Legal Information

Telephony Application Programming Interface
(TAPI) Programmer's Reference

This document is provided for informational purposes only, and Microsoft Corporation makes no
warranties, either express or implied, in this document. The entire risk of the use or the results of the
use of this document remains with the user.

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of
this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1995-1996 Microsoft Corporation. All rights reserved. Portions © 1992-1993 Intel Corporation. All rights
reserved.

Microsoft, Win32, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Intel is a registered trademark of Intel Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Using the TAPI Programmer's Reference

The Microsoft Win32 Telephony application programming interface (TAPI) provides services that enable
an application developer to add telephone communications to applications developed for operating
systems that support the Microsoft® Win32® API, such as Microsoft® Windows NT® Workstation and
Microsoft® Windows® 95.

The TAPI Programmer's Reference is intended to help experienced programmers learn the API for
telephony for these operating systems, and to be used by developers familiar with the Win32
programming environment. Previous development experience with telecommunications or other
telephony applications is helpful but not necessary.

Document Overview

This document presents general information about how to develop telephonic applications and offers
specific information about the functions, messages, and data types of the Telephony API. The sections
include:

e Telephony Overview describes the Win32 Telephony API and explains how to use it in Win32
applications.

¢ The Telephony Programming Model explains the concepts programmers should know before they

begin development of telephonic applications. It includes sections that describe the uses of
Telephony's device classes, addresses, and other topics.

e TAPI Applications refers to the source code of a telephonic application (supplied with the Win32 SDK)

to illustrate how to create a functional Win32 application.

¢ Multiple-Application Programming details what developers need to know when programming more
than one application to work together or among other applications.

e Call States and Events describes the call states through which a call transitions as it is established or

disconnected.

e Supplementary Line Functions describes some of the more advanced functions used to create
telephonic applications, including media monitoring, media control, and call conferencing.

¢ Line Devices Overview explains the line device class and describes the operations that can be carried

out on line devices.

¢ Phone Devices Overview describes the phone device class and the functions TAPI provides to use
phone devices.

¢ Assisted Telephony Overview tells how to add basic telephonic functionality to applications that don't

require the flexibility or control provided by the full Telephony API. Readers whose development goals
do not include the creation of new applications with a variety of telephonic functions may need to read

no further than this section.

¢ Device Classes describes device classes, the related physical devices or device drivers through
which applications send and receive the information or data that makes up a call.

¢ Quick Function Reference lists the functions of TAPI, a brief description of each, and the nature of
each result: synchronous or asynchronous.

¢ Unicode Support identifies which TAPI functions have Unicode versions and identifies the parameters
and structure members that contain Unicode strings. This section also lists functions that do not have

Unicode versions.

e Reference contains detailed information about the line device, phone device and assisted telephony
functions, messages, structures and constants.

What's New for TAPI Version 2.0

To provide the best performance and support on the Windows NT platform and on future releases of the
Windows 95 platform, the Win32 Telephony API and its service providers and supporting components are
fully implemented as 32-bit components in Win32. In addition to full 32-bit implementation, Win32 TAPI
includes these many new features:

Native 32-bit support. All core TAPI components are Win32, with full support for non-Intel
processors (running Windows NT), symmetrical multiprocessing, multithreaded applications, and
preemptive multitasking.

32-bit application portability. Existing Win32 full TAPI and assisted TAPI applications which
currently run on Windows 95 (using the TAPI 1.4 API) run on Windows NT on the Intel x86 family of
microprocessors without modification or recompilation.

16-bit application portability. Existing Win16 full TAPI and assisted TAPI applications which
currently run on Windows 95 and Windows® 3.1 operating system (using the TAPI 1.3 API) run on
Windows NT without modification or recompilation.

Unicode support. Win32 applications can choose to call the existing ANSI TAPI functions or to call
Unicode versions of functions that pass or return strings (functions with a "W" suffix).

Service processes. TAPI 2.0 adds mechanisms for notifying applications of telephony events that do
not require the application to have a window message queue, thereby enabling background service
processes to easily use TAPI services.

NDISTAPI compatibility. The existing support in Windows NT 3.5 for ISDN WAN miniports under
Remote Access Service is preserved. NDIS WAN miniport drivers are supported under a kernel mode
service provider without modification.

Registry support. All telephony parameters are stored in the registry. Telephony service providers
and all stored parameters can be updated across the LAN.

Call Center support. TAPI supports functionality required in a call center environment, including the
modeling of predictive dialing ports and queues, ACD agent control, station set status control, and
centralized event timing.

Quality of Service (QOS) support. Applications can request, negotiate, and renegotiate quality of
service (performance) parameters with the network, and receive indication of QOS on inbound calls
and when QOS is changed by the network. The QOS structures are binary-compatible with those
used in the Windows Sockets 2.0 specification.

Enhanced device sharing. Applications can restrict handling of inbound calls on a device to a single
address, to support features such as distinctive ringing when used to indicate the expected media
mode of inbound calls. Applications making outbound calls can set the device configuration when
making a call.

User mode components. The full TAPI system, including top-level service provider DLLs, runs in
user mode.

The following are additional enhancements to existing TAPI features:

Applications now receive LINE_APPNEWCALL messages (instead of LINE_CALLSTATE) as the first
messages notifying the application of a new call.

Applications now receive LINE_REMOVE and PHONE _REMOVE messages whenever a line or
phone device has been removed from the system.

LINECONNECTEDMODE_ constants now indicate when a call has been placed in the onhold state
by the remote party. Also, an additional LINECONNECTEDMODE_ constant indicates to applications
when entry into the connected state was confirmed by the network, or if it is just being assumed
because confirmation from the network is impossible.

Applications now receive notification that ringing has stopped on a line device by receiving a
LINE _LINEDEVSTATE message with the dwParam1 parameter set to LINEDEVSTATE_RINGING

and both dwParam?2 and dwParam3 set to zero.

The LINEDEVCAPS, LINEADDRESSCAPS, and PHONECAPS structures now include a listing of
device classes supported by the device, with each supported device class terminated by a zero byte
and the final class terminated by two zero bytes. A typical list for a voice modem might be:

"tapi/line\Ocomm\Ocomm/datamodem\Owave/in\Owave/out\0\0"

Applications can scan this list to see if a particular device supports device classes required for the
application to properly function.

The LINEFEATURE_, LINEADDRFEATURE_, and LINECALLFEATURE_ sets of constants have
been extended to allow applications to detect when various "flavors" of a function are available for
use. For example, applications will be able to detect not only that a call can be transferred, but
whether it is permitted to resolve the transfer as a three-way conference.

Applications can carry out a "one-step transfer" by using
LINECALLPARAMFLAGS_ONESTEPTRANSFER with the lineSetupTransfer function.

Applications can carry out a "no hold conference" by using the
LINECALLPARAMFLAGS_NOHOLDCONFERENCE option with the lineSetupConference function,
allowing another device, such as a supervisor or recording device, to be silently attached to the line.

Applications can carry out a "transfer through hold" (on the systems with this capability) by using the
linePickup function with a NULL target address. Check for the LINEADDRFEATURE_PICKUPHELD
bitin LINEADDRESSCAPS and LINEADDRESSSTATUS for this capability.

The PHONECAPS structure now includes an indication of which hookswitch states can be set for
each hookswitch device, and which can be detected and reported. Previously, applications could
detect only the existence of each device without being able to determine which characteristics could
be only monitored and not set.

The PHONESTATUS structure now also includes a dwPhoneFeatures member that indicates which
phone operations can be performed at the particular moment in time that phoneGetStatus is called.

New TAPI Functions, Messages, Structures, and Constants for
Version 2.0
The Win32 Telephony API version 2.0 includes a number of functions, messages, structures, and

constants that are either new (not available in previous versions of TAPI), or that have changed in TAPI
version 2.0. The following tables lists these new or changed items.

Functions New/Changed
lineAgentSpecific New
lineGetAgentActivityList New
lineGetAgentCaps New
lineGetAgentGroupList New
lineGetAgentStatus New
lineGeticon Changed
lineGetMessage New
linelnitialize Obsolete
linelnitializeEx New
lineOpen Changed
lineProxyMessage New
lineProxyResponse New
lineSetAgentActivity New
lineSetAgentGroup New
lineSetAgentState New
lineSetCallData New
lineSetCallQualityOfService New
lineSetCallTreatment New
lineSetLineDevStatus New
phoneGetlcon Changed
phoneGetMessage New
phonelnitialize Obsolete
phonelnitializeEx New
Messages New/Changed
LINE_AGENTSPECIFIC New
LINE_AGENTSTATUS New
LINE_APPNEWCALL New
LINE_GATHERDIGITS Changed
LINE _GENERATE Changed
LINE_MONITORDIGITS Changed
LINE_MONITORMEDIA Changed
LINE_MONITORTONE Changed
LINE_PROXYREQUEST New
LINE REMOVE New
PHONE REMOVE New

Structures New/Changed

LINEADDRESSCAPS Changed
LINEAGENTACTIVITYENTRY New
LINEAGENTACTIVITYLIST New

LINEAGENTCAPS New
LINEAGENTGROUPENTRY New
LINEAGENTGROUPLIST New
LINEAGENTSTATUS New
LINEAPPINFO New
LINECALLINFO Changed
LINECALLPARAMS Changed
LINECALLSTATUS Changed
LINECALLTREATMENTENTRY New
LINEDEVCAPS Changed
LINEDEVSTATUS Changed
LINEINITIALIZEEXPARAMS New
LINEMESSAGE New
LINEPROXYREQUEST New
PHONECAPS Changed
PHONEINITIALIZEEXPARAMS New
PHONEMESSAGE New
PHONESTATUS Changed
Constants New/Changed
LINEADDRCAPFLAGS Changed
Constants

LINEADDRFEATURE Changed
Constants

LINEAGENTFEATURE_ New
Constants

LINEAGENTSTATE_ Constants New
LINEAGENTSTATUS _Constants New
LINEBEARERMODE__ Constants Changed
LINECALLFEATURE_ Constants Changed

LINECALLFEATURE2 _ New
Constants

LINECALLINFOSTATE Changed
Constants

LINECALLPARAMFLAGS Changed
Constants
LINECALLREASON__Constants Changed
LINECALLTREATMENT New
Constants

LINECONNECTEDMODE Changed
Constants

LINEDISCONNECTMODE Changed
Constants

LINEERR Constants Changed

LINEFEATURE Constants

LINEINITIALIZEEXOPTION
Constants

LINEOPENOPTION Constants

LINEPROXYREQUEST
Constants

LINETRANSLATERESULT
Constants

LINETSPIOPTION Constants
PHONEFEATURE_ Constants

PHONEINITIALIZEEXOPTION

Constants

Changed
New

New
New

Changed

New
New
New

Document Conventions for TAPI Programmer's Reference

The type conventions used in the TAPI Programmer's Reference are as follows:

Bold text

ALL CAPS

Italic text

Monospaced text

Bold letters indicate terms, such as
function and structure names, that you
must use exactly as shown.

All capitals typically indicate terms, such
as message and constant names, that
must be used exactly as shown.

In introductory and explanatory text,
italicized words indicate that a key term or
concept is being introduced. In function
and message descriptions, italics
indicates a placeholder for which you are
expected to provide a value or the name
of a variable.

Monospaced type indicates code samples
and data-structure definitions.

Related Documentation on Telephony Services

Other documentation that may help you understand the Telephony services as they apply to Windows
includes:

e Microsoft Win32 Programmer's Reference.

e The Microsoft Win32 Telephony Service Provider Reference, which provides information on how to
write a Win32 Telephony service provider.

Overviews

This section contains overviews on telephony, the telephony programming model, TAPI applications,
multiple-application programming, call states and events, and supplementary line functions.

Telephony Overview

Telephony is a technology that integrates computers with the telephone network. With telephony, people
can use their computers to take advantage of a wide range of sophisticated communications features and
services over a telephone line.

The Telephony application programming interface (TAPI) lets programmers develop applications that
provide personal telephony to users. TAPI supports both speech and data transmission, allows for a
variety of terminal devices, and supports complex connection types and call-management techniques
such as conference calls, call waiting, and voice mail. TAPI allows all elements of telephone usage—from
the simple dial-and-speak call to international e-mail—to be controlled within applications developed for
the Microsoft® Win32® application programming interface.

Using Telephony in Applications

Telephony capabilities help people get the most from telecommunications systems, allowing them to more
efficiently manage their voice calls and control their data-transfer operations. You can use TAPI to bring
this efficiency to any application — database manager, spreadsheet, word-processing application,
personal information manager—any application that can benefit by sending and receiving data through the
telephone network.

TAPI gives you a consistent set of tools for incorporating these features into your applications:

e Connect directly to the telephone network rather than rely on a separate communications application
¢ Dial phone numbers automatically

¢ Transmit documents as files, faxes, or electronic mail

e Access data from news retrieval and other information services

e Set up and manage conference calls

e Receive, store, and sort voice mail

e Use caller-ID to automate the handling of incoming calls

¢ Control the operations of a remote computer

e Compute collaboratively over telephone lines

TAPI provides your application with access to the telephone network, you provide your users with access
to these features. This means you choose and create a user interface that is consistent with the rest of
your application. For example, if you use drag and drop extensively, you could let the user send files or
faxes through the telephone to a colleague by dragging the icon of the file to an icon representing the
colleague's destination. Similarly, you could let the user initiate conference calls by dragging three or four
names from an electronic directory into a "Conference box" and clicking a "Connect" command. You
choose the interface, and let TAPI carry out the work needed to make and manage the telephone
connections.

Telephone Network Services

TAPI provides access to a variety of telephone network services. Although these services may use
different technologies to establish calls and transmit voice and data, TAPI makes these service-specific
details transparent to applications. This means you can create applications that can take advantage of
any available service without including service-specific code in your application.

Historically, most telephone connections in the world have been of the type POTS, or Plain Old Telephone
Service. Most POTS calls are transmitted digitally except while in the local loop—the part of the telephone
network between the telephone and the telephone company's central switching office. Within this loop,
human speech from a household telephone is usually transmitted in analog format and the digital data
from a computer must first be converted to analog by a modem. Digital networks are gradually replacing
analog in the local loop.

Using TAPI for POTS is straightforward because POTS is comparatively simple. It normally uses only one
type of information (such as data or voice) per call, supports one channel per line, and so on. The vast
majority of uses for TAPI are still POTS, and most telephony programmers will use TAPI only for POTS
applications.

But TAPI is not restricted to POTS. TAPI also lets you make connections over other types of networks.
More advanced kinds of data transmission methods are being developed, refined, and installed. For
example, one important digital service is Integrated Services Digital Network (ISDN), which is expected to
grow significantly in availability. ISDN networks have these advantages over POTS:

¢ All digital

e |Less prone to error

¢ Faster data transmission, with speeds up to 128 kilobytes per second (Kbps) on basic service
e From 3 to 32 channels for simultaneous transmission of voice and data

¢ An international standard

On ISDN networks, error rates are lower than with analog transmission because data travels from one
end of the ISDN network to the other in digital format. Speeds of up to 128 Kbps are possible on Basic
Rate Interface (BRI-ISDN) standard lines and much higher on Primary Rate Interface (PRI-ISDN)
standard lines. By contrast, today's maximum dial-up modem data rates of 28.8 Kbps. When ISDN
connections become more widespread, users will be able to send data to the recipient simultaneously
with a voice call to that or another person. Each ISDN line, depending on its transmission rate, provides
at least three channels (two for voice or data and one strictly for data or signaling information) and as
many as 32 channels, for simultaneous, independently operated transmission of voice and data. BRI-
ISDN lines provide two 64-Kbps "B" channels (B channels carry voice or data) and one 16-Kbps "D"
channel (D channels carry signaling information or packet data). The PRI-ISDN lines for the U.S.,
Canada, and Japan have twenty-three 64-Kbps B channels and one 64-Kbps D channel. The European
PRI standard offers thirty B channels and two D channels.

TAPI can also be used with other digital networks such as T1/E1 and Switched 56 service. With Switched
56, some local and long-distance telephone companies provide signaling at 56 Kbps over dial-up
telephone lines. Switched 56 is quickly becoming available throughout the U.S. and in many other
countries. It requires special equipment, and though its connection capabilities are limited to calls to other
specially-equipped facilities, its high speed and pricing make it a reasonable choice for many data
communications needs. Switched 56 is used for data calls only.

TAPI can also be used with other services such as CENTREX, which provides a set of centralized
network services (such as conferencing) without the need to install special equipment. With CENTREX,
you pay for the use of telephone-company equipment over regular telephone lines. In addition, TAPI can
be used with digital Private Branch Exchanges (PBXs) and key systems. Because TAPI is independent of
the underlying telephone network, programming a PBX application using TAPI is the same as

programming a POTS application using TAPI. An application that was originally programmed for a POTS
environment can be used within a PBX environment with no changes to the application's source code.

Telephony Components

Based on the Windows Open Services Architecture (WOSA) model, Windows Telephony consists of the
TAPI and TAPI32 dynamic-link libraries (which forward application requests to the Telephony Service for
processing), TAPISRV.EXE (which implements and manages the TAPI functions) and one or more
telephony service providers (drivers). TAPI provides a device-independent interface for carrying out
telephony tasks. Service providers are dynamic-link libraries that carry out low-level and possibly device-
specific actions needed to complete telephony tasks through hardware devices such as fax boards, ISDN
cards, telephones, and modems. Applications link to and call functions in the TAPI dynamic-link library
only; they never call the service providers directly.

When an application calls a TAPI function, the TAPI dynamic-link library validates and marshalls the
parameters of the function and forwards it to TAPISRV.EXE. TAPISRYV (the Telephony Service) processes
the call and routes a request to the appropriate service provider. To receive requests from TAPISRY, the
service provider must implement the Telephony service provider interface (TSPI). A service provider can
provide different levels of the service provider interface: basic, supplementary, or extended. For example,
a simple service provider might provide basic telephony service, such as support for outgoing calls,
through a Hayes-compatible modem. A custom service provider, written by a third-party vendor, might
provide a full range of incoming and outgoing call support.

A user can install any number service providers on a computer as long as the service providers do not
attempt to access the same hardware device at the same time. The user associates the hardware and the
service provider when installing. Some service providers may be capable of accessing multiple devices.
In some cases, the user may need to install a device driver along with the service provider.

Applications use the TAPI functions to determine which services are available on the given computer.
TAPI determines what service providers are available and provides information about their capabilities to
the applications. In this way, any number of applications can request services from the same service
provider; TAPI manages all access to the service provider.

As long as an application does not depend on optional features, the applications can, without
modification, use any services to carry out telephony tasks, even services made available after the
application is developed. This is because the application always accesses the many different services
through TAPI which translates the requests the application makes into the actual protocols and interfaces
required.

The Telephony SPI is beyond the scope of this reference. For more information about the TSPI and
service providers, see the Microsoft Win32 Telephony Service Provider Reference.

Media Stream

The media stream consists of the information exchanged over a call. TAPI by itself provides control only
for line and phone devices and does not give access to the content of the media stream. To manage the
media stream, an application uses Win32 functions, such as the Communication, Wave Audio, or Media
Control Interface (MCI) functions. For example, an application that provides an interface for managing fax
or data transmission uses the TAPI functions to control and monitor the line over which bits are sent, but
uses the Communications functions to transmit the actual data.

In the same manner, the media stream in a speech call (where speech refers exclusively to human
speech) is produced and controlled not by TAPI, but by one human talking to another. However, the line
on which that call is established and monitored, and the call itself, remain in control of the TAPI
application. (Note that voice is considered to be any signal that can travel over a 3.1 kHz-bandwidth
channel.)

Special Hardware

Some of the more advanced capabilities of TAPI require that an application be able, for example, to
retrieve data from telephones. Most telephones cannot be connected directly to computers to control
speech calls and thus are currently incapable of supporting Telephony functions beyond the passive role
they play in POTS. In the future, users will install and configure telephone sets like other peripheral
devices. The sets will be accompanied by cards that will control the flow of information between the
computer and the telephone. Client/server configurations will also be possible that allow users to take
advantage of telephonic services by connecting over a LAN to a server that has such a board and
associated software installed.

Physical Connections

Lines and phones can be connected in a variety of ways to the desktop computer and the telephone
network. The following examples show a selection of configurations that could be supported by a service
provider. Note that some of the telephone hardware required to implement some of these example is not
yet widely available.

A phone-centric connection consists of a single POTS line in which the computer is connected to the
switch through the desktop phone set. Such phone sets typically connect to the computer through one of
its serial ports. When an application requests an action, the corresponding service provider sends
telephony commands, which are often based on the Hayes AT command set (ANSI/TIA/EIA-602), over
the serial connection to the telephone. This configuration is limited because it generally provides only line
control. The computer does not have access to the media stream.

A computer-centric connection uses a computer add-in card or external box that is connected to both the
telephone network and the phone set. The service provider can easily integrate modem and fax functions,
as well as the use of the telephone as an audio 1/O device.

A BRI-ISDN connection is similar to the computer-centric connection but allows for using the two B-
channels in a variety of line configurations. A service provider can treat this connection in a number of
ways:

¢ Asingle line device with a pool of two channels, allowing both channels to be combined for
establishing 128 Kbps calls.

e Two separate line devices, each with exclusive use of a single B-channel.
¢ Two separate line devices, each drawing up to two channels from a shared pool of two B-channels.
e Three line devices: one for each of the two B-channels and one for the combination.

In the latter two models, channels may be assigned to different line devices at different times.

In client/server networks, a pool of telephone ports attached to a server may be shared among multiple
client computers using a local area network. The ports may be configured to assign a maximum number
of line devices (the quota) to each client workstation. It is not unusual for the sum of all quotas to exceed
the total number of lines.

Also, the assignment of lines through ports is dynamic. For example, a client computer with a quota of 2
may use ports 1 and 2 at one time and ports 7 and 11 at a later time.

The service provider for the pool may model this arrangement by giving each client workstation access to
two line devices. This implies that the device IDs (which are fixed) for each client are 0 and 1. If the
application later requests information for device 0 and again for device 1, it must assume that the device
capabilities for each device are constant, because that is the Windows device model. For server-based
devices that are pooled as described in the example above, this constancy holds only for line devices that
have identical device capabilities.

A LAN-based server might have multiple telephone-line connections to the switch. TAPI operations
invoked at any of the client computers are forwarded over the LAN to the server. The server uses third-
party call control between the server and the switch to implement the client's call-control requests.

This model offers a lower cost per computer for call control if the LAN is already in use, and it also offers
reduced cost for media stream access if shared devices such as voice digitizers, fax and/or data
modems, and interactive voice response cards are installed in the server. The digitized media streams
can be carried over the LAN, although real-time transfer of media may be problematic with some LAN
technologies due to inconsistent throughput.

A LAN-based host can be connected to the switch using a switch-to-host link. TAPI operations invoked at

any of the client computers are forwarded over the LAN to the host, which uses a third-party switch-to-
host link protocol to implement the client's call-control requests.

Note that it is also possible for a private branch exchange (PBX) to be directly connected to the LAN, and
for the server functions to be integrated into the PBX. Within this model, different sub-configurations are
possible:

¢ To provide personal telephony to each desktop, the service provider could model the PBX line
associated with the computer (on a desktop) as a single line device with one channel. Each client
computer would have one line device available.

e Each third-party station can be modeled as a separate line device to allow applications to control calls
on other stations. (In a PBX, a station is anything to which a wire leads from the PBX). This enables
the application to control calls on other stations. This solution requires that the application open each
line it wants to manipulate or monitor, which may be satisfactory if only a small number of lines is of
interest, but may generate excessive overhead if a large number of lines is involved.

¢ Model the set of all third-party stations as a single line device with one address (one phone number)
assigned to it per station. Only a single device is to be opened, providing monitoring and control of all
addresses (all stations) on the line. To originate a call on any of these stations, the application must
only specify the station's address to the function that makes the call. No extra line opening operations
are required. However, this modeling implies that all stations have the same line-device capabilities,
although their address capabilities could be different.

A potential advantage of this model is a lowered cost per computer if the LAN is already in use, but a
limitation would be a possible lack of media-stream access by the computers.

The computer in use need not be a desktop computer. It can also be a laptop or other portable computer
connected to the telephone network over a wireless connection.

In a shared telephony connection, the computer's connection may be shared by other telephony
equipment, such as the telephone set shown below. For an application to operate properly in this
arrangement, neither the application nor the service provider can assume that there are no other active
devices on the line.

The Telephony Programming Model

The Telephony application programming interface (TAPI) simplifies the development of telephonic
applications by hiding the complexities of low-level communications programming. TAPI accomplishes
this by abstracting telephony services to make them independent of the underlying telephone network
and of the way the computer is connected to the switch and phone set. Connections to the switch may be
established in a variety of arrangements including directly from the user's workstation or through a server
on a local area network. Regardless of their nature, telephony devices and connections are handled in a

single, consistent manner, allowing developers to apply the same programming techniques to a broad
range of communications functions.

Telephony API

Telephony services are divided into Assisted Telephony services and the services provided by the full
Telephony API. In general, the full Telephony API is used to implement powerful telephonic applications
and Assisted Telephony is used to add minimal but useful telephonic functionality to non-telephony
applications. Telephony's services are divided into the groups shown in the following illustration:

{ewc msdncd, EWGraphic, bsd23547 0 /a "SDK.WMF"}

Assisted Telephony

A valuable feature of Win32 Telephony is the small set of functions called Assisted Telephony. Assisted
Telephony is designed to make the establishment of voice calls and of media calls available to any
Win32-based application, not just those dedicated to telephonic functionality. In other words, Assisted
Telephony lets applications make telephone calls without needing to be aware of the details of the
services of the full Telephony API. It extends telephony to word processors, spreadsheets, databases,
personal information managers, and other non-Telephony applications. For example, adding the Assisted
Telephony function tapiRequestMakeCall to a spreadsheet lets users automatically dial telephone
numbers stored in the spreadsheet (or in a connected database).

The power of Assisted Telephony can be illustrated by the following example. A spreadsheet application
can incorporate functions that dial a telephone number for a speech call. As long as the application needs
none of the detailed call control provided by the full Telephony API, Assisted Telephony is the easiest and
most efficient way to give it telephonic functionality. Functionality beyond dialing such as the transmission
and reception of data would require additional data-transfer APls, including the communications functions
of the Comm API.

{ewc msdncd, EWGraphic, bsd23547 1 /a "SDK.WMF"}

Because Assisted Telephony and the full Telephony API are used and implemented in different ways, it is
not advised to mix Assisted Telephony function calls and Telephony API function calls within a single
application.

For more information about the uses and functions of Assisted Telephony, see Assisted Telephony
Overview.

Service Levels

Applications whose telephony functionality goes beyond the most basic call control or are meant to
handle inbound calls must be built using the Telephony API (not Assisted Telephony). The Telephony API
defines three levels of service:

¢ The elementary level of service, called Basic Telephony, which provides a minimum set of functions
that corresponds to Plain Old Telephone Service (POTS). TAPI service providers are required to
support all Basic Telephony functions.

¢ The Supplementary Telephony level of service, which provides advanced switch features such as
hold, transfer, and so on. All supplementary services are optional; that is, the service provider is not
required to support them.

¢ The Extended Telephony level of service, in which the API provides well-defined API extension
mechanisms that enable application developers to access service provider-specific functions not
directly defined by the Telephony API.

Basic Telephony Services

Basic Telephony Services are a minimal subset of the Win32 Telephony specification. Because all service
providers must support the functions of Basic Telephony Services, applications that use only these
functions will work with any TAPI service provider. The functionality contained in Basic Telephony roughly
corresponds to the features of POTS.

Today, many programmers will use only the services provided by Basic Telephony. But others, such as
those writing code for PBX phone systems, will need the functions of Supplementary Telephony. Soon,
the demand for ISDN and other network services, along with advancements in telephone equipment, will
drive even greater usage of Supplementary Telephony.

For a list of the functions of Basic Telephony, see Quick Function Reference.

Because control of phone devices is not assumed to be offered by all service providers, phone-device
services are considered to be optional. That is, they are not a part of Basic Telephony. For a list of phone-
device services, see the following topic on Supplementary Telephony services, and for more information
on phone devices, see Device Classes.

Supplementary Telephony Services

Supplementary Telephony Services are the collection of all the services defined by the API other than
those included in the Basic Telephony subset. It includes all so-called supplementary features found on
modern PBXs, such as hold, transfer, conference, park, and so on. All supplementary features are
considered optional; that is, the service provider decides which of these services it does or does not
provide.

An application can query a line or phone device for the set of supplementary services it provides using
functions such as lineGetDevCaps or lineGetAddressCaps. Note that a single supplementary service
may consist of multiple function calls and messages. The Telephony API, and not the service provider
developer, defines the behavior of each of these supplementary features. A service provider should
provide a Supplementary Telephony service only if it can implement the exact meaning as defined by the
API. If not, the feature should be provided as an Extended Telephony Service.

As mentioned in Basic Telephony Services, phone-device services are considered optional. Therefore, all
phone-device services are part of Supplementary Telephony. For a list of the functions of Supplementary
Telephony, see Quick Function Reference.

Extended Telephony Services

The API contains a mechanism that allows service-provider vendors to extend the Telephony API using
device-specific extensions. Extended Telephony Services (or Device-Specific Services) include all
extensions to the API defined by a particular service provider. Because the API defines the extension
mechanism only, the definition of the Extended-Telephony Service behavior must be completely specified
by the service provider.

TAPI's extension mechanism allows service-provider vendors to define new values for some enumeration
types and bit flags and to add fields to most data structures. The interpretation of extensions is keyed off
the service provider's Extension ID, an identifier for the specification of the set of extensions supported,
which may cross several manufacturers. Special functions and messages such as lineDevSpecific and
phoneDevSpecific are provided in the API to allow an application to directly communicate with a service
provider. The parameters for each function are also defined by the service provider.

Vendors are not required to register in order to be assigned Extension IDs. Instead, a utility is provided
that allows the generation of Extension IDs locally. This unique ID is composed of an Ethernet-adapter
address, a random number, and the time of day. An ID is assigned to a set of extensions (before
distribution), not to each individual instance of an implementation of those extensions. A tool called
EXTIDGEN.EXE is provided within the Win32 SDK that allows service provider authors to generate these
IDs.

Extending Data Structures and Types

A range of values is reserved to accommodate future extensions to the Basic and Supplementary TAPI
function set. The Extensibility section in this reference tells the amount by which a data structure can be
extended. For a list of the functions used for extending Telephony, see Quick Function Reference.

Version Parameters

Every function that takes a dwAPIVersion or similar parameter must set this parameter to either the
highest API version supported by the application or the API version negotiated using the
lineNegotiateAPIVersion or phoneNegotiateAPIVersion function on a particular device. Use the
following table as a guide:

Function
lineGetAddressCaps

lineGetCountry

lineGetDevCaps

lineGetProviderList

lineGetTranslateCaps

lineNegotiateAPIVersion

lineNegotiateExtVersion

lineOpen

lineTranslateAddress

lineTranslateDialog

phoneGetDevCaps

phoneNegotiateAPIVersion

phoneNegotiateExtVersion

phoneOpen

Meaning

Use version returned by
lineNegotiateAPIVersion

Use highest version supported by
the application

Use version returned by

lineNegotiateAPIVersion
Use highest version supported by
the application

Use highest version supported by
the application

Use highest version supported by
the application

Use version returned by

lineNegotiateAPIVersion
Use version returned by
lineNegotiateAPIVersion

Use highest version supported by
the application

Use highest version supported by
the application

Use version returned by
phoneNegotiateAPIVersion

Use highest version supported by
the application

Use version returned by
phoneNegotiateAPIVersion
Use version returned by

phoneNegotiateAPIVersion

Important When negotiating an API version, always set the high and low version numbers to the
range of versions that your application can support. For example, never use 0x00000000 for the low
version or OxFFFFFFFF for the high since these values require that your application support all
versions of TAPI, both future and past.

Device Classes in TAPI

Device classes simplify development by letting programmers treat devices that have similar properties in
a similar manner. Real-world devices such as telephones, modems, and telephone lines belong to device
classes. Applications access devices belonging to a given class using the same functions.

An application never needs to know which service provider controls which device.

Device classes help make TAPI extensible by providing a framework from which to classify and support
new equipment.

Application developers should keep in mind the existence of other applications that share telephony
services, as explained in Multiple-Application Programming.

There are two device classes: line device and phone device.

It also defines two sets of functions and messages, one used for line devices and one used for phone
devices.

The line device class is a device-independent representation of a physical line device, such as a modem.
It can contain one or more identical communications channels (used for signaling and/or information)
between the application and the switch or network. Because channels belonging to a single line have
identical capabilities, they are interchangeable. In many cases (as with POTS), a service provider will
model a line as having only one channel. Other technologies, like ISDN, offer more channels, and the
service provider should treat them accordingly.

A service provider may allow an application to request that multiple channels be combined in a single call
(as, for example, when ISDN "B" channels are combined into "H" channels) to give the call wider
bandwidth, using a technique often referred to as inverse multiplexing. This added bandwidth enables the
call to transmit more information at the same time. For most current telephonic purposes, inverse
multiplexing is not necessary.

In POTS, it is normally necessary to assign one channel per line, but with ISDN, a line's channels are
dynamically allocated when an application makes or answers a call. Because these channels have
identical capabilities and are interchangeable, the application need not identify which channel is to be
used in a given function call. Channels are owned and assigned by the service provider for the line device
in a way that is transparent to applications. This channel management is a method of abstraction that
eliminates the need to introduce the naming of channels by TAPI.

Just as a line device class is an abstraction of a physical line device, the phone device class represents a
device-independent abstraction of a telephone set. TAPI treats line and phone devices as devices that are
independent of each other. In other words, you can use a phone (device) without using an associated

line, and you can use a line (device) without using a phone.

Service providers that fully implement this independence can offer uses for these devices not defined by
traditional telephony protocols. For example, a person can use the handset of the desktop's phone as a

waveform audio device for voice recording or playback, perhaps without the switch's knowledge that the
phone is in use. In such an implementation, lifting the local phone handset need not automatically send

an offhook signal to the switch.

This independence also allows an application to ring the local telephone in a manner that is independent
of inbound calls. The capabilities of service providers is limited by the capabilities of the hardware and
software used to interconnect the switch, the phone, and the computer. For detailed information about
specific device classes, see Device Classes.

Addresses to Lines Assignments

An address is the telephone number, complete with national or international codes, of a telephone, fax
machine, or other device that can receive calls. Addresses can be dialed by a human or stored in an
electronic directory for retrieval and use by a telephony application. For more complete information on
addresses assignments, channels, and lines, see Line Devices Overview.

The local assignment of an address to a line (that is controlled in TAPI) takes place in the setup operation
for the service provider. This can be done using the Control Panel to configure the service provider or by
calling the lineConfigDialog function from within the application. On the local side of the central office,
everything about a line is controlled by a service provider, such as whether there are multiple addresses
and what these addresses are.

Usually, there is exactly one address per line, with the following exceptions:

¢ Multiple Addresses with POTS. In POTS, multiple addresses work only with systems that support
distinctive ringing or are connected to a DID trunk. (DID—direct inward dialing—is an extra-fee service
provided by the phone company.) With DID in a multi-user voice mail system, the dialed number is
signaled to the system on the DID trunk before the call rings. This allows the system to play the called
party's pre-stored announcement message and to store any incoming messages in the correct voice
mail box.

On a residential line with distinctive ringing service, different ringing patterns correspond to multiple
numbers assigned to the same line.

e Multiple Addresses with ISDN. ISDN was designed to allow simultaneous multiple addresses by
providing multiple channels, each of which can have its own address. On an ISDN network, call
offering (which means a call-setup message has been sent from the switch) takes place before
ringing, so the call can be redirected before it is answered. The lineAccept function means start
ringing for ISDN. For POTS, it means that some application has accepted responsibility for the call
and has presented it to the user.

Call Control

The developer's view of telephony is one in which telephone lines and phone sets are logically connected
through TAPI. This logical connection also provides a point of termination for the telephone line. The
physical connection can be made at the desktop, or at a LAN-based host or server, where a LAN protocol
extends the connection of the phone lines or phone to the client application. TAPI uses a first-party call-
control model on the logically terminated line as well as control of the associated phone device, if any.

Applications access Telephony API services using a first-party call control model. This means that the
application controls telephone calls as if it is an endpoint (the initiator or the recipient) of the call. The
application can make calls, be notified about inbound calls, answer inbound calls, invoke switch features
such as hold, transfer, conference, pickup, and park, and can detect and generate DTMF tones for
signaling remote equipment. An application can also use TAPI functions to monitor call-related activities
occurring in the system.

In contrast, third-party call control means that the controlling application does not act as an endpoint of
the call. A third-party call-control model allows an application to establish or answer a call between any
two parties—the application does not act as either of these parties.

A service provider may implement TAPI's line and phone functions by treating the set of all stations on the
switch as a single line device to which multiple phone numbers are assigned. Each phone number on the
line device maps to one of the stations on the switch—that is, calls passing through the switch can reach a
local station by using its address (telephone number). The application can answer calls or make calls,
selecting any one of the addresses on the line device as the origination number. Although the application
appears to be the originating party, a call is actually established between the station whose address was
selected by its originating number and the other party. However, this implementation is a type of third-
party call control and is not a design goal of TAPI, which emphasizes first-party call control applications.

Media Access

The media mode is the form in which data is transmitted on a line. The four main types of media mode
are voice, speech, fax, and data. With TAPI, calls can be established independently of the call's media
mode.

The media stream is the actual stream of information that travels on the line. Phone devices and calls on
line devices are capable of carrying media streams. The Telephony-API line and phone device classes
provide a wide range of control operations for these devices, but access to the media stream itself is not
provided by TAPI. Instead, the application must use other APIs for the Win32 environments to access or
manage these media streams. These APIs include the Waveform API, the Comm API, and the MCI
(Media Control Interface). The Waveform APl is used for multimedia programming, the MCI provides a
high-level generalized interface for controlling media devices, and the Comm APl is the set of
communications functions provided by the Win32 SDK.

For example, for line devices, an application can use TAPI to establish a connection to another station.
Once the connection is established, the application can then use the Waveform API (or the MCI
Waveaudio API) on the associated device to play back (send) and record (receive) audio data over the
connection. Similarly, if the connection's media stream is from a modem, an application would use the
modem configuration extensions of the Comm API to control the media stream.

To provide TAPI and media-stream access to either a phone or a call on a line device, the service
provider must implement both the Telephony SPI and the appropriate media stream SPI or DDI (device-
driver interface). The service provider can support lines and phones simultaneously.

Because these device classes and media stream interfaces function independently of one another,
coordination of their usage must occur at the application level. Multiple applications that share calls and
media streams in nontrivial ways will likely need to coordinate their activities at the application level to
prevent conflicting usage of TAPI and the media stream API in use. For more information on preventing
conflicts, see Multiple-Application Programming.

TAPI reports changes in the type of media stream (voice, fax, data modem, and so on) to participating
applications. This process is sometimes referred to as call classification. The mechanism used to
determine the type of media stream is specific to the service provider. For example, a service provider
may filter the media stream for energy or tones that characterize the media type, or it may use distinctive
ringing, information exchanged in messages over the network, or knowledge about the caller or called ID
to make this determination.

TAPI also provides limited support for control of the media stream on a call, particularly in server-based
networks. The actual data does not pass through TAPI, but TAPI can be used to a limited extent to control
functions that control the media stream. This control is provided to avoid latency (delay) problems that
could arise in client/server configurations for which the application is forced to use the stream's media
API. An application can request actions on a call's media stream if these actions are to be triggered by
events normally reported by TAPI, such as the detection of a tone or DTMF digit, or the transition of a call
to a specified call state.

For example, an application can request that a call's media stream be suspended (with
lineSetMediaControl) when a # DTMF digit is detected on the call, and that the media stream be
resumed when a * DTMF digit is detected. Note that some implementations or configurations will be
unable to provide any media-control functions or media access to the phone or line. Providing media
control is optional to the service provider; it should provide performance benefits primarily for client/server
implementations. Because it is optional and because only limited control is provided, its usage is
generally discouraged. If possible, applications should use the media stream's control functions instead.

Application Notifications

The programming model for Win32 Telephony matches the standard programming model for the Win32
environment with regard to device naming, the use of sections and entries in the registry, and function
calling conventions. But it deviates from this model in one important way—the synchronous/asynchronous
operational model, which is a callback scheme through which applications are notified of the success or
failure of function calls and other events.

Application Message Notification Mechanisms

TAPI 2.0 and above support three mechanisms for notifying applications of changes in the status of calls,
lines, and phones: a callback function, Win32 events, and completion ports. These are described in detail
in the documentation for linelnitializeEx and phonelnitializeEx.

