
ANDLING ERRORS
In C code examples, I have seen at least
3 different ways of handling errors

wimpt_complain(), wimpt_noerr() and werr().
Can you explain when to use each.

P.R.Richards

Firstly, it is worth mentioning why the first two
calls are used with so many RISC_OSLib
functions. Most functions in the library do little
more than make a SWI call for you, and in
every case, the call is made in the X form. This
means that errors are not handled directly by
the operating system, nor indeed by the
function. Instead most functions return a pointer
to an error block if an error occurs, or a Null
pointer otherwise.

So, when you call a RISC_OSLib function that
returns an error pointer, you must do something
about it. If any error at that point in your code will
be fatal - for example a vital template might be
missing - then the simplest thing to do is to wrap
up your function call with wimpt_noerr(). If an
error occurs, a message of the following kind will
then appear:

ProgName has suffered a fatal internal
error

(error message) and must exit immediately.
The program will then quit.

If the error is not so desperate, you can use
wimpt_complain() instead. In this case an error
box will again be put on screen, but the
program will continue from the next line. This
means of course that your code must detect the
error, and behave accordingly. If there is an
error in opening a data file for example, it is no
use trying to read data from it in successive
lines. Fortunately, wimpt_complain() returns the
original os_error * pointer, so you can use
something like the following:
if (wimpt_complain\
(sprite_area_save(area,name))==NULL)

{
...
}
Any code within the braces will only be
executed if the call to sprite_area_save()
returns without error, while if there is an error it
will be correctly reported.

The final function that you mention, werr() is

simply for customised error reporting. The
function will put up an error box containing the
message supplied when the call is made.

PREPROCESSOR QUOTE HANDLING
Bob Peterson
The preprocessor in the Acorn compiler can
handle the insertion of quoted strings even
when they fall next to quotation marks. As a
result, the following works fine:

#define APP_NAME "Test_App"

fptr=fopen("<"APP_NAME"$Dir>.datafile"
,"r");

LET YOUR MACROS TAKE THE STRAIN
Dave Appleby
It is possible to define sets of macros to reduce
typing and make your C code more readable.
For example:

OPENING DIRECTORIES WITH fopen()
Lee Calcraft
If you use the ANSI C function fopen() supplied
with CLib, it is worth knowing that

RISC User November 1993 19

C Notebook: Hints &
Queries

H

#define ICON_SET(w,i,f)
wimpt_noerr(wimp_set_icon_state(w,i,f,f))

#define ICON_SETALL(w,i,f)
wimpt_noerr(wimp_set_icon_state(w,i,f,~0))

#define ICON_CLEAR(w,i,f)
wimpt_noerr(wimp_set_icon_state(w,i,0,f))

#define ICON_TOGGLE(w,i,f)
wimpt_noerr(wimp_set_icon_state(w,i,f,0))

#define ICON_REDRAW(w,i,f)
wimpt_noerr(wimp_set_icon_state(w,i,0,0))

#define ICON_DELETE(w,i,f)
ICON_SET(w,i,wimp_IDELETED | wimp_IREDRAW)

