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Abstract

We analyze the smoothness of several new subdivision schemes that are spe-
cially designed for the task of interpolating curves by smooth surfaces. These
are instances of a new kind of subdivision schemes calledcombined subdivision
schemes, which combine operations on control points with operations on functions.

The analysis is done in the regular setting, where subdivision schemes are de-
fined over the bivariate integers. Due to the locality of those schemes, their smooth-
ness guarantees the smoothness of the surfaces generated by the subdivision algo-
rithm presented in [7], which is defined over control nets of arbitrary topological
type.

The general theory of combined subdivision schemes, developed in [5, 6], pro-
vides the basis for our analysis.

1 Introduction

In [7] we present a subdivision scheme generating limit surfaces which interpolate
given nets of possibly intersecting curves. The basic idea there, is to associate edges
of the control net with segments of the given curves, and then to apply different refine-
ment rules near those edges (calledc-edges), while applying Catmull Clark’s scheme
everywhere away from them.

Due to the restrictions made on the initial control net in [7], we consider the sub-
division process near the c-edges to be uniform, in the sense that it can be described
(locally) as a scheme over the bivariate integers. In this setting, the given curves are
replaced by functions given over lines in the parametric plane, while the vertices of the
control net are replaced by control points associated with the bivariate integers. Notice
that theG2 smoothness of the limit surface away from the given curves is guaranteed
by the smoothness of Catmull-Clark’s scheme.

The analysis is made in the functional case, i.e. we study the existence and smooth-
ness of scalar limit functions. Since the scheme in [7] applies the same subdivision
rules to the three coordinates of each vertex, the existence and smoothness of the limit
functions guarantee the existence and smoothness of limit surfaces.
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In [7], we restrict the control net by requiring that the control net near eachc-vertex
(i.e. a vertex associated with a point on an interpolated curve) admits to one of six pos-
sible configurations. We divide the c-vertices toregular boundary c-vertices, regular
internal c-vertices, internal intersection vertices, inward corner vertices, boundary in-
tersection verticesandoutward corner vertices. For the exact definition of those terms,
we refer the reader to [7]. The smoothness analysis considers each of the six cases
separately.

The paper is organized as follows: Section 2 defines uniform subdivision schemes.
In x3 we define combined subdivision schemes. Inx4 we discuss Catmull-Clark’s
scheme, which is the basis of all our schemes, and inx5 we summarize the relevant
theorems from [5, 6] that are needed for the smoothness analysis. Sections 6-11 an-
alyze the six cases mentioned above. The relevance of this analysis to the combined
subdivision scheme defined in [7] is discussed inx12.

2 Bivariate uniform subdivision schemes

GivenX � Z
2, let l(X) denote all the functionsP : X 7! R, let l1(X) denote the

Banach space of all the functionsP 2 l(X) such thatkPk1 < 1, wherekPk1 is
the supremum ofjP j onX . Let l0(X) � l1(X) denote the space of all the functions
P 2 l1(X) with finite support.

A bivariate uniform subdivision operator is a linear operatorS : l(Z2) 7! l(Z2)
which consists of a maska 2 l0(Z

2) and is defined by

(SP )(�) =
X
�2Z2

a(�� 2�)P (�); 8� 2 Z2: (1)

It is easily seen that for allP;Q 2 l(Z2)

P 2 l0(Z
2)) S(P ) 2 l0(Z

2); (2)

and for any� 2 Z2

P (�+ �) = Q(�); 8� 2 Z2) (SP )(� + 2�) = (SQ)(�); 8� 2 Z2: (3)

A subdivision schemeS is termeduniformly convergent, if for everyP 2 l0(Z
2), there

exists a compactly supported functionF 2 C(R2 ) (called the limit function) such that

lim
n!1



SnP � F (2�n�)



1;Z2

= 0: (4)

We denoteS1P = F .
We say thatS is Cm if S is uniformly convergent, and for everyP , S1P 2

