
Contents

This is the complete user guide and reference for the Borland Database Engine.

Installation
Installation instructions, requirements, and how to contact Borland for technical support.

Basic Concepts
Concepts fundamental to the Borland Database Engine.

Configuration Management
Settings for the BDE configuration file and additional hints for configuring your system.

Application Development
An introduction to the basics of programming with BDE and a guide to the general procedures for developing
applications.

Using the Function Reference
The elements and syntax conventions used in each function definition. Includes the definitions of variable names,
constants, #defines, and typedefs, as used throughout this reference.

Function Reference, Categorical
Functions grouped according to the tasks they perform. Use this list to find and display definitions for all functions
associated with a particular task.

Function Reference, Alphabetical
Functions listed in alphabetical order. Use this list to to quickly display a particular function's definition.

Data Structures
BDESDK constants, type definitions, data types, descriptor structures, and properties.    Use this list to display a
definition for each data structure.

International Compatibility
Considerations for international applications.

Installation

This section provides the prerequisites and procedures for installing the Borland Database Engine.

Hardware and Software Requirements
Installation Procedure
BDE Software Components
Software Registration and Technical Support

Borland Database Engine
The Borland® Database Engine (BDE) is a software package designed to give developers of Microsoft Windows
applications access to multiple data sources with a consistent application program interface (API). This is exactly
the same engine used by Delphi®, Paradox® for Windows, Visual dBASE® for Windows, and Quattro® Pro for
Windows. The API for this database engine is called Borland Database Engine Software Development Kit
(BDESDK).    (Note: You might occasionally encounter references to the older name for BDESDK: the "Integrated
Database Application Program Interface" or "IDAPI".)

Hardware and Software Requirements

This list describes the hardware and software requirements of the Borland Database Engine.

DOS 3.1 or higher
Windows version 3.1
6 MB RAM required, 8 MB RAM recommended
25 MB free disk space

Installation Procedure

The following sections describe the steps used to install the Borland Database Engine from diskettes or CD-ROM.

Installing from diskettes
Follow these steps to install the Borland Database Engine:

1 Insert Diskette 1 in a floppy drive. (The following instructions assume you are using drive A. Substitute your
drive letter if necessary.)

2 Choose File|Run from the Program Manager. The Run dialog box appears.

3 Enter a:setup.exe in the Command Line text box.

4 Follow the instructions on the screen. Change the default installation directory to the directory you chose for the
BDESDK section of the Borland Database Engine.

Installing from CD-ROM
Follow these steps to install the Borland Database Engine:

1 Insert the CD-ROM in your CD-ROM drive. (The following instructions assume you are using drive E. Substitute
your drive letter if necessary.)

2 Choose File|Run from the Program Manager. The Run dialog box appears.

3 Enter e:setup.exe in the Command Line text box.

4 Follow the instructions on the screen. Change the default installation directory to the directory you chose for the
BDESDK section of the Borland Database Engine.

BDE Software Components

This table describes Borland Database Engine software components.

Component Description

BDE Core .DLL files.

SnipIt Code Viewer Allows you to display and run precompiled and linked code segments that
demonstrate the use of BDESDK functions.

BDE Configuration Utility Allows you to configure BDE.

Database Desktop Allows you to view, create, and restructure tables and run queries with a
graphic interface.

Query Manager Allows you to create and run SQL and QBE queries.

DBPing Allows you to connect to SQL databases.

Sample applications Demonstrates the use of BDE functions.

Software Registration and Technical Support

The Borland Assist program offers a range of technical support plans to fit the different needs of individuals,
consultants, large corporations, and developers. To receive help with this product, send in the registration card
and select the Borland Assist plan that best suits your needs.

North American customers can register by phone 24 hours a day by calling 1-800-845-0147.

For additional details on these and other Borland services, see the Borland Assist Support and Services Guide
included with this product.

Basic Concepts

This section introduces concepts basic to the Borland Database Engine (BDE), including a product description,
architectural overview, a description of each of the BDE objects, and information about database entities,
transactions, callbacks, and cross-database operations. Terms used throughout the BDE documentation are
defined.

Features A list of product capabilities and benefits

Core BDE Files A list of the essential files that make up the Borland Database Engine.

Tools and Examples A list of supplemental tools and files containing sample code

Components A list of the major software components of the BDE package.

Architectural Overview A visual high-level overview of the BDE components.

Shared Services The infrastructure or internal organization of BDE.

BDESDK Overview of BDESDK, the API for the Borland Database Engine.

BDE Objects Overview of the various run-time objects you can create to manipulate database entities.

Database Entities Overview of persistent objects common to most database systems.

Core Borland Database Engine Files

The core BDE 2.5 files include:

Core File Description

IDAPI01.DLL    Primary BDE DLL

ILD01.DLL              International Language Driver support functions

IDBAT01.DLL Contains the batch operations

IDQRY01.DLL Local Query Engine

IDASCI01.DLL ASCII Text driver

IDPDX01.DLL Paradox Driver

IDDBAS01.DLL dBASE driver

IDODBC01.DLL ODBC Socket Driver (allows the use of any ODBC 2.0 driver)

IDR10009.DLL Resource file for error messages

ODBC.NEW ODBC 2.0 core driver (can rename to ODBC.DLL)

ODBCINST.NEW ODBC 2.0 installation driver (can rename to ODBCINST.DLL)

BDECFG.EXE BDE configuration utility

BDECFG.HLP Help file for the configuration utility

IDAPI.CFG File containing BDE configuration information

*.ld International Sort order information

Tools and Examples

The Borland Database Engine include a number of supplemental tools and examples that simplify the job of
developing applications with the BDE.

Tool Description

Database Desktop Simple user interface for viewing and creating tables

Configuration Utility Main BDE tool for managing driver, alias, and system configuration in the BDE configuration file
(IDAPI.CFG)

DLL Swap Tool to switch between the debug ("debug layer") and non-debug versions of BDESDK.    The Debug
Layer is the version of BDESDK that can output trace information and perform extra parameter
checking.

IDAPI.TOK BDE syntax highlighting file for the BC 4.x IDE.

BDE.HLP BDE Help File.

DBPing Connection testing utility

Query Dynamic SQL and QBE tool

Example File Description

SNIPIT 60 simple examples written in C. Range from Basic to advanced concepts.

Pascal Examples Simple examples written in Pascal

INVENTORY Simple inventory example, works on Paradox tables. Written in C.

EMPLOYEE Simple personnel example, works on dBASE tables. Written in Pascal. Basically a port of Inventory.

ADDRESS Simple AddressBook example. Works with any table type. Written in C.

SEEK Simple example of using the BDE in a DLL    Searches dBASE expression indexes. Paradox for
Windows form provided for testing. DLL written in C.

RESTRUCT Another example of the BDE in a DLL. Shows how to do a restructure from OPAL in Paradox for
Windows. DLL written in C.

FILTER Using filters with Delphi controls. Written in Object Pascal for use with Delphi.

TABLEENH Using BDE to expand the Delphi environment. Creates a new component to add to the component
library which adds additional functionality to a table-derived class.

TABLES Sample tables

Database Desktop
(\BDE\DBD\DBD.EXE)

The DBD is basically a stripped-down version of Paradox for Windows.    It lets you visually create, inspect, and
modify tables. This greatly simplifies the task of creating tables in BDE.

Configuration Utility
The BDE configuration utility: \IDAPI\BDECFG.EXE

The BDE configuration file: \IDAPI\IDAPI.CFG

The BDE Configuration utility is a visual tool for managing the information in the BDE configuration file
(IDAPI.CFG). This information includes all driver and alias information, the location of the network control directory
for PARADOX tables, the size of the Swap Buffer (Database Data cache), the amount of lower DOS memory to
use, and various other system information. The configuration utility is currently the only way outside of Paradox for
Windows to add an alias to the system.

You can modify system information and existing aliases by using the function DbiOpenCfgInfoList.

DLL Swap
\BDE\BIN\DLLSWAP.EXE

The DLL swap utility is used to swap between the debug and non-debug versions of the BDE. The debug layer is
useful during application development. When enabled, the debug layer will do additional parameter checking for
BDE functions, as well as providing trace information. In its normal state, the core BDE DLLs do not do much
parameter validation. While this provides a speed improvement if the parameters are correct, it usually involves a
GP fault if the parameters are incorrect.

The debug layer switches the DLL that is to be used. By default, the BDE ships the files IDAPI01.DLL and
DBG.DLL. IDAPI01.DLL is the non-debug version of the BDE, while DBG.DLL is the debug version. The DLL
swap utility will copy IDAPI01.DLL to NODBG.DLL, and then copy DBG.DLL to IDAPI01.DLL. Or, if DLLSwap has
already been run, it will go the other way, restoring the non-debug version of the BDE.

Note that the BDESDK function DbiDebugLayerOptions must be called with the proper parameters to enable the
debug layer. Calling this function with the non-debug version of the BDE will not result in any harm, so this code
can be left in the application regardless of which DLL is being used.

IDAPI.TOK
(\BDE\DOC\IDAPI.TOK)

This file is used by the BC 4.x IDE to provide syntax highlighting for BDESDK functions and types. The
IDAPITOK.TXT file in the same directory provides information on using this file.

BDE.HLP
(\BDE\DOC\BDE.HLP)

This WinHelp file contains the complete user's guide and BDESDK function reference.    It requires the presence
of WINHELP.EXE.    Note that this file can be linked into the BC 4.x IDE by using the OpenHelp machanism
(\BC45\BIN\OHELPCFG.EXE to configure).

DBPING
(\BDE\EXAMPLES\C\DBPING\DBPING.EXE)

This example is used to determine if the BDE can connect to a given database. Basically, this application attempts
to connect to the specified alias using the DbiOpenDatabase function.

QUERY
(\BDE\EXAMPLES\QUERY\QUERY.EXE)

This is a basic InterActive query tool which allows the user to connect to any data source and perform ad hoc
queries. That is, the user can type in SQL and QBE statements and see the results of the operation. Note that the
output Window is limited to 64Kb of data and it is a multi-line edit control. However it does provide a method of
testing SQL and QBE statements, so it can be used to determine if it is the query itself that is failing, or if the
offending application is calling the BDE query functions incorrectly.

SNIPIT
(\BDE\EXAMPLES\SNIPIT\SNIPIT.EXE)

This example contains many simple examples on BDE. Run the program to get an idea of the examples provided.

Pascal Examples
(EXAMPLES\PASCAL*.pas)

These examples were written with the same intention as the SNIPIT example: to provide simple examples
showcasing as many aspects of BDE as possible. Note that the Pascal examples are ports from SNIPIT (C), and
that not all examples have been ported.

INVENTORY
(\BDE\EXAMPLES\C\INVENTRY\INVENTRY.EXE)

This is a simple, stand alone, C windows application using the BDE.    Because this example works only with
Paradox tables, it is a good example to use for people familiar with the Paradox Engine. Note that all engine code
is isolated in the ENGINE.C file, so it should be easy to incorporate aspects of this program in user applications.

EMPLOYEE
\BDE\EXAMPLES\PASCAL\EMPLOYEE\EMPLOYEE.EXE

This example is a standalone Pascal application for Windows using BDE (No Delphi Controls). It is basically a port
of the Inventory example to Pascal, although it does use the dBASE table format.

ADDRESS
\BDE\EXAMPLES\C\ADDRESS\ADDRESS.EXE

An enhanced version of the sample inventory table, this example will work with all table types. This is a good
example of performing basic BDE operations on a given table type (driver).

SEEK
\BDE\EXAMPLES\PDOXWIN\SEEK

Simple example of using the BDE in a DLL.    Searches dBASE expression indexes. Paradox for Windows form
provided for testing. DLL written in C.

RESTRUCT
\BDE\EXAMPLES\PDOXWIN\RESTRUCT

Another example of the BDE in a DLL. Shows how to do a restructure from OPAL in Paradox for Windows. DLL
written in C.

FILTER
\BDE\EXAMPLES\DELPHI\FILTER

Using filters with Delphi controls. Written in Object Pascal for use with Delphi.

TABLEENH
\BDE\EXAMPLES\DELPHI\TABLEENH

Uses BDE to expand the Delphi environment. Creates a new component to add to the component library which
adds additional functionality to a TTable derived class.

TABLES
\BDE\EXAMPLES\TABLES

This directory contains a number of sample tables used by the SNIPIT examples.

Features

BDE offers these features:

BDE provides application developers with BDESDK, a uniform and consistent API to access multiple
database formats including dBASE, Paradox, Text, InterBase, Oracle, Sybase, Informix, as well as any Microsoft
Open Database Connectivity (ODBC) data source. Developers can easily change where and in what format the data
resides without having to rewrite their application.

BDE is ideally suited for client/server applications because it enables application developers to access both
local and server data for upsizing to client/server applications.

BDE gives applications direct and live access to data sources without the need for importing and exporting.
This includes the ability to easily copy data from one format to another, as well as linking and querying data across
formats.

BDE is the highest performance database engine for Paradox and dBASE file formats.
BDE provides a consistent query language (SQL or QBE) and navigational-based access mechanism to

define and access data in both SQL-based servers and file-based databases.
BDE serves the needs of developers coming from two different paradigms: set and navigational. BDE allows

access to data using ISAM (Indexed Sequential Access Method, which is also used by the Paradox Engine), SQL
(Structured Query Language), or QBE (Query by Example).

BDE is a data integration engine, providing services that can be shared across different database drivers.
For example, you can do a query across a dBASE and an Oracle table, copy records from InterBase to Paradox, or
establish one-to-many relationships between an InterBase and an Oracle table.

Components

The BDE package consists of the following components:

The Borland Database Engine Software Development Kit (BDESDK, a set of function calls.
A common database query engine that supports both Structured Query Language (SQL) and Query by

Example (QBE) languages.
Three core database drivers (Paradox, dBASE, and Text).
Optional native SQL drivers to Oracle, Sybase, Informix, and InterBase.
ODBC connectivity that allows access to any data source for which an ODBC driver is available. (BDESDK

applications get the benefits of BDESDK even when using an ODBC driver.)
A collection of tools and sample programs to ease the task of application development.

Architectural Overview

BDE has a driver-based architecture. Each distinct database format or data source usually requires a separate
BDESDK driver. A given driver can support a closely related family of data sources. For example, the dBASE
driver supports dBASE III, dBASE IV and later, and some FoxPro™ (v. 2.5, 2.6) file formats.

BDE is object-oriented in design, making it easy to extend and customize. To extend BDE so that it can access an
additional database system, simply install the appropriate BDESDK driver or ODBC driver for that database
system.

In a client/server environment, the applications and development tools reside on the client PCs, while the data
source resides on the SQL server. BDE is ideally suited for a client/server environment, since it provides
transparent access to both server databases and local databases on PCs.

Shared Services

BDE is based upon the software components model. To ease driver development and maximize reuse, the BDE
infrastructure provides the following shared services.

Note: These shared components are mostly internal to BDE and its drivers; they are described here to help you
understand the architecture of BDE.

Buffer Manager
BDE's priority-based buffer manager enables all BDE drivers to share the same buffer pool. Buffers owned by
different drivers can coexist in this buffer pool. BDE drivers are not required to use the common buffer manager,
but using it maximizes overall system resources.

Sort Engine
BDE's high-performance sort engine is used internally by the common query engine and by the Paradox and
dBASE drivers.

OS Services
BDE's OS services isolate the BDE environment from all OS and platform dependencies, including file I/O,
network access, and OS level memory allocation. This makes BDE highly portable.

Memory Manager
BDE's memory manager provides a sub-allocation service, minimizing OS overhead for small memory allocations.

BLOB Cache
BDE's BLOB caching service makes BLOB access as efficient as possible, so that programmers are not required
to use their own caching schemes. The BLOB cache is accessible to all BDE drivers. Multiple BLOBs can be
simultaneously opened. The BLOB cache automatically overflows into a shared physical file to handle arbitrarily
large BLOBs. The BLOB cache makes random access to BLOBS possible, eliminating the need for application
developers to transfer BLOBs to files. This facility is available from BDE even when the data source/server does
not provide random access to BLOBs.

SQL Generator
The common query engine supports QBE as an alternate query language, which is more intuitive to end users tha
SQL. When the QBE query is directed toward a SQL-based server, the SQL generator module of the QBE engine
translates the query into an equivalent SQL query.

Restructure
A restructure service is currently available for Paradox and dBASE formats. Restructuring enables the application
developer to add, drop, or modify fields and drop or modify any structural aspects of a table. This module creates
new tables when appropriate, translating and copying data to the new table as necessary.

Batch Table Functions
A set of generic batch services is available. These include copying data from one format to another, reading and
writing blocks of records, and renaming tables.

Data Translation Service
BDE's data translation service enables many BDE functions and services to do cross-database operations. Given
any two compatible formats, the data translation service calculates the most optimal conversion. Data is translated
from the database's native physical data format to the common BDE logical data format, and vice versa.

Linked Cursors
BDE implements linked cursors to automatically support one-to-many relationships between two tables. A linked
detail cursor tracks its master cursor using the join key and the records accessible by the detail cursor are
constrained by the master record. Developers can use linked cursors to build sophisticated multi-table
applications with little programming.

In-Memory Tables
In-memory tables provide efficient access to unlimited virtual memory in a table format. The sort engine uses in-
memory tables to create intermediate batches. SQL drivers use in-memory tables for caching data locally.
Developers can create and access in-memory tables through the same BDESDK function calls used for accessing
persistent tables.

SQL Driver Services
All SQL-based drivers (including the ODBC connectivity module) are built using SQL driver services. The following
driver services are included:

Mapping navigational BDE calls to SQL, making it possible to upsize Paradox and dBASE applications
transparently.

Local caching of records, making it possible to browse on query results.
Schema inquiry services.
BLOB handling services that are built using the BLOB cache module.

System Manager
The system manager manages all system-level resources. It loads drivers on demand and keeps track of open
databases and cursors. When an application exits, the system manager frees the resources allocated to that
application.

Configuration Manager
The configuration manager maintains the BDE configuration file (IDAPI.CFG). It reads the configuration file at
startup time to get the information it needs to customize the BDE environment.

The BDE function DbiOpenCfgInfoList gives the application access to the configuration file. The BDE
configuration utility (BDECFG.EXE) enables the application developer to register drivers and aliases, set date
format options, and customize BDE drivers.

Common Query Engine
A common query engine supports both SQL and QBE query languages. The query engine supports a subset of
ANSI92 standard SQL on Paradox and dBASE tables. The common query engine also supports cross-database
joins.

Language Drivers
BDE architecture incorporates language drivers to address the needs of the international market. Each language
driver encodes the collating sequence, capitalization rules, and OEM/ANSI translation rules to suit its particular
language. BDE is bundled with nearly ninety language drivers.

All the native BDE drivers and all BDE shared services support these language drivers, so that the entire BDE
environment is automatically international enabled. No porting is necessary. Application developers can deploy
applications in international markets using the same engine.    See International Compatibility

Resources
All resources, such as error messages, for a language are placed in a separate dynamic link library. BDE can
simultaneously support resources in different languages. An application can register its language at startup time.

BDESDK

The Borland Database Engine Software Development Kit (BDESDK) is the API for BDE.    It consists of a set of
functions that can be called from any programming language capable of calling Windows DLLs. BDESDK is
optimized for calling from C/C.

Over the years, two different types of database systems have developed that traditionally supported different data
access approaches:

PC-based database systems (such as Paradox, dBASE, and B-Trieve) have supported the indexed
sequential access method (ISAM) type of data access. However, these systems have supported different kinds of
APIs.

Server-based database systems (such as InterBase, Sybase, Oracle, Informix, and DB2) have supported
the ANSI standard SQL language. However, an industry standard for an API is just emerging: X/Open SQL Call Level
Interface (CLI). This standard addresses only SQL-based database needs, and does not fully address ISAM type
data source requirements.

Unified access
BDESDK unifies access to both PC-based or ISAM databases and server-based SQL databases with a consistent
cursor-based API. BDESDK supports the basic APIs for both types of databases, extending powerful features of
each type to the other. For example, BDESDK's navigational features are influenced by ISAM databases, and are
extended to support server-based databases. Similarly, the Query portion of BDESDK is influenced by the SQL
standard, and is extended to support ISAM databases. Support of these basic API features on both kinds of
databases makes BDESDK unique. For example, Paradox for Windows and Visual dBASE for Windows exploit
these features to support transparent access to SQL data sources.

Through each driver, BDE gives the application developer access to the unique features of each database
system, such as data types, primary indexes for Paradox tables, delete flags and expression indexes for dBASE
tables, and transaction processing for SQL databases. For this reason, BDESDK is not a least-common-
denominator API.

Purposes
For all supported databases for which an BDESDK native driver or an ODBC driver is available, BDESDK function
calls serve the following purposes:

Opening and closing of databases
Getting and setting properties of BDE objects: system, clients, sessions, drivers, databases, cursors, and

statements
Accessing and manipulating data stored in each database system
Defining the structure of a database in each database system, such as creating tables and indexes
Performing operations across database systems, such as copying and joining tables

BDE Objects

BDE is object-oriented in design. At run time, application developers interact with BDE by creating various BDE
objects. These run-time objects are then used to manipulate database entities, such as tables and queries.
Programming for BDE involves interaction with the following BDE objects:

System
Clients
Sessions
Database Drivers
Databases
Cursors
Query Statements

Each BDE object type is defined by a set of properties. Values are initially assigned to properties when the object
is created. For example, the table name CUSTOMER is the value assigned to the table name property of the
cursor object when the CUSTOMER table is opened with DbiOpenTable.

The BDESDK interface provides a set of functions that the application developer can use to retrieve existing
values of properties (DbiGetProp) and reset these values (DbiSetProp).

For a complete list of BDE object types and their properties, see Getting and Setting Properties

System

One system object controls the resources common to all applications running on the same machine. The
BDESDK system object is automatically created when the first client initializes. At this time, any configurable
settings, such as the maximum memory allowed for the buffer pool, are read from the BDE configuration file
(IDAPI.CFG).

Clients

A new client object is created when an application calls the BDESDK initialization function. This first call to DbiInit
is necessary before any other BDESDK call can be made. The client object is maintained automatically by
BDESDK and exists mainly as a context for all the system resources used by BDESDK on behalf of each client.
The client object has properties which can be set, such as which language is to be used for error messages.

Sessions

An application can maintain one or more sessions. Sessions provide the means to isolate a set of database
access operations without the need to start another instance of the application. A default session is automatically
created when each application initializes. The session object is a container for all other BDESDK run-time objects
that can be created:

Database Drivers
Databases
Cursors
Query statements

Any object created in the context of one session might not be used in the context of another session. The session
is also the owner of all table and record locks acquired by all objects within the session. This means that a table or
record lock acquired using one cursor in a session is owned by all cursors in the session that are opened on the
same table. Any of the cursors on the same table can release such a lock. Additional sessions can be created to
allow for different locking contexts.

Another property of the session is the private directory, where BDE places all temporary file-based tables created
on behalf of the session. In addition, the session owns two properties specific to the Paradox driver: passwords
(for gaining access to password protected tables) and the network control directory, where the PDOXUSRS.NET
file is located.

Database Drivers

Each driver is implicitly loaded by the system when an application first requests a service from that driver. At that
time, any configurable settings found in the BDE configuration file (IDAPI.CFG) related to this driver are used to
initialize it. Examples of configurable settings are the default table level and the language driver to be used when
the table is created.

The application developer can also inquire about driver capabilities, such as whether or not the driver supports
transactions.

dBASE, Paradox, and Text drivers
The drivers for Paradox, dBASE, and Text databases are shipped with BDE.

SQL Drivers
For server-based SQL database systems such as InterBase, Oracle, Sybase, and Informix, separate native
BDESDK SQL drivers are available.

ODBC Drivers
Any ODBC driver can be used with BDE, because BDESDK has an ODBC connectivity socket. The rich features
of BDESDK, such as navigational access to data, bi-directional cursors, and cross-database operations, are also
automatically enabled even when an ODBC driver is in use.

Databases

A database is an organized collection of related tables. To access data in a table, the session first must gain
access to the database with a DbiOpenDatabase call, which returns a database handle to the database.

Standard Databases
BDE supports the notion of a standard database to deal with file-based databases such as Paradox, dBASE, and
Text. Files within a standard database are normally grouped together in the current directory associated with a
standard database, although an application can expand its database by referencing, by fully qualified path name,
any accessible file either locally or on the network.

SQL Databases
A SQL database usually resides on a server. The client application must first log in, establishing a connection to
the database server. This requires supplying the appropriate user name and password.

Aliases
An alias is a short name referencing a database. Database references within applications can use alias names,
making your applications portable.

You can change the definition of an alias at any time by using the BDE configuration utility BDECFG.EXE. All
references to the alias within the application automatically refer to the new definition of the alias.

Aliases for standard databases
For standard databases, an alias is a name you assign as a shortcut to a directory containing the files you want
to access. You can give a long path name a short alias name. When you open a database with such an alias,
tables in that directory can be opened by supplying only the table name without supplying the full path.

Aliases for SQL databases
For SQL databases, properties must be defined for the alias. These properties can vary depending on the SQL
driver. Alias properties can include:

User name
Server name
Open mode
Default SQL query mode
Schema cache size
Language driver

After a SQL database alias is established, the client application can use it the same way it uses an alias for a
standard database.

Cursors

BDE provides access to tables or query results through cursors. A cursor provides addressability to a collection of
records one at a time. All data manipulation operations (insert, delete, update, and fetch), as well as positioning
the cursor in the table (sometimes referred to as navigation) are performed with a cursor.

When the application opens a table with DbiOpenTable or executes a query, a cursor handle is returned. After the
cursor handle is returned, you can use it to retrieve data stored in a table as well as information about a table. You
can also obtain and set properties of this cursor. The application can close a cursor at any time with
DbiCloseCursor. When the cursor is closed, the cursor handle becomes invalid. (Multiple cursors can be created
on the same table.)

To access data in a table, the application opens the table and obtains a cursor handle. The table can be opened
exclusively or shared. The translation mode can be specified as either xltNONE or xltFIELD If xltNONE is
specified, the data is returned from the table as the untranslated physical type (the native data type as stored by
the data source). If xltFIELD is specified, the data is translated into a generic, logical type by BDE. Logical types
are compatible with C language data types.

Ordered and Unordered Cursors
By default, the records returned by a cursor are not in any particular order. Ordered cursors can be obtained by
specifying a current active index for a cursor (using DbiOpenTable or DbiSwitchToIndex). A query executed using
the ORDER BY clause is also an ordered cursor.

Positioning the Cursor
Whenever the application opens a cursor on a table or a query result, the resulting cursor is positioned at the
beginning of the result set, before the first row, rather than on the first record of the table. This initial position
enables the application to access all the records with the DbiGetNextRecord function.

At any time, the cursor can be positioned on a record or on a crack. A crack is a position between records at the
beginning of the table, at the end of the table, or the place left when a record is deleted.

The possible cursor positions are

At the beginning of the table or result set (the crack before the first record). DbiSetToBegin can be used to
explicitly position the cursor here; the cursor is always positioned here when the cursor is opened.

At the end of the table or result set (the crack after the last record). DbiSetToEnd can be used to explicitly
position the cursor here.

On a record (after a successful call to retrieve, insert, or update a record).
On a crack between records. DbiSetToKey positions the cursor on the crack before the record of the

specified key.
The cursor is positioned on a crack if it was previously positioned on a record, and that record was deleted.

Bookmarks
A bookmark can be obtained to save the cursor's current position, so that it can be repositioned to that place later.
Bookmarks can remember any position: on the current row, at the beginning or end of the table, or on a crack. A
call to DbiGetBookMark saves the current position of the cursor as a bookmark. A subsequent call to
DbiSetToBookMark positions the cursor to the location saved by DbiGetBookMark. Multiple bookmarks can be
placed on a cursor. The positions of two bookmarks can be compared with a call to DbiCompareBookMarks.

Query Statements

A query can be either directly executed or prepared first and then executed. When a query is prepared, BDE
checks its validity; if the query is valid, BDE creates a query object and returns a query statement handle.

Certain properties of a query can be changed once the query handle is obtained. For example, if the query has
parameter markers, the values of parameters to be used can be set prior to opening a cursor.

Database Entities

Database entities are persistent objects, common to most database systems, and include

Tables
Indexes
Fields
Queries
Transactions
Callbacks
Cross-database operations

Tables

Data in a database is organized in tables. In BDE, a table name has meaning only within a database. Tables are
accessible to the application in rows (records) and columns (fields). The rows can be ordered by an index.

To create a table, the application calls the BDESDK function DbiCreateTable, passing the completed table
descriptor structure CRTblDesc. Alternatively, tables can be created using SQL Data Definition Language (DDL).

Temporary Tables
Certain database operations create temporary tables that last only until you close them or end the BDE session.
Your application can create two types of temporary tables:

Use DbiCreateTempTable to create a temporary table, which can later be saved to disk. If the table becomes
too large, it is automatically written to disk. The client application can explicitly save the temporary table to disk by
calling the function DbiMakePermanent or DbiSaveChanges. For all practical purposes, these tables behave like
regular tables.

Use DbiCreateInMemTable to create a temporary table never intended to be written to disk. These tables
are created by the application for gathering information that is needed temporarily during processing. These tables
can be created only with logical types. These tables do not support indexes.

Indexes

An index determines the order of the records in a table. Paradox, dBASE, and SQL database systems all let you
create indexes to order records. However, there are differences in the way indexes work and the information
required to define indexes in each of the database systems.

BDE supports all the native modes of indexing for Paradox, dBASE, and SQL database systems. To enable your
application to create an index, BDE provides a generic index descriptor structure, IDXDesc. IDXDesc is a union of
all of the fields required to define an index for all of the supported database systems. To add an index, the
application supplies the required data in IDXDesc and calls the function DbiAddIndex.

To create an index for a table, your application need only supply data in the index descriptor fields that are
applicable to that particular table's database system. For example, when defining an index on an InterBase table,
your application ignores fields such as szTagName and bExpIdx, which are used only in defining dBASE indexes.
When required fields are not supplied, an error message is returned by the DbiAddIndex call.

Different types of indexes allowed within the database system may have different requirements. For example,
when adding a dBASE maintained index, the field szTagName is required. Indexes can also be created using the
SQL Data Definition Language.

Types of Indexes
There are three basic types of indexes:

Traditional indexes on columns. These indexes can be single column indexes or composite indexes on more
than one column.

Expression indexes. These indexes have key values determined by an expression (not necessarily column
values). Of the databases mentioned, only dBASE currently supports expression indexes.

Pseudo-indexes. For SQL data sources, BDE can create a pseudo-index by using one or more user-
specified SQL fields to define the requested order

Characteristics of Indexes
Indexes have three other characteristics:

Subset indexes do not index every record in a table; instead, they index only those rows that satisfy a given
Boolean expression. Of the databases mentioned, only dBASE uses subset indexes.

Unique indexes cannot have duplicate key values.
Indexes can be maintained or non-maintained.

Driver-Defined Index Requirements
It is important to understand that different drivers support different types and characteristics of indexes. The
following sections provide a partial list of rules for the different index types and characteristics supported by each
driver:

dBASE
The following rules describe how dBASE supports indexes:

dBASE supports only expression indexes. (Single-column indexes are treated as a special case of
expression indexes.)

dBASE supports two different physical index formats: .NDX-style and .MDX-style.
dBASE supports subset indexes in .MDX-style indexes.
In dBASE, all maintained indexes are .MDX-style indexes.
dBASE does not support primary indexes (or primary keys).

Expression Indexes
When defining an index, dBASE uses expression indexes. The expression index determines how the key is
computed when a record is added. Expression indexes can be simply the name of a field or they can be
created from field names, operators, and functions.

Multiple indexes
Multiple indexes are stored in a single file with a .MDX extension. dBASE stores different indexes in the same
physical file. Each index in the multiple index file is called a tag. Tags are identified by the szTagName you
assigned when you created the index.

One of the multiple index files is used to store all the maintained indexes. The name of this file is of the form
<Tbl_Name>.MDX. This file is called the production index file; indexes in this file are always maintained.

Single indexes

The dBASE driver also supports the older style dBASE indexes called .NDX indexes. This index is stored in a
file with a .NDX extension. Each such file contains only one index; this index is maintained only if the index is
explicitly opened.

Paradox
The following rules describe how Paradox supports indexes:

Paradox supports both single- and multi-column indexes.
Paradox supports a primary index.
Paradox supports maintained and non-maintained secondary indexes.
Paradox does not support expression indexes.
Paradox does not support subset indexes.
Paradox supports case-sensitive/insensitive secondary indexes.

Primary indexes
A Paradox primary key is defined as a field or group of fields when values uniquely identify each record of a
table. The fields in a key must be contiguous starting with the first field. A primary key requires a unique value
for each record (row) of a table. A table's primary key establishes the default sort order for the table. A Paradox
table is sorted based on the values in the field(s) you define as the table's primary key. Only one record's
primary key can be blank. All subsequent blanks are considered as duplicates, and records containing them are
not accepted.

Secondary indexes
Paradox supports secondary indexes. A table can have more than one secondary index, and a secondary index
can be a composite index. Each secondary index can be maintained or non-maintained. If it is maintained, the
index is updated automatically every time the table is changed. Secondary indexes can be case-sensitive or
insensitive. If it is case-sensitive, BDE differentiates between upper- and lowercase letters as it sorts fields.
Maintained secondary indexes are supported only if the table also has a primary index. If an index is non-
maintained, it becomes out of date if any data in the table changes.

SQL
The following rules describe how SQL drivers support indexes:

All SQL indexes are maintained.
The rules for index creation are based on SQL server support. SQL drivers support the following indexes if

they are supported by your server:
 Single and multi-column indexes
 Unique and non-unique indexes
 Ascending and descending indexes

Fields

Fields are columns of a table. The properties of each field in a table are defined in a field descriptor structure
FLDDesc. When a table is created with DbiCreateTable, the table descriptor CRTblDesc points to an array of
FLDDesc structures, each of which defines a field in the table.

Physical data types
Physical data types can vary from one data source to another. For example, floating point numbers are stored
differently by Paradox, dBASE, and SQL data sources. Physical data types of one data source might not be
compatible with the physical data types of other data sources to store the same data.

Logical data types
Logical data types are the generic data types used by BDE. These generic types are made interchangeable
between data sources because BDE automatically translates them into the proper physical data types for each
target data source.

Automatic field translation
To facilitate cross-database processing, BDE does not require your application to translate data to make it
compatible with each different data source. As long as your application uses BDE logical data types, BDE handles
the translation to the correct physical format for each target data source. When BDE returns data to your
application, it translates all data types as they are stored by the data source back to the generic logical data types.
BDE's logical data types are compatible with standard C language data types.

When accessing a table, the application can override the translation mechanism, opting to receive data in the
physical format used by the data source.

Queries

The common query engine allows you to specify queries in either the SQL or QBE language on any available data
source. Through queries, BDE allows uniform data retrieval across data sources. The local query manager
enables you to join data across servers. For example, you can join Oracle to dBASE, Sybase to Paradox, or
InterBase to Oracle on two different servers. To run cross-database queries, the table names in a query must be
qualified by alias names. Cross-database queries are supported only with standard database handles, even if the
query is targeted for SQL servers.

BDESDK provides a set of query interface functions so that the application developer can query tables across all
accessible databases:

DbiQPrepare prepares a SQL or QBE query for execution.
DbiQSetParams sets the value of parameter markers in a prepared query before the query executes.
DbiQExec executes a previously prepared query.
DbiQFree frees resources acquired during preparation and execution of a query.
DbiQExecDirect prepares and executes a SQL or QBE query.

For both QBE and SQL executed on Paradox and dBASE tables, a query can be executed as a live result set,
resulting in an updatable cursor on the original table.

SQL
BDE allows access to Paradox or dBASE data through a convenient subset of the SQL language.

To exploit the full functionality of the server, you can use your server's dialect of SQL. Use passthrough SQL to
send native SQL statements directly to your database server to be executed there. Queries executed in the native
dialect do not result in updatable cursors.

Query by Example (QBE)
BDESDK supports the full QBE language as defined by Paradox DOS and Paradox for Windows. When QBE is
executed with a SQL data source, the QBE query is translated to SQL and sent to the server; the resulting cursor
is not updatable.

Transactions

SQL database servers support transactions. A transaction is a group of related operations that must all be
performed successfully or no change to the database takes place.

BDE supports transactions on SQL servers with three BDESDK function calls:

DbiBeginTran
DbiEndTran
DbiGetTranInfo

The application calls DbiBeginTran, submits SQL statements and/or BDESDK function calls to be included in the
transaction, and then calls DbiEndTran. DbiGetTranInfo returns status information about a transaction.

Callbacks

Sometimes a client application needs information about the progress of a given function. For example, if a table is
being restructured, certain conditions can cause records to be written to a Problems table rather than the
destination table. This situation could warrant termination of the operation, or it could require some other action. A
callback enables the application to intercede and evaluate such a situation before any action is taken by the
engine. The application registers the callback in advance by calling DbiRegisterCallBack.

After a callback is registered, the occurrence of the specified event triggers the database engine to call the
callback function, which in turn alerts the application that the event has occurred. The callback then awaits further
instructions from the application.

The client responds to the callback by sending an appropriate return code (cbrABORT, cbrCONTINUE, and so
on.). The callback mechanism is efficient because the engine can get the application's response without
interrupting the normal client process flow.

To inspect the callback structures, see Data Structures

Cross-database Operations

BDESDK query and batch functions can operate on heterogenous data sources. The following examples illustrate
this feature:

A single SQL or QBE query, can do a three-table join, for example, between InterBase, Oracle, and Paradox
tables, and update a Sybase table with join result. For more information, see "Heterogeneous Joins" in the Local SQL
Online User Guide.

DbiBatchMove can be used to copy one table type to another; for example, a Paradox table to an Oracle
server. All the data types are converted to the appropriate Oracle data types. The table name and all field names are
converted to legal Oracle names, and options exist to convert any textual data between the character sets of the two
data sources. For more information, see Adding, Updating, and Deleting Records.

DbiSortTable can be used, for example, to sort an Oracle table and return the result as a Paradox or a
dBASE table. For more information, see Sorting Tables.

Configuration Management

The Borland Database Engine Configuration Utility is a redistributable application that sets up and manages your
application's configuration. The configuration parameters are stored in a binary file with the extension .CFG (for
example, IDAPI.CFG) that the application reads at startup.

BDE Configuration Reference
The BDE Configuration Utility is displayed in notebook format, with tabbed pages that govern different
configuration tasks. The following sections describe the menu commands and each task page in the BDE
Configuration Utility.

Managing Your BDE Configuration File
Overview and menu commands for managing the BDE configuration file (IDAPI.CFG).

Drivers Page
Setting the default parameters for any database driver your Borland Database Engine application will access,
including dBASE, Paradox. SQL, and ODBC.

Aliases Page
Adding, deleting, or modifying database aliases.

System Page
Setting your Borland Database Engine initialization parameters.

Date, Time, and Number Pages
Setting the format for displaying date, time, and numeric data.

BDE Configuration Guide
The following sections explain how to modify the appropriate configuration files when configuring drivers.

Configuring Microsoft Open Database Connectivity (ODBC)
Supplemental help with configuring ODBC drivers and datasources.    AutoODBC enables the BDE to automatically
read the names of drivers and data sources from the ODBC configuration files, odbc.ini and odbcinst.ini.

Note: Before using this utility to change your BDE configuration file, be sure to close any open BDE applications.
Your changes take effect the next time you start your Borland Database Engine application.

Managing Your BDE Configuration File

The BDE Configuration Utility (BDECFG.EXE) and a generic configuration file (IDAPI.CFG) are installed with the
Borland Database Engine.    Assuming you have no other BDE-based applications on your workstation at
installation time, the installation program sets up IDAPI.CFG as the default BDE configuration file.    This means
that the first time you open the BDE Configuration Utility it will display the parameters stored in IDAPI.CFG.

The default configuration file is listed in the IDAPI section of your WIN.INI file as CONFIGFILE01.

The BDE Configuration Utility provides the following menu commands for managing the BDE configuration file:

Command Function

File | Open Displays the Open dialog box, which enables you to select a .CFG file to view or edit.

File | Save Saves any changes made to the current BDE configuration file.If the current file is not the default BDE
configuration file, the Configuration Utility displays the Non-system Configuration File dialog box.    If
you want this file to become the new default BDE configuration file, choose Yes in that dialog box.   
Choose No to leave your current default configuration file unchanged.The changes take effect the next
time you re-start all open BDE applications.

File | Save As Saves the current .CFG settings under a different .CFG file name. You can name your BDE
configuration file anything as long as it ends in .CFG and is no more than 12 characters long.If the file
name already exists, the Configuration Utility displays the Overwrite Existing File dialog box.    If you
want to over-write the existing file (erasing any unique aliases or ODBC driver connections it may
contain), click Yes.    To cancel this operation, click No.

File | Merge Merges another configuration file with the one already in use.

File | Exit Exits the BDE Configuration Utility. If you made changes and did not save them, a warning appears.
You can save your changes or exit without saving.

Drivers Page

The Drivers page controls how your application creates, sorts, and handles different kinds of tables. It is also used
to add or remove SQL ODBC driver connections.

Driver Name lists the types of drivers installed at your workstation. STANDARD drivers are Paradox and dBASE;
other drivers are for use with SQL servers, and are installed separately.

New Driver and Delete Driver enable you to add an ODBC driver connection to the list of available drivers. (For
further information, see the BDE Configuration Utility Online Help.)

Parameters lists all the parameters tracked by the BDE Configuration Utility for the selected driver type, and their
current settings.

To modify a setting, select the driver name and highlight the desired configuration parameters. Delete the old
value and enter a new one in the appropriate text box.

dBASE Settings
Paradox Settings
SQL Settings
ODBC Settings

dBASE Settings

dBASE settings determine the way dBASE tables are created, sorted, and handled.

Settings Description

VERSION Internal version number of the dBASE driver.Do not modify.

TYPE Type of server to which this driver helps you connect. FILE represents a standard, file-based
server.Do not modify.

LANGDRIVER Language driver used to determine table sort order and character set.
U.S. default: DBASE ENU CP437.

LEVEL Type of table format used to create dBASE temporary tables. Can be 3 (dBASE III and dBASE III Plus
table format), 4 (dBASE IV table format), or 5 (dBASE 5.0 table format). Default: 5.

MDX BLOCK SIZE Size of disk blocks dBASE allocates for .MDX files, in bytes. Can be any integer that is a multiple of
512. Default: 1024.

MEMO FILE BLOCK Size of disk blocks dBASE allocates for memo (.DBT) files, in bytes. Can be any integer that is a
multiple of 512. Default: 1024.

Paradox Settings

Paradox driver settings determine the way Paradox tables are created, sorted, and handled.

Settings Description

VERSION Internal version number of the Paradox driver.Do not modify.

TYPE Type of server to which this driver helps you connect. FILE represents a standard, file-based
server.Do not modify.

NET DIR Directory containing the network control file (PDOXUSRS.NET).

LANGDRIVER Language driver used to determine table sort order and character set. U.S. default: ascii.

LEVEL Type of table format used to create temporary Paradox tables. Can be 3 (Paradox 3.5 and earlier table
formats), 4 (Paradox 4.0 table format), or 5 (Paradox 5.0 table format). Default: 4. Note: Paradox level
4 tables are required to use BLOB fields, secondary indexes, and strict referential integrity.

BLOCK SIZE Size of disk blocks used to store Paradox table records. Can be 1024, 2048, 3072, or 4096. Default:
2048.

FILL FACTOR Percentage of current disk block which must be filled before Paradox will allocate another disk block
for index files. Can be any integer ranging from 1 to 100. Default: 95. Note: Smaller values offer better
performance but increase the size of indexes. Larger values give smaller index files but increase the
time needed to create an index.

STRICTINTEGRTY Specifies whether Paradox tables can be modified using applications that do not support referential
integrity (Paradox 4.0). For example, if TRUE you will be unable to change a table with referential
integrity using Paradox 4.0; if FALSE, you can change the table, but you risk the integrity of your data.
Default: TRUE.

SQL Settings

If you have installed any Borland SQL Link drivers or created any ODBC driver connections, the list of drivers on
the Drivers page will include more than just dBASE and Paradox.

SQL driver settings determine the way the Borland Database Engine connects to the target SQL server, and how
the SQL databases are opened. The settings are slightly different for each driver. For further information on SQL
Link driver settings, see the Borland SQL Links Getting Started manual.    (Note:    You may need to widen this help
window to view the entire chart.)

All SQL Link drivers use at least the following common parameters:

Settings Description

VERSION Internal version number of the SQL Link driver.Do not modify.

TYPE Type of server to which this driver helps you connect. SERVER represents a SQL server.Do not
modify.

DLL SQL Link dynamic link library name.    For internal use only.Do not modify.

DRIVER FLAGS Internal product-specific flag.    Do not modify unless directed to do so by Borland support
personnel.Default: NULL.

SERVER NAME Name of the target SQL server. Use format appropriate for your server; for example, the
InterBase server name takes the form: IB_SERVER:/PATH/DATABASE.GDB.

USER NAME Default user name for accessing the target SQL server.

OPEN MODE Default mode in which to open the target SQL database. Can be READ ONLY or READ/WRITE.
Default: READ/WRITE.

SCHEMA CACHE SIZE Number of SQL tables whose schema information will be cached. Possible values are 0 - 32.
Default: 8.

LANGDRIVER Language driver used to manipulate all data that originates from the SQL server. When the
cursor is in the LANGDRIVER field, a scroll bar appears at the right side of the text box; use the
scroll bar to display a list of language driver long names that work with your driver. U.S. default:
NULL.

SQLQRYMODE Method for handling queries to SQL data. Possible modes and their meanings are listed below.
Default: NULL.

NULL (blank setting) Server-local.    (Default mode) In server-local query mode, the
query goes first to the SQL server. If the server is unable to
perform the query, the query is performed locally.For a discussion
of how Borland language drivers affect the processing of SQL
queries, see the Borland SQL Links Getting Started manual.

SERVER Server-only.    In server-only query mode, the query is sent to the
SQL server. If the server is unable to perform the query, no local
processing is performed.

LOCAL Local-only.    In local-only query mode, the query is always
performed locally.

SQLPASSTHRU MODE Specifies whether or not the application will be able to access the SQL server via both desktop
commands and pass-through SQL in the same alias connection. Possible modes and their
meanings are listed below. Default: SHARED AUTOCOMMIT for Informix; NOT SHARED for all
other SQL Link drivers.

NOT SHARED(blank setting) (InterBase, Oracle, Sybase default) Pass-through SQL and non-
pass-through SQL do NOT share the same connection.

SHARED AUTOCOMMIT (Informix default) Pass-through SQL and non-pass-through SQL
will share the same connection, and pass-through SQL will behave
in a similar fashion to non-pass-through. This means that, as long
as the user is not in an explicit client transaction or batch mode,
pass-through SQL statements will be automatically committed.

SHARED NOAUTOCOMMIT Pass-through SQL and non-pass-through SQL will share the same
connection, but the SQL driver will not automatically commit pass-
through statements. In this mode, pass-through behavior is server-
dependent.

SCHEMA CACHE TIME Specifies how long table list information will be cached. (In BDE this happens when you call
either DbiOpenTableList or DbiOpenFileList.) Possible modes and their meanings are listed
below. Default: -1.

-1 (Default) The table list is cached until you close the database.

0 No table lists are cached.

1 through 2147483647 The table list is cached for the number of seconds specified in the
setting.

ODBC Settings

All ODBC driver connections created through the BDE Configuration Utility use the common parameters shown in
the following table. Also see Configuring Microsoft Open Database Connectivity (ODBC)

Settings Description

VERSION Internal version number of the ODBC driver.Do not modify.

TYPE Uniquely identifies this ODBC driver connection. Can include any combination of 12 alphanumeric
characters; the BDE Configuration Utility automatically prepends the characters ODBC_. For example,
if the ODBC data source resides on a Sybase server whose servername is Silver, you might name the
ODBC drive connection sysilver. The Configuration Utility converts this to ODBC_sysilver.

DLL ODBC driver dynamic link library name.    For internal use only.Do not modify.

ODBC DRIVER ODBC driver used to connect the workstation to the target ODBC server.

DRIVER FLAGS Internal product-specific flag.    Do not modify unless directed to do so by Borland support
personnel.Default: NULL.

USER NAME Default user name for accessing the target ODBC server.

ODBC DSN The name of the target ODBC data source.

OPEN MODE Default mode in which to open the target ODBC database. Can be READ ONLY or READ/WRITE.
Default: READ/WRITE.

SCHEMA CACHE SIZE Number of SQL tables whose schema information will be cached. Possible values are 0 - 32. Default:
8.

SQLQRYMODE Method for handling queries to SQL data. Possible modes and their meanings are listed in Table A.4.
Default: NULL.

SQLPASSTHRU MODE Specifies whether or not the Borland Database Engine application will be able to access the SQL
server via both desktop commands and pass-through SQL in the same alias connection. Possible
modes and their meanings are listed in Table A.5. Default: SHARED AUTOCOMMIT.

Aliases Page

An alias is a name and a set of parameters that describe a network resource. BDE-based applications use aliases
to connect with shared databases. An alias is not required to access a local database, but it is required to access
a SQL database.

The Aliases page enables you to add, delete, or modify database aliases.

Alias Names lists all the available aliases.

New Alias enables you to add a new alias.

Delete Alias enables you to delete any alias that is highlighted in the Alias Name box.

Parameters shows all the parameters of the currently-selected alias, with their current values.

Description briefly notes the purpose of the selected parameter.

Setting up an alias for a SQL database consists of assigning a name to, and customizing the access parameters
for, a SQL server and database. Your SQL alias includes your user name and password on the target SQL server.

For information on adding or deleting an alias to the BDE configuration file, see DbiAddAlias and DbiDeleteAlias

For further information, see your Borland SQL Links Getting Started manual.

System Page

The System page controls the settings your application uses when it is initialized.

Parameters lists all the system and network parameters tracked by the BDE Configuration Utility, with their
current values.

Description briefly notes the purpose of the selected parameter.

To change a setting, highlight the desired parameter. Then replace its old value with a new value.

Setting Meaning

VERSION Internal version of BDE.Do not modify.

LOCAL SHARE The ability to share access to local data between an active BDE application and an active non-
BDE application. Set to TRUE if you need to work with the same files through both an BDE and a
non-BDE application at the same time. Default: FALSE.

MINBUFSIZE Minimum amount of memory for database data cache, in kilobytes. Can be any integer between
32 and 65535.    Must be less than the total amount of RAM available to Windows.    Default: 128.

MAXBUFSIZE Maximum amount of memory for database data cache, in kilobytes. Can be any integer greater
than MINBUFSIZE and less than (or equal to) the total amount of RAM available to Windows.
Must be a multiple of 128.    Default: 2048.

LANGDRIVER System language driver. Defaults to the OEM driver appropriate for a country's version of
Windows; for example, ASCII for U.S. workstations.

MAXFILEHANDLES Maximum number of file handles BDE uses. Can be any integer ranging from 5 to 256. High
values improve performance but use more Windows resources. Default: 128.

SYSFLAGS Internal BDE setting. Do not modify without specific instructions from Borland support personnel.

LOW MEMORY USAGE LIMIT Maximum amount of low memory BDE will attempt to use, in kilobytes. Default: 32.

SQLQRYMODE Method for handling queries to SQL data. Can be NULL (blank setting; default), SERVER, or
LOCAL.Note: This parameter only appears if a Borland SQL Link driver is installed.

Date, Time, and Number Pages

The Date, Time, and Number pages control how your application converts string values into date, time and
numeric values.

Parameters lists all the date, time, and number format parameters tracked by the Configuration Utility, with their
current values.

Description briefly notes the purpose of the selected parameter.

Date Settings
Time Settings
Number Settings

Date Settings

Date settings are used to convert string values to various date expressions.    See International Compatibility

Setting Meaning

SEPARATOR Character used to separate the month, day, and year components of a date value; that is, the / in
12/31/96. The default is the character normally used in the country selected in the Windows Control
Panel when any BDE application is installed.

MODE Controls the order of the month, day, and year components. Can be 0 (for MDY), 1 (for DMY), or 2 (for
YMD). The default is the order normally used in the country selected in the Windows Control Panel
when any BDE application is installed.

FOURDIGITYEAR Specifies the number of digits for the year value (four or two). If TRUE, years are expressed in four
digits (such as, 1995). If FALSE, the default, years have two digits (93). Default: TRUE.

YEARBIASED Tells the application whether or not it should add 1900 to years entered as two digits. For example, if
TRUE and you enter 7/21/95, the date is interpreted as 7/21/1995. Default: TRUE.

LEADINGZEROM Specifies whether or not single digit month values have a leading zero. For example, if TRUE and you
enter 1/1/80, the date is interpreted as 01/1/80. Default: TRUE.

LEADINGZEROD Controls whether or not single digit day values have a leading zero. For example, if TRUE and you
enter 1/1/80, the date is interpreted as 1/01/80. Default: TRUE.Date settings are used to convert string
values to date values.

Time Settings

Time settings are used to convert string values to various time expressions. See International Compatibility

Setting Meaning

TWELVEHOUR Specifies whether or not BDE applications express time values using a twelve-hour clock. For
example, if TRUE 8:21 p.m. is expressed as 08:21 PM, and not 20:21. Default: TRUE.

AMSTRING Character string used to indicate morning (before noon and after midnight) times, when
TWELVEHOUR is TRUE. Default: AM.

PMSTRING Character string used to indicate evening (after noon and before midnight) times, when
TWELVEHOUR is TRUE. Default: PM.

SECONDS Specifies whether or not time values include seconds. For example, if TRUE, 8:21:35 p.m. is
expressed as 8:21:35 PM, and not 8:21 PM. Default: TRUE.

MILSECONDS Specifies whether or not time values include milliseconds. For example, if TRUE, 8:21:35:54 PM.
Default: FALSE.Time settings are used to convert string values to time values.

Number Settings

Number settings are used to convert string values to number values. See International Compatibility

Setting Meaning

DECIMAL SEPARATOR Character used to separate the decimal portion of a number from its integer portion; for example,
the period (.) in 3.14. Defaults to the standard decimal separator used for your country, as specified
in the Windows Control Panel (International Setting).

THOUSAND SEPARATOR Character used to separate large numbers into their thousands components; for example, the
commas (,) in 1,000,000.00. Defaults to the standard thousands separator used for your country, as
specified in the Windows Control Panel (International Setting).

DECIMALDIGITS Specifies the maximum number of decimal places to be used when converting string values to
number values. Default: 2.

LEADINGZERON Indicates whether numbers between 1 and -1 use leading zeros; for example, 0.14. instead of .14.
Default: TRUE.

Configuring Microsoft Open Database Connectivity (ODBC)

This section contains sample configuration file blocks to help you understand the procedure for configuring ODBC.
First configure the ODBC configuration file, then configure the BDE configuration file to support ODBC.

Configuring the ODBC Configuration File
Configuring the BDE Configuration File for ODBC
ODBC Socket Configuration Entries
AutoODBC

Configuring the ODBC Configuration File

Two files contain the configuration information for ODBC:

The file odbcinst.ini in the windows directory lists the ODBC drivers.
The file odbc.ini lists the ODBC data sources.

Use the administrative program ODBCADMIN to modify these files. The files are ASCII, but direct user editing is
not recommended.

Here is a sample odbc.ini file:
[ODBC Data Sources]
      My Oracle7=VENDOR Oracle7

      [My Oracle7]
      Driver=C:\windows\system\OR706.DLL
      Description=ODBC Oracle7 Driver
      ServerName=X:ZAPPA
      Servers=
      LogonID=guest
      LockTimeOut=
      ArraySize=
      QEWSD=34480

The first block [ODBC Data Sources] lists the ODBC data sources and their associated drivers. Then, for each
data source, there is a block that describes the datasource. One data source [My Oracle7] is shown in the
example above.

Here is a sample odbcinst.ini file (the file that describes the drivers):
[ODBC Drivers]
      VENDOR Oracle7=Installed

[VENDOR Oracle7]
      Driver=C:\ODBC\OR706.DLL
      Setup=C:\ODBC\OR706.DLL
      APILevel=1
      ConnectFunctions=YYY
      DriverODBCVer=02.01
      FileUsage=0
      SQLLevel=1

The first block [ODBC Drivers] lists the installed drivers.    The second block is the configuration block for the first
installed drivers.

Each datasource in the odbc.ini file will have an installed driver (for example, VENDOR Oracle7) in the
odbcinst.ini file.

Configuring the BDE Configuration File for ODBC

The configuration of BDE (at least as it relates to SQL) is similar to the ODBC configuration. You must specify a
series DRIVERS (like the ODBC drivers) and ALIASES (much like the ODBC datasources).

Here is an example showing a Drivers section from the BDE configuration file (IDAPI.CFG):

ORACLE:
INIT:

VERSION:1.0
TYPE:SERVER
DLL:SQLD_ORA.DLL
VENDOR INIT:ORA7WIN.DLL
DRIVER FLAGS:NULL

DB OPEN:
SERVER NAME:NULL
USER NAME:NULL
NET PROTOCOL:NULL
OPEN MODE:READ/WRITE
SCHEMA CACHE SIZE:8
LANGDRIVER:NULL
SQLQRYMODE:NULL
SQLPASSTHRU MODE:NOT SHARED
SCHEMA CACHE TIME:NULL

Note that it is this entry ORACLE that gets associated with the aforementioned alias reference to a driver.

Here is an example of a Database Alias section of a BDE configuration file (IDAPI.CFG):

ORACLE7:
DB INFO:

TYPE:ORACLE
PATH:NULL

DB OPEN:
SERVER NAME:ORACLE7
USER NAME:guest
NET PROTOCOL:SPX/IPX
OPEN MODE:READ/WRITE
SCHEMA CACHE SIZE:32
LANGDRIVER:NULL
SQLQRYMODE:NULL
SQLPASSTHRU MODE:NOT SHARED
SCHEMA CACHE TIME:-1

There are two sub-properties:

INFO.    The INFO information is used to associate the alias with the correct driver name (see TYPE:
ORACLE).

OPEN.    The OPEN information is used to open the database alias.

ODBC Socket Configuration Entries

This example shows a Drivers section from the BDE configuration file (IDAPI.CFG). This section was added
manually by using the Borland Database Engine Configuration Utility.

            ODBC_ORA7:
INIT:

VERSION:1.0
TYPE:SERVER
DLL:IDODBC01.DLL
ODBC DRIVER:VENDOR Oracle7
DRIVER FLAGS:NULL
LANGDRIVER:NULL

DB OPEN:
USER NAME:guest
ODBC DSN:My Oracle7
OPEN MODE:READ/WRITE
SCHEMA CACHE SIZE:8
SQLQRYMODE:NULL
LANGDRIVER:NULL
SQLPASSTHRU MODE:NULL

  SCHEMA CACHE TIME:NULL

Note that the DLL field for the driver is the ODBC socket .dll, NOT the ODBC .dll.    The ODBC .dll is loaded
implicitly, when the ODBC socket attempts to connect to a datasource.    The datasource that it tries to open is "My
Oracle7" (the DSN entry).

The following example shows a Database Alias section from the BDE configuration file (IDAPI.CFG).    This
section was added manually by using the Borland Database Engine Configuration Utility (BDECFG.EXE).

ODBC_ORACLE:
DB INFO:

TYPE:ODBC_ORA7
PATH:NULL

DB OPEN:
USER NAME:guest
ODBC DSN:My Oracle7
OPEN MODE:READ/WRITE
SCHEMA CACHE SIZE:8
SQLQRYMODE:NULL

  LANGDRIVER:NULL
SQLPASSTHRU MODE:SHARED AUTOCOMMIT
SCHEMA CACHE TIME:-1

AutoODBC

AutoODBC builds the ODBC socket datasource and driver names automatically for BDE, using the ODBC names
from the ODBC configuration files, odbc.ini and odbcinst.ini.

Here is an example showing the IDAPI.CFG entries created by AutoODBC referring to the driver (VENDOR
Oracle7) and datasource (My Oracle7):

My Oracle7:
DB INFO:

TYPE:VENDOR Oracle7
PATH:NULL

DB OPEN:
USER NAME:guest
ODBC DSN:My Oracle7
OPEN MODE:READ/WRITE
SCHEMA CACHE SIZE:8
SQLQRYMODE:NULL
SQLPASSTHRU MODE:SHARED AUTOCOMMIT
SCHEMA CACHE TIME:-1

VENDOR Oracle7:
INIT:

VERSION:1.0
TYPE:SERVER
DLL:IDODBC01.DLL
ODBC DRIVER:VENDOR Oracle7
DRIVER FLAGS:NULL

DB OPEN:
USER NAME:NULL
ODBC DSN:My Oracle7
OPEN MODE:READ/WRITE
SCHEMA CACHE SIZE:8
SQLQRYMODE:NULL
LANGDRIVER:NULL
SQLPASSTHRU MODE:NULL

  SCHEMA CACHE TIME:NULL

Application Development

This chapter describes the fundamental steps of application development with the Borland Database Engine
(BDE).    The first topic explains how to get started and provides an introductory tutorial.    The remaining topics are
guides to the basic tasks.

Introduction to BDE Programming
Accessing and Updating Tables
Locking
SQL Transactions
Querying Databases
Getting and Setting Properties
Retrieving Schema and System Information
Creating Tables
Modifying Table Structure
Using Callbacks
Data Source Independence
Error Handling
Filtering Records
Database Driver Characteristics

Introduction to BDE Programming

This section shows you how to get started programming with the Borland Database Engine (BDE). After following
the steps and examples, you should have a simple EasyWin BDE sample application that gets a record from a
table and displays the first two fields.

Project Setup
This section covers the basics of what must be done to set up a Borland Database Engine project or makefile.

Basic Procedure
An overview of the basic steps required to create a simple application that retrieves fields from a table. From each
step you can jump to a detailed description of the procedure with code examples.

Project Setup

Follow these steps when you begin to write a BDE application:

1. Create the project or makefile.

MAIN.CPP File to contain your code

DBERR.CPP Error handling routine

IDAPI.LIB BDE Import Library

MAIN.DEF Module Definition file

2. Select the large memory model. By default, the large model uses far pointers for data and functions, which is
what BDE expects. You can use other memory models but take care to use only far pointers with BDE
functions.

3. For this simple application, set the target to be an EasyWin application. This way you don't have to deal with
any Windows user interface issues.

4. Install the IDAPI.TOK file to support syntax highlighting for BDE functions and types.    Directions on how to do
this are included in the file \BDE\DOC\IDAPITOK.TXT.    You can also incorporate the on-line help file, BDE.HLP
into the BC 4.5 OpenHelp architecture, allowing context sensitive help on BDE types and functions.

5. Set the stack to a minimum of 20KB.    (For Windows C applications, the stack size is set in the module
definition file). This is recommended because BDE is fairly stack intensive, especially when doing batch
operations and queries.

6. Increase the number of file handles available to the application.    By default, BDE assumes it has access to 48
physical file handles (set by the BDE Configuration utility, System page | MAXFILEHANDLES option, 5-255).
See System Page.    Due to this default setting, it is usually best to set the number of file handles available to
an application to a minimum of 68, by using the Windows API function SetHandleCount. See the Windows API
help file for information on using SetHandleCount.    This function is also used in the sample application
included in this section.

7. Use the Debug Layer when developing applications. (See Using the Debug Layer.)    The debug layer performs
much stricter error checking than the regular DLL, resulting in fewer GP faults and less re-booting of your
machine. It will also produce a trace output detailing which BDE functions were called by an application. Note
that use of the debug layer requires the use of both the Debug DLL (Set using the DLLSwap utility), as well as
a call to the BDESDK function DbiDebugLayerOptions.

8. Make certain to compile with Allocate enums as ints selected (In the BC 4.5 IDE, Options | Project | Compiler |
Code Generation). A number of structures, such as CURProps, make use of Enumerations. Within the DLL,
these are allocated as two byte values. Turning off this option will result in your code passing only one byte.
This error generally manifests itself with stack corruption problems, such as GP faults when calling or returning
from a function.

9. Within a module to contain BDE code, include the following header files:

WINDOWS.H

IDAPI.H

Basic Procedure

These are the basic steps required to get a record from a tables:

1. Increase the number of file handles available to the application

2. Initialize the Borland Database Engine

3. Enable the debug layer

4. Open a database object

5. Set the database object to point to the directory containing the table

6. Set the directory for temporary objects

7. Open a table, creating a cursor object

8. Get the properties of the table

9. Using these properties, allocate memory for a record buffer

10. Position the cursor on the desired record

11. Get the desired record from the cursor (table)

12. Get the desired fields from the record

13. Free all resources

Click on each numbered step to display a detailed explanation and code sample.    Note that throughout the short
examples unfamiliar variable types are used. These are BDE variable types defined in the IDAPI.H header file,
such as: BYTE, BOOL, and CHAR.

Step 1: Increase the Number of File Handles Available to the Application

Make a call to the Windows API function SetHandleCount to increase the number of file handles available to an
application in the Windows environment:
int HandlesAvail, HandlesWanted = 68;

HandlesAvail = SetHandleCount(HandlesWanted);
if (HandlesAvail < HandlesWanted)
{

// Display message re: not enough available file handles
return;

}

Note: In non-trivial cases it is recommended to determine the number of file handles that are specified in the
BDE configuration file (IDAPI.CFG). Do this by using the DbiOpenCfgInfoList function.    Also see
Configuration Management and System Page for information on setting BDE initialization parameters.

Step 2: Initialize the Borland Database Engine

Initialize BDE by using the DbiInit function:
CHKERR(DbiInit(NULL));

The macro CHKERR is defined in the file DBERR.H, which is a part of the Error Handling module. This allocates
system resources for the client.

Step 3: Enable the Debug Layer

Use this code to enable the debug layer, outputting trace information to a text file on disk:
DbiDebugLayerOptions(DEBUGON | OUTPUTTOFILE, "MYTRACE.INF");

In certain situations, you might also want to use the flag FLUSHEVERYOP, which forces output to the trace file
after every operation. While this is slower, it is useful when a GP fault occurs.

Step 4: Open a Database Object

Now you are ready to open a database object.

All table access must be performed within the context of a database. Local databases generally use what is
referred to as the STANDARD database, which is used in this example.

The preferred method is to create an alias to a local directory and use that as the database. This permits easy
modification in the future if one day it is decided to move the application from using dBASE tables to using
InterBase tables.

You use the function DbiOpenDatabase to open a database:

hDBIDb hDb; // Handle to the Database

hDb = 0; // Initialize to zero for cleanup purposes

CHKERR_CLEANUP(
DbiOpenDatabase(NULL,              // Database name - NULL for standard Database

    NULL,                    // Database type - NULL for standard Database
    dbiREADWRITE,    // Open mode - Read/Write or Read only
    dbiOPENSHARED, // Share mode - Shared or Exclusive
    NULL,                    // Password - not needed for the STANDARD database
    NULL,                    // Number of Optional Parameters
    NULL,                    // Field Desc for Optional Parameters
    NULL,                    // Values for the optional parameters
    &hDb)                    // Handle to the database

               );

// At the end of the function
CleanUp:

// Close only if open
if (hDb != 0)
{

DbiCloseDatabase(&hDb);
}

Step 5: Set the Database Object to Point to the Directory Containing theTable

You must set the working directory to the directory containing the table.

Although the working directory defaults to the directory that contains the application, most applications place data
in a different directory. The working directory is the directory where the BDE expects to find tables when a path is
not specified. While it is possible to open a table in other directories by specifying the absolute path, it is
preferable to open tables in the working directory, because a number of operations, such as getting a list of
available tables, use the current directory. Use the function DbiSetDirectory to set the working directory (using the
default location of the BDE example tables):
CHKERR_CLEANUP(

DbiSetDirectory(hDb,                          // Handle to the database which is being modified
        C:\\BDE\\EXAMPLES\\TABLES) // The new working directory

             );

Note: You must use the full, absolute path. Relative paths are not supported.

Step 6: Set the Directory for Temporary Objects

You must create a temporary directory for a client.

Not all BDE applications create temporary objects, but larger applications do sometimes create them. For
example, the result set from a query of the records that cause a key violation in a restructure will be placed in a
temporary table.    By default, this temporary, or "private" directory, is the startup directory. This will cause a
problem if the application is running on a network or a CD-ROM, because the directory cannot be shared, and it
must writable.

Use the function DbiSetPrivateDir to set the private directory for a client:
CHKERR_CLEANUP(

DbiSetPrivateDir(c:\\<SOMEDIR>)        // Select a directory on a local drive not
             );       // used by other applications.

Note: You must use the full, absolute path. Relative paths are not supported.

Step 7: Open a Table, Creating a Cursor Object

Now you can open the table. Upon opening a table, a cursor object is created and returned to the calling
application.    A cursor object is an abstraction that allows queries and tables to be accessed in the same method:

hDBICur hCur;  // Handle to the cursor (table)
CHAR szTblName[DBIMAXNAMELEN]; // Table name - DBIMAXNAMELEN is

        //      defined in IDAPI.H
CHAR szTblType[DBIMAXNAMELEN];    // Table Type

hCur = 0;  // Initialize to zero for cleanup purposes

strcpy(szTblName, "customer"); // Name of the table
strcpy(szTblType, szPARADOX);    // Type of the tables - szPARADOX is defined in IDAPI.H

CHKERR_CLEANUP(
DbiOpenTable(hDb, // Handle to the database to which this cursor will be related

                    szTblName,          // Name of the table
                    szTblType,          // Type of the table - only used for local tables
                    NULL,                    // Index Name - Optional
                    NULL,                    // IndexTagName - Optional. Only used by dBASE
                    0,                          // IndexId - 0 = Primary. Optional. Paradox and SQL only
                    dbiREADWRITE,    // Open Mode - Read/Write or Read Only
                    dbiOPENSHARED, // Shared mode - SHARED or EXCL
                    xltFIELD,            // Translate mode - FIELD or NONE

                      // FIELD: Convert data from table format to C format
                      // NONE: Leave data in it's native state

                    FALSE, // Unidirectional - False means can navigate forward and back.
                    NULL,                    // Optional Parameters.
                    &hCur)                  // Handle to the cursor
             );

CleanUp:
// Close only if open
if (hCur != 0)
{

DbiCloseCursor(&hCur); // Note the use of DbiCloseCursor - there is no
// DbiCloseTable.

