Customising the Risc

David Spencer explains the rather
involved auto-boot system used on the

Risc PC

f you ever get a chance to lock at a number
Iof different seriocus users camputers, there

is a good chance that you will find that each
has its own weird and wonderful boot
sequence to customise it to its owner s
requirements. The camplexity of the processes
involved in such customising has often been
criticised, and Acorn have responded by
incorporating what they call a structured boot
sequence into RISC OS 3.5 in the Risc PC.
However, I m sure that many Risc PC users
gave up as soon as they saw the innards of

tum set to nn the !Boot ggolication. Hence, !Boot
is always run on reset. Incidentally, double-
clicking on !Boot fram the Desktop invokes the
Configure application for altering (MOS RAM
setting. This is described in the RISC OS 3.5
User Guide. Therefore, !Boot is gpecial in that
runing it autamtically brings gbout a totally
different respmnse to ruming it exolicitly.

CUSTOMISING !BOOT

In its simplest form, !Boot can be custamised by
using the Desktop boot save box provided by
the Task Manager to save a Desktop Boot file
which holds details of the Desktop s history to
date, so for example, directory displays are
automatically opened in the same place, and
the pinboard is set up. This system is almost
unchanged since RISC 0S 3.1, though you
mist click om OK to use the default filenane,
rather than trying to drag the !Boot file
anywhere.

More detailed custamisation involves going into
the !Boot application directory, by double-

clicking
] B | ADFS::HardDiscé.$.!Boot B

Al

IBoot Help IRun Sprites

i @&
Sprites22 Choices Library PartNumber

| | 7
Resources Utils [

The ontents of the !Boot application directory.

the !Boot gpplication. Hopefully, though, this
article will meke matters samewhat clearer.

THE !BOOT APPLICATION

The Risc PC is shipped with an application called
IBoot an its hard drive, ard it is this that is
resonsible for setting wp the user s preferences.
By default, the QDS RAM aonfiguration is set to
auto-boot fram the default hard drive, vhich is in

RISC User August/September 1994

o it with chift held dowmn. The actual
intemal structure of !Boot is rather carplicated,
with a large murber of files and nested sub-
directories. Iuckily though, most of these files
and directories are fixed resources that do not
nead altering (and which shouldn t be altered) .
The main customising procedure concerns the
autamatic execution or lcading of applications
and other files during the start-up, and the

defining of system varidbles (such as file types).
These fall into two categories: files which are
executed before the desktap is started, and files
which are executed after it has been started. The
former category includes things such as modules
needed to drive additional hardware, whilst the
latter category includes iteams such as the !Boot
file saved fram the Task Manager as mentioned
erlier.

Tre file §$.!Boot.Choices.Boot.PreDesktop is an
Obey file that is run before the desktop is
started. The file is split into five sections by
function: setting of aliases for filetypes, the
setting of paths (such as the library path), the
setting of options, the registering of
applications, and finally, the setting of any
miscellaneous variables, such as an email
rame. All of these are fairly self-explanatory,
except for the registering of ggolications. What
this does is to use the AddApp command
(which is actually a program located elsewhere
in !Boot) to add goplicatians to the Apps pseudo
filing system. You can see how this is done by
looking at the PreDesktop file which is well
comented, though note that a much easier
way of adding applications is described below.
You can add any comends that you like to this
file, but to meintain order you should fit them
into the appropriate category, and bracket any
added lines with the comments |start and
led .

After the PreDesktop file has been nn, the antents
of the directary $. !Boot.Choices.Boot.PreDesk are
nn ae by ae in algeetical arder. This directary
cen amtain goplications, modules, sorites ar doey
files, all of vhichwill ke nn juet befre the dekinp is
started.

Once the pre-desktop procedures have been
carpleted, the desktop is started, and the
contents of the directory
$. !Boot.Choices.Boot.Tasks are run. By default,
this directory antains a anfigration file (to set
things like the backdrop texture), and also the
1Boot file as saved fram the Task Menager. You
can add anything that you wish to here, but
romelly it would be goplicatians that are added.
These are then mn as if the user had goened a

directory digplay with them in and dodole-clicked
on them.

If you vant to autaretically Filer Boot an goplication
(equivalent to quanirg a directary display amtaining
it), bt it 7 it, then this cn ke dore by pitting te
application in the directory $.!Boot.Resources,
alapside the likes of !Systen and !Rots.

ADDING RESOURCES

Although both !Fonts and !System are buried
within !Boot, neither of tham should be altered
directly, for fear of destroying data accidentally.
Instead, the Configure application invoked by
double-clicking on !Boot should be used to
merge fonts and system resources, as
described in the User Guide.

One thing that can be added directly is extra
monitor definition files. These are all amtained
within the directory
$. !Boot.Resources.Configure.Monitors . The
Gefinition files (ordeddly supdlied with the monitar)
cn either be pit in this directary directly, ar, as is
the case for the standard Acom files, grogeed into a
sub-directory by menufacturer.

ADDING APPLICATIONS AND UTILITIES
Another way that the computer can be
custanised is by adding additional applications
to the 2pps pseudo filing system. This can be
done simply by copying the desired applications
into the $.Apps directory. At start-up these will
automatically be added to the Apps filing
system and Filer Booted (equivalent to
displaying a directory amtaining them) .

You can also add any utility-type applications to
the $.Utilities directory. The boot sequence
Filer Boots all of the gplicatias in this directary
at start-up. This memns that all the goolicatians
1Boot files get nn, thus allowing them to perfarm
operations such as setting up filetypes and
filetype icms. So for example, if the $.Udlitdes
directory contained an application that processed
files of type, say, Tamlate, then it would be
invoked autaretically when a tewplate file was
double-clicked on, even though the application
itself hadn t been seen by the user. .

RISC User August/September 1994

