Using the Colour

David Spencer shows how your programs
can use the new RISC OS 3.5 Colour

Picker.

ISC 0S 3.5 includes a standard Colour
R Picker which is used by the likes of Draw
to select colours. There are four main
reasons why your own Wimp applications
should also use this in preference to any other
method:
1. It gives a professional feel to an
gplication.
2. It is more economic in terms of code
space and development time.
3. It provides a consistent user interface
across gpplications.
4, Tt will autaratically agpe with future extra
colour models such as a Pantone colour
selectar.

The purpose of this article is to show just how
the Colour Picker can be utilised by
programmers, and give a simple example.
Whilst the information is relevant to any
programming language, the emphasis is
towards use with Basic, as this is still the
language used by most non-professional
developers.

THE BASIC THEORY

The Colour Picker is invoked from a host
application by issuing a SYS call to open the
picker dialogue bax. It then registers itself as a
Winp filter which means that it can intercept
Winmp Poll calls and carry on its business
independently of the host until something
interesting happens (such as the user picking a
colaur) . When a colaur is chosen, the choice is
returned to the user via a Winmp message. A
second Wimp message is used to request that
the host issues a SYS call to close the picker

RISC User July 1994

box, for example after the user has clicked
Select on OK. It is also possible to monitor
colour changes as the user makes them via a
third message. The host can choose to receive
details of the current colour selection either
each time the user finishes dragging ane of the
kars, or continuously during a drag. Coviously,
which method you choose will depend on the
application. For example, when setting the
background colour of a DIP document frame
then you probably don t need to know the
colarr at all until the user clicks an K, whilst a
drawing package may want to respond as the
user plays around with the colaur selection.

Despite the fact that the Golour Picker sugports
several colour models, such as RGB and HSB,
the colour retumed to the host are always given
as RGB values, because these are the most
comonly used form within RISC OS. However,
to allow the Colour Picker to be re-cpened in
the eact state it was left in, it also retums a set
of parameters that are specific to the colour
model in use, and can be treated as a black box
by the host. The collection of R@B colour and
these additional parameters is temmed a colour
block , and takes the following form:

?block 0

block?1 Red component (0-255)
block?2 Green camponent (0-255)
block?3 Blue carponent (0-255)
block!4 Lergth of rest of block
block!8 Colour model number
block!12 Model specific data

Although the host ggolication is anly likely to
need the red, green and blue camponents, it
shauld save the rest of the block for next time
the CGolaur Picker is called. The total legth that
needs to be saved is given by the value at
(olock!4) + 8 (this to allow for the first two
words) . The first time the Colour Picker is called
in a given amtext, it is sufficient sinply to pass
a starting RGB value, and set the word at
block!4d to zero. This will default to the R®B
colour model.

DOWN TO WORK
Having described the principles, and the format

of colaur blocks, it is time to move an to the
actel calls.

A (olour Picker dialogue box is opened by the
all:
SYS "ColourPicker. OpenDialogue",
flags,block TO handle

Qurently, flags can anly be set to 0 to indicate
a static dialogue bak, or 1 for a trensient box,
which is closed automatically when OK or
Cancel are clicked on. Typically, transient
boxes are used when they form part of a menu
tree. The varidble block points to a parameter
block with the following fommat, detailing the
dialogue box:

Iblock option

terms, although in practice, x0 and y1 should be
set to the coordinate of the top-left comer, v0
should be &80000000, x1 should be
&TFFFFFFF, and both =xscroll and yscroll
should be 0. This will ensure that the picker box
is fully visible. Finally, the block cmtains the
arbitrary length colour block described above.

Once the picker box has been created, a
handle is retumed to the host. This can be used
to identify the picker box in the case of one
application allowing several picker boxes to ke
open at once.

flag
block!4

title (0 for Gefalt)
block!s 30
plock!12 10
block!16
block!20 vl
block!24 secroll
block!28 yerroll

pointer to

block!32
block starts here

the colour

The option flags should
not be confused with
the flags already
described. If bit 0 of the
i flags is set, then
the picker box will have a nxe ootim, ad if
bit 1 is set, then this none option will be
selected by default. Bits 2 and 3 define how
often feadoack is passed to the host. If both bits
are zero it means that the host is only ever
infomed when (K is clicked. If bit two is set it
will inform the host whenever the colour
selectim is mede, whilst setting bit 3 will infom
the host whenever the colour is changed,
including in the middle of a drag. All the other
option flags must be set to zero.