}

Step 8: Get the Properties of the Table

You need to determine the size of the record buffer for the table.    You can obtain this information from the cursor
by using the function DbiGetCursorProps. The Cursor properties include information on the table name, size, type,
number of fields, and record buffer size. You can find more information on cursor properties in CURProps.
CURProps curProps;            // Properties of the cursor

CHKERR_CLEANUP(
DbiGetCursorProps(hCur,      // Handle to the cursor

        &curProps) // Properties of the cursor (table)

curProps.iRecBufSize contains the size of the record buffer.

Step 9: Using these Properties, Allocate Memory for a Record Buffer

You must use the properties you obtained in Step 8 in the following code to allocate memory for a record buffer:
pBYTE pRecBuf;    // Pointer to the record buffer

pRecBuf = NULL;              // For cleanup purposes
 
pRecBuf = (pBYTE)malloc(curProps.iRecBufSize * sizeof(BYTE));
if (pRecBuf == NULL)
{

// Display some error message
goto CleanUp;

}

CleanUp:
if (pRecBuf)
{

free(pRecBuf);
}

Step 10: Position the Cursor on the Desired Record

Use the function DbiSetToBegin to position the cursor on the crack before the first record in the table.

Crack semantics allow you to locate the current cursor position to before the first record, between records, or after
the last record. One advantage of crack semantics is that it lets you use a single function to access all records in a
table. For example, rather than using DbiGetRecord the first time, and DbiGetNextRecord each subsequent time,
you can use DbiGetNextRecord to get all records in a table.

CHKERR_CLEANUP(
DbiSetToBegin(hCur) // Position the specified cursor to the crack before the first record

              };

Step 11: Get the Desired Record from the Cursor (Table)

To get a record from a table you would normally use the function DbiGetNextRecord. Set the current record of the
cursor to the record returned by this function (the next record in the table):
CHKERR_CLEANUP(

DbiGetNextRecord(hCur,      // Cursor from which to get the record.
      dbiNOLOCK, // Lock Type
      pRecBuf,      // Buffer to store the record
      NULL)            // Record properties - don't need in this case

 );

Step 12: Get the Desired Fields from the Record

Now you are ready to get the field values out of the record buffer and into some local variable. In this example, we
are making assumptions about which field is at which ordinal position within the table, as well as the size of the
field. In general, it is recommended to use DbiGetFieldDescs to get information about a field before retrieving it.
Also note that a single function, DbiGetField, is used to get all fields, other than BLOBs, from a table.

DFLOAT custNum;
BOOL isBlank;

CHKERR_CLEANUP(
DbiGetField(hCur,                                    // Cursor which contains the record

            1,  // Field Number of the "Customer" field.
            pRecBuf,                    // Buffer containing the record
            (pBYTE)&custNum,    // Variable for the Customer Number
            isBlank)                    // Is the field blank?
             );

Step 13: Free All Resources

After all desired operations have been performed, you need to clean up the resources allocated on behalf of the
application. In addition to any memory explicitly allocated by using malloc or new, all engine objects must also be
cleaned up, including the cursor, database, and engine:

CleanUp:
if (pRecBuf)
{

// Free the record buffer
free(pRecBuf);

}
if (hCur !=0)
{

// Close the cursor
DbiCloseCursor(&hCur);

}
// Close only if open

if (hDb != 0)
{

// Close the database
DbiCloseDatabase(&hDb);

}

// Close the BDE.
DbiExit();

Accessing and Updating Tables
Preparing to Access a Table
Positioning the Cursor and Fetching Records
Field-level Access
Adding, Updating, and Deleting Records
Working With BLOBs
Linking Tables
Sorting Tables

This table is an overview of the process of accessing and updating tables using BDE:

Phase Task BDESDK function

Preparation Initialize the database engine Call DbiInit

Preparation Open a database Call DbiOpenDatabase

Preparation Open a table and get a cursor Call DbiOpenTable

Preparation Get the cursor properties Call DbiGetCursorProps

Preparation Allocate the record buffer Responsibility of the application

Preparation Retrieve field descriptor information
into application-supplied memory Call DbiGetFieldDescs

Retrieval Position the cursor and fetch a record
into the record buffer Call DbiGetNextRecord

Retrieval Retrieve a field from the record buffer Call DbiGetField

Update Update the field and write it to the
record buffer Call DbiPutField

Update Update the table with the new record Call DbiModifyRecord

Exit Close the cursor Call DbiCloseCursor

Exit Close the database Call DbiCloseDatabase

Exit Exit the database engine Call DbiExit

Preparing to Access a Table

The steps for preparing to access a table are described in the following topics:

Initializing the Engine
Opening a Database
Opening a Table
Preparing the Record Buffer and Retrieving Field Descriptors

Initializing the Engine

The first call that the application makes to BDESDK is always DbiInit, to initialize the database engine and start a
new session. DbiInit can optionally be supplied with a pointer to the environment information structure DBIEnv.
The pointer is normally passed as NULL, which forces the Borland Database Engine to search for the
configuration file (IDAPI.CFG), and to use the configuration file's default settings. When a NULL pointer to the
DBIEnv structure is passed, BDE searches in the following order for the configuration file:

1 BDE checks the WIN.INI file located in your Windows directory for a configuration file defined by an entry of
[IDAPI] with a subentry of CONFIGFILE01.

2 If step 1 is not successful, BDE checks for the configuration file named IDAPI.CFG in the startup directory.

3 If step 2 is not successful, BDE initializes with a default set of configuration settings, predefined for each driver.
If initialization takes place after the failure of steps 1 and 2, no SQL driver access is possible.

If the pointer is not NULL, and the configuration file is specified in the DBIEnv structure, BDE uses that
configuration file.

Here is a sample DbiInit call:
// Initialize IDAPI
rslt = DbiInit(NULL);

Opening a Database

A database must be opened with a call to DbiOpenDatabase before a table in the database can be opened. A
successful call to DbiOpenDatabase returns the database handle, which is then passed in subsequent calls to
many other BDESDK functions.

For SQL databases, a password and user name must be supplied with DbiOpenDatabase to connect to the
server.

Specifying a Standard Database
The following code sample opens a standard database (used to access Paradox, dBASE, and Text tables) by
using a NULL database name and database type:

rslt = DbiOpenDatabase(NULL, NULL, dbiREADWRITE,
 dbiOPENSHARED, NULL, 0, NULL, NULL, &hDb)

To change the current directory for a standard database, call DbiSetDirector :
rslt = DbiSetDirectory(hDb, "C:\\DATE");

Specifying a SQL Database
There are several different methods of specifying a SQL database in the DbiOpenDatabase call:

The database name can specify a SQL alias, which defines a SQL database in the configuration file. If a
SQL alias is specified, the database type is NULL and optional fields are not required.

The database name can be NULL if the database type specifies one of the SQL driver names (for example,
InterBase or Oracle). If optional parameters are not specified, driver-specific defaults are used.

For example, this code sample opens a named database on a SQL server:
rslt = DbiOpenDatabase("myalias", NULL, dbiREADWRITE,
  dbiOPENSHARED, "mypassword", 0, NULL, NULL,
  &hDb)

Specifying an Alias
When calling DbiOpenDatabase you can supply an alias referencing a database name in the configuration file.

Specifying Access Rights
The eOpenMode and eShareMode parameters of the DbiOpenDatabase call, in combination with eOpenMode
and eShareMode parameters of the DbiOpenTable call, determine the access rights of users to tables within a
database.

Note: For SQL data sources, the OPEN MODE parameter for each alias in the BDE configuration file takes
precedence over the open mode parameters passed with DbiOpenDatabase.

If the database open mode is read-only, tables within that database cannot be opened by DbiOpenTable in read-
write mode. If the database open mode is read-write, tables within that database can be opened by DbiOpenTable
either in read-only or read-write mode.

If the database share mode is exclusive, tables within that database cannot be opened by DbiOpenTable in share
mode. If the database was opened in share mode, tables within that database can be opened by DbiOpenTable in
either exclusive or share mode.

Specifying Optional Parameters
Optional database-specific parameters can be passed to the DbiOpenDatabase function. To retrieve a list and
description of these optional parameters for a database, the application can call DbiOpenCfgInfoList, supplying
the path of the database name in the configuration file. This function returns the handle to a virtual table listing
optional parameters for this database system and default values for these parameters.

OptFields, pOptFldDesc and pOptParams are the optional parameters, but can actually be required, depending on
which driver is being used, and whether enough information has been supplied with other parameters to specify
the database.    For more on these parameters, see DbiCreateTable

Opening a Table

You can open a table by calling DbiOpenTable, and passing appropriate parameters such as table name, driver
type, index, type of access, and share mode. After the table is successfully opened, BDE returns a cursor handle
to the table.

Specifying the Table Name and Driver Type
If the application supplies the fully qualified table name of a Paradox or dBASE table, it need not specify the driver
type parameter, because the driver type can be determined from the table name extension. If the table name does
not include a path, the path name defaults to that of the current directory of the database associated with the
database handle.

Driver type must be specified if the table name has no extension, or to overwrite the default driver associated with
the file extension, or to terminate the table name with a period(.). If the table name does not supply the default
extension, and driver type parameter is NULL, DbiOpenTable attempts to open the table with the default file
extension designated for each file-based driver listed in the configuration file, in the order that the drivers are
listed.

The driver types and their default extensions for Paradox, dBASE, and Text drivers are listed below:

Driver type Default extension

PARADOX .DB
dBASE .DBF
ASCIIDRV .TXT

For SQL databases, the table name can be a fully qualified name that includes the owner name, in the form
 <owner>.<tablename>

If not specified, <owner> is inferred from the database handle. Driver type is ignored if the database is a SQL
database, since driver binding has already been done at database open time.

Specifying an Index
To open a table with an active index, you can use the following parameters, depending on the type of table being
opened: pszIndexName, pszIndexTagName, or iIndexId. The active index determines the order of records for this
cursor.

Paradox: If all index parameters are NULL, the table is opened in primary key order, if a primary key exists. If a
secondary key is specified, the table is opened on that key. Either pszIndexName or iIndexID can be used to
specify a composite or non-composite secondary index.

dBASE: If no index is specified, the table is opened in physical order.

Use the pszIndexName parameter in the form <tablename>.MDX if the index is within a production index.
Use the pszIndexTagName parameter to specify the tag name of the index in an MDX file. This parameter is

ignored if the index given by pszIndexName is an NDX index.
SQL: Use the pszIndexName parameter to specify the index name. The index name can be qualified or
unqualified. An unqualified index name succeeds only if the owner of the index is the current user. (For servers
supporting naming conventions with owner qualification, it is not necessary to qualify the index name with the
owner.)

Specifying Table Open Mode
A table can be opened in EXCLUSIVE or SHARED mode. When a table is opened in exclusive mode, no other
user can access the table. When a table is opened in share mode, other users can access the table at the same
time.

Specifying the Data Translation Mode
The xltFIELD translation mode is recommended. This mode ensures that BDE automatically translates data from
the database's native physical data format to the common BDE logical data format when a field is read from the
record buffer. BDE translates the data back into native format when the field is written to the record buffer.

When the translation mode is xltNONE, no data translation takes place when a field is read from the record buffer,
or when a field is written to the record buffer.

Note: Data translation occurs only during calls to DbiGetField and DbiPutField; not when the record is read.

Preparing the Record Buffer and Retrieving Field Descriptors

A successful call to DbiOpenTable returns a cursor handle to the application. Before it can use the cursor handle
to access data in the table, the application must prepare the record buffer. Preparing the record buffer includes
allocating memory for it and, in some cases, initializing it.

The application can also set up an array in which to retrieve the field descriptors for each field contained in the
table. To determine the required sizes of the record buffer and the array of field descriptors, the application calls
DbiGetCursorProps. This call is usually made immediately after the DbiOpenTable call, and returns the required
information in the CURProps structure.

Example
The following code sample gets the cursor properties, allocates the record buffer, sets up an array for the field
descriptors, and gets the field descriptors:

DBIResult      rslt;
pCHAR              pRecBuf;
CURProps        curProps;
pFLDDesc        pFldArray;
...

// Get the table properties
      rslt = DbiGetCursorProps(hCursor, &curProps);
      if (rslt == DBIERR_NONE)
      {
              // Allocate the record buffer
              pRecBuf = malloc(curProps.iRecBufSize);
                        // Check result of malloc

...
// Get an array of field descriptors
              pFldArray = (pFLDDesc) malloc(sizeof(FLDDesc) *
  curProps.iFields);
                // Check result of malloc

...
rslt = DbiGetFieldDescs(hCursor, pFldArray);

...
}

Getting the Cursor Properties
When the application calls DbiGetCursorProps, the cursor properties CURProps structure is returned with
information describing the most commonly used cursor properties. CURProps contains the following fields:

Type Name Description

DBITBLNAME szName Table name (no extension, if it can be derived)

UINT16 iFNameSize Full file name size

DBINAME szTableType Table type

UINT16 iFields Number of fields in table

UINT16 iRecSize Record size (logical record)

UINT16 iRecBufSize Record size (physical record)

UINT16 iKeySize Key size

UINT16 iIndexes Number of currently available indexes

UINT16 iValChecks Number of validity checks

UINT16 iRefIntChecks Number of referential integrity constraints

UINT16 iBookMarkSize Bookmark size

BOOL bBookMarkStable TRUE, if the cursor supports stable bookmarks

DBIOpenMode eOpenMode dbiREADWRITE, dbiREADONLY

DBIShareMode eShareMode dbiOPENSHARED, dbiOPENEXCL

BOOL bIndexed TRUE, if the index is active

INT16 iSeqNums 1: Has sequence numbers (Paradox);
 0: Has record numbers (dBASE);
< 0 (-1, -2. . .): None (SQL)

BOOL bSoftDeletes TRUE, if the cursor supports soft deletes (dBASE only)

BOOL bDeletedOn TRUE, if deleted records are seen

UINT16 iRefRange If > 0, has active refresh

XLTMode exltMode Translate mode: xltNONE (physical types), xltFIELD (logical types)

UINT16 iRestrVersion Restructure version number

BOOL bUniDirectional TRUE, if the cursor is unidirectional (SQL only)

PRVType eprvRights Table-level rights

UINT16 iFmlRights Family rights (Paradox only)

UINT16 iPasswords Number of auxiliary passwords (Paradox only)

UINT16 iCodePage Code page; if unknown, set to 0

BOOL bProtected TRUE, if the table is protected by password

UINT16 iTblLevel Driver-dependent table level

DBINAME szLangDriver Symbolic name of language driver

BOOL bFieldMap TRUE, if a field map is active

UINT16 iBlockSize Data block size in bytes, if any

BOOL bStrictRefInt TRUE, if strict referential integrity is in place

UINT16 iFilters Number of filters

BOOL bTempTable TRUE, if the table is temporary

Memory Allocation Elements
The following elements are significant when allocating memory:

iFields
Specifies the number of fields in the table. Use this number to allocate an array to receive the field descriptors
for the table. The size of the array is:
    iFields * sizeof(FLDDesc)

iRecSize
Specifies the record size, depending on the translation mode for the cursor. If the translation mode is xltFIELD,
iRecSize specifies the logical record size. In other words, it is the size of the record if all fields were
represented as BDE logical types. If the translation mode is xltNONE, iRecSize specifies the physical record
size, which is the same as iRecBufSize.

iRecBufSize
Specifies the physical record size. This is the size of the record buffer that you must allocate in order to retrieve
the records by using DbiGetNextRecord, DbiGetPriorRecord, and other functions. For example,
    pRecBuf = (pBYTE)malloc(curProps.iRecBufSize);

Initializing the Record Buffer
Initialize the record buffer with a call to DbiInitRecord if a new record is to be inserted. This function initializes each
field in the record buffer, including BLOB fields, to blanks based on the data type defined. For Paradox tables,
default values are used to initialize the fields if defaults are specified in the table.

Getting the Field Descriptors
After memory has been allocated for the array of field descriptors, the application can retrieve the field descriptors
with a call to DbiGetFieldDescs. The field descriptors provide the application with information that it needs to
address and manipulate each field within the record buffer. DbiGetFieldDescs returns an array of FLDDesc
structures, with information describing each field in the table:

Type Name Description

UINT16 iFldNum Field number (1 to n)

DBINAME szName Field name

UINT16 iFldType Field type

UINT16 iSubType Field subtype (if applicable)

UINT16 iUnits1 Number of characters or units

UINT16 iUnits2 Decimal places

UINT16 iOffset Offset in the record (computed)

UINT16 iLen Length in bytes (computed)

UINT16 iNullOffset For NULL bits (computed)

FLDVchk efldvVchk Field has validity checks (computed)

FLDRights efldrRights Field rights (computed)

iFldNum Specifies a driver-specific field ID. For most drivers, this value is from 1 to
curProps.iFields, except for Paradox tables, which can use an invariant field ID For more
information about invariant field ID, refer to DbiDoRestructure

Note: For consistency across drivers, use the ordinal position of the field in the descriptor array. Both
DbiGetField and DbiPutField use an ordinal number from 1 to n.

szName
Specifies the name of the field.

iFldType
Specifies the type of the field. Depending on the translate mode property of this cursor the field type returned
could be physical or logical. If the translate mode is xltFIELD, the field type returned is a BDE logical type; if the
mode is xltNONE, the field type returned is the driver's corresponding physical type. For more information
about physical and logical data types, see Using the Function Reference and Data Structures

iSubType
Specifies the subtype of the field. This could be an BDE logical subtype or a driver physical subtype, depending
on the translate mode.

iUnits1
Specifies the number of characters, digits, and so on. For logical field types, this number is consistent across
drivers. For physical field types, the interpretation of this field can be dependent on the driver and also on the
specific field type. For most drivers, if the field is of the numeric type, iUnits1 is the precision and iUnits2 is the
scale.

iUnits2
Specifies the number of decimal places, and so on. For logical field types, this number is consistent across
drivers. For physical field types, the interpretation of this field can depend on the driver and also on the specific
field type. For most drivers, if the field is of the numeric type, iUnits1 is the precision and iUnits2 is the scale.

The following three fields together specify the layout of the record buffer:

iOffset
Specifies the offset of this field in the record buffer. The offset depends on the translation mode. If the mode is
ixltFIELD, it is the offset of the field within a logical record.

iLen
Specifies the length of this field. The length depends on the translation mode; that is, it could be the length of
the logical or physical representation of the field. The application developer uses this value to allocate a buffer
in which to retrieve the field value.

iNullOffset
Specifies the offset of the NULL indicator for this field in the record buffer. If zero, there is no NULL indicator.
Otherwise, iNullOffset is the offset to an INT16 value, which is -1 if the field is NULL (SQL only).

efldvVchk
Specifies whether or not validity checks are associated with this field (Paradox and SQL drivers only).

efldrRights
Specifies the field level rights for this field.

Positioning the Cursor and Fetching Records

After the record buffer has been prepared, the application can use the record buffer to fetch records from the
table.

To fetch records, the application must position the cursor on the record that it wants to fetch. Some BDESDK
functions serve only to position the cursor. Calls to these functions can be followed by a call to a function that
fetches the record into the record buffer. Other BDESDK functions can simultaneously position the cursor and
fetch a record into the record buffer.

Positioning The Cursor On A Crack
Some BDESDK functions position the cursor before a record, at the beginning of the file or result set, or at the end
of the file. When the cursor is positioned at one of these locations, rather than on a record, the cursor is said to be
positioned on a crack. The following calls position the cursor on a crack:

DbiSetToBegin positions the cursor to the beginning of the file (just before the first record). When the cursor
is opened, it is at this position.

DbiSetToEnd positions the cursor to the end of the file (just after the last record).
DbiSetToKey positions the cursor just prior to the record of the specified key value.

Positioning the cursor on a crack can simplify programming. For example, calling DbiSetToBegin positions the
cursor on the crack before the first record in the table. Then, you can set up a loop to process all the records in
the table with DbiGetNextRecord. (If the cursor had been positioned on the first record in the table to start with,
instead of before the first record, the DbiGetNextRecord loop would have skipped the first record.)

Positioning The Cursor On A Record And Fetching A Record
Some BDESDK functions position the cursor directly on a record. If a record buffer is supplied, these functions
can also be used to fetch the record for processing by the application. Most of these calls can optionally lock the
record. The record remains locked until it is released explicitly, or the session is closed. For more information
about locks, see Locking

DbiGetRecord
This function fetches the current record, and returns an error if the cursor is positioned on a crack.

DbiGetNextRecord
This function positions the cursor on the next record after the current position of the cursor, and also fetches
that record.

DbiGetPriorRecord
This function positions the cursor on the record before the current position of the cursor, and also fetches that
record.

DbiGetRelativeRecord
This function positions the cursor on the record whose position is specified as an offset (either a positive or a
negative number) from the current position of the cursor, and also fetches that record.

DbiGetRecordForKey
This function positions the cursor on the record whose key matches the specified key, and also fetches that
record.

Example
The following example shows how to position the cursor to the beginning of file and step through the table:
 // Position the cursor at the BOF crack
        DbiSetToBegin(hCursor);
        // Step through the table. Read the record each time.
        while (DbiGetNextRecord(hCursor, dbiNOLOCK, pRecBuf, NULL)
                      == DBIERR_NONE)
        {

...
}

Repositioning The Cursor With Bookmarks
Bookmarks provide a convenient way to save the position of the cursor, so that it can be repositioned to that same
place later. The bookmark is written to a client-supplied buffer which is allocated by the client.

Note: The size of the bookmark buffer may change after a call to DbiSwitchToIndex.

DbiGetBookmark
This function saves the current position in the supplied bookmark.

DbiSetToBookmark
This function repositions the cursor to a previously saved bookmark position.

Fetching Multiple Records
The application can fetch multiple records with one call by setting up a buffer large enough to hold the records and
calling DbiReadBlock. The specified number of records are fetched beginning with the next record after the
current cursor position. This function is equivalent to setting up a loop that makes multiple calls to
DbiGetNextRecord.

Retrieving Limited Record Sets
Several BDESDK functions enable you to force the cursor to return only a limited set of records or fields to the
application; that is, the application sees only those records in the table that meet a predefined set of conditions.

Note: Queries provide another way of returning a limited record set.

Using Ranges
Use DbiSetRange to force the cursor to return to the application only those records whose keys fall within the
defined range. This function can be called only if the cursor has a current active index. (See DbiOpenTable or
DbiSwitchToIndex). Both inclusive and exclusive ranges can be specified. Subsequent BDESDK calls treat the set
of records within the range as the complete table. For example, DbiSetToBegin positions the cursor on the crack
before the first record in the range, rather than on the first record in the table.

This function is commonly used to find a set of records between two key values by setting both the upper range
limit and the lower range limit. Open-ended ranges can be specified, from the beginning of the file to a specified
key, or from a specified key to the end of the file.

For an example, refer to the RANGE code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\SNIPIT).

Creating Field Maps
Use DbiSetFieldMap to force the cursor to return fields in a different order from their order in the table, or to drop
fields from view. To set up a field map, the application developer builds an array of field descriptors, including only
those fields that are to be made visible by the cursor, and in the order that they are to be returned. Only the fields
named in the array are made visible.

Note: Creating field maps can change the size of the record buffer.

For an example, refer to the FLDMAP.C code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\SNIPIT).

Using Filters
An active filter forces the cursor to return a limited record set consisting of only those records that meet the filter
condition. Records that do not meet the filter condition are skipped, and even though they remain in the table, the
records are not visible through the cursor. Deactivating the filter brings those records back into view.

A filter condition is defined as an expression returning TRUE or FALSE. When the filter is activated, the filter
expression is applied to each record in the table. Only those records that return TRUE are visible to the
application. Multiple filters can be defined for one table.

To define a filter, the application calls DbiAddFilter, passing it an existing cursor handle and a pointer to a
CANExpr structure that contains the expression. The structure is passed in a flat tree format. (For a detailed
explanation and an example of how to use filters, see Filtering Records.)

The CANExpr structure can include comparison operators, AND, OR, and NOT, and tests for blank fields. Different
drivers support different types of expressions, but all drivers support the basic combination of <field> <compare
operator> <constant>; for example, field1 = CA and field2 < 30 is supported by all drivers.

When DbiAddFilter completes, it returns a filter handle to the application.

After the filter condition has been defined, it must be activated with DbiActivateFilter in order to take effect.
Multiple filters can be activated. Filters can be switched on and off when needed (using DbiActivateFilter and
DbiDeactivateFilter). Filters are automatically dropped when the cursor is closed, and can be explicitly dropped
with DbiDropFilter. If more than one filter is active, records that fail to meet any active filter condition are filtered
out.

Advantages of using filters are that the BDE filtering mechanism is extremely fast, and filters are implemented
efficiently by the drivers.

Note: While queries provide a more general way of restricting the result set than filters, filters provide more
dynamic control than queries.

Field-level Access

An application usually accesses data in a record at the field level. The BDESDK functions DbiGetField and
DbiPutField enable the application to retrieve and update the data within each field in a record buffer. These
functions allow field access without the need to know the stucture of a record buffer.

Field-level access is done through a record buffer:

Reading a record
--> Table [DbiGetRecord] --> Record buffer [DbiGetField] -->    Field

Updating a record
--> Field [DbiPutField] --> Record buffer [DbiModifyRecord] --> Table

Retrieving Field Values
To retrieve a field within the record buffer, the application calls the BDESDK function DbiGetField, supplying the
ordinal number of the field and a buffer to hold the data contents of the field. (The ordinal number is the position of
the FLDDesc in the array returned by DbiGetFieldDescs, 1 to n.) Optionally, a Boolean can be returned indicating
if the field is blank.

Updating Field Values
To update a field in the record buffer, the application calls the BDESDK function DbiPutField, supplying the ordinal
number of the field, and a buffer containing the field contents to be written to the record. (The ordinal number is
the position of the FLDDesc in the array returned by DbiGetFieldDescs, 1 to n.)

DbiPutField can also be used to set a field to blank, by passing a NULL pointer as the field buffer parameter.

Logical Types Versus Physical Types
As a general rule, the application should always use field translation mode xltFIELD. This parameter is set when
the table is opened. If the table has already been opened and the translation mode is not set to xltFIELD, it can be
changed with the DbiSetProp call.

When field translation mode is in effect, BDE automatically translates a field's data contents. When the field is
retrieved, BDE translates the data in the record buffer from the native data type into a generic logical data type.
When the field is written back to the record buffer, BDE translates the data back into the native physical data type.

When field translation mode is not in effect, BDE performs no translation of data to logical types. The application
must be prepared to accept data from BDE using the data types native to the database system managing the
table.

BDESDK type C language equivalent Description

fldZSTRING char[] Zero terminated array of chars

fldUINT16 unsigned int 16-bit unsigned integer

fldINT16 int16-bit integer

fldUINT32 unsigned long 32-bit unsigned long integer

fldINT32 long 32-bit long integer

fldFLOAT double 64-bit floating point

fldFLOATIEEE long double 80-bit floating point

fldBOOL int 16-bit quantity, TRUE==1; FALSE==0

fldBYTES unsigned char[] Fixed size (independent of row) array of bytes

fldVARBYTES unsigned char[] Length-prefixed array of bytes

Adding, Updating, and Deleting Records

In order to add, modify or delete a record, the cursor must have write access to the table. The table or record must
not be locked by another user. If the application intends to update a record, it can lock the record through the
BDESDK function that fetches the record. The record remains locked until the application explicitly releases it, or
the session is closed. For more information about locks, see Locking

Adding A Record
To add a new record to a table, the application follows these steps:

1 Initializes the client-allocated record buffer with a call to DbiInitRecord.

2 Constructs the record one field at a time, using DbiPutField    For information about BLOB fields, see Working
With BLOBs

3 Calls DbiAppendRecord or DbiInsertRecord to write the record buffer contents to the table. The application
specifies whether or not to keep a record lock on the inserted record (DbiInsertRecord).

Updating A Record
To modify an existing record in the table, the application follows these steps:

1 Fetches the record to be modified into the client-allocated record buffer (obtaining a lock, if necessary).

2 Writes the updated fields to the record buffer with DbiPutField For information about BLOB fields, see Working
With BLOBs

3 Calls DbiModifyRecord to write the record buffer to the table. The application specifies whether or not to
release the record lock on the updated record when DbiModifyRecord completes.

Deleting A Record
To delete a record, the application follows these steps:

1 Positions the cursor on the record to be deleted.

2 Calls DbiDeleteRecord. If a record buffer is supplied, the deleted record is copied there.

3 The cursor is left positioned on the crack where the deleted record was.

dBASE
For dBASE tables, a deleted record is not removed from the table until a call to DbiPackTable is made.

Paradox
The record cannot be recalled once it is deleted. The record is not deleted if the deletion would cause violation of
referential integrity. For example, if the cursor is validly positioned on a record within the master table, and that record has
linked values in a detail table, then the call to DbiDeleteRecord fails, and the position of the cursor remains unchanged.

Deleting a record does not reduce table size. The only way to gain disk space for records that have been deleted is to
restructure the table with a call to DbiDoRestructure. Deleted space may be reused by later inserts.

Multiple Record Updating, Adding, And Deleting
BDESDK provides two functions that enable your application to update, add, or delete multiple records from a table:
DbiBatchMove and DbiWriteBlock.

DbiBatchMove
DbiBatchMove can be used in different modes to append, update, append and update, or subtract records from a source
table to a destination table. Source and destination tables can be of different driver types. This function supports filters and
field maps. It can also copy a table of one driver type to a new table of a different driver type.

This function can be used with the Text driver to import and export data to or from any supported driver type.

This function can optionally create a key violations tables, a changed table, and a problems table to store records that fail
to meet the specified criteria for record transfer. A callback can be registered that alerts the application to data transfer
between source and destination fields that could result in data loss.

For an example, refer to the BATMOVE.C code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\SNIPIT).

DbiWriteBlock
To write multiple records to a table, the application creates a record buffer containing the records to be written, and calls
DbiWriteBlock, passing the cursor handle of the table to be updated. The entire block of records in the record buffer is
written to the specified table. This function is similar to calling DbiAppendRecord for multiple records.

Refer to the BLOCK.C code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\SNIPIT).

Working With BLOBs

Because BLOB fields are variable-sized and can be very large, BDE treats them differently from other fields; they
are treated as byte streams. The application developer follows a similar procedure for accessing and updating
records containing BLOB fields as with other records. But there is a set of BDESDK functions designed to work
with BLOB fields:

DbiOpenBlob
DbiGetBlob
DbiGetBlobHeading
DbiGetBlobSize
DbiFreeBlob
DbiPutBlob
DbiTruncateBlob

Opening the BLOB
To write to or read from a BLOB, you must open the BLOB first. To open the BLOB, the record buffer must contain
a copy of the record to be modified, or an initialized record, if the record is being inserted. The application calls
DbiOpenBlob, passing the cursor handle, the pointer to the record buffer, the field number of the BLOB, and the
access rights. (If the BLOB is opened in read-write mode, the table must also be opened in read-write mode.)
DbiOpenBlob stores the BLOB handle in the record buffer. DbiOpenBlob must be called prior to calling any other
BLOB functions.

Standard: It is advisable to lock the record before opening the BLOB in read-write mode. This ensures that
another application does not change the record or lock the record, preventing the record from being updated.

SQL: For SQL servers that do not support BLOB handles for random reads and writes, full BLOB support
requires uniquely identifiable rows. Most SQL servers limit a single sequential BLOB read to less than the
maximum size of a BLOB. In cases with no row uniqueness and without BLOB handles, an entire BLOB might
not be available.

Retrieving BLOB data
DbiGetBlob retrieves BLOB data from the specified BLOB. Any portion of the data can be retrieved, starting from
the position specified in iOffSet, and extending to the number of bytes specified in iLen. Typically, the application
does not know the length of the BLOB, and it makes a series of calls to DbiGetBlob to retrieve the entire BLOB.
DbiGetBlob returns the number of bytes read when it completes. The application can tell when it has reached the
end of the BLOB when the number of bytes specified in iLen is greater than the number of bytes read.

Alternatively, the application can determine beforehand the size of the BLOB by calling DbiGetBlobSize, and then
specifying the actual length of the BLOB in the call to DbiGetBlob. That way, the entire BLOB can be retrieved with
one DbiGetBlob call, instead of a series of calls.

The Windows 3.1 version can read only up to 64K with each call to DbiGetBlob. For larger BLOBs, multiple calls
must be made.

Updating A BLOB
DbiPutBlob is the equivalent of DbiPutField for a BLOB. DbiPutBlob is used only to write data into a BLOB. The
BLOB must be opened in read-write mode. The application passes a pointer to the block of data to be written. The
application specifies the length of data to be written, as well as the offset within the BLOB to begin writing the
data. The application can make a series of calls to DbiPutBlob to write the entire BLOB.

Updating Or Adding A Record With A BLOB
To update or add a record, the application follows these steps:

1 Calls DbiAppendRecord or DbiInsertRecord to add a new record with a BLOB to the table or the application
calls DbiModifyRecord to modify an existing record containing a BLOB. The pointer to the record buffer
containing the new record is passed with the function.

2 Calls DbiFreeBlob to close the BLOB handle and all resources allocated to the BLOB by DbiOpenBlob.
(DbiModifyRecord, DbiInsertRecord or DbiAppendRecord do not automatically release BLOB resources after
record modification.)

Note: It is important to free the BLOB after adding or modifying the record. If DbiFreeBlob is called prior to
DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord, the changes are lost.

Note: Do not use DbiWriteBlock on tables which contain BLOBs.

This example illustrates BLOB processing:

DBIResult      rslt;
        pCHAR              blobBuf;
        UINT32            blobSize, bytesRead;
        // Read the current record
        DbiGetRecord(hCursor, dbiNOLOCK, pRecBuf, NULL);
        // Open the BLOB
        rslt = DbiOpenBlob(hCursor, pRecBuf, 3, dbiREADWRITE);
        if (rslt == DBIERR_NONE)
        {
                // Get the size of the BLOB then read it. Note that this
                // example assumes that the BLOB is less than 64k.
                DbiGetBlobSize(hCursor, pRecBuf, 3, &blobSize);
                blobBuf = malloc(blobSize);
                DbiGetBlob(hCursor, pRecBuf, 3, 0, blobSize,
                                      (pBYTE) blobBuf, &bytesRead);

...

. // Free the blob
                DbiFreeBlob(hCursor, pRecBuf, 3);
                // Clean up
                free(blobBuf);
        }

Linking Tables

Linked cursors allow you to create one-to-many (master-detail) relationships between tables. The cursors on two
tables can be linked if the tables share a common field, which must be indexed in the detail table. Linking the
cursors on a master table and a detail table forces the cursor on the detail table to make visible only those records
containing a key value that matches the key value of the current record in the master table.

For example, a CUSTOMER table (master) and an ORDERS table (detail) share a common field called
CUSTOMER_NO. If the current record in the master table has a CUSTOMER_NO of 1221, then the only records
visible in the detail table are those that have a CUSTOMER_NO of 1221. In other words, the application sees only
the orders that are associated with the current customer.

A master table can be linked to more than one detail table; a detail table can be linked to only one master table. A
detail table can also be a master table, linked to other detail tables.

Links apply to all available driver types; they can be established between tables of the same or different driver
types.

Setting Up The Link
To link two tables, the application follows these steps:

1 The application opens cursors on both tables. The detail table cursor must have a current active index on the
field that will be used to link the cursors.

2 The application calls DbiBeginLinkMode for each cursor to be linked. The function returns a new cursor.

3 The application calls DbiLinkDetail, passing the cursor handles of both the master and detail tables. The data
types of linked fields in master and detail records must match. This function links only on indexes that are
applied on fields within the detail table (no expression indexes). For expression links in dBASE tables, call
DbiLinkDetailToExp.

4 The two cursors are now linked. When the position of the master cursor changes, the corresponding detail
cursor changes to show the applicable records.

Breaking The Link
To break the link between the cursors, the application follows these steps:

1 The application calls DbiUnLinkDetail, passing the cursor handle of the detail table. The detail table is now
unlinked to any master table, and its cursor displays the entire record range again.

2 The application calls DbiEndLinkMode for each linked cursor, passing it the cursor handle. A standard cursor
handle is returned.

For an example, refer to the LNKCRSR.C code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\SNIPIT).

Sorting Tables

The BDESDK sort function DbiSortTable sorts an opened or closed table, either into itself or into a destination
table. There are options to remove duplicates, to enable case-insensitive sorts, to sort on subsets of fields, and to
enable special user-supplied comparison functions. The sort can be used with filters and field maps, and it is
extremely fast. DbiSortTable is supported by SQL drivers, but a SQL table can serve only as a source table, not as
a destination table.

The sort engine uses language driver-defined collating sequences to accommodate the character sets of different
languages.

Locking

The Borland Database Engine locking environment is a hierarchy consisting of three layers:

Session layer
(Owns database handles, table cursors,
acquired table locks, and record locks)

Database handle layer
(Open mode limits the open mode of tables in the database)

Table cursor layer
(Cursor open mode can limit access)

See the following topics on the layers and details about table locking:

Session Layer

Database Handle Layer

Table Cursor Layer

Acquired Locks

Table Lock Coexistence

Locking Strategy

Session Layer

At the top of BDE's locking hierarchy is the session layer. The session indirectly controls some locks because it
controls resources including database handles and table cursors. Multiple database handles can be opened in the
same session; this is what gives the application access to different databases at the same time. When a session
is closed, all resources attached to the session are closed and all locks owned by those resources are released.

The session directly owns table locks and record locks acquired by an application after the table has been
opened. This means that if more than one cursor is open on the same table within a session, one cursor can
release a lock that was acquired by another cursor. Sessions provide complete isolation from each other.

Database Handle Layer

One step down in BDE's locking hierarchy is the database handle layer. Although no locks are explicitly owned by
the database handle, the share mode assigned to the database when it is opened determines whether tables
within that database can be opened exclusively or shared. If the database is opened in share mode, then tables
within that database can be opened either in exclusive or share mode. If the database is opened in exclusive
mode, then all tables will be opened in exclusive mode, even if other users attempt to open the table in share
mode.

When the database is closed, all resources allocated to the database handle are released, including table cursors
and table locks owned by these cursors.

Table Cursor Layer

At the bottom of the BDE locking hierarchy is the cursor layer. Only locks placed on the table when it is opened
with the DbiOpenTable function are owned by the cursor. If the table is opened in exclusive mode, no other user
can access that table. An exclusive lock prevents any other user from accessing the table, or placing any type of
lock on it. If the table is opened in share mode, other cursors can access the table and they can acquire read or
write locks on the table.

When the cursor is closed, any exclusive lock placed on the table when it was opened is released.

Acquired Locks

All locks acquired after the table is opened are owned by the session, rather than the cursor. There are several
types of acquired locks:

Acquired Table Locks
Acquired Persistent Table Locks
Record Locks

Checking A Table's Lock Status
To check the acquired lock status of a table use DbiIsTableLocked    The application specifies the type of lock (no
lock, read lock, or write lock) and the function returns the number of locks of that type placed on the table.

For dBASE and Paradox tables, to check whether the table is physically shared on a network or local drive and
opened in share mode, use DbiIsTableShared    For SQL tables, this function can be used to check whether the
table was opened in SHARE mode.

Acquired Table Locks

If an application needs to place a lock on a table that was opened in SHARE mode, it calls the BDESDK function
DbiAcqTableLock. If a lock cannot be obtained, an error is returned.

DbiAcqTableLock can place a WRITE lock on the table, which prevents other users from updating a table. It can
also place a READ lock on the table, which prevents other users from placing a WRITE lock on the table (which
would keep your application from updating the table and guarantees that the table is not modified by another user
while you read.)

If a driver does not support READ locks, a READ lock is upgraded to a WRITE lock. For example, for dBASE
tables, READ locks are upgraded to WRITE locks. For SQL tables, a WRITE lock is the same as a READ lock and
behavior varies according to the server.

More than one lock can be acquired on the table.

Releasing Acquired Table Locks
DbiRelTableLock is used to release a table-level lock placed with DbiAcqTableLock. For each lock acquired, a
separate call to DbiRelTableLock is required to release it.

Acquired Persistent Table Locks

A persistent lock can be placed even before the table has been created. For Paradox tables, this feature can be
used to reserve a table name for future use. For SQL tables, BDE remembers that the lock was placed, and when
the table is actually created during that connection, the table is locked (as long as the server supports table locks).
These locks are acquired by the DbiAcqPersistTableLock function.

Releasing Acquired Persistent Table Locks
To release an acquired persistent lock, use the DbiRelPersistTableLock function.

Record Locks

Applications can acquire record locks at record retrieval time. Most BDESDK functions that are capable of fetching
a record provide the option of locking; for example, DbiGetNextRecord, DbiGetPriorRecord, and
DbiGetRelativeRecord. The eLock parameter can be used to specify one of the following record locks:

Setting Description

dbiNOLOCK No lock; allows other users to read, update, and lock the record

dbiREADLOCK Upgraded to a write lock

dbiWRITELOCK Allows other users to read the record, but prevents them from updating the record, or
placing a lock on the record

Paradox and dBASE lock managers both upgrade read locks to write locks; so, in effect, a record is either locked
or not locked.

Because some BDESDK record-fetching functions perform operations other than locking, the order in which these
operations occur can be significant:

Cursor movement always occurs first.
Paradox and dBASE drivers attempt to lock the record before filling the record buffer.
SQL drivers fill the client's record buffer and then attempt to lock the record.

Note: Cursor movement occurs even if the lock fails. For example, if DbiGetNextRecord is called with a read
lock, the cursor moves to the next record, and the lock is then attempted. If the record is already locked by
another user, the lock attempt fails, but the cursor has changed position.

Checking A Record's Lock Status
To check the lock status of a record, use DbiIsRecordLocked. This function returns the lock status of the current
record; the lock status can be either locked or not locked.

Releasing Record Locks
The application can call the function DbiRelRecordLock to release the record lock on the current record or release
all the record locks acquired in the current session. In addition, DbiModifyRecord provides an option to release the
lock after the operation has completed.

Table Lock Coexistence

Each type of table-level lock placed on a table affects to some degree the access that other users have to the
table. You can use a lock aggressively to prohibit other users from accessing a table, or you can use a lock
defensively to prevent other users from placing locks that would limit your application's access to the table. The
chart below shows the results of User 2's attempts to place table locks after User 1 has successfully placed each
type of lock:

User 2:
Attempts to open Attempts to acquire Attempts to acquire Attempts to open
the table in a write lock a read lock the table in share
exclusive mode mode

User 1:
Opens the table
in exclusive mode Fail Fail Fail Fail

Acquires a
write lock Fail Fail Fail Succeed

Acquires a
read lock Fail Fail Succeeds for Paradox Succeed

Fails for dBASE
Opens the table
in share mode Fail Succeed Succeed Succeed

Locking Strategy

In choosing a locking strategy, you must consider both the application's need to keep other users from changing
data, and the extent to which locking affects other users. You also need to consider the differences in rules used
by the lock managers of each database system being accessed. SQL lock managers use a different set of locking
rules from those used by dBASE and Paradox lock managers.

Using BDE, an application can update a table as long as it has read-write access to the table, and no other user
has a lock on the table or record to prevent the update. However, it is necessary, with dBASE and Paradox
systems, to lock the table or record before updating to ensure that the data in the table does not change while the
application is in the middle of processing a retrieved record.

Note: With BDE, you can write your application as a multi-user application even if the database resides on a
standalone PC, since locking overhead is marginal when data is local. This means that you can write a
single application for both single-user and multi-user situations.

SQL Optimistic Locking
With dBASE and Paradox, a record lock prevents another user from updating the record. BDE SQL drivers (and
some ODBC drivers), however, use optimistic locking. An optimistic lock actually allows the locked record to be
updated by another user, but when the application that placed the lock attempts to update the record, BDE notifies
the application that the record has changed. The application then has the option of inspecting the new record and
deciding whether to submit its changes or not.

Optimistic locking avoids the performance and concurrency penalties incurred by a lock that ties up record access
for the duration of the time that it takes to complete a single users's modifications. At the same time, the
application is protected from inadvertently changing data that has never been inspected.

You can use keyed updates to control optimistic locking for improved performance.

SQL Transactions

SQL systems use transaction processing with commit and rollback; either the whole series of operations within the
transaction is made permanent when the series completes, or the whole series is undone.

Transactions can be executed on all SQL platforms supported by BDE. A transaction is a series of programming
commands that access data in the database. When the last of the series of commands has completed, the entire
transaction is either committed or canceled. If it is committed, all changes performed within the transaction against
the associated database are made permanent. If it is canceled, all changes performed against the associated
database are undone.

Only one transaction can be active per connection to a SQL database. Any attempt to start an additional
transaction before the first one terminates results in an error.

Also see SQL Transaction Control

Default Transactions
SQL operations always take place within the context of a transaction. When no explicit transaction occurs, the
SQL driver manages the SQL server transactions transparently for the client. Any successful modification of SQL
server data is immediately committeed to ensure its permanence in the database. Default transaction behavior
would apply if you are using BDE with a SQL server, but you are not explicitly using transactions (that is, setting
the operations off between DbiBeginTran and DbiEndTran).

Beginning A Transaction
The DbiBeginTran function is used to begin a transaction. After a successful DbiBeginTran call, the transaction
state is active. The application specifies the isolation level to be used for the transaction when DbiBeginTran is
called. Possible values are:

xilDIRTYREAD: Uncommitted changes can be read.
xilREADCOMMITTED: Other transactions' committed changes can be read.
xilREPEATABLEREAD: Other transactions' changes to previously read data are not seen.

Availability and behavior of isolation and read repeatability capabilities vary by SQL server.

Ending A Transaction
DbiEndTran ends the transaction. The application specifies the transaction end type. Possible values are

xendCOMMIT: Commit the transaction.
xendCOMMITKEEP: For some SQL drivers, commit the transaction and keep cursors.
xendABORT: Roll back the transaction.

Note: BDE cursors can remain active, even if the underlying SQL cursor is closed. BDE manages the re-opening
of server SQL cursors transparently.

xendCOMMIT and xendABORT keep cursors if the driver and the database support keeping cursors. If the
database does not support keeping cursors, four possibilities exist for each server cursor opened on behalf of the
BDE user:

A cursor for an open query with pending results is buffered locally. Other than prematurely reading the data,
no visible effect remains.

A cursor opened on a table supporting direct positioning is closed. No other behavior is affected.
A cursor opened on a table that does not support direct positioning is opened initially in a different

transaction or connection context, if the database supports this. This cursor remains open because it exists in a
different context from the requested transaction.

If none of the previous possibilities apply, the cursor is closed and subsequent access to the BDE objects
associated with the server cursor returns an error.

For an example, refer to the TRANSACT.C code sample in the SNIPIT Code Viewer (\BDE\EXAMPLES\SNIPIT).

Querying Databases

Through the BDESDK interface, the Borland Database Engine (BDE) enables the client to use SQL or Query by
Example (QBE) to access dBASE and Paradox tables on the PC (standard databases), as well as server-based
SQL tables.

A group of BDESDK query interface functions is provided for passing either SQL Queries or QBE queries to both
server-based and PC-based sources.

Querying Paradox and dBASE Tables
Querying Different Databases
Executing Queries Directly
Executing Queries in Stages

SQL Queries
The common query engine uses a convenient subset of SQL to access dBASE and Paradox tables. This subset
can also be used to join server-based SQL tables with Paradox and/or dBASE tables. The appropriate BDE driver
must be installed to allow server-based SQL access.

If the appropriate BDE driver is installed, the BDESDK query interface functions can also be used to pass SQL
statements to the server for processing, in the native dialect of a server-based system, such as Oracle or Sybase.

QBE Queries
QBE allows uniform access to data in Paradox or dBASE tables and tables in server-based databases.

Querying Paradox and dBASE Tables

The common query engine enables BDE application developers to access tables in standard databases using
either the SQL or QBE languages. Two categories of SQL statements are supported for tables in standard
databases:

Data Definition Language (DDL)
Data Manipulation Language (DML)

Naming Conventions
When writing SQL statements to be used with dBASE and Paradox tables, observe the following naming
conventions:

Table names
Table names that include a period (.) must be placed in either single or double quotation marks. For example,

        select * from 'c:\sample.dat\table'
        select * from "table.dbf"

Table names can include BDESDK style aliases. For example,
        select * from :data:table

Names that are keywords must be placed in quotation marks. For example,
        select passid from "password"

Field names
Field names that have spaces must be placed in quotation marks. For example,

        select e."Emp Id" from Employee e

Field names that are keywords must be placed in quotation marks. For example,
        select t."date" from Table t

Field names that are placed in quotation marks must have a table reference.

Data Manipulation Language
The following DML clauses are supported:
SELECT, WHERE, ORDER BY, GROUP BY, and HAVING

The following aggregates are supported:
SUM, AVG, MIN, MAX, COUNT

The following operators are supported:
, -, *, /, =, < >, IS NULL

UPDATE, INSERT, DELETE operations are allowed.

For example:
Select part_no

from parts
where part_no > 543

Data Definition Language
The DDL syntax for Paradox and dBASE tables is restricted to CREATE TABLE (or INDEX), DROP TABLE (or
INDEX).    For example:

create table parts (part_no char(6), part_name char(20))

The following example demonstrates how SQL DDL can be executed through BDESDK:
hDBICur hCur;
pBYTE szQuery = "create table 'c:\\example\\test.dbf' "

"(fld1 int, fld2 date)";
rslt = DbiQExecDirect(hDb, langSQL, szQuery, &hCur);

For data mappings used by CREATE TABLE and more examples, see the Local SQL Help.

Querying Different Databases

Through the BDESDK interface, the application developer can use SQL to join tables from different data sources
(for example, a Paradox, InterBase and Sybase table could all participate in a SQL query). These are called
heterogeneous joins.    See "Heterogeneous Joins" in the Local SQL Online User Guide.

The following SQL statement shows a join of three tables from different platforms, using aliases:
select distinct c.cust_no, c.state, o.order_no, i.price

from ':Local_alias:customer.db' c,
:IB_alias:order o,
:SYB_alias:lineitem i

where o.cust_no = c.cust_no and
o.order_no = i.order_no

Executing Queries Directly

Use DbiQExecDirec    for simple queries, where no special preparation is necessary. This function immediately
prepares and executes a SQL or QBE query and returns a cursor to the result set, if one is generated. The
application passes the database handle, specifies whether the query language is QBE or SQL, and passes the
formulated query string.

With SQL query language, if the specified database handle refers to a server database, the SQL dialect native to
that server is expected. If the database handle refers to a standard database, the SQL statement is limited to the
subset supported by the common query engine.

The following example shows how a SQL query is executed with the function DbiQExecDirect:
DBIResult rslt;
hDBICur hCur;
pBYTE szQuery = "Select t.name, t.age "

"from EMPLOYEE t "
"where t.age > 30 "
"and t.salary > 1000000 ";

rslt = DbiQExecDirect(hDb, qrylangSQL, szQuery, &hCur);

Executing Queries in Stages

Some queries require a statement handle and need to be executed in stages. A statement handle is required if the
application needs to control the table type of the result set, to express preference over the degree of liveness of
data, or to bind parameters (for SQL queries on servers). The application uses a separate function call for each
stage:

1 To prepare the query and get a statement handle, call DbiQPrepare.

2 To change properties in the statement handle, call DbiSetProp.

3 To execute the prepared query, call DbiQExec.

4 To free resources bound to the query, call DbiQFree.

DbiQPrepare
This function is used to prepare a SQL or QBE query for subsequent execution. The application passes the
database handle, specifies whether the query language is QBE or SQL, and passes the formulated query string.
The function returns a statement handle for the prepared query.

DbiSetProp
DbiSetProp is used to set a property of an object to a specified value. In this case, the object is the statement
handle returned by DbiQPrepare. The property to be set can be the result table type, degree of liveness, or query
mode for binding parameters on SQL servers. The following examples show how values are set for these
properties:

DbiSetProp(hStmt, stmtANSTYPE, (UINT32) szPARADOX);
DbiSetProp(hStmt, stmtLIVENESS, (UINT32) wantLIVE);

Live and canned result sets
The last example above shows how you can specify your preference for live or canned result sets during query
execution. A canned result set is like a snapshot or a copy of the original data selected by the query. In contrast, a
live result set is a view of the original data; specifically, if you modify a live result set, the changes are reflected in
the original data. When you specify your preference for a live result set, the Query Manager attempts to give you a
live result set. However, no guarantee can be made that the resulting result set will indeed be live. After the query
has executed and a result set has been returned, you can check to see if it is live by examining the cursor
property bTempTable. If TRUE, the result set is a temporary table, hence a copy (canned); otherwise, the result
set is live. The possible values for liveness are:

Value Description

wantCANNED Indicates preference for a canned result set (this request is always honored)

wantLIVE Indicates preference for a live result set

wantSPEED Directs the query manager to decide, based on which method is probably fastest

wantDEFAULT Same as wantCANNED

DbiQExec
DbiQExec executes the previously prepared query identified by the supplied statement handle and returns a
cursor to the result set, if one is generated.

For SQL statements sent to a SQL server, the same prepared query can be executed several times, but only after
any pending results have been read or discarded (by using DbiCloseCursor on the answer set cursor).

Getting and Setting Properties

Each BDE object is defined by a set of properties.    The properties defining an object depend on the object's type.
For example, a session is a BDE object, and its properties include sesMAXPROPS, sesSESSIONNAME, and
sesCFGMODE.    Each type of object has its own set of properties, as listed in Object Properties.

Values are initially assigned to properties when an object is created. For example, the name of the table is
assigned to the curTABLENAME property of the cursor object when the table is opened with DbiOpenTable.

Values of some properties can be changed with the BDESDK function DbiSetProp. To reset a property, the
application passes the object handle, the name of the property to be changed, and the new value of the property.

To retrieve an object's current property settings, use DbiGetProp.

To retrieve an object's handle, use DbiGetObjFromName.

To retrieve a cursor's database handle, use DbiGetObjFromObj.

This example illustrates a method for getting the table name/type when all that is available is the table cursor:
 UINT16            iLen;

        DBITBLNAME    tblName;
        DBINAME          tblType, dbName;
        // The table cursor gives you access to the table name and
        // the table type.
        DbiGetProp(hCursor, curTABLENAME, (pVOID) tblName,
                              sizeof(tblName), &iLen);
        DbiGetProp(hCursor, curTABLETYPE, (pVOID) tblType,
                              sizeof(tblType), &iLen);
        // You can also access database properties (such as the name
        // of the database associated with the cursor).
        DbiGetProp(hCursor, dbDATABASENAME, (pVOID) dbName,
                              sizeof(dbName), &iLen);

Object Properties

Each BDE object is defined by its own set of properties:

Properties System Session Database Driver Cursor Statement

sysMAXPROPS X X X X X X

sysLOWMEUSAGE X X X X X X

sesMAXPROPS X X X X

sesSESSIONNAME X X X X

sesNETFILE X X X X

sesCFGMODE X X X X

dbMAXPROPS X X X

dbDATABASENAME X X X

dbDATABASETYPE X X X

dbASYNCSUPPORT X

dbPROCEDURES X

dbDEFAULTTXNISO X

dbNATIVEHNDL X

dbNATIVEPASSTHRUHNDL X

dbUSESCHEMAFILE X

drvMAXPROPS X X

drvDRIVERTYPE X X

drvDRIVERVERSION X X

curMAXPROPS X

curTABLENAME X

curTABLETYPE X

curTABLELEVEL X

curFILENAME X

curXLTMODE X

curSEQREADON X

curONEPASSON X

curUPDATETS X

curSOFTDELETEON X

curLANGDRVNAME X

curPDXMAXPROPS X

curDBMAXPROPS X

curINEXACTON X

curNATIVEHNDL X

curUPDLOCKMODE X

stmtMAXPROPS X

stmtPARAMCOUNT X

stmtUNIDIRECTIONAL X

stmtANSTYPE X

stmtLIVENESS X

stmtQRYMODE X

stmtBLANKS X

stmtDATEFORMAT X

stmtNUMBERFORMAT X

stmtAUXTBLS X

stmtTBLVECTOR X

stmtALLPROPS X

stmtALLPROPSSIZE X

stmtANSNAME X

stmtNATIVEHNDL X

stmtCURSORNAME X

Retrieving Schema and System Information

A set of BDESDK functions return schema or system information. Some functions, in the format DbiOpenXXXList,
can be used to return a cursor to an in-memory table whose records contain the requested information. Other
functions in the format DbiGetXXXDescs return information directly to descriptor structures and arrays supplied by
the application. In each of the topics below you will find a chart of record structures of the virtual table returning
the information.

DbiOpenList Functions
Return a cursor handle to an in-memory table listing the requested information. This topic includes an example that
illustrates the use of a static structure as the record buffer

DbiGetDescs Functions
Inquiry functionStructures are supplied by the application.    These function calls return descriptive information. This
topic includes an example showing how to retrieve all the index descriptors with one function call.

DbiOpenList Functions

One series of inquiry function calls, in the form DbiOpenXXXList, return a cursor handle to an in-memory table
listing the requested information. The cursor to an in-memory table is read-only, so that the application is
prohibited from updating the table. Information can be retrieved from the in-memory table in the normal way, by
preparing the record buffer, positioning the cursor, fetching each record into the record buffer, and using
DbiGetField and DbiPutField. Or each record can be read into the predefined structures assigned to the function.
These structures are listed in the IDAPI.H file.

List function Record structure of the virtual table
returning the information

DbiOpenDriverList The virtual table contains only one CHAR field.

DbiOpenLdList LDDesc

DbiOpenDatabaseList DBDesc

DbiOpenUserList USERDesc

DbiOpenLockList LOCKDesc

DbiOpenFieldList FLDDesc

DbiOpenFieldTypesList FLDType

DbiOpenIndexTypesList IDXType

DbiOpenTableList TBLBaseDesc, TBLExtDesc, TBLFullDesc

DbiOpenTableTypesList TBLType

DbiOpenFileList FILEDesc

DbiOpenFamilyList FMLDesc

DbiOpenIndexList IDXDesc

DbiOpenRintList RINTDesc

DbiOpenSecurityList SECDesc

DbiOpenVchkList VCHKDesc

Example
This example illustrates the use of a static structure as the record buffer:

        DBIResult      rslt;
        hDBICur          hListCur;
        IDXDesc          idxDesc;
        // Open a schema table which will contain 1 record for each
        // index currently available for the given index.
        rslt = DbiOpenIndexList(hDb, "Sample", szPARADOX, &hListCur);
        if (rslt == DBIERR_NONE)
        {
                // Use a loop to retrieve each index descriptor
                while (DbiGetNextRecord(hListCur, dbiNOLOCK,
  (pBYTE) &idxDesc, NULL)
                              == DBIERR_NONE)
                {

...
}

                // Close the index list
                DbiCloseCursor(&hListCur);
        }

DbiGetDescs Functions

Inquiry functionStructures are supplied by the application.    These function calls return descriptive information.

List function Record structure of the virtual table
returning the information

DbiGetIndexDesc IDXDesc structure

DbiGetIndexDescs Array of IDXDesc structures

DbiGetIndexTypeDesc IDXType structure

DbiGetTableTypeDesc TBLType structure

DbiGetDatabaseDesc DBDesc structure

DbiGetFieldDescs Array of FLDDesc structures

DbiGetFieldTypeDesc FLDType structure

DbiGetDriverDesc DRVType structure

Example
The following example shows how to retrieve all the index descriptors with one function call:

DBIResult      rslt;
      hDBICur          hCursor;
        CURProps        curProps;
        pIDXDesc        pIdxArray;
        // Open the table
        rslt = DbiOpenTable(hDb, "Sample", szPARADOX, NULL, NULL, 0,
  dbiREADWRITE, dbiOPENSHARED, xltFIELD,
  TRUE, NULL, &hCursor);
        if (rslt == DBIERR_NONE)
        {
                // Get the properties for the cursor
                DbiGetCursorProps(hCursor, &curProps);
                // Allocate the buffer for the index descriptors
                pIdxArray = (pIDXDesc) malloc(sizeof(IDXDesc) *
  curProps.iIndexes);
// Get the indexes
                rslt = DbiGetIndexDescs(hCursor, pIdxArray);
                if (rslt == DBIERR_NONE)
                {

...
}
// Clean up

                free((pCHAR) pIdxArray);
                DbiCloseCursor(&hCursor);
        }

Creating Tables

The application can create permanent tables using the BDESDK function DbiCreateTable. It can also create
temporary tables with DbiCreateTempTable and in-memory tables with DbiCreateInMemTable. To see code
samples of creating tables, run the SnipIt Code Viewer and select Table: Create dBASE or Table: Create Paradox.

Permanent Tables
Permanent tables are named and are saved to disk. To create a permanent table, the application first creates a
field descriptor structure FLDDesc for each field in the table and an index descriptor structure IDXDesc for each
index. For SQL and Paradox tables, the application can also define a descriptor structure for each validity check
VCHKDesc. For Paradox tables only, the application can define a descriptor structure for each referential integrity
check RINTDesc, and each security check SECDesc to be enforced.

Next, the application creates a table descriptor structure CRTblDesc defining general attributes of the table, and
supplying pointers to arrays of field, index, validity, referential integrity and security descriptor structures
previously created. Finally, the application calls DbiCreateTable, passing the CRTblDesc structure.

Specifying Optional Parameters
When creating a Paradox or dBASE table, optional driver-specific parameters may be included in the last three
fields of the CRTblDesc structure. To retrieve a list and description of these optional parameters for a driver, the
application can call DbiOpenCfgInfoList, supplying the path of the driver's table create options in the configuration
file. This function returns an in-memory table with information about relevant optional parameters, as well as the
default values for these parameters. For example, the Table Level is an optional paramerter for dBASE and
Paradox tables.

Temporary Tables
A temporary table is deleted when the cursor is closed. The application can create a temporary table in the same
way it creates a permanent table except that it calls DbiCreateTempTable instead of DbiCreateTable. See
Permanent Tables above for a description of the descriptor structures used to create a table.

For Paradox and dBASE only, a temporary table can be made into a permanent table by calling
DbiMakePermanent while the cursor is still open and supplying a table name, or calling DbiSaveChanges.

In-memory Tables
An in-memory table cannot be saved as a permanent table. The application can create an in-memory table by
calling DbiCreateInMemTable, and supplying an array of field descriptor structures FLDDesc. The table descriptor
CRTblDesc is not used. Only BDESDK logical types are supported.

Modifying Table Structure

After a table has been created, the application can modify it using BDESDK functions in the following ways:

Add, delete, or regenerate indexes
Restructure the table

Adding Indexes
The application can add an index to a table by calling DbiAddIndex and supplying the IDXDesc structure, with the
appropriate fields filled in (the fields required vary by driver and index type). For a complete description of these
fields by driver and index type, see DbiAddIndex.

Deleting and Regenerating Indexes
The application can delete an index by calling DbiDeleteIndex. The application can either specify the table by
name or by opening a cursor on the table. The index to be deleted cannot be active.

The application can bring dBASE or Paradox indexes up to date by calling either of two BDESDK functions.
DbiRegenIndex regenerates a single out-of-date index; the application specifies the index name. DbiRegenIndex
regenerates out-of-date indexes on a table.

Restructuring a Table
Currently, for Paradox and dBASE tables only, the application can call DbiDoRestructure to modify existing field
types or sizes, add new fields, delete a field, rearrange fields, change indexes, security passwords, or referential
integrity.

The application passes the same table descriptor structure, CRTblDesc, used to create the table, but much of the
information specified in the descriptor is different.

Using Callbacks

Sometimes an application needs to be notified of a specific type of database engine event in order to complete an
operation or to provide the user with information. The advantage of using callbacks is that the engine can get a
user's response without interrupting the normal application process flow.

The following rules must be strictly followed in a callback function:

No other BDESDK calls can be made inside the callback function.
BDE is not re-entrant during the callback function. The application must not yield to Windows within the

callback function. For example, if the application displays a dialog box in Windows inside a callback function, the
dialog box must be System Modal.

Types of Callbacks
The application can choose to be notified of many different types of events, depending on which callback type it
registers. The application can specify the following callback types in a call to DbiRegisterCallback.

ecbType Event description

cbBATCHRESULT Batch processing results

cbRESTRUCTURE Restructure

cbTABLECHANGED Table has changed

cbGENPROGRESS Generic Progress report

cbINPUTREQ Input request when a BDE driver needs to
communicate with the end user

cbDBASELOGIN Access encrypted dBASE files

Callback function declarations and associated parameter lists, function return types, and callback data types are
defined in the file IDAPI.H, which is the application interface to the Borland Database Engine.

Return Codes
The application responds to a callback by issuing a return code that commands an appropriate action:

Return code Action description

cbrUSEDEF Take default action

cbrCONTINUE Continue

cbrABORT Abort the operation

cbrCHKINPUT Input given

cbrYES Take requested action

cbrNO Do not take requested action

cbrPARTIALASSIST Assist in completing the job

Registering a General Progress Report Callback
Suppose that an application must copy a million-record table, and you want to periodically display a progress
report on screen indicating the progress of the copy operation. You would use the following procedure:

1 Write the body of the of the progress callback function, declaring it with an associated predefined parameter
list:
 typedef CBRType far *pCBRType;

typedef CBRType (DBIFN * pfDBICallBack)
(
CBType                  ecbType,                          // Callback type
UINT32                  iClientData,                  // Client callback data
pVOID                    pCbInfo                            // Call back info/Client
Input
);

2 The application allocates memory for the buffer pCbBuf to be used for passing data back and forth from the
application to the function, and pointing to a CBPROGRESSDesc structure.
 typedef struct

{
INT16                  iPercentDone;                // Percentage done
DBIMSG                szMsg;                              // Message to display
} CBPROGRESSDesc;

typedef CBPROGRESSDesc far * pCBPROGRESSDesc;

3 To register a callback, the application calls DbiRegisterCallback passing cbGENPROGRESS as the value for
ecbType.

4 The application issues a call to DbiBatchMove.

5 BDE returns either a percentage done (in the iPercentDone parameter of the CBPROGRESSDesc structure), or
a message string to display on the status bar. The application can assume that if the iPercentDone value is
negative, the message string is valid; otherwise, the application needs to consider the value of iPercentDone.
The message string format is <Text String><:><Value> to allow easy international translations. For example:
Records copied: 250

6 To continue processing the application returns the code cbrUSEDEF. The application can abort the BDESDK
function call in progress by returning cbrABORT.

Data Source Independence

You can use these techniques to achieve data source independence:

Qualify tablenames through aliases defined in the configuration file (or by supplying fully qualified path
names).

Use only BDE logical data types.
Use the generic subset of SQL supported by the common query engine.

The application can determine which aliases are available to it by calling the BDESDK function
DbiOpenDatabaseList. This function lists all of the database aliases in the configuration file (IDAPI.CFG).

Filtering Records

This section explains how to create an expression tree used in DbiAddFilter.

A filter is a mechanism that lets you qualify the data that a cursor displays, relieving the application of the task of
testing each record. For example, you may want to open a customer table but display only those customers living
in California. To use a filter to accomplish this, you can write your application to define a filter for a cursor open on
the Customer table, where customer.state= CA. When the filter is activated, the Borland Database Engine (BDE)
retrieves only those records that meet this condition, so your application can view and process only those records.
For example, when your application calls DbiGetNextRecord, any records where the customer is not a resident of
California are skipped.

Defining a Filter
Using an Expression Tree
Expression Tree Header
Expression Tree Node Area
Literal Pool Area

Defining a Filter

To define a filter, the application calls DbiAddFilter, passing the cursor handle and the filter condition specification.
The function returns the filter handle to the application. The application can use an expression tree to specify the
filter condition.

The advantage of using an expression tree to define a filter condition is that BDE can use it to optimize the filtering
operation. The level of optimization depends on the driver's level of support for parsing the expression tree.

After defining the filter, the filter must be activated with DbiActivateFilter.

Using an Expression Tree

An expression tree is a block of memory arranged as a series of nodes, which define the conditions of the filter.
Each expression tree structure has the following parts:

Expression Tree Header
Expression Tree Node Area
Literal Pool Area

For example, to define a filter to display only those records where CUST_NO>1500. An expression tree is created
to pass to DbiAddFilter

This following chart represents the expression tree: CUST_NO > 1500.00

Binary node: GT (Offset 0)

Constant & Field Nodes: Field (Offset 8) Constant (Offset 16)

Literal & Constant Pool: Cust_No (Offset 0) 1500.0 (Offset 8)

The same expression tree is defined in C as a parameter to be passed to DbiAddFilter. The following example
assumes that the compiler allocates consecutively declared variables in physically contiguous memory:
void

Filter (void)
{

hDBIDb hDb; // Handle to the Database
hDBICur hCur; // Handle to the table
pBYTE pcanExpr; // Structure containing filter info
hDBIFilter hFilter; // Filter handle
UINT16 uSizeNodes; // Size of the nodes in the tree
UINT16 uSizeCanExpr; // Size of the header information
UINT16 uSizeLiterals; // Size of the literals
UINT16 uTotalSize; // Total size of filter expression
UINT32 uNumRecs = 10; // Number of records to display
CANExpr canExp;              // Contains the header information
UINT16 Nodes[] = // Nodes of the filter tree

{
// Offset 0

nodeBINARY, // canBinary.nodeClass
canGT, // canBinary.canOp
8, // canBinary.iOperand1
16, // canBinary.iOperand2

// Offsets in the Nodes array
// Offset 8

nodeFIELD, // canField.nodeClass
canFIELD, // canField.canOp
1, // canField.iFieldNum
0, // canField.iNameOffset: szField is the

// literal at offset 0
// Offset 16

nodeCONST, // canConst.nodeClass
fldFLOAT, // canConst.iType
8, // canConst.iSize
8, // canConst.iOffset: fconst is the literal

// at    offset strlen(szField)    1
};
CHAR      szField[] = CUST_NO;// Field name of third node of tree
FLOAT      fConst        = 1500.0; // Value of constant for second node

Expression Tree Header

The expression tree header defines:

the version tag of the expression
the size of the tree structure
the number of nodes in the node area
the offset locations of the first node and the beginning of the literal pool.

