about 42×59×82
cm, approximating the natural range of motion of the entire human
arm. Torque feedback in three rotational degrees of freedom is
provided by a powered gimbal mechanism that provides torques in
yaw, pitch, and roll directions. Its peak torque is 0.67 Nm and the
nominal resolution is 0.013˚ in each axis. The rotational range of
motion is 330˚ in both yaw and roll, and 220˚ in pitch.

Figure 9. User with the 6-DOF haptic device.

Low-level interactions with the PCI interface card are handled
by the PHANTOM device drivers provided with the system. The
GHOST SDK transparently provides real-time motion control,
including the use of a proprietary mechanism that guarantees a 1
kHz servo rate. A kinematic model that deals with conversions
between joint space and Cartesian space, and dynamics algorithms
that optimize the feel by compensating for device dynamics.
Although the GHOST SDK supports numerous high-level interac-
tions with the system, our usage is currently limited to (1) query-
ing for global position and orientation of the end effector as a 4×4
homogeneous transformation matrix and (2) asserting the desired
global force and torque.

6.2 Haptics and Graphics Processing
The dedicated haptics processor of our prototype system was a

350 MHz Pentium® II CPU with 128 MB of RAM running Win-
dows NT®. The functions of voxelization, voxel-sampling, and
force generation were provided by Boeing developed software
known as Voxmap PointShell, which implements the approach
presented in this paper. Voxmap PointShell is interfaced with the
GHOST SDK, which manages the 1 kHz servo loop. Within this
loop, the haptic handle’s position and velocity information is
received, a haptic frame is rendered, and updated force and torque
information is sent to the device. GHOST monitors the time con-
sumption of each loop and interrupts operation whenever a 1 kHz
servo loop constraint is violated. Outside the servo loop, a sepa-
rate, asynchronous loop samples the transformation matrices for
the dynamic object and haptic handle, and sends them via UDP to
a dedicated graphics processor.

Our dedicated graphics processor was an SGI Octane with
one 250 MHz R10000 processor, 256 MB of RAM, and SI graph-
ics. For visualization we use FlyThru®, a proprietary high-perfor-
mance visualization system. This system was first used to virtually

n̂i

F i bvi n̂i v̂i⋅–()–= n̂i v̂i⋅ 0<

F i 0= n̂i v̂i⋅ 0≥
vi i th

v̂i vi

b

1
2
---mv

2() ∆t⁄
v Σivi n̂i– v̂i⋅()⋅
--------------------------------------=

ΣF i
n̂i v̂i⋅ 0<

s ∆t⁄

Haptics: 1000Hz update rateGraphics: 20−60Hz update rate

Graphics

PC

Controller
6−DOF
PHANTOM

SGI

Graphics

“preassemble” the Boeing 777 and is now employed on commer-
cial, military, and space programs throughout Boeing. FlyThru can
maintain a frame rate of ~20 Hz, independent of the amount of
static geometry. This is achieved by rendering the static geometry
once to the color and Z-buffers, then reusing those images for sub-
sequent frames [20]. This visualization scheme provided smooth
motion with no noticeable lag.

One disadvantage of using two separate computers is that setup
and usage tend to be cumbersome. In light of this, we have also
implemented our approach on an Octane with two processors —
one used strictly for haptics and the other for graphics.

6.3 Virtual Scenario
The static environment of our virtual scenario consisted of sim-

ulated aircraft geometry, with beams, tubes, wires, etc., voxelized
at 5 mm resolution. Its polyhedral representation contains 593,409
polygons. Its FlyThru representation consumed 26 MB of mem-
ory, and its voxelized representation consumed 21 MB. Voxeliza-
tion time on a 250 MHz SGI Octane was 70 sec. A closeup shot of
a dynamic object (a teapot) maneuvering through a portion of this
environment is shown in Figure 10.

The dynamic object for much of our testing was a small teapot
(75 mm from spout to handle), logically representing a small tool
or part, which when voxelized at 5 mm resolution yielded 380
points in its pointshell for the PC haptics processor. The dedicated
haptics processor of the two-processor Octane system was able to
achieve a maximum of 600 points for the same object.

Figure 10. Dynamic object in the test environment.

6.4 Preliminary Test Results
We haptically rendered the motion of the teapot through the

simulated aircraft geometry, paying particular attention to motion
behavior and quality of force feedback. We evaluated the feeling
of free space as well as resting and sliding contact (with the force
field). In an attempt to explore the system’s limits, we sought to
induce haptic instabilities and exact-surface interpenetrations by
trapping the teapot in congested areas and by staging high-speed
collisions.

