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Abstract
A number of techniques have been developed for reconstructing sur-
faces by integrating groups of aligned range images. A desirable set
of properties for such algorithms includes: incremental updating, rep-
resentation of directional uncertainty, the ability to fill gaps in the re-
construction, and robustness in the presence of outliers. Prior algo-
rithms possess subsets of these properties. In this paper, we present a
volumetric method for integrating range images that possesses all of
these properties.

Our volumetric representation consists of a cumulative weighted
signed distance function. Working with one range image at a time,
we first scan-convert it to a distance function, then combine this with
the data already acquired using a simple additive scheme. To achieve
space efficiency, we employ a run-length encoding of the volume. To
achieve time efficiency, we resample the range image to align with the
voxel grid and traverse the range and voxel scanlines synchronously.
We generate the final manifold by extracting an isosurface from the
volumetric grid. We show that under certain assumptions, this isosur-
face is optimal in the least squares sense. To fill gaps in the model, we
tessellate over the boundaries between regions seen to be empty and
regions never observed.

Using this method, we are able to integrate a large number of range
images (as many as 70) yielding seamless, high-detail models of up to
2.6 million triangles.

CR Categories: I.3.5 [Computer Graphics] Computational Geome-
try and Object Modeling
Additional keywords: Surface fitting, three-dimensional shape re-
covery, range image integration, isosurface extraction

1 Introduction
Recent years have witnessed a rise in the availability of fast, accurate
range scanners. These range scanners have provided data for applica-
tions such as medicine, reverse engineering, and digital film-making.
Many of these devicesgenerate range images; i.e., they produce depth
values on a regular sampling lattice. Figure 1 illustrates how an op-
tical triangulation scanner can be used to acquire a range image. By
connecting nearest neighbors with triangular elements, one can con-
struct a range surface as shown in Figure 1d. Range images are typi-
cally formed by sweeping a 1D or 2D sensor linearly across an object
or circularly around it, and generally do not contain enough informa-
tion to reconstruct the entire object being scanned. Accordingly, we
require algorithms that can merge multiple range images into a sin-
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gle description of the surface. A set of desirable properties for such a
surface reconstruction algorithm includes:

� Representation of range uncertainty. The data in range images
typically have asymmetric error distributions with primary di-
rections along sensor lines of sight, as illustrated for optical tri-
angulation in Figure 1a. The method of range integration should
reflect this fact.

� Utilization of all range data, including redundant observations
of each object surface. If properly used, this redundancy can re-
duce sensor noise.

� Incremental and order independent updating. Incremental up-
dates allow us to obtain a reconstruction after each scan or small
set of scans and allow us to choose the next best orientation for
scanning. Order independence is desirable to ensure that results
are not biased by earlier scans. Together, they allow for straight-
forward parallelization.

� Time and space efficiency. Complex objects may require many
range images in order to build a detailed model. The range
images and the model must be represented efficiently and pro-
cessed quickly to make the algorithm practical.

� Robustness. Outliers and systematic range distortions can create
challenging situations for reconstruction algorithms. A robust
algorithm needs to handle these situations without catastrophic
failures such as holes in surfaces and self-intersecting surfaces.

� No restrictions on topological type. The algorithm should not
assume that the object is of a particular genus. Simplifying as-
sumptions such as “the object is homeomorphic to a sphere”
yield useful results in only a restricted class of problems.

� Ability to fill holes in the reconstruction. Given a set of range
images that do not completely cover the object, the surface re-
construction will necessarily be incomplete. For some objects,
no amount of scanning would completely cover the object, be-
cause some surfaces may be inaccessible to the sensor. In these
cases, we desire an algorithm that can automatically fill these
holes with plausible surfaces, yielding a model that is both “wa-
tertight” and esthetically pleasing.

In this paper, we present a volumetric method for integrating range
images that possesses all of these properties. In the next section, we
review some previous work in the area of surface reconstruction. In
section 3, we describe the core of our volumetric algorithm. In sec-
tion 4, we show how this algorithm can be used to fill gaps in the re-
construction using knowledge about the emptiness of space. Next, in
section 5, we describe how we implemented our volumetric approach
so as to keep time and space costs reasonable. In section 6, we show
the results of surface reconstruction from many range images of com-
plex objects. Finally, in section 7 we conclude and discuss limitations
and future directions.