The header is in this form:
#define CANEXPRVERSION 2
typedef struct{

UINT16 iVer;
UINIT16 iTotalSize;
UINT16 iNodes;
UINT16 iNodeStart;
UINT16 iLiteralStart;

} CANExpr;
typedef CANExpr far *pCANExpr;
typedef pCANExpr far *ppCANExpr;

Expression Tree Node Area

Each node forms a branch of the tree and defines a condition. Nodes can define either operators or operands.

Operand nodes store the offset of field names or constants within the Literal Pool Area. The values are stored in
the literal pool. A field node points to the offset of a field name containing a literal. A constant node points to a
constant value within the literal pool.

Operator nodes are of different types:

Relational
Logical
Arithmetic
Miscellaneous

Operator Nodes, Relational

Enumerated type Description

canISBLANK Unary; blank operand

canNOTBLANK Unary; non-blank operand

canEQ Binary; equal to

can NE Binary; not equal to

canGT Binary; greater than

canLT Binary; less than

canGE Binary; greater than or equal to

canLE Binary; less than or equal to

Operator Nodes, Logical

Enumerated type Description

canNOT Unary; NOT

canAND Binary; AND

canOR Binary; OR

Operator Nodes, Arithmetic

Enumerated type Description SQL support

canMINUS Unary; minus Not supported by all SQL drivers

canADD Binary; addition Not supported by all SQL drivers

canSUB Binary; subtraction Not supported by all SQL drivers

canMUL Binary; multiplication Not supported by all SQL drivers

can DIV Binary; division Not supported by all SQL drivers

canMOD Binary; modulo division Not supported by all SQL drivers

canREM Binary; remainder of division Not supported by all SQL drivers

Operator Nodes, Miscellaneous

Enumerated type Description

canCONTINUE Unary; stops evaluating records when operand evaluates to false (provides a stop at the high range of
the filter value)

Operator nodes point to the offsets of their operand nodes. See the sample expression tree in Literal Pool Area
where binary operands cause the tree to branch.

Literal Pool Area

The literal pool is used to store the field names pointed to by each field node and the constant values pointed to
by each constant node. Field names contain literals. Constant values must be represented in BDE logical types
only.

For example, the following Boolean condition is represented as an expression tree parameter, and then as a
chart:

1000 > FLD1 AND FLD2 <=2022.22

Expression Tree
The following example assumes that the compiler allocates consecutively declared variables in physically
contiguous memory:
UINT16 iFTEST [] =

{
1, //iVer
85, //iTotalSize of pCANExpr structure passed in
-1, //iNodes
sizeof (CANExpr), iNodeStart - offset into structure
60    sizeof (CANExpr), // iLiteralStart- offset into structure

//nodeStart :
nodeBINARY, //0
canAND,
8, // iOperand1 offset
34, // iOperand2 offset
nodeBINARY, // 8
canGT,
16, // iOperand1 offset
26, // iOperand2 offset
nodeCONST, // 16
canCONST ,
fldFLOAT,
2,
0,
nodeFIELD , // 26
canFIELD,
1,
16,
nodeBINARY, // 34
canLE ,
42, // iOperand1 offset
50, // iOperand2 offset
nodeFIELD, // 42
canFIELD,
2,
21,
nodeCONST, //50
canCONST ,
fldFLOAT ,
sizeof (FLOAT),
8,

};
//Literal pool start (offset 60)
FLOAT XBLits0[] = {1000}; // 0
FLOAT XBLits1[] = {2022.22}; // 8
CHAR szXBFld1[] = "FLD1" ; // 16
CHAR szXBFld2[] = "FLD2" ;

Chart
The chart below represents the same Boolean expression: 1000 > FLD1 AND FLD2 < 2022.22
(Note that the offsets are shown in parentheses.)

Header:                 -

Binary node: AND (0)

Binary nodes: GT (8) LE (34)

Constant & field nodes: CONST (16) FIELD (26) FIELD (42) CONST (50)

Literal / constant pool: 1000 (0) FLD1 (16) FLD2 (21) 2022.22 (8)

Database Driver Characteristics

The Borland Database Engine (BDE) requires a separate BDESDK driver to support each database format or
datasource.    To extend BDE to support an additional database system, you must install the appropriate driver.   
This section provides additional information about specific driver types that you may use.

SQL Drivers
Text Driver

SQL Drivers

All BDESDK drivers for SQL servers share common services including record navigation, record caching, record
editing, and server query management. Only about twenty percent of the services are driver specific, addressing
driver capabilities, data types and data translations, transaction control, server specific query creation and server
calls.

Passthrough SQL
SQL Transaction Control
SQL Connection
SQL Record Caching
SQL Record Modification Requirements
SQL Record Modification Behavior
SQL Record-locking Behavior
SQL Table-locking Behavior
SQL Asynchronous Queries
SQL Performance Tips

Passthrough SQL

The native SQL dialect of the SQL server can be passed directly to the server, as long as the appropriate BDE
driver is installed. These passthrough SQL queries can be executed directly by using DbiQExecDirect or in
stages. See Querying Databases

The SQLPASSTHRU MODE parameter of the BDE configuration file allows you to specify whether passthrough
and non-passthrough SQL operations can share the same connection. It also allows you to specify whether you
want passthrough SQL to be autocommitted or not (if the connection is shared). When passthrough and non-
passthrough SQL operations share the same connection, transaction control statements should not be executed
in passthrough SQL. Instead, use DbiBeginTran and DbiEndTran.

Update of Simple Unidirectional SQL Passthrough Queries
Certain SQL servers support these dynamic SQL statements:

UPDATE ... WHERE CURRENT of CursorName
DELETE ... WHERE CURRENT of CursorName

BDE supports this syntax, provided that it is also supported by the server.

Use the statement property stmtCURSORNAME (defined in idapi.h) to set or get the cursor name from the
passthrough SELECT statement and use it in the UPDATE statement.    For example:
        ...
      DbiQPrepare(hDb,
                              qrylangSQL,
                              "SELECT * FROM FOO FOR UPDATE OF f1",
                              &hStmt);

      // set the cursor name for the SELECT statement
      DbiSetProp(hStmt,
                            stmtCURSORNAME,
                            pszCursorName);

      // set unidirectional cursor
      DbiSetProp(hStmt,
                            stmtUNIDIRECTIONAL,
                            TRUE);

      // execute the SELECT stmt
      DbiQExec(hStmt,
                        &hCur);

      // fetch a record
      DbiGetNextRecord(hCur,
  dbiNOLOCK,
  pRecBuf,
  NULL);

      // Note that we use DbiQExecDirect to execute the UPDATE
      // statement in this example.
      // DbiQPrepare/DbiQExec/DbiQFree can be used instead of
      // DbiQExecDirect to execute the UPDATE

      sprintf(pszQuery,
                      "UPDATE foo SET f1 = 'X' WHERE CURRENT of %s",
                      pszCursorName);

      // update the current record
      DbiQExecDirect(hDb,
                                    qrylangSQL,
                                    pszQuery,
                                    NULL);

      // free the SELECT stmt
      DbiQFree(&hStmt);

      // close the SELECT cursor
      DbiCloseCursor(&hCur);
      ...

Certain drivers require that you set the cursor name BEFORE the SELECT statement is executed (as in the above
example).    Other drivers do not require you to explicitly set the cursor name and will generate one for you.    If the
server generates a cursor name, you can retrieve that name by calling DbiGetProp AFTER the SELECT
statement has been executed.    As always, when using passthrough SQL, you must know the native syntax
supported by the back end server.

Where not supported, the function DbiSetProp with stmtCURSORNAME will return DBIERR_NOTSUPPORTED.

InterBase
The InterBase SQL Link driver must close cursors when transactions end (COMMIT/ABORT occurs).    When this
happens, the remaining rows are read from the server and cached locally.    This means that a COMMIT/ABORT
can cause you to lose your current cursor position, and a subsequent UPDATE ... WHERE CURRENT can update
the WRONG row.    For this reason, you must be certain that a COMMIT/ABORT does not cause SQL Link to
prematurely close the server cursor.

There are 2 ways to guarantee this:

1) Set your SQLPASSTHRU MODE to NOT SHARED.    In this    mode, all passthrough statements are performed
on a separate connection and will NOT be autocommitted.

2) If your SQLPASSTHRU MODE is either SHARED AUTOCOMMIT or SHARED NOAUTOCOMMIT, passthrough
and non-passthrough statements share the same connection. Operations performed within an explicit
transaction (that is, within the DbiBeginTran/DbiEndTran block) are never autocommitted.

SQL Transaction Control

To control explicit transactions, use DbiBeginTran and DbiEndTran. Except for explicit transactions, the BDESDK
isolation level is Read Committed, with auto-committed modifications. Some SQL drivers support only the server
default isolation level inside of an explicit transaction. To verify the actual isolation level used, call DbiGetTranInfo
after a successful call to DbiBeginTran.

Example 1: No explicit transaction
The SQL driver automatically starts a server transaction if necessary:

DbiGetNextRecord (hCursor, dbiWRITELOCK, &myRecBuff, NULL);

The application changes the record buffer data:
DbiModifyRecord (hCursor, &myRecBuff, TRUE);

If the record modification succeeds, it is automatically committed to the database.

Example 2: Explicit transaction used
The application uses a transaction:

DbiBeginTran (hDb, xilREADCOMMITTED, NULL);

The SQL driver starts a server transaction:
DbiGetNextRecord (hCursor, dbiWRITELOCK, &myRecBuff, NULL);

The application changes the record buffer data:
DbiModifyRecord (hCursor, &myRecBuff, TRUE);

The application can make more changes in the transaction:
DbiEndTran (hDb, NULL, xendCOMMIT);

The SQL driver commits the server transaction.

Transaction Isolation Levels
BDE 2.5 supports extended transaction isolation levels.    If an unsupported isolation level is specified in
DbiBeginTran, the next-highest supported isolation level is used.    If the requested iso level is higher than any
supported isolation level, then an error is returned (DBIERR_NOTSUPPORTED).    The highest level (most
isolated) level is Repeatable Read, then Read Committed, and finally Dirty Read.    As always, you can verify the
actual isolation level that was used by calling DbiGetTranInfo.

This database property is used with DbiGetProp to retrieve the server's default transaction isolation level:
dbDEFAULTTXNISO , ro eXILType Server's default transaction isolation level

Compatibility
Informix
Not changed for BDE 2.5.

InterBase
Supports Repeatable Read and Read Committed.The wait mode has been changed to NO WAIT.

Sybase
Supports only the server default, Read Committed.

Oracle
Supports Read Committed and Repeatable Read. However, a Repeatable Read transaction is always READ
ONLY.

The following table shows the changes from previous versions of BDE.

REQUESTED ACTUAL Isolation Level Used
Isolation Level pre-BDE 2.5 BDE 2.5

Sybase:
DirtyRead ReadCommited ReadCommitted
ReadCommitted ReadCommitted ReadCommitted
RepeatableRead ReadCommitted DBIERR_NOTSUPPORTED

Oracle:
DirtyRead ReadCommitted ReadCommitted
ReadCommitted ReadCommitted ReadCommitted
RepeatableRead ReadCommitted RepeatableRead (READ ONLY)

InterBase:
DirtyRead RepeatableRead ReadCommitted
ReadCommitted RepeatableRead ReadCommitted
RepeatableRead RepeatableRead RepeatableRead

You can maintain compatibility with pre-BDE 2.5 behavior by setting the DRIVER FLAGS parameter in the BDE
configuration file.    All SQL drivers have a field called DRIVER FLAGS in the DRIVER INIT section.    To obtain
pre-BDE 2.5 transaction behavior, set the bit corresponding to 0x0200 (512 decimal).

SQL Connection

BDESDK connects to the SQL server database by using the following guidelines:

BDESDK uses the server authorization scheme. The password is used in DbiOpenDatabase to connect to
the server.

Most BDESDK features require an open database, with the exception of retrieving driver capabilities, such
as data-types information.

Transactions and passthrough operations are done in the database context.

SQL Record Caching

Two caching mechanisms are used:

Live Caching
Done for a cursor, if possible.

Dead Caching
Used if live caching cannot be done.

Live Caching

Live caching provides fuller BDESDK support than dead caching. It can be fast or slow, depending on other
factors. Live caching is used by default if an index or row ID exists, but only for tables, not queries. With
DbiOpenTable, iIndexId can be set to NODEFAULTINDEX to force dead caching even though an index or row ID
exists.

The following general rules apply to live caching:

Data tends to be fresh. The fastest index is chosen automatically if none is specified during table open.
A partial cache is kept, ordered by index. The cache contains the current cursor row, plus the last several

rows fetched.
Live caching allows cache refresh. Refresh can be done manually via DbiForceReread and is done

automatically if the cursor moves around.
Live caching allows key-oriented operations, such as DbiSetRange and DbiSetToKey.

Record Caching Example: Live
A Customer table with unique or non-unique index on ID field.

ID Name
10000 John
11001 Mary
12321 Harry
12345 Beth
12666 Joe

The SQL driver finds some basic information about the table structure, but no data is retrieved:
DbiOpenTable (

hDb,
"Customer",
NULL,
"IdIndex",
...,
&hCursor ...);

The SQL driver sets up for data retrieval:
UINT16 myKey = 12321;
DbiPutField (hCursor,

 1,
&myRecBuff,
&myKey);

DbiSetToKey (hCursor,
keySEARCHGEQ,
FALSE,
1,
0,
&myRecBuff);

The SQL driver query:
SELECT Id, Name
FROM Customer
WHERE Id >= 12321
ORDER BY Id
DbiGetNextRecord (...)

The SQL driver caches a row:

ID Name
12321 Harry

DbiGetNextRecord (...)
DbiGetNextRecord (...)

The SQL driver caches more rows:
DbiGetPriorRecord (...)

The SQL driver uses a cache, rather than the server:

ID Name
12321 Harry
12345 Beth
12666 Joe

The SQL driver terminates the query and clears the cache:
DbiSetToBegin (...)

ID Name
No data in the cache

Dead caching

Dead caching may be used when live caching is not possible.    With dead caching, the data may not be fresh.   
The following rules apply to dead caching:

Dead caching is used for passthrough queries or if no ordering exists.
Dead caching is used for DbiOpenTable if no index is available and the server does not support row IDs, or if

iIndexId is set to NODEFAULTINDEX with DbiOpenTable.
Dead caching keeps a full client snapshot cache. As records are read from the server, they are stored locally

in case they are needed again.
Dead caching provides no cache refresh. You must close and re-open the table, or re-execute a query to

see new data.
Since there is no key, key operations (such as DbiSetRange and DbiSetToKey) are not supported. Other

navigation functions such as DbiSetToBookMark are supported.

Record Caching Example: Dead
The SQL driver finds some basic information about the Customer table structure, but no data is retrieved:

ID Name
11001 Mary
10000 John
12666 Joe
12321 Harry
12345 Beth

DbiOpenTable (
hDb,
"Customer",
NULL,
NULL,
...,
&hCursor ...);

DbiGetNextRecord (...)

The SQL driver executes a query:
SELECT Id, Name
FROM Customer

The SQL driver caches a row:

ID Name
11001 Mary

DbiGetNextRecord (...)

The SQL driver caches another row:
DbiGetPriorRecord (...)

The SQL driver uses a cache:
DbiSetToBegin (...)

The SQL driver leaves the query and cache alone:

ID Name
11001 Mary
10000 John
12666 Joe

iIndexId
iIndexId Type: UINT16 (Input)
Specifies the index identifier, which is the number of the index to be used. The range for the index identifier is 1 to 511. Used for
Paradox tables only and is ignored if pszIndexName is specified.

SQL Record Modification Requirements

The following requirements must be met to modify a record:

The server must allow each operation. Security and capability are important: server views may not allow
changes, and different types of modification are authorized separately.

Views support insert, modify, and delete if allowed by the server. Queries do not support modifications.
Record modifications performed within an explicit client transaction may require that a unique index or

server ROWID exists on the table.    For example, both DbiSetRange and DbiGetRecordForKey require a current
index.    However, BDE supports the ability of SQL data sources to order records by any field without using an index
on the server.    A current index (for SQL data sources) can be defined as any group of fields from a specific table,
whether or not a corresponding index exists on the server.    BDE creates a pseudo-index by using one or more user-
specified SQL fields to define the requested order.

For information on implementing pseudo-indexes, see DbiOpenTable or DbiSwitchToIndex.

SQL Record Modification Behavior

The following characteristics describe record modification behavior:

All current record modifications use optimistic locking. An optimistic lock must be explicitly requested, but the
lock request does not attempt to explicitly lock the record on the server.

Except for an explicit client transaction, all modifications are singleton operations. This means that upon
successful completion, each modification is autocommitted.

Transaction or batch request overrides singleton behavior.

Record Modification Example
The SQL driver saves a copy of the record as an optimistic lock. The application changes the record buffer data:

DbiGetNextRecord (hCursor, dbiWRITELOCK, &myRecBuff, NULL);

The SQL driver uses the saved record copy to find and modify the data:

Then the SQL driver verifies the resulting rows changed: If one row changed, optimism has paid off. If no rows
changed, the optimistic lock was broken. If more than one row changed, there was not a unique index.

DbiModifyRecord (hCursor, &myRecBuff, TRUE);
UPDATE Customer
SET Name = "Harold"
WHERE Id = 12321 AND Name = "Harry"

SQL Record-locking Behavior

SQL servers automatically and transparently lock data as required, although different SQL servers vary in the type
of lock used, and how granular the lock is. For example, some servers provide individual record locks, while
others can only lock a group, or page, of records. Also, some servers provide automatic record versioning or
database snapshots so that other copies of data being modified can be read by clients instead of waiting for a
modification to finish.

In addition to the automatic locking that SQL servers provide, SQL drivers provide a particular type of record
locking called optimistic locking. Optimistic locking allows a client to make changes to a local copy of the record
without the performance and concurrency penalty incurred by asking the server for a lock over the modification
duration. When the client modifications are finished, the current SQL server record is first checked to make sure
no changes have occurred to the record, then the modifications are completed. The operation is said to be
optimistic because it assumes that no other client will change the record, but then makes sure of that as the final
change is sent to the SQL server.

If the record was changed, an optimistic lock failure occurs. The client is notified that the requested operation
cannot be performed because someone else has changed the data. The client can then inspect the new data and
decide whether or not to make changes at that time.

Because server data cached on the client can immediately become out of date at the server, SQL drivers always
perform optimistic locking. This protects the client against inadvertently changing data that has never been
inspected.

Keyed Updates
Keyed updates give you more control over optimistic record locking for improved performance.    You can control
which columns are placed in the WHERE clause of an UPDATE or DELETE statement generated by calls to
DbiModifyRecord or DbiDeleteRecord.

You can set and retrieve the SQL-specific cursor property curUPDLOCKMODE by using DbiGetProp and
DbiSetProp. This property is valid for all SQL Link drivers and the ODBC Socket.

The following enumeration defines the options:
typedef enum
      {
        updWHEREALL,
        updWHEREKEYCHG,
        updWHEREKEY
      } UPDLockMode;

updWHEREALL
All fields (except blobs) are placed in the WHERE clause of the update or delete statement for DbiModifyRecord
or DbiDeleteRecord.    This is the default when a cursor is returned.    The behavior is identical to current optimistic
record locking behavior.

updWHEREKEY
If a unique index exists, only those fields in the key are placed in the WHERE clause of the update or delete
statement for DbiModifyRecord and DbiDeleteRecord. The key that is used is based on the active index. If the
active index is a unique index, then it will be used.    Otherwise the driver will pick the best unique index.    (Note:
For Oracle and Informix, it will pick the special column, ROWID).    If there is no unique index, then all fields are
placed in the WHERE clause and the behavior is identical to updWHEREALL.

updWHEREKEYCHG
Similar to updWHEREKEY except that changed fields (as well as indexed fields) are placed in the WHERE
clause.

WARNING: When using updWHEREKEY or updWHEREKEYCHG, it is possible to overwrite other users'
updates.    Therefore you should use this feature only when you know that overwrites will not be a
problem.

SQL Table-locking Behavior

The SQL driver provides a degree of support for table locking if the SQL server supports it. Different SQL servers
provide different levels of support for table locking. Some servers provide no table locking support at all. Others
only provide support for read-only locking (many clients can share a lock and all can read). Some SQL servers
provide support for locking, but require the client to wait until a lock is granted, rather than letting the client know
immediately if the lock could not be achieved. For information on locking support provided by your SQL server,
see your server documentation.

SQL servers that support table locks maintain a lock within the context of a transaction: a lock can only be
acquired within a transaction, and only released by terminating the transaction. This is sometimes referred to as a
two-phase locking protocol. When the SQL driver is asked to acquire a table lock, it automatically starts a
transaction if necessary. When asked to release a table lock, the SQL driver must commit the transaction in order
to release the lock. Because a transaction commit releases all locks, the SQL driver automatically re-acquires any
remaining locks.

Note: If a table lock is held when a commit becomes necessary, a time window exists in which the lock is not
held and unanticipated changes can occur. For this reason, it is recommended that all table locks be
released together when the last lock is needed, or that explicit SQL transactions be used instead of table
locking.

SQL Asynchronous Queries

SQL Links can cancel long-running queries if the server supports asynchronous query submission. Verify that your
SQL Link Driver currently supports asynchronous query execution on Windows.

Use the dbASYNCSUPPORT database property with DbiGetProp to inquire whether a driver supports
asynchronous queries:

dbASYNCSUPPORT , ro BOOL Does the driver support
  asynchronous query execution?

There are two options to asynchronous query submission/cancel:

1) The query cancels because it exceeds the maximum time allowed.

2) The query completes normally.

The parameter MAX QUERY TIME in the BDE configuration file (IDAPI.CFG) is a DB OPEN parameter.    It is
available for drivers that support this feature (currently, only Sybase SQL Link).

You can use the BDE Configuration Utility to set MAX QUERY TIME for the maximum amount of time (seconds)
you want to wait for a query to finish executing. (The default value is 3600 seconds, or one hour.)    If this time limit
is exceeded, the query is cancelled.    When a query is successfully cancelled, DBIERR_CANCEXCEPT Query
cancelled is returned.

SQL Performance Tips

The following tips are suggested to help reduce unnecessary processing, and speed up performance:

Use pass-through SQL for complex queries or stored procedures.
Use the server to minimize the size of the returned result set.
Return results into a local table for processing.
Use DbiAddFilter, DbiSetRange, and DbiSetFieldMap before data access to limit the number of records

accessed.
Create a descending index if backwards navigation is done frequently.
Avoid moving toward the beginning of the table except within a small cache range.
Avoid using DbiSetToEnd and DbiSetToKey in the middle of large tables or when the table is ordered on a

composite index.

Text Driver

The text driver allows BDE clients to access text files. The text driver allows BDE clients to access text data
directly without first importing into a table format. By using this driver, the application developer can build a more
efficient import/export utility. Filters can be set on the cursors that are opened on the text files to import/export only
those records that satisfy the filter's criteria.

When you open a text table, you can provide the field descriptor information by calling the function
DbiSetFieldMap to set a field map or you can bind external schema to text tables:

Field Maps
Binding External Schema to Text Tables

Creating a Text File with DbiCreateTable
A text file can be created by using DbiCreateTable. The developer supplies only table name and driver type values
in the CRTblDesc descriptor; the rest of the field values are ignored. DbiCreateTable creates a file with the given
name; no field descriptions are necessary.

Opening, Importing and Exporting Text Files
DbiOpenTable can be used to open a text file for import/export. The file can be opened as a delimited text file or
as a fixed length text file.

Example 1: Opening a delimited text file
In this example, the text file dBASE.txt is opened as a delimited text file. The quote character (") is the delimiter
character and comma is the field separator character.
DbiOpenTable (hDb, "DBASE.TXT", "ASCIIDRV-\"-,", NULL, NULL, 0,
dbiREADWRITE, dbiOPENEXCL, xltNONE, FALSE, NULL, &hCursor);

The pszDriverType argument of DbiOpenTable is used to indicate the field separator and the delimiter
characters. The field separator and delimiter characters are passed through the pszDriverType argument as
shown below:
"ASCIIDRV-<Delimiterchar>-<FieldSeparator>"

The field separator character separates the text file field values. The delimited character surrounds the text field
types (alphanumeric or character) in the text file.

Example 2: Opening a fixed length text file
In this example, the text file dBASE.txt is opened as a fixed length text file:
DbiOpenTable (hDb, "DBASE.TXT", "ASCIIDRV", NULL, NULL, 0,
dbiREADWRITE, dbiOPENEXCL, xltNONE, FALSE, NULL, &hCursor);

When opening a fixed-length text file, no delimiter and separator characters are passed along with the
pszDriverType argument.

Field Maps

Because no description of the fields is available when a text file is created, it is a good practice to set a field map
on the cursor that is opened on that text file. The text driver uses this field map to interpret the data types of the
fields in that text file.

When you open a text table, you can provide the field descriptor information by using the DbiSetFieldMap call.
Visual dBASE for Windows and Paradox for Windows go through the following steps in setting the field description
information for a text table.

1 Obtains the field descriptors of the source/target table by using the function call DbiGetFieldDescs.

2 Obtains equivalent physical field descriptors of the text driver by using the call DbiTranslateRecordStructure.

3 Sets the field descriptor information on the text table by using the call DbiSetFieldMap.

If no field maps are set, the following behavior is expected:

The text file exists and has records:

Fixed-length Text Delimited Text

iFlds = 1        iFlds = Calculated using the first record

fldType = CHAR fldType = CHAR

fldLen = Calculated using first record fldLen= (4k/iFlds) && less than 255.

The text file does not exist and has no records:

Fixed -length Text Delimited Text

iFlds = 1 iFlds = 1

fldType = CHAR fldType = CHAR

fldLen = 255    fldLen = 255

When a field map is set on a cursor that is opened as a text table, the source field descriptors (or destination field
descriptors when importing) must be converted into text driver type descriptors. This step is necessary because
some data types (for example, DATE) have different field lengths in different driver types (for example, in Paradox,
a DATE field is of four bytes long, while in dBASE a DATE field is eight bytes long).

The DbiTranslateRecordStructure call can be used to convert the logical or physical fields of a given driver type
(that is, Paradox or dBASE) to the physical fields of the text driver. Then those physical text fields should be used
in the DbiSetFieldMap call.    When a field map is set on a text table, the iFldType, iFldNum, iUnits1, iUnits2 and
iLen elements should be set correctly in all the field descriptors.

After a field map is set on the Text driver, DbiBatchMove can be used to import and export data to and from the
text files. Refer to the online SnipIt code Import and Export examples.

Alternatively, you can bind schema information to a text table by storing the schema information of that text table
in another text file.    See Binding External Schema to Text Tables

Binding External Schema to Text Tables

Although you can set the field descriptors on text tables for use with export/import utilities, the BDE text driver can
bind an external schema information to text tables.    You bind schema information to a text table by storing the
schema information of that text table in another text file.

The extension of the text file containing the schema information will be sch.    Thus, the name of the text file
containing the schema information of the text table xxx.txt will be xxx.sch. If the text table has an extension other
than txt, extension of the schema file would still be sch.

Schema File
All information in the schema file is case-insensitive.

Here is a sample schema file:

[CUSTOMER]    // File name with no extension.
FILETYPE = VARYING // Format: VARYING or FIXED
CHARSET = ascii // Language driver name.
DELIMITER = "                // Delimiter for char fields.
SEPARATOR = ,           // Separator character
Field1 = Name,CHAR,12,0,0 // Field information
Field2 = Salary,FLOAT,8,2,12

The schema file has a format similar to Windows INI files. The file begins with the name of the table in brackets.
The second line specifies the file format following the keyword FILETYPE: FIXED or VARYING.

FIXED format file
Each field always takes up a fixed number of characters in the file, and the data is padded with blanks as
needed.

VARYING format file
Each field takes a variable number of characters, each character field is enclosed by DELIMITER characters,
and the fields are separated by a SEPARATOR character.    The DELIMITER and SEPARATOR must be
specified for a VARYING format file, but not for a FIXED format file.

The CHARSET attribute specifies the name of the languagedriver to use.    This is the base filename of the .LDfile
used for localization purposes.

The remaining lines specify the attributes of the table's fields (columns). Each line must begin with Fieldx = ,
where x is the field number (that is. Field1, Field2, and so on).

Next appears a comma-delimited list specifying:

Field name.      Same restrictions as Paradox field names.
Datatype.    The field data type.    See below.
Number of characters or units.    Must be <= 20 for numeric data types.    Total maximum number of

characters for date/time datatypes (including / and : separators).
Number of digits after the decimal (FLOAT only).
Offset.    Number of characters from the beginning of the line that the field begins.    Used for FIXED format

only.

The following data types are supported:
CHAR            - Character
FLOAT          - 64-bit floating point
NUMBER        - 16-bit integer
BOOL            - Boolean (T or F)
LONGINT      - 32-bit long integer
DATE            - Date field.    Format specified by IDAPI.CFG
TIME            - Time field. Format specified by IDAPI.CFG
TIMESTAMP - Date    Time field. Format specified by IDAPI.CFG

Note: You can specify Date and time formats in the BDE configuration utility

Example 1:    VARYING format file
CUSTOMER.SCH:

[CUSTOMER]
Filetype=VARYING

Delimiter="
Separator=,
CharSet=ascii
Field1=Customer No,Float,20,04,00
Field2=Name,Char,30,00,20
Field3=Phone,Char,15,00,145
Field4=First Contact,Date,11,00,160

CUSTOMER.TXT:
1221.0000,"Kauai Dive Shoppe","808-555-0269",04/03/1994
1231.0000,"Unisco","809-555-3915",02/28/1994
1351.0000,"Sight Diver","357-6-876708",04/12/1994
1354.0000,"Cayman Divers World Unlimited","809-555-8576",04/17/1994
1356.0000,"Tom Sawyer Diving Centre","809-555-7281",04/20/1994

All the BDE API functions work with the text driver.    To support external schema binding, the text driver includes
the database property dbUSESCHEMAFILE applicable only to the text driver.

If the dbUSESCHEMAFILE property is set to true at the time of an export to a text table, the schema information
of that text table is stored in a schema file.    The DbiBatchMove function is used in exporting data to a text file.   
DbiBatchMove automatically stores the schema information while copying the data to a text table.

If the dbUSESCHEMAFILE flag is set to TRUE at the time of an import and a schema file exists for the text table,
the text driver gets the field descriptors from the schema text file and sets them as the default fields for that text
table.    If the dbUSESCHEMAFILE flag is not set, you should define the field descriptions of the text table by using
the function DbiSetFieldMap.

Error Handling

BDESDK functions return error codes to inform the calling program if the function succeeded or failed. The return
value is DBIERR_NONE when the function was successful. If an error occurs during the execution of an BDESDK
call, any of the BDESDK subsystems may push an error context onto the common BDESDK error stack. This
error context allows the application to examine potentially more detailed information about the cause of any error.

Several BDESDK functions enable the application to retrieve different levels of information about errors:

Error function Level of information returned

DbiGetErrorEntry Allows any entry on the error stack to be returned. This is the only function that returns native server
error codes for SQL drivers.

DbiGetErrorString When the application passes the error code, this function returns a more detailed message; for
example, "At end of table."

DbiGetErrorContext Pass it an error context type, such as "ecTABLENAME," and it returns specific information; in this
case, the full path name of the table involved in the error.

DbiGetErrorInfo Returns the error code, descriptive error message, and error contexts for the first four error messages
on the error stack.

For more specific instructions on using error messages and debugging, see the following topics:

Using DbiGetErrorEntry to Access the Error Stack
Using DbiGetErrorString to Get a Detailed Error Message
Using DbiGetErrorContext to Get More Specific Information

Includes a table showing error context types.
Using DbiGetErrorInfo to Get Immediate Information

Includes a chart showing the DBIErrInfo structure.
Using the Debug Layer

Using DbiGetErrorEntry to Access the Error Stack

Every error generated as a result of an BDESDK function call goes onto an error stack. Error stack entries begin
with 1. Each stack entry contains a DBIERR code, and possibly a native server error code and a native server
error message. (The only way for the application to get native server errors is to access the error stack.)

The application can access the error stack by calling DbiGetErrorEntry. This function returns the error code and
description of a specified error stack entry. The application can optionally pass a pointer to a buffer to receive the
native error code and the native error message.

DbiGetErrorEntry returns the error code DBIERR_NONE for stack entries beyond the current error stack, so this
successful return can be used as a loop termination. For example, if error entry 1 returns an error code of
DBIERR_NONE, there are no errors on the stack. The stack may be traversed multiple times or combined with
other error interface calls, but non-error routine BDESDK calls reset the error stack.

Using DbiGetErrorString to Get a Detailed Error Message

DbiGetErrorString returns a more detailed message for the error code returned by DbiGetErrorEntry. The
application passes the error code and receives the error message. For example, if DbiGetErrorString is called with
the error code DBIERR_EOF, it returns the string "At End of Table." BDE keeps the error strings as Windows
string resources in the .DLL file with the IDR prefix. This way the application developer can translate or customize
them as needed by using a product such as Resource Workshop.

Using DbiGetErrorContext to Get More Specific Information

DbiGetErrorContext returns more specific error information about the context of an error, such as the name of the
offending table or field. When an error occurs, the error context is logged by the BDE engine. Other error contexts
can be logged as well, so rather than force the user to scan each error context individually, DbiGetErrorContext
searches for a particular context type. The application inputs the error context type and the function returns a
character string.

Error Context Types
Error contexts can be one of the following types:

Type Description

ecTOKEN Token (For QBE)
ecTABLENAME Table name
ecFIELDNAME Field name
ecIMAGEROW Image row (For QBE)
ecUSERNAME For example, in lock conflicts, user involved
ecFILENAME File name
ecINDEXNAME Index name
ecDIRNAME Directory name
ecKEYNAME Key name
ecALIAS Alias
ecDRIVENAME Drive name ('c:')
ecNATIVECODE Native error code
ecNATIVEMSG Native error message
ecLINENUMBER Line number
ecCAPABILITY Capability

For example, if the application attempts to open a nonexistent table by using DbiOpenTable, it receives an error
code of DBIERR_NOSUCHFILE. To determine which table name is associated with the error condition, the
application calls DbiGetErrorContext (ecTABLENAME, buffer), which returns the full path name of the table. If
there is no table name associated with the error, the buffer is empty.

Using DbiGetErrorInfo to Get Immediate Information

DbiGetErrorInfo provides immediate descriptive error information about the last error that occurred. This
information consists of the DBIResult error code, an error message in ANSI characters corresponding to the code,
and up to four associated error contexts. For example, if the error message is "Table Not Found"    the user might
want to know the table name. The BDE engine logged the table name with the error context ecTABLENAME,
which can be found in one of the contexts contained in the DBIErrInfo structure.

The application calls DbiGetErrorInfo which returns relevant error information in the provided DBIErrInfo structure.
These structure types are shown in the following table.

DbiErrorInfo Structure

Type Name Description

DBIResult iError Last error code returned
DBIMSG szErrCode More descriptive information
DBIMSG szContext1 Context 1
DBIMSG szContext2 Context 2
DBIMSG szContext3 Context 3
DBIMSG szContext4 Context 4

This function immediately displays up to four error contexts to the user, while the function DbiGetErrorContext
returns only the specific error context requested by the user.

If all that is required is a formatted error message for the end user, DbiGetErrorInfo is a more convenient way to
get it.

These examples shows how to get information about an error when an BDESDK function returns a value other
than DBIERR_NONE:

hDBIDb            hDb;
        DBIResult      rslt;
      DBIMSG            dbiStatus;
      // Open a STANDARD database
        rslt = DbiOpenDatabase(NULL, NULL, dbiREADWRITE, dbiOPENSHARED,
  NULL, 0, NULL, NULL, &hDb);
        if (rslt != DBIERR_NONE)
        {
                // An error occured. Retrieve the error string.
                DbiGetErrorString(rslt, dbiStatus);
        }

Using the Debug Layer

BDE provides a debug layer that allows you to examine the state of function parameters as you access functions.
The debug layer is composed of the following files:

Two BDESDK .DLL files containing all entry points for the BDESDK functions are shipped with the BDE:
IDAPI01.DLL and DBG.DLL.

IDAPI01.DLL does not contain the debug layer; it is recommended that you ship your application with
this .DLL file. IDAPI01.DLL is installed by default.

DBG.DLL contains the contents of IDAPI01.DLL and also includes the debug layer. It is recommended that
you use this .DLL file during your development process.

Preparing to Use the Debug Layer
Before using the debug layer, follow these two steps:

1 Use the DLLSWAP utility to rename DBG.DLL to IDAPI01.DLL (and to rename IDAPI01.DLL to NODBG.DLL).

2 Call DbiInit.

Turning the Debug Layer On and Off
Important: The debug layer must be turned on after calling DbiInit and turned off before calling DbiExit.

To turn on the debug layer, make the following call:
 DbiDebugLayerOptions (DEBUGON, NULL);

To turn off the debug layer, make the following call:
 DbiDebugLayerOptions (0, NULL);

Specifying Debug Layer Options
The following options can be specified with DbiDebugLayerOptions:

Option Result

DEBUGON If specified, the debug layer is activated. (Note: The debug layer .DLL must be in place). If this option
is not specified, the debug layer is deactivated.

OUTPUTTOFILE If specified, debug layer trace information is directed to the file specified by pDebugFile. If pDebugfile
is not specified, a default TRACE file is created.

FLUSHEVERYOP If specified, flushes trace information to the TRACE file every time an BDESDK function is called.
(Note: This option is expensive and markedly slows processing.) If not specified, trace information is
flushed periodically.

APPENDTOLOG If specified, the trace output is appended to the end of the existing pDebugFile file. If not specified, the
trace output overwrites the existing pDebugFile.

Methods of Using the Debug Layer

To turn on the debug layer and output trace information to a default file, overwriting any existing information in the
file:
DbiDebugLayerOptions(DEBUGON | OUTPUTTOFILE, NULL);

To turn on the debug layer and output trace information to the TRACE.INF file, overwriting any existing information
in TRACE.INF:
DbiDebugLayerOptions(DEBUGON | OUTPUTTOFILE, "trace.inf");

To turn on the debug layer and output trace information to the TRACE.INF file, overwriting trace information after
every BDESDK call:

DbiDebugLayerOptions(DEBUGON | OUTPUTTOFILE | FLUSHEVERYOP, "trace.inf");

To turn on the debug layer and output trace information to the TRACE.INF file, appending information to
TRACE.INF while leaving existing information intact:

DbiDebugLayerOptions(DEBUGON | OUTPUTTOFILE | APPENDTOLOG,"trace.inf");

To turn off the debug layer:
DbiDebugLayerOptions(NULL, NULL);

Debug Layer Options
The following options are defined for the debug layer:

Option Description

DEBUGON Turns the debug layer on.

OUTPUTTOFILE Trace information output to a file.

FLUSHEVERYOP Trace information is overwritten after every BDESDK call.

APPENDTOLOG New information goes to the end of the trace file.

Examining Trace Files
A sample trace file is shown here:

ENTERING ***** DbiOpenDatabase
variable name = pszDbName type name = pCHAR

Pointer = 0000:0000
String = (null)

variable name = pszDbType type name = pCHAR
Pointer = 2767:2F78
String = STANDARD

variable name = eOpenMode type name = DBIOpenMode
code name = READWRITE, integer value = 0

variable name = eShareMode type name = DBIShareMode
code name = OPENSHARED, integer value = 0

variable name = pszPassword type name = pCHAR
Pointer = 0000:0000
String = (null)

variable name = iOptFlds type name = UINT16
Uint = 0

variable name = pOptFldDesc type name = pFLDDesc
Pointer = 0000:0000

variable name = pOptParams type name = pBYTE
Pointer = 0000:0000

variable name = phDb type name = phDBIDb
Pointer = 2767:BC56

Trace Information Output
If the debug layer determines that a parameter you have passed is invalid, the following information is conveyed:

An "ERROR:" message is echoed to the trace file.
The return value DBIERR_INVALIDPARAM is returned.

These error messages provide clues for determining the cause of a crash or corruption that occurred while
running without the debug layer.

Examples: Error conditions and resulting error messages
The table below shows some possible error conditions and their resulting error messages:

Example of error condition Resulting trace ERROR message

bDefault == 999 ERROR: NOT BOOLEAN

pszTableName == NULL ERROR: NULL STRING POINTER

hCursor == <junk value> ERROR: BAD POINTER OR BAD HANDLE

hCursor == NULL ERROR: NULL POINTER OR NULL HANDLE

Using the Function Reference

You can find a complete description of each BDESDK function by looking in the task-related tables in Function
Reference, Categorical or searching the complete list in Function Reference, Alphabetical.    Each BDESDK
function name begins with the prefix Dbi. The remainder of the name describes the function's use. For example,
DbiGetClientInfo is the name of the BDESDK function that retrieves information about the client application
environment.

The following general conventions and definitions will assist you in understanding the DBESDK function
reference:

Syntax Conventions
Variable Names
Constants
#Defines
Typedefs
Object Definitions
Buffer Typedefs

Syntax Conventions

The syntax for BDESDK function calls is:
DBIResult DBIFN DbiFunctionName (argument1, argument2, argument3
  ...);

Each function definition includes the elements described in this table:

Element Description

Function name Name of function
Description Summary description of function
Syntax Diagram of the function and parameters
Parameters Descriptions of each parameter
Usage Detailed information about using the function
Prerequisites State required before function is called
Completion state State after the function completes
DBIResult return values Description of possible values returned after the function completes, if any
See Also Cross references to other related functions

Each function definition observes these typographical conventions:

Convention Purpose Example

Courier font Keywords that must be typed DBIResult DBIFN DbiInit();
exactly as they appear when
 used (case-sensitive).

italic Parameters that are passed to (hCursor, piRecords, pBuf)
the function, returned from the
function, or both.

[] Brackets enclose optional iPosOffset, [eLock]
parameters. Optional parameters
can be set to NULL.

Variable Names

Each variable name used in this reference begins with a standard prefix. These prefixes indicate the variable's
type or use, as described in the following table:

Prefix Variable type or use

a The declared variable is an array.

b The declared variable is of the boolean type.

dt The declared variable is of the datetime type.

e The content of the declared variable is of the enumerated type.

h The declared variable is used as a handle.

i The declared variable is an integer.

p The declared variable is a pointer.

sz The declared variable is a null-terminated character string.

tm The declared variable is of the timestamp type.

Prefixes can be combined to more completely describe the variable's use. For example, the prefix psz in the
variable name pszIndexName indicates that the variable is a pointer to a null-terminated character string, in this
case, where the name of the index is stored.

Constants

The following table lists the constants used to define maximum limits throughout this reference:

Constant Limit Description

DBIMAXNAMELEN 31 Maximum object name limit (such as, table, field)

DBIMAXTBLNAMELEN 127 Maximum table name length

DBIMAXFLDSINKEY 16 Maximum number of fields in a key

DBIMAXKEYEXPLEN 220 Maximum key expression length

DBIMAXPATHLEN 81 Maximum path    file name length (allocate 82)

DBIMAXEXTLEN 3 Maximum file extension length, not including the extension delimiter "."

DBIMAXDRIVELEN 2 Maximum drive length

DBIMAXMSGLEN 127 Maximum message length (allocate 128)

DBIMAXVCHKLEN 255 Maximum validity check length

DBIMAXPICTLEN 175 Maximum picture length

DBIMAXFLDSINSEC 256 Maximum fields in security specification

DBIMAXSCFIELDS 16 Maximum number of fields in an optional parameter list

DBIMAXSCFLDLEN 128 Maximum field length in an optional parameter list

DBIMAXSCRECSIZE 2048 Maximum record size in an optional parameter list

DBIMAXUSERNAMELEN 14 Maximum user name (general)

DBIMAXXBUSERNAMELEN 12 Maximum user name length for xBASE

DBIMAXBOOKMARKLEN 4104 Maximum bookmark length

#defines

The following table lists the #defines used throughout this reference:

#define Definition

NULL (0)

VOID void

INT8 char

CHAR char

BYTE unsigned char

UINT8 unsigned char

INT16 int (if defined FLAT); short

UINT16 unsigned short (if defined FLAT); unsigned int

INT32 long

UINT32 unsigned long

BOOL short (if defined FLAT) int

FLOAT double

DATE long

TIME long

TIMESTAMP double

DBIFN pascal far

UINT16 DBIResult

Typedefs

The following table lists the typedefs used throughout this reference:

typedefs Definition

VOID far *pVOID

pVOID far *ppVOID

CHAR far *pCHAR

BYTE far *pBYTE

INT8 far *pINT8

UINT8 far *pUINT8

INT16 far *pINT16

UINT16 far *pUINT16

INT32 far *pINT32

UINT32 far *pUINT32

FLOAT far *pFLOAT

DATE far *pDATE

TIME far *pTIME

BOOL far *pBOOL

TIMESTAMP far *pTIMESTAMP

pBYTE far *ppBYTE

pCHAR far *ppCHAR

pBOOL far *ppBOOL

DBIResult far *pDBIResult

Object Definitions

The following objects are defined:

Type Object Description

UINT32 hDBIObj Generic object handle

hDBIObj hDBIDb Database handle

hDBIObj hDBIQry Query handle

hDBIObj hDBIStmt Statement handle ("new query")

hDBIObj hDBICur Cursor handle

hDBIObj hDBISes Session handle

hDBIObj hDBIXlt Translation handle

UINT32 hDBIXact Transaction handle

hDBIObj far *phDBIObj Pointer to generic object handle

hDBICfg far *phDBICfg Pointer to configuration handle

hDBIDb far *phDBIDb Pointer to database handle

hDBIQry far *phDBIQry Pointer to query handle

hDBIStmt far *phDBIStmt Pointer to statement handle

hDBICur far *phDBICur Pointer to cursor handle

hDBISes far *phDBISes Pointer to session handle

hDBIXlt far *phDBIXlt Pointer to translation handle

hDBIXact far *phDBIXact Pointer to transaction handle

Buffer Typedefs

The following typedefs for buffers of various common sizes are defined:

Type typedef Description

DBIPATH CHAR[DBIMAXPATHLEN1] Holds a DOS path

DBINAME CHAR[DBIMAXNAMELEN1] Holds a name

DBIEXT CHAR[DBIMAXEXTLEN1] Holds a file extension

DBIDOTEXT CHAR[DBIMAXEXTLEN2] Holds a file extension including "."

DBIDRIVE CHAR[DBIMAXDRIVELEN1] Holds a drive name

DBITBLNAME CHAR[DBIMAXTBLNAMELEN1] Holds a table name

DBIUSERNAME CHAR[DBIMAXUSERNAMELEN1] Holds a user name

DBIKEY UINT16[DBIMAXFLDSINKEY] Holds a list of fields in a key

DBIKEYEXP CHAR[DBIMAXKEYEXPLEN1]; Holds a key expression

DBIVCHK BYTE[DBIMAXVCHKLEN1] Holds a validity check

DBIPICT CHAR[DBIMAXPICTLEN1] Holds a picture clause

DBIMSG CHAR[DBIMAXMSGLEN1] Holds an error message

Function Reference, Categorical

Each of the BDESDK functions documented in this reference fall into one of the categories listed in the table
below:

Function Type Purpose

Environment Returns information or affects the client application environment.

Session Returns information or affects a session.

Error handling Returns information or performs related tasks.

Locking Returns information or affects locks.

Cursor Returns information or affects cursors and bookmarks.

Index Returns information or affects indexes.

Query Performs query tasks.

Database Returns information or performs related tasks.

Table Returns information or performs table-wide operations.

Data access Performs specific data access operations.

Capability or schema Returns information about database schema.

Date/time/number Handles formats for the session.

Transaction Returns information or performs related tasks.

Environment Functions

Each BDESDK function listed below returns information about the client application environment, such as the
supported table, field and index types for the driver type, or the available driver types. Or the function performs a
task that affects the client application environment, such as loading a driver.

Function Description

DbiAddAlias Adds an alias to the BDE configuration file (IDAPI.CFG).

DbiAnsiToNative Multipurpose translate function.

DbiDebugLayerOptions Activates, deactivates, or sets options for the BDESDK debug layer.

DbiDeleteAlias Deletes an alias from the BDE configuration file (IDAPI.CFG).

DbiExit Disconnects the client application from BDESDK.

DbiGetClientInfo Retrieves system-level information about the client application environment.

DbiGetDriverDesc Retrieves a description of a driver.

DbiGetLdName Retrieves the name of the language driver associated with the specified object name (table name).

DbiGetLdObj Retrieves the language driver object associated with the given cursor.

DbiGetNetUserName Retrieves the user's network login name. User names should be available for all networks supported
by Microsoft Windows.

DbiGetProp Returns a property of an object.

DbiGetSysConfig Retrieves BDESDK system configuration information.

DbiGetSysInfo Retrieves system status and information.

DbiGetSysVersion Retrieves the system version information, including the engine version number, date, and time, and
the client interface version number.

DbiInit Initializes the BDESDK environment.

DbiLoadDriver Loads a given driver.

DbiNativeToAnsi Translates an OEM string to an ANSI string.

DbiOpenCfgInfoList Returns a handle to an in-memory table listing all the nodes in the configuration file accessible by the
specified path.

DbiOpenDriverList Creates an in-memory table containing a list of driver names available to the client application.

DbiOpenFieldTypesList Creates an in-memory table containing a list of field types supported by the table type for the driver
type.

DbiOpenIndexTypesList Creates an in-memory table containing a list of all supported index types for the driver type.

DbiOpenLdList Creates an in-memory table containing a list of available language drivers.

DbiOpenTableList Creates an in-memory table with information about all the tables accessible to the client application.

DbiOpenTableTypesList Creates an in-memory table listing table type names for the given driver.

DbiOpenUserList Creates an in-memory table containing a list of users sharing the same network file.

DbiSetProp Sets the specified property of an object to a given value.

DbiUseIdleTime Allows BDESDK to accomplish background tasks during times when the client application is idle.

Session Functions

Each BDESDK function listed below returns information about a session, or performs a task that affects the
session, such as adding a password.

Function Description

DbiAddPassword Adds a password to the current session.

DbiCheckRefresh Checks for remote updates to tables for all cursors in the current session, and refreshes the cursors if
changed.

DbiCloseSession Closes the session associated with the given session handle.

DbiDropPassword Removes a password from the current session.

DbiGetCallBack Returns a pointer to the function previously registered by the client for the given callback type.

DbiGetCurrSession Returns the handle associated with the current session.

DbiGetDateFormat Gets the date format for the current session.

DbiGetNumberFormat Gets the number format for the current session.

DbiGetSesInfo Retrieves the environment settings for the current session.

DbiGetTimeFormat Gets the time format for the current session.

DbiRegisterCallBack Registers a callback function for the client application.

DbiSetCurrSession Sets the current session of the client application to the session associated with hSes.

DbiSetDateFormat Sets the date format for the current session.

DbiSetNumberFormat Sets the number format for the current session.

DbiSetPrivateDir Sets the private directory for the current session.

DbiSetTimeFormat Sets the time format for the current session.

DbiStartSession Starts a new session for the client application.

Error Handling Functions

Each BDESDK function listed below returns error handling information, or performs a task that relates to error
handling.

Function Description

DbiGetErrorContext After receiving an error code back from a call, enables the client to probe BDESDK for more specific error
information.

DbiGetErrorEntry Returns the error description of a specified error stack entry.

DbiGetErrorInfo Provides descriptive error information about the last error that occurred.

DbiGetErrorString Returns the message associated with a given error code.

Locking Functions

Each BDESDK function listed below returns information about lock status, or acquires or releases a lock at the
table or record level.

Function Description

DbiAcqPersistTableLock Acquires an exclusive persistent lock on the table preventing other users from using the table or
creating a table of the same name.

DbiAcqTableLock Acquires a table-level lock on the table associated with the given cursor.

DbiGetRecord Record positioning functions have a lock parameter.

DbiIsRecordLocked Checks the lock status of the current record.

DbiIsTableLocked Returns the number of locks of a specified type acquired on the table associated with the given
session.

DbiIsTableShared Determines whether the table is physically shared or not.

DbiOpenLockList Creates an in-memory table containing a list of locks acquired on the table.

DbiOpenUserList Creates an in-memory table containing a list of users sharing the same network file.

DbiRelPersistTableLock Releases the persistent table lock on the specified table.

DbiRelRecordLock Releases the record lock on either the current record of the cursor or only the locks acquired in the
current session.

DbiRelTableLock Releases table locks of the specified type associated with the current session (the session in which
the cursor was created).

DbiSetLockRetry Sets the table and record lock retry time for the current session.

Cursor Functions

Each BDESDK function listed below returns information about a cursor, or performs a task that performs a cursor-
related task such as positioning of a cursor, linking of cursors, creating and closing cursors, counting of records
associated with a cursor, filtering, setting and comparing bookmarks, and refreshing all buffers associated with a
cursor.

Function Description

DbiActivateFilter Activates a filter.

DbiAddFilter Adds a filter to a table, but does not activate the filter (the record set is not yet altered).

DbiBeginLinkMode Converts a cursor to a link cursor. Given an open cursor, prepares for linked access. Returns a new
cursor.

DbiCloneCursor Creates a new cursor (clone cursor) which has the same result set as the given cursor (source
cursor).

DbiCloseCursor Closes a previously opened cursor.

DbiCompareBookMarks Compares the relative positions of two bookmarks in the result set associated with the cursor.

DbiDeactivateFilter Temporarily stops the specified filter from affecting the record set by turning the filter off.

DbiDropFilter Deactivates and removes a filter from memory, and frees all resources.

DbiEndLinkMode Ends linked cursor mode, and returns the original cursor.

DbiExtractKey Retrieves the key value for the current record of the given cursor or from the supplied record buffer.

DbiForceReread Refreshes all buffers associated with the cursor, if necessary.

DbiFormFullName Returns the fully qualified table name.

DbiGetBookMark Saves the current position of a cursor to the client-supplied buffer called a bookmark.

DbiGetCursorForTable Finds the cursor for the given table.

DbiGetCursorProps Returns the properties of the cursor.

DbiGetFieldDescs Retrieves a list of descriptors for all the fields in the table associated with the cursor.

DbiGetLinkStatus Returns the link status of the cursor.

DbiGetNextRecord Retrieves the next record in the table associated with the cursor.

DbiGetPriorRecord Retrieves the previous record in the table associated with the given cursor.

DbiGetProp Returns a property of an object.

DbiGetRecord Retrieves the current record, if any, in the table associated with the cursor.

DbiGetRecordCount Retrieves the current number of records associated with the cursor.

DbiGetRecordForKey Finds and retrieves a record matching a key and positions the cursor on that record.

DbiGetRelativeRecord Positions the cursor on a record in the table relative to the current position of the cursor.

DbiGetSeqNo Retrieves the sequence number of the current record in the table associated with the cursor.

DbiLinkDetail Establishes a link between two tables such that the detail table has its record set limited to the set of
records matching the linking key values of the master table cursor.

DbiLinkDetailToExp Links the detail cursor to the master cursor using an expression.

DbiMakePermanent Changes a temporary table created by DbiCreateTempTable into a permanent table.

DbiOpenTable Opens the given table for access and associates a cursor handle with the opened table.

DbiResetRange Removes the specified table's limited range previously established by the function DbiSetRange.

DbiSaveChanges Forces all updated records associated with the cursor to disk.

DbiSetFieldMap Sets a field map of the table associated with the given cursor.

DbiSetProp Sets the specified property of an object to a given value.

DbiSetRange Sets a range on the result set associated with the cursor.

DbiSetToBegin Positions the cursor to BOF (just before the first record).

DbiSetToBookMark Positions the cursor to the location saved in the specified bookmark.

DbiSetToCursor Sets the position of one cursor (the destination cursor) to that of another (the source cursor).

DbiSetToEnd Positions the cursor to EOF (just after the last record).

DbiSetToKey Positions an index-based cursor on a key value.

DbiSetToRecordNo Positions the cursor of a dBASE table to the given physical record number.

DbiSetToSeqNo Positions the cursor to the specified sequence number of a Paradox table.

DbiUnlinkDetail Removes a link between two cursors.

Index Functions

Each BDESDK function listed below returns information about an index or indexes, or performs a task that affects
an index, such as dropping it, deleting it, or adding it.

Function Description

DbiAddIndex Creates an index on an existing table.

DbiCloseIndex Closes the specified index on a cursor.

DbiCompareKeys Compares two key values based on the current index of the cursor.

DbiDeleteIndex Drops an index on a table.

DbiExtractKey Retrieves the key value for the current record of the given cursor or from the supplied record buffer.

DbiGetIndexDesc Retrieves the properties of the given index associated with the cursor.

DbiGetIndexDescs Retrieves index properties.

DbiGetIndexForField Returns the description of any useful index on the specified field.

DbiGetIndexSeqNo Retrieves the ordinal number of the index in the index list of the specified cursor.

DbiGetIndexTypeDesc Retrieves a description of the index type.

DbiOpenIndex Opens the index for the table associated with the cursor.

DbiRegenIndex Regenerates an index to make sure that it is up-to-date (all records currently in the table are included
in the index and are in the index order).

DbiSwitchToIndex Allows the user to change the active index order of the given cursor.

Query Functions

Each BDESDK function listed below performs a Query task.

Function Description

DbiGetProp Returns a property of an object.

DbiQExec Executes the previously prepared query identified by the supplied statement handle and returns a
cursor to the result set, if one is generated.

DbiQExecDirect Executes a SQL or QBE query and returns a cursor to the result set, if one is generated.

DbiQExecProcDirect Executes a stored procedure and returns a cursor to the result set, if one is generated.

DbiQFree Frees the resources associated with a previously prepared query identified by the supplied statement
handle.

DbiQInstantiateAnswer Creates a permanent table from a cursor handle.

DbiQPrepare Prepares a SQL or QBE query for execution, and returns a handle to a statement containing the
prepared query.

DbiQPrepareExt Prepares a SQL or QBE query for execution, and returns a handle to a statement containing the
prepared query.    In addition, provides an option that allows the user to modify or update the resulting
record set.

DbiQPrepareProc Prepares and optionally binds parameters for a stored procedure.

DbiQSetParams Associates data with parameter markers embedded within a prepared query.

DbiQSetProcParams Binds parameters for a stored procedure prepared with DbiQPrepareProc.

DbiSetProp Sets the specified property of an object to a given value.

Database Functions

Each BDESDK function listed below returns information about a specific database, available databases, or
performs a database-related task.

Function Description

DbiCloseDatabase Closes a database and all tables associated with this database handle.

DbiGetDatabaseDesc Retrieves the description of the specified database from the configuration file.

DbiGetDirectory Retrieves the current working directory or the default directory.

DbiOpenDatabase Opens a database in the current session and returns a database handle.

DbiOpenDatabaseList Creates an in-memory table containing a list of accessible databases and their descriptions.

DbiOpenFileList Opens a cursor on the virtual table containing all the tables accessible by the client application and
their descriptions.

DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a specified table, along with their
descriptions.

DbiOpenTableList Creates an in-memory table with information about all the tables accessible to the client application.

DbiSetDirectory Sets the current directory for a standard database.

Table Functions

Each BDESDK function listed below returns information about a specific table, such as all the locks acquired on
the table, all the referential integrity links on the table, the indexes open on the table, or whether or not the table is
shared. Or, it performs a table-wide operation, such as copying and deleting.

Function Description

DbiBatchMove Appends, updates, subtracts, and copies records or fields from a source table to a destination table.

DbiCopyTable Duplicates the specified source table to a destination table.

DbiCreateInMemTable Creates a temporary, in-memory table.

DbiCreateTable Creates a table.

DbiCreateTempTable Creates a temporary table that is deleted when the cursor is closed, unless the call is followed by a
call to DbiMakePermanent.

DbiDeleteTable Deletes a table.

DbiDoRestructure Changes the properties of a table.

DbiEmptyTable Deletes all records from the table associated with the specified table cursor handle or table name.

DbiGetTableOpenCount Returns the total number of cursors that are open on the specified table.

DbiGetTableTypeDesc Returns a description of the capabilities of the table type for the driver type.

DbiIsTableShared Determines whether the table is physically shared or not.

DbiMakePermanent Changes a temporary table created by DbiCreateTempTable into a permanent table.

DbiOpenFamilyList Creates an in-memory table listing the family members associated with a specified table.

DbiOpenFieldList Creates an in-memory table listing the fields in a specified table and their descriptions.

DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a specified table, along with their
descriptions.

DbiOpenLockList Creates an in-memory table containing a list of locks acquired on the table associated with the cursor.

DbiOpenRintList Creates an in-memory table listing the referential integrity links for a specified table, along with their
descriptions.

DbiOpenSecurityList Creates an in-memory table listing record-level security information about a specified table.

DbiOpenTable Opens the given table for access and associates a cursor handle with the opened table.

DbiQInstantiateAnswer Creates a permanent table from a cursor handle.

DbiPackTable Optimizes table space by rebuilding the table associated with the cursor and releasing any free space.

DbiRegenIndexes Regenerates all out-of-date indexes on a given table.

DbiRenameTable Renames the table and all of its resources to the new name specified.

DbiSaveChanges Forces all updated records associated with the table to disk.

DbiSortTable Sorts an opened or closed table, either into itself or into a destination table. There are options to
remove duplicates, to enable case-insensitive sorts and special sort functions, and to control the
number of records sorted.

Data Access Functions

Each BDESDK function listed below accesses data in a table.

Function Description

DbiAppendRecord Appends a record to the end of the table associated with the given cursor.

DbiDeleteRecord Deletes the current record of the given cursor.

DbiFreeBlob Closes the BLOB handle located within the specified record buffer.

DbiGetBlob Retrieves data from the specified BLOB field.

DbiGetBlobHeading Retrieves information about a BLOB field from the BLOB heading (tuple) in the record buffer.

DbiGetBlobSize Retrieves the size of the specified BLOB field in bytes.

DbiGetField Retrieves the data contents of the requested field from the record buffer.

DbiGetFieldDescs Retrieves a list of descriptors for all the fields in the table associated with the cursor.

DbiGetFieldTypeDesc Retrieves a description of the specified field type.

DbiInitRecord Initializes the record buffer to a blank record according to the data types of the fields.

DbiInsertRecord Inserts a new record into the table associated with the given cursor.

DbiModifyRecord Modifies the current record of table associated with the cursor with the data supplied.

DbiOpenBlob Prepares the cursor's record buffer to access a BLOB field.

DbiPutBlob Writes data into an open BLOB field.

DbiPutField Writes the field value to the correct location in the supplied record buffer.

DbiReadBlock Reads a specified number of records (starting from the next position of the cursor) into a buffer.

DbiSaveChanges Forces all updated records associated with the cursor to disk.

DbiSetFieldMap Sets a field map of the table associated with the given cursor.

DbiTruncateBlob Shortens the size of the contents of a BLOB field, or deletes the contents of a BLOB field from the
record, by shortening it to zero.

DbiUndeleteRecord Undeletes a dBASE record that has been marked for deletion (a soft delete).

DbiVerifyField Verifies that the data specified is a valid data type for the field specified, and that all validity checks in
place for the field are satisfied. It can also be used to check if a field is blank.

DbiWriteBlock Writes a block of records to the table associated with the cursor.

Capability or Schema Functions

Each BDESDK function listed below returns information about capabilties, or about the schema.

Function Description

DbiOpenCfgInfoList Returns a handle to an in-memory table listing all the nodes in the configuration file accessible by the
specified path.

DbiOpenDatabaseList Creates an in-memory table containing a list of accessible databases and their descriptions.

DbiOpenDriverList Creates an in-memory table containing a list of driver names available to the client application.

DbiOpenFamilyList Creates an in-memory table listing the family members associated with a specified table.

DbiOpenFieldList Creates an in-memory table listing the fields in a specified table and their descriptions.

DbiOpenFieldTypesList Creates an in-memory table containing a list of field types supported by the table type for the driver
type.

DbiOpenIndexList Opens a cursor on an in-memory table listing the indexes on a specified table, along with their
descriptions.

DbiOpenIndexTypesList Creates an in-memory table containing a list of all supported index types for the driver type.

DbiOpenLockList Creates an in-memory table containing a list of locks acquired on the table.

DbiOpenRintList Creates an in-memory table listing the referential integrity links for a specified table, along with their
descriptions.

DbiOpenSecurityList Creates an in-memory table listing record-level security information about a specified table.

DbiOpenTableList Creates an in-memory table with information about all the tables accessible to the client application.

DbiOpenTableTypesList Creates an in-memory table listing table type names for the given driver.

DbiOpenVchkList Creates an in-memory table containing records with information about validity checks for fields within
the specified table.

Date/Time/Number Functions

Each BDESDK function listed below sets or retrieves date, time or number formats for the current session, or
decodes or encodes date and time into or from a timestamp.

Function Description

DbiBcdFromFloat Converts FLOAT data to binary coded decimal (BCD) format.

DbiBcdToFloat Converts binary coded decimal (BCD) data to FLOAT format.

DbiDateDecode Decodes DATE into separate month, day and year components.

DbiDateEncode Encodes separate date components into date for use by DbiPutField and other functions.

DbiGetDateFormat Gets the date format for the current session.

DbiGetNumberFormat Gets the number format for the current session.

DbiGetTimeFormat Gets the time format for the current session.

DbiSetDateFormat Sets the date format for the current session.

DbiSetNumberFormat Sets the number format for the current session.

DbiSetTimeFormat Sets the time format for the current session.

DbiTimeDecode Decodes time into separate components (hours, minutes, milliseconds).

DbiTimeEncode Encodes separate time components into time for use by DbiPutField and other functions.

DbiTimeStampDecode Extracts separate encoded date and time components from the timestamp.

DbiTimeStampEncode Encodes the encoded date and encoded time into a timestamp.

Transaction Functions

Each BDESDK function listed below begins, ends, or returns information about a transaction.

Function Description

DbiBeginTran Begins a transaction.

DbiEndTran Ends a transaction.

DbiGetTranInfo Retrieves the transaction state.

Function Reference, Alphabetical
DbiAcqPersistTableLock

DbiAcqTableLock

DbiActivateFilter

DbiAddAlias

DbiAddFilter

DbiAddIndex

DbiAddPassword

DbiAnsiToNative

DbiAppendRecord

DbiBatchMove

DbiBcdFromFloat

DbiBcdToFloat

DbiBeginLinkMode

DbiBeginTran

DbiCheckRefresh

DbiCloneCursor

DbiCloseCursor

DbiCloseDatabase

DbiCloseFieldXlt

DbiCloseIndex

DbiCloseSession

DbiCompareBookMarks

DbiCompareKeys

DbiCopyTable

DbiCreateInMemTable

DbiCreateTable

DbiCreateTempTable

DbiDateDecode

DbiDateEncode

DbiDeactivateFilter

DbiDebugLayerOptions

DbiDeleteAlias

DbiDeleteIndex

DbiDeleteRecord

DbiDeleteTable

DbiDoRestructure

DbiDropFilter

DbiDropPassword

DbiEmptyTable

DbiEndLinkMode

DbiEndTran

DbiExit

DbiExtractKey

DbiForceReread

DbiFormFullName

DbiFreeBlob

DbiGetBlob

DbiGetBlobHeading

DbiGetBlobSize

DbiGetBookMark

DbiGetCallBack

DbiGetClientInfo

DbiGetCurrSession

DbiGetCursorForTable

DbiGetCursorProps

DbiGetDatabaseDesc

DbiGetDateFormat

DbiGetDirectory

DbiGetDriverDesc

DbiGetErrorContext

DbiGetErrorEntry

DbiGetErrorInfo

DbiGetErrorString

DbiGetField

DbiGetFieldDescs

DbiGetFieldTypeDesc

DbiGetFilterInfo

DbiGetIndexDesc

DbiGetIndexDescs

DbiGetIndexForField

DbiGetIndexSeqNo

DbiGetIndexTypeDesc

DbiGetLdName

DbiGetLdObj

DbiGetLinkStatus

DbiGetNetUserName

DbiGetNextRecord

DbiGetNumberFormat

DbiGetObjFromName

DbiGetObjFromObj

DbiGetPriorRecord

DbiGetProp

DbiGetRecord

DbiGetRecordCount

DbiGetRecordForKey

DbiGetRelativeRecord

DbiGetRintDesc

DbiGetSeqNo

DbiGetSesInfo

DbiGetSysConfig

DbiGetSysInfo

DbiGetSysVersion

DbiGetTableOpenCount

DbiGetTableTypeDesc

DbiGetTimeFormat

DbiGetTranInfo

DbiGetVchkDesc

DbiInit

DbiInitRecord

DbiInsertRecord

DbiIsRecordLocked

DbiIsTableLocked

DbiIsTableShared

DbiLinkDetail

DbiLinkDetailToExp

DbiLoadDriver

DbiMakePermanent

DbiModifyRecord

DbiNativeToAnsi

DbiOpenBlob

DbiOpenCfgInfoList

DbiOpenDatabase

DbiOpenDatabaseList

DbiOpenDriverList

DbiOpenFamilyList

DbiOpenFieldList

DbiOpenFieldTypesList

DbiOpenFieldXlt

DbiOpenFileList

DbiOpenIndex

DbiOpenIndexList

DbiOpenIndexTypesList

DbiOpenLdList

DbiOpenLockList

DbiOpenRintList

DbiOpenSecurityList

DbiOpenSPList

DbiOpenSPParamList

DbiOpenTable

DbiOpenTableList

DbiOpenTableTypesList

DbiOpenUserList

DbiOpenVchkList

DbiPackTable

DbiPutBlob

DbiPutField

DbiQExec

DbiQExecDirect

DbiQExecProcDirect

DbiQFreeDbiQInstantiateAnswer

DbiQPrepare

DbiQPrepareExt

DbiQPrepareProc

DbiQSetParams

DbiQSetProcParams

DbiReadBlock

DbiRegenIndex

DbiRegenIndexes

DbiRegisterCallBack

DbiRelPersistTableLock

DbiRelRecordLock

DbiRelTableLock

DbiRenameTable

DbiResetRange

DbiSaveChanges

DbiSetCurrSession

DbiSetDateFormat

DbiSetDirectory

DbiSetFieldMap

DbiSetLockRetry

DbiSetNumberFormat

DbiSetPrivateDir

DbiSetProp

DbiSetRange

DbiSetTimeFormat

DbiSetToBegin

DbiSetToBookMark

DbiSetToCursor

DbiSetToEnd

DbiSetToKey

DbiSetToRecordNo

DbiSetToSeqNo

DbiSortTable

DbiStartSession

DbiSwitchToIndex

DbiTimeDecode

DbiTimeEncode

DbiTimeStampDecode

DbiTimeStampEncode

DbiTranslateField

DbiTranslateRecordStructure

DbiTruncateBlob

DbiUndeleteRecord

DbiUnlinkDetail

DbiUseIdleTime

DbiVerifyField

DbiWriteBlock

DbiAcqPersistTableLock

Syntax
DBIResult DBIFN DbiAcqPersistTableLock (hDb, pszTableName, [pszDriverType]);

Description
DbiAcqPersistTableLock acquires an exclusive persistent lock on the table that prevents other users from using
the table or creating a table of the same name.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Specifies the pointer to table name. For Paradox , if pszTableName is a fully qualified name of a table, the pszDriverType
parameter need not be specified. If the path is not included, the path name is taken from the current directory of the database
associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Specifies the pointer to the driver type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName
has no extension. This parameter is ignored if the database associated with hDb is a SQL database.

