SoftICE
Command Reference

Windows® 3.1
Windows® 95
Windows NT"

= —=
NuMega.

Technologies

December 1996

Information in this document is subject to change without notice and does not represent a commitment on the part
of NuMega Technologies, Inc. The software described in this document is furnished under the software license
agreement distributed with the product. The software may be used or copied only in accordance with the terms of the
license. The purchaser may make one copy of the software for a backup, but no part of this user manual may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic or mechanical,
including photocopying and recording for any purpose other than the purchaser’s personal use, without prior written
permission from NuMega Technologies, Inc.

Copyright © 1996 NuMega Technologies, Inc.
All Rights Reserved

The following trade names are referenced throughout this manual:

NuMega Technologies, the NuMega logo, BoundsChecker, SoftICE, and On-Demand Debugging are trademarks of
NuMega Technologies, Inc.

Microsoft, Windows, Win32, Windows NT, and Visual C++ are either trademarks or registered trademarks of
Microsoft Corporation.

Borland and Delphi are either trademarks or registered trademarks of Borland International, Incorporated.
Wiatcom is a trademark of Sybase, Incorporated or its subsidiaries.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Software License Agreement

You are purchasing a license to use NuMega Technologies, Inc. software. The software is owned by and remains the property of NuMega Technologies, Inc., is protected by international
copyrights, and is transferred to the original purchaser and any subsequent owner of the software media for their use only on the license terms set forth below. Opening the package and/or using
the software indicates your acceptance of these terms. If you do not agree to all of the terms and conditions, or if after use you are dissatisfied with the software, return the software, manuals and
any partial or whole copies within thirty days of purchase to the party from who you received it for a refund, subject to our restocking fee.

Use Of The Software: NuMega Technologies, Inc. (“NuMega”), grants the original purchaser (“Licensee”) the limited rights to possess and use the NuMega Technologies, Inc. Software and User
Manual (“Software”) for its intended purposes. Licensee agrees that the Software will be used solely for Licensee’s internal purposes, and that at any one time, the Software will be installed on a
single computer only. If the Software is installed on a networked system, or on a computer connected to a files server or other system that physically allows shared access to the Software, Licensee
agrees to provide technical or procedural methods to prevent use of the Software by more than one user.

One machine-readable copy of the Software may be made for BACK UP PURPOSES ONLY, and the copy shall display all proprietary notices, and be labeled externally to show that the back-up
copy is the property of NuMega, and that use is subject to this License. Documentation may not be copied in whole or part.

Use of the Software by any department, agency or other entity of the U.S. Federal Government is limited by the terms of the following “Rider for Governmental Entity Users.”

Licensee may transfer its rights under this License, PROVIDED that the party to whom such rights are transferred agrees to the terms and conditions of this Licensee, and written notice is
provided to NuMega. Upon such transfer, Licensee must transfer or destroy all copies of the Software.

Except as expressly provided in this License, Licensee may not modify, reverse engineer, decompile, disassemble, distribute, sub-license, sell, rent, lease, give or in any way transfer, by any means or
in any medium, including telecommunications, the Software. Licensee will use its best efforts and take all reasonable steps to protect the Software from unauthorized use, copying or
dissemination, and will maintain all proprietary notices intact.

Limited Warranty And Indemnification: NuMega warrants the Software media to be free of defects in workmanship for a period of ninety days from purchase. During this period, NuMega will
replace at no cost any such media returned to NuMega, postage prepaid. This service is NuMega's sole liability under this warranty.

NuMega agrees to indemnify and hold Licensee harmless from all loss, claim or damage to Licensee arising out of any claim, legal action, or suit alleging that the Software infringes a United States
patent, copyright, or trade secret. NuMega will defend, at its own expense, any such claim or action against Licensee, and will pay all reasonable costs, expenses, and damages incurred by Licensee
in connection therewith, including reasonable attorneys’ fees and expenses incurred by Licensee, on condition that NuMega shall be immediately notified in writing by Licensee of any notice of
such claim or action or pending claim or action known to Licensee prior to the time when the failure to deliver such notice has injured NuMega; and that NuMega shall have control of the defense
against any such claim or action and all negotiations toward the settlement or compromise thereof. In such event, Licensee shall have the right to participate in any such action at NuMega's cost.
If the Software becomes the subject of any claim, suit, or proceeding for infringement of any United States patent, copyright or any other right of a third party, or in the event of any adjudication
that the Software infringes upon any United States patent, copyright or any other third party, or if the use or license of such Software is enjoined, in addition to other liability which may arise
under this provision, NuMega shall at its sole expense and discretion either (a) obtain a license or any rights necessary to make the warranty contained herein true and correct, or (b) refund to
Licensee any amounts paid to NuMega for the Software. Specifically excluded from the above covenant are any claims or actions based upon, or portions of claims or actions based upon, those
portions of the Software modified or developed by Licensee or third parties.

Disclaimer: LICENSE FEES FOR THE SOFTWARE DO NOT INCLUDE ANY CONSIDERATION FOR ASSUMPTION OF RISK BY NUMEGA, AND NUMEGA DISCLAIMS ANY
AND ALL LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR OPERATION OR INABILITY TO USE THE SOFTWARE, EVEN
IF ANY OF THESE PARTIES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. FURTHERMORE, LICENSEE INDEMNIFIES AND AGREES TO HOLD
NUMEGA HARMLESS FROM SUCH CLAIMS. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY THE LICENSEE. THE
WARRANTIES EXPRESSED IN THIS LICENSE ARE THE ONLY WARRANTIES MADE BY NUMEGA AND ARE IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE.

THIS WARRANTY GIVES YOU SPECIFIED LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM JURISDICTION TO JURISDICTION. SOME
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF WARRANTIES, SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

Term: This License is effective as of the time Licensee receives the Software, and shall continue in effect until Licensee ceases all use of the Software and returns or destroys all copies thereof, or
until automatically terminated upon the failure of Licensee to comply with any of the terms of this License.

General: This License is the complete and exclusive statement of the parties’ agreement. Should any provision of this License be held to be invalid by any court of competent jurisdiction, that
provision will be enforced to the maximum extent permissible, and the remainder of the License shall nonetheless remain in full force and effect. This License shall be controlled by the laws of the
State of New Hampshire, and the United States of America.

Rider For U.S. Government Entity Users
This is a Rider to the above Software License Agreement, (“License”), and shall take precedence over the License where a conflict occurs.

1.The Software was: developed at private expense; no portion was developed with government funds; is a trade secret of NuMega and its licensor for all purposes of the Freedom of Information
Act; is “commercial computer software” subject to limited utilization as provided in any contract between the vendor and the government entity; and in all respects is proprietary data belonging
solely to NuMega and its licensor.

2.For units of the DOD, the Software is sold only with “Restricted Rights” as that term is defined in the DOD Supplement to DFAR 252.227-7013 (b)(3)(ii), and use, duplication or disclosure is
subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Manufacturer: NuMega Technologies, Inc. 9 Townsend
West, Nashua, New Hampshire 03060 USA.

3.1f the Software was acquired under a GSA Schedule, the Government has agreed to refrain from changing or removing any insignia or lettering from the Software or Documentation or from
producing copies of manuals or disks (except for back up purposes) and; (1) Title to and ownership of the Software and Documentation and any reproductions thereof shall remain with NuMega
and its licensor; (2) use of the Software shall be limited to the facility for which it is acquired; and (3) if the use of the Software is discontinued at the original installation and the Government
wishes to use it at another location, it may do so by giving prior written notice to NuMega, specifying the new location site and class of computer.

4.Government personnel using the Software, other than under a DOD contract or GSA Schedule, are hereby on notice that use of the Software is subject to restrictions that are the same or similar
to those specified above.

contents

2 Cc 47
? 3 CLASS 48
A 4 CLS 51
ACTION 6 CODE 52
ADDR 7 COLOR 53
ADDR 10 CPU 55
ALTKEY 12 CR 58
ALTSCR 13 CSIP 59
ANSWER 14 D 61
BC 16 DATA 63
BD 17 DEVICE 64
BE 18 DEX 66
BH 19 DIAL 67
BL 21 DRIVER 69
BMSG 22 E 71
BPE 24 EC 73
BPINT 25 EXIT 74
BPINT 27 EXP 75
BPIO 29 F 78
BPM 32 FAULTS 79
BPR 36 FIBER 80
BPRW 39 FILE 81
BPT 41 FKEY 82
BPX 42 FOBJ 84
BSTAT 45 FLASH 86

FORMAT 87
G 88

GDT 89
GENINT 91
H 92
HBOOT 93
HEAP 94
HEAP32 97
HEAP32 100
HERE 105
HWND 106
HWND 109
I 113
I1IHERE 114
ISHERE 115
IDT 116

IRP 118
LDT 121
LHEAP 123
LINES 125
LOCALS 126
M 127
MACRO 128
MAP32 132

MAPV86 135

SoftICE Command Reference

Contents

MOD 137
MOD 139
NTCALL 142

0] 144
OBJDIR 145
OBJTAB 147
P 149

PAGE 150
PAUSE 155
PCI 156
PEEK 157
PHYS 158
POKE 159

Print Screen Key 160
PRN 161
PROC 162
QUERY 168
R 173

RS 175

S 176

SERIAL 178
SET 181
SHOW 183
SRC 184

SS 185
STACK 186
SYM 189
SYMLOC 191
T 193

TABLE 194

ii SoftICE Command Reference

TABS 196
TASK 197
THREAD 199
THREAD 201

TRACE 204
TSS 205
TYPES 207
u 208
VCALL 210
VER 212
VM 213
VXD 216
VXD 218
WATCH 220
wcC 222
wD 223
WF 224
WHAT 226
WL 227
WMSG 228
WR 229
WW 230

X 231
XFRAME 232
XG 234

XP 235
XRSET 236
XT 237
ZAP 238

You will find it a very good practice always
to verify your references, sir!

¢ Dr. Routh

SoftICE Commands

The SoftICE Command Reference is for use with the following operating systems:
e Windows 3.1
* Windows 95
* Windows NT

The commands are listed in alphabetical order and contain the following information:

Operating system
Command name
T OBJDIR Windows NT System Information .|
Type of SofttCE command:
Displays objects in a Windows NT Object Manager’s object directory. - Breakpoints and Watches
Syntax and parameters - Customization
- Display/Change Memory
>Syntax OBJDIR [object-directory-name] - Flow Control
- 1/0 Port
— Command use — Use Use the OBJDIR command to display named objects within the Object - Manipulating Breakpoints
Manager’s object directory. Using OBIDIR with no parameters displays . Miscellaneous
the named objects within the root object directory. - Mode Control
- Symbol/Source
Sample output — Output The OBIDIR command displays the following information: . Syygem Information
- Window Control

Object Address of the object body

ObjHdr Address of the object header

Name Name of the object

Type Windows NTdefined data type of the object

L Example(s) —— Example Abbreviated sample output of the OBIDIR command listing objects in
the Device object directory follows:

h) OBJDIR device

ese sections Directory of \Device at FDSE7F30

alsoinclude any

operating Object ObjHdr Name Type

system specific

information. FD8CC750 FD8CC728 Beep Device
FD89A030 FD89A008 Nwinklpx Device
FD889150 FD889128 Netbios Device

Lists related commands - See Also OBIJTAB

SoftICE Command Reference

SoftICE Commands

Windows 3.1, Windows 95, Windows NT Window Control

Locate the current instruction in the Code window.

Syntax

Use When the Code window is visible, the . (Dot) command makes the instruction at the current
CS:EIP visible and highlights it.

For Windows 95 and Windows NT

The command switches contexts back to the original context that SoftICE popped up in.

2 SoftICE Command Reference

SoftICE Commands

Syntax

Use

Example

See Also

WiNDows 3.1, WINDOWS 95, WINDOWS NT MISCELLANEOUS

Evaluate an expression.

For Windows 3.1

? [command | expression]

For Windows 95 and Windows NT

? expression

For Windows 3.1

Under Windows 3.1, the parameter you supply to the ? command determines whether help is
displayed or an expression is evaluated. If you specify a command, ? displays detailed
information about the command, including the command syntax and an example. If you
specify an expression, the expression is evaluated, and the result is displayed in hexadecimal,
decimal, signed decimal (only if < 0), and ASCII.

For Windows 95 and Windows NT

Under Windows 95 and Windows NT, the ? command only evaluates expressions. (Refer to
H on page 92 for information about getting help under Windows 95 and Windows NT.)

To evaluate an expression enter the ? command followed by the expression you want to
evaluate. SoftICE displays the result in hexadecimal, decimal, signed decimal (only if < 0),
and ASCII.

The following command displays the hexadecimal, decimal, and ASCII representations of the
value of the expression 10*4+3.

1 ? 10%4+3
00000043 0000000067 "C'

SoftICE Command Reference 3

SoftICE Commands

A

Syntax

Use

Windows 3.1, Windows 95, Windows NT Miscellaneous

Assemble code.

A [addr ess]

Use the SoftICE assembler to assemble instructions directly into memory. The assembler
supports the standard Intel 80x86 instruction set.

If you do not specify the address, assembly occurs at the last address where instructions were
assembled. If you have not entered the A command before and did not specify the address, the
current CS:EIP address is used.

The A command enters the SoftICE interactive assembler. An address displays as a prompt for
each assembly line. After you type an assembly language instruction and press Enter, the
instructions assemble into memory at the specified address. Type instructions in the standard
Intel format. To exit assembler mode, press Enter at an address prompt.

If the address range in which you are assembling instructions is visible in the Code window,
the instructions change interactively as you assemble.

The SoftICE assembler supports the following instruction sets:

» For Windows 3.1: 386, Floating Point
« For Windows 95 and Windows NT: 386, 486, Pentium, Pentium Pro, all corresponding
numeric coprocessor instruction sets, and MMX instruction sets

SoftICE also supports the following special syntax:

< Enter USE16 or USE32 on a separate line to assemble subsequent instructions as 16-bit
or 32-bit, respectively. If you do not specify USE16 or USE32, the default is the same as
the mode of the current CS register.

« Mnemonic followed by a list of bytes and/or quoted strings separated by spaces or
commas.

e RETF mnemonic represents a far return.

e Use WORD PTR, BYTE PTR, DWORD PTR, and FWORD PTR to determine data
size, if there is no register argument.

Example: MOV BYTE PTR ES:[1234.],1

« Use FAR and NEAR to explicitly assemble far and near jumps and calls. If you do not
specify either, the default is NEAR.

* Place operands referring to memory locations in square brackets.
Example: MOV AX| [1234]

4 SoftICE Command Reference

SoftICE Commands

For Windows NT

Any changes you make to 32-bit code are “sticky.” This means they remain in place even if
you load or reload the module you change. To remove the changes, do one of the following:
restart Windows NT, flush the memory image from the cache, or modify the module.

Example When you use the following command:
A CS: 1234

the assembler prompts you for assembly instructions. Enter all instructions and press Enter at
the address prompt. The assembler assembles the instructions beginning at offset 1234h
within the current code segment.

SoftICE Command Reference 5

SoftICE Commands

ACTION

Syntax

Use

Example

See Also

Windows 3.1 Mode Control

Set action after breakpoint is reached.

ACTICN [nmi | i nt 1| i nt 3| here| i nt er rupt - nunber| debugger - nane]

interrupt-number Valid interrupt number between 0 and 5Fh.

debugger-name Module name of the Windows application debugger to gain control of
on a SoftlCE breakpoint.

The ACTION command determines where to give control when breakpoint conditions are
met. In most cases, you can use ACTION to pass control to an application debugger you are
using in conjunction with SoftICE. Use the HERE parameter to return to SoftICE when
break conditions have been met. Use the NMI, INT1, and INT3 parameters as alternatives
for activating DOS debuggers when break conditions are met. Use debugger-name to activate
Windows debuggers. To find the module name of the debugger, use the MOD command.

If you specify debugger-name, an INT 0 triggers the Windows debugger. SoftICE ignores
breakpoints that the Windows debugger causes if the debugger accesses memory covered by a
memory location or range breakpoint. When SoftICE passes control to the Windows
debugger with an INT 0, the Windows debugger responds as if a divide overflow occurred
and displays a message. Ignore this message because the INT 0 was not caused by an actual
divide overflow.

Note: The ACTION command is obsolete under Windows 95 and Windows NT.

When using SoftICE with the following products, use the corresponding command:

Product SoftICE Command

CodeView for DOS ACTI ON nm

Note: SoftICE generates a non-maskable interrupt when
break conditions are met. This gives control to
CodeView for DOS.

CodeView for Windows ACTI ON cvw
Borland's Turbo Debugger for Windows ~ ACTI ON t dw
Multiscope's Debugger for Windows ACTION rtd

Refer to setting breakpoints in Using SoftICE.

6 SoftICE Command Reference

SoftICE Commands

ADDR

Syntax

Use

To use ADDR with
Windows NT, refer to
ADDR on page 10.

Windows 95 System Information

Display or switch to address context.

ADDR [cont ext - handl e | process- nane]

context-handle Address context handle.

process-name Name of a process.

To be able to view the private address space for an application process, set the current address
context within SoftICE to that of the application by providing an address context-handle or

the process-name as the first parameter to the ADDR command. To view information on all

currently active contexts, use ADDR with no parameters. The first address context listed is the
current address context.

For each address context, SoftICE prints the following information:
* address context handle
« address of the private page table entry array (PGTPTR) of the context
« number of entries that are valid in the PGTPTR array
« starting and ending linear addresses represented by the context
« address of the mutex object used to control access to the context’s page tables
« name of the process that owns the context.

When you use the ADDR command with an address context parameter, SoftlCE switches
address contexts the same way as Windows does.

When switching address contexts, Windows 95 copies all entries in the new context’s
PGTPTR array to the page directory (pointed at by the CR3 register). A context switch
affects the addressing of the lower 2GB of memory from linear address 0 to 7FFFFFFFh.
Each entry in a PGTPTR array is a page directory entry which points at a page table that
represents 4MB of memory. There can be a maximum of 512 entries in the PGTPTR array to
represent the full 2GB. If there are less than 512 entries in the array, the rest of the entries in
the page directory are set to invalid values.

SoftICE Command Reference 7

SoftICE Commands

Output

Example

The current context
is highlighted.

When running more than one instance of an application, the same owner name appears in the
address context list more than once. If you specify an owner name as a parameter, SoftICE
always selects the first address context with a matching name in the list. To switch to the
address context of a second or third instance of an application, provide an address context-
handle to the ADDR command.

Note: If SoftICE pops up when the System VM (VM 1) is not the current VM, it is possible
for context owner information to be paged out and unavailable. In these cases no
owner information displays.

For each context or process, the following information displays.

Handle Address of the context control block. This is the handle that is passed
in VxD calls that require a context handle.

Pgtptr Address of an array of page table addresses. Each entry in the array
represents a page table pointer. When address contexts switch, the
appropriate location in the page directory receives a copy of this array.

Tables Number of entries in the PGTPTR array. Not all entries contain valid
page directory entries. This is only the number of entries reserved.

MinAddr Minimum linear address of the address context.

MaxAddr Maximum address of the address context.

Mutex Mutex handle used when VMM manipulates the page tables for the
context.

Owner Name of the first process that uses this address context.

The following command displays all currently active address contexts. The context on the top
line of the display is the context that SoftlCE popped up in. To switch back to this at any
time, use the . (DOT) command. When displaying information on all contexts, one line is
highlighted, indicating the current context within SoftICE. When displaying data or
disassembling code, the highlighted context is the one you see.

. ADDR

Handl e PGTPTR Tables Mn Addr Max Addr Mitex Onner
C1068D00 Cl06CDOC 0200 00400000 7FFFFO00 QOFEC770 W NWRD
Cl04E214 Cl068068 0200 00400000 7FFFFO00 C1063DBC Rundl | 32
Cl05AC9C (QOFE5330 0002 00400000 7FFFFO00 QOFE5900 QU CKRES
C1055EF8 Cl05CE8C 0200 00400000 7FFFFOO0 ClO5C5EC | bserver
C1056D10 Cl0571D4 0200 00400000 7FFFFOO0 Cl1056D44 Morexe

8 SoftICE Command Reference

SoftICE Commands

Handl e PGIPTR Tables Mn Addr Max Addr Mt ex Onner
Cl0D900C Cl0DR024 0002 00400000 7FFFFO00 C10D9050

C10493E8 Cl0555FC 0004 00400000 7FFFFO00 (COFE6460 KERNEL32
C1055808 Cl05650C 0200 00400000 7FFFFO00 (C105583C MBGSRV32
C10593CC Cl059B78 0200 00400000 7FFFFO00 C105908C Expl orer
C106AE/0 Cl06DD10 0200 00400000 7FFFFOO0 Cl0586F0 Exchng32
Cl106ABC4 ClO6EDO4 0200 00400000 7FFFFOO0 Cl06CA4C MNapi sp32

See Also For Windows NT, refer to ADDR on page 10.

SoftICE Command Reference 9

SoftICE Commands

ADDR

Syntax

Use

To use ADDR with
Windows 95, refer to
ADDR on page 7.

Output

Windows NT System Information

Display or switch to an address context.

ADDR [process-nane | process-id | KPEB]

KPEB Kernel Process Environment Block.

Use the ADDR command to both display and change address contexts within SoftICE so that
process-specific data and code can be viewed. Using ADDR with no parameters displays a list
of all address contexts.

If you specify a parameter, SoftICE switches to the address context belonging to the process
with that name, identifier, or process control block address.

If you switch to an address context that contains an LDT, SoftICE sets up the LDT with the
correct base and limit.

All commands that use an LDT only work when the current SoftICE context contains an
LDT. LDTs are never global under Windows NT.

Under low memory conditions, Windows NT starts swapping data to disk, including inactive
processes, parts of the page directory, and page tables. When this occurs, SoftICE may not be
able obtain the information necessary to switch to contexts that rely on this information.
SoftICE indicates this by displaying the message swapped in the CR3 field of the process or
displaying an error message if an attempt is made to switch to the context of the process.

When displaying information about all contexts, one line is highlighted, indicating the
current context within SoftICE. When displaying data or disassembling code, the highlighted
context is the one you see.

An * (asterisk) precedes one line of the display, indicating the process that was active when
SoftlCE popped up. Use the . (DOT) command to switch contexts back to this context at any
time.

For each context or process, the following information is shown:

CR3 Physical address of the page directory that is placed into the CR3
register on a process switch to the process.

LDT If the process has an LDT, this field has the linear base address of the
LDT and the limit field for the LDT selector. All Windows NT
processes that have an LDT use the same LDT selector. For process
switches, Windows NT sets the base and limit fields of this selector.

10 SoftICE Command Reference

SoftICE Commands

KPEB Linear address of the Kernel Process Environment Block for the
process.
PID Process ID. Each process has a unique ID.
NAME Name of the process.
Example The following example shows the ADDR command being used without parameters to display
all the existing contexts.
: ADDR
CR3 LDT Base:Limt KPEB PI D NAVE
00030000 FDBEA920 0002 System
011FBO00O FDBCDB80 0013 SnEs
017A5000 FDB8BFB60 0016 CSrss
01B69000 FDBBADEO 001B w nl ogon
01CF3000 FD8B6B40 0027 servi ces
01037000 FD8B5760 0029 | sass
00FFA000 FDBABAEOD 0040 spool ss
009A5000 FDB9F7EOD 002B nddeagnt
00AA5000 FDB9CB40 004A progman
006D2000 E115F000: FFEF FDB899DED 0054 nt vdm
00837000 FD396D080 0059 (OH00 ¢
00C3Q000 FD89C020 0046 scm
00387000 FDB9ESED 004E ANT
*0121C000 E1172000: 0187 FDB88CCAD 0037 nt vdm
00030000 8013DD50 0000 Ide
See Also For Windows 95, refer to ADDR on page 7.
PROC

SoftICE Command Reference

11

SoftICE Commands

ALTKEY

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Customization

Set an alternate key sequence to invoke SoftICE.

ALTKEY [Al't letter | Qrl letter]

letter Any letter (A through Z).

Use the ALTKEY command to change the key sequence (default key Ctrl-D) for popping up
SoftICE. Occasionally another program may conflict with the hot key sequence. You can
change the key sequence to either of the following sequences:

arl + letter
or
At + letter
If you do not specify a parameter, the current hot key sequence displays.

To change the hot key sequence every time you run SoftICE, Configure SoftICE in the
SoftICE Loader to place the ALTKEY command in the SoftICE initialization string.

To specify that the key sequence Alt-Z pop up the SoftICE screen, use the following
command:

ALTKEY alt z

12 SoftICE Command Reference

SoftICE Commands

ALTSCR

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Window Control

Display SoftICE on an alternate screen.

ALTSCR [on | of f]

Use the ALTSCR command to redirect the SoftICE output from the default screen to an
alternate monochrome monitor.

ALTSCR requires the system to have two monitors attached. The alternate monitor should be
a monochrome monitor in a character mode (the default mode).

The default setting is ALTSCR mode OFF.

Hint: To change the SoftICE display screen every time you run SoftICE, place the ALTSCR
command in the Initialization string within your SoftICE configuration settings. Refer
to Chapter 8, “Customizing SoftICE” in the Using SoftICE guide.

In the SoftICE program group, use Video Setup to select the monochrome monitor. SoftICE
automatically starts out in monochrome mode making the ALTSCR command unnecessary.
Also use this setting if you are experiencing video problems even when ALTSCR ON is in the
initialization string.

For Windows 95

You can also start WINICE with the /M parameter to bypass the initial VGA programming
and force SoftICE to the alternate monochrome screen. This is useful if your video board
experiences conflicts with the initial programming.

To redirect screen output to the alternate monitor, use the following command:

ALTSCR on

SoftICE Command Reference 13

SoftICE Commands

ANSWER

Syntax

Use

Example

Windows 95, Windows NT Customization

Auto-answer and redirect console to modem.

ANSWER [on [comport] [baud-rate] [i=init] | off]

com-port If no com-port is specified it uses COML.

baud-rate Baud-rate to use for modem communications. The default is 38400.
The rates include 1200, 2400, 4800, 9600, 19200, 23040, 28800,
38400, 57000, 115000.

i=init Optional modem initialization string.

The ANSWER command allows SoftICE to answer an incoming call and redirect all output
to a connecting PC running the SERIAL.EXE program in dial mode. After the command is
executed, SoftICE listens for incoming calls on the specified com-port while the machine
continues normal operation. Incoming calls are generated by the SERIAL.EXE program on a
remote machine.

You can place a default ANSWER initialization string in the SoftICE configuration settings.
Refer to Chapter 8, “Customizing SoftICE” in the Using SoftICE guide.

When SoftICE detects a call being made after the ANSWER command has been entered, it
pops up and indicates that it is making a connection with a remote machine, then pops down.
The local machine appears to be hung while a remote connection is in effect.

The ANSWER command can be cancelled at any time with ANSWER OFF. This stops
SoftICE from listening for incoming calls.

The following is an example of the ANSWER command. SoftICE first initializes the modem
on com-port 2 with the string “atx0,” and then returns control to the command prompt.
From that point on it answers calls made on the modem and attempts to connect at a baud
rate of 38400bps.

ANSWER on 2 38400 i =at x0

14 SoftICE Command Reference

SoftICE Commands

The following is an example of a default ANSWER initialization string statement in your
SoftICE configuration settings. With this statement in place, SoftICE always initializes the
modem specified in ANSWER commands with “atx0,” unless the ANSWER command
explicitly specifies an initialization string.

ANSWER=at x0

See Also SERIAL

SoftICE Command Reference 15

SoftICE Commands

BC

Syntax

Example

Windows 3.1, Windows 95, Windows NT Manipulating Breakpoints

Clear one or more breakpoints.

BC list | *

list Series of breakpoint indexes separated by commas or spaces.

* Clears all breakpoints.

To clear all breakpoints, use the command:
BC *

To clear breakpoints 1 and 5, use the command:
BC15

If you use the BL command (list breakpoints), the breakpoint list will be empty until you
define more breakpoints.

16 SoftICE Command Reference

SoftICE Commands

BD

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Manipulating Breakpoints

Disable one or more breakpoints.

BD /ist | *

list Series of breakpoint indexes separated by commas or spaces.

* Disables all breakpoints.

Use the BD command to temporarily deactivate breakpoints. Reactivate the breakpoints with
the BE command (enable breakpoints).

To tell which of the breakpoints are disabled, list the breakpoints with the BL command. A
breakpoint that is disabled has an * (asterisk) after the breakpoint index.

To disable breakpoints 1 and 3, use the command:
BD 1 3

SoftICE Command Reference 17

SoftICE Commands

BE

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Manipulating Breakpoints

Enable one or more breakpoints.

BE /ist | *

list Series of breakpoint indexes separated by commas or spaces.

* Enables all breakpoints.

Use the BE command to reactivate breakpoints that you deactivated with the BD command
(disable breakpoints).

Note: You automatically enable a breakpoint when you first define it or edit it.

To enable breakpoint 3, use the command:
BE 3

18 SoftICE Command Reference

SoftICE Commands

BH

Syntax

Use

Windows 3.1, Windows 95, Windows NT Manipulating Breakpoints

List and/or select previously set breakpoints from the breakpoint history.

BH

Use the BH command to recall breakpoints that you set in both the current and previous
SoftICE sessions. All saved breakpoints display in the Command window and can be selected
using the following keys:

UpArrow Positions the cursor one line up. If the cursor is on the top line of the
Command window, the list scrolls.

DownArrow Positions the cursor one line down. If the cursor is on the bottom line
of the Command window, the list scrolls.

Insert Selects the breakpoint at the current cursor line, or deselects it if
already selected.

Enter Sets all selected breakpoints.

Esc Exits breakpoint history without setting any breakpoints.

SoftICE saves the last 32 breakpoints.

For Windows 3.1 and Windows 95

Each time Windows exits normally, these breakpoints are written to the WINICE.BRK file in
the same directory as WINICE.EXE. Every time SoftICE is loaded, it reads the breakpoint
history from the WINICE.BRK file.

For Windows 95

IF you choose to configure Windows 95 to load SoftICE before WIN.COM by appending
\siw95\winice.exe to the end of your AUTOEXEC.BAT, Windows 95 does not return control
to SoftICE when it shuts down unless you set the BootGUI option in MSDOS.SYS to
BootGUI=0. If this option is set to BootGUI=1, SoftICE does not save the break-point
history file. Refer to Chapter 2, “Installing SoftICE,” in the Using SoftICE manual for more
information about configuring when SoftICE loads.

For Windows NT

Breakpoints are written to the WINICE.BRK file in the \SYSTEMROOT\SYSTEM32
\DRIVERS directory.

SoftICE Command Reference 19

SoftICE Commands

Example To select any of the last 32 breakpoints from current and previous SoftICE sessions, use the
command:

BH

20 SoftICE Command Reference

SoftICE Commands

BL

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Manipulating Breakpoints

List all breakpoints.
BL

The BL command displays all breakpoints that are currently set. For each breakpoint, BL lists
the breakpoint index, breakpoint type, breakpoint state, and any conditionals or breakpoint
actions.

The state of a breakpoint is either enabled or disabled. If you disable the breakpoint, an *
(asterisk) appears after its breakpoint index. If SoftICE is activated due to a breakpoint, that
breakpoint is highlighted.

The BL command has no parameters.

To display all the breakpoints that have been defined, use the command.

BL
e For Windows 3.1

0 BPMB #30: 123400 WEQ 0010 DR3 C=03
1* BPR #30: 80022800 #30: 80022FFF W C=01
2 BPI O 0021 W NE 00FF C=01

3 BPI NT 21 AH=3D C=01

Note: Breakpoint 1 has an * (asterisk) following it, showing that it was disabled.

* For Windows 95 and Windows NT

00) BPX #8: 80102A4B | F (==1) DO “DD ESI”
01) * BPX _LockWndow nfo

02) BPMD #013F: 0063F8A0 RW DR3

03) BPI NT 2E | F (EAX==0x1E)

SoftICE Command Reference 21

SoftICE Commands

BMSG

Syntax

22

Windows 3.1, Windows 95, Windows NT Breakpoints

Set a breakpoint on one or more Windows messages.

For Windows 3.1

BVMBG wi ndow handl e [L] [begi n-nsg [end-nsg]] [c=count]

For Windows 95 and Windows NT

BVSG w ndow handl e [L] [begin-nsg [end-nsg]] [|F expression]
[DO " conmandl; cormand2; . .. "]

window-handle

begin-msg

IF expression

DO command

HWND value returned from CreateWindow or CreateWindowEX.

Single Windows message or lower message number in a range of
Windows messages. If you do not specify a range with an end-msg,
only the begin-msg will cause a break.

Note: For both begin-msg and end-msg, the message numbers can be
specified either in hexadecimal or by using the actual ASCII names of
the messages, for example, WM_QUIT.

Higher message number in a range of Windows messages.
Logs messages to the SoftICE Command window.
Breakpoint trigger count.

Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

Breakpoint action: A series of SoftlCE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftlCE manual.

SoftICE Command Reference

SoftICE Commands

Use

Example

The BMSG command is used to set breakpoints on a window’s message handler that will
trigger when they receive messages that either match a specified message type, or fall within an
indicated range of message types.

« If you do not specify a message range, the breakpoint applies to ALL Windows messages.

« If you specify the L parameter, SoftICE logs the messages into the Command window
instead of popping up when the message occurs.

When SoftICE does pop up on a BMSG breakpoint, the instruction pointer (CS:[E]IP) is on
the first instruction of the message handling procedure. Each time SoftICE breaks, the current
message displays in the following format:

hWid=xxxx wPar amexxxx | Par anFxxxxxxxx msg=xxxx message- nane

Note: These are the parameters that are passed to the message procedure. All numbers are
hexadecimal. The message-name is the Windows defined name for the message.

To display valid Windows messages, enter the WMSG command with no parameters. To
obtain valid window handles, use the HWND command.

You may set multiple BMSG breakpoints on one window-handle, although the message
ranges for the breakpoints may not overlap.

This command sets a breakpoint on the message handler for the Window that has the handle
9BC. The breakpoint triggers and SoftICE pops up when the message handler receives
messages with a type within the range WM_MOUSEFIRST to WM_MOUSELAST,
inclusive (which includes all of the Windows mouse messages).

: BMBG 9BC wm nousefirst wm nmousel ast

The next command places a breakpoint on the message handler for the Window with the
handle FAC. The L parameter causes the breakpoint information to be logged to the SoftICE
Command window, instead of having SoftICE pop up when the breakpoint is triggered. The
message range that the breakpoint triggers on includes any message with a type value less than
or equal to WM_CREATE. Output from this breakpoint being triggered can be viewed by
popping into SoftICE and scrolling through the command buffer.

:BMBG f4c L O wmcreate

SoftICE Command Reference 23

SoftICE Commands

BPE

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Manipulating Breakpoints

Edit a breakpoint description.

BPE br eakpoi nt - i ndex

breakpoint-index Breakpoint index number.

The BPE command allows you to edit or replace an existing breakpoint. Use the editing keys
to edit the breakpoint description. Press Enter to save a new breakpoint description. This
command offers a quick way to modify the parameters of an existing breakpoint.

Warning: BPE first clears the breakpoint before loading it into the edit line. If you then press
the Escape key, the breakpoint is cleared. To retain the original breakpoint and
create another one, use the BPT command, which uses the original breakpoint as
an editing template without first deleting it.

Conditional expressions and breakpoint actions are expanded as parts of the breakpoint
expression.

This command allows the definition for breakpoint 1 to be edited.
:BPE 1

When the command is entered, SoftICE displays the existing breakpoint definition and
positions the input cursor just after the breakpoint address.

:BPE 1
:BPX 80104324 if (eax==1) do “dd esi”

To re-enter the breakpoint, press the Enter key. To clear the breakpoint, press the Escape key.

24 SoftICE Command Reference

SoftICE Commands

BPINT

Syntax

Use

For Windows 95 and
Windows NT, refer to
BPINT on page 27.

Windows 3.1 Breakpoints

Set a breakpoint on an interrupt.

BPI NT / nt - nunber [al | ah| ax=val ue] [c=count]

int-number Interrupt number from O - 5Fh.
value Byte or word value.
= Breakpoint trigger count.

Use the BPINT command to pop up SoftlCE whenever a specified processor exception,
hardware interrupt, or software interrupt occurs. The AX register qualifying value

(AL=, AH=, or AX=) can be used to set breakpoints that trigger only when the AX register at
the time that the interrupt or exception occurs matches the specified value. This capability is
often used to selectively set breakpoints for DOS and BIOS calls. If an AX register value is not
entered, the breakpoint occurs anytime the interrupt or exception occurs, regardless of the
value of the AX register at the time.

For breakpoints that trigger for hardware interrupts or processor exceptions, the instruction
pointer (CS:EIP) at the time SoftICE pops up will point at the first instruction of the
interrupt or exception handler routine pointed at by the IDT. If a software interrupt triggers
the breakpoint, the instruction pointer (CS:EIP) points at the INT instruction that caused
the breakpoint.

BPINT only works for interrupts that are handled through the IDT.

In addition, Windows maps hardware interrupts, which by default map to vectors 8-Fh and
70h-77h, to higher numbers to prevent conflicts with software interrupts. The primary
interrupt controller is mapped from vector 50h-57h. The secondary interrupt controller is
mapped from vector 58h-5Fh.

Example: IRQO is INT50h and IRQ8 is INT58h.

If a BPINT goes off due to a software interrupt instruction in a DOS VM, control will be
transferred to the Windows protected mode interrupt handler for protection faults, which
eventually call down to the appropriate DOS VM's interrupt handler (pointed at by the DOS
VM’s Interrupt Vector Table). To go directly to the DOS VM's interrupt handler after the
BPINT has occurred on a software interrupt instruction, use the following command:

G @0: i nt - nunber*4

SoftICE Command Reference 25

SoftICE Commands

Example The following command defines a breakpoint for interrupt 21h. The breakpoint occurs when
DOS function call 4Ch (terminate program) is called. At the time SoftICE pops up, the
instruction pointer will point at the INT instruction in the DOS VM.

BPI NT 21 ah=4c

The next command sets a breakpoint that triggers on each and every tick of the hardware
clock (in general this is not recommended for the obvious reason that it triggers very often!).
At the time SoftICE pops up, the instruction pointer will be at the first instruction of the
Windows interrupt handler for interrupt 50h.

BPI NT 50

See Also For Windows 95 and Windows NT, refer to BPINT on page 27.

26 SoftICE Command Reference

SoftICE Commands

BPINT

Syntax

Use

For Windows 3.1,
refer to BPINT on
page 25.

Windows 95, Windows NT Breakpoints

Set a breakpoint on an interrupt.

BPI NT j nt-nunber [|F expression] [DO "comrandl; cormand2;..."]
int-number Interrupt number from O - FFh.
IF expression Conditional expression: the expression must evaluate to TRUE (non-

zero) for the breakpoint to trigger

DO command Breakpoint action: A series of SoftICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftlCE manual.

Use the BPINT command to pop up SoftlCE whenever a specified processor exception,
hardware interrupt, or software interrupt occurs. The IF option allows arbitrary filtering of
interrupts that result in breakpoints. The DO option provides the ability to associate SoftICE
commands with interrupts such that they execute any time the interrupt breakpoint triggers.

