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The Analytic Distortion Induced by False-Eye Separation in Head-Tracked Stereoscopic Displays
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Abstract
Stereoscopic display is a fundamental part of virtual reality
systems such as the virtual workbench, the CAVE and HMD
systems.  A common practice in stereoscopic systems is deliberate
incorrect modeling of user eye separation.  Under estimating eye
separation can help the human visual system fuse stereo image
pairs into single 3D images, while over estimating eye separation
enhances image depth.    Unfortunately, false eye separation
modeling also distorts the perceived 3D image in undesirable
ways.  We present a novel analytic expression and quantitative
analysis of this distortion for eyes at an arbitrary location and
orientation.

1   Introduction
Virtual environments aim to perceptually place the user in an

artificial computer-generated world.   A key component of creating
this illusion is interactive 3D imagery.   To generate this imagery,
a typical VR system has a location and orientation tracking device,
an image generator and one or more displays.  The tracking device
determines the positions of the user’s head and/or eyes and of the
displays.  The image generator computes the image that each eye
would see on a display surface if the eye and the display existed
inside the virtual world at their tracked positions.    This image is
then fed to the physical display.  VR systems are typically
configured either as a head-mounted display (HMD) or as a head-
tracked display (HTD).   In a HMD, the display is attached to a
helmet worn by the user, so both the eye points and the display are
in continuous motion.     In a HTD, the display is stationary so
only the eye points move.  HTD examples are the CAVE [Cruz
93], fish tank VR [Ware93], and the virtual workbench [Krug94].

As hinted above, most VR systems generate a pair of images,
one for each eye.  This stereoscopic imagery provides a true 3D
image so virtual objects appear to float in front of and behind the
physical display surface.  Software methods for stereoscopic
display are well known [Hodg92][Robi92][Sou95][Robi95].
Stereoscopic display for virtual reality has been shown to improve
user depth perception and task performance in a variety of tasks
[Rose93][Ware93].  This is not surprising since real world
experience shows that stereopsis is an important depth cue
especially for objects within the user’s personal space (1.5 meters)
[Cutt97].

Both experience [Lipt82] and experimental studies
[Yeh90][Hodg93] have shown that users with normal stereoscopic
vision often have trouble fusing stereo image pairs if the eyes are
modeled based on exact eye separation.  The common solution is
to underestimate the eye separation of the user.  This approach
solves the image fusion problem but creates a new problem with
head-tracked displays.  Underestimating eye separation causes the
stereoscopic image to shift and warp with head movement.   As
the user moves her head forward and back the perceived image
will compress and expand.  As the user moves her head left and
right the perceived image will shift side ways. The images in
Figure 1 are indicative of what a real user perceives on a stereo
HTD using under estimated eye separation. The diagram is an
overhead view of a user viewing a stereo HTD.  The eyes are
shown in blue with the true eye points on the outside and the
modeled eyes on the inside.  The central horizontal black line is

the projection plane.   Below, the black square is the modeled
geometry while the red shape is the geometry that the user
perceives.   Figures (a) and (b) illustrate the compression and
expansion while (c) and (d) illustrate the left/right shifting.

a                                                     b

c                                                     d

Figure 1: .   An overhead view of a user viewing a stereo HTD.  The eyes
are shown in blue with the true eye points on the outside and the modeled
eyes on the inside.  The central horizontal black line is the projection plane.
Below, the black grid is the modeled geometry while the red grid is the
geometry that the user perceives.   Figures (a) and (b) illustrate the
compression and expansion while (c) and (d) illustrate the left/right
shifting.

   This distortion is particularly irksome because the purpose of
adding head-tracking to stationary stereoscopic displays was to
remove similar distortions that were observed in earlier non-head-
tracked systems [Hodg92].

Interestingly, several researchers find it beneficial to use over
estimate the eye separation.   Akka [Akka93] reports that users
prefer the results of slightly exaggerating the modeled eye
separation in a head-tracked stereoscopic display.    In Ware
[Ware95], the authors dynamically adjust the modeled eye
separation to enhance the perceived depth of non-head-tracked
stereoscopically displayed terrain.    We find, however, that over
estimated eye separation in head-tracked systems causes stereo
image warping similar to that previously illustrated for the under
estimated case.
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    Since these common false eye separation methods have
undesirable artifacts when applied to head-tracked displays, it is
desirable to quantify them.  Until now, however, a rigorous
description of these distortions for a head at an arbitrary position
and orientation was unavailable.   This report presents a novel
analytic description of this distortion. We analyze the affects of
this distortion as it relates to head-tracked stereoscopic displays. A
key result is that fundamentally the user will perceive virtual
objects to warp and shift when he moves his head even with
perfect head tracking.

