
SIGGRAPH ’96
Linear-Time Dynamics using Lagrange Multipliers

David Baraff

Robotics Institute
Carnegie Mellon University
Abstract

Current linear-time simulation methods for articulated figures are
based exclusively on reduced-coordinate formulations. This pa-
per describes a general, non-iterative linear-time simulation method
based instead on Lagrange multipliers. Lagrange multiplier meth-
ods are important for computer graphics applications because they
bypass the difficult (and often intractable) problem of parameter-
izing a system’s degrees of freedom. Given a loop-free set of n
equality constraints acting between pairs of bodies, the method takes
O(n) time to compute the system’s dynamics. The method does
not rely on matrix bandwidth, so no assumptions about the con-
straints’ topology are needed. Bodies need not be rigid, constraints
can be of various dimensions, and unlike reduced-coordinate ap-
proaches, nonholonomic (e.g. velocity-dependent) constraints are
allowed. An additional set of k one-dimensional constraints which
induce loops and/or handle inequalities can be accommodated with
cost O(kn). This makes it practical to simulate complicated, closed-
loop articulated figures with joint-limits and contact at interactive
rates. A complete description of a sample implementation is pro-
vided in pseudocode.

1 Introduction

Forward simulation with constraints is a key problem in computer
graphics. Typically, a system’s constraints are sparse: each con-
straint directly affects only one or two bodies (for example, geomet-
ric connection constraints) and for a system with n bodies, there are
only O(n) constraints. In particular, the simulation of articulated
figures and mechanisms falls into this category. Sparse constraint
systems are also either nearly or completely acyclic: for example,
robot arms are usually open-loop structures, as are animation mod-
els for humans and animals. Considerable effort has been directed
toward efficiently simulating these types of systems.

Reading through the dynamics literature, a large variety of dy-
namics formulation can be found (Newton-Euler, Gibbs-Appel,
D’Alembert, Gauss’ Least Constraint Principle, etc.) but the details
of these variations matter little; ultimately, we are faced with a ba-
sic choice. Either we model constraints by reducing the number of
coordinates needed to describe the system’s state, or we introduce
additional forces into the system to maintain the constraints.

A reduced-coordinate formulation takes a system with m de-
grees of freedom (d.o.f.’s), a set of constraints that removes c of
those d.o.f.’s, and parameterizes the remaining n = m − c d.o.f.’s
using a reduced set of n coordinates. Reduced coordinates are usu-
ally known as generalized coordinates; coordinates describing the
1

original m-d.o.f. system are called maximal coordinates. For an ar-
bitrary set of constraints, finding a parameterization for m maximal
coordinates in terms of n generalized coordinates is arbitrarily hard;
if such a parameterization can be found, O(n3) time is required to
compute the acceleration of the n generalized coordinates at any in-
stant. However, loop-free articulated rigid bodies are trivially pa-
rameterized, and methods for computing the n generalized coordi-
nate accelerations in O(n) time are well known [7].

In contrast, Lagrange multiplier methods express the system’s
state using the simpler set of m maximal coordinates. Constraints
are enforced by introducing constraint forces into the system. At
each instant, a basis for the constraint forces is known a priori;
the Lagrange multipliers (which we must compute) are a vector of
c scalar coordinates that describe the constraint force in terms of
the basis. Lagrange multiplier approaches are extremely impor-
tant for interactive computer graphics applications, because they al-
low an arbitrary set of constraints to be combined. This is diffi-
cult (often impossible) to achieve with a reduced-coordinate formu-
lation. Additionally, Lagrange multiplier formulations allow (and
frankly encourage) a highly modular knowledge/software design,
in which bodies, constraints, and geometry regard each other as
black-box entities (section 2 develops this further). Lagrange mul-
tipliers also allow us to handle nonholonomic constraints, such as
velocity-dependent constraints; reduced-coordinate approaches in-
herently lack this capability.

For a system whose constraints remove c d.o.f.’s, the Lagrange
multipliers are the c unknown variables of a set of c linear equa-
tions. If c is much greater than n, so that the constrained system pos-
sesses only a few d.o.f.’s, clearly the reduced-coordinate approach
is preferred. However, for the case of open-loop articulated three-
dimensional rigid bodies, c = O(n), since c is at least 1/5n and at
most 5n. Even though n and c are linearly related for articulated
figures, the current prevailing view is that articulated figures can
be simulated in linear time only by using a reduced-coordinate for-
mulation. The possibility of achieving O(n) performance for La-
grange multiplier methods has been largely discounted, because the
prospects for easily solving the resulting O(n) × O(n) matrix sys-
tem in O(n) time have seemed dismal, at best.

We show in this paper that a very simple direct (that is, non-
iterative) O(n) solution method exists for computing Lagrange mul-
tipliers for sparse acyclic constraint systems. We would like to em-
phasize that the matrix equation equation (8) presented in section 6
is well-known to the robotics and mechanical engineering commu-
nities, as is the fact that this linear system is sparse. As a result, there
is the feeling (again, well-known) that linear-time performance can
be achieved by applying general sparse-matrix techniques to the
problem. What is not well-known, and is thus the focus of this paper,
is that general, complicated sparse-matrix techniques are not needed
at all, and that a tight, O(n) running-time is easily demonstrated.
An analysis of equation (8)’s structure will show that a very simple
(and, we again emphasisize, well-known) sparse-matrix technique
can easily be applied to compute the Lagrange multipliers in linear
time.
CD-ROM version

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

1.1 Specific Contributions

The results of this paper are the following. Consider a set of n bod-
ies (not necessarily rigid) and a set of n − 1 constraints, with each
constraint enforcing a relationship of some dimension between two
of the bodies. Assuming the constraint connectivity is acyclic (for
example, a system with constraints between body 1 and 2, between
body 2 and 3, and between body 3 and 1 would not be acyclic) we
describe a simple, direct O(n) method for computing the Lagrange
multipliers for these constraints. We will call this acyclic set of con-
straints the primary constraints. The primary constraints need not
be holonomic, though they must be equality constraints. Nonholo-
nomic velocity-based constraints—such as a relationship between
rotational speeds of bodies—fit into this framework and are han-
dled as primary constraints. Reduced-coordinates approaches are
restricted to holonomic constraints.