For Paradox tables, pszDriverType is required if the client application wants to overwrite the default file extension, including the
situation where pszTableName is terminated with a period(.) pszDriverType must be szPARADOX.

If pszTableName does not supply the default extension, and pszTableType is NULL, DbiOpenTable tries to open the table with
the default file extension of all file-based drivers listed in the configuration file in the order that the drivers are listed.

Usage
This function can be used to acquire an exclusive lock on a non-existent table as a way to reserve the table name.
The function fails if the table is already in use.

dBASE: This function is not supported for dBASE tables.

SQL: This function depends on the capabilities of the server. Some servers provide non-blocking table locks;
others provide blocking table locks only; others don't provide table locking. In no case is table locking truly
persistent, however. If table locking is supported for the server but locks are not held across transactions, the lock
is automatically reacquired after transaction commit. If the application requires a commit, it is responsible for
insuring that the window of exposure between lock release and reacquisition has not impacted its consistency
requirements. This function is provided to enable a degree of consistency with other drivers. It is recommended
that transactions or transactions combined with explicit locking be used for SQL.

Prerequisites
The client application must have exclusive access to the table; if another user is accessing the table, the attempt
to lock the table fails.

Completion state
The acquired persistent lock must be explicitly released by the client application. To release the lock, the client
application that placed the lock must call DbiRelPersistTableLock.

DbiResult return values
DBIERR_NONE The persistent lock was acquired successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM Either pszTableName or *pszTableName is NULL.

DBIERR_INVALIDFILENAME An invalid file name was specified by pszTableName.

DBIERR_NOSUCHTABLE pszTableName is invalid.

DBIERR_UNKNOWNTBLTYPE The driver type specified by pszTableType is invalid.

DBIERR_LOCKED The table is already opened by another user, or another session.

DBIERR_NOTSUPPORTED This function is not supported for dBASE tables.

See also
DbiOpenLockList

DbiAcqTableLock

Syntax
DBIResult DBIFN DbiAcqTableLock (hCursor, eLockType);

Description
DbiAcqTableLock acquires a table-level lock on the table associated with the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

eLockType Type: DBILockType (Input)
Specifies the table lock type.

Usage
This function is used to prevent other users from updating a table. It can be used to ensure that the data read by
the client application is the same data that is stored in the table at that specific moment.

This function is used to acquire a lock of higher precedence than the lock acquired when the cursor was opened.
Locks acquired are owned by the session, not the cursor. If a lock cannot be obtained, an error is returned.

Redundant locks can be acquired on the table. For each lock acquired, a separate call to DbiRelTableLock is
required to release it.

dBASE: If a READ lock is attempted, it is automatically upgraded to a WRITE lock.

Paradox: Both READ locks and WRITE locks can be acquired.

SQL: This function depends on the capabilities of the server. Some servers provide non-blocking table locks;
others provide blocking table locks only; others don't provide table locking. If table locking is supported for the
server but locks are not held across transactions, the lock is automatically reacquired after transaction commit. If
the application requires a commit, it is responsible for insuring that the window of exposure between lock release
and reacquisition has not impacted its consistency requirements. This function is provided to enable a degree of
consistency with other drivers. It is recommended that transactions or transactions combined with explicit locking
be used for SQL.

Completion state
Any cursor opened on a table can release locks placed by any cursor opened on that table within the same
session. When the last cursor on the table is closed, the locks on the table are automatically released.

DbiResult return values
DBIERR_NONE The lock was acquired successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_LOCKED The requested lock is not available.

DBIERR_TBLLOCKLIMIT The lock limit has been reached.

See also
DbiRelTableLock, DbiIsTableLocked, DbiOpenLockList, DbiAcqPersistTableLock, DbiOpenTable

eLockType
eLockType can be one of the following values:

Lock Type Description

dbiWRITELOCK When a write lock is placed, it prevents other sessions from placing any locks. For SQL tables, a write lock
is the same as a read lock; behavior varies according to the server.

dbiREADLOCK When a read lock is placed, it prevents other users from placing a write lock. For dBASE tables, a read lock
is automatically upgraded to a write lock. For SQL tables, a write lock is the same as a read lock; behavior
varies according to the server.

Note: Exclusive locks and NO locks are not considered acquired table locks. They are achieved with the
DbiOpenTable function, and are owned by the cursor, rather than the session.

Note: Persistent locks are acquired table locks for Paradox and SQL tables only; acquired by the
DbiAcqPersistTableLock function.

DbiActivateFilter

Syntax
DBIResult DBIFN DbiActivateFilter (hCursor, [hFilter]);

Description
DbiActivateFilter activates a filter.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the cursor for which the filter is to be activated.

hFilter Type: hDBIFilter (Input)
Specifies the filter handle of the filter to be activated.

Usage
A single cursor can have many filters associated with it. If the filter handle is NULL, all filters for this cursor are
activated. See DbiAddFilter for a detailed explanation of filters.

Prerequisites
The filter must have been successfully added with DbiAddFilter, which returns the filter handle.

Completion state
Once the filter is activated, the filter controls the record set and all operations for that cursor are affected. Only
those records which meet the criteria defined by the filter will be retrieved. For example, moving to the next record
moves the cursor to the next record that passes the filter criteria, not to the next sequential record. The filter
provides a restricted view of live data.

DbiResult return values
DBIERR_NONE The filter was activated successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NOSUCHFILTER The specified filter handle is invalid.

See also
DbiAddFilter, DbiDeactivateFilter, DbiDropFilter

DbiAddAlias

Syntax
DBIResult DbiAddAlias([hCfg], pszAliasName, pszDriverType, pszParams, bPersistent);

Description
Adds an alias to the configuration file specified by the parameter hCfg.

Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file to be used.    This parameter is required to be NULL, indicating that the new alias is added to the
configuration file for the current session.

pszAliasName Type: pCHAR (Input)
Pointer to the alias name. This is the name of the new alias that is to be added.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. This is the driver type for the new alias that is to be added. If this parameter is NULL, the alias will be
for the STANDARD database. If szPARADOX, szDBASE, or szASCII are passed, this will add an entry in the STANDARD
database alias generated to indicate that this will be the preferred driver type.    If a driver name is passed in, it must reference a
driver name that exists in the configuration file being modified.

pszParams Type: pCHAR (Input)
Pointer to a list of optional parameters. This is a list defined as follows:

"AliasOption: Option Data[;AliasOption: Option Data][;...]"
AliasOption must correspond to a value retrieved by DbiOpenCfgInfoList. For a STANDARD database alias, the only valid
parameter is PATH, all others will be ignored (no errors).

Examples
To set the path for a STANDARD database use:

"PATH:c:\mydata"

To set the server name and user name for a SQL driver use:
"SERVER NAME: server:/path/database;USER NAME: myname"
bPersistent Type: BOOL (Input)

This determines the scope of the new alias:

TRUE Stored in the configuration file for future sessions.
FALSE For use only in this session.

Usage
The alias added by this function will have whatever default values are associated with the driver specified unless
they are specifically mentioned in the pszParams parameter. For a standard database alias, all entries in
pszParams except PATH will be ignored.    You can use DbiOpenCfgInfoList to modify the default values after
DbiAddAlias has been called.

Prerequisites
DbiInit must be called prior to calling DbiAddAlias.

DbiResult return values
DBIERR_INVALIDPARAM Null alias name, or one of the following was encountered as in pszDriverType: szASCII,

szDBASE, szPARADOX. In the case of the latter, use a NULL pszDriverType to indicate a
STANDARD database.

DBIERR_NONE The alias was added successfully.

DBIERR_NAMENOTUNIQUE Another alias with the same name already exists (applicable only when bPersistent is TRUE).

DBIERR_OBJNOTFOUND One (or more) of the optional parameters passed in through pszParams was not found as a
valid type in the driver section of the configuration file.

DBIERR_UNKNOWNDRIVER No driver name found in configuration file matching pszDriverType.

See Also
DbiInit, DbiOpenCfgInfoList

DbiAddFilter

Syntax
DBIResult DBIFN DbiAddFilter (hCursor, [iClientData], [iPriority], [bCanAbort], pcanExpr, [pfFilter], phFilter);

Description
DbiAddFilter adds a filter to a table. When activated with DbiActivateFilter, only those records in the table that
satisfy the filter condition are seen.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the table to which the filter is being applied.

iClientData Type: UINT32 (Input)
Not currently used. Must be 0.

iPriority Type: UINT16 (Input)
Not currently used. Must be 1.

bCanAbort Type: BOOL (Input)
Not currently used. Must be FALSE.

pcanExpr Type: pCANExpr (Input)
Pointer to the CANExpr structure, which describes the filter condition as a Boolean expression in prefix format.

pfFilter Type: pfGENFilter (Input)
Not currently used. Must be NULL.

phFilter Type: phDBIFilter (Output)
Pointer to the filter handle.

Usage
Filters subset result sets. They are similar to a SQL statement's WHERE clause, but are expressed in prefix
format. The filter must be specified by the client as a filter expression returning TRUE or FALSE. Multiple filters
are allowed per table, and if more than one filter is active, records that violate any active filter condition are not
included in the result set. Filters can be switched on and off when needed (using DbiActivateFilter and
DbiDeactivateFilter), and are automatically dropped when the table is closed.

DbiGetSeqNo is not influenced by filters; the sequence number returned is that of the record in the original table.
DbiGetRecordCount does not guarantee to return an exact count of all records in the filter set. Drivers can return
the count of all records (including those not satisfying the filter condition) or can return an estimate.

Note: Passthrough SQL query cursors do not support this function currently.

DbiResult return values
DBIERR_NONE The filter has been successfully added.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NA The filter condition described by the filter expression could not be handled by the driver.

See also
DbiActivateFilter, DbiDeactivateFilter, DbiDropFilter

DbiAddIndex

Syntax
DBIResult DBIFN DbiAddIndex (hDb, hCursor, pszTableName, [pszDriverType], pIdxDesc, [pszKeyviolName]);

Description
DbiAddIndex creates an index on an existing table specified by pszTableName or associated with the cursor
handle specified by hCursor.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

hCursor Type: hDBICur (Input)
Specifies the cursor on the table. Optional. If hCursor is specified, the operation is performed on the table associated with the
cursor. If hCursor is NULL, pszTableName and pszTableType determine the table to be used.

pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTableName and pszDriverType determine the table to be used. (If
both pszTableName and hCursor are specified, pszTableName is ignored.)

For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. This parameter is ignored if the database associated with hDb is a SQL database. pszDriverType can be one of the
following values: szDBASE or szPARADOX.

pIdxDesc Type: pIDXDesc (Input)
Pointer to the index descriptor structure (IDXDesc). The IDXDesc elements required vary by database driver.

pszKeyviolName Type: pCHAR (Input)
Optional. Specifies key violation table name.

Usage
If a cursor handle is supplied, the function generally does not affect the order or the position of the cursor.
However, adding Paradox primary indexes sets the cursor position to the beginning of the file.

Index descriptors vary by driver. For details, see IDXDesc and IDXType

dBASE: The client application must have permission to lock the table exclusively.

SQL: The client application must have the appropriate privileges to add indexes.

Paradox: The client application must have permission to lock the table exclusively. If adding a non-maintained
Paradox index, only a read lock is required.

Prerequisites
If the table name or cursor handle is used to specify the table, the cursor must be opened exclusively on behalf of
the client application, and is closed after the index has been created. If the index is maintained or primary, the
cursor also must be opened exclusively.

Completion state
Before the cursor is reordered to reflect the newly added index, the application must use or switch to the index.

DbiResult return values
DBIERR_NONE The index was successfully added.

DBIERR_INVALIDHNDL The specified database handle or the cursor handle (if specified) is invalid or NULL.

DBIERR_INVALIDPARAM Neither hCursor nor pszTableName was specified.

DBIERR_UNKNOWNTBLTYPE The parameter, pszDriverType is invalid.

DBIERR_PRIMARYKEYREDEFINE The primary index already exists; illegal to define another.

DBIERR_INVALIDINDEXTYPE The index descriptor is invalid.

DBIERR_INVALIDIDXDESC The index descriptor is invalid.

DBIERR_INVALIDFLDTYPE Attempting to index an invalid field type (that is, BLOB field)

DBIERR_INVALIDINDEXNAME The index name or tag name is invalid (usually for dBASE tables)

DBIERR_NAMEREQUIRED Index name is required.

DBIERR_NAMENOTUNIQUE Index name was not unique.

DBIERR_MUSTUSBASEORDER The default order must be used when adding an index.

DBIERR_NEEDEXCLACCESS Table is opened in share mode when creating a maintained or primary index.

See also
DbiOpenIndexList, DbiGetIndexDesc, DbiSetToKey, DbiRegenIndex, DbiRegenIndexes, DbiDeleteIndex,
DbiOpenIndex, DbiCloseIndex, DbiSwitchToIndex, DbiCreateTable, DbiDoRestructure

DbiAddPassword

Syntax
DBIResult DBIFN DbiAddPassword (pszPassword);

Description
DbiAddPassword adds a password to the current session. This function is supported for Paradox tables only.

Parameters
pszPassword Type: pCHAR (Input)
Pointer to the password to be added.

Usage
DbiAddPassword provides users with access to a previously encrypted table (adding a password does not encrypt
the table). Examples of operations on an encrypted table include: opening the table, record and field access on
the table, and batch functions (copy, delete, empty, or restructure). DbiCreateTable and DbiDoRestructure can be
used to place or remove table encryption.

Paradox: Table and field level security is supported for the Paradox driver only.

SQL: This function is not supported with SQL tables. Access rights for SQL drivers are controlled when the
database is opened.

DbiResult return values
DBIERR_NONE The password was successfully added.

DBIERR_PASSWORDLIMIT Maximum number of passwords have already been added.

DBIERR_INVALIDPASSWORD The specified password is invalid (for example, it is too long or contains invalid characters).

See also
DbiDropPassword, DbiCreateTable, DbiDoRestructure

DbiAnsiToNative

Syntax
DBIResult DBIFN DbiAnsiToNative (pLdObj, pOemStr, pAnsiStr, iLen, pbDataLoss);

Description
DbiAnsiToNative translates strings from ANSI to the language driver's native character set. If the native character
set is ANSI, no translation takes place.

Parameters
pLdObj Type: pVOID (Input)
Pointer to the language driver object returned from DbiGetLdObj.

pOemStr Type: pCHAR (Output)
Pointer to the client buffer where the translation string is placed. If pOemStr equals pAnsiStr, conversion occurs in place.

pAnsiStr Type: pCHAR (Input)
Pointer to the client buffer containing the ANSI data.

iLen Type: UINT16 (Input)
If iLen equals 0, assumes null-terminated string; otherwise iLen specifies the length of the buffer to convert.

pbDataLoss Type: pBOOL (Output)
Pointer to a client variable. If set to TRUE, the ANSI string cannot map to a character in the native character set.

Usage
Works on drivers with both ANSI and OEM native character sets. Does not handle multi-byte character sets, such
as Japanese ShiftJIS. If the native character set is ANSI, no translation takes place.    See International
Compatibility

DBIResult return values
DBIERR_NONE Translation completed successfully.

See also
DbiNativeToAnsi, DbiGetLdObj

DbiAppendRecord

Syntax
DBIResult DBIFN DbiAppendRecord (hCursor, pRecBuf);

Description
DbiAppendRecord appends a record to the end of the table associated with the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to the table to which the record is being appended.

pRecBuf Type: pBYTE (Input)
Specifies the pointer to the record buffer.

Usage
The contents of the current record buffer are appended. This function is equivalent to calling DbiSetToEnd
followed by DbiInsertRecord.

dBASE: This function behaves the same as DbiInsertRecord.

Paradox: For tables with a primary index, where physical reordering of records is forced, DbiAppendRecord is
equivalent to DbiInsertRecord. If referential integrity or validity checks are applied to the Paradox table, the data is
verified prior to appending the record. If any of the checks fail, an error is returned and the operation is not
completed.

SQL: This function behaves the same as DbiInsertRecord.

Prerequisites
A valid cursor handle must be obtained. Other users cannot have a write lock on the table. The record buffer
should be initialized with DbiInitRecord, and data filled in using DbiPutField.

Completion state
This function leaves the cursor positioned on the inserted record. If there is an active range and the inserted
record falls outside the range, the cursor might be positioned at the beginning or end of the file.

DbiResult return values
DBIERR_NONE The data was successfully appended.

DBIERR_INVALIDHNDL The specified cursor is invalid or NULL.

DBIERR_INVALIDPARAM The record buffer is NULL.

DBIERR_KEYVIOL The table has a unique index and the inserted key value conflicts with an existing record's key
value.

DBIERR_FOREIGNKEYERR A linking field value does not exist in the corresponding master table (Paradox only).

DBIERR_MINVALERR The specified data is less than the required minimum value.

DBIERR_MAXVALERR The specified data is greater than the required maximum value.

DBIERR_LOOKUPTABLEERR One or more of the fields in the record buffer have failed an existing validity check (Paradox
only).

DBIERR_REQDERR A required field in the record buffer was left blank (not applicable to dBASE).

DBIERR_TABLEREADONLY Table access denied; the cursor does not have write access to the table.

DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to append a record (Paradox only).

DBIERR_NOTSUFFSQLRIGHTS Insufficient SQL rights for operation.

DBIERR_NODISKSPACE The record cannot be appended because there is insufficient disk space.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRecord, DbiGetCursorProps, DbiGetRelativeRecord,
DbiOpenTable, DbiInitRecord, DbiPutBlob, DbiPutField, DbiVerifyField

For SQL-related restrictions, see DbiInsertRecord.

DbiBatchMove

Syntax
DBIResult DBIFN DbiBatchMove (pSrcTblDesc, hSrcCur, pDstTblDesc, hDstCur, ebatMode, iFldCount, pSrcFldMap,

pszIndexName, pszIndexTagName, iIndexId, [pszKeyviolName], [pszProblemsName], [pszChangedName], p1ProbRecs,
p1KeyvRecs, p1ChangedRecs, bAbortOnFirstProb, bAbortOnFirstKeyviol, p1RecsToMove, bTransliterate);

Description
DbiBatchMove is used to append, update, or subtract records from a source table to a destination table. It can
also be used to copy an entire table to a table of a different driver type.

Parameters
pSrcTblDesc Type: pBATTblDesc (Input)
Optional. Pointer to the source table descriptor (BATTblDesc). If NULL, then hSrcCur is used to identify the source table. If not
NULL, the specified table is opened, and the entire table is processed.

hSrcCur Type: hDBICur (Input)
Optional. Specifies the cursor handle of the source table; hSrcCur is used only if psrcTab is NULL. The source table is
processed from the current position of the cursor.

pDstTblDesc Type: pBATTblDesc (Input)
Optional. Pointer to the destination table descriptor (BATTblDesc). If NULL, then hDstCur is used to identify the destination
table. If not NULL, the specified table is opened, and the entire table is processed. Must be specified if mode is batCOPY.

hDstCur Type: hDBICur (Input)
Optional. Specifies the cursor handle of the destination table; hDstCur is used only if pdstTab is NULL. The destination table is
processed from the current position of the cursor.

ebatMode Type: eBATMode (Input)
Specifies the mode; valid modes are batAPPEND, batUPDATE, batAPPENDUPDATE, batSUBTRACT, or batCOPY. The mode
determines how the append operation is used. See the Usage section for details.

iFldCount Type: UINT16 (Input)
Specifies the number of fields in pSrcFldMap. Optional. Normally set to 0.

pSrcFldMap Type: pUINT16 (Input)
Pointer to an array of field numbers in the source table to be copied; the number of fields in the array must be equal to
iFldCount. Optional. If set to NULL, the fields in the source are matched from left to right with the fields in the destination. This
array is indexed by the destination field position (0 to n-1) and contains either the source field number (1 to n) to be matched
with the destination or zero to leave the destination field blank or unmodified.

pszIndexName Type: pCHAR (Input)
Pointer to the index name. Optional. This parameter is used only when ebatMode is batUPDATE, batAPPENDUPDATE, or
batSUBTRACT to specify the index used by the destination table to define matching records.

pszIndexTagName Type: pCHAR (Input)
Pointer to the index tag name. Optional. This parameter is used only when ebatMode is batUPDATE, batAPPENDUPDATE, or
batSUBTRACT to specify the index used by the destination table to define matching records.

iIndexId Type: UINT16 (Input)
Specifies the index identification number. Optional. This parameter is used only when ebatMode is batUPDATE,
batAPPENDUPDATE, or batSUBTRACT to specify the index used by the destination table to define matching records.

pszKeyviolName Type: pCHAR (Input)
Optional. Pointer to the Key Violation table name. All records that cause an integrity violation when inserted or updated into the
destination table can be placed here. If NULL, no Key Violation table is created. If the user supplies a table name, that name is
used. If not NULL and a pointer to a NULL character is specified, BDESDK generates a name for the auxiliary table and copies
the name back to the location specified by the pointer; therefore, this area must be at least DBIMAXPATHLEN1 bytes. If no
auxiliary table is created, this area is set to all NULLs.

pszProblemsName Type: pCHAR (Input)
Optional. Pointer to the Problems table name. Unless the user has overridden the default behavior with a callback, records are
placed in a Problems table if they cannot be placed into the destination table without trimming data.

If NULL, no Problems table is created. If the user supplies a table name, that name is used. If not NULL and a pointer to a NULL
character is specified, BDESDK generates a name for the auxiliary table and copies the name back to the location specified by
the pointer; therefore, this area must be at least DBIMAXPATHLEN1 bytes. If no auxiliary table is created, this area is set to all
NULLs.

pszChangedName Type: pCHAR (Input)
Optional. Pointer to the Changed table name. All records that are updated or subtracted from the source table are placed here. If
NULL, no Changed table is created. If the user supplies a table name, that name is used. If not NULL and a pointer to a NULL
character is specified, BDESDK generates a name for the auxiliary table and copies the name back to the location specified by
the pointer; therefore, this area must be at least DBIMAXPATHLEN1 bytes. If no auxiliary table is created, this area is set to all
NULLs.

p1ProbRecs Type: pUINT32 (Output)
Pointer to the client variable that receives the number of records that were added, or would have been added to the Problems
table. (When pszProblemsName is NULL, the Problems table is not actually created. In that case, p1ProbRecs reports the
number of records that would have been added to the Problems table.) Optional. If p1ProbRecs is NULL, the number of records
is not returned.

p1KeyvRecs Type: pUINT32 (Output)
Pointer to the client variable that receives the number of records that were added, or would have been added to the Key
Violations table. (If pszKeyViolName is NULL, the Key Violations table is not actually created. In that case, p1KeyvRecs reports
the number of records that would have been added to the Key Violations table.) Optional. If p1KeyvRecs is NULL, the number of
records is not returned.

p1ChangedRecs Type: pUINT32 (Output)
Pointer to the client variable that receives the number of records that were added, or would have been added to the Changed
table. (If pszChangedName is NULL, the Changed table is not actually created. In that case, p1ChangedRecs reports the
number of records that would have been added to the Changed table.) Optional. If p1ChangedRecs is NULL, the number of
records is not returned.

bAbortOnFirstProb Type: BOOL (Input)
Specifies whether to cancel as soon as a record is encountered that would be written to the Problems table. If TRUE, the
operation is canceled and DBIERR_NONE is returned.

bAbortOnFirstKeyviol Type: BOOL (Input)
Specifies whether to cancel as soon as a record is encountered that would be written to the Key Violations table. If TRUE, the
operation is canceled and DBIERR_NONE is returned.

p1RecsToMove Type: pUINT32 (Input/Output)
On input, p1RecsToMove specifies the number of records to be read from the source table. On output, pointer to the client
variable that receives the actual number of records read from the source table. If p1RecsToMove contains 0 or p1RecsToMove
is NULL, all of the records in the table are processed.

bTransliterate Type: BOOL (Input)
Specifies whether to transliterate character data from one character set to another, when the source and destination character
sets differ. TRUE causes all data in character fields of the source table to be transliterated into the character set of the
destination table.

Usage
Depending on the mode specified in ebatMode, DbiBatchMove can be used in the following ways:

Mode Use

batAPPEND Adds records from the source table to the destination table.

batUPDATE Overwrites matching records in the destination table. (Records from the source table that don't match are
not added.)

batAPPENDUPDATE Adds non-matching records to the destination table and overwrites matching records.

batSUBTRACT Deletes matching records from the destination table.

batCOPY Copies a table to a new table of a different driver type. This creates the destination table with a record
structure that minimizes potential data loss. (See the following section for a description of the method by
which field types are translated.)

Important: For batAPPEND and batCOPY no index is required on the destination table. For the other three
mode options an index is required.

Where an index is required on the destination table, the index is used to find matching records.

When the source and destination record structures differ in the field size or type, data from the source table is
converted to the size or type of the destination table. If the conversion is not allowed, an error is returned and no
data is transferred.

Note: In-memory tables are not supported as source tables.

As each destination record is constructed, the default behavior is to trim any data that does not fit, possibly
producing a NULL value in the destination. To override this default behavior, the client must register a callback of
type cbBATCHRESULT with a client-allocated callback buffer CBRESTCbDesc (the same structure as is used for
DbiDoRestructure). Before data transfer begins a callback is made for each pair of source and destination fields
that could result in data loss. During this callback, RESTCBDesc.iErrCode is set to
DBIERR_OBJMAYBETRUNCATED, RESTCBDesc.eRestrObjType is set to restrNEWFLD,
RESTCBDesc.iObjNum is set to the field number of the destination field, and RESTCBDesc.uObjDesc.fldDesc
contains the destination FLDDesc. If the client returns cbrYES from the callback, this field is trimmed. If cbrNO is
returned, then any records that would be trimmed are written to the problems table instead of the destination. If
any one field is marked for no trimming and the data must be trimmed, the entire record is written to the Problems
table.

Prerequisites
If cursors are not passed in, this call acquires a read lock on the source and a write lock on the destination. If
cursors are passed in, the client is responsible for controlling locking behavior.

Completion state
If the function is called within the context of a transaction on the destination database handle, it does not modify
the transaction.

DbiResult return values
DBIERR_NONE The operation was performed successfully.

DBIERR_INVALIDPARAM Either the source or the destination table identification is invalid.

DBIERR_INVALIDFILENAME The source table name provided is an empty string.

See also
DbiOpenTable, DbiCreateTable, DbiRegisterCallBack, DbiDoRestructure

DbiBcdFromFloat

Syntax
DBIResult DBIFN DbiBcdFromFloat (piVal, iPrecision, iPlaces, pBcd);

Description
DbBcdFromFloat converts a number in the BDE logical FLOAT format into the BDE logical binary coded decimal
(BCD) format.

Parameters
piVal Type: Double (Input)
Specifies the FLOAT data to convert.

iPrecision Type: Word (Input)
Specifies the precision of the BCD number. This number must be 32.

iPlaces Type: Word (Input)
Specifies the number of decimals of the BCD number.

pBcd Type: FMTBcd (Output)
Pointer to the client buffer that receives    the BCD number. The BDE logical BCD format has a    length which equals (iPrecision
2).

DbiBcdToFloat

Syntax
DBIResult DBIFN DbiBcdToFloat (pBcd, piVal);

Description
DbiBcdToFloat converts a number in the BDE logical binary coded decimal (BCD) format to the BDE FLOAT
format.

Parameters
pBcd Type: FMTBcd (Output)
Specifies the binary coded decimal (BCD) data to convert.

piVal Type: Double (Input)
Pointer to the client buffer that receives the FLOAT number.

DbiBeginLinkMode

Syntax
DBIResult DBIFN DbiBeginLinkMode (phCursor);

Description
DbiBeginLinkMode converts a cursor to a link cursor. Given an open cursor, prepares for linked access. Returns a
new cursor; the old cursor is no longer valid.

Parameters
phCursor Type: phDBICur (Input/Output)
On input, specifies the original cursor. On output, returns the new cursor; the old cursor is no longer valid.

Usage
Enables linking between tables using DbiLinkDetail. Both master and detail cursors must be link-enabled before
calling DbiLinkDetail. DbiEndLinkMode must be called to end Link mode before the cursor is closed.

Warning: Using the original cursor (supplied as input to phCursor) will result in an error.

DbiResult return values
DBIERR_NONE The cursor was successfully converted to a linked cursor.

See also
DbiEndLinkMode, DbiLinkDetail, DbiLinkDetailToExp, DbiUnlinkDetail, DbiGetLinkStatus

DbiBeginTran

Syntax
DBIResult DBIFN DbiBeginTran (hDb, eXIL, phXact);

Description
DbiBeginTran begins a transaction for a SQL server.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

eXIL Type: eXILType (Input)
Specifies the transaction isolation level.

phXact Type: phDBIXact (Output)
Pointer to the transaction handle.

Usage
This function begins a transaction on the given database. Within a transaction, operations are not committed
automatically, giving the client control over transaction behavior. The transaction remains active until a call to
DbiEndTran is made to end the transaction.

Some servers do not allow Data Definition Language (DDL) statements within a transaction, or implicitly commit
the transaction when a DDL statement is issued. For such servers, DDL operations are not allowed within a
transaction. If table lock release requests cause implicit commits, a request for a table lock release is held until the
transaction is ended.

Servers vary in the availability and behavior of isolation and read repeatability capabilities. Some SQL drivers
support only the server default isolation level. To check the isolation level actually used, call DbiGetTranInfo after
a successful call to DbiBeginTran.

Nested transactions are not supported. If a previously requested transaction is still active, this function returns an
error.

Prerequisites
A valid database handle must be obtained from a SQL server.

DbiResult return values
DBIERR_NONE The transaction has begun successfully.

DBIERR_ACTIVETRAN There is already an active transaction.

DbiCheckRefresh

Syntax
DBIResult DBIFN DbiCheckRefresh (VOID);

Description
DbiCheckRefresh checks for remote updates to tables for all cursors in the current session, and refreshes the
cursors if changed.

Usage
DbiCheckRefresh is useful for implementing an auto-refresh function that periodically refreshes client data. It can
be called when a specified time period for the client process auto-refresh timer has elapsed. To receive a
notification on the cursors that were actually refreshed, install a callback of the type cbTABLECHANGED.

SQL: This function is not operational with SQL drivers.

DbiResult return values
DBIERR_NONE All cursors in the current session have been successfully refreshed.

See also
DbiForceReread, DbiRegisterCallBack

DbiCloneCursor

Syntax
DBIResult DBIFN DbiCloneCursor (hCurSrc, bReadOnly, bUniDirectional, phCurNew);

Description
DbiCloneCursor creates a new cursor (cloned cursor) that is similar to the given cursor (source cursor).

Parameters
hCurSrc Type: hDBICur (Input)
Specifies the cursor handle of the source cursor.

bReadOnly Type: BOOL (Input)
Specifies whether the cloned cursor access mode is to be read-only or read-write. TRUE specifies read-only and FALSE
specifies read-write.

The client is able to choose the access mode of the cloned cursor only if the access mode of the source cursor is
dbiREADWRITE. If the access mode of the source cursor is dbiREADONLY, then the access mode of the cloned cursor must be
read-only. [MORE]

bUniDirectional Type: BOOL (Input)

Specifies whether the cloned cursor movement is unidirectional or bidirectional (applies to SQL tables only). TRUE specifies
unidirectional; FALSE specifies bidirectional.

Generally, bidirectional movement is preferable. However, if the client application knows that the cloned cursor is to access data
solely from beginning to end, unidirectional movement might deliver better performance.

The client is able to choose the type of cursor movement for the cloned cursor only if the source cursor's bUnidirectional
parameter is FALSE (bidirectional). If the source cursor's bUnidirectional parameter is TRUE (unidirectional), the cloned cursor
can only be Unidirectional. [MORE]

phCurNew Type: phDBICur (Output)
Pointer to the cursor handle for the cloned cursor.

Usage
DbiCloneCursor provides the client a relatively quick way to get a cursor for a table that is already opened. The
source cursor can be opened on a table or a query. The cloned cursor can then be used as a regular cursor,
inheriting certain properties from the source cursor, but remaining completely independent in terms of position and
ordering.

The cloned cursor inherits the following properties from the source cursor:

Current index
Range
Translate mode
Share mode
Position
Field maps
Filters

Putting a field map or a filter on a cloned cursor does not affect the source cursor. The filters of a cloned cursor do
not have the same filter handles as the original cursor, however, the filter ID (obtained with DbiGetFilterInfo) is
invariant to the clone. This can be used to obtain the new filter handle for a given filter.

Positional commands (for example, DbiGetNextRecord) performed on the source cursor have no effect on the
cloned cursor and vice versa.

dBASE: All indexes open on the source cursor are open on the clone.

Completion state
The returned cursor inherits certain properties from the source cursor but is completely independent in terms of
position and ordering. The cloned cursor must be closed separately.

DbiResult return values
DBIERR_NONE The cloned cursor was created successfully.

DBIERR_CURSORLIMIT The maximum number of cursors has been exceeded.

DBIERR_INVALIDHNDL The specified source cursor handle is invalid or NULL, or the new cursor handle is NULL.

See also

DbiOpenTable

bReadOnly
The following table illustrates the effect that the access mode of the source cursor has on the cloned cursor
access mode:

Source cursor bReadOnly Cloned cursor

Read-only TRUE Read-only

Read-only FALSE Read-only

Read-write TRUE Read-only

Read-write FALSE Read-write

bUnidirectional
The following table lists the effect of the source cursor's direction on the cloned cursor's direction:

Source direction bUniDirectional Cloned direction

Unidirectional TRUE Unidirectional

Unidirectional FALSE Unidirectional

Bidirectional TRUE Unidirectional

Bidirectional FALSE Bidirectional

DbiCloseCursor

Syntax
DBIResult DBIFN DbiCloseCursor (phCursor);

Description
DbiCloseCursor closes a cursor.

Parameters
phCursor Type: phDBICur (Input)
Pointer to the cursor handle to be closed.

Usage
This function can be used to close all types of cursors. For temporary tables, DbiCloseCursor removes the table
from memory.

If the cursor closed is the last remaining cursor for the table in the current session, then all locks acquired with
DbiAcqTableLock are released.

If the given cursor is valid, the cursor is closed even if an error message is returned. Any error returned is to
inform the client of a potential problem (for example, a network problem).

Completion state
All resources associated with the cursor are released, including record locks, filters, and all indexes that have
been opened by DbiOpenIndex for that particular cursor. The cursor handle is invalid after DbiCloseCursor is
called (even if an error, such as a network problem, occurs).

DbiResult return values
DBIERR_NONE The table cursor was successfully closed.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NODISKSPACE Table could not be saved to disk due to lack of space.

See also
DbiOpenTable, DbiCreateTempTable, DbiCreateInMemTable, DbiQExec, DbiQExecDirect, DbiOpenTableList,
DbiOpenFileList, DbiOpenIndexList, DbiOpenFieldList, DbiOpenVchkList, DbiOpenRintList, DbiOpenSecurityList,
DbiOpenFamilyList, DbiCloneCursor, DbiCloseDatabase

DbiCloseDatabase

Syntax
DBIResult DBIFN DbiCloseDatabase (phDb);

Description
DbiCloseDatabase closes a database and all cursors associated with the database handle.

Parameters
phDb Type: phDBIDb (Input)
Pointer to the database handle returned by DbiOpenDatabase.

Usage
DbiCloseDatabase releases the provided database handle and any associated cursors.

When closing the standard database handle with DbiCloseDatabase, all dBASE, Paradox, and Text tables are
closed and the associated resources released.

SQL: Each database represents one or more connections to a specific SQL server. Closing the database closes
those connections as well as releases other client database resources that have been acquired.

Prerequisites
DbiInit and DbiOpenDatabase must be called before a valid database handle is available.

Completion state
The client handle, phDb, is set to NULL.

DbiResult return values
DBIERR_NONE The database specified by phDb was closed successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiOpenDatabase, DbiExit, DbiCloseCursor

DbiCloseFieldXlt

Syntax
DBIResult DBIFN DbiCloseFieldXlt (hXlt);

Description
DbiCloseFieldXlt closes a field translation object.

Parameters
hXlt Type: hDBIXlt (Input)
Specifies the field translation handle.

DbiResult return values
DBIERR_NONE The translation object was closed successfully.

DBIERR_INVALIDHNDL The specified translation handle is invalid.

See also
DbiOpenFieldXlt, DbiTranslateField

DbiCloseIndex

Syntax
DBIResult DBIFN DbiCloseIndex (hCursor, pszIndexName, iIndexId);

Description
DbiCloseIndex closes the specified index for this cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pszIndexName Type: pCHAR (Input)
Specifies the pointer to the index name. pszIndexName cannot be the name of the current active index of the cursor or a
maintained index.

iIndexId Type: UINT16 (Input)
Currently not used.

Usage
DbiCloseIndex is applicable only with dBASE tables. It is used primarily to manipulate non-maintained indexes.
DbiCloseIndex cannot close a current index, or a maintained index. To close a current index, DbiSwitchToIndex
must be called first, to make another index (or no index) current.

This function does not affect the order of the records or the current position of the cursor.

Prerequisites
The index must be open.

Completion state
Once an index is closed, it is no longer maintained.

DbiResult return values
DBIERR_NONE The index was successfully closed.

DBIERR_NA Operation is not applicable.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_CANNOTCLOSE The given index is a maintained index and must stay open.

DBIERR_ACTIVEINDEX The given index is currently used by the cursor to order the result set.

DBIERR_NOSUCHINDEX The given index is either not opened or no such index exists for the table.

See also
DbiSwitchToIndex, DbiOpenTable, DbiOpenIndex

DbiCloseSession

Syntax
DBIResult DBIFN DbiCloseSession (hSes);

Description
DbiCloseSession closes the session associated with the given session handle.

Parameters
hSes Type: hDBISes (Input)
Specifies the session handle.

Completion state
When a session is closed, all resources (database handles, cursors, table level locks, and record level locks)
attached to the given session are released. Any buffers that BDESDK has allocated that are specific to the
session are also released. If hSes is the session handle of the current session, the client application is set to the
default session after DbiCloseSession is completed. The client application cannot close the default session
without exiting the client.

DbiResult return values
DBIERR_NONE The session specified by hSes was closed successfully.

DBIERR_INVALIDSESHANDL The specified session handle is invalid or NULL, or the session has already been closed.

See also
DbiGetCurrSession, DbiSetCurrSession, DbiStartSession, DbiGetSysInfo, DbiGetSesInfo

DbiCompareBookMarks

Syntax
DBIResult DBIFN DbiCompareBookMarks (hCur, pBookMark1, pBookMark2, pCmpBkmkResult);

Description
DbiCompareBookMarks compares the relative positions of two bookmarks associated with the cursor.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle.

pBookMark1 Type: pBYTE (Input)
Specifies the pointer to the first bookmark.

pBookMark2 Type: pBYTE (Input)
Specifies the pointer to the second bookmark.

pCmpBkmkResult Type: pCMPBkMkRslt (Output)
Pointer to the client variable that receives the comparison result

Usage
Both bookmarks must be placed on cursors opened on the same table with the same order.

Note: Comparing bookmarks from cursors with different orders or that are unstable can lead to unpredictable
results.

Prerequisites
Valid bookmarks must have been obtained with DbiGetBookMark.

DbiResult return values
DBIERR_NONE Bookmarks were compared successfully.

DBIERR_INVALIDHNDL The specified cursor is invalid or NULL.

DBIERR_INVALIDPARAM At least one of the following parameters is NULL: pBookMark1, pBookMark2.

DBIERR_INVALIDBOOKMARK Bookmarks are incompatible or corrupt.

See also
DbiGetCursorProps, DbiGetBookMark, DbiSetToBookMark

pCmpBlmkResult
Comparison results can be:

Result Description

CMPLess Bookmark1 is before Bookmark2 in the result set.

CMPEql Bookmark1 is the same as Bookmark2.

CMPGtr Bookmark1 is after Bookmark2 in the result set.

CMPKeyEql Bookmark1 and Bookmark2 have the same key value. Used in cases involving non-unique keys when it is
uncertain if two bookmarks represent the same record.

DbiCompareKeys

Syntax
DBIResult DBIFN DbiCompareKeys (hCursor, pKey1, [pKey2], iFields, iLen, piResult);

Description
DbiCompareKeys compares two key values based on the current index of the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pKey1 Type: pBYTE (Input)
Pointer to the first key value. The key is assumed to be in physical format.

pKey2 Type: pBYTE (Input)
Pointer to the second key value. Optional. If pKey2 is NULL, the key value is extracted from the current record. If the key is
specified, it is assumed to be in physical format.

iFields Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys. iFields and iLen together indicate how much of the key is to be
used for matching. If both are 0, the entire key is used. If a match is required on a given field of the key, all the key fields
preceding it in the composite key must also be supplied for a match. Only character fields can be matched for a partial key; all
other field types must be fully matched.

For partial key matches, iFields must be equal to the number of key fields preceding (if any) the field being partially matched.

iLen Type: UINT16 (Input)
Specifies a partial length in the last field to be used for composite keys; works in conjunction with iFields. The last field of the
composite key must be a character type if iLen not equal to 0.

piResult Type: pINT16 (Output)
Pointer to the client variable that receives the compared result.

Usage
This function is used to compare two key values. Keys can be obtained by using DbiExtractKey.

Prerequisites
There must be an active index.

DbiResult return values
DBIERR_NONE The key fields were compared successfully.

DBIERR_NOCURREC pKey2 is NULL and the current record is invalid.

See also
DbiExtractKey

piResult

The result can be one of the following values:

Result Description

-1 pKey1 < pKey2

0 pKey1 = pKey2

1 pKey1 > pKey2

DbiCopyTable

Syntax
DBIResult DBIFN DbiCopyTable (hDb, bOverwrite, pszSrcTableName, pszSrcDriverType, pszDestName);

Description
DbiCopyTable duplicates the source table, to a destination table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

bOverwrite Type: BOOL (Input)
Specifies whether to overwrite an existing destination table or not. If TRUE, the table is overwritten; if FALSE, an error is
returned if the destination table already exists.

pszSrcTableName Type: pCHAR (Input)
Pointer to the name of the table to be copied. pszSrcTblName can include a file extension, in which case pszSrcDriverType is
ignored.

pszSrcDriverType Type: pCHAR (Input)
Pointer to the driver type, when pszTblName specifies a table name without a file extension. Required with Paradox and dBASE
tables if no table extension is specified in pszSrcTableName.

pszDestName Type: pCHAR (Input)
Pointer to the name of the destination table.

Usage
This function is used to copy tables of the same driver type. It cannot copy a table across databases or driver
types. To transfer data from one database type to another, see DbiBatchMove.

Driver-specific rules must be followed in defining family members:

dBASE: For dBASE tables, default family members include

The table (usually ends with a .DBF extension)
BLOB file (usually <tablename>.DBT)
Production index (usually <tablename>.MDX)

Non-production indexes are not included in the default family.

Paradox: For Paradox tables, default family members include

The table (<tablename>. DB)
The BLOB file (<tablename>.MB)
All indexes
Any <tablename>. VAL file

If the table is encrypted and the master password is not available, the copy fails.

SQL: The DbiCopyTable function copies only the table itself. The indexes are not copied.

Prerequisites
A read lock is required on source dBASE and Paradox tables. For SQL tables, at least a READ (SELECT)
privilege is required on the source table.

Completion state
The source table is copied to the destination table.

DbiResult return values
DBIERR_NONE The table was successfully copied.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM The source or destination table name was not specified.

DBIERR_INVALIDFILENAME An empty string or invalid filename was specified for the source or destination table name.

DBIERR_FILEEXISTS The table already exists, and bOverwrite specifies not to overwrite it.

DBIERR_FAMFILEINVALID The family file is corrupt.

DBIERR_NOSUCHTABLE The source table does not exist.

DBIERR_NOTSUFFTABLERIGHTS The user does not have permission to delete the existing destination table (Paradox only).

DBIERR_NOTSUFFFAMILYRIGHTS The user does not have rights to family members (Paradox only).

DBIERR_LOCKED The table is locked by another user.

See also
DbiBatchMove

DbiCreateInMemTable

Syntax
DBIResult DBIFN DbiCreateInMemTable (hDb, pszName, iFields, pfldDesc, phCursor);

Description
DbiCreateInMemTable creates a temporary in-memory table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszName Type: pCHAR (Input)
Pointer to the table name.

iFields Type: UINT16 (Input)
Specifies the number of fields in the table.

pfldDesc Type: pFLDDesc (Input)
Pointer to an array of field descriptor (FLDDesc) structures.

phCursor Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Only logical BDESDK field types are supported by the in-memory table. Physical field types are not supported.
The table is kept in memory if possible, but it could be swapped to disk if the table becomes too big. Maximum
table size is 512M with a maximum record size of 16K with a maximum of 1024 fields. Logical Autoincrement and
BLOB fields are not supported.

Completion state
This function returns a cursor on the temporary table in phCursor. The table will be deleted when the cursor is
closed.

DbiResult return values
DBIERR_NONE The table was created successfully.

DBIERR_NODISKSPACE The table could not be saved to disk due to lack of space.

See also
DbiCreateTempTable, DbiCreateTable

DbiCreateTable

Syntax
DBIResult DBIFN DbiCreateTable (hDb, bOverWrite, pcrTblDsc);

Description
DbiCreateTable creates a table in the database associated with the given database handle.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

bOverWrite Type: BOOL (Input)
Specifies whether to overwrite an existing table or not. If TRUE is specified, and there is an existing table, it will be overwritten. If
FALSE is specified, and there is an existing table, an error is returned.

pcrTblDsc Type: pCRTblDesc (Input)
Pointer to the table descriptor structure (CRTblDesc). Refer to DbiGetFieldTypeDesc and DbiGetIndexTypeDesc for more
information on the legal values for these structures for each Borland Database Engine driver.

The optional parameter fields iOptParams, pfldOptParams, and pOptData are used to set other driver-specific attributes of the
table. These parameters are used to describe a single record that is constructed by the client and contains the null-terminated
ASCII strings that specify the values for these driver-specific attributes. iOptParams is the number of optional parameters.
pfldOptParams contains a pointer to an array of FLDDesc of iOptParams size. Each of these field descriptors is given a field
name equal to the name of the optional parameter (for example, MDXBLOCKSIZE) and has iLen and iOffset set to the length
(including the NULL terminator) and position in the pOptData record buffer of the ASCII string containing the value of this
parameter (for example, 512). All other elements of the FLDDesc are ignored. The pOptData record buffer need only be large
enough to hold all the null-terminated strings for each optional parameter value. This style of setting optional parameters is also
used by DbiOpenDatabase. The names of the optional parameters can be obtained using DbiOpenCfgInfoList with a
configuration path of DRIVERS\DRIVERNAME\TABLECREATE.

Usage
The required descriptors are specified in CRTblDesc; different drivers might require different descriptors.

Text: DbiCreateTable can be used to create a text file to export the data to it. For text file creation, only
szTblName and szTblType values in the CRTblDesc are used and the rest of the values are ignored (szTblType is
specified as ASCIIDRV). A text file is created with the given name; no field descriptions are necessary.

Paradox: Referential integrity can be created only when creating or restructuring the detail table. The master
table must already exist and must be in the same directory as the table being created. A lookup table may exist in
any accessible directory, but must exist at the time this table is created.

SQL: All indexes are maintained; there are no non-maintained indexes.

Prerequisites
If the client chooses to overwrite an existing table; the existing table must be closed.

Completion state
All files associated with the table are created.

DbiResult return values
DBIERR_NONE The table was created successfully.

DBIERR_INVALIDFILEEXTN The driver type or file extension is invalid.

DBIERR_INVALIDOPTION The index description is invalid.

DBIERR_INVALIDINDEXSTRUCT Invalid index structure. For SQL servers, all indexes are maintained; verify that bMaintained in
pidxDesc specifies TRUE.

DBIERR_FILEEXISTS The table already exists (returned when bOverWrite is FALSE).

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_UNKNOWNTABLETYPE The specified driver type is invalid.

DBIERR_MULTILEVELCASCADE An illegal attempt was made to create a referential integrity link that is already in use as a link to
a higher level cascade update (Paradox only).

DBIERR_FLDLIMIT iFldCount exceeds maximum number of fields.

DBIERR_INVALIDFIELDNAME An invalid field name was specified.

DBIERR_NAMENOTUNIQUE The specified field name or indexname is not unique.

DBIERR_INVALIDFLDTYPE The specified field type is unknown or not allowed.

DBIERR_RECTOOBIG The record size exceeds the maximum allowed.

DBIERR_INVALIDINDEXNAME The specified index name is invalid.

DBIERR_INVALIDINDEXTYPE The specified index type is invalid.

DBIERR_INDEXNAMEREQUIRED No index name was specified.

DBIERR_LOOKUPTBLOPENERR The specified lookup table could not be opened.

See also
DbiCopyTable, DbiSortTable, DbiDoRestructure

DbiCreateTempTable

Syntax
DBIResult DBIFN DbiCreateTempTable (hDb, pcrTblDsc, phCursor);

Description
DbiCreateTempTable creates a temporary table that is deleted when the cursor is closed, unless the call is
followed by a call to DbiMakePermanent or DbiSaveChanges.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.    When a NULL hDb is specified, all temp tables will be created in the default working directory of
the current session, unless a private directory has been explicitly set on the current session by using DbiSetPrivateDir.

pcrTblDsc Type: pCRTblDesc (Input)
Pointer to the table descriptor structure (CRTblDesc). Usage is the same as in DbiCreateTable except that referential integrity
cannot be created for a temporary table. Refer to DbiGetFieldTypeDesc and DbiGetIndexTypeDesc for more information on the
legal values for these structures for each Borland Database Engine driver.

phCursor Type: phDBICur (Output)
Pointer to the cursor handle for the table.

Usage
Physical as well as logical field types are supported by the temporary table.

SQL: This function is not supported with SQL tables.

DbiResult return values
DBIERR_NONE The table was created successfully.

See also
DbiMakePermanent, DbiCreateTable, DbiCreateInMemTable

DbiDateDecode

Syntax
DBIResult DBIFN DbiDateDecode (dateD, piMon, piDay, piYear);

Description
DbiDateDecode decodes DATE into separate month, day, and year components.

Parameters
dateD Type: DATE (Input)
Specifies the encoded date.

piMon Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded month component. Valid values range from 1 through 12.

piDay Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded day component. Valid values range from 1 through 31.

piYear Type: pINT16 (Output)
Pointer to the client variable that receives the decoded year component. Valid values range from -9999 to 9999.

Usage
This call enables the client to interpret date information returned from a call to DbiGetField.

DbiResult return values
DBIERR_NONE The date was decoded successfully.

DBIERR_INVALIDHNDL At least one of the following parameters is NULL: piMon, piDay, piYear.

See also
DbiGetField, DbiDateEncode, DbiTimeEncode, DbiTimeDecode, DbiTimeStampEncode, DbiTimeStampDecode

DbiDateEncode

Syntax
DBIResult DBIFN DbiDateEncode (iMon, iDay, iYear, pdateD);

Description
DbiDateEncode encodes separate date components into DATE for use by DbiPutField and other functions.

Parameters
iMon Type: UINT16 (Input)
Specifies the month. Valid values range from 1 through 12.

iDay Type: UINT16 (Input)
Specifies the day. Valid values range from 1 through 31.

iYear Type: INT16 (Input)
Specifies the year. Valid values range from -9999 to 9999.

pdateD Type: pDATE (Output)
Pointer to the client buffer that receives the encoded date.

Usage
This function enables the client to construct a logical date value to use with the function DbiPutField.

DbiResult return values
DBIERR_NONE The date was encoded successfully.

DBIERR_INVALIDHNDL pDate is NULL.

DBIERR_INVALIDPARAM The ranges of month and day parameters are wrong, according to the rules of the Gregorian calendar.
iMon is zero or iMon is greater than 12 or iDay is zero or iDay is greater than 31.

See also
DbiDateDecode, DbiTimeEncode, DbiTimeDecode, DbiTimeStampEncode, DbiTimeStampDecode

DbiDeactivateFilter

Syntax
DBIResult DBIFN DbiDeactivateFilter (hCursor, [hFilter]);

Description
DbiDeactivateFilter temporarily disables the specified filter from affecting the record set by turning the filter off.

Parameters
hCursor Type: hDBICur (Input)
Specifies the valid cursor handle from an open table.

hFilter Type: hDBIFilter (Input)
Specifies the filter handle of the filter to deactivate. If NULL, then all filters for this cursor are deactivated.

Usage
Once a filter has been activated, that filter controls what is contained in the record set, and all operations on the
associated cursor are affected. Once a filter is deactivated, all the records that were excluded by the filter are now
accessible, subject to other active filters.

Prerequisites
The filter must have been previously added and activated. If a non-NULL filter is applied, it must be activated.

DbiResult return values
DBIERR_NONE The filter specified by hFilter was successfully deactivated. If NULL was passed for the filter handle, all

filters were deactivated.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NOSUCHFILTER The specified filter handle is invalid.

DBIERR_NA The filter was already deactivated.

See also
DbiAddFilter, DbiDeactivateFilter, DbiDropFilter

DbiDebugLayerOptions

Syntax
DBIResult DBIFN DbiDebugLayerOptions (iOption, pDebugFile);

Description
DbiDebugLayerOptions is used to activate, deactivate, or set options for the BDESDK debug layer.

Parameters
iOption Type: UINT16 (Input)
Specifies a union of debug layer options.

pDebugFile Type: pCHAR (Input)
Specifies a trace file into which trace information is written. (This parameter is valid only if the option OUTPUTTOFILE is
specified.)

Usage
The debug layer has two purposes:

It provides a more advanced level of parameter checking.
It enables the application to output trace information, giving a detailed breakdown of the parameters passed

into BDESDK functions. The trace includes error messages that are generated when variables contain invalid data.
The trace file name is specified in pDebugFile as <filename.ext>. If that file reaches 500K, then the contents are
rolled over to a <filename.old> file. The trace file capacity is limited to 1MB. When the new trace file reaches
500K, its contents are rolled over, overwriting the <filename.old> file.

Prerequisites
Important: Before calling DbiDebugLayerOptions, the proper dynamic link library must be made available to the

core file, IDAPI01.DLL. To do this, run the standalone utility DLLSWAP.EXE, which is used to swap
between DBG.DLL and NODBG.DLL. DLLSWAP.EXE makes it known which DLL is currently
available.

To accomplish the same task without the use of DLLSWAP.EXE, locate the directory where the BDESDK DLLs
are installed. IDAPI01.DLL is the main entry point to BDESDK.

If DBG.DLL is listed in the directory, the debug layer is not enabled. To enable the debug layer, rename
IDAPI01.DLL to NODBG.DLL, and rename DBL.DLL to IDAPI01.DLL.

If NODBG.DLL is listed in the directory, the debug layer is enabled. To disable the debug layer, rename
IDAPI01.DLL to DBG.DLL, and rename NODBG.DLL to IDAPI01.DLL.

Take special care when using the debug layer in a multi-session environment. Debug layer state is shared by all
concurrent sessions. For example, if one session has set the debug layer on for tracing, all sessions are traced.

Tracing imposes a considerable overhead. For this reason, when you are trying to isolate a problem, avoid tracing
within long loops.

DbiResult return values
DBIERR_NONE The debug layer options have been successfully specified.

iOption
The possible debug layer options are:

Option Result

DEBUGON If specified, the debug layer is activated. (Note: The debug layer .DLL must be in place.) If this option is
not specified, the debug layer is deactivated.

OUTPUTTOFILE If specified, debug layer trace information is directed to the file specified by pDebugFile. If pDebugfile is
not specified, a default trace file is created.

FLUSHEVERYOP If specified, flushes trace information to the trace file every time an BDESDK function is called. (Note:
This option is expensive, and markedly slows processing.) If not specified, trace information is flushed
periodically.

APPENDTOLOG If specified, the trace output is appended to the end of the existing pDebugFile file. If not specified, the
trace output overwrites the existing pDebugFile.

DbiDeleteAlias

Syntax
DBIResult DbiDeleteAlias ([hCfg], pszAliasName);

Description
DbiDeleteAlias deletes an alias from the configuration file specified by the parameter hCfg.

Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file to be used.    This parameter is required to be NULL, indicating that the alias is removed from the
configuration file for the current session.

pszAliasName Type: pCHAR (Input)
Pointer to the alias name. This is the name of the new alias that is to be removed.

Usage
This function removes an alias that is either defined for use in the current session or stored in the configuration
file.    (See the DbiAddAlias parameter bPersistent.)

Prerequisites
DbiInit must be called prior to calling DbiDeleteAlias.

DbiResult return values
DBIERR_INVALIDPARAM Null alias name.

DBIERR_NONE The alias was deleted successfully.

DBIERR_OBJNOTFOUND No alias was found matching pszAliasName.

See Also
DbiInit, DbiOpenCfgInfoList, DbiAddAlias

DbiDeleteIndex

Syntax
DBIResult DBIFN DbiDeleteIndex (hDb, hCursor, pszTableName, [pszDriverType], pszIndexName, pszIndexTagName,

iIndexId);

Description
DbiDeleteIndex drops an index on a table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

hCursor Type: hDBICur (Input)
Specifies the cursor handle. If hCursor is specified, the operation is performed on the table associated with that cursor. If
hCursor is NULL, pszTableName and pszDriverType determine the table to be used.

pszTableName Type: pCHAR (Input)
Pointer to the table name. If hCursor is NULL, pszTableName and pszDriverType determine the table to be used. (If both
pszTableName and hCursor are specified, pszTableName is ignored.)

For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. This parameter is ignored if the database associated with hDb is a SQL database. pszDriverType can be one of the
following values: szDBASE or szPARADOX.

pszIndexName Type: pCHAR (Input)
Pointer to the name of the index to be dropped. See IDXDesc for index naming rules.

pszIndexTagName Type: pCHAR (Input)
Pointer to the index tag name. Used only to identify dBASE .MDX indexes. (See the pszIndexName parameter description
above.) This parameter is ignored for Paradox and SQL tables.

iIndexId Type: UINT16 (Input)
Specifies the index identifier, which is the number of the index to be used. The range for the index identifier is 1 to 511. Used for
Paradox tables only and is ignored if pszIndexName is specified.

Usage
Used to drop an index. The client application can either specify the table by name or by opening a cursor on the
table. If a cursor is specified, it must not be opened with the index to be deleted.

Prerequisites
If hCursor is specified, an exclusive cursor handle must be supplied. The index must exist. See the following
driver-specific information for locking requirements. A currently active index cannot be dropped. If the table name
is specified, the table must be able to be opened exclusively.

dBASE: The table must be opened exclusively on behalf of the client application.

Paradox: The table must be opened exclusively on behalf of the client application. (The client application must
have permission to lock the table exclusively.)

SQL: The table must be open exclusively where table locking is supported by the driver.

Completion state
If a cursor is specified, DbiDeleteIndex does not affect the order or the position of the cursor.

DbiResult return values
DBIERR_NONE The index was successfully deleted.

DBIERR_INDEXNAMERQUIRED An index name is required.

DBIERR_INDEXREADONLY An illegal attempt was made to delete a read-only index.

DBIERR_ACTIVEINDEX An illegal attempt was made to delete an active, primary index.

DBIERR_MUSTUSEBASEORDER An illegal attempt was made to delete an active, secondary index.

DBIERR_INVALIDHNDL Handle was invalid or NULL.

DBIERR_NEEDEXCLACCESS Exclusive access is required to delete the index.

DBIERR_NOSUCHINDEX The specified index does not exist.

See also
DbiAddIndex, DbiCloseIndex, DbiOpenIndex, DbiSwitchToIndex, DbiDoRestructure

DbiDeleteRecord

Syntax
DBIResult DBIFN DbiDeleteRecord (hCursor, [pRecBuf]);

Description
DbiDeleteRecord deletes the current record of the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the deleted record. Optional.

Usage
dBASE: DbiDeleteRecord marks the record for deletion. The record is not physically removed from the table until
the table is packed with DbiPackTable.

Paradox: After a record is deleted and committed, it cannot be recalled. The record is not deleted if the deletion
would cause violation of referential integrity. For example, if the cursor is validly positioned on a record within the
master table, and that record has linked values in a detail table, then the call to DbiDeleteRecord fails, and the
position of the cursor remains unchanged.

Deleting a record does not reduce table size. The only way to gain disk space for records that have been deleted
is to restructure the table with a call to DbiDoRestructure.

SQL: Record deletions are done via optimistic locking. Unless a transaction is explicitly started using
DbiBeginTran, a successful deletion is immediately committed.

Prerequisites
The cursor must be positioned on a record, not on a crack, beginning of file, or end of file. The user must have
read/write access to the table. The record must not be locked by another session.

Completion state
After DbiDeleteRecord has successfully completed, the cursor is positioned on the crack between the records
before and after the deleted record. A subsequent call to DbiGetNextRecord returns the record after the deleted
record, while a subsequent call to DbiGetPriorRecord returns the record before the deleted record.

DbiResult return values
DBIERR_NONE The record was successfully deleted.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_BOF The cursor is not positioned on a record.

DBIERR_EOF The cursor is not positioned on a record.

DBIERR_KEYORRECDELETED The cursor is not positioned on a record.

DBIERR_NOCURRREC The cursor is not positioned on a record.

DBIERR_RECLOCKED The record or table is locked by another session.

DBIERR_NOTABLESUPPORT A deletion cannot be made from a view. Some SQL drivers do not support deletions from non-
uniquely indexed tables.

DBIERR_TABLEREADONLY Table access denied; the cursor does not have write access to the table.

DBIERR_DETAILRECORDSEXIST The table is the master table in a referential integrity link and the record to be deleted has
associated detail records (Paradox only).

DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to delete a record (Paradox only).

DBIERR_NOTSUFFSQLRIGHTS Insufficient SQL rights to delete a record (SQL only).

DBIERR_MULTIPLEUNIQRECS Attempt to delete a record that has a duplicate (SQL only).

See also
DbiGetRecord, DbiDoRestructure, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiPackTable
(dBASE only), DbiUndeleteRecord (dBASE only)

DbiDeleteTable

Syntax
DBIResult DBIFN DbiDeleteTable (hDb, pszTableName, [pszDriverType]);

Description
DbiDeleteTable deletes the table given in pszTableName.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the name of the table to delete. For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name is taken from the current directory of
the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name. This function cannot be used to
delete SQL views.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type of the table being deleted. Optional. For Paradox and dBASE tables, this parameter is required if
pszTableName has no extension. This parameter is ignored if the database associated with hDb is a SQL database.
pszDriverType can be one of the following values: szDBASE or szPARADOX.

Prerequisites
The client application must have permission to lock the table exclusively.

Paradox: If the table is encrypted, the master password must have been registered (using DbiAddPassword).

Completion state
The table and all associated family members are deleted. Deletes all files with <tablename>.*

DbiResult return values
DBIERR_NONE The table was successfully deleted.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_NOSUCHFILE The table does not exist.

DBIERR_NOSUCHTABLE The table does not exist.

DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.

DBIERR_NOTSUFFTABLERIGHTS The user has insufficient rights to the table (Paradox only).

DBIERR_NOTSUFFFAMILYRIGHTS The user has insufficient rights to family members (Paradox only).

DBIERR_LOCKED The table is locked by another user.

See also
DbiCreateTable, DbiCopyTable, DbiAddPassword

DbiDoRestructure

Syntax
DBIResult DBIFN DbiDoRestructure (hDb, iTblDescCount, pTblDesc, pszSaveAs, [pszKeyviolName], [pszProblemsName],

bAnalyzeOnly);

Description
DbiDoRestructure changes the properties of a table such as the following: modifying field types or field sizes,
adding a field, deleting a field, rearranging fields; or changing indexes, security passwords, or referential integrity.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

iTblDescCount Type: UINT16 (Input)
Specifies the number of table descriptors. Currently, only one table descriptor can be processed per call, so iTblDescCount must
be set to 1.

pTblDesc Type: pCRTblDesc (Input)
Pointer to the client-allocated CRTblDesc structure, which identifies the source table, describes the new record structure (if
modified), and lists all other changes to the table

pszSaveAs Type: pCHAR (Input)
Optional. If not NULL, creates a restructured table with this name and leaves the original unchanged.

pszKeyviolName Type: pCHAR (Input)
Optional. Pointer to the Key Violation table name. All records that cause an integrity violation are placed here. If NULL, no Key
Violation table is created. If the user supplies a table name, that name is used. If a pointer to an empty string is specified, the
table name created is returned in the user's area (must be at least DBIMAXPATHLEN1 bytes).

pszProblemsName Type: pCHAR (Input)
Optional. Pointer to the Problems table name. If NULL, no Problems table is created. If the user supplies a table name, that
name is used. If the user has overridden the default behavior with a callback, records are placed in a Problems table if they
cannot be placed into the destination table without trimming data. If a pointer to an empty string is specified, the table name
created is returned in the user's area (must be at least DBIMAXPATHLEN1 bytes).

bAnalyzeOnly Type: BOOL (Input)
Not currently used.

Usage
Paradox: For Paradox only, after a restructure an application can use the invariant field identification numbers to
determine how each column of data has been affected by the restructure.

For example, a form on CUST table displays two fields: CUSTOMER and ADDRESS. A user then restructures the
CUST table and adds a new field before CUSTOMER called CUSTOMERID and    changes the name of the field
CUSTOMER    to CUSTOMERNAME. Even though the name and position of the original CUSTOMER field has
changed, its invariant field ID does not. When the form is reopened on the table, it can check the cursor property
called iRestrVersion, if this has changed since the last time the form was used, it can fetch the field descriptors
and use the iFldNum of each field descriptor to fetch the invariant field ID and compare these to the last invariant
field IDs fetched before the restructure. This tells the application where each column of data has been moved
regardless of any field renaming. Any new fields are given a new invariant field ID and no deleted field's ID is
reused. Care must be taken not to use iFldNum as a field number in this case.

SQL: Not currently supported for SQL.

Prerequisites
The application must specify a completed CRTblDesc structure that defines the modifications to the table.

Completion state
When the restructure completes successfully, the following tables might be created:

A Key Violations table (if pszKeyviolName was specified integrity violations occurred)
A Problems table (if pszProblemsName was specified and there was data loss that the client disallowed by a

callback)

DbiResult return values
DBIERR_NONE A table was successfully generated with the new structure.

Generally, errors returned are due to invalid descriptors or invalid transformations.

See also
DbiRegisterCallBack, DbiBatchMove for use of pszKeyviolName and pszProblemsName

DbiDropFilter

Syntax
DBIResult DBIFN DbiDropFilter (hCursor, [hFilter]);

Description
DbiDropFilter drops the specified filter and frees all resources associated with the filter.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

hFilter Type: hDBIFilter (Input)
Specifies the filter handle.

Usage
The filter is automatically deactivated before being dropped, and automatically dropped when the cursor is closed.
Providing a NULL filter handle drops all filters for this cursor. If no filters are activated and NULL has been
specified for the filter handle, no error condition is returned.

Prerequisites
The filter must have been previously added.

DbiResult return values
DBIERR_NONE The filter specified by the filter handle was successfully dropped. If NULL is passed for the filter

handle, all filters, if any, were dropped.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NOSUCHFILTER The filter handle (hFilter) is invalid.

See also
DbiActivateFilter, DbiDeactivateFilter, DbiAddFilter

DbiDropPassword

Syntax
DBIResult DBIFN DbiDropPassword (pszPassword);

Description
DbiDropPassword removes a password from the current session. This function is used by the Paradox driver only.

Parameters
pszPassword Type: pCHAR (Input)
Pointer to the password to be dropped. If NULL is specified, all passwords for the session are dropped.