For breakpoints that trigger for hardware interrupts or processor exceptions, the instruction
pointer (CS:EIP) at the time SoftICE pops up will point at the first instruction of the
interrupt or exception handler routine pointed at by the IDT. If a software interrupt triggers
the breakpoint, the instruction pointer (CS:EIP) will point at the INT instruction that caused
the breakpoint.

BPINT only works for interrupts that are handled through the IDT.

If a software interrupt occurs in a DOS VM, control is transferred to a Windows protected
mode interrupt handler, which eventually calls down to the DOS VM's interrupt handler
(pointed at by the DOS VM?’s Interrupt Vector Table). To go directly to the DOS VM's
interrupt handler after the BPINT has occurred on a software interrupt instruction, use the
following command:

G @&0: (i nt-nunber*4)

SoftICE Command Reference 27

SoftICE Commands

Example

See Also

For Windows 95

Windows maps hardware interrupts, which by default map to vectors 8-Fh and 70h-77h, to
higher numbers to prevent conflicts with software interrupts. The primary interrupt
controller is mapped from vector 50h-57h. The secondary interrupt controller is mapped
from vector 58h-5Fh.

Example: IRQO is INT50h and IRQ8 is INT58h.

For Windows NT

Windows NT maps hardware interrupts, which by default map to vectors 8-Fh and 70h-77h,
to higher numbers to prevent conflicts with software interrupts. The primary interrupt
controller is mapped from vector 30h-37h. The secondary interrupt controller is mapped
from vector 38h-3Fh.

Example: IRQO is INT30h and IRQ8 is INT38h

The following example results in Windows NT system call (software interrupt 2Eh)
breakpoints only being triggered if the thread making the system call has a thread 1D (TID)
equal to the current thread at the time the command is entered (_TID). Each time the
breakpoint hits, the contents of the address 82345829h are dumped as a result of the DO
option.

BPINT 2e if tid==_tid do "dd 82345829"

For Windows 3.1, refer to BPINT on page 25.

28 SoftICE Command Reference

SoftICE Commands

B P I O Windows 3.1, Windows 95, Windows NT Breakpoints

Set a breakpoint on an 1/O port access.

Syntax For Windows 3.1

BPI O port [verb] [qualifier value] [c=count]

For Windows 95
BPIO[-h] port [verb] [IF expression] [DO "commandl, command2;..."]

For Windows NT

BPI O port [verb] [IF expression] [DO "comrandl; conmand2; ..."]
port Byte or word value.
verb
Value Description
R Read (IN)
w Write (OUT)
RW Reads and Writes
qualifier
Value Description
EQ Equal
. NE Not Equal
Qualifier, value, and
C= are not valid for Gr Greater Than
Windows 95 and
Windows NT. LT Less Than
M Mask. A bit mask is

represented as a
combination of 1'%, 0’s
and X's. X's are don't-

care bits.
value Byte, word, or dword value.
= Breakpoint trigger count.

SoftICE Command Reference 29

SoftICE Commands

Use

-h Use hardware debug registers to set a breakpoint in Vxd. Available for
Pentium-class processors on Windows 95 only.

IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftlICE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftlCE manual.

Use the BPIO instruction to have SoftICE pop up whenever a specified 1/0 port is accessed in
the indicated manner. When a BPIO breakpoint triggers, the instruction pointer (CS:EIP)
points to the instruction following the IN or OUT instruction that caused the breakpoint.

If you do not specify a verb, RW is the default.

For Windows 3.1

If you specify verb and value parameters, the value specified is compared with, according to
the verb, the actual data value read or written by the IN or OUT instruction causing the
breakpoint. The value may be a byte, a word, or a dword. The possible verbs allow for
comparisons of equality, inequality, greater-than-or-equal, less-than-or-equal, and logical
AND comparison.

For Windows 3.1 and Windows 95

Due to the behavior of the x86 architecture, BPIO breakpoints are only active while the
processor is executing in the RING 3 privilege level. This means that 1/0 activity performed
by RING 0 code such as VxDs and the Windows VMM are not trapped by BPIO
breakpoints. For Windows 95 only, use the -H switch to force SoftICE to use the hardware
debug registers. This lets you trap 1/O performed at Ring 0 in VxDs.

Windows virtualizes many of the system 1/O ports, meaning that VxDs have registered
handlers that are called when RING 3 accesses are made to the ports. To get a list of
virtualized ports, use the TSS command. The command shows each hooked 1/O port plus the
address of its associated handler and the name of the VxD that owns it. To see how a
particular port is virtualized, set a BPX on the address of the 1/O handler.

30 SoftICE Command Reference

SoftICE Commands

Example

For Windows NT

The BPIO command uses the debug register support provided on the Pentium, therefore,
1/0 breakpoints are only available on Pentium-class machines.

When using debug registers for 1/0 breakpoints, all physical 1/O instructions (non-emulated)
are trapped no matter what privilege level they are executed from. This is different from using
the 1/O bit map to trap 1/O, as is done for SoftICE running under Windows 3.1 and
Windows 95 (without the -H switch). The I/O bit map method can only trap I/O done from
user-level code, whereas a drawback of the debug register method for trapping port I/O is that
it does not trap emulated 1/0 such as 1/0 performed from a DOS box.

Due to limitations in the number of debug registers available on x86 processors, a maximum
of four BPIOs can be set at any given time.

The following commands define conditional breakpoints for accesses to port 21h (interrupt
control 1's mask register). The breakpoints only trigger if the access is a write access, and the
value being written is not FFh.
» For Windows 3.1
Use this command: BPI O 21 w ne ff
« For Windows 95 and Windows NT
Use this command: BPI O 21 wif (al!=0xFF)

Note: In the Windows NT example, you should be careful about intrinsic assumptions
being made about the size of the 1/0 operations being trapped. The port 1/0 to be
trapped is OUTB. An OUTW with AL==FFh also triggers the breakpoint, even
though in that case the value in AL ends up being written to port 22h.

The following example defines a conditional byte breakpoint on reads of port 3FEh. The
breakpoint occurs the first time that 1/0 port 3FEh is read with a value that has the two high-
order bits set to 1. The other bits can be of any value.

e For Windows 3.1
Use this command: BPI O 3fe r eq m 11xX XXXX
e For Windows 95 and Windows NT
Use this command: BPIO 3fe r if ((al & 0xQ0)==0xQ0)

SoftICE Command Reference 31

SoftICE Commands

B P M Windows 3.1, Windows 95, Windows NT Breakpoints

Set a breakpoint on memory access or execution.

Syntax For Windows 3.1

BPM size] address [verb] [qualifier value] [debug-reg] [c=count]

For Windows 95 and Windows NT

BPM si ze] address [verb] [debug-reg] [|F expression)
[DO " conmandl; cormand2; . .. "]

size Size is actually a range covered by this breakpoint. For example, if you
use double word, and the third byte of the dword is modified, a
breakpoint occurs. The size is also important if you specify the
optional qualifier.

Value Description

B Byte

w Word

D Double Word
verb

Value Description

R Read

w Write

RW Reads and Writes

X Execute

32 SoftICE Command Reference

SoftICE Commands

qualifier These qualifiers are only applicable to read and write breakpoints, not
execution breakpoints.
Qualifier, value Value Description
and C_: are not valid EQ Equal
for Windows 95 and
Windows NT. NE Not Equal
Gr Greater Than
LT Less Than
M Mask. A bit mask is represented as a
combination of 1's, 0's and X's. The X's
are don't-care bits.
value Byte, word, or double word value, depending on the size you specify.
debug-reg
Value
DRO
DRL
DRz
DR3
= Breakpoint trigger count.
IF expression Conditional expression: the expression must evaluate to TRUE (non-
zero) for the breakpoint to trigger.
DO command Breakpoint action: A series of SoftlCE commands can execute when
the breakpoint triggers.
Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.
Use Use BPM breakpoints to have SoftICE pop up whenever certain types of accesses are made to

memory locations. The size and verb parameters allow for the accesses to be filtered according
to their type, and the DO parameter (Windows NT only) allows for arbitrary SoftICE
commands to be executed each time the breakpoint is hit.

If you do not specify a debug register, SoftICE uses the first available debug register starting
from DR3 and working backwards. You should not include a debug register unless you are
debugging an application that uses debug registers itself such as a debugging tool.

SoftICE Command Reference 33

SoftICE Commands

If you do not specify a verb, RW is the default.
If you do not specify a size, B is the default.

For all the verb types except X, SoftlICE pops up after the instruction that causes the
breakpoint to trigger has executed. The CS:EIP points at the instruction in the code stream
following the trapped instruction. In the case of the X verb, SoftICE pops up before the
instruction causing the breakpoint to trigger has executed. The CS:EIP therefore points at the
instruction where the breakpoint was set.

If you specify the R verb, breakpoints occur on read accesses and on write operations that do
not change the value of the memory location.

If the verb is R, W or RW, executing an instruction at the specified address does not cause the
breakpoint to occur.

If you set a breakpoint using BPMW it is a word-sized memory breakpoint, then the specified
address must start on a word boundary. If you set a breakpoint using BPMD the memory
breakpoint is dword sized, then the specified address must start on a double word boundary.

For Windows 3.1

The count parameter can be used to have a breakpoint trigger only after it has been hit a
specified number of times. The default count value is 1, meaning that the breakpoint triggers
the first time the breakpoint condition is satisfied. The count is reset each time the breakpoint
triggers.

For Windows 95

BPM breakpoints set in the range 400000 - 7FFFFFFF (WIN32 applications) are address-
context sensitive. That is, they are triggered only when the address context in which the
breakpoint was set is active. If a BPM is set in a DLL that exists in multiple contexts, the
breakpoint is armed in all the contexts in which it exists. For example, if you set a BPM X
breakpoint in KERNEL32 it could break in any context that contains KERNEL32.DLL.

For Windows NT

Any breakpoint set on an address below 80000000h (2 GB) is address-context sensitive. This
includes WIN32 and DOS V86 applications. Take care to ensure you are in the correct
context before setting a breakpoint.

34 SoftICE Command Reference

SoftICE Commands

Example

The following example defines a breakpoint on memory byte access to the address pointed at
by ES:DI+1Fh. The first time that 10h is written to that location, the breakpoint triggers.

e For Windows 3.1
Use the command: BPM es: di +1f w eq 10
e For Windows 95 and Windows NT
Use the command: BPM es: di +1f wif (*(es: di +1f)==0x10)

The next example defines an execution breakpoint on the instruction at address
CS:80204D20h. The first time that the instruction at the address is executed, the breakpoint
occurs.

* For Windows 3.1, Window 95, and Windows NT
Use the command: BPM CS: 80204020 x

The following example defines a word breakpoint on a memory write. The breakpoint occurs
the first time that location Foo has a value written to it that sets the high order bit to 0 and the
low order bit to 1. The other bits can be any value.

« For Windows 3.1
Use the command: BPMAV/ f 00 € eq m OXXX XXXX XXXX XXx1

This example sets a byte breakpoint on a memory write. The breakpoint triggers the first time
that the byte at location DS:80150000h has a value written to it that is greater than 5.

e For Windows 3.1
Use the command: BPM ds: 80150000 w gt 5
e For Windows 95 and Windows NT
Use the command: BPM ds: 80150000 i f (byte(*ds: 80150000) >5)

SoftICE Command Reference 35

SoftICE Commands

B P R Windows 3.1, Windows 95 Breakpoints

Set a breakpoint on a memory range.

Syntax Wndows 3.1

BPR start-address end-address [verb] [c=count]

W ndows 95
BPR start-address end-address [verb] [IF expression)
[DO " conmandl; cormand2; . .. "]
start-address Beginning of memory range.
end-address Ending of memory range.
verb
Value Description
R Read
W Write
RwW Reads and Writes
T Back Trace on Execution
T™W Back Trace on Memory Writes
= Breakpoint trigger count.
IF expression Conditional expression: the expression must evaluate to TRUE (non-

zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftlCE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftlCE manual.

36 SoftICE Command Reference

SoftICE Commands

Use

Use the BPR command to set breakpoints that trigger whenever certain types of accesses are
made to an entire address range.

There is no explicit range breakpoint for execution access, however, execution breakpoints on
ranges can be obtained with the R verb. An instruction fetch is considered a read for range
breakpoints.

If you do not specify a verb, W is the default.

The range breakpoint degrades system performance in certain circumstances. Any read or
write within the 4KB page that contains a breakpoint range is analyzed by SoftICE to
determine if it satisfies the breakpoint condition. This performance degradation is usually not
noticeable, however, degradation could be extreme in cases where there are frequent accesses
to the range.

The T and TW verbs enable back trace ranges on the specified range. They do not cause
breakpoints, but instead result in information about all instructions that would have caused
the breakpoint to trigger to be written to a log that can be displayed with the SHOW or
TRACE commands.

When a range breakpoint is triggered and SoftICE pops up, the current CS:EIP points at the
instruction that caused the breakpoint.

Range breakpoints are always set in the page tables that are active when the BPR command is
entered. Therefore, if range addresses are below 4MB, the range breakpoint will be tied to the
virtual machine that is current when BPR is entered. Because of this fact, there are some areas
in memory where range breakpoints are not supported. These include the page tables, GDT,
IDTs, LDT, and SoftICE. If you try to set a range breakpoint or back trace range over one of
these areas, SoftICE returns an error.

There are two other data areas in which you cannot place a range breakpoint, but if you do
SoftICE will not complain. These are Windows level O stacks and critical areas in the VMM.
Windows level O stacks are usually in separately allocated data segments. If you set a range
over a level O stack or a critical area in VMM, you could hang the system.

If the memory that covers the range breakpoint is swapped or moved, the range breakpoint
follows it.
For Windows 3.1

The count parameter can be used to have a breakpoint trigger only after it has been hit a
specified number of times. The default count value is 1, meaning that the breakpoint will
trigger the first time the breakpoint condition is satisfied. The count is reset each time the
breakpoint triggers.

SoftICE Command Reference 37

SoftICE Commands

For Windows 95

Due to a change in system architecture, BPRs are no longer supported in level O code. Thus,
you cannot use BPRs to trap VxD code.

Example The following example defines a breakpoint on a memory range. The breakpoint occurs if
there are any writes to the memory between addresses ES:0 and ES:1FFF:

BPR es: 0 es: 1fff w

38 SoftICE Command Reference

SoftICE Commands

BPRW

Syntax

Windows 3.1, Windows 95 Breakpoints

Set range breakpoints on Windows program or code segment.

For Wndows 3.1

BPRW nodul e- nane | sel ector [verb]

For Windows 95

BPRW nodul e-nane | sel ector [verb] [|F expression)

[DO " commandl, cormand2; . .. "]
module-name Any valid Windows Module name that contains executable code
segments.
selector Valid 16-bit selector in a Windows program.
verb
Value Description
R Read
w Write
RW Reads and Writes
T Back Trace on Execution
T™W Back Trace on Memory Writes
IF expression Conditional expression: the expression must evaluate to TRUE (hon-

zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftlCE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftICE manual.

SoftICE Command Reference 39

SoftICE Commands

Use

Example

The BPRW command is a short-hand way of setting range breakpoints on either all of the
code segments, or on a single segment of a Windows program.

The BPRW command actually sets BPR style breakpoints. Thus, if you enter the BL
command after entering a BPRW command, you can see where separate range breakpoints
were set to cover the segments specified in the BPRW command.

Valid selectors for a 16-bit Windows program can be obtained with the HEAP instruction.

Clearing the breakpoints created by BPRW commands requires that each of these range
breakpoints be separately cleared with the BC command.

Note: The BPRW command can become very slow when using the T verb to back trace or
when using the command in conjunction with a CSIP qualifying range.

For Windows 95

Due to a change in system architecture, BPRs are no longer supported in level O code. For
example, you cannot use BPRs to trap VxD code.

When a BPRW is set on a 32-bit application or DLL, a single range breakpoint is set starting
at the executable image base and ending at the image base plus image size.

Common Uses

The BPRW command is commonly used to do the following:

« To set a back trace history range over an entire Windows application or DLL, specify the
module-name and the T verb.

< To set a breakpoint that triggers whenever a program executes, use the R verb. This works
because the R verb breaks on execution as well as reads.

» To use BPRW as a convenient form of BPR. Instead of requiring you to look up a
segment’s base and limit through the LDT or GDT commands, you only need to know
the segment selector.

This example sets up a back trace range on all of the code segments in the Program Manager.
All instructions that the Program Manager executes are logged to the back trace history buffer
and can later be viewed with the TRACE and SHOW commands.

BPRW pr ognman t

40 SoftICE Command Reference

SoftICE Commands

BPT

Syntax

Use

Example

Windows 3.1, Windows 95 Manipulating Breakpoints

Use a breakpoint description as a template.

BPT breakpoi nt - i ndex

breakpoint-index Breakpoint index number.

The BPT command uses an existing breakpoint description as a template for defining a new
breakpoint. The BPT command loads a template of the breakpoint description into the edit
line for modification. Use the editing keys to edit the breakpoint description and type Enter
to add the new breakpoint description. The breakpoint referenced by breakpoint index is not
altered. This command offers a quick way to modify the parameters of an existing breakpoint.

Conditional expressions are expanded as parts of the breakpoint expression as well as
breakpoint actions.

The following example moves a template of breakpoint 3 into the edit line (without removing
breakpoint 3). An example of the edit line follows:

BPT 3
: BPX 1b: 401200 i f (eax==1) do “dd esi”

Press Enter to add the new breakpoint.

SoftICE Command Reference 41

SoftICE Commands

BPX

F9

Syntax

Use

WinDows 3.1, WINDOWS 95, WINDOWS NT BREAKPOINTS

Set or clear a breakpoint on execution.

For Windows 3.1
BPX [address] [c=count]

For Windows 95 and Windows NT

BPX [address] [|F expression] [DO "conmandl; command2; .. ."]

address Linear address to set execution breakpoint.

= Breakpoint trigger count.

IF expression Conditional expression: the expression must evaluate to TRUE (non-

zero) for the breakpoint to trigger.

DO command Breakpoint action: A series of SoftlCE commands can execute when
the breakpoint triggers.

Note: You can combine breakpoint count functions (BPCOUNT, BPMISS, BPTOTAL,
BPLOG, and BPINDEX) with conditional expressions to monitor and control
breakpoints based on the number of times a particular breakpoint has or has not
triggered. See Chapter 6, “Using Breakpoints,” in the Using SoftlCE manual.

Use the BPX command to define breakpoints that trigger whenever the instruction at the
specified address is executed.

The address parameter must point at the first byte of the instruction opcode of the instruction
where the breakpoint is being set. If no address is specified and the cursor is in the Code
window when you begin to type the command, a point-and-shoot breakpoint is set where the
implied address is that of the instruction at the cursor location in the Code window. If you
define a point-and-shoot breakpoint at an address where a breakpoint already exists, the
existing breakpoint is cleared.

Note: Use the EC command (default key F6) to move the cursor into the Code window.

If the cursor is not in the Code window when you enter the BPX command, you must specify
an address. If you specify only an offset, the current CS register value is used as the segment.

42 SoftICE Command Reference

SoftICE Commands

The BPX command normally places an INT 3 instruction at the breakpoint address. This
breakpoint method is used instead of assigning a debug register to make more execution
breakpoints available. If you need to use a breakpoint register, for example, to set a breakpoint
on code not yet loaded in a DOS VM, set an execution breakpoint with the BPM command
and specify X as the verb.

If you try to set a BPX at an address that is in ROM, a breakpoint register is automatically
used for the breakpoint instead of the normal placement of an INT 3 at the target address
(because ROM cannot be modified).

The BPX command accepts 16-bit Windows module names as an address parameter. When
you enter a 16-bit module name, SoftICE sets a BPX-style breakpoint on every exported entry
point in the module.

Example: BPX KERNEL sets a breakpoint on every function in the 16-bit Windows module
KRNL386.EXE. This can be very useful is you need to break the next time any
function in a DLL is called.

SoftICE supports a maximum of 256 breakpoints when using this command.

For Windows 3.1 and Windows 95

BPX breakpoints in DOS VMs are tied to the VM they were set in. This is normally what you
would like when debugging a DOS program in a DOS VM. However, there are situations
when you may want the breakpoint to go off at a certain address no matter what VM is
currently mapped in. This is usually true when debugging in DOS code or in a TSR that was
run before Windows was started. In these cases, use a BPM breakpoint with the X verb
instead of BPX.

For Windows 95

BPX breakpoints set in the range 400000 - 7FFFFFFF (WIN32 applications) are address-
context sensitive. That is, they are only triggered when the context in which they were set is
active. If a breakpoint is set in a DLL that exists in multiple contexts, however, the breakpoint
will exist in all contexts.

For Windows NT

Any breakpoint set on an address below 80000000h (2 GB) is address-context sensitive. This
includes WIN32, WIN16, and DOS V86 applications. Take care to ensure you are in the
correct context before setting a breakpoint.

SoftICE Command Reference 43

SoftICE Commands

Example This example sets an execution breakpoint at the instruction 10h bytes past the current
instruction pointer (CS:EIP).

BPX ei p+10

This example sets an execution breakpoint at source line 1234 in the current source file (refer
to FILE on page 81).

BPX . 1234

For Windows 95 and Windows NT

The following is an example of the use of a conditional expression to qualify a breakpoint. In
this case, the breakpoint triggers if the EAX register is within the specified range:

BPX eip if eax > 1ff &% eax <= 300

In this example, a breakpoint action is used to have SoftlCE automatically dump a parameter
for a call. Every time the breakpoint is hit, the contents of the string pointed to by the current
DS:DX will be displayed in the Data window.

BPX 80023455 do “db ds: dx”

See Also FILE

44 SoftICE Command Reference

SoftICE Commands

BSTAT

Syntax

Use

Output

Windows 95, Windows NT Breakpoints

Display statistics for one or more breakpoints.

BSTAT [breakpoi nt - i ndex]

breakpoint-index Breakpoint index number.

Use BSTAT to display statistics on breakpoint hits, misses, and whether breakpoints popped
up or were logged. A breakpoint will be logged to the history buffer instead of popping up if it
has a conditional expression that uses the BPLOG expression macro.

Because conditional expressions are evaluated when the breakpoint is triggered, it is possible
to have evaluation run-time errors. Examples of this are when a virtual symbol is referenced,
and that symbol has not been loaded, or a reference to symbol cannot be resolved because the
memory is not present. In these cases, and possibly others, an error will be generated and
noted. The Status and Scode fields under the Misc. column contain error information which
indicates what problem, if any, has occurred.

For each breakpoint displayed the following information also appears:

BP # Breakpoint index, and if disabled, an * (asterisk).

Totals Category:

Hits Total number of times SoftICE has evaluated the breakpoint.

Breaks Total number of times the breakpoint has evaluated TRUE, and
SoftICE has either popped up, or logged the breakpoint.

Popups Total number of times the breakpoint caused SoftICE to pop up.

Logged Total number of times the breakpoint has been logged.

Misses Total number of times the breakpoint evaluated to FALSE, and no
breakpoint action was taken.

Errors Total number of times that the evaluation of a breakpoint resulted in a
error.

Current Category:

Hits Current number of times the breakpoint has evaluated TRUE, but did
not pop up because the count had not expired. (Refer to expression
macro BPCOUNT.)

Muisses Current number of times the breakpoint has evaluated FALSE and/or

SoftICE Command Reference 45

SoftICE Commands

the breakpoint count has not expired.

Miscellaneous Category:
Status SoftICE internal status code for the last time the breakpoint was
evaluated, or zero if no error occurred.

Scode Last non-zero SoftlCE internal status code, or zero if no error has
occurred.

Cond. Yes if the breakpoint has a conditional expression, otherwise No.

Action Yes if the breakpoint has a defined breakpoint action, otherwise No.

Example The following is an example using the BSTAT command for breakpoint #0:
. BSTAT O

Breakpoi nt Statistics for #00
BP # *00

Total s
Hts
Br eaks
Popups
Logged
M sses
Errors

O OONDNDN

Qurrent
Hts
M sses

M sc
Stat us
SCode
Cond.
Action Yes

o o

gOO

See Also For more information on breakpoint evaluation, refer to Using SoftICE.

46 SoftICE Command Reference

SoftICE Commands

C Windows 3.1, Windows 95, Windows NT Miscellaneous

Compare two data blocks.

Syntax C start-address | length start-address-2
start-address Start of first memory range.
length Length in bytes.
start-address-2 Start of second memory range.
Use The memory block specified by start-address and length is compared to the memory block

specified by the second start address.

When a byte from the first data block does not match a byte from the second data block, both
bytes display, along with their addresses.

Example The following example compares 10h bytes starting at memory location DS:805FF000h to
the 10h bytes starting at memory location DS:806FF000h.

C ds: 805ff000 | 10 ds: 806f f 000

SoftICE Command Reference a7

SoftICE Commands

CLASS

Syntax

Use

Windows 3.1, Windows 95, Windows NT System Information

Display information on Window classes.

For Windows 3.1
CLASS [nodul e- nane]

For Windows 95
CLASS [-x] [t ask- nane]

For Windows NT
CLASS [-X][process-type | thread-type | nodul e-type | class-nane]

module-name Any currently loaded Windows module. Not all Windows modules
have classes registered.

-X Display complete Windows 95 or Windows NT internal CLASS data
structure, expanding appropriate fields into more meaningful forms.

task-name Any currently executing 16- or 32-bit task.

process-type Process name, process 1D, or process handle.

thread-type Thread ID or thread address (KTEB).

module-type Module name or module handle.

class-name Name of a registered class window.

For Windows 95

The operating system maintains the standard window classes in the 16-bit user module (per
Windows 3.1). The operating system maintains all other window classes in separate lists on
behalf of each process. Each time a process or one of its DLLS registers a new window class,
registration places that class on one of two lists:

e The application global list contains classes registered with the CS_GLOBAL attribute.
They are accessible to the process or any of its DLLSs.

« The application private list contains non-global classes. Only the registering module can
access them.

48 SoftICE Command Reference

SoftICE Commands

Output

Finally, any process or DLL that attempts to superclass one of the standard window controls,
for example, LISTBOX, receives a copy of that class. The copy resides in a process-specific
system-superclass list. By making a copy of the standard class, a process or DLL can superclass
any standard windows control without affecting other processes in the system.

The process-specific class lists display in the following order:
« application private
 application global
« system superclassed

In the output, dashed lines separate each list.

For Windows NT

The architecture of class information under Windows NT is similar to that of Windows 95 in
that class information is process specific and the operating system creates different lists for
global and private classes. Beyond this, the two operating systems have significant differences
in how super-classing a registered window class is implemented.

Under Windows NT, registered window classes are considered templates that describe the base
characteristics and functionality of a window (similar to the C++ notion of an abstract class).
When a window of any class is created, the class template is instanced by making a physical
copy of the class structure. This instanced class is stored with the windows instance data. Any
changes to the instanced class data does not affect the original class template. This concept is
further extended when various members of the windows instanced class structure are
modified. When this occurs, the instanced class is instanced again, and the new instance
points to the original instance. Registered classes act as templates from which instances of a
particular class can be created; in effect this is object inheritance. This inheritance continues as
changes are made to the base functionality of the class.

If you do not specify the type parameter, the current context is assumed because the class
information is process specific. A process-name always overrides a module of the same name.
To search by module when there is a name conflict, use the module handle (base address or
module database selector). Also, module names are always context sensitive. If the module is
not loaded in the current context (or the CSRSS context), the CLASS command interprets
the module name as a class name instead.

For each class, the following information is shown:

Class Handle Offset of a data structure within USER. Refers to windows of this
class.
Class Name Name that was passed when the class was registered. If no name was

passed, the atom displays.

Owner Module that has registered this window class.

SoftICE Command Reference 49

SoftICE Commands

Window Procedure

Styles

Address of the window procedure for this window class.

Bitmask of flags specified when the class was registered.

Example For Windows 3.1

50

The following example uses the CLASS command to display all the classes registers by the
MSWORD module.

: CLASS nswor d

Handl e Nane

0F24 #32772
OEFC #32771
OED4 #32769
OE18 MD i ent
oDbC ConboBox
0DAO ConboL Box
0D64 Scrol | Bar
oD28 Li st Box
0CFO Edi t

Onner

USER
USER

W ndow Procedure
TI TLEWNDPRCC
SW TCHWADPRCC
DESKTCPVWADPRCOC
MDI CLNTWADPRCC
COVBCBXWADPRCC
LBBOXTLWADPRCC
SBWADPROC
LBOXCTLWADPRCC
EDI TWADPRCC

Note: There are symbols for all of the window procedures, because SoftICE includes all of the
exported symbols from USER.EXE. If a symbol is not available for the window
procedure, a hexadecimal address displays.

SoftICE Command Reference

SoftICE Commands

C LS WINDOWS 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Alt-F5
Clear the Command window.
Syntax cLs

Use The CLS command clears the SoftICE Command window, all display history, and moves the
prompt and the cursor to the upper lefthand corner of the Command window.

SoftICE Command Reference 51

SoftICE Commands

C O D E Windows 3.1, Windows 95, Windows NT Customization

Display instruction bytes.

Syntax OCDE [on | off]

Use The CODE command controls whether or not the actual hexadecimal bytes of an instruction
display when the instruction is unassembled.

< If CODE is ON, the instruction bytes display.

 If CODE is OFF, the instruction bytes do not display.

< CODE with no parameters displays the current state of CODE.
e The default is CODE mode OFF.

Example The following command causes the actual hexadecimal bytes of an instruction to display
when the instruction is unassembled.
CCDE on

See Also SET

52 SoftICE Command Reference

SoftICE Commands

COLOR

Syntax

Use

Windows 3.1, Windows 95, Windows NT Customization

Display or set the screen colors.

COLCR [nor nal

normal

bold

reverse

help

line

bol d reverse hel p line]

Foreground/background attribute that displays normal text.
Default = 07h grey on black.

Foreground/background attribute that displays bold text.
Default = OFh white on black.

Foreground/background attribute that displays reverse video text.
Default = 71h blue on grey.

Foreground/background attribute that displays the help line
underneath the Command window.
Default = 30h black on cyan.

Foreground/background attribute that displays the horizontal lines
between the SoftICE windows.
Default = 02h green on black.

Use the COLOR command to customize the SoftICE screen colors on a color monitor. Each
of the five specified colors is a hexadecimal byte where the foreground color is in bits 0-3 and
the background color is in bits 4-6. This is identical to the standard CGA attribute format
where there are 16 foreground colors and 8 background colors.

The actual colors represented by the 16 possible codes are listed in the following table:

Code Color

Code Color

black
blue
green
cyan

red

a B~ W N = O

magenta

light green
light cyan
light red

light magenta

yellow

mT m g O w >

white

SoftICE Command Reference 53

SoftICE Commands

Code Color Code Color
6 brown
7 grey
8 dark grey
9 light blue
Example This command causes the following color assignments:

COR7f 71 30 2

normal text grey on black
bold text white on black
reverse video text blue on grey
help line black on cyan
horizontal line green on black

54 SoftICE Command Reference

SoftICE Commands

CPU

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT System Information

Display the registers.

CPU [-i]
-i Displays the 1/0 APIC.

The CPU command shows all the CPU registers (general, control, debug, and segment).

For Windows NT

If your PC contains a multi-processor mother board that uses an I/0 APIC as an interrupt
controller, the CPU command displays the CPU local and I/0O APICS.

The following example lists the sample output from the CPU command under Windows 95
or Windows NT on systems that do not use an 1/0 APIC:

Processor 00 Registers

CS: El P=0008: 8013D7AE SS: ESP=0010: 8014AB7C

EAX=00000041 EBX=FFDFF000 ECX=00000041 EDX=80010031
ESI =80147940 ED =80147740 EBP=FFDFF600 EFL=00000246
DS=0023 ES=0023 FS=0030 GS=0000

CRO=8000003F PE MP EM TS ET NE PG
CR2=C13401D6

CR3=00030000

CR4=00000011 WME PSE
DRO=00000000

DR1=00000000

DR2=00000000

DR3=00000000

DR6=FFFFOFFO

DR7=00000400

EFL=00000246 PF ZF | F | CPL=0

SoftICE Command Reference 55

SoftICE Commands

The following example lists the sample output from the CPU command under Windows NT
on a system that uses an 1/0 APIC:

Processor 00 Registers

CS: El P=0008: 8013D7AE SS: ESP=0010: 8014AB7C

EAX=00000041 EBX=FFDFFOO0 ECX=00000041 EDX=80010031
ESI =80147940 EDI =80147740 EBP=FFDFF600 EFL=00000246
DS=0023 ES=0023 FS=0030 GS=0000

CRO=8000003F PE M EM TS ET NE PG
CrR2=C13401D6

CR3=00030000

CR4=00000011 VME PSE
DR0=00000000

DR1=00000000

DR2=00000000

DR3=00000000

DR6=FFFFOFFO

DR7=00000400

EFL=00000246 PF ZF | F | CPL=0

-------- Local apic--------
ID 0
Ver si on: 30010
Task Priority: 41
Arbitration Priority: 41
Processor Priority: 41
Destination Format: FFFFFFFF
Logi cal Destination: 1000000
Spurious Vector: 11F
I nterrupt Conmmand: 3000000: 60041
LVT (Timer): 300FD
LVT (Lint0): 1001F
LVT (Lintl): 84FF
LVT (Error): E3
Ti mer Count: 3F94DBO
Timer Qurrent: 23757E0
Timer Dvide: B

56 SoftICE Command Reference

SoftICE Commands

The following example lists the sample output from the CPU -i command under Windows
NT on a system that uses an I/O APIC:

Inti Vect or Delivery Status Trigger Dest Mode Destination

01 91 Low Pri Idle Edge Logi cal 01000000
03 61 Low. Pri Idle Edge Logi cal 01000000
04 71 Low Pri Idle Edge Logi cal 01000000
08 D1 Fi xed Idle Edge Logi cal 01000000
ocC 81 Low Pri Idle Edge Logi cal 01000000
OE Bl Low Pri Idl e Edge Logi cal 01000000

I/Ounit id register: OEO00000
I/Ounit version register: 000F0011

See Also PAGE

SoftICE Command Reference 57

SoftICE Commands

CR

Syntax

Use

Example

See Also

Windows 3.1 System Information

Display the control registers.

R

The CR command displays the contents of the three control registers CRO, CR2, and CR3,
and the debug registers in the Command window. CRO is the processor control register. CR2
is the register in which the processor stores the most recently accessed address that resulted in
a page fault. CR3 contains the physical address of the system’s page directory (refer to PAGE
on page 150).

The following example lists the sample output from a CR command:
CR0=8000003B PE MP TS ET NE PG

CR2=0000C985

CR3=002FEO00

CR4=00000008 DE

DR1=00000000

DR2=00000000

DR3=00000000

DR6=FFFFOFFO

DR7=00000400

PAGE

58 SoftICE Command Reference

SoftICE Commands

CSIP

Syntax

Use

Windows 3.1 Breakpoints

Set CS:EIP (instruction pointer) memory range qualifier for all breakpoints (for 16-bit
programs only).

CSIP [off | [not] start-address end-address | Wndows- nodul e- nane)
off Turns off CSIP checking.

not Breakpoint only occurs if the CS:EIP is outside the specified range.
start-address Beginning of memory range.

end-address End of memory range.

Windows-module-name If you specify a valid Windows-module-name instead of a memory
range, the range covers all code areas in the specified Windows
module.

For Windows 3.1

The CSIP command qualifies breakpoints so that the code that causes the breakpoint must
come from a specified memory range. This function is useful when a program is suspected of
accidentally modifying memory outside of its boundaries.

When breakpoint conditions are met, the instruction pointer (CS:EIP) is compared to the
specified memory range. If it is within the range, the breakpoint activates. To activate the
breakpoint only when the instruction pointer (CS:EIP) is outside the range, use the NOT
parameter.

Because 16-bit Windows programs are typically broken into several code segments scattered
throughout memory, you can input a Windows module name as the range. If you enter a
module name, the range covers all code segments in the specified Windows program or DLL.

When you specify a CSIP range, it applies to ALL breakpoints that are currently active.

If do not specify parameters, the current memory range displays.

For Windows 95 and Windows NT

For 32-bit code, this command is obsolete. Use conditional expressions to achieve this
functionality. CSIP still works for 16-bit code and modules.

SoftICE Command Reference 59

SoftICE Commands

Example The following command causes breakpoints to occur only if the CS:EIP is NOT in the ROM
BIOS when the breakpoint conditions are met.

CSIP not $f000:0 $ffff:0

The following command causes breakpoints to occur only if the Windows program CALC
causes them.

CSIP calc

60 SoftICE Command Reference

SoftICE Commands

Syntax

Use

Windows 3.1, Windows 95, Windows NT Display/Change Memory

Display memory.

For Windows 3.1

O si ze] [address]

For Windows 95 and Windows NT
DO size]l [address [| [ength]]

size

Value Description

Byte

Word

Double Word
Short Real

Long Real

- r nw U = @

10-Byte Real

The D command displays the memory contents at the specified address.

The contents display in the format of the size you specify. If you do not specify a size, the last
size used displays. The ASCII representation displays for the byte, word, and double word
hexadecimal formats.

For the dword format, data is displayed in two different ways.

« If the displayed segment is a 32-bit segment, the dwords display as 32-bit hexadecimals
(eight hexadecimal digits).

« If the displayed segment is a 16-bit segment (VM segment or LDT selector), the dwords
display as 16:16 pointers (four hexadecimal digits ;" four more hexadecimal digits).

If you do not specify an address, the command displays memory at the next sequential address
after the last byte displayed in the current Data window.

If the Data window is visible, the data displays there; otherwise, it displays in the Command
window. In the Command window, either eight lines display or one less than the length of the
window.

SoftICE Command Reference 61

SoftICE Commands

For floating point values, numbers can display in the following format:
[leading sign] decimal -digits . decimal-digits E sign exponent

The following ASCII strings can also display for real formats:

String Exponent Mant i ssa Sign
Not A Nunber all 1's NOT 0 + -
Denor nal all 0's NOT 0 + -
Invalid 10 byte only with manti ssa=0
Infinity all 1's 0 + -

For Windows 95 and Windows NT

If an L parameter followed by a length is specified, SoftICE displays the requested number of
bytes to the Command window regardless of whether the Data window is visible. SoftICE
always displays whole rows. If the length is not a multiple of rows, SoftICE will round up.
This command is useful when dumping large amounts of data to the Command window for
the purpose of logging it to a file.

Example Displays the memory starting at address ES:1000h in word format and in ASCII format.
DwWes: 1000

For Windows 95 and Windows NT

The following command displays 4KB of memory starting at address SS:ESP in dword
format. The data is displayed in the Command window.

:DD ss:esp | 1000

62 SoftICE Command Reference

SoftICE Commands

DATA

Windows 3.1 - F12

Syntax

Use

Example

WinDows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Change to display another Data window.

DATA [wi ndow nunber]

window-number Number of the Data window you want to view.
Thiscan be 0, 1, 2, or 3.