In addition, a set of auxiliary constraints can also be accommo-
dated. Closed loops are handled by designating constraints which
cause cycles as auxiliary, rather than primary constraints. Similarly,
constraints that act on only a single body, or on more than two bodies
are designated as auxiliary constraints, as are inequality constraints,
such as joint-angle limits or contact constraints. If the primary con-
straints partition the bodies into separate components (for example,
two separate chains), then an inequality might involve only one of
the primary constraint components (a chain colliding with itself);
however, a constraint involving two or more components (two dif-
ferent chains colliding with each other) is handled just as easily. In
addition to the O(n) time required to deal with the primary con-
straints, k one-dimensional auxiliary constraints cost O(nk) time
to formulate a k × k matrix system and O(k3) time to solve the
system. When k is small compared to n, the added cost is essen-
tially just an additional O(nk). The auxiliary constraint method de-
scribed is particularly efficient in conjunction with our O(n) pri-
mary constraint method and is easily adapted for use with linear-
time reduced-coordinate formulations.1

In our (biased) view, linear-time performance is achieved far
more easily for Lagrange multiplier methods than for reduced-
coordinate formulations. While O(n) inverse reduced-coordinate
approaches are easily understood, forward reduced-coordinate for-
mulations with linear time complexity have an extremely steep
learning curve, and make use of a formidable array of notational
tools. The author admits (as do many practitioners the author has
queried) to lacking a solid, intuitive understanding of these meth-
ods. We believe that a reader who already understands the stan-
dard O(n3) method for formulating and computing Lagrange mul-
tipliers should have no difficulty in implementing the O(n) method
presented in this paper. To back this point up, appendix A con-
tains a complete (yet extremely short) pseudocode implementation.
Given an existing O(n3) Lagrange multiplier based simulation sys-
tem, converting to the required O(n) datastructures is simply and
easily accomplished.

2 Motivation

It is probably as important for us to stress what this paper does not
say as to stress what this paper does say. The existence of a linear-
time Lagrange multiplier method shows that the Lagrange multi-
plier approach can achieve the same asymptotic complexity results
as reduced-coordinate formulations; this is of theoretical interest.
However, in presenting a linear-time method for computing multi-
pliers we are not asserting that such a method is faster on articulated

1We imagine that a similar approach is used by some systems that com-
bine Lagrange multipliers for loop-closing/contact with reduced-coordinate
formulations for primary constraints (for example, Symbolic Dynamic’s
SD/FAST system).
SIGGRAPH ’96 2
figures than, say, Featherstone’s O(n) method. On the other hand,
we are also not asserting it is necessarily slower. It used to be that
one could attempt to discuss the running times of algorithms based
on the number of multiplications and additions; today, when a mem-
ory access may be as costly as a multiplication, such analysis no
longer holds true. In section 9, we will discuss and relate actual run-
ning times of our algorithm to the few published results with which
we are familiar.

2.1 Why Reduced Coordinates?

There are certainly valid reasons for preferring a reduced-coordinate
approach over a multiplier approach. In particular, if the n d.o.f.’s
left to the system is very much smaller than the c d.o.f.’s removed
by the constraints, a reduced-coordinate approach is clearly called
for. Even if c and n are linearly related the use of generalized co-
ordinates eliminates the “drifting” problem that multiplier methods
have. (For example, two links which are supposed to remain con-
nected will have a tendency to drift apart somewhat when a multi-
plier approach is used.) Such drift is partly a consequence of nu-
merical errors in computing the multipliers, but stems mostly from
the inevitable errors of numerical integration during the simulation.
Constraint stabilization techniques [4, 3] are used to help combat
this problem.2 The use of generalized coordinates eliminates this
worry completely, since generalized coordinates only express con-
figurations which exactly satisfy the constraints. There is anecdotal
evidence that the use of generalized coordinates thus allows simu-
lations to proceed faster, not because evaluation of the generalized
coordinate accelerations is faster, but because larger timesteps can
be taken by the integrator. This may well be true. More importantly,
for the case of articulated figures, we know that with a reduced-
coordinate approach, linear-time performance is achievable.

2.2 Why Lagrange Multipliers?

On the other hand, there are also strong motivations for preferring a
multiplier approach. Work by Witkin et al. [17], Barzel and Barr [3],
Baraff [1], and most recently and comprehensively Gleicher [8],
present a variety of arguments in favor of multiplier methods. In
particular, multiplier methods neatly compartmentalize knowledge,
enabling strongly modular systems. For general-purpose, extensi-
ble simulation systems, this is vital. Consider two bodies and a con-
straint that the world-space location of two points (each point hav-
ing a fixed body-space location) be coincident. Parameterizing the
system’s degrees of freedom using generalized coordinates requires
us to have symbolic knowledge of the body-space to world-space
mapping for each body. This is obviously not a problem if we limit
ourselves to rigid bodies, but suppose that one or both of the bodies
can rotate, translate, and scale (possibly among one or more axes).
We must know the freedoms of the bodies, in order to form the gen-
eralized coordinates. Similarly, a constraint that depends upon sur-
face geometry requires symbolic knowledge of the surface equation.
From a software modularity standpoint, every combination of con-
straint, body, and geometry yields a new type of parameterization.
This results in a quadratic explosion in the amount of code that must
be generated.

In some cases it may be either too difficult, or even impossible,
to derive the necessary generalized coordinate parameterizations.
Once we move past rigid bodies to globally deformable frames, pa-
rameterization of the constraints becomes totally impractical. Even

2A significantly more complicated but also more powerful approach is to
perform the simulation using differential-algebraric equation (DAE) solu-
tion techniques [5]. In the author’s experience, constraint stabilization works
so well for the simulation problems encountered within the computer graph-
ics domain that the DAE approach is not warranted. Clearly, this is not true
for all simulation domains.
CD-ROM version

for rigid bodies, parameterization can be hard: imagine a tangency
constraint between two rigid smooth surfaces, that requires that the
bodies remain in tangential contact (thus allowing sliding motions).
This constraint removes exactly one degree of freedom from the
bodies’ motions. For all but the simplest shapes, the required pa-
rameterization is extremely complicated (and closed-form solutions
will not in general exist).

Finally, nonholonomic constraints cannot be expressed in terms
of generalized coordinates. Consider a mechanical simulation, with
an abstraction of a complicated gearing mechanism. We may have
a simple constraint—for example, that the rotational speed of one
three-dimensional object be twice the speed of another—but be
completely unable to express it in a reduced-coordinate formulation.
In contrast, such velocity-based constraints are trivially handled us-
ing multiplier methods.

Suppose however that we are interested only in simulating artic-
ulated rigid bodies, so that none of the above issues apply. If the
implementation of one of the O(n) reduced-coordinate algorithms
described in the literature is seen as manageable, quite possibly there
is no gain to be realized from the algorithm described in this paper.
If generalized coordinates are desired, but the effort to implement
a linear-time reduced-coordinate approach is prohibitive, a middle
ground exists: at each step of the simulation, translate the general-
ized coordinates and velocities to maximal coordinates and veloci-
ties, compute the Lagrange multipliers and thus the maximal coordi-
nate accelerations, and translate these accelerations back into gener-
alized coordinates. For all other cases (when a reduced-coordinate
approach is infeasible because of the demands it places on software
architecture, or because the necessary parameterization simply can-
not be realized) the algorithm described in this paper yields a practi-
cal, simple linear-time alternative to traditional reduced-coordinate
techniques.

3 Background

In this paper, the term simulation does not merely refer to dynamic,
physical simulation: the use of constrained differential kinematic
manipulation, as pioneered by Witkin et al. [17] and Gleicher [8]
is also considered simulation. For dynamic, or “second-order” sim-
ulation, we relate acceleration to force according to Newton’s law
f = ma, while for kinematic manipulation we instantaneously re-
late velocity and “force” according to the first-order law f = mv.
Similarly, in a dynamics simulation with collisions, the velocity dis-
continuity 1v caused by a collision is related to an impulsive force j
according to the law 1v = mj. In all of the above cases, the problem
is to compute the correct acceleration, velocity, or velocity change
that satisfies the constraints of the system. We will not distinguish
between any of these problems further; this paper deals with f = ma
problems, with the understanding that the results obtained obviously
transfer to the other two problems.