Cm(R2 ). We define� = S1�0 where�� is defined, for� 2 Z2, by

��(�) =
n
1 � = �
0 otherwise

:

� is called theS-refinable function. The limit functionS1P can be expressed as a
sum of integer translates of�

S1P =
X
�2Z2

P (�)�(� � �) =
X
�2Z2

(SkP )(�)�(2k � ��); 8k � 0: (5)
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For convenience, we assume thata is supported on a square centered at the origin,
namely that

a(�) = 0; 8� 2 Z2 n f�!; ::; !g2; (6)

for some! 2 Z+. It is shown in [2] that the support of� is contained in the convex
hull of the support of the maska, therefore

�(x) = 0; 8x =2 
 = [�!; !]2: (7)

The limit functions of subdivision schemes are analyzed in many papers (see e.g [2, 4]).
Throughout the paper we use standard multi-index notations forZ

2: j = (j1; j2) 2

Z
2, j � 0 if j1; j2 � 0, jjj = j1 + j2, xj = xj11 � xj22 , j! = j1! � j2!, Dj = @jjj

@j1x1@
j2x2

.

3 Combined subdivision schemes

A combined subdivision scheme is a subdivision scheme that operates uniformly away
from a closed subsetR � R

2 . Its limit function is defined overR2 n R. The subsetR
is called theexteriorof the combined subdivision scheme, and is invariant to positive
scales, namely,�R = R for every� > 0.

LetS denote a uniform subdivision operator, supported in the cube
. LetR denote
a positive-scale-invariant and closed subset ofR

s . A combined subdivision operator of
orderk, which is based onS, with the exteriorR, is an operator

B : l(Z2)� Ck(R2 ) 7! l(Z2);

such that
B(P; f)(�) = SP (�); 8� 2 Z2 n (R+
): (8)

We define acombined subdivision schemeby the following iterative process:

P 0 = P 2 l(Z2);

Pn+1 = B(Pn; f(2�n�)); n = 0; 1; : : : : (9)

We also assume that the operatorB uses only values off and of its derivatives
onR. By requiringf to be defined onRs instead ofR, we make sure that all of its
derivatives are defined inR even whenR is a set of measure zero. By requiring thatR
be invariant to positive scales, we get that in every iteration of (9) the only values off
and its derivatives that are used are those inR.

We say thatF 2 C(R2 n R) is the limit function of the combined scheme (9), if
for everyx 2 R2 n R there exists an open domainDx � R

2 n R, x 2 Dx, such that

lim
n!1



Pn � F (2�n�)



1;Z2\(2nDx)

= 0:

We denoteB1(P; f) = F .
Provided thatS is Cm, we have thatB1(P; f) is always well defined andCm in

R
2 nR. The goal of the smoothness analysis is to show thatB1(P; f) can be extended

to a function which isCm in the closure of its domainR2 n R.
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The combined subdivision schemes that we present are all local and linear in the
sense defined in [5, 6], and they are of orderk = 2, since they involve second deriva-
tives of f . Moreover, they are bounded in the sense that there existsCB > 0 such
that

jB(0; f)(�)j � CB

X
jij�2



Dif



1;R\( 12�+

1

2

) ; 8f 2 C2(R2 ): (10)

The above conditions are required by the general smoothness analysis in [5, 6].

4 Catmull Clark’s scheme and polynomial precision

The combined subdivision schemes that we construct are based on Catmull Clark’s
scheme, which is defined over closed nets of arbitrary topology [1, 3, 8]. However,
for our smoothness analysis it is sufficient to consider the scheme, as defined on the
bivariate integers, where it coincides with the tensor product bicubic B-spline scheme.

