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Abstract

We analyze the smoothness of several new subdivision schemes that are spe-
cially designed for the task of interpolating curves by smooth surfaces. These
are instances of a new kind of subdivision schemes caltenbined subdivision
schemeswhich combine operations on control points with operations on functions.

The analysis is done in the regular setting, where subdivision schemes are de-
fined over the bivariate integers. Due to the locality of those schemes, their smooth-
ness guarantees the smoothness of the surfaces generated by the subdivision algo-
rithm presented in [7], which is defined over control nets of arbitrary topological

type.
The general theory of combined subdivision schemes, developed in [5, 6], pro-

vides the basis for our analysis.

1 Introduction

In [7] we present a subdivision scheme generating limit surfaces which interpolate
given nets of possibly intersecting curves. The basic idea there, is to associate edges
of the control net with segments of the given curves, and then to apply different refine-
ment rules near those edges (calleddgey while applying Catmull Clark’s scheme
everywhere away from them.

Due to the restrictions made on the initial control net in [7], we consider the sub-
division process near the c-edges to be uniform, in the sense that it can be described
(locally) as a scheme over the bivariate integers. In this setting, the given curves are
replaced by functions given over lines in the parametric plane, while the vertices of the
control net are replaced by control points associated with the bivariate integers. Notice
that theG? smoothness of the limit surface away from the given curves is guaranteed
by the smoothness of Catmull-Clark’s scheme.

The analysis is made in the functional case, i.e. we study the existence and smooth-
ness of scalar limit functions. Since the scheme in [7] applies the same subdivision
rules to the three coordinates of each vertex, the existence and smoothness of the limit
functions guarantee the existence and smoothness of limit surfaces.



In [7], we restrict the control net by requiring that the control net near eaahrtex
(i.e. a vertex associated with a point on an interpolated curve) admits to one of six pos-
sible configurations. We divide the c-verticesrégular boundary c-vertices, regular
internal c-vertices, internal intersection vertices, inward corner vertices, boundary in-
tersection verticeandoutward corner verticesFor the exact definition of those terms,
we refer the reader to [7]. The smoothness analysis considers each of the six cases
separately.

The paper is organized as follows: Section 2 defines uniform subdivision schemes.
In §3 we define combined subdivision schemes. §4nwe discuss Catmull-Clark’s
scheme, which is the basis of all our schemes, arffbive summarize the relevant
theorems from [5, 6] that are needed for the smoothness analysis. Sections 6-11 an-
alyze the six cases mentioned above. The relevance of this analysis to the combined
subdivision scheme defined in [7] is discusseg18.

2 Bivariate uniform subdivision schemes

GivenX C Z2 leti(X) denote all the function® : X — R, letl.(X) denote the
Banach space of all the functio#s € [(X) such thal|P||., < oo, where||P|| is
the supremum ofP| on X. Letiy(X) C I (X) denote the space of all the functions
P € o (X) with finite support.

A bivariate uniform subdivision operator is a linear operafor 1(Z?) — 1(Z?)
which consists of a mask e [(Z?) and is defined by

(SP)(a) = > a(a—28)P(B), VaeZ. (1)
Bez2
Itis easily seen that for alP, Q € I(Z?)
P € ly(2?) = S(P) € 1y(Z?), (2)

and for any3 € 7>
Pla+p8) =Q(a), Ya€Z?®= (SP)(a+28)=(5Q)(a), VYaeZ? (3)
A subdivision schem§ is termeduniformly convergentif for every P € 1y(Z?), there
exists a compactly supported functibhe C(IR?) (called the limit function) such that
lim ||S"P—F(27™) ||OO7ZQ =0. (4)

n—o0

We denoteS>°P = F.
We say thatS is C™ if S is uniformly convergent, and for ever}, S*P €
C™(R?). We defined = S5°°4, whered; is defined, for3 € Z2, by
_J1 a=p
O(@) = {0 otherwise

® is called theS-refinable function. The limit functio$>° P can be expressed as a
sum of integer translates &f

S®P =3 Pa)®(--a)= Y (S*P)(a)2(2"--a), Vk>0. (5)

Q€Z? a€Z?



