Expert Witness

Robin Watts interrogates and reviews the
Cbservess expert system shell from
Cherisha Software

or many years, one of the fields of

computer science that has attracted the

most attention is that of artificial
intelligence - the idea of producing machines
that can thirk. This has been toyed with for
vears, but so far relatively little progress sears
to have been made.

Consultation

(8 of[B

Rule Ho:| @ of[24 Goal:

Current Fact:

Derived Fact:

fsk question

Iz it true that:

Yos |

Gold
Alternative value:

Colour

Silver|

Related rule:

Ho | Hot Surel||

Colour Gold

=] i =] (=] 7]

18 Apps

Hycroft HardDise

{HE5e &

Consulting the
Observess
coinage
knowledge base

A major reason for this is simply the vast
quantities of data involved; in order for a
machine to act like a humen it needs to have
access to the huge amounts of background
information on which we base our decisions.
Every time we choose a course of action (be it
whether to go out with or without a coat,
whether to cross the read, or to tum left ar right
at a junction) we subconsciously consider many
different factars.

The effort involved in moving all this information
to a carputer is a huge one - every piece of

RISC User June 1994

information you give the computer seems to
require several others to put it in its amtext. To
try and comnteract this prdolam a sub-field of
artificial intelligence has sprung w - that of
expert systems. Here the camputer is only fed
information on very limited subjects - hence it
becomes an expert in ae perticdlar field, and
rawins totally ignorent about everything else.
In common with many human experts, the
camputer is not much good at conversation, but
if you just answer its questions you will praoably
get a reasonable response.

An expert system can be neatly split into two
sections. Firstly, there are the mnules it goplies -
known as the knowledge base. These can be
given in various forms, but the most camo is
known as the IF - THEN method (more about this
la=).

The second part of the expert system is known
as the inference engine. This is the part of the
program that actually tries to apply the rules
from the knowledge base to build up a
dictionary of working facts and to draw
anclusions fram these.

Traditionally, expert systems have been written
from scratch as they are required, but more
recently people have begun to take advantage
of this split. Expert systems have appeared
which contain an inference engine, but no
knowledge base. Users can add their own
knowledge base, and effectively build expert
systems for themselves. These systems are
known as expert system shells.

The first such shell to appear for the Arc is
called Observess from newcomer Cherisha
Software. COoservess is a Desktop application
that alloss you to enter and edit rules to kuild
your knowledge base, and then consult with the
expert thus formed. The knowledge base can
then be saved aut as a datafile and distributed
to other users.

Observess installs an icon on the icon bar
which when clicked produces a window that
shows information about the currently loaded
knowledge base - its title, parpose, size etc. To

create a knowledge base we sinply fill in these
fields and then add all the rules required using
the Add Rule menu option.

(bservess works by keeping a list of variables
and their values. The program will first try to
aply its rules to work cut values for each of the
varidbles, kit if this fails it will ask the user a
question designed to elicit enough infornmation
to work out more aoout a variable s value.

Ultimately Goservess tries to dotain the value of
a Goal wvariable, and will make
recamendations as to what value it thinks this
variable has. On the way you can give it same
Sub-goal variables, and it will tell you as it

Fach rule is given in a Basic-like IF - THEN
fommat. In the following syntax definition, angle
brackets indicate parts that should be replaced
with appropriate names and square brackets
enclose optional perts:
IF NOT] <ovariablel> = <valuel>
[AD [NOT] <variable2> = <value2>]
[AND [NOT] <variable3> = <value3>]
THEN [NOT] <variabled> = <valued>
This form for rules has the benefit of being
extremely simple, but it has various
disadventages. Firstly, there is no sinple way to
@ O Rs. For instance to do:

]
]

IF coin = Ip CR coin = 2p THEN metal = copper

requires two separate rules:
IF coin = 1p THEN metal = copper
IF coin = 2p THEN metal = copper
Secondly, to do a rule with more than 3
coditions requires the use of @ Link variable :
IF publisher = Cherisha AND author = Shalfield
AND subject = ExpertSystems THEN !link = true

IF !link = true AND computer = Archimedes

THEN program = Observess
Such cases have been considered by the
author though and are mentioned in the
manual. While consulting the expert, you
dbviously do not want the user to be asked
what value link should have, as he will
praosbly have very little idea what 1link means.
To this end, prefixing a varidble with ! (as

above) indicates that the camputer may never
ask questions about this variable.

"1]

==

There are same other drawbacks to the simple —]

| A~]

form of rules used here - frequently an expert is o
expected to make decisions on incomplete
data. For instance if a torch doesn t work and

5[] 5csi:iMucroft, . Observess, Coinage]

Knowledge Base

Correct as at:

Title: ([Current British Coinage

|25 Feb 1994 Purpose:

Which Coin?

Dbseryess Bize: Expert: | Rebecca L. Shalfield |
r"ﬁ:‘cT_ bytes Know Eng:|[Rebecca L. Shalfield |
AL e ot ver v 1wl
Add rule
| IF not []| Colour] | =] Gold |
Rearrange | AHD not]| = |
| Delete ru} gD not [= |
| fidd soal | THEN not [_]| | |
Shw kb [Le 1
Add i fact
[Reset ¢
Save kb

the batterdes aren t flat, then you can be fairly
sure that the bulb has gone, rather than ane of
the wires inside the torch having broken. But
how do you express this praoability in an expert
system?
Observess solves this by the cunning expedient
of adding Certainty factors to each of its nules.
Every rule is given a percentage which
represents how likely it is to be true. So the
situation with our broken torch would becare:
IF NOT batteries = flat THEN reason =
brokenbulb
(90%)

Using these percentages Observess can be
made to come up with suggestions in much
more caplex cases than it could otherwise. It
will even give you several recommendations
and the percentage chance of each one.

Once you have the knowledge base in place,
you can then Consult with your new expert. To
do this you simply choose the Consult cption on
a menu, and answer the computer s questions.
For instance in the supplied Coinage
knowledge base we are asked:

Is it true that: Coloar = Gold ?

RISC User June 1994

Building up a
knowledge base
is a sinple
matter of adding
rules

