
f your programs need a little extra something
to make them look exciting, why not add a
touch of gratuitous graphic artistry? Displaying

and manipulating sprites is really quite simple,
and the routines presented here will enable you
to do it in style. In this article we will be
describing procedures to plot sprites on the
screen in various ways including scaling. A
second article in the near future will introduce

other transformation processes including
rotation and shearing. These

procedures can easily be
incorporated into your

own single-
tasking

programs. A future article in the Wimp Topics
series will cover the use of sprites in multi-
tasking windows.

The heart of all these routines is the SWI
�OS_SpriteOp� (SWI &2E) which can perform a
multitude of operations on a chosen sprite,
depending on the reason code supplied in R0.
The particular reason code we will be making
most use of is 56, which plots a sprite according
to certain transformation processes specified in
the other parameters to the call. We will assume
that the sprite to be manipulated is in a user
sprite area kept within the program�s memory,
and so when we refer in the article to
OS_SpriteOp 56, we really mean 256+56, since
256 must be added to the reason code to

access a user sprite. The call is quite complex
and so the descriptions will necessarily be
somewhat technical, but even if you don�t
understand how it works you can still use the
procedures in your programs.

First of all we need to set up a sprite
area and load the required

sprite(s) into it. This is
done with a

standard

procedure as follows:
DEF PROCload_sprites(spfile$)
SYS "OS_File",5,spfile$ TO ,,,,size%
DIM sp% size%+4:!sp%=size%+4:sp%!8=16
SYS "OS_SpriteOp",256+10,sp%,spfile$
ENDPROC

This assumes that spfile$ holds the pathname
of the sprite file. OS_File 5 finds the length of
the file, and a block of memory to hold it (plus 4
bytes for the first word of the header) is
dimensioned at sp%. The file is then loaded
with OS_SpriteOp 10.

Next we need to find out the size of the sprite
and relate it to the screen size in the current
mode. This is done as follows (assuming that
spr$ contains the name of the sprite):
DEF PROCread_sprite_info

LOCAL x%,y%
SYS "OS_SpriteOp",256+40,sp%,spr$ TO ,
,,xpix%,ypix%
SYS "OS_ReadModeVariable",-1,4 TO ,,x%

RISC User July 1994 45

All Things Sprite and
Beautiful

Liven up your programs with some
exciting sprite displays. Alan Wrigley

I

Figure 1.
A simple sprite
can make an
attractive display



SYS "OS_ReadModeVariable",-1,5 TO ,,y%
spx%=xpix%<<x%:spy%=ypix%<<y%
ENDPROC

Here we have used OS_SpriteOp 40 to read the
sprite size in pixels, and converted these to OS
units (in spx% and spy%) by reading the xeig
and yeig factors for the current mode (these
factors indicate how many bits to shift the co-
ordinate to the right to get the number of OS
units). Note that if you are displaying more than
one sprite, this process must be done for each
sprite, and separate values of spx% and spy%
held for each.

IT�S ALL IN THE PLOT
Once this is done we can think about putting
the sprite on the screen. Find a suitable sprite
of a reasonable size - a piece of text as shown
in Figure 1 can make an attractive display. The
particular one shown here is a mode 15 sprite
with a mask, 326x26 pixels in size. To start
with, let�s simply display the sprite at whatever
scale we choose. This can be done with the
following procedure:
DEF PROCscale(spr$,x%,y%,scx,scy)
dest%!0=x%*256
dest%!4=(y%+spy%*scy)*256
dest%!8=(x%+spx%*scx)*256
dest%!12=(y%+spy%*scy)*256
dest%!16=(x%+spx%*scx)*256
dest%!20=y%*256
dest%!24=x%*256:dest%!28=y%*256
SYS "OS_SpriteOp",256+56,sp%,spr$,1,,8
,dest%
ENDPROC

The procedure is called with five parameters,
the first of which is the name of the sprite. After
this come the x and y co-ordinates of the
bottom left-hand corner of the plot position, and
finally the x and y scale factors.

At this point some explanation of OS_SpriteOp
56 is required. The parameters we have used
here are as follows:

R0 = 56
R1 = pointer to sprite area
R2 = pointer to sprite name
R3 = flags (see text)
R4 = only used if R3 bit 1 is set
R5 = GCOL action (+8 if mask to be used)
R6 = pointer to destination co-ordinate block
R7 = pixel translation table (0 if none)

Some of the registers can hold different
parameters depending on the state of the flags
in R3. Here we have set bit 0, meaning �treat
R6 as a destination co-ordinate block pointer�.
We will make use of other settings in a
subsequent article.