2    Background and Previous Work
When a user cannot perceive a single 3D image from a stereo

image pair, she will experience diplopia (double vision).   In a
stereoscopic display the occurrence of diplopia is related to various
physical attributes of the display system and the geometry of the
display environment [Hodg92].   The relevant geometric aspects
are:

•the distance of the displayed virtual object relative to the
display surface

•the eye separation value used in computing the viewing
transform

•the distance of the user’s eyes from the display surface
Figure 2 illustrates the situation.   The eyes are on the left and a

point on a virtual object is on the right.   This point is projected
onto two points on the projection plane.  The screen parallax, p,
associated with a virtual point is the distance between the projected
points.  The distance between the eyes and the virtual point also
determine the angle, β.  Associated with the screen itself is another
angle, α   Research has shown that if the difference, α-β, is outside
a limited range, then diplopia occurs and the 3D depth illusion
collapses [Yeh90][Hodg92][Sou95].   This range has a negative
limit generally associated with points in front of the projection
plane and a positive limit generally associated with points behind
the projection plane.    The negative limit is called the “crossed-
parallax”  limit while the positive limit is the “uncrossed-parallax”
limit.

Figure 2:     Illustration of the projection of a virtual point onto the
projection plane for the two eyes of a user.   P is the horizontal parallax, or
distance on the screen between the stereo images of a virtual point.   β is
the vergence angle of this virtual point.   α is the vergence angle of the
projection plane itself.

Additional problems with stereoscopic displays are user fatigue
and temporary alteration of the visual system’s internal coupling of
accommodation (eye focus) and convergence (the relative
orientation of one eye to the other) [Mon95].

As previously mentioned, the common software technique to
minimize these problems in non-headtracked stereoscopic displays
is to model the user’s eye separation with a value smaller than the
true value.   The resulting screen parallaxes and vergence angles

are reduced and this minimizes user difficulties.   However, when
applied to stereo HTD’s false eye separation yields the distortions
illustrated in Figure 1.

Interestingly, several researchers find it beneficial to use
exaggerated values for the modeled eye separation.   Akka
[Akka93] reports that users prefer the results of slightly
exaggerating the modeled eye separation in a head-tracked
stereoscopic display.    In [Ware95], the authors dynamically over
estimate the modeled eye separation to enhance the perceived
depth of terrain.   This method was used in a real world application
where engineers routed cables along a seabed.   Note, that this
application did not use head-tracking so the stereo distortions
introduced by false eye separation modeling were drowned by the
qualitatively similar distortions due to the lack of head tracking.

As discussed in the introduction, these false-eye separation
methods induce undesirable distortions in tracked stereo displays.
While previous work provides qualitative and quantitative insights
into related stereo distortions, none provide a complete description
of this distortion.

Recall that in general, problems occur when the modeled
viewing geometry, which is used to compute the computer
imagery, fails to correctly account for some aspect of the true
viewing geometry.  As a result, the 3D image, which is
reconstructed by the human visual system, will be a distorted
version of the 3D geometry that the software system is attempting
to display.

Robinett et. al [Robi92][Robi95] present a computational model
for HMD optics describing how these optics distort straight lines
into curves.   Watson and Hodges [Wats95] demonstrate a real-
time method for compensating for this distortion.

Deering [Deer92] discusses several aspects of accurately
modeling stereoscopic HTDs.   First he points out the variation in
the true eye-separation due to convergence of the eyes and he
suggests a few solutions.   He then qualitatively discusses the
distortions due to tracker lag.   Finally, he presents a quantitative
description of the distortions due to the curvature and refraction of
the front glass in CRTs.   He also gives a run-time method to
compensate for these latter two problems.

Hodges et al [Hodg92][Hodg93] discus qualitative aspects of
the incorrect modeling of the user’ s head position in non-head-
tracked stereoscopic displays.   As the user’s head is displaced
from the modeled location, the perceived stereo image appears to
contract or grow and shift side to side.   Additionally, they
qualitatively analyze the change in eye separation due to
convergence.

Hodges and McAllister [Hodg90] present an analytic description
of the distortion of the 3D image for stereoscopic displays if eye
rotations are used to model binocular viewing geometry.    They
discuss the induced vertical parallax and non-line preserving
distortion and they conclude that the rotation method is
inappropriate for single screen stereo displays.

