
OBBTree: A Hierarchical Structure for Rapid Interference Detection

S. Gottschalk M. C. Lin� D. Manocha
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

fgottscha,lin,manochag@cs.unc.edu
http://www.cs.unc.edu/˜geom/OBB/OBBT.html
Abstract: We present a data structure and an algorithm
for efficient and exact interference detection amongst com-
plex models undergoing rigid motion. The algorithm is ap-
plicable to all general polygonal models. It pre-computes
a hierarchical representation of models using tight-fitting
oriented bounding box trees (OBBTrees). At runtime, the
algorithm traverses two such trees and tests for overlaps be-
tween oriented bounding boxes based on a separating axis
theorem, which takes less than 200 operations in practice.
It has been implemented and we compare its performance
with other hierarchical data structures. In particular, it can
robustly and accurately detect all the contacts between large
complex geometries composed of hundreds of thousands of
polygons at interactive rates.
CR Categories and Subject Descriptors: I.3.5 [Com-
puter Graphics]: Computational Geometry and Object
Modeling
Additional Key Words and Phrases: hierarchical data
structure, collision detection, shape approximation, con-
tacts, physically-based modeling, virtual prototyping.

1 Introduction

The problems of interference detection between two or
more geometric models in static and dynamic environments
are fundamental in computer graphics. They are also con-
sidered important in computational geometry, solid mod-
eling, robotics, molecular modeling, manufacturing and
computer-simulated environments. Generally speaking, we
are interested in very efficient and, in many cases, real-time
algorithms for applications with the following characteri-
zations:

1. Model Complexity: The input models are composed
of many hundreds of thousands of polygons.

2. Unstructured Representation: The input models are
represented as collections of polygons with no topol-
ogy information. Such models are also known as
‘polygonsoups’ and their boundaries may have cracks,
T-joints, or may have non-manifold geometry. No ro-
bust techniques are known for cleaning such models.

�Also with U.S. Army Research Office
3. Close Proximity: In the actual applications, the mod-
els can come in close proximity of each other and can
have multiple contacts.

4. Accurate Contact Determination: The applications
need to know accurate contacts between the models (up
to the resolutionof the models and machine precision).

Many applications, like dynamic simulation, physically-
based modeling, tolerance checking for virtual prototyping,
and simulation-based design of large CAD models, have all
these four characterizations. Currently, fast interference
detection for such applications is a major bottleneck.

Main Contribution: We present efficient algorithms
for accurate interference detection for such applications.
They make no assumptions about model representation or
the motion. The algorithms compute a hierarchical repre-
sentation using oriented bounding boxes (OBBs). An OBB
is a rectangular bounding box at an arbitrary orientation in
3-space. The resulting hierarchical structure is referred to
as an OBBTree. The idea of using OBBs is not new and
many researchers have used them extensively to speed up
ray tracing and interference detection computations. Our
major contributions are:

1. New efficient algorithms for hierarchical representa-
tion of large models using tight-fitting OBBs.

2. Use of a ‘separating axis’ theorem to check two OBBs
in space (with arbitrary orientation) for overlap. Based
on this theorem, we can test two OBBs for overlap in
about 100 operations on average. This test is about
one order of magnitude faster compared to earlier al-
gorithms for checking overlap between boxes.

3. Comparison with other hierarchical representations
based on sphere trees and axis-aligned boundingboxes
(AABBs). We show that for many close proximity sit-
uations, OBBs are asymptotically much faster.

4. Robust and interactive implementation and demon-
stration. We have applied it to compute all contacts
between very complex geometries at interactive rates.

The rest of the paper is organized in the following man-
ner: We provide a comprehensive survey of interference
detection methods in Section 2. A brief overview of the
algorithm is given in Section 3. We describe algorithms
for efficient computation of OBBTrees in Section 4. Sec-
tion 5 presents the separating-axis theorem and shows how
it can be used to compute overlaps between two OBBs
very efficiently. We compare its performance with hierar-
chical representations composed of spheres and AABBs in
Section 6. Section 7 discusses the implementation and per-
formance of the algorithms on complex models. In Section
8, we discussion possible future extensions.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.




2 Previous Work

Interference and collision detection problems have been
extensively studied in the literature. The simplest algo-
rithms for collision detection are based on using bounding
volumes and spatial decomposition techniques in a hier-
archical manner. Typical examples of bounding volumes
include axis-aligned boxes (of which cubes are a special
case) and spheres, and they are chosen for to the simplicity
of finding collision between two such volumes. Hierar-
chical structures used for collision detection include cone
trees, k-d trees and octrees [31], sphere trees [20, 28], R-
trees and their variants [5], trees based on S-bounds [7] etc.
Other spatial representations are based on BSP’s [24] and
its extensions to multi-space partitions [34], spatial repre-
sentations based on space-time bounds or four-dimensional
testing [1, 6, 8, 20] and many more. All of these hierarchi-
cal methods do very well in performing “rejection tests",
whenever two objects are far apart. However, when the
two objects are in close proximity and can have multiple
contacts, these algorithms either use subdivision techniques
or check very large number of bounding volume pairs for
potential contacts. In such cases, their performance slows
down considerably and they become a major bottleneck in
the simulation, as stated in [17].

In computational geometry, many theoretically efficient
algorithms have been proposed for polyhedral objects.
Most of them are either restricted to static environments,
convex objects, or only polyhedral objects undergoing rigid
motion [9]. However, their practical utility is not clear as
many of them have not been implemented in practice. Other
approaches are based on linear programming and comput-
ing closest pairs for convex polytopes [3, 10, 14, 21, 23, 33]
and based on line-stabbing and convex differences for gen-
eral polyhedral models [18, 26, 29]. Algorithms utilizing
spatial and temporal coherence have been shown to be effec-
tive for large environments represented as union of convex
polytopes [10, 21]. However, these algorithms and systems
are restrictive in terms of application to general polygo-
nal models with unstructured representations. Algorithms
based on interval arithmetic and bounds on functions have
been described in [12, 13, 19]. They are able to find all
the contacts accurately. However, their practical utility is
not clear at the moment. They are currently restricted to
objects whose motion can be expressed as a closed form
function of time, which is rarely the case in most appli-
cations. Furthermore, their performance is too slow for
interactive applications.

