
Introduction 2-1

API - Manual Implementation for Hardlock

2 Introduction

2.1 Hardlock Documentation and Manuals

The Hardlock documentation is broken down as follows:

• Hardlock Technical Manual
Introduces the entire software protection palette and
defines its areas of applications. Describes CP.EXE
programming software and provides general information
on encryption and Hardlock hardware.

• HL-Crypt, Automatic Implementation for Hardlock
Identifies and describes the various ways of
automatically integrating software protection.

• Hardlock Bistro, the visual Hardlock program
development environment
Describes the few steps to your Hardlock-protected
application.

• HL-Server, Licensing Network-Wide
Describes how Hardlock can be used in networks.

• Hardlock API, Manual Implementation
Identifies and describes the various ways of manually
implementing software protection.

• Hardlock Terms
Explains key Hardlock terms and concepts. Cross-
references are denoted with an arrow. For example:

èSub-code

Manuals can also be purchased individually.

2-2 Introduction

2.2 A Few Opening Remarks...

To achieve effective software protection, you must always keep in
mind the principle of the weakest link in a chain. In sophisticated
software protection systems such as Hardlock, the "links” of the
hardware "chain” (copy protection, protected coding, algorithmic
protection, etc.) are extremely strong and reliable.

With the Hardlock software protection system, the weakest link
in the protection chain is the actual implementation of the
module in the program to be protected.

When implementing Hardlock in your software, the objective is to
couple the program and protection hardware (Hardlock) to create a
single, indissoluble unit. Generally speaking, the application must
query the Hardlock and use the module functions provided.

This may sound simple, but in reality creating effective software
protection takes time. In fact, the degree of protection afforded by a
manual implementation is directly proportional to the amount of time
invested. That you must have sufficiently complex algorithms to
begin with goes without saying.

Unfortunately, there are (still) many software manufacturers,
particularly in the area of data protection, who offer utterly primitive
protection methods (for example, constant XOR ciphers). Although
two sets of encrypted text may at first glance appear equally
garbled, there may be great differences in the complexity of their
encryption. Data encrypted by inverting a few bits and data
encrypted using a sophisticated encryption method may look the
same, but they have completely different cryptographic behavior.

Faced with deadlines and other constraints, experienced
programmers often do not have the time to develop an effective
strategy for implementing software protection. More often than not,
this task is ignored and neglected. However, the earlier the
implementation of software protection is considered in a project, the
easier and more effective implementation is in the end.

Introduction 2-3

API - Manual Implementation for Hardlock

To achieve optimal protection, you must be very familiar with your
compiler, program, operating system and, of course, the Hardlock
itself. Several days are required to achieve truly effective manual
protection.

For all DOS, Windows and Win32 programs, we recommend
HL-Crypt. This system lets you implement effective software
protection within minutes. Thanks to years of experience, we know
how a potential hacker goes about gaining access to your program.
Using this knowledge, we developed HL-Crypt, a truly effective
system for automatically implementing software copy protection. For
more information, please see the documentation for automatic
implementation with HL-Crypt.

Note:

Use the Latteccino program in the new Hardlock Bistro
software to test the API functions. The software runs under
Windows 95 or Windows NT only. For more information,
please refer to the Hardlock Bistro manual.

The Latteccino program is an intuitive interface to the API.
You only need to refer to this manual if you want to find out
more about the individual API function.

API Operation 3-1

API - Manual Implementation for Hardlock

3 API Operation

3.1 Application Programming Interface (API)

3.1.1 General Definition

The èAPI (Application Programming Interface) for Hardlock is the
interface between the application you want to protect and the
Hardlock. It contains all functions required for controlling and
querying a Hardlock (e.g. as a Hardlock library). The API is divided
into two levels:

The low-level API contains all hardware and operating system-
dependent routines for controlling the Hardlock. The low-level
routines of the API are always available as libraries or object files
(also see "Naming Conventions for API Objects").

The high-level API was designed to make working with the API
easier. It is available for compilers in the most popular high-level
languages. The high-level API functions described in the manual
also support the programming interface of the low-level API.
Implementation of the high-level API is provided by the source code.

3.1.2 Programming with the Hardlock API

The main advantage of the high-level functions is that you only have
to define the parameters required for the application when calling
them. All other internal parameters required for addressing the
Hardlock are automatically managed by the high-level API and
passed on as a complete "structure" to the low-level API together
with the parameters relevant to the application.

For most applications you will only need the high-level functions.
However, we would be happy to send you a complete description of

3-2 API Operation

the low-level routines should you wish to use the programming
interface of the low-level API. Excerpts from this documentation are
also available as online text in the API debugger TESTAPI.EXE.

Note:

Hardlock API is used in all protection products (manual
implementations, HL-Server, HL-Crypt). Be sure to only
use programs with the same API main version number to
ensure that the various products work together properly.
For example, an HL-Server with API version 2.xx is not
compatible with an application which was manually
implemented using API version 3.xx. Products with the
same main version number (e.g. 3.xx) can be used
together without any problem.

3.1.3 Using High-level Functions

For information on how to use high-level language calls, please read
the detailed descriptions of the individual functions provided in
Chapter 6 and refer to the example programs for the various
compilers provided on the Hardlock CD.

Compiler settings, objects and libraries required for your particular
program are contained in batch data and make files included. These
are generally for a minimum configuration. Before integrating
Hardlock in your software, first try to compile the example program.

We emphasize that the example programs are only meant to clarify
how the various function calls are used and how they operate. We
have kept them as simple and concise as possible. They are by no
means exemplary of an effective manual implementation. Do not
simply transfer the examples to your program! Remember, a
potential hacker also has access to our sample routines.

API Operation 3-3

API - Manual Implementation for Hardlock

3.2 What Can Hardlock Do For You?

3.2.1 Algorithmic Protection

Hardlock operates based on the principle of algorithmic protection.
This means a mathematical function is incorporated in the hardware
of the Hardlock. The behavior of this function depends on which
coding was programmed into the Hardlock. Hardlocks with the same
parameters but different coding deliver different results.

3.2.2 Encrypting with Hardlock

Used together with the implemented function, Hardlock serves as a
key generator. The key is hidden in the hardware. This eliminates
the need to keep the key confidential or store it in a safe place. With
the Hardlock, constants, data and code segments of an application
can be decrypted and encrypted while the program is running.

3.3 HL_CODE(...) Developing Tool

The HL_CODE(...) function contains the cryptographic algorithm
K-EYE. Used together with Hardlock, this algorithm encrypts data
into 64-bit (8-byte) blocks (block ciphers). Ciphers operate in both
directions, i.e. by using the same Hardlock, the cipher text can be
transformed back into plain text. The HL_CODE(...) must be
supplied with a pointer for a certain data area and the number of
encrypted 8-byte blocks. Up to 64 KB = 8192 blocks can be
encrypted with a single call.

Encrypting several data blocks (of 8 bytes each) with a single call of
HL_CODE(...) leads to different encryption results than encrypting
these data blocks by calling the function several times (for example,
for each data block or several groups of a few data blocks).The
example below should help clarify this procedure:

3-4 API Operation

Example:

Program 1: Program 2:

Byte Block1 [8]; Byte Block1 [8];
Byte Block2 [8]; Byte Block2 [8];

HL_CODE(Block1,1); HL_CODE(Block1,2);
HL_CODE(Block2,1);

In both cases, two 8-byte blocks are encrypted, but the final results
of encryption are different.

3.3.1 Speed of HL_CODE(...)

HL_CODE(...) with a block length of 1 encrypts at a rate of about 8
KB per second (on a parallel port) on a 20 MHz 486 SX computer.
This is the physical speed with which the bits are encrypted by
Hardlock. However, this speed is not actually achieved since API
performs additional testing and protection processes to protect the
application from losing data during encryption and if a Hardlock is
not available. If HL_CODE(...) is called with a greater number of
blocks, not all bits are sent to Hardlock. This ensures faster
encryption of large volumes of data. For example, 64 blocks (=512
bytes) are encrypted about 10 times faster.

