
he RISC OS Desktop is really quite
remarkable. Its operation is so often
overlooked that it is easy to forget just

how much work is going on beneath the
surface. Take something simple like
double-clicking on a data file of some kind
(like an Fireworkz spreadsheet) - how does
your system know where the corresponding
application is stored, and what action to
perform. Take another example - you run a
DTP or word processing application and
immediately have access to all the fonts on
your system. How did the application �know�
what fonts were available? The answer to
this and many other questions about
Desktop actions lies with System Variables.
In this month�s article in this series we�ll
take a look at what they are and how they
are used.

Essentially, system variables provide RISC
OS with the means to store all the
information it needs to work correctly, and
system variables are also used extensively
by other applications for the same kind of
purpose. A system variable is a name which
can be used to reference a piece of
information. These names follow a
convention laid down by Acorn, and can
normally be distinguished by the presence
of a �$� character within the name, and a
certain pattern to its make-up. For example,
Font$Path provides information on the fonts
currently available to any application in the
form of a list of font directories.

Now it is all very well to quote an example
like that above, but when you switch off

your computer all knowledge of system
variables is completely lost. When you first
switch on, part of the automatic startup
sequence involves defining a standard set
of system variables with a set of default
values. Sometimes these values will be
determined by status settings stored in
CMOS RAM. These settings are not lost
when your computer is switched off,
because there is battery back-up to CMOS
RAM to provide sufficient power.

If you want to see what system variables
currently exist, you can do this in one of two
ways. If you press F12, to exit from the
Desktop, just type the command Show and
press Return, and you will see all the
system variables which your system knows
about. Alternatively, and this avoids leaving
the Desktop, press the menu button over
the Task Manager (the green acorn on the
icon bar), and select Task window (a
shortcut is to press Ctrl-F12). Then enter
the same command and press Return.

If you try this, you may well be somewhat
put off by the length and apparent
complexity of the resulting list. Don�t worry -
we aren�t going to be looking at this in any
detail, but it does give you some indication
of just how much information RISC OS has
to manage.

BEING SEEN
If you have read through the pages of RISC
User, or other magazines, you may well
have come across a statement that some
application or other must have been �seen�.
The problem which leads to this need is
more likely to arise with a floppy only
system, but can also occur with hard disc
systems as well. Let�s look at an obvious
example.

You probably know that there is a special
application called !System which is normally
situated in the root directory of a hard disc.
Within this application is a directory called
Modules, and inside this you will find a
number of files. These are modules which
can be loaded and shared by all

RISC User June 199454

Into the Arc: System Variables - The
Hidden Resource

Mike Williams explains how the RISC OS
Desktop �remembers� all that it needs to
know.

T

applications running on your system. Find
your copy of !System, double-click while
holding down Shift to open the application
directory. Then double-click on the Modules
directory. !Scrap is another application used
by other applications, including the printer
drivers.

In the days of RISC OS 2, modules like
CLib and FPE used to live in the Modules
directory of !System, but these very
commonly used modules were moved into
ROM under RISC OS 3. However, other
modules including those supplied with third
party applications still need to live here - for
example, Basic64, Acorn�s latest Basic
interpreter, FrontEnd supplied as part of
Acorn�s DDE, plus ABCLib, the Basic
compiler run-time library from Oak
Solutions. If an application needs to use
either !System or !Scrap, then the
application needs to know where they are
stored. That�s where system variables come
in. System$Path and Wimp$Scrap are
system variables which provide that
information, but they have to be set up to
start with. Here�s how it works.

Whenever a directory is opened on the
Desktop, RISC OS checks within that
directory each application directory (i.e. a
directory beginning with a �!�) to see if it
contains a file called !Boot. Most, but not
all applications contain a file of this name.
It is usually a short file containing just a
few commands which are executed the
first time the directory is opened. One of
these commands is normally Iconsprites
which tells RISC OS about the sprite, or
icon, used to represent that application. It
is the !Boot file which also defines any
system variables. So if you open the
!System application directory as described
before, and drag the !Boot file to Edit
(load Edit so that it is visible on the icon
bar first) you will see the commands
which check for and set up both
System$Path and System$Dir.

This all happens quite automatically when
you open the directory containing !System,

and all the applications visible in that
directory will then have been �seen�. Most
hard disc users use a boot file to set up
their system in a more customised way.
Such boot files contain special commands
(Filer_Boot) which simulate the same
process without actually opening the
relevant window on screen. This can be
useful, as all this takes time, but the boot
file can be configured to deal only with
certain applications. Opening a window
applies the process to all applications.

OTHER USES FOR SYSTEM
VARIABLES
Let us suppose that you have a copy of
RISC Developments� DeskEdit, and that
you have installed this ready for use on
the icon bar. Double-click on any ASCII
text file and it will automatically be loaded
into a DeskEdit window. Now load
Acorn�s Edit, and repeat the double-
clicking on the text file. Now it will be
loaded into Edit, not DeskEdit. What has
changed?

Most files stored on an Archimedes system
have an associated filetype. Acorn has
allocated filetype numbers for many files,
and allocates filetype numbers to third
parties to be used with other software. For
example, an Ovation document has its own
filetype number (&CDD in hexadecimal, but
that�s another story). At power up RISC OS
assigns names to all the common Acorn
filetypes, so if you use Edit, for example,
you can use the Settype option to change
a filetype by reference to a name, not a
difficult to remember number. The other
thing that happens at start-up, is that
system variables are used to specify what
action to take when a user double-clicks on
a file. When a third party application has
been �seen� its !Boot file defines the action
for files belonging to that application.
Ovation�s !Boot file says that Ovation
should be loaded, if not already loaded,
and the document loaded into Ovation.

When DeskEdit is seen or run, it
specifies in the same way that

RISC User June 1994 55

Fe
at
ur
e