SoftICE supports up to four Data windows. Each Data window can display a different address
and/or format. Only one Data window is visible at any time. Specifying DATA without a
parameter just switches to the next Data window. The windows are numbered from 0 to 3.
This number displays on the righthand side of the line above the Data window. If you specify
a window-number after the DATA command, SoftICE switches to display that window. The
DATA command is most useful when assigned to a function key. See Chapter 8,
“Customizing SoftICE,” in the Using SoftICE manual.

Changes the Data window to Data window number 3.
DATA 3

SoftICE Command Reference 63

SoftICE Commands

DEVICE

Syntax

Use

Output

Windows NT System Information

Display information on Windows NT devices.

DEVI CE [devi ce-name | pdevi ce- obj ect]

The DEVICE command displays information on Windows NT device objects. If the
DEVICE command is entered without parameters, summary information displays for all
device objects found in the \Device directory. However, if a specific device object is indicated,
either by its object directory name (device-name) or object address (pdevice-object), more
detailed information displays.

If a directory is not specified with a device-name, the DEVICE command attempts to locate
the named device object in the \Device object directory. To display information about a device
object that is not located in the \Device directory, specify the complete object path name of
the device object. When displaying information about a specified device, the DEVICE
command displays fields of the DEVICE_OBJECT data structure as defined in NTDDK.H.

The following fields are shown as summary information;

RefCnt Device object’s reference count.
DrvObj Pointer to the driver object that owns the device object.
NextDev Pointer to the next device object on the linked list of device objects

that were created by the same driver.

AttDev Pointer to a device object that has been attached to the displayed
object via an loAttachDeviceObiject call. Attached device objects are
essentially IRP filters for the devices to which they are attached.

Curlrp Pointer to the IRP currently being serviced for the device object by the
device object’s driver.

DevExten Pointer to device driver-defined device object extension data structure.

Name Name of the device, if it has one.

The following are some fields shown when detailed information is printed:

Flags Definition of the device object’s attributes such as whether 1/0
performed on the device is buffered or not.

Vpb Pointer to the device’s associated volume parameter block.

Device Type User-defined or pre-defined value that SoftICE translates to a name.

64 SoftICE Command Reference

SoftICE Commands

Example

The following example shows the DEVICE command output with no parameters. It results in
SoftICE printing summary information on all device objects in the \Device object directory.

DEM CE

Ref Ont

00000000
00000015
00000001
00000000
00000001
00000001
00000001
00000001
00000001
00000007
00000001
00000003

Dr vQbj

FDBCDO10
FDB9E730
FDB92170
FDB9D730
FDBCBB70
FDBCOF30
FDBCOCO0
FDBOC530
FDBDB550
FDB9D730
FDBBA990
FD8B3730

Next Dev
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
FDBDC3030
FDB97CB0
00000000
00000000

At t Dev

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

CQurlrp

00000000
00000000
00000000
00000000
FDBDAADS
00000000
00000000
FDBDACO8
00000000
00000000
00000000
00000000

DevExt en
FDBCDB68
FDB9CO68
FDB980ES
FDB97D68
FDBCAF88
FDBGGOFO
FDBC50F8
FOBCBF88
FDBD3FC3
FDB97CA8
FDBBASAS
FDBA40ES

Narre

Beep

N nkl px

Net bi os

I'p

Keyboar dd assO
Vi deo0

Vi deol

Poi nt er d ass0
RawTape

Tcp

Paral | el PortO
NE20001

This example uses the DEVICE command with the BEEP device object’s name.

DEVI CE beep
Ref Ont DrvQhj
00000000 FDBCD910 00000000 00000000 00000000 FDBCDB6E8 Beep

Ti mer*
Fl ags

Characteristics

Vpb*

Devi ce Type

St ackSi ze
&Qeue

Al i gnnent Requi renent :

&Devi ceQueue

&Dpc

Act i veThr eadCount

SecurityDescriptor* :

&Devi celLock

Sector Si ze
Sparel

Devi cehj ect Ext n*

Reser ved*

Next Dev Attt Dev

: 00000000
: 00000044

00000000
00000000

1
1

FI LE_DEVI CE_BEEP

. FDBCD/EA

00000000
FDB8CD810

FDBCD824
00000000

0000
0000

E10E2528
FDBCDB4C

FDBCD8B8
00000000

Qurlrp

DO BUFFERED | O |

DevExt en Nane

DO DEVI CE_HAS NAME

FI LE_BYTE_ALI GNVENT

SoftICE Command Reference 65

SoftICE Commands

DEX

Syntax

Use

Example

See Also

Windows 3.1, Windows 95, Windows NT Customization

Display or assign a Data window expression.

DEX [dat a- wi ndow nunber [expressi on]]

data-window-number Number from 0 to 3 indicating which Data window to use. This
number displays on the righthand side of the line above the Data
window.

The DEX command assigns a data expression to any of the four SoftICE Data windows.
Every time SoftICE pops up, the expressions are re-evaluated and the memory at that location
displays in the appropriate Data window. This is useful for displaying changing memory
locations where there is always a pointer to the memory in either a register or a variable. The
data displays in the current format of the Data window: either byte, word, dword, short real,
long real, or 10-byte real. This command is the same as entering the command D expression
every time SoftICE pops up.

If you type DEX without parameters, it displays all the expressions currently assigned to the
Data windows.

To unassign an expression from a Data window, type DEX followed by the data-window-
number, then press Enter.

To cycle through the four Data windows, use the DATA command. Refer to DATA on page
63.

Every time SoftlCE pops up, Data window 0 contains the contents of the stack.
DEX 0 ss:esp

Every time SoftICE pops up, Data window 1 contains the contents of the memory pointed at
by the public variable PointerVariable.

DEX 1 @ointervari abl e

DATA

66 SoftICE Command Reference

SoftICE Commands

DIAL

Syntax

Use

Example

Windows 95, Windows NT Customization

Redirect console to modem.

D AL [on [com port] [baud-rate] [i =i ni t-string] [p=nunber] | of f]

com-port If no com-port is specified it uses COM1.

baud-rate Baud-rate to use for modem communications. The default is 38400.
The rates are 1200, 2400, 4800, 9600, 19200, 23040, 28800, 38400,
57000, 115000.

i=init-string Optional modem initialization string.

p=number Telephone number.

The DIAL command initiates a call to a remote machine via a modem. The remote machine
must be running SERIAL.EXE and be waiting for a call. Once a connection is established,
SoftICE input is received from the remote machine and SoftICE output is sent to the remote
machine. No input is accepted from the local machine except for the pop-up hot key
sequence.

You can specify the modem initialization string and phone number within the SoftiICE
configuration settings, so that the strings they specify become the defaults for the i and p
command-line parameters. Refer to Chapter 8, “Customizing SoftICE” in the Using SoftICE
manual.

On the remote machine, only the com-port, baud-rate, and init parameters should be
specified to SERIAL.EXE.

The following is an example of the DIAL command:
DAL on 2 19200 i =atx0 p=9, 555- 5555, ,, 1000

The command tells SoftICE to first initialize the modem on com-port 2 with the string,
“atx0,” and then to make a call through the modem to the telephone number 9-555-5555
extension 1000. Commas can be used in the phone number, just as with traditional modem
software, to insert delays into the dialing sequence.

SoftICE Command Reference 67

SoftICE Commands

See Also

The following example shows the syntax expected by SERIAL.EXE when running it on a
remote machine so that it answers a DIAL command from the local machine:

SERIAL on [comport] [baud-rate] i"init-string"

The following SERIAL.EXE command-line uses a modem initialization string of “atx0” to
answer a call (at 19200 bps) through a modem on the remote machine’s COML1 serial port.
The command line is entered on the remote machine.

SERIAL on 1 19200 i "atx0"

When the remote debugging session is complete, enter the DIAL OFF command from the
remote machine to terminate the debugging session and hang up the modem.

The following are examples of the Dial initialization and Phone number strings in the Remote
Debugging SoftICE configuration settings:

Dal initialization string: atx0
Tel ephone nunber string: 9,555-5555,,,1000

With the Dial initialization string in place, SoftICE always initializes the modem specified in
DIAL commands with “ATX0”, unless the DIAL command explicitly specifies an
initialization string.

With the Phone initialization string in place, SoftlCE always dials the specified number when
executing DIAL commands, unless the DIAL command explicitly specifies a phone number.

ANSWER, SERIAL, and Chapter 7, “Debugging Remotely,” in the Using SoftICE manual.

68 SoftICE Command Reference

SoftICE Commands

DRIVER

Syntax

Use

Output

Windows NT System Information

Display information on Windows NT drivers.

DR VER [driver-name | pdriver-object]

The DRIVER command displays information on Windows NT drivers. If the DRIVER
command is entered without parameters, summary information is shown for all drivers found
in the \Driver directory. However, if a specific driver is indicated, either by its object directory
name (driver-name), or by its object address (pdriver-object), more detailed information is
displayed.

If a directory is not specified with the driver-name, the DRIVER command attempts to locate
the named driver in the \Driver object directory. To display information about a driver that is
not located in the \Driver directory, you must specify the complete object path name of the
driver.

When displaying detailed information about a specified driver, the DRIVER command
displays the fields of the DRIVER_OBJECT data structure as defined in NTDDK.H.

The following fields are shown as summary information;

Start Base address of the driver.

Size Driver’s image size.

DrvSect Pointer to driver module structure.

Count Number of times the registered reinitialization routine has been
invoked for the driver.

Drvinit Address of the driver's DriverEntry routine.

DrvStalo Address of the driver's Startlo routine.

DrvUnld Address of the driver's Unload routine.

Name Name of the driver.

The following is shown when detailed information is printed:

DeviceObject Pointer to the first device object on the driver’s linked list of device
objects that it owns.

Flags Field is a bit-mask of driver flag. The only flag currently documented
is DRVO_UNLOAD_INVOKED.

SoftICE Command Reference 69

SoftICE Commands

Example

FastloDispatch Pointer to the driver’s fast 1/O dispatch data structure, if it has one.
File System Drivers typically have a fast 1/O routines defined for them.
Information on the structure can be found in NTDDK.H.

Handler Addresses Upon initialization, driver’s can register handlers that are called when
the driver receives specific IRP request types. Each handler address is
listed along with the IRP major function it processes for the driver.

The following example shows the output of the DRIVER command with no parameters. This
results in SoftICE printing summary information on all the drivers in the \Driver object
directory.

DRI VER

Start Si ze DrvSect Count Drvinit DrvStalo Drvlnld Nane
FBO30000 00000E20 FDBCDA88 00000000 FBO302EE FBO305E8 FBO306E2 Beep
FB130000 0000DBA0 FDB9ESC3 00000000 FB13B7BF 00000000 FB136789 Nl nkl px
FBO50000 00002320 FDBCDLA8 00000000 FBO50AF2 FBO508BE 00000000 Moucl ass
FBO60000 00002320 FD8CBCA8 00000000 FBO60AF2 FB0O608CD 00000000 Kbdcl ass
FBO70000 00003860 FDB8CAE48 00000000 FBO70BOC 00000000 00000000 VgaSave

The following is an example of the DRIVER command with the BEEPR.SYS driver object’s
name as a parameter. From the listing it can be seen that the driver’s first device object is at
FD8CD7BO0h, and that it has 4 IRP handler routines registered.

DRI VER beep

Start Si ze DrvSect Count Drvinit DrvStalo Drvunld Narre
FBO30000 00000E20 FDB8CDA88 00000000 FBO302EE FBO305E8 FBO306E2 Beep
Devi ce(hj ect * : FDBCD7BO

Fl ags : 00000000

Har dwar eDat abase : \ REA STRY\ MACH NE\ HARDWARE\ DESCRI PTI O\\ SYSTEM
Fast | oD spatch* : 00000000

| RP_MJ_CREATE at 8: FB03053C
| RP_MI_CLOSE at 8: FBO3058A
| RP_MJ_DEVI CE_OONTROL at 8: FB0304C6
| RP_MJ_CLEANUP at 8: FB030416

70 SoftICE Command Reference

SoftICE Commands

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Display/Change Memory

Edit memory.

E| si ze] [address [data-Iist]]

size

Value Description

Byte

Word

Double Word
Short Real

Long Real

- - nw U = @

10-Byte Real

data-list List of data objects of the specified size (bytes, words, double words,
short reals, long reals, or 10-byte reals) or quoted strings separated by
commas or spaces. The quoted string can be enclosed with single
quotes or double quotes.

If you do not specify data-list, the cursor moves into the Data window where you can edit the
memory in place. If you specify a data-list, the memory is immediately changed to its new
values.

If the Data window is not currently visible, it is automatically made visible. Both ASCII and
hexadecimal edit modes are supported. To toggle between the ASCII and hexadecimal display
areas, press the Tab key.

If you do not specify a size, the last size used is assumed.
Enter valid floating point numbers in the following format:
[leading sign] decinal -digits . decinal-digits E sign exponent

Example: A valid floating point number is -1.123456 E-19

The following command moves the cursor into the Data window for editing. The starting
address in the Data window is at DS:1000h, and the data displays in hexadecimal byte format
as well as in ASCII. The initial edit mode is hexadecimal.

EB ds: 1000

SoftICE Command Reference 71

SoftICE Commands

The next command moves the null terminated ASCII string "Test String' into memory at
location DS:1000h.

EB ds: 1000 ' Test String' ,0

This command moves the short real number 3.1415 into the memory location DS:1000h.
ES ds: 1000 3. 1415

72 SoftICE Command Reference

SoftICE Commands

EC

F6

Syntax

Use

WinDows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Enter or exit the Code window.
EC

The EC command toggles the cursor between the Code window and the Command window:
« If the cursor is in the Command window, it moves to the Code window.
« If the cursor is in the Code window, it moves to the Command window.
« If the Code window is not visible when the command is entered, it is made visible.

When the cursor is in the Code window, several options become available that make
debugging much easier. These options are as follows:

« Set point-and-shoot breakpoints
Set these with the BPX command. If you do not specify parameters with the BPX
command (default key F9), an execution breakpoint is set at the location of the cursor
position in the Code window.

» Go to cursor line
Set a temporary breakpoint at the cursor line and begin executing with the HERE
command (default key F7).

« Scroll the Code window
The scrolling keys (UpArrow, DownArrow, PageUp and PageDn) are redefined while the
cursor is in the Code window:

o UpArrow: Scroll Code window up one line.

o DownArrow: Scroll Code window down one line.
o PageUp: Scroll Code window up one window.

o PageDn: Scroll Code window down one window.

Source Mode Only

Scroll the Code window from the Command window using the CTRL key with one of the
previously mentioned cursor keys. The following keys also have special meaning:

e CTRL-Home: Moves to line 1 of current source file.
e CTRL-ENnd: Moves to the last line of the current source file.
Note: The previous keys only work for source display, not for disassembled instructions.

e CTRL-RightArrow: Horizontal scroll of source code right.
e CTRL-LeftArrow: Horizontal scroll of source code left.

SoftICE Command Reference 73

SoftICE Commands

EXIT

Syntax

Use

Caution

Example

Windows 3.1 Flow Control

Force an exit of the current DOS or Windows program.

EXIT

The EXIT command attempts to abort the current DOS or Windows program by forcing a
DOS exit function (INT 21h, function 4Ch). This command only works if DOS is in a state
where it is able to accept the exit function call. If this call is made from certain interrupt
routines, or other times when DOS is not ready, the system may behave unpredictably. Only
use this call when SoftICE pops up in VM mode or 16- or 32-bit protected mode running at
ring 3. In 32-bit, ring 0 protected mode code, an error displays.

Use the EXIT command with care. Because SoftICE can be popped up at any time, a
situation can occur where DOS is not in a state to accept an exit function call. Also, the EXIT
command does not have any program-specific resetting.

Example: The EXIT command does not reset the video mode or interrupt vectors. For
Windows programs, the EXIT command does not free resources.

If running under WIN32s, the EXIT command sometimes causes WIN32s to pop up with an
unhandled exception occurred dialog box. Press OK to terminate the application.
For Windows 95 and Windows NT

EXIT is no longer supported.

Causes the current DOS or Windows program to exit.
EXT

74 SoftICE Command Reference

SoftICE Commands

EXP

Syntax

Use

Windows 3.1, Windows 95, Windows NT Symbol/Source

Display export symbols from DLLs.

EXP [[nodul e!'][partial -nanme]] | [!]

module! Display exports from the specified module only.

partial-name Export symbol or the first few characters of the name of an export
symbol name. The ? character can be used as a wildcard character in
place of any character in the export name.

! Display list of modules for which SoftICE has exports loaded.

Use the EXP command to show exports from Windows DLLs, Windows NT drivers, and 16-
bit drivers (.DRV extension) for which SoftICE has exports loaded. To tell SoftICE which
DLLs and drivers to load, set the SoftICE initialization settings for Exports in Symbol Loader.

The module and name parameters can be used to selectively display exports only from the
specified module, and/or exports that match the characters and wildcards in the name
parameter. When exports are displayed, the module name is printed first on a line by itself,
and the export names are printed below it, along with their addresses.

Note: Since DLLs and drivers run in protected mode, the addresses are protected mode
addresses.

This command is valid for both 16-bit and 32-bit DLLs with 16-bit exports being listed first.

For Windows 3.1

SoftICE automatically loads exports for KERNEL, USER, and GDI.

For Windows 95

SoftICE automatically loads exports for KERNEL, USER, and GDI. The SoftICE Loader can
dynamically load 32-bit exported symbols.

Windows NT

SoftICE automatically loads exports for KERNEL32, USER32, and GDI32. The SoftICE
loader can dynamically load 32-bit exported symbols.

SoftICE Command Reference 75

SoftICE Commands

Example

The following example of the EXP command being used to display all exports that begin with
the string DELETE: The output shows that KERNEL.DLL has 3 exports matching the
string: DELETEATOM, DELETEFILE, and DELETEPATHNAME. These routines are
located at 127:E3, 11F:7D4 and 127:345A, respectively. Following the exports from
KERNEL are the exports from USER and GDI, and following these begin the 32-bit exports.

EXP del ete

KERNEL
0127: 0O0E3 DELETEATOM
0127: 345A DELETEPATHNAVE

USER
176F: 0C88 DELETEMENU

€D
0527: 0000 DELETEMETAFI LE
047F: 55FD DELETEDC
047F: 564B DELETECBJECT
0587: A22E DELETEENHVETAFI LE

KERNEL32
0137: BFF97E9B Del et eAt om
0137: BFFODC5A Del et eFi | eA

USER32

0137: BFF62228 Del et eMenu

QD 32

0137: BFF3248F Del et eCol or Space
0137: BFF3248B Del et eEnhMet aFi | e
0137: BFF3249F Del et e(hj ect

011F:

04B7:
054F:
04B7:

0137:
0137:

0137:
0137:

07D4 DELETEFI LE

211C DELETESPOCLPAGE
0192 DELETEPQ
226E DELETEJCB

BFF88636 Del eteCritical Section
BFFA4CA9 Del et eFi | eW

BFF32497 Del et eDC
BFF31111 Del eteMetaFil e

In the following example, the ! character is used to narrow EXP’s output to only those
modules which are listed to the left of the I. In the case where no DLL or driver is specified
before the !, SoftICE simply dumps the names of all the modules for which it has exports

loaded.
CEXP !

KERNEL
USER

(€D |
KERNEL 32
USER32
&l 32

76 SoftICE Command Reference

SoftICE Commands

See Also

The next example is of the EXP command being used to list all exports within USER32.DLL

that start with “IS.” The ! character is used here to differentiate the module name from the

name qualifier.

EXP user32!is
USER32

0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:
0137:

BFF64290 | sChar Al phaA
BFF64256 | sChar Al phaNuneri cA
BFF61014 | sChar Al phaNuneri cW
BFF61014 | sChar Al phaW
BFF641E8 | sChar Lower A
BFF61014 | sChar Lower W
BFF64222 | sChar Upper A
BFF61014 | sChar Upper W
BFF61F6A | sChild

BFF6480F | sA i pboar dFor nat Avai | abl e
BFF64D7C | sDi al ogMessage
BFF64D7C | sDi al ogMessageA
BFF6101D | sDi al ogMessageW
BFF618A4 | sDl gBut t onChecked
BFF62F12 | sHungThr ead
BFF64697 | sl conic

BFF623A5 | sMenu

BFF649B9 | sRect Enpty
BFF644BF | sW ndow

BFF646EL1 | sW ndowEnabl ed
BFF638C4 | sW ndowuni code
BFF64706 | sW ndowM si bl e
BFF646BC | sZoorred

SYMBOL, TABLE

SoftICE Command Reference

i

SoftICE Commands

F

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Miscellaneous

Fill memory with data.

F address | length data-Iist

length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single quotes or double quotes.

Memory is filled with the series of bytes or characters specified in the data-list. Memory is
filled starting at the specified address and continues for the specified length. If the data-list
length is less than the specified length, the data-list is repeated as many times as necessary.

Fills memory starting at location DS:8000h for a length of 100h bytes with the string "Test".
The string "Test" is repeated until the fill length is exhausted.

F ds: 8000 | 100 'test'

78 SoftICE Command Reference

SoftICE Commands

FAU LTS Windows 3.1, Windows 95, Windows NT Mode Control

Turn fault trapping on or off.

Syntax FAULTS [on | of f]
Use Use the FAULTS command to turn SoftICE processor fault trapping on or off.
Example Turns off fault trapping in SoftICE.
FAULTS of f
See Also SET

SoftICE Command Reference 79

SoftICE Commands

FIBER

Syntax

Use

Example

Windows NT System Information

Dump a fiber data structure.

FI BER [addr ess]

Use the FIBER command to dump a fiber data structure returned by CreateFiber(). If you do
not specify an address, FIBER dumps the fiber data associated with the current thread.
SoftICE provides a stack trace after the dump.

The following example dumps the fiber data associated with the current thread:
. FI BER

Fi ber state for the current thread:
User data: 00456500 SEH Ptr: 01C2FFAS
Stack top: 01C30000 Stack bottom 01C2F000 Stack |imt:01B30000
EBX=00000001 ESI =005862B8 EDI =004565D0 EBP=01C2FF88 ESP=01C2FCAC
El P=63011BAF a. k.a. WN NET! .t ext +00010BAF

=> at 001B: 00579720

80 SoftICE Command Reference

SoftICE Commands

FILE

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Symbol/Source

Change or display the current source file.

FILE [[*] fil e- nane]

The FILE command is often useful when setting a breakpoint on a line that has no associated
symbol. Use FILE to bring the desired file into the Code window, use the SS command to
locate the specific line, move the cursor to the specific line, then enter BPX or press F9 to set
the breakpoint.

« If you specify file-name, that file becomes the current file and the start of the file displays
in the Code window.

« If you do not specify file-name, the name of the current source file, if any, displays.
« If you specify the * (asterisk), all files in the current symbol table display.

Only source files that are loaded into memory with Symbol Loader or are pre-loaded at
initialization are available with the FILE command.
For Windows 95 and Windows NT

Specifying the FILE file-name command switches address contexts within SoftICE, if the
current symbol table has an associated address context.

If main.c is loaded with the SoftICE Loader, this command displays it in the Code window
starting with line 1.

FILE main.c

SoftICE Command Reference 81

SoftICE Commands

F K EY Windows 3.1, Windows 95, Windows NT Customization

Show and edit the function key assignments.

Syntax FKEY [function-key string]

function-key

Key Description

F1 - F12 Unshifted function key

SF1 - SF12 Shifted function key

CFl - CF12 Control key plus function key
AF1 - AF12 Alternate key plus function key

string Consists of any valid SoftlCE commands and the special characters
caret () and semicolon (;). Place a caret (") at the beginning of a
command to make the command invisible. Place a semicolon (;) in the
string in place of Enter.

Use Use the FKEY command to assign a string of one or more commands to a function-key. If you
do not specify parameters, the current function-key assignments display.

Hint: You can also edit function key assignments by modifying the SoftICE initialization
settings for Keyboard Mappings in Symbol Loader. Refer to the Using SoftlCE manual
for more information about customizing SoftICE.

To unassign a specified function-key, use the FKEY command with the parameters
function_key_name followed by null_string.

Use carriage return symbols in a function-key assignment string to assign a function-key a
series of commands. A carriage return is represented by a semi-colon (;).

If you put a caret “” or press Shift-6 in front of a command name, the subsequent command
becomes invisible. The command functions as normal, but all information that normally
displays in the Command window (excluding error messages) is suppressed. The invisible
mode is useful when a command changes information in a window (Code, Register, or Data),
but you do not want to clutter the Command window.

82 SoftICE Command Reference

SoftICE Commands

Example

SoftlCE implements the function-keys by inserting the entire string into its keyboard buffer.
The function-keys can therefore be used anyplace where a valid command can be typed. If
you want a function key assignment to be in effect every time you use SoftICE, pre-initialize
the keyboard mappings within your SOFTICE configuration settings. Refer to Chapter 8,
“Customizing SoftICE” in the Using SoftICE guide.

This example assigns the toggle Register window command to the F2 function-key. The caret
“~" makes the function invisible, and the semicolon “;” ends the function with a carriage
return. After you enter this command, press the F2 key to toggle the Register window on or
off.

FKEY f2 wr;

The next example shows that multiple commands can be assigned to a single function and
that partial commands can be assigned for the user to complete. After you enter this
command, pressing the Ctrl F1 key sequence causes the program to execute until location

CS:8028F000h is reached, displays the stack contents, and starts the U command for the user
to complete.

FKEY cf1 g cs:8028f000; d ss:esp;u cs: eip+

After you enter this example, pressing the F1 key makes the Data window three lines long and
dumps data starting at 100h in the segment currently displayed in the Data window.

FKEY f1 wd 3;d 100;

The following example toggles the Register window, and creates a Locals window of length 8
and a Code window of length 10.

FKEY f1 w;w 8;w 10;

SoftICE Command Reference 83

SoftICE Commands

FOBJ

Syntax

Use

Example

Windows NT System Information

Display information about a file object.

FQBJ [fobj - addr ess]

fobj-address Address of the start of the file object structure to be displayed.

The FOBJ command displays the contents of kernel file objects. The command checks for the
validity of the specified file object by insuring that the device object referenced by it is a
legitimate device object.

The fields shown by SoftICE are not documented in their entirety here, as adequate
information about them can be found in NTDDK.H in the Windows NT DDK. A few fields
deserve special mention, however, because device driver writers find them particularly useful:

DeviceObject This field is a pointer to the device object associated with the file
object.
Vpb This is a pointer to the volume parameter block associated with the

file object (if any).

FSContext1 and

FSContext2 These are file system driver (FSD) private fields that can serve as keys
to aid the driver in determining what internal FSD data is associated
with the object.

Other fields of interest, whose purpose should be fairly obvious, include the access protection
booleans, the Flags, the FileName and the CurrentByteOffset.

The following example shows the FOBJ command’s output:
: FOBJ fd877230

Devi ce(hj ect * . FD881570
\Vpb * : 00000000
FsCont ext * . FD877188
FsContext2 * . FDB77C48
Sechj Poi nter * . FDB771B4
Privat eCacheMap * : 00000001
Fi nal St at us : 00000000
Rel atedFil eChj * : 00000000
LockQper at i on . Fal se

Del et ePendi ng . Fal se
ReadAccess : True

84 SoftICE Command Reference

SoftICE Commands

Wi teAccess . True

Del et eAccess . Fal se

Shar edRead . True

SharedWite . True

Shar edDel et e . Fal se

Fl ags : 00040002 FO SYNCHRONQUS |1 0| FO HANDLE_CREATED
Fi | eNane . \ G\ SS\ dat a\ st at us. dat
QurrentByteCrfset : 00

Wi ters : 00000000

Busy : 00000000

Last Lock* : 00000000

&l ock . FDB877294

&Event . FDB772A4

Conpl Cont ext * : 00000000

SoftICE Command Reference 85

SoftICE Commands

FLASH

Syntax

Use

Example

See Also

Windows 3.1, Windows 95, Windows NT Window Control

Restore the Windows screen during P and T commands.

FLASH [on | of f]

Use the FLASH command to specify whether the Windows screen restores during any T
(trace) and P (step over) commands. If you specify that the Windows screen is to be restored,
it is restored for the brief time period that the P or T command is executing. This feature is
needed to debug sections of code that access video memory directly.

If the routine being called writes to the Windows screen and if the P command executes across
a call, the screen restores. When debugging protected mode applications such as VxDs or
Windows applications with FLASH off, this is generally not the case. SoftICE restores the
screen only if the display driver is called before the call is completed.

If you do not specify a parameter, the current state of FLASH displays.
The default is FLASH OFF.

This command turns on FLASH mode. The Windows screen restores during any subsequent
P or T commands.

FLASH on

SET

86 SoftICE Command Reference

SoftICE Commands

FORMAT

Shift-F3

Syntax

Use

Example

WinDows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Change the format of the Data window.

FORVAT

Use the FORMAT command to change the display format in the currently displayed Data
window. Change the formats in the order byte, word, dword, short real, long real, 10-byte
real, and then starting back at byte. This command is most useful when assigned to a function
key. The default function key assignment is Shift-F3. The Shift-F3 is also supported when
editing in the Data window.

Changes the Data window to the next data format.
FCRVAT

SoftICE Command Reference 87

SoftICE Commands

G

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Flow Control

Go to an address.

G [=start-address] [break-address]

=start-address Any expression that resolves to a valid address is acceptable.

break-address Any expression that resolves to a valid address is acceptable.

The G command exits from SoftICE. If you specify break-address, a single one-time
execution breakpoint is set on that address. In addition, all sticky breakpoints are armed.

Execution begins at the current CS:EIP unless you supply the start-address parameter. If you
supply the start-address parameter, execution begins at start-address. Execution continues
until the break-address is encountered, the SoftlCE pop-up key sequence is used, or a sticky
breakpoint is triggered. When SoftICE pops up, for any reason, the one-time execution
breakpoint is cleared.

The break-address must be the first byte of an instruction opcode.

The G command without parameters behaves the same as the X command.

If the Register window is visible when SoftICE pops up, all registers that have been altered
since the G command was issued are displayed with the bold video attribute.

For Windows 3.1

The non-sticky execution breakpoint uses an INT 3 style breakpoint.

For Windows 95 and Windows NT

The non-sticky execution breakpoint uses debug registers unless none are available. If none
are available, it uses INT 3.

This command sets a one-time breakpoint at address CS:80123456h.
G 80123456

88 SoftICE Command Reference

SoftICE Commands

GDT

Syntax

Use

Output

Windows 3.1, Windows 95, Windows NT

Display the Global Descriptor Table.

QDT [sel ector]

selector

Starting GDT selector to display

System Information

The GDT command displays the contents of the Global Descriptor Table. If you specify an
optional selector, only information on that selector is listed. If the specified selector isan LDT
selector (bit 2 is a 1), SoftICE automatically displays information from the LDT, rather than

the GDT.

The base linear address and limit of the GDT is shown at the top of the GDT command’s
output. Each subsequent line of the output contains the following information:

selector value

selector type

Lower two bits of this value reflects the descriptor privilege level.

One of the following:

Type Description

Codel6 16-bit code selector

Datal6 16-bit data selector

Code32 32-bit code selector

Data32 32-bit data selector

LDT Local Descriptor Table selector
TSS32 32-hit Task State Segment selector
TSS16 16-bit Task State Segment selector
CallG32 32-bit Call Gate selector

CallG16 16-bit Call Gate selector
TaskG32 32-bit Task Gate selector
TaskG16 16-bit Task Gate selector
TrapG32 32-bit Trap Gate selector

SoftICE Command Reference

89

SoftICE Commands

selector base
selector limit
selector DPL
present bit

segment attributes

0058 Reserved
0060 Reserved

Type Description

TrapG16 16-bit Trap Gate selector
IntG32 32-bit Interrupt Gate selector
IntG16 16-bit Interrupt Gate selector
Reserved Reserved selector

Linear base address of the selector.

Size of selector’s segment.

Selector's descriptor privilege level (DPL), which is either 0, 1, 2 or 3.
P or NP, indicating whether the selector is present or not present.

One of the following:

00000000 OOOOFFFF
00000000 OOOOFFFF

Value Description
RW Data selector is readable and writable.
RO Data selector is read only.
RE Code selector is readable and executable.
EO Code selector is execute only.
B TSS's busy bit is set.
ED Expand down data selector.
Example The following command shows abbreviated output from the GDT command.
en)
Sel. Type Base Limt DPL Attributes
@Thase=C1398000 Li m t=0FFF
0008 Codel6 00017370 OO00OFFFF 0 P RE
0010 Datal6 00017370 OO0O0OFFFF 0 P RW
0018 TSS32 COO0OAEBC 00002069 O P B
0020 Datal6 C1398000 OOOOOFFF O P RW
0028 Code32 00000000 FFFFFFFF O P RE
0030 Data32 00000000 FFFFFFFF 0 P RW
003B Codel6 C33E9800 000007FF 3 P RE
0043 Datal6 00000400 000002FF 3 P RW
0048 Codel6 00013B10 OOOOFFFF O P RE
0050 Datal6 00013B10 OOOOFFFF O P RW
0 NP
0 NP
0 P

0068 TSS32

90 SoftICE Command Reference

(Q0015DE8 00000068

SoftICE Commands

GENINT

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Flow Control

Force an interrupt to occur.

GENNT [nm | intl | int3 | interrupt-nunber]

interrupt-number For Windows 3.1 and Windows 95: Valid interrupt number between
0 and 5Fh.
For Windows NT: Valid interrupt number between 0 and FFh.

The GENINT command forces an interrupt to occur. Use this function to hand off control to
another debugger you are using with SoftICE. Also use it to test interrupt routines.

The GENINT command simulates the processing sequence of a hardware interrupt or an
INT instruction. It vectors control through the current IDT entry for the specified interrupt
number.

Warning: Ensure that there is a valid interrupt handler before using this command. SoftICE
does not know if there is a handler installed. Your machine will most likely crash if
there is not one.

GENINT cannot be used to simulate a processor fault that pushes an exception code. For
example, GENINT cannot simulate a general protection fault.

The following command forces a non-maskable interrupt. It gives control back to CodeView
for DOS, if you use SoftICE as an assistant to CodeView for DOS.

GEN NT nm

If using CodeView for Windows, use the command:
CGEN NT O

For other debuggers, experiment with interrupt-numbers 0, 1, 2 and 3.

When the command I3HERE==0ON, and you are using a level -3 debugger, such as
BoundsChecker, SoftICE traps on any INT 3 breakpoints installed by the level-3 debugger.
When this happens, set IBHERE==OFF, and use the GENINT command to reactivate the
breakpoint. This returns control to the level -3 debugger, and SoftICE does not trap
subsequent INT 3s.

| 3HERE of f
CGENNT 3

SoftICE Command Reference 91

SoftICE Commands

H

F1

Syntax

Use

Example

See Also

WinDows 3.1, WINDOWS 95, WINDOWS NT MISCELLANEOUS

Display help information.

For Windows 3.1

H [cormand | expressi on]

For Windows 95 and Windows NT

H [cormand]

For Windows 3.1

Under Windows 3.1, the parameter you supply determines whether help is displayed or an
expression is evaluated. If you specify a command, help displays detailed information about
the command, including the command syntax and an example. If you specify an expression,
the expression is evaluated, and the result is displayed in hexadecimal, decimal, signed decimal
(only if < 0), and ASCII.

For Windows 95 and Windows NT

Under Windows 95 and Windows NT, the H command displays help on SoftICE
commands. (Refer to ? on page 3 for information about evaluating expressions under
Windows 95 and Windows NT.) To display general help on all the SoftICE commands, enter
the H command with no parameters. To see detailed information about a specific command,
use the H command followed by the name of the command on which you want help. Help
displays a description of the command, the command syntax, and an example.

The following example displays information about the ALTKEY command:
:H altkey

Set key sequence to invoke w ndow
ALTKEY [ALT letter | CTRL letter]
ex: ALTKEY ALT D

92 SoftICE Command Reference

SoftICE Commands

H B O OT Windows 3.1, Windows 95, Windows NT Flow Control

Do a hard system boot (total reset).

Syntax HBOOT

Use The HBOOT command resets the computer system. SoftICE is not retained in the reset
process. HBOOT is sufficient unless an adapter card requires a power-on reset. In those rare
cases, the machine power must be recycled.

HBOOT performs the same level of system reset as pressing Ctrl-Alt-Delete when not in
SoftICE.

Example To make the system reboot, use this command:
HBOOT

SoftICE Command Reference 93

SoftICE Commands

HEAP

Syntax

Use

For Windows 95,
refer to HEAP32 on
page 97.

For Windows NT,
refer to HEAP32 on
page 100.

Windows 3.1, Windows 95, Windows NT System Information

Display the Windows global heap.

HEAP -L [free | nodul e-nane | sel ector]

-L Display only global heap entries that contain a local heap.
module-name Name of the module.
selector LDT selector.

For Windows 95

For 16-bit modules, the HEAP command works the same as it does under Windows 3.1.

For Windows NT

For 16-bit modules, the HEAP command works the same as it does under Windows 3.1, but
is process-specific. You must be in a NTVDM process that contains a WOW (Windows on
Windows) box.

For Windows 3.1
The HEAP command displays the Windows global heap in the Command window.
« If you do not specify parameters, the entire global heap displays.
« If you specify FREE, only heap entries marked as FREE display.
« If you specify the module name, only heap entries belonging to the module display.
« If you specify an LDT selector, only a single heap entry corresponding to the selector
displays.

At the end of the listing, the total amount of memory used by the heap entries that displayed
is shown. If the current CS:EIP belongs to one of the heap entries, that entry displays with the
bold video attribute.

If there is no current LDT, the HEAP command is unable to display heap information.

94 SoftICE Command Reference

SoftICE Commands

Output

For each heap entry the following information displays:

selector or handle

address
size
module name

type

In Windows 3.1, this is almost the same thing. Heap selectors all have
a dpl of 3 while the corresponding handle is the same selector with a
dpl of 2. For example, if the handle was 106h the selector would be
107h. Use either of these in an expression.

32-bit flat virtual address.
Size of the heap entry in bytes.
Module name of the owner of the heap entry.

Type of entry. One of the following:

Type Description

Code Non-discardable code segment
Code D Discardable code segment

Dat a Data segment

Modul eDB Module data base segment
TaskDB Task data base segment

Bur ger M Burger Master (The heap itself)
Aloc Allocated memory

Resour ce Windows Resource

Additional Type Information

If the heap entry is a code or a data segment, the segment number
from the .EXE file displays. If the heap entry is a resource, one of the
following resource types may display:

User Def I con String Accel lconGp
Qur sor Menu FontGp ErrTable NanmeTabl
Bi t map D al og Font QursGp

SoftICE Command Reference 95

SoftICE Commands

Example To display all heap entries belonging to the KERNEL module, use the following command:
HEAP ker nel
Han/ Sel Address Length Onner Type Seg/ Rsr
00F5 0003110C0 00000400 KERNEL Modul eDB
OOFD 00031680 00007600 KERNEL Code 01
0575 00054220 00003640 KERNEL Al oc
0106 00083E40 00002660 KERNEL Code D 02
010E 805089A0 00001300 KERNEL Code D 03
0096 80520440 0000020 KERNEL Al oc
Total Menory: 62K

See Also For Windows 95, refer to HEAP32 on page 97.