2 Previous work
Surface reconstruction from dense range data has been an active area
of research for several decades. The strategies have proceeded along
two basic directions: reconstruction from unorganized points, and
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Figure 1. From optical triangulation to a range surface. (a) In 2D, a narrow laser beam illuminates a surface, and a linear sensor images the reflection from an
object. The center of the image pulse maps to the center of the laser, yielding a range value. The uncertainty, �x , in determining the center of the pulse results
in range uncertainty, �z along the laser’s line of sight. When using the spacetime analysis for optical triangulation [6], the uncertainties run along the lines of
sight of the CCD. (b) In 3D, a laser stripe triangulation scanner first spreads the laser beam into a sheet of light with a cylindrical lens. The CCD observes the
reflected stripe from which a depth profile is computed. The object sweeps through the field of view, yielding a range image. Other scanner configurations rotate
the object to obtain a cylindrical scan or sweep a laser beam or stripe over a stationary object. (c) A range image obtained from the scanner in (b) is a collection
of points with regular spacing. (d) By connecting nearest neighbors with triangles, we create a piecewise linear range surface.
reconstruction that exploits the underlying structure of the acquired
data. These two strategies can be further subdivided according to
whether they operate by reconstructing parametric surfaces or by re-
constructing an implicit function.

A major advantage of the unorganized points algorithms is the fact
that they do not make any prior assumptions about connectivity of
points. In the absence of range images or contours to provide connec-
tivity cues, these algorithms are the only recourse. Among the para-
metric surface approaches, Boissanat [2] describes a method for De-
launay triangulation of a set of points in 3-space. Edelsbrunner and
Mücke [9] generalize the notion of a convex hull to create surfaces
called alpha-shapes. Examples of implicit surface reconstruction in-
clude the method of Hoppe, et al [16] for generating a signed distance
function followed by an isosurface extraction. More recently, Bajaj,
et al [1] used alpha-shapes to construct a signed distance function to
which they fit implicit polynomials. Although unorganized points al-
gorithms are widely applicable, they discard useful information such
as surface normal and reliability estimates. As a result, these algo-
rithms are well-behaved in smooth regions of surfaces, but they are
not always robust in regions of high curvature and in the presence of
systematic range distortions and outliers.

Among the structured data algorithms, several parametric ap-
proaches have been proposed, most of them operating on range im-
ages in a polygonal domain. Soucy and Laurendeau [25] describe
a method using Venn diagrams to identify overlapping data regions,
followed by re-parameterization and merging of regions. Turk and
Levoy [30] devised an incremental algorithm that updates a recon-
struction by eroding redundantgeometry, followed by zippering along
the remaining boundaries, and finally a consensus step that rein-
troduces the original geometry to establish final vertex positions.
Rutishauser, et al [24] use errors along the sensor’s lines of sight to es-
tablish consensus surface positions followed by a re-tessellation that
incorporates redundant data. These algorithms typically perform bet-
ter than unorganized point algorithms, but they can still fail catas-
trophically in areas of high curvature, as exemplified in Figure 9.

Several algorithms have been proposed for integrating structured
data to generate implicit functions. These algorithms can be classified
as to whether voxels are assigned one of two (or three) states or are
samples of a continuous function. Among the discrete-state volumet-
ric algorithms, Connolly [4] casts rays from a range image accessedas
a quad-tree into a voxel grid stored as an octree, and generates results
for synthetic data. Chien, et al [3] efficiently generate octree models
under the severe assumption that all views are taken from the direc-
tions corresponding to the 6 faces of a cube. Li and Crebbin [19] and
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Tarbox and Gottschlich [28] also describe methods for generating bi-
nary voxel grids from range images. None of these methods has been
used to generate surfaces. Further, without an underlying continuous
function, there are no mechanism for representing range uncertainty
or for combining overlapping, noisy range surfaces.

The last category of our taxonomy consists of implicit function
methods that use samples of a continuous function to combine struc-
tured data. Our method falls into this category. Previous efforts in this
area include the work of Grosso, et al [12], who generate depth maps
from stereo and average them into a volume with occupancyramps of
varying slopes corresponding to uncertainty measures; they do not,
however, perform a final surface extraction. Succi, et al [26] create
depth maps from stereo and optical flow and integrate them volumet-
rically using a straight average. The details of his method are unclear,
but they appear to extract an isosurface at an arbitrary threshold. In
both the Grosso and Succi papers, the range maps are sparse, the di-
rections of range uncertainty are not characterized, they use no time
or spaceoptimizations, and the final models are of low resolution. Re-
cently, Hilton, et al [14] have developed a method similar to ours in
that it uses weighted signed distance functions for merging range im-
ages, but it does not address directions of sensor uncertainty, incre-
mental updating, space efficiency, and characterization of the whole
space for potential hole filling, all of which we believe are crucial for
the success of this approach.

Other relevant work includes the method of probabilistic occu-
pancy grids developed by Elfes and Matthies [10]. Their volumetric
space is a scalar probability field which they update using a Bayesian
formulation. The results have been used for robot navigation, but not
for surface extraction. A difficulty with this technique is the fact that
the best description of the surface lies at the peak or ridge of the proba-
bility function, and the problem of ridge-finding is not one with robust
solutions [8]. This is one of our primary motivations for taking an iso-
surface approach in the next section: it leverages off of well-behaved
surface extraction algorithms.

