

BoundsChecker Basics

BoundsChecker 5
Visual C++ Edition

Windows® 95
Windows NT®

™

March 1997

Information in this document is subject to change without notice and does not represent a commitment on the part
of NuMega Technologies, Inc. The software described in this document is furnished under the software license
agreement distributed with the product. The software may be used or copied only in accordance with the terms of the
license. The purchaser may make one copy of the software for a backup, but no part of this user manual may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or mechanical,
including photocopying and recording for any purpose other than the purchaser’s personal use, without prior written
permission from NuMega Technologies, Inc.

Copyright © 1997 NuMega Technologies, Inc.

All Rights Reserved

NuMega Technologies, the NuMega logo, BoundsChecker, the BoundsChecker icon, the BoundsChecker technology
names, ActiveCheck, FinalCheck, Smart Debugging, and SoftICE are trademarks of NuMega Technologies, Inc.

Microsoft, Windows, Win32, Windows NT, and Visual C++ are either trademarks or registered trademarks of
Microsoft Corporation.

Borland and Delphi are either trademarks or registered trademarks of Borland International, Incorporated.

Other brand and product names are either trademarks or registered trademarks of their respective holders.

Software License Agreement
You are purchasing a license to use NuMega Technologies, Inc. software. The software is owned by and remains the property of NuMega Technologies, Inc., is protected by international
copyrights, and is transferred to the original purchaser and any subsequent owner of the software media for their use only on the license terms set forth below. Opening the package and/or using
the software indicates your acceptance of these terms. If you do not agree to all of the terms and conditions, or if after use you are dissatisfied with the software, return the software, manuals and
any partial or whole copies within thirty days of purchase to the party from who you received it for a refund, subject to our restocking fee.

Use Of The Software: NuMega Technologies, Inc. (“NuMega”), grants the original purchaser (“Licensee”) the limited rights to possess and use the NuMega Technologies, Inc. Software and User
Manual (“Software”) for its intended purposes. Licensee agrees that the Software will be used solely for Licensee’s internal purposes, and that at any one time, the Software will be installed on a
single computer only. If the Software is installed on a networked system, or on a computer connected to a files server or other system that physically allows shared access to the Software, Licensee
agrees to provide technical or procedural methods to prevent use of the Software by more than one user.

One machine-readable copy of the Software may be made for BACK UP PURPOSES ONLY, and the copy shall display all proprietary notices, and be labeled externally to show that the back-up
copy is the property of NuMega, and that use is subject to this License. Documentation may not be copied in whole or part.

Use of the Software by any department, agency or other entity of the U.S. Federal Government is limited by the terms of the following “Rider for Governmental Entity Users.”

Licensee may transfer its rights under this License, PROVIDED that the party to whom such rights are transferred agrees to the terms and conditions of this Licensee, and written notice is
provided to NuMega. Upon such transfer, Licensee must transfer or destroy all copies of the Software.

Except as expressly provided in this License, Licensee may not modify, reverse engineer, decompile, disassemble, distribute, sub-license, sell, rent, lease, give or in any way transfer, by any means or
in any medium, including telecommunications, the Software. Licensee will use its best efforts and take all reasonable steps to protect the Software from unauthorized use, copying or
dissemination, and will maintain all proprietary notices intact.

Limited Warranty And Indemnification: NuMega warrants the Software media to be free of defects in workmanship for a period of ninety days from purchase. During this period, NuMega will
replace at no cost any such media returned to NuMega, postage prepaid. This service is NuMega's sole liability under this warranty.

NuMega agrees to indemnify and hold Licensee harmless from all loss, claim or damage to Licensee arising out of any claim, legal action, or suit alleging that the Software infringes a United States
patent, copyright, or trade secret. NuMega will defend, at its own expense, any such claim or action against Licensee, and will pay all reasonable costs, expenses, and damages incurred by Licensee
in connection therewith, including reasonable attorneys’ fees and expenses incurred by Licensee, on condition that NuMega shall be immediately notified in writing by Licensee of any notice of
such claim or action or pending claim or action known to Licensee prior to the time when the failure to deliver such notice has injured NuMega; and that NuMega shall have control of the defense
against any such claim or action and all negotiations toward the settlement or compromise thereof. In such event, Licensee shall have the right to participate in any such action at NuMega's cost.
If the Software becomes the subject of any claim, suit, or proceeding for infringement of any United States patent, copyright or any other right of a third party, or in the event of any adjudication
that the Software infringes upon any United States patent, copyright or any other third party, or if the use or license of such Software is enjoined, in addition to other liability which may arise
under this provision, NuMega shall at its sole expense and discretion either (a) obtain a license or any rights necessary to make the warranty contained herein true and correct, or (b) refund to
Licensee any amounts paid to NuMega for the Software. Specifically excluded from the above covenant are any claims or actions based upon, or portions of claims or actions based upon, those
portions of the Software modified or developed by Licensee or third parties.

Disclaimer: LICENSE FEES FOR THE SOFTWARE DO NOT INCLUDE ANY CONSIDERATION FOR ASSUMPTION OF RISK BY NUMEGA, AND NUMEGA DISCLAIMS ANY
AND ALL LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OR INABILITY TO USE THE SOFTWARE, EVEN
IF ANY OF THESE PARTIES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. FURTHERMORE, LICENSEE INDEMNIFIES AND AGREES TO HOLD
NUMEGA HARMLESS FROM SUCH CLAIMS. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY THE LICENSEE. THE
WARRANTIES EXPRESSED IN THIS LICENSE ARE THE ONLY WARRANTIES MADE BY NUMEGA AND ARE IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE.

THIS WARRANTY GIVES YOU SPECIFIED LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF WARRANTIES, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Term: This License is effective as of the time Licensee receives the Software, and shall continue in effect until Licensee ceases all use of the Software and returns or destroys all copies thereof, or
until automatically terminated upon the failure of Licensee to comply with any of the terms of this License.

General: This License is the complete and exclusive statement of the parties’ agreement. Should any provision of this License be held to be invalid by any court of competent jurisdiction, that
provision will be enforced to the maximum extent permissible, and the remainder of the License shall nonetheless remain in full force and effect. This License shall be controlled by the laws of the
State of New Hampshire, and the United States of America.

Rider For U.S. Government Entity Users

This is a Rider to the above Software License Agreement, (“License”), and shall take precedence over the License where a conflict occurs.

1.The Software was: developed at private expense; no portion was developed with government funds; is a trade secret of NuMega and its licensor for all purposes of the Freedom of Information
Act; is “commercial computer software” subject to limited utilization as provided in any contract between the vendor and the government entity; and in all respects is proprietary data belonging
solely to NuMega and its licensor.

2.For units of the DOD, the Software is sold only with “Restricted Rights” as that term is defined in the DOD Supplement to DFAR 252.227-7013 (b)(3)(ii), and use, duplication or disclosure is
subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Manufacturer: NuMega Technologies, Inc. P.O. Box
7780, Nashua, New Hampshire 03060-7780 USA.

3.If the Software was acquired under a GSA Schedule, the Government has agreed to refrain from changing or removing any insignia or lettering from the Software or Documentation or from
producing copies of manuals or disks (except for back up purposes) and; (1) Title to and ownership of the Software and Documentation and any reproductions thereof shall remain with NuMega
and its licensor; (2) use of the Software shall be limited to the facility for which it is acquired; and (3) if the use of the Software is discontinued at the original installation and the Government
wishes to use it at another location, it may do so by giving prior written notice to NuMega, specifying the new location site and class of computer.

4.Government personnel using the Software, other than under a DOD contract or GSA Schedule, are hereby on notice that use of the Software is subject to restrictions that are the same or similar
to those specified above.