For convenience, we assume thats supported on a square centered at the origin,
namely that
a(a) =0, VYae€Z?\{-w,.,w}, (6)

for somew € Z.. Itis shown in [2] that the support @ is contained in the convex
hull of the support of the mask therefore

®(z) =0, Vr¢Q=[-ww? (7)

The limit functions of subdivision schemes are analyzed in many papers (see e.g [2, 4]).
Throughout the paper we use standard multi-index notatiors¥oj = (j, j2) €

72,5 > 0if ji,j2 > 0,|j] = j1 + jo, a¥ = a3t - 2d?, jl = jil-jy!, DI = 2

01107220 "

3 Combined subdivision schemes

A combined subdivision scheme is a subdivision scheme that operates uniformly away
from a closed subs&® C R?. Its limit function is defined oveR? \ R. The subseR
is called theexterior of the combined subdivision scheme, and is invariant to positive
scales, namelyyR = R for everya > 0.

Let.S denote a uniform subdivision operator, supported in the €ulieet R denote
a positive-scale-invariant and closed subseékffA combined subdivision operator of
orderk, which is based o, with the exteriorR, is an operator

B : 1(Z*) x C*(R?) — 1(Z.?),

such that
B(P, f)(a) = SP(a), VYa€Z?\(R+Q). (8)
We define a&zombined subdivision scherbg the following iterative process:
P’ = Pel(z?,
Pt = B(P",f(27™)), n=0,1,.... 9)

We also assume that the operal®ruses only values of and of its derivatives
onR. By requiring f to be defined ofR® instead ofR, we make sure that all of its
derivatives are defined iR even wherR is a set of measure zero. By requiring tikat
be invariant to positive scales, we get that in every iteration of (9) the only valugs of
and its derivatives that are used are thosRin

We say that?” € C(R? \ R) is the limit function of the combined scheme (9), if
for everyr € R? \ R there exists an open domalh, C R? \ R, z € D,, such that

lim ||[P"—F(2 )|

n—300 00,22N (2" Dy)

=0.

We denoteB> (P, f) = F.

Provided thatS is C™, we have thaB> (P, f) is always well defined an@™ in
R? \ R. The goal of the smoothness analysis is to showB?a{ P, f) can be extended
to a function which ig0" in the closure of its domaiR? \ R.




The combined subdivision schemes that we present are all local and linear in the
sense defined in [5, 6], and they are of oréler 2, since they involve second deriva-
tives of f. Moreover, they are bounded in the sense that there eXigts> 0 such
that

IBO, (@) <Cs > D'fll g m(rasia) YFEC®).  (10)

li| <2

The above conditions are required by the general smoothness analysis in [5, 6].

4 Catmull Clark’s scheme and polynomial precision

The combined subdivision schemes that we construct are based on Catmull Clark’s

scheme, which is defined over closed nets of arbitrary topology [1, 3, 8]. However,

for our smoothness analysis it is sufficient to consider the scheme, as defined on the

bivariate integers, where it coincides with the tensor product bicubic B-spline scheme.
We denote the tensor product bicubic B-spline schemg&.dymaska, is given by

1 4 6 4 1
L4 16 24 16 4
a=— |6 24 36 24 6
641 4 16 24 16 4
1 4 6 4 1

The basis functio® is supported in
Q=[-2,2).

We denote byr? = 72(IR?) the space of the bivariate polynomials of degre®. The
schemesS is C? and the integer translates @fare linearly independent. Therefore,
by theorem 10.1 in [5, 6], the restriction §fto 72 is similar to the dilation operator,
namely there exists an invertible operafor 72(Z?) — =2(Z*) with no eigenvalues
other than the eigenvalue 1, such that

ST = To, (11)

whereg is the dilation operator

o1=1(3)

In the case of the bicubic B-splines, it can be shown fhiatan be represented as

follows: )
17 =15 (54 +A40). (12

2
0z

whereAZ is the second difference

Afclf() = f( +ei) - 2f() + f( - ei)7 (S {172}7 € = (170)7 €2 = (07 ]-)



An important concept in subdivision schemes is thapalfynomial precision In an-
alyzing the smoothness and approximation properties of a subdivision scheme, it is
important to find the space of polynomials that can be generated as limit functions of
that scheme [2].