OBBs have been extensively used to speed up ray-tracing
and other interference computations [2]. In terms of appli-
cation to large models, two main issues arise: how can
we compute a tight-fitting OBB enclosing a model and
how quickly can we test two such boxes for overlap? For
polygonal models, the minimal volume enclosing bound-
ing box can be computed in O(n3) time, where n is the
number of vertices [25]. However, it is practical for only
small models. Simple incremental algorithms of linear time
complexity are known for computing a minimal enclosing
ellipsoid for a set of points [36]. The axes of the mini-
mal ellipsoid can be used to compute a tight-fitting OBB.
However, the constant factor in front of the linear term for
this algorithm is very high (almost 3 � 105) and thereby
making it almost impractical to use for large models. As
for ray-tracing, algorithms using structure editors [30] and
modeling hierarchies [35] have been used to construct hier-
archies of OBBs. However, they cannot be directly applied
to compute tight-fitting OBBs for large unstructured mod-
els.
A simple algorithm for finding the overlap status of two
OBBs tests all edges of one box for intersection with any
of the faces of the other box, and vice-versa. Since OBBs
are convex polytopes, algorithms based on linear program-
ming [27] and closest features computation [14, 21] can be
used as well. A general purpose interference detection test
between OBBs and convex polyhedron is presented in [16].
Overall, efficient algorithms were not known for comput-
ing hierarchies of tight-fitting OBBs for large unstructured
models, nor were efficient algorithms known for rapidly
checking the overlap status of two such OBBTrees.

3 Hierarchical Methods & Cost Equa-
tion

In this section, we present a framework for evaluating hier-
archical data structures for interference detection and give
a brief overview of OBBTrees. The basic cost function
was taken from [35], who used it for analyzing hierarchical
methods for ray tracing. Given two large models and their
hierarchical representation, the total cost function for inter-
ference detection can be formulated as the following cost
equation:

T = Nv � Cv +Np �Cp; (1)

where

T : total cost function for interference detection,
Nv: number of bounding volume pair overlap tests
Cv: cost of testing a pair of bounding volumes for overlap,
Np: is the number primitive pairs tested for interference,
Cp: cost of testing a pair of primitives for interference.

Given this cost function, various hierarchical data struc-
tures are characterized by:

Choice of Bounding Volume: The choice is governed
by two conflicting constraints:

1. It should fit the original model as tightly as possible
(to lower Nv and Np).

2. Testing two such volumes for overlap should be as fast
as possible (to lower Cv).

Simple primitives like spheres and AABBs do very well
with respect to the second constraint. But they cannot fit
some primitives like long-thin oriented polygons tightly.
On the other hand, minimal ellipsoids and OBBs provide
tight fits, but checking for overlap between them is relatively
expensive.

Hierarchical Decomposition: Given a large model, the
tree of bounding volumes may be constructed bottom-up or
top-down. Furthermore, different techniques are known for
decomposing or partitioning a bounding volume into two
or more sub-volumes. The leaf-nodes may correspond to
different primitives. For general polyhedral models, they
may be represented as collection of few triangles or convex
polytopes. The decomposition also affects the values ofNv

and Np in (1).
It is clear that no hierarchical representation gives the best

performance all the times. Furthermore, given two models,
the total cost of interference detection varies considerably
with relative placement of the models. In particular, when
two models are far apart, hierarchical representations based
on spheres and AABBs work well in practice. However,
when two models are in close proximitywith multiple num-
ber of closest features, the number of pair-wise bounding



volume tests, Nv increases, sometimes also leading to an
increase in the number pair-wise primitive contact tests,
Np.

For a given model, Nv and Np for OBBTreestend to
be smaller as compared to those of trees using spheres
or AABBs as bounding volumes. At the same time, the
best known earlier algorithms for finding contact status of
two OBBs were almost two orders of magnitude slower
than checking two spheres or two AABBs for overlap.
We present efficient algorithms for computing tight fitting
OBBs given a set of polygons, for constructing a hierar-
chy of OBBs, and for testing two OBBs for contact. Our
algorithms are able to compute tight-fitting hierarchies ef-
fectively and the overlap test between two OBBs is one
order of magnitude faster than best known earlier methods.
Given sufficiently large models, our interference detection
algorithm based on OBBTrees much faster as compared to
using sphere trees or AABBs.

4 Building an OBBTree
In this section we describe algorithms for building an OBB-
Tree. The tree construction has two components: first is
the placement of a tight fitting OBB around a collection of
polygons, and second is the grouping of nested OBB’s into
a tree hierarchy.

We want to approximate the collection of polygons with
an OBB of similar dimensions and orientation. We triangu-
late all polygons composed of more than three edges. The
OBB computation algorithm makes use of first and second
order statistics summarizing the vertex coordinates. They
are the mean, �, and the covariance matrix,C, respectively
[11]. If the vertices of the i’th triangle are the points pi,
qi, and ri, then the mean and covariance matrix can be
expressed in vector notation as:

� =
1

3n

nX
i=0

(pi + qi + ri);

Cjk =
1

3n

nX
i=0

(pijp
i
k + qijq

i
k + rijr

i
k); 1 � j; k � 3

where n is the number of triangles, pi = pi � �, qi =
qi � �, and ri = ri � �. Each of them is a 3 � 1 vector,
e.g. pi = (pi1;p

i
2;p

i
3)
T and Cjk are the elements of the 3

by 3 covariance matrix.
The eigenvectors of a symmetric matrix, such as C, are

mutually orthogonal. After normalizing them, they are used
as a basis. We find the extremal vertices along each axis
of this basis, and size the bounding box, oriented with the
basis vectors, to bound those extremal vertices. Two of the
three eigenvectors of the covariance matrix are the axes of
maximum and of minimum variance, so they will tend to
align the box with the geometry of a tube or a flat surface
patch.