The discrete-state implicit function algorithms described above
also have much in common with the methods of extracting volumes
from silhouettes [15] [21] [23] [27]. The idea of using backdrops to
help carve out the emptiness of space is one we demonstrate in sec-
tion 4.

3 Volumetric integration
Our algorithm employs a continuous implicit function, D(x), repre-
sented by samples. The function we represent is the weighted signed
distance of each point x to the nearest range surface along the line of
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Figure 2. Unweighted signed distance functions in 3D. (a) A range sen-
sor looking down the x-axis observes a range image, shown here as a re-
constructed range surface. Following one line of sight down the x-axis,
we can generate a signed distance function as shown. The zero crossing
of this function is a point on the range surface. (b) The range sensor re-
peats the measurement, but noise in the range sensing process results in a
slightly different range surface. In general, the second surface would inter-
penetrate the first, but we have shown it as an offset from the first surface
for purposes of illustration. Following the same line of sight as before, we
obtain another signed distance function. By summing these functions, we
arrive at a cumulative function with a new zero crossing positioned mid-
way between the original range measurements.

sight to the sensor. We construct this function by combining signed
distance functions d1(x), d2(x), ... dn(x) and weight functions
w1(x), w2(x), ... wn(x) obtained from range images 1 ... n. Our
combining rules give us for each voxel a cumulative signed distance
function, D(x), and a cumulative weight W (x). We represent these
functions on a discrete voxel grid and extract an isosurface corre-
sponding to D(x) = 0. Under a certain set of assumptions, this iso-
surface is optimal in the least squares sense. A full proof of this op-
timality is beyond the scope of this paper, but a sketch appears in ap-
pendix A.

Figure 2 illustrates the principle of combining unweighted signed
distances for the simple case of two range surfaces sampled from the
same direction. Note that the resulting isosurface would be the sur-
face created by averaging the two range surfaces along the sensor’s
lines of sight. In general, however, weights are necessary to repre-
sent variations in certainty across the range surfaces. The choice of
weights should be specific to the range scanning technology. For op-
tical triangulation scanners, for example, Soucy [25] and Turk [30]
make the weight depend on the dot product between each vertex nor-
mal and the viewing direction, reflecting greater uncertainty when the
illumination is at grazing angles to the surface. Turk also argues that
the range data at the boundaries of the mesh typically have greater
uncertainty, requiring more down-weighting. We adopt these same
weighting schemes for our optical triangulation range data.

Figure 3 illustrates the construction and usage of the signed dis-
tance and weight functions in 1D. In Figure 3a, the sensor is posi-
tioned at the origin looking down the +x axis and has taken two mea-
surements, r1 and r2 . The signed distance profiles, d1(x) and d2(x)
may extend indefinitely in either direction, but the weight functions,
w1(x) and w2(x), taper off behind the range points for reasons dis-
cussed below.

Figure 3b is the weighted combination of the two profiles. The
combination rules are straightforward:

D(x) =
�wi(x)di(x)

�wi(x)
(1)

W (x) = �wi(x) (2)
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Figure 3. Signed distance and weight functions in one dimension. (a) The
sensor looks down the x-axis and takes two measurements, r1 and r2.
d1(x) and d2(x) are the signed distance profiles, and w1(x) and w2(x)
are the weight functions. In 1D, we might expect two sensor measure-
ments to have the same weight magnitudes, but we have shown them to
be of different magnitude here to illustrate how the profiles combine in the
general case. (b) D(x) is a weighted combination of d1(x) and d2(x),
and W (x) is the sum of the weight functions. Given this formulation, the
zero-crossing,R, becomes the weighted combination of r1 and r2 and rep-
resents ourbest guess of the location of the surface. In practice, we truncate
the distance ramps and weights to the vicinity of the range points.

where, di(x) andwi(x) are the signed distance and weight functions
from the ith range image.

Expressed as an incremental calculation, the rules are:

Di+1(x) =
Wi(x)Di(x) + wi+1(x)di+1(x)

Wi(x) +wi+1(x)
(3)

Wi+1(x) = Wi(x) +wi+1(x) (4)

where Di(x) and Wi(x) are the cumulative signed distance and
weight functions after integrating the ith range image.

In the special case of one dimension, the zero-crossing of the cu-
mulative function is at a range, R given by:

R =
�wiri

�wi

(5)

i.e., a weighted combination of the acquired range values, which is
what one would expect for a least squares minimization.