Ware et. al. [Ware95] present a brief discussion of the change in
the perceived depth of a point for false eye separation modeling in
non-headtracked stereo displays.

Woods et. al. [Wood93] derive an analytic description of
distortions in stereoscopic tele-operator systems.   They assume the
viewer is looking at a single display surface while the image
generating cameras may be parallel or angled-inward.  In the
parallel case, the distortion preserves lines while in angled-in case
the distortion maps lines to curves.   Woods’  treatment assumes the
eye axis is parallel to the display plane and that the center of the
eyes lies on a line perpendicular to the display and through its
center.    These assumptions are, of course, not true in a
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stereoscopic HTD system and therefore Woods’  results do not
cover this case.

3   Geometric Description of Distortion
    To derive a geometric description of false eye separation
distortion, we begin by reviewing and simplifying the viewing
model used in stereo HTD’s.   A typical viewing model consists of
the coordinate system hierarchy presented in Figure 3
[Sou95][Robi95].  The top coordinate system is the platform
coordinate system (PCS).  Manipulating this coordinate system
moves the user through the virtual space. Directly attached to this
coordinate system is the projection plane coordinate system and
the emitter coordinate system. The projection plane coordinate
system contains the projection plane in its XY plane with the
window centered about the origin. The emitter coordinate system
simply represents the tracker’s emitter. Attached to the emitter
coordinate system is the head receiver coordinate system and
attached to that is the eye coordinate system. The two eye points
are on the x-axis of the eye coordinate system and are symmetric
about the origin.

Figure 3:    The coordinate system hierarchy for a typical head-tracked
display.

The position and orientation of each child coordinate system
relative to its parent are measured physically from the physical
display setup as are the view window dimensions and eye
separation. The platform coordinate system’s mapping to virtual
world coordinates defines the mapping of the physical space of the
real world to the virtual space of the virtual world.   In addition to
specifying the position and orientation, the platform coordinate
system can also be uniformly scaled.  This causes the virtual world
to grow and shrink.

Assuming all the mentioned physical measurements correct, the
virtual eye separation equals the physical separation multiplied by
the platform coordinate system’s scale.   For example, if the
modeled eye separation equals the user’s true eye separation, say 6
cm, and she views a virtual Earth at a 10-6 scale where the planet
appears as a large globe, then the virtual eye separation is 60 km.
By our definition this case does not represent over estimated eye
separation because the modeled physical eye separation equals the
veridical 6cm.

In this paper we are not concerned with the discrepancy between
the virtual eye separation and the physical eye separation.  This
discrepancy, dependent on PCS scaling, merely scales the virtual
world up or down.  The world may appear as: a small model, such
as the Earth as a globe; a true model, such as a telephone at actual
size; or a magnified model, such as an atom at the size of a
basketball.   This uniform scaling always preserves angles, aspect
ratios, and parallelism and maintains the perceived rigidity of the
virtual world as the head moves.  What we are concerned with is
the discrepancy between the true physical eye separation and the

modeled physical eye separation.  This discrepancy will distort the
world in a projective manner.  The virtual world, at whatever scale
it is displayed, will shear and warp with head position and neither
angles, aspect ratio nor parallelism will be preserved.

Therefore we henceforth ignore PCS scale and the virtual eye
separation, and we focus on the modeled and true physical eye
separations.  For brevity, the term “eye separation”  will now
always refer to the physical separations.

Having said this, we now illustrate geometrically why false eye
separation yields distortions.    In Figure 4, two sets of eye points
are illustrated in blue.    Within each set the true eye points are on
the outside in dark blue and the modeled eye points are on the
inside in light blue.    Again the projection plane is the horizontal
black line.    Below a single modeled point is shown in black along
with the perceived point as seen by the left and right eye set
positions.   For each eye set, the modeled point is projected onto
the projection plane through the modeled eyes.   These projectors
are drawn in black.   The true eyes reconstruct a perceived image
by finding the intersection of the red lines.    These red lines are
drawn between an eye and its corresponding projected image
point.   Note how the perceived point (red) moves as the user
moves her head.   Also the perceived point is closer to the
projection plane than the modeled point.

We can treat the above construction as a mapping between
points.   The mapping is computed by finding the appropriate line
intersections.  Call this construction 

�
C (“Distortion,constructed”).

This geometric construction can be applied to a set of points to
yield all the distortions illustrated in Figure 2.