Prior to TAPI version 0x0002000, only one such mechanism existed: the callback function. When the
callback mechanism is used, the application's callback function is invoked from within the application's
thread (at the time the application calls the GetMessage function), providing a normal, fully functional
execution environment in which all Win32 APIs can be safely invoked.

A LINE_REPLY or PHONE_REPLY (asynchronous completion) message sent to the application carries
the request ID and an error indication. Valid error indications for this reply are identical to those that are
returned synchronously for the associated request, or zero for success. Only the application that issued
the request will receive the reply message, but when the request causes changes in the state of the
device or call, other interested applications may also receive event-related messages.

TAPI guarantees that a reply message is made for every request that operates asynchronously, unless
the application shuts down TAPI (by calling lineShutdown or phoneShutdown) before the reply is
received.

Information Returned by Functions

An application receives two kinds of information as a result of a function call: the function's return value,
and values written to data locations specified by the function's arguments.

If the function's return value is zero, the application knows that the function has completed synchronously.
In this case, any values written as a result of the function call are reliable and can be used immediately.
However, if the return value is positive, the function has not yet completed but it will complete
asynchronously, at which time TAPI notifies the application by sending it an asynchronous reply message
for the function. Once the application receives this message (and the message indicates success), any
values returned by the function are considered to be reliable. However, before the message is received,
the application should consider these values suspect and should not use them. Also, because
asynchronous reply messages can take varying lengths of time to be sent, the application may not
receive them in the same order in which it called their functions. This is why an application must retain the
request IDs of its requests in progress so that it can identify and correctly respond to incoming
asynchronous reply messages.

Example lllustrating the Programming Model

Consider a Win32-based application that can make either voice or data (modem) calls. Although these
calls could be made simultaneously if a telephone line were in place for each device (the telephone and
the modem), assume that there is only one line, so calls are placed one at a time.

For this discussion, a line is defined as a physical telephone line leading from the wall to the telephone
company's switch, and a line device (such as a fax or modem) is a local device on the telephone line.
Also, this example is restricted to POTS; the telephone line is a standard, two-wire twisted-pair cable that
carries an analog signal and constitutes a single channel.

The line devices attached to the computer are visible to the application as instances of the line device
class, which is defined by TAPI. The physical telephone is visible to the application as an instance of the
phone device class. This application therefore must be able to execute two types of calls: voice and data.
One strength of the TAPI programming model is the way its abstraction into classes exploits the
similarities between these different types of calls.

For a more in-depth discussion of this process and related ones, see TAPI Applications.

Determining the Call Type (Media Mode)

Before an application uses any telephony services, it needs to interact with the user to know what kind of
call to make. To do this, the standard Win32 API functions are used to build the menus or dialogs needed
to gather the user input that tells your application what to do. In this example, the user specifies the
transmission of data, so the application will make a call that transmits a specified file to another user.

Initializing TAPI

Before placing a call, an application must establish a means of communication between itself and TAPI.
The application must select a telephony event notification mechanism, and specify this in a call to the
linelnitializeEx function (see the description of this function for details on the available notification
mechanisms). One of the values linelnitializeEx returns is the number of line devices available to the
application. In this example, that number is one, and the line's ID in Telephony's zero-based scheme is 0.
The application must establish this communication link (with linelnitializeEx) regardless of the type of call
to be placed or received.

Obtaining a Line

Next, the application needs to obtain a handle to a capable telephone line. The application opens the line
with lineOpen, but before doing this, it must make sure that the line can support the desired type of call.
Invoking the lineGetDevCaps function returns that information to the application in a data structure of
type LINEDEVCAPS. If data calls were not supported, this fact could be reported to the user in a dialog
box. The application does not need to use lineGetDevCaps before every call, because a line's
capabilities should remain static. If the local telephonic configuration (as expressed in .INI files) changes,
TAPI notifies applications, which can then call lineGetDevCaps to see what has changed.

One of the values returned by lineGetDevCaps (as a field in the LINEDEVCAPS structure) is the number
of addresses assigned to the specified line device. In this example, a single device has a single address.

Ownership of a call is a type of privilege. Applications obtain owner or monitor privilege to new incoming
calls by specifying the desired privilege as a parameter of lineOpen. The privilege with which a line is
opened remains in effect for subsequent calls used by that application on that line. An application always
has owner privileges on calls it creates. When the application opens a line to place calls (as opposed to
taking inbound calls) it invokes lineOpen with the privilege LINECALLPRIVILEGE_NONE, which
insulates the application from incoming calls while allowing outgoing calls. The other privileges used with
the lineOpen function are only for incoming calls.

The LINEOPENOPTION_SINGLEADDRESS option is available when using the lineOpen function to
allow the application to specify that handles for new calls (either monitor or owner handles) should be
delivered to the application only if the address on which the call appears matches the address provided
as a function parameter. This is extremely useful when different addresses on a line are designated for
calls of different media modes.

Placing the Call

Once the application has opened the line device, it places the call with lineMakeCall, specifying the
address (phone number and area code) in the IpszDestAddress parameter and the media mode
(datamodem, in this case) in the IpCallParams parameter. This function returns a positive "request ID" if
the function will be completed asynchronously, or a negative error number if an error has occurred.
Negative return values describe specific error states. LINEERR_CALLUNAVAIL, for example, means that
the line is probably in use (someone else already has an active call). If dialing completes successfully,
messages are sent to the application to inform it about the call's progress. Applications typically use these
messages to display status reports to the user.

Later, when the lineMakeCall function has successfully set up the call, the application receives a
LINE_REPLY message (the asynchronous reply to lineMakeCall). At this point there is not necessarily a
connection to the remote station, just an established call at the local end—perhaps indicated by a dial
tone. This LINE_REPLY message informs the application that the call handle returned by lineMakeCall is
valid.

TAPI's programming model treats data calls similarly to voice calls, as shown by the fact that the same
function is used to make calls of both types. If LINEBEARERMODE_DATA is specified in a field of the

InCallParams parameter of lineMakeCall, the call is set up to send data. Speech transmission can be
chosen by using a different value. And if NULL is specified, a default 3.1 kHz voice call is established,

which can support the speech, fax, and modem media modes.

Note TAPI should not be used for fax transmissions. Instead, use the functions available through
MAPI, the Microsoft Messaging API.

As the call is placed, it passes through a number of states, each of which results in a LINE_CALLSTATE
message sent to the application. These states include dialtone, dialing, ringback, and, if connection
succeeds, LINECALLSTATE_CONNECTED. (To see the complete list of call states, see the
LINECALLSTATUS structure.) After the message indicating the connected state is received, the
application can begin sending data.

Sending Data

If the line is available (not busy) and the connection is established, the data can be sent. The application
accomplishes this by giving control back to the user, who, using a dialog box, specifies the file to send
and initiates data transmission. Though TAPI functions continue to manage the opened line and the call in
progress, actual transmission is started and controlled by non-TAPI functions. In this case, for example,
the Comm API of the Win32 SDK could be used to control the media stream.

If the application were setting up a speech call, its actions would be similar. Once the call is established,
the duty of data transmission is transferred outside of TAPI to the people who wish to speak, although the
line and call continue to be monitored by the application using TAPI functions.

Ending the Call

When the modem transmission is finished, the application receives a LINE_CALLSTATE message, which
informs it that the state of a line device has changed. In this example, a remote disconnect has occurred.
The application disconnects the call at the local end (it "goes on-hook") with lineDrop. Alternatively, the
application itself may choose to end the call by invoking lineDrop before receiving the remote-disconnect
message.

Here are the steps that might be used to end a call, close the line, and leave TAPI:

1. The application calls lineDrop, which places the call in the IDLE state. The call still exists, and the
application still has its handle. Now the application can examine the call-information record, if desired.

2. The application calls lineDeallocateCall to release the call handle for the finished call. The call no
longer exists.

3. If the application expects no more calls on the line, it uses lineClose to close the line. At this point,
there will be no more incoming or outgoing calls on that line.

4. The application invokes lineShutdown to end the use of TAPI's functions for the current session.

Synchronous/Asynchronous Operation

The interactive nature of telephony requires that TAPI be a real-time operating environment. Many of
TAPI's functions are required to complete quickly and return their results to the application synchronously.
Other functions (such as dialing) may not be able to complete as quickly and therefore operate
asynchronously. Any given operation always completes either synchronously or asynchronously, and both
types of operation are explained in the following topics. A list of all TAPI functions, which states whether
each one completes synchronously or asynchronously, appears in Quick Function Reference.

Synchronous Functions

An operation that completes synchronously performs all of its processing in the function call made by the
application. The function returns different values depending on its success or failure:

¢ Synchronous Success. If the request or service corresponding to the function has been carried out
successfully, the function returns zero, indicating success. Any values written as a result of the
function call are reliable and can be used immediately.

¢ Synchronous Failure. If the function detects an error and the request is not carried out, a negative
error number is returned to identify the error.

Asynchronous Functions

An operation that completes asynchronously performs part of its processing in the function call made by
the application and the remainder of it in an independent execution thread after TAPI has returned from
the function call. To ensure completion of the call's processing, the service provider vectors the request to
another active entity in the system—such as a LAN server, add-in hardware, a switch, or a network—and
then returns to the application. At this time, either a negative error result or a positive request ID is
returned to the application.

At the time of asynchronous completion (the service provider has received an interrupt from the
hardware, meaning that a message must be delivered), the service provider calls TAPISRV.EXE and
reports that "Event X has just taken place. Deliver an appropriate message to all concerned applications."
When TAPISRV.EXE receives this message, it forwards the message the TAPI dynamic-link library, in the
application's process, which in turn posts a window message, signals an event handle, or posts to an 10
completion port, according to the message notification scheme selected by the application in
linelnitializeEx or phonelnitializeEx.

When the asynchronous portion of the operation completes, a LINE_REPLY (or PHONE REPLY)
message is sent to the application. This message contains, as one of its parameters, the request ID
returned by the function call. This request ID allows the application to determine which original request
has completed. (Applications should remember the request IDs of all their requests in progress so that
reply messages can be properly handled.) A second parameter to the LINE_REPLY (or PHONE_REPLY)
message is the asynchronous return value. This is either a negative value (for an error) or zero if the
operation completed successfully. For asynchronous operations, any of the return values may be returned
as part of the function return or as the dwParam2 parameter in the _REPLY message. The value 0, which
indicates success, will only be returned in the LINE_REPLY message, and never as the function's return
value.

The initialize functions (linelnitializeEx and phonelnitializeEx) tell TAPI how to send these messages to
the application.

Note In some cases, if a multithreaded application calls an asynchronous function from a thread
other than the thread from which the application initialized the line or phone device, the application
may receive the LINE_REPLY or PHONE_REPLY message before the asynchronous function has
returned. In such cases, the application should save the message parameters and wait until the
asynchronous function returns and the request ID is known before processing the message.

The Meaning of SUCCESS

When an operation returns a SUCCESS indication (either synchronously upon function return for
synchronous operations, or asynchronously through a LINE_REPLY or PHONE_REPLY message for
asynchronous operations), the following is assumed to be true:

¢ The function has successfully progressed to a point that is defined by the API on a function-by-
function basis. After that point has been reached, either the operation is completely done, or it will be
in a state such that independent state messages will inform the application about subsequent
progress.

For example, a service provider's implementation of lineMakeCall should return SUCCESS no later
than when the call enters the proceeding call state. Ideally, the provider should indicate SUCCESS as
soon as possible, such as when the call enters the dial tone call state (if applicable). Once SUCCESS
has been returned to the application, LINE_CALLSTATE messages will inform the application about
the progress of the call. Service providers that delay returning the lineMakeCall SUCCESS
indication, say, until after dialing is complete, must be aware that this places that provider at a
disadvantage because the usability at the application level may be severely limited. For example, it
would not be possible for a user to cancel the call setup request in progress until after dialing is
complete and all digits had been sent to the switch.

¢ Functions that return information (such as lineGetCallinfo) return SUCCESS only when the
requested information is available to the application. Functions that return handles (to lines or calls),
can return SUCCESS only after the handle is valid. No messages should be sent about that line or
call prior to the SUCCESS indication of the function that caused its creation. The service provider is
responsible for suppressing such messages.

¢ Functions that enable certain permanent conditions (such as lineMonitorDigits) return SUCCESS
only after the condition is enabled, not when the condition is removed again (for example, not when
all digit monitoring has completed).

e Call-control functions (such as lineHold or lineSetupTransfer, but not lineMakeCall) return
SUCCESS when the operation is completed. Some telephone networks do not provide
acknowledgment (positive or negative) about the completion of certain requests made by service
providers. In such situations, the service provider must decide upon success or failure of the request.
Therefore, SUCCESS may indicate that the service provider has initiated actions to fulfill the request,
but not necessarily anything more. For example, the provider may receive no affirmative
acknowledgment to its request from the switch, although it has already sent a success message to
the application.

TAPI Applications

This section explains what you need to know to program basic telephonic functionality using the line
device class functions.

Establishing a Link

Before an application can call the functions of Win32 Telephony for using a line device, it must take the
following steps:

¢ |Initialize the TAPI environment and TAPI's functions with an initialization function. Invoking this
function also informs the application of the number of line devices available.

¢ Negotiate the API version, and if necessary, negotiate the Extensions version.
An application must take the preceding steps for each line device it intends to use.

Applications should not invoke phonelnitializeEx without subsequently opening a phone (at least for
monitoring). If the application is not monitoring and not using any devices, it should call phoneShutdown
so that memory resources allocated by the TAPI dynamic-link library can be released if unneeded, and
library itself can be unloaded from memory while not needed.

Opening Lines

After having obtained the capabilities of a line, an application must open the line device before it can
access telephony functions on that line. (Because a line device is an abstraction of a line as defined by
Telephony, opening a line and opening a line device can be used interchangeably.) When a line device
has been opened successfully, the application receives a handle for it. The application can then use that
line to take inbound calls, make outbound calls, or monitor call activities on the line for logging purposes.

To open a line device for any purpose—monitoring or control—the application calls the function lineOpen.
(Later, when the application is finished with the line device, it can close it with lineClose.)

The function lineOpen can be invoked in one of two ways:

¢ A specific line device is selected by means of its line-device ID (the parameter dwDevicelD). The
lineOpen request will open the specified line device. Applications interested in handling inbound calls
typically use specific line devices because the application has been notified which line is carrying or is
expected to carry the inbound call. When a line device has been opened successfully, the application
is returned a handle representing the open line.

¢ The application can specify that it wants to use any line device that has certain properties. In this
case, the application uses the value LINEMAPPER instead of a specific line-device ID as a parameter
for lineOpen. The application also specifies which properties it needs on the call in parameters to
lineOpen. The function opens any available line device that supports the specified call parameters.
This attempt, of course, may fail. If successful, the caller can determine the line-device ID by calling
lineGetlD, specifying the handle (IphLine) to the open line device returned by lineOpen.

An application that has successfully opened a line device can use it to make an outbound call except
when the line supports only inbound calls.

Selecting One or More Lines

An application can open one or more lines for various purposes. For example, it can open one line for
monitoring calls and another line for making outgoing calls. If several lines are available, the application
can choose to open any or all of them. To decide which of several line devices to use, determine the
capabilities of each one with lineGetDevCaps. This tells whether the line supports the functionality
needed by the calls to be made or received—such as their required media mode. This function is also
used to get the name of the line.

Because opening a line merely means obtaining a handle to the line (hLine) with a given privilege, an
application can obtain more than one handle to the same line. In other words, an application can open the
same line many times, also called opening different instances of the line. For example, a line may
simultaneously be opened once for monitoring calls, a second time for accepting incoming calls as their
owner, and a third time for making outgoing calls.

After choosing a suitable line (or lines), the application uses lineOpen, either specifying a certain line or
using LINEMAPPER, as explained in the previous section.

Specifying Media Modes

The ability of an application to deal with inbound calls or to be the target of call handoffs on a line is
determined by the value used for the dwMediaModes parameter of the lineOpen function. With this
function, the application indicates its interest in monitoring calls or receiving ownership of inbound calls of
one or more specific media modes, or of any (unspecified) media mode, as described in the following
cases:

¢ Aninbound call of a cerfain media mode is given to the application that has opened the line device for
that particular media mode. A single application may specify multiple flags simultaneously to handle
multiple media modes.

¢ An application that wants to handle calls for which the actual media mode present has not yet been
determined would turn on the unknown media bit as a parameter of lineOpen.

¢ An application that wants to handle calls of any media mode would indicate this capability by turning
on all of the media bits that are supported on the line (which can be obtained from LINEDEVCAPS).

All applications that have opened a line device in any mode are notified about certain general statuses
and events occurring on the line device or its addresses. These include the line being taken out of
service, the line going back into service, the line being under maintenance, an address coming in use or
going idle, and an open or close operation being executed on the line. An application that does not care
about a certain message can use the lineSetStatusMessages function to filter the message. Most such
status messages are disabled by default; an application would need to call lineSetStatusMessages to
enable them.

The media modes specified with lineOpen add to the default value for the provider's media mode
monitoring for initial inbound call type determination. This means that the dwMediaMode settings of all
applications with the line open are ORed together, and that union becomes the default media detection on
the line. The lineMonitorMedia function modifies the mask that controls LINE_ MONITORMEDIA
messages but does not affect the default media detection enabled on new incoming calls. It is necessary
for an application using lineMonitorMedia to call it to establish media monitoring on every new call in
which it is interested.

Requesting Call Privileges

In addition to media mode, an application can specify the call privileges it wants for the calls provided to
it. With privileges, an application specifies whether it wants to monitor calls or own them. For an inbound
call, only one application is selected as the owner, although all applications with monitor interest in the
call are also notified about the incoming call. The usual privileges an application specifies are
summarized in the following list:

¢ If the application only wants to monitor calls, it specifies LINECALLPRIVILEGE_MONITOR. The
application will also receive monitor handles to outgoing calls placed by other applications (an
application receives owner handles for outgoing calls it places itself). It will also receive MONITOR
handles for calls it places itself on other instances of the same line.

¢ |f the application wants to make outbound calls only, it specifies LINECALLPRIVILEGE_NONE. An
application that has NONE selected will not be automatically informed of incoming calls. However, it
can also become aware of calls on the line with LINE_ADDRESSSTATE (numCalls) or
LINE_LINEDEVSTATE (numCalls) messages. It can then call lineGetNewCalls..

¢ |f the application wants to accept incoming calls of a specific media mode (or modes), it specifies
LINECALLPRIVILEGE_OWNER and one or more relevant LINEMEDIAMODE _ settings.

¢ If the application is willing to control unclassified calls (incoming calls of as-yet unknown media
mode), it specifies LINECALLPRIVILEGE_OWNER and LINEMEDIAMODE_UNKNOWN.

¢ |n other cases, the application should specify the media mode it is interested in handling and set
dwPrivilege to LINECALLPRIVILEGE_OWNER.

An application that wants to be informed of all calls on the line regardless of whether it can become an
owner on the call can set both the LINECALLPRIVILEGE_OWNER and
LINECALLPRIVILEGE_MONITOR bits. It will get call handles with owner privileges for incoming calls for
which it is the highest priority application for the highest priority media mode on the call, and monitor
privileges for all other incoming and outgoing calls.

An application that has successfully opened a line device can always initiate calls using lineMakeCall,
lineUnpark, linePickup, lineSetupConference (with a NULL hCall parameter), as well as use
lineForward (assuming that doing so is allowed by the device capabilities, line state, and so on).

Application Priority

Conflicts can arise if multiple applications open the same line device for the same media mode. These
conflicts are resolved with a priority scheme by which the user assigns relative priorities to the
applications. This is usually done through a Control Panel utility or a Preferences menu in a telephonic
application. Note the following points about this mechanism:

¢ Only the highest priority application for a given media mode ever receives ownership (unsolicited) of a
call of that media mode.

¢ Although ownership is usually received when an inbound call first arrives or when a call is handed off,
any application (including a lower priority one) can later acquire ownership by using the function
lineGetNewCalls or lineGetConfRelatedCalls.

The user can assign relative priorities to the modules (the applications and the DLLs) that use TAPI. The
resulting configuration information is stored in the registry.

For in-depth information about the way applications receive calls in a multi-application environment, see
Multiple-Application Programming.

Using lineOpen

An application can open a number of lines as well as negotiate APl and extension versions. The
application can call the lineOpen function with LINECALLPRIVILEGE_MONITOR privilege, meaning that
it will only monitor, not own, incoming calls on all the lines opened.

An application could open a line with the intent of owning incoming calls by specifying
LINECALLPRIVILEGE_OWNER as the privilege and a media mode other than NONE. The application
could actually specify a number of media modes in this parameter by OR-ing the bit flags for each of the
desired media modes. In that case, the application would be notified of incoming calls in any of the
specified media modes, and it receives those calls as their owner. (Actually, another application that is
also registered to receive calls of that media mode would receive the call instead, if it has a higher priority
as designated in the registry.) This notification arrives in a call-state message that specifies, among other
information, which line is carrying the incoming call. For example, by specifying
LINEMEDIAMODE_INTERACTIVEVOICE, the application would be notified of incoming calls of the
interactive voice media type (voice calls with a person on the local end of the line).

Receiving Information

An application receives information in two ways: solicited and unsolicited. Solicited information is
requested by the application through a function call such as lineGetDevCaps or lineGetAddressCaps.
Unsolicited information arrives in the form of messages—most importantly call-state messages. Often, the
two mechanisms are used together, as when an application receives a LINE_CALLSTATE message, after
which it checks the information contained in the LINECALLINFO structure by calling lineGetCallinfo.

An application can call lineGetDevCaps to learn more about available lines. The application determines
the names of the lines and the number of addresses on those lines. (An important factor in the
configuration of lines and addresses is the way the service provider chooses to map lines and addresses.
Though the application has no control over this mapping, it can determine the details of the mapping by
calling functions such as lineGetDevCaps.) Later, using this information, the application could allow the
user to choose which line (and address) to use for an outgoing call, restricting the lines it displays (in a
dialog box, for example) to those that support a specific media mode. As an example, an application
designed to be used only for faxing may choose to let the user select only lines that support fax
transmission.

Call lineGetAddressCaps to obtain information for a given address. The application can use the names
of the addresses to let the user choose them in a popup menu, but other information is also reported,
such as whether caller-ID is supported, what kinds of call states can be produced, and how many active
calls can exist on that address.

Changes in the Status of a Line Device

The status of a line device can change for many reasons, some as a result of requests submitted by the
local application, and some as a result of actions performed by the switch or by the application (or
person) at the other end of the connection.

In either case, an application is notified about these changes with the LINE_LINEDEVSTATE message,
which indicates the status item (the attribute of the line device) that has changed. The application can
choose the line status items for which it wants to be notified using the function lineSetStatusMessages.
The messages controlled by invoking lineSetStatusMessages are LINE_LINEDEVSTATE and

LINE_ ADDRESSSTATE.

In addition, an application can determine the current status of an address by calling
lineGetAddressStatus, which returns its information in a structure of the type LINEADDRESSSTATUS.
It can also see the complete status of the specified open line device by calling lineGetLineDevStatus,
which returns its information in a structure of the type LINEDEVSTATUS.

Receiving Calls

After an application has opened a line device and, while doing so, registered a privilege other than none,
and a media mode, it is notified when a call arrives on that line. Specifically, applications that have the line
open with LINECALLPRIVILEGE_MONITOR will receive a LINE_CALLSTATE message for every call that
arrives on the line. An application that has opened the line with LINECALLPRIVILEGE_OWNER receives
a LINE_CALLSTATE message only if it has become an owner of the call or is the target of a directed
handoff. In this notification, TAPI gives the application a handle to the incoming call, and the application
keeps this handle until the application deallocates the call.

Note To assist in object-oriented implementations of TAPI, in versions 0x00020000 and greater TAPI
initially sends a LINE_APPNEWCALL message (instead of a LINE_ CALLSTATE message) to the
application to notify it of a new call handle.

Applications are informed of call arrivals and all other call-state events with the LINE_ CALLSTATE
message. This message provides the call handle, the application's privilege to the call, and the call's new
state. For an unanswered inbound call, the call state is offering. An application can invoke
lineGetCallinfo to obtain information about an offering call before accepting it. This function call also
causes the call information in the LINECALLINFO data structure to be updated. By knowing the call state
and other information, the application can determine whether the call needs to be answered.

The call information stored in LINECALLINFO includes, among other things, the following items:

e bearer mode, rate This is the bearer mode (voice, data) and data rate (in bits per second) of the call,
for digital data calls.

e media mode The current media mode of the call. Unknown is the mode specified if this information is
unknown, and the other set bits indicate which media modes might possibly exist on the call. For
more information, see Multiple-Application Programming.

e call origin Indicates whether the call originated from an internal caller, an external caller, or an
unknown caller.

¢ reason for the call Describes why the call is occurring. Possible reasons are:
¢ Direct call
¢ Transferred from another number
e Busy—forwarded from another number
¢ Unconditionally forwarded from another number
¢ The call was picked up from another number
¢ A call completion request
¢ A callback reminder

The reason for the call is given as unknown if this information is not known.

e caller-ID Identifies the originating party of the call. This can be in a variety of (name or number)
formats, determined by what the switch or network provides.

e called-ID ldentifies the party originally dialed by the caller.

e connected-ID |dentifies the party to which the call was actually connected. This may be different from
the called party if the call was diverted.

¢ redirection-ID ldentifies to the caller the number towards which diversion was invoked.
e redirecting-ID ldentifies to the diverted-to user the party from which diversion was invoked.
e user-to-user information User-to-user information sent by the remote station (ISDN).

The LINE_CALLSTATE message also notifies monitoring applications about the existence and state of
outbound (and inbound) calls established by other applications or established manually by the user—for

example, on an attached phone device (if the telephony hardware and the service provider support
monitoring of actions on external equipment). The call state of such calls reflects the actual state of the
call as follows: An inbound call for which ownership is given to another application is indicated to the
monitor applications as initially being in the offering state. An outbound call placed by another application
would normally first appear to the monitoring applications in the dialfone state.

The fact that a call is offered does not necessarily imply that the user is being alerted. Once alerting
(ringing) has begun, a separate LINE_LINEDEVSTATE message is sent with a ringing indication to inform
the application. It may be necessary, in some telephony environments, for the application to accept the
call (with lineAccept) before ringing starts. The application can determine whether or not this is
necessary by checking the LINEADDRCAPFLAGS_ACCEPTTOALERT bit.

Depending on the telephony environment, not all the information about a call may be available at the time
the call is initially offered. For example, if caller ID is provided by the network between the first and
second ring, caller ID will be unknown at the time the call is first offered. When it becomes known shortly
thereafter, a LINE_CALLINFO message notifies the application about the change in party-ID information
of the call.

Incoming Calls and Line Privileges

An application cannot refuse ownership of a call for which it receives an owner handle. Whether the call is
delivered to the application with owner or monitor privileges is decided before the call arrives —at the time
the application opens the line on which the call is established by the remote caller.

If the application opens the line with lineOpen with the parameter dwPrivilege set to
LINECALLPRIVILEGE_MONITOR, it automatically receives a handle with monitoring privileges for all
incoming calls on the line. It can then choose to become an owner by calling lineSetCallPrivilege. The
fact that it indicated MONITOR when it opened the line does not prevent it from later becoming an owner
with lineSetCallPrivilege or by originating a call with lineMakeCall (an application is always an owner of
calls it places regardless of the privilege specified with lineOpen).

When an incoming call has been offered to an application and the application is an owner of the call, the
application can answer the call with lineAnswer. Once the call has been answered, its call state typically
transitions to connected, at which time information can be exchanged over the call.

An application can receive handles to incoming calls only for monitoring. You can modify the application
(specifically, the parameters for lineOpen) to change the privileges with which it initially opens lines.

Securing a Call

If a new call arrives while another call exists on the line or address, similar notification and call information
may be supplied following the same mechanism as for any incoming call. If an application does not want
any interference by outside events for a call from the switch or phone network, it should secure the call.
Securing a call can be done at the time the call is made with a parameter to lineMakeCall, or later (when
the call already exists) with lineSecureCall. The call will be secure until the call is disconnected. Securing
a call may be useful, for example, when certain network tones (such as those for call waiting) could
disrupt a call's media stream, such as fax.

Logging Call Information

An application can call the function lineGetCallinfo to obtain information about a call. Although this
function fills the LINECALLINFO structure with a large amount of data, applications need to maintain
other items, such as the start and stop time of the call.

Developers of applications that log call information should note the following guidelines when designing
those applications:

¢ Free the call's handle (hCall) when the call goes idle—that is, when a LINECALLSTATE_IDLE
message is received for the call. At any point in the call's existence prior to its deallocation, monitoring
applications can retrieve information about the call.

¢ To keep the call's log sheet complete, log the fact that the call has gone idle.

e Some applications may also need to update the user interface to show that important events have
occurred, such as the fact that a fax is being received.

For more information about call logging, see Multiple-Application Programming.

Establishing a Call

Once an application has determined that a given line offers the needed set of capabilities, and then opens
that line, it can access telephony functions for either incoming or outgoing calls on the line. The usual way
to place a call on that line is to invoke lineMakeCall, specifying the line handle and a dialable destination

address.

Address Translation

Applications can provide users with location independence and take advantage of calling-card information
managed by Win32 Telephony by storing telephone numbers in the Canonical address format. Before a
Canonical address can be used in placing a call, it must be converted (translated) into the Dialable
address format using the lineTranslateAddress function.

To do this, the lineTranslateAddress function starts by examining the settings in the registry to find the
user's location, including the country and area code. It then produces a valid dialing sequence by
removing unnecessary portions of the number (such as the country code or area code) and adding other
digits such as a long distance prefix or a digit used to dial out of a local PBX.

To avoid inadvertent misdialing, such as if the user has changed locations but has not yet informed Win32
Telephony of the change, an application may want to present the output of this function call to the user in
a dialog box. The user can then confirm the translated address or change it if it is incorrect.

Toll Lists

In some locations in North America, all calls placed to the local area code are local calls. In other
locations, some calls placed to the local area code are long distance, and need a "1" to be dialed. The
first three digits of the address (the prefix) determine whether or not a call within the local area code is a
toll call.

Atoll list is a list of prefixes in the local area code whose addresses must be dialed as long distance
addresses, and are assessed long distance charges. With Win32 Telephony, a toll list can be built in one
of two ways:

1. The user can add or remove prefixes manually with the Telephony Control Panel.

2. The user can add or remove prefixes dynamically after a telephone call to that prefix fails for one of
these reasons: When the call was dialed, the "1" prefix was missing and necessary or present and
unnecessary. This dynamic process works as follows:

The application knows by the value of the LINETRANSLATERESULT _INTOLLLIST and
LINETRANSLATERESULT_NOTINTOLLLIST bits in the LINETRANSLATEOUTPUT structure
(returned by lineTranslateAddress) whether an address with the dialed prefix is already in the toll
list. The application can then let the user add or remove (whichever applies) this prefix from the toll
list. Adding and removing are both performed using the lineSetTollList function.

Dialing the Call

The lineMakeCall function first attempts to obtain a call appearance on an address on the line, then waits
for a dial tone, and finally dials the specified address. A call appearance is a connection to the switch over
which a call can be made. Once the connection is established, the call appearance exists, even if no call
is placed. After the call is established, the call appearance remains in existence until the call transitions to
the idle state. If calls controlled by other applications exist on the line, these calls would normally have to
be on hold, and would typically be forced to stay on hold until the application either drops its call or places
it on hold. If dialing is successful, a handle to a call with owner privileges is returned to the application.

Before invoking lineMakeCall, an application can set up parameters for the call and store them in the
data structure LINECALLPARAMS. A pointer to this structure is then used as a parameter of
lineMakecCall. In the fields of LINECALLPARAMS, the application can specify the quality of service
requested from the network as well as a variety of ISDN call setup parameters. If no LINECALLPARAMS
structure is supplied to lineMakeCall, a default POTS voice-grade call is requested with a set of default
values. However, it is a good idea to use LINECALLPARAMS so that monitoring applications can report
this call information (such as the identification of the called party) accurately.

The call's origination address also appears in LINECALLPARAMS. Using this field, the application can
specify the address on the line where it wants the call to originate. It can do so by specifying an address
ID, though in some configurations it is more practical to identify the originating address by its directory
number.

Note Do not mix function calls of the Telephony API with the functions of Assisted Telephony. The
actions requested by lineMakeCall would happen automatically with the Assisted Telephony function
calls tapiRequestMakeCall. But once an application has reached this state by using the calls of the
Telephony API, it makes no sense to revert to an Assisted Telephony function call (such as
tapiRequestMakeCall), because doing so would cause TAPI to repeat already performed actions. At
this stage, therefore, simply calling lineMakeCall causes less overhead.

Once dialing is complete and the call is being established, it passes through a number of different states.
These states (the progress of the call) are provided to the application with LINE_CALLSTATE messages.
This mechanism lets the application track whether the call is reaching the called party. It is important that
every telephony application base its behavior on the information received in these messages, and not on
any other assumptions about a call's state. An application must not assume that a requested state change
has occurred until notification of that state change arrives. Note that it can be helpful to display user-
friendly interpretations of call states as indicators of a call's progress, especially for calls expected to pass
through states slowly.

If special call setup parameters are to be taken into consideration, the application must supply them to
lineMakecCall. Call setup parameters are required for actions such as the following:

¢ Requesting a special bearer mode, bandwidth, or media mode for the call

¢ Sending user-to-user information (with ISDN)

e Securing the call

¢ Blocking sending of caller ID to the called party

¢ Taking the phone offhook automatically at the originator and/or the called party

Calling Card Information

The importance of a calling card rests in the different dialing procedures required by the various calling
cards. An application provides TAPI with the information it needs to display a dialog box, from which the
user can choose a calling card. (The calling card numbered 0 means "use the default dialing rules for the
country you are in.") The routine returns, among other information, the user's location (country and area
code), the number of calling cards registered for this user in the registry, and the preferred calling card for
that location. This calling card information is applied by the lineTranslateAddress function and does not
happen automatically through lineMakeCall.

Typically, an application would prepare a menu choice for the user, such as whether to make a call with
the default carrier, to override the default carrier and use a given calling code, or simply to use another
specific dialing sequence.

Using Multiple Addresses Simultaneously

The dialable number format (dialing formats are described in Line Devices Overview) allows multiple
destination addresses to be supplied at once. This ability can be useful if the service provider offers some
form of inverse multiplexing by setting up calls to each of the specified destinations and then managing
the information stream as a single high-bandwidth media stream. The application perceives this group of
calls as a single call because it receives only a single call handle representing the aggregate of the
individual phone calls.

It is also possible to support inverse multiplexing at the application level. To do this, the application would
set up a series of individual calls and synchronize their media streams.

Delayed Dialing

The application can also use lineMakeCall to allocate a call appearance or to dial just part of the full
number. Later, it can complete dialing using lineDial. When the number provided is incomplete, dialing
some of the digits may be delayed by placing a ";" (semicolon) at the end of the number. The lineDial
function is used in cases in which the application needs to send address information to the switch on an
existing call, such as dialing the address of a party to which the call will be transferred.

Note An application should make sure that incremental dialing (providing the number in small
pieces) is supported before attempting to use it. This support is indicated by the
LINEADDRCAPFLAGS_PARTIALDIAL bit in the dwAddrCapFlags field in the LINEADDRESSCAPS
structure, which is returned by lineGetAddressCaps.

The main reasons for an application to use delayed dialing are if the ? character appears in a dialable
address or if the service provider does not support one or more of the call progress detection control
characters. These characters, which can occur in a dialable address, are W (wait for dial tone); @ (wait
for quiet answer); and $ (wait for calling-card prompt tone). These and all other characters used in
address strings are discussed in greater detail in Line Devices Overview.

The provider indicates which "wait for" dial string modifiers it supports in the following bits in the
dwDevCapFlags field within the LINEDEVCAPS structure returned by lineGetDevCaps:

e LINEDEVCAPFLAGS_DIALBILLING
e LINEDEVCAPFLAGS_DIALQUIET
e LINEDEVCAPFLAGS_DIALDIALTONE

The ? can be placed in the string (either directly by the application or by the address translator with the
function lineTranslateAddress) if it is known that the user needs to listen for an undetectable tone before
dialing can proceed. Every provider should treat ? as requiring the dial string to be "rejected."

The lineTranslateAddress function returns bits, in the dwTranslateResults field of the
LINETRANSLATEOUTPUT structure, that indicate whether any of the four potentially offending modifiers
occur in the dialable string output from that translation operation. These bits give the application an idea
of whether the dialable string might need to be scanned for unsupported modifiers:

LINETRANSLATERESULT_DIALBILLING
LINETRANSLATERESULT_DIALQUIET
LINETRANSLATERESULT_DIALDIALTONE
LINETRANSLATERESULT_DIALPROMPT

If the application tries to send an unsupported modifier or a ? to the provider, it receives an error
indicating which offending modifier occurred first within the string:

LINEERR_DIALBILLING
LINEERR_DIALQUIET
LINEERR_DIALDIALTONE
LINEERR_DIALPROMPT

The application can choose to pre-scan dialable strings for unsupported characters. Or it can pass the
"raw" string from lineTranslateAddress directly to the provider as part of lineMakeCall (or lineDial or
any other function that passes a dialable address as a parameter) and then let the service provider
generate an error to tell it which unsupported modifier occurs first in the string.

When the application is told (or finds) that an unsupported dial modifier is in the dialable string, it must

take the following steps:

. Locate the offending modifier in the string.

. Isolate the characters occurring in the string to the left of the offending modifier.

. Append a semicolon to the end of the partial string.

. Reissue the dialing command using the partial string.

. Prompt the user to listen for the audible tones indicating when it is OK to proceed with dialing.
. Reissue the remainder of the dialable string (the portion following the offending modifier).

o O WN -~

Note that in step 6 it is possible for another error to occur, because it is possible for multiple unsupported
characters to occur within a single dialable string. Therefore, the application should repeat this process to
dial the number in stages.

Tracking Asynchronous Requests

The function lineMakeCall is one of many functions that operate asynchronously. If an application
manages only one line, it can use one state record, a struct containing all the information needed to track
one outstanding asynchronous request. State records contain information such as the Request ID, the
type of request, and pointers to allocated data that may need to be freed later.

But some applications have to manage more than one line—for example, to manage more than one
outgoing call at the same time. To do so, they need to track the different asynchronous requests possible
on each of those lines, and must therefore create an array of state records, one for each of the
outstanding asynchronous operations (such as multiple invocations of lineMakeCall).

When a reply arrives that shows an asynchronous function has completed, the application matches the
incoming Request ID with a Request ID in the array, and does whatever that specific call needs at that
point. You can design one function to handle the reply that indicates completion of the outstanding
asynchronous lineMakeCall request. The success or failure of the asynchronous request is recorded in
the requestResult field of the state struct.

Call Handle Manipulation

When an application makes a call, a handle to the call with owner privileges is returned to the application.
When the application is notified about an inbound call, it is given a handle to the call with either owner
privilege or monitor privilege, depending on the privilege previously requested with lineOpen. It can also
receive a handoff from another application, in which case it would receive owner privilege.

An application's call handle and associated privileges remain valid until the application takes an explicit
action to change them or if it receives a LINE_CLOSE message, which closes the line. In this case, all
handles to calls on the line instantly become invalid.

After a call reverts to the idle state, the application is still allowed to read the call's information structure
and status. When the application has no further use for the call (and its information), it should deallocate
the call handle by invoking lineDeallocateCall, which is discussed in following sections.

For more information about call logging and handing off calls to other applications, see Multiple-
Application Programming.

Dropping Calls

To terminate a call, the application uses lineDrop on the call. This has the effect of hanging up on
(disconnecting) the call, which makes it possible to make another call on the line. The lineDrop function
is also used to abandon a call attempt in progress. If the remote party disconnects a call, the local
application receives a LINE_ CALLSTATE message with a call state of disconnected. If the local
application disconnects a call, the call becomes idle, but its handle is not automatically deallocated (the
application must call lineDeallocateCall). An application should check the dwCallFeatures field in
LINECALLSTATUS to determine whether or not it is legal to invoke lineDrop at a particular time.

Deallocating Call Handles

A call handle remains valid after the call has been dropped. This enables applications to use operations
such as lineGetCalllnfo to retrieve call information for logging purposes. Once an application knows it
has all the information it needs about a call and it has received a
LINE_CALLSTATE(LINECALLSTATE_IDLE) message, it should call lineDeallocateCall to free system-
allocated memory related to the call. The application must itself free memory that it allocated for its own
purposes.