In principle, the distance and weighting functions should extend in-
definitely in either direction. However, to prevent surfaces on oppo-
site sides of the object from interfering with each other, we force the
weighting function to taper off behind the surface. There is a trade-off
involved in choosing where the weight function tapers off. It should
persist far enough behind the surface to ensure that all distance ramps
will contribute in the vicinity of the final zero crossing, but, it should
also be as narrow as possible to avoid influencing surfaces on the other
side. To meet these requirements, we force the weights to fall off at a
distance equal to half the maximum uncertainty interval of the range
measurements. Similarly, the signed distance and weight functions
need not extend far in front of the surface. Restricting the functions
to the vicinity of the surface yields a more compact representation and
reduces the computational expense of updating the volume.

In two and three dimensions, the range measurements correspond
to curves or surfaces with weight functions, and the signed distance
ramps have directions that are consistent with the primary directions
of sensor uncertainty. The uncertainties that apply to range image in-
tegration include errors in alignment between meshes as well as er-
rors inherent in the scanning technology. A number of algorithms for
aligning sets of range images have been explored and shown to yield
excellent results [11][30]. The remaining error lies in the scanner it-
self. For optical triangulation scanners, for example, this error has
been shown to be ellipsoidal about the range points, with the major
axis of the ellipse aligned with the lines of sight of the laser [13][24].

Figure 4 illustrates the two-dimensional case for a range curve de-
rived from a single scan containing a row of range samples. In prac-
tice, we use a fixed point representation for the signed distance func-
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Figure 4. Combination of signed distance and weight functions in two di-
mensions. (a) and (d) are the signed distance and weight functions, respec-
tively, generated for a range image viewed from the sensor line of sight
shown in (d). The signed distance functions are chosen to vary between
Dmin and Dmax , as shown in (a). The weighting falls off with increas-
ing obliquity to the sensorand at the edgesof the meshesas indicated by the
darker regions in (e). The normals,n1 andn2 shown in (e), are oriented at
a grazing angle and facing the sensor, respectively. Note how the weight-
ing is lower (darker) for the grazing normal. (b) and (e) are the signed dis-
tance and weight functions for a range image of the same object taken at a
60 degree rotation. (c) is the signed distance function D(x) correspond-
ing to the per voxel weighted combination of (a) and (b) constructed using
equations 3 and 4. (f) is the sum of the weights at each voxel,W (x). The
dotted green curve in (c) is the isosurface that represents our current esti-
mate of the shape of the object.

tion, which bounds the values to lie between Dmin and Dmax as
shown in the figure. The values ofDmin andDmax must be negative
and positive, respectively, as they are on opposite sides of a signed
distance zero-crossing.

For three dimensions, we can summarize the whole algorithm as
follows. First, we set all voxel weights to zero, so that new data will
overwrite the initial grid values. Next, we tessellate each range im-
age by constructing triangles from nearest neighbors on the sampled
lattice. We avoid tessellating over step discontinuities (cliffs in the
range map) by discarding triangles with edge lengths that exceed a
threshold. We must also compute a weight at each vertex as described
above.

Once a range image has been converted to a triangle mesh with
a weight at each vertex, we can update the voxel grid. The signed
distance contribution is computed by casting a ray from the sensor
through each voxel near the range surface and then intersecting it with
the triangle mesh, as shown in figure 5. The weight is computed by
linearly interpolating the weights stored at the intersection triangle’s
vertices. Having determined the signed distance and weight we can
apply the update formulae described in equations 3 and 4.

At any point during the merging of the range images, we can extract
the zero-crossing isosurface from the volumetric grid. We restrict this
extraction procedure to skip samples with zero weight, generating tri-
angles only in the regions of observed data. We will relax this restric-
tion in the next section.

4 Hole filling
The algorithm described in the previous section is designed to recon-
struct the observed portions of the surface. Unseen portions of the
surface will appear as holes in the reconstruction. While this result
is an accurate representation of the known surface, the holes are es-
thetically unsatisfying and can present a stumbling block to follow-
on algorithms that expect continuous meshes. In [17], for example,
the authors describe a method for parameterizing patches that entails
4
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Figure 5. Sampling the range surface to update the volume. We compute
the weight, w, and signed distance, d, needed to update the voxel by cast-
ing a ray from the sensor, through the voxel onto the range surface. We
obtain the weight, w, by linearly interpolating the weights (wa , wb, and
wc) stored at neighboring range vertices. Note that for a translating sensor
(like our Cyberware scanner), the sensor point is different for each column
of range points.

generating evenly spaced grid lines by walking across the edges of a
mesh. Gaps in the mesh prevent the algorithm from creating a fair pa-
rameterization. As another example, rapid prototyping technologies
such as stereolithography typically require a “watertight” model in or-
der to construct a solid replica [7].