We denote the tensor product bicubic B-spline scheme byS. It maska, is given by

a =
1

64

2
66664

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

3
77775 :

The basis function� is supported in


 = [�2; 2]2:

We denote by�2 = �2(R2 ) the space of the bivariate polynomials of degree� 2. The
schemeS is C2 and the integer translates of� are linearly independent. Therefore,
by theorem 10.1 in [5, 6], the restriction ofS to �2 is similar to the dilation operator,
namely there exists an invertible operatorT : �2(Z2) 7! �2(Zs) with no eigenvalues
other than the eigenvalue 1, such that

ST = T�; (11)

where� is the dilation operator

�f = f
� �
2

�
:

In the case of the bicubic B-splines, it can be shown thatT can be represented as
follows:

Tf = f �
1

6

�
@2f

@x21
+�2

x2
f

�
; (12)

where�2
xi

is the second difference

�2
xi
f(�) = f(�+ ei)� 2f(�) + f(� � ei); i 2 f1; 2g; e1 = (1; 0); e2 = (0; 1):
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An important concept in subdivision schemes is that ofpolynomial precision. In an-
alyzing the smoothness and approximation properties of a subdivision scheme, it is
important to find the space of polynomials that can be generated as limit functions of
that scheme [2].

The concept of polynomial precision is relevant to the analysis of combined subdi-
vision schemes as well. We say that the combined schemeB belongs to�2 (or, thatB
has quadratic precision), if

B (Tpj
Z2
; p) � T�pj

Z2
; 8p 2 �2(R2 ); (13)

whereT : �2(R2 ) 7! �2(R2 ) satisfies (11) and its only eigenvalue is 1. It is shown in
[6] that any schemeB satisfying (13) also satisfies

B1 (Tpj
Z2
; p) � pj

R2nR ; 8p 2 �2(R2 ):

5 The smoothness criteria

ForX � R
2 , we denote byH�(X) the class of functions defined onX , that are H¨older

continuous of order0 < � � 1, i.e. functionsF : X 7! R such that

jF (x)� F (y)j � ckx� yk� ; 8x; y 2 X;

for somec > 0. We denote byH�
m(Rs ) the class ofCm functions for which all the

derivatives of orderm are Hölder continuous of order0 < � � 1.
Definition. We say thatB 2 Cm

+ if there exists0 < � � 1 such thatB1(P; f) can

be extended to a function inCm
�
Rs n R

�
for everyP 2 l(Z2) andf 2 H�

m(R).

Given a combined subdivision schemeB that is based on Catmull-Clark’s scheme
S, we aim to show thatB 2 C2

+. Our analysis is based on the analysis tools developed
in [5, 6]:

Theorem 5.1 if B 2 �2, and there exists0 < � � 1 such thatB1(P; 0) 2 H�
2 (R

2 n
R) for everyP 2 l0(Z

s) thenB 2 C2
+.

The conditionB 2 �2 is simple to check, using (13). However, the analysis of
the limit function of thehomogeneous scheme,B1(P; 0) (called that way because the
functionf is set to zero), requires a few additional definitions:

Let J = 
 \ Z2 = f�2; : : : ; 2g2. It is easy to see, for all the combined schemes
that we construct, thatJ is a refinement set, namely, that the values ofB(P; 0) in J
depend only on the values ofP in J . Therefore, there exists a matrixMB such that

B(P; 0)jJ =MB (P jJ) ; 8P 2 l(Zs):

The refinement matrixMB is easy to calculate for any givenB. We have the fol-
lowing theorem from [5, 6], which employs the spectral analysis of the matrixMB :
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Theorem 5.2 LetB denote a combined subdivision scheme such thatB 2 �2 and

B1(P; 0) 2 H�
2 (R

2 n (R [�)); 8P 2 l0(Z
s); (14)

where� � R
2 is a bounded set, and0 < � � 1. If the eigenvalues ofMB that are

greater than2�(2+�) have the same algebraic and geometric multiplicity, and their
corresponding eigenvectorsq can be written asq = QjJ where

B1(Q; 0) 2 H�
2 (R

2 n R); Q 2 l0(Z
s);

then
B1(P; 0) 2 H�

2 (R
2 n R); 8P 2 l0(Z

s):

In theorem 5.2 it is assumed thatB1(P; 0) is well behaved away from the origin.
The theorem provides a simple sufficient condition forB1(P; 0) to be well behaved
near the origin.

