Creating DIY Multi-Tasking

David Spencer shows how Acorn s Desktop Development Environment can

be extended to other uses, and all necessary modules are on the magazine

corn’s DDE, as reviewed in RISC User

Volume 4 Issue 9, is a set of linked
language development tools all running within
the Desktop environment. This set includes the
C compiler, ARM assemblers, the linker and so
on. These tools all have one factor in common -
they were originally designed to run as single-
tasking command line applications. In order to
make them multi-tasking, Acorn developed a
method that would allow them to be started
from the Desktop, setting up options through a
dialogue box, and run in a window, with any
output produced saved with a normal save box.

Although this multi-tasking ‘front-end” was
designed for Acorn’s compilers and language
tools, it can equally be applied to any
command line driven application or utility,
both commercial or home produced. In this
article we shall show exactly how this is done.

There are two modules supplied with the
DDE that are responsible for the multi-tasking
tools. The first of these is called TaskWindow,
and this allows an otherwise non-multitasking
application to be pre-emptively multi-tasked,
with all its output being sent to a window. It is
a version of this module that is used by Edit to
create ‘Task Windows’. The second module,
and the one of most interest to us here, is called
FrontEnd. The purpose of this module is to
provide an icon on the icon bar for the tool, and
allow the command line parameters to be set
up by way of a dialogue box, and optionally
via a menu as well. FrontEnd will then handle
the calling of the TaskWindow module, and
provide a window to display the output.
Finally, it generates the save box needed to save
any output file produced by the tool.

WHAT CAN IT DO?

Before continuing, it’s worth noting
exactly what type of applications, or tools, can
be run in this way. Essentially, the tools need
to be non-interactive, which means that once
started by a star command, they do their job
without requiring any further action from the
user, produce their output, and then exit back
to the command line. Additionally, if they
produce file output, then only one object
should be produced. This means that most
language compilers and other file “processors’
are eligible, but the likes of text editors
obviously aren’t.

Some applications offer a mixture of
interactive and non-interactive operation. For
example, the Acorn ARM Assembler and
ChangeFSI will both run non-interactively, but
enter an interactive mode if all the necessary
information is not given on the command line.
This class of tools is OK, because you can
easily ensure that all the necessary
information is given up front.

FrontEnd allows a dialogue box to be
opened, either by clicking on the tools icon bar
icon, or by dragging a file to it. Options can
then be set in this dialogue box, and through
its associated menu, and the tool run. This
setup process can optionally be bypassed and
the tool automatically run when a file is
dragged to it, and similarly, the output file can
be saved automatically rather than producing
a save box. The layout of the dialogue box is
determined by the template that you provide,
while the relationship between this and the
command line parameters, as well as the
menu entries, are controlled by a descriptive
text file included for each tool.

Each icon in the dialogue box can add a
parameter to the tool’s command line. Taking

the C compiler as an example, any text within
the ‘Include” writable icon is added to the
command line preceded by the ‘-I" qualifier
that tells the compiler this is a list of include
paths. This is an example of an icon adding a
combination of a fixed part (*-I') and a variable
part (the path list) to the command line. On the
other hand, if the ‘Compile only” icon is
enabled this just adds the fixed string ‘-’ to the
command line. In other words, this is a simple
on-off qualifier. Menu entries also add to the
command line if they are enabled. For single
entries they add a fixed string, while entries
with writable sub-menus can add the contents
of that entry, optionally preceded by a fixed
string.

As well as adding to the command line,
icons can be made to increase or decrease the
numeric values of other icons. This is normally
used for up and down arrow icons that modify
a value, as in Acorn’s Common tool. Enabling an
icon can also change the dialogue box itself. An
example of this is the “Wildcards” icon in the
Find tool. When enabled, this extends the
dialogue box to display a set of icons
representing the available wildcards. As a
further twist, you can specify that selecting a
particular icon will deselect another if it is
currently selected. This is used to prevent
clashes between mutually exclusive options,
such as ‘Compile only” and ‘Preprocess only” in
the C Compiler. In a similar vein, selecting an
icon can grey-out another one. An example of
this is in LibFile, where selecting the ‘Create’
icon greys out the writable box for the library
name, as a name isn’t applicable in this case.

The description file for each tool must
define precisely how the dialogue box and
menu work, and to achieve this, its structure
is rigidly defined in the DDE User Guide by
means of a description language called
Extended Backus-Naur Form (EBNF). This
defines the exact syntax and semantics for the
tool’s description, but doesn’t define the
pragmatics (i.e what each entry actually does).
EBNF is easily understood, but can be
daunting if you have never met it before. The

best way to study it is to look at the
description file for a particular tool (the file
‘Desc” within the tool’s application directory)
and compare that against the EBNF definition.

USING FRONTEND

To use FrontEnd with a new tool, all you
need to do is to build an application directory
for the tool and provide the appropriate
description file. To show how this is done, the
remainder of the article will concentrate on
producing a very simple tool that will merely
display its command line, so that you can see
what is going on.