One option for filling holes is to operate on the reconstructed mesh.
If the regions of the mesh near each hole are very nearly planar, then
this approach works well. However, holes in the meshes can be (and
frequently are) highly non-planar and may even require connections
between unconnectedcomponents. Instead, we offer a hole filling ap-
proach that operates on our volume, which contains more information
than the reconstructed mesh.

The key to our algorithm lies in classifying all points in the vol-
ume as being in one of three states: unseen, empty, or near the surface.
Holes in the surface are indicated by frontiers between unseen regions
and empty regions (see Figure 6). Surfaces placed at these frontiers
offer a plausible way to plug these holes (dotted in Figure 6). Ob-
taining this classification and generating these hole fillers leads to a
straightforward extension of the algorithm described in the previous
section:

1. Initialize the voxel space to the “unseen” state.

2. Update the voxels near the surface as described in the previous
section. As before, these voxels take on continuous signed dis-
tance and weight values.

3. Follow the lines of sight back from the observed surface and
mark the corresponding voxels as “empty”. We refer to this step
as space carving.

4. Perform an isosurface extraction at the zero-crossing of the
signed distance function. Additionally, extract a surface be-
tween regions seen to be empty and regions that remain unseen.

In practice, we represent the unseen and empty states using the
function and weight fields stored on the voxel lattice. We represent the
unseen state with the function valuesD(x) = Dmax ,W (x) = 0 and
the empty state with the function values D(x) = Dmin, W (x) = 0,
as shown in Figure 6b. The key advantage of this representation is
that we can use the same isosurface extraction algorithm we used in
the previous section without the restriction on interpolating voxels of
zero weight. This extraction finds both the signed distance and hole
fill isosurfaces and connects them naturally where they meet, i.e., at
the corners in Figure 6a where the dotted red line meets the dashed
green line. Note that the triangles that arise from interpolations across
voxels of zero weight are distinct from the others: they are hole fillers.
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Figure 6. Volumetric grid with space carving and hole filling. (a) The re-
gions in front of the surface are seen as empty, regions in the vicinity of
the surface ramp through the zero-crossing, while regions behind remain
unseen. The green (dashed) segments are the isosurfaces generated near
the observed surface, while the red (dotted) segments are hole fillers, gen-
erated by tessellating over the transition from empty to unseen. In (b), we
identify the three extremal voxel states with their corresponding function
values.

We take advantage of this distinction when smoothing surfaces as de-
scribed below.

Figure 6 illustrates the method for a single range image, and pro-
vides a diagram for the three-state classification scheme. The hole
filler isosurfaces are “false” in that they are not representative of the
observed surface, but they do derive from observed data. In particular,
they correspond to a boundary that confines where the surface could
plausibly exist. In practice, we find that many of these hole filler sur-
faces are generated in crevices that are hard for the sensor to reach.

Because the transition between unseen and empty is discontinuous
and hole fill triangles are generated as an isosurface between these bi-
nary states, with no smooth transition, we generally observe aliasing
artifacts in these areas. These artifacts can be eliminated by prefilter-
ing the transition region before sampling on the voxel lattice using
straightforward methods such as analytic filtering or super-sampling
and averaging down. In practice, we have obtained satisfactory re-
sults by applying another technique: post-filtering the mesh after re-
construction using weighted averages of nearest vertex neighbors as
described in [29]. The effect of this filtering step is to blur the hole
fill surface. Since we know which triangles correspond to hole fillers,
we need only concentrate the surface filtering on the these portions of
the mesh. This localized filtering preserves the detail in the observed
surface reconstruction. To achieve a smooth blend between filtered
hole fill vertices and the neighboring “real” surface, we allow the fil-
ter weights to extend beyond and taper off into the vicinity of the hole
fill boundaries.

We have just seen how “space carving” is a useful operation: it tells
us much about the structure of free space, allowing us to fill holes in
an intelligent way. However, our algorithm only carves back from ob-
served surfaces. There are numerous situations where more carving
would be useful. For example, the interior walls of a hollow cylinder
may elude digitization, but by seeing through the hollow portion of
the cylinder to a surface placed behind it, we can better approximate
its geometry. We can extend the carving paradigm to cover these situ-
ations by placing such a backdrop behind the surfaces being scanned.
By placing the backdrop outside of the voxel grid, we utilize it purely
for carving space without introducing its geometry into the model.

5 Implementation
5.1 Hardware
The examples in this paper were acquired using a Cyberware 3030
MS laser stripe optical triangulation scanner. Figure 1b illustrates
the scanning geometry: an object translates through a plane of laser
5

light while the reflections are triangulated into depth profiles through
a CCD camera positioned off axis. To improve the quality of the data,
we apply the method of spacetime analysis as described in [6]. The
benefits of this analysis include reduced range noise, greater immu-
nity to reflectance changes, and less artifacts near range discontinu-
ities.

