
ISC OS 3.5 includes a standard Colour
Picker which is used by the likes of Draw
to select colours. There are four main

reasons why your own Wimp applications
should also use this in preference to any other
method:

1. It gives a professional feel to an
application.

2. It is more economic in terms of code
space and development time.

3. It provides a consistent user interface
across applications.

4. It will automatically cope with future extra
colour models such as a �Pantone� colour
selector.

The purpose of this article is to show just how
the Colour Picker can be utilised by
programmers, and give a simple example.
Whilst the information is relevant to any
programming language, the emphasis is
towards use with Basic, as this is still the
language used by most non-professional
developers.

THE BASIC THEORY
The Colour Picker is invoked from a host
application by issuing a SYS call to open the
picker dialogue box. It then registers itself as a
Wimp filter which means that it can intercept
Wimp_Poll calls and carry on its business
independently of the host until something
interesting happens (such as the user picking a
colour). When a colour is chosen, the choice is
returned to the user via a Wimp message. A
second Wimp message is used to request that
the host issues a SYS call to close the picker

box, for example after the user has clicked
Select on OK. It is also possible to monitor
colour changes as the user makes them via a
third message. The host can choose to receive
details of the current colour selection either
each time the user finishes dragging one of the
bars, or continuously during a drag. Obviously,
which method you choose will depend on the
application. For example, when setting the
background colour of a DTP document frame
then you probably don�t need to know the
colour at all until the user clicks on OK, whilst a
drawing package may want to respond as the
user plays around with the colour selection.

Despite the fact that the Colour Picker supports
several colour models, such as RGB and HSB,
the colour returned to the host are always given
as RGB values, because these are the most
commonly used form within RISC OS. However,
to allow the Colour Picker to be re-opened in
the exact state it was left in, it also returns a set
of parameters that are specific to the colour
model in use, and can be treated as a black box
by the host. The collection of RGB colour and
these additional parameters is termed a �colour
block�, and takes the following form:

?block 0
block?1 Red component (0-255)
block?2 Green component (0-255)
block?3 Blue component (0-255)
block!4 Length of rest of block
block!8 Colour model number
block!12 Model specific data
...

Although the host application is only likely to
need the red, green and blue components, it
should save the rest of the block for next time
the Colour Picker is called. The total length that
needs to be saved is given by the value at
(block!4) + 8 (this to allow for the first two
words). The first time the Colour Picker is called
in a given context, it is sufficient simply to pass
a starting RGB value, and set the word at
block!4 to zero. This will default to the RGB
colour model.

DOWN TO WORK
Having described the principles, and the format

RISC User July 199428

Using the Colour
Picker

David Spencer shows how your programs
can use the new RISC OS 3.5 Colour
Picker.

R

of colour blocks, it is time to move on to the
actual calls.

A Colour Picker dialogue box is opened by the
call:

SYS "ColourPicker_OpenDialogue",
flags,block TO handle

Currently, flags can only be set to 0 to indicate
a static dialogue box, or 1 for a transient box,
which is closed automatically when OK or
Cancel are clicked on. Typically, transient
boxes are used when they form part of a menu
tree. The variable block points to a parameter
block with the following format, detailing the
dialogue box:

!block option
flags

block!4 pointer to
title (0 for default)

block!8 x0
block!12 y0
block!16 x1
block!20 y1
block!24 xscroll
block!28 yscroll

block!32 the colour
block starts here
...
The option flags should
not be confused with
the flags already
described. If bit 0 of the
option flags is set, then
the picker box will have a �none� option, and if
bit 1 is set, then this �none� option will be
selected by default. Bits 2 and 3 define how
often feedback is passed to the host. If both bits
are zero it means that the host is only ever
informed when OK is clicked. If bit two is set it
will inform the host whenever the colour
selection is made, whilst setting bit 3 will inform
the host whenever the colour is changed,
including in the middle of a drag. All the other
option flags must be set to zero.

The pointer to the picker box title should be self
explanatory - with 0 using the default of �Colour
choice�. The next six parameters determine the
position of the picker box in normal Wimp

terms, although in practice, x0 and y1 should be
set to the coordinate of the top-left corner, y0
should be &80000000, x1 should be
&7FFFFFFF, and both xscroll and yscroll
should be 0. This will ensure that the picker box
is fully visible. Finally, the block contains the
arbitrary length colour block described above.

Once the picker box has been created, a
handle is returned to the host. This can be used
to identify the picker box in the case of one
application allowing several picker boxes to be
open at once.

When the user finally chooses a colour by
clicking on OK, the host is sent the message
number &47700. This is a standard Wimp
message block, with the following data:

polldata+20 picker box handle
polldata+24 flags

(bit 0 set if �none� chosen)
polldata+28 colour block starts here

...
As already said, the RGB colour is read from
the first word of the colour block (polldata+28).
If the host has opted for continuous updates as
the user chooses, these are returned in a
similar way to the final choice above, except
that the message number is &47701, and the

RISC User July 1994 29

Fe
at
ur
e

Running the
example
program.

flags are extended so that bit 1 is set if a drag
of a colour bar is currently in progress.

The host can at any time find the state of a
picker box using the call:

SYS "ColourPicker_ReadDialogue",handle,
block
which will fill the buffer pointed to by block with
data in the same format used to create the
picker box. However, the colour block returned
will be that at the present time, and not when
the picker box was created. If block is set to
zero, then the call instead returns in register R1
the length that the buffer needs to be.
The host can also update the picker box whilst
it is open using the call:

SYS "ColourPicker_UpdateDialogue",
changes,handle,block

The setting of bits in changes determines what
attributes are changed:

Bit 0 Change presence of �none� button
Bit 1 Change state of �none� button
Bit 2 Change continuous report option
Bit 3 Change position
Bit 5 Change title
Bit 6 Change RGB colour
Bit 7 Change whole colour model

handle specifies the picker box to alter, and
block points to a description block as used to
create the picker box, except that only the items
being changed need to be present.

