
9

Copyright Douglas Young, 1992

49 _stopwatch->timerStarted();

50 }

51 void Control::stop (Widget, XtPointer, XtPointer)

52 {

53 _timer->stop();

54 _stopwatch->timerStopped();

55 }

This approach offers several advantage. It is simpler to use, given the complete implementation

of the Callback class and the Callbackdeclare macro. It is also slightly more type-safe. The

only cast occurs in association with the clientData argument to the callbackStub()

function. However, this is known to be a Callback object, regardless of what derived class is actually

being used, making this cast almost completely safe.

Using the Callbackdeclare macro reduces the number of functions a programmer must

write and relieves the tedium of defining two functions for every callback. The total number of

functions is also reduced, since the same static member function is used for all callbacks registered

by a given class. Finally, some may find this technique more aesthetically appealing than registering

static member functions and dealing with the C functions directly.

Nothing comes for free, and there are a few disadvantages to this approach. First, the Callback

mechanism adds yet one more level of indirection, requiring an additional function call for each

callback. This is probably not objectionable in most cases.

A second problem could be more problematic in some cases. When a widget is destroyed, Xt

removes all callbacks from the widget’s callback lists. When using this approach, Xt will also

remove the callbackStub() function registered with the widget. However, it cannot know to

delete the Callback object. If widgets are destroyed dynamically, the implementation described

above will continue to use memory even though the functions supported by the class will never be

called.

It is possible to work around this problem by registering an XmNdestroyCallback function

for each widget and each callback class, whose task it is to free the Callback class when the widget

is destroyed. However, this adds even more to the complexity and overhead of the underlying

mechanisms that implement this approach.

I would like to credit Anil Pal for suggesting this approach, and demonstrating an earlier

version, from which the Callback class evolved.

8

Copyright Douglas Young, 1992

6 #include <Xm/RowColumn.h>

7 #include <Xm/PushB.h>

8 #include "Timer.h"

9 #include "Stopwatch.h"

10

11 Control::Control (Widget parent,

12 char *name,

13 Stopwatch *stopwatch,

14 Timer *timer) : BasicComponent (name)

15 {

16

17 _timer = timer; // Keep a pointer to the timer.

18

19 _stopwatch = stopwatch;

20

21 // Create the component’s widget tree

22

23 _w = XmCreateRowColumn (parent, _name, NULL, 0);

24

25 _startWidget = XtCreateManagedWidget ("start",

26 xmPushButtonWidgetClass,

27 _w, NULL, 0);

28 _stopWidget = XtCreateManagedWidget ("stop",

29 xmPushButtonWidgetClass,

30 _w, NULL, 0);

31

32 // Register callbacks, specifying the object’s instance

33 // pointer as client data.

34

35 addCallback (_startWidget,

36 XmNactivateCallback,

37 &Control::start,

38 NULL);

39

40 addCallback (_stopWidget,

41 XmNactivateCallback,

42 &Control::stopCallback,

43 NULL);

44

45 }

The stop() and start() member functions are written the same as they were previously,

except that the functions take additional arguments, which are unused in this example.

46 void Control::start(Widget, XtPointer, XtPointer)

47 {

48 _timer->start();

7

Copyright Douglas Young, 1992

OSF/Motif. The class declaration is nearly identical to the declaration in that book, except that the

class has no static member functions, and the Callbackdeclare macro is included inside the

private portion of the class. Notice that the stop() and start() member functions support the

arguments expected by the Callback class as well.

1 //

2 // Control.h: A start/stop pair of buttons for the stopwatch program

3 //

4 #ifndef CONTROL_H

5 #define CONTROL_H

6 #include "BasicComponent.h"

7 #include “Callback.h”

8

9 class Timer;

10 class Stopwatch;

11

12 class Control : public BasicComponent {

13

14 private:

15

16 void start (Widget, XtPointer, XtPointer);

17 void stop (Widget, XtPointer, XtPointer);

18

19 Callbackdeclare(Control)

20

21 protected:

22

23 Timer *_timer; // The timer controlled by this class

24 Stopwatch *_stopwatch; // The stopwatch containing this control

25 Widget _startWidget; // The start button

26 Widget _stopWidget; // Stop button

27

28 public:

29

30 Control (Widget, char * , Stopwatch *, Timer *);

31 };

32 #endif

The Control constructor is much the same as before. However, this version registers normal

member functions as callbacks using the addCallback() member function generated by the

Callbackdeclare() macro. Notice that the client data is specified as NULL in this case, and

that no this pointer is required.