The way to free an idle call is to deallocate its handle with lineDeallocateCall. The application's duty to
free a call is independent of the reason the call went idle. That is, the handle must be deallocated whether
it was the local or the remote application that dropped it. If an application is the owner of the call, it can
deallocate the call's handle only if the call is in the idle state. If monitoring the call, it can deallocate the
call handle at any time.

It is better to process the LINE_CALLSTATE(LINECALLSTATE_IDLE) message (and all other call-state
notifications) consistently in one location regardless of its cause.

Reclaiming Memory Resources

The TAPI dynamic-link library allocates memory for each call for each application that has a handle to the
call. It is likely that service providers will allocate memory to hold call information as well. Deallocation of
an application's call handle allows the library and the service provider to reclaim these memory resources.
An application's handle for a call becomes void after a successful deallocation.

An application's attempt to deallocate the handle of a non-idle call for which it is the only owner will fail.
The application should either first hand off ownership and change its privilege to monitor, or simply try to
change its privilege to monitor (in case there are other owners) or clear the call by dropping it—which
places the call into the idle state—and then deallocate its handle.

Closing Line Devices

After an application is finished using a line device, it should close the device by calling lineClose on the
line-device handle. After the line has been closed, the application's handle for the line device is no longer
valid. ALINE_LINEDEVSTATE message is sent to other interested applications to inform them about the
state change on the line.

In certain environments, it may be desirable for a line device that is currently open by an application to be
forcibly reclaimed (possibly by the use of some control .) from the application's control. This feature can
be used to prevent a single misbehaved application or user from monopolizing a line. It is also used when
the user wants to reconfigure the line parameters, and has told the service provider directly through its
Setup function in the Telephony Control Panel that the provider should forcibly close the line. When this
occurs, an application receives a LINE_ CLOSE message for the open line device that was forcibly
closed.

Exiting Telephony

The lineShutdown function disconnects the application from the Telephony API. If this function is called
when the application has lines open or calls active, the call handles are deleted and the equivalent of a
call to the lineClose function is automatically performed on each open line. (It is better for applications to
explicitly close all open lines before invoking lineShutdown.) If shutdown is performed while
asynchronous requests are outstanding, those requests are canceled.

An application that has registered as an Assisted Telephony request recipient should de-register itself by
calling lineRegisterRequestRecipient, using the value FALSE for the bEnable parameter.

Setting a Terminal for Phone Conversations

The user's desktop computer may have access to multiple devices that can be individually selected and
used to conduct interactive voice conversations. One of these devices is the telephone itself, complete
with lamps, buttons, display, ringer, and a voice I/O device (handset, speakerphone, or headset). The
user's computer may also have a separate voice I/O device (such as a headset, or microphone/speaker
combination attached to a sound card) for use with phone conversations. TAPI enables the user to select
where to route the information sent by the switch over the line, address, or call. The switch normally
expects this destination to be one of its phone sets, and sends ring requests, lamp events (for stimulus
phones), display data, and voice data as appropriate.

The phone in turn sends hookswitch events, button press events (for stimulus phones), and voice data
back to the switch. The line portion of TAPI makes lamp events, display events, and ring events available,
either as functional return codes to TAPI's various operations or as unsolicited functional call-status
messages sent to the application. TAPI's implementation is responsible for mapping the functional API
level to the underlying stimulus or functional messages used by the telephony network. In functional
telephony environments, TAPI's functions are mapped to the functional protocol.

Modes of Operation: Functional and Stimulus

The functional mode of operation differs from the stimulus mode in the way meaning is attributed to
events. For example, a given telephone has a button labeled "Transfer." When this button is pressed, one
of two things can happen: the phone can send a message to the switch stating that the Transfer button
was pressed, or it can send a message stating that "button number 18" was pressed. In the functional
model, the button's function is indicated. It allows more flexibility in the phone hardware, because the
switch doesn't need to know anything about the layout of the buttons, but the telephone will likely be more
expensive, because it has more intelligence.

The stimulus model means that the event is simply indicated in a more raw, hardware fashion, such as by
button number—even down to separate button-up and button-down events. In a stimulus-based system,
telephones can cost less, but more intelligence is required in the switch so that it can recognize different
types of telephones and translate their buttons into features. The stimulus model can provide more
flexibility because different people can configure their phone buttons to mean different things through
switch programming rather than by changing the phone itself.

Event Routing

Although not described in Supplementary Line Functions, event routing is a part of the supplementary line
services and is not a basic function.

With the lineSetTerminal function, the application can control or suppress the routing of specified low-
level events (exchanged between the switch and the station) to a device. With lineSetTerminal, the
application specifies the terminal device to which these events (such as line, address, or call media-
stream events) are routed.

The routing of the different classes of events can be individually controlled, allowing separate terminals to
be specified for each event class. Event classes include lamps, buttons, display, ringer, hookswitch, and
media stream.

For example, the media stream of a call (voice, for example) can be sent to any transducer device if the
service provider and the hardware is capable of doing so. In general, a fransducer means the same as
what is referred to as a hookswitch device in the Telephony Phone API—something that has a microphone
and a speaker. Ring events from the switch to the phone can be mapped into a visual alert on the
computer's screen or they can be routed to a phone device. Lamp events and display events can be
ignored or routed to a phone device (which appears to behave as a normal phone set). Finally, button
presses at a phone device may or may not be passed to the line. In any case, this routing of low-level
signals from the line does not affect the operation of the line portion of TAPI, which always maps low-level
events to their functional equivalent. To determine the terminals a line device has available (and their
capabilities), consult the line device's capabilities with lineGetDevCaps.

Assume initially that the application has suppressed the routing of all events (with lineSetTerminal), and
the user selects a headset as the current I/O device. An incoming call sends a LINE_ CALLSTATE
message, and a LINE_LINEDEVSTATE message with the ringing indication. Because routing of all events
is suppressed, ring events are not routed to the phone, so ringing is suppressed. Instead, the application
notifies the user with a pop-up dialog box and a system beep in the headset.

The user decides to answer the call. Because the user's current I/O device is the headset, the telephony
application invokes lineSetTerminal on the incoming call to route the call's media to the headset and
answer the call. The application may also invoke lineSetTerminal to route lamp and display information
events to the phone set so that it will behave as usual.

As a second example, assume that an incoming call is alerting at the user's computer. Instead of
selecting the answer option with the mouse, the user decides to just pick up the phone's handset to
answer the call. The offhook status at the phone sends a message to the application. The application can
interpret this status as a request by the user to select the phone handset to conduct the conversation. The
application then invokes lineSetTerminal to route the voice data on the call to the phone set.

Service Dependencies

Take care to ensure accurate listing of service dependencies among TAPI (specifically, the Telephony
Service—TAPISRV.EXE), other service applications that use TAPI, and telephony service providers (TSP)
that use other services.

The installation program for the service application or telephony service provider must record these
dependencies with the Service Control Manager.

Note Failure to list TAPI as a dependency of the service application or failure to list another service
as a dependency of TAPI can result in the system hanging.

List "Telephony Service" as a dependency of any service application that initializes a TAPI line or phone
function. When TAPI is a dependency of a service application, the installation program must include
"Telephony Service" in the list of service names passed to the lpDependencies parameter of the
CreateService function.

When another service is activated by the TSP during the service provider startup (during
TSPI_providerEnumDevices, TSPI_lineNegotiateAPIVersion, or TSPI_providerlnit), the service
started by the TSP must be listed as a dependency of the "Telephony Service." As a service that starts
dynamically, TAPI starts all TSPs during its startup, and it is critical for the Service Control Manager to
know when any service provider starts another service during TSP startup.

Call the QueryServiceConfig function to determine the existing configuration of "Telephony Service,"
including dependencies. If the service or services started by the TSP are not already included in the
dependencies of the "Telephony Service", add the necessary items to the dependency list and call
ChangeServiceConfig to update the dependencies.

For additional information about changing a service configuration, see Changing a Service Configuration
in the Microsoft Win32 Programmer's Reference.

Multiple-Application Programming

Win32 Telephony applications may be designed to cooperate with each other, or they may act
independently of one another. These TAPI applications will at times operate with non-TAPI applications
built to support TAPI functionality, such as media-stream control applications. All these applications must
be able to work together, or at least function independently in a cooperative way. To achieve this, TAPI
defines mechanisms that let applications coordinate their telephony and phone activities while
maintaining a high degree of flexibility.

The roles played by Telephony's major components are described in various topics of this section.
Application writers can not only learn about TAPI's functioning from these sections, but can apply that
knowledge directly when designing TAPI applications. For example, the Unknown application (defined in
the following section) performs specific duties in media-mode probing and call handoffs. It is important to
note and understand these duties before writing an Unknown application.

Event-Driven Environment

Like all Win32 applications, Win32 Telephony applications operate in the event-driven model. In
Telephony, the most important events are call-state transitions. The service provider and TAPI dynamic-
link library report call states to applications for particular calls. Interested applications, which know the
previous state of the call, could infer call-state transitions from call states.

All running applications receive information—call-state messages—about all the calls in which they are
interested. At times, several applications will have interest in the same call or calls, as monitors or owners
of those calls. Incoming call-state events often cause applications to take actions on calls, and because
those actions sometimes involve a shared call, one application must react to the knowledge that another
has taken a certain step. Examples include the case where one application shows interest in owning
(having control of) a call currently owned by your application, or drops a call co-owned by your
application.

The Telephony system was designed to minimize race situations—in which the timing of competing
function calls from different applications makes a difference. Awareness of the principles and the
guidelines described in this section should help minimize possible competition.

Definitions

The following concepts are important for understanding the material presented in this section:

Initial media modes. On a network other than ISDN, service providers usually do not know the
media mode of an arriving call. For such calls, the service provider indicates a number of initial media
modes, from which the correct one is eventually selected during the next step—the probing process.
The initial media mode(s) identified by the service provider as being possible on the call will be
reflected in the dwMediaMode field of the LINECALLINFO data structure, which the application can
obtain by calling lineGetCalllnfo after the initial LINE_ CALLSTATE message announcing a new call
is received.

Call control. Having control of a call means that the application has received a LINE_ CALLSTATE
message stating that it has become an owner of the call. With this event, the application acquires a
handle to the call with owner privileges. A way for a monitoring application to obtain call control
(ownership) is to call lineSetCallPrivilege to set its call privilege to owner.

Call monitor. An application that has a handle to a call with monitor privileges is a monitor of that call.
Such an application cannot control the existence or other aspects of the call, but it can record (log)
facts about the call. The application can also reset its call privilege to owner, thus becoming an owner
of the call, in the event that the application determines (by monitoring media modes or other events)
that it should take control.

Call owner. An application that has control of a call is an owner of that call. An application can
become an owner of a call in several ways, all discussed in this section. A call can have several
owners simultaneously, although the usual situation is for only one application to be the owner of a
call.

Probing. Probing is the sending of signals on the phone line as an attempt to determine an incoming
call's media mode. This search for the media mode is conducted only by applications. Some service
providers may also be configured to do some amount of probing automatically to narrow down the
initial media modes reported on a new call.

The Unknown application. An application that has opened a line requesting ownership privilege for
calls of as-yet undetermined, or UNKNOWN media mode, is referred to as the unknown application.
(The LINEMEDIAMODE_UNKNOWN bit is set in the dwMediaMode field of the LINECALLINFO
structure, along with other bits indicating other modes that are potentially present on the call.) An
application that does this may actually be capable of handling calls of a number of different media
modes. Alternatively, it may simply act as a traffic director, passing calls on to other applications that
can use calls of the specific media modes.

Call Ownership

The mechanism with which applications control calls is based on the concept of ownership. At any given
time, one or more applications can own a call. While an application has ownership of a call, it is allowed
to manipulate the call in ways that affect the state of the call. An application that does not own a call (but
has a handle to it) is a monitor of the call and is prevented from manipulating it. It can only perform status-
and information-query operations on that call. While one or more applications are owners of a call, still
other applications can be monitoring the call.

Ownership of a call is assigned to applications according to the following rules:

¢ An application that makes an outgoing call is the initial sole owner of that call. Other applications
monitoring the line will be informed of the outgoing call at the time the first LINE_CALLSTATE
message is received. Usually, this notification occurs when dial tone is initially detected.

¢ Ownership of an incoming call is assigned to one application only. This assignment avoids the
situation in which, depending on timing, different applications may seize control at different times,
causing unpredictable results.

¢ An application that is currently an owner of a call can pass ("hand off") ownership to another
application that has the call's line open. While handing off ownership of a call, the original owner
application can specify the new media type of the call. When the handoff succeeds, the original
application remains an owner of the call, and it can then choose to either deallocate its handle (if it is
no longer interested in the call), change to being a monitor (using lineSetCallPrivilege), or remain an
owner (although doing so is discouraged). The original application's privilege is not automatically
changed by lineHandoff. More information on the two types of call handoffs (directed and media-
mode) can be found later in this chapter.

¢ If a target application for the handoff is found, and if it is already a co-owner of the call, it will see no
effect caused by the handoff, although it will receive a LINE_CALLSTATE message. This message
repeats the fact that it is an owner to alert it that another application has explicitly asked it to take
control of the call. The application initiating the handoff is informed about the success of the handoff.

¢ |f there is no target application for the requested handoff and the call is active, an error is returned. No
handoff takes place.

¢ Handing off a call between applications never affects the state of the physical call as perceived by the
switch or the service provider.

¢ An application that does not have (but wants) ownership of a call may request ownership. The
application can select calls based on a number of criteria, ranging from all calls on a particular line or
address (a phone number assigned to the line, using lineGetNewCalls), to calls related to a specified
call (using lineGetConfRelatedCalls). An application that calls lineGetNewCalls or
lineGetConfRelatedCalls will always receive a monitor handle. If it wants to become an owner of a
call it receives, it must then call lineSetCallPrivilege. If it determines that it is not interested in one or
more of the calls to which it receives handles using lineGetNewCalls or lineGetConfRelatedCalls, it
must call lineDeallocateCall for each such handle to release the internal resources maintained to
track the call ownership.

¢ Any application that asks for ownership receives it; any application that is offered ownership cannot
refuse it. An application that becomes an owner through a handoff actually becomes a co-owner of
the call. When the call is initially presented by the provider, the initial owner is the sole owner of the
call.

¢ The originally owning applications are informed about the existence of every new owner. Monitoring
applications are informed as well.

Note that with co-owned calls (calls simultaneously owned by more than one application), no protection is
offered to prevent the applications from interfering with each other. For this reason, maintaining ownership
after a handoff or after ownership is taken by another application is discouraged.

Because media streams are not managed by the Telephony API, call handoff does not handle the handoff

of the call's media stream. Media-stream handoff must be carried out using commands from an
appropriate media-control API or directly coordinated between the applications involved.

Handling Incoming Calls

When multiple applications are running simultaneously, an appropriate one must be found to become the
initial owner of each incoming call. In general, incoming calls reach their destination, or target application,
in two or three steps: First, the service provider learns of the new call and passes it to the TAPI dynamic-
link library which gives the call to the appropriate application. Finally, applications conduct probing, if
necessary, which can cause the call to be handed off between applications one or more times. These
steps are described in the following topics. Sometimes applications perform further probing, a case which
is also covered in the following topics.

Duties of the Service Provider

The service provider determines the media modes.

Determining Initial Media Modes

When a service provider learns of the appearance of a call, its first task is to determine the call's media
mode to the best of its ability. (It has received ringing voltage on a POTS line or, in the case of EPBX or
ISDN, a protocol message indicating that a call is incoming.) It may be able to tell the single correct media
mode or it may only be able to narrow down the possibilities to a certain few. These first media mode
settings are called initial media modes, and the following are the considerations used for setting initial
media mode bits:

Service provider setup The service provider has been configured to work with only a single media
mode or certain media modes.

Hardware limitations Hardware limitations are usually reflected in the service provider's
configuration, but the media modes could be further restricted by a particular card in use.

Call to lineOpen Possible media modes are limited by what applications have requested in their
invocation of the lineOpen function. TAPI combines all of the media modes requested by applications
and indicates the sum of them to the service provider in a call to
TSPI_lineSetDefaultMediaDetection. For example, a telephony device and its service provider may
be able to handle Group 3 fax calls, but if no application is running to handle such calls, the provider
would know not to bother with probing for fax or reporting fax calls to TAPI. (The TAPI dynamic-link
library does not automatically launch an application to handle a particular type of incoming call.)

Caller ID and direct Inward Dialing With Direct Inward Dialing (DID) at the called address, the
switch supplies the service provider with the digits that were dialed (the called address). The service
provider can be configured to associate particular called addresses with particular media modes.
Likewise, it could associate calls from particular numbers as being associated with particular media
modes, although this is much less commonly used.

Distinctive ringing The ring pattern of the incoming call may match a predetermined pattern (of
several possible at the called address) that is reserved for calls of a certain media mode. If, for
example, the incoming call is using ring pattern 2, the service provider knows it to be a fax call (based
on configuration information supplied by the user).

ISDN On an ISDN network, the provider may analyze the call's protocol frames to determine the
media mode. If the call is indicated as a 3.1 kHz Voice call, it is still possible that the actual media
mode on the call is analog data modem, Group 3 fax, text telephone, or any of several other
voiceband modulated signals, in addition to human voice; it is only with digital data signals that the
media mode would necessarily be clearly defined—for example as Group 4 fax—at call setup time in
ISDN.

Auto answer and probe Some providers give the user an option to let the service provider
autoanswer the call and do some of the probing itself. In this process, TAPI gives the call the correct
application with the correct media mode already identified.

These tools may be enough to make a final and accurate determination of the media mode. In any case,
when the service provider passes the new call to TAPI, it sends a LINE_ CALLSTATE message and
includes in the message all that it knows about the call's media mode(s). The following topics give details
on the possible cases.

Known Media Mode

When the service provider knows the media of the call unambiguously, one flag is set in dwMediaMode
in LINECALLINFO. The media mode cannot be the single bit LINEMEDIAMODE_UNKNOWN, which is a
different scenario. TAPI gives ownership of the call to the highest priority application that has opened a

line for this media mode. It also gives call handles with monitor privileges to all other monitor applications
on the line.

Unknown Media Mode

Even when the service provider does not know the exact media mode of the call, it might still know which
media modes are possible. In this case, the service provider sets a combination of likely media mode bit
flags, including LINEMEDIAMODE_UNKNOWN and passes the call to TAPI. The service provider sets
these bits both in the dwMediaMode field of the LINECALLINFO record and in the dwParam3 parameter
of the first LINE_CALLSTATE message it sends to TAPI.

The service provider considers only the media modes for which applications have opened the line with
owner privileges (it becomes aware of these media modes through the TSPI_SetDefaultMediaDetection
call) and which it is capable of handling. TAPI informs the provider about the union of all the lines that
have been opened with a specified media mode. The provider can use this union to enable only the
appropriate media mode detections for which applications are interested. If no applications have opened
the line for ownership, the provider will not consider any media modes. Incoming calls are still delivered to
TAPI, but no initial owner is possible. In this case, monitoring applications will still be informed of the call,
and if none of them changes their privilege to owner and answers the call, the call will remain
unanswered.

Duties of the TAPI Dynamic-Link Library

The TAPI dynamic-link library does not perform probing; that is, it does not send signals on phone lines in
order to determine a call's media mode. TAPI does try to deliver the call to an application that can do
probing. The way in which TAPI gives calls to applications is determined by several factors, the most
important of which are the media mode bits that have been set and the running applications that can (or
cannot) handle calls of those media modes.

TAPI's behavior can be divided into two main scenarios: one media mode bit is set, and the UNKNOWN
bit is set. These cases are described in the following topics.

Only One Media Mode Bit Is Set

If only one media mode bit (not the UNKNOWN bit) has been set in the dwMediaMode field of the
LINECALLINFO data structure, TAPI distributes calls by following a consistent procedure based on the

current state of the system and on information saved by the user in the registry. These are the steps it
takes:

The TAPI dynamic-link library is notified by the service provider that a call is arriving.

The TAPI library uses the information in the HandoffPriorities section of the registry to know which
applications have been listed—possibly through a Preferences option in the application's user
interface —as being interested in calls having the incoming call's media mode.

The first such application listed, reading left to right, is the highest priority application. If that
application is currently running and has the arriving call's line open for that media mode, it is given
ownership of the call. If it is not running or it does not have that line open, TAPI again uses the
information in the registry to find an interested application in the correct state, and it gives the call to
it.

If none of the applications listed in the registry are in the proper state, TAPI looks for other
applications that are currently executing and have the line open for that media mode (though they are
not listed in the registry). The relative priority among these unlisted applications is arbitrary and not
necessarily associated with the sequence in which they were launched or opened the line.

Every application that has the line open for monitoring also receives a handle to a call, and any of
them could step up, claim ownership (by calling lineSetCallPrivilege), and answer the call. However,
this behavior could result in race conditions and unpredictable call handling, and is therefore
discouraged.

If no application becomes an owner of the call, the call is eventually dropped. Calls can be dropped
by TAPI only if no owner is found for the call and the call state is not idle or offering. The calling party
can also drop the call. (On an ISDN network, this event becomes known when a "call-disconnect"
frame is received.) If the call is not explicitly dropped, it can go idle after the expiration of a timeout
based on the absence of ringing. (The service provider would need to assume that the call has been
dropped by the calling party, and implement the timeout.) Because there were no applications that
could take the call successfully, this situation usually means that the incoming call reached a wrong
number.

The UNKNOWN Bit Is Set

If the LINEMEDIAMODE_UNKNOWN bit is on in param3 of the first LINE_CALLSTATE message
delivered by the service provider, the call is treated differently depending on whether an application
prepared to accept calls of unknown media type has opened the line. These two possible cases (an
Unknown application is running, or is not) are described in this section.

An Unknown Application Is Running

If at least one Unknown application has opened the line, the TAPI dynamic-link library gives an ownership
handle for the incoming call to the highest priority Unknown application. It also passes monitoring handles
to the other applications that have the line open for monitoring. The Unknown application receives a
LINE_CALLSTATE message with dwParam3 set to owner.

This Unknown application can then try to perform media determination itself, or use the assistance of the
other media applications, allowing them to perform probes for their media mode(s), if appropriate. The
Unknown application can pass the call to another media application using lineHandoff. The Unknown
application would examine dwMediaMode in LINECALLINFO to determine the possible remaining
candidate media. In doing so, it uses the highest priority media to determine the initial handoff target. It
calls lineHandoff, specifying the single highest priority destination media mode as the target.

The following is the default priority of media modes, listed in order from first tried to last tried when used
during media-type handoffs.

Order Media Mode
LINEMEDIAMODE_INTERACTIVEVOICE
LINEMEDIAMODE_DATAMODEM
LINEMEDIAMODE_G3FAX
LINEMEDIAMODE_TDD
LINEMEDIAMODE_G4FAX
LINEMEDIAMODE_DIGITALDATA
LINEMEDIAMODE_TELETEX
LINEMEDIAMODE_VIDEOTEX
LINEMEDIAMODE_TELEX

0 LINEMEDIAMODE_MIXED

1 LINEMEDIAMODE_ADSI

_ 2 0O O NOoO O, ODN -~

Automated voice is a media mode that has no meaningful distinction with interactivevoice at this level,
and is therefore not listed.

If the handoff fails, the Unknown application should clear that media mode flag in the dwMediaMode
member of LINECALLINFO. This action moves the probe for the call one step closer to a final
determination of the media mode. If the handoff indicates TARGETSELF, it means that the Unknown
application is the highest priority application for the media mode for which it was trying to hand off the call,
so it should go ahead and do the probing itself.

If the handoff indicates SUCCESS, it means that a different application is the highest priority application
for the media mode for which the call was being handed off. The Unknown application should deallocate
the call handle or change to being a monitor while the new owner has control and proceeds with probing.

The receiving application controls the call. If the probe is successful, it should set the correct media mode
bit. If the probe fails, the application should clear the failed media mode bit in LINECALLINFO and hand
the call off to the next highest priority application. If no more media mode bits are set, the handoff fails,
because no suitable owner application exists for the call.

Eventually, the media mode may be identified through monitoring or successful probing, though the
UNKNOWN bit still may be set in dwMediaMode in the data structure LINECALLINFO. In this case, the
application that has received the call cannot be sure that it is the highest priority application for the
identified media mode. It is now the duty of that application to ensure that the call goes to the highest
priority application. To do so, it follows these steps:

¢ |t calls lineSetMediaMode, which writes into the dwMediaMode field of the call to turn off the
UNKNOWN bit and specify the newly identified media mode bit.

¢ |t calls lineHandoff to return the call to TAPI. The TAPI dynamic-link library is not explicitly specified
in this command, but rather a media-type handoff is performed, through which the TAPI library knows
that it must look for other applications to find the highest priority application for that media mode.

¢ |f this application is itself the highest priority application for this media mode, it receives a
LINEERR_TARGETSELF return value (for the lineHandoff function call). This error means "No, you
already are the highest priority application for that media mode." The application never loses control
of the call, and it continues handling the call normally. If the lineHandoff succeeds, then there was a
higher priority application for the identified media mode, and the application that called lineHandoff
should deallocate its handle or change to being a monitor while the highest-priority application
handles the call.

As long as the UNKNOWN bit is still on, the receiving application still does not know that the highest-
priority media mode is present on the call, so it still needs to probe for it. It only considers the media mode
to be present if the UNKNOWN bit is off—only then can it use the call as a call of that media mode.

Using Media Priorities While Probing

Unknown applications should take care to use default priorities given in the table in the preceding topic,
An Unknown Application Is Running, when probing for applications to take calls of unknown media
modes. One reason to do this is to protect human callers from hearing unpleasant fax or modem signals.
If, for example, both the INTERACTIVEVOICE and the G3FAX bits are set in LINEMEDIAMODE _, a
human caller may still be on the other end of the line. The application should wait to start probing for a fax
(with a fax tone) until it is sure that the call is not a voice call. The way to be sure is to probe first for voice,
which occurs automatically if following the order stated in the default media-mode list.

However, while probing for high-priority media modes, it is a good idea to turn media monitoring on. This
feature, invoked by calling lineMonitorMedia, detects signals that indicate other media. For example, one
application may be playing an outgoing "leave a message" voice message while the incoming call starts
sending a fax "calling" tone and waits for a handshake. In order not to lose the fax call, the local
application needs to be monitoring for this tone while playing the voice message. Determining the lower-
priority media (the fax call) while actively probing for the higher-priority media (voice) is not only a safer
method—it helps prevent the loss of a call—it is efficient because it can shorten the probing process.

No Unknown Application is Running

If no Unknown application has the line open, the TAPI dynamic-link library itself assumes the role of a
simplistic Unknown application. The TAPI library first passes an owner handle for the call to the highest
priority application that is registered for the highest-priority media mode for which a media mode flag is
set in the dwMediaMode member of LINECALLINFO. If there is no such application, the media mode
flag is cleared, and TAPI tries the highest priority application for the next highest-priority media mode. If
there is such an application, it can try to make a determination for the highest priority media mode in
dwMediaMode in LINECALLINFO.

If no application is found to become the initial owner of a call, the call remains in the offering state until a
monitor application becomes an owner through lineSetCallPrivilege, or until the call is abandoned by the
calling party and is transitioned (by the service provider) to the idle state, at which time all monitoring
applications deallocate their handles to the call.

Duties of the Media Application

The media mode application that receives a call as a handoff target first checks the bit flags of
dwMediaMode in LINECALLINFO. If only a single media mode flag is set, the call is officially of that
media mode, and the application can act accordingly.

If the UNKNOWN and other media mode flags are set, the media mode of the call is officially UNKNOWN,
but is assumed to be one of the media modes for which a flag is set in LINECALLINFO. The application
should now probe for the highest priority media mode.

If more than one bit is set in LINECALLINFO and the call has not been answered, the application must
perform a lineAnswer to continue probing. If the call has already been answered, the application can
continue probing without having to first answer the call.

If the probe succeeds (either for the highest-priority media mode or for another one), the application
should set dwMediaMode in LINECALLINFO to the single media mode that was recognized. If the actual
media mode is this expected media mode, the application can act accordingly. Otherwise —if it makes a
determination of another media mode—it must first attempt to hand off the call in case it is not the highest
priority application for the detected media mode.

If the probe fails, the application should clear the flag for that media mode in dwMediaMode in
LINECALLINFO, and hand the call off to the Unknown application. It should also deallocate its call handle
or revert back to monitoring the call. At this point, the fate of the call is determined by the steps described
under the preceding topics of this section—depending on whether or not an Unknown application is active.

If the attempt to hand off the call to the UNKNOWN application fails, this means that no unknown
application is running. It is then the responsibility of the application that currently owns the call to attempt
to hand it off to the next-highest-priority media mode (while leaving the UNKNOWN bit turned on in
dwMediaMode in LINECALLINFO). If that handoff fails, the application should turn off that media bit, and
attempt the next higher-priority bit, until the handoff succeeds or all of the bits are off except for the
UNKNOWN bit.

If none of the media modes were determined to be the actual one, only the UNKNOWN flag will remain
set in dwMediaMode in LINECALLINFO at the time the media application attempts to hand the call off to
UNKNOWN. The final lineHandoff invocation will fail if the application is the only remaining owner of the
call. This failure informs the application that it should drop the call and then deallocate the call's handle. At
this point, the call is abandoned.

Receiving Incoming Calls

Once the target application has been determined, it is given the call. The following topics discuss the
target application as it accepts and answers calls.

Accepting and Answering Calls

On a POTS network, the only reason for an application to call lineAccept is to inform other applications
that it has accepted responsibility to present the call to the user. Similarly, on an ISDN line, the effect of
accepting a call is to make other applications aware that some application has accepted responsibility for
handling the call.

On an ISDN network, accepting a call also informs the switch that the application will present the call to
the user (by alerting the user for example, by ringing or by popping up a dialog box). If the
LINEADDRCAPFLAGS ACCEPTTOALERT bit is set, the application must perform a lineAccept on the
call or the call will not ring. If the application fails to call lineAccept quickly enough (the timeout may be
as short as three seconds on some ISDN networks), the network will assume that the station is powered
off or disconnected and act accordingly, such as by deflecting the call (if Forward on No Answer is
activated) or sending a disconnect message to the calling station.

Accepting a call is not the same as answering a call. Answering calls, in POTS, simply means to go
offhook. On an ISDN line, it means to tell the switch to place the call in a connected state. Before
answering, there is no physical connection for the call between the switch and the destination, though the
call is connected from the caller to the switch.

Sometimes a call has already been answered when a new application takes control of it. This can occur,
for example, when one application discovers that it is not the highest priority application for a call of a
given media mode, and it hands the call off. If the first application has already answered the call, the
receiving application takes control of an answered call. It should treat the call normally—that is, as if it had
answered the call itself. Another example is when a user instructs an application to operate on an existing
call. In this case, the application seizes the call. Again, it should treat the call as if it had answered it.

Waiting a Minimum Number of Rings

The lineGetNumRings function can be used by any application to determine the number of times an
inbound call on the given address should ring before the call is to be answered. Waiting a certain number
of rings allows callers to be spared the charge of a call connection if it seems that the call will not be
answered by the desired party (usually a person). This feature is sometimes called foll-saver support.
Applications can use the functions lineGetNumRings and lineSetNumRings in combination to provide a
mechanism to support toll-saver features for multiple independent applications.

Any application that receives a handle for a call in the offering state and a LINE_LINEDEVSTATE ringing
message should wait a number of rings equal to the number returned by lineGetNumRings before
answering the call in order to honor the toll-saver settings across all applications. The function
lineGetNumRings returns the minimum number of rings any application has specified with the function
lineSetNumRings. Because this number may vary dynamically, an application should call
lineGetNumRings each time it has the option to answer a call—that is, when it is the owner of a call still
in the offering state. A separate LINE_LINEDEVSTATE ringing message is sent to the application for each
ring cycle.

If the service provider is set to auto-answer calls, it answers after a certain number of rings. Service
providers do not have access to the minimum-ring information established by lineSetNumRings, and
therefore will make their own determination of when to automatically answer an incoming call. When a
call has been so answered by a service provider, it will be initially delivered to the owning application
already in the connected state, so the application will not need to be concerned with counting rings or with
answering the call.

Taking Ownership of a Call

In general, when one application learns that another application wants ownership of a call, it simply
relinquishes ownership of the call to that other application. Although there can be many co-owners of a
call, it should be a transitory state for there to be multiple owners.

In one specific case, it is valid for an application to actively take ownership of a call owned by another
application. This is when the application is instructed to do so by the user—perhaps through a user
interface. For example, a fax application may be instructed by a user to break into that same user's
existing voice call and use the call to send a fax. In this case, the fax application takes ownership from the
previous owner, the application that was controlling the voice call.

An application can forcibly become owner of a call by taking the following steps:

¢ Obtain a handle to the call with monitor privilege. If the desired call is one for which the application
does not yet have a handle, it should request a handle with lineGetNewCalls. If the application is
already a co-owner of the call and wants to become sole owner, it should start by calling
lineSetCallPrivilege with the parameter dwCallPrivilege set to LINECALLPRIVILEGE_MONITOR.
This action, which relinquishes ownership of the call (temporarily, in this case), is seen by other
applications as the departure of an owner.

¢ Call lineSetCallPrivilege with the parameter dwCallPrivilege set to LINECALLPRIVILEGE_OWNER
for the call. Other applications see a new owner coming on line by receiving a LINE_ CALLINFO
message stating that the number of owners has increased and the number of monitors has changed;
the bit LINECALLINFOSTATE_NUMOWNERINCR is on. These applications should yield the call to
the new owner but there is no guarantee that they will do so. If the other existing owners do relinquish
ownership, the new owner can proceed with what it intended to do on the call.

Note There is no way to shield a call from another application's attempt to become an owner of i,
nor is there any reason to do so. Once an application is informed that another application has become
an owner, it should draw its activities on the call to an orderly close, and then relinquish ownership,
because such changes in ownership are almost always done at the explicit direction of the user.

Relinquishing a Call

An application can relinquish ownership of a call by invoking lineSetCallPrivilege to change to a monitor
application, or simply by using lineDeallocateCall to indicate that it has no further interest in the call. If
the application is the sole owner of the call and cannot hand off ownership to another application, TAPI
will not permit it to change to being a monitor or to deallocate its call handle—in this situation, the

application has no choice but to drop the call.

Control of the Media Stream

An application that has just obtained a call may not immediately receive control of the media stream, and
may need to wait until the previous owner application relinquishes it. Though this may take time, any
application with control of the media stream should transfer control when it sees that a new owner has
come on line (the number of owners has increased).

The procedures for transferring control of an active media stream differ for every media-control API. The
APl may allow only one application to have a media-stream device (such as a COM port used for data
transfer) open. In this case, it is important that the current owner relinquish control of a media stream
device before handing off the call. But with some other types of media such as WAV audio, several
applications (and several devices) can have the media stream open at the same time. This makes it
unnecessary to close the media stream before the handoff, and perhaps not at all.

Call Handoffs

After an application has acquired ownership of the call, ownership can be transferred to another
application. Why would this be necessary? Normally, to allow the call's media mode to be changed. In this
case, the highest priority application for the new media mode should take and handle the call. Media
mode changing usually occurs because of one of the following causes.

User command. Through a user interface or through window messages, the application learns that the
local user wants to change media mode. For example, the user has told the new target application (which
is not yet an owner) to obtain an existing voice call for transmitting data. The target application must now
take control of the call. In this case, the current owner notices the number of owners increase, and then
relinquishes its control of the call. Alternatively, the user could instruct the current owner of the call to
hand it off to an application that can handle the new media mode.

Media mode change. The service provider can detect a media mode change with lineMonitorMedia. As
an example of this, the local application is playing a recorded voice message to the caller. During this
message, the caller spontaneously decides to transmit a fax calling tone, and the local application can
respond accordingly by changing the media mode to fax and, if necessary, handing the call off to a fax
application. Another way this can work is for a monitoring application to enable media mode monitoring,
and, when the media mode in which it is interested is detected on a call, it can request ownership of the
call. This mechanism makes it unnecessary for every application to monitor every call for every media
mode.

Remote party command. The remote party can interactively indicate a change in media modes during
an existing call. For example, the local application is using lineMonitorDigits to monitor DTMF input by
the remote caller. Through this monitoring, the caller indicates, for example, that a fax is about to be sent.
Other ways the caller can control local applications is with commands received on other data connections
and through ISDN user-user information messages.

A call handoff will have one of these outcomes:

e The call is given to another application (SUCCESS),
¢ The handing-off application is itself the target (TARGETSELF),
¢ The handoff fails (TARGETNOTFOUND).

If the application that is receiving the handed-off call already has a call handle to the call, this old call
handle is used. Otherwise a new call handle is created. In either case, the application ends up with owner
privileges to the call. Whenever the handing-off application is not the same as the target application, the
target is informed about the handoff in a LINE_CALLSTATE message with dwParam3 set to
LINECALLPRIVILEGE_OWNER, as if it were receiving a new call.

Note The LINE_CALLSTATE parameter dwParam3 is set to owner only if the LINE_CALLSTATE
message is being sent to an application that is the initial owner of a new call, is the target of a
handoff, or was previously a monitor or an owner of the call. The parameter dwParam3 can be set to
monitor only if the LINE_CALLSTATE message is sent to the application when it is presented a new
call for monitoring. In all other cases (such as when the application already has a handle to the call,
and its ownership state is not being changed), dwParam3 is set to 0.

If the current owner application is told to change modes, it does so by handing off the call to an
application used for the target media mode. The two types of call handoffs are described in the following
topics.

Directed Handoffs

A directed handoff takes place when the target application is known by name to the original application.
This situation would occur, for example, among a set of applications written by the same vendor. Control
of directed handoffs can usually be configured by the user. With such a handoff, the call is given to the
specified application if it has opened the line on which the call exists. The media mode specified at the
time the application opened the line is ignored. One common example is a voice call followed by fax
transmission in the same call. Directed handoff would most often be used by applications from the same
developer that are linked in other ways as well.

Directed handoff may also be used in future versions as part of the process of arbitrating multiple
applications waiting for incoming calls of the same media mode, with the selection of the application to
handle the call being based on data-link or higher level protocol detection rather than media mode. An
example of its use would be an incoming data modem line with applications such as remote takeover,
bulletin board, remote network access, and remote e-mail access all waiting for calls simultaneously.

Media Mode Handoffs

A media mode handoff takes place when there is a new, targeted media mode, usually when the owning
application determines that the media mode needed for the call is not present or is about to change. The
process for a media-dependent handoff can be a probing process if the UNKNOWN bit is on, and is
virtually the same as for the initial assignment of a call to an application. The difference is the fact that
lineHandoff can have only one media-mode bit set.

Because only a single media mode bit can be specified, the call is given to the highest priority application
for that media mode. However, it is possible that more than one media mode is to be considered for the
handoff. In this case, the handing-off application should specify the highest-priority of the possible media
modes as a parameter for lineHandoff. If an applications specifies the UNKNOWN bit when performing a
media-mode handoff and the handoff fails, this means that no Unknown application is currently running.
The handing-off application should then try to hand the call off to the highest priority application registered
for the next higher media mode.

The receiving application is now responsible for the call. It now probes for the call's actual media mode. If
the call's media mode matches that handled by the application, it must ensure that it is the highest-priority
application registered for that media mode. If so, it keeps the call and processes it normally. If not, it
hands the call off to another application registered for that media mode.

If, however, the probe for that media mode fails, the application probes again, attempting the remaining
media-mode possibilities. It determines these by examining the dwMediaMode field in the
LINECALLINFO structure. But first, using the lineSetMediaMode function, the owning application turns
off the bit for the current (disproved) media mode in the dwMediaMode field.

This process of probing and handing off continues, and the remaining media modes are eliminated one by
one. Along the way, one of the applications may see that the media mode it handles is on the call, and the
handoff is successful. The application should now perform a final lineSetMediaMode to set the correct
media mode and clear all other media-mode bits. This informs other interested applications of the correct
media mode. These other applications receive a LINE_CALLINFO message stating that the call's media
mode has changed. To determine the correct media mode, they invoke lineGetCalllnfo and examine the
dwMediaMode member in the LINECALLINFO structure.

It is the responsibility of the owning application to cycle through media modes to find the highest-priority
application. TAPI does this cycling only on the initial incoming call to find the first owner. It does not do it
when lineHandoff is called.

To sum up the media-mode handoff process, TAPI does not check for other media bits during
lineHandoff. TAPI only attempts to hand off to the single media mode indicated in the parameter to
lineHandoff. It is up to the application to turn off the bit corresponding to the media mode that failed to
hand off, and to try other media modes until the handoff succeeds or all the possible media modes are
exhausted. If it gets to a point where all of the bits are off except for UNKNOWN, it must abandon the call
by calling lineDrop and then deallocating the handle.

