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Abstract

A number of techniques have been developed for reconstructing sur-
faces by integrating groups of aligned range images. A desirable set
of propertiesfor such algorithmsincludes: incremental updating, rep-
resentation of directional uncertainty, the ability to fill gapsin the re-
construction, and robustness in the presence of outliers. Prior algo-
rithms possess subsets of these properties. In this paper, we present a
volumetric method for integrating range images that possessesall of
these properties.

Our volumetric representation consists of a cumulative weighted
signed distance function. Working with one range image at a time,
we first scan-convert it to a distance function, then combine this with
the dataalready acquired using a simple additive scheme. To achieve
space efficiency, we employ arun-length encoding of the volume. To
achievetime efficiency, we resamplethe rangeimageto align with the
voxel grid and traverse the range and voxel scanlines synchronously.
We generate the final manifold by extracting an isosurface from the
volumetric grid. We show that under certain assumptions, this isosur-
faceis optimal in theleast squaressense. To fill gapsin the model, we
tessellate over the boundaries between regions seen to be empty and
regions never observed.

Using thismethod, we are ableto integrate alarge number of range
images (asmany as 70) yielding seamless, high-detail modelsof up to
2.6 million triangles.
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try and Object Modeling
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1 Introduction

Recent years have witnessed arise in the availability of fast, accurate
range scanners. Theserange scannershave provided datafor applica-
tions such as medicine, reverse engineering, and digital film-making.
Many of thesedevicesgeneraterangeimages, i.e., they producedepth
values on a regular sampling lattice. Figure 1 illustrates how an op-
tical triangulation scanner can be used to acquire arange image. By
connecting nearest neighbors with triangular elements, one can con-
struct arange surface as shownin Figure 1d. Rangeimages are typi-
cally formed by sweepinga 1D or 2D sensor linearly acrossan object
or circularly around it, and generally do not contain enough informa-
tion to reconstruct the entire object being scanned. Accordingly, we
require algorithms that can merge multiple range imagesinto a sin-
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gle description of the surface. A set of desirable properties for sucha
surface reconstruction algorithm includes:

¢ Representation of range uncertainty. The datain range images
typically have asymmetric error distributions with primary di-
rections along sensor lines of sight, asillustrated for optical tri-
angulationin Figure 1a. Themethod of rangeintegration should
reflect this fact.

o Utilization of all range data, including redundant observations
of each object surface. If properly used, this redundancy can re-
duce sensor noise.

¢ Incremental and order independent updating. Incremental up-
datesallow usto obtain areconstruction after each scan or small
set of scansand allow us to choose the next best orientation for
scanning. Order independenceis desirableto ensurethat results
arenot biased by earlier scans. Together, they allow for straight-
forward parallelization.

¢ Time and space efficiency. Complex objects may require many
range images in order to build a detailed model. The range
images and the model must be represented efficiently and pro-
cessed quickly to make the algorithm practical.

¢ Robustness. Outliers and systematic rangedistortions can create
challenging situations for reconstruction algorithms. A robust
algorithm needsto handle these situations without catastrophic
failures such as holesin surfaces and self-intersecting surfaces.

¢ No restrictions on topological type. The algorithm should not
assume that the object is of a particular genus. Simplifying as-
sumptions such as “the object is homeomorphic to a sphere”
yield useful resultsin only arestricted class of problems.

¢ Ability to fill holesin the reconstruction. Given a set of range
images that do not completely cover the object, the surface re-
construction will necessarily be incomplete. For some objects,
no amount of scanning would completely cover the object, be-
cause some surfaces may be inaccessible to the sensor. In these
cases, we desire an algorithm that can automatically fill these
holeswith plausible surfaces, yielding amodel that is both “wa-
tertight” and esthetically pleasing.

In this paper, we present avolumetric method for integrating range
images that possessesall of these properties. In the next section, we
review some previous work in the area of surface reconstruction. In
section 3, we describe the core of our volumetric algorithm. In sec-
tion 4, we show how this algorithm can be used to fill gapsin the re-
construction using knowledge about the emptiness of space. Next, in
section 5, we describe how we implemented our volumetric approach
S0 asto keep time and space costs reasonable. In section 6, we show
theresults of surface reconstruction from many rangeimages of com-
plex objects. Finally, in section 7 we conclude and discusslimitations
and future directions.