Subjectively, the observed free-space behavior was indistin-
guishable from power-off operation, for translational as well as
rotational motion. Sliding behavior on a flat or slowly curving sur-
face was notably smooth. A relatively slight surface roughness was
felt when sliding in contact with two surfaces. Torques were

clearly felt. We were able to move the teapot easily through con-
gested areas where combinations of rotation and translation were
required to find a path through the area, similar to path planning
for maintenance access.

Throughout such investigation, a 1 kHz update requirement was
maintained. We were unable to cause the teapot to pass completely
through any of the environment surfaces, including relatively thin
ones, even at maximum collision speed. There were remarkably
few potential exact-surface interpenetration events. One natural
metric is the ratio of penetration to collision events (PR) defined as
the number of haptic frames registering one or more potential
exact-surface penetrations divided by the number of haptic frames
registering contact with the force-field layer (including penetration
events).

We evaluated the benefit of the pre-contact braking force by
selectively disabling it and re-measuring PR. The effect of this was
fewer exact-surface penetrations, as shown in Table 2.

All such work was done with the haptic device limited to 15 N
force and 0.1 Nm torque. At these limits we found the device to be
stable for every possible type of motion.

7. CONCLUSIONS AND FUTURE WORK
The voxel-based approach to haptic rendering presented here

enables 6-DOF manipulation of a modestly sized rigid object
within an arbitrarily complex environment of static objects. The
size of the moving object (i.e., the number of points in the point
shell) is limited by the processor speed, while the size of the static
environment is limited by memory. A force model was described
in which the interaction of the moving object’s surface normals
with the static voxmap was used to create haptic forces and
torques. Results of testing an implementation of our approach on a
6-DOF haptic device showed that the performance appears to be
acceptable for maintenance and assembly task simulations, pro-
vided that the task can tolerate voxel level accuracy.

It is apparent to us that we are just beginning to discover all the
potential uses for the voxmap sampling method in haptics and
other fields. Our primary focus will be to enhance the performance
of the system for use in complex environments.

The voxel sampling method can be easily parallelized, using
clones of the static environment and cyclic decomposition of the
dynamic object’s pointshell. We intend to take advantage of this by
investigating parallel computing environments, specifically low-
latency cluster computing. This will allow haptic simulation of
larger and more complex dynamic objects.

Another area of interest that we are pursuing involves using
wider-bit-width voxel types (4-bit, 8-bit, etc.). This enhancement
will allow for an extended force field range to model compliance
when simulating varying material types.

We also intend to continue investigating solutions to problem-
atic situations, like the wedge problem and tunnelling (moving
through a thin object without detecting collision), as well as fur-
ther reducing non-passivity.

Table 2. Penetration ratio

Test Braking Penetrations Contacts PR

1 No 70 69,000

2 Yes 6 108,000

1.0 10 3–×

6 10 5–×

Acknowledgments
The authors express their thanks to colleagues Karel Zikan for

the idea of voxel sampling, Jeff A. Heisserman for the idea of nor-
mal-aligned force direction, Robert A. Perry for creating simulated
aircraft geometry, and Elaine Chen of SensAble Technologies, Inc.
for literature research and technical information about the PHAN-
TOM device and GHOST software support.

References

[1] Adachi, T., Kumano, T., Ogino, K., “Intermediate Representa-
tions for Stiff Virtual Objects,”Proc. IEEE Virtual Reality
Annual Intl. Symposium, pp. 203-210, 1995.

[2] Adams, R.J. and Hannaford, B., “A Two-Port Framework for
the Design of Unconditionally Stable Haptic Interfaces,”Proc.
IROS, Anaheim CA, 1998.

[3] Avila, R.S. and Sobierajski, L.M., “A Haptic Interaction
Method for Volume Visualization,”Proc. Visualization’96, pp.
197-204, Oct. 1996.

[4] Baraff, D., “Curved Surfaces and Coherence for Non-Pene-
trating Rigid Body Simulation,”Computer Graphics (proc.
SIGGRAPH 90), vol 24, no. 4, pp. 19-28, Aug. 1990.

[5] Baraff, D., “Fast Contact Force Computation for Nonpenetrat-
ing Rigid Bodies,” Computer Graphics (proc. SIGGRAPH
94),pp. 23-42, July 1994.

[6] Berkelman, P.J. and Hollis, R.L., “Dynamic performance of a
hemispherical magnetic levitation haptic interface device,” in
SPIE Int. Symposium on Intelligent Systems and Intelligent
Manufacturing, (Proc. SPIE), Vol. 3602, Greensburg PA,
Sept. 1997.

