
Interpolating Nets Of Curves By Smooth Subdivision Surfaces

Adi Levin�

Tel Aviv University

Abstract

A subdivision algorithm is presented for the computation and repre-
sentation of a smooth surface of arbitrary topological type interpo-
lating a given net of smooth curves. The algorithm belongs to a new
class of subdivision schemes calledcombined subdivision schemes.
These schemes can exactly interpolate a net of curves given in any
parametric representation. The surfaces generated by our algorithm
areG2 except at a finite number of points, where the surface isG1

and has bounded curvature. The algorithm is simple and easy to
implement, and is based on a variant of the famous Catmull-Clark
subdivision scheme.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—
Curve,surface, solid and object modeling.

Additional Keywords: Subdivision, Interpolation, Combined
Subdivision schemes, Net of curves.

1 INTRODUCTION

Subdivision schemes provide efficient algorithms for the design,
representation and processing of smooth surfaces of arbitrary topo-
logical type. Their simplicity and their multiresolution structure
make them attractive for applications in 3D surface modeling, and
in computer graphics [2, 4, 5, 6, 11, 18].

A common task in surface modeling is that of interpolating a
given net of smooth curves by a smooth surface. A typical solu-
tion, using either subdivision surfaces or NURBS surfaces (or other
kinds of spline surfaces), is based on establishing the connection
between parts of the control net which defines the surface, and cer-
tain curves on the surface. For example, the boundary curves of
NURBS surfaces are NURBS curves whose control polygon is the
boundary polygon of the NURBS surface control net. Hence, curve
interpolation conditions are translated into conditions on the control
net. Fairing techniques [5, 15, 17] can be used to calculate a control
net satisfying those conditions. Using subdivision surfaces, this can
be carried out, in general, for given nets of arbitrary topology (see
[12, 13]).

However, the curves that can be interpolated using that approach
are restricted by the representation chosen for the surface. NURBS
surfaces are suitable for interpolating NURBS curves; Doo-Sabin
surfaces can interpolate quadratic B-spline curves [12, 13]; Other

�adilev@math.tau.ac.il, http://www.math.tau.ac.il/~adilev

Figure 1: Interpolation of a net of curves

kinds of subdivision surfaces can be shown to interpolate specific
kinds of subdivision curves. Furthermore, interpolation of curves
that have small features requires a large control net, making the
fairing process slower and more complicated.

This paper presents a new subdivision scheme specially designed
for the task of interpolating nets of curves. This scheme falls into
the category ofcombined subdivision schemes[7, 8, 10], where the
underlying surface is represented not only by a control net, but also
by given parametric curves (or in general, given interpolation con-
ditions or boundary conditions). The scheme repeatedly applies a
subdivision operator to the control net, which becomes more and
more dense. In the limit, the vertices of the control net converge to
a smooth surface. Point-wise evaluations of the given curves par-
ticipate in every iteration of the subdivision, and the limit surface
interpolates the given curves, regardless of their representation.

Figure 1 illustrates a surface generated by our algorithm. The
surface is defined by an initial control net that consists of 11 ver-
tices, and by a net of intersecting curves, shown in green. The edges
of the control net are shown as white lines.

The combined subdivision scheme presented in this paper is
based on the famous Catmull-Clark subdivision scheme. Our al-
gorithm applies Catmull-Clark’s scheme almost everywhere on the
control net. The given curves affect the control net only locally, at
parts of the control net that are near the given curves.

The motivation behind the specific subdivision rules, and the
smoothness analysis of the scheme are presented in [9]. In the
following sections, we describe Catmull-Clark’s scheme, and we
present the details of our scheme.

2 CATMULL-CLARK’S SCHEME

Camull Clark’s subdivision scheme is defined over closed nets of
arbitrary topology, as an extension of the tensor product bi-cubic
B-spline subdivision scheme (see [1, 3]). Variants of the original
scheme were analyzed by Ball and Storry [16]. Our algorithm em-

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page or initial screen of the
document. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper can be found in the "papers/levin" directory.



ploys a variant of Catmull-Clark’s scheme due to Sabin [14], which
generates limit surfaces that areG2 everywhere except at a finite
number of irregular points. In the neighborhood of those points the
surface curvature is bounded. The irregular points come from ver-
tices of the original control net that have valency other than 4, and
from faces of the original control net that are not quadrilateral.