The basic failing of the above approach is that vertices
on the interior of the model, which ought not influence
the selection of a bounding box placement, can have an
arbitrary impact on the eigenvectors. For example, a small
but very dense planar patch of vertices in the interior of the
model can cause the bounding box to align with it.

We improve the algorithm by using the convex hull of
the vertices of the triangles. The convex hull is the smallest
convex set containing all the points and efficient algorithms
of O(n lgn) complexity and their robust implementations
Figure 1: Building the OBBTree: recursively partition the
bounded polygons and bound the resulting groups.

are available as public domain packages [4]. This is an im-
provement, but still suffers from a similar sampling prob-
lem: a small but very dense collection of nearly collinear
vertices on the convex hull can cause the bounding box to
align with that collection.

One solution is to sample the surface of the convex hull
densely, taking the mean and covariance of the sample
points. The uniform sampling of the convex hull surface
normalizes for triangle size and distribution.

One can sample the convex hull “infinitely densely” by
integrating over the surface of each triangle, and allowing
each differential patch to contribute to the covariance ma-
trix. The resulting integral has a closed form solution. We
let a point xi in the i’th triangle be parameterized by s and
t as in:

xi = pi + s(qi � pi) + t(ri � pi); s; t 2 [0; 1]

The mean point of the convex hull is then

� =
1
n

nX
i=1

�
1
mi

Z 1

0

Z 1�t

0
xi dsdt

�
=

1
6n

nX
i=1

1
mi

(pi+qi+ri)

wheremi = area of i’th triangle = 1
2 j(q

i�pi)�(ri�pi)j:
The elements of the covariance matrixC have the following
closed-form,

Cjk =
1

24n

nX
i=1

mi[(pij + q
i
j + r

i
j)(p

i
k + q

i
k + rik)

+ pijp
i
k + q

i
jq

i
k + r

i
jr

i
k]; 1 � j; k � 3

where pi = pi � �, qi = qi � �, and ri = ri � �.
Given an algorithm to compute tight-fittingOBBs around

a group of polygons, we need to represent them hierarchi-
cally. Most methods for building hierarchies fall into two
categories: bottom-up and top-down. Bottom-up methods
begin with a bounding volume for each polygon and merge
volumes into larger volumes until the tree is complete. Top-
down methods begin with a group of all polygons, and re-
cursively subdivide until all leaf nodes are indivisible. In
our current implementation, we have used a simple top-
down approach.

Our subdivision rule is to split the longest axis of a box
with a plane orthogonal to one of its axes, partitioning the
polygons according to which side of the plane their center
point lies on (a 2-D analog is shown in Figure 1). The
subdivision coordinate along that axis was chosen to be



that of the mean point, �; of the vertices. If the longest
axis cannot not be subdivided, the second longest axis is
chosen. Otherwise, the shortest one is used. If the group
of polygons cannot be partitioned along any axis by this
criterion, then the group is considered indivisible.

If we choose the partition coordinate based on where the
median center point lies, then we obtain balanced trees.
This arguably results in optimal worst-case hierarchies for
collision detection. It is, however, extremely difficult to
evaluate average-case behavior, as performance of collision
detection algorithms is sensitive to specific scenarios, and
no single algorithm performs optimally in all cases.

Given a model with n triangles, the overall time to build
the tree is O(n lg2 n) if we use convex hull, and O(n lgn)
if we don’t. The recursion is similar to that of quicksort.
Processing fitting a box to a group ofn triangles partitioning
them into two subgroups takes O(n lgn) with convex hull
and O(n) without it. Applying the process recursively
creates a tree with leaf nodes O(lgn) levels deep.

5 Fast Overlap Test for OBBs

Given OBBTrees of two objects, the interference algorithm
typically spends most of its time testing pairs of OBBs for
overlap. A simple algorithm for testing the overlap status
for two OBB’s performs 144 edge-face tests. In practice,
it is an expensive test. Other algorithms based on linear
programming and closest features computation exist. In
this section, we present a new algorithm to test such boxes
for overlap.

One trivial test for disjointness is to project the boxes
onto some axis (not necessarily a coordinate axis) in space.
This is an ‘axial projection.’ Under this projection, each
box forms an interval on the axis. If the intervals don’t
overlap, then the axis is called a ‘separating axis’ for the
boxes, and the boxes must then be disjoint. If the intervals
do overlap, then the boxes may or may not be disjoint –
further tests may be required.

How many such tests are sufficient to determine the con-
tact status of two OBBs? We know that two disjoint convex
polytopes in 3-space can always be separated by a plane
which is parallel to a face of either polytope, or parallel
to an edge from each polytope. A consequence of this
is that two convex polytopes are disjoint iff there exists a
separating axis orthogonal to a face of either polytope or
orthogonal to an edge from each polytope. A proof of this
basic theorem is given in [15]. Each box has 3 unique face
orientations, and 3 unique edge directions. This leads to
15 potential separating axes to test (3 faces from one box,
3 faces from the other box, and 9 pairwise combinations
of edges). If the polytopes are disjoint, then a separating
axis exists, and one of the 15 axes mentioned above will
be a separating axis. If the polytopes are overlapping, then
clearly no separating axis exists. So, testing the 15 given
axes is a sufficient test for determining overlap status of two
OBBs.

To perform the test, our strategy is to project the centers
of the boxes onto the axis, and also to compute the radii
of the intervals. If the distance between the box centers as
projected onto the axis is greater than the sum of the radii,
then the intervals (and the boxes as well) are disjoint. This
is shown in 2D in Fig. 2.