Lagrange multipliers are usually computed by solving a matrix
equation (which we describe in greater detail later)

JM−1JT� = c.

The elements of the vector � are the multipliers we wish to solve
for, while M is a block-diagonal matrix. The vector c expresses the
forces being applied to the bodies. The rows of J encode the con-
straints’ connectivity in block-form: if the ith constraint affects only
bodies p and q, then only the pth and qth blocks of J’s ith row are
nonzero. (We discuss the block structure of J and M more carefully
in the next section.) Because of J’s and M’s structure, for some spe-
cial cases it is obvious that � can be computed in linear time.

For example, consider a serial chain (an unbranching sequence of
links). The dynamics of serial chain robot arms were not generally
SIGGRAPH ’96 3
known to be solvable in linear time until very recently, with the ad-
vent of Featherstone’s [7] recursive articulated-body method.3 This
is a curious oversight, when one considers that linear-time simula-
tion of serial chains with Lagrange multiplier methods is obvious
and trivial, because JM−1JT is tightly banded (assuming an order-
ing so that body p is connected to body p + 1 for all bodies).

Once we move past simple chains, the problem becomes more
complicated. Depending on the structure of the constraints, exploit-
ing bandedness is still a possibility. For example, Surles [15] ex-
ploited bandedness (by symmetrically permuting rows and columns
of JM−1JT) to achieve a direct, linear-time solution for the multi-
pliers on systems that are very chain-like in their connectivity, but
have some limited branching. As structures become less chainlike
however, the bandwidth of the system increases, and his method re-
duces to a regular O(n3) dense solution method. Negrut et al. [12]
describe a similar method. The method described in this paper does
not attempt to exploit bandwidth because for many structures there
is no permutation that yields a matrix system with reasonable band-
width.

While sparse (but not necessarily acyclic) constraint systems al-
ways yield sparse matrices J and M−1, in more general problems the
product JM−1JT (although usually sparse) need not be. One well-
known approach to dealing with this kind of sparsity is the use of
iterative methods, with time-complexity O(n2) (or lower, depend-
ing on convergence properties). Despite impressive recent results
by Gleicher [8] in applying conjugate-gradient methods to compute
multipliers, the prospect of computing multipliers in less than O(n3)
still seems to be largely viewed by the computer graphics commu-
nity as a theoretical result, but not a practical actuality. Similarly,
many papers in computer graphics, robotics, and mechanical engi-
neering in have pointed out that, in theory, the sparsity of JM−1JT

can be exploited by direct, non-iterative methods in linear time by
applying general sparse-matrix solvers to the problem. (The same
observation is also made about equation (8) of section 6.) However,
this first supposes that JM−1JT is sparse which is generally but not
always true. Even if sparsity exists, solving such problems by em-
ploying a general-purpose sparse-matrix solver is, practically speak-
ing, not something that most computer graphicists would approach
with much enthusiasm.

To the best of our knowledge though, no one has made the obser-
vation that any pairwise, acyclic set of constraints results in a system
that (when formulated correctly) is easily solved in linear time using
rudimentary sparse-matrix principles. The next few sections simply
elaborate on this basic observation. In section 8, we describe a prac-
tical method for dealing with loop-closing and inequality constraints
that are not handled by the simpler sparse formulation we are about
to describe.

4 The Lagrange Multiplier Formulation

Our goal is to treat bodies, forces, and constraints as “anonymously”
as possible: we wish to assume the minimum possible structure.
For example, we may have a mix of body types (e.g. rigid, rigid
plus scalable, etc.) and constraints of various dimensions (e.g. a pin-
joint of dimension three, a point-to-surface constraint with dimen-
sion one). This leads us to a formulation where matrices are com-
posed of smaller, dense matrices; this is known as a block-matrix
formulation [9]. The dimensions of an individual block are dictated
by the dimensions of bodies and constraints. A body’s dimension is
the number of d.o.f.’s the body has when unconstrained, while a con-
straint’s dimension is the number of d.o.f.’s the constraint removes

3Featherstone made this discovery independently of earlier work by
Vereshchagin, in 1974. Vereshchagin [16] described a solution algorithm for
serial chains which turned out to have linear time complexity, although the
algorithm was not advertised as such.
CD-ROM version

from the system. If no body has a dimension greater than p, then
no constraint will have a dimension greater than p. As a result, all
blocks will be of size p × p or smaller. Regarding p as a constant
for the simulation, an operation on a single block or pair of blocks
(inversion, multiplication, addition) takes constant time.

Our assumptions about the constraints are made as weak as pos-
sible. At any instant, each constraint is specified as a linear condi-
tion on the acceleration of a pair of bodies. The mechanics of ex-
pressing various geometric and velocity-based constraints as con-
ditions on bodies’ accelerations has been extensively considered in
past work [3, 1, 8, 13]; we therefore omit the details of particu-
lar constraints. Hopefully, this rather aggressive retreat into anony-
mous notation will both simplify the resulting discussion, and ex-
plicitly define the modular relationship between bodies, constraints,
and the computation of the Lagrange multipliers. (A more basic
introduction, including information on reduced-cordinate methods,
multiplier approaches, and various numerical methods can be found
in Shabana [14].)

4.1 Notation

With the above in mind, we introduce a small amount of notation.
The dimension of the ith body is denoted dim(i) and is the num-
ber of d.o.f.’s the body has when unconstrained. We describe the ith
body’s velocity as a vector vi ∈ IRdim(i); a force Fi acting on the ith
body is also a vector in IRdim(i). The acceleration v̇i of the ith body
in response to the force Fi is

Miv̇i = Fi

where Mi is a dim(i) × dim(i) symmetric positive definite matrix
which describes the mass properties of body i. The matrix Mi may
vary over time according to the body’s geometric state; however,
Mi is independent of vi. For a system of n bodies, the vector v =
(v1, v2, . . . , vn) denotes the velocity of the entire system, and sim-
ilarly for v̇. (Note that v is described in block-fashion; v’s ith ele-
ment vi is itself a vector, with dimension dim(i).) Similarly, a force
F = (F1, F2, . . . , Fn) acting on the system means that a force F1 act
on body 1, and so on. Given such a force F, the system’s evolution
over time is

Mv̇ = F (1)

where M is the block-diagonal matrix

M =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

 .

