
his month we take a look at DOS file
security on the PC. The most obvious
security concern at present - viruses -

we�re not going touch on at all. Instead we are
going to look at commands within DOS to help
us keep our data and files in good order.

VERIFY
If you click your menu button over a RISC OS
disc drive icon you will see a menu item Verify.
Selecting this item scans through every sector
on the disc and reports whenever a bad sector
is discovered. When you format a disc to an
ADFS format, the disc is automatically verified
and any bad sectors are mapped out

As with many things, DOS is not as smart as it
might be. The DOS VERIFY command does not
check discs for integrity. It merely checks that a
file can be read back with no errors, and it does
this when that file is being written to disc. It
does not scan every sector on a disc like the
ADFS equivalent. Typing VERIFY ON will
switch the facility on, and obviously VERIFY
OFF will turn it off again. If you are not sure
whether it�s on or off, typing VERIFY alone will
tell you. The price, for the peace of mind of
knowing that the data has been saved properly,
is a longer save time. This might not be noticed
for short files but might be a problem for longer
ones. This peace of mind, however, is limited
since VERIFY does not check that the data can
be recovered from the sector it has just been
saved to.

Unfortunately, although the ADFS Verify
command will detect all the bad sectors on a
DOS disc, it will not map them out for you. If
you really do need a cast iron check on your
discs you will have to buy one of the many utility
programs which provide full verify and map out
facilities (the one I use is an ancient version of
PCTools).

Although using the VERIFY command will pick
up some faulty saves, others may be missed,
and in any case, floppy discs do from time to
time sprout a bad sector or two spontaneously.
So what can you do if you try to read a file and
you get the message:

Sector not found
error reading drive A

Abort, Retry,
Ignore, Fail?

First - don�t panic! All
may not be lost.
There is always a
slight chance that
pressing �R�, to try
again, will do the
trick. If that doesn�t
work then you might
press �I�. The bad block would be ignored, and
hopefully the remainder of the file would be read.
The result will be an incomplete file but if it
contains only text, the recovered portion may be
better than nothing. The missing portion could
easily be typed in again. A missing block from a
binary file, such as a program, is usually fatal and
you will have to resort to your backup. (What no
backup! - read on.)

The �F�, for �Fail� response to a bad read
operation would allow a succession of
commands to continue after ignoring the current
command altogether. A useful tip in this context
is that it may be better to abort, �A�, rather than
fail a faulty read operation. Suppose you are
updating a file FILE.EXT on your hard disc by
copying from floppy:

COPY A:FILE.EXT
If the read fails and you abort the command you
may find your original copy still intact. �Failing�,
the command will delete the original hard disc
file on the assumption that it holds invalid data.

Figure 1.
Use of
RECOVER to
rebuild a disc
directory

RISC User November 1993 49

The PC Emulator Survival
Guide (Part 8)

by Gordon Gilmore

T

RECOVER
Having found a bad sector on a disc it is as
well to deal with it as soon as possible, and
for this purpose we have the DOS command
RECOVER. There are two ways in which you
can use this command: on a file-by-file basis,
or to recover complete directory data.
However, before launching into that it would

be a good
idea to copy
as many of
the files from
the corrupted
disc to a new
disc before
starting the
r e c o v e r y
process. For a
floppy disc
that would be
easy; for a
hard disc that
really means a

complete backup to floppies. Whatever else
you do, it would be a good idea to make a
copy of the disc directory either as hard copy
or a copy on file (not on the dodgy disc!) for
future reference.

Now let�s pretend that I have a file called
LOG.TXT on a floppy disc in drive B which I
know to have a bad block in it. I recover the file
by specifying the filename in the command as in
the following dialogue:

C:\COMMON>RECOVER B:LOG.TXT

Press any key to begin recovery of the
file(s) on drive B:

4096 of 5120 bytes recovered

C:\COMMON>DIR B:

Volume in drive B is 20_20_Thu
Directory of B:\

LOG TXT 5120 8-09-93 3:48p
PROG DAT 1678 3-17-87 12:00p

PROG2 EXE 5825 3-17-87 12:00p
PROG COM 1561 3-17-87 12:00p
PROG2 SRC 9529 3-17-87 12:00p
5 File(s) 704512 bytes free

C:\COMMON>

RECOVER has copied as much of LOG.TXT as
possible to a new location on the disc and
marked the bad sector for future reference.
Now, because of the bad sector, there must be
chunk of data missing. RECOVER told us that it
had recovered 4096 of the 5120 bytes it was
expecting but the directory entry still indicates
the full 5120 bytes. This means that the
directory information and the file allocation table
(the FAT - which is used to keep track of which
blocks on the disc belong to which file) no
longer match.

