
T
here are many programs nowadays which start up
displaying a decorative title page, which usually
gives information on the program�s authors and

licensee. FireWorkz and Impression, for example, both
have title pages which are displayed while they are
initialising. In this month�s Wimp Topics, a program to
create and display a title page with fonts and sprite
graphics is described which can be incorporated into
your own programs so that they too can have an
attractive start-up banner.

You will need first to design a largish sprite for your title
page which is about 200 pixels square in mode 20, or
200*100 pixels in mode 12. Save this in a file called
TitleSpr inside the application directory. Now design a
template called Title using FormEd or another template
editor. This should have at least two icons; one which
contains the sprite and one which contains the name of
your program in a large anti-aliased font of about 20 points.

It is worth remembering that if your program is to
be used on other systems, you can only rely on the
fonts Corpus, Homerton and Trinity being present,
so you should restrict your font choice to one of
these. If your program has to be RISC OS 2
compatible, you can�t even rely on these being
present, in which case the icons will appear blank
(it�s probably a good idea to check the OS version
and use only the system font if RISC OS 2). Now
that the Risc PC is available, which allows anti-
aliased fonts to be used in place of the system font,
it is good practice in general not to use anti-aliased
fonts in templates, since they will override the
user�s preferred font on that machine. For a title
page, though, we can make an exception since we
want to use a larger font.

In order for your program to display the fonts in a
template, you will need some extra code. Firstly,
before we load templates, we need to call
PROCinit_fonts which is defined as:

DEF PROCinit_fonts
LOCAL f%
DIM fontdata% &100

FOR f%=0 TO 252 STEP 4
fontdata%!f%=0
NEXT
ENDPROC
This allocates a 256-byte array which is used by

�Wimp_LoadTemplate� to record the fonts that are
used by the template that has been loaded. When a
font is encountered, a font handle (in the range 0-255)
is allocated, and the byte at fontdata%+fonthandle is
incremented. If several templates are loaded then they
can all use the table pointed to by fontdata% which will
contain the counts of all font handles used in the
program�s templates. Thus the command which loads
a template will look like this:

SYS "Wimp_LoadTemplate",,block%,indir
%,indir%+ind%,fontdata%,a$

When your program exits you will need to call
PROClosefonts which is defined as:

DEF PROClosefonts
LOCAL f%
FOR f%=0 TO 255
WHILE fontdata%?f%>0
fontdata%?f%-=1
SYS "Font_LoseFont",f%
ENDWHILE
NEXT
ENDPROC

This ensures that all the font handles that you have
used are disposed of correctly.

For our example program we will assume that RISC
OS 3 is being used, which gives us the opportunity to
find out the storage requirements of a window and its
indirected icons from the template file before loading it.
This is done by calling �Wimp_LoadTemplate� with 0 in
R1 instead of a pointer to the block. It then returns the
window size and indirected data size in R1 and R2, so
we can create a function:

DEF FNcreatewindow(a$,sprites%)
LOCAL hand%,ind%,indir%
SYS "Wimp_LoadTemplate",,0,indir%,0,f

ontdata%,a$ TO ,hand%,ind%
IF hand%>&300 ERROR 0,"Template �"+a$

28 l RISC User November 1994

Follow Nathan Micholey�s tips to add
a bit of style to your Wimp programs

W imp Topics - Starting up with a Title
FEATURE

+"� is too big to load"
DIM indir% ind%
SYS "Wimp_LoadTemplate",,block%,indir

%,indir%+ind%,fontdata%,a$
block%!64=sprites%
SYS "Wimp_CreateWindow",,block% TO ha

nd%
=hand%

which requires an array to be set up before it is used:
DIM block% &300

Of course, your block can always be larger than this
if any of your windows require it.

FNcreatewindow returns the window handle of the
template whose name was passed in a$. It sets the
window�s sprite pointer to the value in sprites%, which
should be -1 if you have no sprite pool. This allows us
to use different sprite pools with each window.

A sprite pool can be loaded like this:
DEF FNloadsprites(a$)
LOCAL a%,l%,s%
a%=OPENINa$

l%=EXT#a%+32
CLOSE #a%
DIM s% l%:!s%=l%
SYS �OS_SpriteOp�,&10A,s%,a$
=s%

where a$ is the filename and the returned value is a
pointer to the sprite pool created.

