ost programmers tackling the Winp for

the first time design windows in which

information can be displayed using
ioms. Often this is quite adequate, since meny
programs present information that can be neatly
packaged up into discrete units - the current
status of an operation, co-ordinates, and so an.
But sooner or later there comes a need to
handle text of a more complex and
unpredictable nature - the contents of a help
file, say, or a list of items produced by a
database search. You may even need to write a
program which edits or processes text in same
way.

For situations such as these, and indeed for
many other purposes such as drawing graphics,
the Wimp provides the means for you to draw
directly to your window without the use of icms.
The basic techniques of window redraw were
covered in Mastering the Wimp (RISC User 3:3,
3:4 and 4:4), and in the book Wimp
Progranming for All. It is assured that you are
familiar with these basic techniques, but it is
worth repeating the main elements of the
redraw process here.

Firstly, the window in question must have bit 4
of the window flags unset (which indicates that
it wishes to receive redraw requests). The
Wimp will then retum poll reason code 1 to the
task whenever any section of the window needs
redrawing. This will happen when the window is
first opened, or when a part of it which was
previously hidden becames visible (for example
if it is scrolled or moved fram behind another
window) .

Redraw must be carried out using a well-defined
process within a redraw logp. You must not write
to the screen outside a proper redraw loop. The
loop entered after calling
Wimp_RedrawWindow , which returns the
information you need to carry aut the redraw. The
Wimp tells you the co-ordinates of the current
visible area of the window, the scroll bar
positions, and the co-ordinates of the specific
rectangle that neads to be redrawn (known as the
clipping rectangle). You must perform the loop
repeatedly, redrawing the requested areas, wntil
no more rectangles are retumed. As an exanple,
imagine that another window is dragged

is

W imp Topics - Displaying Text

1n Windows

Alan Wrigley describes some useful
redraw techniques to help you with

y scroll offset
(block+24)

Work area
origin f--""""T==--===- '
, 1
1 1
1 1
1 1
1 1
T
1 1
1 1
1 'J'
1 1
block+16
Visible area
block +40
Clipping
rectangle
block+32
(all screen
relative)
Screen

diagonally across yours. Each time
the window moves a measurable

The relationship between
the window’s work area and

the screen co-ordinates

distance, it will expose an L-shaped
section of your window. The Winp will
serd you a redraw request, and will
retum two consecutive rectangles which together
will cover the newly exposed area. You then
redraw both these rectangles before passing
amtrol back to Winp Foll .

When the window to be redrawn contains lines of
text, the redraw process can be broken down into
three stages - caladlating the co-ordinates of the
area to be redrawn, deciding which section of text
relates to those co-ordinates, and actually putting
the text an the screen. Fach of these stages will
be described in tirm.

CLIPPING RECTANGLE CO-ORDINATES

For small amounts of text you can get away
with ignoring the clipping rectangle and just
redrawing the whole of the work area at each
redraw request. Provided you are in a proper
redraw loop, it is always quite safe to draw
more than is required since anything outside
the clipping rectangle will be ignored anyway.

RISC User November 1993

retumed by
"Wimp_RedrawWindow"

27

Feature

28

For larger amonts this agorcach will result in
an unacceptable time delay, particularly when
the window is scrolled down, and this will
increase the further away you are fram the work
area origin. In these circumstances you must
take note of the clipping rectangle and only
redraw the parts that are needed.

Where text is concemed, this is often not as
difficult as it sords. You cen safely ignore the
x co-ordinate of the rectangle, and just draw
camplete lines of text each time, since the
overhead involved in drawing part of a line
umnecessarily is offset by the fact that you dm t
need to calaulate where on the line to start and
end. This means that you only need to take the
y co-ordinates into accomnt; and since the text
in most cases will have been displayed in
equally-spaced lines, it is relatively easy to work
out on which lines the clipping rectangle begins
and ends, using the values returned by the
Wimp.

To d this, you first nead to ke aware that all the
co-ordinates retumed by the Winp are relative to
the screen, ard ot to the window s work area.
However, your program only knows where the
text is positioned in relation to the window, not
the screen, so you must perform some
calculations to translate between the two. The
notional screen co-ordinates of the work area
origin can be fard by subtracting the vertical
scroll position fram the top of the visible area. T
say notiawl lecause its position mey actually
be way off the top of the screen if the window
has been scrolled (see Figure 1). Now you can
subtract fram this the meximm y co-ordinate of
the cligping rectangle to get its top relative to the
work area, and similarly the minimum y co-
ardirete to get its bottan. Firelly divide these by
the lire goacing in 08 wnits to fird ait the start
and end lines of the section that needs to be
redrawn. The following procedure perfonms these
actias:

1000 DEF PROCredraw

1010 SYS "Wimp GetRectangle", ,block% TO more%
1020 WHILE more%

1030 xorigin%=block%!4-block%!20

1040 yorigin%=block%!16-block%!24

1050 maxyclip%=yorigink-block%!40

1060 minyclip%=yorigink-block%!32

1070 topline%=maxyclips DIV 32

1080 bottomline%=1+minyclip% DIV 32

RISC User November 1993

1090 REM redraw code here

1130 SYS "Wimp_GetRectangle", ,block% TO more%
1140 ENDWHILE

1150 ENDPROC

This code should be easy to understand as it
follows the process autlined above. First of all
we get the work area origin in xorigin% and
yorigink. Then we get the clipping rectangle
which lies between maxyclip% and minyclip% h
work area co-ordimates. Finally we translate this
rectangle into line mubers, stored in topline®
and bottanline%s. You will notice that we have
assured a line spacing of 32 OS units, which is
the same as that used by Edit. If you want more
spacious-locking text you could use 36 or 40
instead (though if you are writing in Assenbler
you will find 32 better as you can do your
division using shift instructions). We have also
incremented the bottan line by 1 to ensure that
the whole of the line gets redrawn.