2 Previouswork

Surface reconstruction from dense range data has been an active area
of research for several decades. The strategies have proceeded along
two basic directions: reconstruction from unorganized points, and
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Figure 1. From optical triangulation to arange surface. (a) In 2D, anarrow laser beam illuminates a surface, and a linear sensor images the reflection from an
object. The center of the image pulse mapsto the center of the laser, yielding arange value. The uncertainty, o, in determining the center of the pulse results
in range uncertainty, o, along the laser’s line of sight. When using the spacetime analysis for optical triangulation [6], the uncertainties run along the lines of
sight of the CCD. (b) In 3D, alaser stripe triangulation scanner first spreads the laser beam into a sheet of light with a cylindrical lens. The CCD observesthe
reflected stripe from which a depth profileis computed. The object sweepsthroughthefield of view, yieldingarangeimage. Other scanner configurationsrotate
the object to obtain a cylindrical scan or sweep a laser beam or stripe over astationary object. (c) A rangeimage obtained from the scanner in (b) isa collection
of points with regular spacing. (d) By connecting nearest neighborswith triangles, we create a piecewise linear range surface.

reconstruction that exploits the underlying structure of the acquired
data. These two strategies can be further subdivided according to
whether they operate by reconstructing parametric surfacesor by re-
constructing an implicit function.

A major advantage of the unorganized points algorithmsis the fact
that they do not make any prior assumptions about connectivity of
points. In the absenceof rangeimagesor contoursto provide connec-
tivity cues, these algorithms are the only recourse. Among the para-
metric surface approaches, Boissanat [2] describes a method for De-
launay triangulation of a set of points in 3-space. Edelsbrunner and
Miicke [9] generalize the notion of a convex hull to create surfaces
called alpha-shapes. Examples of implicit surface reconstruction in-
clude the method of Hoppe, et a [16] for generating asigned distance
function followed by an isosurface extraction. More recently, Bajaj,
et a [1] used alpha-shapesto construct a signed distance function to
which they fit implicit polynomials. Although unorganized points al-
gorithms are widely applicable, they discard useful information such
as surface normal and reliability estimates. As a result, these algo-
rithms are well-behaved in smooth regions of surfaces, but they are
not always robust in regions of high curvature and in the presence of
systematic range distortions and outliers.

Among the structured data algorithms, several parametric ap-
proaches have been proposed, most of them operating on range im-
ages in a polygonal domain. Soucy and Laurendeau [25] describe
a method using Venn diagrams to identify overlapping data regions,
followed by re-parameterization and merging of regions. Turk and
Levoy [30] devised an incremental algorithm that updates a recon-
struction by eroding redundant geometry, followed by zippering along
the remaining boundaries, and finally a consensus step that rein-
troduces the original geometry to establish final vertex positions.
Rutishauser, et al [24] use errors along the sensor’slines of sight to es-
tablish consensus surface positions followed by a re-tessellation that
incorporates redundant data. Thesealgorithmstypically perform bet-
ter than unorganized point algorithms, but they can still fail catas-
trophically in areas of high curvature, as exemplifiedin Figure 9.

Several algorithms have been proposed for integrating structured
datato generateimplicit functions. Thesealgorithms can be classified
as to whether voxels are assigned one of two (or three) states or are
samples of acontinuous function. Among the discrete-state volumet-
ric algorithms, Connolly [4] castsraysfrom arangeimage accessedas
aquad-tree into avoxel grid stored as an octree, and generates results
for synthetic data. Chien, et a [3] efficiently generate octree models
under the severe assumption that all views are taken from the direc-
tions corresponding to the 6 faces of acube. Li and Crebbin [19] and

Tarbox and Gottschlich [28] also describe methods for generating bi-
nary voxel grids from rangeimages. None of these methods has been
used to generate surfaces. Further, without an underlying continuous
function, there are no mechanism for representing range uncertainty
or for combining overlapping, noisy range surfaces.

The last category of our taxonomy consists of implicit function
methods that use samples of a continuous function to combine struc-
tured data. Our method fallsinto this category. Previouseffortsinthis
areainclude the work of Grosso, et al [12], who generate depth maps
from stereo and average them into avolume with occupancy ramps of
varying slopes corresponding to uncertainty measures; they do not,
however, perform a final surface extraction. Succi, et a [26] create
depth maps from stereo and optical flow and integrate them volumet-
rically using astraight average. The details of his method are unclear,
but they appear to extract an isosurface at an arbitrary threshold. In
both the Grosso and Succi papers, the range maps are sparse, the di-
rections of range uncertainty are not characterized, they use no time
or spaceoptimizations, and thefinal modelsare of low resolution. Re-
cently, Hilton, et al [14] have developed a method similar to oursin
that it uses weighted signed distance functions for merging range im-
ages, but it does not address directions of sensor uncertainty, incre-
mental updating, space efficiency, and characterization of the whole
spacefor potential holefilling, all of which we believeare crucial for
the successof this approach.