Increasing the number of blocks with HL_CODE(...) reduces the ratio
of key information generated by Hardlock to the volume of
encrypted data. However, this reduction in cryptographic protection
is secondary compared to the increase in speed. Changing keys
every 512 bytes, for example, does not significantly jeopardize the
protection of data encryption.

Manual Implementation 4-1

API - Manual Implementation for Hardlock

4 Manual Implementation

At this point, we assume you’ve decided to go ahead with manual
implementation and are prepared to immerse yourself more deeply
in the subject of cryptographic software protection. Please keep in
mind that it is basically up to you how effectively your "investment”
is protected. It is your choice: you can either quickly (and not very
safely) implement software protection or you can take your time and
develop a sound, well thought out implementation. We also
recommend using HL-Crypt as an additional tool when manually
protecting an application.

4.1 Strategic Considerations

To effectively protect your application through manual
implementation, you should incorporate appropriate protection
mechanisms in your application right from the start. When
developing your protection concept, keep the following factors in
mind.

4.1.1 Tools of the Hacker

Let’s first look at how hackers operate. First off, they generally use a
debug program. At the least, they have the DEBUG.EXE that comes
with MS-DOS. However, to be on the safe side, let’s assume that a
hacker has the best "tools” available. This includes debuggers that
use a 386/486 processor in protected mode or special debug
hardware. Such debuggers permit a program to be taken apart and
analyzed step by step. A hacker has to go through the assembler
code generated by your compiler and find all inquiries made to the
Hardlock. After he has recognized the critical protection measures,
he has to modify the program so that it operates normally without
any protection.

4-2 Manual Implementation

API - Manual Implementation for Hardlock

Ultimately, it is not a single, particularly sophisticated measure
that prevents a hacker from gaining access to your program,
but rather a multitude of subtle, simple measures which
eventually exhaust his efforts.

4.1.2 Can a Program be 100 % Safe?

Unfortunately, the answer to this question is "No.” Any supplier of
software protection systems who claims that his products offer
absolute protection cannot be taken seriously. Hardlock protection
measures let you increase protection - and thus the time and effort
required for analyzing the program - to any degree desired. At some
point, time is money for even the best and most determined of
hackers. But the bottom line is: Any program protection system can
be recognized, analyzed and circumvented with enough time,
money and determination.

4.1.3 Generating Code, Data and Parameters with
HL_CODE(...)

With Hardlock you can easily protect programs so that it is virtually
impossible to circumvent the protection system without the right
Hardlock. The parameters, data and code segments required for
running the program are useless until they are decrypted by
Hardlock. To run the program without the Hardlock, a hacker has to
replace all encrypted data with decrypted data. Since the hacker
cannot simply guess what the missing information is, he has to have
access to the Hardlock.

If data and parameter encryption was frequently repeated and
distributed throughout the entire program, a hacker would require an
enormous amount of time and effort to record all "correct” results
and incorporate them in the program ("èPatching"), even with the
appropriate Hardlock (which we assume he has). This process can
be prolonged indefinitely by incorporating "fake assumptions” and
consistency checks.

Manual Implementation 4-3

API - Manual Implementation for Hardlock

4.1.4 Time Window Method

Data required can be decrypted as needed while the program is
running. This way certain information remains encrypted in the
program except for when it is actually being used. This information
is never completely decrypted and available as plain text all at once.

4.2 Implementation Tips

Depending on the type of compiler being used, some of methods
described here cannot be used directly with your programming
language. However, many compilers permit direct access to your
program code by using, for example, online assembler instructions
or linking modules of machine-oriented program sections.

Please remember that there is no patent solution for safe manual
implementation. We can only provide you with suggestions and tips
based on our experience, and the necessary tools and assistance in
answering your questions. However, the ultimate degree of manual
protection is up to your imagination and willingness to invest time in
the quality of your protection.

4.2.1 Hardlock Initialization at the Program Start

You should integrate a simple Hardlock query during Hardlock
initialization in the beginning of your program. This not only ensures
that the Hardlock with the correct èmodule address is available, it
also checks whether the Hardlock found with this module address
has the right coding (èbase code and è sub-code). Hardlocks with
the same module address but different encryption behavior can be
used.

Both tasks, that is, checking whether the Hardlock is available and
identifying the encryption behavior, are performed by the
HL_LOGIN(...) function with the appropriate parameters.

4-4 Manual Implementation

API - Manual Implementation for Hardlock

These preliminary tasks merely serve to initialize Hardlock access
and correctly recognize the Hardlock. They do not actually protect
the software. However, once they have been performed, the system
can be sure that the Hardlock with the expected coding is available.

Please keep in mind that it is very easy for a hacker to get around a
software protection system that only queries at the program start.
Moreover, such a system also offers no protection against the
application being used at different work stations.

4.2.2 Protection While Program is Running

In developing a protection strategy, you should basically aim to
create a complex network of protective measures (most of which are
just fakes to lead the hacker astray) which branch out throughout the
program, rather than incorporate a few, particularly sophisticated
individual measures. Hardlock queries should be scattered
throughout all levels of the menu structure.

4.2.3 Physical Separation

Program sequences designed to query the Hardlock should not
always be programmed consecutively since this (almost) always
results in (nearly) identical code. This makes it easier for a hacker to
locate Hardlock queries. Physically separate these sequences in
your source code (as much as possible).

4.2.4 Force the Hacker to Get to Know the Program

In most cases, a hacker does not work with the program himself and
is not familiar with how it is used. Imagine how long it would take a
young hacker to become familiar with, for example, a complex
accounting program down to the last dialog. It will always be difficult
for him to make a correct entry and make sure that the program is
running correctly. Protected programs also pose a psychological

Manual Implementation 4-5

API - Manual Implementation for Hardlock

barrier to hackers since they never can be sure if they have really
eliminated all traps.

4.2.5 Generate Noise

Generate noise in encrypted data by incorporating many Hardlock
queries or decryptions and encryptions with HL_CODE(...). Design
the system so that irrelevant values are given as arguments that are
produced by random number generators, time values, intermediate
results of calculations, etc. Of course, these queries should not lead
to any meaningful results. This makes it practically impossible to
trace calls. The idea is to distract the hacker from the truly
necessary data.

4.2.6 Encrypt Data and Parameters

When the program is running, do not decrypt parameters, data and
code segments (caution when working in protected mode) until they
are required. By being able to encrypt information while a program is
running, you can keep information encrypted and only convert it into
plain text when it is actually required (time window method). For
example, use encrypted data to initialize loops or transfer
parameters to a function. Do not save a decrypted copy of the data
in your program for comparing decrypted values to original values.
Storing encrypted values as local variables on the stack also makes
debugging more difficult.

4.2.7 Encrypt External Data

Also encrypt external data required for your program, such as
configuration files, serialization information, which is decrypted while
the program is running.

4-6 Manual Implementation

API - Manual Implementation for Hardlock

4.2.8 Confirm Hardlock’s Existence

Before large volumes of data are decrypted, have the system check
whether the Hardlock with your coding is present to prevent any
important data from being destroyed.

Note:

Specified data may be modified, i.e. incorrectly encrypted
or decrypted, if the Hardlock is not present when the
HL_CODE(...) function is activated. Your system may
crash if it continues to process this incorrect data.

Use the HL_AVAIL() function to check if the Hardlock is available.

4.2.9 Incorporate Hardlock Memory Option

If your Hardlock is equipped with the Memory Option, you can also
incorporate the individual memory registers in the protection queries.
For example, you can file customer name and serial numbers in
èROM and display them while the program is running. Memory
registers not being used can be assigned random numbers that your
application queries and then ignores. Keep in mind that the èRAM
should not be used for protecting your program since it can be
written to by practically any application.

4.2.10 Terminating Hardlock

Make sure that when the program is terminated, the Hardlock is
properly deinitialized. This should be done with the HL_LOGOUT()
function which releases the memory being used and frees the login
entry for access through the HL-Server.