This exanple assunes that the text will start at
the very edges of the window. In practice it
locks neater to leave a small gap, say 4 OS
wnits, at both the top and the left-hand edge.
This can be catered for automatically by
offsetting the origin by that amount in both
directias:

1030 xorigin%=block%!4-block%!20+4

1040 yorigin%=block%!16-block%!24-4

MATCHING TEXT TO CO-ORDINATES

So much for the redraw theory, but how do you
match up the line numbers to the text you
actually want to display? This depends on how
yau store the text, and can be done in several
ways. For exarple, you could hold all the text in
a string array, say ted$(), with each element of
the array containing one line of text. For the
purposes of redraw, this is the simplest solution
since you can then just write the text fram
text$ (topline%) t© text$ (bottamline%) without
further ado. The text could ke put into the array
in the first place by reading DATA statevents,
or by reading fram a file (though if the text
doesn t already have line terminators in the
right places, you must calculate their positions
for yourself so that the correct number of
characters is included in each line in the array) .

For large chinks of text, or text whose cmtent
may change during execution of the program,
the array approach is less convenient, since

ae gell alteration to the text may require the
amtents of sare or all of the array elarents to
be changed around. An altemative method is to
store the text directly in mamory, and to kesp
an array of pointers to the start of each line. If
the text is altered, the pointers can be updated
without having to alter all the array elevents.
There are various ways of allocating a chunk of
mamory in which to store the text - these were
described in Technical Queries (RISC User
5:4).

WRITING TEXT TO THE WINDOW
The process of actually getting the text into the
window is quite straightforward. We will stick to
the systan font for the purposes of this article -
outline fonts are a bit more tricky since you
dovicusly have to know the point size before
you can position text in the window. The text is
output in exactly the same way as you would
write to the screen in VDU 5 mode in a non-
multi-tasking program, using the same VDU and
SWT calls, and specifying the actual screen co-
ordinates. However, since it is being done
within a redraw loop, the Winp mekes sure that
only your window is written to, and ignores any
co-ordinates that lie elsewhere. Before writing
any line of text, the graphics cursor must be
positioned. Having converted fram screen co-
ordinates to work area co-ordinates in order to
calaidlate the correct text line, the top of the line
must be converted back to screen co-ordinates
to fird the v position for the cursor (we can t just
use the value retumed for the clipping rectangle
since that may not fall cn a line bondary). The
x position of the aursor will be the sare as the
work area origin x co-ordinate, since we are
drawing carplete lines each time. So the code
to digplay the text would lock samething like
this, assuming the array method of storage:

1090 FOR i%=topline% TO bottomline%

1100 MOVE xorigin%,yorigin%-i%+*32

1110 PRINT text$ (i%)

1120 NEXT

WINDOW SCROLLING

When scrolling a text display, it usually locks
neater if the tgo of the window coincides exactly
with a line of text. This can easily be achieved
by adjusting the scroll bar whenever a request
to open the window is received. When the
redraw request is then issued, the scroll bar will
reflect the adjusted setting and your redraw

aode will autametically put the text in the right
place. If the text is spaoed at 32 CS wnits, all
you have to d is ensure that the scroll kar is a
multiple of 32 before calling
Wimp_OpenWindow :
block%!24=block%!24 AND &FFFFFFEQ
SYS "Wimp OpenWindow", ,block%

SETTING THE EXTENT
One prablem you often face is how to meke sure
that the vertical extent of the window is the right
size for the text you want to digplay. If it s too
short, sare of the text will never be semn, while if
it ¢ too long, there will be a large and
urnecessary amount of space at the bottam. The
solution to this is to set the window extent as
som as the legth of the text is known (i.e. when
loaded from a file or read from DATA
stataments), and to reset it if err the lapth of the
text chenges. This is quite eassily dxe with a call
to Wimp SetExtent . For eample, if the text is
100 lines long with a line spacing of 32, then
allowing for the 4-nit offset at the top, you would
nead an extent of 3204. Assuming that you have
made the window the full width of a mode 12
screen (1280 wnits), the call would lock 1ike this:

Iblock%=0:block%!4=3204

block%!8=1280:block%!12=0

SYS "Wimp SetExtent",whandle%,block%

MARKING TEXT
Finally I want to lok at the situation where you
may want to merk a line or lines of text. For
example, in Bdit you can use Select and Adjust,
or a drag cperation, to merk a section of text,
vwhich is shown by inverting the colours. This
particular process is quite carplex, but a simpler
situation would be where you might went to mark
a simle lire of text when the user clicks over it,
perhaps to indicate which item has been chosen
fran a search list. The procedure we will adopt is
to find aut the co-ordinates of the click, match
those to @ lire of text, set a varddble (mark%) ©
show the selected line, and then to force a
redraw of that line with a different background
color (mid-grey) . To do the latter, all we nesd to
add to the redraw code is the following:

1092 IF i%=mark% THEN

1094 SYS "Wimp SetColour",3

1096 RECTANGLE FILL xorigin%,yorigin%-i%
*32,1280, -32

1098 SYS "Wimp_ SetColour",7

1099 ENDIF

RISC User November 1993

0
2
s
M
O
B3

This month s
magazine disc
contains an
application
called Window
Writer which
demonstrates
the principles
covered in this