Other relevant work includes the method of probabilistic occu-
pancy grids developed by Elfes and Matthies [10]. Their volumetric
spaceis a scalar probability field which they update using a Bayesian
formulation. Theresults have been used for robot navigation, but not
for surface extraction. A difficulty with this techniqueis the fact that
thebest description of the surfaceliesat the peak or ridge of the proba-
bility function, and the problem of ridge-finding isnot onewith robust
solutions[8]. Thisisoneof our primary motivationsfor taking aniso-
surface approach in the next section: it leveragesoff of well-behaved
surface extraction algorithms.

The discrete-state implicit function algorithms described above
also have much in common with the methods of extracting volumes
from silhouettes [15] [21] [23] [27]. The idea of using backdropsto
help carve out the emptiness of spaceis one we demonstrate in sec-
tion 4.

3 Volumetricintegration

Our algorithm employs a continuousimplicit function, D(x), repre-
sented by samples. The function we represent is the weighted signed
distance of each point x to the nearest range surface along the line of
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Figure 2. Unweighted signed distance functionsin 3D. (a) A range sen-
sor looking down the x-axis observes a range image, shown hereasare-
constructed range surface. Following one line of sight down the x-axis,
we can generate a signed distance function as shown. The zero crossing
of this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing processresultsin a
slightly different range surface. In general, the second surface would inter-
penetrate the first, but we have shown it as an offset from the first surface
for purposesof illustration. Following the sameline of sight as before, we
obtain another signed distance function. By summing these functions, we
arrive at a cumulative function with a new zero crossing positioned mid-
way between the original range measurements.

sight to the sensor. We construct this function by combining signed
distance functions d;(x), d2(x), ... dn(x) and weight functions
w1 (%), wa(x), ... wp(x) obtained from rangeimages1 ... n. Our
combining rules give us for each voxel a cumulative sighed distance
function, D(x), and acumulative weight W (x). We represent these
functions on a discrete voxel grid and extract an isosurface corre-
spondingto D(x) = 0. Under a certain set of assumptions, this iso-
surface is optimal in the least squares sense. A full proof of this op-
timality is beyond the scope of this paper, but a sketch appearsin ap-
pendix A.

Figure 2 illustrates the principle of combining unweighted signed
distancesfor the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, refl ecting greater uncertainty when the
illumination is at grazing anglesto the surface. Turk also arguesthat
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemesfor our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and hastaken two mea-
surements, r; and .. The signed distance profiles, d, (¢) and dz ()
may extend indefinitely in either direction, but the weight functions,
w1 (x) and w2 (z), taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:
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Figure 3. Signed distance and weight functionsin one dimension. (a) The
sensor looks down the x-axis and takes two measurements, 1 and r5.
di () and d» (=) are the signed distance profiles, and w1 (z) and ws ()
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to
beof different magnitudehereto illustrate how the profiles combinein the
general case. (b) D(x) is aweighted combination of d; (=) and da (=),
and W (=) isthe sum of theweight functions. Given thisformulation, the
zero-crossing, R, becomestheweighted combinationof r; andr, andrep-
resentsour best guessof thelocation of thesurface. In practice, wetruncate
the distance ramps and weights to the vicinity of the range points.

where, d;(x) and w; (x) arethe signed distance and weight functions
from the ith range image.
Expressed as an incremental calculation, the rules are:

Wi(x)Di(x) + wiy1(X)dit1 (%)
Wi(x) + wig1(x)

Dz‘+1(X) = (3)

Wit1(x) = Wi(x) + wit1(x) 4)

where D;(x) and W;(x) are the cumulative signed distance and
weight functions after integrating the sth range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at arange, R given by:
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i.e., aweighted combination of the acquired range values, which is
what one would expect for aleast squares minimization.