96

For Windows NT, refer to HEAP32 on page 100.

SoftICE Command Reference

SoftICE Commands

HEAP32

Syntax

Use

For Windows 3.1,
Windows 95, and
Windows NT, refer to
HEAP on page 94.

For Windows NT,

refer to HEAP32 on
page 100.

Output

Windows 95 System Information

Display the Windows global heap.

HEAP32 [hheap32 | task- nane]]

hheap32 Heap handle returned from HeapCreate.

task-name Name of any 32-bit task.

For Windows 95

The HEAP32 command displays heaps for a process.
Note: For 16-bit modules, use the HEAP32 on page 100.

The HEAP32 command displays the following:

e KERNEL32 default system heap.
« Private heaps of processes created through the HeapCreate() function.

« Two Ring-0 heaps created by VIMM. The first one displayed is the pagelocked heap, and
the second is the pagetable heap.

« One Ring-0 heap for every existing virtual machine.

If you provide a process name, SoftlCE displays the entire default process heap for that
process, and the address context automatically changes to that of the process. To view a
nondefault heap for a process, specify the heap base address instead of the process name.

The debug versions of Windows 95 provide extra debugging information for each heap
element within a heap. To see this information, you must be running the appropriate debug
version, as follows:

« For KERNEL32 Ring-3 heaps, have the SDK debug version installed.
e For VMM Ring-0 heaps, have the DDK debug version of VMM installed.

For each heap entry, the following information displays:

HeapBase Address where the heap begins.

MaxSize Current maximum size the heap can grow without creating a new
segment.

Committed Number of kilobytes of committed memory that are currently present

in physical memory.

SoftICE Command Reference 97

SoftICE Commands

Segments Number of segments in the heap. Each time the heap grows past the

current maximum size, a new heap segment is created.
Type

Heap Type Description

Private Ring 3 heap created by an application process.

System Ring 3 default heap for KERNEL32.

Ring0 Ring 0 heap created by VMM.

VM Heap created by VMM for a specific Virtual

Machine to hold data structures specific to that VM.

Owner Name of the process that owns the heap.

When displaying an individual 32-bit heap, the following information displays:

Heap Type Description

Address Address of the heap element

Size Size in bytes of the heap element

Free If the heap element is a free block, the word FREE

appears; otherwise, the field is blank.

With the appropriate debug versions of the SDK and DDK, the following extra information
appears for each heap element:

Heap Element Description

EIP EIP address of the code that allocated the heap
element.

TID VMM thread-id of the allocating thread

Owner Nearest symbol to the EIP address

98 SoftICE Command Reference

SoftICE Commands

Example To display all 32-bit heaps, use the command:
HEAP32
HeapBase Max Size Commit- Seg-

ted nment s

OOEA0000 1024K 8K 1
00DAOO00 1024K 8K 1
00CA0000 1024K 8K 1
00960000 1024K 8K 1
00860000 1024K 8K 1

Type

Private
Private
Private
Private

Private

To display all heap entries for Exchng32, use the command:

HEAP32 exchng32

Qaner

Mapi sp32
Mapi sp32
Mapi sp32
Mapi sp32
Mapi sp32

Heap: 00400000 Max Size: 1028K Committed: 12K Segnents: 1
Addr ess Si ze
00400078 000004E4
00400560 00000098
004005FC 00000054
00400654 000000A4
004006FC 00000010
00400710 00000014 Free
See Also For Windows 3.1, Windows 95, and Windows NT, refer to HEAP on page 94.

For Windows NT, refer to HEAP32 on page 100.

SoftICE Command Reference 99

SoftICE Commands

HEAP32

Syntax

Use

For Windows 3.1,
Windows 95, and
Windows NT, refer to
HEAP on page 94.

For Windows 95,
refer to HEAP32 on
page 97.

Windows NT System Information

Display the Windows heap.

HEAP32 [[-w -X -Ss -v -b -trace] [heap | heap-entry | process-type]]

-W Walk the heap, showing information about each heap entry.
-X Show an extended summary of a 32-bit heap.

- Provide a segment summary for a heap.

-V Validate a heap or heap-entry.

-b Show base address and sizes of heap entry headers.

-trace Display a heap trace buffer.

heap 32-bit heap handle.

heap-entry Heap allocated block returned by HeapAlloc or HeapRealloc.
process-type Process name, process-id, or process handle (KPEB).

All HEAP32 options and parameters are optional. If you do not specify options or
parameters, a basic heap summary displays for every heap in every process. If a parameter is
specified without options, a summary will be performed for the heap-entry, heap, or in the
case of a process-type, a summary for each heap within the process.

Note: All 16-bit HEAP functionality still works. Refer to HEAP on page 94 for Windows
3.1. This information only applies to HEAP32.

The -Walk option walks a heap, showing the state of each heap-entry on a heap. The Walk
option is the default option if you specify a heap handle without other options.

The -eXtended option displays a detailed description of all useful information about a heap,
including a segment summary and a list of any Virtually Allocated Blocks (\VABS) or extra
UnCommitted Range (UCR) tables that may have been created for the heap.

The -Segment option displays a simple summary for the heap, and each of its heap-segments.
Segments are created to map the linear address space for a region of a heap. A heap can be
composed of up to sixteen segments.

100 SoftICE Command Reference

SoftICE Commands

The -Validate option is an extremely powerful option, as it completely validates a single heap-
entry, or a heap and all of its components, including segments, heap-entries, and VABS. In
most cases, the heap validation is equivalent to or stricter than the Win32 API Heap
functions. The -Validate option is the only option that takes a heap-entry parameter as input.
All other options work with heap handles or process-types. If the heap is valid, an appropriate
message displays. If the validation fails, one of the following error messages appears:

» For a block whose header is corrupt:
Generic Error: 00140BD0 is not a heap entry, or it is corrupt
Specific Error: 00140BD0: Backward link for Block is invalid
 For a block whose guard-bytes have been overwritten:
Al ocat ed bl ock: 00140BDO: Bl ock BUSY TAIL is corrupt

Note: If you run your application under a debugger, for example, BoundsChecker or
Visual C++, each allocated block has guard-bytes, and each free block is marked
with a pattern so that random overwrites can be detected.

« For a free block that has been written to, subsequent to being freed:
Free bl ock: 00140E50: Free block failed FREE GHECK at 141E70

Use the -Base option to change the mode in which addresses and heap entry sizes display.
Under normal operation, all output shows the address of the heap-entry data, and the size of
the user data for that block. When you specify the -Base option, all output shows the address
of the heap-entry header, which precedes each heap-entry, and the size of the full heap-entry,
including the heap-entry header and any extra data allocated for guard-bytes, or to satisfy
alignment requirements. Under most circumstances you will not want to specify base
addressing unless you are trying to walk a heap or its entries manually.

When you use the -Base option, the base address for each heap-entry is 8 bytes less than when
-Base is not specified. This happens because the heap-entry header precedes the actual heap-
entry by 8 bytes. Secondly, the size for the allocated blocks is larger because of the additional 8
bytes for the heap-entry header, guard-bytes, and, if necessary, any extra bytes needed for
proper alignment. The output from the -Base option is useful for manually navigating
between adjacent heap entries, or checking for memory overruns between the end of the heap-
entry data and any unused space prior to the guard-bytes, which are always allocated as the
last two DWORD:s of the heap entry.

Note: The -Base option has no effect on input parameters. Heap-entry addresses are always
assumed to be the address of the heap-entry data.

Use the -TRACE option to display the contexts of a heap trace buffer which record actions
that occur within a heap. Heap trace buffers are optional and are generally not created. To
enable tracing in the Win32 API, specify the HEAP_CREATE_ENABLE_TRACING flag as
one of the flags to ntdll!RtICreateHeap. You cannot use this option with

SoftICE Command Reference 101

SoftICE Commands

Output

Kernel32!HeapCreate() because it strips out all debug-flags before calling
ntdll!RtICreateHeap. You must also be running the application under a level-3 debugger, for
example, BoundsChecker or the Visual C++ debugger, so that the Win32 heap debugging
options will be enabled.

Any time a process-type is passed as a parameter, any and all options are performed for each
heap within the process.

The HEAP32 command and all of its options work on either a single specified heap handle or
ALL the heaps for an entire process.

Example: This command performs a heap validation for all the heaps in the Test32 process:
HEAP 32 -v test32

When using bare addresses, for example, 0x140000, the current context is assumed. Use the
ADDR command to change to the appropriate context.

For Not Present Memory, due to the nature of operating systems that use paging to
implement virtual memory, in some cases, the actual physical memory that backs a particular
linear address will not be present in memory. To be useful within this restriction, the HEAP32
command detects, avoids, and, where possible, continues to operate without the need for not
present pages. In all cases where not present memory prevents the HEAP32 command from
performing its work, you are notified of that condition. When possible the HEAP32
command skips not present pages and continues processing at a point where physical memory
is present. Because not present memory prevents the HEAP32 command from performing a
full validation of a heap, the validation routines indicate success, but let you know that only a
partial validation could be performed.

Base Base address of the heap, that is, the heap handle.

Id Heap ID.

Cmmt/Psnt/Rsvd Amount of committed, present, and reserved memory used for heap
entries.

Segments Number of heap segments within the heap.

Flags Heap flags, for example, HEAP_GROWABLE (0x02).

Process Process that owns the heap.

If you specify the -W switch, the following information displays:
Base This is the address of the heap entry.

102 SoftICE Command Reference

SoftICE Commands

Type Type of the heap entry.
Heap Entry Description
HEAP Represents the heap header.
SEGQVENT Represents a heap segment.
ALLCC Active heap entry
FREE Inactive heap entry
VABLOCK Virtually allocated block (VAB)
Size Size of the heap-entry. Typically, this is the number of bytes available
to the application for data storage.
Seg# Heap segment in which the heap-entry is allocated.
Flags Heap entry flags.

If you specify the -S switch, the following additional information displays:

Seg# Segment number of the heap segment.

Segment Range Linear address range that this segment maps to.

Cmmt/Psnt/Rsvd Amount of committed, present, and reserved memory for this heap
segment.

Max UCR Maximum uncommitted range of linear memory. This value specifies

the largest block that can be created within this heap segment.

SoftICE Command Reference 103

SoftICE Commands

Example HEAP32
Base Id Cmt / Psnt/ Rsvd Segrments Fl ags Process
00230000 01 0013/ 0013/ 00ED 1 00000002 csrss
7F6F0000 02 0008/ 0008/ 00F8 1 00007008 csrss
00400000 03 001C 001A/ 0024 1 00004003 csrss
7F5D0000 04 0005/ 0005/ 001B 1 00006009 csrss
00460000 05 00F6/ 00F1/ 001A 2 00003002 csrss
005F0000 06 000B/ 000B/ 0005 1 00005002 csrss
7F2D0000 07 0020 0020 02D3 1 00006009 csrss
02080000 08 0003/ 0003/ 0001 1 00001062 csrss
02300000 09 0016/ 0014/ OOEA 1 00001001 csrss

See Also For Windows 3.1, Windows 95, and Windows NT, refer to HEAP on page 94.

For Windows 95, refer to HEAP32 on page 97.

104 SoftICE Command Reference

SoftICE Commands

HERE

F7

Syntax

Use

Example

WinDows 3.1, WINDOWS 95, WINDOWS NT FLow CONTROL

Go to the current cursor line.

HERE

The HERE command executes until the program reaches the current cursor line. HERE is
only available when the cursor is in the Code window. If the Code window is not visible or
the cursor is not in the Code window, use the G command instead. Use the EC command
(default key F6), if you want to move the cursor into the Code window.

To use the HERE command, place the cursor on the source statement or assembly instruction
that you want to execute to. Enter HERE or press the function key that HERE is
programmed to (default key F7).

The HERE command exits from SoftICE with a single, one-time execution breakpoint set. In
addition, all sticky breakpoints are armed.

Execution begins at the current CS:EIP and continues until the address of the current cursor
position in the Code window is encountered, the window pop-up key sequence is used, or a
sticky breakpoint occurs. When SoftICE pops up, for any reason, the one-time execution
breakpoint is cleared.

If the Register window is visible when SoftICE pops up, all registers that have been altered
since the HERE command was issued display with the bold video attribute.
For Windows 3.1

The non-sticky execution breakpoint uses an INT 3 style breakpoint.

For Windows 95 and Windows NT

The non-sticky execution breakpoint uses debug registers unless none are available, in which
case, it uses INT 3.

Sets an execution breakpoint at the current cursor position, then exits from SoftICE and
begins execution at the current CS:EIP.

HERE

SoftICE Command Reference 105

SoftICE Commands

H W N D Windows 3.1, Windows 95 System Information

Display information on Window handles.

Syntax For Windows 3.1
HMD [/ evel] [task-nane]

For Windows 95
HMD [-x][hwnd | [[/evel][process-nane]]

level Windows hierarchy number. 0 is the top level, 1 is the next level and
so on. The window levels represent a parent child relationship. For
example, a level 1 window has a level 0 parent.

For Windows NT, task-name Any currently loaded Windows task. These names are available with
refer to the HWND the TASK command.
on page 109. . .) .
-X Display extended information about a window.
hwnd Windows handle.
process-name Name of any currently loaded process.
Use Specifying a window handle as a parameter displays only the information for that window

handle. If you specify a window handle, you do not need to specify the optional parameters
for level and process-name.

Output For each window handle, the following information is displayed:
Class Name Class name or atom of class that this window belongs to.

Window Procedure Address of the window procedure for this window.

106 SoftICE Command Reference

SoftICE Commands

Example
HMD nswor d
Handl e hQueue
0F4Q(0) 087D
OFD4(1) 080D
22C4(1) 087D
53E0(2) 087D
2764(2) 087D
2800(3) 087D
2844(3) 087D
2428(2) 087D
2888(2) 087D

Sample output follows for the HWND command:

Qnner d ass Procedur e
MSWORD #32769 DESKTCP

MBWORD #32768 MENUWAD

MBWORD QousApp 0925: 0378
MVBWCRD QousPrt 0945: 1514
MBWORD a_sdm Msft OF85: 0010
MBWORD QopusFedt 0F85: 0020
MBWORD QousFedt OF85: 0020
MSWORD Qousl conBar 0945: 14FE
MBWORD QopusFedt 0945: 14D2

Abbreviated output follows for the HWND command:

HMD - x wi nword

W ndow Handl e
Par ent
il d
Next
Onner
W ndow RECT
dient RECT
hQueue
Si ze
QOnner
hr gnUpdat e
wndd ass
d ass
hl nst ance

| pf nWAdPr oc

(0288) Level (1)
16A7: 000204CC

NULL

16A7: 00020584

NULL

(9,113) - (210, 259)
(10, 114) - (189, 258)
1C97

16

W NWCRD

NULL

16A7: 281C

Li st Box

(349E) (16 bit hlnstance)
2417: 000057F8

SoftICE Command Reference

107

SoftICE Commands

W ndow Handl e : (0288) Level (1)
dwFl ags1 . 40002
dwstyl e . 44A08053
dwExStyl e . 88
dwFl ags?2 0
ctrl 1D hMenu : O3E8
WidText o NULL
unknownl . 4734
propertyli st : NULL
| ast Active © NULL
hSyst emvenu © NULL
unknown2 : 0
unknown3 : 0000
cl assAt om : Q036
unknown4 . 4CAC
unknown5 : AD000064
See Also For Windows NT, refer to HWND on page 109.

108 SoftICE Command Reference

SoftICE Commands

HWND

Syntax

Use

For Windows 3.1 and
Windows 95, refer to
HWND on page
106.

Output

Windows NT System Information

Display information on Window handles.

HMD [-x][-c] [hwnd-type | desktop-type | process-type |
thread-type | nodul e-type | class-nane]

-eXtended Display extended information about each window handle.

-Children Force the display of window hierarchy when searching by thread-type,
module-type, or class-name.

hwnd-type Window handle or pointer to a window structure.

desktop-type Desktop handle or desktop pointer to a window structure (3.51 only).

process-type, thread-
type or module-type Window owner-type. A value that SoftICE can interpret as being of a
specific type such as process hame, thread ID, or module image base.

class name Name of a registered window class.

The HWND command enumerates and displays information about window handles.

The HWND command allows you to isolate windows that are owned by a particular process,
thread or module, when you specify a parameter of the appropriate type.

The -eXtended option shows extended information about each window.

When you specify the -eXtended option, or an owner-type as a parameter, the HWND
command will not automatically enumerate child windows. Specifying the -Children option
forces all child windows to be enumerated (regardless of whether they meet any specified
search criteria).

For each HWND that is enumerated, the following information is displayed:

Handle HWND handle (refer to OBJTAB on page 147 for more
information). Each window handle is indented to show its child and
sibling relationships to other windows.

Class Registered class name for the window, if available (refer to CLASS on
page 48 for more information).

WinProc Address of the message callback procedure. Depending on the callback
type, this value is displayed as a 32-bit flat address or 16-bit
selector:offset.

SoftICE Command Reference 109

SoftICE Commands

TID Owning thread ID.

Module Owning module name (if available). If the module name is unknown,
the module handle will be displayed as a 32-bit flat address or 16-bit
selector:offset, depending on the module type.

Example The following example uses the HWND command without parameters or options:
HAWD
Handl e d ass W nProc TID Mdule
01001E #32769 (Deskt op) 5FBFE425 24 winsrv
050060 #32770 (D al og) 60A29304 18 winl ogon
010044 SAS wi ndow cl ass 022A49C4 18 wi nl ogon
010020 #32768 (PopupMenu) 5FBEDBDG 24 winsrv
010022 #32769 (Deskt op) S5FBFE425 24 W nsrv
010024 #32768 (PopupMenu) S5FBEDBDG 24 W nsrv
030074 Shel | _TrayWid 0101775E 67 Expl orer
030072 Button 01012A4E 67 Expl orer
0800AA TrayNoti f ywid 0102164 67 Expl orer
03003E Trayd ockWd ass 01028C85 67 Expl orer
030078 MBTaskSW\D ass 01022F69 67 Expl or er
030076 SysTabCont r ol 32 712188A3 67 Expl orer
05007A tool tips_class32 7120B43A 67 Expl orer
03003C tool tips_cl ass32 7120B43A 67 Expl orer
2EOO0FO0 NDDEAgnt 016E18F1 4B nddeagnt
100148 CLI PBOARDWNDCLASS 034F: 2918 2C OQE2
9B0152 DdeCommonW ndowd ass 77Q2088B 2C ol e32
3200F2 d eMj ect RpcW ndow 77Q2Dr3B 2C ol e32
0800A2 DdeCommonW ndowd ass 77C2088B 67 ol e32
030086 a eMai nThr eadWhdd ass 77C2DCF2 67 ol e32
030088 d eMj ect RpcW ndow 77C2D73B 67 ol e32
03008A Pr oxyTar get 71E6869A 67 shel | 32
03008C Pr oxyTar get 71E6869A 67 shel | 32
030070 Pr oxyTar get 71E6869A 67 shel | 32
04007C Pr oxyTar get 71E6869A 67 shel | 32
0400CC ord ass 0100D7F3 67 Expl orer
0300CA DDEM_Event 5FC216AB 67 W nsrv
030006 DDEM_.MomM 60A2779D 67 00000000
0300C0 #42 0BB7: 0776 78 MVBYSTEM
0300D2 WDOWFaxd ass 01F9F7A8 78 WDNEXEC
060062 Consol eW ndowd ass 5FCD23C7 2B winsrv
0300B4 WONExecd ass 03CF: 0B3E 78 WDNEXEC

110 SoftICE Command Reference

SoftICE Commands

030068 Pr ognman 0101B1D3 67 Expl orer
OEOOBC SHELLDLL_Def Vi ew 71E300E8 67 shel | 32
040082 SysLi st Vi ew32 7121A0EC 67 shel | 32
030080 SysHeader 32 7120BO6F 67 shel | 32

Notes: You may have noticed that the output from the previous example enumerated two
desktop windows (handles 1001E and 10022), each with its own separate window
hierarchy. This is because the system can create more than one object of type Desktop,
and each Desktop object has its own Desktop Window which defines the window
hierarchy. If you use the HWND command in a context that does not have an
assigned Desktop, the HWND command enumerates all objects of type Desktop.

Because the system may have create more than one object of type Desktop, the
HWND command accepts a Desktop-type handle as a parameter. This allows the
window hierarchy for a specific Desktop to be enumerated. You can use the command
OBJTAB DESK to enumerate all existing desktops in the system.

The following is an example of using the HWND command for a specific window handle:

HND 400a0
Handl e d ass WnProc TID Module
0400A0 Pr ognman 0101B1D3 74 Expl orer

The following is an example of enumerating only those windows owned by thread 74:
HNWD 74

Handl e d ass W nProc TID Mdule
2FO0OFO0 Shel | _TrayWwid 0101775E 74 Expl orer
0500CE But ton 01012A4E 74 Expl orer
05004 TrayNoti f ywid 010216C4 74 Expl orer
040074 Trayd ockW ass 01028C85 74 Expl orer
05006 MBTaskSW\D ass 01022F69 74 Expl or er
0400C8 SysTabCont r ol 32 712188A3 74 Expl orer
3700F2 tool tips_class32 7120B43A 74 Expl orer
040066 tool tips_class32 7120B43A 74 Expl orer
OFO0BC DdeCommonW ndowd ass 77C2088B 74 ol e32
040068 d eMai nThr eadWhdd ass 77CQ2DCF2 74 ol e32
0500CC d eMj ect RpcW ndow 77C2D73B 74 ol e32
2600BA Pr oxyTar get 71E6869A 74 shel | 32
040000 Pr oxyTar get 71E6869A 74 shel | 32
0400CA Pr oxyTar get 71E6869A 74 shel | 32
070094 Pr oxyTar get 71E6869A 74 shel | 32
04009E ord ass 0100D7F3 74 Expl orer
480092 DDEM_Event 5FC216AB 74 W nsrv
09004A DDEM_Mom 60A2779D 74 00000000

SoftICE Command Reference 111

SoftICE Commands

0400A0 Pr ognman 0101B1D3 74 Expl orer
05000 SHELLDLL_Def Vi ew 71E300E8 74 shel | 32
070090 SysLi st Vi ew32 7121A0EC 74 shel | 32
050096 SysHeader 32 7120B0O6F 74 shel | 32

Note: A process-name always overrides a module of the same name. To search by module,
when there is a name conflict, use the module handle (base address or module-database
selector) instead. Also, module names are always context sensitive. If the module is not
loaded in the current context (or the CSRSS context), the HWND command
interprets the module name as a class name instead.

The following example shows the output when the -eXtended option is used:
HMD -x 400a0

Hand : 0400A0 (7F2D7148)
d ass Nane : Prognan
Modul e . Explorer
Wndow Proc : 0101B1D3
Wn Version : 4.00
Title . Program Manager
Deskt op : 02001F (00402D58)
Par ent : 010022 (7F2D0C28)
1st Child : 050000 (7F2D7600)
Style : CLIPCH LDREN | CLIPSIBLINGS | VISIBLE | PCPUP
Ex. Style : TOOLWNDOW| A0000000
W ndow Rect : 0, 0, 1024, 768 (1024 x 768)
dient Rect : 0, 0, 1024, 768 (1024 x 768)
See Also For Windows 3.1 and Windows 95, refer to HWND on page 106.

112 SoftICE Command Reference

SoftICE Commands

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT 1/0OPort

Input a value from an 1/O port.

I[size]l port

size
Value Description
B Byte
w Word
D DWORD
port Port address.

The | command in most cases does an actual 1/O instruction so it is showing the actual state
of the hardware port. In the case of virtualized ports, the actual data may not be the same as
the virtualized data that an application would see.

The only ports that SoftlCE does not do 1/0 on are the interrupt mask registers (Port 21 and
A1l). For those ports, SoftlCE shows the value that existed when SoftICE popped up.

Use the input from port commands to read and display a value from a hardware port. Input
can be done from byte, word, or dword ports. If you do not specify size, the default is B.

Performs an input from port 21, which is the mask register for interrupt controller one.
1 21

SoftICE Command Reference 113

SoftICE Commands

I1HERE

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Mode Control

Pop up on embedded INT 1 instructions.

I 1HERE [on | off]

Use the ILHERE command to specify that any embedded interrupt 1 bring up the SoftICE
screen. This feature is useful for stopping your program in a specific location. Before popping
up, SoftICE checks to see that there is really an INT 1 in the code. If there is not, SoftICE will
not pop up.

To use this feature, place an INT 1 into the code immediately before the location where you
want to stop. When the INT 1 occurs, it brings up the SoftICE screen. At this point, the
current EIP is the instruction after the INT 1 instruction.

If you do not specify a parameter, the current state of IIHERE displays.
The default is I1THERE off.

This command is useful when you are using an application debugging tool such as
BoundsChecker. Since these tools rely on INT 3's for breakpoint notifications, you should use
INT 1s in your code so that the tools do not become confused when your hardwired
interrupts occur.

For Windows 3.1 and Windows 95

VMM, the Windows memory management VxD, executes INT 1 instructions prior to
certain fatal exits. If you have ITHERE ON, you can trap these. The INT 1s generated by
VMM are most often caused by a page fault with the registers set up as follows:

e EAX=faulting address
 ESI points to an ASCII message

< EBP points to a CRS (Client Register Structure as defined in the DDK include file
VMM.INC).

Turns on I1THERE mode. Any INT 1s generated after this point bring up the SoftICE screen.
| 1HERE on

114 SoftICE Command Reference

SoftICE Commands

ISBHERE

Syntax

Use

Example

See Also

Windows 3.1, Windows 95, Windows NT Mode Control

Pop up on INT 3 instructions.

I3HERE [on | off]

Use the IBHERE command to specify that any interrupt 3 pop up SoftICE. This feature is
useful for stopping your program in a specific location.

To use this feature, place an INT 3 into your code immediately before the location where you
want to stop. When the INT 3 occurs, it brings up the SoftICE screen. At this point, the
current EIP is the instruction after the INT 3 instruction.

If you are developing a Windows program, the DebugBreak() Windows API routine
performsan INT 3.

If you do not specify a parameter, the current state of I3HERE displays.

Note: If you are using an application debugging tool such as the Visual C debugger or
NuMega’s BoundsChecker, you should place INT 1s in your code instead of INT 3s.
Refer to ILHERE on page 114.

Turns on I3HERE mode. Any INT 3s generated after this point cause SoftICE to pop up.
| 3HERE on

When the command I3HERE==0N, and you are using a level -3 debugger, such as
BoundsChecker, SoftICE traps on any INT 3 breakpoints installed by the level-3 debugger.
When this happens, set IBHERE==OFF, and use the GENINT command to reactivate the
breakpoint. This returns control to the level -3 debugger, and SoftICE does not trap further
INT 3s.

| 3HERE of f
GENNT 3

GENINT, ISBHERE, SET

SoftICE Command Reference 115

SoftICE Commands

IDT

Syntax

Use

Output

Windows 3.1, Windows 95, Windows NT System Information

Display the Interrupt Descriptor Table.

I DT [/ nterrupt-nunber]

interrupt-number Interrupt-number to display information

The IDT command displays the contents of the Interrupt Descriptor Table after reading the
IDT register to obtain its address.

The IDT command without parameters displays the IDT’s base address and limit, as well as
the contents of all entries in the table. If you specify an optional interrupt-number, only
information about that entry is displayed.

For Windows NT

Almost all interrupt handlers reside in NTOSKRNL, so it is very useful to have exports
loaded for it so that the handler names are displayed.

Note: NTOSKRNL must be the current symbol table (refer to TABLE on page 194) to view
symbol names.

Each line of the display contains the following information:
interrupt number 0 - OFFh (5Fh for Windows 3.1, Windows 95).

interrupt type One of the following:

Type Description

Cal | G32 32-bit Call Gate

Cal | GL6 16-bit Call Gate
TaskG Task Gate

TrapGl6 16-bit Trap Gate
TrapG32 32-hit Trap Gate

I nt G32 32-hit Interrupt Gate
I nt GL6 16-bit Interrupt Gate

address Selector:offset of the interrupt handler.

116 SoftICE Command Reference

SoftICE Commands

Example

selector's DPL Selector's descriptor privilege level (DPL), which is either 0, 1, 2 or 3.
present bit P or NP, indicating whether the entry is present or not present.
Owner+Offset For Windows 95 and Windows NT only: Symbol or owner name plus

the offset from that symbol or owner.

The following command shows partial output of the IDT command with no parameters:

10T

I nt Type Sel : O f set Attributes Synbol / Oaner
| DTbase=C000ABBC Li m t =02FF

0000 IntG32 0028: 0001200 DPL=0 P VMM 01)+0200
0001 IntG32 0028: 0001210 DPL=3 P VMM O01)+0210
0002 IntG32 0028: COOEEDFC DPL=0 P VTBS(01)+1004
0003 IntG2 0028: 0001220 DPL=3 P VMM 01)+0220
0004 IntG2 0028: 0001230 DPL=3 P VMM 01)+0230
0005 IntG32 0028: 0001240 DPL=3 P VMM O01)+0240
0006 IntG32 0028: V001250 DPL=0 P VMM 01)+0250
0007 IntG32 0028: (0001260 DPL=0 P VMM 01)+0260
0008 TaskG 0068: 00000000 DPL=0 P

0009 IntG2 0028: CV00126C DPL=0 P VMM 01)+026C
000A IntG2 0028: C000128C DPL=0 P VMM 01)+028C

The next command shows the contents of one entry in the IDT:
1brd

I nt Type Sel : O f set Attributes Synbol / Owmner
000D IntG2 0028: C00012BO DPL=0 P VMM 01)+02BO

SoftICE Command Reference

117

SoftICE Commands

IRP

Windows NT System Information
Display information about an 1/0O Request Packet (IRP).
Syntax | RP [/ rp-address]
irp-address Address of the start of the IRP structure to be displayed.
Use The IRP command displays the contents of the 1/0O Request Packet and the contents of

associated current 1/O stack located at the specified address. The command does not check for
the validity of the IRP structure being shown, so any address will be accepted by SoftICE as

an irp-address.

The IRP fields shown by SoftICE are not documented in their entirety here, as adequate
information about them can be found in NTDDK.H in the Windows NT DDK. A few fields
deserve special mention, however, since device driver writers find them particularly useful:

Flags
StackCount

CurrentLocation

Cancel

Tail.Overlay.
CurrentStackLoc

Cancel

118 SoftICE Command Reference

Flags used to define IRP attributes.

The number of stack locations that have been allocated for the IRP. A
common device driver bug is to access non-existent stack locations, so
this value may be useful in determining when this has occurred.

This number indicates which stack location is the current one for the
IRP. Again, this value, combined with the previous StackCount, can
be used to track down IRP stack-related bugs.

This boolean is set to TRUE if the IRP has been cancelled as a result
of an IRP cancellation call. This happens when the IRP’s result is no
longer needed so the IRP will not complete.

Address of current stack location. The contents of this stack location
are displayed after the IRP, as illustrated in the example for this
command.

This boolean is set to TRUE if the IRP has been cancelled as a result
of an IRP cancellation call. This happens when the IRP’s result is no
longer needed so the IRP will not complete.

SoftICE Commands

Example

These fields in the current stack location may be useful:

Major Function and
Minor Function

Device Object

File Object

Completion Rout

These fields indicate what type of request the IRP is being used for.
The major function is used in determining which request handler will
be called when an IRP is received by a device driver.

Pointer to the device object that the IRP is currently stationed at. In
other words, the IRP has been sent to, and is in the process of being
received by, the device driver owning the device object.

Pointer to the file object associated with the IRP. It can contain
additional information that serves as IRP parameters. For example, file
system drivers use the file object path name field to determine the
target file of a request.

This field is set when a driver sets a completion routine for an IRP
through the loSetCompletionRoutine call. Its value is the address of
the routine that will be called when a lower-level driver (associated
with a stack location one greater than the current one) completes
servicing of the IRP and signals that it has done so with
loCompleteRequest.

The following example shows the output for the IRP command:

1| RP eax

Ml Addr ess *

Fl ags

Associ atedl rp
&Thr eadLi stEntry
| oSt at us
Request or Mode
Pendi ngRet ur ned
St ackCount
Qurrent Locati on
Cancel

Cancel I rql
ApcEnvi r onrrent
Zoned

Userl osb *

User Event *
Overl ay

Cancel Routi ne *
UserBuffer *

Tai |l . Qverl ay

00000000

00000404 | RP_SYNCHRONQUS_API | | RP_CLCBE_CPERATI ON
00000000

FDBDOB18

00000000

00

Fal se

03

03

Fal se

00

00

True

FD8DOB20

FB11FB40

00000000 00000000
00000000

00000000

&Pevi ceQueueEntry : FDBDOB48

Thread *

FDBOA020

Auxi liaryBuffer * : 00000000

SoftICE Command Reference 119

SoftICE Commands

&listEntry : FD8D9B60
Qurrent St ackLoc * : FDB8DOBQD
QigFileject * : FDB19E08

Tail.Apc * . FD8©B48

Tai | . Conpl Key : 00000000

Qurrent St ackLocat i on:

Maj or Functi on ;12 |RP_MI_CLEANUP
M nor Functi on . 00

Control : 00

Fl ags : 00

Q hers : 00000000 00000000 00000000 00000000
Devi ce(hj ect * : FDB51E40

Fil eChj ect * : FDB19EO08

Compl eti onRout * : 00000000

Context * : 00000000

120 SoftICE Command Reference

SoftICE Commands

L DT Windows 3.1, Windows 95, Windows NT System Information

Display the Local Descriptor Table.

Syntax LDT [sel ect or]
selector Starting LDT selector to display.
Use The LDT command displays the contents of the Local Descriptor Table after reading its

location from the LDT register. If there is no LDT, an error message will be printed. If you
specify an optional selector, only information on that selector is displayed. If the starting
selector is a GDT selector (bit 2 is 0), the GDT displays rather than the LDT. The first line of
output contains the base address and limit of the LDT.

For Windows 95 and Windows NT

Even when there is no LDT, the LDT command can display an LDT you supply as a
command parameter. This optional parameter can be a GDT selector that represents an LDT.
You can locate selectors of type LDT with the GDT command.

For Windows NT

The LDT command is process specific and only works in processes that have an LDT. Use the
ADDR command to determine which processes contain LDTs. Use ADDR to switch to those
processes, then use the LDT command to examine their LDTs.

Output Each line of the display contains the following information:
selector value Lower two bits of this value reflect the descriptor privilege level.

selector type

Type Description

Codel6 16-bit code selector
Dat al6 16-bit data selector
Code32 32-bit code selector
Dat a32 32-bit data selector
Cal | G32 32-bit Call Gate selector
Cal | GL6 16-bit Call Gate selector

SoftICE Command Reference 121

SoftICE Commands

selector base
selector limit
selector DPL
present bit

segment attributes

Type Description

TaskG32 32-bit Task Gate selector
TaskGL6 16-bit Task Gate selector
Tr apG32 32-bit Trap Gate selector
Tr apGL6 16-bit Trap Gate selector
I nt G32 32-bit Interrupt Gate selector
I nt GL6 16-bit Interrupt Gate selector

Reserved Reserved selector

Linear base address of the selector.

Size of the selector.

Selector's descriptor privilege level (DPL), either 0, 1, 2 or 3.

P or NP, indicating whether the selector is present or not present.

One of the following:

Type Description

RW Data selector is readable and writable.
RO Data selector is read only.

RE Code selector is readable and executable.
EO Code selector is execute only.

B TSS's busy bit is set.

Example The following example shows sample output for the LDT command.
:LDT
Sel. Type Base Limt DPL Attributes
LDTbase=8008B000 Li m t =4FFF
0004 Reserved 00000000 00000000 O NP
000C Reserved 00000000 00000000 O NP
0087 Datal6 80001000 OOOQOFFF 3 P RW
008F Datal6 00847000 OOOOFFFF 3 P RW
0097 Datal6 0002DA80 0000021F 3 P RW
O09F Datal6 00099940 000029FF 3 P RW
00A7 Datal6 0001BACO O0OOOQOFF 3 P RW
OOAF Datal6 C11D9040 0000057F 3 P RW

122 SoftICE Command Reference

SoftICE Commands

L H EAP Windows 3.1, Windows 95, Windows NT System Information

Display the Windows local heap.

Syntax LHEAP [sel ector | nodul e- nane]
selector LDT data selector.
module-name Name of any 16-bit module.
Use The LHEAP command displays the data objects that a Windows program has allocated on

the local heap. If you do not specify a selector, the value of the current DS register is used. The
specified selector is usually the Windows program's data selector. To find this, use the HEAP
command on the Windows program you are interested in and look for an entry of type data.
Each selector that contains a local heap is marked with the tag LH.

If a module-name is entered, SoftICE uses the modules default data segment for the heap
walk.

For Windows 95 and Windows NT

To find all segments that contain a local heap, use the HEAP command with the -L option.

For Windows NT

The LHEAP command only works if the current process contains a WOW box.

Output For each local heap entry the following information displays:
offset 16-bit offset relative to the specified selector base address.
size Size of the heap entry in bytes.
type Type of entry. One of the following:
Type Description
FI X Fixed (not moveable)
MOV Moveable
FREE Available memory

SoftICE Command Reference 123

SoftICE Commands

handle

At the end of the list, the total amount of memory in the local heap displays.

Example
command:
LHEAP gdi
O fset Si ze
9302 0046
941E 0046
946A 0046
94B6 004E
950A 4A52
Used: 19. 3K
124 SoftICE Command Reference

Handle associated with each element. For fixed elements, the handle is
equal to the address that is returned from LocalAlloc(). For moveable
elements, the handle is the address that will be passed to LocalLock().

To display all local heap entries belonging to the GDI default local heap, use the following

Handl e
ODFA
0C52
40DA
0C56
OE52

SoftICE Commands

LINES

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Customization

Change the number of lines for the SoftICE display.

For Windows 3.1
LINES [25 | 43 | 50]

For Windows 95 and Windows NT
LINES [25 | 43| 50 | 60]

The LINES command changes SoftICE's character display mode. It allows different display
modes: 25-line, 43-line, 50-line, and 60-line mode. The 43-, 50-, and 60-line modes are only
valid on VGA display adapters.

Using LINES with no parameters displays the current state of LINES. The default number of
display lines is 25.

If you enter the ALTSCR command, SoftICE changes to 25-line mode automatically. If you
change back to a VGA display and want a larger line mode, enter the LINES command again.
To display in 50-line mode on a serial terminal, first place the console mode of the serial
terminal into 50-line mode using the DOS MODE command.

For Windows 95 and Windows NT

You can display 60 lines for single monitor debugging.

When debugging in serial mode, all line counts are supported for VGA displays.

To change the SoftICE display to 43-line mode if you have an EGA or VGA display, use the
following command:

LI NES 43

SoftICE Command Reference 125

SoftICE Commands

LOCALS

Syntax

Use

Output

Example

See Also

Windows 95, Windows NT Symbol/Source Command

Lists local variables from the current stack frame.

LOCALS

Use the LOCALS command to list local variables from the current stack frame to the
Command window.