Contents
Chapter 1: The BoundsChecker Solution
7

Check Early, Check Often—The BoundsChecker
Philosophy 7

The Benefits of Using BoundsChecker 8

Comprehensive Error Detection 8

Flexible Debugging Environment 10

Integration Into the Visual C++ Debugger 10

Advanced Error Analysis 10

Windows Compliance Assurance 11

Open Error-Detection Architecture 11

Where to Go From Here 11

Chapter 2: Checking and Analyzing
Programs 13

Checking Programs Within Microsoft Developer Studio
14

Using Microsoft Developer Studio 97 15

Using Microsoft Developer Studio 4.x 17

Checking Programs With BoundsChecker 20

Starting BoundsChecker From the DOS Command
Line 23

Viewing the Results of Your Error-detection Session
24

Examining Errors 25

Suppressing Errors 28

Changing the Results View 29

Printing Your Results 30

Saving Your Results 31

Chapter 3: Customizing Error Detection and
Reporting 33

Customizing Program Settings 34

Customizing Error Detection Settings 34

Customizing Event Reporting Settings 36

Customizing Program Information Settings 37

Customizing Error Suppression Settings 37

Customizing Modules and Files Settings 38

Chapter 4: Detecting Errors With FinalCheck
39

Using FinalCheck 40

Creating a Project Configuration 40

Building a Program 40

Chapter 5: Checking Compliance 45

Checking API Compliance 46

Checking Program Compliance 47

Checking Event Compliance 47

Chapter 6: Validating Your Own APIs 49

How BoundsChecker Validates APIs 51

Creating an API Validation Module 51

Default Parameter and Return Types 52
Using BoundsChecker v

vi Using BoundsChecker

Some great men owe most of their greatness to the ability of
detecting in those they destine for their tools the exact quality of

strength that matters for their work.

◊

Joseph Conrad
1 The BoundsChecker
Solution

The need for software development teams to produce quality software is greater than ever
before. The complexity of software has grown geometrically and the opportunity for problems
to develop is immense. Software defects can cripple a product, cause lengthy schedule delays,
and ultimately cost the engineer, the development team, and the company dearly.

Developers spend most of their debugging time tracking down and repairing elusive bugs that
were introduced early in development. The quality assurance staff does the bulk of the feature
testing late in the development process when the schedule allows little time. Unfortunately,
testing at this late stage usually focuses only on the outward functionality of the product.
Testers run a GUI regression test bed, achieve exit criteria, and declare the product ready for
shipping.

All too often, the product still possesses many hidden bugs that conventional testing
techniques failed to identify. These bugs create customer dissatisfaction and poor product
reputation. Updates, patches, and other expensive, embarrassing retroactive fixes cost time
and money that could be spent more profitably and creatively on product improvement and
new product development.

Check Early, Check Often—The BoundsChecker Philosophy

The solution to this problem is simple and quality assurance circles have been aware of it for
years. To increase software quality, developers must thoroughly test their code early in the
development process. Bugs must be caught and resolved as they are introduced to avoid
surprises during integration, quality assurance, beta testing, and production. Briefly stated,
“check early, check often.”
NuMega BoundsChecker 7

The BoundsChecker Solution

Before BoundsChecker, this was easier said than done. Most developers need to spend the
majority of their time writing code if they are to release a product on schedule. Unfortunately,
few developers have the time or resources to test their products thoroughly as they develop
them.

BoundsChecker provides the solution to this dilemma. BoundsChecker automates the crucial
process of error-detection and analysis, identifies elusive bugs that are beyond the reach of
traditional debugging and testing techniques, and adds little or no time to the development
process.

Industry figures show that 50 percent of the development effort on an average project is spent
on debugging. Regularly using BoundsChecker will significantly reduce the amount of time
needed to debug your applications.

The Benefits of Using BoundsChecker

BoundsChecker is the most comprehensive, automated debugging solution available for C,
and C++ development. As such, both individuals and organizations developing 32-bit
Windows applications benefit from the following features:

• Comprehensive Error Detection

• Flexible Debugging Environment

• Integration Into the Visual C++ Debugger

• Advanced Error Analysis

• Windows Compliance Assurance

• Open Error-detection Architecture

The following sections highlight these benefits.

Comprehensive Error Detection

Unlike ordinary heap checkers that are limited to finding common memory errors,
BoundsChecker is a sophisticated error-detection tool that validates the latest windows APIs
including ActiveX, DirectX, OLE, COM, and ODBC. Additionally, BoundsChecker detects
errors in executable files, dynamic link libraries, third-party modules, and OLE components.
Of course, BoundsChecker also pinpoints static, stack, and heap errors, as well as, memory
and resource leaks.

Best of all, using ActiveCheck technology, BoundsChecker does all this without requiring you
to recompile or relink your program. Simply run your program under BoundsChecker and it
automatically analyzes the internals of your program as it runs. BoundsChecker monitors
your program’s API calls, memory allocations and deallocations, windows messages, and other
8 BoundsChecker Basics

The Benefits of Using BoundsChecker

significant events, then uses this data to detect errors and to provide a complete trace of your
program’s execution. You can even check programs that do not have source code available.
Since ActiveCheck requires no compilation or relinking overhead, you can use it daily to
detect the following types of errors in Windows NT and Windows 95 programs:

In addition to ActiveCheck, BoundsChecker provides an error-detection technology called
FinalCheck. A superset of ActiveCheck, FinalCheck finds all the errors ActiveCheck finds,
plus these additional errors:

To find these additional errors, FinalCheck uses a technique known as instrumentation.
Instrumentation inserts error-detection code into an intermediate form of your program
when you compile it, so BoundsChecker can view the structure of the application. Use
FinalCheck for key project milestones and for detecting errors that are difficult to find.

API and OLE Errors Memory Errors Pointer and Leak Errors

• Windows function failed

• Windows function not imple-
mented

• OLE Interface method failure

• Invalid argument

• Invalid OLE interface method
argument

• Questionable use of thread

• Dynamic memory overrun

• Freed handle is still locked

• Handle is already unlocked

• Memory allocation conflict

• Pointer references unlocked
memory block

• Stack memory overrun

• Static memory overrun

• Interface leak

• Memory leak

• Resource leak

• Unallocated pointer

Memory Errors Pointer and Leak Errors

• Reading overflows memory

• Reading uninitialized memory

• Writing overflows memory

• Array index out of range

• Assigning pointer out of range

• Expression uses dangling pointer

• Expression uses unrelated pointers

• Function pointer is not a function

• Memory leaked due to free

• Memory leaked due to reassignment

• Memory leaked leaving scope

• Returning pointer to local variable
NuMega BoundsChecker 9

The BoundsChecker Solution

Flexible Debugging Environment

BoundsChecker provides a flexible debugging environment. You can run BoundsChecker:

• With Microsoft Visual C++ as an integrated part of Microsoft Developer Studio

Lets you benefit from all the features BoundsChecker provides while you continue to
work completely within Microsoft Developer Studio. Work as you normally do;
BoundsChecker works in the background. You can configure BoundsChecker settings,
check your program, and review detected errors.

BoundsChecker takes full advantage of the user interface within Microsoft Developer
Studio 97, so you can use its existing Open, Close, Find, Save, and Print menu
commands; toggle the BoundsChecker toolbar from the Toolbars tab; and access
BoundsChecker Help from InfoView.

• As an independent application

Lets you run BoundsChecker independent of Microsoft Developer Studio.

• From a DOS command line

Lets you start BoundsChecker from a command line or automate a series of tests from a
batch file.

Integration Into the Visual C++ Debugger

BoundsChecker provides a feature called Smart Debugging that automatically integrates
BoundsChecker with the Visual C++ debugger within Microsoft Developer Studio. Smart
Debugging enhances your debugger, so you no longer have to locate bugs yourself. Instead,
BoundsChecker actively monitors all events and looks for errors as you step through your
code. When BoundsChecker finds a problem, it displays the nature of the error. You can
either position the debugger at the source line that contains the problem and view the error
immediately or you can continue debugging and view the errors BoundsChecker found later.

Advanced Error Analysis

Windows is an event-driven environment in which much of your program is executed in
response to Windows messages and other events. BoundsChecker intercepts control when
events occur and logs them, so you can use them to see a complete history of events that led to
a problem. BoundsChecker logs the following events:

• Windows messages and hooks. These events show how your program reacted to
Windows messages.

• API calls and API returns along with argument information. These events define the
order in which procedures are executed in your program.

• Output debug string messages from the program you are checking.