The pointer to the picker box title should be self
explaratory - with 0 using the default of Colour
choice . The next six parameters determine the
position of the picker box in normal Wimp

Picker Demo

o

Iy
Eii 1

W RGE _JTOMYE) HSY

Bl

[ket [o] s
_J Green | '.'-h.hl F

07| ¢ L%

¢

|

J:“Fuus el _J

When the user finally chooses a colour by
clicking on OK, the host is sent the message
number &47700. This is a standard Wimp
message block, with the following data:

polldata+20 picker box handle
polldatat2d flags
(it 0 st if roe dose)
polldata+28 colour block starts here

As already said, the R@B oolour is read fram
the first word of the coloar block (polldata+28) .

If the host has opted for continuous updates as
the user chooses, these are returned in a
similar way to the final choice above, except
that the message number is &47701, and the

RISC User July 1994

Running the
example
program.

flags are extended so that bit 1 is set if a drag
of a colarr bar is aurrently in progress.

The host can at any time find the state of a
picker box using the call:

SYS "ColourPicker. ReadDialogue",handle,
block
which will fill the buffer pointed to by block with
data in the same format used to create the
picker box. However, the colour block retumed
will ke that at the present time, and not when
the picker box was created. If block is set to
zero, then the call instead retums in register R1
the legth that the buffer nesds to be.
The host can also update the picker box whilst
it is goen wsing the call:

SYS "ColourPicker. UpdateDialogue",

changes, handle, block
The setting of bits in changes determines what
attributes are changed:

Bit 0 Change presence of none button

Bit 1 Change state of none button
Bit 2 Change continuous report option
Bit 3 Change position
Bit 5 Change title
Bit 6 Change RGB colour
Bit 7 Change whole colour model
handle specifies the picker box to alter, and
block points to a description block as used to
create the picker bok, except that only the iters
being changed need to be present.

A picker box can be closed at any time using
tre all:

SYS "ColourPicker. CloseDialogue",0,handle
where handle is as returned when the picker
box was created. When the user clicks Select
o OK or Cancel of a static picker box, the
Colour Picker sends the host a message
&47702, with polldatat+20 containing the picker
box handle. The host should then make the
above call to close the picker box. Transient
picker boxes are closed autamtically.

AN EXAMPLE PROGRAM

Listing 1 is a fully self contained example
program, fram which it should be easy to see
how the Colour Picker is used. When run, it
opens a fixed size window ootaining a circle.
Clicking anywhere in the window will open the

RISC User July 1994

colarr picker allowing the colouar of the circle to
be changed, although any changes are only
reflected when you click on OK . If None is
selected then an outline circle is shown. The
application quits as som as the main window is
closed.

This month s magazine disc contains a slightly
modified version of the example program which
inmplerents the colour picker as part of a memu
structure, and also allows for continuous update
of the circle s colaur.

10 REM > !RunImage

20 REM Version A 1.0

30 REM Author David Spencer

40 REM RISC User July 1994

50 REM Program Subject to Copyright

60 REM Mot Public Darein

:

80 DIM taskid% 4:$taskid%="TASK"

90 DIM messages% 12,cblock% 100

100 DIM name% 12:$name%="Picker Demo"
110 colour%=-1:pick%=0:messages%!0=&47
700

120 messages%!4=&47702:messages%! 8=0
130 !cblock%=0:cblock%!4=0

140 SYS "Wimp Initialise",300, !taskid%
,name%,messages%

150 DIM g% 256,buffer% &200:main%=FNcw
indow

160 !g%=main%:SYS "Wimp_OpenWindow",,q
170 ONERROR PROCerrorbox:SYS "Wimp_Cre
ateMeru", , -1