The dimension of a constraint is the number of d.o.f.’s the con-
straint removes from the system. As we said earlier, a constraint is
expressed as a linear condition on bodies’ accelerations. If the ith
constraint has dimension m, then an expression for the constraint is
an m-dimensional acceleration condition of the form

ji1v̇1 + · · · + jik v̇k + · · · + jin v̇n + ci = 0. (2)

Each matrix jik has dimension m × dim(k), ci is an m-length column
vector, and 0 is the zero vector of length m. The coefficients of this
equation (the jik matrices and the vector ci) depend on the specifics
of the bodies and the exact constraint being enforced, as well as the
position and velocities of the bodies at the current instant. In the
next section, we will require that each primary constraint affect only
a pair of bodies; this means that for each value of i, all but two of the
jik matrices will be zero. For now, this restriction is not important.
SIGGRAPH ’96 4
4.2 Constraint Forces

In order to enforce the acceleration conditions of the constraints, a
constraint force must be added to the system. For the primary con-
straints of the system, we deal only with constraints that are main-
tained by workless constraint forces. A rigorously physical defi-
nition of workless constraints is difficult, because explicitly time-
varying constraint functions (such as those in Barzel and Barr [3],
which cause gradual assemblages of structures) can add energy into
the system.4 The most direct way to attack the problem is to say that
by workless constraint forces, we really mean “constraint forces that
are as lazy as possible.” Fortunately, this intuitive notion has a sim-
ple mathematical translation: the constraint force Fc

i that maintains
the ith constraint is workless only if the force it exerts on the bodies
is of the form

Fc
i =

 jT
i1

...
jT

in

 �i (3)

where �i is a column vector of dimension m (the dimension of the
ith constraint). We call the vector �i the Lagrange multiplier of the
ith constraint. (If the ith constraint is not maintained by such a force,
it must be treated as an auxiliary constraint.)

To talk about a total of q constraints, we switch to matrix notation.
We can express these q multi-dimensional acceleration conditions in
the form

j11v̇1 + · · · + j1nv̇n + c1 = 0
j21v̇1 + · · · + j2nv̇n + c2 = 0

...

jq1v̇1 + · · · + jqn v̇n + cq = 0.

(4)

If we define

J =

j11 j12 · · · j1n

...
...

...
jq1 jq2 · · · jqn

 and c =

 c1

...
cq


then we can replace equation (4) with simply

Jv̇ + c = 0. (5)

In a similar fashion, we group the individual vectors �1 through �n

into one large vector � = (�1, . . . ,�n).
From equation (3), we see that the vector being multiplied by �i

forms the ith block-column of JT ; accordingly, the sum of all the in-
dividual constraint forces Fc

i has the form JT�. The problem now is
to find a vector � so that the constraint force JT�, combined with
any external forces (such as gravity), produces a motion of the sys-
tem that satisfies the constraints; that is, Jv̇ + c = 0.

5 The JM−1JT Approach

The formulation most commonly used by the graphics community
to compute � is as follows. Given that an unknown constraint force
JT� acts upon the bodies, and letting Fext represent the known net

4A lengthy discussion on the topic of rheonomic, scleronomic, mono-
genic and polygenic constraints and forces, as in Lanczos [10], can pin down
an exact definition, but offers little insight. We forego such a discussion here.
A precise, but nonconstructive mathematical definition would be to say that
workless constraint forces are those which maintain the system according to
Gauss’ “principle of least constraint.”
CD-ROM version

external force acting on the system (including all inertial velocity-
dependent forces), from equation (1) we know that

Mv̇ = JT�+ Fext.

Solving for v̇, this yields

v̇ = M−1JT�+ M−1Fext. (6)

Thus, once we compute �, we will be able to easily compute v̇.
Since M is block diagonal, M−1 is as well. Substituting equation (6)
into equation (5), we obtain

J(M−1JT�+ M−1Fext) + c = 0.

If the matrix A and vector b are defined by

A = JM−1JT and b = −(JM−1Fext + c)

then we can express � as the solution of the equation

A� = b. (7)

This formulation has a number of desirable properties. First, as-
suming that J has full rank (equivalently, none of the imposed con-
straints are conflicting or redundant) then since M−1 is symmetric
positive definite, A is as well. Note that for an articulated structure,
J automatically has full rank, independent of the structure’s current
geometric configuration.5

As long as A is not too large, we can use direct methods to com-
pute �. In particular, when A is nonsingular, the Cholesky decom-
position is an excellent method for computing �. As A becomes
larger, iterative methods can be used to solve equation (7), either by
explicitly forming the matrix A when it is sparse, or by using meth-
ods that work in terms of the (always) sparse factors J and M−1. In
discussing the sparsity of A, we regard A as a block matrix, with the
blocks defined by the blocks of M and J.

At this point, we restrict ourselves to constraints that act be-
tween a pair of bodies. Referring to equation (2), this means that
for a given value i, only two elements of the ith block-row of J are
nonzero. If constraint i acts on bodies r and s, then only jir and jis

will be nonzero. How does this translate to sparsity on the matrix
A? From the definition of A, the i jth block of A is

Aij =
n∑

k=1

(jik) (Mk)
(
jT

jk

)
.

When is Aij nonzero? Since each Mk is nonzero, Aij is nonzero only
if there exists k such that jikjT

jk 6= 0. From equation (2), this means
that there must exist a body k that both the ith and jth constraint
affect.

As was previously pointed out, serial chains yield tightly banded
matrix system. Assuming a chain of n links ordered so that body i
connects to body i +1 (figure 1a) we see that Aij is zero if |i − j| > 1.
Thus, we can trivially solve A� = b in O(n) time using a banded
solution method (e.g. banded Cholesky decomposition). However,
if we have instead a branching structure, so that neither A (nor any
permutation of A) is banded, can we find some general way to ex-
ploit the sparsity of A? The answer to this is “no,” because A is not
necessarily sparse at all!

Consider a structure where constraint 1 acts between body 1
and 2, constraint 2 acts between body 1 and 3, and so on (figure 1b).

5The inverse dynamics of a straight chain are singular; however, the
forward dynamics are always well defined. Contrary to popular belief, A
remains nonsingular for articulated figures unless one accidentally repeats
some of the articulation constraints in forming J. However, a perfectly
straight chain that has both its endpoints constrained does result in a singular
matrix A.
SIGGRAPH ’96 5
• • •

1

n
2

3 4

• • •

1

2

n

n–1

(a) (b)

Figure 1: (a) A serial chain. (b) A branched object yielding a
completely dense matrix A = JM−1JT .

The matrix A for this structure is not sparse at all: in fact, A is com-
pletely dense, because every constraint has body 1 in common (i.e.
the product (ji1)M1(jT

j1) is nonzero for all pairs i and j). To exploit
sparsity we must abandon the approach of computing� in terms of
the matrix JM−1JT .

6 An (Always) Sparse Formulation

The matrix A is square and has dimension Nc × Nc where Nc is the
sum of all the constraint’s dimensions. Instead of computing � in
terms of A, consider the matrix equation(

M −JT

−J 0

)(
y
�

)
=
(

0
−b

)
. (8)

The top row yields My − JT� = 0, or equivalently, y = M−1JT�.
Substituting this into the bottom row and multiplying by −1
yields

Jy = J(M−1JT�) = b

which is equation (7). Thus, we can compute � by solving equa-
tion (8) for � and y (although y is an unneeded byproduct).

Let us define the matrix of equation (8) by writing

H =
(

M −JT

−J 0

)
.