In principle, the distanceand weighting functions should extendin-
definitely in either direction. However, to prevent surfaces on oppo-
site sides of the abject from interfering with each other, we force the
weighting function to taper off behindthe surface. Thereis atrade-off
involved in choosing where the weight function tapers off. It should
persist far enough behind the surface to ensurethat all distanceramps
will contribute in the vicinity of thefinal zero crossing, but, it should
alsobeasnarrow as possibleto avoidinfluencing surfaceson the other
side. To meet these requirements, we force the weightsto fall off at a
distance equal to half the maximum uncertainty interval of the range
measurements. Similarly, the signed distance and weight functions
need not extend far in front of the surface. Restricting the functions
to thevicinity of the surfaceyieldsamore compact representation and
reducesthe computational expense of updating the volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to rangeimagein-
tegration include errors in alignment between meshes as well as er-
rorsinherent in the scanning technology. A number of algorithmsfor
aligning sets of range images have been explored and shown to yield
excellent results[11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional casefor arange curve de-
rived from a single scan containing a row of range samples. In prac-
tice, we use afixed point representation for the signed distance func-
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Figure 4. Combination of signed distance and weight functionsin two di-
mensions. (a) and (d) are the signed distanceand weight functions, respec-
tively, generated for a range image viewed from the sensor line of sight
shown in (d). The signed distance functions are chosen to vary between
Dpnin @nd Doz, @ shownin (a). The weighting falls off with increas-
ing obliquity to the sensor and at the edgesof the meshesasindicated by the
darker regionsin (€). Thenormals, n; andns shownin (€), areoriented at
agrazing angle and facing the sensor, respectively. Note how the weight-
ing is lower (darker) for the grazing normal. (b) and (e) arethe signed dis-
tance and weight functionsfor arangeimage of the same object taken at a
60 degreerotation. (c) is the signed distance function D(x) correspond-
ing to the per voxel weighted combination of (a) and (b) constructed using
equations3 and 4. (f) isthe sum of the weightsat eachvoxel, W (x). The
dotted green curvein (c) isthe isosurface that represents our current esti-
mate of the shape of the object.

tion, which bounds the values to lie between D,,;, and D, as
showninthefigure. Thevaluesof D,,;» and D, ., must be negative
and positive, respectively, as they are on opposite sides of a signed
distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute aweight at each vertex asdescribed
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near therange surface and then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of therangeimages, we can extract
the zero-crossingisosurfacefrom the volumetric grid. Werestrict this
extraction procedureto skip sampleswith zero weight, generating tri-
anglesonly in the regions of observed data. We will relax this restric-
tion in the next section.

4 Holefilling

The algorithm described in the previous section is designed to recon-
struct the observed portions of the surface. Unseen portions of the
surface will appear as holes in the reconstruction. While this result
is an accurate representation of the known surface, the holes are es-
thetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,
the authors describe a method for parameterizing patchesthat entails
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Figure 5. Sampling the range surface to update the volume. We compute
theweight, w, and signed distance, d, needed to update the voxel by cast-
ing a ray from the sensor, through the voxel onto the range surface. We
obtain the weight, w, by linearly interpolating the weights (w , w, and
w,) stored at neighboringrange vertices. Note that for atranslating sensor
(like our Cyberware scanner), the sensor point is different for each column
of range points.

generating evenly spaced grid lines by walking across the edges of a
mesh. Gapsin the mesh prevent the algorithm from creating afair pa-
rameterization. As another example, rapid prototyping technologies
such asstereolithography typically require a“ watertight” model in or-
der to construct asolid replica[7].

One optionfor filling holesisto operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnected components. Instead, we offer aholefilling ap-
proach that operates on our volume, which containsmore information
than the reconstructed mesh.

The key to our algorithm lies in classifying al pointsin the vol-
umeasbeingin oneof three states: unseen, empty, or near the surface.
Holesin the surface areindicated by frontiers between unseenregions
and empty regions (see Figure 6). Surfaces placed at these frontiers
offer a plausible way to plug these holes (dotted in Figure 6). Ob-
taining this classification and generating these hole fillers leadsto a
straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel spaceto the “unseen” state.

2. Updatethe voxels near the surface as described in the previous
section. As before, these voxelstake on continuous signed dis-
tance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the corresponding voxelsas*“empty” . Werefer to thisstep
as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regionsthat remain unseen.

In practice, we represent the unseen and empty states using the
function and weight fieldsstored onthevoxel lattice. We represent the
unseenstate with thefunction values D (x) = D a0, W(x) = 0 and
the empty state with the function values D(x) = Diin, W(x) = 0,
as shown in Figure 6b. The key advantage of this representation is
that we can use the same isosurface extraction algorithm we used in
the previous section without the restriction on interpolating voxels of
zero weight. This extraction finds both the signed distance and hole
fill isosurfaces and connects them naturally where they meet, i.e., at
the corners in Figure 6a where the dotted red line meets the dashed
greenline. Notethat the trianglesthat arise from interpolations across
voxelsof zero weight aredistinct from the others: they are holefillers.
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Figure 6. Volumetric grid with space carving and holefilling. (a) There-
gionsin front of the surface are seen as empty, regionsin the vicinity of
the surface ramp through the zero-crossing, while regions behind remain
unseen. The green (dashed) segments are the isosurfaces generated near
the observed surface, while the red (dotted) segmentsare holefillers, gen-
erated by tessellating over the transition from empty to unseen. In (b), we
identify the three extremal voxel states with their corresponding function
values.