Figure 4:   A geometric construction illustrating why false eye modeling
distorts the perceived image and how the perceived image moves with head
position.    Two sets of eye points are shown in blue.   Within a set the
outer eye points (dark blue) are the true eyes while the inner ones (light
blue) are the modeled eyes.    The projection plane is the horizontal black
line.    Below a single modeled point in black is projected onto the plane by
black projectors and its perceived location is reconstructed by the red
projectors for each eye set.

Note this construction assumes that all the important physical
measurements, besides the modeled eye separation, are correct.
The formulation also assumes any distortion due to curvature of
the screen or any optics is negligible or accounted for by other
means [Deer92].    Additionally, it assumes that change in the
separation of the focal points of the human eyes during
convergence is also negligible or accounted for.
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4   Analytic Description of Distortion

Figure 5:   Parameterizing the distortion due to false-eye modeling.   The
projection plane lies in the X-Y plane.   The user’s true left and right eye
points (dark blue) are displaced by vectors d and -d from the central eye
(green), I.  The modeled eye points (light blue) are displaced by r•d from
the central eye.   r is the ratio of the modeled eye separation to the true eye
separation.  E is a modeled point while F is the perceived location of this
point.

To derive an analytic description of this distortion we
parameterized important points as illustrated in Figure 5.   First we
place the projection plane coordinate system at the center of the
projection plane with the plane containing the X-Y axes.   Next we
add a central eye point (green), I.   The true left and right eyes
(dark blue) are displaced from I by the vectors d and –d.  2|d| is
the true eye separation.  Next the scalar r is the ratio of the
modeled eye separation to the true separation.   Hence the left and
right modeled eyes (light blue) are displaced by r*d and –r*d
respectively, and 2r|d| is the modeled eye separation.    E is the
modeled point and F is the perceived point reconstructed by the
user’s visual system.

In Appendix 1, we show that this construction is a projective
transformation.   In projection plane coordinates the matrix is:

In the context of a rendering pipeline the distortion acts as

follows.   Let a matrix, 
B
AM , denote the coordinate transform from

coordinate system A to coordinate system B.   Then matrix stack
during rendering is:

Let [M]A be the representation of a transform M in coordinate
system A.   Then using false eye separation effectively induces the
complete transformation:

Therefore, using a false eye separation will produce the same
perceived 3D image as using the true eye separation and adding
[ •]World on the viewing stack.   Note, that as equations (2) and (3)
describe virtual space, [ •]World will include a scale component
inherited from the platform coordinate system scale.    However,
when analyzing •, it is more convenient to ignore this scale issue
and consider the projection plane coordinate system as it exists in
the physical world.   We can then discuss the effects of • in
physical units such as meters and consider how • behaves,
independently of the scale at which the virtual scene appears.

5   Pictorial Analysis of •
The images in Figure 2 already illustrated the sideways shifting

and the compression/expansion effects of • for under estimated
eye separation.   Figure 6 (page 9), re-illustrates these distortions
with a more detailed grid and larger diagrams.     (A) through (d)
show the distortions for under estimated eye separation.  (A) and
(b) show the sideways shifting while (c) and (d) show the
compression/expansion.    (E) through (h) show the distortions for
over estimated eye separation.  (E) and (f) show the sideways
shifting while (g) and (h) show the compression/expansion.    We
see more clearly, that • does not preserve angles, distances nor
parallelism.

This projective distortion has many repercussions.  A user
designing what she perceives to be as a cube may actually have
designed a more general truncated pyramid. Equivalent to Wood’s
[Wood93] observations in teleoperator environments, perceptions
of velocity through the environment will also be distorted given
this non-linear distortion.    Most importantly static, rigid objects
will appear to move as the user moves his head.  Qualitatively
these results are readily verified on real stereoscopic HTD’s.

6 Quantitative Analysis of •
Having illustrated • to gain an intuitive understanding of •,  we

now return to a more rigorous analysis.

6.1   Degenerate Cases
•  contains three degenerate cases which must first be addressed.

All these cases correspond to similar degeneracies in the original
construction •c.  Once we show that these cases occur in rare
circumstances, we will ignore them in further analysis.