This formulation is commonly seen in the robotics and mechanical-
engineering literature. While some see the use of H as helping to ex-
plicitly separate the equations of motion (the top row of the matrix)
from the constraint conditions (the bottom row of the matrix), it is
clear that actually computing � directly from equation (8) is a very
foolish thing to do, using dense matrix methods. Using an O(n3)
technique, equation (7) is easier to solve because A is much smaller
than H and also because A is positive definite, while H is not. How-
ever, when we consider the problem from a sparse viewpoint, it be-
comes apparent that equation (8) is superior to equation (7), because
H is always sparse. In the next section, we describe a simple O(n)
solution procedure for solving equation (8).

7 A Sparse Solution Method

Our O(n) algorithm is based solely on the properties of the graph
of H. The graph of a square symmetric s block by s block matrix H
is an undirected graph with s nodes. For i 6= j, there is an edge be-
tween nodes i and j if Hij is nonzero. (The diagonal elements of H
are always regarded as nonzero elements, but they do not contribute
CD-ROM version

(b)(a)

1
2

3
4

5

6

1

98

7

4

6

3

2

5

11

10

Figure 2: (a) An articulated object. (b) The graph of the matrix
H corresponding to the object. Nodes corresponding to bodies
are squares; circles indicate constraint nodes. For clarity, con-
straints are numbered beginning with 7.

edges to the graph.) Because the connectivity of the primary con-
straint is acyclic, the graph of H is also acyclic; hence, H’s graph is
a tree.6 For example, consider the structure shown in figure 2a: the
matrix J associated with this set of constraints has the form

J =


j11 j12 0 0 0 0
0 j22 j23 0 0 0
0 j32 0 j34 0 0

j41 0 0 0 j45 0
0 0 0 0 j55 j56


and thus yields the matrix

H =



M1 0 0 0 0 0 jT
11 0 0 jT

41 0

0 M2 0 0 0 0 jT
12 jT

22 jT
32 0 0

0 0 M3 0 0 0 0 jT
23 0 0 0

0 0 0 M4 0 0 0 0 jT
34 0 0

0 0 0 0 M5 0 0 0 0 jT
45 jT

55
0 0 0 0 0 M6 0 0 0 0 jT

56
j11 j12 0 0 0 0 0 0 0 0 0
0 j22 j23 0 0 0 0 0 0 0 0
0 j32 0 j34 0 0 0 0 0 0 0

j41 0 0 0 j45 0 0 0 0 0 0
0 0 0 0 j55 j56 0 0 0 0 0


(9)

The graph defined by H is shown in figure 2b.
Our first thought was to solve equation (8) by computing the

Cholesky decomposition H = LLT where L is lower triangular. Un-
fortunately, this does not work because the lower-right corner of H
is zero, making H indefinite. Instead, we factor H as H = LDLT

where L is a lower-triangular block matrix whose diagonal entries
are identity matrices, and D is a block-diagonal matrix. We then
solve the system LDLT x = (

0
−b

)
and extract the portion of x which

corresponds to �. Although H is always sparse, we must permute
H to exploit this sparsity.

7.1 Elimination Order

A fundamental fact of sparse-matrix theory is that a matrix whose
graph is acyclic possesses a perfect elimination order [6, chapter 7];
this means that H can be reordered so that when factored, the matrix
factor L will be just as sparse as H. As a result L can be computed
in O(n) time (and stored in O(n) space) and then LDLT x = (

0
−b

)
can be solved in O(n) time.

The matrix H is correctly ordered if it satisfies the following
property. Let us view H’s graph as a rooted tree, with node n being

6If the primary constraints partition the bodies into discrete components,
H’s graph is a forest (i.e. a set of trees). For simplicity, assume the primary
constraints do not partition the bodies into more than one component.
SIGGRAPH ’96 6
the root. This defines a parent/child relationship between every pair
of nodes connected by an edge. The matrix H must be ordered so
that every node’s index is greater than its children’s indices. When
H is ordered so that the tree has this property, then the factor L will
have its nonzero entries only where H has nonzero entries. An or-
dering with this property is trivially found by perfoming a depth-first
search on the original H’s graph (see appendix A). The reordered
matrix H, when factored, is said to have no “fill-in”; in other words,
factoring methods such as Gaussian elimination (or the LDLT de-
composition we will use) do not introduce new nonzero elements
during the factoring process.

As an example, a proper reordering of the matrix in equation (9)
would be

H =



M3 jT
23 0 0 0 0 0 0 0 0 0

j23 0 0 0 j22 0 0 0 0 0 0
0 0 M4 jT

34 0 0 0 0 0 0 0
0 0 j34 0 j32 0 0 0 0 0 0
0 jT

22 0 jT
32 M2 jT

12 0 0 0 0 0
0 0 0 0 j12 0 j11 0 0 0 0
0 0 0 0 0 jT

11 M1 jT
41 0 0 0

0 0 0 0 0 0 j41 0 j45 0 0
0 0 0 0 0 0 0 jT

45 M5 0 jT
55

0 0 0 0 0 0 0 0 0 M6 jT
56

0 0 0 0 0 0 0 0 j55 j56 0


.

In practice, H is not actually changed; rather the rows and columns
are processed in a particular order. The bookkeeping associated
with this is very simple and is given in appendix A.

7.2 An O(n 3) Factorization Method

If we treat H as dense, then an O(n3) solution method is as follows.
First, the upper triangular portion of H is overwritten with the entries
of LT , and the diagonal of H is overwritten with the entries of D.
(The diagonal entries of L are identity matrices so there is no reason
to keep track of them.) The code for this is short, and requires O(n3)
time:

1 procedure densefactor
2 for i = 1 to n
3 for k = i − 1 to 1
4 Hii = Hii – HT

kiHkkHki

5 for j = i + 1 to n
6 for k = i − 1 to 1
7 Hij = Hij – HT

kiHkkHkj

8 Hij = H−1
ii Hij

Then, defining z = (
0

−b

)
, we solve Lx(1) = z, followed by

Dx(2) = x(1) and finally LT x = x(2), which yields a solution to Hx =
z, with the lower portion of x containing �. This can be done (suc-
cessively overwriting x at each step) in O(n2) time:

9 procedure densesolve
10 for i = 1 to n
11 xi = zi

12 for j = 1 to i − 1
13 xi = xi – HT

ijx j

14 for i = n to 1
15 xi = H−1

ii xi

16 for j = i + 1 to n
17 xi = xi – Hijx j

7.3 An O(n) Factorization Method

Now let us treat H as sparse. To simplify our discussion of the solu-
tion procedure below, assume we are dealing with a matrix H which
has been reordered as described in section 7.1. To make the two
previous procedures run in linear time, we need a small amount of
CD-ROM version

bookkeeping. Let us define par(i) = j to denote that in H’s graph,
node j is the parent of node i. Conversely, let us define child(j) =
{ i | par(i) = j } and note that

• if i < j then Hij is nonzero only if par(i) = j, which means
that i ∈ child(j) and

• if i > j then Hij is nonzero only if par(j) = i, which means
that j ∈ child(i).