When using traditional triangulation analysis implemented in hard-
ware in our Cyberware scanner, the uncertainty in triangulation for
our system follows the lines of sight of the expanding laser beam.
When using the spacetime analysis, however, the uncertainty follows
the lines of sight of the camera. The results described in section 6 of
this paper were obtained with one or the other triangulation method.
In each case, we adhere to the appropriate lines of sight when laying
down signed distance and weight functions.

5.2 Software
The creation of detailed, complex models requires a large amount of
input data to be merged into high resolution voxel grids. The exam-
ples in the next section include models generated from as many as 70
scans containing up to 12 million input vertices with volumetric grids
ranging in size up to 160 million voxels. Clearly, time and space opti-
mizations are critical for merging this data and managing these grids.

5.2.1 Run-length encoding
The core data structure is a run-length encoded (RLE) volume with
three run types: empty, unseen, and varying. The varying fields are
stored as a stream of varying data, rather than runs of constant value.
Typical memory savings vary from 10:1 to 20:1. In fact, the space
required to represent one of these voxel grids is usually less than the
memory required to represent the final mesh as a list of vertices and
triangle indices.

5.2.2 Fast volume traversal
Updating the volume from a range image may be likened to inverse
volume rendering: instead of reading from a volume and writing to an
image, we read from a range image and write to a volume. As a re-
sult, we leverage off of a successful idea from the volume rendering
community: for best memory system performance, stream through
the volume and the image simultaneously in scanline order [18]. In
general, however, the scanlines of a range image are not aligned with
the scanlines of the voxel grid, as shown in Figure 7a. By suitably
resampling the range image, we obtain the desired alignment (Fig-
ure 7b). The resampling process consists of a depth rendering of the
range surface using the viewing transformation specific to the lines of
sight of the range sensor and using an image plane oriented to align
with the voxel grid. We assign the weights as vertex “colors” to be
linearly interpolated during the rendering step, an approach equiva-
lent to Gouraud shading of triangle colors.

To merge the range data into the voxel grid, we stream through
the voxel scanlines in order while stepping through the corresponding
scanlines in the resampled range image. We map each voxel scanline
to the correct portion of the range scanline as depicted in Figure 7d,
and we resample the range data to yield a distance from the range sur-
face. Using the combination rules given by equations 3 and 4, we up-
date the run-length encoded structure. To preserve the linear mem-
ory structure of the RLE volume (and thus avoid using linked lists of
runs scattered through the memory space), we read the voxel scanlines
from the current volume and write the updated scanlines to a second
RLE volume; i.e., we double-buffer the voxel grid. Note that depend-
ing on the scanner geometry, the mapping from voxels to range image
pixels may not be linear, in which case care must be taken to resample
appropriately [5].

For the case of merging range data only in the vicinity of the sur-
face, we try to avoid processing voxels distant from the surface. To
that end, we construct a binary tree of minimum and maximum depths
for every adjacent pair of resampled range image scanlines. Before
processing each voxel scanline, we query the binary tree to decide
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Figure 7. Range image resampling and scanline order voxel updates. (a) Range image scanlines are not in general oriented to allow for coherently streaming
through voxel and range scanlines. (b) By resampling the range image, we can obtain the desired range scanline orientation. (c) Casting rays from the pixels on
the range image means cutting across scanlines of the voxel grid, resulting in poor memory performance. (d) Instead, we run along scanlines of voxels, mapping
them to the correct positions on the resampled range image.
which voxels, if any, are near the range surface. In this way, only rel-
evant pieces of the scanline are processed. In a similar fashion, the
space carving steps can be designed to avoid processing voxels that
are not seen to be empty for a given range image. The resulting speed-
ups from the binary tree are typically a factor of 15 without carving,
and a factor of 5 with carving. We did not implement a brute-force
volume update method, however we would expect the overall algo-
rithm described here would be much faster by comparison.

5.2.3 Fast surface extraction
To generate our final surfaces, we employ a Marching Cubes algo-
rithm [20] with a lookup table that resolves ambiguous cases [22]. To
reduce computational costs, we only process voxels that have varying
data or are at the boundary between empty and unseen.

6 Results
We show results for a number of objects designed to explore the ro-
bustness of our algorithm, its ability to fill gaps in the reconstruction,
and its attainable level of detail. To explore robustness, we scanned a
thin drill bit using the traditional method of optical triangulation. Due
to the false edge extensions inherent in data from triangulation scan-
ners [6], this particular object poses a formidable challenge, yet the
volumetric method behaves robustly where the zippering method [30]
fails catastrophically. The dragon sequence in Figure 11 demonstrates
the effectiveness of carving space for hole filling. The use of a back-
drop here is particularly effective in filling the gaps in the model. Note
that we do not use the backdrop at all times, in part because the range
images are much denser and more expensive to process, and also be-
cause the backdrop tends to obstruct the path of the object when auto-
matically repositioning it with our motion control platform. Finally,
the “Happy Buddha” sequence in Figure 12 shows that our method
can be used to generate very detailed, hole-free models suitable for
rendering and rapid manufacturing.