We take advantageof this distinction when smoothing surfacesas de-
scribed below.

Figure 6 illustrates the method for a single range image, and pro-
vides a diagram for the three-state classification scheme. The hole
filler isosurfaces are “false” in that they are not representative of the
observed surface, but they do derivefrom observed data. In particular,
they correspond to a boundary that confineswhere the surface could
plausibly exist. In practice, wefind that many of these holefiller sur-
faces are generated in crevicesthat are hard for the sensor to reach.

Becausethe transition between unseen and empty is discontinuous
and holefill triangles are generated as an isosurface between these bi-
nary states, with no smooth transition, we generally observe aliasing
artifacts in these areas. These artifacts can be eliminated by prefilter-
ing the transition region before sampling on the voxel lattice using
straightforward methods such as analytic filtering or super-sampling
and averaging down. In practice, we have obtained satisfactory re-
sults by applying another technique: post-filtering the mesh after re-
construction using weighted averages of nearest vertex neighbors as
described in [29]. The effect of this filtering step is to blur the hole
fill surface. Since we know which triangles correspond to holefillers,
we need only concentrate the surfacefiltering on the these portions of
the mesh. Thislocalized filtering preservesthe detail in the observed
surface reconstruction. To achieve a smooth blend between filtered
holefill vertices and the neighboring “real” surface, we allow the fil-
ter weightsto extend beyond and taper off into the vicinity of the hole
fill boundaries.

We havejust seen how “ spacecarving” isauseful operation: it tells
us much about the structure of free space, allowing usto fill holesin
anintelligent way. However, our algorithm only carvesback from ob-
served surfaces. There are numerous situations where more carving
would be useful. For example, the interior walls of ahollow cylinder
may elude digitization, but by seeing through the hollow portion of
the cylinder to a surface placed behind it, we can better approximate
its geometry. We can extend the carving paradigm to cover these situ-
ations by placing such abackdrop behind the surfacesbeing scanned.
By placing the backdrop outside of the voxel grid, we utilize it purely
for carving spacewithout introducing its geometry into the model.

5 Implementation

51 Hardware

The examplesin this paper were acquired using a Cyberware 3030
MS laser stripe optical triangulation scanner. Figure 1b illustrates
the scanning geometry: an object translates through a plane of laser

light while the reflections are triangulated into depth profiles through
aCCD camerapositioned off axis. Toimprovethe quality of the data,
we apply the method of spacetime analysis as described in [6]. The
benefits of this analysis include reduced range noise, greater immu-
nity to reflectance changes, and less artifacts near range discontinu-
ities.

When using traditional triangulation analysisimplemented in hard-
ware in our Cyberware scanner, the uncertainty in triangulation for
our system follows the lines of sight of the expanding laser beam.
When using the spacetime analysis, however, the uncertainty follows
the lines of sight of the camera. The results described in section 6 of
this paper were obtained with one or the other triangulation method.
In each case, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions.

5.2 Software

The creation of detailed, complex models requires a large amount of
input datato be merged into high resolution voxel grids. The exam-
plesin the next section include models generated from as many as 70
scanscontaining up to 12 million input verticeswith volumetric grids
ranging in size up to 160 million voxels. Clearly, time and space opti-
mizations are critical for merging this data and managing these grids.

5.2.1 Run-length encoding

The core data structure is a run-length encoded (RLE) volume with
three run types: empty, unseen, and varying. The varying fields are
stored as a stream of varying data, rather than runs of constant value.
Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel grids is usually less than the
memory required to represent the final mesh asalist of vertices and
triangle indices.

5.2.2 Fast volumetraversal

Updating the volume from a range image may be likened to inverse
volumerendering: instead of reading from avolume and writing to an
image, we read from a range image and write to avolume. As are-
sult, we leverage off of a successful idea from the volume rendering
community: for best memory system performance, stream through
the volume and the image simultaneously in scanline order [18]. In
general, however, the scanlines of arange image are not aligned with
the scanlines of the voxel grid, as shown in Figure 7a. By suitably
resampling the range image, we obtain the desired alignment (Fig-
ure 7b). The resampling process consists of a depth rendering of the
range surface using the viewing transformation specific to the lines of
sight of the range sensor and using an image plane oriented to align
with the voxel grid. We assign the weights as vertex “colors’ to be
linearly interpolated during the rendering step, an approach equiva-
lent to Gouraud shading of triangle colors.