6 A combined scheme for the interpolation of a smooth
boundary curve

The smoothness analysis of the combined scheme from [7] near boundary edges re-
duces to the following setting. Let

R = fx 2 R2 j x1 � 0g:

Let f 2 C2(R2 ). We define the combined subdivision operatorB1 by

B1(P; f)(�) =

�
SP (�); �1 6= 0
T�f(�); �1 = 0

; 8� 2 Z2; (15)

whereT is defined in (12). It is easy to see thatB1 2 �2, since

B1 (TpjZ2 ; p) (�) =

�
S (Tpj

Z2
) (�); �1 6= 0

(T�p)(�); �1 = 0

= (T�p)(�); 8p 2 �2
�
R
2
�
: (16)

Let P 2 l0(Z
2). In order to show thatB11 (P; 0) 2 H�

2 (R
s n R) for some0 < � � 1,

we consider the following scheme. DefineQ 2 l0(Z
2) by

Q(�) =

8<
:

B1(P; 0)(�) �1 > 0
0 �1 = 0

�B1(P; 0)(��1; �2) �1 < 0;
:

Let

Q1 = Q;

Qn+1 = SQn; n = 1; 2; : : : : (17)
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Consider the combined scheme

P 0 = P;

Pn+1 = B1(P
n; 0); n = 0; 1; : : : (18)

It is easy to see from the symmetries ofS that

Qn(�) = Pn(�); 8n � 1; 8� 2 Z2; �1 � 0:

Therefore
S1Q1

��
RsnR

= B11

�
P 1
��
RsnR

; 0
�
;

hence the limit functionB11 (P; 0) has Lipschiez continuous second derivatives, and it
follows from theorem 5.1 thatB1 2 C2

+.

7 A combined scheme for the interpolation of a smooth
curve

The smoothness analysis the combined scheme from [7] near internal c-edges reduces
to the following combined scheme defined over the bivariate integers. Let

R = fx 2 R2 j x1 = 0g:

We define the combined subdivision operatorB2 as a composition ofB1 with a cor-
rection operatorC that operates nearR:

B2(P; f) = C(B1(P; f); �f); (19)

where

C(P; f)(�) =
1

2
(P (�1; �2)� P (��1; �2))

+ P (0; �2) +
1

2

@2f

@x21
(0; �2);

if �1 2 f�1; 1g, andC(P; f)(�) = P (�) otherwise. First, we show thatB2 2 �2. It
is easy to see that

C (pj
Z2
; p) = pj

Z2
; 8p 2 �2; (20)

hence

B2 (TpjZ2 ; p) = C (T�pj
Z2
; �p) = C (T�pj

Z2
; T�p) = T�pj

Z2
: (21)

Here we used the fact that

@2

@x21
Tp �

@2

@x21
p; 8p 2 �2;
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In order to show thatB12 (P; 0) 2 H�
2 (R

s nR), we consider the following scheme:

Q1 = B2(P; 0);

Qn+1 = SQn; n = 1; 2; : : : (22)

and

P 0 = P;

Pn+1 = B2(P
n; 0); n = 0; 1; : : : (23)

It is easy to see that
Qn � Pn; 8n � 1;

which implies thatB12
�
P 1; 0

�
= S1Q1, hence the limit functionB12 (P; 0) has Lip-

schiez continuous second derivatives, and it follows from theorem 5.1 thatB2 2 C2
+.

