
.y now, there can�t be many people who
haven�t seen the pictures and posters for
sale consisting of seemingly random

coloured dots (autostereograms), which when
viewed in a particular way produce startling 3D
images. The short program listed here enables
you to produce your own multicoloured
autostereograms for viewing either on the
computer screen or as a printout.

Unlike our previous article on the subject, Dots
before your eyes (RISC User 7:4) you don�t
need a special art package to make this work.
You can easily create a simple picture for
translation using either Paint or Draw, and then
pass it through 3dConvert, listed here, to
generate the final image.

CREATING YOUR OWN STEREOGRAMS
To produce your own autostereograms with
3Dconvert you must first create a suitable Mode
12 sprite containing your original design. The
conversion program will eventually use this to
create a 3D image. When it does so, it will place
all objects of the same colour at the same
depth. If you are using the Desktop palette (as
you would be if you were using Paint or Draw in
Mode 12), all parts of your picture in white will
end up furthest from the eye in the 3D
representation. By contrast, those in light blue
will end up nearest to you, while colours in
between will appear at intermediate distances
which depend on their relative position in the
palette (as seen for example on the palette icon
on the icon bar).

The most obvious approach is to work directly
in Paint, or any other art package that lets you
create mode 12 sprites. In each case you must
remember to be in mode 12 when producing
the sprite, and do not use other than the default
Desktop palette. Create a new sprite window of
640 by 256 pixels. The largest horizontal size
allowed by 3Dconvert is 1000 pixels. Click on
the toggle-size icon to open up the window to
its fullest extent. From the Paint menu click on
Show colours and Show tools. Use a
background colour of white, and produce a few

bold shapes in different colours using the filled
shapes from the toolbox. Try different colours
and shades of grey, but don�t use the strip
about ninety pixels from the right-hand edge of
the window. Finally, save your picture to disc.

RISC User June 1994 31

AutoStereograms

Convert simple screen pictures into
stunning 3D images with this clever

B

Figure 1

HOW IT WORKS

Here is a brief description of the
theory behind autostereograms.
Figure 1 represents a viewer
looking at two points on Objects A
and B. The projection of these
points as seen from each eye is
seen on the paper. The two
points produced on the
paper as projections of the
furthest Object A are more
widely separated than two points projected
from the nearer Object B.

The paper is filled with randomly coloured
dots, but an algorithm is used to ensure that
the two dots representing each eye�s
perceived position of A are separated by a
fixed distance and are the same colour, and
similarly for B except that the separation
distance will be proportionally smaller.
Provided the viewer can focus behind the
paper, then slightly different images will be
presented to each eye. The brain then fuses
these images to give the three-dimensional
impression.

Note that practice is required to see these
images. If you have a dominant eye or suffer
from astigmatism you may not be successful. If
you are near-sighted, remove your glasses;

An alternative approach is to use Draw to
create the starting image. Proceed as with
Paint, drawing fairly chunky objects in a variety
of colours. When you have finished, you will
need to take a snapshot of your drawing on the

Desktop in order to convert it to a sprite file
(since Draw�s save option would generate a
Draw file, which 3DConvert cannot handle). But
taking a snapshot is easy: just use Paint�s
screen grab facility by selecting Snapshot from
its icon bar menu.
As a third alternative you might like to use a clip
art sprite, but most clip art Sprites which appear
suitable for conversion have not been produced
in Mode 12, or if they have, the palette has
been altered. To check on this, double-click on
the sprite file to load it into Paint. Double-click

RISC User June 199432

Fe
at
ur
e

PROGRAM NOTES
These notes apply to the accompanying listing.

The program first loads the sprite into memory
at start%. This memory will be altered during

the course of the program and
re-saved as the output file,
since it already contains the
sprite file header information.

Line 160 reads some of this
information which is required
by the program, such as the
horizontal and vertical
dimensions in pixels (horiz and
lines) along with the start
position of the pixel data (data).
Line 170 alters the sprite�s
name.