• Error messages, including all information BoundsChecker recorded in the event log.
10 BoundsChecker Basics

Where to Go From Here

Windows Compliance Assurance

To assure your program’s ability to run on all Win32 variants, BoundsChecker creates
compliance reports that identify calls specific to Windows NT, Windows 95, and Win32s.
BoundsChecker also checks for undocumented Windows calls and displays your program’s
use of the C and C++ Run-Time Library, highlighting calls not supported by ANSI C.

Open Error-Detection Architecture

You can easily extend the 2500 standard API and OLE functions BoundsChecker validates to
include APIs you create yourself. When you extend BoundsChecker to test your APIs,
BoundsChecker automatically validates their parameters, validates their return values, and
logs their trace data, so you can analyze it.

Where to Go From Here

This manual provides an overview of BoundsChecker and explains how to use its most
commonly-used features. These include:

• Checking code

• Viewing data

• Setting error detection and reporting

• Checking compliance

• Logging and validating your own DLLs

TIP: If you use the
Query feature within
the Help system for
Developer Studio 97,
it automatically
searches through the
Help for
BoundsChecker.

For detailed information, see the BoundsChecker on-line Help. To access a list of Help topics,
do one of the following:

• If you are using Microsoft Developer Studio 97, use InfoView.

• If you are using Microsoft Developer Studio 4.x, click Tools, and then click
BoundsChecker Help.

BoundsChecker also provides a hands-on tutorial to guide you through the process of
checking code and analyzing data from within MicroSoft Developer Studio 97. On the Start
menu, click programs, point to NuMega BoundsChecker, and then click BoundsChecker
Tutorial to start the tutorial.
NuMega BoundsChecker 11

The BoundsChecker Solution
12 BoundsChecker Basics

It is of the highest importance in the art of detection to be able
to recognize out of a number of facts which are incidental and

which are vital.

◊

Sir Arthur Conan Doyle
2 Checking and
Analyzing Programs

BoundsChecker provides ActiveCheck technology to make checking your code so easy that
every member of your development team can use BoundsChecker daily to test his or her code.
ActiveCheck analyzes your executable image, DLLs, and OCXs as they execute, so you do not
need to recompile or relink your program. Simply run the program under BoundsChecker,
which works in the background to detect the following types of errors automatically.

Error ActiveCheck Error Detection

API ActiveCheck validates the parameters passed to and the values returned from over
2,500 API functions. The APIs ActiveCheck supports include DirectX, ODBC, Win32,
WinSock, the C Run-Time Library, and internet APIs.

OLE ActiveCheck detects invalid parameters and return codes for OLE Interface methods.
ActiveCheck supports over 70 different OLE interfaces including the ActiveX interfaces.

Additionally, ActiveCheck detects errors in reference counting. This is useful for
detecting errors that occur when interfaces are not properly released after they are
instantiated.

Pointer Bad pointers frequently cause errors. To help you eliminate them, ActiveCheck checks
for:

Operations on null pointers.

Operations on pointers that do not point to valid data.

Attempts to free handles without unlocking them.
NuMega BoundsChecker 13

Checking and Analyzing Programs

Checking programs is easy, however, the specific steps to take depend on how you use
BoundsChecker. The following sections detail how to check programs from:

• Microsoft Developer Studio

• the BoundsChecker application

• a DOS command line

Checking Programs Within Microsoft Developer Studio

BoundsChecker works with Visual C++ as an integrated part of Microsoft Developer Studio.
Thus, enabling you to benefit from the advanced error-detection capabilities BoundsChecker
provides without leaving your development environment.

Additionally, BoundsChecker enhances the Visual C++ debugger through Smart Debugging.
Smart Debugging monitors all events and looks for errors as you step through code. When it
encounters a problem, it displays the error and lets you choose whether to position the
debugger at the source line that contains the error and view it immediately or continue
debugging and view the errors later.

BoundsChecker integrates with Microsoft Developer Studio 4.0 and greater, with some
variations between major versions. The following sections describe how to check code within
Microsoft Developer Studio 97 and 4.x.

Error ActiveCheck Error Detection

Leaks ActiveCheck detects memory and resource leaks. Memory leaks occur when memory
is allocated, but never freed. ActiveCheck detects memory leaks by using Windows
memory allocation functions, such as HeapAlloc, GlobalAloc, and LocalAlloc, and
standard C and C++ allocations including malloc and new.

Resource leaks occur when windows specific resources, such as HMENU, HKEY, and
HCURSOR, are allocated by your program, but not released back to the system.
Resource leaks can consume excess memory and degrade system performance.

Memory ActiveCheck detects overwriting and underwriting of memory in dynamically allocated
memory, local or stack memory, and global or static memory.
14 BoundsChecker Basics

Checking Programs Within Microsoft Developer Studio

Using Microsoft Developer Studio 97

To use BoundsChecker to check a program from within Microsoft Developer Studio 97, do
the following:

1 On the File menu, click Open Workspace to locate and open the program you want to
check.

2 On the BoundsChecker menu, click Integrated Debugging if BoundsChecker integrated
debugging is not enabled.

3 Use the standard debug commands to check your program. (For example, on the Build
menu, point to Start Debug, and then click Go.)

BoundsChecker displays errors and events in the Program Results window as it detects
them.

4 As you use your application, BoundsChecker works in the background. When
BoundsChecker detects an error, it displays detailed information about the error.

Bug description

Acknowledge the error.

Debug the error.

Suppress the error from being reported.

Stop your program.

Get Help on the error.

Hide the call stack and source
code.

Call stack

Source code that contains the
error.
NuMega BoundsChecker 15

Checking and Analyzing Programs

Do one of the following:

• Click Debug to break into the debugger at the point in which the error occurred.

On the Debug menu, click Go to resume your debugging session.

• Click Acknowledge to continue checking your program.

• Click Suppress if you do not want BoundsChecker to report the error again.
BoundsChecker then lets you choose the circumstances under which it suppresses the
error (within the function, within the source file, within the .EXE or DLL, or
anywhere it occurs) and lets you add a remark. You can also save suppression
information for future runs of the program.

There are two main reasons you might want to suppress an error:

◊ The error was generated by code belonging to another developer or by a third-party
DLL or OCX.

◊ Your code properly handles the error. For example, BoundsChecker might detect an
API failure that your code is able to handle.

BoundsChecker automatically locates and displays the error.
16 BoundsChecker Basics

Checking Programs Within Microsoft Developer Studio

When you finish checking your program, use the data in the Program Results window to
analyze it. For example, double-click an error in the Program Results window to position the
cursor at the location of the error. See Viewing the Results of Your Error-detection Session on
page 24.

Using Microsoft Developer Studio 4.x

To use BoundsChecker to check a program from within Microsoft Developer Studio 4.x, do
the following:

1 On the File menu, click Open Workspace to locate and open the program you want to
check.

2 If BoundsChecker integrated debugging is not enabled, click Tools, and then click
BoundsChecker Integrated Debugging.

3 Use the standard debug commands to check your program. (For example, on the Build
menu, point to Debug, and then click Go.)

Double-click an error or leak to display the line of code that contains the error.
NuMega BoundsChecker 17

Checking and Analyzing Programs

4 As you use your application, BoundsChecker works in the background. When
BoundsChecker encounters an error, it displays detailed information about the error.

Bug description

Acknowledge the error.

Debug the error.

Suppress the error from being reported.

Stop your program.

Get Help on the error.

Hide the call stack and source
code.

Call stack

Source code that contains the
error.
18 BoundsChecker Basics

Checking Programs Within Microsoft Developer Studio

Do one of the following:

• Click Debug to break into the debugger at the point in which the error occurred.

On the Debug menu, click Go to resume your debugging session.

• Click Acknowledge to continue checking your program.

• Click Suppress if you do not want BoundsChecker to report the error again.
BoundsChecker then lets you choose the circumstances under which it suppresses the
error (within the function, within the source file, within the .EXE or DLL, or
anywhere it occurs) and lets you add a remark. You can also save suppression
information for future runs of the program.

There are two main reasons you might want to suppress an error:

◊ The error was generated by code belonging to another developer or by a third-party
DLL or OCX.

◊ Your code properly handles the error. For example, BoundsChecker might detect an
API failure that your code is able to handle.