Statistics for the reconstruction of the dragon and Buddha models
appear in Figure 8. With the optimizations described in the previous
section, we were able to reconstruct the observed portions of the sur-
faces in under an hour on a 250 MHz MIPS R4400 processor. The
space carving and hole filling algorithm is not completely optimized,
but the execution times are still in the range of 3-5 hours, less than the
time spent acquiring and registering the range images. For both mod-
els, the RMS distance between points in the original range images and
points on the reconstructed surfaces is approximately 0.1 mm. This
figure is roughly the same as the accuracy of the scanning technology,
indicating a nearly optimal surface reconstruction.

7 Discussion and future work
We have described a new algorithm for volumetric integration of
range images, leading to a surface reconstruction without holes. The
6

algorithm has a number of desirable properties, including the repre-
sentation of directional sensor uncertainty, incremental and order in-
dependent updating, robustness in the presence of sensor errors, and
the ability to fill gaps in the reconstruction by carving space. Our use
of a run-length encoded representation of the voxel grid and synchro-
nized processing of voxel and resampled range image scanlines make
the algorithm efficient. This in turn allows us to acquire and integrate
a large number of range images. In particular, we demonstrate the
ability to integrate up to 70 scans into a high resolution voxel grid to
generate million polygon models in a few hours. These models are
free of holes, making them suitable for surface fitting, rapid prototyp-
ing, and rendering.

There are a number of limitations that prevent us from generating
models from an arbitrary object. Some of these limitations arise from
the algorithm while others arise from the limitations of the scanning
technology. Among the algorithmic limitations, our method has dif-
ficulty bridging sharp corners if no scan spans both surfaces meeting
at the corner. This is less of a problem when applying our hole-filling
algorithm, but we are also exploring methods that will work without
hole filling. Thin surfaces are also problematic. As described in sec-
tion 3, the influences of observed surfaces extend behind their esti-
mated positions for each range image and can interfere with distance
functions originating from scans of the opposite side of a thin surface.
In this respect, the apexes of sharp corners also behave like thin sur-
faces. While we have limited this influence as much as possible, it
still places a lower limit on the thickness of surface that we can reli-
ably reconstruct without causing artifacts such as thickening of sur-
faces or rounding of sharp corners. We are currently working to lift
this restriction by considering the estimated normals of surfaces.

Other limitations arise from the scanning technologies themselves.
Optical methods such as the one we use in this paper can only pro-
vide data for external surfaces; internal cavities are not seen. Further,
very complicated objects may require an enormous amount of scan-
ning to cover the surface. Optical triangulation scanning has the ad-
ditional problem that both the laser and the sensor must observe each
point on the surface, further restricting the class of objects that can be
scanned completely. The reflectance properties of objects are also a
factor. Optical methods generally operate by casting light onto an ob-
ject, but shiny surfaces can deflect this illumination, dark objects can
absorb it, and bright surfaces can lead to interreflections. To minimize
these effects, we often paint our objects with a flat, gray paint.

Straightforward extensions to our algorithm include improving the
execution time of the space carving portion of the algorithm and
demonstrating parallelization of the whole algorithm. In addition,
more aggressive space carving may be possible by making inferences
about sensor lines of sight that return no range data. In the future, we
hope to apply our methods to other scanning technologies and to large
scale objects such as terrain and architectural scenes.
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A Isosurface as least squares minimizer

It is possible to show that the isosurface of the weighted signed dis-
tance function is equivalent to a least squares minimization of squared
distances between points on the range surfaces and points on the de-
sired reconstruction. The key assumptions are that the range sensor is
orthographic and that the range errors are independently distributed
along sensor lines of sight. A full proof is beyond the scope of this
paper, but we provide a sketch here. See [5] for details.

Consider a region, R, on the desired surface, f , which is observed
by n range images. We define the error between an observed range
surface and a possible reconstructed surface as the integral of the
weighted squared distances between points on the range surface and
the reconstructed surface. These distances are taken along the lines of
sight of the sensor, commensurate with the predominant directions of
uncertainty (see Figure 10). The total error is the sum of the integrals
for the n range images:
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Figure 10. Two range surfaces, f1 and f2, are tessellated range images
acquired from directions v1 and v2. The possible range surface, z =
f(x; y), is evaluated in terms of the weighted squared distances to points
on the range surfaces taken along the lines of sight to the sensor. A point,
(x; y; z), is shown here being evaluated to find its corresponding signed
distances, d1 and d2 , and weights, w1 and w2 .