A netN = (V;E) consists of a set of verticesV and the topo-
logical information of the netE, in terms of edges and faces. A net
is closed when each edge is shared by exactly two faces.

v

f

e

v(f)

v(e)
v(v)

Figure 2: Catmull-Clark’s scheme.

The verticesV 0 of the new netN 0 = (V 0; E0) are calculated by
applying the following rules onN (see figure 2):

1. For each old facef , make a new face-vertexv(f) as the
weighted average of the old vertices off , with weightsWn

that depend on the valencyn of each vertex.

2. For each old edgee, make a new edge-vertexv(e) as the
weighted average of the old vertices ofe and the new face ver-
tices associated with the two faces originally sharinge. The
weightsWn (which are the same as the weights used in rule
1) depend on the valencyn of each vertex.

3. For each old vertexv, make a new vertex-vertexv(v) at the
point given by the following linear combination, whose coef-
ficients�n; �n; 
n depend on the valencyn of v:

�n� (the centroid of the new edge vertices of the edges meet-
ing at v) +�n� (the centroid of the new face vertices of the
faces sharing those edges) +
n � v.

The topologyE0 of the new net is calculated by the following
rule:

For each old facef and for each vertexv of f , make a new
quadrilateral face whose edges joinv(f) andv(v) to the edge
vertices of the edges off sharingv (see figure 2).

The formulas for the weights�n; �n; 
n andWn are given in
the appendix.

3 THE CONTROL NET

Our subdivision algorithm is defined both on closed nets and on
open nets. In the case of open nets, we make a distinction be-
tweenboundary verticesandinternal vertices(and betweenbound-
ary edgesandinternal edges). The control net that is given as input
to our scheme consists of vertices, edges, faces and given smooth
curves. We assume that these areC2 parametric curves. An edge
which is associated with a segment of a curve, is called ac-edge.
Both of its vertices are calledc-vertices. All the other edges and
vertices areordinary verticesandordinary edges.

An Inward corner vertexAn outward corner vertex

A boundary intersection
vertex

An internal intersection vertex A regular internal c-vertex

A regular boudnary
c-vertex

Figure 3: The different kinds of c-vertices. C-edges are marked by
bold curved lines. Usual edges are shown as thin lines.

In case two c-edges that share a c-vertex are associated with two
different curves, the c-vertex is associated with two curves, and we
call it an intersection vertex. Everyc-vertexis thus associated with
a parameter value on a curve, whileintersection verticesare asso-
ciated with two curves and two different parameter values. In case
of intersection vertices, we require that the two curves intersect at
those parameter values.

Every c-edgecontains a pointer to a curvec, and to a segment
on that curve designated by a parameter interval[u0; u1]. The ver-
tices of that edge are associated with the pointsc(u0) and c(u1)
respectively. We require that in the original control net, the param-
eter intervals be all of constant length for all the c-edges associated
with a single curvec, namelyju1 � u0j = const. In order to fulfill
this requirement, the c-vertices along a curvec can be chosen to be
evenly spaced with respect to the parameterization of the curvec,
or the curvec can be reparameterized appropriately such that the
c-vertices ofc are evenly spaced with respect to the new parameter-
ization.

The restrictions on the control net are that every boundary edge
is a c-edge (i.e. the given net of curves contains all the boundary
curves of the surface), and that we allow only the following types
of c-verticesto exist in the net (see figure 3):

A regular internal c-vertex A c-vertex with four edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and two ordinary edges from opposite sides of the
curve.

A regular boundary c-vertex A c-vertex with 3 edges emanating
from it: Two boundary edges that are associated with the same
curve, and one other ordinary internal edge.



An internal intersection vertex A c-vertex with 4 edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and two other c-edges that are associated with a second
curve, from opposite sides of the first curve.

A boundary intersection vertex A c-vertex with 3 edges emanat-
ing from it: Two c-edges that are associated with the same
curve, and another c-edge associated with a different curve.

An inward corner vertex A c-vertex with 2 c-edges emanating
from it, each associated with a different curve.

An outward corner vertex A c-vertex with 4 edges emanating
from it: Two consequent c-edges that are associated with two
different curves and two ordinary edges.

In particular, we do not handle more than two curves intersecting
at one point.

In our algorithm, there is an essential difference between c-
vertices and ordinary vertices: While the locationp(v) of ordinary
vertices of the original control net is determined by the designer,
the location of c-vertices is calculated in a preprocessing stage of
the algorithm (the exact procedure is described inx4).