Logging Calls

Logging a call simply means actively recording the actions and states of a monitored call into a file on a
disk. (An application that owns a call is also a monitor of that call.) Though limited call logging is
performed by the call manager provided with Win32 Telephony, any application can be programmed to log
a call that it is monitoring.

TAPI facilitates logging by allowing applications to monitor calls and by collecting information from other
applications that are controlling calls. TAPI writes the information it collects into the LINECALLINFO
structure, which can then be read by applications.

Sources of Log Information

Information useful to call logging (which is saved by TAPI) originates in the following sources, and is
placed in the LINECALLINFO data structure.

¢ |n an application's call of the initialization function, linelnitializeEXx, it provides information such as the
application's name. An application should ensure that the information it provides with the initialization
command is accurate so that its activities are reflected correctly in the call log.

e The LINECALLPARAMS data structure, used in the function lineMakeCall, stores information such

as the name of the called party, the originating address, and the destination address. This structure is
passed to TAPI by any application that originates a call.

¢ The service provider supplies many items that can be logged such as the caller's ID.

e The LINE_CALLSTATE messages that pertain to a given call are an important source of logging
information, indicating whether the call successfully connected or was abandoned because of a busy
signal, no answer, network congestion, or other causes.

The start time, end time, and duration of a call are not recorded by TAPI. A logging application that wants
to log this information must record the time by checking the system clock when certain LINE_CALLSTATE
messages (such as CONNECTED, DISCONNECTED, and IDLE) are received, and then derive the
related time log information.

Using the LINECALLINFO Data Structure

The LINECALLINFO structure stores a large amount of information about a call, and is thus an important
source of data. Generally, a logging application reads from LINECALLINFO and write this information into
its log file.

A separate LINECALLINFO structure exists for every inbound and outbound call. Information in this
structure is obtained by an application with lineGetCalllnfo. An application typically reads the information
from LINECALLINFO at the following times:

¢ When the application first receives a handle for a call in the LINE_ CALLSTATE message.

e Each time the application receives notification in a LINE_CALLINFO message that LINECALLINFO
has changed. Whenever any part of the structure changes, a LINE_CALLINFO message is sent to
the application indicating which information item has changed.

Both the LINE_CALLSTATE message and the LINE_CALLINFO message also supply the call's handle as
a parameter.

Much of the information held in LINECALLINFO remains fixed for the duration of the call. Information
about a call that changes dynamically, such as call progress status, is available in the LINECALLSTATUS
structure, which is returned with the function call lineGetCallStatus. Other information needed by logging
applications that is not stored in LINECALLINFO is call start time, call stop time, and the call's duration,
which it determines by checking the system time when the corresponding LINE_CALLSTATE messages
are received.

LINECALLINFO stays intact after the call is disconnected, so the logging application can later read it in
order to write additional information into the log. LINECALLINFO remains available only until the last
application that had a handle for the call (owner and monitor handles) deallocates its handle.

Deallocating a Call

If an application is finished with a call and another application wants the call, the call can be handed off.
But if no other applications want to take ownership, there is nothing to do but deallocate the call's handle.
This is done with lineDeallocateCall. A call handle is no longer valid after it has been deallocated.

In contrast, dropping (disconnecting) a call puts the call in the idle state, which means that the local end
of the connection is on hook. If the other end of the connection drops the call, the call transitions to the
disconnected state, not the idle state. Typically, once an application receives a call-state message
indicating the disconnected state, it immediately drops the call, causing it to become idle. Although the
call is in the idle state, any handles to it held by applications remain valid until they are deallocated. If the
call was never answered (the local end never went off hook), it may revert to the idle state without being
dropped.

An application cannot deallocate a call if it is the sole owner and the call's state is not idle. This is
because TAPI tries to ensure that there is always at least one owner for every active call. If the application
is the sole owner and the call is not idle, the error message LINEERR _INVALCALLSTATE is returned. If
an application needs to circumvent this restriction, it can do so by dropping the call first (with lineDrop)
and then deallocating its handle. This prevents an application from deallocating its handle which would
result in a call disconnect. By making the application do an explicit drop, it can inform the user (in a dialog
box) that the call is about to be disconnected.

If releasing the ownership handle results in the call's having no more handles, TAPI calls the service
provider function TSPI_lineCloseCall. When this function is invoked on a call that is not yet idle, it is up
to the service provider to drop the call.

Note An application that has monitor privileges for a call can always deallocate its handle for the
call. Deallocating a call does not affect the call state of the physical call, but it does release the
internal resources (memory) related to the call.

An application should deallocate the handle to a call it owns in these two cases:

¢ Idle call state. If an application receives a LINE_CALLSTATE message indicating that the call has
transitioned to the idle state, and has already gathered all the information it needs about the call, it
should deallocate the call handle immediately.

¢ Handoff. The application has handed off the call (or has otherwise relinquished call ownership to
another application) or has set its call privilege to monitor, and has no interest in monitoring or logging
the call.

Failure to deallocate call handles in a timely way can result in system failure and lost calls due to
unnecessary consumption of memory and other resources.

Closing Lines

An application should close a line it has open in the following cases:

¢ Before exiting. An application should always close all lines it has open before it becomes inactive.

¢ For non-TAPI applications. TAPI applications should cooperate with non-TAPI applications that use
media stream devices such as COM ports. If your TAPI device is a serial device accessed through a
COM port (such as a modem) and the line is open, the service provider needs to have the COM port
open. But with the COM port open, non-TAPI applications and console applications are prevented
from accessing the COM port. Therefore, a TAPI application should open the line (and keep it open)
only if it is waiting for incoming calls or it is actively engaged in placing an outgoing call.

¢ Non-Telephony communications applications may need to share resources with Telephony
applications.

The data structure LINEDEVCAPS contains a capabilities bit (LINEDEVCAPFLAGS_CLOSEDROP) that
tells whether closing a line while a call is still active causes calls on the line to be dropped. If TRUE, the
service provider drops (clears) all active calls on the line when the last application having that line open
closes it using the lineClose function. If the bit is set to FALSE, the service provider does not drop active
calls on the line; instead, it leaves these calls active and under the control of an external device or
devices, such as phones.

Therefore, an application can examine LINEDEVCAPS to detect in advance whether closing a line will
cause this active call to be dropped. The application should warn all appropriate users that the call is
about to be dropped, perhaps by displaying an OK/Cancel dialog box that lets the user keep the line
open.

For example, if a desktop computer and a phoneset are both connected directly to an analog line (in a
party-line configuration), the service provider should set the flag to FALSE, as the offhook phone would
automatically keep the call active even after the computer powers down.

As another example, a user is speaking on the phone on a call owned by an active application. The user
decides to leave the office for the day and shuts down the system. The operating system in turn shuts
down the active telephony application, which attempts to close the lines it has open. Whether the call is
automatically hung up depends on whether the LINEDEVCAPFLAGS CLOSEDROP bit in
LINEDEVCAPS is set or not and whether the phone is offhook.

If other applications are monitoring the call, the service provider will not even be informed that one
application has closed the line. It is only when the last application that has a handle to the call closes the
line that the service provider is informed (with TSPI_lineClose). At that point, it is up to the service
provider to handle any remaining calls. If the service provider is required to drop the calls, it should do so
but it should first warn applications about this requirement with the LINEDEVCAPFLAGS_CLOSEDROP
flag.

Closing an application should ideally perform the following cleanup tasks:

e Dispose of all calls.
¢ Close all open lines and phones.
¢ Shut down the usage of the Telephony API.

Failure to do so may leave calls in indeterminate states.

Learning About Existing Calls at Application Startup

Applications can become aware of existing calls on the line at the time of application startup with
lineGetNewCalls. This function gives the application handles (with monitor privilege) to all the calls on
the line or address for which it did not already have handles.

An example of the usefulness of this mechanism is when a user starts a fax application during a voice
call, having decided to send a fax. The new fax application needs to discover the existing call (using
lineGetNewcCalls) to request ownership of the call in order to send the fax.

Media Mode Updating

A call's media mode as stated in dwMediaMode in LINECALLINFO and a media mode message
(LINE_MONITORMEDIA) sent from the service provider to the application can and often will differ. An
application could use lineMonitorMedia to enable monitoring for particular media modes, and use any
resulting LINE_ MONITORMEDIA messages as guidance in determining what the calling party might be
probing for or what the Unknown application should probe for first. LINE_MONITORMEDIA messages
report events on the line (such as probes being received from the remote station) and not "hard"
decisions about media modes. When an application determines that a call involves a particular media
mode, it calls lineSetMediaMode to update dwMediaMode in LINECALLINFO and inform other
applications of this update.

Communication Between Applications

Applications can communicate with each other by writing to and reading from a field in a specified call's
information record, the LINECALLINFO data structure. With lineSetAppSpecific, any owner application
can write to the application-specific field called dwAppSpecific. It is uninterpreted by the Telephony API
or any of its service providers. This field's usage is entirely controlled by applications.

The field can be read from the LINECALLINFO record returned by lineGetCalllnfo. However,
lineSetAppSpecific must be used to set the field so that changes become visible to other applications.
When this field is changed, all other applications with call handles are sent a LINE_CALLINFO message
with an indication that the dwAppSpecific field has changed.

Special Cases in TAPI

The following topics describe situations that could occur in multiple-application environments.

A Call Without an Owner

What happens to an incoming call if no applications have the line open with owner privilege? First, TAPI
informs all monitoring applications on the line about the call. If no monitoring application switches to
owner privilege to answer the call, the service provider eventually drops the call.

The following steps describe what normally happens if a line has only monitoring applications, a call
comes in, and no applications answer the call. Assume that the service provider is not configured to
answer new calls by itself.

The service provider passes the call handle to TAPI.
TAPI passes monitor handles to the monitor applications.
TAPI determines that the call is in the offering (not connected) state and lets the call "sit."

The remote party eventually hangs up, and the call reverts to the idle call state because it was never
connected.

The monitors are notified that the call is idle and deallocate their handles if they have not already
done so.

The last deallocation causes a TSPI_lineCloseCall.

Although the call in this example was never answered, its appearance and disappearance may have

been significant to the applications monitoring the line. On a network that offers caller ID, a user may want
to screen incoming calls, recording who has called without necessarily answering every call. Monitoring
applications can help accomplish this without ever needing to answer a call.

The Call is Answered Elsewhere

This scenario is similar to a call without an owner, but the user answers the phone elsewhere on the line,
and this answer is detected by the provider through the hardware. The call is reported as being in the
connected state, though it is not connected to any application on the local computer. The call eventually
goes idle, at which point each application (monitor as well as all owner applications) must deallocate its
handle.

The following steps describe what occurs in a scenario in which a line has only monitoring applications,
the service provider is configured to not answer new calls by itself, and a call comes in:

¢ The service provider passes the call handle to TAPI.

¢ TAPI passes monitor handles to the monitor applications.

¢ TAPI determines that the call in the offering (not connected) state and lets the call "sit."
¢ The user picks up a ringing downline phone, and the call becomes connected.

¢ All monitoring applications are sent a corresponding LINE_CALLSTATE message.

¢ The user eventually hangs up the downline phone, and the call reverts to the idle state.

¢ The monitor applications are notified the call is idle and deallocate their handles, if they have not
already done so.

¢ The last deallocation causes a TSPI_lineCloseCall.

Auto-Answer by the Service Provider

In this scenario, the provider is set up to auto-answer a new call. The provider answers it and determines
the call's media mode. It then informs TAPI of the call. Because no applications decide to take ownership,
TAPI cannot pass the call to any application.

Aline has only monitoring applications. The service provider is configured to auto-answer all new calls. At
this point, a call comes in.

These are the steps:

The service provider passes the call handle to TAPI.

TAPI passes monitor handles to the monitor applications (the call is in the connected state).
TAPI realizes that the call is connected, but there are, so far, no potential owners.

TAPI must do a TSPI_lineDrop to cause the call to revert to idle.

The monitor applications are notified that the call is idle and deallocate their handles if they have not
already done so.

The last deallocation causes a TSPI_lineCloseCall.

This example illustrates an important point for writers of monitoring applications. It is not a good idea to
wait monitor for incoming calls you later want to own. It is better to open the line as an owner, because
there might not be enough time to change your privilege from monitor to owner before TAPI drops the call.

Call States and Events

A connection is not fully established until both parties are communicating. To reach that point, the
establishment of the call goes through several stages, as does the clearing (termination) of the call. A
call's events cause it to transition through call states as it comes into existence, is used to exchange
information, and terminates. These call-state transitions result from both solicited and unsolicited events.
A solicited event is one caused by the application controlling the call (as when it invokes TAPI operations),
while unsolicited events are caused by the switch, the telephone network, the user pressing buttons on
the local phone, or the actions of the remote party. Some operations on line devices, addresses, and calls
may first require that the line, address, or call upon which they operate be in certain specific states.

Different call states indicate that connections exist to different parts of the switch. For example, a dial tone
is a particular state of a switch that means the computer is ready to receive digits.

Whenever a call changes state, TAPI reports the new state to the application in a message. This
programming model, therefore, is one in which the application reacts to the events reported to it, as
opposed to a rigid call-state model. In other words, call-state notification tells the application what the
call's new state is, instead of reporting the occurrence of specific events and assuming that the
application will be able to deduce the transitions between two states.

Call State Definitions

Some of the call states and events defined by TAPI are exclusive to inbound or outbound call processing,
while others occur in both cases. Several of these call states provide additional information that can be
used by the application. For example, the busy state signifies that a call cannot be completed because a
resource between the originator and the destination is unavailable, as when an intermediate switch has
reached its capacity and cannot handle an additional call. Information supplied with the busy state
includes station busy or trunk busy. Station busy means that the destination's station is busy (the phone is
offhook), while trunk busy means that a circuit in the switch or network is busy. The call states defined by
TAPI are listed below.

Call State Description

idle This corresponds to the "null" state: No
activity exists on the call, which means that
no call is currently active.

offering (inbound) When the switch informs the computer of
the arrival of a new incoming call, that call
is in the offering state. Note that offering is
not the same as causing a phone or
computer to ring. When a call is offered, the
computer is not necessarily instructed to
alert the user.

Example: An incoming call on a shared call
appearance is offered to all stations that
share the appearance, but typically only the
station that has the appearance as its
primary address is instructed to ring. If that
station does not answer after some amount
of time, the bridging stations may be
instructed to ring as well.

accepted (inbound) An application has taken responsibility for
an incoming call. In ISDN, the accepted
state is entered when the called party
equipment sends a message to the switch
indicating that it is willing to present the call
to the called person; this has the side effect
of alerting the users at both sides of the
call: the caller's and the called party's. An
incoming call can always be immediately
answered without first being separately
accepted.

dial tone (outbound) Indicates that the switch is ready to receive
a dialable number. In most telephony
environments, this state is entered when
audible dial tone is detected by the line
device. Additional information includes:

—normal dial tone The "normal" or everyday dial tone, usually
a continuous tone.
—special dial tone A special dial tone is often used to signal

certain conditions such as message-
waiting. This is usually an interrupted dial
tone.

dialing (outbound) The originator is dialing digits on the call.

proceeding (outbound)

special info (outbound)

—no circuit
—customer irregularity

—reorder

busy (outbound)

—station busy
—trunk busy

ringback (outbound)

connected (inbound and
outbound)

on hold (inbound and
outbound)

conferenced (inbound
and outbound)

on hold pending

The dialed digits are collected by the
switch.

The call is proceeding through the network.
This occurs after dialing is complete and
before the call reaches the dialed party, as
indicated by ringback, busy, or answer.

The call is receiving a special information
signal, which precedes a prerecorded
announcement indicating why a call cannot
be completed. Such announcements can
be of these types:

A no-circuit or emergency announcement.

This typically means that the dialed number
is not correct.

A reorder or equipment-irregularity
announcement.

The call is receiving a busy signal. Busy
indicates that some resource is not
available and the call cannot be normally
completed at this time. Additional
information consists of:

The station at the other end is off-hook.

The network is congested. This usually
produces a "fast busy" signal.

The station to be called has been reached,
and the destination's switch is generating a
ring tone back to the originator. A ringback
means that the destination address is being
alerted to the call.

Information is being exchanged over the
call.

The call is currently held by the switch. This
frees the physical line, which allows
another call to use the line.

The call is a member of a conference call
and is logically in the connected state (to
the conference bridge). A call in the
conferenced state refers to a conference
call (in the connected, onHold, ... state).

The conference call is currently on hold and

conference (inbound and waiting for the user to add another party.

outbound)

on hold pending transfer The call is on hold in preparation of being

(inbound and outbound)

disconnected (inbound
and outbound)

unknown (inbound and
outbound)

transferred.

The call has been disconnected by the
remote party.

The call exists, but its state is currently
unknown. This may be the result of poor
call progress detection by the service
provider. A call state message with the call
state set to unknown may also be
generated to inform the TAPI DLL about a

new call at a time that that the actual call
state of the call is not exactly known.

Although under normal circumstances an outbound call is likely to transition to connected through a
number of intermediate states (dial tone, dialing, proceeding, ringback), other paths are often possible.
For example, the ringback state may be skipped, as when a hot phone (or other non-dialed phone)
transitions directly to connected.

An application should always process call-state event notifications. Call-state transitions valid for one
switch or configuration may be invalid for another. For example, consider a line from the switch that (using
a simple Y-connector) physically terminates both at the computer and at a separate phone set, creating a
party line configuration between the computer and the phone set. The computer termination and,
therefore, the application using TAPI, may not know of the activities on the line handled by the phone set.
That is, the line may be in use without the service provider being aware of it. An application that wants to
make an outbound call will succeed in allocating a call appearance from the API, but this results in
sharing the active call on the line. In this case, blindly sending a DTMF dial string without first checking for
a dial tone may not result in intended (or polite) behavior.

Obtaining Call State Information

Using the function lineGetCallStatus, an application can receive complete call status information for the
specified call as a data structure of type LINECALLSTATUS. The function lineGetCalllnfo returns mostly
constant information about a call as a data structure of the type LINECALLINFO. The message
LINE_CALLSTATE is sent unsolicited to an application to notify it about changes in a call's state.

The call-information data structure maintained for each call contains an application-specific field that
applications can read from and write to. This field is not interpreted by TAPI. Applications can use it to tag
calls in application-specific ways. Writing to this field so that the change is visible to other applications can
be done with the function lineSetAppSpecific.

Supplementary Line Functions

In Win32 Telephony, supplementary functions are functions whose form and functionality has been
defined by the API description, but which are not required in basic Telephony. They are functions that
developers of telephony applications and service providers may choose to implement to suit the design of
their custom products. That is, in contrast to Basic Telephony functions, Supplementary Telephony
functions are optional.

This section describes the Supplementary functions used with TAPI-defined line devices. For
convenience, they are grouped into general functional categories.

Bearer Mode and Rate

The notion of bearer mode corresponds to the quality of service requested from the network for
establishing a call. It is important to keep the concept of bearer mode separate from that of media mode.
The media mode of a call describes the type of information that is exchanged over a specific call of a
given bearer mode. As an example, the analog telephone network (PSTN) provides only 3.1 kHz voice-
grade quality of service—this is its bearer mode. However, a call with this bearer mode can support a
variety of different media modes such as voice, fax, or data modem. In other words, media modes require
certain bearer modes. TAPI manages the bearer modes only by passing the bearer mode parameters on
to the network. Media modes are fully managed through the appropriate media stream APIs, although
some limited support is provided in TAPI.

The bearer mode of a call is specified when the call is set up, or is provided when the call is offered. With
line devices able to represent channel pools, it is possible for a service provider to allow calls to be
established with wider bandwidth. The rate (or bandwidth) of a call is specified separately from the bearer
mode, allowing an application to request arbitrary data rates.

The bearer modes defined in TAPI are:

¢ Voice, which is regular 3.1 kHz analog voice service; bit integrity is not assured.
e Speech, which is G.711 speech transmission on the call.

¢ Multiuse, as defined by ISDN.

e Data, which is unrestricted data transfer; the data rate is specified separately.

¢ Alternate speech and data, which is the alternate transfer of speech and unrestricted data on a call
(ISDN).

¢ Non-call-associated signaling, which provides a clear signaling path from the application to the
service provider.

Although support for changing a call's bearer mode or bandwidth is limited in networks today, TAPI
provides an operation to request a change in the bearer mode or the data-rate parameters of an existing
call. This function is lineSetCallParams.

Call Monitoring

Call monitoring includes media, digit, and tone monitoring, as described in the following topics.

Media Monitoring

When a call is in the connected state, information can be transported over the call. A call's media mode
provides an indication of the type of information (for example, its data type, or higher-level protocol) of this
media stream. TAPI allows applications to be provided with a notification about changes in a call's media
mode. The notification provides an indication of the call's new media mode. The service provider decides
how it wants to make this determination. For example, the service provider could use signal processing of
the media stream to determine the media mode, or it could rely on distinctive ringing patterns assigned to
different media streams, or on information elements passed in an out-of-band signaling protocol.
Independent of how the media mode determination is achieved, the application is simply informed about
media mode changes on an existing call.

The media modes defined by TAPI include:

¢ Unknown. The media mode of the call is not currently known—the call is unclassified.

¢ Interactive voice. Voice energy was detected on the call, and the call is handled as an interactive
voice call with a person at the application's end.

¢ Automated voice. Voice energy was detected on the call, and the call is handled as a voice call but
with no person at the application's end, such as with an answering machine application.

¢ Data modem. A modem session on the call. Current modem protocols require the called station to
initiate the handshake. For an inbound data modem call, the application can typically make no
positive detection. How the service provider makes this determination is its choice. For example, a
period of silence just after answering an inbound call can be used as a heuristic to decide that this
might be a data modem call.

e G3 fax. A group 3 fax session on the call.

e G4 fax. A group 4 fax session on the call.

e TDD. The call's media stream uses the Telephony Devices for the Deaf protocol.

¢ Digital data. A digital data stream of unspecified format.

¢ Teletex, Videotex, Telex, Mixed. These correspond to the telematic services of the same names.

e ADSI. An Analog Display Services Interface session on the call. ADSI enhances voice calls with
alphanumeric information downloaded to the phone and the use of soft buttons on the phone.

An application can enable or disable media monitoring on a specified call with lineMonitorMedia. The
application specifies which media modes it is interested in monitoring, and when media monitoring is
enabled, the detection of a media mode change causes the application to be notified with the
LINE_MONITORMEDIA message. This message provides the call handle on which the media mode
change was detected as well as the new media mode.

There is a distinction between the media mode of a call as reported by lineGetCalllnfo and the media
mode event reports by LINE_ MONITORMEDIA messages. A call's media mode is determined exclusively
by owner applications of the call and is not automatically changed by media monitoring events. The one
exception is the initial media mode determination that can be performed by the TAPI dynamic-link library
to select the first owner of a call. One could argue that in this case, the library is the owner of the call.

Default media mode monitoring is performed for the media modes for which the line device has been
opened. This allows an inbound call's media mode to be determined before the call is handed to an
application based on what the application demands. The scope of the media monitoring of a call is bound
by the lifetime of the call. Media monitoring on a call ends as soon the call disconnects or goes idle.

An application can obtain device IDs for various device classes associated with an opened line by calling
lineGetID. This function takes a line handle, address, or call handle and a device class description. It
returns the device ID for the device of the given device class that is associated with the open line device,
address, or call. If the device class is "tapi/line," then the device ID of the line device is returned. If the
device class is "mci/wave," then the device ID of an mci waveaudio device is returned (if supported),

which allows activities such as the recording or playback of audio over the call on the line.

The application can use the returned device ID with the corresponding media API to query the device's
capabilities and subsequently open the media device. For example, if your application needs to use the
line as a waveform device, it must first call wavelnGetDevCaps and/or waveOutGetDevCaps to
determine the waveform capabilities of the device. The typical waveform data format supported by
telephony in North America is 8-bit m-law at 8000 samples per second, although the wave device driver
can convert this sample rate and companding to other more common multimedia audio formats.

To subsequently open a line device for audio playback using the waveform API, an application calls
waveOutOpen. The implementation of waveOutOpen is device specific, and there are a variety of
options for implementing this function.

Digit Monitoring

Digit monitoring monitors the call for digits. TAPI allows digits to be signaled according to two methods
(digit modes):

¢ Pulse. Digits are signaled as pulse or rotary sequences. For detection, these pulses manifest
themselves as nothing more than sequences of audible clicks. Valid pulse digits are '0' through '9'".

e DTMF. Digits are signaled as DTMF (Dual Tone Multiple Frequency) tones. Valid DTMF digits are '0'
through '9', 'A'. 'B', 'C', 'D', ™', and '#'. Both the beginning and the down edge of DTMF digits can be
monitored.

An application can enable or disable digit monitoring on a specified call with lineMonitorDigits. When
digit monitoring is enabled, detected digits cause the application to be notified with the
LINE_MONITORDIGITS message. This message provides the call handle on which the digit was
detected as well as the digit value and the digit mode. The scope of digit monitoring is bound by the
lifetime of the call. Digit monitoring on a call ends as soon as the call disconnects or goes idle.

Tone Monitoring

Tone monitoring monitors the media stream of a call for specified tones. A tone is described by its
component frequencies and cadence. An implementation of the APl may allow several different tones to
be monitored simultaneously. An application can tag each tone to be able to distinguish the different tones
for which it requests detection.

An application can enable or disable tone monitoring on a specified call with lineMonitorTones. With this
function, the application indicates which tones to detect on a specified call. When tone monitoring is
enabled, detected digits cause the application to be notified with the LINE_ MONITORTONE message.
This message provides the call handle on which the tone was detected as well as the application's tag for
the tone.

The scope of tone monitoring is bound by the lifetime of the call. Tone monitoring on a call ends as soon
the call disconnects or goes idle.

Note The monitoring of tones, digits, or media modes often requires the use of resources of which
the service provider can only have a finite amount. A request for monitoring can be rejected if
resources are not available. For the same reason, an application should disable any unnecessary
monitoring.

Media Control

An application can request the execution of a limited set of media-control operations on the call's media
stream triggered by telephony events. Although an application is encouraged to use the media API
specifically defined for the media mode, media control can yield a significant performance improvement
for client/server implementations. The lineSetMediaControl function is used to set up a call's media
stream for media control by allowing an application to specify a list of tuples specifying a telephony event
and the associated media-control action. The telephony events that can trigger media-control activities
are:

¢ Detection of a digit. The application provides a list of specific digits and the media-control action that
each of them triggers.

¢ Detection of a media mode. The application provides a list of media modes and the media-control
actions that a transition into the media mode triggers.

¢ Detection of a specified tone. The application specifies a list of tones and the media-control action
that each tone detection triggers.

¢ Detection of a call state. The application specifies a list of call states and the media-control action
that each transition to the call state triggers.

The media-control actions listed below are defined generically for the different media modes. Not all
media streams can provide meaningful interpretations of the media-control actions. The operations should
map well to audio streams:

e Start starts the media stream.

¢ Reset resets the media stream.

¢ Pause stops or pauses the media stream.

¢ Resume starts or resumes the media stream.

¢ Rate up increases the rate (speed) of the media stream by an implementation-defined amount.
¢ Rate down decreases the rate of the media stream by an implementation-defined amount.

¢ Rate normal returns the rate to normal.

¢ Volume up increases the volume (amplitude) of the media stream.

¢ Volume down decreases the volume of the media stream.

¢ Volume normal returns the volume to normal.

The scope of media control is bound by the lifetime of the call. Media control on a call ends as soon the
call disconnects or goes idle. Only a single media-control request can be outstanding on a call across all
applications.

Digit Gathering

Besides enabling digit monitoring and being notified of digits one at a time, an application can also
request that multiple digits be collected in a buffer. Only when the buffer is full or when some other
termination condition is met is the application notified. Digit gathering is useful for functions such as credit
card number collection. It is performed when an application calls lineGatherDigits, specifying a buffer to
fill with digits. Digit gathering terminates when one of the following conditions is true:

¢ The requested number of digits has been collected.

¢ One of multiple termination digits is detected. The termination digits are specified to
lineGatherDigits, and the termination digit is placed in the buffer as well.

¢ One of two timeouts expires. The timeouts are a first digit timeout, specifying the maximum duration
before the first digit must be collected, and an inter-digit timeout, specifying the maximum duration
between successive digits.

¢ Digit gathering is canceled explicitly by lineGatherDigits again with either another set of parameters
to start a new gathering request or by using a NULL digit buffer parameter to cancel.

When terminated for any reason, a LINE_GATHERDIGITS message is sent to the application that
requested the digit gathering. Only a single digit gathering request can be outstanding on a call at any
given time across all applications that are owners of the call.

Digit gathering and digit monitoring can be enabled on the same call at the same time. In that case, the
application will receive a LINE_MONITORDIGITS message for each detected digit and a separate
LINE_GATHERDIGITS message when the buffer is sent back.

Generating Inband Digits and Tones

Once a call is in the connected state, information can be transmitted over it. Two functions are provided
that allow end-to-end inband signaling between the application and remote station equipment such as an
answering machine. One function is lineGenerateDigits, which generates inband digits on a call,
signaling them over the voice channel. Digits can be signaled as either rotary/pulse sequences or as
DTMF tones. The other function is lineGenerateTone, which enables the application to generate one of a
variety of multifrequency tones inband (over the media stream). This generates telephony tones, such as
ringback, beep, and busy, as well as arbitrary multi-frequency, multi-cadenced tones.

Only one digit or tone generation can be in progress on a call at any one time. When digit or tone
generation completes, a LINE_GENERATE message is sent to the application that requested the
generation. In the case where multiple digits are generated, only a single message is sent back after all
digits have been generated. Calling lineGenerateDigits or lineGenerateTone while digit or tone
generation is in progress will abort the generation currently in progress and send the LINE_GENERATE
message to the application whose generation was aborted with a cancel indication.

Call Operations

Call operations include acceptance, rejection, redirecting, holding, forwarding, parking, pickup, and
completion. These operations are described in the following topics.

Call Accept, Reject, and Redirect

In environments like ISDN, call offering is separate from alerting. In fact, after a call has been offered to
an application, a time window exists during which the application has a number of options:

¢ |t can immediately answer the call using lineAnswer.

¢ |t can accept the call using lineAccept, which initiates alerting to both the caller (as ringback) and the
called party (as ring).

¢ |t can reject the offering call using lineDrop, which reverts the offering call to the idle state.

¢ |t can redirect the call using lineRedirect, which deflects the offering call to another address. The call
reverts to the idle state.

Call Hold

Most PBXs can associate multiple calls with a single line. A call can be placed on hard hold, which frees
the user's line/address to make other calls. An application can place a call on hard hold by calling
lineHold. An application can retrieve a call on hard hold by calling lineUnhold.

Hard hold is different from a consultation hold. A call is automatically placed on consultation hold, for
example, when a call is prepared for transfer or conference.

Call Transfer

TAPI provides two mechanisms for call transfer: blind transfer and consultation transfer.

¢ In blind transfer (or single-step transfer), an existing call is transferred to a specified destination
address in one phase using lineBlindTransfer.

¢ In a consultation transfer, the existing call is first prepared for transfer to another address using
lineSetupTransfer. This places the existing call on consultation hold, and identifies the call as the
target for the next transfer-completion request. The lineSetupTransfer function also allocates a
consultation call that can be used to establish the consultation call with the party to which the call will
be transferred. The application can dial the extension of the destination party on the consultation call
(using lineDial), or it can drop and deallocate the consultation call and instead activate an existing
held call (using lineUnhold), if supported by the switch.

While the initial call is on consultation hold and the consultation call is active, the application can toggle
between these calls using lineSwapHold.

Finally, the application completes the transfer in one of two ways using lineCompleteTransfer:

¢ Transfer the call on transfer hold to the destination party. Both calls will revert to the idle state.

e Enter a three-way conference. A new call handle is created to represent the conference and this
handle is returned to the application.

In version 0x00020000 and greater, applications can use the "one step transfer" feature of many PBXs (a
single button press to establish a consultation transfer) using
LINECALLPARAMFLAGS_ONESTEPTRANSFER with lineSetupTransfer.

Call Conference

Conference calls are calls that include more than two parties simultaneously. They can be set up using
either a switch-based conference bridge or an external server-based bridge. Typically, only switch-based
conferencing will allow the level of conference control provided by the API. In server-based conference
calls all participating parties dial into the server which mixes all the media streams together and sends
each participant the mix; there may be no notion of individual parties in the conference call, only that of a
single call between the application and the bridge server.

A conference call can be established in a number of ways, depending on device capabilities:

¢ A conference call can begin as a regular two-party call, such as a call established with lineMakeCall.
Once the two-party call exists, additional parties can be added, one at a time. Calling
lineSetupConference prepares a given call for the addition of another party, and this action
establishes the conference call. This operation takes the original two-party call as input, allocates a
conference call, connects the original call to the conference, and allocates a consultation call whose
handle is returned to the application.

Note The capabilities of the addressed line device can limit the number of parties conferenced
in a single call and whether or not a conference starts out with a normal two-party call.

The application can then use lineDial on the consultation call to establish a connection to the next
party to be added. The lineDrop function can be used to abandon this call attempt. The third party is
added with the lineAddToConference function, which specifies both the conference call and the
consultation call.

¢ A three-way conference call can be established by resolving a transfer request for three-way
conference. In this scenario, a two-party call is established as either an inbound or outbound call.
Next the call is placed on transfer hold with the lineSetupTransfer function, which returns a
consultation call handle. After a period of consultation, the application may have the option to resolve
the transfer setup by selecting the three-way conference option which conferences all three parties
together in a conference call with lineCompleteTransfer with the conference option (instead of the
transfer option). Under this option, a conference call handle representing the conference call is
allocated and returned to the application.

¢ A conference call may need to be established with lineSetupConference without an existing two-
party call. This returns a handle for the conference call and allocates a consultation call. After a period
of consultation, the consultation call can be added with lineAddToConference. Additional parties are
added with linePrepareAddToConference followed by lineAddToConference.

To add parties to an existing conference call, the application uses linePrepareAddToConference. When
calling this function, the application supplies the handle of an existing conference call. The function
allocates a consultation call that can later be added to the conference call and returns a consultation call
handle to the application. This conference call is then placed on conference hold. Once the consultation
call exists, it can be added to the existing conference call with lineAddToConference.

Once a call becomes a member of a conference call, the member's call state reverts to conferenced. The
state of the conference call typically becomes connected. The call handle to the conference call and all
the added parties remain valid as individual calls. LINE_CALLSTATE events can be received about all
calls. For example, if one of the members disconnects by hanging up, an appropriate call-state message
can inform the application of this fact; such a call is no longer a member of the conference.

As is the case with call transfer, the application can toggle between the consultation call and the
conference call using lineSwapHold.

Use the call handle for the member calls to later remove the call from the conference. Do this by calling
lineRemoveFromConference on the call handle. This operation is not commonly available in its fully
general form. Some switches may not allow it at all, or only allow the most recently added party to be

removed. The line's device capabilities describe which type of lineRemoveFromConference is possible.

In version 0x00020000 and greater, applications can use the "no hold conference" feature of PBXs by
using the LINECALLPARAMFLAGS NOHOLDCONFERENCE option with lineSetupConference; this
feature allows another device, such as a supervisor or recording device, to be silently attached to the line.

Removing a Party

When canceling the consultation call to the third party for a conference call or when removing the third
party in a previously established conference call, the service provider (and switch) may release the
conference bridge and revert the call back to a normal two-party call. If this is the case, hConfCall will
transition to the idle state, and the only remaining participating call will transition to the connected state.

Call Park

Two forms of call parking are provided: directed call park and non-directed call park. In directed call park,
the application specifies the destination address where the call is to be parked. This roughly behaves like
a call transfer to the destination address, but it doesn't alert or time-out as a transfer would.

In non-directed call park, the switch returns to the application the address where it parked the call. In
either case, the function linePark is used to park a call. A parked call can later be retrieved with
lineUnpark. The application specifies the park address to lineUnpark which returns a call handle to the

unparked call. Appropriate LINE_CALLSTATE messages will be sent to the application as the call is
reconnected.

Call Forwarding

Forwarding affects the treatment by the switch or network of incoming calls destined for a given address.
The application can specify call forwarding conditions based on the origin of the call (internal, external,
selective based on caller ID); the status of the address (busy, no answer, unconditionally); and the
destination address where calls are to be forwarded. When the specified conditions are met for an
incoming call, the switch deflects the incoming call to the specified destination number. Because the
switch performs the forwarding action, the application will typically not know when a call has been
forwarded.

The lineForward function provides a combination of call forwarding (by setting call-forwarding requests)
and a do-not-disturb feature. The lineForward function can also cancel any or all of the forwarding
requests currently in effect. Some switches require that a call be established to the forwarding address for
call forwarding to be initiated. On such systems, lineForward allocates a consultation call and returns the
handle for it to the application. The consultation call can be used as any other call. After the connection is
established, forwarding confirmation is received from the switch, the call is dropped (using lineDrop), and
forwarding is in effect. A LINE_ADDRESSSTATE message with a forwarding indication informs the
application about changes in an address' forwarding status.

Note It may be impossible for a service provider to know at all times what forwarding is in effect for
an address. Forwarding can be canceled or changed in ways that make it impossible for a service
provider to be informed of this fact.

Call Pickup

Call pickup allows an application to answer a call that is alerting at another address. The application
invokes linePickup by identifying the target of the pickup and is returned a call handle for the picked-up
call. There are several ways to specify the target of the pickup request. First, specify the address
(extension) of the alerting party. Second, if no extension is specified and the switch allows it, the
application can pick up any ringing phone in its pickup group. Third, some switches require a group ID to
identify the group to which the ringing extensions belongs.

After the call has been picked up, it is diverted to the application and the application is sent appropriate
LINE_CALLSTATE messages for the call. An application can invoke lineGetCalllnfo for information about
the picked-up call, if provided by the switch.

Some key telephone systems support a transfer through hold capability on bridged-exclusive call
appearances. In this scheme, a call is owned exclusively by a particular phone when it is active, but when
the call is on hold it can be picked up on any phone that has an appearance of the line. In versions
0x00020000 and greater, an application can use the linePickup function with a NULL target address for
this purpose, similar to how the function is used to pick up a call waiting call on an analog line.
LINEADDRFEATURE_PICKUPHELD indicates the existence of the capability (in LINEADDRESSCAPS)
and when it can be invoked (in LINEADDRESSSTATUS).

Call Completion

When making an outbound call, the unavailability of certain resources can prevent the call from reaching
the connected state, as when the destination party is busy or doesn't answer. Unavailable resources
include trunk circuits as well as the destination party's station. The lineCompleteCall function lets the
application specify how it wants to complete a call that cannot be completed normally —this is called
"placing a call-completion request." The application has the following options:

e Camp on to queue the call until the call can be completed.

e Call back requests the called station to return the call when the station returns to idle. Answering the
call-back can automatically reinitiate (redial) the connection request.

¢ Intrude allows the application to barge in to the existing call.

¢ Message (also known as "leave word calling") allows the application to send one of a small number
of predefined messages to the destination. These messages can be text shown on the phone's
display, a voice message left for the user, and so forth.

A call completion request can be canceled with lineUncompleteCall. Multiple call completion requests
can potentially be outstanding for a given address at any one time. To identify individual requests, the
implementation returns a completion ID. When a call completion request completes and results in a new
call, the call completion ID is available in the LINECALLINFO data structure returned by lineGetCallinfo.
Canceling a call completion request in progress also uses this call completion ID.

In versions 0x0002000 and greater, the LINECALLREASON_CAMPEDON bit allows a service provider to
indicate when a new call was camped on to an address.

Extended Line Functions

Extended Line Services (or device-specific line services) include all service-provider defined extensions to
the API. The API defines a mechanism that enables service-provider vendors to extend TAPI using
device-specific extensions. The API only defines the extension mechanism, and by doing so provides
access to device-specific extensions, but the API does not define their behavior. Behavior is completely
defined by the service provider.

TAPI consists of scalar and bit-flag constant definitions, data structures, functions, and messages.
Procedures are defined that enable a vendor to extend most of these as follows.

For extensible scalar data constants, a service-provider vendor can define new values in a specified
range. As most data constants are DWORDs, typically the range 0x00000000 through Ox7FFFFFFF is
reserved for common future extensions, while 0x80000000 through OxFFFFFFFF are available for
vendor-specific extensions. The assumption is that a vendor would define values that are natural
extensions of the data types defined by the API.