E(f) =

nX
i=1

ZZ
Ai

wi(s; t; f)di(s; t; f)
2

dsdt (6)

where each (s; t) corresponds to a particular sensor line of sight for
each range image, Ai is the domain of integration for the i’th range
image, and wi(s; t; f) and di(s; t; f) are the weights and signed dis-
tances taken along the i’th range image’s lines of sight.

Now, considera canonicaldomain,A, on a parameter plane, (x; y),
over which R is a function z = f(x; y). The total error can be re-
written as an integration over the canonical domain:

E(z) =

ZZ
A

nX
i=1

�
wi(x; y; z)di(x; y; z)

2
� �
vi � (

@z

@x
;
@z

@y
;�1)

�
dxdy

(7)
where vi is the sensing direction of the i’th range image, and the
weights and distances are evaluated at each point, (x; y; z), by first
mapping them to the lines of sight of the corresponding range image.
The dot product represents a correction term that relates differential
areas in A to differential areas in Ai. Applying the calculus of vari-
ations [31], we can construct a partial differential equation for the z
that minimizes this integral. Solving this equation we arrive at the fol-
lowing relation:

nX
i=1

@vi
[wi(x; y; z)di(x;y; z)

2] = 0 (8)

where @vi
is the directional derivative along vi. Since the weight as-

sociated with a line of sight does not vary along that line of sight, and
the signed distance has a derivative of unity along the line of sight, we
can simplify this equation to:

nX
i=1

wi(x; y; z)di(x;y; z) = 0 (9)

This weighted sum of signed distances is the same as what we com-
pute in equations 1 and 2, without the division by the sum of the
weights. Since the this divisor is always positive, the isosurface we
extract in section 3 is exactly the least squares minimizing surface de-
scribed here.
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Figure 11. Reconstruction of a dragon. Illustrations (a) - (d) are full views of the dragon. Illustrations (e) - (h) are magnified views of the section highlighted
by the green box in (a). Regions shown in red correspond to hole fill triangles. Illustrations (i) - (k) are slices through the corresponding volumetric grids at
the level indicated by the green line in (e). (a)(e)(i) Reconstruction from 61 range images without space carving and hole filling. The magnified rendering
highlights the holes in the belly. The slice through the volumetric grid shows how the signed distance ramps are maintained close to the surface. The gap in
the ramps leads to a hole in the reconstruction. (b)(f)(j) Reconstruction with space carving and hole filling using the same data as in (a). While some holes are
filled in a reasonable manner, some large regions of space are left untouched and create extraneous tessellations. The slice through the volumetric grid reveals
that the isosurface between the unseen (brown) and empty (black) regions will be connected to the isosurface extracted from the distance ramps, making it part
of the connected component of the dragon body and leaving us with a substantial number of false surfaces. (c)(g)(k) Reconstruction with 10 additional range
images using “backdrop” surfaces to effect more carving. Notice how the extraneous hole fill triangles nearly vanish. The volumetric slice shows how we have
managed to empty out the space near the belly. The bumpiness along the hole fill regions of the belly in (g) corresponds to aliasing artifacts from tessellating
over the discontinuous transition between unseen and empty regions. (d)(h) Reconstruction as in (c)(g) with filtering of the hole fill portions of the mesh. The
filtering operation blurs out the aliasing artifacts in the hole fill regions while preserving the detail in the rest of the model. Careful examination of (h) reveals
a faint ridge in the vicinity of the smoothed hole fill. This ridge is actual geometry present in all of the renderings, (e)-(h). The final model contains 1.8 million
polygons and is watertight.
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Figure 12. Reconstruction and 3D hardcopy of the “Happy Buddha”. The original is a plastic and rosewood statuette that stands 20 cm tall. Note th
different, creating a slightly different perspective in each case. (a) Photograph of the original after spray painting it matte gray to simplify scanning. (b)
statuette. Scans were acquired using a Cyberware scanner, modified to permit spacetime triangulation [6]. This figure illustrates the limited and fragmen
range image. (c) Gouraud-shaded rendering of the 2.4 million polygon mesh after merging 48 scans, but before hole-filling. Notice that the reconstructe
image, but is less noisy; this is most apparent around the belly. The hole in the base of the model corresponds to regions that were not observed directly
800,000 polygon decimated version of the hole-filled and filtered mesh built from 58 scans. By placing a backdrop behind the model and taking 10 ad
between the base and the Buddha’s garments, allowing us to carve space and fill the holes in the base. (e) Photograph of a hardcopy of the 3D model, manu
The computer model was sliced into 500 layers, 150 microns apart, and the hardcopy was built up layer by layer by selectively hardening a liquid resi
model was sanded and bead-blasted to remove the stair-step artifacts that arise during layered manufacturing.