BoundsChecker automatically locates and displays the error.
NuMega BoundsChecker 19

Checking and Analyzing Programs

In the BoundsChecker tab within the Output window, BoundsChecker lists entries for all the
errors and leaks it detects. To display the code that contains a particular error or leak, double-
click the entry.

BoundsChecker also reports program events, so you can analyze your program. See Viewing
the Results of Your Error-detection Session on page 24 for more information about analyzing
events.

Checking Programs With BoundsChecker

To check your program from the BoundsChecker application, do the following:

1 Click the Start button, and then point to Programs. Point to the folder that contains
BoundsChecker, and then click BoundsChecker.

2 On the File menu, click Open.

Double-click an error or leak to display the line of code that contains the error.
20 BoundsChecker Basics

Checking Programs With BoundsChecker
3 Select the file you want to load and click Open.

BoundsChecker displays the Program Transcript window to log debugging events for the
program you opened. This log is useful for determining which DLLs load when your
program runs and for tracking output debug string messages to determine what the
program does.

4 On the Program menu, click Run.

BoundsChecker displays the Program Results window and starts your program. The
Program Results window displays the errors and events BoundsChecker detects.

Displays debugging events for your program.
NuMega BoundsChecker 21

Checking and Analyzing Programs
5 As you use your application, BoundsChecker works in the background. When
BoundsChecker detects an error, it displays detailed information about the error.

Do one of the following:

• Click Acknowledge to continue checking your program.

• Click Suppress if you do not want BoundsChecker to report the error again.
BoundsChecker then lets you choose the circumstances in which it suppresses the
error (within the function, within the source file, within the .EXE or DLL, or
anywhere it occurs) and lets you add a remark. You can also save suppression
information for future runs of the program.

There are two main reasons you might want to suppress an error:

◊ The error was generated by code belonging to another member of the development
team or by a third-party DLL or OCX.

◊ Your code properly handles the error. For example, BoundsChecker might detect an
API failure that your code is able to handle.

Stop your program.

Suppress the error from being reported.

Source code that contains the
error.

Bug description

Hide the call stack and source
code.

Call stack

Acknowledge the error. Get Help on the error.
22 BoundsChecker Basics

Checking Programs With BoundsChecker
When you are done checking your program, use the data in the Program Results window to
analyze your program. For example, click an error in the Program Results window to display
the line of code in which BoundsChecker detected the error. See Viewing the Results of Your
Error-detection Session on page 24.

Starting BoundsChecker From the DOS Command Line

Start BoundsChecker from a DOS command line when you want to:

• Pass a file to BoundsChecker to open at initialization.

• Automate a series of tests from a batch file.

Once you are familiar with BoundsChecker, use the BC command from within a DOS
session to start BoundsChecker. You can use the BC command with .BCP, .BCE, and .EXE
files as follows:

BC [foo.bcp]

BC [foo.bce]

BC [foo.exe [argument1 argument2]]

Displays errors and events
that occur in your program.

Displays call stack data for
the selected error.

Displays source code for the selected error.
NuMega BoundsChecker 23

Checking and Analyzing Programs
BoundsChecker provides these optional switches.

Viewing the Results of Your Error-detection Session

BoundsChecker intercepts control when errors or events occur and logs them to the Program
Results window. After checking your program, use the Program Results window to see a
complete history of the events that led to a problem.

If you are using either Microsoft Developer Studio 97 or the BoundsChecker application, the
Program Results window displays automatically. If you are using Microsoft Developer Studio
4.x, do the following to display the Program Results window:

1 On the Tools menu, click BoundsChecker to start the BoundsChecker application.

You will use the Program Results window within the BoundsChecker application to
review the results of your error-detection session.

2 On the File menu within BoundsChecker, click Open and select your program’s
corresponding .BCE file.

The .BCE file is the error and event file BoundsChecker created when it checked your
program. By default, the .BCE file is located in the directory with your program’s .EXE.

Switch Description

/B logfile Run BoundsChecker in batch mode. All operations are executed with no user input
required. The results are saved in “logfile.” This switch overrides /L, /M, and /S.

/L Disable start-up splash screen.

/M Start BoundsChecker minimized.

/S Disable immediate error reporting.

/W<dir> Specify the working directory. The directory path must immediately follow the /w
argument. Do not use a space to separate the directory path from the argument.
24 BoundsChecker Basics

Viewing the Results of Your Error-detection Session
The following figure shows a typical Program Results window in
Microsoft Developer Studio 97.

Examining Errors

BoundsChecker places a wealth of information at your fingertips. With BoundsChecker you
can easily view the following data about each error:

• The line in the source code in which BoundsChecker detected the error.

• The error’s corresponding call stack.

• The source code for any function in the call stack.

• The point at which memory is allocated (for errors that involve a memory block that is
allocated elsewhere).

• On-line Help for the error

Lists detected errors and events. Lists call stacks for the selected error.

Indicates the type of error. Displays source code for the selected error.
NuMega BoundsChecker 25

Checking and Analyzing Programs
Displaying Source Code and Call Stack Data

To display the following source code and call stack information for an error, click the error in
the Program Results window. If you are using Microsoft Developer Studio 97, double-click
the error in the Program Results window.

• The source code in which BoundsChecker detected the error.

BoundsChecker highlights the line that contains the error by framing it and displaying it
in red.

• The error’s call stack.

BoundsChecker lists each function in the stack, the file in which the function is located,
and the line on which the function is found.

Using the Call Stack

The stack frame lets you display the source code for any function in the stack. This is useful
for seeing the events that led to the error. If the error involves a memory block that is allocated
elsewhere, the stack frame also lets you view the point at which the memory is allocated

Double-click a function to view
its corresponding source code.
26 BoundsChecker Basics

Viewing the Results of Your Error-detection Session
To view a particular function, click the corresponding function in the stack. If you are using
Microsoft Developer Studio 97, double-click the function. If the error deals with memory
that was allocated either from the heap or from earlier on the call stack, you can choose one of
the following before selecting a function:

• Location of Error

Lists the functions that led to the error.

• Point of Allocation

Lists the functions where memory is allocated.

• Point of Deallocation

Lists the functions where memory is freed.

Displaying Help for the Error

BoundsChecker provides the following Help for each type of error it detects:

• A complete description of the error.

• Sample error code.

• Suggestions for correcting the error
NuMega BoundsChecker 27

Checking and Analyzing Programs
To display Help for a particular error, do the following:

1 Click the error on which you need Help.

2 Click the right mouse button, and then click Explain.

Suppressing Errors

You can suppress an error while you check your program or after you analyze it in the
Program Results window. Suppressing an error prevents BoundsChecker from reporting it
again. You might want to suppress an error if:

• The error was generated by code from another developer or from a third-party DLL or
OCX.

• Your code properly handles the error.

To suppress an error, do the following:

1 Click the error you want to suppress.

2 Click the right mouse button, and then click Suppress.

3 Select one of the following suppression options:

• Suppress this Error Only When it Occurs in This Function

• Suppress this Error Only When it Occurs in This Source File

• Suppress this Error Only When it Occurs in This EXE or DLL

• Suppress this Error Regardless of Where it Occurs

4 If you want BoundsChecker to suppress the error automatically the next time you check
the program, select Save Suppression Information. Otherwise, BoundsChecker only
suppresses this error when you display the results of this error-detection session.

5 If you want to add a notation to the error you are suppressing, add a remark in the text
box.

When you suppress an error, it appears dimmed in the Program Results window.
BoundsChecker adds the suppressed error to the list it maintains in the Error Suppression tab
within the program settings. See Customizing Error Suppression Settings on page 37 for
information about removing errors from the suppression list.
28 BoundsChecker Basics

Viewing the Results of Your Error-detection Session
Changing the Results View

By default, the Program Results window displays errors, threads, and leaks only. However, you
can change the type of data it displays by changing its view. If you are using BoundsChecker,
click one of the following settings on the View menu to change the Results view. If you are
using Microsoft Developer Studio 97, click BoundsChecker, point to View, and then click
one of the following settings:

• Show Errors and Leaks Only

Displays errors, threads, and leaks.

• Show All Events

Displays errors, threads, leaks and all events.