Usage
This function removes the rights to access previously encrypted tables with that password; it does not cause
tables to become decrypted.

DbiResult return values
DBIERR_NONE The password specified by pszPassword was successfully dropped.

DBIERR_INVALIDPASSWORD The specified password is empty or too long.

DBIERR_OBJNOTFOUND pszPassword was not found.

See also
DbiAddPassword

DbiEmptyTable

Syntax
DBIResult DBIFN DbiEmptyTable (hDb, hCursor, pszTableName, [pszDriverType]);

Description
DbiEmptyTable deletes all records from the given table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

hCursor Type: hDBICur (Input)
Specifies the cursor on the table. Optional. If hCursor is specified, the operation is performed on the table associated with the
cursor. If hCursor is NULL, pszTableName and pszDriverType determine the table to be used.

pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTableName and pszDriverType determine the table to be used. (If
both pszTableName and hCursor are specified, pszTableName is ignored.)

For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. This parameter is ignored if the database associated with hDb is a SQL database. pszDriverType can be one of the
following values: szDBASE or szPARADOX.

Usage
This function is used to remove all records from the specified table.

Paradox: The operation is not performed if there are any conflicting referential integrity constraints on the table.

Prerequisites
If a cursor is passed in, it must have been opened in exclusive mode. For Paradox tables, if the table is encrypted,
a table-level password with prvINSDEL or prvFULL rights must have been registered.

Completion state
No records remain in the table. However, all resources (for example, indexes and validity checks) remain. The
table and index should now be at their respective minimum sizes.

DbiResult return values
DBIERR_NONE The table was successfully emptied.

DBIERR_INVALIDHNDL The specified database handle or the specified cursor handle is invalid or NULL.

DBIERR_NEEDEXCLACCESS The table was not emptied because the user does not have exclusive access to this table.

DBIERR_NOSUCHTABLE The table specified in pszTableName and pszDriverType does not exist.

DBIERR_INVALIDPARAM The pointer to the table name is NULL, or the table name is an empty string.

DBIERR_NOTSUFFTABLERIGHTS The user does not have permission to perform this operation (Paradox only).

DBIERR_NOTSUFFSQLRIGHTS Insufficient SQL rights to perform this operation (SQL only).

DBIERR_DETAILRECEXISTEMPTY There are conflicting referential integrity constraints on the table (Paradox only).

See also
DbiOpenTable, DbiAddPassword

DbiEndLinkMode

Syntax
DBIResult DBIFN DbiEndLinkMode (phCursor);

Description
DbiEndLinkMode takes cursor out of Link mode, and returns a new cursor handle.

Parameters
phCursor Type: phDBICur (Input/Output)
Specifies the linked cursor handle, and returns a new cursor handle.

Prerequisites
A previous call to DbiBeginLinkMode must have been made. DbiUnlinkDetail should be called to unlink the cursor
before DbiEndLinkMode is called.

Usage
DbiEndLinkMode takes a cursor out of Link mode. For example, if a detail cursor is taken out of link mode, it is no
longer constrained by the master cursor.

Warning: The cursor handle passed in as input can no longer be used.

DbiResult return values
DBIERR_NONE Linked cursor mode was successfully ended.

See also
DbiBeginLinkMode, DbiLinkDetail, DbiUnlinkDetail

DbiEndTran

Syntax
DBIResult DBIFN DbiEndTran (hDb, hXact, eEnd);

Description
DbiEndTran ends a transaction for a SQL server.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

hXact Type: hDBIXact (Input)
Specifies the transaction handle.

eEnd Type: eXEnd (Input)
Specifies the transaction end type.

Usage
Ends a transaction that was previously requested. If a commit is done, all changes performed within the
transaction against the associated database are made permanent. If an abort is done, all changes performed
against the associated database are undone.

xendCOMMIT and xendABORT currently keep cursors if the driver and the database can support it. For
xendCOMMIT and xendABORT, if the database cannot support keeping cursors, four possibilities exist for each
server cursor opened on behalf of the BDESDK user:

A cursor for an open query with pending results is buffered locally. Other than prematurely reading the data,
no visible effect remains.

A cursor opened on a table supporting direct positioning is closed. No other behavior is affected.
A cursor opened on a table that does not support direct positioning is opened initially in a different

transaction or connection context, if the database supports this. This cursor remains open because it exists in a
different context from the requested transaction.

If none of the previous possibilities apply, the cursor is closed and subsequent access to the BDESDK
objects associated with the server cursor returns an error.

SQL: This function is supported with SQL server databases only.

Prerequisites
DbiBeginTran must have been called first.

DbiResult return values
DBIERR_NONE The transaction has ended successfully.

See also
DbiBeginTran

eEnd
Possible transaction end type values are:

Value Description

xendCOMMIT Commit the transaction.

xendCOMMITKEEP Commit the transaction and keep cursors.

xendABORT Roll back the transaction.

DbiExit

Syntax
DBIResult DBIFN DbiExit (VOID);

Description
DbiExit disconnects the client application from BDESDK.

Usage
DbiExit uninitializes the engine for use by this client and releases all resources allocated by the client application.
DbiExit should be the last DBI/BDESDK call made by the client application.

Completion state
All databases and cursors are closed, and any temporary tables are removed. If the exit is done while in a SQL
transaction, the active transaction is usually rolled back. (Some SQL drivers commit.) Since the connection to the
engine has been removed, the user must reinitialize the engine before any BDESDK functions can be called.

DbiResult return values
DBIERR_NONE The connection to the engine has been successfully removed.

See also
DbiInit

DbiExtractKey

Syntax
DBIResult DBIFN DbiExtractKey (hCursor, [pRecBuf], pKeyBuf);

Description
DbiExtractKey retrieves the key value for the current record of the given cursor or from the supplied record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle. The cursor must be opened with an active index.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer from which to extract the key. Optional; if NULL, DbiExtractKey extracts the key from the current
record.

pKeyBuf Type: pBYTE (Output)
Pointer to the client buffer receiving the key value. The length of the key value can be determined by retrieving the Index
Descriptor (IDXDesc) and using iKeyLen or iKeySize in the CURProps structure.

Prerequisites
An index must be active. To retrieve the key from the current record, the cursor must be on a valid record.

Completion state
The extracted key value is returned in pKeyBuf. The returned key can be used as input to functions such as
DbiSetToKey, DbiSetRange, and DbiCompareKey.

Note: In case a field map is active on the cursor, and does not include one or more of the index fields, those
index fields become blanks in the extracted key if a record buffer was supplied.

Note: The key length is not affected by a field map.

DbiResult return values
DBIERR_NONE The key value was retrieved successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NOASSOCINDEX The cursor does not have an index active.

DBIERR_NOCURRREC The cursor is not positioned on a record.

See also
DbiGetCursorProps, DbiSetToKey, DbiSetRange, DbiCompareKeys, DbiGetRecordForKey

DbiForceReread

Syntax
DBIResult DBIFN DbiForceReread (hCursor);

Description
DbiForceReread refreshes all buffers for the table associated with the cursor in case remote updates took place.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

Usage
DbiForceReread is used to ensure that the client application is using current data. All subsequent retrieval
operations will get new data.

Note: This function only ensures that the buffered data is current at the time of the call. Use DbiForceReread or
DbiCheckRefresh periodically to ensure current data. Use record locking to prevent other users from
updating records being modified by this cursor.

In order to notify the client application that the table data was actually changed by a remote user, a callback of the
type cbTABLECHANGED can be installed. This callback will be invoked whenever a change is detected.

Prerequisites
SQL: There must be a unique row identifier such as an index.

DbiResult return values
DBIERR_NONE Buffers were refreshed successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiCheckRefresh, DbiRegisterCallback

DbiFormFullName

Syntax
DBIResult DBIFN DbiFormFullName (hDb, pszTableName, pszDriverType, pszFullName);

Description
DbiFormFullName returns the fully qualified table name.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type.

pszFullName Type: pCHAR (Output)
Pointer to the client buffer that receives the fully qualified table name.

Usage
If the given table name contains a beginning drive letter followed by a colon, this function simply returns the same
table name that was passed in without changing it. Otherwise, this function qualifies the table name using the
directory associated with the supplied database handle. You can use DbiSetDirectory to change this directory.

DbiResult return values
DBIERR_NONE The table name has been successfully returned.

DBIERR_INVALIDFILENAME The specified table name is invalid.

See also
DbiSetDirectory

DbiFreeBlob

Syntax
DBIResult DBIFN DbiFreeBlob (hCursor, pRecBuf, iField);

Description
DbiFreeBlob closes the BLOB handle obtained by DbiOpenBlob. The BLOB handle is located within the specified
record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle for the table. The table must contain a BLOB field.

pRecBuf Type: pBYTE (Input)
Specifies the pointer to the record buffer containing the BLOB handle. DbiOpenBlob sets the BLOB handle in the record buffer.

iField Type: UINT16 (Input)
Specifies the valid field number of the open BLOB field. If set to 0, the DbiFreeBlob call closes all open BLOBs associated with
the record buffer.

Usage
The BLOB handle is closed, and all resources allocated to the BLOB with DbiOpenBlob are released.

This function must be called after calling DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord (only if a BLOB
has been opened), in order to free BLOB resources. DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord do
not automatically release BLOB resources after record modification. However, if DbiFreeBlob is called prior to
calling DbiModifyRecord, DbiInsertRecord, or DbiAppendRecord, then any changes made to the BLOB are lost.

This function does not affect the contents of the BLOB on disk.

Prerequisites
The current record buffer must contain a BLOB field, and the BLOB must have been opened with DbiOpenBlob.

Completion state
After a BLOB handle has been freed, subsequent calls to DbiFreeBlob for the same handle result in an error.

DbiResult return values
DBIERR_NONE The BLOB field was freed successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified record buffer is NULL.

DBIERR_OUTOFRANGE The number specified in iField is greater than the number of fields in the table.

DBIERR_BLOBNOTOPENED The specified BLOB field has not been opened via a call to DbiOpenBlob. This error is returned
if the BLOB has already been freed with a previous DbiFreeBlob call.

DBIERR_INVALIDBLOBHANDLE The logical BLOB handle in the record buffer is invalid.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

See also
DbiOpenTable, DbiOpenBlob, DbiPutBlob, DbiTruncateBlob, DbiGetBlob, DbiGetBlobSize, DbiInsertRecord,
DbiAppendRecord, DbiModifyRecord

DbiGetBlob

Syntax
DBIResult DBIFN DbiGetBlob (hCursor, pRecBuf, iField, iOffSet, iLen, pDest, piRead);

Description
DbiGetBlob retrieves data from the specified BLOB field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer containing the BLOB handle. The record buffer is returned from a call to DbiGetNextRecord,
DbiGetPriorRecord, DbiGetRelativeRecord, or DbiGetRecord. DbiOpenBlob sets the BLOB handle in the record buffer.

iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field in the record.

iOffSet Type: UINT32 (Input)
Specifies the start location for retrieval within the BLOB field. If 0 is specified, retrieval starts from the beginning of the field. If the
value exceeds the length of the BLOB field, an error is returned. If any value greater than 0 is specified, then only a portion of
the BLOB field is retrieved.

iLen Type: UINT32 (Input)
Specifies the number of bytes to retrieve. iLen must be between 0 and the length of the BLOB field. iLen must also be less than
64K.

pDest Type: pBYTE (Output)
Pointer to the client buffer that receives the BLOB data.

piRead Type: pUINT32 (Output)
Pointer to the client variable that receives the actual number of bytes read. The actual number can be less than the number of
bytes requested if the end of the BLOB is reached.

Usage
Any portion of the data within the BLOB field can be retrieved, starting from the position specified in iOffSet, and
extending to the number of bytes specified in iLen. pRecBuf should contain a BLOB handle obtained by calling
DbiOpenBlob.

Prerequisites
The current record buffer must contain a BLOB field which has been opened by a call to DbiOpenBlob.

Completion state
piRead points to the number of bytes of BLOB data retrieved, and pDest points to the retrieved BLOB data.

DbiResult return values
DBIERR_NONE The BLOB field was successfully retrieved.

DBIERR_BLOBNOTOPENED The specified BLOB field has not been opened via call to DbiOpenBlob.

DBIERR_INVALIDBLOBHANDLE The logical BLOB handle supplied in the record buffer is invalid.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

DBIERR_INVALIDBLOBOFFSET The start location specified in iOffSet is greater than the length of the BLOB field.

DBIERR_ENDOFBLOB The end of the BLOB has been reached. Check piRead to see if any data was returned.

See also
DbiOpenBlob, DbiPutBlob, DbiFreeBlob, DbiTruncateBlob, DbiGetBlobSize

DbiGetBlobHeading

Syntax
DBIResult DBIFN DbiGetBlobHeading (hCursor, iField, pRecBuf, pDest);

Description
DbiGetBlobHeading retrieves information about a BLOB field from the BLOB heading in the record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field within the record.

pRecBuf Type: pBYTE (Input)
Pointer to the client buffer containing the BLOB heading.

pDest Type: pBYTE (Output)
Pointer to the client buffer that receives the retrieved BLOB heading. The client buffer must be large enough to accommodate
the retrieved information.

Usage
This function is valid only for table types that support BLOB headings, that is, Paradox only. When the table is
created, the client can specify the number of bytes of the BLOB field information to be stored in the tuple itself.
This information is also contained in the normal storage area of the BLOB; it is actually duplicated. The benefit of
storing some of the BLOB field in the tuple is that the BLOB field does not have to be opened to retrieve this
information. If the BLOB is small, it can be contained fully in the record making access faster.

Paradox: With formatted BLOB fields, the formatting information in the first eight bytes of the field is not stored
within the tuple. It is functionally the same as if DbiGetBlob were called with an iOffSet of 8 and an iLen the length
of the tuple area.

dBASE: This function is not supported for dBASE tables.

SQL: This function is not supported for SQL tables.

Prerequisites
This call does not require a prior call to DbiOpenBlob. (This call can be understood as the functional equivalent of
a DbiGetField call for BLOB fields).

Completion state
If the BLOB does not have a heading, DbiGetBlobHeading returns an error.

DbiResult return values
DBIERR_NONE The BLOB heading was retrieved successfully.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

DBIERR_NOTSUFFFIELDRIGHTS The application does not have sufficient rights to this field.

DBIERR_NOTSUPPORTED This function is not supported by SQL or dBASE.

See also
DbiPutBlob, DbiTruncateBlob, DbiFreeBlob, DbiGetBlob, DbiGetBlobSize

DbiGetBlobSize

Syntax
DBIResult DBIFN DbiGetBlobSize (hCursor, pRecBuf, iField, piSize);

Description
DbiGetBlobSize retrieves the size of the specified BLOB field in bytes.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer containing the BLOB handle. The client application must first allocate the buffer and fetch a valid
record. A call to DbiOpenBlob then obtains the BLOB handle.

iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field within the specified record buffer.

piSize Type: pUINT32 (Output)
Pointer to the client variable that receives the BLOB size in bytes.

Usage
This function is used to get the size of a BLOB.

Prerequisites
The current record buffer must contain a BLOB field which has been opened by a call to DbiOpenBlob.

Completion state
piSize points to the retrieved size of the BLOB field.

DbiResult return values
DBIERR_NONE The BLOB size was successfully retrieved.

DBIERR_BLOBNOTOPENED The specified BLOB field has not been opened with a call to DbiOpenBlob.

DBIERR_INVALIDBLOBHANDLE The logical BLOB handle supplied in the record buffer is invalid.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

See also
DbiOpenBlob, DbiPutBlob, DbiGetBlob, DbiFreeBlob, DbiTruncateBlob

DbiGetBookMark

Syntax
DBIResult DBIFN DbiGetBookMark (hCur, pBookMark);

Description
DbiGetBookMark saves the current position of a cursor in the client-supplied bookmark buffer. This position is
called a bookmark.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle.

pBookMark Type: pBYTE (Output)
Pointer to the client-allocated bookmark buffer.

Usage
A bookmark contains internal information about the current position of the cursor. This information can be passed
to DbiSetToBookMark to reposition the same or compatible cursor. If a bookmark is stable, it is guaranteed that
the cursor can be repositioned there. Whether or not the bookmark is stable can be determined from the
bBookMarkStable property returned by DbiGetCursorProps.

dBASE: For dBASE tables, the bookmark is always stable.

Paradox: For Paradox tables, the bookmark is stable only if the table has a primary key.

SQL: For SQL tables, the bookmark is stable only if the table has a unique index or unique row identifier.

Prerequisites
DbiGetCursorProps should be called to retrieve the iBookMarkSize property and the bookmark buffer should be
allocated to accommodate the bookmark.

Note: The size of a bookmark depends on the current index and can change if DbiSwitchToIndex is called.

Completion state
The bookmark buffer pointed to by pBookMark contains the saved cursor position. The bookmark is valid only with
a cursor that is using the same table and ordered with the same index.

DbiResult return values
DBIERR_NONE The bookmark was returned successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or the pointer to the bookmark is NULL.

See also
DbiSetToBookMark, DbiCompareBookMarks, DbiGetCursorProps

DbiGetCallBack

Syntax
DBIResult DBIFN DbiGetCallBack (hCursor, ecbType, piClientData, piCbBufLen, ppCbBuf, ppfCb);

Description
DbiGetCallBack returns a pointer to the function previously registered by the client (using DbiRegisterCallBack)
for the given callback type.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle. If NULL, hCursor specifies that the callback is session-wide, rather than cursor-level.

ecbType Type: CBType (Input)
Specifies the type of callback.

piClientData Type: pUINT32 (Input)
Pointer to the pass-through client data (used by the client function).

piCbBufLen Type: pUINT16 (Input)
Pointer to the callback buffer length.

ppCbBuf Type: ppVOID (Input)
Pointer to the callback buffer pointer.

ppfCb Type: ppfDBICallBack (Output)
Pointer to the client variable that receives a pointer to the callback function that was previously registered for this type. The
buffer receives a NULL pointer if no function was registered.

Usage
This function is typically used to find out whether the specified callback function was registered for the given
cursor handle or the currently active session.

DbiResult return values
DBIERR_NONE The callback function for the given cursor handle has been successfully retrieved.

See also
DbiRegisterCallBack

DbiGetClientInfo

Syntaax
DBIResult DBIFN DbiGetClientInfo (pclientInfo);

Description
DbiGetClientInfo retrieves system-level information about the client application.

Parameters
pclientInfo Type: pCLIENTInfo (Output)
Pointer to the client-allocated CLIENTInfo structure.

Usage
This function can be used to determine if other sessions are present when exclusive access is required to a table.
It can also be used to determine the current language driver and to get the working directory.

Completion state
The output buffer pointed to by pclientInfo contains client environment information.

DbiResult return values
DBIERR_NONE Client application information was returned successfully.

See also
DbiGetSysVersion, DbiGetSysConfig, DbiGetSysInfo

DbiGetCurrSession

Syntax
DBIResult DBIFN DbiGetCurrSession (phSes);

Description
DbiGetCurrSession returns the handle associated with the current session.

Parameters
phSes Type: phDBISes (Output)
Pointer to the current session handle.

Completion state
This function returns the handle of the default session if no sessions have been started explicitly (with
DbiStartSession) by the client application.

DbiResult return values
DBIERR_NONE The current session handle has been retrieved successfully.

DBIERR_INVALIDHNDL phSes is NULL.

See also
DbiSetCurrSession, DbiStartSession, DbiCloseSession, DbiGetSysInfo, DbiGetSesInfo

DbiGetCursorForTable

Syntax
DBIResult DBIFN DbiGetCursorForTable ([hDb], pszTableName, [pszDriverType], phCursor);

Description
DbiGetCursorForTable returns an existing cursor for the given table within the current session.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle. Optional. If supplied, DbiFormFullName is called to create a fully qualified table name.

pszTableName Type: pCHAR (Input)
Pointer to the table name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. If supplied, used with hDb in a call to DbiFormFullName.

phCursor Type: phDBICur (Output)
Pointer to a cursor handle.

Usage
If more than one cursor is opened on the table, the first cursor found on the table is returned. There is no implied
ordering of cursors on a table.

DbiResult return values
DBIERR_NONE The cursor for the table was retrieved successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table name is invalid.

DBIERR_OBJNOTFOUND A valid cursor could not be found.

See also
DbiFormFullName

DbiGetCursorProps

Syntax
DBIResult DBIFN DbiGetCursorProps (hCursor, pcurProps);

Description
DbiGetCursorProps returns the properties of the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pcurProps Type: pCURProps (Output)
Pointer to the client-allocated CURProps structure.

Usage
This function retrieves the most commonly used cursor properties. Additional properties can be obtained using
DbiGetProp. This function can be called immediately after DbiOpenTableto retrieve information necessary to
allocate the record buffer and the array for the field descriptors in the table.

DbiResult return values
DBIERR_NONE Cursor properties for hCursor were successfully retrieved.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetProp, DbiSetProp, Getting and Setting Properties

DbiGetDatabaseDesc

Syntax
DBIResult DBIFN DbiGetDatabaseDesc (pszName, pdbDesc);

Description
DbiGetDatabaseDesc retrieves the description of the specified database from the configuration file.

Parameters
pszName Type: pCHAR (Input)
Pointer to the database name.

pdbDesc Type: pDBDesc (Output)
Pointer to the client-allocated DBDesc structure.

Prerequisites
A valid database (alias) name must be specified.

Completion state
The output buffer contains the database description.

DbiResult return values
DBIERR_NONE The database description for pszName was retrieved successfully.

DBIERR_OBJNOTFOUND The database named in pszName was not found.

See also
DbiOpenDatabaseList

DbiGetDateFormat

Syntax
DBIResult DBIFN DbiGetDateFormat (pfmtDate);

Description
DbiGetDateFormat gets the date format for the current session.

Parameters
pfmtDate Type: pFMTDate (Output)
Pointer to the client-allocated FMTDate structure.

Usage
The date format is used by QBE for input and wildcard character matching. It is also used by batch operations
(such as DbiDoRestructure and DbiBatchMove) to handle data type coercion between character and date types.
The default date format can be changed by editing the system configuration file. The date format for the current
session can be changed using DbiSetDateFormat.

DbiResult return values
DBIERR_NONE The date format was successfully retrieved.

DBIERR_INVALIDHNDL pfmtDate is NULL.

See also
DbiGetNumberFormat, DbiGetTimeFormat, DbiSetDateFormat

DbiGetDirectory

Syntax
DBIResult DBIFN DbiGetDirectory (hDb, bDefault, pszDir);

Description
DbiGetDirectory retrieves the current directory or the default directory, depending on the value specified in
bDefault.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle. Must be associated with a standard database.

bDefault Type: BOOL (Input)
Specifies whether to retrieve the default directory or the current working directory. [MORE]

pszDir Type: pCHAR (Output)
Pointer to the client-allocated buffer which receives the directory string. The buffer must be large enough to hold the directory
string (DBIMAXPATHLEN    1).

Usage
This function is valid only for a standard database. The default directory can be set when DbiInit is called as part
of the DBIEnv structure. If DbiSetDirectory is not called, then the default directory is the same as the application
startup directory.

SQL: DbiGetDirectory is not applicable to SQL databases.

Prerequisites
A valid database handle must be obtained.

Completion state
The output buffer contains the directory string.

DbiResult return values
DBIERR_NONE The directory was returned successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiSetDirectory, DbiInit, DbiOpenDatabase

bDefault
bDefault can be one of the following values:

bDefault value Directory to retrieve

TRUE Default directory

FALSE Current working directory

DbiGetDriverDesc

Syntax
DBIResult DBIFN DbiGetDriverDesc (pszDriverType, pdrvType);

Description
DbiGetDriverDesc retrieves a Description of a driver.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver name string.

pdrvType Type: pDRVType (Output)
Pointer to the client-allocated DRVType structure.

DbiResult return values
DBIERR_NONE The driver Description was retrieved successfully.

See also
DbiOpenDriverList

DbiGetErrorContext

Syntax
DBIResult DBIFN DbiGetErrorContext (eContext, pszContext);

Description
After receiving an error code back from a call, DbiGetErrorContext allows the client to probe the BDE for more
specific error information.

Parameters
eContext Type: INT16 (Input)
Specifies the context type.

pszContext Type: pCHAR (Output)
Pointer to the client-allocated buffer that receives the context string. The buffer must be at least as large as (DBIMAXMSGLEN   
1).

Usage
DbiGetErrorContext allows the client to receive more information about the error just received, such as which
table failed to open. The client inputs the error context type and the function returns a character string.

For example, a client tries to open a nonexistent table using DbiOpenTable, and receives a return of
DBIERR_NOSUCHFILE. The error context is logged by the BDE. Other error contexts can be logged as well, so
rather than force the user to scan each error context individually, the BDE provides a way to search for a particular
context type. In this example, the user wants to know the table name associated with the error condition, and calls
DbiGetErrorContext (ecTABLENAME, buffer), which returns the full path name of the table. If there is no table
name associated with the error, the buffer is empty.

Note: If all that is required is a formatted error message for the end user,

DbiGetErrorInfo is a more convenient way to get it.

Prerequisites
No other calls (other than error handling functions) can be made after the call that produced the error.

DbiResult return values
DBIERR_NONE The error context was successfully returned.

See also
DbiGetErrorInfo, DbiGetErrorEntry, DbiGetErrorString

eContext
eContext can be one of the following values:

Value Description

ecTOKEN Token (For QBE)

ecTABLENAME Table name

ecFIELDNAME Field name

ecIMAGEROW Image row (For QBE)

ecUSERNAME For example, in lock conflicts, user involved

ecFILENAME File name

ecINDEXNAME Index name

ecDIRNAME Directory name

ecKEYNAME Key name

ecALIAS Alias

ecDRIVENAME Drive name (C:)

ecNATIVECODE Native error code

ecNATIVEMSG Native error message

ecLINENUMBER Line number

ecCAPABILITY Capability

DbiGetErrorEntry

Syntax
DBIResult DBIFN DbiGetErrorEntry (uEntry, pulNativeError, pszError);

Description
DbiGetErrorEntry returns the error Description (including native server errors returned from SQL systems) of a
specified error stack entry.

Parameters
uEntry Type: UINT16 (Input)
Specifies the error stack entry.

pulNativeError Type: pUINT32 (Output)
Pointer to the client variable that receives the native error code (if any).

pszError Type: pCHAR (Output)
Pointer to the client-allocated buffer that receives the error string (if any).

Usage
Error stack entries begin with 1. Each stack entry contains a DBIERR, and possibly a native error code and a
native error message. DBIERR_NONE is returned for stack entries beyond the current error stack, so this
successful return can be used as a loop termination. For example, if error entry 1 returns DBIERR_NONE, there
are no errors on the stack. Both the native error code and the native error message result are optional. The stack
can be traversed multiple times, or combined with other error interface calls, but non-error routine BDESDK calls
reset the error stack.

DbiResult return values
DBIERR_NONE The error stack entry is empty.

Any other error return value indicates what the error code is that is contained in the error stack entry.

See also
DbiGetErrorInfo, DbiGetErrorEntry, DbiGetErrorString

DbiGetErrorInfo

Syntax
DBIResult DBIFN DbiGetErrorInfo (bFull, pErrInfo);

Description
DbiGetErrorInfo provides descriptive error information about the last error that occurred, and error contexts for the
first four error messages on the error stack.

Parameters
bFull Type: BOOL (Input)
Not currently used.

pErrInfo Type: pDBIErrInfo (Output)
Pointer to the client DBIErrInfo structure.

Usage
Error information consists of the DBIResult error code, an error message in ANSI characters corresponding to the
code, and up to four associated error contexts. For example, if the error message is Table Not Found, the user
might want to know the table name. The BDESDK engine logged the table name with the error context
ecTABLENAME, which can be found in one of the contexts contained in the DBIErrInfo structure.

Prerequisites
This function is designed for immediate display to the user, so unlike the function DbiGetErrorContext, the client
does not need to be concerned about the different types of error contexts. If the client wishes to interpret certain
error codes and contexts (for example, the ALIAS error context), DbiGetErrorContext should be used.

DbiResult return values
DBIERR_NONE Error information was retrieved successfully.

See also
DbiGetErrorContext

DbiGetErrorString

Syntax
DBIResult DBIFN DbiGetErrorString (rslt, pszError);

Description
DbiGetErrorString returns the message associated with a given error code.

Parameters
rslt Type: DBIResult (Input)
Specifies the error code.

pszError Type: pCHAR (Output)
Pointer to the client buffer that receives the message string for the given error code.

Usage
This function maps an error code in rslt to the corresponding error string. For example, if DbiGetErrorString is
called with the error code DBIERR_EOF, it returns the string At End of Table. The engine keeps the error strings
as Windows string resources, so the client can translate/customize them as needed (using a resource editor such
as Resource Workshop).

Note: This function has no context, so it is not limited to error codes that were returned by previous engine calls.
In contrast, DbiGetErrorInfo returns information only on the last error logged by the engine.

Prerequisites
The client must allocate a buffer at least as large as (DBIMAXMSGLEN    1).

DbiResult return values
DBIERR_NONE The error string was retrieved successfully.

See also
DbiGetErrorInfo, DbiGetErrorEntry, DbiGetErrorContext

DbiGetField

Syntax
DBIResult DBIFN DbiGetField (hCursor, iField, pRecBuf, [pDest], [pbBlank]);

Description
DbiGetField retrieves the data contents of the requested field from the record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iField Type: UINT16 (Input)
Specifies the ordinal number of the field within the record. Field numbers start with 1.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.

pDest Type: pBYTE (Output)
Pointer to the client buffer that receives the data from the requested field. Optional.

pbBlank Type: pBOOL (Output)
Pointer to the client variable. Set to TRUE if the field is blank; otherwise, FALSE. Optional.

Usage
To determine if a field is blank or if a BLOB is NULL, DbiGetField can be called with pDest set to NULL. pbBlank is
returned indicating whether the field is blank or nonblank.

The data that DbiGetField returns is based on the current translation mode of the cursor. If the record translation
is set to xltNONE, DbiGetField returns the raw data in the driver's physical format. This is called an BDESDK
physical type. If the translation mode is set to xltFIELD, the data is returned in a generic form (for example, a
Paradox numeric value is returned as an 8-byte double). This is called an BDESDK logical type.

DbiGetField cannot be used to return the data contents of a BLOB field, although it can be used to determine if
the BLOB field is empty.

Completion state
The output buffer pointed to by pDest (if supplied) contains the requested field. The output buffer pointed to by
pbBlank (if supplied) indicates whether the field is blank.

DbiResult return values
DBIERR_NONE Data contents were retrieved successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiPutField, DbiInsertRecord, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiGetRecord

DbiGetFieldDescs

Syntax
DBIResult DBIFN DbiGetFieldDescs (hCursor, pfldDesc);

Description
DbiGetFieldDescs retrieves a list of descriptors for all the fields in the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pfldDesc Type: pFLDDesc (Output)
Pointer to the client FLDDesc structures, one for each of the fields in the table associated with the specified cursor.

Usage
The field descriptors returned are in accordance with the translation mode set for the cursor. If the translation
mode is xltNONE, the physical field descriptors are returned. If the translation mode is xltFIELD, the logical field
descriptors are returned.

Use DbiGetCursorProps to get the number of field in the table.

DbiResult return values
DBIERR_NONE The field Descriptions were returned successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetCursorProps

DbiGetFieldTypeDesc

Syntax
DBIResult DBIFN DbiGetFieldTypeDesc (pszDriverType, pszTableType, pszFieldType, pfldType);

Description
DbiGetFieldTypeDesc retrieves a description of the specified field type.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Use DbiOpenDriverList to find the valid driver types.

pszTableType Type: pCHAR (Input)
Pointer to the table type. Use DbiOpenTableTypesList to find the valid table types.

pszFieldType Type: pCHAR (Input)
Pointer to the field type. Use DbiOpenFieldTypesList to find the valid field types.

pfldType Type: pFLDType (Output)
Pointer to the client FLDType structure.

DbiResult return values
DBIERR_NONE The field type Description was retrieved successfully.

See also
DbiOpenFieldTypesList, DbiOpenTableTypesList, DbiOpenDriverList

DbiGetFilterInfo

Syntax
DBIResult DBIFN DbiGetFilterInfo (hCursor, hFilter, iFilterId, iFilterSeqNo, pFilterinfo);

Description
DbiGetFilterInfo retrieves information about a specified filter.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

hFilter Type: hDBIFilter (Input)
Specifies the filter handle. Filter handles are not preserved for cloned cursors. Optional, specify a filter handle, filter identification
number, or filter sequence number to identify the filter. The default is NULL.

iFilterId Type: UINT16 (Input)
Specifies the filter identification number. Optional, specify a filter handle, filter identification number, or filter sequence number to
identify the filter. The default is 0.

iFilterSeqNo Type: UINT16 (Input)
Specifies the filter sequence number. Optional, specify a filter handle, filter identification number, or filter sequence number to
identify the filter. The default is 0.

pFilterinfo Type: pFILTERInfo (Input)
Pointer to the client FILTERInfo structure.

DbiResult return values
DBIERR_NONE Filter information was retrieved successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DbiGetIndexDesc

Syntax
DBIResult DBIFN DbiGetIndexDesc (hCursor, iIndexSeqNo, pidxDesc);

Description
DbiGetIndexDesc retrieves the properties of the given index associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iIndexSeqNo Type: UINT16 (Input)
Specifies the ordinal number of the index in the list of open indexes of the cursor. DbiGetIndexSeqNo can be called to obtain this
number for a given index. If iIndexSeqNo is 0, the properties of the active index are returned.

pidxDesc Type: pIDXDesc (Output)
Pointer to the client-allocated IDXDesc structure.

Usage
This function is used to find the properties of an open index for this cursor. Use DbiGetCursorProps to get the
number of open indexes (iIndexes). iIndexSeqNo must be between zero and iIndexes.

Note: If a field map is active, the field numbers in aiKeyFld list the mapped field numbers, however, if a key field
is not part of the field map, it is a negative number.

Prerequisites
A valid cursor handle must be on one or more open indexes.

DbiResult return values
DBIERR_NONE The properties of the specified index were returned successfully.

DBIERR_INVALIDHNDL The specified handle is invalid or NULL.

DBIERR_NOTINDEXED Table has no associated indexes.

DBIERR_NOSUCHINDEX iIndexSeqNo is invalid.

See also
DbiOpenIndex, DbiCloseIndex, DbiGetCursorProps, DbiGetIndexSeqNo

DbiGetIndexDescs

Syntax
DBIResult DBIFN DbiGetIndexDescs (hCursor, pidxDesc);

Description
DbiGetIndexDescs retrieves index properties for all indexes associated with this cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pidxDesc Type: pIDXDesc (Output)
Pointer to the client-allocated IDXDesc structure.

Usage
The client must allocate a buffer large enough to hold all index descriptors. The number of indexes can be
obtained by using DbiGetCursorProps and examining the iIndexes property.

Prerequisites
A valid cursor handle must be obtained, and at least one index must exist.

DbiResult return values
DBIERR_NONE Index Descriptions were returned successfully.

DBIERR_INVALIDHNDL The specified handle is invalid or NULL.

See also
DbiGetIndexDesc, DbiOpenIndex, DbiCloseIndex, DbiGetIndexSeqNo, DbiGetCursorProps

DbiGetIndexForField

Syntax
DBIResult DBIFN DbiGetIndexForField (hCursor, iFld, bProdTagOnly, [pidxDesc]);

Description
DbiGetIndexForField returns the description of any useful index on the specified field. You can also use it just to
check if an index exists for the given field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iFld Type: UINT16 (Input)
Specifies the field number.

bProdTagOnly Type: BOOL (Input)
For dBASE tables only. If set to TRUE, only dBASE production tags are searched.

pidxDesc Type: pIDXDesc (Output)
Pointer to the client-allocated IDXDesc structure.

Usage
Paradox: If multiple indexes exist on the field, the following order of precedence is followed: primary index,
secondary index on the specified field only, and secondary composite index with the specified field as the first
component.

dBASE: For dBASE tables, only simple indexes are considered because there are no composite indexes.
Expression indexes are not considered.

SQL: For SQL tables, if multiple indexes are created for the field, the first useful index is returned. (An attempt is
made to return the unique index with the least number of fields in the key. If there is no unique index, an index
with the least number of fields in the key is returned.)

Prerequisites
A valid cursor handle must be obtained on a base table, not on a query or in-memory or temporary table.

Completion state
The index Description is returned in the specified IDXDesc structure.

DbiResult return values
DBIERR_NONE The index descriptors were returned successfully.

DBIERR_INVALIDHNDL The specified handle is invalid or NULL.

DBIERR_NOSUCHINDEX No index on this field.

See also
DbiOpenIndex, DbiCloseIndex, DbiDeleteIndex, DbiAddIndex

DbiGetIndexSeqNo

Syntax
DBIResult DBIFN DbiGetIndexSeqNo (hCursor, pszIndexName, pszTagName, iIndexId, piIndexSeqNo);

Description
DbiGetIndexSeqNo retrieves the ordinal number of the index in the index list of the specified cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pszIndexName Type: pCHAR (Input)
Pointer to the index name.

pszTagName Type: pCHAR (Input)
For dBASE only. Pointer to the index tag name.

iIndexId Type: UINT16 (Input)
Specifies the index ID, if required to identify an index.

piIndexSeqNo Type: pUINT16 (Output)
Pointer to the client variable which receives the index sequence number.

Usage
dBASE: For dBASE tables, the ordinal number of the index in the index list can be affected by the opening and
closing of indexes on the cursor. pszIndexName and pszTagName are used to specify the index.

Paradox: The index can be specified by name or ID.

SQL: The index must be specified by name.

Completion state
The sequence number of the specified index is returned. The result of this function can be used as input for
DbiGetIndexDesc.

DbiResult return values
DBIERR_NONE The index sequence number was returned successfully.

DBIERR_INVALIDHNDL The specified handle is invalid or NULL.

DBIERR_NOSUCHINDEX The index is not open, or does not exist.

See also
DbiGetIndexDesc

DbiGetIndexTypeDesc

Syntax
DBIResult DBIFN DbiGetIndexTypeDesc (pszDriverType, pszIndexType, pidxType);

Description
DbiGetIndexTypeDesc retrieves a description of the index type.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.

pszIndexType Type: pCHAR (Input)
Pointer to the index type. Use DbiOpenIndexTypesList to find the valid index types.

pidxType Type: pIDXType (Output)
Pointer to the client-allocated IDXType structure.

DbiResult return values
DBIERR_NONE The index type description was returned successfully.

See also
DbiOpenIndexTypesList

DbiGetLdName

Syntax
DBIResult DBIFN DbiGetLdName (pszDriver, pObjName, pLdName);

Description
DbiGetLdName retrieves the name of the language driver associated with the specified object name (table name).

Parameters
pszDriver Type: pCHAR (Input)
Pointer to the driver name.

pObjName Type: pCHAR (Input)
Pointer to the table name.

pLdName Type: pCHAR (Output)
Pointer to the client buffer that receives the language driver name associated with the specified table. This buffer should be at
least (DBIMAXNAMELEN    1) in size.

Usage
If pObjName is NULL, the name of the driver's default language driver is returned.

Standard: The returned language driver name can be used as an optional parameter for DbiCreateTable as a
way to override the default language driver at create time.

SQL: If pObjName is not NULL, it must be of the form :dbalias:objName.

DbiResult return values
DBIERR_NONE The name of the language driver was retrieved successfully.

See also
DbiCreateTable

DbiGetLdObj

Syntax
DBIResult DBIFN DbiGetLdObj (hCursor,*ppLdObj);

Description
DbiGetLdObj returns the language driver object associated with the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

*ppLdObj Type: pVOID (Output)
Pointer to the client variable that receives the pointer to the language driver.

Usage
The object pointer returned in this function can be used with DbiNativeToAnsi and DbiAnsiToNative.

Completion state
If a valid cursor is passed to this function, the returned object pointer has a lifetime equivalent to the cursor's
lifetime. In other words, if the cursor is closed (and no other cursors are open on the same table), the language
driver object is destroyed and can no longer be accessed through this object pointer.

If the hCursor parameter is NULL, a pointer to the system language driver is returned. This pointer is valid for the
duration of the session and can be used regardless of which cursors are opened or closed.

DbiResult return values
DBIERR_NONE The language driver object was returned successfully.

See also
DbiNativeToAnsi, DbiAnsiToNative

DbiGetLinkStatus

Syntax
DBIResult DBIFN DbiGetLinkStatus (hCursor, phCursorMstr, phCursorDet, phCursorSib);

Description
DbiGetLinkStatus returns the master, detail, and sibling cursors, if any, of the specified linked cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

phCursorMstr Type: phDBICur (Output)
Pointer to the master cursor, if any.

phCursorDet Type: phDBICur (Output)
Pointer to the first detail cursor, if any.

phCursorSib Type: phDBICur (Output)
Pointer to the next sibling detail cursor.

Usage
Used to find all links for the given cursor. If the cursor has a master, the master is returned. If the cursor has one
or more details, the first detail is returned. If the cursor has siblings, the next sibling is returned. The master, detail,
and sibling cursor handle can be used as an input to this function. If handle is not applicable, NULL is returned.

Prerequisites
The cursor must be a linked cursor. A linked cursor is created with DbiBeginLinkMode, DbiLinkDetail, or
DbiLinkDetailToExp.

DbiResult return values
DBIERR_NONE The linked cursor status was returned successfully.

DBIERR_INVALIDHNDL The specified handle is invalid, not a linked cursor, or NULL.

See also
DbiBeginLinkMode, DbiLinkDetail, DbiLinkDetailToExp

DbiGetNetUserName

Syntax
DBIResult DBIFN DbiGetNetUserName (pszNetUserName);

Description
DbiGetNetUserName returns the user's network login name. User names are available for all networks supported
by Microsoft Windows.

Parameters
pszNetUserName Type: pCHAR (Output)
Pointer to the client variable that receives the user network login name string.

DbiResult return values
DBIERR_NONE The user network login name was successfully retrieved.

DBIERR_INVALIDHNDL pszNetUserName is NULL.

DbiGetNextRecord

Syntax
DBIResult DBIFN DbiGetNextRecord (hCursor, [eLock], [pRecBuf], [precProps]);

Description
DbiGetNextRecord retrieves the next record in the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

eLock Type: DBILockType (Input)
Specifies the lock request type. Optional.

pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is returned.

precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure. For dBASE and Paradox drivers only. Optional. If NULL, no record properties
are returned.

Usage
If a record buffer is provided, DbiGetNextRecord reads the data for the record into the record buffer. If the
precProps argument is supplied, record properties are returned (dBASE and Paradox only). If filters are active, the
next record that meets the filter criteria is retrieved. The record can be locked if an explicit lock is specified (using
eLock), and the function call fails if the requested lock cannot be acquired. (Exceptions: see the discussion of
SQL-specific locking behavior that follows.)

Field data can be retrieved using DbiGetField or DbiOpenBlob or DbiGetBlob for BLOB fields.

dBASE: If the precProps argument is supplied, the record number can be retrieved for the record (via the
iPhyRecNum field of precProps). dBASE does not support the concept of sequence number.

Paradox: If the precProps argument is supplied, the sequence number can be retrieved for the record (via the
iSeqNum field of RECProps). Paradox does not support the concept of record number.

SQL: Record properties are not supported for SQL drivers. If precProps is supplied, no properties are returned.   
See Locking Strategy

Completion state
If the cursor is at the beginning of a table (after a opening a table or calling DbiSetToBegin), DbiGetNextRecord
positions the cursor on the first record of the table. If the cursor is currently positioned on the last record in the
table, DbiGetNextRecord returns an EOF error.

DbiResult return values
DBIERR_NONE The next record was successfully retrieved.

DBIERR_EOF The cursor was positioned at the crack at the end of the file or on the last record. It is now
positioned at the crack at the end of the file.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.

DBIERR_FILELOCKED The table is already locked by another user (Paradox and dBASE only).

See also
DbiGetRecord, DbiGetPriorRecord, DbiGetRelativeRecord

eLock
eLock can be one of the following values:

Value Description

dbiNOLOCK No lock

dbiREADLOCK Read lock

dbiWRITELOCK Write lock

DbiGetNumberFormat

Syntax
DBIResult DBIFN DbiGetNumberFormat (pfmtNumber);

Description
DbiGetNumberFormat returns the number format for the current session.

Parameters
pfmtNumber Type: pFMTNumber (Output)
Pointer to the client-allocated FMTNumber structure.

Usage
The number format is used by QBE for input and wildcard character matching. It is also used by batch operations
(such as DbiDoRestructure and DbiBatchMove) to handle data type coercion between character and numeric
types.

DbiResult return values
DBIERR_NONE The number format was successfully retrieved.

DBIERR_INVALIDHNDL pfmtNumber is NULL.

See also
DbiGetDateFormat, DbiGetTimeFormat, DbiSetNumberFormat

DbiGetObjFromName

Syntax
DBIResult DBIFN DbiGetObjFromName (eObjType, [pszObjName], phObj);

Description
DbiGetObjFromName returns an object handle of the specified type or with the given name, if any.

Parameters
eObjType Type: DBIOBJType (Input)
Specifies the type of object.

pszObjName Type: pCHAR (Input)
Pointer to the name of the object. Optional.

phObj Type: phDBIObj (Output)
Pointer to the object handle.

Usage
Some handles can be retrieved only by name, such as handles associated with cursors. For those, pszObjName
is not optional. There can be more than one cursor open for a given table name; DbiGetObjFromName returns the
handle to one of those cursors. To get a session handle, the session name need not be specified; by default, a
handle to the currently active session is returned.

DbiResult return values
DBIERR_NONE The object handle was returned successfully.

DBIERR_NOTSUPPORTED Object is not supported for this function.

DBIERR_OBJNOTFOUND Named object was not found.

pszObjName
The following chart lists the supported object types and whether or not the object name is required:

eObjType Name

objSYSTEM not needed

objSESSION optional

objDRIVER required

objDATABASE optional

objCURSOR required

objCLIENT not needed

DbiGetObjFromObj

Syntax
DBIResult DBIFN DbiGetObjFromObj (hObj, eObjType, phObj);

Description
DbiGetObjFromObj returns an object of the specified object type associated with or derived from a given object.

Parameters
hObj Type: hDBIObj (Input)
Specifies the object.

eObjType Type: DBIOBJType (Input)
Specifies the type of object.

phObj Type: phDBIObj (Output)
Pointer to the object handle.

Usage
The following table summarizes the relationship between eObjType and hObj:

eObjType Type of hObj allowed

objCURSOR None

objDRIVER objCURSOR, objDATABASE

objDATABASE objCURSOR

objSESSION objCURSOR, objDATABASE, NULL (active)

objCLIENT Any or NULL

objSYSTEM Any or NULL

objSTATEMENT None

DbiResult return values
DBIERR_NONE The object handle was returned successfully.

DBIERR_INVALIDPARAM phObj is NULL or hObj is invalid.

DBIERR_NA No associated object.

DbiGetPriorRecord

Syntax
DBIResult DBIFN DbiGetPriorRecord (hCursor, [eLock], [pRecBuf], [precProps]);

Description
DbiGetPriorRecord retrieves the previous record in the table associated with the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

eLock Type: DBILockType (Input)
Specifies the lock request type Optional.

pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is returned.

precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure. For dBASE and Paradox drivers only. Optional. If NULL, no record properties
are returned.

Usage
If a record buffer is provided, DbiGetPriorRecord reads the data for the record into the record buffer. If the
precProps argument is supplied, record properties are returned (for dBASE and Paradox only). If filters are active,
only records that meet the filter's criteria are retrieved. The record can be locked if an explicit lock is specified
(using eLock), and the function call fails if the requested lock cannot be acquired. (Exceptions: see the discussion
of SQL-specific locking behavior that follows.)

dBASE: If the precProps argument is supplied, the record number can be retrieved for the prior record (the
iPhyRecNum field of the RECProps structure). dBASE does not support the concept of sequence numbers.

Paradox: If the precProps argument is supplied, the sequence number can be retrieved for the prior record (via
the iSeqNum field of precProps). Paradox does not support the concept of record numbers.

SQL: Record properties are not supported for SQL drivers (precProps is NULL). If precProps is supplied, no
properties are returned.

Prerequisites
A valid cursor handle must be obtained. If a lock is requested, the call returns DBIERR_NONE only if the lock is
granted. For SQL, an error is returned if the cursor is not bidirectional.

Completion state
If the cursor is currently positioned on the first record in the table and the user calls DbiGetPriorRecord, then a
BOF error is returned.

DbiResult return values
DBIERR_NONE The prior record was retrieved successfully.

DBIERR_BOF The cursor was positioned in the crack before the beginning of the file or on the first record after the
crack. The cursor is now positioned in the crack at the beginning of the file.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.

DBIERR_FILELOCKED The table is already locked by another user (Paradox and dBASE only).

DBIERR_NA Cursor is unidirectional.

See also
DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiGetField, DbiModifyRecord

DbiGetProp

Syntax
DBIResult DBIFN DbiGetProp (hObj, iProp, pPropValue, iMaxLen, piLen);

Description
DbiGetProp retrieves the properties of an object.    See Getting and Setting Properties

Parameters
hObj Type: hDBIObj (Input)
Specifies the system, session, client, driver, database, cursor, or statement object.

iProp Type: UINT32 (Input)
Specifies the property to retrieve.

pPropValue Type: pVOID (Output)
Pointer to the client variable that receives the value of the property. Optional. If NULL, validates iProp for retrieval.

iMaxLen Type: UINT16 (Input)
Specifies the length of the pPropValue buffer.

piLen Type: pUINT16 (Output)
Pointer to the client variable that receives the buffer length.

Usage
The specified object does not necessarily have to match the type of property as long as the object is associated
with the object type of the property. For example, the property drvDRIVERTYPE assumes an object of type
objDRIVER, but because a cursor is derived from a driver, a cursor handle (objCURSOR) could also be specified.
See DbiGetObjFromObj for details about associated objects.

You can access the native connection, statement, and cursor handles by using DbiGetProp with the
properties:dbNATIVEHNDL, dbNATIVEPASSTHRUHNDL, stmtNATIVEHNDL, and curNATIVEHNDL. This feature
for retrieving native handles is useful for making direct native API calls when the necessary functionality is not
available through BDE.

To inquire whether a driver supports stored procedures, use the property dbPROCEDURES.

To retrieve the server's default transaction isolation level use the property dbDEFAULTTXNISO.

Example
DBIPATH filename;
result=DbiGetProp (hCursor, curFILENAME, &filename, sizeof (DBIPATH), &length);

returns the file name associated with the cursor handle hCursor in filename and its length in length.

DbiResult return values
DBIERR_NONE The properties were retrieved successfully.

DBIERR_BUFFTOOSMALL Required buffer length is bigger than iMaxLen.

DBIERR_NOTSUPPORTED Property is not supported for this object.

See also

DbiSetProp, DbiGetCursorProps, DbiGetObjFromObj

Native Handles
The following table shows the information that is available for each driver when using dbNATIVEHNDL,
dbNATIVEPASSTHRUHNDL, stmtNATIVEHNDL, or curNATIVEHNDL with DbiGetProp.

dbNATIVEHNDL,
dbNATIVEPASSTHRUHNDL

*ppropValue *pilen

InterBase gds_db_handle 4

Sybase DBPROCESS NEAR * 2

Oracle LDA 64

Informix DBIERR_NOTSUPPORTED --

ODBC Socket HDBC 4

stmtNATIVEHNDL,
curNATIVEHNDL

*ppropValue *pilen

InterBase gds_stmt_handle 4

Sybase DBIERR_NOTSUPPORTED --

Oracle CDA 64

Informix DBIERR_NOTSUPPORTED --

ODBC Socket HSTMT 4

When SQLPASSTHRU MODE is NOT SHARED, the native handles returned from DbiGetProp with
dbNATIVEHNDL and dbNATIVEPASSTHRUHNDL will be different.    Certain drivers (for example, Sybase) may
open multiple connections for one call to DbiOpenDatabase.    Currently, only the main native connection handle is
available.

Although the native connection and statement handles are always available when there is an active connection or
statement, the native cursor handle may not always be available.    For example: When working with a dead
(snapshot) cursor, SQL Link caches each record as it is fetched from the server cursor. When all the records have
been fetched, the server cursor is closed and it is no longer available.    An attempt to retrieve the native cursor
handle by using DbiGetProp with curNATIVEHNDL will return the error, DBIERR_OBJNOTFOUND.

Additional information on the native handle and its use is available from the SQL server vendors.

DbiGetRecord

Syntax
DBIResult DBIFN DbiGetRecord (hCursor, [eLock], [pRecBuf], [precProps]);

Description
DbiGetRecord retrieves the current record, if any, in the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

eLock Type: DBILockType (Input)
Specifies the lock request type Optional.

pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is returned.

precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure. For dBASE and Paradox drivers only. Optional. If NULL, no record properties
are returned.

Usage
If NULL pointers are supplied for pRecBuf and pRecProps, DbiGetRecord can be used to validate the current
cursor position (on a current record, or on a crack).

If filters are active, the record is retrieved only if it meets the filter's criteria. The record can be locked if an explicit
lock is specified (using eLock), and the function call fails if the requested lock cannot be acquired. (Exceptions:
see the discussion of SQL-specific locking behavior that follows.    Also see Locking.)

If the cursor is currently positioned on a record, and that record is subsequently deleted or the record's key value
is changed, then the cursor is left on a crack between records. At this point, a call to DbiGetRecord returns the
DBIERR_KEYORRECDELETED error.

dBASE: If precProps is supplied, the record number can be retrieved for the current record (via the iPhyRecNum
field of precProps). dBASE does not support the concept of sequence numbers.

Paradox: If precProps is supplied, the sequence number can be retrieved for the current record (via the iSeqNum
field of precProps). Paradox does not support the concept of record numbers.

SQL: Record properties are not supported for SQL drivers (precProps is NULL). If precProps is supplied, no
properties are returned.

DbiResult return values
DBIERR_NONE The record was successfully retrieved.

DBIERR_BOF At beginning of file.

DBIERR_EOF At end of file.

DBIERR_NOCURRREC No current record.

DBIERR_KEYORRECDELETED The cursor is positioned on a record that has been deleted, or the key value was changed.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.

DBIERR_LOCKED The table is already locked by another user (Paradox and BASE only).

See also
DbiGetField, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord

DbiGetRecordCount

Syntax
DBIResult DBIFN DbiGetRecordCount (hCursor, piRecCount);

Description
DbiGetRecordCount is used to get the current number of records associated with the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

piRecCount Type: pUINT32 (Output)
Pointer to the client variable which receives the number of records associated with the cursor. This number may be approximate.

Usage
This function is meant to get the number of records associated with the cursor. The count is approximate in some
cases, rather than exact. (If there are any active filters associated with the cursor, or if there are any active ranges
declared on it, the results are approximate; they are normally the upper limits.)

Paradox: If a range is active, the record count returned is the number of records in the range.

DbiResult return values
DBIERR_NONE The record count was retrieved successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DbiGetRecordForKey

Syntax
DBIResult DBIFN DbiGetRecordForKey (hCursor, bDirectKey, iFields, iLen, pKey, [pRecBuf]);

Description
DbiGetRecordForKey finds a record matching pKey and positions the cursor on that record.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

bDirectKey Type: BOOL (Input)
Determines whether pKey is used to specify the key directly or not. If TRUE, the value in pKey is used to specify the key directly.
If FALSE, pKey specifies the record buffer.

iFields Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys. If iFields and iLen are both 0, the entire key is used.

iLen Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not 0, the last field to be used must be a character type.

pKey Type: pBYTE (Input)
If bDirectKey is TRUE, the pKey specifies the pointer to the record key; otherwise, pKey specifies the pointer to the record
buffer. DbiExtractKey can be used to construct the record key when bDirectKey is TRUE. The iFields and iLen Parameters
together indicate how much of the key should be used for matching. If both are 0, the entire key is used. If a match is required
on a given field of the key, all the key fields preceding it in the composite key must also be supplied for a match. Only character
fields can be matched for a partial key; all other field types must be fully matched.

For partial key matches, iFields must be equal to the number of keyfields preceding the field being partially matched. iLen
specifies the number of characters in the partial key to be matched.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer where the new current record is returned. Optional.

Usage
SQL: For SQL tables, if the active index is not unique, DbiGetRecordForKey may return different records with the
same key value.

Prerequisites
A valid cursor handle must be obtained.

Completion state
The cursor is positioned on the found record. If pRecBuff is supplied, the new current record is retrieved. If there is
no key in the index that matches the given key, an error is returned.

DbiResult return values
DBIERR_NOCURRREC The cursor is not positioned on a record.

DBIERR_RECNOTFOUND No record with the specified key value was found.

See also
DbiSetToKey, DbiExtractKey

DbiGetRelativeRecord

Syntax
DBIResult DBIFN DbiGetRelativeRecord (hCursor, iPosOffset, [eLock], [pRecBuf], [precProps]);

Description
DbiGetRelativeRecord positions the cursor on a record in the table relative to the current position of the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iPosOffset Type: INT32 (Input)
Specifies the (signed) offset from current record.

eLock Type: DBILockType (Input)
Specifies the lock request type. Optional.

pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data. Optional. If NULL, no data is returned.

precProps Type: pRECProps (Output)
Pointer to the client-allocated RECProps structure.

Usage
This function positions the cursor relative to the current position. The record offset (iPosOffset) can be positive or
negative. If the cursor is currently positioned between records, the next or prior (depending on the direction)
record is counted as 1. If the filter is active, only those records that meet the filter condition are included. For
dBASE if Soft Delete is off, only undeleted records are included.

If a record buffer is provided, DbiGetRelativeRecord reads the data for the record into the record buffer. If the
precProps argument is supplied, record properties are returned (for dBASE and Paradox only). If filters are active,
only records that meet the filter's criteria are retrieved. The record can be locked if an explicit lock is specified
(using eLock), and the function call returns an error if the requested lock cannot be acquired. See the following
section for SQL-specific locking behavior information.

dBASE: If the precProps argument is supplied, the record number can be retrieved for the record (the
iPhyRecNum field of the RECProps structure). dBASE does not support the concept of sequence numbers.

Paradox: If the precProps argument is supplied, the sequence number can be retrieved for the record (via the
iSeqNum field of precProps). Paradox does not support the concept of record numbers.

SQL: Record properties are not supported for SQL drivers (precProps is NULL). If precProps is supplied, no
properties are returned.

Usage
If not enough records exist in the result set to move to the relative record location, a beginning of file/end of file
(BOF/EOF) error is returned. An error is returned if the cursor is not bidirectional, and the cursor is moving
backwards.

DbiResult return values
DBIERR_NONE The record was retrieved successfully.

DBIERR_BOF The beginning of the file was reached.

DBIERR_EOF The end of the file was reached.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_KEYORRECDELETED The cursor is positioned in a crack other than BOF or EOF.

DBIERR_ALREADYLOCKED The record is already locked by the same user in the same session.

DBIERR_FILELOCKED The table is already locked by another user.

See also
DbiGetField, DbiGetNextRecord, DbiGetPriorRecord

DbiGetRintDesc

Syntax
DBIResult DBIFN DbiGetRintDesc (hCursor, iRintSeqNo, printDesc);

Description
DbiGetRintDesc retrieves the referential integrity descriptor identified by the referential integrity sequence number
and the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iRintSeqNo Type: UINT16 (Input)
The referential integrity sequence number. This number is between 1 and the value of iRefIntChecks. The value of
iRefIntChecks can be obtained from the cursor properties (CURProps) structure.

printDesc Type: pRINTDesc (Output)
Pointer to the client variable that receives the referential integrity descriptor.

Usage
If a field map is associated with the cursor, the aiThisTabFld array in the referential integrity descriptor reflects the
field map. If any of the fields are not part of the field-mapped record, a negative number is listed.

DbiResult return values
DBIERR_NONE The descriptor was returned successfully.

See also
DbiGetCursorProps

DbiGetSeqNo

Syntax
DBIResult DBIFN DbiGetSeqNo (hCursor, piSeqNo);

Description
DbiGetSeqNo retrieves the sequence number of the current record in the table associated with the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

piSeqNo Type: pUINT32 (Output)
Pointer to the client variable that receives the logical sequence number of the current record in the table associated with
hCursor.

Usage
Paradox: This function is supported for all Paradox tables.

SQL: This function is not supported by SQL drivers.

dBASE: This function is not supported by the dBASE driver.

Prerequisites
The cursor should be positioned on a record.

Completion state
The sequence number is the relative position of a record with respect to the beginning of the file. A sequence
number for a given record therefore depends on the current index in use. An active range also affects the
sequence numbers, the sequence number is relative to the beginning of the range. Filters do not affect sequence
numbers, so there might seem to be gaps in the sequence numbers.

DbiResult return values
DBIERR_NOTSUPPORTED This call is not supported for the given table.

DBIERR_NONE The sequence number was returned successfully.

DBIERR_BOF The cursor must be positioned on a record; it is positioned at the beginning of the file.

DBIERR_EOF The cursor must be positioned on a record; it is positioned at the end of the file.

DBIERR_KEYORRECDELETED The cursor is positioned on a deleted record.

DBIERR_NOCURRREC No record is current.

See also
DbiSetToSeqNo, DbiGetCursorProps

DbiGetSesInfo

Syntax
DBIResult DBIFN DbiGetSesInfo (psesInfo);

Description
DbiGetSesInfo retrieves the environment settings for the current session.

Parameters
psesInfo Type: pSESInfo (Output)
Pointer to the client-allocated SESInfo structure.

Usage
This function provides the client with information about the resources attached to the current session, including
the number of database handles and open cursors (when the session is closed, these resources are released).
This function also returns the session ID and name, the current private directory, and the lock retry time for
repeated attempts to lock a table. The lock retry time is specified by DbiSetLockRetry.

Completion state
The session information is returned in the specified SESInfo structure.

DbiResult return values
DBIERR_NONE The session information was returned successfully.

DBIERR_INVALIDHNDL psesInfo is NULL.

See also
DbiSetLockRetry, DbiStartSession, DbiCloseSession, DbiGetCurrSession, DbiSetCurrSession

DbiGetSysConfig

Syntax
DBIResult DBIFN DbiGetSysConfig (psysConfig);

Description
DbiGetSysConfig retrieves BDESDK system configuration information.

Parameters
psysConfig Type: pSYSConfig (Output)
Pointer to the client-allocated SYSConfig structure.

Completion state
The SYSConfig structure pointed to by psysConfig contains the retrieved system configuration information.

DbiResult return values
DBIERR_NONE System configuration information was returned successfully.

See also
DbiGetSysVersion, DbiGetClientInfo, DbiGetSysInfo

DbiGetSysInfo

Syntax
DBIResult DBIFN DbiGetSysInfo (psysInfo);

Description
DbiGetSysInfo retrieves system status and information.

Parameters
psysInfo Type: pSYSInfo (Output)
Pointer to the client-allocated SYSInfo structure.

Completion state
The SYSInfo structure pointed to by psysInfo contains the retrieved system status and information.

DbiResult return values
DBIERR_NONE System status information was returned successfully.

See also
DbiGetSysVersion, DbiGetSysConfig, DbiGetClientInfo

DbiGetSysVersion

Syntax
DBIResult DBIFN DbiGetSysVersion (psysVersion);

Description
DbiGetSysVersion retrieves the system version information, including the engine version number, date, and time;
and the client interface version number.

Parameters
psysVersion Type: pSYSVersion (Output)
Pointer to the client-allocated SYSVersion structure.

Completion state
The SYSVersion structure returned in psysVersion contains the retrieved system version information.

DbiResult return values
DBIERR_NONE The system version information was returned successfully.

See also
DbiGetSysConfig, DbiGetClientInfo, DbiGetSysInfo

DbiGetTableOpenCount

Syntax
DBIResult DBIFN DbiGetTableOpenCount (hDb, pszTableName, [pszDriverType],
 piOpenCount);

Description
DbiGetTableOpenCount returns the total number of cursors that are open on the specified table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the name of the table. For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name is taken from the current directory of
the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. This parameter is ignored if the database associated with hDb is a SQL database. pszDriverType can be one of the
following values: szDBASE or szPARADOX.

piOpenCount Type: pUINT16 (Output)
Pointer to the client variable that receives the number of cursors opened on the table.

Usage
This function returns the total number of cursors open on this table by this instance of BDESDK, irrespective of
database and current session.

Most of the functions that operate on tables require a cursor, which is obtained by calling DbiOpenTable. A table
can be opened more than once, resulting in more than one cursor for that table. Some functions, such as
DbiDoRestructure, require that no cursors be opened on the table. Use this function to check for this requirement.

This name of the table (not the cursor) is input to DbiGetTableOpenCount, which returns a count of how many
cursors are opened on the table. This function is useful for determining whether a table is in use.

Paradox: For Paradox, the number of open cursors includes any cursors opened implicitly by referential integrity
or look up tables.

DbiResult return values
DBIERR_NONE The table open count was returned successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table name is invalid.

DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid or NULL, or the pointer to the driver type is NULL.

See also
DbiOpenTable

DbiGetTableTypeDesc

Syntax
DBIResult DBIFN DbiGetTableTypeDesc (pszDriverType, pszTableType, ptblType);

Description
DbiGetTableTypeDesc returns a description of the capabilities of the table type given in pszTableType for the
driver type given in pszDriverType.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.

pszTableType Type: pCHAR (Input)
Pointer to the table type. Use DbiOpenTableTypesList to get a list of valid table types.

ptblType Type: pTBLType (Output)
Pointer to the client-allocated TBLType structure.

Usage
SQL: The table type distinguishes between views, queries, and tables. It does not identify the driver type.

DbiResult return values
DBIERR_NONE The table type Description was returned successfully.

DBIERR_INVALIDHNDL The pointer to the driver type is NULL, or the pointer to the table type is NULL, or pTblType is
NULL.

DBIERR_UNKNOWNDRVTYPE The specified driver type is invalid or NULL, or the specified table type is invalid or NULL.

See also
DbiOpenTableTypesList

DbiGetTimeFormat

Syntax
DBIResult DBIFN DbiGetTimeFormat (pfmtTime);

Description
DbiGetTimeFormat gets the time format for the current session.

Parameters
pfmtTime Type: pFMTTime (Output)
Pointer to the client-allocated FMTTime structure.

Usage
The time format is used by QBE for input and wildcard character matching. It is also used by batch operations
(such as DbiDoRestructure and DbiBatchMove) to handle data type coercion between character and datetime or
time types.

DbiResult return values
DBIERR_NONE The time format was successfully retrieved.

DBIERR_INVALIDHNDL pfmtTime is NULL.

See also
DbiGetNumberFormat, DbiGetDateFormat, DbiSetTimeFormat

DbiGetTranInfo

Syntax
DBIResult DBIFN DbiGetTranInfo (hDb, hXact, pxInfo);

Description
DbiGetTranInfo retrieves transaction information.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

hXact Type: hDBIXact (Input)
Specifies the transaction handle. If NULL, hDb is used; if not NULL, hDb is ignored.

pxInfo Type: XInfo (Output)
Pointer to the client-allocated XInfo structure.

Usage
After a successful DbiBeginTran request, the transaction state is active. The state remains active until DbiEndTran
is called. While the transaction is active, the actual isolation level being used can be retrieved with this function.
Since transaction nesting is currently not supported, the uNests value is unused.

Prerequisites
A valid database handle must be obtained on a SQL database.

Completion state
Information function only; does not affect transaction processing.

DbiResult return values
DBIERR_NONE

DbiGetVchkDesc

Syntax
DBIResult DBIFN DbiGetVchkDesc (hCursor, iValSeqNo, pvalDesc);

Description
DbiGetVchkDesc retrieves the validity check descriptor identified by the validity check sequence number and the
cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iValSeqNo Type: UINT16 (Input)
The validity check sequence number. This number is between 1 and the value of iValChecks. The value of iValChecks can be
obtained from the cursor properties (CURProps) structure.

pvalDesc Type: pVCHKDesc (Output)
Pointer to the client-allocated VCHKDesc structure.

Usage
If a field map is active, the iFldNum in the validity check descriptor reflects the field map. If any of the fields are not
part of the field-mapped record, a negative number is listed.

DbiResult return values
DBIERR_NONE The descriptor was returned successfully.

See also
DbiGetCursorProps

DbiInit

Syntax
DBIResult DBIFN DbiInit (pEnv);

Description
DbiInit initializes the BDESDK environment.

Parameters
pEnv Type: pDBIEnv (Input)
Pointer to the DBIEnv structure. Optional. Can be used to change the working directory and the location of the configuration file,
to set up the language driver, and to supply BDESDK with the client name.

Usage
Initializes the engine environment. Default settings can be overwritten by supplying the appropriate settings. If
pEnv is NULL, then BDESDK assumes that the start-up directory is the working directory. In this case,
szClientName is empty and bForceLocalInit is FALSE.

Prerequisites
DbiInit must be called once by each client application before any other calls (DbiOpenDatabase, DbiOpenTable,
and so on.) are made. The client should be familiar with the environment Parameters such as working directory,
BDE configuration file path, and so on.

DbiResult return values
DBIERR_NONE The engine environment was initialized successfully.

DBIERR_MULTIPLEINIT Illegal attempt to initialize the engine more than once.

See also
DbiExit

DbiInitRecord

Syntax
DBIResult DBIFN DbiInitRecord (hCursor, pRecBuf);

Description
DbiInitRecord initializes a record buffer. This operation is required before composing a new record for insertion.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the initialized record buffer.

Usage
DbiInitRecord initializes the record buffer to a blank record according to the data types of the fields.

Paradox: If the table has associated default values with any of the fields, the default values are used to initialize
the fields.

Completion state
The record buffer contains blank fields or default values. The position of the given cursor is not affected. The client
application can use the BDESDK field-level functions to fill the record buffer with the appropriate values.

