
ost programmers at one time or another will
have wished there was a way to call SWI
routines more easily, perhaps to test out an

effect or to get information from the operating
system. It is very easy to call SWIs from within
programs, and even from within Basic (using the
Basic keyword SYS), but unfortunately RISC OS
doesn�t provide a method of calling a SWI routine
from the command line. The program presented
here rectifies this.

WHAT THE PROGRAM DOES
The Basic program given in listing 1 creates and
saves a Relocatable Module called CLI_SWI in the
currently selected directory. When loaded, this
Module adds two new star commands to the OS:
*SWI and *SYS. Both commands do the same job
(and call the same piece of code) so it doesn�t
matter which one you use, but Basic programmers
will find it more natural to use *SYS while ARM
code programmers will find *SWI preferable.

USING CLISWI
Type in the listing carefully and save it as a
Basic program before running it (you could call
the program MakeCLISWI if you want to give it a
meaningful name). Once you have run the
program to create the module, double-clicking
on the module itself will install it (or you can
include a line in your boot file to do this).

The commands work in a similar way to the
Basic SYS keyword as far as parameter
passing is concerned. The *SYS or *SWI
command is followed by either the name of the
SWI, enclosed in quotes, or the SWI number
itself. This in turn is followed by the parameters
to be passed to the SWI, separated by
commas. Numbers may be passed in
hexadecimal if they are preceded by a �&�
character. If you want to pass a string as a
parameter, you must enclose it in quotes. As
with the Basic SYS keyword, if you pass a
string as one of the parameters, it is stored in a
buffer and the pointer to this buffer is passed
instead. Values returned by the SWI are stored
in the system variables R$0 to R$7.

As an example of how to use *SWI and *SYS,
here�s how to call the same SWI routine using all

three methods:
Basic

SYS "OS_File",17,"MyFile"
Assembly Language

MOV R0,#17
ADR R1,filename
SWI "OS_File"
...
.filename
EQUS "MyFile"+CHR$(0)

Using CLI SWI
*SWI "OS_File",17,"MyFile"

or
*SYS "OS_File",17,"MyFile"

HOW THE MODULE WORKS
When either of the commands is issued, the first
thing the module has to do is make a copy of the
parameter string so it can be processed. As it is
copied, commas are replaced by ASCII 1 and quotes
by ASCII 2. This allows them to be used as end of
string terminators while still allowing them to be
distinguished from each other. The first parameter,
the SWI identifier, is then processed. If this is a
number it is converted from the parameter string
using �OS_ReadUnsigned�. This SWI has the added
bonus of translating hexadecimal numbers if the &
character is present. If the identifier is a name, it is
converted into a number by
�OS_SWINumberFromString�.

Once the SWI number is known, it is turned into
the actual SWI machine code instruction by adding
&FF000000. Then, to make sure it doesn�t produce
any errors when called, it is turned into the �X�
form by adding &20000. The instruction is then

RISC User August/September 1994 45

Take Command of
your SWIs

Jonathan Hunt describes a special
module that lets you issue SWI calls from
the command line

M

stored just before the end of the code, where it will
be executed later on.

The next job to be done is to load registers R0-R7
with the passed parameters. They are not loaded
directly because some of the registers need to be
used as counters in the processing loop, so they
are held in a block of memory for later transfer.
The parameters are processed in order. If a
parameter is a number it is stored as it stands. If it
is a string then the pointer to that string is stored.
After all the parameters have been processed and
stored in memory, they are loaded into R0-R7.

The last job to be done is to scan the copied
parameter string, and replace any instances of
character 1 or 2 with character 0. This is done in case
any fussy SWI routines need zero as an end of string
terminator.

Now everything is set up, the SWI instruction can
be executed. If any errors occur while executing
the SWI, the V flag will be set, and when the
module returns control to the OS, the error will be
handled automatically. If no errors occur, the
returned registers are stored back in memory and
are then copied one by one into the system
variables R$0 to R$7 before the module returns
control to the OS.

10 DIM module% 1024
20 PROCassem
30 SYS "OS_File",10,"CLI_SWI",&FFA,,m

odule%,module%+P%
40 END
50 :
60 DEFPROCassem
70 FOR pass%=4 TO 6 STEP 2
80 P%=0
90 O%=module%
100 [OPT pass%
110 EQUD 0
120 EQUD 0
130 EQUD 0
140 EQUD 0
150 EQUD title
160 EQUD help
170 EQUD commands
180 .title
190 EQUS "CLI_SWI"+CHR$(0)
200 ALIGN
210 .help