180 REPEAT

190 SYS "Wimp Poll",1,q% TO A%

200 CASE A% OF

210 WHEN 1:PROCredraw_window(!qg%)

220 WHEN 2:SYS "Wimp_OpenWindow",,g%
230 WHEN 3:PROCfinish:END

240 WHEN 6:PROCopenpicker (!g%,q%!4)
250 WHEN 17,18:PROCreceive (g%)

260 ENDCASE
270 UNTIL FALSE
20 :

290 DEF PROCopenpicker (x,y)

300 IF pick%=0 THEN

310 IF colour%=-1 !g%=3 ELSE !g%=1

320 g%!4=name%:q%!8=x:9%!12=&80000000

330 g%!16=&7FFFFFFF:q%!20=y:0%!24=0:0%
128=0

340 FOR F%=0TOcblock%!4+7

350 g%? (32+F%)=cblock%?F%:NEXT
360 SYS "ColourPicker. OpenDialogue",0,
g% TO pick%

370 ENDIF

380 ENDPROC

390 :

400 DEF PROCreceive (g%)

410 CASE ¢%!16 OF

420 WHEN 0:PROCfinish:END
430 WHEN &47700:PROCchoice (g%)
440 WHEN &47702:SYS "ColourPicker Cl

oseDialogue", 0,0%!20:pick%=0

450 ENDCASE

460 ENDPROC

470 -

480 DEF PROCfinish

490 IF pick% SYS "ColourPicker CloseDi
alogue", 0,pick%

540 FOR F%=0TOq%!32+7

550 cblock9°F9=q9'(28+F9):NEXT

560 IF (g%!24 AND 1)

570 colour%=-1

580 ELSE

590 colour%=!cblock%

600 ENDIF

610 SYS "Wimp ForceRedraw",main%, 0, -40
0,400,0

620 ENDPROC

630 :

640 DEF FNcwindow

650 g%!4=400:0%!8=400:0%!12=800:0%!16=
800

660 o%!20=0:0%124=0:G%!28=-1:0%!32=887
000002

670 g%?36=7:0%!37=2:0%!38=7:0%!39=0:0%
140=0

680 g%!44=0:q0%!48=-400:0%!52=400:q%!56
=0

690 g%!60=9:0%!64=&3000:0%!68=0:0%!72=

500 SYS "Wimp_CloseDown" 0

510 ENDPROC 700 $(g%+76)="Picker Demo":qg%!88=0 »
50 710 SYS "Wimp_CreateWindow",,q%+4 TO
530 DEF PROCchoice (q%) H

Whether you are programming in Basic or in C,
DeskEdit 3 provides a massive range of features to

n 150 special key combinations
n Edit and Run direct from the Desktop

n Automated Backups

n Debugger, Throwback, Extended info

n Powerful toolbox of utilities

n A wealth of procedure & function finders

you’ll wonder how you ever managed without it

1SC

By RISC Develogrents Ltd.,
‘devel opiments

One of the most powerful and widely-used

Tools

Calculator
Basic renumber i
[Basic Indenter B
v/ Basic abbrev's
Keyword help
List proc/fns
Hotes browser
Proc browsertt
Proc browser

B

| Finds browser b |

/ Proc enphasize

losonssss s s s b
=
= =

| [Liste 1

Basic_indenter

[E2] TF-THEW-ELSE
[FOR-HERT

[ZIREPEAT-UNTIL

[EZ] WHILE-ENDHHILE

[E2] CASE-ERDCRSE

DeskEdit
Hisc B
Save F3 B
Select 4
Edit B
Display 2
Language Bl
Tools g
Quick search by
Clipboard I
Harkers bl
Set filetype Py
Hacros B
Fage setup b|
Hardeopy 4
User Comnands I
Hike 0 fpp

Indent by: [2]

[&]
S
L5
& Oy
&
N
> o}

ENDL NS :
IFdE'/.(t'/.)?aunu 7L)=6THENF i
FROCFix (Fi11%, FALSE)

ENDIF

ENDPRIJC
DEFFchuntco]s(Pth$)
LOCALE

f 1
H ounf?ls)
PTR#EY=R

DeskEdit comes with a fully illustrated 70 page manual (with comprehensive index), a
function keystrip and a smart quick reference card - together with a Desktop Dustbin,

DeskEdit 3

Upgrade from DeskEdit 2

RISC User July 1994

117 Hatfield Road, St Albans, Herts ALl 4JS. Tel.