Every c-vertexv which is associated with a parameter valueu on
the curvec, has associated with it a three-dimensional vectord(v),
which determines the second partial derivative of the limit surface
at the pointc(u) in the cross-curve direction (The differentiation is
made with respect to a local parameterization that is induced by the
subdivision process. The cross-curve direction at a c-vertexv is the
limit direction of the ordinary edge emanating forv). We call the
valued(v) the cross-curve second derivativeassociated with the
vertexv.

Every intersection vertexv has associated with it two three-
dimensional vectorsd1(v); d2(v) that correspond to the two curves
c1; c2 that are associated withv. At the intersection between two
curves, the surface second derivatives in the two curve directions
are determined by the curves, therefore the user does not have con-
trol over the cross-curve second derivatives there. Their initializa-
tion procedure is described below.

For c-vertices that are not intersection vertices, the vectorsd(v)
in the initial control net are determined by the designer and they
affect the shape of the limit surface. Several ways of initializing the
valuesd(v) are discussed inx5.

v

c(u )1
c(u )2

c(u)
v

c(u )1
c(u )2

Figure 4: For each c-vertexv that is associated with a curvec we
define the second difference�2c(v).

Throughout the scheme we apply second difference operators to
the given curves. Letv denote a c-vertex associated with a curve
c. We define thesecond difference ofc at v, denoted by�2c(v) as
follows (see figure 4): Ifv is associated with the end of the curve
c, then there is a single c-edge emanating fromv that is associated
with the parameter interval[u1; u2] on c. In this case

�2c(v) = 4c(u1)� 8c
�
u1 + u2

2

�
+ 4c(u2):

In case there are two c-edges emanating fromv that are associated
with the parameter intervals[u1; u]; [u; u2] on c, we define

�2c(v) = c(u1)� 2c(u) + c(u2):

The valuesd1(v); d2(v) at the intersection vertexv which is as-
sociated with two curvesc1 andc2, are initialized by

d1(v) = �2c1(v)

d2(v) = �2c2(v): (1)

We say thatd1(v) is the cross-curve second derivative associated
with v with respect to the curvec2. Similarly, d2(v) is the cross-
curve second derivative associated withv with respect to the curve
c1.

4 THE COMBINED SCHEME

In the preprocessing stage of our algorithm, we calculatep(v) for
every c-vertex of the original control net, according to the following
rules: In casev is an intersection vertex which is associated with the
point c(u), its location is given by

p(v) = c(u)�
d1(v) + d2(v)

6
: (2)

In casev is not an intersection vertex, its location is given by

p(v) = c(u)�
�2c(v) + d(v)

6
: (3)

From (2) and (3) it is clear why the c-vertices do not necessarily
lie on the given curves. Notice, for example, in figure 8 how the
boundary vertices of the original control net are ’pushed away’ from
the given boundary curve, due to the term�2c(v) in (3).

Each iteration of the subdivision algorithm consists of the fol-
lowing steps: First, Catmull-Clark’s scheme as described inx2 is
used to calculate the new ordinary vertices. Next, the new c-vertices
are calculated (this includes all the boundary vertices). Finally, we
perform local ’corrections’ on new ordinary vertices that are neigh-
bors of c-vertices.

4.1 Calculation Of Ordinary Vertices

Step 1 of the combined scheme creates the new control net topol-
ogy, and calculates all the new ordinary vertices, by applying
Catmull-Clark’s scheme. Since Catmull-Clark’s scheme was de-
signed for closed nets, we adapt it a little bit near the surface bound-
aries, by considering the boundary vertices to have valency 4 when
calculating new ordinary vertices that are affected by the boundary
vertices.

4.2 Calculation Of C-Vertices

In step 2, the data associated with the new c-vertices is calculated,
by the following procedure:

Let e denote a c-edge on the old control net, which corresponds
to the parameter interval[u0; u1] of the curvec. Let v0; v1 denote
the vertices ofe. We associate the vertexv(e) with c

�
u0+u1

2

�
, and

we calculate the new cross-curve second derivative forv(e) by the
following simple rule:

d(v(e)) =
d(v0) + d(v1)

8
: (4)

In casev0 or v1 are intersection vertices (and therefore, contain two
cross-curve second derivative vectorsd1 andd2), the one taken in
(4) should be the cross-curve second derivative with respect to the
curvec.