For extensible bit-flag data constants, a service-provider vendor can define new values for specified bits.
As most bit-flag constants are DWORDs, typically a specific number of the lower bits are reserved for
common extensions while the remaining upper bits are available for vendor-specific extensions. Common
bit flags are assigned from bit zero up; vendor-specific extensions should be assigned from bit 31 down.
This provides maximum flexibility in assigning bit positions to common extensions versus vendor-specific
extensions. A vendor is expected to define new values that are natural extensions of the bit flags defined
by the API.

Extensible data structures have a variably sized field that is reserved for device-specific use. Being
variably sized, the service provider decides the amount of information and the interpretation. A vendor
that defines a device-specific field is expected to make these natural extensions of the original data
structure defined by the API.

Two functions, lineDevSpecific and lineDevSpecificFeature, and two related messages,
LINE_DEVSPECIFIC and LINE_DEVSPECIFICFEATURE, provide a vendor-specific extension
mechanism. The lineDevSpecific function and associated LINE_DEVSPECIFIC message enable an
application to access device-specific line, address, or call features that are unavailable with the Basic or
Supplementary Telephony Services. The parameter profile of the lineDevSpecific function is generic in
that little interpretation of the parameters is made by the API. The interpretation of the parameters is
defined by the service provider and must be understood by an application that uses them. The
parameters are simply passed through TAPI from the application to the service provider. An application
that relies on device-specific extensions will not generally work with other service providers; however,
applications written to the Basic and Supplementary Telephony Services will work with the extended
service provider.

For convenience, a more specialized escape function is also provided. It is similar to lineDevSpecific, but
places interpretation on some of the parameters. This more specialized function is
lineDevSpecificFeature, a device-specific escape function to allow sending switch features to the switch.
The message LINE_DEVSPECIFICFEATURE is the device-specific message sent to the application as
an indication of features sent to the switch. This function and its associated message allow an application
to emulate button presses at the line's feature phone. As feature phones and the meanings of their
buttons are vendor-specific, feature invocation using lineDevSpecificFeature is also vendor specific.

As mentioned earlier, there is no central registry for manufacturer IDs. Instead, a unique ID generator
(EXTIDGEN) is made available.

Passthrough Mode

When a call is active in LINEBEARERMODE_PASSTHROUGH, the service provider gives direct access
to the attached hardware for control by the application. This mode is for use by applications desiring
temporary direct control over asynchronous modems, accessed through the Win32 Communication
functions, for the purpose of configuring or using special features not otherwise supported by the service
provider, such as facsimile (Class 1, 2, and so on). This bearer mode is supported by the Universal
Modem Driver (UNIMODEM) service provider.

Service providers that support LINEBEARERMODE_PASSTHROUGH indicate it in the dwBearerModes
member of the LINEDEVCAPS structure. When LINEBEARERMODE_PASSTHROUGH is indicated, the
Unimodem service provider will also include in the DevSpecific area of the LINEDEVCAPS structure the
registry key used to access information about the modem associated with the line device, in the following
format:

struct {
DWORD dwContents; // Set to 1 (indicates containing key)
DWORD dwKeyOffset; // Offset to key from start of this
// structure (not from start of
// LINEDEVCAPS structure). 8 in
// our case.
BYTE rgby[...]; // place containing null-terminated
// registry key.
}

For example:

00000001 00000008 74737953 435c6d65 System\C
65727275 6f43746e 6f72746e 7465536c urrentControlSet
7265535¢c 65636976 6¢c435¢c73 5¢737361 urrentControlSet
65646f4d 30305c6d xx003030 xxxxxxxx Modem\0000.

This registry key could then be opened using this function:

RegOpenKey (HKEY LOCAL MACHINE, pszDevSpecificRegKey, &phkResult)

Passthrough mode is invoked most often using the lineMakeCall function, by setting the
LINEBEARERMODE_PASSTHROUGH bit in the dwBearerMode member of the LINECALLPARAMS
structure pointed to by the IpCallParams parameter. When this is done, the service provider will open the
serial port to the modem and immediately place the call into LINECALLSTATE_CONNECTED. The
application can then use the lineGetID function with the device class "comm/datamodem" to obtain an
open Win32 file handle to read from and write to the comm port.

Passthrough mode can be invoked in response to an incoming call as well. Generally, applications will
invoke passthrough mode while the call is in LINECALLSTATE_OFFERING, before the call has been
answered. Instead of calling lineAnswer, the applications calls lineSetCallParams, passing
LINEBEARERMODE_PASSTHROUGH as the dwBearerMode parameter. When this is done, as with
lineMakecCall, the call will immediately be placed into LINECALLSTATE_CONNECTED by the service
provider, and the application can obtain a handle to the open port using lineGetID. lineSetCallParams
can be called when the call is in LINECALLSTATE_OFFERING, LINECALLSTATE_ACCEPTED, or
LINECALLSTATE_CONNECTED.

Passthrough mode is normally terminated by calling lineDrop on the call handle obtained from
lineMakecCall or the first LINE_ CALLSTATE message (if the call was an incoming call). The service
provider will close the port, and restore the modem to its default state. The application must call
CloseHandle on the handle it received from lineGetID.

Passthrough mode can also be terminated by calling lineSetCallParams with the dwBearerMode
parameter set to LINEBEARERMODE_VOICE. The media mode set by lineSetMediaMode is presumed
to be in effect. If LINEMEDIAMODE_DATAMODEM is active, the service provider will take over the call as
though it was a data modem call already in progress; if lineDrop is subsequently called, the service
provider will issue the appropriate modem commands or interface state changes to drop a data call.

Quality of Service

As Asynchronous Transfer Mode (ATM) networking emerges into the mainstream of computing, and
support for ATM has been added to other parts of the Microsoft® Windows® operating system, TAPI also
supports key attributes of establishing calls on ATM facilities. The most important of these from an
application perspective is the ability to request, negotiate, renegotiate, and receive indications of Quality
of Service (QOS) parameters on inbound and outbound calls.

QOS information in TAPI is exchanged between applications and service providers in FLOWSPEC
structures which are defined in Windows Sockets 2.0.

Applications request QOS on outbound calls by setting values in the flowspec fields in the
LINECALLPARAMS structure. The service provider will endeavor to provide the specified QOS, and fail
the call if it cannot; the application can then adjust its parameters and try the call again. Once a call is
established, an application can use the lineSetCallQualityOfService function to request a change in the
QOS; a new bit, LINECALLFEATURE_SETQOS, lets applications determine when this function can be
called.

The QOS applicable to inbound or active calls can be obtained by using lineGetCallinfo and examining
the flowspec fields. A bit in the LINE_CALLINFO message, LINECALLINFOSTATE_QOS, lets
applications know when QOS information for a call has been updated.

Support for QOS is not restricted to ATM transports; any service provider can implement QOS features.

Call Center Control

You can use TAPI to manage call centers and other elements of telephony network infrastructure (such as
IVR and voice mail servers) through third-party call control. The following topics describe the TAPI
features that make this control easier.

Modeling of a Call Center

Service providers can expose each resource on the PBX as a line device and possibly an associated
phone device. Terminals which support multiple call appearances would do so through multiple
addresses, just as in first-party call control. In fact, the third-party view of a device is identical to the first-
party view; applications on the server can see and control all of the first-party devices, whereas an
individual client PC connected to the server would only be able to see those devices which are made
visible to it through access controls administered by TAPISRV.EXE on the server. Resources other than
terminals can also be modeled as line devices. For example, an ACD queue or route point would be
modeled as a line device that could have many active calls; an IVR server, voice mail server, or set of
predictive dialing ports could also be modeled as a line device that supports multiple calls.

Within this model, the status of the addressed device and calls associated with it can be monitored
though existing TAPI messages such as LINE_LINEDEVSTATE, LINE_ADDRESSSTATE,

LINE CALLSTATE, and LINE_CALLINFO, and details obtained through functions such as
lineGetLineDevStatus, lineGetAddressStatus, lineGetCallStatus, and lineGetCallinfo. Whenever a
TAPI object is operated upon through a third-party application running on the server, the result is identical
to what would have occurred if the same object had been similarly operated on by a first-party application
running on a client PC associated with that device. Status indications sent by the server service provider
controlling the switching fabric (or switch) are delivered both to applications running on the server and to
those running on associated, authorized clients.

Stations

Station sets being monitored through a third-party link are modeled as a line device and possibly an
associated phone device. The line device can have multiple addresses, if the modeled terminal supports
more than one directory number (DN). Multiple call appearances on the same DN can be modeled as a
single address that supports multiple calls.

Calls between two stations on the switch have two call handles, one giving the call view from the first
station (on its line device), and the other giving the call view from the second station (on its line device).
For example, a third-party lineMakeCall placed by an application on the server would be directed to the
line device associated with the station from which the call is to be dialed; a call handle would be created
on that line, on the address specified in LINECALLPARAMS (thereby giving control over which DN is
used on a phone that supports multiple DNs). When the call is offered to the destination address, a new
call handle showing a call in offering state is created; applications would know that it was another view of
the same call by the dwCalllD member in LINECALLINFO being equal for both calls. Both calls would go
idle when the call was dropped; a call could be dropped from the third-party application by doing a
lineDrop on either of the call handles.

Predictive Dialing

Predictive dialing is an application that typically runs on a call center telephony server. It uses a list of
phone numbers, often obtained from a database, to attempt outbound calls; when a call is completed, the
call is automatically assigned to an agent for handling. The application can make use of a predictive
dialing port on a switch, which is a device that can make outbound calls and has special abilities (through
DSP, and so on) to detect call progress tones and other audible indications of call state. When a call is
made on a predictive dialing port, it will typically be automatically transferred to another device on the
switch when the call reaches a particular state or upon detection of a particular media mode; this target
device might be a queue for agents handling outbound calls.

Applications identify a device as having predictive dialing capability by the

LINEADDRCAPFLAGS_ PREDICTIVEDIALER bit in the dwAddrCapFlags member in
LINEADDRESSCAPS. The dwPredictiveAutoTransferStates member in LINEADDRESSCAPS
indicates the states upon which the predictive dialing port can be commanded to automatically transfer a
call; if this member is zero, it indicates that automatic transfer is not available, and that it is the
responsibility of the application to transfer calls explicitly upon detecting the appropriate call state (or
media mode or other criteria). Preferably, switch manufacturers will make available both automatic and
manual transfer, and allow applications to select the preferred mechanism, but service providers would
have to model the behavior of legacy equipment. A single predictive dialing port (line device/address) can
support making several outbound calls simultaneously, as indicated by the dwMaxNumActiveCalls
member in LINEADDRESSCAPS. Predictive dialing capability can also be made available on any device,
using a shared pool of predictive dialing signal processors, which are bridged onto the line being dialed
upon request.

When the lineMakecCall function is used on a line capable of predictive dialing (a port with the
LINEADDRCAPFLAGS_PREDICTIVEDIALER set) and predictive dialing is requested using
LINECALLPARAMFLAGS PREDICTIVEDIAL, then the call is made in a predictive fashion with enhanced
audible call progress detection. Additional fields and constants are defined in the LINECALLPARAMS
structure passed in to lineMakeCall to control the behavior of the predictive dialing port. The
dwPredictiveAutoTransferStates member indicates the line call states which, upon entry of the call into
any of them, the predictive dialing port should automatically transfer the call to the designated target (the
bits must be a proper subset of the supported auto-transfer states indicated in LINEADDRESSCAPS);
the application can leave the field set to O if it desires to monitor call states itself and use
lineBlindTransfer to transfer the call when it reaches the desired condition. The application must specify
the desired address to which the call should be automatically transferred in the variable field defined by
the dwTargetAddressSize and dwTargetAddressOffset members in LINECALLPARAMS.

Applications can also set a timeout for outbound calls so that the service provider will automatically
transition them to a disconnected state if they are not answered. This is controlled using the
dwNoAnswerTimeout member in LINECALLPARAMS.

Call Queues and Route Points

A call queue or route point is a special address within the switch where calls are temporarily held pending
action. This characteristic is represented by the bits LINEADDRCAPFLAGS QUEUE and
LINEADDRCAPFLAGS ROUTEPOINT in the dwAddrCapFlags member in LINEADDRESSCAPS. All
calls appearing on such an address are awaiting action by the application, and there can be default
actions that take place (for example, transfer to an agent or trunk) if the application takes no action within
a defined period of time. The application must be configured by the system administrator so that it knows
what actions it should take regarding calls appearing on each queue or route point address, and the
amount of time available to decide on the action to take.

Applications can determine the number of calls pending in a queue or route point using
lineGetAddressStatus. The lineGetCalllnfo function can be used to obtain information such as calling
ID, called ID, inbound or outbound origin, and so on, and used by the application to make decisions on
call handling; calls can be redirected, blind-transferred, dropped, and so on, or just allowed to
automatically pass out of the queue to a destination. A call goes to LINECALLSTATE_DISCONNECTED if
it is abandoned. Calls go idle when they leave the queue; lineGetCalllnfo can be used to read the
redirection ID to determine where they were transferred.

Some switches allow calls in a queue or on hold to receive particular treatment such as silence, ringback,
busy signal, music, or listening to a recorded announcement. The lineSetCallTreatment function allows
the application to control the treatment. The structure delimited by the dwCallTreatmentListSize and
dwCallTreatmentListOffset members in LINEADDRESSCAPS allows applications to determine the
supported treatments. The dwCallTreatment member in LINECALLINFO indicates the current treatment,
and a LINE_CALLINFO message with LINECALLINFOSTATE_TREATMENT indicates when this
changes. The LINECALLFEATURE_SETTREATMENT bit in the dwCallFeatures member in
LINECALLSTATUS indicates when changing the treatment by the application is permitted. The
LINECALLTREATMENT _ set of constants defines a limited set of predefined call treatments; service
providers can define many more.

ACD Agent Monitoring and Control

Monitoring and control of ACD agent status on stations is supported through these functions:
lineGetAgentCaps, lineGetAgentStatus, lineGetAgentGroupList, lineGetAgentActivityList,
lineSetAgentGroup, lineSetAgentState, and lineSetAgentActivity. The LINE_AGENTSTATUS
message is used to indicate when agent information has changed.

These controls are associated with an address instead of a line because many ACD systems are
implemented with different ACD queues associated with buttons on the phone terminal (and separate call
appearances). Also, ACD agent phones can often have separate call appearances for personal calls.

Architecturally, ACD functionality should be implemented in a server-based application. The client
functions mentioned above, rather than mapping to the telephony service provider, are conveyed to a
server application which has registered (using an option of lineOpen) as a handler for such functions.
The LINE_PROXYREQUEST message is used to signal to the handler application when a request has
been made; it calls the lineProxyResponse function to return results and data. Handler applications can
also call lineProxyMessage to generate LINE_AGENTSTATUS messages when required. In the case of
a legacy PBX or stand-alone ACD which implements ACD functionality itself, the telephony service
provider for the switch must include a proxy server application that accepts the requests and routes them
(possibly using lineDevSpecific functions or a private interface) to the service provider, which routes
them to the switch.

Call Data

In a call center environment, applications may need to accumulate data about a call (such as IVR input of
account numbers) that is desirable to have available to all agents and applications that handle the call.
The variable-sized field, bounded by the dwCallDataSize and dwCallDataOffset members in the
LINECALLINFO structure, gives the telephony application a way to provide to the service provider data to
be passed along with a transferred call and made visible to other applications that are monitoring the call
(either on the same PC, or, through the server, on other PCs). The LINECALLINFOSTATE_CALLDATA
message indicates whenever this field changes. The lineSetCallData function allows an application that
owns the call to set this data; LINECALLFEATURE_SETCALLDATA indicates when changing the data is
permitted. The dwMaxCallData member in LINEADDRESSCAPS indicates the maximum number of
bytes permitted in this field. Initial call data to be attached to a call can be passed to the service provider
in LINECALLPARAMS.

Station Status Control

There are three major station status functions that need control: message waiting lights, forwarding, and
do not disturb. Forwarding and Do Not Disturb are controllable through the existing lineForward function
(which is address-specific), and queried using lineGetAddressStatus. The
LINEDEVSTATUSFLAGS_MSGWAIT bit in the dwDevStatusFlags member of LINEDEVSTATUS
indicates the status of the message waiting light on the device, and a LINEDEVSTATE_MSGWAITON or
LINEDEVSTATE_MSGWAITOFF message is sent to indicate when the state changes. The
lineSetLineDevStatus function allows the message waiting light to be controlled without having to
implement a TAPI phone device just for that purpose. The LINEFEATURE_SETDEVSTATUS bit (in the
dwLineFeatures member of LINEDEVCAPS and LINEDEVSTATUS) indicates when it can be called,
and the dwSettableDevStatus member of LINEDEVCAPS allows the application to detect which of the
device status settings can be controlled from the application. In addition to allowing the message waiting
feature to be controlled, it also allows the device's Connected, Inservice, and Locked status to be set, to
the extent that these are supported by the switch or other hardware. Calls to this function result in
appropriate LINE_LINEDEVSTATE messages being sent to reflect the new status.

Call State Timer

Currently, all timing of calls is left up to applications. This can be quite burdensome if the application is
monitoring a large number of calls, and if multiple applications were present, possibly on multiple servers,
it would be necessary for them to all maintain timers on the same calls. It therefore makes more sense for
call state timing to be handled by the server.

The tStateEntryTime member in LINECALLSTATUS allows timing of calls in states to be reported. The
member (of type SYSTIME) indicates the time at which the current state was entered.

Media Event Timers

Many applications depend on the timing relationship between media events (for example, DTMF digits
received) in order to determine the nature of a requested operation. For example, in a voice mail
application, two consecutive DTMF "1" digits may mean "back up two segments" or "replay from
beginning of message", depending on how much time elapsed between the two digits. In a client/server
environment, if the DTMF detection is being performed on a separate processor from the one on which
the application is running, latency in the local area network makes it very likely that the timing relationship
between media events will be skewed, with the result that these timing-based differences could be lost or
become unreliable.

To resolve this issue, several TAPI messages can be timestamped. Because it is the relative timing
between these events that is important, the "clock time" of the event is not important, and sub-second
timing is involved, these timestamps use the millisecond-resolution "time since Windows started" returned
by the GetTickCount function. Applications must be aware that this is the tick count on the server (or
machine where the service provider directly managing the hardware is running), and is not necessarily
the same machine on which the application is executing; thus, the timestamps in these TAPI messages
can only be compared to each other, and not to the value returned by GetTickCount on the processor on
which the application is running.

The TAPI messages which can be timestamped are: LINE_ GATHERDIGITS, LINE_ GENERATE,
LINE_MONITORDIGITS, LINE_MONITORMEDIA, and LINE_MONITORTONE. The tick count will be
inserted into dwParam3 of these messages. If timestamping is not supported by the service provider
(which is indicated by the service provider setting dwParam3 in these messages to 0), then TAPI itself will
insert the tick count into dwParam3 of all of these messages (it can be skewed somewhat, but less than if
the application did the same after the messages had traversed an interprocess communication scheme).

Line Devices Overview

Aline device is a physical device such as a fax board, a modem, or an ISDN card that is connected to an
actual telephone line. Line devices support telephonic capabilities by allowing applications to send or
receive information to or from a telephone network. A line device is the logical representation of a physical

line device, one of the two device classes supported by TAPI. This section describes line devices and
explains how to use the line functions that access these devices.

What is a Line Device?

Aline device is a physical device such as a fax board, a modem, or an ISDN card that is connected to an
actual telephone line (although the device may not be physically connected to the computer on which the
telephony application is running). Line devices support telephonic capabilities by allowing applications to
send or receive information to or from a telephone network. A line device contains a set of one or more
homogeneous channels that can be used to establish calls.

Within TAPI applications, a line device is the logical representation of a physical line device. Although
"line" often connotes something with two endpoints, it is possible to abstract a line device to a single point
because TAPI views it only as a point of entry to the line that leads to the switch.

{ewc msdncd, EWGraphic, bsd23548 0 /a "SDK.WMF"}

Although the three lines in the preceding illustration are composed of different hardware and used for
different functions, they are abstracted to the same device type and governed by the same rules. The
telephone represents not a phone device but a line device used for voice calls. When using this line
device for incoming or outgoing calls, the application would also need to open and control an instance of
the phone-device class, which is described in detail in later sections.

TAPI requires that every TAPI-capable line device support all of Basic Telephony. If an application needs
to use capabilities beyond those of Basic Telephony (namely Supplementary or Extended Telephony), it
must first determine the line device's capabilities, which can vary according to network configuration
(client versus client/server), hardware, service-provider software, and the telephone network. The
lineNegotiateAPIVersion function allows the application to identify the set of Extended capabilities
supported on a line device, and the lineNegotiateExtVersion function allows for different versions of that
set to be used. The function lineGetDevCaps returns the telephonic capabilities implemented through the
use of the Supplementary and Extended (if any) TAPI functions of a given line device in a data structure
of the type LINEDEVCAPS.

Lines, Channels, and Addresses

In POTS, exactly one channel exists on a line, and this is used exclusively for voice. With ISDN, at least
three (and as many as 30 or more) channels can exist on a line simultaneously. Currently, most TAPI
functionality involves POTS applications that handle a single line using its single channel because ISDN
hardware is not yet widespread. In POTS, an application that wants to transmit data would communicate
over one line, and a voice application would communicate over another line—both of these applications
could use the same line, but if so, not at the same time.

In general, one line has exactly one address (telephone number). In cases where lines carry two or more
channels, each channel can have its own address, which means that a line has as many addresses as it
has channels. TAPI assigns Address IDs to these different addresses to make it easier to manipulate
them.

Multiple Addresses on a Single Channel

Some installations support the assignment of more than one address to a single channel. On POTS lines,
multiple addresses are made possible by various systems, such as DID (direct inward dialing) or
distinctive ringing, which are extra-fee services provided by the telephone company.

Many large corporations use DID for incoming calls. Before a call is connected, its destination extension
number is signaled to the PBX, which causes the extension to ring instead of the operator's phone. An
example of distinctive ringing in a private home would be if the parents used one address, the children
another, and a fax machine a third. Because only one line connects the house to the telephone network,
all phones ring when a call appears, but the ring pattern will be different depending on the number dialed
by the calling party. With distinctive ringing, the people know who the incoming call is meant for, and the
fax machine answers its calls by recognizing its own ringing style.

In ISDN, the various B channels might not have separate addresses. Because these B channels might be
on the same address, it is the service provider (and not the application or a person who has dialed the
number) that assigns calls to these channels.

ISDN Subaddresses

Subaddressing is a capability provided on ISDN lines that allows more information than just a single
telephone number to be used when dialing. This additional information can specify an individual
telephone extension to ring or, in a computing environment, a particular application to be alerted. Other
parameters that can be passed can describe the required aspects of a requested modem connection,
such as rate and timing.

Addresses and Address Identifiers

Each line device is assigned one or more addresses. An address corresponds to a telephone directory
number, and it is actually assigned twice: First, by the telephone company at the switch, and second, by
the user while configuring the local system. If a telephone number is changed at the switch, the user will
normally need to assign the new number at the local system, although some systems can be
sophisticated enough to perform the reassignment without human control.

After addresses have been assigned to lines, TAPI assigns address IDs to addresses. An address ID is a

number between 0 and the number of addresses on the line minus one. Because each address depends

on its line to exist, the address's ID is meaningful only in the context of the associated line device. For this
reason, an address name consists of not only the address ID, but also an identifier of the line. It serves as
a kind of shorthand, an easy way for programmers to identify addresses.

Address Configurations

The relationship of an address to a line (and to other local addresses) is known as its configuration. The
network or switch can configure address-to-line assignments in several ways. The main types of address
configurations recognized by TAPI are:

1. Private. The address is assigned to one line device only. An inbound call for this address is offered
(the switch informs the desktop computer of an incoming call) at one line device only.

2. Bridged. A bridged address is a single address assigned to more than one line device. (Different
switch vendors have different names for address bridging, such as multiple appearance directory
number (MADN), bridged appearance, or shared appearance.) An incoming call on a bridged address
will be offered on all lines associated with the address. The network of lines connected together is
known as the bridge. Different variations of bridged behavior are possible:
¢ Bridged-Exclusive. Connecting one of the bridged lines to a remote party causes the address to
appear "in use" to all other members of the bridge.

¢ Bridged-New. Connecting one of the bridged lines to a remote party does not preclude the other
lines from using the bridged address to answer or make calls. However, a new call appearance is
allocated to another of the connected lines.

¢ Bridged-Shared. If one line is connected to a remote party, other bridged lines that use the
address automatically enter into a multi-party conference call on the existing call.

3. Monitored. The line indicates the busy or idle status of the address, but the line cannot use the
address for answering or making calls.

Address-Related Functions and Messages

Different line devices can have different capabilities and so can their addresses. Additionally, switching
features and capabilities can be different for different addresses. An application calls the function
lineGetAddressCaps to determine the telephony capabilities of each address and then receives this
information in a data structure of the type LINEADDRESSCAPS. In a similar way, an application can call
lineGetDevCaps for a line device to determine the number of addresses assigned to the line, as well as
other information.

TAPI's device-query capability and status and event reporting mechanisms give an application the
information it needs to manage the different kinds of bridged-address arrangements. For example, the
application can determine whether a bridged station has answered a call by tracking the status changes
and call-state event changes on the address. (For more information about call states, see Call States and
Events.)

Normally, addresses on a line device are identified by their address IDs. However, TAPI lets applications
that make outgoing calls use alternate address types for the originating address, such as dialable format
(see the following section), or naming mechanisms specific to a given service provider. This can be
accomplished through API extensions that are based on switch-assigned station IDs. A useful function for
this purpose is lineGetAddressID, which retrieves the ID of an address specified in an alternate format.

Address Formats

Each address ID corresponds to a directory number through which incoming calls can be placed to the
address. Similarly, making outbound calls typically requires that a directory number—the address—be
supplied to identify the party being called.

Storing Numbers in Electronic Address Books

Many users choose to dial people, fax machines, bulletin boards, and other entities by selecting their
names from an address book. The actual number that is dialed depends on the geographic location of the
user and the way the line device to be used is connected. For example, a desktop computer can have
access to two lines, one connected to a PBX, the other to the telephone company's central office. When
making a call to the same party, different numbers can have to be used. (To dial through the PBX, for
example, the computer may need to dial '9' to "get out," or a different prefix may be needed for a call
made through the central office.) Or, a user may make calls from a portable computer and want to use a
single, static address book even when calling from different locations or telephony environments. TAPI's
address translation capabilities let the user inform the computer of the current location and the desired
line device for the call. TAPI then handles any dialing differences, requiring no changes to the user's
address book. An application uses the lineTranslateAddress function to convert an address from the
canonical address format to the dialable address format (see the next section).

A related topic is the handling of international call-progress monitoring, which is the process of listening
for audible tones such as dial tone, special information tones, busy signals, and ringback tones to
determine the state of a call (its progress through the network). Because the cadences and frequencies of
call-progress tones vary from country to country, the service provider must know what call progress to
follow when making an international outbound call. Therefore, applications specify the destination country
code when placing outgoing calls.

Canonical Addresses

The canonical address format is intended to be a universally constant directory number. For this reason,
numbers in address books are best stored using canonical format. A canonical address is an ASCII string
with the following structure:

+ CountryCode Space [(AreaCode) Space] SubscriberNumber | Subaddress » Name CRLF ...

The components of this structure are given in the following table.

Component Meaning

+ Equivalent to ASCII Hex (2B). Indicates that the
number that follows it uses the canonical format.

CountryCode A variably sized string containing one or more of

the digits 0-9. The CountryCode is delimited by
the following Space. It identifies the country in
which the address is located.

Space Exactly one ASCII space character (0x20). It is
used to delimit the end of the CountryCode part
of an address.

AreaCode A variably sized string containing zero or more
of the digits 0-9. AreaCode is the area code part
of the address and is optional. If the area code
is present, it must be preceded by exactly one
ASCII left parenthesis character (0x28), and be
followed by exactly one ASCII right parenthesis
character (0x29) and one ASCII Space
character (0x20).

SubscriberNumber A variably sized string containing one or more of
the digits 0-9. It may include other formatting
characters as well, including any of the dialing
control characters described in the Dialable
Address Format:

AaBbCcDdPpTtWwW*#!,@$?

The subscriber number should not contain the
left parenthesis or right parenthesis character
(which are used only to delimit the area code),
nor should it contain the "|", "A", or CRLF
characters (which are used to begin following
fields). Most commonly, non-digit characters in
the subscriber number would include only
spaces, periods ("."), and dashes ("-"). Any
allowable non-digit characters which appear in
the subscriber number will be omitted from the
DialableString returned by the
lineTranslateAddress function, but will be
retained in the DisplayableString.

ASCII Hex (7C). If this optional character is
present, the information following it up to the
next + | * CRLF, or the end of the canonical
address string is treated as subaddress
information, as for an ISDN subaddress.

Subaddress A variably sized string containing a subaddress.

Name

CRLF

The string is delimited by + | # CRLF or the end
of the address string. During dialing,
subaddress information is passed to the remote
party. It can be such things as an ISDN
subaddress or an e-mail address.

ASCII Hex (5E). If this optional character is
present, the information following it up to the
next CRLF or the end of the canonical address
string is treated as an ISDN name.

A variably sized string treated as name
information. Name is delimited by CRLF or the
end of the canonical address string and can
contain other delimiters. During dialing, name
information is passed to the remote party.

ASCII Hex (0D) followed by ASCII Hex (0A),
and is optional. If present, it indicates that
another canonical number is following this one.
It is used to separate multiple canonical
addresses as part of a single address string
(inverse multiplexing).

For example, the canonical representation of
the main switchboard telephone number at
Microsoft Corporation would be:

+1 (206) 882-8080

Dialable Addresses

The dialable address format describes a number that can be dialed on the given line. A dialable address
contains part addressing information and is part navigational in nature. Any input string which does not
begin with a "+" character is presumed to be not in canonical format and therefore in dialable address
format, and is returned to the application unmodified. A dialable address is an ASCII string with the
following structure:

DialableNumber | Subaddress » Name CRLF ...
The components of this structure are given in the following table.

Component Meaning

DialableNumber digits and modifiers 0-9A-D *# , IWwPp Tt
@ $? ; delimited by | » CRLF or the end of
the dialable address string. The plus sign (+)
is a valid character in dialable strings. It
indicates that the phone number is a fully-
qualified international number.

Within the DialableNumber, note the following
definitions:

0-9A-D*#
ASCII characters corresponding to the DTMF
and/or pulse digits.

! ASCII Hex (21). Indicates that a hookflash
(one-half second onhook, followed by one-half
second offhook before continuing) is to be
inserted in the dial string.

Pp ASCII Hex (50) or Hex (70). Indicates that
pulse dialing is to be used for the digits
following it.

Tt ASCII Hex (54) or Hex (74). Indicates that
tone (DTMF) dialing is to be used for the digits
following it.

, ASCII Hex (27). Indicates that dialing is to be
paused. The duration of a pause is device
specific and can be retrieved from the line's
device capabilities. Multiple commas can be
used to provide longer pauses.

W w ASCII Hex (57) or Hex (77). An uppercase or
lowercase W indicates that dialing should
proceed only after a dial tone has been
detected.

@ ASCII Hex (40). Indicates that dialing is to
"wait for quiet answer" before dialing the
remainder of the dialable address. This means
to wait for at least one ringback tone followed
by several seconds of silence.

$ ASCII Hex (24). Indicates that dialing the
billing information is to wait for a "billing
signal" (such as a credit card prompt tone).

? ASCII Hex (3F). Indicates that the user is to
be prompted before continuing with dialing.

The provider does not actually do the
prompting, but the presence of the "?" forces
the provider to reject the string as invalid,
alerting the application to the need to break it
into pieces and prompt the user in-between.

; ASCII Hex (3B). If placed at the end of a
partially specified dialable address string, it
indicates that the dialable number information
is incomplete and more address information
will be provided later. ";" is only allowed in the
DialableNumber portion of an address.

ASCII Hex (7C), and is optional. If present,
the information following it up to the next + | A
CRLEF, or the end of the dialable address
string is treated as subaddress information (as
for an ISDN subaddress).

Subaddress A variably sized string containing a
subaddress. The string is delimited by the
next + | # CRLF or the end of the address
string. When dialing, subaddress information
is passed to the remote party. It can be for an
ISDN subaddress, an e-mail address, and so
on.

A ASCII Hex (5E), and is optional. If present, the
information following it up to the next CRLF or
the end of the dialable address string is
treated as an ISDN name.

Name A variably sized string treated as name
information. Name is delimited by CRLF or the
end of the dialable address string. When
dialing, name information is passed to the
remote party.

CRLF ASCII Hex (0D) followed by ASCII Hex (0A). If
present, this optional character indicates that
another dialable number is following this one.
It is used to separate multiple dialable
addresses as part of a single address string
(for inverse multiplexing).

The lineTranslateAddress function and related support functions are used to translate an address from
canonical format to dialable format. An application might not use this function to dial a number but it might
use it to generate and display for verification a number that could be dialed. Also, it can compute the local
time at the destination address from the country code and area code.

The application uses lineTranslateAddress to specify both the line device upon which it intends to dial
the call and a canonical address, and the function returns the dialable number and the country code.
Because the line device can have specific dialing requirements, it is part of the context needed for an
accurate translation.

The user's location also plays a role in address translation. Information related to the current location,
such as the country code, area code, and outside line access codes is entered by the user through the
Telephony applet in the Control Panel. The Subaddress and Name fields, if present in the address, are
unmodified by the translation. Alphabetic characters in the number, such as in 1-800-FOR-TAPI, are not
translated by the lineTranslateAddress function due to the different standardizations in use in different
countries, but they may be translated by applications themselves.

Although an application can use dialable addresses returned by lineTranslateAddress, it is not limited to
them and can compose its own dialable numbers.

Initialization and Shutdown in TAPI

For an application to use any of TAPI's basic or supplementary line functions, it needs a connection to
TAPI through which it can receive messages. The application establishes this connection, using either the
linelnitializeEx or the phonelnitializeEx function. The parameters of these functions allow the
application to specify the message notification mechanism the application desires to use. Following are
specifics about the initialization process:

¢ The initialization functions are not device-related. When an application calls an initialization function,
TAPI does not act on a line or phone device or an abstraction thereof.

¢ The first time an initialization function is called in a telephony session, TAPI also sets up the
telephony environment. Among the tasks it performs are loading the TAPI dynamic-link library and
TAPISRV.EXE, and loading the device drivers (Telephony service providers and ancillary
components) specified in the registry. In addition, the communication link described above is
established between TAPI and the calling application.

¢ The INIFILECORRUPT error can be returned if TAPI determines that the registry contains an invalid
entry. When this error occurs (in linelnitializeEx and phonelnitializeEx, or another function), the
user should identify and resolve the problem. It may be necessary to rebuild the registry or a portion
of it, which can be done through the Telephony Control Panel.

For example, the LINEERR_NODRIVER ("the driver was not installed") error indicates either that a
service provider that was previously installed can no longer be found or that some subsidiary
component of a service provider (such as a VxD) cannot be found. When this error is encountered,
the application should advise the user to correct the problem with the Driver Setup function within the
Telephony Control Panel.

¢ Although each application needs only one associated with TAPI, it can call an initialization function
more than once to specify other message notification path.

¢ Both linelnitializeEx and lineShutdown (and the corresponding phone functions) operate
synchronously. That is, these functions return a success or failure indication, not an asynchronous
Request ID.

Upon completion, the linelnitializeEx function returns two pieces of information to the application: an
application handle and the number of available line devices.

e The application handle represents the application's usage of TAPI. That is, to TAPI, it represents the
application. TAPI functions that use line or call handles (explained later in this section) do not require
the application handle, because this handle is derived from the specified line, phone, or call handle.

¢ The linelnitializeEx function also returns the number of line devices available to the application
through TAPI. Line devices are identified by their device identifier (device ID). Valid device IDs range
from zero to one less than the number of line devices. For example, if linelnitializeEx reports that
there are two line devices in a system, the valid line-device IDs are 0 and 1.

Once an application is finished calling TAPI's line functions, it calls lineShutdown and passes its
application handle to terminate its usage of TAPI. This allows TAPI to free any resources assigned to the
application.

Calls

Unlike line devices and addresses, calls are dynamic. A call represents a connection between two (or
more) addresses. The originating address (the caller) is the address from which the call originates, and
the destination address (the called) identifies the remote end point or station with which the originator
wishes to communicate.

Zero, one, or more calls can exist on a single address at any given time. A familiar example of multiple
calls on a single address is call waiting: During a conversation with one party, a subscriber with call
waiting is alerted that another party is trying to call. The subscriber can flash the phone to answer the
second caller (which automatically places the first party on hold) and then toggle between the two parties
by flashing. In this example, the subscriber has two calls on one address on the line. Because the person
at the telephone handset can be talking to only one remote party at a time, only one call is active per line
at any point in time. The telephone switch keeps the other calls on hold. With a line able to encompass
more than one channel, different configurations can allow multiple active calls on a line at the same time.

Call Handles

TAPI identifies a specific call by means of the call's handle, and TAPI assigns call handles as required.
One call handle exists for every call owned or monitored by an application, and an application can obtain
call handles in a number of well defined ways. Certain TAPI functions create new calls. As they do so,
they return any new call's handle to the application. Sometimes, call handles are provided unsolicited in
message sent to the application from TAPI, as is the case with inbound calls or calls being handed off by
other applications.

For every call, one handle exists per application—unique call handles are provided to each application by
TAPI. This means that different applications with handles to the same call use different handles for it,
which limits the scope of a call handle to a single application. In addition, the service provider can assign
a unique call ID to a call (unrelated to the call's handle), which is used to track the call across transfers.
Whether or not a service provider can assign call IDs to calls is a device capability.

The privileges of an application for a given call are maintained by TAPI and are not the property of an
application's handle for the call. (For information about call privileges, see TAPI Applications.) Resources
such as memory are allocated dynamically for each call for each application that is given a handle to the
call. These resources are not automatically deallocated when the call is dropped as the application may
still find it useful to extract information from the call (such as for logging purposes). Therefore,
applications must dispose of their call handle when they have finished using it by calling the
lineDeallocateCall function.

Version Negotiation

Over time, different versions may exist for TAPI, applications, and service providers for a line or phone.
New versions may define new features, new fields to data structures, and so on. Version numbers
therefore indicate how to interpret various data structures.

To allow optimal interoperability of different versions of applications, versions of TAPI itself, and versions
of service providers by different vendors, TAPI provides a simple, two-step version negotiation
mechanism for applications. Two different versions must be agreed on by the application, TAPI, and the
service provider for each line device. The first is the version number for Basic and Supplementary
Telephony and is referred to as the API version. The other is for provider-specific extensions, if any, and is
referred to as the extension version. The format of the data structures and data types used by TAPI's
basic and supplementary features is defined by the API version, while the extension version determines
the format of the data structures defined by the vendor-specific extensions.

Version negotiation proceeds in two phases. In the first phase, the API version number is negotiated and
the extension ID associated with any vendor-specific extensions supported on the device is obtained. In
the second phase, the extension version is negotiated. If the application does not use any API extensions,
it skips the second phase and extensions are not activated by the service provider. If the application does
want to use extensions, but the service provider's extensions (the extension ID) are not recognized by the
application, the application should skip the negotiation for extension version as well. Each vendor has its
own set of legal (recognized) versions for each set of extension specifications it distributes.

The lineNegotiateAPIVersion function is used to negotiate the API version number to use. It also
retrieves the extension ID supported by the line device, returning zeros if no extensions are supported.
With this function call, the application provides the API version range it is compatible with. TAPI in turn
negotiates with the line's service provider to determine which API version range it supports. TAPI next
selects a version number (typically, although not necessarily, the highest version number) in the
overlapping version range that the application, the DLL, and the service provider have supplied. This
number is returned to the application, along with the extension ID that defines the extensions available
from that line's service provider.

If the application wants to use the extensions defined by the returned extension ID, it must first call
lineNegotiateExtVersion to negotiate the extension version. In a similar negotiation phase, the
application specifies the already agreed-upon API version and the extension version range it supports.
TAPI passes this information to the service provider for the line. The service provider checks the API
version and the extension version range against its own, and selects the appropriate extension version
number, if one exists.

When the application later calls lineGetDevCaps, it returns a set of device capabilities for the line that
correspond to the results of version negotiation. These include the line's device capabilities consistent
with the API version and the line's device-specific capabilities consistent with the extension version. The
application must specify both of these version numbers when it opens a line. At that point, the application,
the DLL, and the service provider are committed to using the agreed-upon versions. If device-specific
extensions are not to be used, the extension version should be specified as zero.