8 A combined scheme near inward corners

In this section we analyze the smoothness of the combined scheme from [7] nearin-
ward corners, after reducing it to the following setting. Let

R = fx 2 R2 j x1 � 0 or x2 � 0g:

We define the transpose operator(�)t by

F t(x1; x2) = F (x2; x1); 8x1; x2: (24)

Forf 2 C(R2 ) andP 2 l(Z2), we define the combined subdivision schemeB3 by

B3(P; f)(�) =

8>>>><
>>>>:

SP (�) �1 � �2 6= 0
(T�f)(�) �1 = 0 and �2 6= 0

(T�f t)
t
(�) �2 = 0 and �1 6= 0

f(0)� 2
3

�
�2
x1
�2f(1; 0)

+�2
x2
�2f(0; 1)

�
� = 0

: (25)

From the fact thatT commutes with the transpose operator(�)t, and from the following
observation:

B3(P; p)(0) = T�p(0); 8p 2 �2(R2 ); 8P 2 l(Z2);

it follows thatB3 2 �2. Moreover, from the fact thatB1 2 C2
+, and from the fact that

B3 coincides withB1 (or its transpose) away from the origin, it is easy to see that the
homogeneous scheme ofB3 has Lipschiez continuous second derivatives away from
the origin, namely, there exists a bounded� � R

2 such that

B13 (P; 0) 2 H�
2 (R

2 n (R [�)); 8P 2 l0(Z
s); (26)
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with � = 1. According to theorem 5.2 it is only left to examine the spectral prop-
erties ofMB3

. We find thatMB3
has exactly four eigenvectors corresponding to the

eigenvalue14 , which is the dominant eigenvector. The four eigenvectors are

q1 =

2
66664

0 0 0 2 4
0 0 0 1 2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
77775 ; q2 =

2
66664

4 2 0 0 0
2 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
77775 ;

q3 =

2
66664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 1 0 0 0
4 2 0 0 0

3
77775 ; q4 =

2
66664

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 2
0 0 0 2 4

3
77775 :

Clearly,q1 can be expressed as
q1 = QjJ ;

where

Q(�) =

�
�1 � �2 � 2 Z2 \ R
0 � 2 Z2 n R

It is easy to see thatB1(Q; 0) is the polynomialx1 � x2 restricted toR2 nR, therefore
B1(Q; 0) 2 H�

2 (R
2nR). Similarly each ofq2; q3 andq4 can be extended toQ 2 l(Zs)

which is zero inZ2 \ R, which yieldsB1(Q; 0) � 0. Finally, using theorem 5.2, we
get thatB3 2 C2

+.

9 A combined scheme for the interpolation of two in-
tersecting curves

In this section we analyze the smoothness of the combined scheme from [7] nearinter-
nal intersection vertices. Let

R = fx 2 R2 j x1 � x2 = 0g:

We define the combined subdivision schemeB4 by

B4(P; f)(�) =

8>>>>>><
>>>>>>:

B2(P; f)(�) �2 =2 f�1; 0; 1g
B2(P

t; f t)t(�) �1 =2 f�1; 0; 1g

C (C(SP; �f)t; �f t)
t
(�) � 2 f�1; 1g2

T�f(�) � 2 f(0;�1); (0; 1)g

(T�f t)
t
(�) � 2 f(�1; 0); (1; 0)g

f(0)� 1
6

�
�2
x1
�f(0) + �2

x2
�f(0)

�
� = 0

:

(27)
Forf 2 �2(R2 ) we get

B4(P; f)(0) = T�f(0):
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It is easy to see thatB4 2 �2 sinceB2 2 �2 and from (20). Also, from the fact that
B2 2 C2

+, there exists a bounded� � R
2 such that

B14 (P; 0) 2 H�
2 (R

s n (R [�)) ; 8P 2 l0(Z
2):

The dominant eigenvalue ofMB4
is 1

4 and it is simple, with the eigenvector

q =

2
66664

�4 �2 0 2 4
�2 �1 0 1 2
0 0 0 0 0
2 1 0 �1 �2
4 2 0 �2 �4

3
77775 :

Clearly,q is a restriction of the polynomialx1 � x2 to J . It follows from theorem 5.2
thatB4 2 C2

+.