Manual Implementation 4-7

API - Manual Implementation for Hardlock

4.2.11 Consistency Checks

A hacker must modify your program for it to be used without the
Hardlock. This means that he has to replace certain byte sequences
in your program. Consistency checks make a program much more
difficult to crack. Consistency checks cannot be used often enough
and should always be performed in different ways. For example:

• Calculate and check the various test sums of critical sections of
the program. The test sums themselves should also be
safeguarded against modification, for example, by distributing
them among several variables.

• Calculate and check certain sections of the EXE file, overlays,
etc.

• Check whether individual critical commands have been modified.

Use different algorithms for calculating the various test sums. For
example, you can file constants in the Hardlock’s memory (if
available) that are also used for calculating test sums.

Checking Control Functions

Implementation of queries should be complex and occur at many
different levels. Some routines should inquire whether the Hardlock
is still available. Others should determine whether the query routines
are still available and operational. The causal relationship of these
consistency checks can be extended to any degree. One routine
which was just decrypted may check whether another routine which
should be encrypted is, in fact, encrypted. Making one routine
dependent on the other significantly increases the degree of
software protection.

4-8 Manual Implementation

API - Manual Implementation for Hardlock

Checking Execution Times

Compare the actual execution times of routines with the amount of
time normally required. If a routine is being run in the single-step or
trace mode of a debugger, it runs much slower. Thus, if a routine is
running considerably slower than it should, this may be an indication
that a debug program is being used. If this is the case, respond
subtly so that the hacker is not aware that he has been "found out.”

4.2.12 Measures After Recognizing an Attack

If, through one of the methods described above or through
consistency checks, you determine that your program is being
attacked or has been modified, there are a number of ways you can
make your program ineffective. Be sure to separate the cause and
effect of a hacker’s action so that he does not exactly know what he
did to be discovered. Below are a number of ways this can be done.

Delay

Delay of the causal reaction. The response to the hacker’s being
"found out” should not occur until a certain amount of time has
elapsed (from a few seconds to a few days by using the system
date).

Concealment

Concealing the causal relationship. One small change can lead to
changes in many other values, of which only one really initiates the
actual measure.

Distortions

Let your program continue running, but incorrectly. Calculations lead
to incorrect results that are not immediately apparent.

Manual Implementation 4-9

API - Manual Implementation for Hardlock

Restrictions

Concealment through restrictions that are difficult to recognize. The
hacker does not realize until a considerable amount of time has
passed that the program is only running in demo mode (for example,
only a limited number of data sets, or no print-outs).

4.2.13 Other Things to Keep in Mind

Do not waste your time concealing the queries in your high-level
language through "sloppy” programming. Many compilers optimize
code so that even in such cases "clean” assembler code is
generated.

Do not incorporate any switches in your program to deactivate
querying for internal test purposes - no matter how secret they
may be. With such a switch, the complete protection system
can be deactivated with a single modification of the program.

Make sure the release version of your software is created without
any debug information.

4.3 Working with HL-Server

When implementing protection manually with the API, it is easy to
differentiate between the querying of a local (connected to the
computer) and remote (available through the HL-Server) Hardlock.
Depending on what mode you selected (through HL_LOGIN(...)), the
system will try to access a local Hardlock and/or one in the network.
HL-Server must be installed in the network to address a Hardlock in
the network.

By appropriately programming the system, with one program
version you can use a local and network Hardlock
automatically.

4-10 Manual Implementation

API - Manual Implementation for Hardlock

There is basically no difference between accessing a local Hardlock
or a network Hardlock made available through the HL-Server
(remote Hardlock). It is important, however, that you are aware of
the different possibilities for use of local and remote Hardlocks. For
more detailed information on using Hardlock in networked systems,
refer to your HL-Server manual.

4.3.1 Modifying Access Type

Once a connection has been established to a Hardlock through
HL_LOGIN(...), this connection remains intact until the
HL_LOGOUT() function is activated. Use the following sequence to
reinitialize from a local to a remote Hardlock:

...
HL_LOGOUT()
HL_LOGIN(..., REMOTE_DEVICE, .., ..)
...

For example, if a local Hardlock is removed you can automatically
switch to a Hardlock provided by the HL-Server.

You should design your program so that it automatically switches
initialization to a local Hardlock. This ensures that your system
continues to operate correctly if, for some reason, the HL-Server (or
remote Hardlock) is no longer available.

4.3.2 Timeout Behavior of Application

When working with HL-Server, you can also use a timeout value
(see corresponding sections in the HL-Server manual). If no
Hardlock query is sent to the HL-Server within the specified amount
of time (for example, because your program is stuck in a loop
without a Hardlock query and is waiting for a keyboard entry), the
login entry of the station may be released again. This terminates the
connection to the Hardlock for the protected program. A connection
can easily be made again using the sequence above. However, in

Manual Implementation 4-11

API - Manual Implementation for Hardlock

the meantime another station may have logged into the HL-Server
and the license limit reached.

We recommend using a relatively high timeout value for installing
the HL-Server or deactivating the timeout when working with
manually protected programs. When protecting a program with the
automatic implementation HL-Crypt, periodic Hardlock querying of
the HL-Server can be ensured through background querying (see the
HL-Crypt manual).

4.3.3 Sublicensing with Hardlock

Sublicensing is one way of managing and keeping track of individual
program modules and functions. The difference between modules is
defined by a "slot ID". In this case, a certain slot ID is allocated a
number of available licenses.

Sublicensing with Hardlock is possible both on a local as well as a
remote system (in conjunction with the HL-LiMa Server). Both
systems are described in the following (the implementation of both
options in your software is identical).

Local Sublicensing:

With a local Hardlock, only one license can be assigned per slot,
meaning that the license is either released or not released for a
particular slot (i.e., the program option is valid or invalid).

The relevant information is stored in the ROM area of the Hardlock
Memory. This means that the Hardlock has to be coded, or
"programmed", with the corresponding licensing information. The
Cappuccino program is used to generate the memory content. On a
local installation, the number of licenses is limited to 728 slots.
Please note that licensing is only possible when the Hardlock used
has a memory option, and, depending on the number of slots,
memory area will be used for the sublicensing process.

4-12 Manual Implementation

API - Manual Implementation for Hardlock

Sublicensing with HL-LiMa Server:

In contrast to the procedure that applies to local Hardlocks, licensing
by means of the HL-LiMa Server may configure a certain number of
available licenses per slot.

The relevant information is communicated to the server in the form
of an encrypted license file. This license file is also generated by
Hardlock Bistro. The HL-LiMa Server uses this file to determine
whether a login is permitted or rejected. For updating licensing, this
means you can send users a file (e.g. via e-mail) or direct remote
updates via the Internet.

Implementation:

For Hardlock implementation, the slot ID to be followed by the login
must be known. It is passed to the server in the manual
implementation with the function HL_LMLOGIN(…). The automatic
implementation with HL-Crypt uses the option sle:SLOTID. The
implementation can also be made from the Project Manager
Espresso in Hardlock Bistro.

Example:

Module A uses Slot ID 1 No. of licenses: 3

Module B uses Slot ID 2 No. of licenses: 5

Module C uses Slot ID 3 No. of licenses: 2

Login for Program Module B:

HL_LMLOGIN(29809, "hardlock", ":?*@/f#y", 2, NULL)

Operating Systems 5-1

API - Manual Implementation for Hardlock

5 Operating Systems

5.1 DOS

Under DOS the API is linked to the application through object files
(.OBJ) or libraries (.LIB). The API becomes part of the actual
application which can directly address the PC’s hardware without
any additional drivers.

5.2 Windows 3.x

Under Windows 3.x the API is also linked to the application through
object files or libraries. However there are two different types of
program links:

Static Linking

The required object files and libraries are directly "linked” to the
program. This increases the size of the EXE file.

Dynamic Linking

The libraries are made available as DLLs (Dynamic Link Library).
The required functions are not dynamically "linked” to the application
until the program is running. Once the function is called the memory
space is re-released.