The following information displays for each local symbol:
« Stack Offset
« Type definition
e Value, Data, or structure symbol ({...})

The type of local determines whether a value, data, or structure symbol ({...}) is displayed. If
the local is a pointer, the data it points to is displayed. If it is a structure, the structure symbol
is displayed. If the local is neither a pointer nor a structure, its value is displayed.

Hint: You can expand structures, arrays, and character strings to display their contents. Use
the WL command to display the Locals window, then double-click the item you want
to expand. Note that expandable items are delineated with a plus (+) mark.

The following example displays the local variables for the current stack frame:
1 LOCALS

[EBP-4] struct_BOUNCEDATA * pdb=0x0000013F <{...}>
[EBP+8] void * hWwhd=0x000006D8

TYPES, WL

126 SoftICE Command Reference

SoftICE Commands

M Windows 3.1, Windows 95, Windows NT Miscellaneous
Move data.
Syntax M source-address | | ength dest-address
source-address Start of address range to move.
length Length in bytes.
dest-address Start of destination address range.
Use The specified number of bytes are moved from the source-address to the dest-address.
Example Moves 2000h bytes (8KB) from memory location DS:1000h to ES:5000h.

M ds: 1000 | 2000 es: 5000

SoftICE Command Reference 127

SoftICE Commands

MACRO

Syntax

Use

Windows 95, Windows NT Customization

Define a new command that is a superset of SoftlICE commands.

MACRO [nacro- nane] | [*] | [= “ macro body”]

macro-name Case-insensitive, 3-8 character name for the macro being defined, or
the name of an existing macro.

macro-body Quoted string that contains a list of SoftlICE commands and
parameters separated by semi-colons ().

* Delete one or all defined macros.

= Define (or redefine) a macro.

The MACRO command is used to define new Macro commands that are supersets of existing
SoftlCE commands. Defined macros can be executed directly from the SoftlICE command
line. The MACRO command is also used to list, edit, or delete individual macros. Macros are
directly related to breakpoint actions, as breakpoint actions are simply macros that do not
have names, and can only be executed by the SoftlCE breakpoint engine.

If no options are provided, a list of all defined macros will be displayed, or if a macro-name is
specified, that macro will be inserted into the command buffer so that it can be edited.

When defining or redefining a macro, the following form of the macro command is used:

MACRO nacr o- nane = “ nacr o- body”

The macro-name parameter can be between 3 and 8 characters long, and may contain any
alphanumeric character or underscore (). If the macro-name parameter specifies an existing
macro, the existing macro will be redefined. The macro-name cannot be a duplicate of an
existing SoftlICE command. The macro-name must be followed by an equal sign “=", which
must be followed by the quoted string that defines the macro-body.

The macro-body parameter must be embedded between beginning and ending quotation
marks (“). The macro-body is made up of a collection of existing SoftICE commands, or
defined macros, separated by semi-colons. Each command may contain appropriate ‘literal’
parameters, or can use the form%-<parameter#>, where parameter# must be between 1 and 8.
When the macro is executed from the command line, any parameter references will expand
into the macro-body from the parameters specified when the command was executed. If you
need to embed a literal quote character () or a percent sign (%) within the macro body
precede the character with a backslash character (\). Because the backslash character is used for
escape sequences, to specify a literal backslash character, use two consecutive backslashes (\\).
The final command within the macro-body does not need to be terminated by a semi-colon.

128 SoftICE Command Reference

SoftICE Commands

Example

You can define macros in the SoftICE Loader using the same syntax described here. When
you load SoftICE, each macro definition is created and available for use. SoftICE displays a
message for each defined macro to remind you of it presence. Since macros consume memory,
you can set the maximum number of named and unnamed macros (that is, breakpoint
actions) that can be defined during a SoftICE session. The default value of 32 is also the
minimum value. The maximum value is 256.

Note: A macro-body cannot be empty. It must contain one or more non-white space
characters. A macro-body can execute other macros, or define another macro, or even a
breakpoint with a breakpoint action. A macro can even refer to itself, although
recursion of macros is not extremely useful because there is no programmatic way to
terminate the macro. Macros that use recursion execute up to the number of times that
SoftlCE permits (32 levels of recursion are supported), no more, and no less. Even
with this limitation, macro recursion, although crude, can be useful for walking nested
or linked data structures. To get a recursive macro to execute as you expect, you have to
devise clever macro definitions.

The following is an example of using the MACRO command without parameters or options:
: MACRO

XWHAT = "WHAT EAX; WHAT EBX; WHAT ECX; WHAT EDX; WHAT ESI; WHAT ED "
QPSS = "I 3HERE CFF; GENI NT 3"
1shot = "bpx eip do \"bc bpindex \""

Note: The name of the macro is listed to the left, and the macro body definition to the right.

The following are more examples of basic usage of the MACRO command:

: MACRO* Delete all named macros.
: MACRO oops * Delete the macro named oops.
: MACRO xwhat Edit the macro named xwhat.

Note: Because macros can be redefined at any time, when you use the edit form of the
MACRO command (MACRO macro-name) the macro definition will be placed in the
edit buffer so that it can be edited. If you do not wish to modify the macro, press ESC.
The existing macro will remain unchanged. If you modify the macro-body without
changing the macro name, the macro will be redefined (assuming the syntax is correct!)

The following is a simple example of a macro definition:
:MACRO help = “h”

SoftICE Command Reference 129

SoftICE Commands

The next example uses a literal parameter within the macro-body. Its usefulness is limited to
specific situations or values:

:MACRO hel p = “h exp”

In this example, the SoftICE H command is executed with the parameter EXP every time the
macro executes. This causes the help for the SoftICE EXP command to display.

This is a slightly more useful definition of the same macro:
: MACRO hel p= “hel p A"

In this example, an optional parameter was defined to pass to the SoftlCE H command. If the
command is executed with no parameters, the argument to the H command is empty, and the
macro performs exactly as the first definition; help for all commands is displayed. If the macro
executes with 1 parameter, the parameter is passed to the H command, and the help for the
command specified by parameter 1 is displayed. For execution of macros, all parameters are
considered optional, and any unused parameters are ignored.

The following are examples of legal macro definitions:

:MACRO gexp = “addr expl orer; query %" qexp
or

gexp 1 40000

: MACRO 1shot = “bpx %4 do \”bc bpindex\”” 1shot eip

or
1shot @sp

: MACRO ddt

“dd thread” ddt
:MACRO ddp = “dd process” ddp

MACRO thr = “thread % tid” thr
or
thr -x

The following are examples of illegal macro definitions, with an explanation and a corrected
example:

lllegal Definition; MACRO-dd—=—"dd—dat-aaddr™

Explanation: This is a duplication of a SoftICE command. SoftICE commands cannot be
redefined.

Corrected Example: MACRO dda = “dd dat aaddr”

130 SoftICE Command Reference

SoftICE Commands

lllegal Definition: MACRO-aa—="addr—94"
Explanation: The macro command name is too short. A macro name must be between 3 and

8 characters long.
Corrected Example: MACRO aaa = “addr %"

Illegal Definition: MACRO-pbsz—=2hi-byt e(hi-word(*({94-8))) << 5

Explanation: The macro body must be surrounded by quote characters (*).
Corrected Example: MACRO pbsz = “? hi byt e(hi word(*(%-8))) << 5"

lllegal Definition; MACRO-t-ag—=—“2* (9@~ 4)"

Explanation: The macro body references parameter %2 without referencing parameter %1.
You cannot reference parameter %n+1 without having referenced parameter %n.
Corrected Example: MACRO tag = “? *(%-4)"

SoftICE Command Reference 131

SoftICE Commands

M A P 3 2 Windows 3.1, Windows 95, Windows NT System Information

Display a memory map of all 32-bit modules currently loaded in memory.

Syntax For Windows 3.1
MAP32 [nodul e- name | nodul e- handl €]

module-name Windows module-name.

module-handle Base address of a module image.

For Windows 95 and Windows NT

MAP32 [nodul e- name | nodul e- handl e | addr ess]

module name Windows module-name.

module handle Base address of a module image.

address Any address that falls within an executable image.
Use MAP32 with no parameters lists information about all 32-bit modules.

If you specify either a module-name or module-handle as a parameter, only sections from the
module are shown. For each module, one line of data is printed for every section belonging to
the module.

Since the MAP32 command takes any address that falls within an executable image, an easy
way to see the memory map of the module that contains the current EIP is to enter:

MAP32 ei p

For Windows 95

No matter what process/context you are in, you see the same list of drivers because memory
above 2GB is globally mapped.

You see different lists of applications/DLLs because they are always private to an address
context.

132 SoftICE Command Reference

SoftICE Commands

Output

Example

For Windows NT

MAP32 lists kernel drivers as well as applications and DLLs that exist in the current process.
They can be distinguished in the map because drivers always occupy addresses above 2GB,
while applications and DLLs are always below 2GB.

Each line in MAP32’s output contains the following information:

Owner Module name.
Name Section name from the executable file.
Obj# Section number from the executable file.
Address Selector:offset address of the section.
Size Section’s size in bytes.
Type Type and attributes of the section, as follows:

Type Attributes

CCDE Code

| DATA Initialized Data

UDATA Uninitialized Data

RO Read Only

RW Read/Write

SHARED Object is shared

For Windows 3.1

The following example illustrates sample output for MAP32 executed on a Visual C module.

: MAP32 nsvert 10

Onner o) Nane oj #
MBVCRT10 . text 0001
MBVCRT10 . bss 0002
MSVCRT10 .rdata 0003

Addr ess Si ze Type
2197: 86C31000 00024A00 OCLE RO
219F: 86CA6000 00001A00 UDATA RW
219F: 86CAS000 00000200 | DATA RO

SoftICE Command Reference

133

SoftICE Commands

134

MSVCRT10
MSVCRT10
MSVCRT10
MBVCRT10

SoftICE Command Reference

.edata
.data
.idata

.reloc

0004
0005
0006
0007

219F: 86CA9000 00005Q00
219F: 86CAFO00 00006A00
219F: 86CB6000 00000A00
219F: 86CB7000 00001800

| DATA RO
| DATA RW
| DATA RW
| DATA RO

SoftICE Commands

MAPV86

Syntax

Use

Output

Windows 3.1, Windows 95, Windows NT System Information

Display the DOS memory map of the current Virtual Machine.

VAPV86 [addr ess]

address Segment:offset type address.

If no address parameter is specified, a map of the entire current virtual machine’s V86 address
space is displayed. Information about the area in the map where a certain address lies can be
obtained by specifying the address.

Pages of DOS VM memory may not be valid (not mapped in) when you enter the MAPV86
command. If this occurs, the output from the MAPV86 command will terminate with a
PAGE NOT PRESENT message. Often, just popping out of, and then back into, SoftICE
will result in those pages being mapped in.

A useful application of the MAPV86 command is in obtaining addresses to which a symbol
table must be aligned with the SYMLOC command. DOS programs that were started before
Windows will not automatically have their symbol information mapped to their location in
V86 memory. By obtaining the start of their static code segment (and adding 10h to it if the
program is a .EXE) with the MAPV6 command, and setting the symbol table alignment to
that value, source level debugging for these global DOS programs is possible.

For Windows NT

The MAPV86 command is process specific. You must be in an NTVDM process because
these are the only ones that contain V86 boxes. There is no global MSDOS in Windows NT.

For Windows 3.1 and Windows 95

The following summary information is displayed by the MAPV86 command:

VM ID Virtual machine (VM) ID. VM1 is the System VM.

VM handle 32-bit virtual machine handle.

CRS pointer VM’s 32-bit client register structure pointer.

VM address 32-bit linear address of the VM. This is the high linear address of the

virtual machine, which is also currently mapped to linear address O.

SoftICE Command Reference 135

SoftICE Commands

If the current CS:IP belongs to a MAPV86 entry, that line will be highlighted. Each line of
the MAPV86 display contains the following information:

Start Segment:offset start address of the component.
Length Length of the component in paragraphs.
Name Owner name of the component.
Example The following example illustrates how to use the MAPV86 command to display the entire
V86 map for the current VM:
- MAPV86

| D=01 Handl e=80441000 CRS Ptr=80013390 Li near =80C00000

Start Lengt h Narre

0000: 0000 0040 Interrupt Vector Table
0040: 0000 0030 ROM Bl G5 Vari abl es
0070: 0000 025D I/ O System

02CD: 0000 08E6 DS}

0BB5: 0012 0000 NUMEGA

0C8B: 0000 00OE8 SCFTI CE1

0D41: 0000 00B6 XIVBXXXX0

10D0: 0000 038F SMARTAAR

136 SoftICE Command Reference

SoftICE Commands

MOD

Syntax

Use

Output

For Windows 95 and
Windows NT, refer to
MOD on page 139.

Example

Windows 3.1 System Information

Display the Windows module list.

MDD [parti al - nane]

partial-name Prefix of the Windows module name.

This command displays the Windows module list in the Command window. A module is a
Windows application or DLL. All 16-bit modules will be displayed first, followed by all 32 bit
modules. If a partial name is specified, only those modules that begin with the name will be
displayed.

For each loaded module the following information is displayed:

module handle 16-bit handle that Windows assigns to each module. It is actually a
16-bit selector of the module database record which is similar in
format to the EXE header of the module file.

pe-header Selector:offset of the PE File header for that module.
Note: A value will only be displayed in this column for 32-bit modules.
module name Name specified in the .DEF file using the '"NAME' or 'LIBRARY"'
keyword.
file name Full path and file name of the module's executable file.

The following example shows abbreviated output of MOD to display all modules in the
system:

: MDD

hvod PEHeader Modul e Nane .EXE File Nane

0117 KERNEL C. \ WNDOAR\ SYSTEM KRNL386. EXE
0147 SYSTEM C.\ WNDOAB\ SYSTEM SYSTEM DRV
014F KEYBOARD C \ WNDOMNB\ SYSTEM KEYBQARD. DRV
0167 MOUSE C \ W NDOMB\ SYSTEM LMOUSE. DRV
o1cr D SPLAY C:\ W NDOANR\ SYSTEM VGA. DRV
01E/7 SOUND C.\ WNDOAR\ SYSTEM MVBOUND. DRV

SoftICE Command Reference 137

SoftICE Commands

See Also

138

hMbd
0237
0000
12C7
1FCr
1FDF

SoftICE Command Reference

PEHeader

2987: 80756080
2987: 86C20080
2987: 86C40080
2987: 86Cr0080

Modul e Nane
aow
VB2SKRNL
FREECELL
CARDS
w32sconb

.EXE File Nane

C \ W NDOMNB\ SYSTEM COMM DRV

C \ WNDOMB\ SYSTEM wi n32s\ wd2skrnl . dl |
C:\ WN32APP\ FREECELL\ FREECELL. EXE

C \ WN32APP\ FREECELL\ CARDS. dI |

C \ WNDOMB\ SYSTEM wi n32s\ wd2sconb. di |

For Windows 95 and Windows NT, refer to MOD on page 139.

SoftICE Commands

MOD

Syntax

Use

For Windows 3.1,
refer to MOD on
page 137.

Output

Windows 95 and Windows NT System Information

Display the Windows module list.

MDD [parti al - nane]

partial-name Prefix of the Windows module name

This command displays the Windows module list in the Command window. If a partial name
is specified, only modules that begin with the name will be displayed. SoftICE displays
modules in the following order:

 16-bit modules
e 32-bit driver modules (Windows NT only)
« 32-bit application modules

For Windows 95

The module list is global. A module is a Windows application or DLL. All modules have an
hMod value.

For Windows NT

The Mod command is process specific. All modules will be displayed that are visible within
the current process. This includes all 16-bit modules, all 32-bit modules, and all driver
modules. This means if you want to see specific modules, you must switch to the appropriate
address context before using the MOD command.

You can distinguish application modules from driver modules because application modules
have base addresses below 2GB (80000000h).

The 16-bit modules will be the only modules that have an hMod value.

For each loaded module the following information is displayed:

module handle 16-bit handle that Windows assigns to each module. It is actually a
16-bit selector of the module database record which is similar in
format to the EXE header of the module file.

base Base linear address of the executable file. This is also used as the
module handle for 32-bit executables.
Note: A value will only be displayed in this column for 32-bit modules.

SoftICE Command Reference 139

SoftICE Commands

pe-header Selector:offset of the PE File header for that module.
Note: A value will only be displayed in this column for 32-bit modules.
module name Name specified in the .DEF file using the ‘"NAME' or 'LIBRARY'
keyword.
file name Full path and file name of the module's executable file.
Example The following example is abbreviated output of MOD used on the NTVDM WOW process:
MDD
hvbd Base PEHeader Modul eNane File Nane
021F KERNEL D \ W NNT35\ SYSTEMB2\ KRNL386. EXE
020F SYSTEM D \ W NNT35\ SYSTEMB2\ SYSTEM DRV
01B7 KEYBQARD D \ W NNT35\ SYSTEMB2\ KEYBQARD. DRV
02B7 MOUSE D \ W NNT35\ SYSTEMB2\ MOUSE. DRV
02CF D SPLAY D \ W NNT35\ SYSTEMB2\ VGA. DRV
02E7 SAUND D \ W NNT35\ SYSTEMB2\ SOUND. DRV
0307 cow D \ W NNT35\ SYSTEMB2\ COMM DRV
031F USER D \ W NNT35\ SYSTEMB2\ USER EXE
0397 (€D D\ WNNT35\ SYSTEMB2\ DI . EXE
0347 WONEXEC D \ W NNT35\ SYSTEMB2\ WONEXEC. EXE
03DF SHELL D \ W NNT35\ SYSTEMB2\ SHELL. DLL
0C3F WANNET D \ W NNT35\ SYSTEMB2\ WAWARET. DRV
OBFF MVBYSTEM D \ W NNT35\ SYSTEMB2\ MVBYSTEM DLL
OBF7 TI MER D \ W NNT35\ SYSTEMB2\ TI MER. DRV
80100000 nt oskr nl \ W NNT35\ Syst enB82\ nt oskr nl . exe
80100080
80400000 hal \ WNNT35\ Syst enB82\ hal . dI |
80400080
80010000 at api at api . sys
80010080
80013000 SCSI PCRT \ W NNT35\ Syst enB2\ Dri ver s\ SCS| PCRT. SYS
80013080
80001000 At di sk At di sk. sys
80001080

140 SoftICE Command Reference

SoftICE Commands

hMbd Base

8001B000
8001B080

803AE000
803AE080

FBOO0000
FBO00080

FB010000
FB010080

FB020000
FB020080

FBO30000
FB030080

See Also

PEHeader Modul eNane
Scsi di sk

Fast f at

Fl oppy

Scsicdrm

Fs_Rec

Nul |

Fil e Nane
Scsi di sk. sys

Fastfat. sys

\ Syst enRoot \ Syst enB2\ Dri ver s\ Fl oppy. SYS

\ Syst enRoot \ Syst enB2\ Dri ver s\ Scsi cdrm SYS

\ Syst enRoot \ Syst enB2\ Dri ver s\ Fs_Rec. SYS

\ Syst enRoot \ Syst enB82\ Dri ver s\ Nul | . SYS

For Windows 3.1, refer to MOD on page 137.

SoftICE Command Reference 141

SoftICE Commands

NTCALL

Syntax

Use

Output

Windows NT System Information

Display NTOSKRNL calls used by NTDLL.

NTCALL

The NTCALL command displays all NTOSKRNL calls that are used by NTDLL. Many of
the API'sin NTDLL are nothing more than a wrapper for routines in NTOSKRNL, where
the real work is done at level 0. If you use SoftICE to step through one of these calls, you will
see that it immediately performs an INT 2Eh instruction. The INT 2Eh instructions serve as
the interface for transitions between a privilege level 3 API and a privilege level O routine that
actually implements the call.

When an INT 2Eh is executed, the EDX register is set to point at the parameter stack frame
for the API and the EAX register is set to the index number of the function. When the current
instruction pointer reference is an INT 2Eh instruction, the SoftICE disassembler will show
the address of the privilege level O routine that will be called when the INT 2Eh executes,
along with the number of dword parameters that are being passed in the stack frame pointed
at by EDX. If you wish to see the symbol name of the routine, you must load symbols for
NTOSKRNL and make sure that it is the current symbol table. Refer to TABLE on page 194.

The NTCALL command display all the level 0 API's available. For each API, the following
information displays:

Func. Hexadecimal index number of the function passed in EAX.
Address Selector:offset address of the start of the function.

Params Number of dword parameters passed to the function.

Name Either the symbolic name of the function, or the offset within

NTOSKRNL if no symbols are loaded.

An example of the disassembler output follows. Note how SoftICE indicates that the INT
2Eh instruction’s execution result in the NTOSKRNL function _NTSetEvent being called
with 2 dword parameters.

ntdl ! Nt Set Event

001B: 77F8918C MWV EAX, 00000095

001B: 77F89191 LEA EDX, [ESP+04]

001B: 77F89195 I NT 2E ; _N Set Event (par ans=02)
001B: 77F89197 RET 0008

142 SoftICE Command Reference

SoftICE Commands

Example The following example shows abbreviated output of the NTCALL command. It can be seen
from this listing that the NTOSKRNL routine, NTAccessCheck, is located at
8:80182B9ENh, that it is assigned a function identifier of 1, and that it takes 8 dword

parameters.

00 0008: 80160D42 parans=06 _N Accept Connect Port

01 0008: 80182B9E parans=08 _N AccessCheck

02 0008: 80184234 parans=0B _N AccessCheckAndAudit Al arm
03 0008: 80180CDA parans=06 _N Adj ust G oupsToken

04 0008: 80180868 parans=06 Nt Adj ust Pri vil egesToken

05 0008: 8017F9A6 parans=02 _N A ert ResuneThread

06 0008: 8017F95E parans=01 _Nt Al ert Thread

07 0008: 8014B0C4 parans=01 _N Al | ocat eLocal | yUni quel d
08 0008: 8014B39A parans=03 _N Al | ocat elui ds

SoftICE Command Reference 143

SoftICE Commands

O Windows 3.1, Windows 95, Windows NT 1/OPort

Output a value to an 1/0 port.

Syntax d si ze] port val ue

size

Value Description

B Byte
w Word
D Dword
port Port address.
value Byte, word, or dword value as specified by size.
Use Output to PORT commands are used to write a value to a hardware port. Output can be

done to byte, word, or dword ports. If no size is specified, the default is B.

All outs are done immediately to the hardware with the exception of the interrupt mask
registers (Port 21h & A1h). These do not take effect until the next time you exit from the
SoftICE screen.

Example This command performs an out to port 21, which unmasks all interrupts for interrupt
controller one.

0210

144 SoftICE Command Reference

SoftICE Commands

OBJDIR

Syntax

Use

Output

Example

Windows NT

System Information

Displays objects in a Windows NT Object Manager’s object directory.

CGBIDI R [obj ect - di r ect or y- nane]

Use the OBJDIR command to display the named objects within the Object Manager’s object
directory. Using OBJDIR with no parameters displays the named objects within the root
object directory. To list the objects in a subdirectory, enter the full object directory path.

The following information will be displayed by the OBJDIR command:

Object
ObjHdr
Name

Type

Address of the object body.

Address of the object header.

Name of the object.

Windows NT-defined data type of the object.

The following example is abbreviated output of OBJDIR listing objects in the Device object

directory:

GBJD R devi ce
Drectory of \Device at FDBE7F30

oj ect

FDBCC750
FDB9A030
FDB889150
FDB979F0
FDBCOEDO
FDBC5038
FDBCA040

Cbj Hdr
FDBOC728
FDB9A00S
FDB889128
FDB979C8
FDBCOEAS
FDBC5010
FDBCA018

Nane

Beep

Nw nkl px

Net bi os

I'p

Keyboar dd ass0
Vi deoO

Vi deol

Type

Devi ce
Devi ce
Devi ce
Devi ce
Devi ce
Devi ce

Devi ce

SoftICE Command Reference 145

SoftICE Commands

In the following example, the OBJDIR command is used with a specified object directory
pathname to list the objects in the \Device\HarddiskO subdirectory.

GBJD R \ devi ce\ har ddi skO
Directory of \Device\Harddi skO at FD8D38D0

oj ect Coj Hdr Narre Type
FDBD3730 FDBD3708 Partition0 Device
FDBD3410 FDBD33E8 Partitionl Device
FDBD32D0 FDBD32A8 Partition2 Device
3 hj ect(s)

See Also OBJTAB

146 SoftICE Command Reference

SoftICE Commands

OBJTAB

Syntax

Use

WindowsNT System Information

Display entries in the WIN32 user object-handle table.

CBITAB [handl e | obj ect-type-nanme | -h]

handle Obiject handle.

object-type-name One of the object-type-names, predefined by SoftICE:
FREE Free handl e
HND Hand
Menu Menu or Sub-nenu obj ect
Icon (or Osr) H CON or HOURSCR
DFRW Def er WndowPos dat a
HOCK Hook
TI NF Thread Info data

QUE (3.51 only) Message queue

CPD Call Proc Data thunk
ACCL Accel erator table
WSTN Wrkstation obj ect

DESK(3.51 only) Deskt op obj ect
DDE DDE String

-h Display list of valid object-type-names.

Use the OBJTAB command to display all entries in the master object-handle table created
and maintained by CSRSS, or to obtain information about a specific object or objects of a
certain type. The master object-handle table contains information for translating user object-
handles such as an hwnd or hCursor into the actual data that represents the object.

If you use OBJTAB without parameters, SoftICE lists the full contents of the master object-
handle table. If an object handle is specified, just that object is listed. If an object-type-name is
entered, all objects in the master object-handle table of that type are listed.

SoftICE Command Reference 147

SoftICE Commands

Output The following information is displayed by the OBJTAB command:
Object Pointer to the object’s data.
Type Type of the object.
Id Object’s type ID.
Handle Win32 handle value for the object.
Owner CSRSS specific instance data for the process or thread that owns the
object.
Flags Object’s flags.
Example The following is an abbreviated example using the OBJTAB command without parameters or
options:
: CBJTAB
oj ect Type Id Handl e Onner Fl ags
7F2DADA0 Hand 01 0004005C 7F2D65F88 00
7F2D85B8 Menu 02 0001005D 00298B40 00
7F2D4E58 Hwand 01 0003005E 7F2D5F88 00
7F2D1820 Queue 07 0002005F 00000000 00
O03E50EQ0 Accel. Table 09 00030060 00298B40 00
See Also OBJDIR

148 SoftICE Command Reference

SoftICE Commands

P

F10, F12 for P RET

Syntax

Use

Example

WinDows 3.1, WINDOWS 95, WINDOWS NT FLow CONTROL

Execute one program step.

P [RET]

The P command is a logical program step. In assembly mode, one instruction at the current
CS:EIP is executed unless the instruction is a call, interrupt, loop, or repeated string
instruction. In those cases, the entire routine or iteration is completed before control is
returned to SoftICE.

If RET is specified, SoftlCE will step until it finds a return or return from interrupt
instruction. This function works in either 16- or 32-bit code and also works in level O code.

The P command uses the single step flag for most instructions. For call, interrupt, loop, or
repeated string instructions, a one-time INT 3 style breakpoint execution breakpoint is used.

In source mode one source statement is executed. If the source statement involves calling
another procedure, the call is not followed. The called procedure is treated like a single
statement.

If the Register window is visible when SoftICE pops up, all registers that have been altered
since the P command was issued will be displayed with the bold video attribute. For call
instructions, this will show what registers a subroutine has not preserved.

In an unusually long procedure, there can be a noticeable delay when using the P RET
command, because SoftICE is single stepping every instruction.

For Windows 95 and Windows NT

The P command, by default, is thread specific. If the current EIP is executing in thread X,
SoftICE will not break until the program step occurs in thread X. This prevents the case of
Windows NT process switching or thread switching during the program step causing
execution to stop in a different thread or process than the one you were debugging. To change
this behavior, either use the SET command with the THREADP keyword or disable thread-
specific stepping in the troubleshooting SoftICE initialization settings.

To execute one program step, use the command:
P

SoftICE Command Reference 149

SoftICE Commands

PAGE

Syntax

Use

Windows 3.1, Windows 95, Windows NT System Information

Display page table information.

PACE [address [L I ength]]

address Virtual address, segment:offset address, or selector:offset address that
you want to know page table information about, including the virtual
and physical address.

length Number of pages to display.

The PAGE command can be used to list the contents of the current page directory or the
contents of individual page table entries.

Note: Multiple page directories are used only by Windows NT.

In the x86 architecture, a page directory contains 1024 4-byte entries, where an entry specifies
the location and attributes of a page table that is used to map a range of memory related to the
entry’s position in the directory. (These ranges are shown on the far right in the PAGE
command’s output of the page directory.)

Each entry represents the location and attributes of a specific page within the memory range
mapped by the page table. An x86 processor page is 4KB in size, so a page table maps
4KB/page * 1024 entries = 4MB of memory, and the page directory maps up to 4MB/page
table * 1024 entries = 4GB of memory.

NT 4.0 uses the 4 MB page feature of the Pentium/Pentium Pro processors. NTOSKRNL,
HAL, and all boot drivers are mapped into a 4 MB page starting at 2 GB (80000000h).

When the address parameter is specified, information about the page table entry that maps
the address is shown. This includes the following:

< The linear virtual address of the start of the page mapped by the entry.
» The physical address that corresponds to the start of the page mapped by the entry.

« The page table entry attributes of the page. This information corresponds directly to
processor defined attributes. Page table attributes are represented by bits that indicate
whether or not the entry is valid, the page is dirty or has been accessed, whether its a
supervisor or user-mode page, and its access protections. Only bit attributes that are set
are shown by SoftICE.

e The page type. This information is interpreted from the Windows-defined bit field in the
page table entry and the types displayed by SoftICE correspond to Windows definitions.

150 SoftICE Command Reference

SoftICE Commands

Output

Use the length parameter with the address parameter to list information about a range of
consecutive page table entries. It should be noted that the PAGE command will not cross page
table boundaries when listing a range. This means that a second PAGE command must be
used to list the pages starting where the first listing stopped, in the case that fewer entries are
listed than you specified.

If no parameters are specified, the PAGE command shows the contents of the current page
directory. Each line listed represents 4MB of linear address space. The first line shows the
physical and linear address of the page directory. Each following line displays the information
in each page directory entry. The data shown for each entry is the same as is described above
for individual page table entries, however, in this output addresses represent the locations of
page tables rather than pages.

The following information is displayed by the PAGE command:

physical address If a page directory is being displayed then this is the physical address
of the page table that a page directory entry refers to. Each page
directory entry references one page table which controls 4MB of
memory.

If an address parameter is entered so that specific pages are displayed,
then this is the physical address that corresponds to the start of a page.

linear address For Windows 3.1 and Windows 95 only: If the page directory is being
displayed then this is the virtual address of a page table. This is the
address you would use in SoftICE to display the page table with the D
command.

If specific pages are being displayed, this is the virtual address of a
page. If a length was entered then this is the virtual address of the start
of each page.

attribute This is the attribute of the page directory or page table entry. The valid
attributes are, as follows:

Windows 3.1, Windows

95, and Windows NT Windows NT Only

P Present S Supervisor

D Dirty RW Read/Write

A Accessed 4M 4 MB page
(NT 4.0 only)

u User

R Read Only

NP Not Present

SoftICE Command Reference 151

SoftICE Commands

type For Windows 3.1 and Windows 95 only: Each page directory entry
has a three-bit field that can be used by the operating system to classify
page tables. Windows classifies page tables into the following six

categories:
System Private
Instance Relock
VM Hooked

If a page is marked Not Present, then all that is displayed is NP followed by the dword
contents of the page table entry.

Example For Windows 3.1 and Windows 95

152

PAGE with no parameters displays page directory information. The following is a sample
PAGE command output:

PAGE
Page Directory Physi cal =002B6000 Li near =006B600

Physi cal Linear Attributes Type Li near Address Range
002B7000 006B7000 P U System 00000000- 003FFFFF
00109000 00509000 P A U System 00400000- 007FFFFF
0010A000 0050A000 P U System 00800000- 00BFFFFF
0010B000 0050B000 P U System 000D0000- OOFFFFFF
00100000 0050000 P U System 01000000- 013FFFFF
002B8000 006B8000 P U System 80000000- 803FFFFF
00106000 00506000 P A U System 80400000- 807FFFFF
00107000 00507000 P U System 80800000- 80BFFFFF
00108000 00508000 P U System 80000000- 80OFFFFFF
002B7000 006B7000 P A U System 81000000- 813FFFFF

SoftICE Command Reference

SoftICE Commands

PAGE with an address specified displays the page table entry that corresponds to that address.
In this example, three page table entries are shown starting with the page table entry that
corresponds to address 00106018. Notice that when the length parameter is specified, the
linear address is truncated to the base address of the memory page that contains address.

PAGE 00106018 | 3

Li near Physical Attributes Type
00106000 00006000 P u w
00107000 00007000 P u W
00108000 00008000 P u W

In this example PAGE can be used to find both the virtual and physical address of
selector:offset address.

PAGE #585: 263C

Li near Physical Attributes Type
0004A89C 00218442 P U Instance

For Windows NT

When the Page command displays information on either PTEs or PDEs for NT 4.0, 4 MB
pages are indicated by a pneumonic 4M in the Attributes field. The following sample output
shows the region starting at 2 GB.

: PAGE

Page Directory Physi cal =00030000

Physi cal Attributes Li near Address Range
00000000 P A S RW4M 80000000 - 803FFFFF
00400000 P A S RW4M 80400000 - 807FFFFF
00800000 P A S RW4M 80800000 - 80BFFFFF
00G00000 P A S RW4M 80Q00000 - 8OFFFFFF
01034000 P A S RW4M 81000000 - 813FFFFF

SoftICE Command Reference 153

SoftICE Commands

The following example is a partial listing of output from the PAGE command being executed
without parameters on Windows NT 3.51 so that the page directory contents are printed.

1 PACGE

Page Directory Physi cal =00030000

Physi cal Attributes Linear Address Range
00380000 P A URW 00000000 - OO3FFFFF
00611000 P AURW 77000000 - 77FFFFFF
00610000 P AURW 7FQ0000 - 7FFFFFFF
00032000 P A SRW 80000000 - 803FFFFF
00034000 P A S RW 80400000 - 807FFFFF
00035000 P A SRW 80800000 - 80BFFFFF
00033000 P A SRW 80000000 - 80FFFFFF
00030000 P A SRW 000000 - QO3FFFFF
00040000 P ASRW 400000 - QO7FFFFF
00001000 P ASRW Q0000 - QOFFFFFF

Here is an example of the PAGE command being used to display the attributes and addresses
of the page that instructions are currently being executed from.

:PACE eip

Li near Physi cal Attributes
80404292 00404292 P DA SRW

154 SoftICE Command Reference

SoftICE Commands

PAUSE

Syntax

Use

Example

See Also

Windows 3.1, Windows 95, Windows NT Customization

Pause after each screen.

PAUSE [on | of f]

The PAUSE command controls screen pause at the end of each page. If PAUSE is on, you are
prompted to press any key before information scrolls off the Command window. The prompt
displays in the status line at the bottom of the Command window.

If you do not specify a parameter, the current state of PAUSE displays.
The default is PAUSE on.

The following command specifies that the subsequent Command window display will not
automatically scroll off the screen. You are prompted to press a key before information scrolls
off the screen.

PAUSE on

SET

SoftICE Command Reference 155

SoftICE Commands

P C I Windows 95, Windows NT System Information

Dump the configuration registers for each PCI device in the system.
Syntax PQ

Use The PCI command dumps the registers for each PCI device in the system. Do not use this
command on non-PCl systems. Many of the entries are self-explanatory, but some are not.
Consult the PCI specification for more information about this output.

Example The following example illustrates a partial sample output for the PCI command:
‘PA

Bus 00 Device 00 Function00
Vendor: 8086 Intel
Device: 1237
Revision: 02
Device class: 06 Bridge device
Device subclass: 00 Host bridge
Device sub-subclass: 00
Interrupt line: 00Interrupt pin: 00 Min_Gnt: 00 MaxLat: 00

Cache line size: 00 Latency timer: 40 Header type: 00BIST: 00
1/0:0 Mem:1 BusMAST:1 Special:0 Memlinv:0
Parity:0 Wait:0 SERR:1 Back2Back:0 Snoop:0

Bus 00 Device 07 Function00
Vendor: 8086 Intel
Device: 7000
Revision: 01
Device class: 06 Bridge device
Device subclass: 01 ISA bridge
Device sub-subclass: 00
Interrupt line: 00Interrupt pin: 00 Min_Gnt: 00 MaxLat: 00

Cache line size: 00 Latency timer: 00 Header type: 80BIST: 00
1/0:1 Mem:1 BusMAST:1 Special:l Memlinv:0
Parity:0 Wait:0 SERR:0 Back2Back:0 Snoop:0

156 SoftICE Command Reference

SoftICE Commands

PEEK

Syntax

Use

Example

See Also

Windows 95, Windows NT Display/Change Memory
Read from physical memory.
PEEK[si ze] address
size B (byte), W (word), or D (dword). Size defaults to B.

address Physical memory address.

PEEK displays the byte, word, or dword at a given physical memory location. PEEK is useful

for reading memory-mapped 1/O registers.

The following example displays the dword at physical address FF000000:

PEEKD FFO00000

PAGE, PHYS, POKE

SoftICE Command Reference

157

SoftICE Commands

PHYS

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT System Information

Display all virtual addresses that correspond to a physical address.

PHYS physi cal - addr ess

physical-address Memory address that the x86 generates after a virtual address has been
translated by its paging unit. It is the address that appears on the
computer's BUS, and is important when dealing with memory-
mapped hardware devices such as video memory.

Windows uses x86 virtual addressing support to define a relationship between virtual
addresses, used by all system and user code, and physical addresses that are used by the
underlying hardware. In many cases a physical address range may appear in more than one
page table entry, and therefore more than one virtual address range.

SoftICE does not accept physical addresses in expressions. To view the contents of physical
memory you must use the PHYS command to obtain linear addresses that can be used in
expressions.

For Windows 95 and Windows NT

The PHYS command is specific to the current address context. It searches the Page Tables and
Page Directory associated with the current SoftlCE address context.

Physical address AO0OOh is the start of VGA video memory. Video memory often shows up in
multiple virtual address in Windows. In this example there are three different virtual addresses
that correspond to physical AO00O as shown:

: PHYS a0000

000A0000
004A0000
80CAD000

158 SoftICE Command Reference

SoftICE Commands

POKE

Syntax

Use

Example

See Also

Windows 95, Windows NT Display/Change Memory

Write to physical memory

PCOKE[si ze] address val ue

size B (byte), W (word), or D (dword). Size defaults to B.
address Physical memory address.
value Value to write to memory.

POKE writes a byte, word, or dword value to a given physical memory location. POKE is
useful for writing to memory-mapped 1/O registers.

The following example writes the dword value 0x12345678 to physical address FFO00000:
PCKED FFO00000 12345678

PAGE, PEEK, PHYS

SoftICE Command Reference 159

SoftICE Commands

Print
Screen
Key

Syntax

Use

See Also

Windows 3.1, Windows 95, Windows NT Customization

Print contents of screen.