Since every node in the graph has at most one parent, H has the prop-
erty that in each row, only one nonzero block ever occurs to the right
of the diagonal. We can store the upper triangular portion of H by
row, with each row having only two entries (one entry for the diag-
onal, and one entry for the single nonzero element to the right of the
diagonal). As we overwrite H with LT , this structure is preserved.
The pseudocode in appendix A gives specific implementation de-
tails.

Given these relations, we can simplify the O(n3) method as fol-
lows. In lines 3 and 4 of densefactor, k is less than i, which means
Hki is nonzero only for k ∈ child(i). Lines 6 and 7 can be omitted
entirely, because k < i < j, so that the product HT

kiHkkHkj is always
zero (since k cannot be i’s child and j’s child). Finally, since i < j
in line 8 and Hij is nonzero only when j = par(i), the factoring step
reduces to simply

procedure sparsefactor
for i = 1 to n

for k ∈ child(i)
Hii = Hii – HT

kiHkkHki

if i 6= n
Hi,par(i) = H−1

ii Hi,par(i)

Note that assignment to Hii is executed once for each child node of
another node, which means that sparsefactor takes time O(n). Em-
ploying a similar strategy, we solve Hx = (

0
−b

) = z in O(n) time:

procedure sparsesolve
for i = 1 to n

xi = zi

for j ∈ child(i)
xi = xi – HT

ijx j

for i = n to 1
xi = H−1

ii xi

if i 6= n
xi = xi – Hi,par(i)xpar(i)

After computing x, we extract the appropriate elements to form
the vector�, and then perform two (sparse!) multiplications to com-
pute

v̇ = M−1(JT�+ Fext).

Thus, we can compute an acceleration v̇ that satisfies the primary
constraints in only O(n) time. A complete (yet surprisingly short)
pseudocode implementation of both sparsefactor and sparsesolve,
using sparse datastructures, is presented in appendix A.

8 Auxiliary Constraints

Now that we know how to quickly compute the multipliers for the
primary constraints, we can turn our attention to handling the aux-
iliary constraints (such as loop-closure or contact) which cannot be
formulated as part of the primary constraints. In this section, it is
best to internalize the results of the last few sections as the state-
ment “we can quickly determine the primary constraint force JT�
that would arise in response to an external force Fext.”
SIGGRAPH ’96 7
8.1 Constraint Anticipation

Our approach to computing the multipliers for the secondary con-
straints is as follows. We will begin by first computing the multipli-
ers for the auxiliary constraints; however, in doing so, we will an-
ticipate the response of the primary constraints due to the auxiliary
constraint forces. Once we have computed the auxiliary constraint
forces, we then go back and compute the primary constraint forces;
but since we have already anticipated their effects, adding the pri-
mary constraint forces into the system will not violate the conditions
of the auxiliary constraints.

This “anticipation” of the primary constraints effects is as fol-
lows. Consider a force F acting on the system. If not for the primary
constraints, the accelerational response of the system in reaction to
the force F would be v̇ = M−1F. However, because of the primary
constraints, the response is quite different. What we would like to
do is compute a new mass matrix M̂ which reflects how the system
behaves as a result of the primary constraints. That is, we would like
to be able to write that the response of the system due to a force F

is, taking into account the primary constraints, M̂
−1

F. We will not

compute either the actual matrix M̂ or its inverse M̂
−1

; we will use

the O(n) method of section 7.3 to compute vectors M̂
−1

F for a va-
riety of forces F.

In describing the k auxiliary constraints, we will regard each con-
straint as a separate, one-dimensional constraint. This means the
matrix system we build will not have any block structure: this is ap-
propriate, because the matrix system will be in general completely
dense. For each constraint, we will produce a scalar expression ai

which is a measure of acceleration; each ai will have an associated
scalar multiplier µi. The relation between the vector of a’s and the
vector of µ’s is, as always, a linear relation. Our goal here is to show
how we can efficiently compute the k × k coefficient matrix that re-
lates the ais to the µis in O(kn)+ O(k2) time, where n is the num-
ber of primary constraints to be maintained by the system.7 Once
we have computed this coefficient matrix, we can use known tech-
niques to compute the µi multipliers. For an equality constraint, ai

is forced to be zero, and µi can have any sign. If all the constraints
are equality constraints, we can solve for the µi using standard ma-
trix techniques in time O(k3). Going beyond this, simple workless
inequality constraints, such as contact or joint-angle limits require
that ai ≥ 0 and aiµi = 0. Methods for handling a mix of equality,
inequality and frictional conditions are described by Baraff [2] and
have time complexity O(k3) for a system of k constraints. As long
as k is small compared to n, it is the computation of the k × k matrix
of coefficients which dominates the running time, and not the com-
putation of the µi multipliers. Thus, our focus here is on computing
the coefficient matrix as opposed to the multipliers themselves.

The auxiliary constraints are described in a form similar to that
of equation (2). Let the vector a of the k auxiliary ai variables be
expressed in the form

a =

 ai

...
ak

 = Jav̇ + ca (10)

where Ja has k rows and ca ∈ IRk . Since the auxiliary constraint
forces do not have to be workless, let the constraint force acting on
the system due to the ith constraint have the form

kiµi

7If each auxiliary constraint acts on only one or two bodies, the time re-
quired to formulate the system is O(kn) + O(k2). If auxiliary constraints
constrain n bodies at a time, (which is rare), the time becomes O(kn) +
O(nk2) In either case, it is the O(kn) term which dominates; the constant
in front of the O(k2) term or O(nk2) term is small.
CD-ROM version

where ki is a column vector of the same dimension as v (that is, k’s
dimension is the sum of all the bodies’ dimensions). Defining K as
the k-column matrix

K = [k1 k2 . . . kk] (11)

the constraint force due to all k constraints has the form

k1µi + · · · + kkµk = K�.

The process of computing both the primary and auxiliary multi-
pliers is as follows. First, we compute what v̇ would be without the
auxiliary constraints. That is, given an external force Fext, we solve
equation (7) for � (using sparsefactor and sparsesolve). We then
define

F̂ext = JT�+ Fext.

The force F̂ext is the external force as seen by the auxiliary con-
straints. (Remember, the auxiliary constraints are formulated so as
to anticipate the response of the primary constraints. The first step in
this anticipation is to know what the primary constraint force would
have been in the absence of any auxiliary constraint forces.) Having
computed F̂ext, we know that the system’s acceleration without the
auxiliary constraints is M−1F̂ext. Let us write

v̇aux = M−1F̂ext

to express this. The auxiliary constraint forces must now “kick in”
to the extent that the acceleration v̇aux violates the auxiliary con-
straints.

Using the anticipated response matrix M̂
−1

, the acceleration v̇ of
the system in response to an auxiliary constraint forceK� is the sys-
tem’s acceleration without the auxiliary constraint force, v̇aux, plus
the response to K�:

v̇ = M̂
−1

K�+ v̇aux.