Figure 7:  Embedded Modeled Eye Degeneracy

First • is only well-defined when the modeled eye points are not
contained in the projection plane.   If they are, the denominators in
the 3rd column become zero.   However, recall • i s a homogenized
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form of •’  (Appendix 1.7) which assumed this eye configuration
did not occur.  In •’  this configuration leads to the lower-right
term being zero and the matrix becomes singular in this case.  This
is in accordance with the ray construction, •c, which also becomes
singular, or non-invertable.   Specifically, in such a configuration,
• c maps all points to the line through the eye points.  In Figure 7,
the true eye points are A,D (blue); the modeled eye points are B,C
(blue);  black dashed lines show projection of input point E to
points H,G on the projection plane; red dashed lines show the
reconstructed point F.   Since B and G are coincident, the
reconstruction line AG is embedded in the eye axis.   Hence, F is
constrained to the eye axis and therefore � c maps 3D space to this
line.  Clearly, this degenerate case occurs rarely so it seems
permissible to ignore it in � c and to ignore the corresponding
degeneracy in ���

Figure 8:  Embedded True Eye Degeneracy

The second degeneracy occurs when the true eye points are
contained in the projection plane.  In this case, �  is non-singular.
This follows from the fact that the rows of �  are no longer
independent if the third element in row 3, r(dz2-Iz2), equals zero.
Assuming r is non-zero, this term is zero precisely when a true eye
point is embedded in the projection plane.   Again, this result is in
accordance with the ray construction, � c, which becomes singular
in this case.  Specifically, 	 c maps all points to the projection plane
if a true eye point lies in the projection plane.   Figure 8 illustrates
this.   The points are labeled as described in the previous
paragraph.   Since the reconstruction line AG is constrained to the
projection plane, it follows that F, the intersection of AG and DH
is also constrained to the projection plane.   Hence, 
 c maps 3
space to the plane and is singular.  Again, this degenerate case
occurs rarely so it is permissible to ignore it in � c and to ignore the
corresponding degeneracy in � .

The final degeneracy is the most interesting.   It primarily
occurs for values of r>1 where the modeled eye separation is
larger than the true eye separation.   Rather unexpectedly, both 

and the original construction � c flip some objects in front of the
viewer to behind the viewer (Figure 9).

Such behavior is inherent in a perspective transform for objects
that cross the vanishing plane of the transform [Wyli70]. Recall
that the vanishing plane is the plane of points (affine points) which
are mapped to points at infinite (ideal points).   For review, Figure
10 illustrates how a simple perspective transform maps different
regions of space. Three regions in space are color coded green,
blue, and purple.  The fixed plane is a solid black horizontal line.
The vanishing plane is a dashed black horizontal line.  The
vanishing plane of the inverse transform is a dashed red horizontal
line.    Two parallel lines, color coded by the region containing
them (10a), are mapped to intersecting lines (10b).    Note how
ordinary points (patterned purple) become ideal points and how
ideal points (solid purple) become ordinary points as mapped

between 10a and 10b. Also note how regions are compacted (A),
expanded (B) and repositioned (C).

Returning to Figure 9, the vanishing planes and fixed plane is
colored coded as in Figure 10.  Figure 9a shows the affect on an
object, the black grid, beyond the vanishing plane while Figure 9b
shows the affect on an object intersected by the vanishing plane.
Again the ray construction is illustrated for a single point on the
grid.  Note when r < 1 (not illustrated), the vanishing line is
generally behind the eyes where no stereoscopic imagery ever
appears.   Therefore, the flipping problem generally only arises for
r > 1.

At first, this degeneracy makes the basic construction, � c,
appear somewhat flawed from a psychophysical perspective since
it does not predict what a real user will perceive in this degenerate
case.   The problem lies in the fact that for true a eye separation, e,
screen parallax varies from –infinite, to zero and to +e as the
modeled point moves from the eyes’  center, to the projection plane
and towards infinite beyond the projection plane.   This degenerate
case, however, generates a positive screen parallax that is greater
than +e.   As soon as we cross the veridical +e limit, we have
reached a situation that has no analog in real world experience.
Similar results occur if you mistakenly input a negative eye
separation (r < 0).   Such excessive positive parallax yields
confusing images and diplopia.

           a                                     b

    Figure 9:  Excessive Positive Parallax Degeneracy

  a                                      b

Figure 10: Effects of Typical Projective Transform
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Interestingly, this exaggerated eye separation (r > 1) has been
used quite successfully in a non-head-tracked real-world
application [Ware95].    We suspect that since Ware only
exaggerates the eye separation for scenes with little depth, most of
the virtual objects lie on the closer side of the vanishing plane
where they do not experience excessive positive screen parallax
and a flipping under � c.   In such cases the result is an effective
exaggerated depth shown in Figure 11.

Figure 11:   Over estimated eye separation can yield exaggerated depth
without the flipping degeneracy.