PRINT SCREEN key

Pressing PRINT SCREEN dumps all the information from the SoftICE screen to your printer.
By default, the printer port is LPT1. Use the PRN command to change your printer port.
Since SoftlCE accesses the hardware directly for all of its I/O, Print Screen works only on
printers connected directly to a COM or LPT port. It does not work on network printers.

If you do not want to dump to a printer, choose Save SoftICE History from the File menu in
the SoftICE Loader to write the SoftlCE command line window history to a file.
For Windows 95 and Windows NT

From a DOS VM, use the DLOG.EXE utility to log the SoftiICE Command window
information.

PRN

160 SoftICE Command Reference

SoftICE Commands

P R N Windows 3.1, Windows 95, Windows NT Customization

Set printer output port.

Syntax PRN [ptx | conx]
X Decimal number between 1 and 2 for LPT, or between 1 and 4 for
COM.
Use The PRN command allows you to send output from Print Screen to a different printer port.

If no parameters are supplied, PRN displays the currently assigned printer port.

Example This command causes Print Screen output to go to the COML1 port.
PRN coni

SoftICE Command Reference 161

SoftICE Commands

P R O C Windows 95, Windows NT System Information

Display summary information about any or all processes in the system.

Syntax For Windows 95
PRCC [-x0] [taskK]

For Windows NT
PROC [[-xon] process-type | thread-type]

-eXtended Display extended information for each thread.
-Objects Display list of objects in processes handle table.
-Memory Display information about the memory usage of a process.
task Task name.
process-type Process handle, process ID, or process name.
thread-type Thread handle or thread ID.
Use If you specify PROC with no options, summary information is presented for one or all

processes in the system. The information the -Memory option provides is also included when
you specify the -eXtended option for Windows NT. It is provided for convenience, because
the amount of extended information displayed is quite large.

For all process (and thread) times, as well as process memory information, SoftICE uses raw
values from within the OS data structures without performing calculations to convert them
into standardized units.

The -Object option displays the object pointer, the object handle, and the object type for
every object in the processes object handle table. Because object information is allocated from
the systems pageable pool, the objects type name will not always be available. In this case,
question marks (???) are displayed.

162 SoftICE Command Reference

SoftICE Commands

Output

For Windows 95

For each process the following summary information is provided:

Process
pProcess
Process ID
Threads
Context
DefHeap
DebuggeeCB

For Windows NT

Task name.

Pointer to process database (pdb).
The Ring 3 ID of the process.
Number of threads the process owns.
Address context.

Default heap.

Debuggee context block.

For each process the following summary information is provided:

Process
KPEB
PID
Threads
Priority
User Time

Krnl Time

Status

Process name.

Address of the Kernel Process Environment Block.

Process ID.

Number of threads the process owns.

Base priority of the process .

Relative amount of time the process spent executing code at user level.

Relative amount of time the process spent executing code at the kernel
level.

Current status of the process:

« Running: The process is currently running.
« Ready: The process is in a ready to run state.
< Idle: The process is inactive.

« Swapped: The process is inactive, and its address space has been
deleted.

e Transition: The process is currently between states.
e Terminating: The process is terminating.

SoftICE Command Reference 163

SoftICE Commands

Example

164

For Windows 95

This example lists all the processes in the system.

: PROCC

Process
W nwor d
&di deno
Loader 32
Expl or er
Mor exe
MSGSRV32
KERNEL 32

pProcess
8156ACA3
81569F04
8156630C
81561400
8155DFA4
81550018
8165A31C

Processl D Threads
00000001
00000001
00000001
00000002
00000002
00000001
FFFCF87A3 00000004

FFFCB817
FFFOBBBB
FFFCA7B3
FFFC307F
FFFFFB1B
FFFFF4A7

This example shows extended information for GDIDEMO:

: PROC -x gdi deno
Process Information for Gdi deno at 81569F04

Type:

pEvent :

Def aul t Heap:
Fl ags:

pPSP:

Thr eads:

ROt hr eads:
MFVi ews:
Par ent PDB:
DebuggeeCB:
&crt LoadLock:
Pr oc DWORDO:
TopExFilter:
HHandl eBl ks:
WENv Sel :
UTSt at e:

SoftICE Command Reference

00000005
81569FC8
00410000
00000000
0001A1A0
0001

0001

00000000
8156630C
00000000
81569F64
00003734
00000000
0051000C
1987

0000

Ref Count :
Ter nt at us:
MenCont ext :

PSPSel ect or :
Thr Not Term
HeapHandl e:
pEDB:

MCDREF! i st :
LHFr eeHead:
pConsol e:
ProcQ oup:

PriorityBase:

Unknown5:
WEr r or Mode:

00000002
00000103
C1033E38

26E7

0001

8155B000
8156A448
8156ABB0
00000000
00000000
8156630C
00000008
00000000
0000

Cont ext

C10474D4
Cl033E38
C10476D0
Cl04577C
C1043340
C1041E28
C10DOEDC

Def Heap

00400000
00410000
00470000
00440000
00510000
00400000
00640000

Unknownl:
Unknown2:

MTEl ndex:
Unknown3:
K16TDB:
pHandl eTabl e:
Threadl i st:
Initial ROID
Unknown4:

Par ent MCDREF:
Heapownl i st :
pConPr ovi der :
pEvt LdFi ni sh

DebuggeeCB
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000

0019

00000000
2816

8156A2Q0
81569FE8
00000000
Q@07757C
8156ABB0
00650000
00000000
8156A2A0

SoftICE Commands

Envi ronrent :
CommandLi ne:
QurrentDir:
Start upl nfo:
hSt dError:
Br eakType:

Br eakThr eadl d:

Environment Database

00520020 Unknown1:

8156A500 C.\ PROJECTS\ (DI DEMD Gdi deno. exe

8156A524 C \ PROJECTS\ GOl DEMD

8156A53C hstdl n:

FFFFFFFF Unknown2:
00000000 BreakSem
00000000 BrkHandl ers:

00000000

FFFFFFFF hStdQut : FFFFFFFF
00000001 | nheritCon 00000000
00000000 BreakEvent: 00000000
00000000

This example shows a partial listing of the objects in Kernel32:

:PROC -0 kernel 32

Handl e bj ect

8165A32C
8155BFFC
C103E3M
COFFEOEOQ
QOFFE22C
COFF1058
815501C
8155CCE4
8155CD5C
8155CD8C
81550008
C1041004
81550870

U O W > © 0o ~N o o N~ w N R

Type

Process

Event

Menory Mapped file
Menory Mapped file
Menory Mapped file
Menory Mapped file
Event

Event

Event

Thr ead

Event

Menory Mapped file

Event

SoftICE Command Reference 165

SoftICE Commands

For Windows NT

The following is an example using the PROC command without parameters:

: PRCC

Process KPEB Pl D Threads Pri User Kr nl St at us
Ti me Ti me

System FDBE0D020 2 14 00000000 00001A48 Ready

sNss FD8B9020 13 6 00000022 00000022 Swapped

CcSrss FD8B3DD 1F 12 00B416C5 00049CAE Ready

00000028 00000072 Idle
0000018E 0000055A Idle
0000001B 00000058 Idle
000000AB 000000BD Idle
00000004 0000000C Idle

wi nl ogon FDBAD020 19 2
servi ces FDBA6880 28 B
| sass FDBA4020 2A C
spool ss FDB7ACAO 43 6
nddeagnt FD872780 4A 1
*ntvdm FDB6DDQX0 50 6 00125B98 0003QOBE Runni ng

3 00000024 0000008A Idle

3 000002DE 00000447 Ready

1

00000000 00135003 Ready

scm FDB5B300 5D
Expl orer FDB850020 60
Idle 8016A9E0 O

O U ® © o o © © g U w

Note: The process that was active when SoftlCE popped up will be highlighted. The
currently active process/address context within SoftICE will be indicated by an asterisk

(*)-

166 SoftICE Command Reference

SoftICE Commands

The following is an example of using the -eXtended option for a specific process, in this case
Explorer:

1 PROC -x expl orer
Ext ended Process Infornation for Explorer(60)

KPEB: FD850020 PI D 60 Parent: Unknown(48)

Base Pri: D MemPri: 0 Quantum 2

Usage Ont: 1 Wn Ver: 4.00 Err. Mde: 0

St at us: Ready

Processor: 00000000 Affinity: 1

Page Directory: 011CA000 LDT Base: 00000000 LDT Limt: 0000
Kernel Tine: 00000447 User Tine: 000002DE

Oeate Tine: 01BB10646E2DBE9O

Exit Tine: 0000000000000000

Vad Root : FDB42E28 MRU Vad: FDB42E28 Enpty Vad: FDB823D08
DebugPort : 00000000 ExceptPort: E118B040 SE token: E1240450
Spi nLock: 00000000 HUPEB: 00000004 UPEB: 7FFDF0O00
For kl nProgress: FALSE Thr ead: 00000000(0)

Process Lock: 00000001 Owner: 00000000(0)

Copy Mem Lock: 00000000 Owner: 00000000(0)

Locked Pages: 00000000 ProtoPTEs: 000000DD Mbdified Pages: O00000OE4

Privat e Pages: 0000014F Virt Size: 013F8000 Peak Virt S ze: 01894000
---- Wrking Set Information ----

Updat e Ti ne: 01BB11D0D7B299C0

Dat a: Q0502000 Tabl e: Q0502470

Pages: 00000879 Faults: 00000899 Peak Size: 00000374

Si ze: 000002AF M ni num 00000032 Maxi num 00000159
---- Non Pageabl e Pool Statistics ----

Quot a Usage: 00000E78 Peak Usage: 00001238

Inherited Usage: 00000093 Peak Usage: 00056555 Limt: 00080000
---- Pageabl e Pool Statistics ----

Quot a Usage: 00003127 Peak Usage: 00004195

I nherited Usage: 00000000 Peak Usage: 00004768 Linit: 000009CA
---- Pagefile Statistics ----

Quot a Usage: 00000151 Peak Usage: 0000016E

Inherited Wsage: FFFFFFFF Peak Usage: 00000151 Limt: 00000000

---- Handl e Table Information ----

Handl e Tabl e: E10CESE8 Handl e Array: E1265D48 Entries: 50

SoftICE Command Reference 167

SoftICE Commands

Q U E RY Windows 95, Windows NT System Information
Display the virtual address map of a process.

Syntax QUERY [[-x] address] | [process-type]

-X Shows the mapping for a specific linear address within every context
where it is valid.

address Linear address to query.

process-type Expression that can be interpreted as a process.

Use The QUERY command displays a map of a single process’s virtual address space or the
mapping for a specific linear address. If no parameter is specified, QUERY displays the map of
the current process. If a process parameter is specified, QUERY displays information about
each address range in the process.

Output For Windows 95

Under Windows 95, the QUERY command displays the following information:

Base

AllocBase

AllocProtect

Size

State

168 SoftICE Command Reference

Pointer to the base address of the region of pages.

Pointer to the base address of a range of pages allocated by the
VirtualAlloc function that contains the base address in the Base
column.

Access protection assigned when the region was initially allocated.

Size, in bytes, of the region starting at the base address in which all
pages have the same attributes.

State of the pages in the region : Commit, Free, or Reserve.

e Commit — Committed pages for which physical storage was
allocated

« Free — Free pages not accessible to the calling process and
available to be allocated. AllocBase, AllocProtect, Protect, and
Owner are undefined.

» Reserve — Reserved pages. A range of the process’s virtual address
space is reserved, but physical storage is not allocated. Current
Access Protection (Protect) is undefined.

SoftICE Commands

Protect Current Access protection.
Owner Owner of the region.
Context Address context.

For Windows NT

The QUERY command displays the following information:

Context Address context.

Address Range Start and end address of the linear range.

Flags Flags from the node structure.

MMCI Pointer to the memory management structure.

PTE Structure that contains the ProtoPTEs for the address range.

Name Additional information about the range. This includes the following:

Memory mapped files will show the name of the mapped file.
Executable modules will show the file name of the DLL or EXE.
Stacks will be displayed as STACK(thread ID).

Thread information blocks will be displayed as TIB(thread ID).

Any address that the WHAT command can identify may also
appear.

SoftICE Command Reference 169

SoftICE Commands

Example Windows 95

The following example uses the QUERY command with no parameters to display a partial
listing of the map for the current process, GDIDEMO:

QUERY

Base AlocBase AllocProt Size State Protect Owner

0 0 0 400000 Free NA

400000 400000 1 7000 Cormmt RO G DEMD
407000 400000 1 2000 Commit RW G DEMD
409000 400000 1 2000 Commit RO G DEMD
40B000 400000 1 5000 Reserve NA G DEMD
410000 410000 1 1000 Commt RW Heap 32
411000 410000 1 FFOOO Reserve NA Heap 32
510000 410000 1 1000 Commit RW Heap 32
511000 410000 1 FOOO Reserve NA Heap 32
520000 520000 4 1000 Commit RW

521000 520000 4 FOOO Reserve NA

The following example shows every context where base address 416000 is valid:

QUERY -x 416000

Base A locBase AllocProt Size State Protect Owner Cont ext

416000 400000 1 F1000 Reserve NA KERNEL 32
416000 400000 1 E9000 Reserve NA Heap 32 MBGSRV32
416000 400000 1 D000 Commit RO EXPLORER Expl or er
416000 410000 1 F9000 Reserve NA Heap 32 WNFILE
416000 400000 1 2000 Commt RO CONSCLE Consol e
416000 400000 1 E9000 Reserve NA Heap 32 W NCLDAP
416000 410000 0 EAOO0 Free NA Mor exe

416000 410000 1 FADOO Reserve NA Heap 32 Spool 32

170 SoftICE Command Reference

SoftICE Commands

The following example shows a partial listing of the virtual address map for Explorer:
QUERY EXPLCRER

Base Al ocBase AllocProt Size State Prot ect Onner

0 0 0 400000 Free NA

400000 400000 1 23000 GCommit RO EXPLCRER
423000 400000 1 1000 Conmit RW EXPLCRER
424000 400000 1 11000 Conmmit RO EXPLCRER
435000 400000 1 BOOO Reserve NA EXPLCRER
440000 440000 1 9000 Commt RW Heap32
449000 440000 1 F7000 Reserve NA Heap32
540000 440000 1 1000 Commit RW Heap32
541000 440000 1 FO00 Reserve NA Heap32
550000 550000 4 1000 Commit RW

551000 550000 4 FOOO Reserve NA

560000 560000 1 106000 Reserve NA

Windows NT

The following example uses the QUERY command to map a specific linear address for
Windows NT:

: QUERY 7f 2d0123
Cont ext Address Range Fl ags Ml PTE Narre
CSrss 7F2D0000- 7F5CFFFF 06000000 FDBAC128 E1191068 Heap #07

SoftICE Command Reference 171

SoftICE Commands

The following example uses the QUERY command to list the address map of the
PROGMAN process for Windows NT:

: QUERY pr ogman

jquery prognan
Addr ess Range

00010000- 00010FFF
00020000- 00020FFF
00030000- 0012FFFF
00130000- 00130FFF
00140000- 0023FFFF
00240000- 0024FFFF
00250000- 00258FFF
00260000- 0026 DFFF
00270000- 002BOFFF
00200000- 002Q0FFF
002D0000- 002DFFFF
002E0000- 0035FFFF
00360000- 00360FFF
00370000- 0046FFFF
00470000- 0047FFFF
00480000- 00481FFF
01A00000- 01A30FFF
77DEQ000- 77DEFFFF
77E20000- 77E4ABFFF
77E50000- 77E54FFF
77E60000- 77E9BFFF
77EA0000- 77ED7FFF
77EEQ000- 77F12FFF
77F20000- 77F73FFF
77F80000- 77FCDFFF
7F2D0000- 7F5CFFFF
7F5F0000- 7F7EFFFF
7FF70000- 7FFAFFFF
7FFB0000- 7FFD3FFF
7FFDDO00- 7FFDDFFF
7FFDEOQO- 7FFDEFFF
7FFDFO00- 7FFDFFFF

172 SoftICE Command Reference

Fl ags

4000001
4000001
84000004
4000001
8400002D
04000000
01800000
01800000
01800000
01800000
04000000
84000001
4000001
84000003
04000000
01800000
07300005
07300003
07300007
07300002
07300003
07300003
07300002
07300003
07300005
03400000
03400000
84000001
01600000
4000001
4000001
4000001

Ml

FF0960C8
FFOES088
FFOE7F68
FFOE7CG68
FFOE7AES
FFO9F3C8

FFODF4ES
FFOE7DES
FFO97AC8
FFOFC008
FFOFBAOS
FFOFADCS
FFOFB728
FFOFCEO8
FFOFD868
FFOEELA8
FFOFDB48
FFOE2Q08
FFOESEA8

FF116288

PTE

E1249948
E11B9068
E11BBD88
E11B6688
E11BBA0O8
E1249E88

E124AAA8
E110C6E8
E1246448
E1108928
E1110A08
E1103EE8
E1110C48
E11048C8
E110F608
E110C768
E1101068
E11C3068
E11B77E8

E1000188

STACK(6E)

Heap #01
Heap #02

uni code. nl s
locale.nls
sortkey.nls
sortthls.nls

STACK(2E)

ctype.nls
pr ognan. exe
shel | 32. dl
advapi 32. dl |
rpcltcl.dl
rpcrt4.dl
user 32. dl
gdi 32. dI

ker nel 32. dI
ntdl|.dl
Heap #05

Ansi Code Page

TI B(2E)

Tl B(6E)

SubSyst em Process

SoftICE Commands

R Windows 3.1, Windows 95, Windows NT Display/Change Memory

Display or change the register values.

Syntax For Windows 3.1

R [regi ster-nane [[=] val ue]]

For Windows 95 and Windows NT

R [-d | register-nane | register-nanme [=] val ue]

register-name Any of the following: AL, AH, AX, EAX, BL, BH, BX, EBX, CL,
CH, CX, ECX, DL, DH, DX, EDX, DI, EDI, Sl, ESI, BP, EBP, SP,
ESP, IR, EIR, FL, DS, ES, SS, CS FS, GS.

value If register-name is any name other than FL, the value is a hexadecimal
value or an expression. If register-name is FL, the value is a series of
one or more of the following flag symbols, each optionally preceded
by a plus or minus sign:
e O (Overflow flag)
e D (Direction flag)
e I (Interrupt flag)
e S (Sign flag)
e Z (Zeroflag)
e A (Auxiliary carry flag)
e P (Parity flag)
e C (Carry flag)

-d Displays the registers in the Command window.

Use If no parameters are supplied, the cursor moves up to the Register window, and the registers
can be edited in place. If the Register window is not currently visible, it is made visible. If
register-name is supplied without a value, the cursor moves up to the Register window
positioned at the beginning of the appropriate register field.

If both register-name and value are supplied, the specified register's contents are changed to
the value.

SoftICE Command Reference 173

SoftICE Commands

Example

To change a flag value, use FL as the register-name, followed by the symbols of the flag whose
values you want to toggle. To turn a flag on, precede the flag symbol with a plus sign. To turn
a flag off, precede the flag symbol with a minus sign. If neither a plus or negative sign is

specified, the flag value will toggle from its current state. The flags can be listed in any order.

This example sets the AH register equal to 5.

R ah=5

This example toggles the O, Z, and P flag values.

R fl =ozp

This example moves the cursor into the Register window position under the first flag field.

Rfl

This example toggles the O flag value, turns on the A flag value, and turns off the C flag value.

R fl =o+a-c

174 SoftICE Command Reference

SoftICE Commands

R S WINDOWS 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

F4
Restore the program screen.

Syntax RS

Use The RS command allows you to restore the program screen temporarily.

This feature is useful when debugging programs that update the screen frequently. Use the RS
command to redisplay your program screen. To return to the SoftlCE screen, press any key.

SoftICE Command Reference 175

SoftICE Commands

S

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Miscellaneous

Search memory for data.

For Windows 3.1
S [address L length data-1ist]

For Windows 95 and Windows NT
S [-cu][address L length data-Iist]

address Starting address for search.

length Length in bytes.

data-list List of bytes or quoted strings separated by commas or spaces. A
quoted string can be enclosed with single or double quotes.

-C Make search case-insensitive.

-u Search for Unicode string.

Memory is searched for a series of bytes or characters that matches the data-list. The search
begins at the specified address and continues for the length specified. When a match is found,
the memory at that address is displayed in the Data window. and the following message is
displayed in the Command window.

PATTERN FOUND AT | ocati on
If the Data window is not visible, it is made visible.

To search for subsequent occurrences of the data-list, use the S command with no parameters.
The search will continue from the address where the data-list was last found, until it finds
another occurrence of data-list or the length is exhausted.

The S command ignores pages that are marked not present. This makes it possible to search
large areas of address space using the flat data selector (Windows 3.1/Windows 95: 30h,
Windows NT: 10h).

This example searches for the string "Hello' followed by the bytes 12h and 34h starting at
offset ES:DI1+10 for a length of ECX bytes.

Ses:di+10 L ecx 'Hello', 12,34

176 SoftICE Command Reference

SoftICE Commands

This example searches the entire 4GB virtual address range for 'string".
S30:0 L ffffffff 'string

SoftICE Command Reference 177

SoftICE Commands

SERIAL

Syntax

Use

Windows 3.1, Windows 95, Windows NT Customization

Redirect console to serial terminal.

SER AL [on [comport] [baud-rate] | off]

com-port Number from 1 to 4 that corresponds to COM1, COM2, COM3 or
COM4. Default is COML1.

baud-rate Baud-rate to use for serial communications. The default is to have
SoftICE automatically determine the fastest possible baud-rate that
can be used. The rates are 1200, 2400, 4800, 9600, 19200, 23040,
28800, 38400, 57000, 115000.

Use the SERIAL command to establish a remote debugging session through a serial port (refer
to DIAL on page 67 for establishing remote sessions over a modem). Remote debugging
requires a second IBM-compatible PC running MSDOS. The machine being debugged is
known as the local machine, and the machine where SoftICE is being controlled remotely is
known as the remote machine.

To use the SERIAL command, the remote and local machines must be connected with a null
modem cable, with wiring as shown in the following figure, attached through serial ports.
Before using the SERIAL command on the local machine, you must first run the
SERIAL.EXE program on the remote machine.

The syntax for the SERIAL.EXE program is the same as the syntax of the SERIAL command,
so the following information is applicable to both.

The SERIAL command has two optional parameters. The first parameter specifies the com-
port through which the connection will be made (on the machine where the command is
entered). If no com-port is specified, com-port 1 (COML1) is chosen by default. The second
parameter specifies a baud-rate. If a baud-rate is specified, the same baud-rate must be
explicitly specified on both sides of the connection. If no baud-rate is specified, SoftICE will
attempt to determine the fastest baud-rate that can be used over the connection without data
loss. The process of arriving at the maximum rate can take a few seconds, during which
SoftICE prints the rates it is checking. After the maximum rate is determined, SoftICE
indicates the result.

When a connection is established between a remote machine and a local machine, the user of
the remote machine is presented with the same SoftICE interface they would see if they were
debugging on the local machine. The display on the local machine is restored to the Windows
screen while the connection is maintained.

178 SoftICE Command Reference

SoftICE Commands

3
>
7]
3
>
7]

|

[op}

(621N
O~NO O WN

X\l
|1

25-Pin Null-Modem Configuration

=
>
72}
=
>
[

|

|

AP OOOKWNOCIWN
AP OOKNOCIWOWN

9-Pin Null-Modem Configuration

Ctrl D is always the pop-up hot key sequence on the remote machine. SoftICE can also be
popped up from the local machine with the local machine’s pop-up hot key sequence (which
may have been set via the ALTKEY command).

If the remote machine has a monochrome display, the COLOR command can be used to
make SoftICE’s output more readable.

If for any reason data is lost over the connection and SoftlCE output on the remote machine
becomes corrupted, Shift \ (backslash) can be typed on the remote machine to force a repaint
of the SoftICE screen.

Specifying SERIAL OFF will end the remote debugging session and SoftICE will resume
using the local machine for 1/0. SERIAL with no parameters will display the current serial
state and the com-port and baud-rate being used if SERIAL is ON.

Using Ctrl-Z will exit the SERIAL.EXE program on the remote machine after a remote
debugging session is complete.

If you place the SERIAL command in the SoftICE initialization string setting, SERIAL.EXE
must be running on the remote machine before SoftICE is started on the local machine.

SoftICE Command Reference 179

SoftICE Commands

Example

See Also

For Windows 3.1

Prior to using the SERIAL command, you must place the COMn keyword on a separate line
in the WINICE.DAT file to reserve a specific COM port for the serial connection. The nis a
number between 1 and 4 representing the COM port. If this statement is not present in
WINICE.DAT, SoftICE cannot be popped up from the remote machine. To set Com 2 as the
serial post, use:

Con?

For Windows 95

Select the desired com port in the remote debugging initialization settings within Symbol
Loader.

On the remote machine:
SER AL. EXE on 19200

On the local machine:
SERI AL on 2 19200

When the first command is executed, the remote machine will be prepared to receive a
connection request from the local machine on its first com-port at 19200bps. The second
command establishes a connection between the two machines through the local machine’s
second com-port. Since the first command explicitly specified a baud rate, the SERIAL
command on the local machine must explicitly specify the same baud rate of 19200bps.

Once the connection is established, the remote machine will serve as the SoftlCE interface for
debugging the local machine until SERIAL off is entered on the remote machine.

Chapter 7, “Debugging Remotely,” in the Using SoftICE manual.

180 SoftICE Command Reference

SoftICE Commands

SET

Syntax

Use

Windows 95 and Windows NT Mode Control

Display or change the state of an internal variable.

SET [keyword] [on | off] [val ue]

Use the SET command to display or change the state of internal SoftICE variables.

If you specify SET with a keyword, ON or OFF enables or disables that option. If you specify
SET with a keyword and value, it assigns the value to the keyword. If SET is followed by a
keyword with no additional parameters, it displays the state of the keyword.

Using SET without parameters displays the state of all keywords.

SET supports the following keywords:

ALTSCR [on|off]
CASESENSITIVE [on|off]
CODE [on|off]
EXCLUDE [on|off]
FAULTS [on|off]
FLASH [on|off]
I1IHERE [on|off]
ISBHERE [on|off]
LOWERCASE [on|off]
MOUSE [on]off] [1]2|3]
PAUSE [on|off]
SYMBOLS [on|off]
TABS [on|off] [1]2]3]4]5|6|7|8]
THREADP [on|off]
VERBOSE [on|off]

SET CASESENSITIVE ON makes global and local symbol names case sensitive. Enter them
exactly as displayed by the SYM command.

SoftICE Command Reference 181

SoftICE Commands

Example

See Also

SET MOUSE ON enables mouse support and SET MOUSE OFF disables it. To adjust the
speed at which the mouse moves, use one of the following: 1 (slowest speed); 2 (intermediate
speed-this is the mouse default.); 3 (fastest speed).

SET SYMBOLS ON instructs the disassembler to show the symbol names in disassembled
code. SET SYMBOLS OFF instructs the disassembler to show numbers (for example, offsets
and addresses). This command applies to both local and global symbol names.

The following example enables SoftICE fault trapping:
SET faults on

The following example sets the mouse to the fastest speed:
SET nouse 3

ALTSCR, CODE, FAULTS, FLASH, I11HERE, I3HERE, THREADP

182 SoftICE Command Reference

SoftICE Commands

SHOW

Ctrl-F11

Syntax

Use

Example

See Also

WinDows 3.1, WINDOWS 95 SYMBOL/SOURCE

Display instructions from the back trace history buffer.

SHON[B | start] [| Iength]

start Hexadecimal number specifying the index within the back trace
history buffer to start disassembling from. An index of 1 corresponds
to the newest instruction in the buffer.

length Number of instructions to display.

Use the SHOW command to display instructions from the back trace history buffer. If source
is available for the instructions, the display is in mixed mode; otherwise, only code is
displayed.

All instructions and source are displayed in the Command window. Each instruction is
preceded by its index within the back trace history buffer. The instruction whose index is 1 is
the newest instruction in the buffer. Once SHOW is entered, you can use the Up and Down
Arrow keys to scroll through the contents of the back trace history buffer. To exit from
SHOW, press the Esc key.

SHOW with no parameters or SHOW B will begin displaying from the back trace history
buffer starting with the oldest instruction in the buffer. SHOW followed by a start number
begins displaying instructions starting at the specified index within the back trace history
buffer.

You can use the SHOW command only if the back trace history buffer contains instructions.
To fill the back trace history buffer, use the BPR command with either the T or TW
parameter to specifying a range breakpoint.

This command starts displaying instructions in the Command window, starting at the oldest
instruction in the back trace history buffer.

SHON B

BPR

SoftICE Command Reference 183

SoftICE Commands

S R C WINDOWS 3.1, WINDOWS 95, WINDOWS NT SYMBOL/SOURCE

F3
Toggle between displaying source, mixed, and code in the Code window.
Syntax SRC

Use Use the SRC command to toggle among the following modes in the Code window: source
mode, mixed mode, and code mode.

Hint: Use F3 to toggle modes quickly.

Example The following example changes the current mode of the Code window:
SRC

184 SoftICE Command Reference

SoftICE Commands

SS

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Symbol/Source

Search the current source file for a string.

SS [line-nunber] ['string]

line-number Decimal number.

string Character string surrounded by quotes.

The SS command searches the current source file for the specified character string. If there isa
match, the line that contains the string is displayed as the top line in the Code window.

The search starts at the specified line-number. If no line-number is specified, the search starts
at the top line displayed in the Code window.

If no parameters are specified, the search continues for the previously specified string.

The Code window must be visible and in source mode before using the SS command. To
make the Code window visible, use the WC command. To make the Code window display
source, use the SRC command.

In the following example, the current source file is searched starting at line 1 for the string "if
(i==3)". The line containing the next occurrence of the string becomes the top line displayed
in the Code window.

SS1'if (i==3)"

SoftICE Command Reference 185

SoftICE Commands

STACK

Syntax

Use

Windows 3.1, Windows 95, Windows NT System Information

Display a call stack.

For Windows 3.1 and Windows 95
STACK [task-nane | SS:[EBA

task-name Name of the task as displayed by the TASK command.
SS:[E]BP SS: [E] BP of a valid stack frame.

For Windows NT
STACK [thread-type | stack frang]

thread-type Thread handle or thread ID.

stack frame Value that is not a thread-type is interpreted as a stack frame.

Use the STACK command to display the call stacks for DOS programs, Windows tasks, and
32-bit code.

If you enter STACK with no parameters, the current SS: [E] BP is used as a base for the stack
frame displayed. You can explicitly specify a stack base with a task-name or base address, and
under Windows NT, with a thread identifier.

If you are using STACK to display the stack of a Windows task that is not the current one,
specify either its task-name or a valid SS: [E] BP stack frame. You can use the TASK command
to obtain a list of running tasks. However, you should avoid using the STACK command
with the current task of the TASK command’s output (marked with an "*"), because the task’s
last known SS: [E] BP is no longer valid.

The STACK command walks the stack starting at the base by traversing x86 stack frames. If
an invalid stack frame or address that has been paged out is encountered during the walk, the
traversal will stop. The address of the call instruction at each frame is displayed along with the
name of the routine it is in, if the routine is found in the current symbol table. If the routine
is not in the symbol table, the export list and module name list are searched for nearby
symbols. If stack variables are present, they are displayed as well.

186 SoftICE Command Reference

SoftICE Commands

Output

The STACK command works in 32-bit code, however, since 32-bit symbol information
support is limited to that provided in .SYM files, local variables cannot be shown. For each
frame in the call stack, both the nearest symbol to the call instruction, and the actual address,
are displayed. If there is no symbol available, the module name and object/section name are
displayed instead.

The 32-bit call stack support is not limited to applications; it will also work for VxDs and
Windows NT device driver code at ring 0. Since many VxDs are written in assembly
language, there may not be a valid call stack to walk from a VVxD-stack base address.

For Windows 3.1 and Windows 95, the call stack is not followed through thunks or ring
transitions, but under Windows NT it is.

For Windows 3.1 and Windows 95

If you want SoftICE to pop up when a non-active task is restarted, you can use the STACK
command with the task as a parameter to find the address on which to set an execution
breakpoint. To do this, enter STACK followed by the task-name. The bottom line of the call
stack will show an address preceded by the word ‘at'. This is the address of the CALL
instruction the program made to Windows that has not yet returned. You must set an
execution breakpoint at the address following this call.

You can also use this technique to stop at other routines higher on the call stack. This is useful
when you do not want to single step through library code until execution resumes in your
program's code.

Each entry of the call stack contains the following information:
« Symbol name or module name in which the return address falls
e SS: [E] BP value of this entry
« Call instruction’s source line number if available

» Address of the first line of this routine or the name of the routine that was called to reach
this routine

If stack variables are available for this entry, the following information about each is displayed:

e SS: [E BP relative offset
« Stack variable name
 Data in the stack variable if it is of type char, int, or long

SoftICE Command Reference 187

SoftICE Commands

Example This is the output of the STACK command after a breakpoint is set in the message handler of
a Windows program.

1 STAKK

__astart at 0935:1021 [?]
WnMain at 0935: 0d76 [00750]
[BP+000d] hl nst ance 0935
[BP+000A] hPrev 0000
[BP+0006] | pszQrdLi ne
[BP+0004] OmdShow
[BP-0002] wi dt h 00DD
[BP-0004] hwid 00E5
USER SENDMESSAGE+004F at 05CD: 06A7
USER(01) at 0595:04A0 [?] 0595:048b
USER(06) at 05BD: 1A83 [7]
=>{ ockWidProc at 0935: 006F [0179]
[BP+OOOE] hwid 1954
[BP+000C nmessage 0024
[BP+000A] wPar am 0000
[BP+0006] | Param 06ED: 07A4
[BP-0022] ps 0000

This is an example of the STACK command in 32-bit mode. Execution has been stopped
within the C library DLL's memset routine:
1 STAK

VB2SCOMB! D spat chCB32+01FF at 2197: 86C5003B
UTSAWP! . t ext +01A4 at 2197: 86C211A4
_M/Get FreeSpace@+0016 at 2197: 86Cr113B
=> MBVCRT10! nenset +0005 at 2197: 86C94F89

188 SoftICE Command Reference

SoftICE Commands

SYM

Syntax

Use

Windows 3.1, Windows 95, Windows NT Symbol/Source

Display or set symbol.

SYM [[section-nane]l ! | synbol -nane [val ue]]

section-name Valid section-name. Also can be a partial section-name. This allows
displaying symbols in a particular section. If section-name is specified,
it must be followed by an exclamation point (!). For example, you
could use the command
SYM . TEXT! to display all symbols in the . TEXT section of the
executable.

! If “I”” is the only parameter specified, the modules in this symbol table
are listed.

symbol-name Valid symbol-name. The symbol-name can end with an asterisk (*).
This allows searching if only the first part of the symbol-name is

known. The comma “,” character can be used as a wildcard character
in place of any character in the symbol-name.

value Value that is used to set a symbol to a specific address.

Use the SYM command to display and set symbol addresses. If you enter SYM without
parameters, all symbols display. The address of each symbol displays next to the symbol-name.

If you specify a symbol-name without a value, the symbol-name and its address display. If the
symbol-name is not found, nothing displays.

If section-name! precedes symbol-name or asterisk (*), only symbols from the specified section
are shown.

The SYM command is often useful for finding a symbol when you can only remember a
portion of the name. Two wildcard methods are available for locating symbols. If symbol-
name ends with an asterisk (*), all symbols that match the actual characters typed prior to the
asterisk display, regardless of their ending characters. If you use a comma (,) in place of a
specific character in symbol-name, that character is a wild card character.

If you specify a value, the address of all symbols that match symbol-name are set to the value.

If you place an address between square brackets as a parameter to the SYM command, the
closest symbol above and below the address display.

SoftICE Command Reference 189

SoftICE Commands

Example All symbols that start with FOO display.
SYM f oo*

All symbols that start with FOO are given the address 6000.
SYM f oo* 6000

All sections for the current symbol table display.
SYM !

All symbols in section MAIN that start with FOO display.

SYM nai n! f oo*

190 SoftICE Command Reference

SoftICE Commands

SYMLOC

Syntax

Use

Windows 3.1, Windows 95, Windows NT Symbol/Source

Relocate the symbol base.

For Windows 3.1

SYM.OC [segnent-address | o | r |
(section-nunber sel ector |inear-address)]

For Windows 95 and Windows NT

SYML.CC [segnent-address | o | r | -c process-type |
(section-nunber sel ector |inear-address)]

segment address Only use to relocate DOS programs.

0 For 16-bit Windows table only. Changes all selector values back to
their ordinal state.

r For 16-bit Windows table only. Changes all segment ordinals to their
appropriate selector value.

-C Specify a context value for a symbol table. Use when debugging DOS
extended applications.

section-number For 32-bit tables only. PE file 1 based section-number.

selector For 32-bit tables only. Protected mode selector.

linear-address For 32-bit tables only. Base address of the section.

The SYMLOC command handles symbol fixups in a loaded symbol table. The command
contains support for DOS tables, 16-bit protected mode Windows tables (using O and R
commands only), and 32-bit protected mode tables. The 32-bit support is intended for 32-bit
code that must be manually fixed up such as DOS 32-bit extender applications.

In a DOS program, SYMLOC relocates the segment components of all symbols relative to the
specified segment-address. This function is necessary when debugging loadable device drivers
or other programs that cannot be loaded directly with the SoftICE Loader.

When relocating for a loadable device driver, use the value of the base address of the driver as
found in the MAP command. When relocating for an .EXE program, the value is 10h greater
than that found as the base in the MAP command. When relocating for a.COM program,
use the base segment address that is found in the MAP command.

SoftICE Command Reference 191

SoftICE Commands

Example

The MAP command displays at least two entries for each program. The first is typically the
environment and the second is typically the program. The base address of the program is the
relocation value.

For Windows 95 and Windows NT

The SYMLOC -C option allows you to associate a specific address context with the current
symbol table. This option is useful for debugging an extender application under Windows
NT where SoftICE would not be able to assign a context to the symbol table automatically.

The following example relocates all segments in the symbol table relative to 1244. The +10
relocates a TSR that was originally an .EXE file. If it is a .COM file or a DOS loadable device
driver, the +10 is not necessary.

: SYMLOC 1244+10

The following example relocates all symbols in section 1 of the table to 401000h using
selector 1Bh. Each section of the 32-bit table must be relocated separately.

:SYMLOC 1 1b 401000

The following example sets the context of the current symbol table to the process whose
process ID is 47. Subsequently, when symbols are used, SoftICE will automatically switch to
that process.

:SYM.CC -c 47

192 SoftICE Command Reference

SoftICE Commands

F8

Syntax

Use

Example

WinDows 3.1, WINDOWS 95, WINDOWS NT FLow CONTROL

Trace one instruction.

T [=start-address] [count]

count Specify how many times SoftICE should single step before stopping.

The T command uses the single step flag to single step one instruction.

Execution begins at the current CS:EIP, unless you specify the start-address parameter. If you
specify this parameter, CS:EIP is changed to start-address prior to single stepping.