If we actually had access to the matrix M̂
−1

, we could stop at this
point: from equation (10), we obtain

a = Jav̇ + ca = JaM̂
−1

K�+ (Jav̇aux + ca) (12)

which gives the desired relation between a and �. (At this point,
we can easily evaluate Jav̇aux + ca, since we have actually computed

v̇aux.) The real trick then is to compute the coefficient matrix M̂
−1

K.
Remember that equation (11) defines K in terms of columns ki,

and that ki is the direction that the ith auxiliary constraint force

acts in. We cannot (nor do we wish to) formulate M̂
−1

directly; in-

stead, we wish to compute M̂
−1

K column by column. Since M̂
−1

encapsulates the response of the system to a force, given a vector

ki, we compute M̂
−1

ki as follows. The primary constraints, in re-
action to a force ki, generate a response force Fresp = JT� where
A� = JM−1ki. As a result, the system’s response to a force ki, is
not M−1ki, but rather

M−1(Fresp + ki).

This gives us a computational definition of M̂
−1

: we can now write
that the system’s response to the force ki is

M̂
−1

ki = M−1(Fresp + ki)
SIGGRAPH ’96 8
where Fresp = JT� and � is computed by solving A� = JM−1ki.

The cost to compute M̂
−1

ki is thus O(n). Given equation (11), we

can express M̂
−1

K column-wise as

M̂
−1

K = [M̂
−1

k1 M̂
−1

k2 . . . M̂
−1

kk]

where each column M̂
−1

ki is computed according to the above pro-
cedure. The cost to do this O(nk), since we have k columns, and

each column requires O(n) work. Having computed M̂
−1

K, we can

easily compute the coefficient matrix JaM̂
−1

K of equation (12). If

Ja is sparse, the k × k matrix JaM̂
−1

K is computed in O(k2) time
while a dense matrix Ja takes O(nk2) time.

8.2 Computing the Net Constraint Force

It is extremely important to note that although we must compute a
total of k + 2 different �’s during the solution process (see below),
each � is actually computed by solving a system of the form Hx =(

0
−b

)
and then extracting � from x. The significance of this is that

what is changing each time is not the matrix H, but b. This means
that we call the procedure sparsefactor of section 7.3 only once
during the entire constraint force computation described below; for
each different vector b, we only need to perform the second step
sparsesolve. Although both steps take O(n) time, sparsefactor is
approximately four times as expensive as sparsesolve. Thus, refac-
toring each time would still yield an O(n) algorithm, but would
needlessly repeat computation.

At this point, the entire sequence of steps required may sound
complicated, but again, the implementation is straightforward. In
the description below, whenever we solve an equation A� = b we
do so in terms of the associated equation Hx = (

0
−b

)
of the previous

section. The steps for the entire solution process are as follows.

1. Formulate the sparse matrix H for the primary constraints, and
run sparsefactor to factor H.

2. Given the external force Fext, compute the primary constraint
force JT� due to Fext by solving A�= −(JM−1Fext + c). This
requires one call to sparsesolve. Once � has been computed,
set v̇aux = M−1(JT�+ Fext).

3. For j from 1 to k, compute the response force Fresp = JT� by
solving A�= −JM−1k j. This requires k calls to sparsesolve.
Forming the product M−1(Fresp + k j) yields the jth column

of M̂
−1

K. Multiplying the ith row of Ja with this jth column

yields the i jth entry in the coefficient matrix JaM̂
−1

K. Com-
puting these k2 different products takes either O(k2) or O(nk2)
time, depending on the sparsity of Ja .

4. Now that the coefficients of equation (12) have been deter-
mined, compute the multipliers�, employing either a standard
linear solution method (for example, Gaussian elimination) or
the method for contact constraints and friction described by
Baraff [2]. This takes approximately O(k3) time.

5. Given the auxiliary constraint force K�, compute the primary
constraint’s response to the force Fext + K�; that is, solve
A�= −JM−1(K�+ Fext + c). The final constraint force due
to both the primary and auxiliary constraints is K� + JT�;
adding to this the external force Fext yields the net force act-
ing on the system.

6. Compute the net acceleration of the system and move on to the
next timestep.
CD-ROM version

9 Results

We have implemented the described system, and used it for a num-
ber of simulations. Simulations were run on an SGI Indigo2 work-
station, with a 250 Mhz R4400 processor. The 108 multipliers
for a system of 2D rigid bodies with 54 two-dimensional primary
constraints required 7.75 milliseconds to compute. Approximately
2.75 milliseconds of that time was spent computing the entries of J.
When the connectivity was changed so that there were 96 primary
multipliers and 12 auxiliary multipliers, the computation time in-
creased by about 17 milliseconds. Virtually all of this increase was
due to the O(nk) computation of the auxiliary constraint coefficient

matrix M̂
−1

K. The O(k3) time spent actually computing the 12 aux-
iliary constraint multipliers was too small to notice.

A 3D rigid body system with 96 primary multipliers and 3 aux-
iliary multipliers due to 3 frictionless contacts required 18 millisec-
onds. Approximately 4.4 milliseconds of that time was spent com-
puting the entries of J. A larger 3D system with 127 constraints re-
sulting in 381 primary multipliers (figure 3) required 44.6 millisec-
onds, with approximately 4 milliseconds spent evaluating J. It is
worth pointing out that on the first problem, with 99 multipliers, the
O(n) method yields only a factor of two speedup over Baraff [2]’s
O(n3) method for equality and inequality constraints. However, for
the larger problem, the speedup is close to a factor of forty.

Schröder [13] discusses an implementation of a linear-time
reduced-coordinate scheme due to Lathrop [11], and reports some
running times. Adjusting for machine speeds, our results appear to
be competitive with the figures reported by Schröder (but we had to
guess about a number of parameters, so it is hard to say for sure). We
do note that Schröder discusses a number of numerical difficulties
with the algorithm; in fact, the use of a singular-value decomposi-
tion is required, which is always a sign of ill-conditioning. We were
pleasantly surprised to find that the sparse methods described in this
paper required no numerical adjustments, even on large examples—
glancing at the pseudocode in appendix A, there are no numerical
tolerance values to be found.8

We were able to run Gleicher’s “Bramble” system on our 2D ex-
ample. Bramble uses a Lagrange multiplier formulation, and ex-
ploits sparsity to compute multipliers by using a conjugate gradient
method [8]. Comparing relative performance is still difficult, since
the performance of any iterative method can vary greatly based on
the desired accuracy of the answer; on the other hand, the ability
to compute results to a lower (but acceptable) precision is one of
the great strengths of iterative methods. For the 2D problem with
108 primary multipliers and no auxiliary multipliers, our method
was about three times faster than Bramble at computing the mul-
tipliers; however, when we induced loops, changing 12 of the pri-
mary multipliers to auxiliary multipliers, both simulation systems
ran at approximately the same same speed. Thus, for problems of
this size, an O(n2) conjugate gradient method is competitive with
the presented method. As problems grow larger (for example, the
3D example with 381 multipliers) our O(n) method enjoys a signif-
icant advantage. On today’s machines, examples fast enough to run
at interactive speeds enjoy modest speed gains using our linear-time
algorithm; however, as machine speeds increase, allowing larger
interactive-rate simulations, the difference between O(n), (n2), and
O(n3) methods will only become more pronounced.

