
Dear Sir
I have just started writing Wimp
programs in Assembler and am a
little confused about one point. Since
other multi-tasking applications may
be using the processor�s registers
between my calls to Wimp_Poll, does
this mean I cannot rely on the
contents being the same on return as
they were when the call was made?

John Winwick

Although the ARM processor only has
one set of user-mode registers, which
obviously must be used by all the
applications currently running, the call to
Wimp_Poll adheres to the same rules that
apply when making any SWI call - in other
words, unless the PRM states otherwise, the
register contents and processor flags are
preserved across the call. In the case of
Wimp_Poll, only R0 is altered, since this
must return the reason code. The Wimp
stores the contents of all the other registers
when you call Wimp_Poll, and restores them
when it returns with a reason code. You may
therefore keep information in other registers
quite safely while your application is running.

While on the subject, it is worth repeating
the warning we have given before that for
SWI calls which require entry parameters
in R1 and above, but not in R0, you should
always assume that R0 may be corrupted
by the call.

Dear Sir

Please could
you explain in

plain English how to
use the FontMax
configuration settings.

Andrew Dalby
There are seven configuration settings for
the font manager - FontMax, FontMax1 -
FontMax5 and FontSize. FontMax4 and
FontMax5 have a very specialised use
which we will not consider here, while
FontMax1 is largely irrelevant - for most
purposes you can safely leave these
configured to zero. FontSize and FontMax
between them decide the size of the font
cache (the area of memory set aside for
the font manager to store information on
the fonts currently in use), and were
described in Into the Arc (RISC User 6:4).

This leaves FontMax2 and FontMax3, both
of which have a direct bearing on the way
in which fonts are used and displayed.
When a font is used, the font manager
normally creates from the outlines in the
file a temporary bitmap for the point size in
question and stores this in the cache. This
is done to speed up the display of the font
on the screen. However, each point size
used takes up additional space in the
cache. If anti-aliased bitmaps are stored,
this requires much more space than
simple monochrome bitmaps, and so
FontMax2 is used to tell the font manager
the largest point size that you want to be
stored as an anti-aliased bitmap.

You can see how this works for yourself.
Set FontMax2 to a value such as 14
points. Now open a document and type a
line of text at 14 points, followed by
another line at 15 points. You can see
quite clearly that the characters in the
second line look much thinner - this is
because the 14-point characters have
been �fleshed out� by anti-aliasing. A

RISC User April 199362

TECHNICAL QUERIES

This month Alan Wrigley answers
your questions on processor
contents in Assembler, using the
FontMax settings and reading the

Q

A

?

Q

A

sensible minimum value for FontMax2 is
therefore the point size you would use for
most normal text (usually 12-14 points).

FontMax3 determines whether outlines are
converted to bitmaps and stored in the
cache, or used directly. For large point
sizes which are used infrequently, it makes
little sense to fill up the cache, and so this
configuration specifies the largest point
size that will be converted to a bitmap. A
sensible value is between 24 and 32
points, depending on the kind of work you
are doing. You can test this out as follows:
Display a paragraph of text in a point size
at or just below the FontMax3 setting.
Once the characters have been drawn for
the first time, scrolling the text in and out of
the window should be fairly smooth
(assuming you have a large enough cache
in the first place), since the bitmaps are all
cached. Now change the point size to
something larger than the configured
setting and repeat the process. You will
find that scrolling is no longer as smooth
as it was, since the font manager now has
to draw the outlines directly each time the
characters reappear in the window.

Because the characters are drawn
directly from the outlines in this case,
they are not anti-aliased. This means that
if you want to display anti-aliased text in
any particular point size, the values of

both FontMax2 and FontMax3 must
be equal to or greater than the point

size you are using.

Dear Sir
Could you please give me some
information on how to detect
movement of a joystick from within a
Basic program.

Keith Lowe

The Joystick module which is part of
RISC OS 3 allows you to read the state
of either an analogue or a digital
joystick. The module will only initialise if
it detects built-in joystick hardware (as
for example in the A3010). It provides
just one SWI call, Joystick_Read
(&43F40). On entry to this call, R0
should contain the joystick number,
while on exit R0 holds a value which
describes the current joystick state. For
an analogue joystick this is as follows:

Byte 0: signed Y value: -127 (down) to
127 (up)

Byte 1: signed X value: -127 (left) to
127 (right)

Byte 2: fire buttons, starting at bit 0

For a digital joystick, byte 0 holds -64, 0 or
64 for down, centre and up respectively,
while byte 1 holds -64, 0 or 64 for left,
centre and right respectively.

If you are only interested in the absolute
state of a joystick (i.e. whether it is up,
down, left, right or at rest), you should
allow a margin of error for the �at rest�
state, since analogue joysticks are not
guaranteed to produce a value of zero.
Acorn suggests a middle range of -32 to
32. So to read joystick 0 from a Basic
program, the code would look something
like this (assuming only one fire button):

SYS "Joystick_Read",0 TO state%

y%=FNcalc(state%):x%=FNcalc(state%>> 8)

button%=state% AND &10000

IF button% PROCfire

IF x%<0 PROCleft ELSE IF x%>0 PROCri ght

IF y%<0 PROCdown ELSE IF y%>0 PROCup

.....

DEF FNcalc(a%)

b%=(a% AND 255)-2*(a% AND 128)

=b% DIV 32

RISC User April 1993 63

Te
ch
ni
ca
l

?

Q

A

Bytes 0 and 1 are passed successively

to FNcalc, which converts them into

single-byte signed values, divides by 32

to allow for the middle range as

suggested above, and passes the results

back to y % and x % respectively. In the

example given here, button% will be

either &10000 or zero; since we only

need a true or false result for one button,

this is sufficient. With more than one

button, however, you will need to do a

little more decoding. The value in byte 2

can be obtained as follows:
(state%>>16) AND 255

caption

RISC User December 19922

Fe
at
ur
e

caption

RISC User December 1992 2

Fe
at
ur
e