• Show Errors and Specific Events

Displays errors, threads, and specific events. To determine the specific events it displays,
click Specific Events on the View menu and select the events you want to view. The
following example instructs the Program Results window to display API calls and returns
and hooks in addition to errors.

Note: The Error Detection and Event Reporting program settings determine the type of
errors and events that BoundsChecker detects and reports. See Chapter 3: Customizing
Error Detection and Reporting on page 33.
NuMega BoundsChecker 29

Checking and Analyzing Programs
The Program Results window uses the following icons to represent errors and events:

Printing Your Results

On the File menu, click Print to print the contents of the Program Results window.

Icon
Error or Event
Type

Description

Call-return

OLE Call-return

Expanded Call

OLE Expanded Call

Expanded Return

OLE Expanded
Return

BoundsChecker adds a Call-return event to the event log when
your program makes an API or OLE call and then returns from
the call.

Call-returns that contain nested events are designated with a plus
sign. To see the nested events, click the plus sign to expand the
event. When you expand a Call-return event, BoundsChecker
uses Expanded Call and Expanded Return icons to designate the
individual calls and returns.

Comment BoundsChecker adds a Comment event to the event log when
your program makes a call to OutputDebugString.

Error

Ole Error

BoundsChecker adds an Error event to the event log when it
catches an error in your program.

Hook BoundsChecker adds a Hook event to the event log when the
program processes a Windows hook call. The function name and
arguments are included on the line.

Leak

OLE Leak

BoundsChecker adds a Leak event to the event log for each
memory, resource, or interface method leak it finds. The message
describes the leak.

Message BoundsChecker adds a Message event to the event log when the
program processes a dialog or Windows message.

Start of Thread BoundsChecker adds a start of thread event to the event log
when it detects the creation of a thread.

Thread Context
Switch

BoundsChecker adds a Thread Context Switch event to the event
log when it detects that your program has switched from one
thread to another.
30 BoundsChecker Basics

Viewing the Results of Your Error-detection Session
Saving Your Results

To save the results of your error-detection session to view later, do the following:

1 If your application is running, quit your application.

2 On the File menu, click Save As.

3 Enter a file name and select the location in which you want to save the file.

By default, BoundsChecker saves the file in the directory that contains the executable.
NuMega BoundsChecker 31

Checking and Analyzing Programs
32 BoundsChecker Basics

The reasonable man adapts himself to the world; the
unreasonable one persists in trying to adapt the world to

himself. Therefore, all progress depends on the
unreasonable man.

◊ George Bernard Shaw
3 Customizing Error
Detection and
Reporting

BoundsChecker provides a series of program settings that let you determine how it detects
and reports errors and events. These program settings control the following:

Program Setting Description

Error Detection Determines the types of errors BoundsChecker detects and reports.

Event Reporting Determines if BoundsChecker collects and reports data about calls your program
makes to libraries and Windows APIs.

Program Info Determines the program search path and directory BoundsChecker uses to locate
your program files and establishes program parameters to pass as command-line
arguments.

Error Suppression Determines if BoundsChecker reports errors in specific libraries and instances.

Modules and Files Determines the modules BoundsChecker checks.
NuMega BoundsChecker 33

Customizing Error Detection and Reporting
Customizing Program Settings

To modify the program settings, do the following:

1 Do one of the following:

• If you are using Microsoft Developer Studio 97, click BoundsChecker, and then click
Settings.

• If you are using Microsoft Developer Studio 4.x, click Tools, and then click
BoundsChecker Settings.

• If you are using the BoundsChecker application, click Program, and then click
Settings.

2 Click the tab for the settings you want to modify.

The sections that follow highlight the settings for each of these tabs.

3 When you finish modifying the settings, click OK to save your changes.

Customizing Error Detection Settings

The following Error Detection settings determine how BoundsChecker detects and reports
errors.
34 BoundsChecker Basics

Customizing Program Settings
Error Detection Scheme

To get you up and running as quickly as possible while offering you optimum flexibility,
BoundsChecker provides three Error Detection Schemes: Normal, Maximum, and Custom.
Normal and Maximum preset the level of error detection BoundsChecker provides and
Custom lets you specify your preferred level of error detection. Use these schemes as follows:

• Normal

TIP: To see the
difference between
Normal and
Maximum, switch
between the modes
and observe how the
options are set.

Performs core error detection for all modules that have debug information. To maximize
performance, Normal collects only the information essential for diagnosing the problem.
Select Normal when you do not want a high level of detail or when you need to maximize
performance. Normal is the default.

• Maximum

Performs the highest level of error detection. Maximum even checks third-party code,
including modules that do not contain debug information. Maximum also reports all
instances of errors that are a result of other errors. Select Maximum when you want to:

• Collect as much information as possible about an error.

• Find all occurrences of an error.

• See errors in third-party modules that do not have debug information.

• Custom

Provides the greatest flexibility by letting you specify the types of errors BoundsChecker
detects and the extent to which they are reported. By default, the value of the Custom
options are set to Normal. Change these options as needed.

For information about controlling the events BoundsChecker reports, seeCustomizing Event
Reporting Settings on page 36.

Report Errors Immediately

Determines if BoundsChecker automatically displays the Program Error Detected window
each time it encounters an error in your program. Displaying the Program Error Detected
window is useful for seeing errors in context. If you prefer, clear this setting to check your
program without interruption. BoundsChecker always maintains a log of your error-detection
session, so you can see your program’s errors and events at your convenience.

Save These Settings as the Default for all New Programs

Depending on your development environment, you may want to permanently modify your
changes to the Error Detection settings. Select this setting to apply your modifications to all
subsequent programs you check with BoundsChecker.
NuMega BoundsChecker 35

Customizing Error Detection and Reporting
Customizing Event Reporting Settings

Event reporting instructs BoundsChecker to collect all the Windows API calls, parameters,
and messages your program sends and receives. This helps you debug your program, by
showing you what is happening. Use event reporting to solve the following problems:

By default, BoundsChecker does not enable event reporting, because collecting detailed event
data can increase the amount of disk space BoundsChecker uses and can affect system
performance. If you want BoundsChecker to collect this data, select Collect and Report
Program Event Data, and then select the types of events you want to collect.

Problem Area Suggested Analysis

Sequences Examine messages and how your program responds to them. For instance, did
the messages come in the order you expected?

Check the API calls your program made in response to messages.

Performance Look for indications of wasted time. For instance, is your program painting a
window twice in succession on two different messages? Your program may be
making hundreds or even thousands of unnecessary memory allocations or file
reads. You can block these allocations into a few big operations to improve
performance.

Threads Look at the thread-switching and thread interaction. This helps you debug multi-
thread problems with semaphores in critical sections.

API failures Look at the arguments passed to APIs. When pointers are passed, trace the data
to which they point.
36 BoundsChecker Basics

Customizing Program Settings
Customizing Program Information Settings

Use the Program Info settings to establish the following for your program:

• Working Directory

• Command Line Arguments

• Source File Search Path

Customizing Error Suppression Settings

Each time you suppress an error, BoundsChecker adds the suppression information to the
suppression library. BoundsChecker uses the suppression library to determine which errors to
suppress for future runs of the program. In addition to the individual program libraries,
BoundsChecker supplies suppression libraries for common DLLs, including MFC and OWL,
and the Delphi VCL.
NuMega BoundsChecker 37

Customizing Error Detection and Reporting
As your work progresses, you may want to delete a suppression item, or you may want
BoundsChecker to check your program without referring to the library. Perform the actions
in the following table to view and modify libraries and suppression items.

Note: You can only delete suppression items from your program library.

Customizing Modules and Files Settings

BoundsChecker automatically checks all the source files for your .EXE and its related static
and run-time DLLs and OCXs. However, you might want to check only a specific portion of
your code. For example, you might want to limit error detection to a specific module or
source files that comprise a module.

To limit the code BoundsChecker checks, clear the modules or source files you do not want to
check. Note that run-time DLLs and OCXs are not listed, but are automatically checked. To
avoid checking these modules, click Add to locate and add them to the list of modules, then
clear their associated check boxes.

To Do this

Display the list of suppression items for
a particular library.

Select the name of the library.

Enable or disable a library. Select or clear the checkbox for the library.