Let v denote a c-vertex on the old control net. We associatev(v)
with the same curve and the same parameter value on that curve,



v

v

v

1

2

Figure 5: Local corrections near a regular internal c-vertex

v5

v
v3

v2

v4v6

v

v1

7 c
c1

2

Figure 6: Local corrections near an outward corner.

asv had. In casev is an intersection vertex, we setd1(v(v)) and
d2(v(v)) by (1). Otherwise, the new cross-curve second derivative
atv(v) is inherited fromv by the following rule:

d(v(v)) =
d(v)

4
: (5)

Step 2 is completed by calculating the location of every c-vertex
using (2) and (3).

As the subdivision iterations proceed, the valuesd(v) and
�2C(v) decay at a rate of4�k, wherek is the level of subdivision.
Therefore the c-vertices converge to points on the curves, which
provides the interpolation property (see figure 8).

4.3 Local Corrections Near C-Vertices

Step 3 performs local modifications to the resulting control net near
regular internal c-vertices, and near outward corners. Ordinary ver-
tices that are neighbors of regular internal c-vertices are recalcu-
lated by the following rule: Letv denote a regular internal c-vertex,
and letv1 andv2 denote its two neighboring ordinary vertices (see
figure 5). Letp(v1); p(v2) denote the locations ofv1 andv2 that
resulted from step 1 of the algorithm. Letp(v) denote the location
of v that resulted from step 2 of the algorithm. We calculate the
correctedlocationsp̂(v1); p̂(v2) by

p̂(v1) = p(v) +
d(v)

2
+
p(v1)� p(v2)

2
;

p̂(v2) = p(v) +
d(v)

2
+
p(v2)� p(v1)

2
: (6)

A different correction rule is applied near outward corner ver-
tices. Letv denote an outward corner vertex, and letv1; : : : ; v7
denote its neighboring vertices (see figure 6). The vertexv corre-
sponds to the curvec1 at the parameter valueu1, and to the curve
c2 at the parameter valueu2. In particular,c1(u1) = c2(u2).

Let p(v); p(v1); : : : ; p(v7) denote the locations ofv; v1; : : : ; v7
that resulted from steps 1 and 2 of the algorithm. Leta be the
vectora = 1

4
(1;�1;�1; 2;�1;�1; 1). We calculate the corrected

locations forv2; : : : ; v6 by the following rules:

t =

7X
i=1

aip(vi);

p̂(v3) =
1

3
p(v3) +

2

3

�
2p(v)� p(v7) + �2c1(v)

�
;

p̂(v5) =
1

3
p(v5) +

2

3

�
2p(v)� p(v1) + �2c2(v)

�
:

p̂(v2) =
1

3
p(v2) +

2

3
(p̂(v3) + p(v1)� p(v)� t)

p̂(v6) =
1

3
p(v6) +

2

3
(p̂(v5) + p(v7)� p(v)� t)

p̂(v4) =
1

3
p(v4) +

2

3
(p̂(v5) + p̂(v3)� p(v) + t) (7)

There are cases when a single vertex has more than one cor-
rected location, for example an ordinary vertex which is a neighbor
of several c-vertices. In these cases we calculate all the corrected
locations for such a vertex, using (6) or (7) and define the new lo-
cation of that vertex to be the arithmetic mean of all the corrected
locations. Situations like these occur frequently at the first level of
subdivision. The only possibility for a vertex to have more than one
corrected location after the first subdivision iteration, is near inter-
section vertices; The vertex always has two corrected locations, and
its new location is taken to be their arithmetic mean.

5 DISCUSSION

The cross-curve second derivativesd(v) of the original control net
as determined by the designer, play an important role in determin-
ing the shape of the limit surface. As part of constructing the initial
control net, a 3D vectord(v) should be initialized by the designer,
for everyregular internal c-vertexand for everyregular boundary
c-vertex.

In case the initial control net contains only intersection vertices
(such as the control net in figure 1), (1) determines all the cross-
curve second derivatives. Otherwise they can be initialized by any
kind of heuristic method.