If you specify count, SoftICE single steps count times. Use the Esc key to terminate stepping
with a count.

If the Register window is visible when SoftICE pops up, all registers that were altered since the
T command was issued are displayed with the bold video attribute.

If the Code window is in source mode, this command single steps to the next source
statement.

This example single steps through eight instructions starting at memory location CS:1112.
T =cs:1112 8

SoftICE Command Reference 193

SoftICE Commands

TABLE

Syntax

Use

Windows 3.1, Windows 95, Windows NT Symbol/Source

Change or display the current symbol table.

For Wndows 3.1
TABLE [[r] partial-table-nane] | autoon | autooff | $

For Wndows 95 and Wndows NT
TABLE [partial -tabl e-nane] | autoon | autooff | $

partial-table-name Symbol table name or enough of the first few characters to define a

unique name.

autoon Key word that turns auto table switching on.

autooff Key word that turns auto table switching off.

$ Specify $ to switch to the table where the current instruction pointer is
located.

If you do not specify any parameters, all the currently loaded symbol tables are displayed with
the current symbol table highlighted. If you specify a partial-table-name, that table becomes
the current symbol table.

Use the TABLE command when you have multiple symbol tables loaded. SoftICE supports
symbol tables for 16- and 32-bit Windows applications and DLLs, 32-bit Windows VxDs,
Windows NT device drivers, DOS programs, DOS loadable device drivers, and TSRs.

Symbols are only accessible from one symbol table at time. You must use the TABLE
command to switch to a symbol table before using symbols from that table.

If you use the AUTOON keyword, SoftICE will switch to auto table switching mode. This
will cause the current table to become whichever table the instruction pointer is in when
SoftICE pops up. AUTOOFF turns off this mode.

Tables are not automatically removed when your program exits. If you reload your program
with the SoftICE Loader, the symbol table corresponding to the loaded program is replaced
with the new one.

For Windows 3.1

If the R parameter precedes partial-table-name, the specified table is removed. Specifying an
“*" after the R parameter removes all symbol tables.

194 SoftICE Command Reference

SoftICE Commands

Example

For Windows 95 and Windows NT

Symbol tables can be tied to an address context or multiple address contexts. If a table is tied
to a context, switching to that table using the TABLE command switches to the appropriate
address context. If you use any symbol from a context sensitive table, SoftICE switches to that
context. Use View Symbol Tables in SoftICE Loader to remove tables from memory. The R
parameter is not supported.

Since no parameters are specified in the following command, all loaded symbol tables are
listed. GENERIC is highlighted, because it is the current table. The amount of available
symbol table memory is displayed at the bottom.

: TABLE
MYTSR EXE
MYAPP. EXE
MYVXD
GENER C
006412 bytes of synbol table nenory avail abl e

In the following example, the current table is changed to MYTSR.EXE. Notice that only
enough characters to identify a unique table were entered.

: TABLE nyt

SoftICE Command Reference 195

SoftICE Commands

TABS

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Customization

Display or set the tab settings for source display.

TABS [tab-setti ng]

tab-setting Number from 1 through 8 that specifies how many columns between
tab stops.

Use the TABS command to display or set tab-settings for the display of source files. Tab stops
can be anywhere from 1 to 8 columns. The default TABS setting is 8. TABS with no
parameters display the current tab-setting. Specifying a tab-setting of 1 allows the most source
to be viewed since each tab will be replaced by a single space.

This example causes the tabs setting to change to every fourth column starting at the first
display column.

TABS 4

196 SoftICE Command Reference

SoftICE Commands

TASK

Syntax

Use

Output

Windows 3.1, Windows 95, Windows NT System Information

Display the Windows task list.

TASK

The TASK command displays information about all tasks that are currently running. The task
that has focus is displayed with an asterisk after its name. This command is useful when a
general protection fault occurs because it indicates which program caused the fault.

For Windows NT

The TASK command is process specific and only shows 16-bit tasks under Windows NT. In
addition, it is only useful when the current context is that of an NTVDM process containing
a WOW box. To view information or processes, refer to PROC on page 162.

For each running task, the following information displays:

Task Name Name of the task.

SS:SP Stack address of the task when it last relinquished control.
StackTop Top of stack offset.

StackBot Bottom of stack offset.

StackLow Lowest value that SP has ever had when there was a context-switch

away from the task.

TaskDB Selector for the task data base segment.
hQueue Queue handle for the task. This is just the selector for the queue.
Events Number of outstanding events in the queue.

For Windows 3.1 and Windows 95

The TASK command works for 16- and 32-bit tasks, however, the following fields change for
32-bit tasks:

StackBot Highest legal address of the stack shown as a 32-bit flat offset.
StackTop Lowest legal address of the stack shown as a 32-bit flat offset.

SoftICE Command Reference 197

SoftICE Commands

Example

198

StackLow Field is not used.

SS:SP Contains the 16-bit selector offset address of the stack. If you examine
the base address of the 16-bit selector, you see that this points at the
same memory as does the flat 32-bit pointer used with the 32-bit data

selector.

output.
: TASK

TaskNm SS. SP St ackTop
FREECELL 21BF: 7096 86CE0000
PROGVAN 17A7: 200A 0936
ALK 1427: 1916 02E4
MBWORD * 29AF: 913E 5956

SoftICE Command Reference

St ackBot
86000000
2070
1AE
93M

Low

14CE
143E
7ADE

The following example shows the TASK command on Windows 3.1 running Win32s and its

TaskDB hQueue Events
10FF 121F 0000
064F 07D7 0000
144F 1437 0000
1F67 1F47 0000

SoftICE Commands

THREAD

Syntax

Use

For Windows NT,
refer to THREAD
on page 201.

Output

Windows 95 System Information

Display thread information.

THREAD [TCB | ID | task-nane]

TCB Thread Control Block.
ID Thread 1D number.
task-name Name of a currently running 32-bit process.

Use the THREAD command to obtain information about a thread.

« If you do not specify any options or parameters, the THREAD command displays
information for every active thread in the system.

* If you specify a task-name as a parameter, all active threads for that process display.
« If you specify a TCB or ID, only information for that thread displays.

For each thread, the following information is shown:

Ring0TCB Address of the Ring-0 thread control block. This is the address that is
passed to VxDs for thread creation and termination.

ID VMM Thread ID.

Context Context handle associated with the process of the thread.

Ring3TCB Address of the KERNEL32 Ring-3 thread control block

Thread ID Ring-3 thread ID

Process Address of the KERNEL32 process database that owns the thread.

TaskDB Selector of the task database that owns the thread.

PDB Selector of the program database (protected-mode PSP).

SZ Size of the thread which can be either 16 or 32 bit.

Owner Process name of the owner.

SoftICE Command Reference 199

SoftICE Commands

If you specify TCB or ID, this information displays for the thread with that TCB or ID:

« Current register contents for the thread.

« All thread local storage offsets within the thread. This shows the offset in the thread
control block of the VMM TLS entry, the contents of the TLS entry, and the owner of
the TLS entry.

Example This example displays the thread that belongs to the Winword process:
: THREAD

R ng0TCB 1D Context R ng3TCB Threadl D Process TaskDB PDB SZ Owner
Cl051808 008B Cl04B990 815842CC FFFO0671F 8158AAA8 274E 25B7 32 *Wnword

The following example shows abbreviated information about the thread with ID 8B.
: THREAD 8B

R ng0OTCB I D Context R ng3TCB Threadl D Process TaskDB PDB SZ Onner
C1051808 008B C104B990 815842CC FFFO671F 8158AAA8 274E 25B7 32 *W nwor d
CS: Bl P=0137: BFF96868 SS: ESP=013F: 0062FC3C DS=013F ES=013F FS=2EBF GS=0000
EAX=002A002E EBX=815805B8 ECX=815842CC EDX=815805B8 | S P

ESI =00000000 EDI =815805B8 EBP=0062FC80 ECCDE=00000000

TLS Cff set 007C = 00000000 VPI CD

TLS Cff set 0080 = 00000000 DOSMER

TLS Cff set 0084 = 00000000 SHELL

TLS Off set 0088 = Cl053434 VMCPD

TLS O f set 008C = CLO4EA74 VW N32

TLS Cffset 0090 = 00000000 VFAT

TLS Cff set 0094 = 00000000 | FSMyr

See Also For Windows NT, refer to THREAD on page 201.

200 SoftICE Command Reference

SoftICE Commands

THREAD

Syntax

Use

For Windows 95,
refer to THREAD
on page 199.

Output

Windows NT System Information

Display information about a thread.

THREAD [-r | -x | -u] [thread-type | process-typel

-r Display value of the thread’s registers.

-X Display extended information for each thread.
-u Display threads with user-level components.
thread-type Thread handle or thread id.

process-type Process-handle, process-id or process-name.

Use the THREAD command to obtain information about a thread.

« If you do not specify any options or parameters the THREAD command displays
information for every active thread in the system.

« If you specify a process-type as a parameter, all the active threads for that process display.
« If you specify a thread-type, only information for that thread displays.

For the -R and -X options, the registers shown are those that are saved on thread context
switches: ESI, EDI, EBX and EBP.

For each thread, the following summary information is displayed:

TID Thread ID.

Krnl TEB Kernel Thread Environment Block.
StackBtm Address of the bottom of the thread’s stack.
StackTop Address of the start of the thread’s stack.
StackPtr Threads current stack pointer value.

User TEB User thread environment block.

Process(1d) Owner process-name and process-id.

SoftICE Command Reference 201

SoftICE Commands

Many fields of thread environment blocks are shown when extended output is specified, with
most being self-explanatory. Some are particularly useful and deserve to be highlighted:

TID Thread ID.

KTEB Kernel Thread Environment Block.

Base Pri, Dyn. Pri Threads base priority and current priority.

Mode Indicates whether the thread is executing in user or kernel mode.

Switches Number of context switches made by the thread.

Affinity Processor affinity mask of the thread. Bit positions that are set
represent processors on which the thread is allowed to execute.

Restart Address at which the thread will start executing when it is resumed.

The thread’s stack trace is displayed last.

Example The following example uses the THREAD command to display the threads that belong to the

Explorer process:
: THREAD expl orer

TID Krnl TEB StackBtm StkTop StackPtr User TEB Process(|d)
006A FDB57DA0 FBICBOOO FBLCDOOO FBLCCED8 7FFDEOOO Expl or er (6B)
006F FDB54620 FB235000 FB237000 FB236B2C 7FFDDO00 Expl orer (6B)
007C FDB40020 FD72F000 FD731000 FD730E24 7FFDBO0O Expl orer (6B)

This example displays extended information on the thread with ID 5Fh:

THREAD - x 5f
Extended Thread Info for thread 5F
KTEB: FDB50080 TI D O5F Process: Expl or er (60)
Base Pri: D Dyn. Pri: E Quantum 2
Mode: User Suspended: 0 Switches: 00024B4F
Ti ckCount: OOEES8DM Wit Irql: 0
St at us: User Vit for WEventPair

Start EIP: KERNEL32! LeaveCri ti cal Secti on+0058 (6060744C)
Affinity: 00000001 Cont ext Fl ags: A
KSS EBP: FB1C3F04 Cal | back ESP: 00000000

Ker nel Stack: FB1C2000 - FB1C4000 Stack Ptr: FBLC3ED8
User Stack: 00030000 - 00130000 Stack Ptr: 0012FE3C
Kernel Ti me: 0000014A User Tine: 0000015F

O eate Time: 01BB10646E2DBESO

Spi nLock: 00000000 Service Table: 80174A40 Queue: 00000000
SE Token: 00000000 SE Acc. Fl ags: 001F03FF

UTEB:

202 SoftICE Command Reference

7FFDEOOO Except Frarme:

0012FEB4 Last Err: 00000006

SoftICE Commands

Regi sters: ESI =FDB50D80 ED =0012FEC4 EBX=77F6BA0OC
EBP=FB1C3F04
Restart : EIP=80168757 a.k.a. _Ki SetServerWitd ientEvent +01CF
Expl orer!.text +975D at 001B: 0100A75D
Expl orer!.text+9945 at 001B: 0100A945
Expl orer!.text +A3F8 at 001B: 0100B3F8
USER32! Wi t Message+004F at 001B: 60A0CA4B
user 32! . text +070A at 001B: 60A0170A
=> ntdl ! Csrd i ent SendMessage+0072 at 001B: 77F6BAOC

See Also For Windows 95, refer to THREAD on page 199.

SoftICE Command Reference 203

SoftICE Commands

TRACE

CTRL-F9, TRACE B, CTRL-F12

Syntax

Use

Example

See Also

WinDows 3.1, WINDOWS 95 SYMBOL/SOURCE

Enter or exit Trace simulation mode.

TRACE [b | off | start]

start Hexadecimal number specifying the index within the back trace
history buffer to start tracing from. An index of 1 corresponds to the
newest instruction in the buffer.

Use the TRACE command to enter, exit, and display the current state of the trace simulation
mode. TRACE with no parameters displays the current state of trace simulation mode.
TRACE followed by off exits from trace simulation mode and returns to regular debugging
mode. TRACE B enters trace simulation mode starting from the oldest instruction in the
back trace history buffer. TRACE followed by a start number enters trace simulation mode at
the specified index within the back trace history buffer.

You can use the trace simulation mode only if the back trace history buffer contains
instructions. To fill the back trace history buffer, use the BPR command with either the T or
TW parameter to specifying a range breakpoint.

When trace simulation mode is active, the help line on the bottom of the screen shows this, as
well as the index of the current instruction within the back trace history buffer.

Use the XT, XP, and XG commands to step through the instructions in the back trace history
buffer from within the trace simulation mode. When stepping through the back trace history
buffer, the only register that changes is the EIP register because back trace ranges do NOT
record the contents of all the registers. You can use all the SoftICE commands within trace
simulation mode except for the following: X, T, G, P HERE, and XRSET.

This example enters trace simulation mode starting at the eighth instruction in the back trace
history buffer.

TRACE 8

BPR, BPRW, SHOW

204 SoftICE Command Reference

SoftICE Commands

TSS

Syntax

Use

Output

Windows 3.1, Windows 95, Windows NT System Information

Display task state segment and /O port hooks.

For Windows 3.1
TSS

For Windows 95 and Windows NT
TSS [TSS sel ect or]

TSS-selector Any GDT selector that represents a TSS.

This command displays the contents of the task state segment after reading the task register
(TR) to obtain its address.

You can display any 32-bit TSS by supplying a valid 32-bit Task Gate selector as a parameter.
Use the GDT command to find TSS selectors. If you do not specify a parameter, the current
TSS is shown.

The following information is displayed:

TSS selector value TSS selector number.
selector base Linear address of the TSS.
selector limit Size of the TSS.

The next four lines of the display show the contents of the register fields in the TSS. The
following registers are displayed:

LDT, G5, FS, DS, SS, CS, ES, CR3
EAX, EBX, ECX, EDX, EI P

ESI, ED, EBP, ESP, EFLAGS

Level 0, 1 and 2 stack SS: ESP
For Windows 3.1 and Windows 95

Next, the TSS bit mask array is printed, which shows each 1/O port that has been hooked by a
Windows virtual device driver (VxD). For each port, the following information is displayed:

port number 16-bit port number.

handler address 32-Dit flat address of the port’s 1/0 handler. All I/O instructions on
the port will be reflected to this handler.

SoftICE Command Reference 205

SoftICE Commands

Example

handler name Symbolic name of the 1/O handler for the port. If symbols are
available for the VxD, the nearest symbol will be displayed; otherwise
the name of the VxD followed by the handler’s offset within the VxD
will be displayed.

For Windows 95 and Windows NT

The I/0O permission map base and size are also displayed. A size of zero indicates that all 1/O is
trapped. A non-zero size indicates that the 1/O permission map determines if an 1/O port is
trapped.

The following example displays the task state segment in the Command window (output of
the bit mask array is abbreviated).

. TSS

TR=0018 BASE=CQ000AEBC LI M T=2069

LDT=0000 GS=0000 FS=0000 DS=0000 SS=0000 CS=0000 ES=0000
CR3=00000000

EAX=00000000 EBX=00000000 ECX=00000000 EDX=00000000 EI P=00000000
ESI =00000000 EDI =00000000 EBP=00000000 ESP=00000000 EFL=00000000
SS0=0030: C33EEFA8 SS1=0000: 00000000 SS2=0000: 00000000

1/ O Map Base=0068 |/O Map Si ze=2000

Port Handl er Trapped Oaner

0000 CDOC3E92 Yes VDVAD(01) +17BA
0001 CDOC3FOE Yes VDVAD(01) +1836
0002 CDOC3E92 Yes VDVAD(01) +17BA
0003 CDOC3FOE Yes VDVAD(01) +1836
0004 CDOC3E92 Yes VDVAD(01) +17BA
0005 CDOC3FOE Yes VDVAD(01) +1836
0006 CDOC3E92 Yes VDVAD(01) +17BA
0007 CDOC3FOE Yes VDVAD(01) +1836
0008 (CDOC3CS5 Yes VDVAD(01) +157D
0009 (DOC3D98 Yes VDVAD(01) +16QD

If you are interested in which VVxD has hooked port 21h (interrupt mask register), you would
look at the TSS bit mask output of the TSS display for the entry corresponding to the port.
The following output, taken from the TSS command’s output, indicates that the port is
hooked by the virtual PIC device and its handler is at offset 800792B4 in the flat code
segment. This corresponds to an offset of 0AF8h bytes from the beginning of VPICD's code
segment.

0021 800792B4 VPI CD+0AF8

206 SoftICE Command Reference

SoftICE Commands

TYPES

Syntax

Use

Example

See Also

Windows 95, Windows NT Symbol/Source Command

List all types in the current context or list all type information for the type-name specified.

TYPES [t ype- nane]

type-name List all type information for the type-name specified.

If you do not specify a type-name, TYPES lists all the types in the current context. If you do
specify a type-name, TYPES lists all the type information for the type-name you specified. If
the type-name you specified is a structure, TYPES expands the structure and lists the typedefs
for its members.

The following example displays a partial listing of all the types in the current context:

: TYPES

Si ze Type Name Typedef

0x0004 ABCRTPRCC int stdcall (*proc) (void)
0x0004 ACCESS NASK unsi gned | ong
0x0004 ACL_| NFCRVATI ON_CLASS int

0x0018 ARRAY_| NFO struct ARRAY_|I NFO
0x0002 ATCM unsi gned short
0x0048 BALLDATA struct _BALLDATA
0x0048 _BALLDATA struct _BALLDATA
0x0020 _BEZBUFFER struct _BEZBUFFER
0x0004 BOCL int

0x0001 BOCOLEAN unsi gned char
0x0010 _BOUNCEDATA struct _BOUNCEDATA
0x0004 BSTR unsi gned short *

The following example displays all the type information for the type-name _bouncedata:
: TYPES _bouncedat a

typedef struct _BOUNCEDATA {
publ i c:
voi d
voi d
voi d
voi d

hBall 1 ;
hBall 2 ;
hBal | 3 ;
hBal | 4 ;

}s
LOCALS, WL

SoftICE Command Reference 207

SoftICE Commands

U

Syntax

Use

Windows 3.1, Windows 95, Windows NT Display/Change Memory

Unassemble instructions.

For Windows 3.1
U [address] | [synbol - nane]

For Windows 95 and Windows NT
U [address [| length]] | [synbol-nane]

address Segment offset or selector offset.
symbol-name Scrolls the Code window to the function you specify.
length Number of instruction bytes.

The U command displays either source code or unassembled code at the specified address.
The code displays in the current mode (either code, mixed, or source) of the Code window,.
Source displays only if it is available for the specified address. To change the mode of the Code
window, use the SRC command (default key F3).

If you do not specify the address, the command unassembles at the address where you left off.

If the Code window is visible, the instructions display in the Code window, otherwise they
display in the Command window. In the Command window either eight lines display, or one
less than the length of the Command window.

To make the Code window visible, use the WC command (default key Alt-F3). To move the
cursor to the Code window, use the EC command (default key F6).

If the instruction is at the current CS:EIP, it displays using the reverse video attribute. If the
current CS:EIP instruction is a relative jump, it contains either the string JUMP or NO
JUMP, indicating whether or not the jump will be taken, and if so, an arrow indicating if the
jump will go up or down in the Code window. If the current CS:EIP instruction references a
memory location, the contents of the memory location display in the Register window
beneath the flags field. If the Register window is not visible, this value displays on the end of
the code line.

If a breakpoint is set on an instruction being displayed, the code line is displayed using the
bold attribute.

208 SoftICE Command Reference

SoftICE Commands

Example

If any of the memory addresses within an instruction have a corresponding symbol, the
symbol displays instead of the hexadecimal address. If an instruction is located at a code
symbol, the symbol name displays on the line above the instruction.

To view or suppress the actual hexadecimal bytes of the instruction, use the CODE
command.

For Windows 95 and Windows NT

If you specify a length, SoftICE disassembles the instructions in the Command window
instead of the Code window. This is useful for reverse engineering, for example, disassembling
an entire routine and then using the SoftICE Loader Save SoftICE History function to
capture the output to a file.

To unassemble instructions beginning at 10 hexadecimal bytes before the current address, use
the command:

Ueip - 10

To display source in the Code window starting at line number 121, use the command:
u.l21

For Windows 95 and Windows NT

To disassemble 100 h bytes starting at MyProc to the Command window, use the command:
U nyproc L100

SoftICE Command Reference 209

SoftICE Commands

VCALL

Syntax

Use

Windows 3.1, Windows 95 System Information

Display the names and addresses of VXD callable routines.

VCALL [parti al - nane]

partial-name VxD callable routine name or the first few characters of the name. If
more than one routine’s name matches the partial-name, all routines
that start with the specified characters are listed.

The VCALL command displays the names and addresses of Windows VxD API routines.
These are Windows services provided by VxDs for other VxDs. All the routines SoftICE lists
are located in Windows system VxDs that are included as part of the base-line Windows
kernel.

The addresses displayed are not valid until the VMM VxD is initialized. If an X is not present
in the SoftICE initialization string, SoftICE pops up while Windows is booting and VMM is
not initialized.

The names of all VxD APIs are static. Only the function names provided in the Windows
DDK Include Files are available. These API names are not built into the final VXD executable
file. SoftICE provides APl names for the following VxDs:

CONFI GG | CB VCD VMCPD VSD
DCEMER ND S VoW VMD VTD
DOSNET PACEFI LE VGOND VW VW N32
EBI C5 PAGESWAP VDD VMPOLL VXDLDR

ENABLE SHELL VDIVAD VNETBI G5
| FSMR VB6MMR VFBACKUP VPI CD
I NT13 VCACHE WKD VRED R

210 SoftICE Command Reference

SoftICE Commands

Example The following example lists all Windows system VxD calls that start with Call. Sample output
follows the command.

VCALL cal |

80006E04
80009FD4
80009FF4
8000A018
8000969C
80008200
8000889F
8000898C

Cal | _Wien_VM Ret urns

Cal | _d obal Event

Cal | _WM Event

Call _Priority_ VWM Event

Cal | _Wien_WM I nts_Enabl ed
Cal | _Wen_Not_Critical

Cal | _Wien_Task_Swi t ched
Call _Wen_ldl e

SoftICE Command Reference 211

SoftICE Commands

VE R Windows 3.1, Windows 95, Windows NT Miscellaneous

Display the SoftICE version number.

Syntax VER

Hint: To view your registration information and product serial number, start Softlce Loader
and choose About SoftICE Loader from the Help menu.

Example The following example displays the SoftICE version number and operating system version:
VER

212 SoftICE Command Reference

SoftICE Commands

VM

Syntax

Use

Windows 3.1, Windows 95 System Information

Display information on virtual machines.

W [-5 [wWiD
-S Switches to the VM identified by the VM-ID.

VM-ID Index number of the virtual machine. Index numbers start at 1, where
index number 1 is always assigned to the Windows System VM (the
VM in which Windows applications run).

If no parameters are specified, the VM command displays information about all virtual
machines (VM) in the system. If a VM-ID is specified, the register values of the VM are
displayed. These registers are those found in the client register area of the virtual machine
control block so they represent the values last saved into the control block when there was a
context switch away from the VM. If SoftICE is popped up while a VM is executing, the
registers displayed in the SoftICE Register window, not the ones shown in the VM command
output, are the current registers for the VM. However, if you are in the first few instructions
of an interrupt routine where a virtual machine’s registers are being saved to the control block,
the CS:IP register may be the only valid register (the others have not been saved yet).

The command displays two sets of segment registers plus the EIP and SP registers. The
segment registers are used for the protected mode and the real mode contexts of the VM. If a
VM was executing in protected mode last, the protected mode registers are listed first. If V86
mode was the last execution mode, the V86 segment registers are listed first. The general
purpose registers (displayed below the segment registers) pertain to the segment registers listed
first.

A VM is a unit of scheduling for the Windows kernel. A VM can have one protected mode
thread under Windows 3.1, and multiple protected mode threads under Windows 95. In both
cases the VM has one V86 mode thread of execution. Windows, Windows applications, and
DLLs all run in protected mode threads of VM 1 (the System VM).

VMs other than the System VM normally have a V86 thread of execution only. However,
DPMI applications (also known as DOS extended applications) launched from these VMs
can also execute in a protected mode thread.

The VM command is very useful for debugging VxDs, DPMI programs, and DOS programs
running under Windows. For example, if the system hangs while running a DOS program,
you can often find the address of the last instruction it executed with the VM command (the
CS:EIP shown for the VM’s V86 thread).

SoftICE Command Reference 213

SoftICE Commands

Another more esoteric, but highly valuable use for the VM command is found when
Windows faults all the way back to DOS. There are times when Windows cannot handle a
fault and exits Windows and you end up back at the DOS prompt.

If this happens, duplicate the problem with IIHERE ON in SoftICE (Windows executes an
INT 1 prior to returning to DOS). When the fault happens, SoftICE pops up. Use the VM

command to find out the last address of execution and use the CR command to find the fault
address (CR2 contains the fault address). The ESI register usually points to an error message

at this point.

Output
VM Handle

For each virtual machine, the following information displays:

VM handle is actually a flat offset of the data structure that holds

information about the VM.

Status

This is a bit mask that shows current state information for the VxD.

The values are as follows:

0001H
0002H
0004H
0008H
0010H
0020H
0040H
0080H
0100H
0200H
0400H
0800H
1000H
2000H
4000H
8000H

Excl usi ve node

Runs i n background

In process of creating
Suspended

Partially destroyed

Executi ng protected node code
Executi ng protected node app
Executing 32-bit protected app
Executing call from WD

H gh priority background

Bl ocked on semaphore

Wke up after bl ocked

Part of V86 App is pageabl e
Rest of V86 is |ocked
Schedul ed by tine-slices

Idle, has released tine slice

High Address

Alternate address space for VM. This is where a VxD typically accesses

VM memory (instead of 0).
Note: It is likely for parts of the VM to be paged out at any one time

214 SoftICE Command Reference

SoftICE Commands

Example

that you pop up SoftICE.
VM-ID Index number of this VxD, starting at 1.

Client Registers Address of the saved registers of this VM. This address actually points
into the level O stack for this VM.

W

Sample output follows:

VM Handl e St atus H gh Addr VM| D dient Regs
806A1000 00004000 81800000 3 806A8F94
8061A000 00000008 81400000 2 80515F94
80461000 00007060 81000000 1 80013390

SoftICE Command Reference 215

SoftICE Commands

VXD

Syntax

Use

For Windows 95,
refer to VXD on page
218.

Output

Windows 3.1 System Information

Display the Windows VXD map.

VXD [VkD-name | parti al - VkD- nane]

VxD-name Name of a virtual device driver.

partial-VxD-name First few characters of the name.

This command displays a map of all Windows virtual device drivers in the Command
window. If no parameters are specified, all VxDs are displayed. If a VxD-name is specified,
only information about the VxD with that name displays.

Information that is shown about a VVxD includes the VxD's control procedure address, its
Protected Mode and V86 API addresses, and the addresses of all VxD services it implements.
If the current CS:EIP belongs to one of the VxD's in the map, the line with the address range
that contains the CS:EIP will be highlighted.

If a partial name is specified, SoftICE displays information on all VxDs whose name begins
with the partial name.

If no parameters are specified, each entry in the VXD map contains the following information;
VxD name Name specified in the .DEF file when the VVxD was built.

address Flat 32-bit address of one VxD section. VxDs are comprised of
multiple sections where each section contains both code and data. (i.e.
LockCode, LockData would be one section.)

size Length of the VxD section. This includes both the code and the data
of the VxD group.

code selector Flat code selector.

data selector Flat data selector.

type Section number from the .386 file.

id VxD ID number. The VxD ID numbers are used to obtain the
Protected Mode and V86 API addresses that applications call.

DDB Address of the VxDs Device Descriptor Block (DDB). This is a

control block that contains information about the VVxD such as the
address of the Control Procedure and addresses of APIs.

216 SoftICE Command Reference

SoftICE Commands

If a VXD name is specified, the following information is displayed in addition to the previous

information:

Control Procedure

Protected Mo

de API

V86 APl Address

VxD Services

Routine to which all VxD messages are dispatched.

Address of the routine where all services called by protected mode

applications are processed.

Address of the routine where all services called by V86 applications are

processed.

List of all VXD services that are callable from other VVxDs. For the
Windows system VxDs, both the name and the address of the routines

are displayed.

Example This example displays the VxD map in the Command window. The first few lines of the
display would look something like the following. The VVxD names in the previous table can be
used as symbol names. The address of seg 1 will be used when a VxD name is used in an

expression.

VXD

VxDNane Address Length Code
VW 80001000 00019300 0028
VW 80200000 00002F1C 0028
LoadH 8001A3d0 000007E8 0028
LoadH 80202F1C 00000788 0028
WN CE 8001ABB8 00027875 0028
Cvl 80042430 0000036B 0028
VDDVGA 8004279C 00007AD8 0028
VDDVGA 802036A8 000OO5EC 0028

See Also For Windows 95, refer to VXD on page 218.

Dat a
0030
0030
0030
0030
0030
0030
0030
0030

Type ID DDB
LCRP 01

| GRP

LGRP 02

| GRP

LGRP

LGRP

LCRP

| GRP

SoftICE Command Reference 217

SoftICE Commands

VXD

Syntax

Use

For Windows 3.1,
refer to VXD on page
216.

Windows 95 System Information
Display the Windows VXD map.
VXD [VD nane]
VxD-name Name or partial name of one or more virtual device drivers.

Use this command to obtain information about one or more VxDs. If you do not specify any
parameters, it displays a map of all the Windows virtual device drivers that are currently
loaded in the system. Dynamically loaded VxDs are listed after statically loaded VxDs. If a
VxD-name is specified, only that VxD, or VxDs with the same string at the start of their
name are displayed. For example, VM will match VMM and VMOUSE. If the current
CS:EIP belongs to one of the VxDs in the map, the line with the address range that contains
the CS:EIP is highlighted.

If no parameters are specified, each entry in the VxD map contains this information:

VxDName VXD Name.

Address Base address of the segment.

Length Length of the segment.

Seg Section number from the executable.

ID VxD ID.

DDB Address of the VxD descriptor block.
Control Address of the control dispatch handler.
PM Y, if the VXD has a protected mode API. N otherwise.
V86 Y, if the VXD has a V86 API. N otherwise.
VXD Number of VxD services implemented.
Win32 Number of Win32 services implemented.

If a unique VxD name is specified, the following additional information appears:

Init Order Order in which VxDs receive control messages. A zero value indicates
highest priority.

Reference Data The dword value that was passed from the real mode initialization
procedure (if any) of the VxD.

218 SoftICE Command Reference

SoftICE Commands

Example

See Also

\ersion VXD version number.

PM API PM API FLAT procedure address and PM API Ring-3 address used by
applications. Refer to the following comments on PM and V86 APIs.

V86 API V86 API FLAT procedure address and V86 API Ring-3 address used
by applications. Refer to the next comments on PM and V86 APIs.

The PM API and V86 API parameters are register based and it is up to the individual VXD to
define subfunctions and parameter passing (on entry EBX-VM Handle, EBP-client registers).
If the Ring-3 address shown is 0:0, it means that no application code has yet requested the
API address through INT 2F function 1684h.

When the VxD being listed has a Win32 service table, the following information is presented
for each service:

Service Number Win32 Service Number.
Service Address Address of the service API handler.
Params Number of dword parameters the service requires.

When the VxD being listed has a VxD service table, the following is shown for each service:

Service Number VXD service number.
Service Address Flat address of service.
Service Name Symbol name if known (from VCALL list).

This example displays the VXD map in the Command window. The first few lines of the
display look similar to the following. The VXD names in the previous table can be used as
symbol names. The address of Seg 1 is used when a VxD name is used in an expression.

1 VXD

VxD Address Length Seg ID DDB Control PM V86 WD Wn32
Nane

VMM C0001000 OOFDCOD 0001 0001 COOOE9Q90 CD0024F8 Y Y 402 41
VMM G0200000 000897 0002

VMV QD3E0000 000723 0003

VMM (0320000 000095 0004

VMM (0360000 OOED50 0005

VMV (0260000 007938 0006

For Windows 3.1, refer to VXD on page 216.

SoftICE Command Reference 219

SoftICE Commands

WATCH

Syntax

Use

Example

Windows 3.1, Windows 95, Windows NT Watch

Add a watch expression.

WATCH expr essi on

Use the WATCH command to display the results of expressions. SoftICE determines the size
of the result based on the expression’s type information. If SoftlCE cannot determine the size,
dword is assumed. The expressions being watched are displayed in the Watch window. There
can be up to eight watch expressions at a time. Every time the SoftICE screen is popped up,
the Watch window displays the expression’s current values.

Each line in the Watch window contains the following information:

 Expression being evaluated.
« Expression type.
 Current value of the expression displayed in the appropriate format.

A plus sign (+) preceding the type indicates that you can expand it to view more information.
To expand the type, either double-click the type or press Alt-W to enter the Watch window,
use the UpArrow and DownArrow keys to move the highlight bar to the type you want to
expand, and press Enter.

If the expression being watched goes out of scope, SoftICE displays the following message:
“Error evaluating expression”.

To delete a watch, use either the mouse or keyboard to select the watch and press Delete.

This example creates an entry in the Watch window for the variable hinstance.
WATCH hl nst ance

This example indicates that the type for hinstance is void pointer (void *) and its current
value is 0x00400000.

hPrevl nstance void * = 0x00400000

The following example displays the dword to which the DS:ESI registers point.

WATCH ds: esi
ds:esi void * =0x8158D72E

To watch what ds:esi points to, use the pointer operator (*):

WATCH * ds: esi

220 SoftICE Command Reference

SoftICE Commands

The following example sets a watch on a pointer to a character string IpszCmdLine. The
results show the value of the pointer (0x8158D72E) and the ASCII string (currently null).

WATCH | pszOndLi ne +char * =0x8158D72E <"">

Double-clicking on this line expands it to show the actual string contents.

| pszQmiLi ne -char * =0x8158D72E
char = 0x0

See Also Alt-W, WwW

SoftICE Command Reference 221

SoftICE Commands

WC

Alt-F3

Syntax

Use

Example

Winpows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Toggles the Code window open or closed; and sets the size of the Code window.

WC [wi ndow si z€]

window-size Decimal number.

If you do not specify window-size, WC toggles the window open or closed. If the Code
window is closed, WC opens it; and if it is open, WC closes it.

If you specify the window-size, the Code window is resized. If it is closed, WC opens it to the
specified size.

When the Code window is closed, the extra screen lines are added to the Command window.
When the Code window is opened, the lines are taken from the other windows in the
following order: Command and Data.

If you wish to move the cursor to the Code window, use the EC command (default key F6).

If the Code window is closed, the following example displays the window and sets it to twelve
lines. If the Code window is open, the example sets it to twelve lines.

W 12

222 SoftICE Command Reference

SoftICE Commands

WD

Alt-F2

Syntax

Use

Example

WinDows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Toggles the Data window open or closed; and sets the size of the Data window.

WD [wi ndow si z€]

window-size Decimal number.

If you do not specify the window-size, WD toggles the Data window open or closed. If the
Data window is closed, WD opens it; and if it is open, WD closes it.

If you specify the window-size, the Data window is resized. If it is closed, WD opens it to the
specified size.

When the Data window is closed, the extra screen lines are added to the Command window.
When the Data window is opened, the lines are taken from the other windows in the
following order: Command and Code.

If you wish to move the cursor to the Data window to edit data, use the E command.

If the Data window is closed, the following example displays the window and sets it to one
line. If the Data window is open, the example sets it to one line.

W 1

SoftICE Command Reference 223

SoftICE Commands

WF

CTRL-F3

Syntax

Use

Example

WINDOWS 95, WINDOWS NT WINDOW CONTROL

Display the floating point stack in either floating point or MMX format.

W [-d [b] w| d] f] *]

-d Display the floating point stack in the Command window. In addition
to the registers, both the FPU status word and the FPU control word
display in ASCII format.

b Display the floating point stack in byte hexadecimal format.

w Display the floating point stack in word hexadecimal format.

d Display the floating point stack in dword hexadecimal format.

f Display the floating point stack in 10-byte real format.

* Display the “next” format. The “*” keyword is present to allow cycling

through all the display formats by pressing a function key.

WEF with no parameters toggles the display of the floating point Register window. The
window occupies four lines and is displayed immediately below the Register window. In 10
byte real format, the registers are labeled STO-ST7. In all other formats the registers are
labeled MMO-MM?7.

If the floating point stack contains an unmasked exception, SoftiICE will NOT display the
stack contents. When reading the FPS, SoftICE obeys the tag bits and displays ‘'empty" if the
tag bits specify that state.

When displaying in the Command window, SoftICE displays both the status word and the
control word in ASCII format.

W -d f

FPU Status Wrd: top=2

FPU Control Wrd: PMUM CM ZM DM | M pc=3 rc=0
STO 1.619534411708533451e- 289

ST1 9.930182991407099205e- 293

ST2 6. 779357630001165015e- 296

ST3 4.274541060856685014e- 299

224 SoftICE Command Reference

SoftICE Commands

ST4 2. 782904336495237639e- 302
ST5 1. 818657819582844735e- 305
ST6 enpty
ST7 enpty

Note: ASCII flags are documented in the INTEL Pentium Processor User's Manual,
“Architecture and Programming,” Volume 3.

When displaying in any of the hexadecimal formats, SoftICE always display left to right from
most significant to least significant. For example, in word format, the following order would
be used:

Word format: bi t s(63-48) bits(47-32) bits(31-16) bits(15-0)

SoftICE Command Reference 225

SoftICE Commands

WHAT

Syntax

Use

Example

Windows 95, Windows NT System Information

Determine if a name or expression is a “known” type.

WHAT [nanme | expression]

name Any symbolic name that cannot evaluate as an expression.

expression Any expression that can be interpreted as an expression.

The WHAT command analyzes the parameter specified and compares it to known
names/values, enumerating each possible match, until no more matches can be found. Where
appropriate, type identification of a match is expanded to indicate relevant information such
as a related process or thread.

The name-type parameter is typically a collection of alphanumeric characters that represent
the name of an object. For example, Explorer would be interpreted as a name, and might be
identified as either a module, a process, or both.

