
his month�s Wimp Topics is in a slightly
different format from usual. Normally we
discuss a single topic in detail, but this

month I want to look at a selection of lesser-
known Wimp SWI calls which can be useful for
Wimp programmers, but which do not warrant a
whole article in themselves.

WHICH ICON?
There is a very under-used SWI call, namely
�Wimp_WhichIcon� (&400D6), which can be
very useful in certain circumstances. What this
call does is to tell you which icons, in a
specified selection, match given criteria. The
matching is done by comparing the icon flags
word for each icon in the window. The entry
parameters for the call, which will be explained
in a moment, are as follows:

R0 = window handle (or -1 for icon bar) 
R1 = pointer to block 
R2 = bit mask 
R3 = bit settings

On exit, the block pointed to by R1 is filled with
the handles of matching icons.

The bit mask (R2) indicates which icon flags to
consider when selecting the icons to compare,
while the bit settings (R3) indicate which
settings to compare those icons with. In other
words, if (icon flags AND bit mask)=(bit mask
AND bit settings) then that icon is included in
the list returned by the call. This sounds a little
complicated at first, but is quite straightforward
when considered in the light of an example.

A very obvious use for this call, and the one
which is most likely to be considered, is to detect

which one of a group of radio icons is currently
selected. Using the call can often simplify a
program. The conventional way to handle radio
icon groups is to maintain a variable to indicate
the current setting, and alter that variable when
mouse clicks are detected over one of the icons.
However, in many cases you could dispense with
the click handling procedure and simply read the
currently selected icon when you need to act on
it.

For example, suppose that you want to find out
which icon with an ESG number of 2 is selected.
The ESG number of an icon is held in bits 16-20
and has a maximum value of 31, while the
selected bit is 21. So the bit mask would contain
(31<<16)+(1<<21), i.e. &3F0000. This tells the
Wimp that the ESG and the selected bit are the
attributes you are interested in. The bit settings will
tell the Wimp that the icons to match are any with
the selected bit set plus an ESG of 2. This value is
therefore set to (2<<16)+(1<<21), i.e. &220000.

The example would therefore be implemented
as follows: 

SYS "Wimp_WhichIcon",whandle%,block%,&3F000
0,&220000
block% will now contain a list of the handles of
all icons that match (4 bytes each), terminated
by -1. In the example given here, there will be
only one handle in the list, since only one radio
icon can be selected at any one time.

BLOCK TRANSFER
If you are faced with the task of transferring the
contents of a block of memory to another
location, you might immediately think that a
simple loop using indirection operators is the only
logical way of doing it, as in the following
example: 

FOR i%=0 TO &400 STEP 4 
destination%!i%=source%!i% 
NEXT

For transfers involving small amounts of
memory, this method is quite acceptable.
However, for larger blocks there is a much
better way, which is to make use of the SWI
�Wimp_TransferBlock� (&400F1). This is
described by the PRM as a call to transfer a

RISC User June 199448

W imp Topics - Useful
SWI Calls

by Alan Wrigley

T



block of memory from one task�s address space
to another�s, and several RISC User
applications have made use of this facility to
read data from another application (for example
Desktop Auto-Save, RISC User 4:8). The entry
parameters for the call are as follows:

R0 = handle of source task 
R1 = pointer to source buffer 
R2 = handle of destination task 
R3 = pointer to destination buffer 

R4 = buffer length
What the PRM does not tell you, however, is
that the call still works if the source and
destination task handles are the same; in other
words, the transfer is made between two
locations within the same task�s memory.

This has a number of advantages over the
indirection loop method. Firstly, it is very much
faster. In tests that I carried out I found there
could be as much as a ten-fold increase in
speed over the alternative method. Secondly, it
can simplify the code greatly. Although
undocumented as such, the call appears to
work correctly when the source and destination
blocks overlap, and also the start address of the
block does not have to lie on a word boundary.
These two features taken together make the
call extremely versatile, and enable it to be
used, for example, for shunting text around in a
document as it is edited.

To take a simple example, suppose that you
have a text buffer 256 bytes long starting at
buffer%. If you want to insert a character of
ASCII value char% at position pos% in the
buffer, all you need do is the following: 

SYS "Wimp_TransferBlock",ourtask%,buffer%+
pos%,ourtask%,buffer%+pos%+1,256-
pos%buffer%?pos%=ch ar%
and to delete the character at the same
position:

SYS "Wimp_TransferBlock",ourtask%,buffer%+
pos%+1,ourtask%,buffer%+pos%,256-pos%

You can also use the call to transfer a section
of memory from your application workspace to a
block of memory claimed from the RMA. In this
case, you should quote the address of the RMA
block as the destination address and use your

own task handle for the destination as well as
the source.

MENU SELECTION
The most widely-used method of acting on
menu selections is to respond to poll code 9
(Menu_Selection), and to use the numeric data
returned in the block to decide which menu item
has been chosen. The following section of code
is typical: 

DEF PROCmenuselect 
CASE !block% OF 
WHEN 0:CASE block%!4 OF
WHEN 0:... 
WHEN 1:... 
WHEN 2:... 
ENDCASE 
WHEN 1:... 
WHEN 2:CASE block%!4 OF 
WHEN 0:...

and so on. This is all very incomprehensible to
anyone except the programmer, and also
means that if the menu structure is altered in
any way, the values in the CASE statements
will no longer correspond to the correct
selection without alteration.

However, the Wimp provides a clearer way to
do this. The SWI call �Wimp_DecodeMenu� can
be used to convert a menu selection into a text
string representing the item chosen. Not only
will this make your program easier to read, but it
will also mean that the menu selection
procedure will need to be re-written less often -
for example, as long as there is a menu item
entitled �Quit� in the menu, it will be acted on
correctly regardless of its position in the menu.

The call takes the following parameters: 
R1 = pointer to menu structure 
R2 = pointer to list of menu selections 
R3 = pointer to buffer

On exit, the buffer will contain a string
representing the chosen item, with each
element separated by a full stop. Examples
might be �Display.Font.Trinity�, or �Edit.Undo�.
The list pointed to by R2 can be taken directly
from the block returned by poll code 9, so a
menu selection procedure for a menu structure
stored at m e n u % might now look

RISC User June 1994 49

Fe
at
ur
e