8The algorithm as described requires the inversion of small matrices (for
rigid bodies, these matrices are of size 6 × 6 or smaller). Since the matri-
ces are always either positive or negative definite, a Cholesky decomposi-
tion can be used to simply and stably perform the inversion. The Cholesky
decomposition has no numerical tolerance values in it either.
SIGGRAPH ’96 9
10 Acknowledgments

This research was supported in part by an ONR Young Investiga-
tor award, an NSF CAREER award, and NSF grants MIP-9420396,
IRI-9420869 and CCR-9308353. Many thanks to Nathan Loofbour-
row for pointing out numerous errors in the program listings.

I would also like to thank Dan Rosenthal of Symbolic Dynamics,
Inc. for pointing out that if the auxiliary constraints are workless,
one third of the back-solves in sparsesolve are unnecessary. (The
results given in this paper are for an implementation where it is as-
sumed auxiliary constraints are not necessarily workless.) The key
point of his observation is that for workless auxiliary constraints,
KT = Ja. As a result, the matrix computed in step 3 of section 8.2
can be expressed as KT M−1JT A−1JM−1K + KT M−1K. Note that
the first matrix of this sum has the form ZT A−1Z with Z = JM−1K.
Because of this symmetry and the LDLT factorization employed in
this paper, computing the matrix as described in step 3 results in re-
peating each computation Lx = y (where x is the unknown being
solved for) twice. By slightly restructuring the algorithm, the re-
peated computation can be avoided.

References

[1] D. Baraff. Issues in computing contact forces for non-
penetrating rigid bodies. Algorithmica, 10:292–352, 1993.

[2] D. Baraff. Fast contact force computation for nonpenetrating
rigid bodies. Computer Graphics (Proc. SIGGRAPH), 28:23–
34, 1994.

[3] R. Barzel and A.H. Barr. A modeling system based on dy-
namic constraints. In Computer Graphics (Proc. SIGGRAPH),
volume 22, pages 179–188. ACM, July 1988.

[4] J. Baumgarte. Stabilization of constraints and integrals of mo-
tion in dynamical systems. Computer Methods in Applied Me-
chanics, pages 1–36, 1972.

[5] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical
Solution of Initial-value Problems in Differential-algebraic
Equations. North-Holland, 1989.

[6] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for
Sparse Matrices. Clarendon Press, 1986.

[7] R. Featherstone. Robot Dynamics Algorithms. Kluwer, 1987.

[8] M. Gleicher. A Differential Approach to Graphical Manipu-
lation. PhD thesis, Carnegie Mellon University, 1994.

[9] G. Golub and C. Van Loan. Matrix Computations. John Hop-
kins University Press, 1983.

[10] C. Lanczos. The Variational Principles of Mechanics. Dover
Publications, Inc., 1970.

[11] R.H. Lathrop. Constrained (closed-loop) robot simulation by
local constraint propagation. In International Conference on
Robotics and Automation, pages 689–694. IEEE, 1986.

[12] D. Negrut, R. Serban, and F.A. Potra. A topology based
approach for exploiting the sparsity of multibody dynamics.
Technical Report 84, Department of Mathematics, University
of Iowa, December 1995.

[13] P. Schröder and D. Zeltzer. The virtual erector set: Dy-
namic simulation with linear recursive constraint propagation.
In Proceedings 1990 Symposium on Interactive 3d Graphics,
volume 24, pages 23–31, March 1990.
CD-ROM version

[14] A. Shabana. Dynamics of Multibody Systems. Wiley, 1989.

[15] M.C. Surles. An algorithm with linear complexity for interac-
tive, physically-based modeling of large proteins. Computer
Graphics (Proc. SIGGRAPH), 26:221–230, 1992.

[16] A.F. Vereshchagin. Computer simulation of the dynamics of
complicated mechansisms of robot manipulators. Engineering
Cybernetics, 6:65–70, 1974.

[17] A. Witkin, M. Gleicher, and W. Welch. Interactive dynamics.
In Proceedings 1990 Symposium on Interactive 3d Graphics,
volume 24, pages 11–21, March 1990.

A Pseudocode

This appendix gives a complete implementation of the bookkeeping
and datastructures needed to perform the computations described by
procedures sparsefactor and sparsesolve in section 7.3. As you
can see, the code is extremely short, and thus easily implementable.
Each body and constraint is represented by a node structure; a node
also stores a row of the upper triangular portion of H. Recall that
rows of the upper triangular portion of the (properly ordered) matrix
H only have two nonzero elements: the diagonal element itself (de-
noted D below), and one off-diagonal element (denoted J below).
Each node also stores space for a portion of the solution vector x.

struct node {
boolean isconstraint;
int i;
matrix D, Dinv, J;
vector x;

}

A node corresponding to a body has isconstraint set false, and
the index field i set to the index of the body the node represents. Both
D and Dinv are square matrices of size dim(i). If a node corresponds
to a constraint, then D and Dinv are square with size equal to the
dimension of the constraint, and isconstraint is set true. The vari-
able i is the index of the constraint; constraints are numbered starting
from 1, because �1 is the multiplier for the first constraint. We as-
sume that for a node n, the function parent(n) yields n’s parent,
or NULL if n is the root. Similarly, children(n) yields the set of
nodes that are children of n, or the empty set if n is a leaf. (Ob-
viously, this can be done in terms of extra pointers stored within a
node structure.)

The global variables Forward and Backward are lists of nodes,
with Forward ordered so that parent nodes occur later in the list
than their children, and Backward being the reverse of Forward.
Thus, the notation “for n ∈ Forward” indicates processing nodes
from the leaves up, while “for n ∈ Backward” indicates processing
nodes from the root down. The following routine, called once with
the root of the tree, initializes the two lists (assuming that Forward
and Backward are initially empty):

procedure ordermatrix(n)
for c ∈ children(n)

ordermatrix(c)
Forward = [Forward n]
Backward = [n Backward]
SIGGRAPH ’96 10
Assuming that we have procedures which compute the blocksMi

and jpq (with jpq defined as in section 4), we store and factor H as
follows:

procedure factor
for n ∈ Forward

if n.isconstraint
n.D = 0

else
n.D = Mn.i

if parent(n) 6= NULL
int p = n.i, q = parent(n).i
n.J = n.isconstraint ? Jpq : JT

pq

for n ∈ Forward
for c ∈ children(n)

n.D –= (c.JT
)(c.D)(c.J)

n.Dinv = n.D−1

if parent(n) 6= NULL
n.J = (n.Dinv)(n.J)

As previously mentioned, after we have called factor, we can
solve the system Hx = (

0
−b

)
(extracting � from x) as many times

as we wish. The solution process computes � as follows:

procedure solve(b)
for n ∈ Forward

n.soln = n.isconstraint ? bn.i : 0
for c ∈ children(n)

n.soln –= c.JT c.soln
for n ∈ Backward

n.soln = (n.Dinv)(n.soln)
if parent(n) 6= NULL

n.soln –= (n.J)(parent(n).soln)
if n.isconstraint
�n.i = n.soln

Figure 3: A structure with 127 constraints. Each sphere repre-
sents a 3 d.o.f. constraint between two rigid bodies, for a total of
381 primary multipliers.
CD-ROM version