To merge the range data into the voxel grid, we stream through
thevoxel scanlinesin order while stepping through the corresponding
scanlinesin the resampled rangeimage. We map each voxel scanline
to the correct portion of the range scanline as depicted in Figure 7d,
and we resample therange datato yield adistance from the range sur-
face. Using the combination rules given by equations 3 and 4, we up-
date the run-length encoded structure. To preserve the linear mem-
ory structure of the RLE volume (and thus avoid using linked lists of
runsscattered through the memory space), weread thevoxel scanlines
from the current volume and write the updated scanlinesto a second
RLE volume; i.e., we double-buffer the voxel grid. Note that depend-
ing on the scanner geometry, the mapping from voxelsto rangeimage
pixelsmay not belinear, in which case care must be taken to resample
appropriately [5].

For the case of merging range data only in the vicinity of the sur-
face, wetry to avoid processing voxels distant from the surface. To
that end, we construct abinary tree of minimum and maximum depths
for every adjacent pair of resampled range image scanlines. Before
processing each voxel scanline, we query the binary tree to decide
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Figure 7. Range image resampling and scanline order voxel updates. () Range image scanlines are not in general oriented to allow for coherently streaming
through voxel and range scanlines. (b) By resampling the rangeimage, we can obtain the desired range scanline orientation. (c) Casting rays from the pixelson
the rangeimage meanscutting across scanlines of thevoxel grid, resulting in poor memory performance. (d) Instead, we run along scanlines of voxels, mapping

them to the correct positions on the resampled range image.

which voxels, if any, are near the range surface. In thisway, only rel-
evant pieces of the scanline are processed. In a similar fashion, the
space carving steps can be designed to avoid processing voxels that
are not seento beempty for agivenrangeimage. Theresulting speed-
ups from the binary tree are typically a factor of 15 without carving,
and a factor of 5 with carving. We did not implement a brute-force
volume update method, however we would expect the overall algo-
rithm described here would be much faster by comparison.

5.2.3 Fast surfaceextraction

To generate our final surfaces, we employ a Marching Cubes algo-
rithm [20] with alookup table that resolvesambiguous cases[22]. To
reduce computational costs, we only processvoxelsthat havevarying
data or are at the boundary between empty and unseen.

6 Reaults

We show results for a number of objects designed to explore the ro-
bustness of our algorithm, its ability to fill gapsin the reconstruction,
and its attainable level of detail. To explore robustness, we scanned a
thin drill bit using the traditional method of optical triangulation. Due
to the false edge extensionsinherent in data from triangulation scan-
ners [6], this particular object poses a formidable challenge, yet the
volumetric method behavesrobustly wherethe zippering method [30]
fails catastrophically. Thedragon sequencein Figure 11 demonstrates
the effectiveness of carving spacefor holefilling. The use of a back-
drop hereisparticularly effectivein filling the gapsinthemodel. Note
that we do not use the backdrop at all times, in part becausethe range
images are much denser and more expensiveto process, and also be-
causethe backdrop tendsto obstruct the path of the object when auto-
matically repositioning it with our motion control platform. Finally,
the “Happy Buddha’ sequence in Figure 12 shows that our method
can be used to generate very detailed, hole-free models suitable for
rendering and rapid manufacturing.

Statistics for the reconstruction of the dragon and Buddha models
appear in Figure 8. With the optimizations described in the previous
section, we were able to reconstruct the observed portions of the sur-
faces in under an hour on a 250 MHz MIPS R4400 processor. The
space carving and hole filling algorithm is not completely optimized,
but the executiontimes are still in the range of 3-5 hours, lessthan the
time spent acquiring and registering the rangeimages. For both mod-
els, the RM S distance between pointsin the original rangeimagesand
points on the reconstructed surfaces is approximately 0.1 mm. This
figureisroughly the same asthe accuracy of the scanningtechnology,
indicating a nearly optimal surface reconstruction.

7 Discussion and futurework

We have described a new algorithm for volumetric integration of
range images, leading to a surface reconstruction without holes. The

algorithm has a number of desirable properties, including the repre-
sentation of directional sensor uncertainty, incremental and order in-
dependent updating, robustnessin the presence of sensor errors, and
the ability to fill gapsin the reconstruction by carving space. Our use
of arun-length encoded representation of the voxel grid and synchro-
nized processing of voxel and resampled rangeimage scanlinesmake
the algorithm efficient. Thisin turn allows usto acquire and integrate
a large number of range images. In particular, we demonstrate the
ability to integrate up to 70 scansinto a high resolution voxel grid to
generate million polygon modelsin a few hours. These models are
free of holes, making them suitable for surfacefitting, rapid prototyp-
ing, and rendering.