10 A combined scheme near an intersection between a
boundary curve and an interpolated curve

In this section we analyze the smoothness of the combined scheme from [7] near
boundary intersection vertices. Let

R = fx 2 R2 j x1 � 0 or x2 = 0g:

We define the combined subdivision schemeB4 by

B5(P; f)(�) =

8<
:

B2(P
t; f t)t(�) �1 6= 0

T�f(�) �1 = 0; �2 6= 0
f(0)� 1

6

�
4�2

x1
�2f(1; 0) +�2

x2
�f(0)

�
� = 0

:

(28)
Forf 2 �2(R2 ) we get

B5(P; f)(0) = T�f(0):

It is easy to see thatB5 2 �2 sinceB2 2 �2. Also, from the fact thatB2 2 C2
+, there

exists a bounded� � R
2 such that

B15 (P; 0) 2 H�
2 (R

s n (R [�)) ; 8P 2 l0(Z
2):

The dominant eigenvalue ofMB4
is 1

4 and it has multiplicity 2. The corresponding
eigenvectors are

q1 =

2
66664

0 0 0 2 4
0 0 0 1 2
0 0 0 0 0
0 0 0 �1 �2
0 0 0 �2 �4

3
77775 ; q2 =

2
66664

�4 �2 0 0 0
�2 �1 0 0 0
0 0 0 0 0
2 1 0 0 0
4 2 0 0 0

3
77775 :

It is easy to see thatq1 can be extended toQ1 2 l(Zs) such thatB1(Q1; 0) is the
restriction of the polynomialx1 � x2 to R2 n R. Similarly, q2 can be extended to
Q1 2 l(Zs) such thatB1(Q2; 0) � 0. It follows from theorem 5.2 thatB5 2 C2

+.
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11 A combined scheme near outward corners

In this section we analyze the smoothness of the combined scheme from [7] nearout-
ward corners. The analysis reduces to the following setting: Let

R = fx 2 R2 j x1 � 0 and x2 � 0g:

Let f 2 C2(R2 ). We define the combined subdivision operatorB6 by a composition
of two operatorsB6;1 andB6;2:

B6(P; f) = B6;2 (B6;1(P; f); �f) (29)

where

B6;1(P; f) =

8>>>><
>>>>:

SP (�); � 2 Z2 n @R
T�f(�); �1 = 0 and �2 < 0

(T�f t)
t
(�); �2 = 0 and �1 < 0

f(0)� 2
3

�
�2
x1
�2f(�1; 0)

+�2
x2
�2f(0;�1)

�
� = 0

: (30)

Using the same arguments as we used when analyzingB3, it follows thatB6;1 2 �2.
The correction operatorB6;2 is defined as follows:

B6;2 (P; f) (�) = P (�); 8� =2 L;

where
L = f(�1; 1); (0; 1); (1; 1); (1; 0); (1;�1)g :

For everyP 2 l(Z2), let

t(P ) =
1

4
�
�
P (�1; 0) + P (0;�1)� P (1;�1)� P (1; 0)

+ 2P (1; 1)� P (0; 1)� P (�1; 1)
�

We denote, for convenienceQ := B6;2(P; f), and we defineQ in L by

Q(1; 0) =
1

3
P (1; 0) +

2

3

�
2P (0; 0)� P (�1; 0) + �2

x1
�f(�1; 0)

�
;

Q(0; 1) =
1

3
P (0; 1) +

2

3

�
2P (0; 0)� P (0;�1) + �2

x2
�f(0;�1)

�
;

Q(1;�1) =
1

3
P (1;�1) +

2

3
(Q(1; 0) + P (0;�1)� P (0)� t(P )) :

Q(�1; 1) =
1

3
P (�1; 1) +

2

3
(Q(0; 1) + P (�1; 0)� P (0)� t(P )) :

Q(1; 1) =
1

3
P (�1; 1) +

2

3
(Q(0; 1) +Q(1; 0)� P (0) + t(P )) : (31)

We have definedB6;2 such that

B6;2 (TpjZ2 ; p) = Tpj
Z2
; 8p 2 �2; (32)
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therefore we getB6 2 �2. Finally, the dominant eigenvalue ofMB6
is 1

4 . It is simple,
and the corresponding eigenvector is

q =

2
66664

�4 �2 0 2 4
�2 �1 0 1 2
0 0 0 0 0
2 1 0 �1 �2
4 2 0 �2 �4

3
77775 ;

which is the restriction of the polynomialx1x2 to J . Hence we getB6 2 C2
+.

