
Text in 24-bit Colour
In the August/September issue, we experimented with 24-
bit graphics in Basic. It is now the turn of text in fancy
fonts. The arrival of 24-bit colours for fancy fonts marks a
true milestone in text presentation on the Acorn 32-bit
range. The reason for this lies in the nature of anti-
aliasing. This is a technique used by Acorn, and more
recently by other manufacturers, in which the ragged
edges of curves (and in particular the borders of text
characters) are made to appear smooth by inserting
pixels of intermediate shade at appropriate positions

along each edge.
The Acorn implementation can make use of shade ranges
of up to 16 components, giving a very smooth look to their
anti-aliased text. Up to now however, it was very difficult
to find a range of 14 colours intermediate between a
foreground and background colour. In fact, even in the
256-colour modes this was only possible for white text on
black (or the reverse). But now with a palette of up to 16
million colours, you can anti-alias text in any colour
against any background, and perform it to a very high
degree of precision. The result is that you can create

screens which are tasty enough to eat.
But how is it done? Well, it takes four or five system
calls to set up fonts and colours, and then to write them
on the screen - just as it does with 256 colours. But once
you have got the hang of it, and better still, knocked up a
couple of functions to make the necessary calls, it�s a
breeze.

Here is a typical sequence of calls:
SYS "Font_FindFont",,"Homerton.BOLD",x,y TO my_font
SYS "Font_SetPalette",,,n,14,bgnd%,fgnd%, &65757254
SYS "Font_SetFont",my_font
SYS "Font_SetFontColours",,,col,14
SYS "Font_Paint",,text$,20,X,Y

The first sets up Homerton bold in the required size, and
assigns it to the font handle my_font. The second sets up
an anti-aliasing palette. This is the only call which has
changed with the introduction of 24-bit graphics, and it is
now easier to use than before because we can pass it full
24-bit colour data. �Font_SetFont� simply sets our chosen

font as the current font, while �Font_SetFontColours� does
a similar thing for the anti-alias palette. Finally
�Font_Paint� actually puts the text on the screen.

The accompanying listing gives a practical example, and
generates blue text on a light green background. If when
you run this program, the curves on the letters seem to be
a bit jagged, you probably need to set the Anti-alias up to
parameter. To do this, double-click on !Boot in the root
directory to display the control panel, then click on Fonts,
and increase the value at the top of the Fonts display to

44 l RISC User November 1994

by Lee Calcraft

The Risc PC Column
FEATURE

Tasty enough to eat - well almost

100, say.

It is probably worth experimenting a little with the program
to discover the strengths and limitations of the new
colour-rich anti-aliasing. To change the background
colour, just alter the values of br, bg, and bb - the rgb
components. Similarly, fr, fg, and fb determine the
foreground colour. Each component should lie in the
range 0-255.

Note the use of the procedures PROCfont_colour, which
sets up the anti-alias palette, and PROCwrite, which puts
the text on the screen.

Shadowed Text
The massively extended range of colours available on the
Risc PC also makes it possible to implement shadowed
text more effectively. It is very tempting to think that the
way to create a shadow is to choose a suitable offset (of a
few OS units), and simply write the text in black at the
offset, and then in the normal text colour at the required
position. And while this works for the system font, it does
not look very good when used with anti-aliased fonts. The
reason is twofold. Firstly, shadows are rarely completely
black, but more importantly, the anti-aliased pixels show
up against the black shadow, destroying the effect
completely.

However, you can largely avoid this by choosing a
shadow colour which is just a little darker than the
background. In this way the anti-aliased pixels do not
stand out too much, and a realistic shadowing effect can
be achieved.

To add shadows to the current program, just insert the
following lines immediately after the OFF statement early
in the program:
s=40
s_x=10
s_y=7
PROCfont_colour(pal_no,br-s,bg-s,bb-s,br,bg,bb)
PROCwrite(text$,font,pal_no,100+s_x,800-s_y)

All that we have done is to replace the foreground rgb
components with those of the background, but with each
reduced by a factor of s. Making sgreater than 40 will
darken the shadow. We have then offset the printing
position by s_x and s_y, using values of 10 and 7
respectively. As always however, the best results are
found by experiment.

10 REM Program Risc PC Font tests

20 REM Version A 1.00
30 REM Author Lee Calcraft
40 REM RISC User November 1994
50 REM Program Subject to Copyright
60 REM Not Public Domain
70 :
80 ON ERROR:OSCLI("set DeskEdit$ERL "

+STR$(ERL)):PRINT TAB(0,0);REPORT$;" at
line ";ERL:END
90
100 REM MODE "X800,Y600,C32K,EX1,EY1"
110 MODE 28
120
130 xpoint=80:ypoint=80
140 text$="The Risc PC"
150 pal_no=1
160
170 SYS "Font_FindFont",,"Homerton.BOL
D",xpoint*16,ypoint*16 TO font
180 REM Background
190 br=120 :REM red
200 bg=180 :REM green
210 bb=120 :REM blue
220
230 REM Foreground
240 fr=0 :REM red
250 fg=0 :REM green
260 fb=200 :REM blue
270
280 GCOL 128,br,bg,bb:CLG
290 OFF
300
310 PROCfont_colour(pal_no,fr,fg,fb,br
,bg,bb)
320 PROCwrite(text$,font,pal_no,100,80
0)
330
340 END
350
360 DEF PROCwrite(text$,font,col,X,Y)
370 SYS "Font_SetFont",font
380 SYS "Font_SetFontColours",,,col,14
390 SYS "Font_Paint",,text$,20,X,Y
400 ENDPROC
410
420 DEF PROCfont_colour(n,r1,g1,b1,r0,
g0,b0)
430 bgnd%=FNconvert(r0,g0,b0)
440 fgnd%=FNconvert(r1,g1,b1)
450 SYS"Font_SetPalette",,,n,14,bgnd%,
fgnd%,&65757254
460 ENDPROC
470
480 DEF FNconvert(r,g,b)

RISC User November 1994 l 45

FEATUR