Both the low-level core of the API and high-level routines can be
linked through a common DLL. The DLL is capable of multitasking.
You can start several Windows printer tasks and Hardlock tasks
simultaneously, without them clashing

The DLL requires 4-8 KB for internal API data. In contrast to the
"static linking” method, this is not taken from the data segment of

5-2 Operating Systems

API - Manual Implementation for Hardlock

the application since the DLL has its own data segment. An
additional 300 bytes of the global heap is used for every active task.

Drivers: A driver must be installed to support Hardlock access under
Windows 3.x. The installation of the HARDLOCK.VxD driver is easy
with the INSTVXD.EXE installation routine. The driver can also be
installed manually. Proceed as follows:

Copy the driver into the Windows 3.x system directory and enter the
following line in the file SYSTEM.INI in the section [386enh]

device=c:\windows\system\hardlock.vxd

The driver is activated the next time Windows 3.x is started.

Do not forget to include the files INSTVXD.EXE and
HARDLOCK.VxD in your software package.

5.3 OS/2

The information on the Windows DLL also applies to OS/2. In
addition, the following points also apply:

DLL code has IOPL status. Therefore, you must enter IOPL=YES in
the CONFIG.SYS file. This is the default setting for OS/2 > 2.x. The
system must also be able to access the OS/2 Hardlock DLL through
the environment variable LIBPATH. This can be done, for example,
by making sure LIBPATH contains the "." directory (stands for the
current directory) and the DLL is in the same directory as the OS/2
program.

Three DLLs are available for OS/2 (version 1.3 and up):

1. HLOS2LOW.DLL: required for accessing the hardware (Hardlock)
and must always be used. It contains the low-level part of the
API. The DLL is written for OS/2 in 16-bit mode (IOPL). OBJ and

Operating Systems 5-3

API - Manual Implementation for Hardlock

LIB libraries cannot be used with OS/2 since direct (i.e. without
DLL), concurrent access of an OS/2 program to the printer port is
not always possible.

2. HLOS2_32.DLL: provides a 32-bit program with the high-level
interface in the form of a DLL and uses the low-level part in
HLOS2LOW.DLL

3. HLOS2_16.DLL: provides a 16-bit program with the high-level
interface in the form of a DLL and uses the low-level part in
HLOS2LOW.DLL

As when working with Windows, the high-level API can be statically
linked to the application.

The DLLs provided are capable of multitasking. You can start
several OS/2 printer tasks and Hardlock tasks simultaneously
without them clashing. However, since Hardlock accesses have
priority, when Hardlock is intensively being accessed, other
computer tasks (normal priority) are somewhat slower.

If several (DOS/Win) applications want to use the Hardlock and/or a
local printer is being used, port status must be switched to "Shared
Access" under OS/2. This is done as follows:

• Open the context menu of the printer icon (with the right-hand
mouse button)

• Choose "Open" - "Settings"

• Choose "Output"

• Double-click the port being used (for example, "LPT1")

• Choose "Shared Access"

These settings are only required for protected DOS and Windows
programs. They are not required for OS/2 programs which access
Hardlock with the OS/2 DLL.

5-4 Operating Systems

API - Manual Implementation for Hardlock

5.4 Windows NT

The driver (HARDLOCK.SYS) must be installed for accessing
Hardlock under Windows NT.

The Hardlock API has offered full support of DOS and WIN16
programs under Windows NT since version 3.20. Programs linked
with API versions < 3.20 can also be used, but are slower. The
"Virtual Device Driver" HLVDD.DLL makes this possible. This file
can also be used by your application as a 32-bit DLL.
Implementation ensures full Win32 (with s/c) support.

Use the HLINST.EXE program to install the drivers. This program is
also included in the source code (all programs come with the
Hardlock software).

Do not forget to include the files HARDLOCK.SYS, HLVDD.DLL and
HLINST.EXE with your software (if applicable).

For more information on Hardlock and Windows NT (DLLs, driver
installation, etc.) see the README files on your Hardlock CD.

5.5 Windows 95

Windows 95 monitors all direct access to the ports. This slows down
Hardlock accesses. Hardlock API supplies the Virtual Device Driver
HARDLOCK.VxD to get around this problem. This driver permits the
system to address Hardlock directly without being interrupted by
Windows 95. The driver also takes care of simultaneous print
commands.

Installing the driver is easy. Simply copy the HARDLOCK.VxD file to
the WINDOWS or WINDOWS/SYSTEM directory. You do not have
to make any changes to the SYSTEM.INI file since the Hardlock API
automatically loads the driver on request.

Do not forget to include the HARDLOCK.VxD file with your software.

Operating Systems 5-5

API - Manual Implementation for Hardlock

5.6 DOS Extenders

Hardlock API supports a number of DOS extenders (both 16-bit and
32-bit).

When configuring your application or extender, make sure that 9 K
of real mode memory is available to the API for using network
routines. Data buffers for accessing the network are created here.
Most DOS extenders are set as standard to 64 K of real mode
memory. (For more details see the documentation of your DOS
extender)

16-bit DOS Extenders

The current API version supports all 16-bit DOS extenders
compatible with DPMI 0.9 or higher (for example, Windows 3.x DOS
Box, Borland languages).

32-bit DOS Extenders

The current API version supports all DPMI-compatible 32-bit DOS
extenders (for example, Rational DOS/4GW, PharLap 386|DOS).

AutoCAD12 uses the PharLap 386|DOS extender and is also
compatible with Hardlock API. For more information on
implementation please see the appropriate example program. The
default setting for AutoCAD does not reserve any real mode
memory. You must adjust the setting to use API network routines.

Example:

cfig386 acad.exe -minr 8192 -maxr 8192

5-6 Operating Systems

API - Manual Implementation for Hardlock

5.7 UNIX

In order to use the API under UNIX, you have to regenerate the
UNIX kernel (implementation of the API driver) since only it is
authorized to access I/O addresses.

An API implementation (including driver) for SCO PC Unix comes
on the CD. Please contact our support staff for more information on
implementations.

5.8 Workstations

Our serial Hardlock SE is available for protecting software in
workstations. Please contact our Sales Department for more
information on using this Hardlock. The API does not support
Hardlock SE.

High-level API Functions

API - Manual Implementation for Hardlock

6-1

6 High-level API Functions

In the following section we have provided you with a description of
the various functions so that you can generate API calls in your
particular high-level language. The exact procedure for
implementing the individual functions in your programming language
may differ slightly from those described here. All program examples
are in pseudo code.

All functions are based on the API low-level functions. For most
applications you will only need the high-level functions. However, we
would be happy to send you a complete description of the low-level
routines should you wish to use the programming interface of the
low-level API. Excerpts from this documentation are also available
as online text in API debugger TESTAPI.EXE.

In order to meet certain configuration requirements, the high-level
API also emulates the functions of the old Hardlock implementations
(before API was introduced). For more information on this subject,
see Section 7.5.

On the following page you will find an explanation of how the
individual high-level function descriptions are structured.

6-2 High-level API Functions

API - Manual Implementation for Hardlock

Structure of Function Descriptions

FunctionName ([Argument1[,Argument2[,...]]])

Purpose: Brief description of parameter

Arguments: List of arguments that can be used with this
parameter.

Output: List of all values that this function outputs to the
application (for example, error messages).

Use: Detailed description of how the parameter works,
information on how it is used.

Example:

The examples in this section are written in pseudo code and
are only designed to roughly demonstrate how the function is
used.

High-level API Functions

API - Manual Implementation for Hardlock

6-3

6.1 HL_LOGIN (MOD, ACCESS, REFKEY, VERKEY)

Purpose: Initializes the API structure and defines the access
mode. If applicable, it logs the application into the
HL-Server.

Arguments: MOD Hardlock module address.

ACCESS Used for defining the access mode:

1 LOCAL_DEVICE Local Hardlock
2 NET_DEVICE Access via the HL-

Server
3 DONT_CARE First searches locally,

and then the network.

REFKEY If this string (8 bytes) is not equal to zero
(binary), it is compared with the
encrypted VERKEY value for
identifying the Hardlock.

