
t�s a fair guess that one of the first things
that you are going to want to do after
unpacking your brand new Risc PC, is play

with all those new screen modes and colours it
offers, and show it off to your friends. In this
article we will explore how to use the new
modes and colours, and give some simple
programs that show just what the machine�s
capable of.

ALL SIZES OF SCREEN
One nice feature of the new VIDC20 video
controller is that it is much more relaxed about
available screen resolutions than its VIDC1
predecessor. Without getting too technical, this
is because it contains circuits to let it generate
any speed of video dot clock it cares for (within
reason). Couple this feature with the fact that
almost all Risc PCs will be attached to a multi-
scan monitor, and the world�s your oyster.

Unfortunately, the time still hasn�t come when
you can say �I want a display that is 851 by 506
pixels� because the attached monitor will still
impose restrictions on what can and cannot be
done. Instead, there is a definition file for each
model of monitor which holds a list of what
display modes are available. Because there is a
unique file for each model, the definitions can
be highly tuned, for example ensuring that the
display is centred and flicker free.

Acorn are supplying two monitors with the
Risc PC: the AKF60 and the AKF85. These
offer the following resolutions: 
As you can see, the table is quite lengthy and
includes all the standard Acorn resolutions
plus PC VGA, SVGA and XVGA formats. You
can also see that some resolutions are offered
at a number of different frame rates. This
allows software (or the user) to specify a
higher refresh rate if needed, to provide a
more flicker-free display. The column labelled
�Menu� in the table indicates which resolutions
appear by default on the mode selector menu.
The others can be selected using the method
about to be described.

CHOOSING A MODE
With such a choice of resolutions, and the
possibility of them changing between monitor
models, the concept of mode numbers falls
down somewhat. Instead, modes are better
specified using a description string. This was
described in the article New modes for future
machines a couple of issues back, but we will
recap here.

The format of a mode specifier string is, for
example: 
�X640,Y480,C32K,EX1,EY1,F60� The
numbers after �X� and �Y� specify, as you
might guess, the resolution. The �C� setting
selects the number of colours (32K or 32T
for 32000, 16M for 16 million). Alternatively,
G16 or G256 can be used to specify grey-
scale modes. The values of �EX� and �EY�
are the so-called X and Y Eigen factors.
These specify the number of times to double

RISC User June 1994 27

Using Colour on The
RISC PC

David Spencer explores the exciting new
range of colours and screen modes
offered by the Risc PC.

I

Resolution Frame rates (Hz) Menu 
240 x 352 70 No
320 x 250 70 No 
320 x 256 70 No 
384 x 288 70 No 
480 x 352 70 Yes 
640 x 200 70 No 
640 x 250 70 No 
640 x 256 70 No 
640 x 352 70 No 
320 x 480 60,72,75 No 
360 x 480 60 No 
640 x 480 60,72,75 Yes 
800 x 600 56,60,72,75 Yes 
1024 x 768 60,70*,75* Yes 

The resolutions and frame rates marked with a *



the actual resolution to give the resolution in
OS units as used by your drawing
commands. A value of 1 means that there
are two OS units to each actual pixel, 0
would be one-to-one, and 2 would indicate
four OS units to each pixel. The settings that
a program chooses for these are rather
arbitrary, provided it remembers what they
are! However, the Wimp always draws
system text at a size of 8 by 16 OS units.
Therefore the Eigen factors can be
manipulated to change the apparent size of
text. Finally, �F� is the desired frame rate, in
Hertz. Omitting it results in the default rate
for the chosen resolution.

As an example of mode strings from Basic,
MODE "X800,Y600,C256,EX1,EY1,F60" 

would select a 256-colour SVGA mode, whilst: 
MODE "X640,Y256,C16,EX1,EY2" 

would select good old mode 12. (You can still
use the command MODE 12, but you should
really avoid the use of mode numbers in new
programs if they are only going to run on the
Risc PC.)

When you change mode in this way, Basic
actually makes a call to the command
*WimpMode. This means that as well as
setting the mode, it also sets up the Wimp
palette for modes with fewer than 256 colours.
You can use a VDU 20 to restore the default
palette if you want. You should also perform a
VDU 26 to reset the default screen windows,
followed by a CLS. This is because the Wimp
sets the display area to match the �command�
window that it opens when running a non-
Desktop program.

WHAT MODE AM I IN?
Obviously, there are times when a program
might like to find about the current screen
mode. This can be done in Basic by using
MODE as a function which returns a pointer to
a block of memory holding information about
the mode. The procedure PROCmodeinfo
given in listing 1, which works on all versions
of RISC OS, will return the screen resolution
in both pixels and OS units, and the number
of available colours. The procedure returns

the information by way of five variables
passed to it, these holding the X and Y pixel
resolutions, the X and Y OS Unit resolutions
and the number of colours respectively.