In an environment where multiple applications open the same line device, the first application to open the
line device selects the versions for all future applications that want to use the line (service providers do
not support multiple versions simultaneously.) Similarly, an application that opens multiple line devices
may find it easier to operate all line devices under the same API version number.

Phone Devices Overview

A phone device is one of the two device classes supported by TAPI. This section describes phone
devices and explains how to use the TAPI phone functions to access these devices.

The Phone Device

A phone device is a device that supports the phone device class and that includes some or all of the
following elements:

¢ Hookswitch/transducer. This is a means for audio input and output. The Telephony API recognizes
that a phone device can have several transducers, which can be activated and deactivated (taken
offhook or placed onhook) under application or manual user control. TAPI identifies three types of
hookswitch devices common to many phone sets:

Handset The traditional mouth-and-ear piece combination that must be manually lifted from a cradle
and held against the user's ear.

Speakerphone Enables the user to conduct calls hands-free. The hookswitch state of a speakerphone
can usually be changed both manually and by the API. The speakerphone can be internal or external
to the phone device. The speaker part of a speakerphone allows multiple listeners.

Headset Enables the user to conduct calls hands-free. The hookswitch state of a headset can usually
be changed both manually and by the API.

A hookswitch must be offhook to allow audio data to be sent to and/or received by the corresponding
transducer.

¢ Volume Control/Gain Control/Mute. Each hookswitch device is the pairing of a speaker and a
microphone component. The API provides for volume control and muting of speaker components and
for gain control or muting of microphone components.

¢ Ringer. A means for alerting users, usually through a bell. A phone device can be able to ring in a
variety of modes or patterns.

¢ Display. A mechanism for visually presenting messages to the user. A phone display is characterized
by its number of rows and columns.

¢ Phone buttons. An array of buttons. Whenever the user presses a button on the phone set, the API
reports that the corresponding button was pressed. Button-lamp IDs identify a button and lamp pair.
Of course, it is possible to have button-lamp pairs with either no button or no lamp. Button-lamp IDs
are integer values that range from 0 to the maximum number of button-lamps available on the phone
device, minus one. Each button belongs to a button class. Classes include call appearance buttons,
feature buttons, keypad buttons, and local buttons.

e Lamps. An array of lamps (such as LEDs) individually controllable from the API. Lamps can be lit in
different modes by varying the on and off frequency. The button-lamp ID identifies the lamp.

e Data areas. Memory areas in the phone device where instruction code or data can be downloaded to
and/or uploaded from. The downloaded information would affect the behavior (or in other words,
program) the phone device.

TAPI allows an application to monitor and control elements of the phone device. The most useful
elements for an application are the hookswitch devices. The phone set can act as an audio 1/0O device (to
the computer) with volume control, gain control and mute, a ringer (for alerting the user), data areas (for
programming the phone), and perhaps a display, though the computer's display is more capable. The
application writer is discouraged from directly controlling or using phone lamps or phone buttons, because
lamp and button capabilities can vary widely among phone sets, and applications can quickly become
tailored to specific phone sets.

There is no guaranteed core set of services supported by all phone devices as there is for line devices
(the Basic Telephony Services). Therefore, before an application can use a phone device, the application
must first determine the exact capabilities of the phone device. Telephony capability varies with the
configuration (client versus client/server), the telephone hardware, and the service-provider software.
Applications should make no assumptions as to what telephony capabilities are available. An application
determines the device capabilities of a phone device by calling the phoneGetDevCaps function. A
phone's device capabilities indicate which of these elements exist for each phone device present in the
system and what their capabilities are. Although strongly oriented toward real-life telephone sets, this

abstraction can provide a meaningful implementation (or subset thereof) for other devices as well. Take
as an example a separate headset directly connected and controllable from the computer and operated
as a phone device. Hookswitch changes can be triggered by detection of voice energy (offhook) or a
period of silence (onhook); ringing can be emulated by the generation of an audible signal into the
headset; a display can be emulated through text-to-speech conversion.

A phone device need not be realized in hardware, but can instead be emulated in software using a
mouse- or keyboard-driven graphical command interface and the computer's speaker or sound system.
Such a "soft phone" can be an application that uses TAPI. It can also be a service provider, which can be
listed as a phone device available to other applications through the API, and as such is assigned a phone
device ID.

Depending on the environment and configuration, phone sets can be shared devices between the
application and the switch. Some minor provision is made in the APl where the switch can temporarily
suspend the API's control of a phone device.

Initialization and Shutdown

For an application to use any of TAPI's 30 supplementary phone functions, it needs a connection to TAPI,
through which it can receive messages. The application establishes this connection using the
phonelnitializeEx function. In this function, the application specifies the notification mechanism by which
TAPI informs the application of changes in the state of the phone and of asynchronous completion of
phone functions.

The phonelnitializeEx function returns two pieces of information to the application: an application
handle, and the number of phone devices. The application handle represents the application's usage of
TAPI. The TAPI functions that use phone handles do not require the application handle, as this handle is
derived from the specified phone handle.

The second piece of information returned by phonelnitializeEx is the number of phone devices available
to the application through the Telephony API. Phone devices are identified by their device identifier
(device ID). Valid device IDs range from zero to the number of phone devices minus one. For example, if
phonelnitializeEx reports that there are two phone devices in a system, then valid phone device IDs are
0 and 1. Once an application is finished using the phone functions of TAPI, it invokes phoneShutdown,
passing its application handle to shut down its usage of TAPI. This allows TAPI to free any resources
assigned to the application.

Both phonelnitializeEx and phoneShutdown operate synchronously. That is, these functions either
return a success or failure indication, and never return an asynchronous Request ID.

Opening and Closing Phone Devices

After determining the capabilities of a phone device, an application must open the device before it can
access functions on that phone. After a phone device has been successfully opened, the application is
returned a handle representing the open phone. A phone device can be opened in different modes, thus
providing a structured way of sharing a phone device.

The function phoneOpen opens the specified phone device to give the application access to functions on
the phone. A phone device is identified to phoneOpen by means of its device ID, which is passed as the
dwDevicelD parameter.

Operating Modes and Privileges

The application can request one of two operating modes when opening a phone device. These modes
reflect the privileges the application requests for the device:

¢ Opening a phone for monitor privileges lets the application determine the status of the phone device.
Messages are sent to the application when status changes on the phone device are detected.

¢ An application that opens a phone device for owner privileges can use operations that modify the
state of the phone device. Owner privilege automatically includes full monitor privileges as well. At
any time, a given phone device can be open only once for owner privileges, but multiple times for
monitor privileges. All phoneSet operations require owner privileges, while all phoneGet operations
require only monitor privileges.

Device IDs

Other TAPI phone functions use a handle to an open phone device to identify the open phone device. The
only functions for phone devices that take a phone device ID parameter (as opposed to a phone handle)
are the phoneGetDevCaps and phoneOpen functions. An application can retrieve the phone's device ID
by using the function phoneGetID with the phone handle as a parameter.

An application can also obtain device IDs for various device classes associated with an opened phone by
invoking phoneGetID. See Device Classes for device class names.

This function takes a phone handle and a device class description. It returns the device ID for the device
of the given device class that is associated with the open phone device. If the device class is "tapi/phone,
the device ID of the phone device is returned.

In contrast with line devices, for which the basic line services provide the equivalent of POTS, no
minimum guaranteed set of functions is defined for phone devices. While each phone device provides at
least the functions and messages described in this section, they do not offer any actual operations on the
physical phone device.

Closing the Phone Device

The phoneClose function closes the specified phone device. The phone device can also be forcibly
closed after the user has modified the configuration of that phone or its driver. If the user wants the
configuration changes to be effective immediately (as opposed to after the next system restart), and they
affect the application's current view of the device (such as a change in device capabilities), then a service
provider can forcibly close the phone device.

These messages can also be sent unsolicited as a result of the phone device being reclaimed in some
other manner. An application should therefore be prepared to handle unsolicited PHONE_CLOSE
messages. At the time the phone device is closed, any outstanding asynchronous replies pertaining to
that device are suppressed.

Hookswitch Devices

A phone device can have multiple hookswitch devices. A hookswitch is the switch that connects or
disconnects a device from the phone line. On a telephone, for example, this is the switch that is
automatically activated when a user lifts the receiver from the cradle to get a new dial tone. The
Telephony API defines three types of hookswitch devices for a phone: handset, speakerphone, and
headset. Each hookswitch device has a speaker and a microphone component, and operates in one of
four hookswitch modes:

¢ Onhook. The hookswitch device is onhook, and both its microphone and speaker are disabled.

¢ Microphone only. The hookswitch device is offhook, its microphone is enabled, and its speaker is
mute.

¢ Speaker only. The hookswitch device is offhook, its microphone is mute, and its speaker is enabled.

¢ Microphone and speaker. The hookswitch device is offhook, and both microphone and speaker are
enabled.

The phoneSetHookSwitch function is used to set the hookswitch mode of one or more of the hookswitch
devices of an open phone device. For example, to mute or unmute the microphone or speaker
component of a hookswitch device, use phoneSetHookSwitch with the appropriate hookswitch mode.
The function phoneGetHookSwitch can be used to query the hookswitch mode of a hookswitch device
of an open phone device.

When the mode of a phone's hookswitch device is changed manually, for example by lifting the handset
from its cradle, a PHONE_STATE message is sent to the application to notify the application about the
state change. Parameters to this message provide an indication of the change.

The volume of the speaker component of a hookswitch device can be set with phoneSetVolume. Volume
setting is different from mute in that muting a speaker and later unmuting it will preserve the volume
setting of the speaker. The phoneGetVolume function can be used to return the current volume setting of
a hookswitch device's speaker of an open phone device.

The microphone component of a hookswitch device can also be gain controlled. Gain setting is different
from mute in that muting a microphone and later unmuting it will preserve the gain setting of the
microphone. Use phoneSetGain to set the gain of a hookswitch device's microphone of an open phone
device, and phoneGetGain to return the gain setting of a hookswitch device's microphone of an opened
phone.

When the volume or gain of a phone's hookswitch device is changed, a PHONE_STATE message is sent
to the application function to notify the application about the state change. Parameters to this message
provide an indication of the change.

Display

The Telephony API provides access to a phone's display. The display is modeled as an alphanumeric
area with rows and columns. A phone's device capabilities indicate the size of a phone's display as the
number of rows and the number of columns. Both these numbers are zero if the phone device does not
have a display. Use phoneSetDisplay to write information to the display of an open phone device, and
phoneGetDisplay to retrieve the current contents of a phone's display.

When the display of a phone device is changed, a PHONE_STATE message is sent to the application
function to notify the application about the state change. Parameters to this message provide an
indication of the change.

Ring
A single phone may be able to ring with different ring modes. Given the wide variety of ring modes

available, ring modes are identified by means of their ring mode number. A ring mode number ranges
from zero to the number of available ring modes minus one.

The functions an application would use to control a phone device's ring modes are phoneSetRing, which
rings an open phone device according to a given ring mode, and phoneGetRing, which returns the
current ring mode of an opened phone device.

When the ring mode of a phone device is changed, a PHONE_STATE message is sent to the application
to notify the application about the state change. Parameters to this message provide an indication of the
change.

Phone Buttons

The Telephony API models a phone's buttons and lamps as button-lamp pairs. A button with no lamp next
to it or a lamp with no button is specified using a "dummy" indicator for the missing lamp or button. A
button with multiple lamps is modeled by using multiple button-lamp pairs.

Information associated with a phone button can be set and retrieved. When a button is pressed, a
PHONE_ BUTTON message is sent to the application function. The parameters of this message are a
handle to the phone device and the button-lamp ID of the button that was pressed. The keypad buttons '0'
through '9', ™', and '#' are assigned the fixed button-lamp IDs 0 through 11.

The functions associated with buttons are phoneSetButtonlnfo, which sets the information associated
with a button on a phone device, and phoneGetButtoninfo, which returns information associated with a
button on a phone device. The PHONE_BUTTON message is sent to an application when a button on the
phone is pressed.

The information associated with a button does not carry any semantic meaning as far as TAPI is
concerned. It is useful for device-specific applications that understand the meaning of this information for
a given phone device, or for display to the user, such as online help.

Lamps

The lamps on a phone device can be lit in a variety of different lighting modes. Unlike ringing patterns,
lamp modes are more uniform across phone sets of different vendors. A common set of lamp modes is
defined by the API. A lamp identified by its lamp-button ID can be lit in a given lamp mode. A lamp can
also be queried for its current lamp mode.

The TAPI functions used for lamps are phoneSetLamp, which lights a lamp on a specified open phone
device in a given lamp lighting mode, and phoneGetLamp, which returns the current lamp mode of the
specified lamp.

When a lamp of a phone device is changed, a PHONE_STATE message is sent to the application to
notify the application about the state change. Parameters to this message provide an indication of the
change.

Data Areas

Some phone sets support the notion of downloading data from or uploading data to the phone device,
which allows the phone set to be programmed in a variety of ways. The Telephony API models these
phone sets as having one or more download or upload areas. Each area is identified by a number that
ranges from zero to the number of data areas available on the phone minus one. Sizes of each area can
vary. The format of the data itself is device-specific.

The TAPI phoneSetData function downloads a buffer of data to a given data area in the phone device,
and the phoneGetData function uploads the contents of a given data area in the phone device to a buffer.

When a data area of a phone device is changed, a PHONE_STATE message is sent to the application to
notify the application about the state change. Parameters to this message provide an indication of the
change.

Status

Most of the get and set operations deal with one component of information only. The phoneGetStatus
function returns complete status information about a phone device to an application.

As mentioned earlier, whenever a status item changes on the phone device, a PHONE STATE message
is sent to the application function. This message's parameters include a handle to the phone device and
an indication of the status item that changed.

An application can use phoneSetStatusMessages to select the specific status changes for which it
wants to be notified. Correspondingly, phoneGetStatusMessages returns the status changes for which
the application wants to be notified.

Extended Telephony Phone Functions

The Extended Phone Services (or Device-Specific Phone Services) include all extensions to the
Telephony API defined by the service provider. TAPI defines a mechanism that enables service-provider
vendors to extend TAPI using device-specific extensions. TAPI defines only the extension mechanism,
and by doing so provides access to device-specific extensions. The Telephony API does not define their
behavior, which is completely defined by the service provider.

TAPI consists of scalar and bit-flag data constant definitions, data structures, functions, and messages.
Procedures are defined that enable a vendor to extend most of these, as described in the following topics.

Scalar Data Constants

For extensible scalar data constants, a service-provider vendor can define new values in a specified
range. Because most data constants are DWORDs, the range 0x00000000 through Ox7FFFFFFF is
typically reserved for common future extensions, while 0x80000000 through OxFFFFFFFF is available for
vendor-specific extensions. The assumption is that a vendor would define values that are natural
extensions of the data types defined by the API.

Bit-Flag Data Constants

For extensible bit-flag data constants, a service-provider vendor can define new values for specified bits.
Because most bit-flag constants are DWORDSs, a specific number of the lower bits are usually reserved
for common extensions, while the remaining upper bits are available for vendor-specific extensions.
Common bit flags are assigned from bit zero up, and vendor-specific extensions should be assigned from
bit 31 down. This scheme provides maximum flexibility in assigning bit positions to common extensions,
as opposed to vendor-specific extensions. A vendor is expected to define new values that are natural
extensions of the bit flags defined by the API.

Extensible data structures have a variably sized field that is reserved for device-specific use. Because the
field is variably sized, the service provider decides the field's amount of information and interpretation. A
vendor that defines a device-specific field is expected to make these natural extensions of the original
data structure defined by the API.

Functions and Messages

The phoneDevSpecific function and its associated PHONE_DEVSPECIFIC message enable an
application to access device-specific phone features that are unavailable through the common Telephony
services for phones. In other words, phoneDevSpecific is the device-specific escape function that allows
vendor-dependent extensions, and PHONE_DEVSPECIFIC is the device-specific message that is sent to
the application.

The parameter profile of the phoneDevSpecific function is generic in that little interpretation of the
parameters is made by the Telephony API. Rather, the interpretation of the parameters is defined by the
service provider and must be understood by an application that uses them. The parameters are simply
passed through by TAPI from the application to the service provider. An application that relies on device-
specific extensions will usually not work with other service providers, but applications written to the
common telephony phone services will work with the extended service provider.

Assisted Telephony Overview

Assisted telephony provides very basic telephony functionality to primarily non-telephonic applications. If
your application needs extensive telephonic control or is meant to handle incoming calls, you can skip this
section.

Call Requests

Assisted Telephony provides telephony-enabled applications with an easy-to-use mechanism for making
phone calls without requiring the developer to become fully telephony literate.

The tapiRequestMakeCall function requests a voice call between the user and a remote party specified
by its phone number. The request is made to TAPI, which passes it to an application that is registered as
a recipient of such requests. This recipient is a call-manager application.

After the application has made the request, the call is controlled entirely from the call-manager application
because Assisted Telephony applications cannot manage calls. Because the more complex aspects of
telephony and all user-interface operations are handled by the call-manager application, telephony-
enabled applications need not be modified in any substantial way. In fact, applications that allow this
operation to be invoked from their built-in script language may not need to be modified at all.

The tapiGetLocationlnfo function returns to the application the country code and city (area) code which
the user has set in the current location parameters in the Telephony control panel. The application can
use this information to assist the user in forming proper canonical telephone numbers, such as by offering
these as defaults when new numbers are entered in a phone book entry or database record.

Request Recipients

Two kinds of applications are needed to run Assisted Telephony. Assisted Telephony clients are
applications that use Assisted Telephony by calling the functions that have the prefix "tapi." An example of
such a client application would be a spreadsheet to which a Dial menu command or toolbar button is
added.

Assisted Telephony servers are applications that can execute Telephony API functions that result from
another application's call to a "tapi"-prefixed function. To make itself known as an Assisted Telephony
server, such an application registers as one using the function lineRegisterRequestRecipient.

The functions of Assisted Telephony (which begin with the prefix "tapi") are known as request functions.
Assisted Telephony applications that process these requests —Assisted Telephony servers—are called
request recipients.

Assisted Telephony Requests

Applications that use Assisted Telephony services only initiate requests that are temporarily queued by
TAPI. It is the request recipient application that retrieves these requests and executes them on behalf of
the Assisted Telephony application. The tapiRequestMakeCall function requests the establishment of a
voice call. The requesting application does not control the call.

TAPI allows the user to establish different or the same request recipient applications for each of these
services. An application becomes a request recipient by registering with lineRegisterRequestRecipient,
in which TRUE is specified as the value for the parameter bEnable. (Specifying FALSE deregisters the
application as a request recipient, which it should do when it has determined that its recipient duties are
through for the current session.) The application selects which services it wants to handle in the
dwRequestMode parameter of lineRegisterRequestRecipient. A possible value for a request is
LINEREQUESTMODE_MAKECALL, to show that the application will handle tapiRequestMakeCall
requests. If multiple applications register for the same services, a priority scheme is used to allow the user
to select which application is preferred for handling requests. This priority scheme is identical to that used
for call hand-off and the routing of incoming calls based on a list of filenames in the HandoffPriorities
section of the registry.

Processing Assisted Telephony Requests

The process with which requests are delivered and serviced is as follows:

1. When TAPI receives an Assisted Telephony request, it checks for a request recipient, that is, an
application currently registered to process that type of request. If there is a request recipient, the
request is queued, and the highest-priority application that has registered for that request's service is
sent a LINE_REQUEST message. The message notifies the request recipient that a new request has
arrived, and it carries an indication of the request's mode.

2. If TAPI cannot find a currently running application to process such a request, it tries to launch an
application that has been registered as capable of doing so. This registration information is recorded
in the HandoffPriorities section of the registry. TAPI tries to launch applications in the order in which
they are listed in the HandoffPriorities section. (See the following step.)

If no application is currently registered, TAPI examines the list of request-processing applications on
the associated entry in the HandoffPriorities section. If the associated line is missing from the file, if
there are no applications listed on it, or if none of the applications in the list can be launched, the
request is rejected with the error TAPIERR_NOREQUESTRECIPIENT.

When a request recipient is launched (whether or not it has been launched by TAPI) it is its duty to
call lineRegisterRequestRecipient during the startup process and register itself as a request
recipient.

3. If one or more applications are listed in the entry, TAPI begins with the first listed application (highest
priority), and attempts to launch it using the CreateProcess function. If the attempt to launch the
application fails, TAPI attempts to launch the next application in the list. When any application
launches successfully, TAPI simply queues the request and returns a success indication to the
application even though the request hasn't yet been signaled to the request recipient.

Once the request recipient application is launched, it calls lineRegisterRequestRecipient, which
causes a LINE_REQUEST message to be sent, signaling that the request is queued. If for some
reason the launched application never registers, the request remains queued and remains in the
queue indefinitely until an application registers for that type of request.

4. If TAPI finds such a registered application already running or successfully launches one, it queues the
request, sending a LINE_REQUEST message to the server application, and returns a success
indication for the function call to the Assisted Telephony application. This success message states
only that the request has been accepted and queued, not that it has been successfully executed.

When the server application is ready to process a request, it calls the function lineGetRequest. This lets
it receive any information it needs, such as an address to dial. It then processes the request, using the
Telephony API functions (such as lineMakeCall and lineDrop) that would otherwise be used to place the
call. Invoking lineGetRequest removes the request from TAPI, and the request parameters are copied in
an application-allocated request buffer. The size and interpretation of the contents of the buffer depend on
the request mode.

The server must ensure that it uses the correct parameters when executing requests. When doing so,
these steps are followed:

1. The request recipient first receives a LINE_REQUEST message informing it that requests can exist
for it in the request queue. This tells the application to call lineGetRequest and keep calling it until
the queue is drained (if the request is for making a new call), or to drop an existing call. This message
does not contain the parameters for the request, except in the case of a request to drop an existing
call.

2. If the request is to make a new call, the Assisted Telephony server uses the lineGetRequest function
to retrieve the full request, which includes the request's parameters. The server now has all the
information it needs, such as the number to dial or the identification of the maker of the request. First,
however, the server must allocate the memory needed to store this information.

3. Finally, the server executes the request by invoking the appropriate Telephony API function or set of

functions.

If TAPI cannot launch an application capable of serving as a request recipient, the Assisted Telephony call
fails and returns the error TAPIERR_NOREQUESTRECIPIENT.

Notes on Request Recipient Operations

The following information concerns systems on which Assisted Telephony requests are processed:

¢ The default registry should list a call manager application in the priority list for tapiRequestMakeCall.
It would be helpful, but not essential, for the call manager application to have a menu option that
allows users to set it to the highest priority.

¢ When an Assisted Telephony recipient application is launched automatically by TAPI and if it is the
only TAPI application in the system, this action initializes TAPI. If the Assisted Telephony recipient
application initializes and shuts down the line device before registering for Assisted Telephony
requests, TAPI is shut down as well, and the Assisted Telephony request is lost. Assisted Telephony

requests might also be lost when another TAPI application that is launched performs an initialize and
shutdown.

Using Assisted Telephony

You might use assisted telephony in a word-processing application. Consider a word-processing
application that has a button with a caption of "George." When the user selects a telephone number in a
document and clicks this button, the application sends a request (tapiRequestMakeCall) to the call-
control application, which dials the number and notifies the user of the call's status.

Device Classes

A device class is a group of related physical devices or device drivers through which applications send
and receive the information or data that makes up a call. Every device class has a device class name that
uniquely identifies the class, and provides information about the programming interface and commands
that can be used to open and communicate with the devices in the class.

The Telephony application programming interface (TAPI) associates devices from one or more device
classes to each line or phone device. You access one of these devices by retrieving the device identifier
for the device using the lineGetID or phoneGetID function. You supply the device class name, and the
function returns the specific port name, device name, device handle, or device identifier that you need to
open and access the device. The format of the information returned depends on the device class and is
described in subsequent topics of this section.

Note The device identifier definitions apply to 16-bit and 32-bit TAPI. In some cases, the data type
of a media handle in the device identifier definition may be different from that specified by the
Microsoft® Windows® operating system version 3.x or Microsoft® Win32® application programming
interface. For example, Windows version 3.x and Win32 define wave device identifiers with the UINT
type, but TAPI defines this device identifier with the DWORD type. In such cases, you should cast the
media handle to the appropriate data type when using it with the Windows version 3.x or Win32 API.

You also use device class names with the lineConfigDialog and phoneConfigDialog functions to enable
the user to set configuration options for the given device, with the lineGetlcon and phoneGeticon
functions to retrieve an icon to represent the given device, and with the lineGetDevConfig and
lineSetDevConfig functions to directly retrieve and set configuration options for the given device.

By default, there are the following device class names.

Device Class Name Description

comm Communications port.
comm/datamodem Modem through a communications port.
comm/datamodem/ Name of the device to which a modem is
portname connected.

wave/in Wave audio device (input only).
wave/out Wave audio device (output only).
midi/in Midi sequencer (input only).

midi/out Midi sequencer (output only).

tapi/line Line device.

tapi/phone Phone device.

ndis Network device.

tapi/terminal Terminal device.

Note These names are not case sensitive; you can use any combination of uppercase and
lowercase letters.

Additional device classes and device class names may be available on a given system. In general, if a
device does not belong to one of the default device classes, the manufacturer typically defines a new
device class and assigns a unique device class name. Check the documentation for the device to
determine what additional device classes are available for it. Note, however, that although the device
class and media mode are related, they are not the same. A media mode describes a format of

information on a call, and a device class defines the programming interface used to manage that
information. So, even if a manufacturer defines a new media mode, it is not necessarily true that the
manufacturer also needs to define a new device class to support the mode.

The format of the configuration data used with the lineSetDevConfig and lineGetDevConfig functions
also depends on the device class. In general, you use lineGetDevConfig to save a copy of the current
device configuration data and then later use lineSetDevConfig with the saved configuration data to
restore the device configuration to the previous state. This is a convenient way to temporarily change the
configuration without requiring the user to manually restore it to the previous state. Because the exact
format of the device configuration data may be different with each service provider, you should not use
lineSetDevConfig and lineGetDevConfig to manipulate the device configuration data directly. Some
formats are provided only for information.

comm

The comm device class consists of communications ports. You access these devices by using the Win32
file and communications functions.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT _ASCII value and appending a null-terminated string that specifies the
name of the communication port (such as COM1). You use this port name in a call to the CreateFile
function to open the communication device for the line or phone.

comm/datamodem

The comm/datamodem device class consists of modem devices. You access these devices by using the
Win32 file and communications functions. Devices in this class are associated with line devices that
support the LINEMEDIAMODE_DATAMODEM media mode, which is specified in the dwMediaModes
member of the LINEDEVCAPS structure for the line device.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting dwStringFormat to the
STRINGFORMAT_BINARY value and appending these additional members:

HANDLE hComm; // handle of open comm. device
CHAR szDeviceName[l]; // name of comm. device

The hComm member is the handle of the open communications port. This member is NULL if the port is
not yet open or if the dwSelect parameter of lineGetlID is not the LINECALLSELECT_CALL value. If a call
is active, the service provider typically opens the port itself to get direct control of the communications
hardware, but is only required to return a valid handle if the line is connected. The service provider opens
the port using the FILE_FLAG_OVERLAPPED value and then configures the port using the settings
specified by the lineSetDevConfig function. You can set additional configuration options for the device by
using Win32 functions with the returned handle.

The szDeviceName member is a null-terminated ASCII string that specifies the name of the
communications port associated with the line, address, or call.

If hComm is a valid handle, you can use it in subsequent calls to Win32 file functions, such as ReadFile
and WriteFile, to send and receive data on the call. When you are finished using the communications
port and preferably before you use the lineDeallocateCall function to deallocate the call, you must close
the port by using the CloseHandle function.

When using the lineGetDevConfig and lineSetDevConfig functions, some service providers require that
the configuration data for this device class have the following format:

typedef struct tagDEVCFG {
DEVCFEFGHDR dfgHdr;
COMMCONFIG commconfig;

} DEVCFG, *PDEVCFG, FAR* LPDEVCFEG;

// Device setting information
typedef struct tagDEVCEFGDR {

DWORD dwSize;

DWORD dwVersion;
WORD fwOptions;
WORD wWaitBong;

} DEVCFGHDR;

The following is device configuration information for use with the lineGetDevConfig and
lineSetDevConfig functions.

dwSize
Sum of the size of the DEVCFGHDR structure and the actual size of COMMCONFIG structure.

dwVersion
Version number of the Unimodem DevConfig structure. This member can be MDMCFG_VERSION
(0x00010003).

dwOptions
Option flags that appear on the Unimodem Option page. This member can be a combination of these

values:
TERMINAL_PRE (1)
Displays the pre-terminal screen.
TERMINAL_POST (2)
Displays the post-terminal screen.
MANUAL_DIAL (4)
Dials the phone manually, if capable of doing so.
LAUNCH_LIGHTS (8)
Displays the modem tray icon.
Only the LAUNCH_LIGHTS value is set by default
WWaitBong
Number of seconds (in two seconds granularity) to replace the wait for credit tone ($).
Commconfig
COMMCONFIG structure that can be used with the Win32 communications and MCX functions.

comm/datamodem/portname

The comm/datamodem/portname device class consists of the device names to which modems are
attached. When this device name is specified in a call to the lineGetID function, the function fills the
VARSTRING structure with a null-terminated ANSI (not UNICODE) string specifying the name of the port
to which the specified modem is attached, such as "COM1\0". This is intended primarily for identification
purposes in the user interface, but could be used under some circumstances to open the device directly,
bypassing the service provider (if the service provider does not already have the device open itself). If
there is no port associated with the device, a null string ("\0") is returned in the VARSTRING structure
(with a string length of 1).

wavel/in

The wave/in device class consists of audio devices for low-level wave audio input. You access these
devices by using the wave functions, which are described in the Microsoft Win32 Software Development
Kit (SDK). Devices in this class are associated with line devices that support the
LINEMEDIAMODE_AUTOMATEDVOICE media modem, which is specified in the dwMediaModes
member of the LINEDEVCAPS structure for the line device.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DevicelId; // identifier of audio device

The Deviceld member is the identifier of a closed audio device. You use this identifier in a call to the
wavelnOpen function to open the device for input. You can use the resulting device handle to record
digitized audio data from the line or phone device.

Although a "wave" device class also exists for low-level wave audio devices, you should always use the
wavel/in device class for low-level wave input.

wave/out

The wave/out device class consists of audio devices for low-level wave audio output. You access these
devices by using the wave functions, which are described in the Win32 SDK. Devices in this class are
associated with line devices that support the LINEMEDIAMODE_AUTOMATEDVOICE media mode,
which is specified in the dwMediaModes member of the LINEDEVCAPS structure for the line device.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DevicelId; // identifier of audio device

The Deviceld member is the identifier of a closed audio device. You use this identifier in a call to the
waveOutOpen function to open the device for output. You can use the resulting device handle to play
digitized audio data at the line or phone device.

Although a "wave" device class also exists for low-level wave audio devices, you should always use the
wave/out device class for low-level wave output.

midi/in
The midi/in device class consists of MIDI sequencers that are used for input. You access these devices
by using the MIDI functions, which are described in the Win32 SDK.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DeviceId; // identifier of MIDI device

The Deviceld member is the identifier of a closed MIDI device. You use this identifier in a call to the
midilnOpen function to open the device for input. You can use the resulting device handle to record MIDI
data from the line or phone device.

midi/out

The midi/out device class consists of MIDI sequencers that are used for output. You access these devices
by using the MIDI functions, which are described in the Win32 SDK.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending this additional member:

DWORD DeviceId; // identifier of MIDI device

The Deviceld member is the identifier of a closed MIDI device. You use this identifier in a call to the
midiOutOpen function to open the device for output. You can use the resulting device handle to play
MIDI data at the line or phone device.

tapi/line

The tapi/line device class consists of all line devices. You access these devices using the TAPI line
functions.

The lineGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member.

DWORD dwDeviceI; // line device identifier

The dwDeviceld member is the identifier of the line device associated with the line handle given by
lineGetID.

The phoneGetID function also fills a VARSTRING structure, setting dwStringFormat to
STRINGFORMAT_BINARY and appending this additional member:

DWORD adwDeviceIds[]; // array of line device identifiers

The adwDevicelds member is an array containing the device identifiers of all line devices that are
associated with the phone device. If there are no associated line devices, phoneGetID returns the
PHONEERR_INVALDEVICECLASS value.

tapi/phone

The tapi/phone device class consists of all phone devices. You access these devices by using the TAPI
phone functions.

The phoneGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member:

DWORD dwDeviceI; // phone device identifier

The dwDeviceld member is the identifier of the phone device associated with the phone handle given by
phoneGetiID.

The lineGetID function also fills a VARSTRING structure, setting dwStringFormat to
STRINGFORMAT_BINARY and appending this additional member:

DWORD adwDeviceIds[]; // array of phone device identifiers

The adwDevicelds member is an array containing the device identifiers of all phone devices that are
associated with the given line device. If there are no associated phone devices, lineGetID returns the
LINEERR_INVALDEVICECLASS value.

ndis

The ndis device class consists of devices that can be associated with network driver interface
specification (NDIS) media access control (MAC) drivers to support network communications. You access
these devices by using functions.

The lineGetID and phoneGetID functions fill a VARSTRING structure, setting the dwStringFormat
member to the STRINGFORMAT_BINARY value and appending these additional members:

HANDLE hDevice; // NDIS connection identifier
CHAR szDeviceType[l]; // name of device

The hDevice member is the identifier to pass to a MAC, such as the asynchronous MAC for dial-up
networking, to associate a network connection with the call/modem connection. The szDeviceType
member is a null-terminated ASCII string specifying the name of the device associated with the identifier.
For more information, see documentation about writing NDIS MAC drivers for use with dial-up networking.

tapi/terminal

The tapi/terminal device class consists of the phone devices associated with each terminal on a line or
the terminal on each line associated with a phone device. You access these devices by using the TAPI
line or phone functions.

The lineGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member:

DWORD adwDeviceId[]; // array of phone device identifiers

The adwDeviceld member is an array of phone device identifiers. There is one array element for each
terminal specified by the dwNumTerminals member in the LINEDEVCAPS structure for the given line
device. Each element specifies the identifier of the phone device associated with the corresponding
terminal on the line. If there is no phone device associated with a terminal, the element is set to -1
(OXFFFFFFFF).

The phoneGetID function fills a VARSTRING structure, setting the dwStringFormat member to the
STRINGFORMAT_BINARY value and appending this additional member:

DWORD adwTerminalID[]; // array of terminal identifiers

The adwTerminallD member is an array of terminal identifiers. There is one array element for each line
device identifier specified by the linelnitialize or linelnitializeEx function. Each array element contains
the terminal identifier associated with the phone device for the given line device. If there is no phone
device, the element is set to -1 (OXFFFFFFFF). The terminal identifiers range in value from zero to one
less than the number specified by the dwNumTerminals member in the LINEDEVCAPS structure.

Quick Function Reference

The following is the quick function reference for basic telephony services, supplementary telephony
services, assisted telephony, and extended telephony services.

Basic Telephony Services Functions

The Basic Telephony functions are listed by category in the following tables. A function is identified as
asynchronous if it will indicate completion in a REPLY message to the application. If the function always
returns its result to the application immediately, the function is considered synchronous.

TAPI Initialization and Shutdown

linelnitializeEx Initializes the Telephony API line
abstraction for use by the invoking
application. Synchronous.

lineShutdown Shuts down the application's use of
the line Telephony API. Synchronous.

Line Version Negotiation

lineNegotiateAPIVersion Allows an application to negotiate an
API version to use. Synchronous.

Line Status and Capabilities

lineGetDevCaps Returns the capabilities of a given
line device. Synchronous.

lineGetDevConfig Returns configuration of a media
stream device. Synchronous.

lineGetLineDevStatus Returns current status of the
specified open line device.
Synchronous.

lineSetDevConfig Sets the configuration of the specified
media stream device. Synchronous.

lineSetStatusMessages Specifies the status changes for

which the application wants to be
notified. Synchronous.

lineGetStatusMessages Returns the application's current line
and address status message settings.
Synchronous.

lineGetlD Retrieves a device ID associated with
the specified open line, address, or
call. Synchronous.

lineGeticon Allows an application to retrieve an
icon for display to the user.
Synchronous.

lineConfigDialog Causes the provider of the specified

line device to display a dialog box
that allows the user to configure
parameters related to the line device.
Synchronous.

lineConfigDialogEdit Displays a dialog box allowing the
user to change configuration
information for a line device.
Synchronous. Version 0x00010004.

Addresses

lineGetAddressCaps

lineGetAddressStatus

lineGetAddressID

Opening and Closing Line Devices

lineOpen

lineClose

Address Formats

lineTranslateAddress

lineSetCurrentlLocation

lineSetTollList
lineGetTranslateCaps

Call States and Events

lineGetCallinfo

lineGetCallStatus

lineSetAppSpecific

Request Recipient Services

Returns the telephony capabilities of
an address. Synchronous.

Returns current status of a specified
address. Synchronous.

Retrieves the address ID of an
address specified using an alternate
format. Synchronous.

Opens a specified line device for
providing subsequent monitoring
and/or control of the line.
Synchronous.

Closes a specified opened line
device. Synchronous.

Translates between an address in
canonical format and an address in
dialable format. Synchronous.

Sets the location used as the context
for address translation. Synchronous.
Manipulates the toll list. Synchronous.

Returns address translation
capabilities. Synchronous.

Returns mostly constant information
about a call. Synchronous.

Returns complete call status
information for the specified call.
Synchronous.

Sets the application-specific field of a
call's information structure.
Synchronous.

These functions are used only in support of assisted telephony.

LineRegisterRequestRecipie Registers or deregisters the

nt

lineGetRequest

Making Calls

lineMakeCall

lineDial

application as a request recipient for
the specified request mode.
Synchronous.

Gets the next request from the
Telephony DLL. Synchronous.

Makes an outbound call and returns a
call handle for it. Asynchronous.

Dials (parts of one or more) dialable

Answering Inbound Calls

lineAnswer

Toll Saver Support

lineSetNumRings

lineGetNumRings

Call Privilege Control

lineSetCallPrivilege

Call Drop
lineDrop

lineDeallocateCall

Call Handle Manipulation

lineHandoff

lineGetNewCalls

lineGetConfRelatedCalls

Location and Country Information

lineTranslateDialog

lineGetCountry

addresses. Asynchronous.

Answers an inbound call.
Asynchronous.

Indicates the number of rings after
which inbound calls are to be
answered. Synchronous.

Returns the minimum number of rings
requested with lineSetNumRings.
Synchronous.

Sets the application's privilege to the
privilege specified. Synchronous.

Disconnects a call, or abandons a call
attempt in progress. Asynchronous.

Deallocates the specified call handle.
Synchronous.

Hands off call ownership and/or
changes an application's privileges to
a call. Synchronous.

Returns call handles to calls on a
specified line or address for which the
application does not yet have
handles. Synchronous.

Returns a list of call handles that are
part of the same conference call as
the call specified as a parameter.
Synchronous.

Displays a dialog box allowing the
user to change location and calling
card information. Synchronous.
Version 0x00010004.

Retrieves dialing rules and other
information about a given country.
Synchronous. Version 0x00010004.

Supplementary Telephony Services Functions

The supplementary telephony functions are listed by category in the following tables. Line services are
listed first, phone services next. A function is identified as asynchronous if it will indicate completion in a
REPLY message to the application. If the function always returns its result to the application immediately,
the function is considered synchronous.

Line Services

Bearer Mode and Rate

lineSetCallParams

Media Monitoring

lineMonitorMedia

Digit Monitoring and Gathering

lineMonitorDigits

lineGatherDigits

Tone Monitoring

lineMonitorTones

Media Control

lineSetMediaControl

lineSetMediaMode

Generating Inband Digits and Tones
lineGenerateDigits

lineGenerateTone

Call Accept and Redirect

lineAccept

lineRedirect

Call Reject

lineDrop

Call Hold

Requests a change in the call
parameters of an existing call.
Synchronous.

Enables or disables media mode
notification on a specified call.
Synchronous.

Enables or disables digit detection
notification on a specified call.
Synchronous.

Performs the buffered gathering of
digits on a call. Synchronous.

Specifies which tones to detect on a
specified call. Synchronous.

Sets up a call's media stream for
media control. Synchronous.

Sets the media mode(s) of the
specified call in its LINECALLINFO
structure. Synchronous.

Generates inband digits on a call.
Synchronous.

Generates a given set of tones
inband on a call. Synchronous.

Accepts an offered call and starts
alerting both caller (ringback) and
called party (ring). Asynchronous.