We assume we are given two OBBs, A and B, with B
placed relative to A by rotation R and translation T. The
half-dimensions (or ‘radii’) ofA andB are ai and bi, where
i = 1; 2; 3. We will denote the axes of A and B as the unit
B

A

B

Ar

a1 1

a2 2

rB

b2 2

1 1b

L

T

LT

A
A

B

Figure 2: L is a separating axis for OBBs A and B
becauseA andB become disjoint intervals under projection
onto L.

vectors Ai and Bi, for i = 1; 2; 3. These will be referred
to as the 6 box axes. Note that if we use the box axes of A
as a basis, then the three columns of R are the same as the
threeBi vectors.

The centers of each box projects onto the midpoint of
its interval. By projecting the box radii onto the axis, and
summing the length of their images, we obtain the radius of
the interval. If the axis is parallel to the unit vector L, then
the radius of box A’s interval is

rA =
X
i

jaiA
i
� Lj

A similar expression is used for rB.
The placement of the axis is immaterial, so we assume it

passes through the center of box A. The distance between
the midpoints of the intervals is jT � Lj. intervals. So, the
intervals are disjoint iff

jT � Lj >
X
i

jaiA
i
�Lj+

X
i

jbiB
i
� Lj

This simplifies when L is a box axis or cross product
of box axes. For example, consider L = A1 � B2. The
second term in the first summation is

ja2A
2
� (A1

�B2)j = ja2B
2
� (A2

�A1)j

= ja2B
2
�A3

j

= ja2B
2
3j

= a2jR32j

The last step is due to the fact that the columns of the
rotation matrix are also the axes of the frame of B. The
original term consisted of a dot product and cross product,
but reduced to a multiplicationand an absolute value. Some
terms reduce to zero and are eliminated. After simplifying
all the terms, this axis test looks like:

jT3R22�T2R32j > a2jR32j+a3jR22j+b1jR13j+b3jR11j

All 15 axis tests simplify in similar fashion. Among all
the tests, the absolute value of each element of R is used



four times, so those expressions can be computed once
before beginning the axis tests. The operation tally for
all 15 axis tests are shown in Table 1. If any one of the
expressions is satisfied, the boxes are known to be disjoint,
and the remainder of the 15 axis tests are unnecessary. This
permits early exit from the series of tests, so 200 operations
is the absolute worst case, but often much fewer are needed.
Degenerate OBBs: When an OBB bounds only a single
polygon, it will have zero thickness and become a rectan-
gle. In cases where a box extent is known to be zero, the
expressions for the tests can be further simplified. The oper-
ation counts for overlap tests are given in Table 1, including
when one or both boxes degenerate into a rectangle. Fur-
ther reductions are possible when a box degenerates to a line
segment. Nine multiplies and ten additions are eliminated
for every zero thickness.
OBBs with infinite extents: Also, when one or more
extents are known to be infinite, as for a fat ray or plane,
certain axis tests require a straight-forward modification.
For the axis test given above, if a2 is infinite, then the
inequality cannot possibly be satisfied unless R32 is zero,
in which case the test proceeds as normal but with the
a2jR32j term removed. So the test becomes,

R32 = 0 and
jT3R22 � T2R32j > a3jR22j+ b1jR13j+ b3jR11j

In general, we can expect that R32 will not be zero, and
using a short-circuit and will cause the more expensive
inequality test to be skipped.

Operation Box-Box Box-Rect Rect-Rect
compare 15 15 15
add/sub 60 50 40

mult 81 72 63
abs 24 24 24

Table 1: Operation Counts for Overlap Tests

Comparisons: We have implemented the algorithm
and compared its performance with other box overlap al-
gorithms. The latter include an efficient implementation
of closest features computation between convex polytopes
[14] and a fast implementationof linear programming based
on Seidel’s algorithm [33]. Note that the last two implemen-
tations have been optimized for general convex polytopes,
but not for boxes. All these algorithms are much faster
than performing 144 edge-face intersections. We report the
average time for checking overlap between two OBBs in
Table 2. All the timings are in microseconds, computed on
a HP 735=125 .

Sep. Axis Closest Linear
Algorithm Features Programming
5 � 7 us 45 � 105 us 180 � 230 us

Table 2: Performance of Box Overlap Algorithms

6 OBB’s vs. other Volumes
The primary motivation for using OBBs is that, by virtue of
their variable orientation, they can bound geometry more
tightly than AABBTrees and sphere trees. Therefore, we
reason that, all else being the same, fewer levels of an OBB-
Tree need to be be traversed to process a collision query for
objects in close proximity. In this section we present an
analysis of asymptotic performance of OBBTrees versus
AABBTrees and sphere trees, and an experiment which
supports our analysis.

In Fig. 9(at the end), we show the different levels of
hierarchies for AABBTrees and OBBTrees while approxi-
mating a torus. The number of bounding volumes in each
tree at each level is the same. The � for OBBTrees is much
smaller as compared to � for the AABBTrees.

First, we define tightness, diameter, and aspect ratio of
a bounding volume with respect to the geometry it covers.
The tightness, � , of a bounding volume, B, with respect to
the geometry it covers, G, is B’s Hausdorff distance from
G. Formally, thinking of B and G as closed point sets, this
is

� = max
b2B

min
g2G

dist(b; g)

The diameter, d, of a bounding volume with respect to the
bounded geometry is the maximum distance among all pairs
of enclosed points on the bounded geometry,

d = max
g;h2G

dist(g; h)

The aspect ratio, �, of a bounding volume with respect to
bounded geometry is � = �=d.

ε

d
ε d dε d

ε

Figure 3: Aspect ratios of parent volumes are similar to
those of children when bounding nearly flat geometry.