Listing 1
DEF PROCmodeinfo(RETURN x, RETURN y, RETURN

osx, RETURN osy, RETURN c) 
LOCAL M%,ex%,ey% 
SYS "OS_ReadModeVariable",-1,11 TO ,,x:x+=1 
SYS "OS_ReadModeVariable",-1,12 TO ,,y:y+=1 
SYS "OS_ReadModeVariable",-1,4 TO ,,ex% 
SYS "OS_ReadModeVariable",-1,5 TO ,,ey% 
SYS "OS_ReadModeVariable",-1,3 TO ,,c:c+=1 
IF c=64 THEN c=256 
IF c=65536 THEN c=32768 
IF c=0 THEN c=2̂ 24 
osx=x<<ex%:osy=y<<ey% 
ENDPROC 

A FINAL NOTE ON MODES
Before moving on, there is one further
point about the new mode system that you
must know about. Because of the way that
Basic works, using MODE with a mode
specifier string will change the Wimp mode
as well. This means that if you run a non-
Desktop program from within the Desktop,
then when it completes and returns to the
Desktop, it will not automatically restore
the correct mode. It is therefore up to your
program to make a note of the mode when
it is run, and restore it afterwards. This is
good practice even when not running from
the Desktop, as it returns the machine to
the state it was in before running your
program.

Unfortunately, the new mode system doesn�t
look favourably on sticking M%=MODE at
the start of the program and MODE M% at
the end. This is because MODE as a
function will return a pointer to a block of
data detailing the mode, and not a simple
number. You can�t be sure that this data will
still be there by the time you quit, and even
if it was, it contains no information on the
palette settings. Instead, you should use the
functions given in listing 2. PROCsavemode
should be called before changing mode for

RISC User June 199428

Fe
at
ur
e



the first time, and PROCrestoremode should
be called before the program quits.

Listing 2
DEF PROCsavemode 
LOCAL p%,g%,i%,x%,A%,B%,C%,D%,E%,F% 
DIM _myblk% 16 
SYS "OS_ReadModeVariable",-1,11 TO ,,!_myblk% 
SYS "OS_ReadModeVariable",-1,12 TO ,,_myblk%!4 
SYS "OS_ReadModeVariable",-1,4 TO ,,_myblk%?8 
SYS "OS_ReadModeVariable",-1,5 TO ,,_myblk%?9 
SYS "OS_ReadModeVariable",-1,3 TO ,,_myblk%!12 
IF _myblk%!12=255 OR (_myblk%!12>0 AND _myblk

%!12<4) 
THEN _myblk%?10=ASC"G" ELSE

_myblk%?10=ASC"C" 
IF _myblk%!12=15 THEN 
DIM p% 80
!p%=&E1A09005:p%!4=&EF000034:p%!8=&E1B0F00E 

A%=0:B%=&11000010:C%=p%+16:D%=0:E%=7:F%=&23 
CALLp% 
g%=1:FOR i%=p%+16 TO p%+79 STEP 4 
IF (i%?1<>i%?2) OR (i%?2<>i%?3) g%=0 
NEXT 
IF g% THEN _myblk%?10=ASC"G" 
ENDIF 

ENDPROC 
: 
DEF PROCrestoremode 
LOCAL a$ 
a$="X"+STR$(!_myblk%+1)+",Y"+STR$(_myblk

%!4+1)+","+CHR$_myblk%?10 
CASE _myblk%!12 OF 
WHEN 1,3,15,255: a$+=STR$(_myblk%!12+1) 
WHEN 63: a$+="256" WHEN 65535: a$+="32K" 
WHEN &FFFFFFFF: a$+="16M" 
ENDCASE 
a$+=",EX"+STR$_myblk%?8+",EY"+STR$_mybl k%?9 
MODE a$ 
ENDPROC 

An alternative to this is to bypass the Wimp and
set the mode at a lower level. This can be done
by using MODE <block>, where <block> is the
address of a list of data called a mode specifier
block. The format of this was described in the
article �New modes for future machines� already
mentioned.
USING ALL THEM COLOURS
OK, we�ve selected a screen mode with �n�
million colours, but how do we use them.