220 EQUS "CLI SWI"+CHR$(9)+CHR$(9)+"
1.00 ("+MID$(TIME$,5,11)+")"+CHR$(0)
230 ALIGN
240 .commands
250 EQUS "SWI"+CHR$(0)
260 ALIGN
270 EQUD swi
280 EQUB 1
290 EQUB 0
300 EQUB 1
310 EQUB 0
320 EQUD swisyntax
330 EQUD swihelp
340 EQUS "SYS"+CHR$(0)
350 ALIGN
360 EQUD swi
370 EQUB 1
380 EQUB 0
390 EQUB 1
400 EQUB 0
410 EQUD syssyntax
420 EQUD syshelp
430 EQUD 0
440 .swi
450 STMFD R13!,{R7-R11,R14}
460 MOV R2,#0
470 ADR R1,buffer
480 .transferloop
490 LDRB R3,[R0,R2]
500 MOV R4,R3
510 CMP R3,#44
520 MOVEQ R4,#1
530 CMP R3,#34
540 MOVEQ R4,#2
550 STRB R4,[R1,R2]
560 ADD R2,R2,#1
570 CMP R2,#256
580 BGE endtransfer
590 CMP R3,#32
600 BGE transferloop
610 .endtransfer
620 MOV R4,#0
630 SUB R2,R2,#1
640 STRB R4,[R1,R2]
650 LDRB R3,[R1,#0]
660 CMP R3,#2
670 BNE number
680 .name
690 ADD R1,R1,#1
700 MOV R9,R1
710 SWI "XOS_SWINumberFromString"
720 LDMVSFD R13!,{R7-R11,PC}
730 MOV R10,R0
740 B loadregs

RISC User August/September 199446

Fe
at
ur
e

750 .number
760 MOV R9,R1
770 MOV R0,#0
780 SWI "XOS_ReadUnsigned"
790 LDMVSFD R13!,{R7-R11,PC}
800 MOV R10,R2
810 .loadregs
820 LDR R11,swiaddr
830 AND R11,R11,#&FF000000
840 ORR R11,R11,R10
850 ORR R11,R11,#&20000
860 STR R11,swiaddr
870 MOV R8,#0
880 MOV R11,#0
890 ADR R12,regs
900 .loadloop
910 LDRB R3,[R9,R8]
920 ADD R8,R8,#1
930 CMP R8,#256
940 BGE endload
950 CMP R3,#2
960 BGE loadloop
970 CMP R3,#0
980 BEQ endload
990 LDRB R3,[R9,R8]
1000 CMP R3,#2
1010 BNE regnumber
1020 .regstring
1030 ADD R7,R9,R8
1040 ADD R7,R7,#1
1050 STR R7,[R12,R11]
1060 ADD R11,R11,#4
1070 CMP R11,#32
1080 BLT loadloop
1090 B endload
1100 .regnumber
1110 MOV R0,#0
1120 ADD R1,R9,R8
1130 SWI "XOS_ReadUnsigned"
1140 LDMVSFD R13!,{R7-R11,PC}
1150 STR R2,[R12,R11]
1160 ADD R11,R11,#4
1170 CMP R11,#32
1180 BLT loadloop

1190 .endload
1200 MOV R2,#0
1210 .charloop
1220 LDRB R3,[R9,R2]
1230 MOV R4,R3
1240 CMP R3,#2
1250 MOVLE R4,#0
1260 STRB R4,[R9,R2]
1270 ADD R2,R2,#1
1280 CMP R2,#256
1290 BGE endchar
1300 CMP R3,#0
1310 BGT charloop
1320 .endchar
1330 LDMIA R12,{R0-R7}
1340 .swiaddr
1350 SWI 0
1360 LDMVSFD R13!,{R7-R11,PC}
1370 ADR R12,regs
1380 STMIA R12,{R0-R7}
1390 ADR R0,varname
1400 ADR R1,buffer
1410 MOV R2,#4
1420 MOV R3,#0
1430 MOV R4,#1
1440 ADD R5,R0,#2
1450 MOV R6,#48
1460 MOV R7,#0
1470 .returnloop
1480 STRB R6,[R5]
1490 ADD R6,R6,#1
1500 LDR R8,[R12,R7]
1510 STR R8,[R1]
1520 SWI "XOS_SetVarVal"
1530 ADD R7,R7,#4
1540 CMP R7,#32
1550 BNE returnloop
1560 LDMFD R13!,{R7-R11,PC}
1570 .swihelp
1580 EQUS "*SWI calls a SWI routine."
+CHR$(13)+"Syntax: *SWI "+CHR$(34)+"<SWI
name>"+CHR$(34)+"|<SWI number>,r0,r1,r2
..."+CHR$(0)
1590 .swisyntax

RISC User August/September 1994 47

Fe
at
ur
e

Important Announcement

You may have noticed that in this issue the name of RISC Developments has been dropped from
the magazine. Unfortunately RISC Developments Ltd was forced to cease trading on 8th August
1994 as a result of losses associated with the production of Beebug magazine during the last year
of its life.

RISC User magazine and the software and hardware products previously produced by RISC
Developments will now be part of BEEBUG Ltd. This will not affect the magazine in any way, and