There are a number of limitations that prevent us from generating
modelsfrom an arbitrary object. Some of theselimitations arise from
the algorithm while others arise from the limitations of the scanning
technology. Among the algorithmic limitations, our method has dif-
ficulty bridging sharp cornersif no scan spans both surfaces meeting
at the corner. Thisislessof aproblem when applying our hole-filling
algorithm, but we are also exploring methods that will work without
holefilling. Thin surfaces are also problematic. As described in sec-
tion 3, the influences of observed surfaces extend behind their esti-
mated positions for each range image and can interfere with distance
functionsoriginating from scansof the opposite side of athin surface.
In this respect, the apexes of sharp corners also behavelike thin sur-
faces. While we have limited this influence as much as possible, it
still placesalower limit on the thickness of surface that we can reli-
ably reconstruct without causing artifacts such as thickening of sur-
faces or rounding of sharp corners. We are currently working to lift
this restriction by considering the estimated normals of surfaces.

Other limitations arise from the scanning technol ogiesthemselves.
Optical methods such as the one we use in this paper can only pro-
videdatafor external surfaces; internal cavities are not seen. Further,
very complicated objects may require an enormous amount of scan-
ning to cover the surface. Optical triangulation scanning has the ad-
ditional problem that both the laser and the sensor must observe each
point on the surface, further restricting the class of objectsthat can be
scanned completely. The reflectance properties of objects are also a
factor. Optical methods generally operate by casting light onto an ob-
ject, but shiny surfaces can deflect this illumination, dark objects can
absorbit, and bright surfacescan lead to interreflections. Tominimize
these effects, we often paint our objects with aflat, gray paint.

Straightforward extensionsto our algorithm includeimproving the
execution time of the space carving portion of the algorithm and
demonstrating parallelization of the whole algorithm. In addition,
more aggressive space carving may be possible by making inferences
about sensor lines of sight that return no range data. In the future, we
hopeto apply our methodsto other scanning technologiesandto large
scale objects such asterrain and architectural scenes.



Voxel Exec.
Input - Volume : Output
Model Scany triangles (ﬁ;fﬁ) dimensions (trlrr:i]r?) triangles | Holes
Dragon 61 15M 0.35 | 712x501x322| 56 1.7M 324
Dragon + fill 71 24 M 0.35 712x501x322( 257 1.8M 0
Buddha 48 5M 0.25 | 407x957x407| 47 24M | 670
Buddha + fill 58 9IM 0.25 [ 407x957x407( 197 26M 0

Figure 8. Statistics for the reconstruction of the dragon and Buddhamod-
els, with and without space carving.
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A |Isosurface asleast squares minimizer

It is possible to show that the isosurface of the weighted signed dis-
tancefunction isequivalent to aleast squaresminimization of squared
distances between points on the range surfaces and points on the de-
sired reconstruction. The key assumptionsare that the range sensor is
orthographic and that the range errors are independently distributed
along sensor lines of sight. A full proof is beyond the scope of this
paper, but we provide a sketch here. See[5] for details.

Consider aregion, R, onthe desired surface, f, which is observed
by n range images. We define the error between an observed range
surface and a possible reconstructed surface as the integral of the
weighted squared distances between points on the range surface and
the reconstructed surface. These distancesare taken along the lines of
sight of the sensor, commensuratewith the predominant directions of
uncertainty (see Figure 10). Thetotal error isthe sum of the integrals
for the n range images:

z=f(zy) m%"
A }. N

Figure 10. Two range surfaces, f1 and f», are tessellated range images
acquired from directions v; and v,. The possible range surface, = =
f(z,y), isevaluatedin terms of the weighted squared distancesto points
on the range surfaces taken along the lines of sight to the sensor. A point,
(z, v, #), is shown here being evaluated to find its corresponding signed
distances, d; and d,, and weights, w; and ws,.

E(f) = Z// wi(s,t, fdi(s,t, f)*dsdt (6)

=1

where each (s, ¢) correspondsto a particular sensor line of sight for
each range image, A; is the domain of integration for the :’th range
image, and w;(s, t, f) andd;(s, ¢, f) arethe weights and signed dis-
tances taken along the :’th range image’s lines of sight.