Well, for all but 32000 and 16 million colour

RISC User June 1994 29

Fe
at
ur
e

The demo program in action



modes, you can if you wish still use the same
forms of GCOL and COLOUR as on older
machines. Not only that, but you also have the
bonus that if you use the command COLOUR
p,r,g,b to set the RGB values of a palette
entry, they can now be set to any value
between 0 and 255. In other words, there is
always a palette of 16 million colours to
choose from even if you can only have a
handful of them on screen at once.

To handle 32000 and 16 million colour modes,
new forms of GCOL and COLOUR have been
added to Basic. These take the forms: 

COLOUR r,g,b 
GCOL [<action>,]r,g,b 

where <action> is the graphics plotting mode
(OR, AND, EOR etc.)

These are analogous to the corresponding
forms that specify a colour number, but instead
specify an actual colour by its RGB value. So,
for example, 

COLOUR 200,200,50 
would set the text colour to a pale yellow, whilst 

GCOL 200,200,50 
would do the same for the graphics colour.

A rather nice feature of these new forms of
COLOUR and GCOL is that they use the
ColourTrans module to set the colour. This
means that they can be used in lower colour-
depth modes (for example 16-colour modes)
and they will pick the closest colour in the
palette and use that.

The astute among you will probably have noticed
that as each RGB component can be any number
between 0 and 256, there is nowhere to add 128 to
set the background colour. And indeed, you�re
partly right. For GCOL, the background can be set
by adding 128 to the plotting action, so for example:

GCOL 131,255,0,0 
would set the background to red with Exclusive-
OR plotting. However, the story for COLOUR is
not so simple. If you want to set an absolute
RGB background colour here, you have to use
the following call: 

SYS "ColourTrans_SetTextColour", 

(B%<<24)+(G%<<16)+(R%<<8),,,128 
where R%, B% and G% are the RGB values in
the range 0-255. (COLOUR r,g,b uses this call
with the final parameter set to 0 and not 128 to
adjust the foreground colour.)

I guess the reason that this situation has arisen is
that there is already a four-parameter version of
COLOUR used to define the palette, and there was
therefore no room to include a
foreground/background toggle without confusing
the poor interpreter.

The operation of the POINT function which
reads the colour of a pixel at a given point on
the screen has also been forced to change to
allow for the new wider range of colours. In
modes of up to 256 colours, it behaves as
before, while in 32000 and 16 million colour
modes, it returns 32 bits indicating the RGB
value of the colour at that position. The
meaning of these bits differs for the two colour
ranges: 

32000 colours 
Bits 0-4 Red 
Bits 5-9 Green 
Bits 10-14 Blue 
Bits 15-31 Reserved (set to 0)

16 million colours 
Bits 0-7 Red 
Bits 8-15 Green 
Bits 16-23 Blue 
Bits 24-31 Reserved (set to 0)

To show what all these colours can do, the
program in listing 3 draws horizontal bars for
the primary and secondary colours; red,
green, blue, magenta, cyan, yellow and
white, in 256 graduations from black to full
intensity. This is only actually achievable in
16 million colour modes, although the use of
ColourTrans by Basic ensures that in other
modes the results are the best they can be.
The program runs through 16, 256, 32000
and 16 million colour modes to demonstrate
this point. Before running this, you should
change into a 16 million colour 800 x
600 mode in the Desktop to ensure
that there is enough free memory,

RISC User June 199430

Fe
at
ur
e



because MODE will default to a lower colour
depth and spoil the effect if it can�t claim
enough RAM. For those without a Risc PC,
the result is shown in figure 1.

Listing 3
10 REPEAT
20 READ C$
30 MODE "X800,Y600,C"+C$+",EX1,EY1"

40 VDU
26:CLS:OFF

50 FOR
s=0 TO 255

60

PROCblock(0,0,1,s)
70 PROCblock(0,1,0,s)
80 PROCblock(1,0,0,s)
90 PROCblock(0,1,1,s) 
100 PROCblock(1,0,1,s) 
110 PROCblock(1,1,0,s) 
120 PROCblock(1,1,1,s) 
130 NEXT 
140 PRINT TAB(48,70)C$ 
150 *FX15 1 
160 A=GET 
170 UNTIL C$="16M" 
180 END 
190 DATA 16,256,32K,16M 
200 : 
210 DEF PROCblock(r,g,b,s) 
220 GCOL r*s,g*s,b*s 
230 RECTANGLE FILL s*6,150*(r*4+g*2+b),6,150 
240 ENDPROC 

Finally, if you want to be really impressive, it
is relatively easy to include the rather nice
colour selector used by the likes of Draw in
your own Wimp programs. You will however
need to wait until next month to find out how
to do this.

caption

RISC User June 19942

Fe
at
ur
e