The concept of polynomial precision is relevant to the analysis of combined subdi-
vision schemes as well. We say that the combined schigimelongs td12 (or, thatB
has quadratic precision), if

B(Tplys,p) = Toply:, Vper*(R?), (13)

whereT : 72(R?) — 72 (R?) satisfies (11) and its only eigenvalue is 1. It is shown in
[6] that any schemé satisfying (13) also satisfies

B> (Tp|22ap) = p|R2\R7 VPGWZ(RZ)'

5 The smoothness criteria

For X C R?, we denote by7” (X) the class of functions defined @, that are tbider
continuous of orded < v < 1, i.e. functionsF' : X — R such that

|F(z) = F(y)| < cllz —yll”, Vr,yeX,

for somec > 0. We denote byH? (R?®) the class ofC™ functions for which all the
derivatives of ordem are Hilder continuous of ordér < v < 1.
Definition. We say tha3 € C" if there exist$) < v < 1 such thatB*> (P, f) can

be extended to a function @™ (]R{S \R) for everyP € [(Z?) and f € HY (R).

Given a combined subdivision schemBehat is based on Catmull-Clark’s scheme
S, we aim to show thaB ¢ Ci. Our analysis is based on the analysis tools developed
in [5, 6]:

Theorem 5.1 if B € II?, and there existd < v < 1 such thatB>(P,0) € H¥ (R? \
R) for everyP € ly(Z*) thenB € C3.

The conditionB € 12 is simple to check, using (13). However, the analysis of
the limit function of thehomogeneous schenf> (P, 0) (called that way because the
function f is set to zero), requires a few additional definitions:

LetJ = QN7Z2? = {-2,...,2}% Itis easy to see, for all the combined schemes
that we construct, thal is arefinement setnamely, that the values @ (P,0) in J
depend only on the values &fin J. Therefore, there exists a matixg such that

B(P,0)|, = Mg (P|,), VP el(Z®.

Therefinement matrix\/g is easy to calculate for any giva®. We have the fol-
lowing theorem from [5, 6], which employs the spectral analysis of the mafiix



Theorem 5.2 Let B denote a combined subdivision scheme suchBhatII? and
B>®(P,0) € HY(R*> \ (RU®)), VP €ly(Z*), (14)

where® C R? is a bounded set, antl < v < 1. If the eigenvalues af/p that are
greater than2—(2t¥) have the same algebraic and geometric multiplicity, and their
corresponding eigenvectogscan be written ag = Q| ; where

BOO(an) GH;(]RZ \R)7 QGZO(ZS)a

then
B> (P,0) € HY(R* \R), VP €ly(Z?).

In theorem 5.2 it is assumed th&e° (P, 0) is well behaved away from the origin.
The theorem provides a simple sufficient condition B (P, 0) to be well behaved
near the origin.

6 A combined scheme for the interpolation of a smooth
boundary curve

The smoothness analysis of the combined scheme from [7] near boundary edges re-
duces to the following setting. Let

R={z e R |z <0}
Let f € C?(R?). We define the combined subdivision operafarby

BP @ ={ Foi w20 vacz? )

whereT is defined in (12). Itis easy to see thag € I12, since

B (Tple (@) = { STk 0 20
= (Top)(a), Vpe r? (]Rz). (16)

Let P € Ip(Z?). In order to show thaB° (P,0) € H4(R* \ R) for some0 < v < 1,
we consider the following scheme. Defi@ec 1y(Z?) by

B (P,0)(«) ap; >0
Q(a) = 0 a; =0
=By (P,0)(—a1,a2) a3 <0,
Let
Q' = Q,
Q" = SO, n=1,2,.... 17)



Consider the combined scheme

P’ = P
P = B (P",0), n=0,1,... (18)

Itis easy to see from the symmetriesdthat
Q"(a) = P"(a), Vn>1, Va€Z? a; >0.