VERKEY (8 bytes) Contains the encrypted
REFKEY value. The correct value for
REFKEY (i.e. the VERKEY value
decrypted with your Hardlock) can easily
be determined with the API debugger
program TESTAPI.EXE.

Output: The system outputs the API status (see "Table of
API Status Values” in Appendix).

Use: This function provides the API structure with
information on the Hardlock while initializing the API.
If applicable, the application is logged into the HL-
Server. All other accesses must occur between
HL_LOGIN(...) and HL_LOGOUT(). This is why it is
important to perform the HL_LOGIN(...) function at
the start of an application. If DONT_CARE is

6-4 High-level API Functions

API - Manual Implementation for Hardlock

entered, the API will first search for a local Hardlock
and then look for one in the network.

The API automatically searches all parallel port
addresses for the Hardlock. The default search
sequence of the API is $378, $278 and then $3BC.
Search of the serial ports can only be activated with
the environment variable (also see Section 7.4.).

If you set the parameters REFKEY and VERKEY,
they will automatically be used for cryptographically
analyzing the Hardlock. (Note: the internal algorithm
used for doing this is not compatible with K-EYE.)

To deactivate the REFKEY/VERKEY check, binary
zeros must be used (not NULL as, for example,
under C). Note: The REFKEY and VERKEY
parameters in all demo programs only apply to the
demo Hardlock (at module address 29809). To
implement API for your own Hardlocks, you must
generate a unique set of values with the
TESTAPI.EXE program.

Example:

result = HL_LOGIN(29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)

.
 (Hardlock functions)

.
 result = HL_LOGOUT();
ENDIF

High-level API Functions

API - Manual Implementation for Hardlock

6-5

6.2 HL_LMLOGIN (MOD, ACCESS, REFKEY,
VERKEY, SLOT_ID, SEARCHSTR)

Purpose: Initializes the API structure and determines the
access mode. If applicable, the application will log
into the HL-Server. A check is run on the licensing
information.

Arguments: MOD, ACCESS, REFKEY, VERKEY
See description of the function HL_LOGIN(...).

SLOT_ID Activates a check of the
sublicensing information to a
specific slot number. The range of
values varies depending on whether
the Hardlock is addressed on a local
or remote system by HL-LiMa.

Local 1 to 728
Remote1 to 65534

SEARCHSTR Pointer on a Search String defined
in the program. See section 7.4,
Specifying the API Search
Sequence.

Output: The return value contains the API status (see the
"Table of API Status Values" in the appendix.

Use: This function is an enhanced HL LOGIN function
(see HL LOGIN). A license check also takes place at
a specific slot number. This function issues a
sublicense to an application on the basis of modules
and/or functions. HL-LiMa must be installed in order
to issue licenses via a remote Hardlock..

It may be necessary to switch into several operating
areas to run repeated Hardlock initializations in the

6-6 High-level API Functions

API - Manual Implementation for Hardlock

same program. For more information, please refer to
the description of the function HL SELECT(…).

You also have the option of defining the search
sequence of the Hardlock API directly in the
program. To do so, HL SEARCH must pass the
parameters to the function according to the
environment variables (for more information, refer to
Section 7.4 Specifying the API Search Sequence).

Note: if the function (in sample C) is called with the
parameters

HL_LMLOGIN (MODAD, ACCESS, REFKEY, VERKEY, 0, NULL)

it is completely compatible to the function
HL_LOGIN(...).

Example:

result = HL_LMLOGIN(29809,REMOTE,"HARDLOCK","@0=/&#s3", 11,
"378p,IPX");
IF (result == TOO_MANY_USERS)

PRINT "LICENCE PASSED LIMIT".
HL_LOGOUT();

ENDIF
.
.
.

High-level API Functions

API - Manual Implementation for Hardlock

6-7

6.3 HL_SELECT (DATA_AREA)

Purpose: Switches between the different work areas to use the
Hardlock functions

Arguments: DATA_AREA Pointer on a data range
of 256 Bytes.

Output: The return value contains the API Status (see the
"Table of API Status Values" in appendix.

Use: It may be necessary to switch between several work
areas for multiple initialization of Hardlock in the
same program. To do so, data areas must be
reserved in the program for managing the API
structure. With the help of this function, you log into
several Hardlock modules at the same time.
The function can also be used for sublicensing on a
module or function basis. For example, a HL
LMLOGIN(…) can take place at a different slot
number for each application module.
A select in the area 0 sets the default value and
uses the reserved internal data area only.

Example:

area1 = SPACE(256);
area2 = SPACE(256);

HL_SELECT(area1);
HL_LOGIN(29809,REMOTE,"HARDLOCK","@0=/&#s3");
HL_SELECT(area2);
HL_LOGIN(18328,REMOTE,"HARDLOCK","#:f;)?@0");

...

...
HL_SELECT(area1);
HL_LOGOUT();
HL_SELECT(area2);
HL_LOGOUT();

6-8 High-level API Functions

API - Manual Implementation for Hardlock

6.4 HL_LOGOUT()

Purpose: Releases the API structure. If applicable, the
application is logged out of the HL-Server.

Arguments: (None)

Output: The system outputs the API status (See the "Table
of API Status Values” in the Appendix).

Use: Use this function to release the API structure. If
necessary, the system will first log out of the HL-
Server. Once this function has been performed, the
Hardlock can no longer be accessed. Therefore, it
should only be called at the end of the application.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)

.

.
 (Hardlock functions)

.

.
 result = HL_LOGOUT();
 QUIT;
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-9

6.5 HL_PORTINF()

Purpose: Provides information on the port address of the
Hardlock.

Arguments: (None)

Output: The system outputs the port address of the initialized
Hardlock. In the case of an error, the value -1 is
output.

Use: Use this function to determine the port address of
the Hardlock initialized with the HL_LOGIN(...)
function. It does not matter whether a local or
remote Hardlock was found. This value should not
be used for accessing through the HL-Server.

Example:

result = HL_LOGIN 29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)

.

.
 Port = HL_PORTINF();

.

.
 result = HL_LOGOUT();
ENDIF;

6-10 High-level API Functions

API - Manual Implementation for Hardlock

6.6 HL_USERINF()

Purpose: Indicates how many entries are in the login table of
the HL-Server.

Arguments: (None)

Output: The output value reveals how many entries have
been made to the login table (including your own
login entry) if a remote Hardlock was initialized. In
the case of a local Hardlock, the output value is 1; in
the case of an error, the output value is -1.

Use: This function indicates the number of users currently
logged into the HL-Server. Use this function to issue
licenses to access the network. Since the network
can handle several protection Hardlocks with the
same module address but different HL-Servers, API
groups together all entries of the same Hardlock.

Example:

result = HL_LOGIN (29809,NET_DEVICE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_USERINF() > 5)
 PRINT "Too many users";
 result = HL_LOGOUT();
 QUIT;
 ENDIF;

.

.
 result = HL_LOGOUT();
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-11

6.7 HL_AVAIL()

Purpose: Determines whether the Hardlock with the expected
coding is available.

Arguments: (None)

Output: The system outputs the API status (see the "Table of
API Status Values" in the Appendix).

Use: Use this function to determine whether a Hardlock
with the expected coding is available (for example,
before data is encrypted). If the values of REFKEY
and VERKEY made available with the function
HL_LOGIN(...) are not equal to zero, they are used
for identifying the Hardlock. In the case of parallel
access, the status of the select line of the printer
port is also checked. When some printers are
switched off, the lines are grounded and Hardlock
cannot be recognized.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)

.
 IF (HL_AVAIL() == STATUS_OK)

.

.
 (Hardlock functions)

.

.
 ENDIF;
 HL_LOGOUT();
ENDIF;

6-12 High-level API Functions

API - Manual Implementation for Hardlock

6.8 HL_ACCINF()

Purpose: Determines whether a Hardlock was initialized as a
local or remote Hardlock.

Arguments: (None)

Output: The following output values are possible:

1 LOCAL_DEVICE The Hardlock was
initialized as local

2 NET_DEVICE The Hardlock was
initialized as remote

-1 An error occurred.