Each horizontal row of pixels is
read one at a time by the loop

in lines 190 to 270. The like array is first
initialised to zeros. The next loop (lines 210 -
220) reads each pixel at a time as though this
was seen by the left eye, and determines from
its colour what distance in pixels the right eye
will see the same spot on the image. If the pixel
is white (colour 0) the base distance of 90 is
returned, if the pixel is colour �n� the distance
returned is 90-n. The like array for this pixel is
then set to this distance (provided that the like
pixel is not past the right-hand edge), this will
be used later to ensure these two pixels are the
same colour. Note the complication in lines 340
- 350 due to the fact that 16 colour pixels are
stored in 4 bits or two pixels in one byte - a flag
is used to choose which pixel information to
use.

The next loop (lines 230-250) works from the
right-hand edge, first setting all the pixels that
were too close to the edge for a right eye
image like(x)=0 to random colours, but as the
loop works further left the like array shows all
the pixels will be like pixels to the right, and the
program ensures that the colour array is set to
be the same (colour(x)=colour(like(x))).

These fish
were assembled in

Draw from
clip art

on the sprite and use the Edit submenu of the
sprite window menu to ensure that neither the
Palette nor Mask options are ticked. Now
choose Show colours from the Paint submenu.
If the palette that appears does not have

exactly 16 colours, then the file is not suitable
for conversion. Otherwise, save the file and you
are ready to begin.

CONVERSION
Once you have a sprite file ready to convert,
you can use either the listing given in this article
or the program on the magazine disc to do the
transformation. If you do not have the disc, type
in and run the listing. You will be prompted for
full pathnames for the source sprite and the 3D
sprite to be created. The program will then
convert your sprite and save it automatically.

Otherwise, load the 3Dconvert program from
the magazine disc and drag the file onto its icon
on the icon bar. A save window will
appear, allowing you to save the file

RISC User June 1994 33

Fe
at
ur
e

10 REM Program 3DConvert
20 REM Program 3D sprite creator
30 REM Version A2.0
40 REM Author D.N.Baron
50 REM RISC User June 1994
60 REM Program Subject to Copyright
70 REM Not Public Domain
80
90 DIM start% &30000,like(1000),colour (1000)
100 base=90
110 REPEAT:INPUT"Full pathname for Spr ite
file to convert "infile$
120 in%=OPENINinfile$:UNTILin%<>0
130 len=EXT#in%:CLOSE#in%:IFlen>&30000
PRINT"File too large":END
140 OSCLI ("LOAD "+infile$+" "+STR$~st art%)
150 INPUT"Full pathname for Sprite fil e to
output "outfile$
160 hor=(start%!28+1):horiz=8*hor:line
s=start%!32+1:data=&0C+start%!44+start%:
ptr%=data-1
170 start%!16=&70736433:start%!20=&657
46972:start%!24=0
180 SYS "Hourglass_On"
190 FORy=0TOlines-1:flag%=0:SYS "Hourg
lass_Percentage",y*100/lines
200 like()=0
210 FORx=0TOhoriz-1:dist=FN3D:IFx+dist
<horiz like(x)=x+dist
220 NEXT
230 FORx=horiz-1TO0 STEP-1
240 IFlike(x)=0 colour(x)=RND(16)-1 EL SE
colour(x)=colour(like(x))
250 NEXT
260 FORx=0TOhoriz-2STEP2:?(data+y*4*ho
r+x/2)=colour(x)+16*colour(x+1):NEXT
270 NEXT
280 SYS "Hourglass_Off"
290 OSCLI("SAVE "+outfile$+" "+STR$~st
art%+"+"+STR$~len)
300 OSCLI("SETTYPE "+outfile$+" FF9")
310 END
320 DEFFNget:ptr%+=1:=?ptr%
330 DEFFN3D

This dotscape, and
the one on the
previous page, can
be used to
demonstrate the
principle. You
should be able to
see the shapes
without too much
difficulty (see
RISC User 7:4)

The interpolate
function of
Draw can be
used to create
hollow pipes
like these