Therefore
$%Q |gnr = B* (P'lgar 0)

hence the limit functioB (P, 0) has Lipschiez continuous second derivatives, and it
follows from theorem 5.1 thaB, € C2.

7 A combined scheme for the interpolation of a smooth
curve

The smoothness analysis the combined scheme from [7] near internal c-edges reduces
to the following combined scheme defined over the bivariate integers. Let

R={z R |z =0}

We define the combined subdivision operalfyras a composition oB; with a cor-
rection operatorC' that operates nedt:

BZ(Paf):C(Bl(Paf)agf)a (19)
where
CP,f)@) = 3 (Plar,az) = P(-a1,a2)
82
+ P(O,CYQ) + %6—1:;(0,052),

if a; € {—1,1},andC(P, f)(a) = P(«) otherwise. First, we show that, € I12. It
is easy to see that
C (p|22 7p) = p|227 Vp € 7(2, (20)

hence
By (Tply2,p) = C(Toplyz,op) = C(Top|,.,Top) = Topl,..  (21)

Here we used the fact that

02 02

—Tp=—=p, Ype€nr?
ox? ox?



In order to show thaB3° (P,0) € HY (R® \ R), we consider the following scheme:

Q' = By(P0),
Q" = SQ", n=12,... (22)
and
P’ = P
P" = By(P",0), n=0,1,... (23)

It is easy to see that
Q"=P", VYn>1,

which implies thatBs° (P*,0) = S>°Q*, hence the limit functioB3° (P, 0) has Lip-
schiez continuous second derivatives, and it follows from theorem 5.B5hat03r.
8 A combined scheme near inward corners

In this section we analyze the smoothness of the combined scheme from [Thnear
ward corners after reducing it to the following setting. Let

R={z R |z, <0orzs <0}
We define the transpose operatof by
F'(x1,20) = F(z2,21), Voi,xs. (24)

For f € C(R?) andP € [(Z?), we define the combined subdivision scheReby

SP(a) o a2 #0
(Tof) () a; =0and az #0
Bs(P,f)(a) =% (Tof)' () as=0and s #0 .  (25)

£(0) — 3(A%,07f(1,0)
+A2 02£(0,1)) a=0

From the fact thal’ commutes with the transpose operdtgt, and from the following
observation:

B3(P,p)(0) = Top(0), Vpen*(R), VP €l(Z?),

it follows that B; € II2. Moreover, from the fact thaB, € C2, and from the fact that
B3 coincides withB; (or its transpose) away from the origin, it is easy to see that the
homogeneous scheme Bf has Lipschiez continuous second derivatives away from
the origin, namely, there exists a bound®a- R? such that

Bgo(P,O) € H;(]RZ \ (RU 6))7 VP e lO(Zs)a (26)



with v = 1. According to theorem 5.2 it is only left to examine the spectral prop-
erties of M ,. We find thatM 5, has exactly four eigenvectors corresponding to the
eigenvalue}I, which is the dominant eigenvector. The four eigenvectors are

0 00 2 4 4 2 0 0 0
0 00 1 2 21 000
¢i=]10 0 0 0 O, g2=]10 0 0 0 O |,
0 00 0O 0 00 0O
|0 0 0 0 0| |00 0 0 0|
[0 0 0 0 07 [0 0 0 0 07
0 00 0O 0 00 0O
gs=]10 0 0 0 O, g=]0 0 0 0 O
21000 0 00 1 2
|4 2 0 0 0| |0 0 0 2 4 |
Clearly,q, can be expressed as
q1 = Q|J7

where )
_Jarras a€Z°NR
Q(O‘)_{o a€Z2\R

It is easy to see thd@®>° (@, 0) is the polynomial; - z- restricted tdR? \ R, therefore
B>(Q,0) € HY(R*\R). Similarly each ofy2, ¢3 andg, can be extended @ € I(Z?)
which is zero inZ?2 N R, which yieldsB>(Q, 0) = 0. Finally, using theorem 5.2, we
getthatB; € C3.

9 A combined scheme for the interpolation of two in-
tersecting curves

In this section we analyze the smoothness of the combined scheme from [fjteear
nal intersection verticed_et

R:{Z’GR2|1'1'1'2:0}.