The destination co-ordinate block is 32 bytes
long, and contains the co-ordinates of the area
in which the sprite will be plotted, in 1/256th OS
units. This doesn�t have to be a rectangle,
though it must be a parallelogram. This enables
you to plot the sprite so that it appears slanted.
Because of this, four sets of co-ordinates are
needed rather than two, and these are placed
into the destination block in the following order:
top left (x,y), top right (x,y), bottom right (x,y),
bottom left (x,y). The co-ordinates required are
calculated by multiplying the width or height of
the sprite by the appropriate scale factor, and
again by 256 to get the correct values in
1/256th OS units as required by the call.
The following program will therefore display a
sprite called �MySprite�, contained in a file
adfs::0.$.Sprites, at OS co-ordinates 100,300,
with both its width and height 50% greater than
the original:
MODE n:CLG
DIM dest% 31
PROCload_sprites("adfs::0.$.Sprites")
spr$="MySprite"
PROCread_sprite_info
PROCscale(spr$,100,300,1.5,1.5)

Note that we have not performed any colour
translation in this simple example, so the mode

number in the first line (the value of n)
must have the same number of colours
as the sprite.

Try experimenting with this simple example to
achieve some different effects. For example,
you could alter either or both of the scale
factors. If you alter one and not the other, the
proportions of the sprite will change. You could
also try slanting the text by adding an offset to
two of the co-ordinates. For example, the
bottom left and bottom right x co-ordinates
could be shifted 50 units to the right by altering
lines 6 and 8 of PROCscale as follows:
dest%!16=(x%+50+spx%*scx)*256
dest%!24=(x%+50)*256:dest%!28=y%*256

RISC User July 199446

Fe
at
ur
e



Note that if the resulting co-ordinates do not form
a parallelogram the SWI will generate an error.

Now try calling PROCscale in a loop as follows:
FOR n=1 TO 60
PROCscale(spr$,100+6*n,800-6*n,0.2+n/
70,0.2+n/70)
NEXT

This plots the sprite repeatedly, each time
shifting the starting co-ordinates and the size by
a small amount. The result is shown in Figure 1.

FLIPPING SPRITES
Now let�s rotate the sprite. To do this
we use another couple of reason codes
for OS_SpriteOp. Reason code 33 flips a

sprite about its x axis, while 47 does the same
for the y axis. So the following two procedures
will flip the sprite horizontally (PROCflipx) or
vertically (PROCflipy). Note that the alteration is
made to the sprite as held in the sprite area, so
it will remain flipped whenever it is displayed in
future unless you carry out a reverse operation
before you want to use it the right way round
again.
DEF PROCflipx(spr$)
SYS "OS_SpriteOp",256+33,sp%,spr$
ENDPROC

DEF PROCflipy(spr$)
SYS "OS_SpriteOp",256+47,sp%,spr$
ENDPROC

You could now plot three copies of the sprite,
with the second flipped vertically and the third
flipped on both axes, as follows:
PROCscale(spr$,200,600,1.2,1.2)
PROCflipx(spr$)
PROCscale(spr$,200,400,1.2,1.2)
PROCflipy(spr$)
PROCscale(spr$,200,200,1.2,1.2)

Don�t forget to call PROCflipx and PROCflipy
again afterwards if you want the sprite the right
way round in future.

SINE HERE
Finally for this month we will introduce three
routines that create patterns from multiple
plottings of a sprite. PROCswirl creates a whorl,
PROCsinewave does exactly what it suggests,
while PROCsnake produces a serpentine

object. Figure 2 shows the results.

DEF PROCswirl(spr$,xcent%,ycent%,sangl
e%,eangle%,stepang%,swrad%)
IF stepang%=0 ERROR 1,"Angle step size
cannot be zero"
FOR omega%=sangle% TO eangle% STEP ste
pang%
swrad%-=2
x%=xcent%+swrad%*COSRADomega%
y%=ycent%+swrad%*SINRADomega%
swf=5000/swrad%/swrad%
PROCscale(spr$,x%,y%,swf,swf)
NEXT
ENDPROC

DEF PROCsinewave(spr$,magnif,ycent%,am
p%,freq,step%)
mag=0.1
FOR sangle%=-180 TO 0 STEP step%
x%=sangle%*freq+640
y%=ycent%+amp%*SINRADsangle%
PROCscale(spr$,x%,y%,mag,mag)
mag+=magnif
NEXT
FOR sangle%=step% TO 180 STEP step%
x%=sangle%*freq+640
y%=ycent%+amp%*SINRADsangle%
PROCscale(spr$,x%,y%,mag,mag)
mag-=magnif
NEXT
ENDPROC

DEF PROCsnake(spr$)
x%=100

RISC User July 1994 47

Fe
at
ur
e

Figure 2.
A combination of
swirl, sinewave
and snake effects


