
ast month we took a brief look at memory
allocation, concentrating on the standard

ANSI function malloc() and its close relatives.
This month it is the turn of flex. In contrast to
malloc(), this powerful set of functions is
primarily intended for allocating and
maintaining large blocks of memory. It is ideal
for use in word processors, databases or any
other application where you are dealing with
large amounts of data held in RAM, the size of
which can vary during use.

The flex suite of functions does not form
part of the ANSI standard, but is supplied
with RISC_OSLib. The header for the suite is
flex.h, and there are just eight functions (6 if
you have not upgraded to C Release 4):

flex_init()
flex_alloc()
flex_size()
flex_free()
flex_extend()
flex_midextend()
flex_budge()
flex_dont_budge()

flex_init() must be called (with a void
argument) just once in a program, at some point
before any other flex functions are called.
flex_alloc() allocates the required amount of
memory, while flex_size() can be used to return
the amount allocated, and flex_free() to release it.

The two extend functions provide alternative
ways to increase or decrease the size of the
allocated block, while the last two functions
(only available on Release 4) can be used to
determine whether the malloc() heap can expand
beyond the original wimpslot boundary.

USING flex
The single feature of the flex suite of

functions which distinguishes it from its
malloc() relatives is that it takes its memory
from the Wimp pool, extending or contracting
the task’s wimpslot as necessary. In Release 4
with the new extendibility of malloc() this
distinction is diminished, but malloc() is still
unable to contract the wimpslot when an
allocated area is freed.

Because of its extreme flexibility, you must
take great care when using flex that your
pointers remain valid. Whenever you call
flex_alloc(), flex_extend(), flex_midextend() or
flex_free() the software which maintains the
flex allocations may move your currently
allocated blocks around without warning.

It is for this reason that the so-called flex
anchor (a parameter used to identify a
particular flex block) is not simply a pointer as
it is with malloc(), but the address of a pointer
(i.e. a pointer to a pointer). In this way flex can
keep the pointer updated so that it always
points to the start of a particular block, no
matter where it has moved that block to.

In his turn the programmer must take
great care always to reference the block using
the anchor supplied together with his own
integral offsets. The moment that he uses a
copy of a dereferenced anchor to access his
flex block (e.g. by passing the pointer to a
function) he is vulnerable to any movement of
the block.

A PRACTICAL EXAMPLE
An example should throw some light on

all this. The prototype for flex_alloc() takes the
following form:

int flex_alloc(flex_ptr anchor, int n);
where n is the required size of the block. The
function returns 1 if the allocation was

Using ANSI C
Part 11: Memory Allocation with Flex

by Lee Calcraft



successful, or 0 otherwise.

The code below will allocate a 16K block
of memory, store the word “Memory” in it,
print the size of the allocated block, and print
out the word as proof, then free the block.

char *ptr;
flex_init();
if (flex_alloc((flex_ptr) &ptr,16*1024))
{
strcpy(ptr,"Memory");
bbc_vdu(4);
printf("size%d\n",\
flex_size((flex_ptr) &ptr));
printf(ptr);
bbc_vdu(5);
flex_free((flex_ptr) &ptr);
}

Note in this program segment the use of the
cast to flex_ptr type. Another useful point is
that flex_free() sets *ptr to zero. This is very
handy since it can be used as a flag to check
whether a particular block has been released
or not. In the above example, *ptr will be zero
after flex_free(). By initialising it to zero on
declaration, we can ensure its validity as a flag
at all times.

At the risk of stating the obvious, ptr must
be defined so as to remain valid for the
duration of the life of the flex block. In many
cases this would mean that it is defined as a
static variable. In such a case, the allocated
block can be used long after the function in
which the allocation was made has
terminated.

Although it will not be obvious from
running this example, the first flex allocation
that a program makes will grab at least one
page of memory from the Wimp pool. This is
because flex obtains extra memory by
extending an application’s wimpslot, and this
may only be achieved in page sized chunks.
So to obtain just a single byte from flex will
cost you up to 32K of memory - assuming that

this is a first call to flex, or that previous calls
have allocated memory up to a page
boundary.

EXTENDING OR CONTRACTING A
BLOCK

You can extend or contract an allocated flex
block by using one of the two extend functions:

int flex_extend(flex_ptr,int newsize)
int flex_midextend(flex_ptr,int at,\

int by)
Both return zero for failure, or 1 for success.
The first simply extends the block, moving it
and its contents as appropriate, while the
second adds a new ‘slice’ of memory at the
position at and of size by within the original
block (negative values cause a slice to be
removed). Again the block will be moved as
appropriate, but this time the contents of the
block from at to the end will be shuffled up to
insert the slice.

As a test, if you insert the following lines
immediately after bbc_vdu(4) in the example
above, the word “Memorially” will appear in
place of the word “Memory”. This is because
flex_midextend() has been used to insert 4 bytes
of extra allocation between the “r” and the “y”
of the original allocation, and we have then set
the extra slice to read “iall”. Note in this
context that the allocation does not need to be
an integral number of words, or to be on a
word boundary.

if (flex_midextend((flex_ptr)&ptr,5,4))
{
ptr[5]=�i�;
ptr[6]=�a�;
ptr[7]=�l�;
ptr[8]=�l�;
}

THE RELATIONSHIP WITH THE
MALLOC HEAP

As mentioned last month, in Release 4 the



malloc heap is permitted to automatically
extend by increasing the wimpslot. However,
this would have a knock-on effect on all
allocated flex blocks, since each time that
malloc() grabs another page of contiguous
memory, all flex blocks must be shuffled up to
make room.

Because this would cause applications to
crash which were written for Release 3 and
which relied on flex changes occurring only
when flex itself was called, Release 4 normally
inhibits CLib from extending the wimpslot
once flex_init() has been called.

Although this is the default on Release 4,
two functions are provided to control this
state of affairs. The function flex_budge(),
which cannot be called directly, but is
registered with CLib as follows:

_kernel_register_slotextend(flex_budge)
causes the flex store to be moved up if CLib
needs to extend the heap. This can be
cancelled at any time by registering
flex_dont_budge() in the same way:

_kernel_register_slotextend\
(flex_dont_budge)

For further details, see the Release 4 manual,
chapter 16. Next month we will take a look at
aspects of the compiler and linker, including
the use of libraries.