Use: If DONT_CARE was specified for the HL_LOGIN(...)
function, HL_ACCINF() can be used to determine
whether a local or remote Hardlock was initialized
(found). The DONT_CARE value cannot be output
after initialization.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_ACCINF() == NET_DEVICE)
 PRINT "Hardlock is remote";
 ELSE
 PRINT "Hardlock is local";
 ENDIF;
 result = HL_LOGOUT();
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-13

6.9 HL_HLSVERS()

Purpose: Provides the version number of the HL-Server being
used.

Arguments: (None)

Output: The system outputs the version number of the HL-
Server being used as an integer (for example, 210
corresponds to version 2.10). This is not the API
version of the HL-Server. In the case of a local
Hardlock (or error) the value 0 is output.

Use: Use the function to determine the version number of
the HL-Server being used. This information is
important to have if a particular function is only
available as of a certain version number.

Example:

result = HL_LOGIN (29809,NET_DEVICE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_HLSVERS() < 210)
 PRINT "Application needs HL-Server >= 2.10";
 result = HL_LOGOUT();
 QUIT;
 ENDIF;

.

.
 result = HL_LOGOUT();
ENDIF;

6-14 High-level API Functions

API - Manual Implementation for Hardlock

6.10 HL_CODE(DATAPTR, BCNT)

Purpose: Used for encrypting and decrypting data with the
Hardlock.

Arguments: DATAPTR Pointer for the data area to be encrypted.
This variable contains a 32-bit (far) real
mode (segment:offset) pointer for a
certain data area. You must use a 32-bit
(near) protected mode (offset) pointer
when working with the 32-bit API.

BCNT Number of data blocks to be encrypted in
8-byte blocks. You can use a value
between 0 (which wouldn’t make much
sense) and 8192 (equivalent to 64 KB).

Output: The system outputs the API status (see the "Table of
API Status Values" in the Appendix).

Use: This function encrypts and decrypts a given data
area. The range of data specified is directly
modified, i.e. it is directly overwritten by the result of
the function. Calls with incorrectly set pointers thus
often lead to undesirable results. In the case of an
error, the data area specified can be destroyed.
Since a block cipher is performed, the number of
data blocks to be encrypted (64 bits each) must be
specified. If you wish to encrypt data with a length of
less than 8 bytes, fill up the range to the 8-byte limit.
The application must ensure that the entire data
block does not go beyond the segment limit
(=pointers must be normalized) to avoid a wrap
around.

High-level API Functions

API - Manual Implementation for Hardlock

6-15

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 text = "Hello Hardlock !";
 IF (HL_CODE(text, 2) == STATUS_OK))
 PRINT "The encrypted data is: " + text;
 ENDIF;
 result = HL_LOGOUT();
ENDIF;

6-16 High-level API Functions

API - Manual Implementation for Hardlock

6.11 HL_READ(REG, VALUE)

Purpose: Reads the contents of a Hardlock memory register.

Arguments: REG Number of the register to be read. The
register number must be between 0 and
63.

VALUE Variable to be assigned the 16-bit register
value and conveyed by reference.

Output: The system outputs the status of the Hardlock. If an
invalid register is entered, the system issues the
INVALID_PARAM error message (see the "Table of
API Status Values" in the Appendix).

Use: This function is used to read an individual Hardlock
memory register, that is, of course, if Hardlock is
equipped with the Memory Option. The contents of
the register is output as a 16-bit value (Intel format)
in the VALUE variable.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_AVAIL() == STATUS_OK)
 value = 0;
 result = HL_READ (48, value);
 ENDIF;
 .
 .
 result = HL_LOGOUT();
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-17

6.12 HL_READBL(DATAPTR)

Purpose: Reads the entire Hardlock memory to a certain data
area.

Arguments: DATAPTR Pointer for the data area.

Output: The system outputs the API status (see the "Table of
API Status Values" in the Appendix).

Use: Use this function to read the entire memory
(registers 0 to 63). The data area defined with
pointer DATAPTR must be 128 bytes in length.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_AVAIL() == STATUS_OK)
 eeprom = SPACE(128);
 HL_READBL (eeprom);
 ENDIF;
 result = HL_LOGOUT();
ENDIF;

6-18 High-level API Functions

API - Manual Implementation for Hardlock

6.13 HL_WRITEBL(DATAPTR)

Purpose: Writes the transferred data area to the RAM of the
Hardlock.

Arguments: DATAPTR Pointer for the data area.

Output: The system outputs the API status (see the "Table of
API Status Values" in the Appendix).

Use: Use this function to write to the entire èRAM of the
Hardlock (registers 48 to 63). The data area must be
32 bytes in length. The contents of the RAM is
maintained even when the Hardlock is disconnected
(EEPROM).

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_AVAIL() == STATUS_OK)
 eeprom = SPACE(32);
 HL_WRITEBL (eeprom);
 ENDIF;
 result = HL_LOGOUT();
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-19

6.14 HL_WRITE(REG, VALUE)

Purpose: Writes to one register of the Hardlock RAM.

Arguments: REG Number of the register to be written to.

VALUE Value to be written to the register (16-bit
value).

Output: The system outputs the API status (see the "Table of
API Status Values" in the Appendix).

Use: Use this function to write to a single register of the
Hardlock èRAM. The number of the register must
lie between 48 and 63 of the RAM. The contents of
the RAM are maintained even when the Hardlock is
disconnected (EEPROM).

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 result = HL_WRITE(48, 147);
 .
 .
 result = HL_LOGOUT();
ENDIF;

6-20 High-level API Functions

API - Manual Implementation for Hardlock

6.15 HL_VERSION()

Purpose: Determines the version number of the API routines.

Arguments: (None)

Output: The API version number is output as an integer (for
example, 350 corresponds to version 3.50). In the
case of an error, the value -1 is output.

Use: Use this function to determine the version number of
the local API being used. This is particularly
important when working with an HL-Server since
only API versions with the same main number are
compatible. For example, an HL-Server with API
version 2.xx is not compatible with an application
which was manually implemented using API version
3.xx. Mixing different 3.xx versions, on the other
hand, is perfectly acceptable. The API version of the
active HL-Server cannot be determined via the
network using a high-level API call. However, the
VERSION_MISMATCH status code provides an
indication of incompatible API versions

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 version = HL_VERSION();
 result = HL_LOGOUT();
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-21

6.16 HL_MAXUSER()

Purpose: Determines the maximum (effective) permissible
number of login entries.

Arguments: (None)

Output: Outputs the maximum permissible number of login
entries, that is, if a remote Hardlock was initialized.
In the case of a local Hardlock, the output value is
always 1; in the case of an error, the output value is
-1.

Use: When working with Hardlocks in a network, use this
function to determine for how many "users” HL-
Server is licensed. Since the network can handle
several protection Hardlocks with the same module
address but different HL-Servers, API groups
together the entries of all Hardlocks with the same
module address and coding.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_ACCINF() == NET_DEVICE)
 max = HL_MAXUSER();
 PRINT "HL-Server is licensed for: " + max;
 ENDIF;
ENDIF;
result = HL_LOGOUT();

6-22 High-level API Functions

API - Manual Implementation for Hardlock

6.17 HL_MEMINF()

Purpose: Determines whether the initialized Hardlock is
equipped with the Memory Option.

Arguments: (None)

Output: The system outputs the API status (see the "Table of
API Status Values" in the Appendix).

Use: Use this function to determine whether the initialized
Hardlock is equipped with the Memory Option. If
possible, the function tries to write and read a
register. By comparing the results, the system
determines whether a Hardlock with memory is
present. Once the function has been performed the
system returns to its original state.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 IF (HL_MEMINF() == STATUS_OK)
 PRINT "Hardlock with memory found.";
 ENDIF;
 result = HL_LOGOUT();
ENDIF;

High-level API Functions

API - Manual Implementation for Hardlock

6-23

6.18 HL_ABORT()

Purpose: Releases the API structure.