We suggest the following heuristic approach to initialized(v)
in casev is a regular internal c-vertex: Letv be associated with
the curvec at the parameter valueu, and letv1; v2 denote the two
ordinary vertices that are neighbors ofv (see figure 5). It seems
reasonable to calculated(v) such that

p(v1) + p(v2)� 2p(v) = d(v);

because we know that this relation holds in the limit. Sincep(v) it-
self depends ond(v) according to (3), we get the following formula
for d(v):

d(v) =
3

2
(p(v1) + p(v2))� 3c(u) +

1

2
�2c(v): (8)

In casev is a regular boundary c-vertex, which lies between
two boundary intersection verticesv1; v2 (see figure 7), one should
probably consider the second derivatives atv1; v2 when determin-
ing d(v). The following heuristic rule can be used:

d(v) =
�2c1(v) + �2c2(v)

2
; (9)

wherev1; v2 are associated withc1(u1) andc2(u2) respectively.



v

v

v 12

c

c

2

1

Figure 7: A regular boundary c-vertex between two boundary inter-
section vertices

The are many cases when the choiced(v) = 0 generates the
nicest shapes whenv is a regular boundary c-vertex. Recall that the
natural interpolating cubic spline has zero second derivative at its
ends.

Other ways of determiningd(v) may employ variational princi-
ples. One can choosed(v) such as to minimize a certain fairness
measure of the entire surface.

6 CONCLUSIONS

With combined subdivision schemesthat extend the notion of the
known subdivision schemes, it is simple to generate surfaces of ar-
bitrary topological type that interpolate nets of curves given in any
parametric representation. The scheme presented in this paper is
easy to implement and generates nice looking and almostG2 sur-
faces, provided that the given curves areC2. These surfaces are
suitable for machining purposes since they have bounded curvature.

The current algorithm is restricted to nets of curves where no
more than two curves intersect at one point, which is a consider-
able restriction for many applications. However, we believe that the
basic idea of applying subdivision rules that explicitly involve the
given curve data, and the general theory of combined subdivision
schemes can be extended to handle nets where three or more curves
intersect at one point, as well as nets with irregular c-vertices.

The proposed scheme can work even if the given curves are not
C2, since it only uses point-wise evaluations. In case the curves are
C1, for example, the limit surface will be onlyG1. Moreover, in
case a given curve has a local ’fault’, and otherwise it isC2, the
local ’fault’ will have only a local effect on the limit surface.

Creases in the limit surface can be introduced along a given curve
by avoiding the corrections made to vertices near that curve in step
3 of the subdivision. This causes the curve to act as a boundary
curve to the surface on both sides of the curve.

Concerning the computation time, notice that most of the compu-
tational work in each iteration is spent in the first step of the subdi-
vision iteration, namely, in applying Catmull-Clark’s scheme. The
local corrections are very simple, and apply only near c-vertices
(whose number, after a few iterations, is much lower than that of
the ordinary vertices).

Using the analysis tools we have developed in [7, 8], other com-
bined subdivision schemes can be constructed to perform other
tasks, such as the generation of surfaces that satisfy certain bound-
ary conditions, including tangent plane conditions [10], and even
curvature continuity conditions.

Figures 8-19 show several surfaces created by our algorithm.

Acknowledgement

This work is sponsored by the Israeli Ministry of Science. I thank
Nira Dyn for her guidance and many helpful comments, and Peter

Schröder for his constant encouragement and advice.

References

[1] E. Catmull and J. Clark. Recursively generated b-spline sur-
faces on arbitrary topological meshes.Computer Aided De-
sign, 10:350–355, 1978.

[2] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in
character animation. InSIGGRAPH 98 Conference Proceed-
ings, Annual Conference Series, pages 85–94. ACM SIG-
GRAPH, 1998.

[3] D. Doo and M. Sabin. Behaviour of recursive division surface
near extraordinary points.Computer Aided Design, 10:356–
360, 1978.

[4] N. Dyn, J. A. Greogory, and D. Levin. A butterfly subdivision
scheme for surface interpolation with tension control.ACM
Transactions on Graphics, 9:160–169, 1990.

[5] M. Halstead, M. Kass, and T. DeRose. Efficient, fair inter-
polation using catmull-clark sutfaces. InSIGGRAPH 93 Con-
ference Proceedings, Annual Conference Series, pages 35–44.
ACM SIGGRAPH, 1993.

[6] L. Kobbelt, T. Hesse, H. Prautzsch, and K. Schweizerhof.
Interpolatory subdivision on open quadrilateral nets with ar-
bitrary topology. Computer Graphics Forum, 15:409–420,
1996. Eurographics ’96 issue.

[7] A. Levin. Analysis of combined subdivision schemes 1. in
preparation, available on the web at
http://www.math.tau.ac.il/˜ adilev, 1999.

[8] A. Levin. Analysis of combined subdivision schemes 2. in
preparation, available on the web at
http://www.math.tau.ac.il/˜ adilev, 1999.