12 Discussion

In this section we explain the relevance of the combined schemes defined in sections
6-11 to the scheme described in [7]. We refer the reader to [7] for specific terms from
there that we do not redefine.

As mentioned inx6, the smoothness of the schemeB1 is supposed to guarantee
the smoothness of the scheme in [7] nearregular boundary c-vertices. Notice that
B1(P; f) uses the second derivatives off in the cross boundary direction@2f=@x21,
while the scheme in [7] uses only the values of the given curves, which correspond to
values of the given functionf .

What replaces the cross boundary second derivatives are thecross boundary second
differencesd(v) defined in [7]. From the propagation rules ford(v) it is easy to see that
the values ofd(v) multiplied by4k, wherek is the number of iterations made so far,
are values of a piecewise linear function. This exactly corresponds tod(v) being the
values of4�k@2f=@x21 which is piece-wise linear with knots at the integers. The factor
4�k comes naturally from the dilation applied tof in each iteration of the combined
subdivision scheme (9).

In the same way we explain the relevance ofB2; : : : ; B6 to the smoothness of the
limit surfaces in [7] near the other five types of c-vertices. However, the association
between cross boundary second derivativesd(v) and@2f=@x21 suggests that@2f=@x21
is not piece-wise linear with knots at the integers, in the cases ofB3; : : : ; B6.

For smoothness, we do not necessarily require that@2f=@x21 is piece-wise linear.
We only need it to be H¨older continuous. In the following, we define the function
@2f=@x21 in a way that corresponds to the propagation rules ofd(v) near intersection
vertices, and we prove that we get a H¨older continuous function:

We demonstrate this analysis in the case ofinward corners, which corresponds to
the schemeB3, with

R = fx 2 R2 j x1 � 0 or x2 � 0g:

We denote
�(k) = 4k+1�2

x1
�k+1f(1; 0):

Let fdngn=1;2;::: denote a sequence of real numbers, that correspond to the valuesd(v)
on the original control net. We defined2�k recursively as follows:

d2�k =
d21�k +�(k)

2
; k = 1; 2; : : : : (33)
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We then proceed by defining the function@
2f

@x2
1

(0; x2) whenx2 > 0 to be the piecewise

linear function, with knots at: : : ; 2�2; 2�1; 1; 2; 3; : : :, that satisfies

@2f

@x21
(0; n) = dn; n = 1; 2; : : : or n = 2�k; k = 1; 2; : : : :

In case@
2f

@x2
1

is Hölder continuous infx 2 R2 j x1 > 0; and x2 = 0g. we have that

�����(k) �
@2f

@x21
(0)

���� = O
�
2��k

�
; (34)

for some0 < � � 1. Then it follows from (33) and (34) that

jd2�k � d21�k j = O
�
2��k

�
;

for some0 < � � 1. From this, it can be shown that@
2f

@x2
1

as we defined it, is H¨older

continuous infx 2 R2 j x2 > 0; and x1 = 0g.

13 Conclusions

The analysis in this paper guarantees that the surfaces generated by the scheme defined
in [7] areC2 near the interpolated curves (thereforeG2 everywhere except near internal
extraordinary vertices of the original control net, where the surfaces are only almost
G2), in case the given curves have H¨older continuous second derivatives, and under all
the restriction given in [7].

Furthermore, for the analysis we assume that not only are the curves given, but also
the cross-curve second derivatives are given as a continuos function (More precisely,
they have to be H¨older continuous). Therefore, the piecewise linear propagation rules
for d(v) that are given in [7] can be replaced by other propagation rules. In fact, the
designer can prescribe the cross-curve second derivatives everywhere across the given
curves, and the scheme will still generate surfaces that areG2 almost everywhere.
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