Technical Queries

Alan Wrigley answers more of your questions.

Dear Sir
I would like to display text in a larger then
normal size within a window, but T can t
see a way to do it unless I use an cutline
font or draw the cdharacters myself. Is this
oorrect?

Colin Murray

The system font when used in VDU 5 mode
can in fact be scaled on screen on both the x
and y axes, using the multi-purpose VDU 23
command. The full syntax for this particular
operation is as follows:

VDU 23,17,7,flags, dx;dy; 0;0;
Bits 1 and 2 of the flags byte are used to
indicate whether the character size or
spacing or both are to be affected. If bit 1 is
set, then dx and dy are used to set the
horizontal and vertical size respectively of
any character subsequently displayed on the
screen, in pixels. If bit 2 is set, dx and dy set
the character spacing in the same way. The
normal character size is 8x8 pixels (in mode
12 for example), so to set both the size and
spacing to double on each axis, you would
use:

vou 23,17,7,6,16;16;0;0;

This is not the end of the story, however,
since the character pixel size is dependent on
mode. If you are using a multisync mode, for
example mode 20, then in order that normal
text should look the same size on the screen
as with a non-multisync mode, the vertical
character size and spacing are doubled to 16
pixels. So to make your program mode
independent (which all Wimp programs
should be), you must first ascertain the
character size and then scale that in the VDU
command, rather than scaling an absolute

value of 8x8. To do this, you need to call
OS_ReadVduVariables to read variable
numbers 162-165, which are x-size, y-size, x-
spacing and y-spacing respectively for VDU
5 characters. This call requires an input
buffer to be passed in RO, in which the
variable numbers to be read are placed in
consecutive words, terminated by -1, and an
output buffer to be passed in R1, into which
the values returned are placed in the
corresponding positions. So to double up all
the values as before, you would use the
following code:

DIM in% 19,out% 15

!in%=162:1n%!4=163

in%!8=164:1n%!12=165:1n%!16=-1

SYS "OS_ReadVduVariables",in%,out%

xsize%=!out%:ysize%=out%!4

xspace%=out%!8:yspace%=out%!12

VDU 23,17,7,2,%xs1ze%*2;ys1ze%*2;0;0;

VDU 23,17,7,4,%space%*2;yspace%*2;0;0;
Note that in this case we have issued two
separate commands to set first the size and
then the spacing. This is to cater for the
possibility that the size and spacing may not
have the same value. Note, too, that once
you have issued these VDU commands, all
character output to the screen will be at the
new size, regardless of which application is
outputting the characters. For this reason
you must revert to normal size characters as
soon as you have finished redrawing your
window, by repeating the VDU commands,
this time using the values obtained for
xsize% etc. above.

Dear Sir
When converting a variable into a string
using STR$ there is of ten a long mentissa.
What is the easiest way to control the
accuracy of the conversion?

Keith Vernon

Technical Queries

While it is easy for a computer to represent
integer values, since these can be based
simply on a bit count, it is not so easy to
represent floating point values with absolute
accuracy. Whatever algorithm is used to
encode the number, there will inevitably be
rounding errors in certain cases. You can see
this at first hand by typing in the following
line from Basic:
FOR i=0 TO 10 STEP 0.1:PRINT i:NEXT

At some point you will see numbers such as
3.59999999 begin to appear. Further rounding
errors occur when you use STR$, as you have
pointed out. Replace PRINT i in the above
line with PRINT STR$i, and you will see a
different set of figures on the screen.

As in so many cases, however, Basic comes
to the rescue, this time with the special
variable @% which is specifically provided
to determine the format in which numbers
are to be displayed. Byte 0 of this variable
gives the field width when tabulating with
commas. By default this is 10, so if you type:
PRINT 1,2,3,4

you will see that the numbers are spaced out
by 10 columns each.

Bytes 1 and 2 of the variable determine the
number of digits printed, and the type of
format to be used respectively. If fixed
format is chosen (byte 2=2), byte 1 represents
the number of digits after the decimal point,
while in general format (byte 2=0), byte 1
represents the total number of digits. The
default is general format with 9 digits. The
number of digits displayed affects the
accuracy of the number; a greater number of
decimal places is more likely to introduce the
rounding errors we have described above.

For example, if you alter the digits to 8
instead of 9 before typing in the line given
above, as follows:

@%=&80A

FOR 1=0 TO 10 STEP 0.1:PRINT i:NEXT
you will notice a marked difference.

However, if you then substitute PRINT i with
PRINT STR$i as before, the rounding errors
will still be there. To cure this, we need to set
byte 3 of @% to a non-zero value, which
indicates that the format set with the rest of
the variable should also be used by STRS.
For example:

@%=&102040A
would set a field width of 10 and print all
figures to 4 decimal places, employing the
same format if STR$ is used. If you set the
format to suit your own particular
requirements, this should effectively
overcome the rounding problems that occur
with the default settings.
In some cases, it may be easiest to forget
about floating point numbers altogether and
work with integers on multiples of 10 or 100
times the actual value. For example, suppose
you are writing a program that handles
monetary values. Provided that you will not
be handling fractions of a penny, you could
easily do all your internal calculations in
pence, using integer variables, and only
introduce decimal points into the actual
string displayed on the screen, not into the
values themselves. To do this, you could use
a function such as:

DEFFNstring (val%)

a%=ABS (val%) :a$=STR$ (a%)

IF a%<100 a$="0"+a$:IF a%<10 a$="0"+a$

IF val%<0 a$="-"+a$

=LEFT$ (a$,LEN (a$) -2) +". "+RIGHTS (a$, 2)
which will turn a positive or negative

T1tle repeat

value passed to it in pence (e.g. 1234 or -12)
into a string in pounds and pence (12.34, -
0.12).

MORE ON SPRITE ICONS
Technical Queries in the April issue (Volume 5
Issue 5) addressed the question of how to
display sprite icons in windows created
using FormEd. Richard Hallas has written to
say that the methods proposed in the article
were more drastic than was necessary, since
there is a word in the window definition
itself specifically provided for a sprite area
pointer. This is at block%+64, and so all that
is required is to insert the following line
between loading the template and creating
the window:
block%!64=spritearea%

However, this will only work as it stands
for text-plus-sprite icons; any sprite-only
icons still need to have their own
definitions altered to point to the sprite
area. The word which needs to be altered in
this case for each relevant icon is
block%+88+32*icon+24. Also, if you have
set the global pointer in the window
definition as described above, you cannot
then mix sprites from your own area and
from the Wimp pool without also altering
the icon definitions of one group.