Now, consider acanonical domain, A, onaparameter plane, (z, y),
over which R isafunctionz = f(=z,y). Thetotal error can bere-
written as an integration over the canonical domain:

E(z) = > [wile,y, 2)di(w,y, 2)°] w(a—z,%,—n dzdy
A oz’ Oy

=1

(7)
where v; is the sensing direction of the :'th range image, and the
weights and distances are evaluated at each point, (z, y, z), by first
mapping them to the lines of sight of the corresponding range image.
The dot product represents a correction term that relates differential
areasin A to differential areasin A;. Applying the calculus of vari-
ations [31], we can construct a partial differential equation for the =
that minimizesthisintegral. Solving thisequationwearrive at thefol-
lowing relation:

> Oulwir,y, =)y, 2] = 0 ®)
=1
where 9y, isthe directional derivative along v;. Since the weight as-
sociated with aline of sight doesnot vary along that line of sight, and
the signed distancehasaderivative of unity along theline of sight, we
can simplify this equation to:

Zw,‘(x,y,z)d,'(x,y,z) =0 9)
=1
Thisweighted sum of signed distancesis the same aswhat we com-
pute in equations 1 and 2, without the division by the sum of the
weights. Since the this divisor is aways positive, the isosurface we
extract in section 3is exactly the least squaresminimizing surface de-
scribed here.
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Figure 11. Reconstruction of adragon. Illustrations (a) - (d) are full views of the dragon. Illustrations (€) - (h) are magnified views of the section highlighted
by the green box in (a). Regions shown in red correspond to holefill triangles. Illustrations (i) - (k) are slices through the corresponding volumetric grids at
the level indicated by the green linein (e). (a)(e)(i) Reconstruction from 61 range images without space carving and hole filling. The magnified rendering
highlights the holes in the belly. The dlice through the volumetric grid shows how the signed distance ramps are maintained close to the surface. The gap in
the ramps leadsto a hole in the reconstruction. (b)(f)(j) Reconstruction with space carving and hole filling using the same data asin (a). While some holesare
filled in areasonable manner, some large regions of space are left untouched and create extraneoustessellations. The slice through the volumetric grid reveals
that the isosurface between the unseen (brown) and empty (black) regionswill be connected to the isosurface extracted from the distance ramps, making it part
of the connected component of the dragon body and leaving us with a substantial number of false surfaces. (c)(g)(k) Reconstruction with 10 additional range
images using “backdrop” surfacesto effect more carving. Notice how the extraneousholefill triangles nearly vanish. The volumetric slice shows how we have
managed to empty out the space near the belly. The bumpiness along the holefill regions of the belly in (g) correspondsto aliasing artifacts from tessellating
over the discontinuoustransition between unseen and empty regions. (d)(h) Reconstruction asin (c)(g) with filtering of the holefill portions of the mesh. The
filtering operation blurs out the aliasing artifacts in the hole fill regionswhile preserving the detail in the rest of the model. Careful examination of (h) reveals
afaint ridgein thevicinity of the smoothed holefill. Thisridgeis actual geometry presentin all of the renderings, (€)-(h). The final model contains1.8 million
polygonsand is watertight.
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Figure 12. Reconstruction and 3D hardcopy of the “Happy Buddha’. The original is a plastic and rosewood statuette that stands 20 cm tall. Note that the camera parameters for each of these imagesis
different, creating a slightly different perspectivein each case. (a) Photograph of the original after spray painting it matte gray to simplify scanning. (b) Gouraud-shaded rendering of one range image of the
statuette. Scanswere acquired using a Cyberware scanner, modified to permit spacetime triangulation [6]. Thisfigure illustrates the limited and fragmentary nature of the information available from asingle
rangeimage. (c) Gouraud-shaded rendering of the 2.4 million polygon mesh after merging 48 scans, but before hole-filling. Notice that the reconstructed mesh has at least as much detail as the singlerange
image, but is less noisy; thisis most apparent around the belly. The hole in the base of the model correspondsto regions that were not observed directly by the range sensor. (d) RenderMan rendering of an
800,000 polygon decimated version of the hole-filled and filtered mesh built from 58 scans. By placing a backdrop behind the model and taking 10 additional scans, we were able to see through the space
between the baseand the Buddha sgarments, allowing usto carve spaceandfill the holesin the base. (€) Photograph of ahardcopy of the 3D model, manufactured by 3D Systems, Inc., using stereolithography.

The computer model was dliced into 500 layers, 150 microns apart, and the hardcopy was built up layer by layer by selectively hardening aliquid resin. The process took about 10 hours. Afterwards, the
model was sanded and bead-blasted to remove the stair-step artifacts that arise during layered manufacturing.