We argue that when bounded surfaces have low curva-
ture, AABBTrees and sphere trees form fixed aspect ratio
hierarchies, in the sense that the aspect ratio of a node in the
hierarchy will have an aspect ratio similar to its children.
This is illustrated in Fig. 3 for plane curves. If the bounded
geometry is nearly flat, then the children will have shapes
similar to the parents, but smaller. In Fig 3 for both spheres
and AABBs, d and � are halved as we go from parents to
children, so � = d=� is approximately the same for both
parent and child. For fixed aspect ratio hierarchies, � has
linear dependence on d.

Note that the aspect ratio for AABBs is very dependent
on the specific orientation of the bounded geometry – if the
geometry is conveniently aligned, the aspect ratio can be
close to 0, whereas if it is inconveniently aligned, � can be
close to 1. But whatever the value, an AABB enclosing
nearly flat geometry will have approximately the same � as
its children.

Since an OBB aligns itself with the geometry, the aspect
ratio of an OBB does not depend on the geometry’s orien-
tation in model space. Rather, it depends more on the local
curvature of the geometry. For the sake of analysis, we
are assuming nearly flat geometry. Suppose the bounded
geometry has low constant curvature, as on the surface of
a large sphere. In Fig. 4 we show a plane curve of fixed
radius of curvature r and bounded by an OBB. We have
d = 2r sin �, and � = r � r cos �. Using the small angle
approximation and eliminating �, we obtain � = d2=8r. So



ε

d θ
r d

ε

Figure 4: OBBs: Aspect ratio of children are half that of
parent when bounding surfaces of low constant curvature
when bounding nearly flat geometry.

� has quadratic dependence on d. When d is halved, � is
quartered, and the aspect ratio is halved.

We conclude that when bounding low curvature surfaces,
AABBTrees and spheres trees have � with linear depen-
dence on d, whereas OBBTrees have � with quadratic de-
pendence on d. We have illustrated this for plane curves in
the figures, but the relationships hold for surfaces in three
space as well.

Suppose we use N same-sized bounding volumes to
cover a surface patch with area A and require each volume
to cover O(A=N ) surface area (for simplicity we are ignor-
ing packing inefficiencies). Therefore, for these volumes,
d = O(

p
A=N). For AABBs and spheres, � depends

linearly on d, so � = O(
p
A=N ). For OBBs, quadratic de-

pendence on d gives us OBBs, � = O(A=N ). So, to cover a
surface patch with volumes to a given tightness, if OBBs re-
quireO(m) bounding volumes, AABBs and spheres would
require O(m2) bounding volumes.

Most contact scenarios do not require traversing both
trees to all nodes of a given depth, but this does happen
when two surfaces come into parallel close proximity to
one another, in which every point on each surface is close
to some point on the other surface. This is most common in
virtual prototyping and tolerance analysis applications, in
which fitted machine parts are tested for mechanical con-
sistency. Also, dynamic simulations often generate paths
in which one object comes to rest against another. It should
be also be noted that when two smooth, highly tessellated
surfaces come into near contact with each other, the region
of near contact locally resembles a parallel close proximity
scenario in miniature, and, for sufficiently tessellated mod-
els, the expense of processing that region can dominate the
overall collision query. So, while it may seem like a very
special case, parallel close proximity is an abstract situation
which deserves consideration when designing collision and
evaluating collision detection algorithms.

Experiments: We performed two experiments
to support our analysis. For the first, we generated two
concentric spheres consisting of 32; 000 triangles each. The
smaller sphere had radius 1, while the larger had radius 1+�.
We performed collision queries with both OBBTrees and
AABBTrees. The AABBTrees were created using the same
process as for OBBTrees, except that instead of using the
eigenvectors of the covariance matrix to determine the box
orientations, we used the identity matrix.
Figure 5: AABBs (upper curve) and OBBs (lower curve)
for parallel close proximity (log-log plot)

The number of bounding box overlap tests required to
process the collision query are shown in Fig. 5 for both
tree types, and for a range of � values. The graph is a
log-log plot. The upper curve is for AABBTrees, and the
lower, OBBTrees. The slopes of the the linear portions the
upper curve and lower curves are approximately �2 and
�1, as expected from the analysis. The differing slopes of
these curves imply that OBBTrees require asymptotically
fewer box tests as a function of � than AABBTrees in our
experiment.

Notice that the curve for AABBTrees levels off for the
lowest values of �. For sufficiently small values of �, even
the lowest levels of the AABBTree hierarchies are inade-
quate for separating the two surfaces – all nodes of both
are visited, and the collision query must resort to testing
the triangles. Decreasing � even further cannot result in
more work, because the tree does not extend further than
the depth previously reached. The curve for the OBBTrees
will also level off for some sufficiently small value of �,
which is not shown in the graph. Furthermore, since both
trees are binary and therefore have the same number of
nodes, the OBBTree curve will level off at the same height
in the graph as the AABBTree curve.

For the second experiment, two same-size spheres were
placed next to each other, separated by a distance of �. We
call this scenario point close proximity, where two nonpar-
allel surfaces patches come close to touching at a point.
We can think of the surfaces in the neighborhood of the
closest points as being in parallel close proximity – but
this approximation applies only locally. We have not been
able to analytically characterize the performance, so we
rely instead on empirical evidence to claim that for this
scenario OBBTrees require asymptotically fewer bounding
box overlap tests as a function of � than AABBTrees. The
results are shown in Fig. 6. This is also a log-log plot,
and the increasing gap between the upper and lower curves
show the asymptotic difference in the number of tests as �
decreases. Again, we see the leveling off for small values
of �.