We can put this right by using CHKDSK but
before we do this we will look at the second use
of RECOVER. This is a pretty disruptive
operation and should not be undertaken lightly.
Normally it would be much quicker and easier to
restore the files from your backup copy. This
form of the RECOVER command, specifying
only the drive letter, is intended to rebuild the
whole directory and FAT of the disc, should it
become corrupted. Figure 1 shows the
command in action, and the result.

Used in this way RECOVER searches the disc
and assumes that each group of linked sectors
is a file. It has to assume that the data in the
directory is invalid and gives each file a new
name such as FILE0001.REC etc. Although this
will cope with the problem of a bad sector in the
directory, RECOVER has not looked for or
repaired bad sectors in the bulk of the disc.

There are now two problems: firstly which file
is which, and secondly which are the bad files.
To find the bad files we must use the file-by-
file form of RECOVER we looked at first.
Finding the corrupted file is often painstaking,
but can be helped by comparing the file
lengths in the recovered directory with the
original file lengths. However, you must be
aware that the new file lengths will be rounded

RISC User November 199350

Fe
at
ur
e

Figure 2.
CHKDSK used

after
RECOVERy of

a file

up to whole sector sizes and will not
necessarily be in the original order. When you
think you have found the file, try TYPEing it to
confirm you have the correct file.

CHKDSK
The DOS manual say that CHKDSK checks and
repairs errors on discs, which is a little
misleading. The only errors CHKDSK repairs
are logical errors, and not physical errors such
as bad sectors. So, CHKDSK will sort out the
problem we had above where the directory
entry was inaccurate but will not find, or map
out, bad sectors.

Figure 2 shows the dialogue when CHKDSK is
used immediately after recovering LOG.TXT
which, if you remember, left us with
inappropriate information in the directory. You
can see that the bad sector is now recognised
and the size of LOG.TXT is adjusted, or is it..?
As ever with DOS, things may not be as they
seem. CHKDSK will not actually make the
corrections to the directory unless you
specifically ask it to. The command in this case
should have been:

CHKDSK B: /F
where the /F means �fix it�.

Ideally CHKDSK should be run from time to
time to pick up lost clusters and release them
for general use. Lost clusters can arise from
files disrupted by bad blocks as we saw above
but can also arise if applications are not shut
down properly, for example, by a sudden
power failure or computers being turned off
unexpectedly.

BACKUP
Basic data security can only be maintained by
a proper backup schedule. We all know this
and we all cheat (at least, until we lose a hard
disc full of data.)! The conventional advice for
a hard disc would be as follows:

1) Do a complete backup to floppies at the
same time every month.

2) Do an incremental backup (that is only
those files which have been changed

since the last backup) at the end of
the working day onto a second set of
discs.

3) At the end of the next day do the
incremental backup onto a third set of
discs.

4) Alternate the second and third set of
backup discs from day to day.

To do a complete hard disc backup the
command is quite simply:

BACKUP C:\ A: /S
The /S switch makes sure that all sub-
directories are backed-up up as well. All you
have to do now is to insert floppy discs when
told to. You will, in all probability, need a
large number of floppy discs and the process
will take a long time. You can append an /F
switch to the backup command to tell the
program to format the floppy discs prior to
storing the backup files on them. I prefer to
pre-format them using the ADFS format
because this enables me to reject any with
bad sectors. To estimate the number of discs
you need, take the total disc capacity for your
hard disc, subtract the number of free bytes
(given by DIR), divide by 1000, and then by
720 (for 720 K discs) and then add one or two
for good measure.

Incremental backups are performed using the
command:

BACKUP C:\ A: /M
where /M means modified files only. All DOS
files have an archive attribute bit which is set
whenever a file is written to. BACKUP resets
the bit after backing up the file and can tell,
therefore, which files have been modified. As
with all backup facilities you can also archive
only those files modified after a certain date.
Another feature I find useful is the backup log.
For example:

BACKUP C:\ A: /S /D:13-03-93 /L:BACK.LOG
will backup all files on the hard disc created on
or after the date given, and leave a list of all the
files together with the number of the backup
disc in a file called BACK.LOG. Afterwards this
can be sorted using:

SORT /+6 < BACK.LOG >

RISC User November 1993 51

Fe
at
ur
e