A picker box can be closed at any time using
the call:

SYS "ColourPicker_CloseDialogue",0,handle
where handle is as returned when the picker
box was created. When the user clicks Select
on OK or Cancel of a static picker box, the
Colour Picker sends the host a message
&47702, with polldata+20 containing the picker
box handle. The host should then make the
above call to close the picker box. Transient
picker boxes are closed automatically.

AN EXAMPLE PROGRAM
Listing 1 is a fully self contained example
program, from which it should be easy to see
how the Colour Picker is used. When run, it
opens a fixed size window containing a circle.
Clicking anywhere in the window will open the

colour picker allowing the colour of the circle to
be changed, although any changes are only
reflected when you click on �OK�. If �None� is
selected then an outline circle is shown. The
application quits as soon as the main window is
closed.

This month�s magazine disc contains a slightly
modified version of the example program which
implements the colour picker as part of a menu
structure, and also allows for continuous update
of the circle�s colour.

10 REM > !RunImage
20 REM Version A 1.0
30 REM Author David Spencer
40 REM RISC User July 1994
50 REM Program Subject to Copyright
60 REM Not Public Domain
70 :
80 DIM taskid% 4:$taskid%="TASK"
90 DIM messages% 12,cblock% 100
100 DIM name% 12:$name%="Picker Demo"
110 colour%=-1:pick%=0:messages%!0=&47
700
120 messages%!4=&47702:messages%!8=0
130 !cblock%=0:cblock%!4=0
140 SYS "Wimp_Initialise",300,!taskid%
,name%,messages%
150 DIM q% 256,buffer% &200:main%=FNcw
indow
160 !q%=main%:SYS "Wimp_OpenWindow",,q
%
170 ONERROR PROCerrorbox:SYS "Wimp_Cre
ateMenu",,-1
180 REPEAT
190 SYS "Wimp_Poll",1,q% TO A%
200 CASE A% OF
210 WHEN 1:PROCredraw_window(!q%)
220 WHEN 2:SYS "Wimp_OpenWindow",,q%
230 WHEN 3:PROCfinish:END
240 WHEN 6:PROCopenpicker(!q%,q%!4)
250 WHEN 17,18:PROCreceive(q%)
260 ENDCASE
270 UNTIL FALSE
280 :
290 DEF PROCopenpicker(x,y)
300 IF pick%=0 THEN
310 IF colour%=-1 !q%=3 ELSE !q%=1
320 q%!4=name%:q%!8=x:q%!12=&80000000

RISC User July 199430

Fe
at
ur
e

330 q%!16=&7FFFFFFF:q%!20=y:q%!24=0:q%
!28=0
340 FOR F%=0TOcblock%!4+7
350 q%?(32+F%)=cblock%?F%:NEXT
360 SYS "ColourPicker_OpenDialogue",0,
q% TO pick%
370 ENDIF
380 ENDPROC
390 :
400 DEF PROCreceive(q%)
410 CASE q%!16 OF
420 WHEN 0:PROCfinish:END
430 WHEN &47700:PROCchoice(q%)
440 WHEN &47702:SYS "ColourPicker_Cl
oseDialogue",0,q%!20:pick%=0
450 ENDCASE
460 ENDPROC
470 :
480 DEF PROCfinish
490 IF pick% SYS "ColourPicker_CloseDi
alogue",0,pick%
500 SYS "Wimp_CloseDown"
510 ENDPROC
520 :
530 DEF PROCchoice(q%)

540 FOR F%=0TOq%!32+7
550 cblock%?F%=q%!(28+F%):NEXT
560 IF (q%!24 AND 1) THEN
570 colour%=-1
580 ELSE
590 colour%=!cblock%
600 ENDIF
610 SYS "Wimp_ForceRedraw",main%,0,-40
0,400,0
620 ENDPROC
630 :
640 DEF FNcwindow
650 q%!4=400:q%!8=400:q%!12=800:q%!16=
800
660 q%!20=0:q%!24=0:q%!28=-1:q%!32=&87
000002
670 q%?36=7:q%!37=2:q%!38=7:q%!39=0:q%
!40=0
680 q%!44=0:q%!48=-400:q%!52=400:q%!56
=0
690 q%!60=9:q%!64=&3000:q%!68=0:q%!72=
0
700 $(q%+76)="Picker Demo":q%!88=0
710 SYS "Wimp_CreateWindow",,q%+4 TO
H

RISC User July 1994 31

Fe
at
ur
e

Whether you are programming in Basic or in C,
DeskEdit 3 provides a massive range of features to

n 150 special key combinations
n Edit and Run direct from the Desktop
n Automated Backups
n Debugger, Throwback, Extended info
n Powerful toolbox of utilities
n A wealth of procedure & function finders

RISC Developments Ltd., 117 Hatfield Road, St Albans, Herts AL1 4JS. Tel.

DeskEdit 3 Upgrade from DeskEdit 2

DeskEdit comes with a fully illustrated 70 page manual (with comprehensive index), a
function keystrip and a smart quick reference card - together with a Desktop Dustbin,

One of the most powerful and widely-used

you’ll wonder how you ever managed without it

DESKEDIT’S INTEGRAL

DEBUGGER IS NOW

COMPATIBLE WITH

ACORN ANSI C AND