[7] Brooks, F.P., Ouh-Young, M., Batter, J.J., Jerome, P., “Project
GROPE — Haptic Displays for Scientific Visualization,”
Computer Graphics (proc. SIGGRAPH 90), pp. 177-185,
Aug. 1990.

[8] Cohen, J.D., Lin, M.C., Manocha, D., and Ponamgi, M.K., “I-
COLLIDE: An Interactive and Exact Collision Detection Sys-
tem for Large-Scale Environments,”Computer Graphics
(proc. SIGGRAPH 95), pp. 189-196, Aug. 1995.

[9] Clover, C.L.,Control system design for robots used in simu-
lating dynamic force and moment interaction in virtual reality
applications,Ph.D. thesis, Iowa State University, Ames, IA,
Apr. 1996.

[10]Colgate, J.E., Grafing, P.E., Stanley, M.C., and Schenkel, G.,
“Implementation of Stiff Virtual Walls in Force-Reflecting
Interfaces,”Proc. IEEE Virtual Reality Annual International
Symposium (VRAIS), Seattle, WA, pp. 202-208, Sept., 1993.

[11]Craig, J.J.,Introduction to Robotics: Mechanics and Control.
2nd ed., Addison-Wesley, Reading MA, 1989.

[12]Garcia-Alonso, A., Serrano, N., and Flaquer J., “Solving the
Collision Detection Problem,”IEEE Computer Graphics and
Applications, vol. 14, no. 3, pp. 36-43, 1994.

[13]Gottschalk, S., Lin, M.C., Manocha, D., “OBBTree: A Hierar-
chical Structure for Rapid Interference Detection,”Computer
Graphics (proc. SIGGRAPH 96), pp. 171-180, Aug. 1996.

[14]Jackins, C., and Tanimoto, S.L., “Oct-Trees and Their Use in
Representing Three-Dimensional Objects,”Computer Graph-
ics and Image Processing, vol. 14, no. 3, pp. 249-270, 1980.

[15]Kaufman, A., Cohen, D., Yagle, R., “Volume Graphics,”IEEE
Computer, 26(7), pp. 51-64, July, 1993.

[16]Logan, I.P., Wills D.P.M., Avis N.J., Mohsen, A.M.M.A., and
Sherman, K.P., “Virtual Environment Knee Arthroscopy
Training System,”Society for Computer Simulation, Simula-
tion Series, vol. 28, no. 4, pp. 17-22, 1996.

[17]Mark, W.R., Randolph, S.C., Finch, M., Van Verth, J.M., and
Taylor II, R.M., “Adding Force Feedback to Graphics Sys-
tems: Issues and Solutions,”Computer Graphics (proc. SIG-
GRAPH 96),pp. 447-452, Aug. 1996.

[18]Massie, T.H. and Salisbury, J.K., “The Phantom Haptic Inter-
face: A Device for Probing Virtual Objects,”Proc. of the
ASME International Mechanical Engineering Congress and
Exhibition, Chicago, pp. 295-302, 1994.

[19]Mirtich, B. and Canny, J., “Impulse-based Dynamic Simula-
tion.” Proceedings of Workshop on Algorithmic Foundations
of Robotics, Feb. 1994.

[20]OpenGL Architecture Review Board, Woo, M., Neider, J., and
Davis, T. OpenGL Programming Guide, 2nd, Addison-Wes-
ley, Reading, MA, 1997.

[21]Ruspini, D.C., Kolarov, K., and Khatib, O., “The Haptic Dis-
play of Complex Graphical Environments,”Computer Graph-
ics (Proc. SIGGRAPH 97), pp. 345-352, Aug. 1997.

[22]Sclaroff, S. and Pentland, A., “Generalized Implicit Functions
for Computer Graphics,”Computer Graphics (Proc. SIG-
GRAPH 96), pp. 247-250, July, 1991.

[23]Witkin A. and Welch, W., “Fast Animation and Control of
Nonrigid Structures,”Computer Graphics (Proc. SIGGRAPH
90), pp. 243-252, Aug. 1990.

[24]Yokokohji, Y., Hollis, R.L., and Kanade, T., “What you can
see is what you can feel. Development of a visual/haptic inter-
face to virtual environment,”Proc. IEEE Virtual Reality
Annual Int. Symposium (VRAIS), pp. 46-53, Mar., 1996.

[25]Zilles, C.B. and Salisbury, J.K., “A Constraint-based God-
object Method for Haptics Display,”Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Pittsburgh, PA, pp.
146-151, 1995.