1 //

2 // Control.C: A start/stop pair of buttons for the stopwatch program

3 ///

4 #include "Control.h"

5 #include <Xm/Xm.h>

6

Copyright Douglas Young, 1992

81 _obj = obj; \

82 _pmf = pmf; \

83 } \

84 \

85 protected: \

86 \

87 CLASS* _obj; \

88 name2(CLASS,PMF) _pmf; \

89 \

90 private: \

91 \

92 virtual void execute (Widget w, \

93 XtPointer clientData, \

94 XtPointer callData) \

95 { \

96 (_obj->*_pmf)(w, clientData, callData); \

97 } \

98 }; \

99 \

100 name2(CLASS,Callback) *addCallback (Widget w, \

101 String name, \

102 name2(CLASS,PMF) pmf, \

103 XtPointer clientData) \

104 { \

105 name2(CLASS,Callback) *cb = \

106 new name2(CLASS,Callback)(this, \

107 pmf, \

108 w, \

109 name, \

110 clientData); \

111 return cb; \

112 }

113 #endif

This macro captures the format of the ControlCallback class we just discussed. This macro uses

the name2() macro found in the file generic.h to concatenate two symbols together to generate one

new symbol. If we were to process the statement

CallbackDeclare(Control)

through the C++ preprocessor, the result would be approximately the same as the ControlCallback

class implemented earlier. There is one additional feature of this macro, the addCallback()

function defined starting on line 100. This is a convenience function that instantiates a Callback

object and provides the this pointer to the constructor.

This macro is intended to be included in the declaration of a class. This makes the

addCallback() function a member function of the declaring class.

With this macro defined, it is very easy to use the Callback class. Let’s look at how it could be

used with the Control class described in Chapter 2 of Object-Oriented Programming with C++ and

5

Copyright Douglas Young, 1992

 ControlPMF _pmf; // A pointer to a Control member function

 private:

 // execute() is called from Callback class, indirectly

 // when callback is invoked. Use the stored Control instance

 // to call the member function. Pass the widget, calldata

 // and client data, as stored in this object.

 virtual void execute (Widget w,

 XtPointer clientData,

 XtPointer callData)

 {

 (_obj->*_pmf)(w, clientData, callData);

 }

};

To use this class, we need to instantiate a ControlCallback object with the appropriate arguments

for each desired callback. Notice that only one ControlCallback class is needed regardless of how

many widgets or how many different member functions are supported by the Control class.

However, notice that this ControlCallback class can only be used with the Control class. Using

this technique with other classes would require a new derived class, with the appropriate members

defined to point to instances of each new class.

This seems like a lot of work, just to avoid writing a simple static member function. Fortunately,

we can use a simple technique to reduce the amount of work require down to a single line of code.

Let’s return to the file Callback.h and look at the following macro, which is defined following the

Callback class declaration:

61 #define Callbackdeclare(CLASS) \

62 class CLASS; \

63 \

64 typedef void (CLASS::*name2(CLASS,PMF))(Widget, \

65 XtPointer, \

66 XtPointer); \

67 \

68 class name2(CLASS,Callback) : public Callback { \

69 \

70 public: \

71 \

72 name2(CLASS,Callback)(CLASS* obj, \

73 name2(CLASS,PMF) pmf, \

74 Widget w, \

75 String callbackName, \

76 XtPointer clientData) : \

77 Callback (w, \

78 callbackName, \

79 clientData) \

80 { \

4

Copyright Douglas Young, 1992

instance. Because all callbacks use this same member function, the type of the object passed as client

data will always be Callback. This makes this approach slightly more type safe than the alternate

approach, in spite of the cast, which is still needed.

The execute() member function is declared as a pure virtual function, and must therefore be

defined by derived classes. This function calls the member function registered as the pseudo-

callback.

Now lets’ take a first look at how this class is used. The Callback class cannot be used directly.

A derived class must be created from every class that needs to register callbacks. It is easiest to just

look at an example. The following ControlCallback class could be used with the Control class

described in Chapter 2 of Object-Oriented Programming with C++ and OSF/Motif. We could

declare the ControlCallback class as follows:

///

// ControlCallback.h: Callback class to be used with Control

//

#ifndef CONTROLCALLBACK_H

#define CONTROLCALLBACK_H

#include “Callback.h”

// Define ControllPMF as a type

typedef void (Control::*ControlPMF)(Widget, XtPointer, XtPointer);

// Declare the ControlCallback class as a derived calss of Callback

class ControlCallback : public Callback {

 public:

 // Constructor takes a pointer to an instance of Control,

 // and a pointer to a Control member function, in addition

 // to the arguments requires by the Callback constructor

 ControlCallback (Control *obj,

 ControlPMF pmf,

 Widget w,

 String callbackName,

 XtPointer clientData) :

 Callback (w, callbackName, clientData)

 {

 _obj = obj; // Keep the instance pointer around

 _pmf = pmf; // Remember the member function pointer

 }

 protected:

 Control *_obj; // Stores a Control object

3

Copyright Douglas Young, 1992

32 _clientData = clientData;

33 }

34

35 // Destructor removes the callback, using save data members

36

37 ~Callback()

38 {

39 XtRemoveCallback (_w,

40 _name,

41 &Callback::callbackStub,

42 (XtPointer)this);

43 }

44

45 // Execute must be overriden by derived classes

46

47 virtual void execute (Widget, XtPointer, XtPointer) = 0;

48

49 private:

50

51 // Generic callback function works for all callbacks

52

53 static void callbackStub (Widget w,

54 XtPointer clientData,

55 XtPointer callData)

56 {

57 Callback *obj = (Callback *) clientData;

58 obj->execute (w, obj->_clientData, callData);

59 }

60 };

The Callback class declares three protected data members, the widget with which the callback

is registered, the name of the callback, and a pointer that can be used to point to some arbitrary data.

Recall that the static member function scheme uses the client data supported by

XtAddCallback() to pass the this pointer to the callback function. Although this scheme still

needs to have the this pointer, wrapping the callback in a class hides the process and provides a

place to keep some additional data on a per callback basis. This allows us to make the client data

argument available to programmers again.

The Callback constructor expects a widget, the name of a callback and a pointer to any client

data. It registers callbackStub(), which is a static member function defined by the Callback

class, as the named callback function for the given widget. The Callback constructor also retains the

widget, the name, and the client data as data members in the Callback object.

The destructor is very simple. It uses the callback name and widget kept in the object and calls

XtRemoveCallback() to remove the callback registered in the constructor.

The function callbackStub() is registered for all callbacks, regardless of the type. It is

declared as an inline static member function, and looks much like the other callback function used

throughout this book. It retrieves the this pointer provided as client data when the callback was

registered, casts it to the appropriate type, and calls the execute() member function for this

2

Copyright Douglas Young, 1992

Because the form of all these functions is so similar, it is possible to hide some of the details of

this approach. One way to do this is to capture the entire mechanism in a C++ class. This paper

examines an implementation of such a class, the Callback class.

The Callback class has some similarities to the Cmd class described in Chapter 7 of Object-

Oriented Programming with C++ and OSF/Motif. However, the implementation is a bit different.

Basically, every class that wants to use a Callback object must create a new derived class that

overrides an execute() member function declared by the Callback class. This member function

is called by a static member function, registered by the Callback base class as the actual callback

function. The execute() function is expected to call a normal member function.

This scheme requires only a single static member function per class, and only a single

execute() member function. The technique allows normal member functions to be registered as

pseudo-callbacks. However, the approach adds one more level of indirection than the alternate

approach.

Let’s start by looking at the declaration of the Callback class. The entire mechanism is imple-

mented in a header file, using macros and inline functions. The file Callback.h is written as follows:

1 //

2 // Callback.h: A class that encapsulates callbacks

3 //

4 #ifndef CALLBACK_H

5 #define CALLBACK_H

6

7 #include <Xm/Xm.h>

8 #include <generic.h>

9

10 class Callback {

11

12 protected:

13

14 Widget _w; // Widget for which callback is registered

15 String _name; // The callback name,

16 // needed to remove callback

17 XtPointer _clientData; // Xt’s idea of client data is used

18 // for the this pointer,

19 // so replace it with our own.

20

21 // Constructor registers callback and saves other info

22 // that might be needed later as data members

23

24 Callback (Widget w, String name, XtPointer clientData)

25 {

26 XtAddCallback (w,

27 name,

28 &Callback::callbackStub,

29 (XtPointer) this);

30 _w = w;

31 _name = name;

Copyright Douglas Young, 1992 1

A Callback Class

 Doug Young

This paper briefly describes an alternate approach for using C++ member

functions with Xt callbacks. This material was originally written as an

appendix to Object-Oriented Programming with C++ and OSF/Motif f,

Prentice Hall, 1992, but was cut from the final manuscript in the interest of

simplicity and consistency.

The approach used throughout Object-Oriented Programming with C++ and OSF/Motif for dealing

with member functions and widget callbacks requires two functions. One function is declared as a

static member function and registered as a Motif callback using XtAddCallback(). An object’s

this pointer is provided as client data when the callback is registered. When this static member

function is called, it retrieves the instance pointer from its client data argument and calls the second

function, which can be a normal member function, relative to that object.

This approach leads to many member functions that are very similar. For example, almost every

callback function looks like:

void SomeClass::memberFunctionCallback (Widget,

 XtPointer clientData,

 XtPointer)

{

 SomeClass *obj = (SomeClass *) clientData;

 obj->memberFunction();

}

The only difference between various static functions used as callbacks is the class to which the

function belongs, and the exact member function being called. The form is identical in all cases