Redirects an offering call to another
address. Asynchronous.

See Call Drop table under Basic
Telephony Services. Asynchronous.

Making Calls

Call Transfer

Call Conference

Call Park

Call Forwarding

Call Pickup

lineHold

lineUnhold

lineSecureCall

lineSetupTransfer

lineCompleteTransfer

lineBlindTransfer

lineSwapHold

lineSetupConference

Places the specified call on hard
hold. Asynchronous.

Retrieves a held call. Asynchronous.

Secures an existing call from
interference by other events such as
call-waiting beeps on data
connections. Asynchronous.

Prepares a specified call for transfer
to another address. Asynchronous.

Transfers a call that was set up for
transfer to another call, or enters a
three-way conference.
Asynchronous.

Transfers a call to another party.
Asynchronous.

Swaps the active call with the call
currently on consultation hold.
Asynchronous.

Prepares a given call for the addition
of another party. Asynchronous.

LinePrepareAddToConferencePrepares to add a party to an

LineAddToConference

LineRemoveFromConference

linePark

lineUnpark

lineForward

existing conference call by allocating
a consultation call that can later be
added to the conference call that is
placed on conference hold.
Asynchronous.

Adds a consultation call to an
existing conference call.
Asynchronous.

Removes a party from a conference
call. Asynchronous.

Parks a given call at another
address. Asynchronous.

Retrieves a parked call.
Asynchronous.

Sets or cancels call forwarding
requests. Asynchronous.

linePickup

Sending Information to Remote Party

lineReleaseUserUserinfo

lineSendUserUserinfo

Call Completion

lineCompleteCall

lineUncompleteCall

Setting a Terminal for Phone Conversations

lineSetTerminal

Application Priority

lineGetAppPriority

lineSetAppPriority

Service Provider Management

lineAddProvider

lineConfigProvider

lineRemoveProvider

lineGetProviderList

Picks up a call that is alerting at
another number. Picks up a call
alerting at another destination
address and returns a call handle for
the picked-up call (linePickup can
also be used for call waiting).
Asynchronous.

Releases user-to-user information,
permitting the system to overwrite
this storage with new information.
Asynchronous. Version 0x00010004.

Sends user-to-user information to
the remote party on the specified
call. Asynchronous.

Places a call completion request.
Asynchronous.

Cancels a call completion request.
Asynchronous.

Specifies the terminal device to
which the specified line, address
events, or call media stream events
are routed. Asynchronous.

Retrieves handoff and/or Assisted
Telephony priority information for an
application. Synchronous. Version
0x00010004.

Sets the handoff and/or Assisted
Telephony priority for an application.
Synchronous. Version 0x00010004.

Installs a Telephony service provider.
Synchronous. Version 0x00010004.

Displays configuration dialog box of
a service provider. Synchronous.
Version 0x00010004.

Removes an existing Telephony
service provider. Synchronous.
Version 0x00010004.

Retrieves a list of installed service
providers. Synchronous. Version
0x00010004.

Agents

Proxies

lineAgentSpecific

LineGetAgentActivityList

lineGetAgentCaps

LineGetAgentGrouplList

lineGetAgentStatus

lineSetAgentActivity

lineSetAgentGroup

lineSetAgentState

lineProxyMessage

lineProxyResponse

Quality of Service

Miscellaneous

lineSetCallQualityOfService

lineSetCallData

Allows the application to access
proprietary handler-specific functions
of the agent handler associated with
the address. Asynchronous. Version
0x00020000.

Obtains the list of activities from
which an application selects the
functions an agent is performing.
Asynchronous. Version 0x00020000.

Obtains the agent-related
capabilities supported on the
specified line device. Asynchronous.
Version 0x00020000.

Obtains the list of agent groups into
which an agent can log into on the
automatic call distributor.
Asynchronous. Version 0x00020000.

Obtains the agent-related status on
the specified address.
Asynchronous. Version 0x00020000.

Sets the agent activity code
associated with a particular address.
Asynchronous. Version 0x00020000.

Sets the agent groups into which the
agent is logged into on a particular
address. Asynchronous. Version
0x00020000.

Sets the agent state associated with
a particular address. Asynchronous.
Version 0x00020000.

Used by a registered proxy request
handler to generate TAPI messages.
Synchronous. Version 0x00020000.

Indicates completion of a proxy
request by a registered proxy
handler. Synchronous. Version
0x00020000.

Requests a change of the quality of
service parameters for an existing
call. Asynchronous. Version
0x00020000.

Sets the CallData member of the
LINECALLINFO structure.
Asynchronous. Version 0x00020000.

lineSetCallTreatment Sets the sounds the user hears
when a call is unanswered or on
hold. Asynchronous. Version
0x00020000. lineSetLineDevStatus

Sets the line device status.
Asynchronous. Version 0x00020000.

Phone Services
TAPI Initialization and Shutdown

phonelnitializeEx

phoneShutdown

Phone Version Negotiation

phoneNegotiateAPIVersion

Opening and Closing Phone Devices

phoneOpen

phoneClose

Phone Status and Capabilities

phoneGetDevCaps

phoneGetID

phoneGetlcon

phoneConfigDialog

Hookswitch Devices

phoneSetHookSwitch

phoneGetHookSwitch

phoneSetVolume

phoneGetVolume

Initializes the Telephony API phone
abstraction for use by the invoking
application. Synchronous.

Shuts down the application's use of
the phone Telephony API.
Synchronous.

Allows an application to negotiate an
API version to use. Synchronous.

Opens the specified phone device,
giving the application either owner or
monitor privileges. Synchronous.

Closes a specified open phone
device. Synchronous.

Returns the capabilities of a given
phone device. Synchronous.

Returns a device ID for the given
device class associated with the
specified phone device.
Synchronous.

Allows an application to retrieve an
icon for display to the user.
Synchronous.

Causes the provider of the specified
phone device to display a dialog box
that allows the user to configure
parameters related to the phone
device. Synchronous.

Sets the hookswitch mode of one or
more of the hookswitch devices of an
open phone device. Asynchronous.

Queries the hookswitch mode of a
hookswitch device of an open phone
device. Synchronous.

Sets the volume of a hookswitch
device's speaker of an open phone
device. Asynchronous.

Returns the volume setting of a
hookswitch device's speaker of an

Display

Ring

Buttons

Lamps

Data Areas

Status

phoneSetGain

phoneGetGain

phoneSetDisplay

phoneGetDisplay

phoneSetRing

phoneGetRing

phoneSetButtoninfo

phoneGetButtoninfo

phoneSetLamp

phoneGetLamp

phoneSetData

phoneGetData

phoneSetStatusMessages

phoneGetStatusMessages

open phone device. Synchronous.

Sets the gain of a hookswitch
device's mic of an open phone
device. Asynchronous.

Returns the gain setting of a
hookswitch device's mic of an opened
phone. Synchronous.

Writes information to the display of an
open phone device. Asynchronous.

Returns the current contents of a
phone's display. Synchronous.

Rings an open phone device
according to a given ring mode.
Asynchronous.

Returns the current ring mode of an
opened phone device. Synchronous.

Sets the information associated with
a button on a phone device.
Asynchronous.

Returns information associated with a
button on a phone device.
Synchronous.

Lights a lamp on a specified open
phone device in a given lamp lighting
mode. Asynchronous.

Returns the current lamp mode of the
specified lamp. Synchronous.

Downloads a buffer of data to a given
data area in the phone device.
Asynchronous.

Uploads the contents of a given data
area in the phone device to a buffer.
Synchronous.

Specifies the status changes for
which the application wants to be
notified. Synchronous.

Returns the status changes for which

the application wants to be notified.
Synchronous.

phoneGetStatus Returns the complete status of an
open phone device. Synchronous.

Assisted Telephony Services Functions

The Assisted Telephony Services functions are:

tapiRequestMakeCall

tapiRequestMediaCall
tapiRequestDrop
tapiGetLocationinfo

Submits a request to place a voice
call.

Obsolete. Do not use.
Obsolete. Do not use.

Returns country code and city/area
code information.

Extended Telephony Services Functions

The following tables list by category the extended telephony functions for both line and phone devices.
Extended Line Services

lineNegotiateExtVersion Allows an application to negotiate an
extension version to use with the
specified line device. Asynchronous.

lineDevSpecific Device-specific escape function.
Synchronous.
lineDevSpecificFeature Device-specific escape function to

allow sending switch features to the
switch. Asynchronous.

Extended Phone Services

phoneDevSpecific Device-specific escape function to
allow vendor-dependent extensions.
Asynchronous.

PhoneNegotiateExtVersion Allows an application to negotiate an
extension version to use with the
specified phone device.
Synchronous.

Unicode Support

The following section contains information about support for Unicode.

Functions with Unicode (W) Versions

The following TAPI functions are implemented in Unicode (W) and ANSI (A) versions. In general, the
implementation of the ANSI version calls the Unicode version and performs necessary conversions of
ANSI parameters and structure fields to and from Unicode; the following table indicates the parameters
that are converted.

Applications that explicitly call the generic (neither "W" or "A" suffix) version of a function will execute the
ANSI version, for backward compatibility with previous versions of TAPI.

Note The entire Telephony Service Provider Interface (TSPI) is Unicode for version 2.0.

In the following table, references to string fields in TAPI structures consist of a portion of the field names.
For example, the "Caller Address" in the LINEFORWARD structure is pointed to by a field named
dwCallerAddressOffset and delimited by a field named dwCallerAddressSize; in the table, this string is
identified simply as CallerAddress.

TAPI Function Parameters and Structure Fields
Converted in ANSI Version of
Function

lineAddProvider IpszProviderName

lineBlindTransfer IpszDestAddress

lineConfigDialog IpszDeviceClass

lineConfigDialogEdit IpszDeviceClass

Note Application must handle
conversion of strings in
InDeviceConfigin and
InDeviceConfigOut, if these are
directly manipulated.

lineDial IpszDestAddress

lineForward IpForwardList
(LINEFORWARDLIST)

e ForwardList (LINEFORWARD)
e CallerAddress
e DestAddress

IpCallParams (LINECALLPARAMS)

e OrigAddress

¢ DisplayableAddress

e CalledParty

e Comment

e TargetAddress

e DeviceClass

e CallingPartylD

lineGatherDigits IpsDigits
IpszTerminationDigits

lineGenerateDigits IpszDigits

lineGetAddressCaps IpAddressCaps

(LINEADDRESSCAPS)

lineGetAddressID
lineGetAddressStatus

lineGetAgentActivityList

lineGetAgentCaps

lineGetAgentGroupList

lineGetAgentStatus

lineGetAppPriority

lineGetCallinfo

e Address

e CompletionMsgText

e DeviceClasses

e CallTreatmentList
(LINECALLTREATMENTENTR
Y)

e CallTreatmentName

IpsAddress

IpAddressStatus
(LINEADDRESSSTATUS)

e Forward (LINEFORWARD)

e CallerAddress

e DestAddress
IpAgentActivityList
(LINEAGENTACTIVITYLIST)

e Lijst

(LINEAGENTACTIVITYENTRY)

e Name
IpAgentCaps (LINEAGENTCAPS)

e AgentHandlerInfo

IpAgentGroupList(LINEAGENTGR
OUPLIST)

o [jst
(LINEAGENTGROUPENTRY)
e Name

IpAgentStatus
(LINEAGENTSTATUS)

e Activity

e GroupList
(LINEAGENTGROUPENTRY)

e Name
IpszAppFilename
IpExtensionName
IpCallinfo (LINECALLINFO)

e CallerlID

e CallerIDName

e CalledID

e CalledIDName

e ConnectlD

e ConnectedIDName

¢ RedirectionID

e RedirectionIDName

e RedirectinglD

¢ RedirectingIDName

e AppName

e DisplayableAddress

e CalledParty

lineGetCountry

Comment

IpLineCountryList

(LINECOUNTRYLIST)

CountryList
(LINECOUNTRYENTRY)

CountryName
SameAreaRule
LongDistanceRule
InternationalRule

lineGetDevCaps

LineGetDevConfig

LineGeticon
lineGetID

LineGetLineDevStatus

lineGetProviderList

lineGetRequest

IpLineDevCaps (LINEDEVCAPS)
¢ Providerinfo

e Switchinfo

e [ineName

e TerminalText

e DeviceClasses

Note dwStringFormat is
obsolete.

IpszDeviceClass

Note Application must handle
conversion of strings in
IpDeviceConfig, if these are
directly manipulated.

IpszDeviceClass
IpszDeviceClass

Note Application must handle
conversion of strings in
IpDevicelD, if these are directly
manipulated.

IpLineDevStatus
(LINEDEVSTATUS)

e Appinfo (LINEAPPINFO)
e MachineName

e UserName

e ModuleFilename

e FriendlyName

IpProviderList
(LINEPROVIDERLIST)

e ProviderList
(LINEPROVIDERENTRY)

¢ ProviderFilename

IpRequestBuffer
(LINEREQMAKECALL

e szDestAddress
e szAppName

e szCalledParty
e szComment

lineGetTranslateCaps IpTranslateCaps
(LINETRANSLATECAPS)

e CardList (LINECARDENTRY)
e CardName

e SameAreaRule

e LongDistanceRule

¢ InternationalRule

e [ocationList
(LINELOCATIONENTRY

e [ocationName

e CityCode

e [ocalAccessCode

e [ongDistanceAccessCode
e TollPrefixList

e celCallWaiting

lineHandoff IpszFileName
linelnitializeEx IpszFriendlyAppName
lineMakeCall IpszDestAddress

IpCallParams (LINECALLPARAMS)
e OrigAddress
e DisplayableAddress
e CalledParty
e Comment
e TargetAddress
e DeviceClass
e CallingPartylD
lineOpen IpCallParams (LINECALLPARAMS)
e QOrigAddress
e DisplayableAddress
e CalledParty
e Comment
e TargetAddress
e DeviceClass
e CallingPartylD

linePark IpszDirAddress
IpNonDirAddress (VARSTRING)
e String
linePickup IpszDestAddress
IpszGroupID

linePrepareAddToConference IpCallParams (LINECALLPARAMS)
e OrigAddress
e DisplayableAddress
e CalledParty
e Comment
e TargetAddress

lineRedirect
lineSetAppPriority

lineSetDevConfig

lineSetTollList
lineSetupConference

lineSetupTransfer

lineTranslateAddress

lineTranslateDialog
lineUnpark
phoneConfigDialog

phoneGetButtoninfo

phoneGetDevCaps

¢ DeviceClass

e CallingPartylD
IpszDestAddress
IpszAppFilename
IpszExtensionName
IpszDeviceClass

Note Application must handle
conversion of strings in
IpDeviceConfig, if these are
directly manipulated.

IpszAddressin

IpCallParams (LINECALLPARAMS)
e QOrigAddress

¢ DisplayableAddress

e CalledParty

e Comment

e TargetAddress

e DeviceClass

e CallingPartylD

IpCallParams (LINECALLPARAMS)
e OrigAddress

¢ DisplayableAddress

e CalledParty

e Comment

e TargetAddress

e DeviceClass

e CallingPartylD

IpszAddressin

IpTranslateOutput
(LINETRANSLATEOUTPUT)

e DialableString

e DisplayableString
IpszAddressin
IpszDestAddress
InszDeviceClass

IpButtoninfo
(PHONEBUTTONINFO)

e ButtonText
IpPhoneCaps (PHONECAPS)

¢ Providerinfo

¢ Phonelnfo

e PhoneName

¢ DeviceClasses

Note dwStringFormat is
obsolete.

phoneGeticon
phoneGetID

phoneGetStatus

phonelnitializeEx
phoneSetButtoninfo

tapiGetLocationinfo

tapiRequestMakeCall

IpszDeviceClass
IpszDeviceClass

Note Application must handle
conversion of strings in
IpDevicelD, if these are directly
manipulated.

IpPhoneStatus (PHONESTATUS)
e OwnerName
IpszFriendlyAppName

IpButtoninfo
(PHONEBUTTONINFO)

e ButtonTest
IpszCountryCode
IpszCityCode
IpszDestAddress
IpszAppName
IpszCalledParty
IpszComment

TAPI Function
lineAccept

lineAddToConference
lineAgentSpecific

lineAnswer

lineClose
lineCompleteCall
lineCompleteTransfer

lineConfigProvider
lineDeallocateCall

lineDevSpecific

lineDevSpecificFeature

lineDrop

lineGenerateTone
lineGetCallStatus

lineGetConfRelatedCalls

lineGetNewCalls

Functions without Unicode Versions

The following functions are provided only in a generic version without an "A" or "W" suffix.

Comments

The memory pointed to by
IpsUserUserlinfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

The memory pointed to by
IpParams is private between the
application and agent handler. The
application must provide data in the
form specified in the agent handler
extension definition.

The memory pointed to by
IpsUserUserlnfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

The memory pointed to by
IpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider extension definition.

The memory pointed to by
IpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider extension definition.

The memory pointed to by
IpsUserUserlnfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

lineGetMessage
lineGetNumRings
lineGetStatusMessages
lineHold
lineMonitorDigits
lineMonitorMedia
lineMonitorTones

lineNegotiateAPIVersion
lineNegotiateExtVersion
lineProxyMessage
lineProxyResponse

lineRegisterRequestRecipient
lineReleaseUserUserlnfo

lineRemoveFromConference
lineRemoveProvider
lineSecureCall
lineSendUserUserlnfo

lineSetAgentActivity
lineSetAgentGroup

lineSetAgentState

lineSetAppSpecific
lineSetCallData

lineSetCallParams
lineSetCallPrivilege

lineSetCallQualityOfService

lineSetCallTreatment
lineSetCurrentLocation
lineSetLineDevStatus
lineSetMediaControl
lineSetMediaMode

lineSetNumRings

The fields in the
LINEPROXYREQUEST structure

are always Unicode.

The memory pointed to by
IpsUserUserlnfo is presumed to
contain binary data for end-to-end
transfer. The application must
provide data in a form ready for
transmission.

Note Group names are
ignored.

The memory pointed to by
IpCallData is in a format specified
by the application or a group of
cooperating applications. The
format of the data is beyond the
scope of TAPI and is not converted
by TAPI.

The format of data in the provider-
specific portion of the QOS
structure is beyond the scope of
TAPI and is not converted by TAPI.

lineSetStatusMessages
lineSetTerminal

lineShutdown
lineSwapHold
lineUncompleteCall
lineUnhold
phoneClose
phoneDevSpecific

phoneGetData

phoneGetDisplay

phoneGetGain
phoneGetHookSwitch
phoneGetLamp
phoneGetMessage
phoneGetRing
phoneGetStatusMessages

phoneGetVolume
phoneNegotiateAPIVersion

phoneNegotiateExtVersion
phoneOpen
phoneSetData

phoneSetDisplay

phoneSetGain
phoneSetHookSwitch
honeSetLam

The memory pointed to by
IpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider extension definition.

The memory pointed to by IpData is
private between the application and
service provider. The application
must process data in the form
specified in the service provider
definition.

The memory pointed to by IpDisplay
is private between the application
and service provider. The
application must process data in the
form specified in the service
provider definition.

The memory pointed to by
IpParams is private between the
application and service provider.
The application must provide data in
the form specified in the service
provider definition.

The memory pointed to by IpDisplay
is private between the application
and service provider. The
application must provide data in the
form specified in the service
provider definition.

phoneSetRing
phoneSetStatusMessages
phoneSetVolume
phoneShutdown

tapiRequestDrop

tapiRequestMediaCall

This function is obsolete and
unavailable to Microsoft® Win32®
API applications.

This function is obsolete and
unavailable to Microsoft Win32
applications.

Reference

This section includes the telephony API function, message, structure, and constant references for line
devices, phone devices, and assisted telephony.

Functions

This section contains an alphabetical list of the line device, phone device, and assisted telephony
functions in the Telephony applications programming interface (API).

The information for each function includes a list of the valid call states on entry of the function and typical
call state transitions when the request completes. Note that the actual states in which a function may be
performed may be further limited by the capabilities of the service provider. Applications must check the
dwCallFeatures field in the LINECALLSTATUS structure, the dwAddressFeatures field in the
LINEADDRESSSTATUS structure, and the dwLineFeatures field in the LINEDEVSTATUS structure to
determine whether or not a function is permitted at that point in time.

Line Device Functions

This section contains the functions for line devices.

lineAccept

Overview
Group

The lineAccept function accepts the specified offered call. It may optionally send the specified user-to-
user information to the calling party.

LONG lineAccept(

HCALL hCall,
LPCSTR IpsUserUserinfo,
DWORD dwSize

),

Parameters
hCall

A handle to the call to be accepted. The application must be an owner of the call. Call state of hCall
must be offering.

IpsUserUserlInfo

A pointer to a string containing user-to-user information to be sent to the remote party as part of the
call accept. This pointer can be left NULL if no user-to-user information is to be sent. User-to-user
information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol
discriminator field for the user-to-user information, if required, should appear as the first byte of the
buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in lpsUserUserInfo. If [psUserUserInfo is NULL, no
user-to-user information is sent to the calling party and dwSize is ignored.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful, or it is a negative error number if an error has occurred. Possible return values

are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_NOTOWNER, LINEERR_UNINITIALIZED,
LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED, LINEERR_NOMEM,
LINEERR_USERUSERINFOTOOBIG.

Remarks

The lineAccept function is used in telephony environments like Integrated Services Digital Network
(ISDN) that allow alerting associated with incoming calls to be separate from the initial offering of the call.
When a call comes in, it is first offered. For some small amount of time, the application may have the
option to reject the call using lineDrop, redirect the call to another station using lineRedirect, answer the
call using lineAnswer, or accept the call using lineAccept. After a call has been successfully accepted,
alerting at both the called and calling device begins. After a call has been accepted by an application, the
call state typically transitions to accepted.

Alerting is reported to the application by the LINE_LINEDEVSTATE message with the ringing indication.

The lineAccept function may also be supported by non-ISDN service providers. The call state transition
to accepted can be used by other applications as an indication that another application has claimed
responsibility for the call and has presented the call to the user.

The application has the option to send user-to-user information at the time of the accept. Even if user-to-
user information is sent, there is no guarantee that the network will deliver this information to the calling
party. An application should consult a line's device capabilities to determine whether call accept is
available.

For information about the listing of service dependencies, see Service Dependencies..

See Also
LINE _REPLY, lineAnswer, LINEDEVCAPS, lineDrop, lineRedirect

lineAddProvider

Overview
Group

The lineAddProvider function installs a new Telephony Service Provider into the Telephony system.
LONG lineAddPr ovider(

LPCSTR IpszProviderFilename,
HWND hwndOwner,
LPDWORD IpdwPermanentProviderID

),

Parameters
IpszProviderFilename

A pointer to a NULL-terminated string containing the path of the service provider to be added.
hwndOwner

A handle to a window to which any dialogs which need to be displayed as part of the installation
process (for example, by the service provider's TSPI_providerinstall function) would be attached.
Can be NULL to indicate that any window created during the function should have no owner window.

IpdwPermanentProviderlD

A pointer to a DWORD-sized memory location into which TAPI writes the permanent provider ID of
the newly installed service provider.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALPARAM,
LINEERR_NOMULTIPLEINSTANCE, LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED.

Remarks

During this function call, TAPI checks to ensure that it can access the service provider by calling its
TSPI_providerlnstall function; if this is unsuccessful (if the DLL or function cannot be found, or if
TSPI_providerlnstall returns an error), the function fails and the provider is not added to the telephony
system. If this is successful, and the Win32 Telephony system is active (one or more applications have
called linelnitialize or linelnitializeEx), TAPI does not attempt to launch the newly-added service
provider. Instead, in order to activate the new service provider, TAPI issues a message to restart
Windows. When the activation succeeds, applications will be informed of any new devices created by way
of LINE_ CREATE or PHONE_CREATE messages, or by a LINE_LINEDEVSTATE message requesting
reinitialization (if the application does not support the CREATE messages).

This function copies no files—not the service provider DLL itself nor any supporting files; it is the
responsibility of the application managing the addition of the provider to ensure that the provider is
installed in a directory where it can be found by TAPI (for example, \WINDOWS, \WINDOWS\SYSTEM, or
elsewhere on the path), and that all other files necessary for operation.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all

applications.

See Also
LINE CREATE, LINE LINEDEVSTATE, linelnitialize, linelnitializeEx, PHONE CREATE

lineAddToConference

Overview
Group

The lineAddToConference function adds the call specified by hConsultCall to the conference call
specified by hConfCall.

LONG lineAddToConference(

HCALL hConfCall,
HCALL hConsultCall

),

Parameters
hConfCall

A handle to the conference call. The application must be an owner of this call. Any monitoring (media,
tones, digits) on a conference call applies only to the hConfCall, not to the individual participating
calls. Call state of hConfCall must be onHoldPendingConference or onHold.

hConsultCall

A handle to the call to be added to the conference call. The application must be an owner of this call.
This call cannot be a parent of another conference or a participant in any conference. Depending on
the device capabilities indicated in LINEADDRESSCAPS, the hConsultCall may not necessarily have
been established using lineSetupConference or linePrepareAddToConference. The call state of
hConsultCall must be connected, onHold, proceeding, or ringback. Many PBXs allow calls to be
added to conferences before they are actually answered.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful, or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_CONFERENCEFULL, LINEERR_NOTOWNER, LINEERR_INVALCONFCALLHANDLE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSTATE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

Remarks
If LINEERR_INVALCALLHANDLE is returned, the specified call handle for the added call is invalid,
hConsultCall is a parent of another conference or already a participant in a conference, hConsultCall
cannot be added for other reasons (such as, it must have been established using lineSetupConference
or linePrepareAddToConference), or hConsultCall and hConfCall are calls on different open lines.

The call handle of the added party remains valid after adding the call to a conference. Its state typically
changes to conferenced while the state of the conference call typically becomes connected. Using
lineGetConfRelatedCalls, you can obtain a list of call handles that are part of the same conference call
as the specified call. The specified call is either a conference call or a participant call in a conference call.
New handles are generated for those calls for which the application does not already have handles, and
the application is granted monitor privilege to those calls. The handle to an individual participating call can
be used later to remove that party from the conference call using lineRemoveFromConference.

Note that if ineGetConfRelatedCalls is called immediately after lineAddToConference, it may not
return a complete list of related calls because TAPI waits to receive a LINE_CALLSTATE message
indicating that the call has entered LINECALLSTATE_CONFERENCED before it considers the call to
actually be part of the conference (that is, the conferenced state is confirmed by the service provider).
Once the application has received the LINE_CALLSTATE message, lineGetConfRelatedCalls returns
complete information. Note that all calls that are part of a conference must exist on the same open line.

The call states of the calls participating in a conference are not independent. For example, when dropping
a conference call, all participating calls may automatically become idle. An application should consult the
line's device capabilities to determine what form of conference removal is available. The application
should track the LINE_CALLSTATE messages to determine what happened to the calls involved.

The conference call is established either by lineSetupConference or lineCompleteTransfer. The call
added to a conference is typically established using lineSetupConference or
linePrepareAddToConference. Some switches may allow adding arbitrary calls to the conference, and
such a call may have been set up using lineMakeCall and be on (hard) hold. The application may
examine the dwAddrCapFlags field of the LINEADDRESSCAPS structure to determine the permitted
operations.

See Also

LINE CALLSTATE, LINEADDRESSCAPS, IneCompIeteTransfe lineGetConfRelatedCalls,
lineMakecCall, linePrepareAddToConference, lineSetupConference, lineRemoveFromConference

lineAgentSpecific

Overview
Group

The lineAgentSpecific function allows the application to access proprietary handler-specific functions of
the agent handler associated with the address. The meaning of the extensions are specific to the agent
handler. Each set of agent-related extensions is identified by a universally unique 128-bit extension ID
which must be obtained, along with the specification for the extension, from the promulgator of that
extension (usually the author of the agent handler software on the telephony server). The list of
extensions supported by the agent handler is obtained from the LINEAGENTCAPS structure returned by

lineGetAgentCaps.
LONG lineAgentSpecific(

HLINE hLine,

DWORD dwAddressID,

DWORD dwAgentExtensionIDIndex,
LPVOID /pParams,

DWORD dwSize

);

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the open line device.
dwAgentExtensionIDIndex

The position in the ExtensionIDList structure in LINEAGENTCAPS of the agent handler extension
being invoked.

IpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device specific and its contents are passed by TAPI to and from the agent handler application on the
telephony server. This parameter block must specify the function to be invoked and include sufficient
room for any data to be returned.

dwSize

The size in bytes of the parameter block area.

Return Values

Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALAGENTID, LINEERR_INVALLINEHANDLE,
LINEERR_INVALPARAM, LINEERR_INVALPOINTER, LINEERR_NOMEM,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_STRUCTURETOOSMALL, LINEERR_UNINITIALIZED.

Additional return values are specific to the agent handler.

Remarks

This operation is part of the Extended Telephony services. It provides access to an agent handler-specific
feature without defining its meaning.

This function provides a generic parameter profile. The interpretation of the parameter structure is handler
specific. Indications and replies sent back to the application that are handler specific should use the
LINE_AGENTSPECIFIC message.

An agent handler can provide access to handler-specific functions by defining parameters for use with
this function. Applications that want to make use of these extensions should consult the vendor-specific
documentation that describes what extensions are defined. An application that relies on these extensions
will typically not be able to work with other agent handler environments.

See Also
LINEAGENTCAPS, lineGetAgentCaps

lineAnswer

Overview
Group

The lineAnswer function answers the specified offering call.
LONG lineAnswer(

HCALL hCall,
LPCSTR IpsUserUserinfo,
DWORD dwSize

),

Parameters
hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of
hCall must be offering or accepted.

IpsUserUserlInfo

A pointer to a string containing user-to-user information to be sent to the remote party at the time of
answering the call. This pointer can be left NULL if no user-to-user information is to be sent. User-to-
user information is only sent if supported by the underlying network (see LINEDEVCAPS). The
protocol discriminator field for the user-to-user information, if required, should appear as the first byte
of the buffer pointed to by IpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in JpsUserUserInfo. If [psUserUserInfo is NULL, no
user-to-user information is sent to the calling party and dwSize is ignored.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INUSE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSTATE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM,
LINEERR_USERUSERINFOTOOBIG, LINEERR_NOTOWNER.

Remarks

When a new call arrives, applications with an interest in the call are sent a LINE_ CALLSTATE message to
provide the new call handle and to inform the application about the call's state and the privileges to the
new call (such as monitor or owner). The application with owner privilege for the call can answer this call
using lineAnswer. After the call has been successfully answered, the call typically transitions to the
connected state. Initially, only one application is given owner privilege to the inbound call.

In some telephony environments (like ISDN), where user alerting is separate from call offering, the
application may have the option to accept a call prior to answering or to reject or redirect the offering call.

If a call comes in (is offered) at the time another call is already active, the new call is connected to by

invoking lineAnswer. The effect this has on the existing active call depends on the line's device
capabilities. The first call may be unaffected, it may automatically be dropped, or it may automatically be
placed on hold. The appropriate LINE_CALLSTATE messages report state transitions to the application
about both calls.

In a bridged situation, if a call is connected but in the LINECONNECTEDMODE_INACTIVE state, it may
be joined using the lineAnswer function.

The application has the option to send user-to-user information at the time of the answer. Even if user-to-
user information can be sent, there is no guarantee that the network will deliver this information to the
calling party. An application should consult a line's device capabilities to determine whether sending user-
to-user information upon answering the call is available.

See Also
LINE CALLSTATE, LINE REPLY, LINEDEVCAPS

lineBlindTransfer

Overview
Group

The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the
specified destination address.

LONG lineBlindTransfer(

HCALL hCall,
LPCSTR IpszDestAddress,
DWORD dwCountryCode

),

Parameters
hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be connected.

IpszDestAddress

A pointer to a NULL-terminated string identifying where the call is to be transferred to. The destination
address uses the standard dialable number format.

dwCountryCode

The country code of the destination. This is used by the implementation to select the call progress
protocols for the destination address. If a value of zero is specified, a default call-progress protocol
defined by the service provider is used.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_INVALCOUNTRYCODE, LINEERR_INVALCALLSTATE,
LINEERR_INVALPOINTER, LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL,
LINEERR_NOTOWNER, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALADDRESS,
LINEERR_UNINITIALIZED, LINEERR_ADDRESSBLOCKED, LINEERR_OPERATIONFAILED.

Remarks
If LINEERR_INVALADDRESS is returned, no dialing has occurred.

Blind transfer differs from a consultation transfer in that no consultation call is made visible to the
application. After the blind transfer successfully completes, the specified call is typically cleared from the
application's line, and it transitions to the idle state. Note that the application's call handle remains valid
after the transfer has completed. The application must deallocate its handle when it is no longer
interested in the transferred call. It uses lineDeallocateCall for this purpose.

See Also
LINE_REPLY, lineDeallocateCall

lineClose

Overview
Group

The lineClose function closes the specified open line device.
LONG lineClose(

HLINE hLine
);

Parameters
hLine

A handle to the open line device to be closed. After the line has been successfully closed, this handle
is no longer valid.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks

If an application calls lineClose while it still has active calls on the opened line, the application's
ownership of these calls is revoked. If the application was the sole owner of these calls, the calls are
dropped as well. It is good programming practice for an application to dispose of the calls it owns on an
opened line by explicitly relinquishing ownership and/or by dropping these calls prior to closing the line.

If the close was successful, a LINE_LINEDEVSTATE message is sent to all applications that are
monitoring the line status of open/close changes. Outstanding asynchronous replies are suppressed.

Service providers may find it useful or necessary to forcibly reclaim line devices from an application that
has the line open. This may be useful to prevent a misbehaved application from monopolizing the line
device for too long. If this happens, a LINE_CLOSE message is sent to the application, specifying the line
handle of the line device that was closed.

The lineOpen function allocates resources to the invoking application, and applications may be
prevented from opening a line if resources are unavailable. Therefore, an application that only
occasionally uses a line device (such as for making outbound calls) should close the line to free
resources and allow other applications to open the line.

See Also
LINE_CLOSE, LINE_LINEDEVSTATE, lineOpen

lineCompleteCall

Overview
Group

The lineCompleteCall function specifies how a call that could not be connected normally should be
completed instead. The network or switch may not be able to complete a call because network resources
are busy or the remote station is busy or doesn't answer. The application can request that the call be
completed in one of a number of ways.

LONG lineCompleteCall(

HCALL hCall,

LPDWORD /pdwCompletionID,
DWORD dwCompletionMode,
DWORD dwMessagelD

),

Parameters
hCall

A handle to the call whose completion is requested. The application must be an owner of the call. The
call state of hCall must be busy, ringback.

IndwCompletionlD

A pointer to a DWORD-sized memory location. The completion ID is used to identify individual
completion requests in progress. A completion ID becomes invalid and may be reused after the
request completes or after an outstanding request is canceled.

dwCompletionMode

The way in which the call is to be completed. Note that dwCompletionMode is allowed to have only a
single flag set. This parameter uses the following LINECALLCOMPLMODE_ constants:

LINECALLCOMPLMODE_CAMPON

Queues the call until the call can be completed. The call remains in the busy state while queued.
LINECALLCOMPLMODE_CALLBACK

Requests the called station to return the call when it returns to idle.
LINECALLCOMPLMODE_INTRUDE

Adds the application to the existing physical call at the called station (barge in).
LINECALLCOMPLMODE_MESSAGE

Leave a short predefined message for the called station ("Leave Word Calling"). The message to
be sent is specified by dwMessagelD.

dwMessagelD

The message that is to be sent when completing the call using LINECALLCOMPLMODE_MESSAGE.
This ID selects the message from a small number of predefined messages.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_COMPLETIONOVERRUN, LINEERR_NOMEM, LINEERR_INVALCALLCOMPLMODE,
LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALMESSAGEID,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED.

Remarks

This function is considered complete when the request has been accepted by the network or switch; not
when the request is fully completed in the way specified. After this function completes, the call typically
transitions to idle. When the called station or network enters a state where the call can be completed as
requested, the application will be notified by a LINE_ CALLSTATE message with the call state equal to
offering. The call's LINECALLINFO record lists the reason for the call as CALLCOMPLETION and
provide the completion ID as well. It is possible to have multiple call completion requests outstanding at
any given time; the maximum number is device dependent. The completion ID is also used to refer to
each individual request so requests can be canceled by calling lineUncompleteCall.

See Also
LINE_CALLSTATE, LINE_REPLY, LINECALLINFO, lineUncompleteCall

lineCompleteTransfer

Overview
Group

The lineCompleteTransfer function completes the transfer of the specified call to the party connected in
the consultation call.

LONG lineCompleteTransfer(

HCALL hCall,

HCALL hConsultCall,
LPHCALL IphConfCall,
DWORD dwTransferMode

),

Parameters
hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state of
hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application
must be an owner of this call. The call state of hConsultCall must be connected, ringback, busy, or
proceeding.

IphConfCall

A pointer to a memory location where an HCALL handle can be returned. If dwTransferMode is
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in
IphConfCall and the application becomes the sole owner of the conference call. Otherwise, this
parameter is ignored by TAPI.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE_ constants:

LINETRANSFERMODE_TRANSFER

Resolve the initiated transfer by transferring the initial call to the consultation call.
LINETRANSFERMODE_CONFERENCE

Resolve the initiated transfer by conferencing all three parties into a three-way conference call. A
conference call is created and returned to the application.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCONSULTCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALTRANSFERMODE, LINEERR_RESOURCEUNAVAIL,

LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks

The LINE_REPLY message sent in response to a call to the lineCompleteTransfer function is based on
the status of the call specified by the hCall parameter.

This operation completes the transfer of the original call, hCall, to the party currently connected by
hConsultCall. The consultation call will typically have been dialed on the consultation call allocated as part
of lineSetupTransfer, but it may be any call to which the switch is capable of transferring hCall.

The transfer request can be resolved either as a transfer or as a three-way conference call. When
resolved as a transfer, the parties connected by hCall and hConsultCall are connected to each other, and
both hCall and hConsultCall are typically cleared from the application's line and transition to the idle state.
Note that the application's call handle remains valid after the transfer has completed. The application
must deallocate its handle with lineDeallocateCall when it is no longer interested in the transferred call.

When resolved as a conference, all three parties enter into a conference call. Both existing call handles
remain valid but will transition to the conferenced state. A conference call handle will be created and
returned, and it will transition to the connected state.

If lineGetConfRelatedCalls is called immediately after lineCompleteTransfer with the result that the
calls are conferenced, lineGetConfRelatedCalls may not return a complete list of related calls. This is
because TAPI waits to receive a LINE_CALLSTATE message indicating that the call has entered
LINECALLSTATE_CONFERENCED before it considers the call to actually be part of the conference. That
is, it waits for the service provider to confirm the conferenced state. Once the application has received the
LINE_CALLSTATE message, lineGetConfRelatedCalls returns complete information.

It may also be possible to perform a blind transfer of a call using lineBlindTransfer.

See Also
LINE CALLSTATE, LINE REPLY, lineBlindTransfer, lineDeallocateCall, lineGetConfRelatedCalls,
lineSetupTransfer

lineConfigDialog

Overview
Group

The lineConfigDialog function causes the provider of the specified line device to display a dialog
(attached to hwndOwner of the application) to allow the user to configure parameters related to the line
device.

LONG lineConfigDialog(

DWORD dwDevicelD,
HWND hwndOwner,
LPCSTR IpszDeviceClass

),

Parameters
dwDevicelD

The line device to be configured.
hwndOwner

A handle to a window to which the dialog is to be attached. Can be NULL to indicate that any window
created during the function should have no owner window.

IpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific subscreen of configuration information applicable to that device class.
This parameter is optional and can be left NULL or empty, in which case the highest level
configuration is selected.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INUSE, LINEERR_OPERATIONFAILED,
LINEERR_INVALDEVICECLASS, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPARAM,
LINEERR_UNINITIALIZED, LINEERR_INVALPOINTER, LINEERR_OPERATIONUNAVAIL,
LINEERR_NODEVICE.

Remarks

The lineConfigDialog function causes the service provider to display a modal dialog (attached to
hwndOwner of the application) to allow the user to configure parameters related to the line specified by
dwDevicelD. The IpszDeviceClass parameter allows the application to select a specific subscreen of
configuration information applicable to the device class in which the user is interested; the permitted
strings are the same as for lineGetID. For example, if the line supports the Comm API, passing "COMM"
as IpszDeviceClass causes the provider to display the parameters related specifically to Comm (or, at
least, start at the corresponding point in a multilevel configuration dialog chain, so the user doesn't have
to "dig" to find the parameters of interest).