Sort the suppression items in a library. Click a sorting criterion above the list of items.

Delete a suppression item. Select the item from the list, and then click Remove.

Suppression Libraries

Suppression Items

Sorting Criteria
38 BoundsChecker Basics

Every man at the bottom of his heart believes that he is a
born detective.

◊ John Buchan
4 Detecting Errors
With FinalCheck

In addition to ActiveCheck, BoundsChecker provides an even more exhaustive error-
detection technology called FinalCheck. A superset of ActiveCheck, FinalCheck finds all the
errors ActiveCheck finds, plus these additional errors:

To find these particularly elusive and deeply-rooted errors, FinalCheck uses a technique
known as instrumentation. Instrumentation inserts error-detection code into your program
when you compile it. To accomplish this, FinalCheck intercepts the immediate language
generated by the compiler’s front end, adds additional error-detection code, and passes it to
the back end. BoundsChecker performs this process transparently. When you run your
program, BoundsChecker uses this error-detection code to find the additional errors.

To benefit from the additional error detection FinalCheck provides, you must recompile your
program. FinalCheck can also cause your program to run a little slower as it checks for
additional errors. Therefore, it is recommended that you use ActiveCheck regularly during the
development cycle and reserve FinalCheck for key project milestones and for detecting elusive
errors.

Memory Errors Pointer and Leak Errors

• Reading overflows memory

• Reading uninitialized memory

• Writing overflows memory

• Array index out of range

• Assigning pointer out of range

• Expression uses dangling pointer

• Expression uses unrelated pointers

• Function pointer is not a function

• Memory leaked due to free

• Memory leaked due to reassignment

• Memory leaked leaving scope

• Returning pointer to local variable
NuMega BoundsChecker 39

Detecting Errors With FinalCheck
Using FinalCheck

To use FinalCheck, do the following:

• Create a new project configuration from within Microsoft Developer Studio

• Build the program from within Microsoft Developer Studio or the command line.

The following sections describe how to create a project configuration and how to build a
program.

Creating a Project Configuration

Although it is not required, NuMega recommends that you create an additional project
configuration (target) for BoundsChecker before you build your project. Using a project
configuration dedicated to BoundsChecker lets you use:

• A debug configuration to reduce compile time when you do not want to instrument
modules in compilation.

• An instrumentation configuration to fully instrument modules in compilation.

• A release configuration to produce the final product.

To create a project configuration for BoundsChecker, do the following:

1 On the File menu, open a project in Visual C++.

2 On the Build menu, click Configurations.

3 Click Add to create a new project configuration.

4 In the Configuration field, type a name for the configuration.

5 In the Copy Settings From: list, select the existing debug target and click OK.

The existing debug target is typically indicated as follows: program name - Win32 Debug.

6 Click Close.

Building a Program

After you create a project configuration for BoundsChecker, build your program. The
following sections describe how to build your program from within Microsoft Developer
Studio and from a command line.
40 BoundsChecker Basics

Using FinalCheck
Building a Program From Microsoft Developer Studio

To build your program from Microsoft Developer Studio, do the following:

1 In the File menu, open the project you want to build.

2 If you are using Microsoft Developer Studio 97, click BoundsChecker, and then select
Instrument Builds. If you are using Microsoft Developer Studio 4.x, go to Step 3.

3 Select your BoundsChecker project configuration.

In Microsoft Developer Studio 97, your project is listed in the Active Project list and in
Microsoft Developer Studio 4.x it is listed in the Default Project Configuration list.

4 If you want to refine the build process, BoundsChecker provides several NMCL
command-line options that you can use within Microsoft Developer Studio. See Building
a Program for FinalCheck From the Command Line on page 41 for a complete list of
options. To use an option:

• On the build menu click settings, and then click C/C++.

• Type the option in the Project Options field.

5 Build your program, as follows:

• If you are using Microsoft Developer Studio 97, click Build, and then click Rebuild
All.

• If you are using Microsoft Developer Studio 4.x, click Tools and then click
BoundsChecker Rebuild All.

In subsequent builds, use the Build option to instrument and compile only files changed
or added since the last build.

In the Build tab within the Output window, BoundsChecker lists entries for all the errors and
leaks it detects. To display the source code that contains a particular error or leak, double-click
the entry.

Building a Program for FinalCheck From the Command Line

From a DOS session, use NMAKE and the following BoundsChecker components to build
your program for FinalCheck:

BoundsChecker Component Description

NMCL.EXE BoundsChecker compiler driver. Use this driver in place of
the CL.EXE.

NMLINK.EXE BoundsChecker linker driver.

BCINTERF.LIB BoundsChecker library file. All instrumented programs
require this file.
NuMega BoundsChecker 41

Detecting Errors With FinalCheck
The instrumentation process automatically substitutes the BoundsChecker NMCL compile
driver for the standard Visual C++ compiler driver. The following sections describe how to use
the Microsoft and Win32 SDK makefiles to build your program for FinalCheck.

Building a Program With a Microsoft Makefile

To use a standard Microsoft makefile to build your program for FinalCheck, specify
CPP=NMCL.EXE on the NMAKE command line.

See, “Using NMCL Command-line Options,” for a list of options you can use to refine the
build process.

The following example assumes that your path variable includes NMCL and NMLINK:

NMAKE /f TEST.MAK CPP=NMCL.EXE LINK32=NMLINK.EXE

Note: If your path variable does not include NMCL and NMLINK, specify the full directory
path to these programs (located in the BoundsChecker installation directory).

Building a Program With a Win32 SDK Makefile

If your makefile is based on the original Win32 SDK, the substitution line is slightly different,
and you need to add it after the line that includes the NTWIN32.MAK file:

!include <ntwin32.mak>
CC=NMCL.EXE
LINK=NMLINK.EXE

See the following section for a list of options you can use to refine the build process.

Using NMCL Command-line Options

To apply NMCL command-line options to an entire project, specify NMCL and the
appropriate option in quotes.

The following example shows the correct format for specifying an NMCL option:

NMAKE /f TEST.MAK CPP="NMCL /NMopt:TEST.INI"

You can also use the NMCL environment variable to specify NMCL command-line options.
This is useful for specifying global options.

The following example prevents a particular source file from being instrumented:

SET NMCL=/NMignore:STDAFX.CPP
42 BoundsChecker Basics

Using FinalCheck
The following table lists the available NMCL options.

NMCL Option Description

/NMproj:project-name Specifies a BoundsChecker project. This option is typically used
from within the Visual C IDE.

/NMignore:source-file[:function] Specifies a source file or function that should not be
instrumented.

/NMonly:source-file[:function] Specifies a source file or function that should be instrumented.

/NMopt:option-file

or

/NM@option-file

Specifies an option file.

/NMlog:log-file Specifies a log file for NMCL messages (default:stdout).

/NMpass Specifies pass-through mode, which instructs NMCL to call CL
without intervention. No instrumentation occurs.

/NMstoponerror Stops NMCL if an error occurs during instrumentation.

/NMclpath:cl-path Specifies the directory location of CL.EXE. Use this option if
MSDEV is not installed or to bypass the MSDEV installed location.

/NMbcpath:bc-path Specifies the location of the install directory for BoundsChecker. If
necessary, use this option to instruct NMCL where to find
BCINTERF.LIB.

/NMnogm Ignores the CL /Gm (minimal build) option if it appears on the
command line. Use this option to avoid a known conflict between
the NMAKE /A and CL /Gm options.

/NMhelp Displays help text.
NuMega BoundsChecker 43

Detecting Errors With FinalCheck
44 BoundsChecker Basics

Knowledge is what we get when an observer, preferably a
scientifically trained observer, provides us with a copy of reality

that we can all recognize.

◊ Christopher Lasch
5 Checking
Compliance

Microsoft provides a collection of 32-bit application programming interfaces (APIs) called
Win32. Win32 is implemented under Windows NT and Windows 95. A portion of Win32 is
also implemented on Windows 3.1 as Win32s.