[9] A. Levin. Analysis of combined subdivision schemes for the
interpoation of curves. SIGGRAPH’99 CDROM Proceed-
ings, 1999.

[10] A. Levin. Combined subdivision schemes for the design of
surfaces satisfying boundary conditions. To appear in CAGD,
1999.

[11] C. Loop. Smooth spline surfaces based on triangles. Master’s
thesis, University of Utah, Department of Mathematics, 1987.

[12] A. H. Nasri. Curve interpolation in recursively generated b-
spline surfaces over arbitrary topology.Computer Aided Ge-
ometric Design, 14:No 1, 1997.

[13] A. H. Nasri. Interpolation of open curves by recursive sub-
division surface. In T. Goodman and R. Martin, editors,The
Mathematics of Surfaces VII, pages 173–188. Information Ge-
ometers, 1997.

[14] M. Sabin. Cubic recursive division with bounded curvature.
In P. J. Laurent, A. le Mehaute, and L. L. Schumaker, editors,
Curves and Surfaces, pages 411–414. Academic Press, 1991.

[15] J. Schweitzer.Analysis and Applications of Subdivision Sur-
faces. PhD thesis, University of Washington, Seattle, 1996.

[16] D. J. T. Storry and A. A. Ball. Design of an n-sided surface
patch.Computer Aided Geometric Design, 6:111–120, 1989.



[17] G. Taubin. A signal processing approach to fair surface de-
sign. In Robert Cook, editor,SIGGRAPH 95 Conference Pro-
ceedings, Annual Conference Series, pages 351–358. ACM
SIGGRAPH, Addison Wesley, August 1995. held in Los An-
geles, California, 06-11 August 1995.

[18] D. Zorin, P. Schr¨oder, and W. Sweldens. Interpolating subdi-
vision for meshes with arbitrary topology.Computer Graph-
ics Proceedings (SIGGRAPH 96), pages 189–192, 1996.

Appendix

We present the procedure for calculating the weights mentioned in
x2, as formulated by Sabin in [14].

Let n > 2 denote a vertex valency. Letk := cos(�=n). Let x
be the unique real root of

x3 + (4k2 � 3)x� 2k = 0;

satisfyingx > 1. Then

Wn = x2 + 2kx� 3; (10)

�n = 1;


n =
kx+ 2k2 � 1

x2(kx+ 1)
;

�n = �
n:

n Wn 
n

3 1.23606797749979. . . 0.06524758424985. . .
4 1 0.25
5 0.71850240323974. . . 0.40198344690335. . .
6 0.52233339335931. . . 0.52342327689253. . .
7 0.39184256502794. . . 0.61703187134796. . .

Table 1: The weights used in Sabin’s variant of Catmull-Clark’s
subdivision scheme

The original paper by Sabin [14] contains a mistake: the for-
mulas for the parameters�; � and
 that appear inx4 there, are
� := 1; 
 := ��.

The weightsWn and
n for n = 3; : : : ; 7 are given in table 1.

Figure 8: Three iterations of the algorithm. We have chosen
d(v) = 0 for every c-vertexv, which results in parabolic points
on the surface boundary.

Figure 9: The limit surface of the iterations shown in figure 8

Figure 10: A 5-sided surface generated from a simple control net,
with zerod(v) for all c-verticesv. Our algorithm easily fills arbi-
trary N-sided patches.



v1
v2

Figure 11: A surface with an outward corner. We used (8) to calcu-
lated(v2), and setd(v1) = 0.

Figure 12: A surface with non smooth boundary curves, and zero
cross-curve second derivatives

Figure 13: A surface with non smooth boundary curves, and zero
cross-curve second derivatives

Figure 14: A closed surface. The cross curve second derivatives for
regular internal c-vertices were calculated using (9).

Figure 15: A Torus-like surface, from a net of circles.

Figure 16: Introducing small perturbations to the given curves re-
sults in small and local perturbations of the limit surface. Notice
that the original control net does not contain the information of
the small perturbations. These come directly from the data of the
curves.



Figure 17: Small perturbations to the given curves result in small
and local deformation of the limit surface.

Figure 18: A surface constructed from two given sections. The
cross curve second derivatives for the regular internal c-vertices
were calculated using (8). For boundary vertices, we tookd(v) =
0.

Figure 19: the same surface as in figure 18 after introducing small
perturbations in the section curves.


