
f you ever get a chance to look at a number
of different serious users� computers, there
is a good chance that you will find that each

has its own weird and wonderful boot
sequence to customise it to its owner�s
requirements. The complexity of the processes
involved in such customising has often been
criticised, and Acorn have responded by
incorporating what they call a structured boot
sequence into RISC OS 3.5 in the Risc PC.
However, I�m sure that many Risc PC users
gave up as soon as they saw the innards of

the !Boot application. Hopefully, though, this
article will make matters somewhat clearer.

THE !BOOT APPLICATION 
The Risc PC is shipped with an application called
!Boot on its hard drive, and it is this that is
responsible for setting up the user�s preferences.
By default, the CMOS RAM configuration is set to
auto-boot from the default hard drive, which is in

turn set to run the !Boot application. Hence, !Boot
is always run on reset. Incidentally, double-
clicking on !Boot from the Desktop invokes the
Configure application for altering CMOS RAM
setting. This is described in the RISC OS 3.5
User Guide. Therefore, !Boot is special in that
running it automatically brings about a totally
different response to running it explicitly.

CUSTOMISING !BOOT 
In its simplest form, !Boot can be customised by
using the Desktop boot save box provided by
the Task Manager to save a Desktop Boot file
which holds details of the Desktop�s history to
date, so for example, directory displays are
automatically opened in the same place, and
the pinboard is set up. This system is almost
unchanged since RISC OS 3.1, though you
must click on O K to use the default filename,
rather than trying to drag the !Boot file
anywhere.

More detailed customisation involves going into
the !Boot application directory, by double-

clicking

on it with Shift held down. The actual
internal structure of !Boot is rather complicated,
with a large number of files and nested sub-
directories. Luckily though, most of these files
and directories are fixed resources that do not
need altering (and which shouldn�t be altered).
The main customising procedure concerns the
automatic execution or loading of applications
and other files during the start-up, and the

RISC User August/September 199430

Customising the Risc
PC Start-Up 

David Spencer explains the rather
involved auto-boot system used on the
Risc PC

I

The contents of the !Boot application directory.



defining of system variables (such as file types).
These fall into two categories: files which are
executed before the desktop is started, and files
which are executed after it has been started. The
former category includes things such as modules
needed to drive additional hardware, whilst the
latter category includes items such as the !Boot
file saved from the Task Manager as mentioned
earlier.

The file $.!Boot.Choices.Boot.PreDesktop is an
Obey file that is run before the desktop is
started. The file is split into five sections by
function: setting of aliases for filetypes, the
setting of paths (such as the library path), the
setting of options, the registering of
applications, and finally, the setting of any
miscellaneous variables, such as an email
name. All of these are fairly self-explanatory,
except for the registering of applications. What
this does is to use the AddApp command
(which is actually a program located elsewhere
in !Boot) to add applications to the Apps pseudo
filing system. You can see how this is done by
looking at the PreDesktop file which is well
commented, though note that a much easier
way of adding applications is described below.
You can add any commands that you like to this
file, but to maintain order you should fit them
into the appropriate category, and bracket any
added lines with the comments �|start� and
�|end�.

After the PreDesktop file has been run, the contents
of the directory $.!Boot.Choices.Boot.PreDesk are
run one by one in alphabetical order. This directory
can contain applications, modules, sprites or obey
files, all of which will be run just before the desktop is
started.

Once the pre-desktop procedures have been
completed, the desktop is started, and the
contents of the directory
$.!Boot.Choices.Boot.Tasks are run. By default,
this directory contains a configuration file (to set
things like the backdrop texture), and also the
!Boot file as saved from the Task Manager. You
can add anything that you wish to here, but
normally it would be applications that are added.
These are then run as if the user had opened a

directory display with them in and double-clicked
on them.

If you want to automatically Filer_Boot an application
(equivalent to opening a directory display containing
it), but not run it, then this can be done by putting the
application in the directory $.!Boot.Resources,
alongside the likes of !System and !Fonts.

ADDING RESOURCES 
Although both !Fonts and !System are buried
within !Boot, neither of them should be altered
directly, for fear of destroying data accidentally.
Instead, the Configure application invoked by
double-clicking on !Boot should be used to
merge fonts and system resources, as
described in the User Guide.

One thing that can be added directly is extra
monitor definition files. These are all contained
within the directory
$.!Boot.Resources.Configure.Monitors. The
definition files (probably supplied with the monitor)
can either be put in this directory directly, or, as is
the case for the standard Acorn files, grouped into a
sub-directory by manufacturer.

ADDING APPLICATIONS AND UTILITIES 
Another way that the computer can be
customised is by adding additional applications
to the Apps pseudo filing system. This can be
done simply by copying the desired applications
into the $.Apps directory. At start-up these will
automatically be added to the Apps filing
system and Filer_Booted (equivalent to
displaying a directory containing them).

You can also add any utility-type applications to
the $.Utilities directory. The boot sequence
Filer_Boots all of the applications in this directory
at start-up. This means that all the applications�
!Boot files get run, thus allowing them to perform
operations such as setting up filetypes and
filetype icons. So for example, if the $.Utilities
directory contained an application that processed
files of type, say, Template, then it would be
invoked automatically when a template file was
double-clicked on, even though the application
itself hadn�t been seen by the user.

RISC User August/September 1994 31

Fe
at
ur
e