Analysis: A general analysis of the performance of
collision detection algorithms which use bounding volume
hierarchies is extremely difficult because performance is
so situation specific. We assumed that the geometry being
bounded had locally low curvature and was finely tessel-



Figure 6: AABBs (upper curve) and OBBs (lower curve)
for point close proximity. (log-log plot)

lated. This enabled the formulation of simple relationships
between � and d. We also assumed that the packing effi-
ciency of bounding volumes was perfect so as to formulate
the relationships between d and the area of the surface cov-
ered. We believe that the inaccuracies of these assumptions
account for the deviations from theory exhibited in the graph
of Fig. 5.

For surface patches with highcurvature everywhere, such
as a 3D fractal, we may not expect to see asymptotic per-
formance advantages for OBBs. Similarly, a coarse tessel-
lation of a surface will place a natural limit on the number,
N , the number of volumes used to approximate the surface.
For a coarse tessellation, OBB-, sphere-, and AABBTrees
may have to traverse their entire hierarchies for sufficiently
close proximity scenarios, thus requiring approximately the
same number of bounding volume overlap tests. Further-
more, for scenarios in which parallel close proximity does
not occur, we don’t expect the quadratic convergence prop-
erty of OBBs to be of use, and again don’t expect to see
superior asymptotic performance.

7 Implementation and Performance
The software for the collision detection library was written
in C++. The primary data structure for an OBB is a “box”
class whose members contain a rotation matrix and trans-
lation vector, defining its placement relative to its parent,
pointers to its parent and two children, the three box dimen-
sions, and an object which holds a list of the triangles the
box contains. The overall data structure for the box occu-
pies 168 bytes. The tree formed from boxes as nodes, and
the triangle list class, are the only compound data structures
used.

An OBBTree of n triangles contains n leaf boxes and
n � 1 internal node boxes. In terms of memory require-
ments, there are approximately two boxes per triangle. The
triangle itself requires 9 double precision numbers plus an
integer for identification, totaling 76 bytes (based on 64-bit
IEEE arithmetic). The memory requirement therefore to-
tals 412 bytes per triangle in the model. This estimate does
not include whatever overhead may exist in the dynamic
memory allocation mechanism of the runtime environment.
Using quaternions instead of rotation matrices (to represent
box orientations), results in substantial space savings, but
need 13 more operations per OBB overlap test. Single
precision arithmetic can also be used to save memory.

7.1 Robustness and Accuracy
The algorithm and the implementations are applicable to all
unstructured polygonal models. The polygons are permit-
ted to be degenerate, with two or even one unique vertex,
have no connectivity restrictions. The algorithm requires
no adjacency information. This degree of robustness gives
the system wider applicability. For example, space curves
can be approximated by degenerate triangles as line seg-
ments – the system will correctly find intersections of those
curves with other curves or surfaces.

The OBB overlap test is very robust as compared to other
OBB overlap algorithms. It does not need to check for non-
generic conditions such as parallel faces or edges; these
are not special cases for the test and do not need to be
handled separately. As a series of comparisons between
linear combinations, the test is numerically stable: there
are no divisions, square roots, or other functions to threaten
domain errors or create conditioning problems. The use of
an error margin, �, guards against missing intersections due
to arithmetic error. Its value can be set by the user.

Since the flow of control for the overlap test is simple
and the number of operations required is small, the overlap
test is a good candidate for microcoding or implemented
in assembly. The test could also be easily implemented in
hardware. Since most of the collision query time is spent
in the overlap tests, any such optimization will significantly
improve overall running time.

The Qhull package [4] is optionally used for computing
the OBB orientation. It has been found to be quite robust.
If we do use Qhull, we have to ensure that the input to
Qhull spans 3 dimensions. If the input is rank deficient, our
current implementation skips the use of Qhull, and uses all
the triangles in the group. A more complete solution would
be to project the input onto a lower dimensional space, and
compute the convex hull of the projection (Qhull works on
input of arbitrary specified dimension, but the input must
be full rank).

There is the issue of propagation of errors as we descend
the hierarchies, performing overlap tests. When we test
two boxes or two triangles, their placement relative to one
another is the result of a series of transformations, one for
each level of each hierarchy we have traversed. We have
not found errors due to the cascading of transformation
matrices, but it is a theoretical source of errors we are
aware of.

7.2 Performance
Our interference detection algorithm has been applied to
two complex synthetic environments to demonstrate its ef-
ficiency (as highlighted in Table 3). These figures are for
an SGI Reality Engine (90 MHz R8000 CPU, 512 MB).

A simple dynamics engine exercised the collision detec-
tion system. At each time step, the contact polygons were
found by the collision detection algorithm, an impulse was
applied to the object at each contact before advancing the
clock.

In the first scenario, the pipes model was used as both
the environment and the dynamic object, as shown in Fig.
8. Both object and environment contain 140,000 polygons.
The object is 15 times smaller in size than the environ-
ment. We simulated a gravitational field directed toward
the center of the large cube of pipes, and permitted the
smaller cube to fall inward, tumbling and bouncing. Its
path contained 4008 discrete positions, and required 16:9



Scenario Pipes Torus
Environ Size 143690 pgns 98000 pgns
Object Size 143690 pgns 20000 pgns
Num of Steps 4008 1298
Num of Contacts 23905 2266
Num of Box-Box Tests 1704187 1055559
Num of Tri-Tri Tests 71589 7069
Time 16.9 secs 8.9 secs
Ave. Int. Detec. Time 4.2 msecs 6.9 msecs
Ave. Time per Box Test 7.9 usecs 7.3 usecs
Ave. Contacts per Step 6.0 1.7

Table 3: Timings for simulations

seconds to determine all 23905 contacts along the path.
This is a challenging scenario because the smaller object
is entirely embedded within the larger model. The models
contain long thin triangles in the straight segments of the
pipes, which cannot be efficiently approximated by sphere
trees, octrees, and AABBTrees, in general. It has no obvi-
ous groups or clusters, which are typically used by spatial
partitioning algorithms like BSP’s.