We define the combined subdivision scheBeby

BZ(P7 f)(Oé) Qa2 ¢ {_1707 1}
BZ(Ptaft)t(a) ay ¢ {_17071}
) c((SPaf),oft) (a) a € {-1,1}?
Bi(P, 1)) =3 Tof(a) o€ {(0,-1),(0,1)} -
(Toft) () a € {(-1,0),(1,0)}

F(0) = 5 (A%, 0f(0) + AZ,0/(0)) a=0
(27)
For f € n?(R?) we get
By(P, f)(0) = T'o f(0).



It is easy to see thadB, ¢ II? sinceB, € II? and from (20). Also, from the fact that
B, € C7, there exists a bounded C R* such that

B°(P,0) € HY (R*\ (RU®)), VP €ly(Z?).
The dominant eigenvalue @f g, is i and it is simple, with the eigenvector

-4 -2 0 2 4
2 10 1 2
g=| 0 0 0 0 o0
2 1 0 -1 -2
4 2 0 -2 -4

Clearly, ¢ is a restriction of the polynomial; - x5 to J. It follows from theorem 5.2
thatB, € C3.

10 A combined scheme near an intersection between a
boundary curve and an interpolated curve

In this section we analyze the smoothness of the combined scheme from [7] near
boundary intersection verticeket

R={zeR® |z, <0orz =0}
We define the combined subdivision scheByeby

By (P, f) () a1 #0
Bs(P, f)(a) = ¢ Tof(a) a1 =0, as A0 .
f(0) = % (4A2 62f(1,0) + A2 of(0)) a=0

(28)
For f € n?(R?) we get
Bs(P, f)(0) =To f(0).
Itis easy to see thdBs € II* sinceB, € I1°. Also, from the fact thaB3, € C7, there
exists a bounde® C R? such that

B°(P,0) € HY (R* \ (RUO)), VP cly(Z?.

The dominant eigenvalue df/p, is 1 and it has multiplicity 2. The corresponding
eigenvectors are

000 2 4 —4 -2 0 0 0
000 1 2 —2 -1 0 0 0
=000 0 0|, g=| 0 0 0 0 0
000 -1 -2 2 1 00 0
000 —2 —4 4 2 00 0

It is easy to see that; can be extended tQ, € I(Z?®) such thatB>(Q,0) is the
restriction of the polynomiak; - x5 to R? \ R. Similarly, ¢ can be extended to
Q1 € 1(Z?) such thatB>°(Q2, 0) = 0. It follows from theorem 5.2 thaB; € C7.

10



11 A combined scheme near outward corners

In this section we analyze the smoothness of the combined scheme from [Qutear
ward corners The analysis reduces to the following setting: Let

R:{xE]Ri2 | z1 <0 and x5 < 0}.

Let f € C?(R?). We define the combined subdivision operafiarby a composition
of two operators3s 1 andBg »:

BG(Paf) :BG,Q (Bﬁ,l(Paf)aaf) (29)
where
SP(a), a €22\ OR
Tof(w), a3 =0and az <0
Bsi(P,f) =4 (Toft) (a), as=0anday <0 .  (30)

£(0) = 3(A2, 0 f(~1,0)
+A2 52£(0,-1)) a=0

Using the same arguments as we used when analyzjng follows thatBg ; € 112
The correction operatdss » is defined as follows:

8672 (P, f) (a) = P(O(), Vo ¢ L,

where
L={(-1,1),(0,1),(1,1),(1,0),(1,-1)}.
For everyP € [(Z?), let

HP) = 1 (P(-1,0)+ P(0,~1) ~ P(1,~1) ~ P(1,0)

+ 2P(1,1) - P(0,1) — P(-1,1))
We denote, for convenien€g:= Bg »(P, f), and we defing) in L by
1