A PRACTICAL EXAMPLE

To start with, create an application
directory called /Example, and copy into it the
files Messages and Templates from the C
Compiler’s directory, !CC. Next, create a
ISprites file containing a suitable sprite called
lexample. If you want, you can use the
standard screwdriver and scanner tool icon by
copying the !Sprites file from !CC, but
remember to rename the sprite itself.

The Templates file contains a total of nine
templates, eight of which are standard for all
FrontEnd tools and shouldn’t be changed. The
ninth, ‘Setup’, is the main dialogue box
template. For the purposes of this example,
delete the existing ‘Setup” template and create
a new one. Note that for all tools, icons zero
and one must be menu icons containing the
text ‘Run” and ‘Cancel” respectively, and the
entry for icon zero must be indirected. In the
new template, make icon two writable, icon
three an option button and icons four and five
radio icons. You can call the icons whatever
you want, but the option and radio buttons
must have the button type ‘Click’.

All applications require a /Run file, and
again this is best copied from !CC, although
you will need to change the line that sets
‘CC$Dir” to set ‘Example$Dir” instead, and
change the final line to read:

*FrontEnd Start -app Example -desc
<Example$Dir>.desc

The run file includes the RMEnsure
commands needed to load the modules
required for FrontEnd to operate, and then starts
FrontEnd using the command *FrontEnd_Start.
This takes two parameters, the first is the name
of the tool, and the second the filename of the
description file that we are about to write.

Before writing the description file, we
need to design the command line format,
though for existing applications of course this
is already determined. Quite arbitrarily, our
command line format will be, together with
the icons that control it, an input filename
(icon 2), and output filename preceded by ‘-
out’, and three qualifiers, ‘-faster” (icon 3), -
onepass’ (icon 4) and ‘-twopass’ (icon 5). The
last two of these are mutually exclusive. We’ll
also allow two further parameters to be set
from a menu, ‘-noerrors’ and ‘-listfile’, the
second of these being followed by a filename.
For example, a typical command line may
look like this:

*exarple infile -out autfile -faster -aepass -

i filefis

Note that we do not need to specify the output
filename in the dialogue box, as the file will be
saved using a standard save box which allows
the name to be set anyway.

A suitable description file is given in
listing 1. This should be entered as a text file
using Edit and saved with the name Desc
within the /Example directory. This file can
be split into a number of distinct sections,
each with appropriate keywords marking
the start and end.

The first section, the tool details, defines
the name of the tool, the command used to run
it, the version number and the wimpslot
needed. The second section specifies that a
window is required to display the output from
the program as it is running. The third section
specifies that the output filename must be
preceded on the command line by “-out’. What
happens is that FrontEnd provides a temporary
filename on the command line, and when you
save the output using the save box it copies

this to the final destination. The next section
controls the dialogue box, and is split into
three sub-sections. The first of these specifies
that the string in icon two is added directly to
the command line, whilst icons three, four and
five add the specified qualifiers to the
command. This is followed by a sub-section
defining the defaults for the icons, and a
further one controlling what happens when
files are dragged in. In this case, files dragged
to the icon bar are put into the writable icon
replacing anything already there, whilst files
dragged to icon two (the writable icon) are
added to it using space as a separator.

The fifth section performs a similar task,
but for the menu. It lists each entry name
together with the string it maps to, and the title
for the sub-menu and its length in the case of
the second entry. Again, a second sub-section
specifies the default states. The final section
controls which icons deselect which others. In
this case, it is set so that the “-onepass” and ’-
twopass” qualifiers cannot be active together.

All that remains now is the example
program itself. This is very simply:

10 REM >Example

20 SYS "OS_GetEnv" TO A$

30 PRINT A$

40 END
This file should be saved as Example within
the application directory. You are now in a
position to try out the new tool, and see what
effect changing the icons and menu selections
has on the command line.

WHAT NOW?

The combination of this introduction and
overview together with the DDE User Guide
and the examples in the form of the tools
supplied with the DDE, should allow you to
incorporate FrontEnd into any suitable
application. This is not only useful to add
tools to the DDE, but could also be used
totally separately. Indeed, you could licence
the FrontEnd module from Acorn and use it as
part of a commercial application.

The modules TaskWindow, FrontEnd and also
DDEUtils are included under licence from Acorn

on this month's magazine disc.

Listing 1. The description file
tool_details stat
name "Exarple'’;
camend is "<Example$Dir>.Example";
versim ".00";

wimpslae 3k
tool details end
metaoptio
ns stat

has auto save A, leafname fram icn 2;

has text window;

has_summary window;
metaoptions end

filecutput stat

autput gotian is "-out";
output, dft is produces output;
fileoutput end

doox_stat
icons stat

ion 2 meps to string;

icn 3 meps to "-faster”;

icn 4 meps to "-onepass";

in 5 meps to "-twopass";
icons end

Gefailts
im3 off
im4 off
im5 ay

imports stat
drag to im 2 inserts im 2 separataris "
drag to icobar inserts im 2;
imports_end
dbox_end

menu stat
"o errors' meps to "~ noerrors”;
"Tisting" reps to "-list file " sio mem1 "
256;

Gefailts
menu 1 off
menu 2 of £

menu_end

List file

deselections stat
in 4 deselects im 5;
in 5 deselects im 4;
deselections end