DbiResult return values
DBIERR_NONE The initialization was successful.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified record buffer is NULL.

See also
DbiAppendRecord, DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, DbiModifyRecord, DbiInsertRecord,
DbiPutField, DbiSetToKey, DbiGetBlob, DbiPutBlob, DbiOpenBlob, DbiFreeBlob, DbiGetField

DbiInsertRecord

Syntax
DBIResult DBIFN DbiInsertRecord (hCursor, [eLock], pRecBuf);

Description
DbiInsertRecord inserts a new record, contained in pRecBuf, into the table associated with the given cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

eLock Type: DBILockType (Input)
Specifies the lock request type. Optional.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.

Usage
The client application can optionally acquire a lock on the newly inserted record by specifying the lock type in
eLock.

dBASE: For dBASE there is no difference between DbiAppendRecord and DbiInsertRecord. The record is
inserted at the end of the table. The cursor is positioned at the inserted record. If an active range exists, the cursor
might be positioned at the beginning or end of the file.

Paradox: Before inserting the record, the function verifies any referential integrity requirements or validity checks
that may be in place. If either fails, an error is returned and the insert operation is canceled. If a primary index is in
place, the record is physically placed at a location that conforms to the primary index order. With non-indexed
tables, the record is inserted before the current position.

SQL: The table must be opened for write access. After the insert, the cursor is always positioned on the inserted
record.

Prerequisites
Other users cannot have a write lock, or greater, on the table. The record buffer should be initialized with
DbiInitRecord, and data filled in using DbiPutField or DbiOpenBlob, and DbiPutBlob.

Completion state
After successful completion, the cursor is positioned on the new record. If the function fails, the record is not
inserted and the current position of the cursor is not affected.

If the cursor has a filter or a range associated with it, the cursor might be positioned on a crack or BOF/EOF and
the operation will fail if a record lock was requested.

DbiResult return values
DBIERR_NONE The record was successfully inserted.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified record buffer is NULL.

DBIERR_FOREIGNKEYERR The target table is a detail table in a referential integrity link, and the linking value cannot be
found in the master table.

DBIERR_MINVALERR The specified data is less than the required minimum value.

DBIERR_MAXVALERR The specified data is greater than the required maximum value.

DBIERR_REQDERR The field cannot be blank.

DBIERR_LOOKUPTABLEERR The specified value was not found in the assigned lookup table.

DBIERR_KEYVIOL The table has a unique index and the inserted key value conflicts with an existing record's key
value.

DBIERR_FILELOCKED The table is locked by another user.

DBIERR_TABLEREADONLY Table access denied; the specified cursor handle is read-only.

DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to insert a record (Paradox only).

DBIERR_NODISKSPACE Insert failed due to insufficient disk space.

DBIERR_RECLOCKFAILED Insert failed because the record could not be locked due to range or filter constraint.

See also
DbiPutField, DbiGetNextRecord, DbiGetRecord, DbiGetRelativeRecord, DbiAppendRecord

DbiIsRecordLocked

Syntax
DBIResult DBIFN DbiIsRecordLocked (hCursor, pbLocked);

Description
DbiIsRecordLocked is used to check if the session for this cursor has the current record lock.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pbLocked Type: pBOOL (Output)
Pointer to the client variable. Set to TRUE if the record is locked; otherwise, FALSE.

Usage
Record locks differ from table locks in that they only have two states: locked or not locked. Table locks have four
states: no lock, read lock, write lock, or exclusive lock.

Prerequisites
The cursor must be positioned on a record.

Completion state
The lock status is returned in pLocked, and indicates whether the record is locked by anybody.

SQL: For SQL, the lock status returned in pLocked indicates whether the record is locked by you.

DbiResult return values
DBIERR_NONE The lock status was returned successfully.

DBIERR_NOCURRREC There is no current record.

DBIERR_BOF There is no current record.

DBIERR_EOR There is no current record.

DBIERR_KEYORRECDELETED There is no current record.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM pbLocked is NULL.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRecord, DbiGetRelativeRecord, DbiRelRecordLock,
DbiIsTableLocked, DbiAcqTableLock, DbiRelTableLock

DbiIsTableLocked

Syntax
DBIResult DBIFN DbiIsTableLocked (hCursor, edbiLock, piLocks);

Description
DbiIsTableLocked returns the number of locks of type edbiLock acquired on the table associated with the given
session.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

edbiLock Type: DBILockType (Input)
Specifies the lock type to verify.

piLocks Type: pUINT16 (Output)
Pointer to the client variable that receives the number of locks of the given lock type.

Usage
dBASE: For dBASE tables, dbiREADLOCKs are upgraded to dbiWRITELOCKs. If the value of edbiLock is
dbiREADLOCK, then the number of write locks are returned in piLocks.

DbiResult return values
DBIERR_NONE The number of locks was returned successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM piLocks is NULL.

See also
DbiAcqTableLock, DbiRelTableLock, DbiOpenLockList

edbiLock
edbiLock can be one of the following values:

Value Description

dbiNOLOCK Dirty read

dbiREADLOCK Read lock

dbiWRITELOCK Write lock

DbiIsTableShared

Syntax
DBIResult DBIFN DbiIsTableShared (hCursor, pbShared);

Description
DbiIsTableShared determines whether the table is physically shared or not.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pbShared Type: pBOOL (Output)
Pointer to the client variable. Set to TRUE if the table is physically shared.

Usage
Standard: The table is physically shared if it is placed on a shared drive (network, or local drive when
LOCALSHARE in the configuration is TRUE), and the table is not opened exclusively. If a table is shared, dirty
data is not buffered. The table is available to all users in the session, unless acquired table or record locks have
been placed since the table was opened.

DbiResult return values
DBIERR_NONE The table shared status was returned successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM pbShared is NULL.

See also
DbiOpenTable, DbiAcqTableLock, DbiAcqPersistTableLock, DbiRelTableLock, DbiRelPersistTableLock,
DbiForceReread, DbiCheckRefresh

DbiLinkDetail

Syntax
DBIResult DBIFN DbiLinkDetail (hMstrCursor, hDetlCursor, iLnkFields, piMstrFields, piDetlFields);

Description
DbiLinkDetail establishes a link between two cursors such that the detail cursor has its record set limited to the set
of records matching the linking key values of the master cursor.

Parameters
hMstrCursor Type: hDBICur (Input)
Specifies the cursor handle associated with the master table. The cursor does not have to be opened on an index.

hDetlCursor Type: hDBICur (Input)
Specifies the cursor handle associated with the detail table. The cursor must be opened on an index corresponding to all the link
fields.

iLnkFields Type: UINT16 (Input)
Specifies the number of link fields.

piMstrFields Type: pUINT16 (Input)
Pointer to the array of field numbers of link fields in the master table.

piDetlFields Type: pUINT16 (Input)
Pointer to the array of field numbers of link fields in the detail table.

Usage
This function is useful for establishing one-to-one or one-to-many relationships between tables. A master cursor
can have more than one detail cursor; a detail cursor can have only one master cursor. A detail cursor can also be
a master cursor. Links apply to all available driver types; they can be established between cursors of the same or
different driver types. The effect is equivalent to setting a range using DbiSetRange on the detail table and using
the linking fields of the master table.

Prerequisites
For the cursors to be linked, both cursors must be enabled with DbiBeginLinkMode. The data types of linked fields
in master and detail records must be compatible. The detail cursor must be opened on an index corresponding to
all of the linking fields. For expression links, see DbiLinkDetailToExp.

Completion state
The linked cursors are modified so that the detail cursor allows access only to the records that match the linking
value of the master record. If the position of the master cursor changes so that a different linking value is obtained
for the linking fields, the detail cursor is set to a new range of records and is positioned to the beginning of this
range.

DbiResult return values
DBIERR_NONE The link between the detail cursor (hDetlCursor) and the master cursor (hMstrCursor) was successfully

established.

DBIERR_INVALIDHNDL One or more of the specified cursor handles is invalid or NULL.

See also
DbiLinkDetailToExp, DbiUnlinkDetail, DbiSetRange

DbiLinkDetailToExp

Syntax
DBIResult DBIFN DbiLinkDetailToExp (hCursorMstr, hCursorDetl, iKeyLen, pszMstrExp);

Description
DbiLinkDetailToExp links the detail cursor to the master cursor using a dBASE expression.

Parameters
hCursorMstr Type: hDBICur (Input)
Specifies the cursor handle associated with the master table. Must be a cursor on a dBASE table. The cursor does not have to
be opened on an index.

hCursorDetl Type: hDBICur (Input)
Specifies the cursor handle associated with the detail table. The cursor must be ordered on an index corresponding to the
provided expression, and the cursor must be open on a dBASE table.

iKeyLen Type: UINT16 (Input)
Specifies the length of the key to match.

pszMstrExp Type: pCHAR (Input)
Pointer to the expression string. Must be a valid dBASE expression whose key type is the same as the active index of the detail
table.

Usage
This function is supported by the dBASE driver only.

dBASE: This function is used to establish one-to-many or one-to-one relationships, using expressions. This
function is used to create linked cursors so that the master cursor is on a dBASE table and the link is a dBASE-
style expression, not a set of fields.

Prerequisites
hCursorMstr and hCursorDetl must be link cursors. This is done by calling DbiBeginLinkMode for both master and
detail cursor. For the tables to be linked, both cursor handles must be obtained on a dBASE table.

Completion state
The linked cursors are set up such that the detail cursor shows only records that match the linking value of the
master record.

DbiResult return values
DBIERR_NONE The specified detail cursor was successfully linked to the specified master cursor.

DBIERR_INVALIDHNDL One or more of the specified cursor handles is invalid or NULL.

DBIERR_INVALIDLINKEXPR The expression used was invalid.

See also
DbiLinkDetail, DbiUnlinkDetail

DbiLoadDriver

Syntax
DBIResult DBIFN DbiLoadDriver (pszDriverType);

Description
DbiLoadDriver loads a given driver. Use DbiOpenDriverList to get list of valid drivers.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver name.

DbiResult return values
DBIERR_NONE The driver has been loaded successfully.

See also
DbiOpenDriverList

DbiMakePermanent

Syntax
DBIResult DBIFN DbiMakePermanent (hCursor, [pszName], bOverWrite);

Description
DbiMakePermanent changes a temporary table created by DbiCreateTempTable into a permanent table,
optionally renaming it using pszName.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pszName Type: pCHAR (Input)
Pointer to the name of the permanent table.

bOverWrite Type: BOOL (Input)
If set to TRUE, overwrites the existing file.

Usage
This function is used to change a temporary table, created with DbiCreateTempTable, into a permanent table, that
is, one that will not be deleted when the cursor is closed with DbiCloseCursor. DbiSaveChanges can also be used
to make the temporary table permanent, but the table is flushed out to disk immediately. With DbiMakePermanent,
buffers are flushed to disk when convenient, or when the cursor is closed. The table is renamed to pszName if
different from NULL.

SQL: This function is not supported by SQL drivers.

Prerequisites
A temporary table must have been created with DbiCreateTempTable.

Completion state
The table is saved to disk when the cursor is closed.

DbiResult return values
DBIERR_NONE The temporary table has been designated as a permanent table.

See also
DbiSaveChanges, DbiCreateTempTable, DbiCloseCursor, DbiQInstantiateAnswer

DbiModifyRecord

Syntax
DBIResult DBIFN DbiModifyRecord (hCursor, pRecBuf, bFreeLock);

Description
DbiModifyRecord modifies the current record of the table associated with hCursor with the data supplied in
pRecBuf.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle for the table. The cursor must be positioned on a valid record.

pRecBuf Type: pBYTE (Input)
Pointer to the client buffer where the modified record is stored.

bFreeLock Type: BOOL (Input)
Specifies whether to release locks on completion. If set to TRUE, the lock is released on the updated record when
DbiModifyRecord completes. If set to FALSE, the lock is not released.

Usage
Paradox: Before the table is updated, any referential integrity requirements or validity checks in place are verified.
If any fail, an error is returned and the operation is canceled.

SQL: Tables must be opened with write access. If the table has no unique index or server row ID (this includes
views), DbiModifyRecord can be used to modify records if the server supports it. However, if you attempt to modify
a record that has a duplicate, you will receive an error.

If the record is locked (using dbiREADLOCK or dbiWRITELOCK), and the user tries to modify the record after
another user has deleted the record or changed the key value for the record, DbiModifyRecord returns a
DBIERR_KEYORRECDELETED error.

Prerequisites
The cursor must be positioned on a record, not on a crack, beginning of file, or end of file. The user must have
read-write access to the table. The record must not be locked by another session.

Completion state
The cursor is positioned on the updated record. An error is returned if there is no current record for the cursor. If
the key has changed, DbiModifyRecord is equivalent to calling first DbiDeleteRecord then DbiInsertRecord. When
a record is modified in a table that has an active index, the position of the modified record may change if the key
value was modified.

If the client requests to keep a lock on a modified record, and the record flies outside a current range or filter
condition, the function returns DBIERR_RECLOCKFAILED and the operation fails.

DbiResult return values
DBIERR_NONE The record was modified successfully.

DBIERR_KEYVIOL The table has a unique index and the modified key value conflicts with another record's key
value.

DBIERR_BOF/EOF The cursor is not positioned on a valid record; it is positioned at the beginning or the end of the
table.

DBIERR_FILELOCKED The table is locked by another user.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified record buffer is NULL.

DBIERR_KEYORRECDELETED The specified cursor is not positioned on a valid record.

DBIERR_FOREIEGNKEYERR The target table is a detail table in a referential integrity link and the linking value cannot be
found in the master table (Paradox only).

DBIERR_MINVALERR The specified data is less than the required minimum value.

DBIERR_MAXVALERR The specified data is greater than the required maximum value.

DBIERR_REQDERR The field cannot be blank.

DBIERR_LOOKUPTABLEERR The specified value cannot be located in the assigned lookup table.

DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to update table.

DBIERR_TABLEREADONLY The specified cursor is read-only.

DBIERR_RECLOCKFAILED The record lock failed.

DBIERR_MULTIPLUNIQRECS Attempt to modify a record that has a duplicate (SQL).

See also
DbiDeleteRecord, DbiInitRecord, DbiPutField, DbiGetNextRecord, DbiGetRecord, DbiGetField,
DbiAppendRecord, DbiInsertRecord, DbiGetBlob, DbiPutBlob, DbiOpenBlob, DbiFreeBlob

DbiNativeToAnsi

Syntax
DBIResult DBIFN DbiNativeToAnsi (pLdObj, pAnsiStr, pOemStr, iLen, pbDataLoss);

Description
DbiNativeToAnsi translates strings from the language driver's native character set to ANSI. If the native character
set is ANSI, no translation takes place.

Parameters
pLdObj Type: pVOID (Input)
Pointer to the language driver object returned from DbiGetLdObj.

pAnsiStr Type: pCHAR (Output)
Pointer to the client buffer that returns the ANSI data. If pAnsiStr equals pOemStr, conversion occurs in place.

pOemStr Type: pCHAR (Input)
Pointer to the buffer containing data to be translated.

iLen Type: UINT16 (Input)
If iLen equals 0, assumes null-terminated string; otherwise, iLen specifies the length of the buffer to convert.

pbDataLoss Type: pBOOL (Output)
Pointer to a client variable. Set to TRUE if a character cannot map to an ANSI character.

Usage
This function works on drivers having both ANSI and OEM native character sets, but it does not deal with multi-
byte character sets such as Japanese ShiftJIS. If the native character set is ANSI, no translation takes place.

DbiResult return values
DBIERR_NONE Translation completed successfully.

See also
DbiAnsiToNative, DbiGetLdObj

DbiOpenBlob

Syntax
DBIResult DBIFN DbiOpenBlob (hCursor, pRecBuf, iField, eOpenMode);

Description
DbiOpenBlob prepares the cursor's record buffer to access a BLOB field. The BLOB is opened and the BLOB
handle is stored in the record buffer, which can then be passed to DbiGetBlob, DbiPutBlob, and other BLOB
functions.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.

iField Type: UINT16 (Input)
Specifies the ordinal number of the BLOB field within the record.

eOpenMode Type: DBIOpenMode (Input)
Specifies the BLOB open mode.

If dbiREADWRITE is specified, both the database and the table must be opened in dbiREADWRITE mode.

Usage
DbiOpenBlob opens the BLOB and stores the supplied BLOB handle in pRecBuf so that all or portions of the
BLOB field can be retrieved, modified, deleted, or inserted, and the size of the field can be determined. The BLOB
field can be opened in either read-only or read-write mode, depending on the value specified in eOpenMode.

DbiOpenBlob must be called prior to calling the BLOB functions DbiGetBlobSize, DbiGetBlob, DbiPutBlob,
DbiTruncateBlob, or DbiFreeBlob.

Standard: It is advisable to lock the record before opening the BLOB in read-write mode. This ensures that
another client application does not lock the record or update the BLOB, preventing the record from being updated.

SQL: This function is supported by SQL drivers. However, for SQL servers that do not support BLOB handles for
random reads and writes, full BLOB support requires uniquely identifiable rows. Most SQL servers limit a single
sequential BLOB read to less than the maximum size of a BLOB. In cases with no row uniqueness and without
BLOB handles, an entire BLOB may not be available.

Completion state
DbiOpenBlob fails if the client application does not have sufficient rights to access the BLOB field. To close a
BLOB field after it has been opened with DbiOpenBlob, a call to DbiFreeBlob must be made.

DbiResult return values
DBIERR_NONE The BLOB field was successfully opened.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified record buffer is NULL.

DBIERR_OUTOFRANGE The specified field number is equal to zero, or is greater than the number of fields in the table.

DBIERR_BLOBOPENED The specified BLOB field is already open.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

DBIERR_OPENBLOBLIMIT The allowed number of open BLOB handles for the current driver has been exceeded.

DBIERR_TABLEREADONLY The BLOB cannot be opened in read-write mode; the table is read-only.

See also
DbiGetBlob, DbiPutBlob, DbiTruncateBlob, DbiFreeBlob, DbiGetBlobSize

DbiOpenCfgInfoList

Syntax
DBIResult DBIFN DbiOpenCfgInfoList (hCfg, eOpenMode, eConfigMode, pszCfgPath, phCur);

Description
DbiOpenCfgInfoList returns a handle to a list of all the nodes in the BDE configuration file accessible by the
specified path.

Parameters
hCfg Type: hDBICfg (Input)
Specifies the configuration file handle; must be NULL.

eOpenMode Type: DBIOpenMode (Input)
Specifies the open mode; choose dbiREADWRITE or dbiREADONLY.

eConfigMode Type: CFGMode (Input)
Specifies the configuration mode; only cfgPersistent is supported.

pszCfgPath Type: pCHAR (Input)
Pointer to the configuration file path name used to locate a piece of information within the configuration file. The path name
starts at the root, denoted by a backslash (\). As many levels as necessary to locate the target piece of information may be
specified. Each node specified in the path name must have at least one subnode or an error results. The path name must be
NULL-terminated. See the Usage section for an example.

phCur Type: phDBICur (Output)
Pointer to the client-allocated CFGDesc structure.

Usage
This function can be used to retrieve information from the configuration file about BDESDK drivers, internal
buffers, and aliases by supplying a known path in pszConfigPath.

DbiOpenCfgInfoList accesses the same configuration file that was used when BDESDK was initialized. If no
configuration file was used during DbiInit, an empty table is returned.

The full path name is supplied by pszConfigPath, starting at the root, and then subsequently specifying the name
of a node, a backslash (\), one of the node's subnodes, and so on until the desired level is reached. For example,
to retrieve the values used to initialize BDESDK, the pszConfigPath passed in would be:

\system\init

phCur then receives the handle to a table containing a list of records, each representing a node accessible by the
specified path name. The cursor is used by subsequent record manipulation calls such as DbiGetNextRecord and
DbiGetPriorRecord. DbiGetCursorProps can be used to allocate the proper record size or the client application
can allocate the size of the CFGDesc structure. After the record is retrieved it can be cast with the CFGDesc type
definition and used as if it is a CFGDesc C language structure.

DbiModifyRecord can also be used with the cursor with the following restrictions:

szValue is the only field that can be updated.
Only leaf nodes can be modified.

This function can also be used to build a path name to a target piece of information within the configuration file,
when the path name is not known. In that case, the first call to DbiOpenCfgInfoList is passed with pszConfigPath
set to backslash (\). The table returned lists all the nodes accessible to the root. If these nodes do not contain the
target information (in szText[MAXSCFLDLEN]), subsequent calls to DbiOpenCfgInfoList can be made, each one
extending the path name to access one level deeper in the configuration file.

Prerequisites
The database engine must be initialized with a configuration file.

DbiResult return values
DBIERR_NONE The handle to the table listing configuration file information was returned successfully.

See also
DbiInit, DbiOpenDatabaseList, DbiOpenDriverList,DbiOpenCfgInfoList

DbiOpenDatabase

Syntax
DBIResult DBIFN DbiOpenDatabase (pszDbName, pszDbType, eOpenMode, eShareMode, [pszPassword], iOptFlds,

pOptFldDesc, pOptParams, phDb);

Description
DbiOpenDatabase is called to open a database in the current session. On success, a database handle is
returned.

Parameters
pszDbName Type: pCHAR (Input)
Pointer to the alias name string defined in the configuration file. Optional. If NULL, the standard database is opened. If
pszDbName specifies a SQL database, pszDbType can be NULL.

pszDbType Type: pCHAR (Input)
Pointer to the database type string. Optional. If both pszDbName and pszDbType are NULL, a standard database is opened.

eOpenMode Type: DBIOpenMode (Input)
Specifies the open mode.

eShareMode Type: DBIShareMode (Input)
Specifies the share mode.

pszPassword Type: pCHAR (Input)
Pointer to the password string. Optional. SQL only.

iOptFlds Type: UINT16 (Input)
Specifies the number of optional parameters. Refer to DbiCreateTable for use of optional parameters.

pOptFldDesc Type: pFLDDesc (Input)
Pointer to an array of field descriptors for the optional parameters. Refer to DbiCreateTable for use of optional parameters.

pOptParams Type: pBYTE (Input)
Pointer to the optional parameters required by the database. Refer to DbiCreateTable for use of optional parameters.

phDb Type: phDBIDb (Output)
Pointer to the database handle.

Usage
The database must be opened before a table can be opened in the database.

The database handle is passed into several functions. The values in pszDbName and pszDbType determine
which database is opened. The eOpenMode and eShareMode parameters determine the access modes of the
cursors within each database. For example, if eOpenMode is set to dbiREADONLY, its associated cursors are
also READONLY.

SQL: SQL configuration file settings might override the eOpenMode setting.

OptFields, pOptFldDesc and pOptParams are the optional parameters. The optional parameters passed by this
function vary depending on the driver. They can be identified by calling the DbiOpenCfgInfoList function.

Standard: Connecting to a standard database:

If pszDbName and pszDbType are both set to NULL, the unnamed standard database is opened.
If pszDbName specifies an alias for a standard database in the configuration file, this database is opened.

SQL: Connecting to a SQL database:

If pszDbName specifies a SQL ALIAS from the configuration file, pszDbType is NULL, and iOptFlds is 0, a
SQL database is opened. (Supply the password if required.)

If pszDbName is NULL, and pszDbType is one of the SQL driver names (for example, Oracle, Sybase), a
SQL database is opened. If optional parameters are not specified, driver-specific defaults are used.

Prerequisites
DbiInit must be called prior to calling DbiOpenDatabase. The database must be successfully opened before any
other calls can be made to access or manipulate data. If the database requires login, a password must be
supplied.

DbiResult return values
DBIERR_NONE The database was successfully opened.

DBIERR_UNKNOWNDB The specified database or database type is invalid.

DBIERR_NOCONFIGFILE The configuration file was not found.

DBIERR_INVALIDDBSPEC When using an alias from the configuration file, the specification is invalid.

DBIERR_DBLIMIT The maximum number of databases have been opened.

See also
DbiOpenTableList, DbiGetDatabaseDesc

Database Types
Examples of database types include:

STANDARD
ORACLE
SYBASE
INTRBASE
INFORMIX

DbiOpenDatabaseList

Syntax
DBIResult DBIFN DbiOpenDatabaseList (phCur);

Description
DbiOpenDatabaseList returns a cursor on a list of accessible databases (and all aliases) found in the
configuration file.

Parameters
phCur Type: phDBIcur (Output)
Pointer to an in-memory table.

Usage
Accessible databases are those that are defined within the configuration file. The cursor should be closed after
information retrieval is complete.

Completion state
A cursor on a list of accessible databases is returned. The cursor is positioned before the first record.

DbiResult return values
DBIERR_NONE The table was created successfully.

DBIERR_INVALIDHNDL phCur is NULL.

See also
DbiGetDatabaseDesc

DbiOpenDriverList

Syntax
DBIResult DBIFN DbiOpenDriverList (phCur);

Description
DbiOpenDriverList creates a list of driver names available to the client application.

Parameters
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
The list of drivers is obtained from the BDE configuration file and can be used as input to other functions. If no
configuration file was available at initialization time, or if no drivers were configured, an error is returned. The table
contains only one CHAR field.

DbiResult return values
DBIERR_NONE The table containing a list of the available drivers was successfully created.

DBIERR_INVALIDHNDL phCur is NULL.

DBIERR_NOCONFIGFILE No configuration file was available at initialization time.

DBIERR_OBJNOTFOUND No drivers were configured at initialization time.

See also
DbiGetDriverDesc

DbiOpenFamilyList

Syntax
DBIResult DBIFN DbiOpenFamilyList (hDb, pszTableName, [pszDriverType], phFmlCur);

Description
DbiOpenFamilyList creates a table listing the family members associated with a specified table.    See FMLDesc

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the pszTableType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. This parameter is required if pszTableName has no extension. pszDriverType can be one of
the following values: szDBASE or szPARADOX.

phFmlCur Type: phDBICur (Output)
Pointer to the family list table.

Usage
Family members include default members, as specified by the driver, and registered family members.

dBASE: For dBASE tables, the table can include maintained index files (.MDX files), BLOBs (.DBT files), and
tables (.DBF files).

Paradox: For Paradox tables, the table can include index files (.PX, .X??, .Y?? files), BLOBs (.MB files), and
validity check and referential integrity files (.VAL files).

SQL: This function is not supported with SQL tables. With SQL databases, this function returns an empty table.

Prerequisites
The user must have full password rights to the table; that is, any required passwords to get prvFULL rights must
have been added to the current session prior to calling this function.

DbiResult return values
DBIERR_NONE The table of family members was successfully created.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phFmlCur is NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table is invalid.

DBIERR_UNKNOWNDRIVER The table type or the pointer to the table type is NULL, or the table type is invalid.

See also
DbiOpenFileList, DbiOpenFieldList, DbiOpenIndexList, DbiOpenRintList, DbiOpenSecurityList

DbiOpenFieldList

Syntax
DBIResult DBIFN DbiOpenFieldList (hDb, pszTableName, [pszDriverType], bPhyTypes, phCur);

Description
DbiOpenFieldList creates a table listing of fields in a specified table and their descriptions.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name. For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType
parameter need not be specified. If the path is not included, the path name is taken from the current directory of the database
associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. This parameter is ignored if the database associated with hDb is a SQL database. pszDriverType can be one of the
following values: szDBASE or szPARADOX.

bPhyTypes Type: BOOL (Input)
Specifies whether physical or logical field types are returned. Physical types represent the data in its native state, specific to
each driver. Logical types are the generic, derived BDESDK translations of the native data types. bPhyTypes can be set to
TRUE or FALSE. TRUE indicates that native physical types are returned; FALSE indicates that BDESDK logical types are
returned.

phCur Type: phDBICur (Output)
Pointer to the field list table.

Usage
This function retrieves field information from a closed table, as opposed to DbiGetFldDescs which uses an opened
table.

DbiResult return values
DBIERR_NONE The cursor to the table was returned successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_UNKNOWNTBLTYPE The specified driver type is not known.

DBIERR_NOSUCHTABLE The specified table is invalid.

See also
DbiOpenFileList, DbiOpenTableList, DbiGetNextRecord, DbiGetPriorRecord, DbiOpenFamilyList, DbiSetDirectory,
DbiGetCursorProps, DbiGetFieldDescs

DbiOpenFieldTypesList

Syntax
DBIResult DBIFN DbiOpenFieldTypesList (pszDriverType, [pszTblType], phCur);

Description
DbiOpenFieldTypesList creates a table containing a list of field types supported by the table type for the driver
type.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.

pszTblType Type: pCHAR (Input)
Pointer to the table type. Use DbiOpenTableTypesList to retrieve table type information. Optional.

phCur Type: phDbiCur (Output)
Pointer to the cursor handle.

Usage
This function can be used to determine the legal field types, sizes, and other field-level attributes for a particular
driver and table type. This allows configurable table creation UIs and allows for validation of Field Descriptors
(FLDDesc) without creating a table. If pszTblType is not specified, the default table type is used.

DbiResult return values
DBIERR_NONE The table with the list of field types was created successfully.

See also
DbiGetFieldTypeDesc

DbiOpenFieldXlt

Syntax
DBIResult DBIFN DbiOpenFieldXlt (pszSrcDriverType, pszSrcLangDrv, pfldSrc, pszDesDriverType, pszDstLangDrv, pfldDest,

pbDataLoss, phXlt);

Description
DbiOpenFieldXlt builds a field translation object that can be used to translate a logical or physical field type into
any other compatible logical or physical field type.

Parameters
pszSrcDriverType Type: pCHAR (Input)
Pointer to the source driver type. Set to NULL for logical.

pszSrcLangDrv Type: pCHAR (Input)
Pointer to the language driver name of the source. Set to NULL if no character set transliteration is desired. Ignored if both
source and destination are not character types.

pfldSrc Type: pFLDDesc (Input)
Pointer to the source field descriptor.

pszDesDriverType Type: pCHAR (Input)
Pointer to the destination driver type. Set to NULL for logical.

pszDstLangDrv Type: pCHAR (Input)
Pointer to the language driver name of the destination. Set to NULL if no character set transliteration is desired. Ignored if both
source and destination are not character types.

pfldDest Type: pFLDDesc (Input)
Pointer to the destination field descriptor.

pbDataLoss Type: pBOOL (Output)
Pointer to a client variable used to indicate both the possibility of data loss and actual data loss for each field translated when
DbiTranslateField is called. If NULL, no data loss detection is done.

phXlt Type: phDBIXlt (Output)
Pointer to the translation object handle.

Usage
This function used in conjunction with DbiTranslateField allows clients to convert any logical or physical field data
to any compatible logical or physical field data. The client supplies a pair of logical or physical field descriptors.
These descriptors can be obtained from a call to DbiGetFieldDescs or DbiOpenFieldList.

If pbDataLoss is supplied, this client indicator variable is set to TRUE when the translation object is built if there is
the potential for data loss when converting between the source and destination field types. For example, if the
user requests a translation object to convert a dBASE character field to an BDESDK logical TIMESTAMP field, the
data loss indicator is set to TRUE, because the character field may not contain a legal TIMESTAMP string
according to the current session's DATE and TIME conventions. Additionally, each time DbiTranslateField is called
this client flag is set to TRUE if that particular field conversion caused data loss. If supplied, this client variable
must remain addressable until the translation object is closed with DbiCloseFieldXlt. For BLOB fields, this function
provides a translation object that does nothing.

DbiResult return values
DBIERR_NONE The translation object was successfully built.

DBIERR_NOTSUPPORTED The requested field conversion is not considered legal.

See also
DbiTranslateField, DbiCloseFieldXlt

DbiOpenFileList

Syntax
DBIResult DBIFN DbiOpenFileList (hDb, [pszWild], phCur);

Description
DbiOpenFileList opens a cursor on a list of files contained within the database.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszWild Type: pCHAR (Input)
Pointer to the search string for retrieving a selective list of tables. Two wildcard characters can be used: the asterisk (*) and the
question mark (?). The asterisk expands to any number of characters; the question mark expands to a single character.

phCur Type: phDBICur (Output)
Pointer to the file list table.

Usage
Standard: DbiOpenFileList provides an efficient way to retrieve all the names of files in a database directory. This
function returns a list of all files that match the wildcard criteria, if any.

SQL: This function returns information similar to that returned by DbiOpenTableList. Some fields, such as szExt,
bDir, and iSize, are not applicable for SQL databases.

DbiResult return values
DBIERR_NONE The cursor on the table was opened successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phCur is NULL.

See also
DbiOpenDatabase, DbiOpenTableList

pszWild

SQL: The search string has the following format: <ownername>.<objectname>. If no period is embedded in the
wildcard string, it is assumed that pszWild represents a search for the object name only, and that the requested
tables are for the current owner.

The following table provides examples of wildcard use for SQL databases:

Setting Retrieves

NULL All tables.

. All tables for all owners. The default if NULL is passed.

* All tables for the current owner.

*.EMP All tables named EMP for all owners.

*CUST All tables for the current owner ending in CUST.

Standard: For standard databases, search conventions are those used by DOS.

DbiOpenIndex

Syntax
DBIResult DBIFN DbiOpenIndex (hCursor, pszIndexName, iIndexId);

Description
DbiOpenIndex opens the specified index or indexes for the table associated with the cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pszIndexName Type: pCHAR (Input)
Pointer to the index name.

iIndexId Type: UINT16 (Input)
Specifies the index number. Used only with Paradox tables.

Usage
dBASE: This function is used to open non-production dBASE indexes. The open index is maintained, but only in
the context of this cursor. That is, only updates applied during the use of this cursor maintain the index. If the
index is a .MDX index, all tags in that index are opened and maintained.

Paradox: This function can be used only to verify that the specified index exists; it does not open the index. If the
index does not exist, an error is returned. With Paradox tables, indexes are automatically opened when the table
is opened.

Prerequisites
A valid cursor must be obtained, and the index must exist.

Completion state
DbiOpenIndex does not alter the current record order of the result set or the currency of the cursor. To change the
current index order, use DbiSwitchToIndex.

DbiResult return values
DBIERR_NONE The index was successfully opened on a dBASE table; the index exists on a Paradox table.

DBIERR_INVALIDHNDL The specified handle is invalid or NULL.

DBIERR_ALREADYOPENED The index is already opened, either implicitly or explicitly.

DBIERR_NOSUCHINDEX No such index exists for the table.

See also
DbiAddIndex, DbiCloseIndex, DbiSwitchToIndex

DbiOpenIndexList

Syntax
DBIResult DBIFN DbiOpenIndexList (hDb, pszTableName, [pszDriverType], phCur);

Description
DbiOpenIndexList opens a cursor on a table listing the indexes on a specified table, along with their descriptions.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name for which indexes are to be listed. For Paradox and dBASE, if pszTableName is a fully qualified name
of a table, the pszDriverType parameter need not be specified. If the path is not included, the path name is taken from the
current directory of the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. This parameter is ignored if the database associated with hDb is a SQL database. pszTableType can be one of the
following values: szDBASE or szPARADOX.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
If there are no indexes, a cursor to an empty table is returned.

Completion state
Each of the index description records can be retrieved using DbiGetNextRecord. DbiGetCursorProps can be used
to allocate the proper record size. After the record is retrieved, it can be cast with the IDXDesc type definition, and
used like an IDXDesc C language structure. This function retrieves index information from a closed table, as
opposed to DbiGetIndexDescs and DbiGetIndexDesc that use an open table.

DbiResult return values
DBIERR_NONE The table listing indexes for the table has been created.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phCur is NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table name is invalid.

DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.

See also
DbiGetNextRecord, DbiGetCursorProps, DbiGetIndexDesc, DbiGetIndexDescs

DbiOpenIndexTypesList

Syntax
DBIResult DBIFN DbiOpenIndexTypesList (pszDriverType, phCur);

Description
DbiOpenIndexTypesList creates a table containing a list of all supported index types for the driver type.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Completion state
Each of the index type description records can be retrieved using DbiGetNextRecord. DbiGetCursorProps can be
used to allocate the proper record size. After the record is retrieved, it can be cast with the IDXType type
definition, and used like an IDXType C language structure.

DbiResult return values
DBIERR_NONE The list of all supported index types was returned successfully.

DBIERR_UNKNOWNTABLETYPE The specified driver type is unknown.

DBIERR_INVALIDHNDL The specified handle is invalid.

See also
DbiGetIndexDesc

DbiOpenLDList

Syntax
DBIResult DBIFN DbiOpenLdList (phCur);

Description
DbiOpenLdList creates a table containing a list of available language drivers.

Parameters
phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Completion state
Each of the language driver records can be retrieved by using DbiGetNextRecord. DbiGetCursorProps can be
used to allocate the proper record size. After the record is retrieved, it can be cast with the LDDesc type definition,
and used like an LDDesc C language structure.

DbiResult return values
DBIERR_NONE The list of available language drivers was returned successfully.

DBIERR_INVALIDHNDL phCur is NULL.

DbiOpenLockList

Syntax
DBIResult DBIFN DbiOpenLockList (hCursor, bAllUsers, bAllLockTypes, phLocks);

Description
DbiOpenLockList creates a table containing a list of locks acquired on the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

bAllUsers Type: BOOL (Input)
Specifies whether to list locks acquired in the current session only, or to list locks acquired by all sessions. For Paradox tables,
bAllUsers can be either TRUE or FALSE. If bAllUsers is set to TRUE, users for all sessions are listed; if it is set to FALSE, only
users for the current session are listed. For dBASE and SQL tables, bAllUsers must be set to FALSE. For dBASE, only users for
the current session are listed. For SQL, only locks for the current database connection are listed.

bAllLockTypes Type: BOOL (Input)
Specifies whether to include all locks of all types, or record locks only. If set to FALSE, only record locks are listed. If set to
TRUE, locks of all types are listed.

phLocks Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Paradox: For Paradox tables, the locks on the table are returned, including those placed by the current session
and those placed by other users, depending on the value of bAllUsers.

dBASE: For dBASE tables, only the locks placed by the current session are returned.

SQL: For SQL tables, only the locks placed by the current database connection are returned.

Prerequisites
A valid cursor handle must be obtained on a base table; this function is not applicable to query cursors or in-
memory or temporary table cursors.

Completion state
The cursor is returned in phLocks. Lock types returned can include both table and record locks or only record
locks, as specified in bAllLockTypes.

DbiResult return values
DBIERR_NONE The requested lock list was returned successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or phLocks is NULL.

See also
DbiOpenTable, DbiAcqTableLock, DbiAcqPersistTableLock

DbiOpenRintList

Syntax
DBIResult DBIFN DbiOpenRintList (hDb, pszTableName, [pszDriverType], phChkCur);

Description
DbiOpenRintList creates a table listing the referential integrity links for a specified table, along with their
descriptions.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type; required only if no extension is specified by pszTableName. Currently, the only valid type is
szPARADOX.

phChkCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Currently, this function is supported only with Paradox tables.

Completion state
Each of the referential integrity records can be retrieved using DbiGetNextRecord. DbiGetCursorProps can be
used to allocate the proper record size. After the record is retrieved, it can be cast with the RINTDesc type
definition, and used like a RINTDesc C language structure.

DbiResult return values
DBIERR_NONE The cursor to the table was successfully returned.

DBIERR_INVALIDPARAM The specified table name or pointer to the table name is NULL.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phChkCur is NULL.

DBIERR_UNKNOWNTBLTYPE The specified table type is invalid.

DBIERR_NOSUCHTABLE The specified table does not exist.

See also
DbiOpenVchkList, DbiCreateTable, DbiGetRintDesc

DbiOpenSecurityList

Syntax
DBIResult DBIFN DbiOpenSecurityList (hDb, pszTableName, [pszDriverType], phSecCur);

Description
DbiOpenSecurityList creates a table listing record-level security information about a specified table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Required only if pszTableName did not specify an extension. Currently, the only valid driver type is
szPARADOX.

phSecCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Table- and field-level security is applied with the functions DbiDoRestructure and DbiCreateTable. Currently,
supported only with Paradox tables.

Completion state
Each of the security information records can be retrieved via DbiGetNextRecord. DbiGetCursorProps can be used
to allocate the proper record size. After the record is retrieved, it can be cast with the SECDesc type definition,
and used like an SECDesc C language structure.

DbiResult return values
DBIERR_NONE The cursor was returned successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phSecCur is NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table name does not exist.

DBIERR_UNKNOWNTBLTYPE The specified table type is invalid.

See also
DbiCreateTable, DbiDoRestructure

DbiOpenSPList

Syntax
DBIResult DBIFN DbiOpenSPList (hdb, bExtended, bSystem, pszQual, phCur);

Description
The function DbiOpenSPList creates a table containing information about the stored procedures associated with
the database.    Records in the table are described by SPDesc.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the stored procedure exists.

bExtended Type: BOOL (Input)
Not currently used.

bSystem Type: BOOL (Input)
True to include system procedures

pszQual Type: pCHAR (Input)
Must be null.

phCur Type: phDBICur (Output)
Pointer to the cursor handle

Completion state
The parameter phCur points to the returned cursor handle. The table contains information about all stored
procedures in the database associated with the specified database handle. If the associated database is a
standard database, only the stored procedures in the current directory of the database are listed in the table. The
record description for the table is SPDesc.

DbiResult return values
DBIERR_NONE The cursor to the table was successfully returned.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_NOTSUPPORTED The driver does not support stored procedures.

DbiOpenSPParamList

Syntax
DBIResult DBIFN DbiOpenSPParamList (hdb, pszSPName, bPhyTypes, uOverload, phCur);

Description
The function DbiOpenSPParamList creates a table listing the parameters associated with a specified stored
procedure.    Records in the table are described by SPParamDesc.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the stored procedure exists.

pszSPName Type: pCHAR (Input)
Pointer to the stored procedure name.

bPhyTypes Type: BOOL (Input)
Specifies whether parameter field types are returned in physical or logical datatypes.

uOverload Type: UINT16 (Input)
Overload number.    Not available for all drivers.    This value is 0 unless the driver supports it and has overloaded functions.    For
an example, see uOverload

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Standard: Not Supported

SQL: Supported.

Sybase: DbiOpenSPParamList returns the parameters, but eParamType is always equal to paramUNKNOWN.

Oracle: For full stored procedure support, your server must be a production Oracle7 server set up with the
Procedural option.    If it has not been set up properly, you might get the following error from
DbiOpenSPParamList: DBMS_DESCRIBE is not defined

Completion state
Returns list of the parameters associated with a specified stored procedure. The record description for the table is
SPParamDesc.

DbiResult return values
DBIERR_NONE The cursor to the table was successfully returned.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_NOTSUPPORTED The driver does not support stored procedures.

See also
DbiOpenSPList

uOverload

The uOverload param in DbiOpenSPParamList allows specification of an overload number if the server supports
overloading of procedure and function names.    For example, using Oracle 7, you might have this package
specification:
        create package EMP_RECS as
                  procedure get_sal_info (

                            name            in            emp.ename%type,
                            salary        out          emp.sal%type);

                  procedure get_sal_info (
                            ID_num        in            emp.empno%type,
                            salary        out          emp.sal%type);

                  function get_sal_info (
                            name          emp.ename%type)      return emp.sal%type;

        end EMP_RECS;

DbiOpenSPParamList with uOverload=1 would return the name and salary parameters for procedure 1. If
uOverload = 2, then ID_num and salary would be returned.

If a procedure is not overloaded, then uOverload should be set to 0.    Otherwise uOverload should be set to 1..n
for n overloadings of the name.

DbiOpenTable

Syntax
DBIResult DBIFN DbiOpenTable (hDb, pszTableName, [pszDriverType], pszIndexName, pszIndexTagName, iIndexId,

eOpenMode, eShareMode, exltMode, [bUniDirectional], [pOptParams], phCursor);

Description
DbiOpenTable opens the given table for access and associates a cursor handle with the opened table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the table exists.

pszTableName Type: pCHAR (Input)
Pointer to the table name. For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType
parameter need not be specified. If the path is not included, the path name is taken from the current directory of the database
associated with hDb.

For SQL databases, pszTableName can be a fully qualified name that includes the owner name, in the form
<owner>.<tablename>.

If not specified, <owner> is supplied from the database handle. Extensions are not valid for SQL table names.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. pszDriverType can be one of the following values: szDBASE, szPARADOX, or szASCII (for
importing or exporting data to/from text files; see the Usage section).

For Paradox and dBASE tables, this parameter is required if pszTableName has no extension, or if the client application wants
to overwrite the default file extension, including the situation where pszTableName is terminated with a period(.). If
pszTableName does not supply the default extension, and pszDriverType is NULL, DbiOpenTable tries to open the table with the
default file extension of all file-based drivers listed in the configuration file in the order that the drivers are listed.

This parameter is ignored if the database associated with hDb is a SQL database.

pszIndexName Type: pCHAR (Input)
Pointer to the name of the index or pseudo-index to be used to order the records in the result set. Optional. For SQL tables, the
index name does not have to be qualified with the owner for servers supporting naming conventions with owner qualification.   
The pszIndexName string is limited to 127 bytes in length.

pszIndexTagName Type: pCHAR (Input)
Pointer to the tag name of the index in a .MDX file used to order the records in the result set. Optional; used for dBASE tables
only. This parameter is ignored if the index given by pszIndexName is a .NDX index.

iIndexId Type: UINT16 (Input)
Specifies the index identifier, which is the number of the index to be used to order the records in the result set. Optional; used for
Paradox and SQL tables only.

Paradox: or Paradox tables, the range for the index identifier is 1 to 511. This parameter is ignored if pszIndexName is
specified.

SQL: For SQL tables, this field is used only to specify that the table should be opened with no default index. This is done by
setting iIndexId to NODEFAULTINDEX and is useful when opening a table read-only to speed up record access time.

eOpenMode Type: DBIOpenMode (Input)
Specifies the table open mode. If the mode is read-only, updates to the table are not permitted.

eShareMode Type: DBIShareMode (Input)
Specifies the table share mode, and determines whether other users or other cursors are able to open the table.

exltMode Type: XLTMode (Input)
Specifies the data translation mode.

bUniDirectional Type: BOOL (Input)
Specifies the scan mode of the cursor for SQL only.

pOptParams Type: pBYTE (Input)
Not currently used.

phCursor Type: phDBICur (Output)
Pointer to the cursor handle for the opened table.

Usage
Text: The DbiOpenTable call can be used to open a text file for import/export of data. The pszDriverType
argument is used differently to indicate whether the fields in the text file are fixed length or delimited. The field
separator and delimiter are passed through the pszDriverType argument.

dBASE: If no index is specified, the table is opened in physical order. If pszIndexTagName specifies an index tag,

the table is opened with that tag active. The index name and the tag name are specified to open the index.

Paradox: If all index parameters are NULL, the table is opened in primary key order, if a primary key exists. If a
secondary key is specified, the table is opened in that key. Either pszIndexName or iIndexId can be used to
specify a composite or non-composite secondary index. A single-field index that is case-insensitive is classified as
a composite index.[MORE]

SQL: An index can be specified only in pszIndexName. The index name can be qualified or unqualified. SQL
provides limited support for exclusive opens, depending on the level of server explicit lock support.

Pseudo-indexes: To describe a pseudo-index rather than an existing physical index, replace the pszIndexName
parameter with a string composed of field names.    The marker character @ denotes the use of a pseudo-index.   
For example, @Customer Number@Order Number describes a pseudo-index on a key formed by concatenating
the Customer Number field with the Order Number field.

Each field identifier in the pseudo-index name must be preceded by the @ character.    This character is illegal in
true index names. No new index is generated at the server; the behavior of the pseudo-index is simulated entirely
by use of the proper ORDER BY clauses on the query populating the local BDE record cache.

Fields can be identified by field numbers as well as by field names.    For example,    the string @2@3@11
describes a pseudo-index consisting of the second, third, and eleventh field of the table, concatenated to make up
a single key.

Each of the component fields within a pszIndexName is assumed to be in ASCENDING order.    Ordering is case-
sensitive (unless case-sensitivity is not supported on the specific server).    If the fields in the pszIndexName
represent a real unique index on the server, the pseudo-index becomes unique; otherwise, it is non-unique.

Prerequisites
If the database is opened read-only, the table cannot be opened read-write.

Completion state
After the table has been successfully opened, the cursor is opened and positioned on the crack at the beginning
of the file. A valid cursor is returned.

DbiResult return values
DBIERR_NONE The table was successfully opened.

DBIERR_INVALIDFILENAME The specified file name is not valid.

DBIERR_NOSUCHFILE The specified file could not be found.

DBIERR_TABLEREADONLY This table cannot be opened for read-write access.

DBIERR_NOTSUFFTABLERIGHTS The client application does not have sufficient rights to open this table.

DBIERR_INVALIDINDEXNAME The specified index name is invalid.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL, or phCursor is NULL.

DBIERR_UNKNOWNTBLTYPE The specified table type is invalid.

DBIERR_NOSUCHTABLE The specified table name is invalid.

DBIERR_NOSUCHINDEX The specified index is not available.

DBIERR_LOCKED The table is locked by another user.

DBIERR_DIRBUSY Invalid attempt to open a table in private directory (Paradox only).

DBIERR_OPENTBLLIMIT The maximum number of tables is already opened.

See also
DbiCloseCursor

pseudo-index
For SQL data sources, a current index can be defined as any group of fields from a specific table, whether or not a
corresponding index exists on the server.    BDE creates a pseudo-index by using one or more user-specified SQL
fields to define the requested order.

You can specify the pseudo-index even if there is a real index matching the behavior of the pseudo-index.    When
specifying the pseudo-index, BDE behavior is the same as it would be if the physical index existed on the server.
In particular, DbiSetRange and DbiGetRecordForKey are allowed on a pseudo-index.    DbiSetToBegin,
DbiGetNextRecord, and so on, walk through records in the order implied by a pseudo-index.

For information on implementing pseudo-indexes, see DbiOpenTable or DbiSwitchToIndex.

Database Open Mode
The following table shows the interaction between the database open mode and eOpenMode:

Database eOpenMode Result

Read-only Read-only Read-only

Read-only Read-write Error

Read-write Read-only Read-only

Read-write Read-write Read-write

Database Share Mode
For dBASE and Paradox tables, if eShareMode is set to dbiOPENEXCL, then only this session can open the
table. If the table is already opened (shared or exclusive) by another session, an attempt to open the table
exclusively results in an error. The following table shows the results of different combinations of the database
share mode and eShareMode:

Database eShareMode Result

Exclusive Exclusive Exclusive

Exclusive Share Exclusive

Share Exclusive Exclusive

Share Share Share

Scan Mode
This parameter can be one of the following values:

bUniDirectional value Scan mode of SQL table cursor

TRUE Unidirectional. The cursor can only be advanced forward.

FALSE Bidirectional. The cursor can be advanced forward and backward.

DbiOpenTableList

Syntax
DBIResult DBIFN DbiOpenTableList (hDb, bExtended, bSystem, pszWild, phCur);

Description
DbiOpenTableList creates a table with information about all the tables associated with the database.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

bExtended Type: BOOL (Input)
Specifies whether to return only the standard table information, or to return extended table information as well. (The default is
standard information only). [MORE]

bSystem Type: BOOL (Input)
Specifies whether to include system tables or not. SQL only. [MORE]

pszWild Type: pCHAR (Input)
Pointer to the search string for retrieving a selective list of tables. Two wildcard characters can be used: the asterisk (*) and the
question mark (?). The asterisk expands to any number of characters; the question mark expands to a single character.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
The client application can request either standard or extended information for the table. The bExtended parameter
must be set to TRUE to request extended information.

Standard: The table includes tables in the directory associated with hDb.

SQL: For SQL servers, bSystem must be set to TRUE to include system tables.

Completion state
phCur points to the returned cursor handle. The table contains information about all the tables in the database
associated with the specified database handle. If the associated database is a standard database, only the tables
in the current directory of the database are listed in the table. The record description for the table is TBLBaseDesc
or TBLFullDesc.

DbiResult return values
DBIERR_NONE The cursor to the table was returned successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiOpenCfgInfoList, DbiOpenDriverList, DbiOpenFieldTypesList, DbiOpenIndexTypesList, DbiOpenLdList,
DbiOpenTableTypesList, DbiOpenUserList

bExtended

bExtended value Type of table info returned

TRUE Extended

FALSE Standard

bSystem

bSystem value System table included?

TRUE Yes

FALSE No

DbiOpenTableTypesList

Syntax
DBIResult DBIFN DbiOpenTableTypesList (pszDriverType, phCur);

Description
DbiOpenTableTypesList creates a table listing table type names for the given driver.

Parameters
pszDriverType Type: pCHAR (Input)
Pointer to the driver type.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Completion state
Each of the table type records can be retrieved via DbiGetNextRecord. DbiGetCursorProps can be used to
allocate the proper record size. After the record is retrieved, it can be cast with the TBLType type definition, and
used like a TBLType C language structure.

DbiResult return values
DBIERR_NONE The list of table type names was returned successfully.

DBIERR_INVALIDHNDL The specified handle is invalid.

DBIERR_DRIVERNOTLOADED The driver was not initialized.

See also
DbiGetTableTypeDesc

DbiOpenUserList

Syntax
DBIResult DBIFN DbiOpenUserList (phUsers);

Description
DbiOpenUserList creates a table containing a list of users sharing the same network file.

Parameters
phUsers Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
DbiOpenUserList is supported for Paradox only.

Completion state
Each of the user records can be retrieved using DbiGetNextRecord. DbiGetCursorProps can be used to allocate
the proper record size. After the record is retrieved, it can be cast with the USERDesc type definition, and used
like a USERDesc C language structure.

DbiResult return values
DBIERR_NONE The user list was returned successfully.

DBIERR_INVALIDHNDL phUsers is NULL.

DbiOpenVchkList

Syntax
DBIResult DBIFN DbiOpenVchkList (hDb, pszTableName, [pszDriverType], phChkCur);

Description
DbiOpenVchkList creates a table containing records with information about validity checks for fields within the
specified table.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the table name. If pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. For Paradox, required only if no extension is specified by pszTableName. The only valid type is
szPARADOX. This parameter is ignored if the database associated with hDb is a SQL database.

phChkCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
Paradox: This function returns information about validity checks including required fields, minimum/maximum
settings for fields, lookup tables, picture specifications, and default values.

SQL: The only validity check that can be created for SQL tables is bRequired (required fields). However, some
drivers support reporting of fields with default values.

dBASE: This function is not supported for dBASE tables.

Prerequisites
A valid database handle must be obtained.

Completion state
phChkCur points to the returned cursor handle on the table. Once the cursor is returned, the client application can
retrieve information about validity checks from the table. The cursor is read-only.

DbiResult return values
DBIERR_NONE The cursor to the table was returned successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL, or phChkCur is NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOSUCHTABLE The specified table name does not exist.

DBIERR_UNKNOWNTBLTYPE The specified driver type is invalid.

See also
DbiOpenRintList, DbiCreateTable

DbiPackTable

Syntax
DBIResult DBIFN DbiPackTable (hDb, hCursor, pszTableName, [pszDriverType], bRegenIdxs);

Description
DbiPackTable optimizes table space by rebuilding the table associated with hCursor and releasing any free space.

Parameters
hDb Type: hDBIDb (Input)
Specifies the valid database handle.

hCursor Type: hDBICur (Input)
Specifies the cursor on the table to be packed. Optional. If hCursor is specified, the operation is performed on the table
associated with the cursor. If hCursor is NULL, pszTableName and pszDriverType determine the table to be used.

pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTblName and pszTblType determine the table to be used. (If both
pszTableName and hCursor are specified, pszTableName is ignored.) If pszTableName is a fully qualified name of a table, the
pszDriverType parameter need not be specified. If the path is not included, the path name is taken from the current directory of
the database associated with hDb.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. This parameter is required if pszTableName has no extension. The only valid pszDriverType
is szDBASE.

bRegenIdxs Type: BOOL (Input)
Specifies whether or not to regenerate out-of-date table indexes. If TRUE, all out-of-date table indexes are regenerated (applies
to maintained indexes only). Otherwise, out-of-date indexes are not regenerated.

Usage
dBASE: dBASE allows users to mark a record for deletion (as opposed to actually removing it from the table).
The only way to permanently remove marked records is with DbiPackTable.

Paradox: This function is not valid for Paradox tables. Use DbiDoRestructure with the bPack option, instead.

SQL: This function is not valid for SQL tables.

Prerequisites
Exclusive access to the table is required.

DbiResult return values
DBIERR_NONE The table was successfully rebuilt.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_INVALIDHNDL The specified database handle or cursor handle is invalid or NULL.

DBIERR_NOSUCHTABLE Table name does not exist.

DBIERR_UNKNOWNTBLTYPE Table type is unknown.

DBIERR_NEEDEXCLACCESS The table is not open in exclusive mode.

See also
DbiOpenTable, DbiDeleteRecord, DbiDoRestructure

DbiPutBlob

Syntax
DBIResult DBIFN DbiPutBlob (hCursor, pRecBuf, iField, iOffSet, iLen, pSrc);

Description
DbiPutBlob writes data into an open BLOB field.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.

iField Type: UINT16 (Input)
Specifies the ordinal number of a BLOB field within the record buffer.

iOffSet Type: UINT32 (Input)
Specifies the starting position, offset from the beginning of the BLOB, where the data is to be written. This value must not
exceed the length of the BLOB. Valid values of iOffset range from 0 to the BLOB field's length. If iOffset is less than the BLOB
field's length, part of the existing BLOB field is overwritten. If iOffset is equal to the length of the BLOB field, the data is
appended to the existing BLOB field.

If the BLOB field also has a BLOB header (BLOB tuple area), and iOffset falls within that header area, the information in the
tuple is also updated when DbiModifyRecord, DbiAppendRecord, or DbiInsertRecord is called.

iLen Type: UINT32 (Input)
Specifies the number of bytes to write to the BLOB field. iLen should be less than 64K.

pSrc Type: pBYTE (Input)
Pointer to the data to be written to the BLOB field.

Usage
The block of data supplied in pSrc is transferred to the BLOB field, based on the values specified in iOffset and
iLen.

Note: This does not update the underlying table. The client application must call DbiAppendRecord,
DbiModifyRecord, or DbiInsertRecord, using this record buffer, to update the table with the BLOB field.

Prerequisites
The BLOB field must be opened in read-write mode.

Completion state
Performs the equivalent of DbiPutField, for a BLOB field.

DbiResult return values
DBIERR_NONE The data was successfully written to the BLOB field.

DBIERR_BLOBNOTOPENED The specified BLOB field was not opened via a call to DbiOpenBlob.

DBIERR_INVALIDBLOBHANDLE The record buffer supplied contains an invalid BLOB handle.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

DBIERR_INVALIDBLOBOFFSET The specified iOffSet is greater than the length of the BLOB field.

DBIERR_READONLYFLD The BLOB field was opened in dbiREADONLY mode and cannot be modified.

See also
DbiAppendRecord, DbiModifyRecord, DbiInsertRecord, DbiGetBlob, DbiOpenBlob, DbiTruncateBlob,
DbiFreeBlob, DbiGetBlobSize

DbiPutField

Syntax
DBIResult DBIFN DbiPutField (hCursor, iField, pRecBuf, pSrc);

Description
DbiPutField writes the field value to the correct location in the supplied record buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iField Type: UINT16 (Input)
Specifies the ordinal number of the field to be updated.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer, which is updated upon success.

pSrc Type: pBYTE (Input)
Pointer to the new field value.

Usage
This function is used to update a record one field at time. If a NULL pointer is supplied, the field is set to NULL or
blank.

If the xltMODE for the cursor is xltFIELD, pSrc is assumed to contain field data in BDESDK logical format. This
data is translated to the driver's physical type by this function. If xltMODE is xltNONE, pSrc is assumed to contain
field data in physical format.

DbiPutField is not supported with BLOB fields.

Prerequisites
DbiVerifyField may be called to test for field level integrity violations.

Completion state
After using DbiPutField one or more times, the client application must call DbiInsertRecord, DbiAppendRecord, or
DbiModifyRecord to update the table with the record buffer. If the function fails, the record buffer is not affected.

DbiResult return values
DBIERR_NONE The field was updated successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_OUTOFRANGE iField is equal to zero, or is greater than the number of fields in the table.

DBIERR_INVALIDXLATION A translation error has occurred.

See also
DbiVerifyField, DbiAppendRecord, DbiInsertRecord, DbiModifyRecord, DbiSetToKey, DbiGetField, DbiPutBlob

DbiQExec

Syntax
DBIResult DBIFN DbiQExec (hStmt, phCur);

Description
DbiQExec executes the previously prepared query identified by the supplied statement handle and returns a
cursor to the result set, if one is generated.

Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
This function is used to execute a prepared query. If the query returns a result set, the cursor handle to the result
set is returned into the address given by phCur. If the query does not generate a result set, the returned cursor
handle is zero. If no cursor handle address is given and a result set would be returned, the result set is discarded.

SQL: For SQL, the same prepared query can be executed several times, but only after the returned cursor has
been closed.

DbiResult return values
DBIERR_NONE The prepared query was executed successfully.

See also
DbiQPrepare, DbiQExecDirect, DbiQFree, DbiQSetParams

DbiQExecDirect

Syntax
DBIResult DBIFN DbiQExecDirect (hDb, eQryLang, pszQuery, phCur);

Description
DbiQExecDirect executes a SQL or QBE query and returns a cursor to the result set, if one is generated.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

eQryLang Type: DBIQryLang (Input)
Specifies the query language, QBE or SQL.

pszQuery Type: pCHAR (Input)
Pointer to the query, formulated in the appropriate language.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

Usage
This function is used to immediately prepare and execute a query. If the query returns a result set, the cursor
handle to the result set is returned into the address given by phCur. If the query does not generate a result set,
the returned cursor handle is zero. If no cursor handle address is given and a result set would be returned, the
result set is discarded.

SQL: For SQL language queries, if the database handle given does not refer to a server database, the BDESDK
SQL dialect is recognized. Otherwise, the appropriate server dialect is expected. Heterogeneous data access and
cross-server data access can be achieved by using the BDESDK SQL dialect and referencing tables qualified with
database alias names.

QBE: For QBE language queries, the BDESDK QBE Syntax is expected. Heterogeneous data access and cross-
server data access can be achieved.

DbiResult return values
DBIERR_NONE The query was successfully prepared and executed.

See also
DbiQExec, DbiQFree, DbiQPrepare, DbiQSetParams

DbiQExecProcDirect

Syntax
DBIResult DBIFN DbiQExecProcDirect (hDb, pszProc, uParamDescs, paParamDescs, pRecBuff, phCur);

Description
DbiQExecProcDirect executes a stored procedure and returns a cursor to the result set, if one is generated.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszProc Type: pCHAR (Input)
Stored procedure name.

uParamDescs Type: UINT16 (Input)
Number of parameter descriptors.

paParamDescs Type: pSPParamDesc (Input)
Array of parameter descriptors.

pRecBuff Type: pBYTE (Input)
Record buffer.

phCur Type: phDBICur (Output)
Pointer to the cursor handle.

DbiResult return values
DBIERR_NONE The stored procedure was successfully prepared and executed.

See also
DbiQPrepareProc, DbiQSetProcParams, DbiOpenSPList, DbiOpenSPParamList

DbiQFree

Syntax
DBIResult DBIFN DbiQFree (phStmt);

Description
DbiQFree frees the resources associated with a previously prepared query identified by the supplied statement
handle.

Parameters
phStmt Type: phDBIStmt (Input)
Pointer to the statement handle.

Usage
This function is used to release the resources acquired during preparation and use of a query. If cursors are
associated with an outstanding result set produced by execution of the statement, the cursors remain valid and
the dependent statement resources are not released until the last cursor has been closed or the result set is read
to completion, whichever happens first.

DbiResult return values
DBIERR_NONE The query's resources were released successfully.

See also
DbiQExec, DbiQExecDirect, DbiQPrepare

DbiQInstantiateAnswer

Syntax
DBIResult DBIFN DbiQInstantiateAnswer (hStmt, hCursor, pszAnswerName,pszAnswerType, bOverWrite, phCur)

Description
DbiQInstantiateAnswer creates an ANSWER table of type PARADOX.    The flags pszAnswerName and
pszAnswerType may be used in renaming and changing the type respectively. If the flag bOverWrite is set to
TRUE, then it will overwrite the existing pszAnswerTable.

Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle

hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pszAnswerName Type: pCHAR (Input)
Pointer to the name of the permanent table.

pszAnswerType Type: pCHAR (Input)
Pointer to the name of the permanent table.

bOverWrite Type: BOOL (Input)
If set to TRUE, overwrites the existing file.

hDstCursor Type: hDBICur (Output)
Specifies the cursor handle.

Usage
DbiQInstantiateAnswer is used to create a permanent table from a cursor handle. The table name is ANSWER.DB
by default or it will create pszAnswerName with pszAnswerType. You can use the bOverWrite flag to overwrite the
existing pszAnswerTable.

SQL: This function is not supported by SQL drivers.

Prerequisites
Either a statement handle or a cursor handle must first be generated with DbiQPrepare.

Completion state
The table is saved to disk when the cursor is closed.

DbiResult return values
DBIERR_NONE The temporary table has been designated as a permanent table.

See also
DbiSaveChanges, DbiCreateTempTable, DbiCloseCursor

DbiQPrepare

Syntax
DBIResult DBIFN DbiQPrepare (hDb, eQryLang, pszQuery, phStmt);

Description
DbiQPrepare prepares a SQL or QBE query for execution, and returns a handle to a statement containing the
prepared query.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

eQryLang Type: DBIQryLang (Input)
Specifies the query language, QBE or SQL.

pszQuery Type: pCHAR (Input)
Pointer to the query, formulated in the appropriate language.

phStmt Type: phDBIStmt (Output)
Pointer to the statement handle.

Usage
This function is used to prepare a query for subsequent execution.

SQL: For SQL language queries, if the database handle given does not refer to a server database, the BDESDK
SQL dialect is recognized. Otherwise, the appropriate server dialect is expected. Heterogeneous data access and
cross-server data access can be achieved by using the BDESDK SQL dialect and referencing tables qualified with
database alias names.

QBE: For QBE language queries, the BDESDK QBE Syntax is expected. Heterogeneous data access and cross-
server data access can be achieved.

DbiResult return values
DBIERR_NONE The query was successfully prepared for execution.

DBIERR_ALIASNOTOPEN One of the aliases used in the query was not opened prior to preparing the query. The alias name
can be found on the error context stack.

See also
DbiQExec, DbiQExecDirect, DbiQFree, DbiQSetParams, DbiQPrepareExt

DbiQPrepareExt

Syntax
DBIResult DBIFN DbiQPrepareExt (hDb, eQryLang, pszQuery, upropBits, phStmt);

Description
DbiQPrepareExt prepares a SQL or QBE query for execution, and returns a handle to a statement containing the
prepared query, just as does DbiQPrepare. In addition, DbiQPrepareExt includes an option that allows the user to
modify or update the resulting record set. If updateable queries are not required, DbiQPrepare should be used
instead.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

eQryLang Type: DBIQryLang (Input)
Specifies the query language, QBE or SQL.

pszQuery Type: pCHAR (Input)
Pointer to the query, formulated in the appropriate language.

upropBits Type: UINT16 (Input)
Detemines whether query is updateable.    Two possible values:

qprepNONE Behaves like DbiQPrepare
qprepFORUPDATE Query is updateable.

phStmt Type: phDBIStmt (Input)
Pointer to the statement handle.

Usage
If the preparation for update succeeds, a statement handle is returned (as with DbiQPrepare).    Successful
execution of the statement produces a cursor handle that supports the cursor-oriented BDE write operations:
DbiModifyRecord, DbiDeleteRecord, DbiInsertRecord, and so on.

The modification operations are handled through the normal Borland SQL Link optimistic locking strategy.    All
other existing operations work exactly as they do for a normal passthrough query.

Note that the record size of a resulting row for an updateable query is larger than for a non-updateable query.   
The updateable query contains information used to locate records and provide optimistic lock checking.

The updateable query feature is available with either unidirectional or bidirectional cursors for all supported
servers.    The resultant cursor of a statement execution is treated as a passthrough result set.    A write request
requires a premature read of the result set for servers that do not support multiple-statement connections (for
example, SQL Server 1.x-4.x).

Note: An updateable query requires more resources than a non-updateable query.    A query should be made
updateable only when necessary; not as a default situation.

Prerequisites
* The query must be parseable by the local SQL parser, which is a derivative of the InterBase parser.    This

means that server-specific features might not be available in an updateable query.    For example, if the current
parser does not support the built-in server functions, they cannot be used in updateable queries. (See the Local
SQL Help)

* SELECT DISTINCT and GROUP BY clauses are not allowed.    Note that an ORDER BY clause is allowed.

* No expressions can exist in the projection list.    This includes AS expressions.

* If a column is projected, it may be projected only once in the project list.

* The updateable query can reference only one table.

* The updateable query does not support self-joins.

* Passthrough queries are dead tables.    This has implications that affect record modification behavior and API
availability.    For example, as with all passthrough, no indexes are available for switching to, a range cannot be
set, and so on.

* The local SQL parser accepts BDE database alias references in queries, but these are not allowed for an
updateable query.    The query must be issued directly against the BDE SQL database.    For example, the
query:
SELECT * FROM :SQLALIAS:mytable
is not allowed.    First, the alias SQLALIAS must be opened.    Then the query (without alias) can be issued

against the database.

Completion state
BDE supports an INSERT through a cursor, but the servers do not. An insert into a dead table remains visible only
as long as the cursor remains on that record.    When the cursor moves off the record, the record disappears and
may or may not re-appear later as the result set is read.

An unqualified table reference is assumed to be owned by the database user, as with BDE table open operations.
Therefore, a query such as:

SELECT mycolumn FROM mytable

for user sqluser, results in the equivalent query:
SELECT mycolumn FROM sqluser.mytable.

While this would exhibit the same behavior as normal passthrough (if sqluser owned a table called mytable, and if
the user did not own that table) the server would find it based on server name-lookup rules.    For an updateable
query, the name must be qualified properly to find an unowned table.