Arguments: (None)

Output: (Undefined)

Use: This function should only be used in emergencies
(for example, within a critical error handler). All
retrieved interrupts are restored. The API cannot
perform any other functions once this function has
been called. No new initializations may be
performed. The application must be terminated as
soon as possible.

Example:

 .
 .
HL_ABORT();
QUIT;

Appendix 7-1

API - Manual Implementation for Hardlock

7 Appendix

7.1 API Debugger TESTAPI.EXE

Use the interactive API debugger program TESTAPI.EXE to test API
functions and determine the API’s behavior when accessing local
Hardlocks and remote Hardlocks through the HL-Server without
having to do any programming. The program can also be used for
testing your Hardlock. It is self-explanatory and contains major
portions of the API documentation as online text.

Note:

Use the Latteccino program in the new Hardlock Bistro
software to test the API functions. The software runs under
Windows 95 or Windows NT only. For more information,
please refer to the Hardlock Bistro manual.

The Latteccino program is an intuitive interface to the API.
You only need to refer to this manual if you want to find out
more about the individual API function.

7.2 Overview of High-level API Functions

The chart on the following pages provides you with an overview of
all high-level API functions.

High-level Function Use

HL_LOGIN
(MOD, ACCESS, REFKEY, VERKEY)

Initializes the API structure and defines the
access mode. If necessary, the applications
is logged into the HL-Server.

7-2 Appendix

API - Manual Implementation for Hardlock

High-level Function Use

HLM_LOGIN
(MOD, ACCESS, REFKEY, VERKEY,
SLOT_ID, SEARCH_STR)

Initializes the API structure and defines the
access mode. If necessary, the application is
logged into the HL-Server or HLS-LiMa

HL_SELECT (DATA_AREA) Toggles between the different work areas
using Hardlock functions

HL_LOGOUT() Releases the API structure. If necessary, the
application is logged out of the HL-Server.

HL_PORTINF() Outputs the port address of the Hardlock.

HL_USERINF() Indicates how many entries are in the login
table of HL-Server.

HL_HLSVERS() Outputs the version number of the HL-Server
being used.

HL_AVAIL() Determines whether the Hardlock with the
expected coding is available.

HL_ACCINF() Determines whether the Hardlock was
initialized as local or remote.

HL_CODE
(DATA_POINTER, BCNT)

Encrypts or decrypts data with the Hardlock

HL_READ
(REGISTER, VALUE)

Reads the contents of a Hardlock memory
register.

HL_READBL (DATAPTR) Reads the entire memory of the Hardlock
with Memory into the specified data area.

HL_WRITEBL (DATAPTR) Writes the transferred data area to the RAM
of the Hardlock.

HL_WRITE
(REGISTER, VALUE)

Writes to one register of the Hardlock RAM.

HL_VERSION() Outputs the version number of local API
routines.

HL_MAXUSER() Outputs the maximum (effective) number of
login entries possible.

HL_MEMINF() Determines whether the initialized Hardlock
is equipped with the Memory Option.

Appendix 7-3

API - Manual Implementation for Hardlock

High-level Function Use

void HL_ABORT() Releases the API structure.
This function should only be used in
emergencies (for example, within a critical
error handler).

7-4 Appendix

API - Manual Implementation for Hardlock

7.3 Table of API Status Values

No. Designation Meaning

0 STATUS_OK Function was performed without any
errors.

1 NOT_INIT API structure not initialized. The function
cannot be executed. A successful
HL_LOGIN(...) must first be performed.

2 ALREADY_INIT The API structure is already initialized. A
second attempt was made to initialize the
API structure without it being released
beforehand.

3 UNKNOWN_MODULE Unknown module ID. This ID is not
supported by the API. This problem is
usually due to a programming error
(incorrect pointer).

4 UNKNOWN_FUNC Unknown API function number. An
incorrect function number was used. This
problem is usually due to a programming
error (incorrect pointer).

5 (reserved)

6 (reserved)

7 NO_MODULE No Hardlock connected.
When working with a network, this problem
can also be due to the following reasons:
timeout, the station with the HL-Server
cannot be addressed over the network.

8 NETWORK_ERROR Error in network operation (remote). This
may occur, for example, if no protocol
(such as IPX or NetBios) is loaded in the
local client system.

9 NO_ACCESS The specified access mode is invalid (for
example ACCESS = 0). This problem is
usually due to a programming error
(incorrect pointer).

10 INVALID_PARAM An incorrect or invalid parameter was used
with a function.

Appendix 7-5

API - Manual Implementation for Hardlock

No. Designation Meaning

11 VERSION_MISMATCH During communication, the system
determined that the HL-Server or an
installed Hardlock driver is not compatible
with the API version being used.

12 DOS_ALLOC_ERROR An error was detected in a routine that
attempts to allocate memory space.

13 (reserved)

14 CANNOT_OPEN_DRIVER A required driver cannot be opened. The
problem is usually that the driver is not
installed.

15 INVALID_ENV The specified environment variable for the
API search sequence contains only
incorrect entries.

17 INVALID_LIC No valid licensing information found (e.g.
local false memory or checksum error)

18 NO_LICENSE Slot/license not released

256 TOO_MANY_USERS This error code is issued when a station
tries to login , but the HL-Server(s) is/are
out of space in the login table.

257 SELECT_DOWN If the Hardlock is not supplied with an
operating voltage, it cannot operate and is
thus no longer detected. The API is able to
recognize this situation by measuring the
Hardlock voltage level at the select line of
the printer port. If this port is at ground
potential, this is an indication that the other
lines (from which the Hardlock gets its
operating voltage) are also short circuited.
For example, this occurs when certain
printers are offline or switched off. The
programmer can issue a message to the
user, instructing him to either turn on the
printer, switch it online or remove it from
the interface. This error only applies to
local operation.

7-6 Appendix

API - Manual Implementation for Hardlock

7.4 Specifying the API Search Sequence

7.4.1 Background Information

It is possible to explicitly specify a search sequence with Hardlock
API version 3.25 and higher. This is done through environment
variables. By defining a specific search sequence, conflicts when the
system automatically searches the LPT port addresses can be
avoided (e.g. with network cards configured for LPT addresses).

An API search for Hardlock at the serial interface can only be
activated through the environment variable.

7.4.2 Syntax

The syntax of the environment variables reads as follows:

HL_SEARCH=[Port],...,[Protocol],...

[Port] comprises the I/O address in hexadecimal form and a port ID:

Port ID: Explanation:

p = parallel Normal parallel port

s = serial Normal serial port

e = ECP Parallel port in ECP mode

n = NEC (Japan) Japanese NEC models have a different port assignment. This
parameter activates a special handling so that a separate
NEC API is not required.

c = Compaq Contura
Docking Base

The multiplexer of the docking base (used for switching
between the parallel port and Ethernet adapter) is switched to
the parallel port for querying a Hardlock.

i = IBM PS/2 The IBM PS/2 ID eliminates errors when reprogramming the
port of certain video drivers under Windows. (The system
cannot find Hardlock once Windows is started). Previously,
this was done internally by the Hardlock API. This function
can now only be activated by using the environment variable.

Appendix 7-7

API - Manual Implementation for Hardlock

[Protocol] defines the protocol used for accessing an HL-Server. The
following key words are currently supported:

Protocol: Explanation:

IPX HL-Server searched for via IPX or SAP.

IP HL-Server searched for via TCP/IP

NETBIOS HL-Server searched for via NETBIOS.

Example:

SET HL_SEARCH=378p

The system only searches for the Hardlock at the local parallel port
with the address 0x378.

SET HL_SEARCH=378e,2f8s

The system searches for the Hardlock at the local parallel port with
the address 0x378. The port is switched from ECP mode to "normal”
mode while the Hardlock is being accessed. If the system cannot
find the Hardlock, it then searches for it at the serial port with the
address 0x2f8.

SET HL_SEARCH=IPX,278p

The system first searches for a Hardlock supplied by the HL-Server
using IPX/SAP. If it is not able to log into the HL-Server, it then
searches for the Hardlock at the local parallel port with address
0x278.