6.2   Maximum Depth Plane

Figure 12:    Illustration of the maximum depth plane of perceived space
due to under estimating eye separation

Having covered and set aside the degenerate cases, we continue
to gain a more rigorous understanding of � .    First we can use � -1

(see Appendix A1.7) to compute the maximum possible depth in
perceived space when the modeled eye separation is smaller than
the true eye separation (r < 1).   The existence of a maximum
depth plane in the perceived space has been noted before [Woods
93].   Figure 12 illustrates this idea.   For a point beyond the
projection plane the screen parallax reaches its maximum value,
equal to the modeled eye separation, for a point infinitely far away
(E).    This places a limit on the depth of the reconstructed
perceived points (F).

For a non-degenerate viewing configuration, �  is non-singular
and hence � -1 exists.  Like � , � -1 is a projective transform so it has
a plane, P, of affine points which are mapped to ideal points
(points at infinity).   This plane is called the vanishing plane since
these points have no image in Euclidean space.   Clearly, �  being
the inverse of � -1 maps these ideal points back to the affine plane
P.    These ideal points represent the points lying infinitely far
beyond the projection plane that get mapped to the maximum
depth plane. P then is precisely this maximum depth plane.
Therefore, the equation for the maximum depth plane is the
vanishing plane of � -1. It is easy to find the vanishing plane of a
perspective matrix [Gold92].   With this insight the maximum
depth plane is:

)4(
1

22

r)Iz(

)-Izr(dz
z

−
=

This illustrates that the maximum depth plane position varies
with the head position’s z-component. This helps explain the head-
position dependent squashing of perceived space illustrated in
Figure 13.   Here the perceived grid compresses as the head moves
towards the projection plane and brings the maximum depth plane
(the dash red line) closer too.

             a

            
             b

             
Figure 13:   Perceived space squashed towards view plane.   Note
maximum depth plane (dashed red line).

Figure 14 plots the position of the maximum depth plane as a
function of viewer head position (Iz) for several eye separations
ratios (r):  0.75 (solid), 0.5 (dash-dot), 0.25 (dash) and 0.125 (dot).
Note, Figure 9 assumes the head is parallel to the projection plane
(dz=0);   however, even for non-parallel case dz is typically small
compared to Iz.   In Figure 14, the maximum depth plane position
is linear with respect to the head position while it varies non-
linearly with r.   Smaller modeled eye separations produce a closer
maximum depth plane and hence a greater compression of the
perceived space.

Figure 14:     Plot of the position of the maximum depth plane versus the
user’s head position for various values of, r, the modeled to true eye
separation ratio.   Values of r are  0.75 (solid), 0.5 (dash-dot), 0.25 (dash)
and 0.125 (dot).

6.3 Sideways Shifting
Figures 6a and 6b illustrate the sideways shifting induced by false
eye-separation.   Here we examine this shifting more rigorously.
We plot the x-coordinate difference of a modeled point, E, from its
distorted point, F, as a function of head position.  For simplicity,
assume the eyes are parallel to the projection plane and are
contained in the X-Z plane (dz,dy=0).   Fix the eyes z-coordinate
to 1 meter and then vary the central eye’s (I) x-coordinate so that

maximum depth plane

F

modeled eyes

true eyes

r=0.75

r=0.50

r=0.25

r=0.125
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the head moves side to side.  In this case, Fx and hence Fx-Ex,
varies linearly with Ix as seen from the equation for Fx:

Figure 15: Plot of the displacement of a perceived point from its modeled
location versus head position..   Head position, Ix, varies from –1 to 1; r is
0.5; eye-separation is 0.065.   Plots are drawn for a model point a z=0.10
(solid),z=-1 (dashed), z=-10 (dotted) and z=-100 (dash-dot).

In Figure 15, Ix varies from –1 to 1; r is 0.5; eye-separation is
0.065.   Plots are drawn for a model point a z=0.10 (solid),z=-1
(dashed), z=-10 (dotted) and z=-100 (dash-dot).   Sensitivity to
head position grows with object depth, with z=0.10m ranging up to
0.05m and z=-100 m ranging up to –50 m.

Figure 16 shows the effect of different values for r for a model
point at (0,0,-10).   In 12a, r is 0.75 (solid), 0.5 (dash-dot), 0.25
(dash) and 0.125 (dot).   In 12b, r is 1 (solid), 2 (dash-dot), 4 (dash)
and 8 (dot).   Generally, as we move away from using true eye
separation, r=1, the shifting grows more sensitive to head
movement.   Note also the change from positive to negative slope
as r goes from less to greater than one.   This represents a reversal
in the direction of the shifting.