If no unique record location information is available for a table, (such as a unique index or row id) update, delete,
and insert is still allowed, exactly as with a BDE table open operation.    The operation succeeds provided that the
server allows the operation and multiple records would not be affected when only one is targeted.

DbiResult return values
DBIERR_NONE The query was successfully prepared for execution.

DBIERR_TABLEREADONLY The query could not be made updateable.

DBIERR_CONNECTNOTSHARED The SQLPASSTHRU_MODE parameter is set to NOT_SHARED.    It
must be set to either SHARED AUTOCOMMIT or SHARED NOAUTOCOMMIT.

See also
DbiQExec, DbiQExecDirect, DbiQFree, DbiQSetParams

DbiQPrepareProc

Syntax
DBIResult DBIFN DbiQPrepareProc (hDb, pszProc, uParamDescs, paParamDescs, pRecBuff, phStmt);

Description
DbiQPrepareProc prepares and optionally binds parameters for a stored procedure.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszProc Type: pCHAR (Input)
Stored procedure name.

uParamDescs Type: UINT16 (Input)
Specifies the number of parameter descriptors.

paParamDescs Type: pSPParamDesc (Input)
Pointer to the array of parameter descriptors.

pRecBuff Type: pBYTE (Input)
Pointer to the record buffer (or NULL if parameters are not to be bound.)

phStmt Type: phDBIStmt (Output)
Specifies the returned statement handle.

Usage
Use with the existing functions DbiQExec and DbiQFree.    If pRecBuff is NULL, then the parameters are not
bound.

DbiResult return values
DBIERR_NONE The stored procedure was successfully prepared for execution.

See also
DbiQExecProcDirect, DbiQSetProcParams, DbiQExec, DbiQExecDirect, DbiQFree, DbiOpenSPList,
DbiOpenSPParamList

DbiQSetParams

Syntax
DBIResult DBIFN DbiQSetParams (hStmt, uFldDescs, paFldDescs, pRecBuf);

Description
DbiQSetParams associates data with parameter markers embedded within a prepared query.

Parameters
hStmt Type: hDBIStmt (Input)
Specifies the statement handle.

uFldDescs Type: UINT16 (Input)
Specifies the number of parameter field descriptors given.

paFldDescs Type: pFLDDesc (Input)
Pointer to the array of parameter field descriptors.

pRecBuf Type: pBYTE (Input)
Pointer to the client buffer containing data for the specified fields.

Usage
This function is used to set the value of parameter markers in a prepared query before the query execution. It is
supported only for passthrough SQL queries processed on SQL server tables at present.

The field descriptor array and record buffer is constructed by the client and passed to BDESDK, which uses each
specified field, along with the record buffer, to locate the data and set the specified parameter. Each field may be
either an BDESDK type or a driver type for the database that the query is prepared for.

Parameter markers are either ? or :name. The field descriptor for a ? parameter marker must contain no name,
and must contain a field number that matches the position of the ? marker within the query, beginning with marker
number one. The field descriptor for a :name marker must contain the name of the marker, and a field number of
zero.

Parameter settings are retained from statement execution to statement execution. However, all parameters must
be set before execution can occur.

dBASE: This function is not supported for dBASE tables.

Paradox: This function is not supported for Paradox tables.

DbiResult return values
DBIERR_NONE The value of parameter markers was successfully set.

DBIERR_OBJNOTFOUND A field descriptor references a parameter marker that does not exist.

See also
DbiQExec, DbiQExecDirect, DbiQFree, DbiQPrepare

DbiQSetProcParams

Syntax
DBIResult DBIFN DbiQSetProcParams (hStmt, uParamDescs, paParamDescs, pRecBuff);

Description
DbiQSetProcParams binds parameters for a stored procedure prepared with DbiQPrepareProc.

Parameters
hStmt Type: phDBIStmt (Output)
Specifies the returned statement handle.

uParamDescs Type: UINT16 (Input)
Specifies the number of parameter descriptors.

paParamDescs Type: pSPParamDesc (Input)
Pointer to the array of parameter descriptors.

pRecBuff Type: pBYTE (Input)
Pointer to the record buffer.    (Or NULL if parameters are not to be bound.)

Usage
You must set all parameters (including output parameters) before statement execution.    After execution, output
parameter values are placed in the specified offset of the client-supplied pRecBuff. If the output parameter value
is NULL or TRUNCATED, then indNULL or indTRUNC is placed in the iNulloffset of the client-supplied pRecBuff.
Note that indNULL and indTRUNC are enums defined by eINDValues.

Sybase: Output parameter values are not available until after all rows have been fetched from the result set.

InterBase: When calling DbiQSetProcParams and DbiQPrepareProc, all input parameters must be specified
before output parameters.

Prerequisites
The function DbiQPrepareProc must be called before calling DbiQSetProcParams.

These function calls assume that the client knows the stored procedure parameters, parameter types (such as
INPUT, OUTPUT, INPUT/OUTPUT), and parameter datatypes.

DbiResult return values
DBIERR_NONE The value of parameter markers was successfully set.

DBIERR_OBJNOTFOUND A field descriptor references a parameter marker that does not exist.

See also
DbiQPrepareProc, DbiQExecProcDirect, DbiOpenSPList, DbiOpenSPParamList

DbiReadBlock

Syntax
DBIResult DBIFN DbiReadBlock (hCursor, piRecords, pBuf);

Description
DbiReadBlock reads a specified number of records (starting from the current position of the cursor) into a buffer.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to the table.

piRecords Type: pUINT32 (Input/Output)
On input, specifies the number of records to read. On output, pointer to the client variable that receives the number of actual
records that were read.

pBuf Type: pBYTE (Output)
Pointer to the client buffer that receives the record data.

Usage
This function is equivalent to doing a loop with DbiGetNextRecord for the specified number in piRecords, though it
can be considered significantly faster than a DbiGetNextRecord loop.

If filters are active, DbiReadBlock reads only the records that meet filter criteria; all others are skipped. The
records are not locked. The number of records read may differ from the number of records requested due to
conditions such as end of table.

Completion state
The variable, piRecords, contains the number of actual records read after the function completes. The cursor
position is updated according to the actual number of records read.

DbiResult return values
DBIERR_NONE The block of records was successfully read.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or piRecords is NULL, or pBuf is NULL.

DBIERR_EOF An attempt was made to read beyond the end of the file. The cursor is positioned in the crack at the end
of the file. piRecords contains the number of records, if any, that were read before the end of file was
reached.

See also
DbiWriteBlock, DbiGetNextRecord

DbiRegenIndex

Syntax
DBIResult DBIFN DbiRegenIndex (hDb, [hCursor], [pszTableName], [pszDriverType], pszIndexName, pszIndexTagName,

iIndexId);

Description
DbiRegenIndex regenerates an index to ensure that it is up to date (all records currently in the table are included
in the index and are in the index order). It can also be used to pack the index on disk.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle associated with the database where the table exists.

hCursor Type: hDBICur (Input)
Specifies the cursor on the table. Optional. If hCursor is specified, the operation is performed on the table associated with the
cursor. If hCursor is NULL, pszTblName and pszDriverType determine the table to be used.

pszTableName Type: pCHAR (Input)
Pointer to the table name. Optional. If hCursor is NULL, pszTableName and pszDriverType determine the table to be used. If
both pszTableName and hCursor are specified, pszTableName is ignored.

For Paradox and dBASE, if pszTableName is a fully qualified name of a table, the pszDriverType parameter need not be
specified. If the path is not included, the path name is taken from the current directory of the database associated with hDb.

pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox and dBASE tables, this parameter is required if pszTableName has no
extension. pszDriverType can be one of the following values: szDBASE or szPARADOX.

pszIndexName Type: pCHAR (Input)
Pointer to the name of the index. See rules for naming indexes in the IDXDesc section.

pszIndexTagName Type: pCHAR (Input)
Pointer to the tag name of the index in a .MDX file. Used for dBASE tables only. This parameter is ignored if the index given by
pszIndexName is not a .MDX index.

iIndexId Type: UINT16 (Input)
Specifies the index number.

Usage
iIndexId, pszIndexName, and pszIndexTagName are used in various combinations to specify the index to
regenerate.

Important: A maintained index is automatically updated when the table is updated. A non-maintained index must
use DbiRegenIndex to update the index after the table is modified before it can be used to access
data.

Paradox: The effect of regenerating a maintained index is that it becomes more efficient and compact. (Frequent
updates can fragment an index.)

SQL: A SQL index cannot be regenerated.

dBASE: DbiRegenIndex is normally used to update a non-maintained dBASE index. However, there may be
situations when a maintained index needs to be regenerated. Since a non-production index is maintained only
when it is in use, it is not actually maintained at all times. If the index is not up to date, DbiRegenIndex can be
used to synchronize the index with the current data.

Prerequisites
The table name must be provided and the index must already exist. When regenerating a maintained index, the
table must be opened exclusively. When regenerating a non-maintained index, the engine must be able to obtain
a write lock on the table.

DbiResult return values
DBIERR_NONE The index specified by pszIdxName was successfully regenerated.

DBIERR_NOSUCHINDEX The given index (pszIdxName) does not exist.

DBIERR_INVALIDPARAM A cursor was not provided for the table, and the table name is either empty or not provided.

DBIERR_INVALIDHNDL The specified handle was invalid or NULL.

DBIERR_NEEDEXCLACCESS A cursor was provided for the table, but it was not opened in exclusive mode when regenerating
a maintained index.

DBIERR_FILEBUSY Exclusive access could not be obtained on table.

DBIERR_FILELOCKED Write lock could not be obtained on table.

DBIERR_NOTSUPPORTED A SQL index cannot be regenerated.

See also
DbiRegenIndexes

DbiRegenIndexes

Syntax
DBIResult DBIFN DbiRegenIndexes (hCursor);

Description
DbiRegenIndexes regenerates all indexes associated with a cursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle for the table to be regenerated.

Usage
A maintained index is automatically updated when the table is updated.

dBASE: All open indexes are regenerated.

Paradox: All maintained and non-maintained indexes are regenerated.

SQL: SQL indexes cannot be regenerated.

Prerequisites
There can be more than one index open on a table. A valid cursor handle must be obtained, the table must be
opened exclusively, and the index must already exist.

DbiResult return values
DBIERR_NONE All of the indexes for the table associated with the specified cursor have been successfully

regenerated.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NEEDEXCLACCESS The table associated with hCursor is opened in open shared mode.

DBIERR_NOTSUPPORTED SQL indexes cannot be regenerated.

See also
DbiRegenIndex

DbiRegisterCallBack

Syntax
DBIResult DBIFN DbiRegisterCallBack (hCursor, ecbType, iClientData, iCbBufLen, pCbBuf, pfCb);

Description
DbiRegisterCallBack registers a callback function for the client application.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to which the callback is being registered. Optional. If hCursor is NULL, the callback is registered to
the current session.

ecbType Type: CBType (Input)
Specifies the type of callback. ecbType can be cbGENPROGRESS, cbBATCHRESULT, cbRESTRUCTURE, cbINPUTREQ,
cbTABLECHANGED, or cbDBASELOGIN. (See Usage below.)

iClientData Type: UINT32 (Input)
Pass-through data specified by the client. This is used to help the client establish the context of the callback (such as a pointer
to a client structure, a window handle, and so on.) This data is passed back to the client as a parameter to the callback function.

iCbBufLen Type: UINT16 (Input)
Specifies the callback buffer length.

pCbBuf Type: pVOID (Input)
Pointer to the buffer where the callback data is to be returned. Points to an instantiated callback descriptor, which varies
depending upon the type of callback. For example, the cbGENPROGRESS callback type creates a pointer to the
CBPROGRESSDesc structure.

The data that is written to pCbBuf is the percentage completed or a message string.

pfCb Type: pfDBICallBack (Input)
Pointer to the desired callback function. Optional. If pfCb is NULL, DbiRegisterCallBack unregisters the previously registered
callback function.

Usage
Callbacks are used when a client application needs clarification about a given engine function before completing
an operation or to return information to the client. DbiRegisterCallBack allows the client to instruct the database
engine about what further actions should be taken by the engine upon the occurrence of an event. The engine
calls the client-registered function when the pertinent event occurs, and the client responds to the callback by
telling the engine what to do with the appropriate return code (cbrABORT, cbrCONTINUE, and so on). Advantages
of this mechanism are that clients do not have to check every return code on every function call, and the engine
can get a user's response without interrupting the normal client process flow.

Callback function declarations and associated parameter lists, function return types, and callback data types are
defined in the file IDAPI.H, which is the client interface to the engine.

All callback functions use the following prototype:
typedef CBRType far *pCBRType;
typedef CBRType (DBIFN * pfDBICallBack)
(
CBType ecbType,          // Callback type
UINT32 iClientData, // Client callback data
pVOID pCbInfo              // Call back info/Client
Input
);

For each different callback type, the pCbInfo parameter serves a different purpose:

cbgenprogress
cbRESTRUCTURE
cbBATCHRESULT
cbTABLECHANGED
cbINPUTREQ
cbDBASELOGIN

Prerequisites
The client application is responsible for the following actions:

Allocating memory for pCbBuf.
Declaring the callback function with an associated predefined parameter list.

Completion state
If a cursor is supplied, any previous callbacks for the given cursor are overwritten. All callbacks are applicable to
the current session only. The callback is valid only while the cursor is open; when the cursor is closed, any cursor-
specific callbacks are automatically unregistered. If hCursor is NULL, then the callback applies to all cursors in the
current session that do not have an explicit callback of their own. Supplying a NULL function pointer unregisters
the callback.

DbiResult return values
DBIERR_NONE The callback was registered successfully.

DBIERR_OBJIMPLICITLYDROPPED The field name was modified.

DBIERR_OBJMAYBETRUNCATED The field width was reduced.

DBIERR_VALFIELDMODIFIED Inserted field in position pointed to by an existing VCHKDesc.

DBIERR_VALIDATEDATE An existing VCHKDesc was modified.

DBIERR_INVALIDFLDXFORM The field type was modified.

DBIERR_KEYVIOL An existing IDXDesc was modified.

DBIERR_NOMEMORY Insufficient memory was allocated for pCbBuf.

See also
DbiGetCallBack, DbiBatchMove, DbiDoRestructure, DbiForceReread

DbiRelPersistTableLock

Syntax
DBIResult DBIFN DbiRelPersistTableLock (hDb, pszTableName, [pszDriverType]);

Description
DbiRelPersistTableLock releases the persistent table lock on the specified table for the associated session.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszTableName Type: pCHAR (Input)
Pointer to the name of the table. For Paradox, if pszTableName is a fully qualified name of a table, the pszDriverType parameter
need not be specified. If the path is not included, the path name is taken from the current directory of the database associated
with hDb.

For SQL databases, this parameter can be a fully qualified name that includes the owner name.

pszDriverType Type: pCHAR (Input)
Pointer to the driver type. Optional. For Paradox tables, this parameter is required if pszTableName has no extension.
pszDriverType must be szPARADOX. This parameter is ignored if the database associated with hDb is a SQL database.

Usage
This function is valid only with Paradox and SQL tables, since only Paradox and SQL tables can have persistent
locks placed on them.

dBASE: This function is not supported with dBASE tables.

Completion state
The number of persistent locks on the table is decremented. If this is the last persistent lock on the table, the lock
is released.

DbiResult return values
DBIERR_NONE The lock was released successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDPARAM The specified table name or the pointer to the table name is NULL.

DBIERR_NOTLOCKED The specified table does not have a persistent lock placed on it.

See also
DbiAcqPersistTableLock

DbiRelRecordLock

Syntax
DBIResult DBIFN DbiRelRecordLock (hCursor, bAll);

Description
DbiRelRecordLock releases the record lock on either the current record of hCursor or all the record locks acquired
in the current session.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

bAll Type: BOOL (Input)
Specifies which record locks to release. If set to TRUE, all record locks acquired in the current session are released. If set to
FALSE, hCursor must be positioned on a record in order to release the lock for that record.

Usage
SQL: Optimistic locks are released by this function. The SQL drivers always perform optimistic record locking;
therefore, a record lock request does not explicitly attempt to lock the record on the server.

Completion state
The specified record locks are removed.

DbiResult return values
DBIERR_NONE Locks were successfully released.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NOTLOCKED The current record is not locked (this error is returned only when bAll is FALSE).

DBIERR_NOCURREC The cursor is not positioned on a record.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRecord, DbiGetRelativeRecord, DbiIsRecordLocked

DbiRelTableLock

Syntax
DBIResult DBIFN DbiRelTableLock (hCursor, bAll, eLockType);

Description
DbiRelTableLock releases table locks of the specified type associated with the session in which hCursor was
created.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

bAll Type: BOOL (Input)
Determines which table locks to release. If set to TRUE, all locks on the table associated with hCursor are released, and
eLockType is ignored.

eLockType Type: DBILockType (Input)
Specifies the table lock type. eLockType is ignored if bAll is TRUE.

For dBASE and SQL tables, dbiREADLOCK is upgraded to dbiWRITELOCK. In that case, if eLockType specifies
dbiREADLOCK, the write lock is released.

Usage
Only locks acquired by calling DbiAcqTableLock can be released. A separate call to DbiRelTableLock is required
to release each lock acquired by DbiAcqTableLock, if bAll is not set to TRUE.

dBASE: See the eLockType parameter description.

SQL: See the eLockType parameter description.

Prerequisites
There must be an existing table lock of the type specified in eLockType. However, an existing table lock is not
required if all locks are being released (bAll is TRUE).

DbiResult return values
DBIERR_NONE Locks were successfully released.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_NOTLOCKED The table is not locked with the specified lock type (this error is returned only when bAll is FALSE).

See also
DbiAcqTableLock, DbiIsTableLocked, DbiOpenLockList

eLockType
eLockType can be one of the following values:

eLockType value Table lock type

dbiWRITELOCK Write lock

dbiREADLOCK Read lock

DbiRenameTable

Syntax
DBIResult DBIFN DbiRenameTable (hDb, pszOldName, [pszDriverType], pszNewName);

Description
DbiRenameTable renames the table given in pszOldName and all its resources to the new name specified by
pszNewName.

Parameters
hDb Type: hDBIDb (Input)
Specifies the database handle.

pszOldName Type: pCHAR (Input)
Pointer to the name of existing table. For Paradox and dBASE tables only, if pszOldName contains an extension, pszDriverType
is not needed. The source driver type determines the destination driver type.

pszDriverType Type: pCHAR (Input)
Pointer to the table type. Optional. For Paradox and dBASE tables, this parameter is required if pszOldName has no extension.
This parameter is ignored if the database associated with hDb is a SQL database. pszTableType can be one of the following
values: szPARADOX or szDBASE.

pszNewName Type: pCHAR (Input)
Pointer to the new name for the table.

Usage
When the table is renamed, other resources are also renamed, depending on the database driver.

Paradox: The following files are renamed:

The table (.DB extension)
BLOB files (.MB extension)
All indexes
Validity check and referential integrity files (.VAL extension)

If the table is encrypted, the master password must be specified, or the DbiRenameTable call fails. A master table
in a referential integrity link, the table cannot be renamed. If it is a detail table and the table is renamed into the
same directory, the function automatically maintains the link to its master table. If it is a detail table and the table is
renamed into the different directory, referential integrity is dropped. Exclusive access to the master table is
required.

dBASE: The following files are renamed:

The table (.DBF extension)
BLOB files (.DBT extension)
The production index (.MDX extension)

SQL: All indexes are renamed with the table. Some SQL servers do not support DbiRenameTable.

Prerequisites
The client application must have permission to lock the table exclusively.

DbiResult return values
DBIERR_NONE The table was renamed successfully.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_NOSUCHTABLE The source table does not exist.

DBIERR_UNKNOWNTBLTYPE The driver type is unknown.

DBIERR_NOTSUFFTABLERIGHTS The client application has insufficient rights to the table (Paradox only).

DBIERR_NOTSUFFFAMILYRIGHTS The client application has insufficient rights to family members (Paradox only).

DBIERR_LOCKED The table is already in use.

See also
DbiAddPassword, DbiCopyTable, DbiDeleteTable

DbiResetRange

Syntax
DBIResult DBIFN DbiResetRange (hCursor);

Description
DbiResetRange removes the specified cursor's limited range previously established by the function DbiSetRange.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle of the table with the range to be removed.

Usage
DbiResetRange preserves the current position of the cursor.

Prerequisites
The cursor must be opened on an index.

Completion state
The function has no effect on existing filters.

If the cursor was positioned on a valid record before the call, it is left on the same record. If it was positioned on a
crack, it is positioned there after the call.

DbiResult return values
DBIERR_NONE The range was reset successfully.

DBIERR_INVAIDHNDL hCursor is not valid.

DBIERR_NOASSOCINDEX The specified table does not have an index open.

See also
DbiSetRange

DbiSaveChanges

Syntax
DBIResult DBIFN DbiSaveChanges (hCursor);

Description
DbiSaveChanges forces all updated records associated with hCursor to disk.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

Usage
If the table associated with hCursor is a temporary table (created with DbiCreateTempTable), DbiSaveChanges
saves all buffered changes to disk and makes the table permanent. This table will not be removed when the
cursor is closed.

SQL: This function is not supported with SQL tables.

DbiResult return values
DBIERR_NONE All changes have been saved successfully.

DBIERR_INVALIDHNDL The specified cursor is invalid or NULL.

DBIERR_NODISKSPACE The changes could not be saved because there is no disk space available.

DBIERR_NOTSUPPORTED This function is not supported for SQL tables.

See also
DbiMakePermanent

DbiSetCurrSession

Syntax
DBIResult DBIFN DbiSetCurrSession (hSes);

Description
DbiSetCurrSession sets the current session of the client application to the session associated with hSes.

Parameters
hSes Type: hDBISes (Input)
Specifies the session handle. If hSes is NULL, DbiSetCurrSession sets the current session to the default session.

Completion state
All subsequent operations that do not require an object handle (such as cursor, database, or statement) are
associated with this session. Any functions that take an explicit database, query, or cursor handle as an argument
are not affected by DbiSetCurrSession. Any resources required by these functions are allocated in the context of
the session set by DbiSetCurrSession.

DbiResult return values
DBIERR_NONE The session has been successfully set to the session associated with 4.

DBIERR_INVALIDSESHANDLE The specified session handle is invalid.

See also
DbiGetCurrSession, DbiStartSession, DbiCloseSession, DbiGetSysInfo, DbiGetSesInfo

DbiSetDateFormat

Syntax
DBIResult DBIFN DbiSetDateFormat (pfmtDate);

Description
DbiSetDateFormat sets the date format for the current session.

Parameters
pfmtDate Type: pFMTDate (Input)
Pointer to the date format structure.

Usage
The date format is used by QBE for input and wildcard character matching. It is also used by batch operations
(such as DbiDoRestructure and DbiBatchMove) to handle data type coercion between character and date types.

DbiResult return values
DBIERR_NONE The date format was successfully set.

DBIERR_INVALIDHNDL The pointer to the date format structure is NULL.

DBIERR_INVALIDPARAM Data within the date format structure is invalid.

See also
DbiGetDateFormat

DbiSetDirectory

Syntax
DBIResult DBIFN DbiSetDirectory (hDb, pszDir);

Description
DbiSetDirectory sets the current directory for a standard database.

Parameters
hDb Type: hDBIDb (Input)
Specifies a standard database handle.

pszDir Type: pCHAR (Input)
Pointer to the client buffer specifying the new current directory path. If set to NULL, DbiSetDirectory sets the current directory to
the default directory.

Usage
SQL: DbiSetDirectory is not applicable to SQL databases.

Prerequisites
If DbiSetDirectory has not been called, the directory is set to whatever was specified as the working directory in
the DBIEnv structure in DbiInit. If pszDir is set to NULL, the directory reverts to the default directory. The default
directory is the application's start-up directory. If an alias was used to open the database, the path that was
specified in the alias is used as the current directory.

Completion state
After setting the directory, any TblList or FileList cursors opened on this handle are restricted to this directory, and
any call to DbiOpenTable without a specified path is limited to searching to this directory. Any resources acquired
before DbiSetDirectory is called, such as opened tables, are not affected by the change.

DbiResult return values
DBIERR_NONE The current directory has been successfully set.

DBIERR_NOTSUPPORTED This function is not supported with a non-standard database.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

See also
DbiGetDirectory, DbiInit, DbiOpenTable

DbiSetFieldMap

Syntax
DBIResult DBIFN DbiSetFieldMap (hCur, iFields, pFldDesc);

Description
DbiSetFieldMap sets a field map of the table associated with the given cursor.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle.

iFields Type: UINT16 (Input)
Specifies the number of fields to map.

pFldDesc Type: pFLDDesc (Input)
Pointer to an array of FLDDesc structures.

Usage
A field map allows the user to effectively reorder the fields of a table or to drop some of the fields from view. This
function does not produce a new cursor, but modifies the existing one. The client application specifies a field map
by building an array of field descriptors. The order of field descriptors in the array specifies the order in which the
cursor presents the fields.

For dBASE and Paradox, all data retrieval functions map the returned records as specified in the field description;
no type conversions are allowed. When a record is updated in a table with a field map, the unmapped fields are
left unchanged. When a record is inserted in a table with a field map, the unmapped fields are set to blank.

Paradox: When a record is inserted in a table with a field map, the unmapped fields are set to blank or set to any
defined default value.

Text: Since no description of the fields are available when the text file is created with DbiCreateTable, it is a good
practice to set a field map on the cursor that is opened on that text file. The text driver uses this field map to
interpret the data types of the fields in that text file. The DbiTranslateRecordStructure call can be used to convert
the logical or physical fields of a given driver type (such as Paradox or dBASE) to the physical fields of the text
driver. These resulting physical text fields can be used in the DbiSetFieldMap call. When a field map is set on a
text table, iFldType, iFldNum, iUnits1, and iUnits2 must be set correctly in all the field descriptors.

Prerequisites
DbiGetFieldDescs must be called to retrieve the array of field descriptors for the table.

Completion state
The underlying table is not affected. All the original fields still exist; they are simply not visible. (To drop fields in
the underlying table, use DbiDoRestructure.) Setting iFields to 0 removes any existing field map and allows the
underlying fields to become visible again.

DbiResult return values
DBIERR_NONE The field map was set successfully.

DBIERR_NA The field number in the field descriptor is greater than the number of fields in the table, or the specified field
name does not exist. Some drivers return this error if the user tried to set a field map on a table that already
has a field map set.

See also
DbiGetFieldDescs

DbiSetLockRetry

Syntax
DBIResult DBIFN DbiSetLockRetry (iWait);

Description
DbiSetLockRetry sets the table and record lock retry time for the current session.

Parameters
iWait Type: INT16 (Input)
Specifies the lock retry time in seconds. The default setting is five seconds.

Value Description

<= -1 Any negative value causes infinite retries

= 0 No retry is attempted

>= 1 Number of seconds to retry

Usage
DbiSetLockRetry functions only with Paradox and dBASE tables. Whenever table or record lock fails, the lock is
repeatedly attempted until the retry time expires. If iWait is 0, no retry is performed, resulting in the immediate
failure of any unsuccessful lock request. The default setting is five seconds. The following functions retry locking if
the lock fails:

Record locks:
DbiGetNextRecord
DbiGetRelativeRecord
DbiGetPriorRecord
DbiGetRecord

Table locks:
DbiAcqTableLock
DbiAcqPersistTableLock

The following functions do not retry locking if the lock fails:
DbiOpenDatabase
DbiOpenTable
DbiSetDirectory
DbiSetPrivateDir

SQL: This function is not supported with SQL tables.

Completion state
The number of retry seconds is set. Whenever a Paradox or dBASE table or record lock fails, the lock will be
attempted until the retry time limit is reached.

DbiResult return values
DBIERR_NONE The lock retry time was successfully set for the session.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiGetRecord, DbiAcqTableLock,
DbiAcqPersistTableLock, DbiSetPrivateDir, DbiSetDirectory, DbiOpenTable

DbiSetNumberFormat

Syntax
DBIResult DBIFN DbiSetNumberFormat (pfmtNumber);

Description
DbiSetNumberFormat sets the number format for the current session.

Parameters
pfmtNumber Type: pFMTNumber (Input)
Pointer to the client-allocated FMTNumber structure.

Usage
The number format is used by QBE for input and wildcard character matching. It is also used by batch operations
(such as DbiDoRestructure and DbiBatchMove) to handle data type coercion between character and numeric
types.

DbiResult return values
DBIERR_NONE The number format was set successfully.

DBIERR_INVALIDHNDL The pointer to the number format structure is NULL.

DBIERR_INVALIDPARAM Data within the number format structure is invalid.

See also
DbiGetNumberFormat

DbiSetPrivateDir

Syntax
DBIResult DBIFN DbiSetPrivateDir (pszDir);

Description
DbiSetPrivateDir sets the private directory for the current session.

Parameters
pszDir Type: pCHAR (Input)
Pointer to the full path name of the new private directory. Optional. If NULL, then the private directory is reset to the default
startup directory.

Usage
Although DbiSetPrivateDir is specific to Paradox tables, it has one important use for all drivers: all temporary or
auxiliary files are created in this directory by default. If no private directory is specified, then all temporary or
auxiliary tables are created in the default startup directory. Examples of functions that may create temporary or
auxiliary tables are DbiDoRestructure and DbiBatchMove.

Prerequisites
The directory must be available for exclusive access. No other BDESDK users can access the private directory.

DbiResult return values
DBIERR_NONE The private directory was successfully set.

DBIERR_DIRBUSY The specified directory is currently in use.

See also
DbiGetSesInfo

DbiSetProp

Syntax
DBIResult DBIFN DbiSetProp (hObj, iProp, iPropValue);

Description
DbiSetProp sets the specified properties of an object to a given value.    See Getting and Setting Properties

Parameters
hObj Type: hDBIObj (Input)
Specifies the object handle to a system, client, session, driver, database, cursor, or statement object.

iProp Type: UINT32 (Input)
Specifies the property to set.

iPropValue Type: UINT32 (Input)
Specifies the value of the property.

Usage
The specified object does not necessarily have to match the type of property as long as the object is associated
with the object type of the property. For example, the property drvDRIVERTYPE assumes an object of type
objDRIVER, but because a cursor is derived from a driver, a cursor handle (objCURSOR) could also be specified.
See DbiGetObjFromObj for details about associated objects.

Example
To set the translation mode of a cursor to xltNONE (see DbiOpenTable), use:

DbiSetProp (hCursor, curXLTMODE, (UINT32) xltNONE);

For properties wider than 32-bits, pass a pointer to the property, and cast the pointer to (UINT32).

Example
The following example shows how you can use DbiSetProp to specify your preference for live or canned result
sets during query execution. A canned result set is like a snapshot or a copy of the original data selected by the
query. In contrast, a live result set is a view of the original data; specifically, if you modify a live result set, the
changes are reflected in the original data.

DbiSetProp(hSt, stmtLIVENESS, (UINT32) wantLIVE);

DbiResult return values
DBIERR_NONE The property of the object was successfully set.

DBIERR_NOTSUPPORTED Property is not supported for this object.

See also
DbiOpenTable, DbiGetProp

DbiSetRange

Syntax
DBIResult DBIFN DbiSetRange (hCursor, bKeyItself, [iFields1], [iLen1], [pKey1], bKey1Incl, iFields2, iLen2, [pKey2], bKey2Incl);

Description
DbiSetRange constrains the result set to the subset bounded by two keys.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

bKeyItself Type: BOOL (Input)
Defines the key buffer type. If set to TRUE, pKey1 and pKey2 contain the keys directly; if set to FALSE, pKey1 and pKey2 point
to record buffers from which the keys can be extracted.

iFields1 Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys, for the beginning of the range. Optional. The iFields1 and iLen1
parameters together indicate how much of the key is to be used for matching. If both are zero, the entire key is used. If a partial
match is required on a given field of the key, all the key fields preceding it in the composite key must be included. Only character
fields can be matched for a partial key; all other field types must be fully matched.

For partial key matches, iFields1 must be equal to the number (if any) of key fields preceding the field being partially matched.
iLen1 specifies the number of characters in the partial key to be matched.

iLen1 Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not zero, the last field to be used must be a character
type.

pKey1 Type: pBYTE (Input)
Pointer to the key value or record buffer for the beginning of the range. Optional. If NULL, no low limit is set.

bKey1Incl Type: BOOL (Input)
Specifies whether to include the beginning key value in the range. bKey1Incl can be either TRUE or FALSE.

iFields2 Type: UINT16 (Input)
Specifies the number of fields to be used for composite keys, for the end of the range. Optional. The iFields2 and iLen2
parameters together indicate how much of the key is to be used for matching. If both are zero, the entire key is used. If a match
is required on a given field of the key, all the key fields preceding it in the composite key must also be supplied. Only character
fields can be matched for a partial key; all other field types must be fully matched.

For partial key matches, iFields2 must be equal to the number (if any) of key fields preceding the field being partially matched.
iLen2 specifies the number of characters in the partial key to be matched.

iLen2 Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not zero, the last field to be used must be a character
type.

pKey2 Type: pBYTE (Input)
Pointer to the key value or record buffer for the end of the range. Optional. If NULL, no high limit is set.

bKey2Incl Type: BOOL (Input)
Specifies whether to include the end key value in the range. bKey2Incl can be either TRUE or FALSE.

Prerequisites
There must be an active index.

Completion state
DbiSetRange positions the cursor at the beginning of the range, not on the first record in the range.

After this function is called, the cursor allows access only to records in the table that fall within the defined range.
Any attempt to reference records outside the range results in a BOF or EOF error condition.

Paradox: DbiGetRecordCount now reflects only the records in the range. DbiGetSeqNo is relative to the
beginning of the range, rather than the beginning of the table.

DbiResult return values
DBIERR_NONE The range was set successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_OUTOFRANGE (iField    iLen) is less than the whole key.

DBIERR_NOASSOCINDEX The specified cursor does not have an active index.

See also
DbiResetRange, DbiExtractKey, DbiSetToKey, DbiGetRecordCount, DbiGetSeqNo

DbiSetTimeFormat

Syntax
DBIResult DBIFN DbiSetTimeFormat (pfmtTime);

Description
DbiSetTimeFormat sets the time format for the current session.

Parameters
pfmtTime Type: pFMTTime (Input)
Pointer to the client-allocated FMTTime structure.

Usage
The time format is used by QBE for input and wildcard character matching. It is also used by batch operations
(such as DbiDoRestructure and DbiBatchMove) to handle data type coercion between character and time or
datetime types.

DbiResult return values
DBIERR_NONE The time format was successfully set.

DBIERR_INVALIDHNDL The pointer to the time format structure is NULL.

DBIERR_INVALIDPARAM Data within the time format structure is invalid.

See also
DbiGetTimeFormat

DbiSetToBegin

Syntax
DBIResult DBIFN DbiSetToBegin (hCursor);

Description
DbiSetToBegin positions the cursor to the beginning of the result set.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

Usage
This function is used to reposition the cursor to the beginning of the result set. DbiGetNextRecord or
DbiGetRelativeRecord can then be called to position the cursor on the first valid record of the result set.

Completion state
The cursor is positioned on the crack before the first record. There is no current record after DbiSetToBegin
completes. (DbiGetRecordreturns DBIERR_BOF.)

DbiResult return values
DBIERR_NONE The cursor was successfully set to BOF.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiSetToEnd, DbiSetToCursor

DbiSetToBookMark

Syntax
DBIResult DBIFN DbiSetToBookMark (hCur, pBookMark);

Description
DbiSetToBookMark positions the cursor to the position saved in the specified bookmark.

Parameters
hCur Type: hDBICur (Input)
Specifies the cursor handle. hCur must be compatible with the cursor used when the bookmark was obtained.

pBookMark Type: pBYTE (Input)
Pointer to the bookmark. The bookmark is obtained by a prior call to DbiGetBookMark.

Usage
This function is used to position the cursor to a saved position. To determine if the bookmark is stable, call
DbiGetCursorProps and examine the bBookMarkStable property.

Prerequisites
DbiGetBookMark must have been called to retrieve a valid bookmark. The supplied cursor can be different from
the one used to retrieve the bookmark information, but the cursor must be opened on the same table, with the
same index order, if any.

Note: DbiSwitchToIndex may make bookmarks obtained under a different index order unusable with the new
order.

Completion state
The cursor is positioned at the bookmark location. If the record pointed to by the bookmark has been deleted, the
cursor is positioned on a crack where the original record was.

Note: If the bookmark is unstable, the cursor may be in an unexpected position.

DbiResult return values
DBIERR_NONE The call was successful; however, the position may not be the expected one if the record has

been deleted, or if the bookmark was unstable.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or the pointer to the bookmark is NULL, or the
specified bookmark is NULL.

DBIERR_INVALIDBOOKMARK The specified bookmark is not from the same table, or the bookmark is corrupt.

See also
DbiOpenTable, DbiGetCursorProps, DbiGetBookMark, DbiCompareBookMarks

DbiSetToCursor

Syntax
DBIResult DBIFN DbiSetToCursor (hDest, hSrc);

Description
DbiSetToCursor sets the position of one cursor (the destination cursor) to the position of the source cursor.

Parameters
hDest Type: hDBICur (Input)
Specifies the destination cursor handle.

hSrc Type: hDBICur (Input)
Specifies the source cursor handle.

Usage
This function synchronizes the position of two cursors on the same table.

Prerequisites
Source and destination cursors must be opened on the same table in the same session, and both must be valid. If
both cursors are opened on a single table, they do not have to have the same current index. The source cursor
must have a current record if the index order is different.

Completion state
After DbiSetToCursor executes, the destination cursor is positioned on the same record as the source cursor.
They remain independent of each other, they do not track each other.

DbiResult return values
DBIERR_NONE The destination cursor was successfully set to the record of the source cursor.

DBIERR_INVALIDHNDL The specified source cursor or destination cursor is invalid or NULL.

DBIERR_NOCURRREC The source cursor has no current record.

See also
DbiGetBookMark, DbiSetToBookMark, DbiCloneCursor, DbiOpenTable

DbiSetToEnd

Syntax
DBIResult DBIFN DbiSetToEnd (hCursor);

Description
DbiSetToEnd positions the cursor at the end of the result set.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

Usage
This function is used to reposition the cursor at the end of the result set. DbiGetPriorRecord or
DbiGetRelativeRecord can be called to position the cursor on the last valid record of the result set.

Completion state
The cursor is positioned on the crack after the end of the result set. There is no current record after DbiSetToEnd
completes. (DbiGetRecord returns DBIERR_EOF.)

DbiResult return values
DBIERR_NONE The cursor was successfully set to the EOF position.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiSetToBegin, DbiGetNextRecord, DbiGetPriorRecord, DbiGetRelativeRecord, DbiSetToCursor

DbiSetToKey

Syntax
DBIResult DBIFN DbiSetToKey (hCursor, eSearchCond, bDirectKey, [iFields], [iLen], pBuf);

Description
DbiSetToKey positions an ordered cursor based on the given key value.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

eSearchCond Type: DBISearchCond (Input)
Specifies the search condition: keySEARCHEQ, keySEARCHGT, or keySEARCHGEQ.

bDirectKey Type: BOOL (Input)
Specifies whether the key is supplied directly in pBuff or not. If set to TRUE, pBuf specifies the pointer to the key in physical
format; if set to FALSE, pBuf specifies the pointer to the record buffer.

iFields Type: UINT16 (Input)
Specifies the number of complete fields to be used for composite keys. Optional. If iFields and iLen are both 0, the entire key is
used.

iLen Type: UINT16 (Input)
Specifies the length into the last field to be used for composite keys. If not zero, the last field to be used must be a character
type.

pBuf Type: pBYTE (Input)
Pointer to either the record buffer or the key itself, determined by bDirectKey.

Usage
If no index is currently associated with the cursor, an error is generated and no cursor movement occurs.

There are three possible search conditions: keySEARCHEQ, keySEARCHGT, and keySEARCHGEQ. Searches
always result in the cursor being positioned on the crack before the record of the specified key value. Assuming all
the arguments are specified correctly, only the (=) search condition can return a DBIERR_RECNOTFOUND error.

(> or >=) always succeeds.

The key can be specified either by setting the key fields in a record buffer and supplying the record buffer or by
specifying the key buffer directly as a string of bytes. To construct the key buffer, use DbiExtractKey.

The iFields and iLen parameters together indicate how much of the key is to be used for matching. If both are 0,
the entire key is used. If a partial match is required on a given field of the key, all the key fields preceding it in the
composite key must also be specified for match. Only character fields can be matched for a partial key; all other
field types must be fully matched.

Prerequisites
A cursor handle must be ordered using an index.

Completion state
The search always results in the cursor being positioned on the crack just prior to the specified key.

DbiResult return values
DBIERR_NONE The record was successfully found.

DBIERR_NOASSOCINDEX There is no index to search on.

DBIERR_INVALIDPARAM One of the specified parameters is invalid (for example, iLen is invalid for the current index).

DBIERR_RECNOTFOUND No record matches the key value.

See also
DbiSetRange, DbiSwitchToIndex, DbiSetToBookMark, DbiGetNextRecord, DbiGetPriorRecord

DbiSetToRecordNo

Syntax
DBIResult DBIFN DbiSetToRecordNo (hCursor, iRecNo);

Description
DbiSetToRecordNo positions the cursor to the given physical record number.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iRecNo Type: UINT32 (Input)
Specifies the physical record number.

Usage
This function is currently valid only with dBASE tables. The physical record number can be retrieved from the
iPhyRecNum field of the RECProps structure in calls to DbiGetRecord, DbiGetNextRecord, DbiGetPriorRecord, or
DbiGetRelativeRecord.

If the given record number is beyond the valid range for the cursor, the cursor is set to the beginning or end of the
file (BOF/EOF).

DbiResult return values
DBIERR_NONE The cursor was successfully set to the record specified by iRecNo.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_BOF The specified record number is zero.

DBIERR_EOF The specified record number is greater than the number of records in the table.

DBIERR_NOTSUPPORTED This function is not supported for Paradox and SQL tables.

See also
DbiSetToSeqNo

DbiSetToSeqNo

Syntax
DBIResult DBIFN DbiSetToSeqNo (hCursor, iSeqNo);

Description
DbiSetToSeqNo positions the cursor to the specified sequence number of a table. Currently supported by Paradox
only.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iSeqNo Type: UINT32 (Input)
Specifies the logical record number.

Usage
This function is currently valid only with Paradox tables. The sequence number can be retrieved by calling
DbiGetSeqNo or from the iSeqNo field of the RECProps structure in calls to DbiGetRecord, DbiGetNextRecord,
DbiGetPriorRecord, or DbiGetRelativeRecord.

A sequence number is the position of a record in the result set associated with hCursor. If the given sequence
number is beyond the valid sequence number for the cursor, the cursor is set to the beginning or end of the file
(BOF/EOF). For example, if the table is empty, this function leaves the cursor positioned at BOF and returns
DBIERR_BOF. If the table is not empty and the user attempts to position the cursor beyond a valid sequence
number, the cursor is set to EOF, and DBIERR_EOF is returned.

Note: The sequence number for a given record is not stable. If a record is inserted or deleted before the given
index order, the sequence number for the record changes.

DbiResult return values
DBIERR_NONE The Paradox cursor was successfully set to the sequence number specified by iSeqNo.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_EOF The specified record number is greater than the number of records in the table.

DBIERR_BOF The specified record number is zero.

DBIERR_NOTSUPPORTED This function is not supported for SQL or dBASE drivers.

See also
DbiGetSeqNo, DbiSetToRecordNo

DbiSortTable

Syntax
DBIResult DBIFN DbiSortTable (hDb, pszTableName, pszDriverType, hSrcCur, pszSortedName, phSortedCur, hDstCur,

iSortFields, piFieldNum, [pbCaseInsensitive], [pSortOrder], [*ppfsortFn], bRemoveDups, [hDuplicatesCur], [plRecsSort]);

Description
DbiSortTable sorts an opened or closed table, either into itself or into a destination table. There are options to
remove duplicates, to enable case-insensitive sorts and special sort functions, and to control the number of
records sorted.

Parameters
hDb Type: hDBIDb (Input)
Optional. Specifies the database handle when pszTableName and pszDriverType are used to identify the source table (not used
when hSrcCur is supplied). Must be a valid database handle.

pszTableName Type: pCHAR (Input)
Optional. Pointer to the table name. Must be a defined table name and the table must exist. If hDb, pszTableName, and
pszTableType are supplied, hSrcCur should be NULL. A valid extension may be specified.

pszDriverType Type: pCHAR (Input)
Optional. Supplied only when hDb and pszTableName are supplied. Pointer to the driver type. Must be a defined driver type.

hSrcCur Type: hDBICur (Input)
Optional. This parameter is supplied when an opened source table is to be sorted to a destination table, as specified in
pszSortedName. When the table is to be sorted into itself, hDb, pszTableName, and pszDriverType must be used to identify the
table instead of hSrcCur.

pszSortedName Type: pCHAR (Input)
Optional. Pointer to the file name to be used as the sorted destination table. The table must be closed. The extension must
match that of the source table. (To specify a destination table of a different driver type, hDstCur must be used.) If this parameter,
phSortedCur, and hDstCur are all NULL, the source table is sorted into itself.

phSortedCur Type: phDBICur (Output)
Optional. Pointer to a cursor handle on the sorted destination table, with the name specified by pszSortedName. If NULL, the
cursor handle is not returned.

hDstCur Type: hDBICur (Input)
Optional. Used instead of pszSortedName to specify the sorted destination table. In this case, the destination table is already
open, and the cursor handle is specified. If this parameter and phSortedName are NULL, the source table is sorted into itself.

iSortFields Type: UINT16 (Input)
Specifies the number of sort fields to be used.

piFieldNum Type: pUINT16 (Input)
Pointer to an array of the field numbers on which to sort. The number of elements in the array must equal the number specified
in iSortFields.

pbCaseInsensitive Type: pBOOL (Input)
Optional. Pointer to an array of values indicating whether the sort is to be case-insensitive for each sort field. TRUE specifies
case-insensitive. The number of elements in the array must equal the number specified in iSortFields.

If a NULL pointer is given, the default is case-sensitive. Only text fields are affected.

pSortOrder Type: pSORTOrder (Input)
Optional. Pointer to an array of the sort order for each field, either ascending or descending. If a NULL pointer is given, the order
is ascending. The number of elements in the array must equal the number specified in iSortFields.

*ppfsortFn Type: pfSORTCompFn (Input)
Optional. Pointer to an array of pointers to client-supplied compare functions. The number of elements in the array must be
equal to the number specified in iSortFields.

bRemoveDups Type: BOOL (Input)
Specifies whether duplicates are to be removed during sorting or not. If TRUE, duplicates are removed from the destination
table. Duplicates may be written to a table associated with hDuplicatesCur.

hDuplicatesCur Type: hDBICur (Input)
Optional. If specified, duplicates removed from the table are placed in a Duplicates table associated with the specified cursor.
The structure of this table must be the same as the source table.

plRecsSort Type: pUINT32 (Input/Output)
Optional. Used only when the source table is identified by hSrcCur. On input, pointer to the number of records to sort, from the
current position of the source table cursor. On output, pointer to the client variable that receives the actual number of records
sorted into the destination table.

Usage

As the table is sorted, the records are physically ordered according to the specified sort criteria. Source and
destination tables can be of different driver types; if so, the destination table must be specified by hDstCur.

Paradox: A Paradox table with a primary key cannot be sorted into itself. Autoincrement fields cannot be sorted.

SQL: DbiSortTable is not supported with SQL tables as the destination.

Completion state
The records in the destination table are ordered according to the sort criteria. If plRecSort is specified, only
plRecSort records are sorted, starting from the current position in the table, otherwise the whole table is sorted.

DbiResult return values
DBIERR_NONE The sort was successful.

DBIERR_INVALIDHNDL The specified database handle is invalid or NULL.

DBIERR_INVALIDFILENAME The source table name was not provided.

DBIERR_UNKNOWNTBLTYPE The source driver type was not provided.

DBIERR_INVALIDPARAM The specified number of sort fields is invalid.

DBIERR_NOTSUPPORTED This function is not supported for sort to self on a Paradox table with a primary index.

See also
DbiBatchMove, DbiCreateTable, DbiDoRestructure, DbiCopyTable

DbiStartSession

Syntax
DBIResult DBIFN DbiStartSession ([pszName], phSes, [pNetDir]);

Description
DbiStartSession starts a new session for the client application.

Parameters
pszName Type: pCHAR (Input)
Pointer to the session name. Optional.

phSes Type: phDBISes (Output)
Pointer to the session handle. Used to identify the session.

pNetDir Type: pCHAR (Input)
Pointer to the network file directory for the session. Optional.

Usage
Use DbiStartSession to create different concurrency schemes.

Completion state
DbiStartSession makes the new session the current session.

DbiResult return values
DBIERR_NONE The session was successfully started.

DBIERR_INVALIDHNDL phSes is NULL.

DBIERR_SESSIONSLIMIT The maximum number of sessions are open.

See also
DbiSetCurrSession, DbiCloseSession

DbiSwitchToIndex

Syntax
DBIResult DBIFN DbiSwitchToIndex (phCursor, pszIndexName, pszTagName, iIndexId, bCurrRec);

Description
DbiSwitchToIndex changes the active index order of the given cursor.

Parameters
phCursor Type: phDBICur (Input/Output)
On input, phCursor specifies the original cursor handle; on output, pointer to the new cursor handle.

pszIndexName Type: pCHAR (Input)
Pointer to the name of the index or pseudo-index.    The pszIndexName string is limited to 127 bytes in length.

pszTagName Type: pCHAR (Input)
Pointer to the tag name string. Used for dBASE tables only.

iIndexId Type: UINT16 (Input)
Specifies the index ID.

bCurrRec Type: BOOL (Input)
If TRUE, positions the new cursor on the current record of the original cursor.

Usage
This function allows the user to change the index order of a cursor without closing the cursor and opening another
cursor. The original cursor is passed into the function, and a new cursor handle is returned with the new ordering.
The original cursor handle becomes invalid and cannot be used.

Setting pszIndexName, pszTagName, and iIndexId to NULL is equivalent to changing the order to the default
order. As a result, the cursor is set to one of the following orders:

Relational order for dBASE and SQL tables.
Primary index order for a keyed Paradox table or physical order for a Paradox heap table.

If bCurrRec is set to TRUE, the new cursor is positioned on the same record as the original cursor. If bCurrRec is
set to FALSE, the new cursor is positioned at BOF. If the original cursor is not positioned on a valid record (for
example, the current record has been deleted and the cursor has not been advanced), this function with bCurrRec
set to TRUE fails. If this function is used to switch to the same index, then no action is taken.

Note: The size of a bookmark buffer may change after a call to DbiSwitchToIndex.

Pseudo-indexes: To describe a pseudo-index rather than an existing physical index, replace the pszIndexName
parameter with a string composed of field names.    The marker character @ denotes the use of a pseudo-index.   
For example, @Customer Number@Order Number describes a pseudo-index on a key formed by concatenating
the Customer Number field with the Order Number field.

Each field identifier in the pseudo-index name must be preceded by the @ character.    This character is illegal in
true index names. No new index is generated at the server; the behavior of the pseudo-index is simulated entirely
by use of the proper ORDER BY clauses on the query populating the local BDE record cache.

Fields can be identified by field numbers as well as by field names.    For example,    the string @2@3@11
describes a pseudo-index consisting of the second, third, and eleventh field of the table, concatenated to make up
a single key.

Each of the component fields within a pszIndexName is assumed to be in ASCENDING order.    Ordering is case-
sensitive (unless case-sensitivity is not supported on the specific server).    If the fields in the pszIndexName
represent a real unique index on the server, the pseudo-index becomes unique; otherwise, it is non-unique.

Prerequisites
A valid cursor handle must be obtained on a table; not on a query or an in-memory table. If the given index is not
open, it is automatically opened by this function before switching to that index order. (Therefore, all error return
codes for DbiOpenIndex apply.)

Completion state
Switching the index may change some properties of the cursor, such as bookmark size. Existing bookmarks on
the original cursor cannot be used in the new cursor, so any saved positions will no longer be applicable to the
new cursor.

DbiResult return values

DBIERR_NONE The index was successfully changed.

DBIERR_NOCURRREC Cannot position to the current record because the original cursor is not positioned on a valid record.
(Applicable only if bCurrRec is set to TRUE.)

DBIERR_NOSUCHINDEX No such index exists for the table.

DBIERR_INVALIDHNDL The specified handle was invalid or NULL.

DBIERR_INDEXOUTOFDATE An attempt was made to switch to a non-maintained index that is out of date.

See also
DbiAddIndex, DbiOpenIndex, DbiRegenIndex, DbiRegenIndexes, DbiOpenTable

DbiTimeDecode

Syntax
DBIResult DBIFN DbiTimeDecode (timeT, piHour, piMin, piMilSec);

Description
DbiTimeDecode decodes TIME into separate components (hours, minutes, milliseconds).

Parameters
timeT Type: TIME (Input)
Specifies the encoded time.

piHour Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded hours. Valid values range from 0 through 23.

piMin Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded minutes. Valid values range from 0 through 59.

piMilSec Type: pUINT16 (Output)
Pointer to the client variable that receives the decoded milliseconds. Valid values range from 0 through 59999.

Usage
This function enables the client application to interpret time values obtained from DbiGetField. This function is a
non-driver related service function; it works for all drivers.

DbiResult return values
DBIERR_NONE The time was decoded successfully.

DBIERR_INVALIDHNDL The pointer to the decoded hours, minutes, or milliseconds is NULL.

DBIERR_INVALIDTIME The specified encoded time is invalid.

See also
DbiTimeEncode, DbiDateDecode, DbiDateEncode, DbiTimeStampDecode, DbiTimeStampEncode

DbiTimeEncode

Syntax
DBIResult DBIFN DbiTimeEncode (iHour, iMin, iMilSec, ptimeT);

Description
DbiTimeEncode encodes separate time components into TIME for use by DbiPutField and other functions.

Parameters
iHour Type: UINT16 (Input)
Specifies hours. Valid values range from 0 through 23.

iMin Type: UINT16 (Input)
Specifies minutes. Valid values range from 0 through 59.

iMilSec Type: UINT16 (Input)
Specifies milliseconds. Valid values range from 0 through 59999.

ptimeT Type: pTIME (Output)
Pointer to the client variable that receives the encoded time.

Usage
This function enables the client application to construct a time value for use by DbiPutField. This function is a non-
driver related service function; it works for all drivers.

DbiResult return values
DBIERR_NONE The time was successfully encoded.

DBIERR_INVALIDHNDL ptimeT is NULL.

DBIERR_INVALIDTIME Ranges of hour, minute, and millisecond parameters are invalid.

See also
DbiDateEncode, DbiDateDecode, DbiTimeStampDecode, DbiTimeStampEncode, DbiPutField

DbiTimeStampDecode

Syntax
DBIResult DBIFN DbiTimeStampDecode (tsTS, pdateD, ptimeT);

Description
DbiTimeStampDecode extracts separate encoded DATE and TIME components from the TIMESTAMP.

Parameters
tsTS Type: TIMESTAMP (Input)
Specifies the encoded DATETIME timestamp.

pdateD Type: pDATE (Output)
Pointer to the client variable that receives the encoded DATE component.

ptimeT Type: pTIME (Output)
Pointer to the client variable that receives the encoded TIME component.

Usage
This function enables the client to interpret TIMESTAMP values obtained from DbiGetField.This function is a non-
driver related service function; it works for all drivers.

Completion state
DateDecode and TimeDecode must be called in order to further decode the date and time elements into their
individual components (for example, month, day, year/hours, minutes, milliseconds).

DbiResult return values
DBIERR_OK The timestamp was successfully decoded.

DBIERR_INVALIDHNDL pdateD or ptimeT is NULL.

See also
DbiTimeStampEncode, DbiGetField

DbiTimeStampEncode

Syntax
DBIResult DBIFN DbiTimeStampEncode (dateD, timeT, ptsTS);

Description
DbiTimeStampEncode encodes the encoded DATE and encoded TIME into a TIMESTAMP.

Parameters
dateD Type: DATE (Input)
Specifies the encoded date.

timeT Type: TIME (Input)
Specifies the encoded time.

ptsTS Type: pTIMESTAMP (Output)
Pointer to the client variable that receives the encoded timestamp.

Usage
This function enables the client application to construct a TIMESTAMP value for use in DbiPutField. This function
is a non-driver related service function; it works for all drivers.

DbiResult return values
DBIERR_NONE The timestamp was successfully encoded.

DBIERR_INVALIDHNDL ptsTS is NULL.

DBIERR_INVALIDTIMESTAMP The range of date and time parameters is invalid.

See also
DbiTimeStampDecode, DbiPutField

DbiTranslateField

Syntax
DBIResult DBIFN DbiTranslateField (hXlt, pSrc, pDest);

Description
DbiTranslateField translates a logical or physical field value to any compatible logical or physical field value.

Parameters
hXlt Type: hDBIXlt (Input)
Specifies the translate handle.

pSrc Type: pBYTE (Input)
Pointer to the source field.

pDest Type: pBYTE (Input)
Pointer to the destination field.

Usage
This function reads the source field and places the data in the destination field after converting the data to the type
of the destination field.

SQL: This function can be used only on fields that are contained with a valid SQL record buffer. The translation
object must be built using an BDESDK-supplied field descriptor because each field descriptor contains an offset to
a NULL indicator and each field translation must read or write this NULL indicator. The offset from the field buffer
to the NULL indicator is stored when the translation object is built.

DbiResult return values
DBIERR_NONE The field was translated successfully.

See also
DbiOpenFieldXlt, DbiCloseFieldXlt

DbiTranslateRecordStructure

Syntax
DBIResult DBIFN DbiTranslateRecordStructure (pszSrcDriverType, iFlds, pfldsSrc, pszDstDriverType, pszLangDriver, pfldsDst);

Description
DbiTranslateRecordStructure translates the source driver's physical or logical fields to equivalent physical or
logical fields of the destination driver.

Parameters
pszSrcDriverType Type: pCHAR (Input)
Pointer to the source driver type. If NULL, it is assumed that the source fields are physical.

iFlds Type: UINT16 (Input)
Specifies the number of fields.

pfldsSrc Type: pFLDDesc (Input)
Pointer to an array of the logical or physical types of the source fields.

pszDstDriverType Type: pCHAR (Input)
Pointer to the destination driver type. If NULL, it is assumed that the destination fields are physical.

pszLangDriver Type: pCHAR (Input)
Pointer to the destination driver's language driver name. This language driver is used to validate the destination field names
after the translation.

pfldsDst Type: pFLDDesc (Output)
Pointer to an array of the destination fields.

Usage
This function takes the logical or physical fields of the source driver and attempts to map them to equivalent
logical or physical fields of the destination driver. If an exact match is not found, the function attempts to map to
the closest possible logical or physical fields of the destination driver. If a close match is not found, this returns the
error DBIERR_NOTSUPPORTED.

DbiResult return values
DBIERR_NONE The translation was successfully completed.

DBIERR_NOTSUPPORTED Returned if source fields cannot be translated into equivalent destination fields.

DbiTruncateBlob

Syntax
DBIResult DBIFN DbiTruncateBlob (hCursor, pRecBuf, iField, iLen);

Description
DbiTruncateBlob is used to shorten the size of the contents of a BLOB field, or to delete the contents of a BLOB
field from the record, by shortening it to zero.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

pRecBuf Type: pBYTE (Input)
Pointer to the record buffer.

iField Type: UINT16 (Input)
Specifies the ordinal number of BLOB field within the record buffer.

iLen Type: UINT32 (Input)
Specifies the new shorter length of the BLOB. If zero is specified, the whole BLOB is truncated.

Usage
This is the only way to delete a BLOB without deleting the entire record.

Standard: It is advisable to lock the record before opening the BLOB in read-write mode to ensure that another
client application does not lock the record.

Prerequisites
The current record must contain a BLOB field. The BLOB field must be open in dbiREADWRITE mode by a call to
DbiOpenBlob.

Completion state
After shortening the BLOB field, DbiModifyRecord must be called to post the altered record to the table.

DbiResult return values
DBIERR_NONE The BLOB field was successfully truncated.

DBIERR_BLOBNOTOPENED The specified BLOB field was not opened via a call to DbiOpenBlob.

DBIERR_INVALIDBLOBHANDLE The BLOB handle supplied in the record buffer is invalid.

DBIERR_NOTABLOB The specified field number does not correspond to a BLOB field.

DBIERR_INVALIDBLOBOFFSET The specified iOffSet is greater than the length of the BLOB field.

DBIERR_READONLYFLD The BLOB field was opened in dbiREADONLY mode and cannot be modified.

See also
DbiGetBlob, DbiOpenBlob, DbiPutBlob, DbiFreeBlob, DbiModifyRecord

DbiUndeleteRecord

Syntax
DBIResult DBIFN DbiUndeleteRecord (hCursor);

Description
DbiUndeleteRecord undeletes a dBASE record that has been marked for deletion (a soft delete).

Parameters
hCursor Type: hDBICur (Input)
Specifies the dBASE cursor handle.

Usage
dBASE: This function is supported with dBASE tables only.

Paradox: This function is not supported with Paradox tables.

SQL: This function is not supported with SQL tables.

Prerequisites
The cursor must be positioned on a record. The cursor must have the property bDeletedOn set to TRUE.

Completion state
The current record is recalled if it was marked for deletion.

DbiResult return values
DBIERR_NONE The dBASE record was successfully undeleted.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

DBIERR_BOF The cursor is positioned on the crack at the beginning of the file.

DBIERR_EOF The cursor is positioned on the crack at the end of the file.

DBIERR_NA The specified record was not deleted; cannot undelete the record.

DBIERR_TABLEREADONLY The specified table is read-only; cannot undelete the record.

DBIERR_FILELOCKED The table is locked by another user; cannot undelete the record.

DBIERR_NOTSUPPORTED The function is supported only for dBASE tables.

DBIERR_NOCURRREC The cursor is not positioned on a valid record.

See also
DbiDeleteRecord, DbiPackTable

DbiUnlinkDetail

Syntax
DBIResult DBIFN DbiUnlinkDetail (hDetlCursor);

Description
DbiUnlinkDetail removes the link from a detail cursor and its master.

Parameters
hDetlCursor Type: hDBICur (Input)
Specifies the detail cursor handle.

Usage
Links should be removed before calling DbiEndLinkMode.

Prerequisites
A call to DbiLinkDetail or DbiLinkDetailToExp.

Completion state
The cursors are no longer related to each other, but remain in the linked cursor mode. The function unlinks
hDetlCursor from its master table, leaving hDetlCursor as a linked cursor associated with no master cursor. Thus,
the detail cursor is not constrained by its master.

DbiResult return values
DBIERR_NONE The link between the detail and master cursors was removed successfully.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL.

See also
DbiLinkDetail, DbiLinkDetailToExp, DbiBeginLinkMode, DbiEndLinkMode

DbiUseIdleTime

Syntax
DBIResult DBIFN DbiUseIdleTime (VOID);

Description
DbiUseIdleTime allows the BDE to accomplish background tasks during times when the client application is idle.

Usage
An interactive BDE client application typically operates by interpreting messages from the Windows Message
Queue™. If this queue is found to be empty (such as between keystrokes), the client application can call this
function to allow BDESDK to accomplish background tasks. This call returns quickly, so the user does not
experience any delay when typing.

DbiUseIdleTime is primarily used for writing dirty buffers to disk. This makes the client application more reliable
during power failure or machine lockups in another application (recoverable by CtrlAltDelete). Likewise, client
applications can set up a timer and call this function periodically when the timer event is generated.

Completion state
This function writes one dirty buffer to disk, or returns if there are none.

DbiResult return values
DBIERR_NONE This function always returns DBIERR_NONE.

DbiVerifyField

Syntax
DBIResult DBIFN DbiVerifyField (hCursor, iField, pSrc, [pbBlank]);

Description
DbiVerifyField verifies that the data specified in pSrc is a valid data type for the field specified by iField, and that
all validity checks specified for the field are satisfied. It can also be used to check if a field is blank.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle.

iField Type: UINT16 (Input)
Specifies the ordinal number of the field in the record.

pSrc Type: pBYTE (Input)
Pointer to the buffer containing the data to be verified. If NULL, the function verifies whether a blank value is allowed.

pbBlank Type: pBOOL (Output)
Pointer to the client variable that is set to TRUE if the field is blank; otherwise, it is set to FALSE.

Usage
If the translation mode of the cursor is xltFIELD, pSrc is assumed to contain field data in BDE logical format,
otherwise it is considered to be the driver's physical format. The validity checking aspect of this function enables
the client application to report errors without actually attempting to write the data. It can also be used to check if a
field is blank. If pSrc is NULL, the function verifies whether or not a blank value is allowed.

DbiVerifyField is not supported with BLOB fields.

dBASE: For dBASE tables, this function can be used only to determine if a field is blank.

Paradox: For Paradox tables, this function evaluates field-level validity checks; it does not evaluate referential
integrity constraints.

Completion state
If the field is blank, the variable pointed to by pbBlank is set to TRUE. If any field-level validity check has failed, an
error message is returned, indicating which type of validity check the field has failed.

DbiResult return values
DBIERR_NONE The data meets all the requirements for the specified field.

DBIERR_MINVALERR The data is less than the required minimum value.

DBIERR_MAXVALERR The data is greater than the required maximum value.

DBIERR_REQDERR The field cannot be blank.

DBIERR_LOOKUPTABLEERR The value cannot be located in the assigned lookup table.

See also
DbiOpenTable, DbiPutField, DbiInsertRecord, DbiModifyRecord, DbiAppendRecord

DbiWriteBlock

Syntax
DBIResult DBIFN DbiWriteBlock (hCursor, piRecords, pBuf);

Description
DbiWriteBlock writes a block of records to the table associated with hCursor.

Parameters
hCursor Type: hDBICur (Input)
Specifies the cursor handle to the table.

piRecords Type: pUINT32 (Input/Output)
On input, piRecords is a pointer to the number of records to write. On output, pointer to the client variable that receives the
actual number of records written. The number actually written may be less than requested if an integrity violation or other error
occurred.

pBuf Type: pBYTE (Input)
Pointer to the buffer containing the records to be written.

Usage
This function is similar to calling DbiAppendRecord for the specified number of piRecords.

Note: This function cannot be used if the records contain non-empty BLOBs.

Paradox: This function verifies any referential integrity requirements or validity checks that may be in place. If
either fails, the write operation is canceled.

Completion state
The cursor is positioned at the last record that was inserted.

DbiResult return values
DBIERR_NONE The block of records contained in pBuf has been successfully written to the table specified by

hCursor.

DBIERR_INVALIDHNDL The specified cursor handle is invalid or NULL, or piRecords is NULL, or pBuf is NULL.

DBIERR_TABLEREADONLY The table is opened read-only; cannot write to it.

DBIERR_NOTSUFFTABLERIGHTS Insufficient table rights to insert a record. (Paradox only.)

DBIERR_NODISKSPACE Insertion failed due to insufficient disk space.

See also
DbiReadBlock, DbiAppendRecord, DbiInsertRecord

Data Structures

The data structures used in BDESDK are listed in the following table.    Two charts of data translations are
available at the end of the table.

Structure Description

BATTblDesc Batch table definition

CANHdr Header for all filter node classes

CBPROGRESSDesc Progress callback

CBRESTcbDesc Restructure callback

CFGDesc Configuration descriptor

CLIENTInfo Describes a client/application

CRTblDesc Defines the general attributes of a table

CURProps Describes the most commonly used cursor properties

DBDesc Database descriptor

DBIEnv Defines the BDESDK environment

DBIErrInfo Provides error information

DBIQryProgress Describes the status of a query

DRVType Describes the driver and its capabilities

FILEDesc File descriptor

FILTERInfo Provides filter information

FLDDesc Field descriptor

FLDType Describes a field type

FMLDesc Describes family of files in language driver descriptor

FMTBcd Provides binary coded decimal format

FMTDate Provides date format

FMTNumber Provides number format

FMTTime Provides time format

IDXDesc Index descriptor

IDXType Describes an index type

LDDesc Describes a language driver

LOCKDesc Lock descriptor

RECProps Describes the record properties

RINTDesc Provides referential integrity options

SECDesc Describes each security descriptor

SESInfo Provides session information

SPDesc Describes a standard procedure

SPParamDesc Describes the parameters to a standard procedure

SYSConfig Provides basic system configuration information

SYSInfo Provides BDESDK system status

SYSVersion Provides BDESDK system version information

TBLBaseDesc Provides basic information about a table

TblExtDesc Provides additional information about a table

TBLFullDesc Provides a complete description of the table

TBLType Describes a table's capabilities

USERDesc Describes a user

VCHKDesc Provides information about validity checking constraints

XInfo Transaction descriptor

Data Type Translations Chart showing how data is translated between different database formats.

Logical Types and Driver-specific Physical Types
Chart showing relationships between logical and physical types.

BATTblDesc (batch table definition)

The BATTblDesc structure defines a batch table, using the following fields:

Field Type Description

hDb hDBIDb Specifies the database handle.

szTblName DBIPATH Specifies the table name.

szTblType DBINAME Specifies the driver type; optional.

szUserName DBINAME Not currently used.

szPassword DBINAME Not currently used.

CANHdr (filter descriptor)

The CANHdr structure is the header for all filter node classes. It contains the following fields:

nodeClass Type: NODEClass
The following node classes are valid:

Node Class Description

nodeUNARY Node is a unary operator.

nodeBINARY Node is a binary operator.

nodeCOMPARE Node is a compare operator.

nodeFIELD Node is a field.

nodeCONST Node is a constant.

nodeTUPLE Node is a record. Not currently used.

nodeCONTINUE Node is a continue node.