We can now create our title page like this:
PROCinit_fonts
sprites%=FNloadsprites("<TitlePage$Di

r>.TitleSpr")
SYS "Wimp_OpenTemplate",,"<TitlePage$

Dir>.Templates"
titlehand%=FNcreatewindow("Title",spr

ites%)
SYS "Wimp_CloseTemplate"

We now need some quite lengthy procedures to
open the window at the centre of the screen,
regardless of the desktop screen mode:

DEF PROCget_screen_size(RETURN x%,RET
URN y%)

LOCAL xp%,yp%

RISC User November 1994 l 29

FEATUR

Some examples of commercial start-up screens

SYS "OS_ReadModeVariable",-1,4 TO ,,x p%
SYS "OS_ReadModeVariable",-1,5 TO ,,y p%
SYS "OS_ReadModeVariable",-1,11 TO ,, x%
SYS "OS_ReadModeVariable",-1,12 TO ,, y%
x%=(x%+1)<<xp%:y%=(y%+1)<<yp%
ENDPROC

DEF PROCget_window_size(block%,RETURN
x%,RETURN y%)
x%=block%!8-block%!0:y%=block%!12-blo

ck%!4
ENDPROC

DEF PROCset_window_position(block%,mi
nx%,miny%,maxx%,maxy%)

!block%=minx%:block%!4=miny%:block%!8
=maxx%:block%!12=maxy%

ENDPROC

DEF PROCopen_window_at_centre(hand%)
LOCAL x%,y%,wx%,wy%
!block%=hand%
SYS "Wimp_GetWindowState",,block%
PROCget_screen_size(x%,y%)
PROCget_window_size(block%+4,wx%,wy%)
x%=x%>1:y%=y%>1
wx%=wx%>1:wy%=wy%>1
PROCset_window_position(block%+4,x%-w

x%,y%-wy%,x%+wx%,y%+wy%)
block%!28=-1
SYS "Wimp_OpenWindow",,block%
ENDPROC
PROCget_screen_size uses

�OS_ReadModeVariable� to get the Eigen values of the
current screen mode and the number of pixels across and
down. It then uses these to calculate the screen size in
OS units. PROCget_window_size reads the window size
from the block returned from �Wimp_GetWindowState�
and PROCset_window_position positions it in the correct
place before opening.

Now our window is open, we must leave it open
for a predefined time and then close it. It is also
useful to close the title page when it is clicked on to
prevent it becoming a nuisance. This can be done
by using �Wimp_PollIdle� with a suitable delay
specified in R2. If it is called initially with bit zero of
the mask unset, then after the delay period a null
event will be returned. At this point (or earlier if you
receive a mouse click event over the title window),
you can close the window and set bit zero of the

mask, so that in future the call will act exactly as
�Wimp_Poll�.

We begin by finding the current monotonic time and
adding a short delay in centiseconds to it:

SYS "OS_ReadMonotonicTime" TO time%
time%+=500

This code is a little simplistic as it fails to deal with
wrap-around, where incrementing the timer will make
the value of time% greater than the maximum
allowable integer. We will overlook this for now as the
probability of this actually happening is tiny. The poll
loop will then look something like this (assuming
mask% has been initialised with bit zero clear):

REPEAT
SYS "Wimp_PollIdle",mask%,block%,ti

me% TO e%
CASE e% OF
WHEN 0:PROCclose_title
WHEN 6:IF block%!12=titlehand% PRO

Cclose_title ELSE PROCdo_poll(e%,blo
ck%)

OTHERWISE:PROCdo_poll(e%,block%)
ENDCASE
UNTIL quit%=TRUE

You should create the procedure PROCdo_poll
yourself to deal with any events your program needs to
receive. Its parameters are e %, which is the event
code and block% which points to the block returned
from �Wimp_Poll�.
You will also need the following procedure:

DEF PROCclose_title
!block%=titlehand%
SYS "Wimp_DeleteWindow",,block%
titlehand%=0:mask%=mask% OR 1
PROClosefonts
ENDPROC

to get rid of the title page window and set bit zero of
the poll mask. If you do use fonts in other templates,
you should move the call to PROClose_fonts to
another part of your program.

As it stands, this implementation has some
shortcomings; for example, it does not free the
memory used by the title page�s sprite. If you are
feeling adventurous, you could try adapting it to
use Alan Wrigley�s heap manager (Wimp Topics
7:5) so that you can free this memory for other
purposes. This implementation also makes it
difficult for you to use null events for other
purposes. The best way around this would
be to leave bit zero of the poll mask unset,

30 l RISC User November 1994

FEATURE

and to set a flag, say
titleopen%, during the period
the title window is open. Use a
CASE statement to call
�Wimp_PollIdle� as above if this
flag is set, or �Wimp_Poll� if not.
Then use the same flag on
receiving null events to
determine whether to call
PROCclose_title or some other
procedure.

This month�s magazine disc
contains an application illustrating the
principles described in this article.

27 l RISC User November 1994

REVIEW