SET HL_SEARCH=378p,278p,3BCp,IPX,NETBIOS, IP

This corresponds to the automatic search sequence (HL_LOGIN with
DONT_CARE) if the environment variable is not defined. This entry
is thus redundant.

The search sequence can be directly specified through direct
programming of the low-level API.

7-8 Appendix

API - Manual Implementation for Hardlock

7.4.3 HL-Server Client for TCP/IP

When using the 32-bit HL-Server for Win95 and Windows NT please
bear in mind that the search sequence of the protocols (if you're not
using HL Search) depends on the client. Thus:

16 Bit Search Sequence: IPX, NetBios, IP

IP is searched last in order to change the former behavior as little as
possible.

32 Bit Search Sequence: IP, IPX

IP is searched first since this search is considerably faster than via
IPX or NetBios.

Search Sequence for IP Addresses:

• Environment variable HLS_IPADDR (see below)
• If no environment variable has been defined, the search takes

place via DNS or HOSTS for the station HLSERVER.
• If no address has been found, the search takes place via

broadcast (255.255.255.255) in the local segment.

To transfer IP packets, Winsock calls over a corresponding (16 or 32
bit) WINSOCK.DLL. Please note that during installation many
Internet clients install their own WINSOCK.DLL (CompuServe, AOL,
T-online). In this case, accessing IP calls the Internet provider if the
HL-Server was not found via IPX and NetBios. You then need to
exclude IP from the search with the following command:

SET HL_SEARCH=IPX,NetBios

In order to improve the search via the TCP/IP protocol, the
environment variable HLS IPADDR has been introduced. With it one
or more IP addresses or names can be defined. However, by
entering several addresses at the same time - in contrast to HL
SEARCH - you cannot predict which of the defined HL-Servers will
ultimately be used.

Appendix 7-9

API - Manual Implementation for Hardlock

Example:

SET HLS_IPADDR=192.9.209.17,luzie.fast.de

HLS IPADDR can also be used to define broadcast addresses:

set HLS_IPADDR=192.9.209.255,192.9.201.255

Since IP networks generally have considerably greater differences in
propagation time than IPX networks (e.g. WAN routes), timeouts and
retries for the clients must be kept within bounds. The default values
are set so that the HL-Server can be found with an existing 64kbit
connection.

SET HLS_WAIT=
sets the delay between retries in milliseconds

default TCP/IP: 1000,
IPX: 200 (*)

min 200
max 30000

SET HLS_RETRIES=
sets the number of retries until message DONGLE_NOT_FOUND is
returned

default 5
min 2
max 30

(*) the defaults vary, SET HLS_WAIT changes the values for IPX
and TCP/IP !

7-10 Appendix

API - Manual Implementation for Hardlock

7.4.4 Search Strategy

Please keep the following points in mind when specifying the access
type with HL_LOGIN:

• HL_LOGIN(MODAD, LOCAL_DEVICE,....)

The system searches all local ports without the environment
variable. By specifying the environment variable you can direct the
system to only search local addresses (parallel and serial). It is not
possible to subsequently instruct the system to search the network.

With:

SET HL_SEARCH=IPX,278p

only the address 0x278 is used. IPX is ignored.

With:

SET HL_SEARCH=IPX

a Hardlock will not be found since the entry is overruled by the
access type specified with HL_LOGIN. HL_LOGIN issues error code
15 (INVALID_ENV).

• HL_LOGIN(MODAD, NET_DEVICE,....)

Here the system searches all supported protocols for an appropriate
HL-Server without an environment variable. By specifying an
environment variable, you can only restrict the protocols used for
searching. It is not possible to subsequently instruct the system to
search the local ports.

With:

SET HL_SEARCH=IPX,2f8s

Appendix 7-11

API - Manual Implementation for Hardlock

only the IPX protocol is used. 2f8s is ignored.

With:

SET HL_SEARCH=278p

a Hardlock will not be found since the entry is overruled by the
access type specified with HL_LOGIN. HL_LOGIN issues error code
15 (INVALID_ENV).

• HL_LOGIN(MODAD, DONT_CARE,....)

Without the environment variable, the system first searches all local
parallel ports. It then searches for an appropriate HL-Server with all
supported protocols. By specifying the environment variable you can
restrict the search in any way you like.

7.4.5 Comments

• If the environment variable does not contain any valid entry, the
HL_LOGIN function issues error code 15 (INVALID_ENV).

• It does not matter whether the environment variable is in small or
capital letters.

• When working with Windows programs, the environment variable
must be specified before Windows is booted. Subsequent
modification in a DOS box has no effect on Windows programs.

• Specifying a port address ensures that your specific Hardlock is
supported. For example, with "SET HL_SEARCH=320p" the
system searches for the Hardlock at port address 0x320. Entering
an incorrect port address can lead to conflicts.

• Programs encrypted with HL-Crypt (version 5.64 or higher),
HLWCrypt (version 4.06 or higher) and HLCWin32 (version 1.03
or higher) search for a Hardlock according to the rules outlined
above.

7-12 Appendix

API - Manual Implementation for Hardlock

• The search sequence of serial ports is only supported by API
version 3.50 and higher.

Appendix 7-13

API - Manual Implementation for Hardlock

7.5 Compatible Calling Conventions

The functions

• HL_ON (port address, module address)

• HL_OFF (port address)

• HL_RD (port address, register)

• HL_WR (port address, register, value)

• INT_ON ()

• INT_OFF ()

• K_EYE (port, data pointer, block count)

of the old implementations (before the API) have been re-
implemented due to compatibility reasons. The API libraries let you
use the expanded API capabilities. Only implementation with access
to local Hardlocks is possible.

Structure the commands as shown in the following example:

INT_OFF()
 HL_ON(...)
 HL_WR(...)
 HL_RD(...)
 K_EYE(...)
 HL_OFF(...)
INT_ON()

They are now directly linked to the API; various parameters and
functions are ignored since these are automatically handled by the
low-level API.

7-14 Appendix

API - Manual Implementation for Hardlock

If you are developing new software or expanding existing systems
and wish to take advantage of all API capabilities, do not use these
functions. These functions were only implemented for exceptional
cases in which compatibility is of utmost importance. Do not mix
new API functions with these old functions.

Note:

When programming with the new Hardlock API, please
keep in mind that the functions HL_LOGIN(...) and
HL_LOGOUT() are not the same as HL_ON(), and
HL_OFF() since actual activation of the Hardlock occurs
automatically within the API.

7.5.1 Hardlock Module in Compatible Mode

Parallel calculation was also implemented in the API for Hardlocks
that operate in the old parallel calculation mode. The corresponding
function expects 4 times 8 bits as 32-bit argument and delivers an 8-
bit value.

Example:

result = HL_LOGIN (29809,DONT_CARE,"HARDLOCK","@0=/&#s3");
IF (result == STATUS_OK)
 value = HL_CALC (i1, i2, i3, i4);
ENDIF;
result = HL_LOGOUT();

Appendix 7-15

API - Manual Implementation for Hardlock

7.6 Naming Conventions of API Objects

To simplify and better identify the different libraries, we have
developed a system for naming the API files. The file name is made
up of 4 characters "API_" and a 4 digit code. The meaning of the
different digits of the code are explained in the table below. The file
extension is OBJ or LIB for libraries which correspond to the
Microsoft OBJ/LIB standard or DLL if they are dynamically loadable
libraries.

Library name: API _ x x x x.ext

16-bit API = 1 . . .
32-bit API = 3 . . .

DOS generic OBJ = . D . .
DOS only code OBJ = . B . .

Win 3.xx generic OBJ = . W . .
Win 3.xx generic DLL = . L . .

Win 3.xx Watcom OBJ = . X . .
Win NT/Win32 OBJ = . N . .

 OS/2 DLL = . M . .
 PC UNIX = . U . .

Novell Netware NLM OBJ = . S . .
DOS DPMI extender OBJ = . P . .

NET/REMOTE + local routines = . . N .
local only = . . L .

no multitasking support = . . . N
multitasking shell = . . . M