The other scenario has a complex wrinkled torus encir-
cling a stalagmite in a dimpled, toothed landscape. Dif-
ferent steps from this simulation are shown in Fig. 10.
The spikes in the landscape prevent large bounding boxes
from touching the floor of the landscape, while the dimples
provide numerous shallow concavities into which an object
can enter. Likewise, the wrinkles and the twisting of the
torus makes it impractical to decompose into convex poly-
topes, and difficult to efficiently apply bounding volumes.
The wrinkled torus and the environment are also smooth
enough to come into parallel close proximity, increasing
the number of bounding volume overlap tests. Notice that
the average number of box tests per step for the torus sce-
nario is almost twice that of the pipes, even though the
number of contacts is much lower.

We have also applied our algorithm to detect collision
between a moving torpedo on a pivot model (as shown in
Fig. 7). These are parts of a torpedo storage and handling
room of a submarine. The torpedo model is 4780 triangles.
The pivot structure has 44921 triangles. There are multiple
contacts along the length of the torpedo as it rests among
the rollers. A typical collision query time for the scenario
shown in Fig. 7 is 100 ms on a 200MHz R4400 CPU, 2GB
SGI Reality Engine.

7.3 Comparison with Other Approaches
A number of hierarchical structures are known in the liter-
ature for interference detection. Most of them are based on
spheres or AABBs. They have been applied to a number
of complex environments. However, there are no stan-
dard benchmarks available to compare different algorithms
and implementations. As a result, it is non-trivial to com-
pare two algorithms and their implementations. More re-
cently, [18] have compared different algorithms (based on
line-stabbing and AABBs) on models composed of tens of
thousands of polygons. On an SGI Indigo2 Extreme, the
algorithms with the best performance are able to compute
all the contacts between the models in about 1=7�1=5 of a
second. Just based on the model complexity, we are able to
handle models composed of hundreds of thousands of poly-
gons (with multiple parallel contacts) in about 1=25�1=75
of a second. We also compared our algorithm with an
implementation of sphere tree based on the algorithm pre-
sented in [28]. A very preliminary comparison indicates
one order of magnitude improvement. More comparisons
and experiments are planned in the near future.

7.4 RAPID and benchmarks
Our implementation of our algorithms is available as a soft-
ware package called RAPID (Rapid and Accurate Poly-
gon Interference Detection). It can be obtained from:
http://www.cs.unc.edu/˜geom/OBB/OBBT.html.

Most of the models shown in this paper are also available,
as well as precomputed motion sequences.

Overall, we find that given two large models in close
proximity, withCv, Nv, and Np from the cost equation (1):
� Cv for OBBTrees is one-order of magnitude slower

than that for sphere trees or AABBs.

� Nv for OBBTrees is asymptotically lower than that for
sphere trees or AABBs. Likewise, Np for OBBTrees
is asymptotically lower.

Thus, given sufficiently large models in sufficiently close
proximity, using OBBTrees require less work to process a
collision query than using AABBTrees or sphere trees.

8 Extensions and Future Work
In the previous sections, we described the algorithm for
interference detection between two polygonal models un-
dergoing rigid motion. Some of the future work includes its
specialization and extension to other applications. These
include ray-tracing, interference detection between curved
surfaces, view frustum culling and deformable models. As
far as curve and surface intersections are concerned, current
approaches are based on algebraic methods, subdivision
methods and interval arithmetic [32]. Algebraic methods
are restricted to low degree intersections. For high degree
curve intersections, algorithms based on interval arithmetic
have been found to be the fastest [32]. Such algorithms
compute a decomposition of the curve in terms of AABBs.
It will be worthwhile to try OBBs. This would involve sub-
dividing the curve, computing tight-fitting OBBs for each
segment, and checking them for overlaps.

In terms of view frustum culling, most applications use
hierarchies based on AABBs. Rather, we may enclose the
object using an OBBTree and test for overlap with the view
frustum. The overlap test presented in Section 5 can be
easily extended to test for overlap between an OBB and a
view frustum.
Libraries and Benchmarks: There is great need to de-
velop a set of libraries and benchmarks to compare different
algorithms. This would involve different models as well as
scenarios.

9 Conclusion
In this paper, we have presented a hierarchical data structure
for rapid and exact interference detection between polygo-
nal models. The algorithm is general-purpose and makes no
assumptions about the input model. We have presented new
algorithms for efficient construction of tight-fitting OBB-
Trees and overlap detection between two OBBs based on a
new separating axis theorem. We have compared its perfor-
mance with other hierarchies of spheres and AABBs and
find it asymptotically faster for close proximity situations.
The algorithm has been implemented and is able to detect
all contacts between complex geometries (composed of a
few hundred thousand polygons) at interactive rates.



10 Acknowledgements
Thanks to Greg Angelini, Jim Boudreaux, and Ken Fast at
Electric Boat for the model of torpedo storage and handling
room. This work was supported in part by a Sloan foun-
dation fellowship, ARO Contract P-34982-MA, NSF grant
CCR-9319957, NSF grant CCR-9625217, ONR contract
N00014-94-1-0738, ARPA contract DABT63-93-C-0048,
NSF/ARPA Science and Technology Center for Computer
Graphics & Scientific Visualization NSF Prime contract
No. 8920219 and a grant from Ford Motor company.

References
[1] A.Garica-Alonso, N.Serrano, and J.Flaquer. Solving the collision detection

problem. IEEE Computer Graphics and Applications, 13(3):36–43, 1994.

[2] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques. In An
Introduction to Ray Tracing, pages 201–262, 1989.

[3] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body
simulation. ACM Computer Graphics, 24(4):19–28, 1990.

[4] B. Barber, D. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex
hull. Technical Report GCG53, The Geometry Center, MN, 1993.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An
efficient and robust access method for points and rectangles. Proc. SIGMOD
Conf. on Management of Data, pages 322–331, 1990.