Although many of the APIs within Win32 support both Windows NT and Windows 95,
some are platform specific. You can unknowingly use a call or set of calls that are available on
one platform, but not another. To assure that your program is compliant across both
Windows platforms and Win32s, BoundsChecker provides compliance reports that categorize
NuMega BoundsChecker 45

Checking Compliance
your program’s APIs. Use these reports to determine if your program’s APIs are available on all
Win32 platforms or just a subset of Win32 platforms. Additionally, BoundsChecker
categorizes your program’s use of C Run-Time Library calls into ANSI and non-ANSI. The
following example illustrates a compliance report.

Checking API Compliance

The best strategy for ensuring API compliance is to keep compliance in mind as you design a
program and to use BoundsChecker compliance checking early in the development process.
Otherwise, finding and fixing API compliance-related problems can be a long and tedious
task, especially if you postpone the job until after a program is completed.

BoundsChecker provides two ways for checking compliance:

• Program Compliance

Lists all functions to which your program’s .EXE file refers.

• Event Compliance

Lists only those functions that were called when you checked the program.
46 BoundsChecker Basics

Checking API Compliance
Checking Program Compliance

Program Compliance categorizes and lists all functions to which your .EXE file refers.
BoundsChecker does not list API calls made by DLLs to which the EXE points. To check
DLLs, use Event Compliance.

The following sections describe how to produce a Program Compliance report from
Microsoft Developer Studio and the BoundsChecker application.

Checking Program Compliance From Microsoft Developer Studio

The method for checking program compliance varies between Microsoft Developer Studio 97
and 4.x.

To create a Program Compliance report from within Microsoft Developer Studio 97:

1 Open the program for which you want to produce the report.

2 On the BoundsChecker menu, click Check Program Compliance.

To create a Program Compliance report from within Microsoft Developer Studio 4.x:

1 Open the program for which you want to produce the report.

2 On the Tools menu, click BoundsChecker to start the BoundsChecker application. Use
the BoundsChecker application to generate compliance reports.

3 On the Program menu within the BoundsChecker application, click Check Program
Compliance to generate the compliance report.

Checking Program Compliance From BoundsChecker

To create a Program Compliance report from within the BoundsChecker application:

1 Open the program for which you want to produce the report.

2 On the Program menu, click Check Program Compliance.

Checking Event Compliance

Event Compliance uses the results of your error-detection session to categorize and list only
those Win32 and C Run-Time Library functions that were actually called when you ran the
program. Event Compliance includes calls made by DLLs to which your program points.

To produce an Event Compliance report, you need to set the Event Reporting program
settings before you run your program. The following steps explain how to set the Event
Reporting program settings and produce the compliance report from within Microsoft
Developer Studio and the BoundsChecker application.
NuMega BoundsChecker 47

Checking Compliance
Checking Event Compliance From Microsoft Developer Studio

The method for checking event compliance varies between Microsoft Developer Studio 97
and 4.x.

To create an Event Compliance report from within Microsoft Developer Studio 97:

1 Open the program for which you want to produce the report.

2 On the BoundsChecker menu, click Settings.

3 In the BoundsChecker Settings window, click the Event Reporting tab.

4 Select Collect and Report Detailed Event Data and click OK.

5 Check the program, using all the functions you want included in the compliance report.

6 On the BoundsChecker menu, click Check Event Compliance to produce the report.

To create an Event Compliance report from within Microsoft Developer Studio 4.x:

1 Open the program for which you want to produce the report.

2 On the Tools menu, click BoundsChecker Settings.

3 In the BoundsChecker Settings window, click the Event Reporting tab.

4 Select Collect and Report Detailed Event Data and click OK.

5 Check the program, using all the functions you want included in the compliance report.

6 On the Tools menu, click BoundsChecker to start the BoundsChecker application,
which generates compliance reports.

7 On the Program menu within the BoundsChecker application, click Check Event
Compliance to generate the compliance report.

Checking Event Compliance From BoundsChecker

To produce an Event Compliance report:

1 On the Program menu, click Settings.

2 In the BoundsChecker Settings window, click the Event Reporting tab.

3 Select Collect and Report Detailed Event Data and click OK.

4 Check the program, using all the functions you want included in the compliance report.

5 On the Program menu, click Check Event Compliance to produce the report.
48 BoundsChecker Basics

An ounce of prevention is worth a pound of cure.

◊ Proverb
6 Validating Your Own
APIs

Application Programming Interfaces (APIs) are the most popular model on Windows for
defining how DLLs work together. APIs are also one of the most error-prone areas for
programmers, often resulting in bugs that are difficult to catch. Additionally, APIs can cause
strange behavior that is difficult to reproduce.

BoundsChecker excels at finding API-related errors for a pre-defined group of function sets.
The following table lists these sets.

For each function within the API, BoundsChecker automatically validates:

• Every parameter for the function, including parameters specific to Windows, such as
hWnds and hMenu. See Default Parameter and Return Types on page 52.

• The parameter’s return value. This validation finds errors in parameter types and ranges.

Supported API Functions Supported OLE Functions

CRTL

MAPI

ODBC

WIN32

WINSOCK

Direct X

Active X
NuMega BoundsChecker 49

Validating Your Own APIs
The following table lists the types of API and OLE errors BoundsChecker detects.

You can add your own API function sets to the function sets BoundsChecker validates. When
you extend BoundsChecker to test your APIs, BoundsChecker automatically validates
parameters, traces and validates return values, and lists the trace data in the Program Results
window, where you can analyze it.

API and OLE Errors BoundsChecker Detects

API failure: Windows function failed

API failure: Windows function not implemented

Interface method failure

Invalid argument

Invalid argument: At least one format specifier is illegal

Invalid argument: Bad destination pointer

Invalid argument: Bad handle

Invalid argument: Bad source pointer

Invalid argument: Conflicting combination of flags

Invalid argument: Format string is not followed by valid arguments

Invalid argument: Invalid pointer to format string

Invalid argument: Not enough arguments for this format string

Invalid argument: Out of range

Invalid argument: Structure size field is not initialized

Invalid argument: Too many arguments for this format string

Invalid argument: Undefined or illegal flags

Invalid interface method argument

Invalid interface method argument: Conflicting combination of flags

Invalid interface method argument: Out of range

Invalid interface method argument: Structure size field is not initialized

Invalid interface method argument: Undefined or illegal flags

Questionable use of thread
50 BoundsChecker Basics

How BoundsChecker Validates APIs
How BoundsChecker Validates APIs

To validate parameters and return values, BoundsChecker uses a validation routine to patch a
piece of code for each function into the memory image of the application under test. This
piece of code is called a validation stub: it is responsible for intercepting each API call,
validating it, logging it, and updating the Program Results window.

The following figure illustrates how a validation stub intercepts and validates parameters and
return values for a function.

1 The validation stub intercepts parameters as they are passed to the
function. The validation stub logs and validates each parameter against a
set of known values or conditions.

2 On return from the API call, the validation stub logs and validates the
return value, if one exists.

Creating an API Validation Module

To validate your own APIs, create a validation module for each .DLL (or .DEF) you want to
test. BoundsChecker provides an API wizard to simplify this process. When you create a
validation module, the API wizard analyzes your .DLL and automatically generates the source
code for the validation module, including the validation stubs.
NuMega BoundsChecker 51

Validating Your Own APIs
The following general steps explain how to create and use a validation module for your DLL.
See the On-line Help for more information about options you can use to refine this process.

1 Click Start, point to NuMega BoundsChecker, and then click Generate API Validation
Module to start the API wizard (BCAPIWIZ.exe).

The wizard automatically analyzes your .DLL to determine the parameters it uses and the
calls it exports. Then, the wizard uses this information to generate a source (.CPP) file for
the validation module. Additionally, the wizard generates a .MAK file and a header (.H)
file.

2 Review the .CPP file to verify that the code BoundsChecker generated for the .DLL’s
parameters and return calls is complete.

C++ functions use decorated names that contain parameter information, so
BoundsChecker can automatically provide the parameter validation code for any C++
function exported from a DLL. However, you need to create your own C or C++
validation code for C functions exported from a DLL or for parameter types that
BoundsChecker does not recognize. BoundsChecker indicates where you need to add
code by placing “TODO:” comments in the generated source file.