The expression-type parameter is something that would not generally be considered a name-
type. That is, it is a number, a complex expression (an expression which contains operators,
such as Explorer + 0), or a register name. Although a register looks like a name, registers are
special cased as expressions since this usage is much more common. For example, for WHAT
eax, the parameter eax is interpreted as an expression-type. Symbol names are treated as
names, and will be correctly identified by the WHAT command as symbols.

Because the rules for determining name- and expression-types can be ambiguous at times, you
can force a parameter to be evaluated as a name-type by placing it in quotes. For example, for
WHAT “eax”, the quotes force eax to be interpreted as a name-type. To force a parameter that
might be interpreted as a name-type to an expression-type, use the unary “+” operator. For
example, for WHAT +Expl or er, the presence of the unary “+” operator forces Explorer to be
interpreted as a symbol, instead of a name.

The following is an example of using the WHAT command on the name Explorer and the
resulting output. From the output, you can see that the name Explorer was identified twice:
once as a kernel process and once as a module.

WHAT expl orer

The name (explorer) was identified and has the val ue FD854A30
The val ue (FDB54A80) is a Kernel Process (KPEB) for Explorer(58)

The name (explorer) was identified and has the val ue 1000000
The val ue (1000000) is a Mdul e | nage Base for 'Explorer'

226 SoftICE Command Reference

SoftICE Commands

WL

Syntax

Use

Example

See Also

Windows 95, Windows NT Window Control Command

Toggles the Locals window open or closed; and sets the size of the Locals window.

W. [wi ndow si z€]

window-size Decimal number.

If you do not specify the window-size, WL toggles the Locals window open or closed. If the
Local window is closed, WL opens it; and if it is open, WL closes it.

If you specify the window-size, the Locals window is resized. If it is closed, WL opens it to the
specified size.

When the Locals window is closed, the extra screen lines are added to the Command window.
When the Locals window is opened, the lines are taken from the other windows in the
following order: Command and Code.

Hint: From within the Locals window, you can expand structures, arrays, and character
strings to display their contents. Simply double-click the item you want to expand.
Note that expandable items are delineated with a plus (+) mark.

If the Locals window is closed, the following example displays the window and sets it to four
lines. If the Locals window is open, the example sets it to four lines.

W 4

LOCALS, TYPES

SoftICE Command Reference 227

SoftICE Commands

WMSG

Windows 3.1, Windows 95, Windows NT System Information

Display the names and message numbers of Windows messages.

Syntax For Windows 3.1

WVBG [parti al - nane]

For Windows 95 and Windows NT

WVBG [parti al - nane| nsg- nunber]

partial-name

msg-number

Windows message name or the first few characters of a Windows
message name. If multiple Windows messages match the partial-name
then all messages that start with the specified characters display.

Hexadecimal message number of the message. Only the message that
matches the msg-number displays.

Use This command displays the names and message numbers of Windows messages. It is useful
when logging or setting breakpoints on Windows messages with the BMSG command.

Example This command displays the names and message humbers of all Windows messages that start
with "WM_GET".

WVBG wm get *

A sample output for this command follows:

000D
000E
0024
0031
0087

WBG 111
0111

228 SoftICE Command Reference

W GETTEXT
W\ GETTEXTLENGTH
W GETM NVAXI NFO
W GETFONT

W GETDLGOCDE

WV Conmand

SoftICE Commands

WR

F2

Syntax

Use

WinDows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Toggle the Register window.

WR

The WR command makes the Register window visible if it is not currently visible. If the
Register window is currently visible, WR closes the Register window.

The Register window displays the 80386 register set and the processor flags.

When the Register window is closed, the extra screen lines are added to the Command
window.

When the Register window is made visible, the lines are taken from the other windows in the
following order: Command, Code and Data.

For Windows 95 and Windows NT

The WR command also toggles the visibility of the floating point Register window if one is
open.

SoftICE Command Reference 229

SoftICE Commands

WW

Alt-F4

Syntax

Use

Example

See Also

Winpows 3.1, WINDOWS 95, WINDOWS NT WINDOW CONTROL

Toggles the Watch window open or closed; and sets the size of the Watch window.

VWV [wi ndow si z€]

window-size Decimal number.

If you do not specify the window-size, WW toggles the Watch window open or closed. If the
Wiatch window is closed, WW opens it; and if it is open, WW closes it.

If you specify the window-size, the Watch window is resized. If it is closed, WW opens it to
the specified size.

When the Watch window is closed, the extra screen lines are added to the Command window.
When the Watch window is opened, the lines are taken from the other windows in the
following order: Command, Code, and Data.

If the Watch window is closed, the following example displays the window and sets it to four
lines. If the Watch window is open, the example sets it to four lines.

WV 4

Alt-W, WATCH

230 SoftICE Command Reference

SoftICE Commands

X WinDows 3.1, WINDOWS 95, WINDOWS NT FLow CONTROL

F5

Exit from the SoftlCE screen.

Syntax X

Use The X command exits SoftICE and restores control to the program that was interrupted to
bring up SoftICE. The SoftICE screen disappears. If you had set any breakpoints, they
become active.

Note: While in SoftICE, pressing the hot key sequence (default key Ctrl-D) or entering the
G command without any parameters is equivalent to entering the X command.

SoftICE Command Reference 231

SoftICE Commands

XFRAME

Syntax

Use

Windows 95, Windows NT System Information

Display exception handler frames that are currently installed.

XFRAME [except - frame* | thread-type]

except-frame™ Stack pointer value for an exception frame.

thread-type Value that SoftICE recognizes as a thread.

Exception frames are created by Microsoft's Structured Exception Handling API (SEH).
Handlers are instantiated on the stack, so they are context specific.

When an exception handler is installed, information about it is recorded in the current stack
frame. This information is referred to as an ExceptionRegistration. The XFRAME command
understands this information, and walks backwards through stack frames until it reaches the
top-most exception handler. From there it begins displaying each registration record up to the
currently active scope. From each registration, it determines if the handler is active or inactive;
its associated "global exception handler;" and if the handler is active, the SEH type: try/except
or try/finally: In the case of active exception handlers, it also displays the exception filter or
finally handler address.

Note: The global exception handler is actually an exception dispatcher that uses information
within an exception scope table to determine which, if any, exception handler handles
the exception. It also handles other tasks such as global and local unwinds.

You can use the global exception handler, and try/except/finally addresses to trap SEH
exceptions by setting breakpoints on appropriate handler addresses.

The XFRAME command is context-sensitive, so if you do not specify one of the optional
parameters, SoftICE reverts to the context that was active at pop-up time and displays the
exception frames for the current thread. When specifying an exception frame pointer as an
optional parameter, make sure you are in a context where that exception frame is valid. For
thread-type parameters, SoftlCE automatically switches to the correct context for the thread.

Below the information for the ExceptionRegistration record, each active handler for that
exception frame is listed. For each active handler, its type (try/except or try/finally), the
address of its exception filter (for try/except only), and the address of the exception handler
display. Because exception handlers can be nested, more than one entry may be listed for each
ExceptionRegistration record.

The XFRAME command uses bare addresses in its output. You can use either the STACK or
WHAT commands to get an idea of which APIs installed which exception handlers.

232 SoftICE Command Reference

SoftICE Commands

Output

Example

Do not confuse the xScope value with the nesting level of exception handlers. Although these
values may appear to have some correlation, the value of xScope is simply an index into a
scope table (xTable). The scope table entry contains a link to its parent scope (if any).

In the event that a stack frame is not present, the XFRAME will not be able to complete the

stack walk.

For each exception frame that is installed, the following information displays:

XxFrame

xHandler

XTable

xScope

Address of the ExceptionRegistration. This value is stack based.

Address of the global exception handler which dispatches the
exception to the appropriate try/except/finally filter/handler.

Address of the scope table used by the global exception handler to
dispatch exceptions.

Index into the xTable for the currently active exception handler. If this
value is -1, the exception handler is installed, but is inactive and will
not trap an exception.

The following example illustrates the use of the XFRAME command for the currently active

thread:
: XFRAME

Ox45FFFDC

O0x45FFFA8

O0x45FFB74

0x60639638 0x606018B8 00

try/ except (0000) filter=0x60606F72, handl er =0x60606F85
Ox5FE16890 Ox5FE11210 00

try/ except (0000) filter=0x5FE125EB, handl er =0x5FE125F8
0x77F8B1BC 0x77F61370 00

try/ except (0000) filter=0x77F7DD21, handl er =0x77F7DD31

SoftICE Command Reference 233

SoftICE Commands

XG

Syntax

Use

Example

Windows 3.1, Windows 95 Symbol/Source

Go to an address in trace simulation mode.

XG [r] address

XG does a Go to a specific code address within the back trace history buffer. This command
can only be used in trace simulation mode. The R parameter makes XG go backwards within
the back trace history buffer. If the specified address is not found within the back trace history
buffer, an error displays.

This example makes the instruction at address CS:2FF000h the current instruction in the
back trace history buffer.

XG 2f f 000

234 SoftICE Command Reference

SoftICE Commands

XP

Ctrl-F10

Syntax

Use

Example

WinDows 3.1, WINDOWS 95 SYMBOL/SOURCE

Program step in trace simulation mode.

XP

The XP command does a program step of the current instruction in the back trace history
buffer. It can only be used in trace simulation mode. Use this command to skip over calls to
procedures and rep string instructions.

This example does a program step over the current instruction in the back trace history buffer.
XP

SoftICE Command Reference 235

SoftICE Commands

X R S ET WinDows 3.1, WINDOWS 95 SYMBOL/SOURCE COMMAND

Reset the back trace history buffer.

Syntax XRSET

Use XRSET clears all information from the back trace history buffer. It can only be used when
NOT in trace simulation mode.

Example This example clears the back trace history buffer.
XRSET

236 SoftICE Command Reference

SoftICE Commands

XT

Ctrl-F8, XT R Alt-F8

Syntax

Use

Example

WinDows 3.1, WINDOWS 95 SYMBOL/SOURCE COMMAND

Single step in trace simulation mode.

XT [R

Use the XT command to single step the current instruction in the back trace history buffer.
The XT command is valid only within the in trace simulation mode. This command steps to
the next instruction contained in the back trace history buffer. The command XT R single
steps backwards within the back trace history buffer.

This example single steps one instruction forward in the back trace history buffer.
XT

SoftICE Command Reference 237

SoftICE Commands

ZAP

Syntax

Use

Example

Winpows 3.1, WINDOWS 95, WINDOWS NT MoDE CONTROL COMMAND

Replace an embedded interrupt 1 or 3 with a NOP.

ZAP

The ZAP command replaces an embedded interrupt 1 or 3 with the appropriate number of
NORP instructions. This is useful when the INT 1 or INT 3 is placed in code that is repeatedly
executed and you no longer want SoftICE to pop up. This command works only if the INT 1
or INT 3 instruction is the one before the current CS:EIP.

The embedded interrupt 1 or interrupt 3 will be replaced with NOP instructions in the
following example:

ZAP

238 SoftICE Command Reference

	SoftICE Command Reference
	December 1996
	Software License Agreement
	Contents
	You will find it a very good practice always to ve...

	SoftICE Commands
	.
	Windows 3.1, Windows 95, Windows NT Window Control...
	Syntax
	.

	Use
	For Windows 95 and Windows NT

	?
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT

	Use
	For Windows 3.1
	For Windows 95 and Windows NT

	Example
	:? 10*4+3

	See Also

	A
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	Use
	For Windows NT

	Example
	A CS:1234

	ACTION
	Windows 3.1 Mode Control
	Syntax
	interrupt-number
	debugger-name

	Use
	Example
	See Also

	ADDR
	Windows 95 System Information
	Syntax
	context-handle
	process-name

	Use
	To use ADDR with Windows NT, refer to ADDR on page...

	Output
	Handle
	Pgtptr
	Tables
	MinAddr
	MaxAddr
	Mutex
	Owner

	Example
	The current context is highlighted.

	See Also

	ADDR
	Windows NT System Information
	Syntax
	KPEB

	Use
	To use ADDR with Windows 95, refer to ADDR on page...

	Output
	CR3
	LDT
	KPEB
	PID
	NAME

	Example
	:ADDR

	See Also

	ALTKEY
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	letter

	Use
	Example
	ALTKEY alt z

	ALTSCR
	Windows 3.1, Windows 95, Windows NT Window Control...
	Syntax
	Use
	In the SoftICE program group, use Video Setup to s...
	For Windows 95

	Example
	ALTSCR on

	ANSWER
	Windows 95, Windows NT Customization
	Syntax
	com-port
	baud-rate
	i=init

	Use
	Example
	ANSWER on 2 38400 i=atx0
	ANSWER=atx0

	See Also

	BC
	Windows 3.1, Windows 95, Windows NT Manipulating B...
	Syntax
	list
	*

	Example
	BC *
	BC 1 5

	BD
	Windows 3.1, Windows 95, Windows NT Manipulating B...
	Syntax
	list
	*

	Use
	Example
	BD 1 3

	BE
	Windows 3.1, Windows 95, Windows NT Manipulating B...
	Syntax
	list
	*

	Use
	Example
	BE 3

	BH
	Windows 3.1, Windows 95, Windows NT Manipulating B...
	Syntax
	BH

	Use
	UpArrow
	DownArrow
	Insert
	Enter
	Esc
	For Windows 3.1 and Windows 95
	For Windows 95
	For Windows NT

	Example
	BH

	BL
	Windows 3.1, Windows 95, Windows NT Manipulating B...
	Syntax
	BL

	Use
	Example
	BL

	BMSG
	Windows 3.1, Windows 95, Windows NT Breakpoints
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	window-handle
	begin-msg
	end-msg
	L
	c=
	IF expression
	DO command

	Use
	Example
	:BMSG 9BC wm_mousefirst wm_mouselast
	:BMSG f4c L 0 wm_create

	BPE
	Windows 3.1, Windows 95, Windows NT Manipulating B...
	Syntax
	breakpoint-index

	Use
	Example
	:BPE 1
	:BPE 1
	:BPX 80104324 if (eax==1) do “dd esi”

	BPINT
	Windows 3.1 Breakpoints
	Syntax
	int-number
	value
	c=

	Use
	For Windows 95 and Windows NT, refer to BPINT on p...

	Example
	BPINT 21 ah=4c
	BPINT 50

	See Also

	BPINT
	Windows 95, Windows NT Breakpoints
	Syntax
	int-number
	IF expression
	DO command

	Use
	For Windows 3.1, refer to BPINT on page 25.
	For Windows 95
	For Windows NT

	Example
	BPINT 2e if tid==_tid do "dd 82345829"

	See Also

	BPIO
	Windows 3.1, Windows 95, Windows NT Breakpoints
	Syntax
	For Windows 3.1
	For Windows 95
	For Windows NT
	port
	verb
	qualifier
	Qualifier, value, and C= are not valid for Windows...
	value
	c=
	-h
	IF expression
	DO command

	Use
	For Windows 3.1
	For Windows 3.1 and Windows 95
	For Windows NT

	Example

	BPM
	Windows 3.1, Windows 95, Windows NT Breakpoints
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	size
	verb
	qualifier
	Qualifier, value, and C= are not valid for Windows...
	value
	debug-reg
	c=
	IF expression
	DO command

	Use
	For Windows 3.1
	For Windows 95
	For Windows NT

	Example

	BPR
	Windows 3.1, Windows 95 Breakpoints
	Syntax
	Windows 3.1
	Windows 95
	start-address
	end-address
	verb
	c=
	IF expression
	DO command

	Use
	For Windows 3.1
	For Windows 95

	Example
	BPR es:0 es:1fff w

	BPRW
	Windows 3.1, Windows 95 Breakpoints
	Syntax
	For Windows 3.1
	For Windows 95
	module-name
	selector
	verb
	IF expression
	DO command

	Use
	For Windows 95
	Common Uses

	Example
	BPRW progman t

	BPT
	Windows 3.1, Windows 95 Manipulating Breakpoints
	Syntax
	breakpoint-index

	Use
	Example
	BPT 3
	:BPX 1b:401200 if (eax==1) do “dd esi”

	BPX
	Windows 3.1, Windows 95, Windows NT Breakpoints
	F9
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	address
	c=
	IF expression
	DO command

	Use
	For Windows 3.1 and Windows 95
	For Windows 95
	For Windows NT

	Example
	BPX eip+10
	BPX .1234
	For Windows 95 and Windows NT

	BPX eip if eax > 1ff && eax <= 300
	BPX 80023455 do “db ds:dx”

	See Also

	BSTAT
	Windows 95, Windows NT Breakpoints
	Syntax
	breakpoint-index

	Use
	Output
	BP #
	Totals Category: Hits
	Breaks
	Popups
	Logged
	Misses
	Errors
	Current Category: Hits
	Misses
	Miscellaneous Category: Status
	Scode
	Cond.
	Action

	Example
	:BSTAT 0

	See Also

	C
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	start-address
	length
	start-address-2

	Use
	Example
	C ds:805ff000 l 10 ds:806ff000

	CLASS
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	For Windows 3.1
	For Windows 95
	For Windows NT
	module-name
	-x
	task-name
	process-type
	thread-type
	module-type
	class-name

	Use
	For Windows 95
	For Windows NT

	Output
	Class Handle
	Class Name
	Owner
	Window Procedure
	Styles

	Example
	For Windows 3.1

	CLS
	Windows 3.1, Windows 95, Windows NT Window Control...
	Alt-F5
	Syntax
	CLS

	Use

	CODE
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	Use
	Example
	CODE on

	See Also

	COLOR
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	normal
	bold
	reverse
	help
	line

	Use
	Example
	COLOR 7 f 71 30 2

	CPU
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	CPU [-i]
	-i

	Use
	For Windows NT

	Example
	See Also

	CR
	Windows 3.1 System Information
	Syntax
	CR

	Use
	Example
	See Also

	CSIP
	Windows 3.1 Breakpoints
	Syntax
	off
	not
	start-address
	end-address
	Windows-module-name

	Use
	For Windows 3.1
	For Windows 95 and Windows NT

	Example
	CSIP not $f000:0 $ffff:0
	CSIP calc

	D
	Windows 3.1, Windows 95, Windows NT Display/Change...
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	size

	Use
	For Windows 95 and Windows NT

	Example
	DW es:1000
	For Windows 95 and Windows NT

	:DD ss:esp l 1000

	DATA
	Windows 3.1, Windows 95, Windows NT Window Control...
	Windows 3.1 - F12
	Syntax
	window-number

	Use
	Example
	DATA 3

	DEVICE
	Windows NT System Information
	Syntax
	Use
	Output
	RefCnt
	DrvObj
	NextDev
	AttDev
	CurIrp
	DevExten
	Name
	Flags
	Vpb
	Device Type

	Example
	DEVICE
	DEVICE beep

	DEX
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	data-window-number

	Use
	Example
	DEX 0 ss:esp
	DEX 1 @pointervariable

	See Also

	DIAL
	Windows 95, Windows NT Customization
	Syntax
	com-port
	baud-rate
	i=init-string
	p=number

	Use
	Example
	DIAL on 2 19200 i=atx0 p=9,555-5555,,,1000
	SERIAL on [com-port] [baud-rate] i"init-string"
	SERIAL on 1 19200 i"atx0"
	Dial initialization string: atx0
	Telephone number string: 9,555-5555,,,1000

	See Also

	DRIVER
	Windows NT System Information
	Syntax
	Use
	Output
	Start
	Size
	DrvSect
	Count
	DrvInit
	DrvStaIo
	DrvUnld
	Name
	DeviceObject
	Flags
	FastIoDispatch
	Handler Addresses

	Example
	DRIVER
	DRIVER beep

	E
	Windows 3.1, Windows 95, Windows NT Display/Change...
	Syntax
	size
	data-list

	Use
	Example
	EB ds:1000 'Test String',0
	ES ds:1000 3.1415

	EC
	Windows 3.1, Windows 95, Windows NT Window Control...
	F6
	Syntax
	EC

	Use
	Source Mode Only

	EXIT
	Windows 3.1 Flow Control
	Syntax
	EXIT

	Use
	Caution
	For Windows 95 and Windows NT

	Example
	EXIT

	EXP
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	Syntax
	module!
	partial-name
	!

	Use
	For Windows 3.1
	For Windows 95
	Windows NT

	Example
	:EXP delete
	:EXP !
	:EXP user32!is

	See Also

	F
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	length
	data-list

	Use
	Example
	F ds:8000 l 100 'test'

	FAULTS
	Windows 3.1, Windows 95, Windows NT Mode Control
	Syntax
	Use
	Example
	FAULTS off

	See Also

	FIBER
	Windows NT System Information
	Syntax
	Use
	Example
	:FIBER

	FILE
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	Syntax
	Use
	For Windows 95 and Windows NT

	Example
	FILE main.c

	FKEY
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	function-key
	string

	Use
	Example
	FKEY f2 ^wr;
	FKEY cf1 g cs:8028f000;d ss:esp;u cs:eip+
	FKEY f1 wd 3;d 100;
	FKEY f1 wr;wl 8;wc 10;

	FOBJ
	Windows NT System Information
	Syntax
	fobj-address

	Use
	DeviceObject
	Vpb
	FSContext1 and FSContext2

	Example
	:FOBJ fd877230

	FLASH
	Windows 3.1, Windows 95, Windows NT Window Control...
	Syntax
	Use
	Example
	FLASH on

	See Also

	FORMAT
	Windows 3.1, Windows 95, Windows NT Window Control...
	Shift-F3
	Syntax
	FORMAT

	Use
	Example
	FORMAT

	G
	Windows 3.1, Windows 95, Windows NT Flow Control
	Syntax
	=start-address
	break-address

	Use
	For Windows 3.1
	For Windows 95 and Windows NT

	Example
	G 80123456

	GDT
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	selector

	Use
	Output
	selector value
	selector type
	selector base
	selector limit
	selector DPL
	present bit
	segment attributes

	Example
	:GDT

	GENINT
	Windows 3.1, Windows 95, Windows NT Flow Control
	Syntax
	interrupt-number

	Use
	Example
	GENINT nmi
	GENINT 0
	I3HERE off GENINT 3

	H
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	F1
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT

	Use
	For Windows 3.1
	For Windows 95 and Windows NT

	Example
	:H altkey

	See Also

	HBOOT
	Windows 3.1, Windows 95, Windows NT Flow Control
	Syntax
	HBOOT

	Use
	Example
	HBOOT

	HEAP
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	-L
	module-name
	selector

	Use
	For Windows 95
	For Windows NT
	For Windows 95, refer to HEAP32 on page 97. For Wi...
	For Windows 3.1

	Output
	selector or handle
	address
	size
	module name
	type

	Example
	HEAP kernel

	See Also

	HEAP32
	Windows 95 System Information
	Syntax
	hheap32
	task-name

	Use
	For Windows 95
	For Windows 3.1, Windows 95, and Windows NT, refer...

	Output
	HeapBase
	MaxSize
	Committed
	Segments
	Type
	Owner

	Example
	HEAP32
	HEAP32 exchng32

	See Also

	HEAP32
	Windows NT System Information
	Syntax
	-w
	-x
	-s
	-v
	-b
	-trace
	heap
	heap-entry
	process-type

	Use
	For Windows 3.1, Windows 95, and Windows NT, refer...

	Output
	Base
	Id
	Cmmt/Psnt/Rsvd
	Segments
	Flags
	Process
	Base
	Type
	Size
	Seg#
	Flags
	Seg#
	Segment Range
	Cmmt/Psnt/Rsvd
	Max UCR

	Example
	HEAP32

	See Also

	HERE
	Windows 3.1, Windows 95, Windows NT Flow Control
	F7
	Syntax
	HERE

	Use
	For Windows 3.1
	For Windows 95 and Windows NT

	Example
	HERE

	HWND
	Windows 3.1, Windows 95 System Information
	Syntax
	For Windows 3.1
	For Windows 95
	level
	For Windows NT, refer to the HWND on page 109.
	task-name
	-x
	hwnd
	process-name

	Use
	Output
	Class Name
	Window Procedure

	Example
	HWND msword
	HWND -x winword

	See Also

	HWND
	Windows NT System Information
	Syntax
	-eXtended
	-Children
	hwnd-type
	desktop-type
	process-type, thread- type or module-type
	class name

	Use
	For Windows 3.1 and Windows 95, refer to HWND on p...

	Output
	Handle
	Class
	WinProc
	TID
	Module

	Example
	HWND
	HWND 400a0
	HWND 74
	HWND -x 400a0

	See Also

	I
	Windows 3.1, Windows 95, Windows NT I/O Port
	Syntax
	size
	port

	Use
	Example
	I 21

	I1HERE
	Windows 3.1, Windows 95, Windows NT Mode Control
	Syntax
	Use
	For Windows 3.1 and Windows 95

	Example
	I1HERE on

	I3HERE
	Windows 3.1, Windows 95, Windows NT Mode Control
	Syntax
	Use
	Example
	I3HERE on
	I3HERE off
	GENINT 3

	See Also

	IDT
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	interrupt-number

	Use
	For Windows NT

	Output
	interrupt number
	interrupt type
	address
	selector's DPL
	present bit
	Owner+Offset

	Example
	:IDT
	:IDT d

	IRP
	Windows NT System Information
	Syntax
	irp-address

	Use
	Flags
	StackCount
	CurrentLocation
	Cancel
	Tail.Overlay. CurrentStackLoc
	Cancel
	Major Function and Minor Function
	Device Object
	File Object
	Completion Rout

	Example
	:IRP eax

	LDT
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	selector

	Use
	For Windows 95 and Windows NT
	For Windows NT

	Output
	selector value
	selector type
	selector base
	selector limit
	selector DPL
	present bit
	segment attributes

	Example
	:LDT

	LHEAP
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	selector
	module-name

	Use
	For Windows 95 and Windows NT
	For Windows NT

	Output
	offset
	size
	type
	handle

	Example
	LHEAP gdi

	LINES
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT

	Use
	For Windows 95 and Windows NT

	Example
	LINES 43

	LOCALS
	Windows 95, Windows NT Symbol/Source Command
	Syntax
	Use
	Output
	Example
	See Also

	M
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	source-address
	length
	dest-address

	Use
	Example
	M ds:1000 l 2000 es:5000

	MACRO
	Windows 95, Windows NT Customization
	Syntax
	macro-name
	macro-body
	*
	=

	Use
	Example
	:MACRO
	:MACRO help = “h”
	:MACRO help = “h exp”
	:MACRO help= “help %1”
	:MACRO qexp = “addr explorer; query %1” qexp
	:MACRO 1shot = “bpx %1 do \”bc bpindex\”” 1shot ei...
	:MACRO ddt = “dd thread” ddt

	MAP32
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	For Windows 3.1
	module-name
	module-handle
	For Windows 95 and Windows NT

	module name
	module handle
	address

	Use
	For Windows 95
	For Windows NT

	Output
	Owner
	Name
	Obj#
	Address
	Size
	Type

	Example
	For Windows 3.1
	:MAP32 msvcrt10

	MAPV86
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	address

	Use
	For Windows NT

	Output
	For Windows 3.1 and Windows 95
	VM ID
	VM handle
	CRS pointer
	VM address
	Start
	Length
	Name

	Example
	:MAPV86

	MOD
	Windows 3.1 System Information
	Syntax
	partial-name

	Use
	Output
	module handle
	For Windows 95 and Windows NT, refer to MOD on pag...
	pe-header
	module name
	file name

	Example
	See Also

	MOD
	Windows 95 and Windows NT System Information
	Syntax
	partial-name

	Use
	For Windows 3.1, refer to MOD on page 137.
	For Windows 95
	For Windows NT

	Output
	module handle
	base
	pe-header
	module name
	file name

	Example
	:MOD

	See Also

	NTCALL
	Windows NT System Information
	Syntax
	NTCALL

	Use
	Output
	Func.
	Address
	Params
	Name

	Example

	O
	Windows 3.1, Windows 95, Windows NT I/O Port
	Syntax
	size
	port
	value

	Use
	Example
	O 21 0

	OBJDIR
	Windows NT System Information
	Syntax
	Use
	Output
	Object
	ObjHdr
	Name
	Type

	Example
	OBJDIR device
	OBJDIR \device\harddisk0

	See Also

	OBJTAB
	Windows NT System Information
	Syntax
	handle
	object-type-name
	-h

	Use
	Output
	Object
	Type
	Id
	Handle
	Owner
	Flags

	Example
	:OBJTAB

	See Also

	P
	Windows 3.1, Windows 95, Windows NT Flow Control
	F10, F12 for P RET
	Syntax
	Use
	For Windows 95 and Windows NT

	Example
	P

	PAGE
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	address
	length

	Use
	Output
	physical address
	linear address
	attribute
	type

	Example
	For Windows 3.1 and Windows 95
	PAGE
	PAGE 00106018 l 3
	PAGE #585:263C
	For Windows NT

	:PAGE Page Directory Physical=00030000
	Physical Attributes Linear Address Range 00000000 ...
	:PAGE Page Directory Physical=00030000
	Physical Attributes Linear Address Range 00380000 ...
	:PAGE eip

	PAUSE
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	Use
	Example
	PAUSE on

	See Also

	PCI
	Windows 95, Windows NT System Information
	Syntax
	Use
	Example

	PEEK
	Windows 95, Windows NT Display/Change Memory
	Syntax
	PEEK[size] address
	size
	address

	Use
	Example
	PEEKD FF000000

	See Also

	PHYS
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	physical-address

	Use
	For Windows 95 and Windows NT

	Example
	:PHYS a0000

	POKE
	Windows 95, Windows NT Display/Change Memory
	Syntax
	POKE[size] address value
	size
	address
	value

	Use
	Example
	POKED FF000000 12345678

	See Also

	Print Screen Key
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	Use
	For Windows 95 and Windows NT

	See Also

	PRN
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	x

	Use
	Example
	PRN com1

	PROC
	Windows 95, Windows NT System Information
	Syntax
	For Windows 95
	For Windows NT
	-eXtended
	-Objects
	-Memory
	task
	process-type
	thread-type

	Use
	Output
	For Windows 95
	Process
	pProcess
	Process ID
	Threads
	Context
	DefHeap
	DebuggeeCB
	For Windows NT

	Process
	KPEB
	PID
	Threads
	Priority
	User Time
	Krnl Time
	Status

	Example
	For Windows 95
	:PROC
	:PROC -x gdidemo
	For Windows NT

	:PROC
	:PROC -x explorer

	QUERY
	Windows 95, Windows NT System Information
	Syntax
	-x
	address
	process-type

	Use
	Output
	For Windows 95
	Base
	AllocBase
	AllocProtect
	Size
	State
	Protect
	Owner
	Context
	For Windows NT

	Context
	Address Range
	Flags
	MMCI
	PTE
	Name

	Example
	Windows 95
	: QUERY
	: QUERY -x 416000
	: QUERY EXPLORER
	Windows NT

	:QUERY 7f2d0123

	R
	Windows 3.1, Windows 95, Windows NT Display/Change...
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	register-name
	value
	-d

	Use
	Example
	R ah=5
	R fl=ozp
	R fl
	R fl=o+a-c

	RS
	Windows 3.1, Windows 95, Windows NT Window Control...
	F4
	Syntax
	RS

	Use

	S
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	address
	length
	data-list
	-c
	-u

	Use
	Example
	S es:di+10 L ecx 'Hello',12,34
	S 30:0 L ffffffff 'string'

	SERIAL
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	com-port
	baud-rate

	Use
	For Windows 3.1
	For Windows 95

	Example
	SERIAL.EXE on 19200
	SERIAL on 2 19200

	See Also

	SET
	Windows 95 and Windows NT Mode Control
	Syntax
	Use
	Example
	SET faults on
	SET mouse 3

	See Also

	SHOW
	Windows 3.1, Windows 95 Symbol/Source
	Ctrl-F11
	Syntax
	start
	length

	Use
	Example
	SHOW B

	See Also

	SRC
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	F3
	Syntax
	SRC

	Use
	Example
	SRC

	SS
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	Syntax
	line-number
	string

	Use
	Example
	SS 1 'if (i==3)'

	STACK
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	For Windows 3.1 and Windows 95
	task-name
	SS:[E]BP
	For Windows NT

	thread-type
	stack frame

	Use
	For Windows 3.1 and Windows 95

	Output
	Example
	:STACK
	:STACK

	SYM
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	Syntax
	section-name
	!
	symbol-name
	value

	Use
	Example
	SYM foo*
	SYM foo* 6000
	SYM !
	SYM main!foo*

	SYMLOC
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	segment address
	o
	r
	-c
	section-number
	selector
	linear-address

	Use
	For Windows 95 and Windows NT

	Example
	:SYMLOC 1244+10
	:SYMLOC 1 1b 401000
	:SYMLOC -c 47

	T
	Windows 3.1, Windows 95, Windows NT Flow Control
	F8
	Syntax
	count

	Use
	Example
	T = cs:1112 8

	TABLE
	Windows 3.1, Windows 95, Windows NT Symbol/Source
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	partial-table-name
	autoon
	autooff
	$

	Use
	For Windows 3.1
	For Windows 95 and Windows NT

	Example
	:TABLE myt

	TABS
	Windows 3.1, Windows 95, Windows NT Customization
	Syntax
	tab-setting

	Use
	Example
	TABS 4

	TASK
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	TASK

	Use
	For Windows NT

	Output
	Task Name
	SS:SP
	StackTop
	StackBot
	StackLow
	TaskDB
	hQueue
	Events
	For Windows 3.1 and Windows 95

	StackBot
	StackTop
	StackLow
	SS:SP

	Example
	:TASK

	THREAD
	Windows 95 System Information
	Syntax
	TCB
	ID
	task-name

	Use
	For Windows NT, refer to THREAD on page 201.

	Output
	Ring0TCB
	ID
	Context
	Ring3TCB
	Thread ID
	Process
	TaskDB
	PDB
	SZ
	Owner

	Example
	:THREAD
	:THREAD 8B

	See Also

	THREAD
	Windows NT System Information
	Syntax
	-r
	-x
	-u
	thread-type
	process-type

	Use
	For Windows 95, refer to THREAD on page 199.

	Output
	TID
	Krnl TEB
	StackBtm
	StackTop
	StackPtr
	User TEB
	Process(Id)
	TID
	KTEB
	Base Pri, Dyn. Pri
	Mode
	Switches
	Affinity
	Restart

	Example
	:THREAD explorer

	See Also

	TRACE
	Windows 3.1, Windows 95 Symbol/Source
	CTRL-F9, TRACE B, CTRL-F12
	Syntax
	start

	Use
	Example
	TRACE 8

	See Also

	TSS
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	For Windows 3.1
	TSS
	For Windows 95 and Windows NT

	TSS-selector

	Use
	Output
	TSS selector value
	selector base
	selector limit
	For Windows 3.1 and Windows 95

	port number
	handler address
	handler name
	For Windows 95 and Windows NT

	Example

	TYPES
	Windows 95, Windows NT Symbol/Source Command
	Syntax
	type-name

	Use
	Example
	See Also

	U
	Windows 3.1, Windows 95, Windows NT Display/Change...
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	address
	symbol-name
	length

	Use
	For Windows 95 and Windows NT

	Example
	U eip - 10
	For Windows 95 and Windows NT

	U myproc L100

	VCALL
	Windows 3.1, Windows 95 System Information
	Syntax
	partial-name

	Use
	Example
	VCALL call

	VER
	Windows 3.1, Windows 95, Windows NT Miscellaneous
	Syntax
	VER

	Example
	VER

	VM
	Windows 3.1, Windows 95 System Information
	Syntax
	-S
	VM-ID

	Use
	Output
	VM Handle
	Status
	High Address
	VM-ID
	Client Registers

	Example
	VM

	VXD
	Windows 3.1 System Information
	Syntax
	VxD-name
	partial-VxD-name

	Use
	For Windows 95, refer to VXD on page 218.

	Output
	VxD name
	address
	size
	code selector
	data selector
	type
	id
	DDB
	Control Procedure
	Protected Mode API
	V86 API Address
	VxD Services

	Example
	:VXD

	See Also

	VXD
	Windows 95 System Information
	Syntax
	VxD-name

	Use
	For Windows 3.1, refer to VXD on page 216.
	VxDName
	Address
	Length
	Seg
	ID
	DDB
	Control
	PM
	V86
	VXD
	Win32
	Init Order
	Reference Data
	Version
	PM API
	V86 API
	Service Number
	Service Address
	Params
	Service Number
	Service Address
	Service Name

	Example
	See Also

	WATCH
	Windows 3.1, Windows 95, Windows NT Watch
	Syntax
	Use
	Example
	WATCH hInstance
	hPrevInstance void * = 0x00400000
	WATCH ds:esi
	ds:esi void * =0x8158D72E
	WATCH lpszCmdLine +char * =0x8158D72E <"">
	lpszCmdLine -char * =0x8158D72E char = 0x0

	See Also

	WC
	Windows 3.1, Windows 95, Windows NT Window Control...
	Alt-F3
	Syntax
	window-size

	Use
	Example
	WC 12

	WD
	Windows 3.1, Windows 95, Windows NT Window Control...
	Alt-F2
	Syntax
	window-size

	Use
	Example
	WD 1

	WF
	Windows 95, Windows NT Window Control
	CTRL-F3
	Syntax
	-d
	b
	w
	d
	f
	*

	Use
	Example
	WF -d f

	WHAT
	Windows 95, Windows NT System Information
	Syntax
	name
	expression

	Use
	Example
	WHAT explorer

	WL
	Windows 95, Windows NT Window Control Command
	Syntax
	window-size

	Use
	Example
	See Also

	WMSG
	Windows 3.1, Windows 95, Windows NT System Informa...
	Syntax
	For Windows 3.1
	For Windows 95 and Windows NT
	partial-name
	msg-number

	Use
	Example
	WMSG wm_get*
	WMSG 111

	WR
	Windows 3.1, Windows 95, Windows NT Window Control...
	F2
	Syntax
	WR

	Use
	For Windows 95 and Windows NT

	WW
	Windows 3.1, Windows 95, Windows NT Window Control...
	Alt-F4
	Syntax
	window-size

	Use
	Example
	See Also

	X
	Windows 3.1, Windows 95, Windows NT Flow Control
	F5
	Syntax
	X

	Use

	XFRAME
	Windows 95, Windows NT System Information
	Syntax
	except-frame*
	thread-type

	Use
	Output
	xFrame
	xHandler
	xTable
	xScope

	Example
	:XFRAME

	XG
	Windows 3.1, Windows 95 Symbol/Source
	Syntax
	Use
	Example
	XG 2ff000

	XP
	Windows 3.1, Windows 95 Symbol/Source
	Ctrl-F10
	Syntax
	XP

	Use
	Example
	XP

	XRSET
	Windows 3.1, Windows 95 Symbol/Source Command
	Syntax
	XRSET

	Use
	Example
	XRSET

	XT
	Windows 3.1, Windows 95 Symbol/Source Command
	Ctrl-F8, XT R Alt-F8
	Syntax
	XT [R]

	Use
	Example
	XT

	ZAP
	Windows 3.1, Windows 95, Windows NT Mode Control C...
	Syntax
	ZAP

	Use
	Example
	ZAP