[6] S. Cameron. Collision detection by four-dimensional intersection testing. Pro-
ceedingsof InternationalConference on Robotics and Automation, pages 291–
302, 1990.

[7] S. Cameron. Approximation hierarchies and s-bounds. In Proceedings. Sym-
posium on Solid Modeling Foundations and CAD/CAM Applications, pages
129–137, Austin, TX, 1991.

[8] J. F. Canny. Collision detection for moving polyhedra. IEEE Trans. PAMI,
8:200–209, 1986.

[9] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three
dimensions. J. ACM, 34:1–27, 1987.

[10] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-collide: An interactive and
exact collision detection system for large-scale environments. In Proc. of ACM
Interactive 3D Graphics Conference, pages 189–196, 1995.

[11] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John
Wiley and Sons, 1973.

[12] Tom Duff. Interval arithmetic and recursive subdivision for implicit functions
and constructive solid geometry. ACM Computer Graphics, 26(2):131–139,
1992.

[13] J. Snyder et. al. Interval methods for multi-point collisions between time
dependent curved surfaces. In Proceedings of ACM Siggraph, pages 321–334,
1993.

[14] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedurefor computing
the distance between objects in three-dimensionalspace. IEEE J. Roboticsand
Automation, vol RA-4:193–203, 1988.

[15] S. Gottschalk. Separating axis theorem. Technical Report TR96-024, Depart-
ment of Computer Science, UNC Chapel Hill, 1996.

[16] N. Greene. Detecting intersection of a rectangular solid and a convex polyhe-
dron. In Graphics Gems IV, pages 74–82. Academic Press, 1994.

[17] J. K. Hahn. Realistic animation of rigid bodies. Computer Graphics, 22(4):pp.
299–308, 1988.

[18] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Evaluation of collision de-
tection methods for virtual reality fly-throughs. In Canadian Conference on
Computational Geometry, 1995.

[19] B. V. Herzen, A. H. Barr, and H. R. Zatz. Geometric collisions for time-
dependent parametric surfaces. Computer Graphics, 24(4):39–48, 1990.

[20] P. M. Hubbard. Interactive collision detection. In Proceedings of IEEE Sym-
posium on Research Frontiers in Virtual Reality, October 1993.

[21] M.C. Lin. Efficient Collision Detection for Animationand Robotics. PhD thesis,
Department of Electrical Engineering and Computer Science, University of
California, Berkeley, December 1993.

[22] M.C. Lin and Dinesh Manocha. Fast interference detection between geometric
models. The Visual Computer, 11(10):542–561, 1995.

[23] M. Moore and J. Wilhelms. Collision detection and response for computer
animation. Computer Graphics, 22(4):289–298, 1988.

[24] B. Naylor, J. Amanatides, and W. Thibault. Merging bsp trees yield polyhedral
modeling results. In Proc. of ACM Siggraph, pages 115–124, 1990.

[25] J. O’Rourke. Finding minimal enclosing boxes. Internat. J. Comput. Inform.
Sci., 14:183–199, 1985.

[26] M. Ponamgi, D. Manocha, and M. Lin. Incremental algorithms for collision
detection between general solid models. In Proc. of ACM/SiggraphSymposium
on Solid Modeling, pages 293–304, 1995.

[27] F.P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
New York, 1985.
[28] S. Quinlan. Efficient distance computation between non-convex objects. In
Proceedings of International Conference on Robotics and Automation, pages
3324–3329, 1994.

[29] A. Rappoport. The extended convex differences tree (ecdt) representation for
n-dimensional polyhedra. International Journal of Computational Geometry
and Applications, 1(3):227–41, 1991.

[30] S. Rubin and T. Whitted. A 3-dimensional representation for fast rendering of
complex scenes. In Proc. of ACM Siggraph, pages 110–116, 1980.

[31] H. Samet. Spatial Data Structures: Quadtree, Octrees and Other Hierarchical
Methods. Addison Wesley, 1989.

[32] T.W. Sederberg and S.R. Parry. Comparison of three curve intersection algo-
rithms. Computer-Aided Design, 18(1):58–63, 1986.

[33] R. Seidel. Linear programmingand convexhulls made easy. In Proc. 6th Ann.
ACM Conf. on ComputationalGeometry, pages 211–215,Berkeley, California,
1990.

[34] W.Bouma and G.Vanecek.Collision detection and analysis in a physically based
simulation. ProceedingsEurographicsworkshop on animationand simulation,
pages 191–203, 1991.

[35] H. Weghorst, G. Hooper, and D. Greenberg. Improvedcomputational methods
for ray tracing. ACM Transactions on Graphics, pages 52–69, 1984.

[36] E. Welzl. Smallest enclosing disks (balls and ellipsoids). Technical Report B
91-09, Fachbereich Mathematik, Freie Universitat, Berlin, 1991.

Figure 7: Interactive Interference Detection for a Torpedo
(shown in yellow) on a Pivot Structure (shown in green)
– Torpedo has 4780 triangles; Pivot has 44921 triangles;
Average time to perform collision query: 100 msec on SGI
Reality Engine with 200MHz R4400 CPU

Figure 8: Interactive Interference Detection on Com-
plex Interweaving Pipeline: 140;000 polygons each; Aver-
age time to perform collision query: 4.2 msec on SGI Reality
Engine with 90MHz R8000 CPU



Figure 9: AABBs vs. OBBs: Approximation of a Torus – This
shows OBBs converging to the shape of a torus more rapidly
than AABBs.

Figure 10: Interactive Interference Detection for a Complex
Torus – Torus has 20000 polygons; Environment has 98000
polygons; Average time to perform collision query: 6.9 msec
on SGI Reality Engine with 90MHz R8000 CPU.

High-resolution TIFF versions of these images can be found on the CD-ROM in:
S96PR/papers/gottscha


