C Notebook

Campiled and Linked by Lee Calcraft

RESCUING
KEYPRESSES
Boris Perryman
When using both writable icons and menu icons
in a dialogue box, the functions dbox_fillin() and
dbox_fillin_fixedcaret() do not normally react to
keypresses corresponding to the capital letters of
the menu icons - such as Save, reDo etc. because
all keypresses are directed to the writable icons.

dbox_fillin()

But if the writable icon with the input focus
contains a validation string which excludes these
characters, the problem is solved. So for example
a validation string of A0-9 would allow a
calculator to use the letter “C” as a shorthand for
Calculate etc. Note that the new “K” option in
validation strings in RISC OS 3 specifically
caters for this situation.

WATCH OUT FOR BOUNDARIES
David Pilling
When creating structures it is worth noting that
they are always rounded up to word
boundaries, and that ints will be put on word
boundaries, chars on byte boundaries, and
shorts on two-byte boundaries. So it is better to
write:
typedef stk fixedit {
o owad;
der byte;
dhort twdbytes;
} foedit;
than:
typedef struct: fhedoit
der byte;
nt wad;
short twabytes;
} fhedit;
The size of the first is 8 bytes, the second 12 bytes.

USING atexit()

Tony Shew

If you want to ensure that vital things such as
saving files are performed before exit() is called
in a non-Wimp program, you can use the

standard ANSI function atexit() to register
functions to be called immediately prior to
termination. See K & R for further details. This
also works with Wimp tasks, but here the better
approach is to use the Pre-quit message.

MORE EOF ERRORS

Alun Evans

The cure given in April’s C Notebook for the
cryptic EOF message does not always do the
trick. Using Source Edit it seems that some
invisible character such as a tab may become
inserted before the end of the file. I find that the
following rigmarole fixes the problem. Use Ctrl-
Down to move the caret to the true end of the
file, then mark from the final closing brace of
your code to the end of the file, and use delete
block to delete the marked area. Finally insert a
final carriage return after the closing brace.

A STAND-ALONE DEBUGGING

FUNCTION

David Pilling

The following function can form a simple but
effective debugger. It prints debugging
information on a specified line (given as the first
parameter of the call) on the Desktop,
overwriting whatever happens to be displayed
there.

Like last month’s debugging function it can be
passed a variable number of arguments exactly
as with printf(). Note that its use of akbd_pollsh()
enables you to pause the program each time that
it encounters a call to the function - just hold
down Shift, then press any key to continue.

Here is an example of its use:

dpdnt £ (0, "x=%d name=%s",x,name) ;
This would display the two variables on the top
text line of the screen.

#include "akid.h"
#include "Hoc.h!
#include <stdarg.h>




wvoid dprint £(int 1ire,der * fomet, ...) {
va list arcs;
dar v[128];

va_start (args, fomet);
veorint fty, fomet, args);
bbe_vdu (4) ;b vau (30) ;
vhile(lire--) o vau(10);
Pt £("%-40s",v) ;
be vdu (5) ;
if (kod pollsh()) Hoc get();
va_end (args) ;

}

Please send us your C hints - all published hints will
be paid for.




