
ost programmers tackling the Wimp for
the first time design windows in which
information can be displayed using

icons. Often this is quite adequate, since many
programs present information that can be neatly
packaged up into discrete units - the current
status of an operation, co-ordinates, and so on.
But sooner or later there comes a need to
handle text of a more complex and
unpredictable nature - the contents of a help
file, say, or a list of items produced by a
database search. You may even need to write a
program which edits or processes text in some
way.

For situations such as these, and indeed for
many other purposes such as drawing graphics,
the Wimp provides the means for you to draw
directly to your window without the use of icons.
The basic techniques of window redraw were
covered in Mastering the Wimp (RISC User 3:3,
3:4 and 4:4), and in the book Wimp
Programming for All. It is assumed that you are
familiar with these basic techniques, but it is
worth repeating the main elements of the
redraw process here.

Firstly, the window in question must have bit 4
of the window flags unset (which indicates that
it wishes to receive redraw requests). The
Wimp will then return poll reason code 1 to the
task whenever any section of the window needs
redrawing. This will happen when the window is
first opened, or when a part of it which was
previously hidden becomes visible (for example
if it is scrolled or moved from behind another
window).

Redraw must be carried out using a well-defined
process within a redraw loop. You must not write
to the screen outside a proper redraw loop. The
loop is entered after calling
�Wimp_RedrawWindow�, which returns the
information you need to carry out the redraw. The
Wimp tells you the co-ordinates of the current
visible area of the window, the scroll bar
positions, and the co-ordinates of the specific
rectangle that needs to be redrawn (known as the
clipping rectangle). You must perform the loop
repeatedly, redrawing the requested areas, until
no more rectangles are returned. As an example,
imagine that another window is dragged

diagonally across yours. Each time
the window moves a measurable
distance, it will expose an L-shaped
section of your window. The Wimp will
send you a redraw request, and will
return two consecutive rectangles which together
will cover the newly exposed area. You then
redraw both these rectangles before passing
control back to �Wimp_Poll�.
When the window to be redrawn contains lines of
text, the redraw process can be broken down into
three stages - calculating the co-ordinates of the
area to be redrawn, deciding which section of text
relates to those co-ordinates, and actually putting
the text on the screen. Each of these stages will
be described in turn.

CLIPPING RECTANGLE CO-ORDINATES
For small amounts of text you can get away
with ignoring the clipping rectangle and just
redrawing the whole of the work area at each
redraw request. Provided you are in a proper
redraw loop, it is always quite safe to draw
more than is required since anything outside
the clipping rectangle will be ignored anyway.

RISC User November 1993 27

W imp Topics - Displaying Text
in Windows

Alan Wrigley describes some useful
redraw techniques to help you with

M

The relationship between
the window’s work area and
the screen co-ordinates
returned by
"Wimp_RedrawWindow"



RISC User November 199328

Fe
at
ur
e For larger amounts this approach will result in

an unacceptable time delay, particularly when
the window is scrolled down, and this will
increase the further away you are from the work
area origin. In these circumstances you must
take note of the clipping rectangle and only
redraw the parts that are needed.

Where text is concerned, this is often not as
difficult as it sounds. You can safely ignore the
x co-ordinate of the rectangle, and just draw
complete lines of text each time, since the
overhead involved in drawing part of a line
unnecessarily is offset by the fact that you don�t
need to calculate where on the line to start and
end. This means that you only need to take the
y co-ordinates into account; and since the text
in most cases will have been displayed in
equally-spaced lines, it is relatively easy to work
out on which lines the clipping rectangle begins
and ends, using the values returned by the
Wimp.

To do this, you first need to be aware that all the
co-ordinates returned by the Wimp are relative to
the screen, and not to the window�s work area.
However, your program only knows where the
text is positioned in relation to the window, not
the screen, so you must perform some
calculations to translate between the two. The
notional screen co-ordinates of the work area
origin can be found by subtracting the vertical
scroll position from the top of the visible area. I
say �notional� because its position may actually
be way off the top of the screen if the window
has been scrolled (see Figure 1). Now you can
subtract from this the maximum y co-ordinate of
the clipping rectangle to get its top relative to the
work area, and similarly the minimum y co-
ordinate to get its bottom. Finally divide these by
the line spacing in OS units to find out the start
and end lines of the section that needs to be
redrawn. The following procedure performs these
actions:

1000 DEF PROCredraw
1010 SYS "Wimp_GetRectangle",,block% TO more%
1020 WHILE more%
1030 xorigin%=block%!4-block%!20
1040 yorigin%=block%!16-block%!24
1050 maxyclip%=yorigin%-block%!40
1060 minyclip%=yorigin%-block%!32
1070 topline%=maxyclip% DIV 32
1080 bottomline%=1+minyclip% DIV 32

1090 REM redraw code here
1130 SYS "Wimp_GetRectangle",,block% TO more%
1140 ENDWHILE
1150 ENDPROC

This code should be easy to understand as it
follows the process outlined above. First of all
we get the work area origin in xorigin% and
yorigin%. Then we get the clipping rectangle
which lies between maxyclip% and minyclip% in
work area co-ordinates. Finally we translate this
rectangle into line numbers, stored in topline%
and bottomline%. You will notice that we have
assumed a line spacing of 32 OS units, which is
the same as that used by Edit. If you want more
spacious-looking text you could use 36 or 40
instead (though if you are writing in Assembler
you will find 32 better as you can do your
division using shift instructions). We have also
incremented the bottom line by 1 to ensure that
the whole of the line gets redrawn.