Q(1,0) = gP(1,0)+§(213(0,0)—P(—1,0)+A§,laf(—1,o)),
Q(0,1) = %P(0,1)+§(2P(0,0)—P(O,—1)+A§2rff(0,—1)),
Q1) = ZP(L-1)+ 3 (Q(L0)+ P(0,~1) ~ P(0) - (P)).
Q(-1,1) = %P(—l,l)+§(Q(O,1)+P(—1,0)—P(O)—t(P)).
QLY = SP(L1)+2(QO.1)+Q(1,0) - PO +1(P).  (31)
We have defined; , such that
Bs2 (Tplyz,p) = Tplg, Vp €, (32)

11



therefore we geBs € I12. Finally, the dominant eigenvalue 8f g, is ;. Itis simple,
and the corresponding eigenvector is

-4 -2 0 2 4
2 10 1 2
g=| 0 0 0o 0 o |,
2 1 0 -1 -2

4 2 0 -2 -4

which is the restriction of the polynomial =, to J. Hence we geBs € C3.

12 Discussion

In this section we explain the relevance of the combined schemes defined in sections
6-11 to the scheme described in [7]. We refer the reader to [7] for specific terms from
there that we do not redefine.

As mentioned irg6, the smoothness of the scherie is supposed to guarantee
the smoothness of the scheme in [7] nesgular boundary c-vertices Notice that
B; (P, f) uses the second derivatives pfin the cross boundary directiad? f /0z2,
while the scheme in [7] uses only the values of the given curves, which correspond to
values of the given functiofi.

What replaces the cross boundary second derivatives aceatbeboundary second
differencesi(v) defined in [7]. From the propagation rules ti{w) it is easy to see that
the values ofl(v) multiplied by 4*, wherek is the number of iterations made so far,
are values of a piecewise linear function. This exactly correspond&jobeing the
values of4~*9? f /0% which is piece-wise linear with knots at the integers. The factor
4~* comes naturally from the dilation applied foin each iteration of the combined
subdivision scheme (9).

In the same way we explain the relevance3f . . ., Bg to the smoothness of the
limit surfaces in [7] near the other five types of c-vertices. However, the association
between cross boundary second derivatiies andd? f /0x? suggests thad? f /0z?
is not piece-wise linear with knots at the integers, in the casék of. . , Bg.

For smoothness, we do not necessarily require@Agy 97 is piece-wise linear.

We only need it to be Bltler continuous. In the following, we define the function
0? f/0x? in a way that corresponds to the propagation ruleg(of near intersection
vertices, and we prove that we get alHér continuous function:

We demonstrate this analysis in the caséefard corners which corresponds to
the scheme;, with

R={zeR |z, <0or =z <0}
We denote
A = 42 oM f(1,0).

Let{d,},_, , denote asequence of real numbers, that correspond to the déiies
on the original control net. We defink - recursively as follows:

doi-x + A

dz—k = 2 )

k=1,2,.... (33)

12



We then proceed by defining the functié%é(o, x2) whenz, > 0 to be the piecewise
1
linear function, with knots at.., 22,271 1,2,3, ..., that satisfies

O f

—0,n)=d,, n=12,... orn=2"% k=1,2,....
or?
In caseg%é is Holder continuous i{z € R? | z; > 0, and z2 = 0}. we have that
1
o 07 ’
AR _ —J;(O) =0 (27, (34)
Oxi

for some0 < v < 1. Then it follows from (33) and (34) that
|d2—k - d21—k| = O (2_Vk) 5

for some0 < v < 1. From this, it can be shown th%ti—’; as we defined it, is blder
1
continuous in{z € R? | 22 > 0, and z; = 0}.

13 Conclusions

The analysis in this paper guarantees that the surfaces generated by the scheme defined
in [7] areC? near the interpolated curves (thereféfeeverywhere except near internal
extraordinary vertices of the original control net, where the surfaces are only almost
G?), in case the given curves haveldér continuous second derivatives, and under alll

the restriction given in [7].

Furthermore, for the analysis we assume that not only are the curves given, but also
the cross-curve second derivatives are given as a continuos function (More precisely,
they have to be Bllder continuous). Therefore, the piecewise linear propagation rules
for d(v) that are given in [7] can be replaced by other propagation rules. In fact, the
designer can prescribe the cross-curve second derivatives everywhere across the given
curves, and the scheme will still generate surfaces thatammost everywhere.
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