3 From the command prompt, run NMAKE or MAKE on the .MAK file, as follows:

[N]MAKE -f makefile-name

Example: NMAKE -f FOO.MAK

NMAKE uses the compiler and linker to build an .API validation file. Then, NMAKE
places the file into the BoundsChecker APICheck directory.

4 Check your application as you normally would.

BoundsChecker automatically uses the validation module to validate your .DLL.

Default Parameter and Return Types

By default, BoundsChecker generates validation and logging code for the following parameter
types. To add your own parameter types, see the On-line Help.

Parameter Type Action Parameter Type Action

ATOM Validate and log HSZ Log as DWORD value

BOOL Log as DWORD value HTHREAD Validate and log

bool Log as DWORD value HWND Validate and log

BYTE Log as BYTE value IDHOOK Validate and log

char * Validate and log int Log as DWORD value

char ** Validate KERNELHANDLE Validate and log

CHAR Log as BYTE value LCID Log as DWORD value
52 BoundsChecker Basics

Creating an API Validation Module
char Log as BYTE value LCTYPE Log as DWORD value

COLORREF Log as DWORD value long Log as DWORD value

COORD Log as DWORD value LONG Log as DWORD value

double Log LPARAM Log as DWORD value

DWORD Log LPCODE Validate and log

FILE * Validate and log LPCSTR Validate and log

float Log LPCWSTR Validate and log

GLOBALATOM Validate and log LPSTR Validate and log

HACCEL Validate and log LPWSTR Validate and log

HANDLE Validate and log PACL Validate and log

HCONV Log as DWORD value PSID Validate and log

HCONVLIST Log as DWORD value REGSAM Log as DWORD value

HCURSOR Validate and log SECURITY_INFOR
MATION

Log as DWORD value

HDBC Validate and log SERVICE_STATUS_
HANDLE

Log as DWORD value

HDDEDATA Log as DWORD value short Log as DWORD value

HDWP Validate and log signed char Log as BYTE value

HENV Validate and log signed int Log as DWORD value

HFILE Validate and log signed long Log as DWORD value

HGLOBAL Validate and log size_t Log as DWORD value

HHEAP Validate and log this Log

HHOOK Validate and log UCHAR Log as BYTE value

HICON Validate and log UINT Log as DWORD value

HINST Validate and log ULONG Log as DWORD value

HKEY Log as DWORD value unsigned char Log as BYTE value

HKL Validate and log unsigned int Log as DWORD value

HLOCAL Validate and log unsigned long Log as DWORD value

HMENU Validate and log unsigned short Log as DWORD value

HPROCESS Validate and log WORD Log as DWORD value

HRSRC Validate and log WPARAM Log as DWORD value

HSTMT Validate and log

Parameter Type Action Parameter Type Action
NuMega BoundsChecker 53

Validating Your Own APIs
The validation module utility can validate the following return types.

ATOM HKL PDWORD

bool HLOCAL PSID_IDENTIFIER_AUTHORITY

BOOL HMENU PUCHAR

CHAR HMETAFILE RETCODE

char HMODULE SC_HANDLE

char * HPALETTE SC_LOCK

COLORREF HPEN SERVICE_STATUS_HANDLE

double HRESULT SHORT

DWORD HRGN short

FAPPROC HRSRC short int *

FILE * HSZ signed int

HACCEL HWINSTA size_t

HANDLE HRESULT struct lconv *

HBITMAP HRGN struct tm *

HBRUSH HRSRC time_t

HCONV HSZ tm *

HCONVLIST HWND UINT

HCURSOR INT unsigned char

HDC int unsigned char *

HDDEDATA int * unsigned int

HDWP LANGID unsigned int *

HENHMETAFILE LCID unsigned long

HFILE LONG unsigned long *

HFONT long unsigned short int

HGDIOBJ long * unsigned short int *

HGLOBAL LPSTR void

HHOOK LPVOID void *

HICON LPWSTR WORD

HINSTANCE LRESULT
54 BoundsChecker Basics

A
ActiveCheck 8, 13

Analyzing programs 13, 36

ANSI C 11, 46

API
compliance 11, 45, 46

errors 8, 50

validation modules 51

APIs
validating 49

validation process 51

B
BoundsChecker

benefits 8
checking compliance 45

checking programs 20

settings 33

Building programs 40, 41

C
C Run-Time Library calls 11, 45

Call-return event 30

Changing the Results view 29

Checking
API compliance 11, 45, 46

event compliance 47

program compliance 47

programs 13

in BoundsChecker 20
in Microsoft Developer

Studio 9, 14, 39

Command-line options

instrumenting your code 41

NMCL options 43

starting BoundsChecker 23

Comment event 30

Compliance 46

checking 11, 45

Creating
API validation modules 51

project configurations 40

Customizing program settings 33

D
Debugging environment 10

Detecting
difficult errors 9, 39

errors 8, 9, 13, 39

E
Error Detection Scheme 35

Error detection settings 33, 34

Error event 30

Error suppression settings 33, 37

Error types 30

Errors
API 8, 50

detecting 8

leak 8, 9, 39

memory 8, 9, 39

OLE 8, 50

pointer 8, 9, 39

viewing 24

Event compliance 47

Event reporting settings 33, 36

Events 30

Call-return 30

Comment 30

Error 30

Expanded Call 30

Expanded Return 30

Hook 30

Leak 30

Message 30

OLE Call-return 30

OLE Leak 30

Start of Thread 30

Thread Context Switch 30

viewing 24

Expanded Call event 30

Expanded Return event 30

F
FinalCheck 9, 39

command-line options 41

using 40

G
Getting Help 11

H
Help 11

Hook event 30

I
Instrumentation 9, 39

command-line options 43
Index
Using BoundsChecker 55

L
Leak errors 8, 9, 30, 39

Leak event 30

M
Memory errors 8, 9, 39

Message event 30

Microsoft Developer Studio
checking Event Compliance
within 48

checking Program Compliance
within 47

checking programs within 9, 14,
 39

Modules and files settings 33, 38

N
NMCL options 43

O
OLE Call-return event 30

OLE errors 8, 50

OLE Leak event 30

On–line Help 11

P
Pointer errors 8, 9, 39

Program compliance 47

Program information settings 33,
37

Programs
analyzing 13

building 40, 41

checking 9, 13, 39

checking compliance 45

Project configurations
creating 40

R
Results view 24

changing 29

Results window 24

S
Show

All Events 29

Errors and Leaks Only 29

Errors and Specific Events 29

Smart Debugging 10, 14

Start of Thread event 30

T
Thread Context Switch event 30

U
Using

ActiveCheck 13

Event Compliance 47

FinalCheck 40

Program Compliance 47

V
Validating APIs 49

Validation modules
creating 51

Validation process 51

Viewing
errors 24

events 24

W
Windows compliance 11, 45
Using BoundsChecker 56

	1 The BoundsChecker 1 Solution
	Check Early, Check Often—The BoundsChecker Philoso...
	The Benefits of Using BoundsChecker
	Comprehensive Error Detection
	Flexible Debugging Environment
	Integration Into the Visual C++ Debugger
	Advanced Error Analysis
	Windows Compliance Assurance
	Open Error-Detection Architecture

	Where to Go From Here

	2 Checking and 2 Analyzing Programs
	Checking Programs Within Microsoft Developer Studi...
	Using Microsoft Developer Studio 97
	Using Microsoft Developer Studio 4.x

	Checking Programs With BoundsChecker
	Starting BoundsChecker From the DOS Command Line

	Viewing the Results of Your Error-detection Sessio...
	Examining Errors
	Suppressing Errors
	Changing the Results View
	Printing Your Results
	Saving Your Results

	3 Customizing Error 3 Detection and 3 Reporting
	Customizing Program Settings
	Customizing Error Detection Settings
	Customizing Event Reporting Settings
	Customizing Program Information Settings
	Customizing Error Suppression Settings
	Customizing Modules and Files Settings

	4 Detecting Errors 4 With FinalCheck
	Using FinalCheck
	Creating a Project Configuration
	Building a Program

	5 Checking 5 Compliance
	Checking API Compliance
	Checking Program Compliance
	Checking Event Compliance

	6 Validating Your Own 6 APIs
	How BoundsChecker Validates APIs
	Creating an API Validation Module
	Default Parameter and Return Types