This discussion illustrates the behavior of the distortions
shifting.   The plots show the shift grows quite large especially for
modeled eye-separations far from the true value (r=1).

7  Conclusions
We have presented a novel analytic description of the distortion, � ,
induced by false eye-separation modeling for a head at an arbitrary
position and orientation.   This distortion does not preserve
distance, angles nor parallism.    This makes false-eye modeling
problematic for a variety of applications.  In command-and-control
applications, for example, users often demand undistorted views of
terrain.  Another example is a CAD application where the loss of
distance, angles and parallelism would be quite problematic.
Finally, multi-screen environments such as a CAVE [Cruz93] are
especially problematic.   Since �  is relative to a particular view
plane, each screen would distort the world in a different manner.
A virtual object which spans two adjacent screens would be
distorted differently by each screen creating further visual

anomalies.  Next in any stereoscopic HTD application using 6
DOF input devices, the distortions from false eye-separation
modeling will ruin the correspondence between the physical device
and its virtual representation.

8   Future Work
First, a clearer understanding of the effects of false eye separation
paves the way for studying how these artifacts interfere with
various user tasks.  Second, an analytic description of the
distortion due to false-eye separation can aid studies trying to
understand the affects of a change in eye-separation due to
convergence [Deer92].   Finally, it would be desirable to remove
as many artifacts of �  as possible while retaining the desired
effects of reduced horizontal parallax and enhanced depth.

a

   b

Figure 16:  Plot of the displacement of a perceived point from its
modeled position versus head position.   The modeled point is at (0,0,-10).
In (a) r varies over: 0.75 (solid), 0.5 (dash-dot), 0.25 (dash) and 0.125
(dot).   In (b), r is 1 (solid), 2 (dash-dot), 4 (dash) and 8 (dot).
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                        a                                                                               b

               
                            c                                                                               d

               
             e                                                                                  f

                   
                           g                                                                                     h

                           
Figure 6:    As in Figure 1 the eyes are blue; the projection plane is the black horizontal line; the modeled grid is black; and the perceived grid is in red.   In
the top four figures (a-d) the outer eye points are the true eyes while the inner points are the modeled eyes.   Hence (a) through (d) illustrate the under
estimated eye separation case.    (a) and (b) show the sideways shifting, and (c) and (d) show the compression/expansion.    In the bottom four figures (e-h)
the outer eye points are the modeled eyes while the inner points are the true eyes.   Hence (e) through (f) illustrate the over estimated eye separation case.
(e) and (f) show the sideways shifting, and (g) and (h) show the compression/expansion.
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Appendix 1: Derivation of Distortion Transform
The following figure illustrates the distortion induced by false eye separation modeling for a head at an arbitrary

position and orientation.   The eye points are on the left, the projection plane is the X-Y plane, and the modeled and perceived
object points, E and F, are on the right.   The user’s central eye point is at I.   The left eye, D, is displaced by d and the right
eye, A, is displaced by -d.  2|d| is the true eye separation.  The scalar r is the ratio of the modeled eye separation to the true
separation.   Hence the left and right modeled eyes, C and B, are displaced by r*d and –r*d respectively, and 2r|d| is the
modeled eye separation.    E is a point on a virtual object and H and G are E’ s left and right projected images.  F is the
perceived point reconstructed by the user’s visual system.

Figure 17:   Parameterization of analytic description.

Numerous hand drawings of this construction indicated the induced transform preserved lines and was projective.
We therefore developed a software program to distort a mesh of points by the construction by computing appropriate line
intersections.     These results further  convinced us the transform was projective.   Rather than pursuing a synthetic proof that
this construction defined a projective transformation, we plowed straight into an analytic proof.   The goal is to produce a
rational linear expression for each coordinate of F in terms of E where the terms of the denominator are shared by all
coordinate expressions and the terms of the numerator are unique for each coordinate expression.   So we need:

A1.1  From the figure:

A = I – d
B = I – r*d
C = I + r*d
D = I+d

A1.2  Solve for H:

Equation of line CH is:
P = (E-C)t + C

At z = 0:

θ

θθθθ
θ

for   subsitutedly symbolical are z andy   x,where

)11.( −
+++

+++
= A

TEzSEyRExQ

PEzOEyNExM
F

Z

X

D

B

C

A

EF

H

G

I

r*d
d

Projection Plane

Y
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So:

Or from A1.1:

A1.3  Solve for G:
Using arguments similar to A1.2:

A1.4   Solve for Fx:
To begin:

So use the following equation to find two unknowns ta and td:

Solve for ta for z-component:

Substitute ta in original equation’s x-component:

Solve for td:
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Now substitute in td in for Fx:

Put Fx over common denominator, expand, identify like terms and simplify:
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Now substitute expressions for Hx and Gx from A1.2 and A1.3 into this definition of Fx and use Dz-Ax=2dz.   This yields:

Next multiply the complete expression by:

When doing, however, treat the numerator and denominator separately.
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A1.4.1  Solve For Fx Denominator
Begin by solving for the denominator of Fx multiplied by (Iz-Ez+rdz)(Iz-Ez-rdz):
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A1.4.2   Solve for Fx Numerator:
Continue with the numerator multiplied by (Iz-Ez+rdz)(Iz-Ez-rdz) and proceed as follows:
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dzEx -dxEz -dzIx dxIz
dzEx2Iz2 ExIz2              *1
-dzExEzIxIz -Ez IxIz         *2 ExEzIz
-dz3 Ex2r2 -dz2 Ex r2           *3
dxdz2ExEz r2 dx dzEz r2         *4 -dz2Ex r2          

dxdz2ExEz r2 dz2Ez r2 -dz2Ex r2            *3
-dx2dzEz2 r2 dxdzEzr2           *4
-dzExIxIz2 -IxIz2 ExIz2                    *1
dzEzIx2Iz -EzIxIz          *2
dz3ExIxr2 dz2Ixr2 -dz2Exr2              *3
-dxdz2EzIx r2 -dz2Ix r2 dxdzEz r2          *4
dxExIz3 ExIz2                        *1
-dxEzIxIz2 IxIz2 -EzIxIz            *2
-dxExEzIz2 ExIz2                *1 -ExEzIz
dxEz2IxIz -EzIxIz             *2 Ez2Ix
-dxdz2ExIz r2 -dxdzIz r2 -dz2Ex r2               *3
dx2dzEzIz r2 -dxdzIz r2 dxdzEzr2               *4
dxEzIxIz2r -IxIz2r EzIxIz r           *5
dzExEzIxIz r EzIxIz r          *5 -ExEzIz r
-dxEz2IxIz r EzIxIz r           *5 -Ez2Ix r
-dzEzIx2Iz r EzIxIz r           *5
-dx2dzEzIz r dxdzIz r -dxdzEz r         *6
-dxdz2ExEz r -dxdzEz r       *6 dz2Exr
dx2dzEz2 r -dxdzEz r         *6
dxdz2EzIx r -dz2Ix r -dxdzEz r       *6

 Table 1:   Factoring terms from (A1.4.2-1) by terms of α and labeling common results.

.

                                                          
.1 While this tabular method is seemingly obvious, initial difficulty with this factorization lead us to consider that ∆ did not
conform to A1-1 and hence was not a homology.    We then sought software solutions to factor this expression and
“discovered”  and used Mathematica 2.0 to get past this step.    Clearly, at this point we could have abandoned all our prior
manual work and replaced it with an automated approach, but we preferred to finish the work that we had started.
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A1.4.3   Solve for Fx Complete Fraction:
Now return to the complete fraction, cancel common expressions and then collect like terms:

A1.5   Solve for Fy

Using a parallel derivation as in A1.4:

A1.6  Solve for Fz

Using the initial results from A1.4:

Rewrite the expression over a common denominator and simplify using Hz=0:

As in A1.4 proceed by treating the numerator and denominator separately and multiply both by “(Iz-Ez-rdz)(Iz-Ez+rdz)” .
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A1.6.1  Solve for Fz Numerator

Begin with the numerator multiplied by (Iz-Ez+rdz)(Iz-Ez-rdz) and proceed as follows:
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A1.6.2    Solve For Fz Denominator

Simplifying the denominator is practically completed from derivation A1.4.1.

A1.6.3    Solve For Fz Fraction

Now return to the complete fraction, cancel common expression and collect like terms:

A1.7  Rewrite in matrix form

Rewriting these equations in matrix from yields � :

Note this will degenerate to a singular transform if any of the 4 true or false eye points become embedded in the view plane,
but in practice this should not happen.   Hence we ignore this case.    Given this assumption and the fact that scalar multiples
of a projective transformation matrix are equivalent rewrite :
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Finally  can be decomposed as follows:

For completeness  -1 can be found component wise:
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