
Dear Sir
As a newcomer to computing I am very
confused by some of the jargon. The
manual for a piece of software I acquired
recently tells me it needs a Wimp slot of
128K in order to run. What is a Wimp slot,
and how do I provide one?

E.S. Morris

The term �Wimp slot� or �Wimpslot� simply
means �a chunk of memory allocated to the task
within which it can run in the Wimp
environment�. All multi-tasking programs need
such an allocation of memory, but normally the
user doesn�t need to worry about this, since it is
all done automatically when the program is run.
There is an operating system command,
WimpSlot, which allocates the requested
amount of memory to the task concerned, and
this command is usually issued from the
application�s !Run file. In the absence of any
such command, the contents of the Task
Manager�s Next slot, or the total available free
memory, whichever is the smaller, will be
allocated. You can see the contents of the Next
slot, and also the slots of all currently running
applications, by clicking on the Task Manager�s
icon in RISC OS 3 or choosing its �Task
display� menu option in RISC OS 2.

The manual you mention is confusing because
it seems to imply that you must somehow
provide a Wimpslot for the program yourself. If
the program has been correctly written, it will
automatically request its own slot when run, and
the manual is simply trying to warn you that at
least 128K must be free in the machine before
the program will run. If the requested amount of
memory is not available, an error will be
generated telling you that the application needs

at least nK to run (in this case
128K). You will then have to
find the required memory by
quitting other applications or
reducing the memory
allocated to certain areas, as

described in the User Guide under the section
Optimising memory usage.

There is certainly no excuse for using jargon
such as this in a manual. Software manuals
should assume that users know nothing about
the workings of the computer; in this particular
case, a sentence such as �You must ensure
that at least 128K of memory is free before
running this program� would have been far
better.

Dear Sir
In Technical Queries (RISC User 5:4) you

described various methods of
claiming extra memory in order to
process documents etc. What is the

best way of dealing with a situation where
editing the document would cause it to
overrun the end of the extra memory?

John Winwick

The methods described in 5:4 were firstly to use
the keyword DIM to dimension a block of
memory within the program�s workspace;
secondly to claim a chunk of memory from the
RMA; and thirdly to increase the Wimpslot by
calling SWI �Wimp_SlotSize�.

The first method is not really suitable if you are
likely to extend the document beyond the
memory originally dimensioned. You cannot
increase a dimensioned area directly - you can
only dimension another block, which is unlikely
to be contiguous with the first. If you use this
second block as an extension to the first, you
will have to keep pointers so that the program
knows how many blocks you have, and where
to make the transition from one to the next. If
you abandon the first block completely and
move the whole document to the second, you
cannot free the memory and so it is effectively
wasted.

If you are using either of the other methods,

RISC User November 199366

TECHNICAL QUERIES 

Alan Wrigley answers your queries on
W impslots, extending memory blocks,
retrieving pointer information, and
sending text files to Edit from your own

A

?

A

Q Q



however, the extra memory can readily be
extended in a seamless fashion (provided that
there is sufficient memory available in the
computer). A block of memory claimed from the
RMA (using OS_Module 6 as in the example
given in 5:4) is under the control of the Heap
Manager, and can be extended by using SWI
�OS_Heap� with the following parameters:

R0 = 4 (reason code)
R1 = pointer to heap
R2 = pointer to block
R3 = size change relative to original

Reason code 4 indicates that you want to extend
a heap block. The �heap� in this context is the
RMA, so first you have to find where it starts by
using �OS_ReadDynamicArea�. The pointer to
the block is the pointer that was returned by
OS_Module when you claimed it in the first
place, while the size change in R3 is relative to
the original size (i.e. a positive increment to
expand it, or a negative decrement to shrink it). If
the heap manager cannot extend the block in its
current position, it will move it and copy the
contents. The new block pointer is returned in
R2, so you must read this and use it in place of
the original value. This implies that all access to
the memory block in your program should be
relative to the pointer, and this is in any case
advisable as you should not normally refer to
explicit addresses.

So to expand a block pointed to by extra% from
1000 bytes to 1200 bytes, you would execute
the following code:

SYS "OS_ReadDynamicArea",1 TO rma%
SYS "OS_Heap",4,rma%,extra%,200 TO

,,extra%
If you have used �Wimp_SlotSize� to claim extra
memory, all you need to do to extend it is to use
the call again in exactly the same way as before,
but this time requesting a larger slot. Provided
the memory is allocated, the operating system

will map the extended area so that it
appears to your task to be contiguous with
the original memory allocation. In other

words, whatever slot size your program currently
has, the application workspace will always start
at &8000 and extend in one block the size of the
complete slot.

Dear Sir
I am trying to write a program which moves

the pointer across the screen and then
reads the window and icon handles
underneath it using �Wimp_GetPointer
Info�. The problem is that the pointer
position returned by the call is always the
position before it was moved, irrespective
of where the call is made from. Can you
help?

Stuart Porter

Unfortunately the PRM in its description of
�Wimp_GetPointerInfo� doesn�t make it
sufficiently clear that the data returned by the
call relates to the moment at which your
program last regained control through
Wimp_Poll. In other words, the information is
only updated when a Wimp poll event is
returned, and any subsequent movements of
the pointer will not be taken into account until

you call Wimp_Poll again (when the data
at that point will be available to the next

task which is paged in).

The solution to the problem is to claim null
events while you are carrying out the task in
question. Having moved the pointer, you can
then read its new position at the next null event,
and carry out whatever actions are needed at
that point.

Dear Sir
When a multi-tasking Basic program
needs to display a text file, it can issue
the command *Run <pathname> to load
the file into Edit. However if another text
file is to be displayed, a second copy of
Edit is installed. Is there a better method
which uses the same copy of Edit, and
can the Basic program close the first text
window?

Keith Vernon

When a Run command is issued for any file,
RISC OS performs the run action for that
filetype (as specified by the Alias$@RunType
variable). In the case of text files, the default
action is to load a text editor such as Edit. Any
text editor that might already be installed is
unaware that this is happening, and so cannot
load the file itself. The solution to this problem
under RISC OS 2 is to broadcast a

RISC User November 1993 67

Te
ch
ni
ca
l 

?

A

Q

Q

A