CANExpr (expression tree descriptor)
Nodes and literals are in this structure:

Type Name Description

UINT16 iVer Version tag of expression

UINT16 iTotalSize Size of this structure

UINT16 iNodes Number of nodes

UINT16 iNodeStart Starting offset of nodes

UINT16 iLiteralStart Starting offset of literals

canOPType: CANOp
The following operators are valid:

Relational operators

canNOTDEFINED Make this the first one

canISBLANK Unary; is operand blank

canNOTBLANK Unary; is operand not blank

canLIKE Case-insensitive partial field search

canEQ Binary; equal

canNE Binary; not equal

canGT Binary; greater than

canLT Binary; less than

canGE Binary; greater or equal

canLE Binary; less or equal

Logical operators

canNOT Unary; NOT

canAND Binary; AND

canOR Binary; OR

Operators identifying leaf operands

canTUPLE Unary; entire record is operand

canFIELD Unary; operand is field

canCONST Unary; operand is constant

Arithmetic operators

canMINUS Unary; minus

canADD Binary; addition

canSUB Binary; subtraction

canMUL Binary; multiplication

canDIV Binary; division

canMOD Binary; modulo division

canREM Binary; remainder of division

Aggregate type operators

canSUM Binary, accumulate sum of

canCOUNT Binary, accumulate count of

canMIN Binary, find minimum of

canMAX Binary, find maximum of

canAVG Binary, find average of

Miscellaneous operators

canCONTINUE Unary; Stops evaluating records when operand evaluates to false. This is provided as a stop at high range
filter value

CBPROGRESSDesc (progress callback)

The progress callback enables the client to be kept up to date as to the progress of a potentially long-running
operation (such as DbiBatchMove or DbiQExec). When the client registers the callback, a callback buffer must be
supplied. The buffer must be at least as large as sizeof(CBPROGRESSDesc). During query execution, the
supplied callback function is called after certain milestones have been reached, giving the client an update on how
execution is progressing. The CBPROGRESSDesc structure is stored in the client's call back buffer.

The CBPROGRESSDesc structure contains the following fields:

Field Type Description

iPercentDone UINT16 Any number from -1 to 100 is valid. A value between 1 and 100 specifies the percentage done;
for example, the value 50 indicates that the execution is half complete. If the value is -1, the
progress of execution is indicated via the string szMsg, rather than with a percentage.

szMsg DBIMSG Specifies a string containing a message. This message serves as a progress report; for
example, Steps completed: 5. The message is displayed when iPercentDone is -1.

CBRESTcbDesc (restructure callback)

The CBRESTcbDesc structure contains the following fields:

Field Type Description

iErrCode DBIResult Specifies the error code number.

iTblNum UINT16 Specifies the table number.

iObjNum UINT16 For old objects iObjNum is the sequence or field number; for new objects iObjNum is the
order in CRTblDesc.

eRestrObjType RESTErrObjType Specifies the object type.

eRestrObjType
Object type is a union of the following structures:

Structure Type Description

fldDesc FLDDesc Field descriptor

idxDesc IDXDesc Index descriptor

vchkDesc VCHKDesc Validity check descriptor

rintDesc RINTDesc Referential integrity descriptor

secDesc SECDesc Security descriptor

CFGDesc (configuration descriptor)

The CFGDesc structure describes the BDESDK configuration. It contains the following fields:

Field Type Description

szNodeName DBINAME Specifies the name of the leaf node.

szDescription DBINAME Specifies detailed information about the configuration leaf node.

iDataType UINT16 Specifies the data type, which is always a string.

szValue CHAR Specifies a value large enough to hold any value [DBIMAXSCFLDLEN].

bHasSubnodes BOOL TRUE, if not a leaf node.

CLIENTInfo (client information)

The CLIENTInfo structure describes a client/application. It contains the following fields:

Field Type Description

szName DBINAME Specifies the documentary name.

iSessions UINT16 Specifies the number of sessions.

szWorkDir DBIPATH Specifies the working directory.

szLang DBINAME Specifies the language of the client (for messages).    See szLang

CRTblDesc (table descriptor)

DbiDoRestructure and DbiCreateTable both use the CRTblDesc structure, but the way they use the structure is
quite different. Some of the fields within CRTblDesc are not specified at create time for use with DbiCreateTable;
they are specified only with DbiDoRestructure to modify the table.

CRTblDesc for creating a table
The CRTblDesc structure defines the general attributes of the table and supplies pointers to arrays of field, index,
and other descriptors. The following CRTblDesc structure defines the table structure:

Field Type Description

szTblName DBITBLNAME Specifies the table name, including optional path and extension.

szTblType DBINAME Specifies the driver type.

szErrTblName DBIPATH Not currently used.

szUserName DBINAME Not currently used.

szPassword DBINAME Specifies the master password (if bProtected is TRUE). (Paradox only.)

bProtected BOOL TRUE if encryption is desired (Paradox only).

iFldCount UINT16 Specifies the number of field definitions supplied.

pfldDesc pFLDDesc Specifies the array of field descriptors.

iIdxCount UINT16 Specifies the number of index definitions supplied.

pidxDesc pIDXDesc Specifies the array of index descriptors.

iSecRecCount UINT16 Specifies the number of security definitions given (Paradox only).

psecDesc pSECDesc Specifies the array of security descriptors (Paradox only).

iValChkCount UINT16 Specifies the number of validity checks (Paradox and SQL only).

pvchkDesc pVCHKDesc Specifies the array of validity check descriptors (Paradox and SQL only).

iRintCount UINT16 Specifies the number of referential integrity specifications (Paradox only).

printDesc pRINTDesc Specifies the array of referential integrity specifications (Paradox only).

iOptParams UINT16 Specifies the number of optional parameters.

pfldOptParams pFLDDesc Specifies the array of field descriptors for optional parameters.

pOptData pBYTE Specifies the values of optional parameters.

CRTblDesc for restructuring a table
A complete description of CRTblDesc, as used to restructure a table is described below.

Type Name Description

DBITBLNAME szTblName Required; specifies the source table name. The table name can contain an extension.

DBINAME szTblType If specified, it must match the driver type associated with the source table.

DBIPATH szErrTblName Not currently used.

DBINAME szUserName Not currently used.

DBINAME szPassword Optional; if bProtected is set to TRUE, specifies the password of the destination table.

BOOL bProtected Optional; If TRUE, specifies that a master password is supplied for the destination table.
Paradox only.

BOOL bPack Optional; If TRUE, specifies packing for restructure.

iFldCount, pecrFldOp, and pfldDesc are required to describe the new record structure:

UINT16 iFldCount Optional; used if the record structure is changing. Specifies the number of field operators and
field descriptors passed in pecrFldOp and pFldDesc for the new record structure.

pCROpType pecrFldOp* Optional; used if the record structure is changing. Must be crADD if a field is added, crMODIFY
if a field is modified, or crCOPY if a field is moved.

pFLDDesc pfldDesc Optional; used if the record structure is changing. Specifies an array of physical field descriptors
for the new record structure. ifldNum in each pfldDesc must be 0 if the field is added.
Otherwise, it must contain the field position (1 to n) in the old record structures. If a field is
dropped, its descriptor is simply left out of the new record structure. Additionally, any changes to
dependent objects are made automatically (that is, all single field indexes, validity checks, and
auxiliary passwords are dropped).

For all the following objects, only the changes must be input:

UINT16 IdxCount Optional; specifies the number of index operators and index descriptors passed in pIdxDesc.

pCROpType pecrIdxOp Optional; to change an index, specify crADD, crMODIFY, crREDO, or crDROP.

pIDXDesc pidxDesc Optional; specifies an array of index descriptors.

UINT16 iSecRecCount Optional; for Paradox only; specifies the number of security definitions passed in psecDesc.

pCROpType pecrSecOp Optional; to change a security definition, specify crADD, crMODIFY, or crDROP.

pSECDesc psecDesc Optional; for Paradox only; specifies an array of security descriptors.

UINT16 iValChkCount Optional; for Paradox only; specifies the number of validity checks passed in pecrValChkOp
and pvchkDesc.

pCROpType pecrValChkOp Optional; for Paradox only; to change a validity check, specify crADD, crMODIFY, or crDROP.

pVCHKDesc pvchkDesc Optional; for Paradox only; specifies an array of validity check descriptors.

UINT16 iRintCount Optional; for Paradox only; specifies the number of referential integrity operators passed in
printDesc.

pCROpType pecrRintOp Optional; for Paradox only; to change a referential integrity operator, specify crADD, crMODIFY,
or crDROP. crMODIFY cannot be used to change the name of a referential integrity constraint.
To modify the name, use crDROP and crADD.

pRINTDesc printDesc Optional; for Paradox only; specifies an array of referential integrity specifications.

UINT16 iOptParams Optional; specifies the number of optional parameters (for example, language driver
information).

pFLDDesc pfldOptParams Optional; specifies an array of field descriptors for optional parameters.

pBYTE pOptData Optional; specifies values of optional parameters.

The following operation types are valid only for restructuring the table:

Operation type Value Description

crNOOP 0 Perform no operation

crADD 1 Add a new element

crCOPY 2 Copy an existing element

crMODIFY 3 Modify an element

crDROP 4 Removes an element

CURProps (cursor properties)

The cursor properties (CURProps) structure describes the most commonly used cursor properties, using the
following fields:

Field Type Description

szName DBITBLNAME Specifies the table name.

iFNameSize UINT16 Specifies the size of the buffer needed to retrieve full table name (including extension and
path, if applicable).

szTableType DBINAME Specifies the driver type.

iFields UINT16 Specifies the number of fields in the table. The client must allocate a buffer whose size is:
[iFields * sizeof(FLDDesc)] in order to get the field descriptors for the table.

iRecSize UINT16 Specifies the record size, depending on the xltMODE for the cursor. If the xltMODE is
xltFIELD, iRecSize specifies the logical record size. In other words, it is the size of the
record if all fields were represented as BDESDK logical types. If the xltMODE is xltNONE,
iRecSize specifies the physical record size.

iRecBufSize UINT16 Specifies the physical record size. This is the size of the record buffer that the client must
allocate in order to retrieve the records using DbiGetNextRecord, DbiGetPriorRecord, and
other functions. This size can change if DbiSetFieldMap is called.

iKeySize UINT16 Specifies the key size of the current active index (if any). This is the size of the key buffer
that the client must allocate in order to retrieve a key using DbiExtractKey. This size
changes if DbiSwitchToIndex is called.

iIndexes UINT16 Specifies the number of currently open indexes for this cursor. The client can call
DbiGetIndexDesc with iIndexSeqNo set from 1 to iIndexes, to have all the index descriptors
returned. The client could also allocate a buffer whose size is [iIndexes * sizeof(IDXDesc)]
and have all the index descriptors returned by calling DbiGetIndexDescs.

iValChecks UINT16 Specifies the number of validity checks existing for this table.

iRefIntChecks UINT16 Specifies the number of referential integrity constraints existing for this table.

iBookMarkSize UINT16 Specifies the size of the bookmark. Bookmarks are always allocated by the client before
DbiGetBookMark is called. Note that the size of the bookmark could change if
DbiSwitchToIndex is called.

bBookMarkStable BOOL TRUE, if this cursor supports stable bookmarks. Stable bookmarks are those that remain
unchanged after another user has modified the table. For example, this value is TRUE for
Paradox tables having a primary key, but FALSE for Paradox heap tables.

eOpenMode DBIOpenMode Specifies the open mode that this cursor was opened with.

eShareMode DBIShareMode Specifies the share mode that this cursor was opened with:

bIndexed BOOL This value is TRUE if there is a current active index for this cursor. In other words, it is
TRUE if there is a non-default order associated with this cursor.

iSeqNums INT16 This is an enumerated value which is interpreted as follows:
1: This cursor supports the sequence number concept (Paradox).
0: This cursor supports the record number concept (dBASE).
< 0 (-1, -2. . .): None (SQL)

bSoftDeletes BOOL This value is set to TRUE if this cursor supports soft deletes (dBASE only).

bDeletedOn BOOL This value is set to TRUE if the curSOFTDELETEON property is TRUE. This field makes
sense only if the cursor supports the soft delete concept. If TRUE, deleted records can be
seen while using this cursor (dBASE only).

iRefRange UINT16 Not currently used.

exltMode XLTMode Specifies the value of the translate mode property for this cursor.

iRestrVersion UINT16 Specifies the restructure version number for the table. (Paradox only.)

bUniDirectional BOOL This value is set to TRUE if this cursor is unidirectional (SQL only.)

eprvRights PRVType Specifies an enumerated value that gives the table-level rights for the user who opened the
table.

iFmlRights UINT16 Not currently used.

iPasswords UINT16 Specifies the number of auxiliary passwords for this table. (Paradox only).

iCodePage UINT16 Specifies the code page associated with the table. If the code page is unknown, the value is
0.

bProtected BOOL This value is set to TRUE if the table is protected by a password.

iTblLevel UINT16 Specifies the table level. This value is driver-dependent.

szLangDriver DBINAME Specifies the name of the language driver associated with the table.

bFieldMap BOOL This value is set to TRUE if a field map is active for this cursor.

iBlockSize UINT16 Specifies the value of the BLOCKSIZE for the table, in bytes.

bStrictRefInt BOOL This value applies only to Paradox for DOS tables and the Paradox engine. If TRUE, it
means that a referential integrity check has been specified and that the STRICT bit is set in
the header, which makes the table inaccessible using Paradox for DOS.

iFilters UINT16 Specifies the number of filters currently on the cursor.

bTempTable BOOL TRUE, if the cursor is on a temporary table. For queries, this means the result set is
canned, rather than live. This field can be examined to determine whether the requested
preference for LIVENESS in the DbiSetProp call were honored.

eOpenMode
The following open modes are valid:

Open Mode Description

dbiREADWRITE Read and write (default)

dbiREADONLY Read-only

eShareMode
The following share modes are valid:

Share Mode Description

dbiOPENSHARED Open shared (default)

dbiOPENEXCL Open exclusive

Note: This might not always be the same value used by the client to call DbiOpenTable. In particular,
dbiOPENSHARED can be promoted to dbiOPENEXCL in some cases.

exltMode
The translate mode values supported are:

Translate Mode Description

xltNONE No translation; use physical types

xltFIELD Field-level translation; use logical types

eprvRights
The table-level rights supported are:

Privilege Description

prvNONE No privileges

prvREADONLY Read-only table or field

prvMODIFY Read and modify fields

prvINSERT Insert    all of above

prvINSDEL Delete    all of above

prvFULL Full rights

prvUNKNOWN Unknown

DBDesc (database descriptor)

The DBDesc structure describes a database, using the following fields:

Field Type Description

szName DBINAME Specifies the database alias name.

szText DBINAME Descriptive text.

szPhyName DBIPATH Specifies the physical name/path.

szDbType DBINAME Specifies the database type.

DBIEnv (Environment information)

The DBIEnv structure defines the BDE environment, using the following fields:

Field Type Description

szWorkDir DBIPATH Specifies the working directory.

szIniFile DBIPATH Specifies the fully qualified file name of the configuration file.

bForceLocalInit BOOL If TRUE, forces local initialization.

szLang DBINAME Specifies the language of the client. This value is the primary language ID from WIN32
(as shown in WINNT.H).

szClientName DBINAME Specifies the client name.

szLang
szLang is part of the DBIEnv structure which is passed to DbiInit.    The language of the client is specified as the
primary language ID from WIN32 (as shown in WINNT.H).

Note: You must add two leading zero's to this value.

For example, the primary language ID for French is "0c". Thus, to start BDE so that it uses French messages and
French QBE keywords, you would add two leading zero's to 0c and set szLang equal to "000c".

Here is a table of possible szlang values :

Language szLang value

Danish 0006

English 0009

French 000c

German 0007

Italian 0010

Norwegian 0014

Portuguese 0016

Spanish 000a

Swedish 001d

DBIErrInfo (error information)

The DBIErrInfo structure describes error information, using the following fields:

Field Type Description

iError DBIResult Specifies the last error code returned.

szErrCode DBIMSG Specifies the error code.

szContext1 DBIMSG Specifies the context-dependent information at the top level of the error stack.

szContext2 DBIMSG Specifies the context-dependent information at the second level of the error stack.

szContext3 DBIMSG Specifies the context-dependent information at the third level of the error stack.

szContext4 DBIMSG Specifies the context-dependent information at the fourth level of the error stack.

DbiQryProgress (query progress)

The DBIQryProgress structure describes the status of a query, using the following fields:

Field Type Description

stepsInQry UINT16 Specifies the total number of steps in the query.

stepsCompleted UINT16 Specifies the number of steps completed out of the total.

totElemInStep UINT32 Specifies the total number of elements in the current step.

elemCompleted UINT32 Specifies the number of elements completed in the current step.

DRVType (driver capabilities)

The DRVType structure describes the driver and its capabilities, using the following fields:

Field Type Description

szType DBINAME Specifies the symbolic name identifying the driver.

szText DBINAME Descriptive text.

edrvCat DRVCat Specifies the driver category.

bTrueDb BOOL If TRUE, the driver supports the true database concept.

szDbType DBINAME Specifies the database type.

bMultiUser BOOL If TRUE, the driver supports multiuser access.

bReadWrite BOOL If TRUE, the driver supports read-write access; otherwise, the
driver supports only read-only access.

bTrans BOOL If TRUE, the driver supports transactions.

bPassThruSQL BOOL If TRUE, the driver supports pass-through SQL.

bLogIn BOOL If TRUE, the driver requires explicit login.

bCreateDb BOOL If TRUE, the driver can create a database.

bDeleteDb BOOL If TRUE, the driver can drop a database.

edrvCat
The following driver categories are valid:

Driver Category Description

drvFILE File-based (Paradox, dBASE, Text)

drvOTHERSERVER Other kind of server

drvSQLBASEDSERVER SQL-based server

FILEDesc (file descriptor)

The FILEDesc structure describes a file, using the following fields:

Field Type Description

szFileName DBIPATH File name (no directory or extension).

szExt DBIEXT Specifies the file extension.

bDir BOOL If TRUE, this file is a directory.

iSize UINT32 Specifies the file size in bytes.

dtDate DATE Specifies the date on the file.

tmTime TIME Specifies the time on the file.

FILTERInfo (filter information descriptor)

The FILTERInfo structure describes a filter using the following fields:

Field Type Description

iFilterId UINT16 Specifies the ID for the filter.

hFilter hBBIFilter Specifies the filter handle.

iClientData UINT32 Not used.

iPriority UINT16 Not used.

bCanAbort BOOL Not used.

pfFilter pfGENFilter Not used.

pCanExpr pVOID Specifies the supplied expression.

bActive BOOL TRUE, if the filter is active.

FLDDesc (field descriptor)

The FLDDesc structure defines a field in a table, using the following properties:

Note: The same descriptor structure is used both in creating a table and in inquiring about the table structure
after it is opened. The application developer does not specify the last five properties in the field descriptor
structure when a table is created.

Field Type Description

iFldNum UINT16 On input, specifies the field number. This value can be from 1 to curProps.iFields.
On output, this is the ordinal number of the field (1 to n). For Paradox, it is the
invariant field ID.

szName DBINAME Specifies the name of the field.

iFldType UINT16 Specifies the type of the field. In output mode, if translate mode is set to
xltNONE, field types represent the physical types of that driver type, otherwise,
the types are BDE logical types.

iSubType UINT16 Specifies the subtype of the field. This could be an BDE logical subtype or a
driver physical subtype depending on the translate mode setting.

iUnits1 INT16 Specifies the number of characters, digits, and so on. The interpretation of this
field can be dependent on the driver and also on the specific field type. For most
drivers, if the field is of the numeric type, iUnits1 is the precision and iUnits2 is
the scale.

iUnits2 NT16 Specifies the number of decimal places, and so on. The interpretation of this field
can depend on the driver and also on the specific field type. For most drivers, if
the field is of the numeric type, iUnits1 is the precision and iUnits2 is the scale.

iOffset UINT16 Reports the offset of this field in the record buffer. This offset depends on the
translation mode; it could be the offset in the physical or logical representation of
the record. This field applies only to existing tables; it is not applicable when a
table is created.

iLen UINT16 Reports the length in bytes of this field. The length depends on the translation
mode; that is, it could be the length of the logical or physical representation of the
field. The application developer uses this value to allocate a buffer in which to
retrieve the field value. This field applies only to existing tables; it is not
applicable when a table is created.

iNullOffset UINT16 Reports the offset of the NULL indicator for this field in the record buffer. If zero,
there is no NULL indicator. Otherwise, iNullOffset is the offset to an INT16 value,
which is 1 if the field is NULL. This field applies only to existing tables; it is not
specified when a table is created.

efldvVchk FLDVchk Reports the types of validity checks associated with this field (this field applies
only to existing tables; it is not specified when a table is created). The following
validity check types can be reported: fldvNOCHECKS, fldvHASCHECKS, or
fldvUNKOWN.

efldrRights FLDRights Reports the field level rights for this user (this field applies only to existing tables;
it is not specified when a table is created). Field rights can be one of the following
values: fldrREADWRITE, fldrREADONLY, fldrNONE, or fldrUNKOWN.

FLDType (field types)

The FLDType structure describes a field type using the following fields:

Field Type Description

iId UINT16 Specifies the ID of the field type.

szName DBINAME Specifies the symbolic name of field type; for example, ALPHA.

szText DBINAME Descriptive text.

iPhyType UINT16 Specifies the physical/native type.

iXltType UINT16 Specifies the default translated type.

iXltSubType UINT16 Specifies the default translated subtype.

iMaxUnits1 UINT16 Specifies the maximum units allowed (1).

iMaxUnits2 UINT16 Specifies the maximum units allowed (2).

iPhySize UINT16 Specifies the physical size in bytes (per unit).

bRequired BOOL If TRUE, supports required option.

bDefaultVal BOOL If TRUE, supports user-specified default.

bMinVal BOOL If TRUE, the field supports the minimum validity constraint.

bMaxVal BOOL If TRUE, the field supports the maximum validity constraint.

bRefIntegrity BOOL If TRUE, the field can participate in referential integrity.

bOtherChecks BOOL If TRUE, the field supports other kinds of checks.

bKeyed BOOL f TRUE, the field type can be keyed.

bMultiplePerTable BOOL If TRUE, the table can have more than one of this type.

iMinUnits1 UINT16 Specifies the minimum units required (1).

iMinUnits2 UINT16 Specifies the minimum units required (2).

bCreateable BOOL If TRUE, the field type can be created.

FMLDesc (family language driver descriptor)

Files belonging to a given table are considered a "family" that must be kept together.    FMLDesc returns the
filenames of the files in a language driver family.

typedef FMLDesc far *pFMLDesc;
#define DBIOEM_CP  1            // (dos)
#define DBIANSI_CP                                      2            // (win)
#define DBIOS2_CP  3
/* UNIX etc. */
#define DBISUNOS_CP                                    4
#define DBIVMS_CP  5
#define DBIHPUX_CP                                      6
#define DBIULTRIX_CP                                  7
#define DBIAIX_CP  8
#define DBIAUX_CP  9
#define DBIXENIX_CP                                  10
#define DBIMAC_CP                                      11
#define DBINEXT_CP                                    12

FMTBcd (binary coded decimal format)

The FMTBcd structure describes the format for binary coded decimal, using the following fields:

Field Type Description

iPrecision BYTE Any specified number between 1 to 64 is considered
valid.

iSignSpecialPlaces BYTE Specifies the following values:
sign bit on: negative number
special bit on: number is blank
places: number of decimals (0 to iPrecision).

iFraction[32] BYTE Specifies an array of BCD nibbles, 00 to 99 per byte,
high nibble first.

FMTDate (date format)

The FMTDate structure describes the date format for the session, using the following fields:

Field Type Description

szDateSeparator[4] CHAR Specifies the date separator character.

iDateMode INT8 Specifies the date format: 0 = MDY, 1 = DMY, 2=YMD.

bFourDigitYear INT8 If TRUE, write year as four digits.

bYearBiased NT8 If TRUE, on input add 1900 to year.

bMonthLeadingZero INT8 If TRUE, the month is displayed with a leading zero.

bDayLeadingZero NT8 If TRUE, the day is displayed with a leading zero.

FMTNumber (number format)

The FMTNumber structure describes the number format for the current session, using the following fields:

Field Type Description

cDecimalSeparator CHAR Specifies the character to be used as the decimal separator (for
example, .).

cThousandSeparator CHAR Specifies the character to be used as the thousands separator
(for example, ,).

iDecimalDigits INT8 Specifies the number of decimal digits.

bLeadingZero INT8 If TRUE, use leading zeros.

FMTTime (time format)

The FMTTime structure describes the time format for the current session, using the following fields:

Field Type Description

cTimeSeparator CHAR Specifies the time separator character (for example, .).

bTwelveHour INT8 If TRUE, represent as 12-hour time.

szAmString[6] CHAR Specifies the string to use for designating a.m. time (only for 12-
hour time).

szPmString[6] CHAR Specifies the string to use for designating p.m. time (only for 12-
hour time).

bSeconds INT8 If TRUE, show seconds.

bMilSeconds INT8 If TRUE, show milli-seconds.

IDXDesc (index descriptor)

The IDXDesc structure describes each index in a table. The same structure is used both in creating an index and
inquiring about the index after a cursor is opened. The application does not specify the following fields in the index
descriptor structure when creating an index: iRestrNum, bOutofDate, and iKeyLen.

The fields required in this structure vary by driver type and index type.

Note: The first three fields, szName, iIndexId, and szTagName are used to identify the index. A different
combination of these three fields is used, depending on the driver type and on the specific index type. The
rules are given below:

Driver Type Index Type

dBASE .NDX style: szName alone identifies the index.

.MDX style: szName and szTagName together identify the index.

Paradox Either iIndexId or szName identifies the index.

Text driver Indexing not supported.

All SQL drivers szName alone identifies the index.    pszIndexName may be used to identify a pseudo-index.

Field Type Description

szName DBITBLNAME Specifies the index name.

iIndexId UINT16 Specifies the number identifying the index.

szTagName DBINAME Specifies the index tag name. Supported for dBASE only.

szFormat DBINAME Currently, for information only. Describes the physical index
format type (for example, BTREE or HASH).

bPrimary BOOL TRUE, if the key is primary.

bUnique BOOL TRUE, if the key is unique.

bDescending BOOL TRUE, if the key is descending.

bMaintained BOOL TRUE, if the key is maintained.

bSubset BOOL TRUE, if the index is a subset index. Supported for dBASE
only.

bExpIdx BOOL TRUE, if the index is an expression index. Supported for
dBASE only.

iCost UINT16 Not currently used.

iFldsInKey UINT16 Specifies the number of key fields in a composite index. If
the index is an expression, set to 0.

iKeyLen UINT16 Not specified while index is created. Specifies the physical
length of the key in bytes. The application developer needs
to allocate a buffer of iKeyLen bytes to use as a key buffer. A
key buffer is used with functions such as DbiExtractKey and
DbiSetToKey.

bOutofDate BOOL Not specified while index is created; TRUE, if the index is
out-of-date.

iKeyExpType UINT16 Specifies the type of the key expression (dBASE only). This
value can be one of the following: fldDBCHAR,
fldDBKEYNUM, or fldDBKEYBCD.

aiKeyFld DBIKEY Specifies an array of field numbers in the key.

szKeyExp DBIKEYEXP Specifies the key expression for an expression index
(dBASE only). This field is used only if bExpIdx = TRUE. The
expression is stated as a dBASE expression.

szKeyCond DBIKEYEXP Specifies the expression that defines the subset condition
(dBASE only). This field is used only if bSubset = TRUE. The
expression is stated as a dBASE expression.

bCaseInsensitive BOOL TRUE, if the index is case-insensitive.

iBlockSize UINT16 Specifies the internal block size in bytes for this index.

iRestrNum UINT16 Not specified while index is created. Specifies the internal
restructure number for this index. This number is set when
the index descriptor is retrieved and should not be changed
when passing the descriptor back to DbiDoRestructure.

Note: The following four fields, explained in detail above, are used to describe the key for an index: iFldsInKey,
aiKeyFld, bExpIdx, szKeyExp. The key is described by specifying either one of the following combinations:

For traditional indexes For expression indexes

iFldsInKey and aiKeyFld bExpIdx and szKeyExp

szName
The following table describes how to name Paradox indexes:

Index ID Param Non-composite index Composite index

szName Same as the field name Can be any legal name not used as a field name; must be unique

iIndexID Same as field number (1 to 255) Valid ID (256 to 511) Output only; not specified while index is created

IDXType (index types)

The IDXType structure describes an index type, using the following fields:

Field Type Description

iId UINT16 Specifies the ID of the index type.

szName DBINAME Specifies the symbolic name of the index type.

szText DBINAME Descriptive text.

szFormat DBINAME Optional. Information only about the format (for example, BTREE, HASH).

bComposite BOOL If TRUE, supports composite keys.

bPrimary BOOL If TRUE, this index type supports a primary index.

bUnique BOOL If TRUE, this index type supports unique indexes.

bKeyDescending BOOL If TRUE, the key can be descending.

bFldDescending BOOL If TRUE, the key can be descending at the field level.

bMaintained BOOL If TRUE, this index type supports the maintained option.

bSubset BOOL If TRUE, this index type supports the subset expression (dBASE only).

bKeyExpr BOOL If TRUE, the key can be an expression (dBASE only).

bCaseInsensitive BOOL If TRUE, this index type supports case-insensitive keys.

LDDesc (language driver descriptor)

The LDDesc structure describes a language driver, using the following fields:

Field Type Description

szName DBINAME Specifies the driver's symbolic name.

szDesc DBINAME Specifies the driver description.

iCodePage UINT16 Specifies the code page number.

PrimaryCpPlatform UINT16 Specifies the platform type to which the driver's character set corresponds. For
example, DOS or Windows.

AlternateCpPlatform UINT16 Specifies the alternate platform. For internal use only.

PrimaryCpPlatform
The following table shows valid values:

Value Description

1 DOS (OEM) platform

2 Windows (ANSI) platform

6 HP UNIX (ROMAN8) platform

LOCKDesc (lock descriptor)

The LOCKDesc structure describes a lock, using the following fields:

Field Type Description

iType UINT16 Specifies the lock type (0 for record lock).

szUserName DBIUSERNAME Specifies the user name.

iNetSession UINT16 Specifies the net level session number.

iSession UINT16 Specifies the BDESDK session number, if BDESDK lock.

iRecNum UINT32 Specifies the record number for the record lock, if this is a record lock.

iInfo UINT16 Specifies information for table locks (Paradox only).

RECProps (record properties)

The RECProps structure describes the record properties, using the following fields:

Field Type Description

iSeqNum UINT32 Specifies the sequence number of the record. Applicable if the cursor supports sequence
numbers (Paradox only).

iPhyRecNum UINT32 Specifies the record number of the record. Applicable only when physical record numbers
are supported (dBASE only).

bRecChanged BOOL Not currently used.

bSeqNumChanged BOOL Not currently used.

bDeleteFlag BOOL Specifies if the record is deleted. Applicable only when soft delete is supported (dBASE
only).

RINTDesc (referential integrity)

The RINTDesc structure describes the referential integrity options for a table (currently Paradox only), using the
following fields:

Field Type Description

iRintNum UINT16 Specifies the referential integrity number.

szRintName DBINAME Specifies the referential integrity name.

eType RINTType Specifies the type, either rintMASTER or rintDEPENDENT.

szTblName DBIPATH Specifies the other table name.

eModOp RINTQual Specifies the modify qualifier, either rintRESTRICT or rintCASCADE.

eDelOp RINTQual Specifies the delete qualifier, either rintRESTRICT or rintCASCADE.

iFldCount UINT16 Specifies the number of fields in the linking key.

aiThisTabFld DBIKEY Specifies the field numbers that make up this referential integrity constraint in this table.

aiOthTabFld DBIKEY Specifies the number of fields in the other table.

SECDesc (security descriptor)

The SECDesc structure describes each security descriptor in the table (currently, Paradox only), using the
following fields:

Field TypeDescription

iSecNum UINT16 Specifies the number identifying the descriptor.

eprvTable PRVType Specifies the table privileges: prvNONE, prvREADONLY, prvMODIFY, prvINSERT,
prvINSDEL, prvFULL, prvUNKNOWN.

iFamRights UINT16 Specifies the family rights: NOFAMRIGHTS, FORMRIGHTS, RPTRIGHTS,
VALRIGHTS, SETRIGHTS, ALLFAMRIGHTS.

szPassword DBINAME Specifies a NULL terminated string.

aprvFld PRVType Specifies the field privileges: prvNONE, prvREADONLY, prvFULL.
[DBIMAXFLDSINSEC]

SESInfo (session information)

The SESInfo structure provides information about a session, using the following fields:

Field Type Description

iSession UINT16 Specifies the session ID (1 to n).

szName DBINAME Specifies the documentary name of the session.

iDatabases UINT16 Specifies the number of open databases.

iCursors UINT16 Specifies the number of open cursors.

iLockWait INT16 Specifies the lock wait time (in seconds).

szNetDir DBIPATH Specifies the directory location for the network control file.

szPrivDir DBIPATH Specifies the private directory.

SPDesc (stored procedure information)

The SPDesc structure provides information about a stored procedure, using the following fields:

Field Type Description

szName DBISPNAME Specifies the documentary name of the stored procedure.

dtDate DATE Specifies the date on the stored procedure.

tmTime TIME Specifies the time on the stored procedure.

MaxSPNameLen UINT16 Specifies the maximum stored procedure field name length.

SPParamDesc (stored procedure parameters)

The SPParamDesc structure describes the parameters of a stored procedure, using the following fields:

Field Type Description

uParamNum UINT16 Specifies the parameter number.

szName DBINAME Specifies the name of the parameter.

eParamType STMTParamType Specifies the type of the parameter.

uFldType UINT16 Specifies the field type.

uSubType UINT16 Specifies the sub-type (if applicable)

iUnits1 INT16 Specifies the number of characters and digits.

iUnits2 INT16 Specifies the number of decimal places.

uOffset UINT16 Specifies the computed offset.

uLen UINT16 Specifies the computed length in bytes.

uNullOffset UINT16 Specifies the computed offset for NULL bits.

SYSConfig (system configuration)

The SYSConfig structure provides basic system configuration information, using the following fields:

Field Type Description

bLocalShare BOOL TRUE, if local files will be shared with non-BDESDK applications.

iNetProtocol UINT16 Not currently used.

bNetShare BOOL Not currently used.

szNetType DBINAME Specifies the network type.

szUserName DBIUSERNAME Specifies the network user name.

szIniFile DBIPATH Specifies the fully qualified configuration file name.

szLangDriver DBINAME Specifies the system language driver.

SYSInfo (system status and information)

The SYSInfo structure provides BDESDK system status and information, using the following fields:

Field Type Description

iBufferSpace UINT16 Specifies the size of the buffer space in kilobytes.

iHeapSpace UINT16 Specifies the size of the heap space in kilobytes.

iDrivers UINT16 Specifies the number of currently loaded drivers.

iClients UINT16 Specifies the number of active clients.

iSessions UINT16 Specifies the number of sessions (for all clients).

iDatabases UINT16 Specifies the number of open databases (for all clients).

iCursors UINT16 Specifies the number of cursors (for all clients).

SYSVersion (system version information)

The SYSVersion structure provides the BDESDK system version information, using the following fields:

Field Type Description

iVersion UINT16 Specifies the engine version.

iIntfLevel UINT16 Specifies the client interface level.

dateVer DATE Specifies the version date.

timeVer TIME Specifies the version time.

TBLBaseDesc (base table descriptor)

The TBLBaseDesc structure provides basic information about a table, using the following fields:

Field Type Description

szName DBITBLNAME Specifies the table name (no extension or directory).

szFileName DBITBLNAME Specifies the file name.

szExt DBIEXT Specifies the file extension.

szType DBINAME Specifies the driver type.

dtDate DATE Specifies the date on the table.

tmTime TIME Specifies the time on the table.

iSize UINT32 Specifies the size in bytes.

bView BOOL TRUE, if this a view (SQL only).

TBLExtDesc (extended table descriptor)

The TBLExtDesc structure provides additional information about a table, using the following fields:

Field Type Description

szStruct DBINAME Specifies the physical structure.

iRestrVersion UINT16 Specifies the version number.

iRecSize UINT16 Specifies the physical record size.

iFields UINT16 Specifies the number of fields.

iIndexes UINT16 Specifies the number of indexes.

iValChecks UINT16 Specifies the number of field validity checks.

iRintChecks UINT16 Specifies the number of referential integrity checks.

iRecords UINT32 Specifies the number of records in table.

bProtected BOOL TRUE, if the table is protected.

bValidInfo BOOL If FALSE, all or some of the extended data is not available.

TBLFullDesc (full table descriptor)

The TBLFullDesc structure provides a complete description of the table (base extended), using the following
fields:

Field Type Description

tblBase TBLBaseDesc Specifies the base description.

tblExt TBLExtDesc Specifies the extended description.

TBLType (table capabilities)

The TBLType structure describes the table's capabilities, using the following fields

Field Type Description

iId UINT16 Specifies the ID of the table type.

szName DBINAME Specifies the descriptive name of the table type; for example, dBASE5.

szText DBINAME Descriptive text.

szFormat DBINAME Specifies the format; for example, HEAP.

bReadWrite BOOL If TRUE, the user can read and write.

bCreate BOOL If TRUE, the user can create new tables of this type.

bRestructure BOOL If TRUE, BDESDK can restructure a table of this type.

bValChecks BOOL If TRUE, the user can specify validity checks for this table type.

bSecurity BOOL If TRUE, a table of this type can be protected.

bRefIntegrity BOOL If TRUE, a table of this type can participate in referential integrity.

bPrimaryKey BOOL If TRUE, a table of this type supports the primary key concept.

bIndexing BOOL If TRUE, a table of this type can have indexes.

iFldTypes UINT16 Specifies the number of physical field types supported.

iMaxRecSize UINT16 Specifies the maximum record size.

iMaxFldsInTable UINT16 Specifies the maximum fields in a table.

iMaxFldNameLen UINT16 Specifies the maximum field name length.

iTblLevel UINT16 Specifies the driver dependent table level (version).

USERDesc (user information descriptor)

The USERDesc structure describes a user, using the following fields:

Field Type Description

szUserName DBIUSERNAME Specifies the user name.

iNetSession UINT16 Specifies the net level session number.

iProductClass UINT16 Specifies the product class of the user (Paradox only).

szSerialNum[22] CHAR Specifies the serial number (Paradox only).

VCHKDesc (validity check)

The VCHKDesc structure provides information about validity checking constraints on a field (Paradox and SQL
tables only), using the following fields (bRequired is the only option supported by the SQL drivers):

Field Type Description

iFldNum UINT16 Specifies the field number (1 to n).

bRequired BOOL Specifies wether or not the    field is required: TRUE, FALSE.

bHasMinVal BOOL Has minimum value: TRUE, FALSE, or TODAYVAL.

bHasMaxVal BOOL Has maximum value: TRUE, FALSE, or TODAYVAL.

bHasDefVal BOOL Has default value: TRUE, FALSE, or TODAYVAL.

aMinVal DBIVCHK Specifies the minimum value.

aMaxVal DBIVCHK Specifies the maximum value.

aDefVal DBIVCHK Specifies the default value.

szPict DBIPICT Specifies the picture string.

elkupType LKUPType Specifies the lookup type.

szLkupTblName DBIPATH Specifies the lookup table name; for information only.

elkupType
The following lookup and fill types are valid for Paradox tables:

Lookup Type Description

lkupNONE The table has no lookup.

lkupPRIVATE Only current field    private.

lkupALLCORRESP All corresponding    no help.

lkupHELP Only current field    help and fill.

lkupALLCORRESPHELP All corresponding    help.

Xinfo (Information Transactions)

The XInfo structure describes a transaction, using the following fields:

Field Type Description

exState eXState Specifies the transaction state: xsACTIVE or xsINACTIVE.

eXIL eXILType Specifies the transaction isolation level.

uNests UINT16 Specifies the transaction children.

eXIL
The following transaction isolation levels are valid:

Isolation Level Description

xilDIRTYREAD Uncommitted changes; no phantoms

xilREADCOMMITTED Committed changes; no phantoms

xilREPEATABLEREAD Full read repeatability

cbGENPROGRESS
pCbBuf is assumed to be of the type cbPROGRESSDesc. This callback is issued by BDE to inform applications
about the progress made during large batch operations, such as DbiBatchMove. The Generic Progress Report
callback allows the client to obtain progress reports during an operation, and to cancel the operation, if desired.
The client registers a progress callback function using cbGENPROGRESS as the value for ecbType. The body of
the progress callback function (written by the client) should cast the callback buffer as a structure of type
cbPROGRESSDesc.

The BDE returns either a percentage done (returned in the iPercentDone parameter of the cbPROGRESSDesc
structure), or a message string to display on the status bar. The client should assume the following: if the
iPercentDone value is negative, then the message string is valid; otherwise, the iPercentDone value should be
considered. The message string format should always be <Text String><:><Value> to allow easy international
translations. For example,

Records copied: 250

In the message string, the value and colon fields are optional. Possible return values are: cbrABORT (stop
processing), or cbrCONTINUE (continue processing).

cbRESTRUCTURE
pCbBuf is assumed to be of the type RESTCbDesc. This callback may be issued several times during a call to
DbiDoRestructure. Each time it is issued, BDE supplies information about an impending action and requests a
response from the caller. The iErrCode in the CBRESTCbDesc structure is used to inform the caller about the
different actions. Other fields of CBRESTCbDesc describes, if applicable, the object (for example, field, index, or
validity check) to which this callback refers. Any callback may return with a cbrABORT that aborts the restructure.
The batch result callback would be issued in the following different situations:

When iErrCode == DBIERR_OBJMAYBETRUNCATED, a YES response forces data trimming. A NO
response forces record that would be trimmed to a problems table.

When iErrCode ==DBIERR_TABLELEVELCHANGED, a YES response allows the table level to change. A
NO response aborts the restructure operation.

When iErrCode == DBIERR_VALIDATEDATA, a YES force validity checks to be applied to existing data. A
NO response applies validity checks to new data only.

When iErrCode == DBIERR_OBJIMPLICITLYMODIFIED, this is a warning that an object was implicitly
modified. For example, when a field that is part of a composite secondary index restructure is dropped, that field is
implicitly dropped form the index.

When iErrCode == DBIERR_OBJIMPLICITLYDROPPED, this is a warning that an object was dropped.
When iErrCode == DBIERR_VALFIELDMODIFIED, this is a warning that the type or size of a field

containing a validity check was modified.
When iErrCode == DBIERR_VCHKMAYNOTBEENFORCED, this is a warning that because of referential

integrity constraints on fields in the master table, new validity checks on these fields cannot be enforced on existing
data.

cbBATCHRESULT
pCbBuf is assumed to be of the type RESTCbDesc. See (CBRESTCbDesc) This callback may be issued several
times during a call to DbiBatchMove.

cbTABLECHANGED
pCbBuf is not used for this callback. The table changed callback is used to inform applications about changes to
the table associated with a cursor. This callback is supported by the Paradox driver only.

cbINPUTREQ
The cbINPUTREQ callback is used when a BDE driver needs to communicate with the end user. This callback is
used in the following cases:

a) a dBASE BLOb (.MDX) file is missing: cbiMDXMISSING
b) a Paradox BLOb (.MB) file is missing: cbiPDXBLOB
c) a Paradox lookup table is missing: cbiPDXLOOKUP
d) a dBASE ??? (.DBT) file is missing: cbiDBTMISSING

The structure passed to the callback function is defined as follows:
typedef struct {
      CBInputId      eCbInputId;                          // Id for this input request
      INT16              iCount;                                  // Number of entries
      INT16              iSelection;                          // Selection 1..n    (In/Out)
      BOOL16            bSave;                                    // Save this option    (In/Out)
      DBIMSG            szMsg;                                    // Message to display
      CBEntry          acbEntry[MAXCBENTRIES]; // Entries
 } CBInputDesc;

Structure Type Description

eCbInputId CBInputId eCbInputId is an enumerated type indicating what this input request is for. This will match
one of the aforementioned values (cbiMDXMISSING,...).

iCount INT16 iCount refers to the number of entries in the array acbEntry. (See below.)

iSelection INT16 iSelection is used as both input to the callback function and output backto the driver. The
input value from the driver indicates what the default choice in acbEntry should be. The
output value is used to tell    the driver which choice was selected.

bSave BOOL16 The bSave element is used to tell the driver if it encounters a similar error on a different
relation to take the same action as this time.

szMsg DBIMSG szMsg is a string the client can display to indicate what the problem is.

acbEntry CBEntry This array contains a list of operations that the driver can take to remedy the problem (such
as Open the base table as read-only Abort the operation). The array also contains a help
string for each of the choices. The array acbEntry is defined as:

typedef struct {                                      // Entries for input requested callback
            DBINAME                szKeyWord;        // Keyword to display
            DBIMSG                  szHelp;              // Help String
      } CBEntry;

Where szKeyWord is a string indicating an operation that the driver can perform for this case. The szHelp element
contains a help string associated with the operation that the client can display.

cbDBASELOGIN
Use the callback cbDBASELOGIN to enable clients to access encrypted dBASE tables.

The cbDBASELOGIN structure contains the following fields:

Structure Type Description

szUserName DBINAME Login name of user

szGroupName DBINAME Group to log in to

szUserPassword DBINAME User password

In some cases, no login may be performed.    This may occur when either:

a) the optional login security has been turned off in dBASE; or

b) another client is using secured dBASE tables.

When no login has been performed in dBASE, you can call DbiOpenTable to attempt to open an encrypted table
or you can call DbiCreateTable to create and encrypt a table (with Security enabled.)

In either case, when no login has been performed, the driver issues a cbDBASELOGIN callback.    The client then
displays a login screen with group name, user name, and password.    The data from this screen is returned to the
driver, which verifies it and sets the group name and user name in the session level properties.    If the information
is invalid (such as an invalid password, or the GroupName and UserName does not exist),then an error is
returned, and the table is not opened/created.

The structure passed to the callback function is defined as follows:
 
 // dBASE login callback structure
 typedef struct
        {
              DBINAME    szUserName;                // Login name of user
              DBINAME    szGroupName;              // Group to log in to
              DBINAME    szUserPassword;        // User password
        } CBLoginDesc;
 
    typedef    CBLoginDesc far * pCBLoginDesc;

SQL-specific Locking Behavior
SQL deals with record locking differently than Paradox or dBASE. If a record in a SQL table is not in the record
cache, the record is fetched from the server. The client has a local (cached) copy of the record, but that copy can
become immediately out-of-date if another client retrieves the same record from the server, and modifies or
deletes it before the first client is able to submit changes.

All record locking on SQL tables is optimistic. An optimistic record lock is basically a notification tool; it does not
prevent another user from modifying the locked record. The operation is said to be optimistic because it assumes
that no other client will change the record. However, if the record has been changed, and the client tries to modify
the record (DbiModifyRecord), the client is notified that the requested operation cannot be performed because
someone else has modified the data. The client can then inspect the new data, and decide whether or not to
submit the changes. Optimistic locking avoids the performance and concurrency penalties incurred by a lock that
ties up record access for the duration of time that it takes to complete a single users's modifications. At the same
time, the client is protected from inadvertently changing data that has never been inspected.

CANUnary (unary node descriptor)

Type Name Description

NODEClass nodeClass Unary node

CANOp canOp Operator

UINT16 iOperand1 Byte offset of operand

CANBinary (binary node descriptor)

Type Name Description

NODEClass nodeClass Binary node

CANOp canOp Operator

UINT16 iOperand1 Byte offset of operand 1

UINT16 iOperand2 Byte offset of operand 2

CANCompare (extended compare node descriptor)

Type Name Description

NODEClass nodeClass Extended compare node

CANOp canOp Operator

BOOL bCaseInsensitive 3 values: UNKNOWN, "fastest", "native"

UINT16 iOperand1 Byte offset of Operand1

UINT16 iOperand2 Byte offset of Operand2

CANField (field node descriptor)

Type Name Description

NODEClass nodeClass Field node

CANOp canOp Operator

UINT16 iFieldNum Field number

UINT16 iNameOffset Name offset in literal pool

CANConst (constant node descriptor)

Type Name Description

NODEClass nodeClass Constant

CANOp canOp Operator

UINT16 iType Constant type

UINT16 iSize Constant size (in bytes)

UINT16 iOffset Offset in literal pool

CANTuple (tuple node descriptor)

Type Name Description

NODEClass nodeClass Tuple (record)

CANOp canOp Operator

UINT16 iSize Constant size (in bytes)

CANContinue (break node descriptor)

Type Name Description

NODEClass nodeClass Break node

CANOp canOp Operator

UINT16 iContOperand Continue if operand is TRUE;
otherwise, stop evaluating records.

Data Type Translations

When a table is copied or appended to a table of a different driver type, data type translations take place
according to the following tables.    (You might need to widen this Help window to display the full width of the
chart.)

From Paradox To dBASE To Oracle To Sybase To InterBase To Informix

Alpha Character Character VarChar Varying Character

Number Float {20.4} Number Float Double Float

Money Number {20.4} Number Money Double Money {16.2}

Date Date Date DateTime Date Date

Short Number {6.0} Number SmallInt Short SmallInt

Memo Memo Long Text Blob/1 Text

Binary Memo LongRaw Image Blob Byte

Formatted memo Memo LongRaw Image Blob Byte

OLE OLE LongRaw Image Blob Byte

Graphic Binary LongRaw Image Blob Byte

Long Number {11.0} Number Int Long Integer

Time Character {>8} Character {>8} Character {>8} Character {>8} Character {>8}

DateTime Character {>8} Date DateTime Date DateTime

Bool Bool Character {1} Bit Character {1} Character

AutoInc Number{11.0} Number Int Long Integer

Bytes Memo LongRaw Image Blob Byte

BCD N/A N/A N/A N/A N/A

From dBASE To Paradox To Oracle To Sybase To InterBase To Informix

Character Alpha Character VarChar Varying Character

Number iUnits2=0 &&
iUnits1<5 Short Number SmallInt Short SmallInt

others Number Number Float Double Float

Float Number Number Float Double Float

Date Date Date DateTime Date Date

Memo Memo Long Text Blob/1 Text

Bool Bool Character {1} Bit Character {1} Character

Lock Alpha {24} Character {24} Character {24} Character {24} Character

OLE OLE LongRaw Image Blob Byte

Binary Binary LongRaw Image Blob Byte

Bytes Bytes LongRaw Image Blob Byte
(temp tables only)

From Oracle To Paradox To dBASE To Sybase To InterBase To Informix

Character Alpha Character VarChar Varying Character

Raw Number Float {20.4} Float Double Float

Date DateTime Date DateTime Date DateTime

Number Number Float {20.4} Float Double Float

Long Memo Memo Text Blob/1 Text

LongRaw Binary Memo Image Blob Byte

From Sybase To Paradox To dBASE To Oracle To InterBase To Informix

Character Alpha Character Character Varying Character

Var Character Alpha Character Character Varying Character

Int Number Number {11.0} Number Long Integer

Small Int Short Number {6.0} Number Short SmallInt

Tiny Int Short Number {6.0} Number Short SmallInt

Float Number Float {20.4} Number Double Float

Money Money Number {20.4} Number Double Money {16.2}

Text Memo Memo Long Blob/1 Text

Binary Binary Memo Raw Varying VarChar

Var Binary Binary Memo Raw Varying VarChar

Image Binary Memo LongRaw Blob Byte

Bit Alpha Bool Character Varying Character

DateTime DateTime Date DAte Date DateTime

TimeStamp Binary Memo Raw Varying VarChar

Float4 Number Number Number Double Float

Money4 Money Number {20.4} Number Double Money {16.2}

DateTime4 DateTime Date Date Date DateTime

From InterBase To Paradox To dBASE To Oracle To Sybase To Informix

Short Short Number {6.0} Number Small Int SmallInt

Long Number Number {11.0} Number Int Integer

Float Number Float {20.4} Number Float Float

Double Number Float {20.4} Number Float Float

Char Alpha Character Character VarChar Character

Varying Alpha Character Character VarChar Character

Date DateTime Date Date DateTime DateTime

Blob Binary Memo LongRaw Image Byte

Blob/1 Memo Memo Long Text Text

From Informix To Paradox To dBASE To Oracle To Sybase To InterBase

Char Alpha Character Character VarChar Varying

Smallint Short Number {6.0} Number Small Int Short

Integer Number Number {11.0} Number Int Long

Smallfloat Number Float {20.4} Number Float Double

Float Number Float {20.4} Number Float Double

Money Money Number {20.4} Number Float Double

Decimal Number Float Number Float Double

Date Date Date Date DateTime Date

Datetime DateTime Date Date DateTime Date

Interval Alpha Character Character VarChar Varying

Serial Number Number {11.0} Number Int Long

Byte Binary Memo LongRaw Image Blob

Text Memo Memo Long Text Blob/1

VarChar Alpha Character Character VarChar Varying

Logical Types and Driver-specific Physical Types

The following tables show physical types translated into logical types, and then into the physical type of a different
driver. (You might need to widen this Help window to display the full width of the chart.)

From Paradox To BDESDK To dBASE
physical type logical type physical type

fldPDXCHAR fldZSTRING fldDBCHAR

fldPDXNUM fldFLOAT fldDBFLOAT {20.4}

fldPDXMONEY fldFLOAT/fldstMONEY fldDBNUM {20.4}

fldPDXDATE fldDATE fldDATE

fldPDXSHORT fldINT16 fldDBNUM {6.0}

fldPDXMEMO fldBLOB/fldstMEMO fldDBMEMO

fldPDXBINARYBLOB fldBLOB/fldstBINARY fldDBMEMO

fldPDXFMTMEMO fldBLOB/fldstFMTMEMO fldDBMEMO

fldPDXOLEBLOB fldBLOB/fldstOLEOBJ fldDBOLEBLOB

fldPDXGRAPHIC fldBLOB/fldstGRAPHIC fldDBBINARY

fldPDXBLOB fldPDXMEMO fldDBMEMO

Paradox level 5 data types:

fldPDXLONG fldINT32 fldDBNUM {11.0}

fldPDXTIME fldTIME fldDBCHAR {>8}

fldPDXDATETIME fldTIMESTAMP fldDBCHAR {30}

fldPDXBOOL fldBOOL fldDBBOOL

fldPDXAUTOINC fldINT32 fldDBNUM {11.0}

fldPDXBYTES fldBYTES fldDBMEMO

fldPDXBCD fldBCD fldDBCHAR

From dBASE To BDESDK To Paradox
physical type logical type physical type

fldDBCHAR fldZSTRING fldPDXCHAR

fldDBNUM if (iUnits2=0 && iUnits1<5)
fldINT16 fldPDXSHORT

else
fldFLOAT fldPDXNUM

fldDBMEMO fldBLOB fldPDXMEMO

fldDBBOOL fldBOOL fldPDXBOOL

fldDBDATE fldDATE fldPDXDATE

fldDBFLOAT fldFLOAT fldPDXNUM

fldDBLOCK fldLOCKINFO fldPDXCHAR {24}

fldDBBINARY fldBLOB/fldstTYPEDBINARY fldPDXBINARYBLOB

fldDBOLEBLOB fldBLOB/fldstDBSOLEOBJ fldPDXOLEBLOB

fldDBBYTES fldBYTES fldPDXBYTES (only for temp tables)

From Oracle To BDESDK To Paradox To dBASE
physical type logical type physical type physical type

fldORACHAR fldZSTRING fldPDXCHAR fldDBCHAR

fldORARAW fldVARBYTES fldPDXBINARYBLOB fldDBMEMO

fldORADATE fldTIMESTAMP fldPDXDATETIME fldDBCHAR

fldORANUMBER fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldORALONG fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldORALONGRAW fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO

fldORAVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR

fldORAVARCHAR2
      iUnits1 <=255 fldSTRING fldPDXCHAR fldDBCHAR
      iUnits1 >255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldORAFLOAT fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

From Sybase To BDESDK To Paradox To dBASE
physical type logical type physical type physical type

fldSYBCHAR fldZSTRING fldPDXCHAR fldDBCHAR

fldSYBVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR

fldSYBINT fldINT32 fldPDXLONG fldDBNUM {11.0}

fldSYBSMALLINT fldINT16 fldPDXSHORT fldDBNUM {6.0}

fldSYBTINYINT fldINT16 fldPDXSHORT fldDBNUM {6.0}

fldSYBFLOAT fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldSYBMONEY fldFLOAT/fldstMONEY fldPDXMONEY fldDBNUM    {20.4}

fldSYBTEXT fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldSYBBINARY fldVARBYTES fldPDXBINARYBLOB fldDBMEMO

fldSYBVARBINARY fldVARBYTES fldPDXBINARYBLOB fldDBMEMO

fldSYBIMAGE fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO

fldSYBBIT fldBOOL fldPDXBOOL fldDBBOOL

fldSYBDATETIME fldTIMESTAMP fldPDXDATETIME fldDBDATE

fldSYBTIMESTAMP fldVARBYTES fldPDXBINARYBLOB fldDBMEMO

fldSYBFLOAT4 fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldSYBMONEY4 fldFLOAT/fldstMONEY    fldPDXMONEY                  fldDBNUM {20.4}

fldSYBDATETIME4 fldTIMESTAMP fldPDXDATETIME fldDBDBDATE

From InterBase To BDESDK To Paradox To dBASE
physical type logical type physical type physical type

fldIBSHORT fldINT16 fldPDXSHORT fldDBNUM {6.0}

fldIBLONG fldINT32 fldPDXLONG fldDBNUM {11.0}

fldIBFLOAT fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldIBDOUBLE fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldIBCHAR
      iUnits 1 <=255 fldZSTRING fldPDXCHAR fldDBCHAR
      iUnits1 > 255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldIBVARYING
      iUnits1 <= 255 fldSTRING fldPDXCHAR fldDBCHAR
      iUnits1 >255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldIBDATE fldTIMESTAMP fldPDXDATETIME fldDBDATE

fldIBBLOB fldBLOB fldPDXBINARYBLOB fldDBMEMO

fldIBBLOB/1 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

From Informix To BDESDK To Paradox To dBASE
physical type logical type physical type physical type

fldINFCHAR
      iUnits1 <=255 fldZSTRING fldPDXCHAR fldDBCHAR
      iUnits1 > 255 fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldINFSMALLINT fldINT16 fldPDXSHORT fldDBNUM {6.0}

fldINFINTEGER fldINT32 fldPDXLONG fldDBNUM {11.0}

fldINFSMALLFLOAT fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldINFFLOAT fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldINFMONEY fldFLOAT/fldstMONEY fldPDXMONEY fldDBNUM {20.4}

fldINFDECIMAL fldFLOAT fldPDXNUM fldDBFLOAT {20.4}

fldINFDATE fldDATE fldPDXDATE fldDBDATE

fldINFDATETIME fldTIMESTAMP fldPDXDATETIME fldDBDATE

fldINFINTERVAL fldZSTRING fldPDXCHAR fldDBCHAR

fldINFSERIAL fldINT32 fldPDXLONG fldDBNUM {11.0}

fldINFBYTE fldBLOB/fldstBINARY fldPDXBINARYBLOB fldDBMEMO

fldINFTEXT fldBLOB/fldstMEMO fldPDXMEMO fldDBMEMO

fldINFVARCHAR fldZSTRING fldPDXCHAR fldDBCHAR

International Compatibility

This chapter describes considerations that may be encountered for international applications. The following topics
are discussed:

Character Sets
Sorting and Uppercasing Rules
Language Drivers
Date, Time, and Number Formats

Character Sets

The shapes of characters that appear onscreen depend on an operating system's conventions for associating
these shapes to internal binary values. Such conventions are called character sets, or code pages. The 8-bit code
pages supported by BDE have 256 characters, numbered from 0 to 255 (using decimal values).

While most code pages use exactly the same numeric values (code points) for characters that are important in the
United States, many of the symbols that are important to non-English-speaking countries map to different code
points, depending on the particular code page. For example, the accented letter á' maps to 160 on many DOS
code pages, but in the Windows (ANSI) character set the same letter maps to code point 225. If an attempt is
made to pass this character from an environment that uses the ANSI character set (used by most Windows
programs) to a DOS environment, without translating the internal code point, the character appears under DOS as
'ß' (the German double-s) and may be misinterpreted in indexing, sorting, and so on. Character set identification
and translation is therefore a very important issue if data loss is to be avoided internationally.

Characters whose code points are less than 128 are said to fall in the standard ASCII range; all the special
international characters, located above code point 127, are known as extended characters.

BDE does not have a native character set. Usually, it operates with the binary values of characters. Strings should
be passed to BDE in their default character set. The following table summarizes the default character sets for
different character strings:.

Use For

DOS code page Local file names and pathnames, local user names and database aliases, names for table
lookup and referential integrity, non-maintained index names

SQL server's character set SQL data and metadata (table, field and index names, passwords and user names)

Table's character set Table field names, data, validity checks, and secondary and maintained index names

ANSI All SQL scripts (for local or SQL tables)

For QBE scripts, use the DOS character set for local table names and aliases. Use the ANSI character set for
keywords and the table's character set for remaining characters in the script.

To translate character data between a table's native character set and Windows ANSI, use the functions
DbiNativeToAnsi and DbiAnsiToNative. BDE returns error messages in the Windows ANSI character set.

Sorting and Uppercasing Rules

When character data is sorted in English-speaking countries, the sort sequence is usually based on the numeric
values of the characters defined by the code page. This kind of sorting is known as binary collation. The approach
is reasonable for English because most code pages define English letters in a neat, ascending numeric order.
However, binary sorting is not reasonable for other languages, since most code pages assign higher, fairly
arbitrary values for their special characters (that is, the characters occur out of sequence with the standard ASCII
characters among which they must be sorted). For similar reasons, uppercasing can be based on binary values
for English, but not for other languages. To provide support for country-, code page-, and language-specific sorting
and uppercasing rules, BDE uses information stored in language drivers.

Language Drivers

A language driver (LD) specifies a particular primary (or native) character set, as well as a country/language-
dependent set of rules for character manipulation, such as sorting, upper- and lowercasing, and the set of
characters that are considered alphabetic. A language driver's primary character set is the character set in which
its rules are defined. It specifies sorting and uppercasing in terms of the code points used by that particular code
page. It also defines the character translation mapping between its primary character set and the ANSI code page,
when necessary. (For a complete list of available language drivers and their primary character sets, use
DbiOpenLdList.)

Long driver name Short driver name Character set Collation sequence

Borland ENU Latin-1 BLLT1US0 ISO8859.1(ANSI) Binary

dBASE FRA cp437 DB437FR0 DOS CODE PAGE 437 dBASE French

dBASE FIN cp437 DB437FI0 DOS CODE PAGE 437 dBASE Finnish

dBASE ENU cp437 DB437US0 DOS CODE PAGE 437 dBASE English/US

dBASE NOR cp865 DB865NO0 DOS CODE PAGE 865 dBASE Norwegian

dBASE SVE cp437 DB437SV0 DOS CODE PAGE 437 dBASE Swedish

dBASE SVE cp850 DB850SV1 DOS CODE PAGE 850 dBASE Swedish850

dBASE ESP cp437 DB437ES1 DOS CODE PAGE 437 dBASE Spanish

dBASE NLD cp437 DB437NL0 DOS CODE PAGE 437 dBASE Dutch

dBASE ESP cp850 DB850ES1 DOS CODE PAGE 850 dBASE Spanish850

dBASE ENG cp437 DB437UK0 DOS CODE PAGE 437 dBASE English/UK

dBASE ENU cp850 DB850US0 DOS CODE PAGE 850 dBASE English/US

dBASE FRC cp863 DB863CF1 DOS CODE PAGE 863 dBASE French Canadian

dBASE ENG cp850 DB850UK0 DOS CODE PAGE 850 dBASE English850/UK

dBASE ITA cp850 DB850IT1 DOS CODE PAGE 850 dBASE Italian850

dBASE DEU cp850 BD850DE0 DOS CODE PAGE 850 dBASE German850

dBASE FRA cp850 DB850FR0 DOS CODE PAGE 850 dBASE French850

dBASE ITA cp437 DB437IT0 DOS CODE PAGE 437 dBASE Italian

dBASE NLD cp850 DB850NL0 DOS CODE PAGE 850 dBASE Dutch

dBASE FRC cp850 DB850CF0 DOS CODE PAGE 850 dBASE French Canadian850

dBASE DAN cp865 DB865DA0 DOS CODE PAGE 865 dBASE Danish

dBASE DEU cp437 DB437DE0 DOS CODE PAGE 437 dBASE German

Oracle SQL WE850 ORAWE850 DOS CODE PAGE 850 ORACLE multi-lingual Western European sort order

Paradox ascii' ascii DOS CODE PAGE 437 Binary

Paradox intl' intl DOS CODE PAGE 437 Multilingual Western European

Paradox intl' 850 intl850 DOS CODE PAGE 850 Brazilian Portuguese, French Canadian

Paradox nordan' nordan DOS CODE PAGE 865 Norwegian/Danish (Paradox 3.5)

Paradox nordan40' nordan40 DOS CODE PAGE 865 Norwegian/Danish (Paradox 4.0, 5.0)

Paradox swedfin' swedfin DOS CODE PAGE 437 Paradox 'swedfin'

Paradox ANSI INTL ANSIINTL ISO8859.1 (ANSI) Compatible with Paradox 'intl'

Paradox ESP 437 SPANISH DOS CODE PAGE 437 Spanish

Paradox ISL 861 iceland DOS CODE PAGE 861 Icelandic

Pdox ANSI INTL850 ANSII850 ISO8859.1 (ANSI) Compatible with Paradox 'intl' 850

Pdox ANSI NORDAN4 ANSINOR4 ISO8859.1 (ANSI) Compatible with Paradox 'nordan40'

Pdox ANSI SWEDFIN ANSISWFN ISO8859.1 (ANSI) Compatible with Paradox 'swedfin'

Pdox ESP ANSI ANSISPAN ISO8859.1 (ANSI) Compatible with Paradox ESP437

SYBASE SQL Dic437 SYDC437 DOS CODE PAGE 437 SYBASE dict. with case-sensitivity

SYBASE SQL Dic850 SYDC850 DOS CODE PAGE 850 SYBASE dict. with case-sensitivity

SQL Link ROMAN8 BLROM800 ROMAN8 Binary

Default language driver settings are defined in the BDE configuration file (IDAPI.CFG). You can change these
defaults using the BDE Configuration Utility. If you can be certain that your application will not need to support
character sets other than Windows ANSI, you can reduce the need for extra processing, such as character
translation, by changing your language driver defaults to ANSI-based ones. Additionally, if your application will be
working exclusively with data from a particular SQL server, it may be advantageous to reset local language driver
defaults to the driver you have associated with the SQL database alias.

When a Paradox or dBASE table is created, the default langauge driver's identification is stored in the table file
header. The default language driver setting can be overridden at creation by specifying optional parameters to
DbiCreateTable. The table's language driver will be used by BDESDK functions that manipulate character data,
such as DbiSortTable, DbiAddIndex, and a variety of other functions such as DbiGetNextRecord,
DbiGetPriorRecord, DbiSetRange, DbiSetToKey, DbiInsertRecord, and so on. A table's language driver can be
changed after creation by using DbiDoRestructure. DbiDoRestructure does not translate table data or metadata to
the character set of the new language driver, in cases where the character sets of the old and new language
drivers differ. However, table data is transliterated between differing character sets by DbiBatchMove.

For SQL table driver types, such as Sybase or Oracle, language driver settings are defined with the database
alias in the BDE configuration file (IDAPI.CFG). All of the above operations when applied to SQL tables are
governed by this setting.

To obtain the name of a table's language driver or the name of the default LD for a specific table driver, use the
function DbiGetLdName.

The following table summarizes the default settings for language drivers.

Language driver for Default Setting

System System Language Driver setting current in IDAPI.CFG.

Paradox driver Paradox Language Driver setting current in IDAPI.CFG.

dBASE driver dBASE Language Driver setting current in IDAPI.CFG.

Text driver System Language Driver.

SQL database LANGDRIVER setting for this database current in IDAPI.CFG.

SQL drivers LANGDRIVER setting in DB OPEN section of IDAPI.CFG for this driver.

Table cursor Language Driver associated with this table at the time it was created.

Database handle Language Driver of the database this handle represents.

Note: You can override all defaults by using DbiSetProp.

Date, Time, and Number Formats

Default settings for date, time, and number formats are defined in the BDE configuration file (IDAPI.CFG).    (See
Date, Time, and Number Pages.) These settings are used by BDE anywhere conversion must be performed
between strings (such as "15/12/94") and internal representations of dates, times, and numbers (for example,
when parsing a date found in a query string). For best results, the BDESDK default settings should be kept in
synchronization with the Windows Control Panel. The default settings can be overridden at any time with
DbiSetDateFormat, DbiSetTimeFormat, and DbiSetNumberFormat.

Credits

Sara Anderson
Gretel Bailey
Tracy Blank
Clement Chan
Bruce Chang
Ernest Chen
Laxman Chinnakotla
Cliff Cormier
Elvi Dalgaard
Mark Edington
Dan Eris
Freda Fine
Anne Fletcher
Rajamohan Gandhasri
Kurt Hansen
Conrad Herrmann
Renae Hester
Sarah Huang
Shabbir Khan
Gopal Kirsur
Klaus Krull
Michael Linetsky
Lisa Loud
Britta Matthews
Rick Nadler
Sunil Nair
Dung Nguyen
Inna Noten
Chris Ohlsen
Don Phan
David Raccah
Kris Ramberg
Eric Roth
Pandu Rudraraju
Richard Scannell
Max Slimmer
Bert Speelpenning
Karen Tanaka
Devendra Vamathevan
Narayanan Vijaykumar
Ken Vodicka
Nimish Vora
Jack Zoken