This example assumes that the text will start at
the very edges of the window. In practice it
looks neater to leave a small gap, say 4 OS
units, at both the top and the left-hand edge.
This can be catered for automatically by
offsetting the origin by that amount in both
directions:

1030 xorigin%=block%!4-block%!20+4
1040 yorigin%=block%!16-block%!24-4

MATCHING TEXT TO CO-ORDINATES
So much for the redraw theory, but how do you
match up the line numbers to the text you
actually want to display? This depends on how
you store the text, and can be done in several
ways. For example, you could hold all the text in
a string array, say text$(), with each element of
the array containing one line of text. For the
purposes of redraw, this is the simplest solution
since you can then just write the text from
text$(topline%) to text$(bottomline%) without
further ado. The text could be put into the array
in the first place by reading DATA statements,
or by reading from a file (though if the text
doesn�t already have line terminators in the
right places, you must calculate their positions
for yourself so that the correct number of
characters is included in each line in the array).

For large chunks of text, or text whose content
may change during execution of the program,
the array approach is less convenient, since



one small alteration to the text may require the
contents of some or all of the array elements to
be changed around. An alternative method is to
store the text directly in memory, and to keep
an array of pointers to the start of each line. If
the text is altered, the pointers can be updated
without having to alter all the array elements.
There are various ways of allocating a chunk of
memory in which to store the text - these were
described in Technical Queries (RISC User
5:4).

WRITING TEXT TO THE WINDOW
The process of actually getting the text into the
window is quite straightforward. We will stick to
the system font for the purposes of this article -
outline fonts are a bit more tricky since you
obviously have to know the point size before
you can position text in the window. The text is
output in exactly the same way as you would
write to the screen in VDU 5 mode in a non-
multi-tasking program, using the same VDU and
SWI calls, and specifying the actual screen co-
ordinates. However, since it is being done
within a redraw loop, the Wimp makes sure that
only your window is written to, and ignores any
co-ordinates that lie elsewhere. Before writing
any line of text, the graphics cursor must be
positioned. Having converted from screen co-
ordinates to work area co-ordinates in order to
calculate the correct text line, the top of the line
must be converted back to screen co-ordinates
to find the y position for the cursor (we can�t just
use the value returned for the clipping rectangle
since that may not fall on a line boundary). The
x position of the cursor will be the same as the
work area origin x co-ordinate, since we are
drawing complete lines each time. So the code
to display the text would look something like
this, assuming the array method of storage:

1090 FOR i%=topline% TO bottomline%
1100 MOVE xorigin%,yorigin%-i%*32
1110 PRINT text$(i%)
1120 NEXT

WINDOW SCROLLING
When scrolling a text display, it usually looks
neater if the top of the window coincides exactly
with a line of text. This can easily be achieved
by adjusting the scroll bar whenever a request
to open the window is received. When the
redraw request is then issued, the scroll bar will
reflect the adjusted setting and your redraw

code will automatically put the text in the right
place. If the text is spaced at 32 OS units, all
you have to do is ensure that the scroll bar is a
multiple of 32 before calling
�Wimp_OpenWindow�:

block%!24=block%!24 AND &FFFFFFE0
SYS "Wimp_OpenWindow",,block%

SETTING THE EXTENT
One problem you often face is how to make sure
that the vertical extent of the window is the right
size for the text you want to display. If it�s too
short, some of the text will never be seen, while if
it�s too long, there will be a large and
unnecessary amount of space at the bottom. The
solution to this is to set the window extent as
soon as the length of the text is known (i.e. when
loaded from a file or read from DATA
statements), and to reset it if ever the length of the
text changes. This is quite easily done with a call
to �Wimp_SetExtent�. For example, if the text is
100 lines long with a line spacing of 32, then
allowing for the 4-unit offset at the top, you would
need an extent of 3204. Assuming that you have
made the window the full width of a mode 12
screen (1280 units), the call would look like this:

!block%=0:block%!4=3204
block%!8=1280:block%!12=0
SYS "Wimp_SetExtent",whandle%,block%

MARKING TEXT
Finally I want to look at the situation where you
may want to mark a line or lines of text. For
example, in Edit you can use Select and Adjust,
or a drag operation, to mark a section of text,
which is shown by inverting the colours. This
particular process is quite complex, but a simpler
situation would be where you might want to mark
a single line of text when the user clicks over it,
perhaps to indicate which item has been chosen
from a search list. The procedure we will adopt is
to find out the co-ordinates of the click, match
those to a line of text, set a variable (mark%) to
show the selected line, and then to force a
redraw of that line with a different background
colour (mid-grey). To do the latter, all we need to
add to the redraw code is the following:

1092 IF i%=mark% THEN
1094 SYS "Wimp_SetColour",3
1096 RECTANGLE FILL xorigin%,yorigin%-i%

*32,1280,-32
1098 SYS "Wimp_SetColour",7
1099 ENDIF

RISC User November 1993 29

Fe
at
ur
e

This month�s
magazine disc
contains an
application
called Window
Writer which
demonstrates
the principles
covered in this