The IpszDeviceClass parameter would be "tapi/line" , "", or NULL to cause the provider to display the
highest level configuration for the line.

See Also
lineGetID

lineConfigDialogEdit

Overview
Group

The lineConfigDialogEdit function causes the provider of the specified line device to display a dialog
(attached to hwndOwner of the application) to allow the user to configure parameters related to the line
device.

LONG lineConfigDialogEdit(

DWORD dwDevicelD,

HWND hwndOwner,

LPCSTR IpszDeviceClass,
LPVOID const IpDeviceConfigin,
DWORD dwsSize,

LPVARSTRING IpDeviceConfigOut

);

Parameters
dwDevicelD

The line device to be configured.
hwndOwner

A handle to a window to which the dialog is to be attached. Can be NULL to indicate that any window
created during the function should have no owner window.

IpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific subscreen of configuration information applicable to that device class.
This parameter is optional and can be left NULL or empty, in which case the highest level
configuration is selected.

InDeviceConfigin

A pointer to the opaque configuration data structure that was returned by lineGetDevConfig (or a
previous invocation of lineConfigDialogEdit) in the variable portion of the VARSTRING structure.

dwSize

The number of bytes in the structure pointed to by IpDeviceConfigin. This value will have been
returned in the dwStringSize field in the VARSTRING structure returned by lineGetDevConfig or a
previous invocation of lineConfigDialogEdit.

IpDeviceConfigOut

A pointer to the memory location of type VARSTRING where the device configuration structure is
returned. Upon successful completion of the request, this location is filled with the device
configuration. The dwStringFormat field in the VARSTRING structure will be set to
STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig (or a future invocation of
lineConfigDialogEdit), the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values
Returns zero if the request is successful or a negative error number if an error has occurred. Possible

return values are:

LINEERR_BADDEVICEID, LINEERR_OPERATIONFAILED, LINEERR_INVALDEVICECLASS,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPARAM, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NODRIVER,
LINEERR_OPERATIONUNAVAIL, LINEERR_NOMEM, LINEERR_NODEVICE.

Remarks

If LINEERR_STRUCTURETOOSMALL is returned, the dwTotalSize field of the VARSTRING structure
pointed to by IpDeviceConfigOut does not specify enough memory to contain the entire configuration
structure. The dwNeededSize field has been set to the amount required. To the extent that user entries
were reflected in information that could not be returned due to insufficient space, those edits are lost;
applications should therefore allocate the maximum amount of space that may be needed by the device
class to return its configuration structure (for more information, see documentation for the device class).

The lineConfigDialogEdit function causes the service provider to display a modal dialog (attached to
hwndOwner of the application) to allow the user to configure parameters related to the line specified by
dwDevicelD.

The IpszDeviceClass parameter allows the application to select a specific subscreen of configuration
information applicable to the device class in which the user is interested; the permitted strings are the
same as for lineGetID. For example, if the line supports the Comm API, passing "COMM" as
InszDeviceClass causes the provider to display the parameters related specifically to Comm (or, at least,
start at the corresponding point in a multilevel configuration dialog chain, so the user doesn't have to "dig"
to find the parameters of interest).

The IpszDeviceClass parameter would be "tapi/line" , "", or NULL to cause the provider to display the

highest level configuration for the line.

The difference between this function and lineConfigDialog is the source of the parameters to edit and
the result of the editing. In lineConfigDialog, the parameters edited are those currently in use on the
device (or set for use on the next call), and any changes made have (to the maximum extent possible) an
immediate impact on any active connection; also, the application must use lineGetDevConfig to fetch the
result of parameter changes from lineConfigDialog. With lineConfigDialogEdit, the parameters to edit
are passed in from the application, and the results are returned to the application, with no impact on
active connections; the results of the editing are returned with this function, and the application does not
need to call lineGetDevConfig. Thus, lineConfigDialogEdit permits an application to provide the ability
for the user to set up parameters for future calls without having an impact on any active call. Note,
however, the output of this function can be passed to lineSetDevConfig to affect the current call or next
call.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all
applications.

See Also
lineConfigDialog, lineGetDevConfig, lineGetID, lineSetDevConfig, VARSTRING

lineConfigProvider

Overview
Group

The lineConfigProvider function causes a service provider to display its configuration dialog.
LONG lineConfigProvider(

HWND hwndOwner,
DWORD dwPermanentProviderID

),

Parameters
hwndOwner

A handle to a window to which the configuration dialog (displayed by TSPI_providerConfig) will be
attached. Can be NULL to indicate that any window created during the function should have no owner
window.

dwPermanentProviderlD

The permanent provider ID of the service provider to be configured.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_NOMEM, LINEERR_INVALPARAM,
LINEERR_OPERATIONFAILED.

Remarks
This is basically a straight pass-through to TSPI_providerConfig.

Although this is a new function that older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all
applications.

lineDeallocateCall

Overview
Group

The lineDeallocateCall function deallocates the specified call handle.
LONG lineDeallocateCall(

HCALL hCall
);

Parameters
hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always
deallocate its handle for that call. An application with owner privilege for a call can deallocate its
handle except when the application is the sole owner of the call and the call is not in the idle state.
The call handle is no longer valid after it has been deallocated.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSTATE,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks

The deallocation does not affect the call state of the physical call. It does, however, release internal
resources related to the call.

In API versions less than 0x00020000, if the application is the sole owner of a call and the call is not in
the idle state, LINEERR_INVALCALLSTATE is returned. In this case, the application can first drop the call
using lineDrop and deallocate its call handle afterwards. An application that has monitor privilege for a
call can always deallocate its handle for the call.

In API versions 0x0002000 and greater, the sole owner of the call can deallocate its handle even though
the call is not in the idle state. (This allows for distributed control of the call in a client/server environment.)
Be aware that leaving the call without an owner may result in the user being unable to terminate the call if
there are monitoring applications open preventing TAPI from calling TSPI_lineCloseCall. Use this feature
only if the application can determine that the call can be controlled externally by the user (see
LINEADDRCAPFLAGS_CLOSEDRORP).

In API versions less than 0x00020000, when the lineDeallocateCall function deallocates a call handle, it
also suspends further processing of any outstanding LINE_REPLY messages for the call. An application
must be designed not to wait indefinitely for LINE_REPLY messages for each corresponding call to an
asynchronous function if it also uses the lineDeallocateCall function to deallocate handles.

In API versions 0x0002000 and greater, lineDeallocateCall does not suspend outstanding LINE_REPLY
messages; every asynchronous function that returns a dwRequestID to the application always results in
the delivery of the associated LINE_REPLY message unless the application calls lineShutdown.

See Also

LINE_REPLY, lineDrop, lineShutdown

lineDevSpecific

Overview
Group

The lineDevSpecific function enables service providers to provide access to features not offered by other
TAPI functions. The meaning of the extensions are device specific, and taking advantage of these
extensions requires the application to be fully aware of them.

LONG lineDevSpecific(

HLINE hLine,

DWORD dwAddressID,
HCALL hCall,

LPVOID /pParams,
DWORD dwSize

),

Parameters
hLine

A handle to a line device. This parameter is required.
dwAddressID

An address ID on the given line device.
hCall

A handle to a call. This parameter is optional, but if it is specified, the call it represents must belong to
the hLine line device. The call state of hCall is device specific.

IpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device specific and its contents are passed by TAPI to or from the service provider.

dwSize

The size in bytes of the parameter block area.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful, or it is a negative error number if an error has occurred. Possible return values

are:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Additional return values are device specific.

Remarks

This operation is part of the Extended Telephony services. It provides access to a device-specific feature
without defining its meaning. This operation is only available if the application has successfully negotiated
a device-specific extension version.

This function provides a generic parameter profile. The interpretation of the parameter structure is device
specific. Whether dwAddressID and/or hCall are expected to be valid is device-specific. If specified, they

must belong to hLine. Indications and replies sent back the application that are device specific should use
the LINE_DEVSPECIFIC message.

A service provider can provide access to device-specific functions by defining parameters for use with this
function. Applications that want to make use of these device-specific extensions should consult the
device-specific (in this case, vendor-specific) documentation that describes what extensions are defined.
An application that relies on these device-specific extensions will typically not be able to work with other
service provider environments.

See Also
LINE_DEVSPECIFIC, LINE_REPLY

lineDevSpecificFeature

Overview
Group

The lineDevSpecificFeature function enables service providers to provide access to features not offered
by other TAPI functions. The meaning of these extensions are device specific, and taking advantage of
these extensions requires the application to be fully aware of them.

LONG lineDevSpecificFeature(

HLINE hLine,
DWORD dwFeature,
LPVOID /pParams,
DWORD dwsSize

),

Parameters
hLine

A handle to the line device.
dwFeature

The feature to invoke on the line device. This parameter uses the PHONEBUTTONFUNCTION_
constants.

IpParams

A pointer to a memory area used to hold a feature-dependent parameter block. The format of this
parameter block is device specific and its contents are passed through by TAPI to or from the service
provider.

dwSize

The size of the buffer in bytes.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALFEATURE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALLINEHANDLE,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Additional return values are device specific.

Remarks

This operation is part of the Extended Telephony services. It provides access to a device-specific feature
without defining its meaning. This operation is only available if the application has successfully negotiated
a device-specific extension version.

This function provides the application with phone feature-button emulation capabilities. When an
application invokes this operation, it specifies the equivalent of a button-press event. This method of

invoking features is device dependent, as TAPI does not define their meaning. Note that an application
that relies on these device-specific extensions will typically not work with other service provider
environments.

Note also that the structure pointed to by IpParams should not contain any pointers because they would
not be properly translated (thunked) when running a 16-bit application in a 32-bit version of TAPI and vice
versa.

See Also
LINE REPLY

lineDial

Overview
Group

The lineDial function dials the specified dialable number on the specified call.
LONG lineDial(

HCALL hCall,
LPCSTR IpszDestAddress,
DWORD dwCountryCode

),

Parameters
hCall

A handle to the call on which a number is to be dialed. The application must be an owner of the call.
The call state of hCall can be any state except idle and disconnected.

IpszDestAddress

The destination to be dialed using the standard dialable number format.
dwCountryCode

The country code of the destination. This is used by the implementation to select the call progress
protocols for the destination address. If a value of zero is specified, a service provider-defined default
call progress protocol is used.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_ADDRESSBLOCKED, LINEERR_INVALPOINTER, LINEERR_DIALBILLING,
LINEERR_NOMEM, LINEERR_DIALDIALTONE, LINEERR_NOTOWNER, LINEERR_DIALPROMPT,
LINEERR_OPERATIONFAILED, LINEERR_DIALQUIET, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_UNINITIALIZED, LINEERR_INVALCOUNTRYCODE.

Remarks

If LINEERR_INVALADDRESS is returned, no dialing has been done. If LINEERR_DIALBILLING,
LINEERR_DIALQUIET, LINEERR_DIALDIALTONE, or LINEERR_DIALPROMPT is returned, none of the
actions otherwise performed by lineDial have occurred. For example, none of the dialable addresses
prior to the offending character has been dialed, no hookswitch state has changed, and so on.

The lineDial function is used for dialing on an existing call appearance. For example, after a call has
been set up for transfer or conference, a consultation call is automatically allocated, and the lineDial
function would be used to perform the dialing of this consultation call. Note that lineDial may be invoked
multiple times in the course of multistage dialing, if the line's device capabilities allow it. Also, multiple
addresses may be provided in a single dial string separated by CRLF. Service providers that provide
inverse multiplexing can establish individual physical calls with each of the addresses and can return a
single call handle to the aggregate of all calls to the application. All addresses would use the same

country code.

Dialing is considered complete after the address has been passed to the service provider; not after the
call is finally connected. Service providers that provide inverse multiplexing may allow multiple addresses
to be provided at once. The service provider sends LINE_CALLSTATE messages to the application to
inform it about the progress of the call. To abort a call attempt while a call is being established, the
invoking application should use lineDrop.

An application can set the IpszDestAddress parameter of the lineDial function to the address of an empty
string to indicate that dialing is complete, but only if the previous calls to the lineMakeCall and lineDial
functions have had the strings specified by IpszDestAddress terminated with semicolons.

See Also
LINE_CALLSTATE, LINE_REPLY, lineDrop, lineMakeCall

lineDrop

Overview
Group

The lineDrop function drops or disconnects the specified call. The application has the option to specify
user-to-user information to be transmitted as part of the call disconnect.

LONG lineDrop(

HCALL hCall,
LPCSTR IpsUserUserinfo,
DWORD dwSize

),

Parameters
hCall

A handle to the call to be dropped. The application must be an owner of the call. The call state of
hCall can be any state except idle.

IpsUserUserlInfo

A pointer to a string containing user-to-user information to be sent to the remote party as part of the
call disconnect. This pointer can be left NULL if no user-to-user information is to be sent. User-to-user
information is only sent if supported by the underlying network (see LINEDEVCAPS). The protocol
discriminator field for the user-to-user information, if required, should appear as the first byte of the
buffer pointed to by lpsUserUserInfo, and must be accounted for in dwSize.

dwSize

The size in bytes of the user-to-user information in lpsUserUserInfo. If [psUserUserInfo is NULL, no
user-to-user information is sent to the calling party and dwSize is ignored.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_NOMEM,
LINEERR_OPERATIONFAILED, LINEERR_NOTOWNER, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_USERUSERINFOTOOBIG, LINEERR_INVALCALLSTATE,
LINEERR_UNINITIALIZED.

Remarks

When invoking lineDrop, related calls may sometimes be affected as well. For example, dropping a
conference call may drop all individual participating calls. LINE_CALLSTATE messages are sent to the
application for all calls whose call state is affected. A dropped call typically transitions to the idle state.
Invoking lineDrop on a call in the offering state rejects the call. Not all telephone networks provide this
capability.

A call in the onholdpending state will typically revert to the connected state. When dropping the
consultation call to the third party for a conference call or when removing the third party in a previously
established conference call, the provider (and switch) may release the conference bridge and revert the

call back to a normal two-party call. If this is the case, hConfCall transitions to the idle state, and the only
remaining participating call will transition to the connected state. Some switches automatically "unhold"
the other call.

The application has the option to send user-to-user information at the time of the drop. Even if user-to-
user information can be sent, there is no guarantee that the network will deliver this information to the
remote party.

Note that in various bridged or party-line configurations when multiple parties are on the call, lineDrop
may not actually clear the call. For example, in a bridged situation, a lineDrop operation may possibly not
actually drop the call because the status of other stations on the call may govern; instead, the call may
simply be changed to the LINECONNECTEDMODE_INACTIVE mode if it remains connected at other
stations.

See Also
LINE_CALLSTATE, LINE_ REPLY, LINEDEVCAPS

lineForward

Overview
Group

The lineForward function forwards calls destined for the specified address on the specified line,
according to the specified forwarding instructions. When an originating address (dwAddressID) is
forwarded, the specified incoming calls for that address are deflected to the other number by the switch.
This function provides a combination of forward and do-not-disturb features. This function can also cancel
forwarding currently in effect.

LONG lineForward(

HLINE hLine,

DWORD bAllAddresses,

DWORD dwAddressID,
LPLINEFORWARDLIST const IpForwardList,
DWORD dwNumRingsNoAnswer,

LPHCALL IphConsultCall,
LPLINECALLPARAMS const IpCallParams

);

Parameters
hLine

A handle to the line device.
bAlIAddresses

Specifies whether all originating addresses on the line or just the one specified is to be forwarded. If
TRUE, all addresses on the line are forwarded and dwAddressID is ignored; if FALSE, only the
address specified as dwAddressID is forwarded.

dwAddressID

The address on the specified line whose incoming calls are to be forwarded. This parameter is
ignored if bAllAddresses is TRUE.

IpForwardList

A pointer to a variably sized data structure that describes the specific forwarding instructions, of type
LINEFORWARDLIST.

dwNumRingsNoAnswer

The number of rings before a call is considered a "no answer." If dwNumRingsNoAnswer is out of
range, the actual value is set to the nearest value in the allowable range.

IphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a handle
to a consultation call that is used to consult the party that is being forwarded to, and the application
becomes the initial sole owner of this call. This pointer must be valid even in environments where call
forwarding does not require a consultation call. This handle will be set to NULL if no consultation call
is created.

InCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer is ignored unless lineForward
requires the establishment of a call to the forwarding destination (and IphConsultCall is returned, in

which case IpCallParams is optional). If NULL, default call parameters are used. Otherwise, the
specified call parameters are used for establishing hConsultCall.

Return Values

Returns a positive request ID if the function will be completed asynchronously, or a negative error number
if an error has occurred. The dwParam?2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALLINEHANDLE, LINEERR_NOMEM, LINEERR_INVALADDRESSID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESS, LINEERR_OPERATIONFAILED,
LINEERR_INVALCOUNTRYCODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPARAM, LINEERR_UNINITIALIZED.

Remarks

A successful forwarding indicates only that the request has been accepted by the service provider, not
that forwarding is set up at the switch. ALINE_ADDRESSSTATE (forwarding) message provides
confirmation for forwarding having been set up at the switch.

Forwarding of the address(es) remains in effect until this function is called again. The most recent
forwarding list replaces the old one. Forwarding can be canceled by specifying a NULL pointer as
InForwardList. If a NULL destination address is specified for an entry in the forwarding list, the operation
acts as a do-not-disturb.

Forwarding status of an address may also be affected externally; for example, by administrative actions at
the switch or by a user from another station. It may not be possible for the service provider to be aware of
this state change, and it may not be able to keep in synchronization with the forwarding state known to
the switch.

Because a service provider may not know the forwarding state of the address "for sure” (that is, it may
have been forwarded or unforwarded in an unknown way), lineForward will succeed unless it fails to set
the new forwarding instructions. In other words, a request that all forwarding be canceled at a time that
there is no forwarding in effect will be successful. This is because there is no "unforwarding"—you can
only change the previous set of forwarding instructions.

The success or failure of this operation does not depend on the previous set of forwarding instructions,
and the same is true when setting different forwarding instructions. The provider should "unforward
everything" prior to setting the new forwarding instructions. Because this may take time in analog
telephony environments, a provider may also want to compare the current forwarding with the new one,
and only issue instructions to the switch to get to the final state (leaving unchanged forwarding
unaffected).

Invoking lineForward when LINEFORWARDLIST has dwNumEntries set to zero has the same effect as
providing a NULL IpForwardList parameter. It cancels all forwarding currently in effect.

See Also
LINE_ ADDRESSSTATE, LINE_REPLY, LINECALLPARAMS, LINEFORWARDLIST

lineGatherDigits

Overview
Group

The lineGatherDigits function initiates the buffered gathering of digits on the specified call. The
application specifies a buffer in which to place the digits and the maximum number of digits to be
collected.

LONG lineGatherDigits(

HCALL hCall,

DWORD dwDigitModes,
LPSTR IpsDigits,

DWORD dwNumbDigits,
LPCSTR IpszTerminationDigits,
DWORD dwFirstDigitTimeoult,
DWORD dwinterDigitTimeout

);

Parameters
hCall

A handle to the call on which digits are to be gathered. The application must be an owner of the call.
The call state of hCall can be any state.

dwDigitModes

The digit mode(s) to be monitored. Note that dwDigitModes is allowed to have one or more flags set.
This parameter uses the following LINEDIGITMODE _ constants:

LINEDIGITMODE_PULSE

Detect digits as audible clicks that are the result of the use of rotary pulse sequences. Valid digits
for pulse mode are '0' through '9".

LINEDIGITMODE_DTMF
Detect digits as DTMF tones. Valid digits for DTMF mode are '0' through '9', 'A’, 'B', 'C', 'D', ™', '#".

IpsDigits

A pointer to the buffer where detected digits are to be stored as ASCII characters. Digits may not
show up in the buffer one at a time as they are collected. Only after a LINE_GATHERDIGITS
message is received should the content of the buffer be assumed to be valid. If JpsDigits is NULL, the
digit gathering currently in progress on the call is terminated and dwNumbDigits is ignored. Otherwise,
IpsDigits is assumed to have room for dwNumDigits digits.

dwNumbDigits

The number of digits to be collected before a LINE_GATHERDIGITS message is sent to the
application. The dwNumbDigits parameter is ignored when IpsDigits is NULL. This function fails if
dwNumbDigits is zero.

IpszTerminationDigits

Specifies a NULL-terminated string of termination digits as ASCII characters. If one of the digits in the
string is detected, that termination digit is appended to the buffer, digit collection is terminated, and
the LINE_ GATHERDIGITS message is sent to the application.

Valid characters for pulse mode are '0' through '9'. Valid characters for DTMF mode are '0' through '9',
‘A", 'B','CH DY ™, L If this pointer is NULL, or if it points to an empty string, the function behaves as
though no termination digits were supplied.

dwFirstDigitTimeout

The time duration in milliseconds in which the first digit is expected. If the first digit is not received in
this timeframe, digit collection is aborted and a LINE_GATHERDIGITS message is sent to the
application. The buffer only contains the NULL character, indicating that no digits were received and
the first digit timeout terminated digit gathering. The call's line-device capabilities specify the valid
range for this parameter or indicate that timeouts are not supported.

dwinterDigitTimeout

The maximum time duration in milliseconds between consecutive digits. If no digit is received in this
timeframe, digit collection is aborted and a LINE_GATHERDIGITS message is sent to the application.
The buffer only contains the digits collected up to this point followed by a NULL character, indicating
that an interdigit timeout terminated digit gathering. The call's line-device capabilities specify the valid
range for this parameter or indicate that timeouts are not supported.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_NOMEM, LINEERR_INVALCALLSTATE,
LINEERR_NOTOWNER, LINEERR_INVALDIGITMODE, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALDIGITS, LINEERR_OPERATIONFAILED, LINEERR_INVALPARAM,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_INVALTIMEOUT.

Remarks

Digit collection is terminated when the requested number of digits has been collected. It is also terminated
when one of the digits detected matches a digit in szTerminationDigits before the specified number of
digits has been collected. The detected termination digit is also placed in the buffer and the partial buffer
is returned.

Another way of cancelling digit collection is when one of the timeouts expires. The dwFirstDigitTimeout
expires if the first digit is not received in this time period. The dwinterDigitTimout expires if the second,
third, (and so forth) digit is not received within that time period from the previously detected digit, and a
partial buffer is returned.

A fourth method for terminating digit detection is by calling this function again while collection is in
progress. The old collection session is terminated, any digits collected up to that point are copied to the
buffer supplied from the previous call to this function, and the buffer is delivered when the
LINE_GATHERDIGITS message is sent to the application. The mechanism for terminating digit gathering
without initiating another gathering of the digits is by invoking this function with /psDigits equal to NULL.

This function is considered successful if digit collection has been correctly initiated, not when digit
collection has terminated. In all cases where a partial buffer is returned, valid digits (if any) are followed
by an ASCII NULL character.

Although this function can be invoked in any call state, digits can typically only be gathered while the call
is in the connected state.

The message LINE_GATHERDIGITS is sent only to the application that initiated the request. It is also
sent when partial buffers are returned because of timeouts or matching termination digits, or when the
request is canceled by another lineGatherDigits request on the call. Only one gather—digits request can

be active on a call at any given time across all applications that are owners of the call. Given the
asynchronous behavior of the operation, an application that issues multiple lineGatherDigits in quick
succession may be able to do so and receive several LINE_GATHERDIGITS messages later. While this
would be unusual application behavior, the application will be able to count the number of these
messages to allow cancel messages to be matched with the earlier requests. In any case, only the most
recent request should be assumed to be valid.

An application can use lineMonitorDigits to enable or disable unbuffered digit detection. Each time a
digit is detected in this fashion, a LINE_MONITORDIGITS message is sent to the application. Both
buffered and unbuffered digit detection can be enabled for the same call simultaneously.

Gathering of digits on a conference call applies only to the hConfCall, not to the individual participating
calls.

If the lineGatherDigits function is used to cancel a previous request to gather digits, the function copies
any digits collected up to that point to the buffer specified in the original function call and sends a
LINE_GATHERDIGITS message to the application, regardless of whether the IpszDigits parameter in the
second call specifies a NULL or different address.

See Also
LINE_GATHERDIGITS, LINE_MONITORDIGITS, lineMonitorDigits

lineGenerateDigits

Overview
Overview

The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
inband tones using the specified signaling mode. Invoking this function with a NULL value for IpszDigits
aborts any digit generation currently in progress. Invoking lineGenerateDigits or lineGenerateTone
while digit generation is in progress aborts the current digit generation or tone generation and initiates the
generation of the most recently specified digits or tone.

LONG lineGenerateDigits(

HCALL hCall,
DWORD dwDigitMode,
LPCSTR IpszDigits,
DWORD dwDuration

);

Parameters
hCall

A handle to the call. The application must be an owner of the call. Call state of hCall can be any state.
dwDigitMode

The format to be used for signaling these digits. Note that dwDigitMode is allowed to have only a
single flag set. This parameter uses the following LINEDIGITMODE _ constants:

LINEDIGITMODE_PULSE

Uses pulse/rotary for digit signaling. Valid digits for pulse mode are '0' through '9'.
LINEDIGITMODE_DTMF

Uses DTMF tones for digit signaling. Valid digits for DTMF mode are '0' through '9', ‘A", 'B', 'C', 'D',
I*l’ l#l-

IpszDigits

A pointer to a NULL-terminated character buffer that contains the digits to be generated. Valid
characters for pulse mode are '0' through '9' and ', (comma). Valid characters for DTMF mode are '0'
through '9', 'A', 'B', 'C', 'D', ™, '#, and ',' (comma). A comma injects an extra delay between the
signaling of the previous and next digits it separates. The duration of this pause is configuration
defined, and the line's device capabilities indicate what this duration is. Multiple commas may be used
to inject longer pauses. Invalid digits are ignored during the generation, rather than being reported as
an error. The exclamation character (!) is a valid character in the string specifed by the IpszDigits
parameter for both DTMF and pulse mode. This character causes a "hookflash" operation, as
described for dialable addresses.

dwDuration

Both the duration in milliseconds of DTMF digits and pulse and DTMF inter-digit spacing. A value of
zero will use a default value. The dwDuration parameter must be within the range specified by
MinDialParams and MaxDialParams in LINEDEVCAPS. If out of range, the actual value is set to the
nearest value in the range.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALDIGITMODE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

Remarks

The lineGenerateDigits function is considered to have completed successfully when the digit generation
has been successfully initiated, not when all digits have been generated. In contrast to lineDial, which
dials digits in a network-dependent fashion, lineGenerateDigits guarantees to produce the digits as
inband tones over the voice channel using DTMF or hookswitch dial pulses when using pulse. The
lineGenerateDigits function is generally not suitable for making calls or dialing. It is intended for end-to-
end signaling over an established call.

After all digits in IpszDigits have been generated, or after digit generation has been aborted or canceled,
a LINE_GENERATE message is sent to the application.

Only one inband generation request (tone generation or digit generation) is allowed to be in progress per
call across all applications that are owners of the call. Digit generation on a call is canceled by initiating
either another digit generation request or a tone generation request. To cancel the current digit
generation, the application can invoke lineGenerateDigits and specify NULL for the IpszDigits parameter.

Depending on the service provider and hardware, the application may monitor the digits it generates
itself. If that is not desired, the application can disable digit monitoring while generating digits.

See Also
LINE GENERATE, LINEDEVCAPS, lineDial, lineGenerateTone

lineGenerateTone

Overview
Overview

The lineGenerateTone function generates the specified inband tone over the specified call. Invoking this
function with a zero for dwToneMode aborts the tone generation currently in progress on the specified
call. Invoking lineGenerateTone or lineGenerateDigits while tone generation is in progress aborts the
current tone generation or digit generation and initiates the generation of the newly specified tone or
digits.

LONG lineGenerateTone(

HCALL hCall,

DWORD dwToneMode,

DWORD dwDuration,

DWORD dwNumTones,
LPLINEGENERATETONE const [pTones

);

Parameters
hCall

A handle to the call on which a tone is to be generated. The application must be an owner of the call.
The call state of hCall can be any state.

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom. A custom tone is
composed of a set of arbitrary frequencies. A small number of standard tones are predefined. The
duration of the tone is specified with dwDuration for both standard and custom tones. Note that
dwToneMode can only have one bit set. If no bits are set (the value 0 is passed), tone generation is
canceled. This parameter uses the following LINETONEMODE_ constants:

LINETONEMODE_CUSTOM

The tone is a custom tone, defined by the specified frequencies.
LINETONEMODE_RINGBACK

The tone to be generated is ring tone. The exact ringback tone is service provider defined.
LINETONEMODE_BUSY

The tone is a standard (station) busy tone. The exact busy tone is service provider defined.
LINETONEMODE_BEEP

The tone is a beep, as used to announce the beginning of a recording. The exact beep tone is
service provider defined.

LINETONEMODE_BILLING

The tone is billing information tone such as a credit card prompt tone. The exact billing tone is
service provider defined.

A value of zero for dwToneMode cancels tone generation.

dwDuration

Duration in milliseconds during which the tone should be sustained. A value of zero for dwDuration
uses a default duration for the specified tone. Default values are:

CUSTOM: infinite

RINGBACK: infinite

BUSY: infinite

BEEP: infinite

BILLING: fixed (single cycle)
dwNumTones

The number of entries in the IpTones array. This field is ignored if dwToneMode is not equal to
CUSTOM.

InTones

A pointer to a LINEGENERATETONE array that specifies the tone's components. This parameter is
ignored for non-custom tones. If [pTones is a multi-frequency tone, the various tones are played
simultaneously.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_NOTOWNER, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINEERR_OPERATIONFAILED,
LINEERR_INVALTONEMODE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALTONE,
LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks

The lineGenerateTone function is considered to have completed successfully when the tone generation
has been successfully initiated, not when the generation of the tone is done. The function allows the
inband generation of several predefined tones, such as ring back, busy tones, and beep. It also allows for
the fabrication of custom tones by specifying their component frequencies, cadence, and volume.
Because these tones are generated as inband tones, the call would typically have to be in the connected
state for tone generation to be effective. When the generation of the tone is complete, or when tone
generation is canceled, a LINE_GENERATE message is sent to the application.

Only one inband generation request (tone generation or digit generation) is allowed to be in progress per
call across all applications that are owners of the call. This implies that if tone generation is currently in
progress on a call, invoking lineGenerateDigits cancels the tone generation.

If the LINEERR _INVALPOINTER error value is returned, the specified [pTones parameter is invalid or the
value specified by the dwNumTones parameter is too large.

See Also
LINE_GENERATE, lineGenerateDigits, LINEGENERATETONE

lineGetAddressCaps

Overview
Overview

The lineGetAddressCaps function queries the specified address on the specified line device to
determine its telephony capabilities.

LONG lineGetAddressCaps(

HLINEAPP hLineApp,

DWORD dwDevicelD,

DWORD dwAddressID,

DWORD dwAPIVersion,

DWORD dwExtVersion,
LPLINEADDRESSCAPS |pAddressCaps

),

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDevicelD

The line device containing the address to be queried.
dwAddressID

The address on the given line device whose capabilities are to be queried.
dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version
number; the low-order word contains the minor version number. This number is obtained by
lineNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number can be left
zero if no device-specific extensions are to be used. Otherwise, the high-order word contains the
major version number; and the low-order word contains the minor version number.

IpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion of
the request, this structure is filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INCOMPATIBLEEXTVERSION,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALADDRESSID, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALAPPHANDLE, LINEERR_UNINITIALIZED, LINEERR_INVALPOINTER,

LINEERR_OPERATIONUNAVAIL, LINEERR_NODRIVER, LINEERR_NODEVICE.

Remarks
Valid address IDs range from zero to one less than the number of addresses returned by
lineGetDevCaps. The version number to be supplied is the version number that was returned as part of
the line's device capabilities by lineGetDevCaps.

See Also
LINEADDRESSCAPS, lineGetDevCaps, lineNegotiateAPIVersion

lineGetAddressID

Overview
Overview

The lineGetAddressID function returns the address ID associated with an address in a different format
on the specified line.

LONG lineGetAddressID(

HLINE hLine,

LPDWORD /pdwAddressID,
DWORD dwAddressMode,
LPCSTR IpsAddress,
DWORD dwSize

),

Parameters
hLine

A handle to the open line device.
IndwAddressID

A pointer to a DWORD-sized memory location where the address ID is returned.
dwAddressMode

The address mode of the address contained in [psAddress. The dwAddressMode parameter is
allowed to have only a single flag set. This parameter uses the following LINEADDRESSMODE _
constants:

LINEADDRESSMODE_DIALABLEADDR

The address is specified by its dialable address. The IpsAddress parameter is the dialable address
or canonical address format.

IpsAddress

A pointer to a data structure holding the address assigned to the specified line device. The format of
the address is determined by dwAddressMode. Because the only valid value is
LINEADDRESSMODE_DIALABLEADDR, IpsAddress uses the common dialable number format and
is NULL-terminated.

dwSize

The size of the address contained in lpsAddress.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALADDRESSMODE,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALADDRESS, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks

The lineGetAddressID function is used to map a phone number (address) assigned to a line device back
to its dwAddressID in the range 0 to the number of addresses minus one returned in the line's device
capabilities. The lineMakeCall function allows the application to make a call by specifying a line handle
and an address on the line. The address can be specified as a dwAddressID, as a phone number, or as a
device-specific name or identifier. Using a phone number may be practical in environments where a
single line is assigned multiple addresses. Note that LINEADDRESSMODE_ADDRESSID may not be
used with lineGetAddressID.

See Also
lineMakeCall

lineGetAddressStatus

Overview
Overview

The lineGetAddressStatus function allows an application to query the specified address for its current
status.

LONG lineGetAddressStatus(

HLINE hLine,
DWORD dwAddressID,
LPLINEADDRESSSTATUS IpAddressStatus

),

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the given open line device. This is the address to be queried.
IpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHANDLE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NOMEM, LINEERR_OPERATIONUNAVAIL, LINEERR_OPERATIONFAILED.

See Also
LINEADDRESSSTATUS

lineGetAgentActivityList

Overview
Overview

The lineGetAgentActivityList function obtains the identities of activities which the application can select
using lineSetAgentActivity to indicate what function the agent is actually performing at the moment.

LONG lineGetAgentActivityList(

HLINE hLine,

DWORD dwAddressID,
LPLINEAGENTACTIVITYLIST IpAgentActivityList
);

Parameters
hLine

A handle to the open line device.
dwAddressID

The address on the open line device whose agent status is to be queried.
IpAgentAcvitityList

A pointer to a variably sized structure of type LINEAGENTACTIVITYLIST. Upon successful
completion of the request, this structure is filled with a list of the agent activity codes which can be
selected using lineSetAgentActivity. Prior to calling lineGetAgentActivityList, the application
should set the dwTotalSize field of this structure to indicate the amount of memory available to TAPI
for returning information.

Return Values

Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALAGENTID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM,
LINEERR_UNINITIALIZED.

See Also
LINEAGENTACTIVITYLIST, lineSetAgentActivity

lineGetAgentCaps

Overview
Overview

The lineGetAgentCaps function obtains the agent-related capabilities supported on the specified line
device. If a specific agent is named, the capabilities will include a listing of ACD groups into which the
agent is permitted to log in.

LONG lineGetAgentCaps(

HLINEAPP hLineApp,

DWORD dwDevicelD,

DWORD dwAddressID,

DWORD dwAppAPIVersion,
LPLINEAGENTCAPS IpAgentCaps

),

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDevicelD

The line device containing the address to be queried.
dwAddressID

The address on the given line device whose capabilities are to be queried.
dwAppAPIVersion

The highest API version supported by the application. This should not be the value negotiated using
lineNegotiateAPIVersion on the device being queried.

IpAgentCaps

A pointer to a variably sized structure of type LINEAGENTCAPS. Upon successful completion of the
request, this structure is filled with agent capabilities information. Prior to calling lineGetAgentCaps,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values

Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INVALADDRESSID, LINEERR_OPERATIONUNAVAIL,
LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NODRIVER, LINEERR_UNINITIALIZED,
LINEERR_NODEVICE.

See Also
LINEAGENTCAPS, lineNegotiateAPIVersion

lineGetAgentGroupList

Overview
Overview

The lineGetAgentGroupList function obtains the identities of agent groups (combination of queue,
supervisor, skill level, and so on) into which the agent currently logged in on the workstation is permitted
to log into on the automatic call distributor.

LONG lineGetAgentGroupList(

HLINE hLine,
DWORD dwAddressID,
LPLINEAGENTGROUPLIST /pAgentGroupList

),

Parameters
hLine

A handle to the open line device.
dwAddressID

The address on the open line device whose agent status is to be queried.
IpAgentGroupList

A pointer to a variably sized structure of type LINEAGENTGROUPLIST. Upon successful completion
of the request, this structure is filled with a list of the agent groups into which the agent may log in at
this time (which should include any groups into which the agent is already logged in, if any). Prior to
calling lineGetAgentGroupList, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning information.

Return Values

Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALAGENTID, LINEERR_INVALLINEHANDLE,
LINEERR_INVALPOINTER, LINEERR_NOMEM, LINEERR_OPERATIONFAILED,
LINEERR_OPERATIONUNAVAIL, LINEERR_RESOURCEUNAVAIL,
LINEERR_STRUCTURETOOSMALL, LINEERR_UNINITIALIZED.

See Also
LINEAGENTGROUPLIST

lineGetAgentStatus

Overview
Overview

The lineGetAgentStatus function obtains the agent-related status on the specified address.
LONG lineGetAgentStatus(

HLINE hLine,
DWORD dwAddressID,
LPLINEAGENTSTATUS IpAgentStatus

),

Parameters
hLine

A handle to the open line device.
dwAddressID

The address on the open line device whose agent status is to be queried.
IpAgentStatus

A pointer to a variably sized structure of type LINEAGENTSTATUS. Upon successful completion of
the request, this structure is filled with agent status information. Prior to calling lineGetAgentStatus,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values

Returns a positive request identifier if the asynchronous operation starts; otherwise, one of these negative
error values:

LINEERR_INVALADDRESSID, LINEERR_INVALLINEHANDLE, LINEERR_INVALPOINTER,
LINEERR_NOMEM, LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL,
LINEERR_RESOURCEUNAVAIL, LINEERR_STRUCTURETOOSMALL, LINEERR_UNINITIALIZED.

See Also
LINEAGENTSTATUS

lineGetAppPriority

Overview
Overview

The lineGetAppPriority function allows an application to determine whether or not it is in the handoff
priority list for a particular media mode or Assisted Telephony request mode, and, if so, its position in the
priority list.

LONG lineGetAppPriority(

LPCSTR IpszAppFilename,

DWORD dwMediaMode,
LPLINEEXTENSIONID const [pExtensionID,
DWORD dwRequestMode,

LPVARSTRING /pExtensionName,
LPDWORD IpdwPriority

);

Parameters
IpszAppFilename

A pointer to a string containing the application executable module filename (without directory
information). In API versions 0x00020000 and greater, the parameter can be in either long or 8.3
filename format. In API versions less than 0x00020000, the parameter must specify a filename in the
8.3 format; long filenames cannot be used.

dwMediaMode

The media mode for which the priority information is to be obtained. The value may be one of the
LINEMEDIAMODE __ constants; only a single bit may be on. The value 0 should be used if checking
application priority for Assisted Telephony requests.

IpExtensionID

A pointer to structure of type LINEEXTENSIONID. This parameter is ignored.
dwRequestMode

If the dwMediaMode parameter is 0, this parameter specifies the Assisted Telephony request mode
for which priority is to be checked. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter is ignored if dwMediaMode is non-zero.

IpExtensionName

This parameter is ignored.
IpdwPriority

A pointer to a DWORD-size memory location into which TAPI will write the priority of the application
for the specified media or request mode. The value 0 will be returned if the application is not in the
stored priority list and does not currently have any line device open with ownership requested of the
specified media mode or having registered for the specified request mode.

In API versions less than 0x00020000, the value -1 (OXFFFFFFFF) is returned if the application has
the line open for the specified media mode or has registered for the specified requests, but the
application is not in the stored priority list (that is, it is in the temporary priority list only). In API
versions 0x00020000 and greater, the value 0 is returned to indicate this condition.

Otherwise, the value will indicate the application's position in the list (with 1 being highest priority, and
increasing values indicating decreasing priority).

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INIFILECORRUPT, LINEERR_INVALREQUESTMODE, LINEERR_INVALAPPNAME,
LINEERR_NOMEM, LINEERR_INVALMEDIAMODE, LINEERR_OPERATIONFAILED,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL.

Remarks

If LINEERR_INVALMEDIAMODE is returned, the value specified in dwMediaMode is not 0, not a valid
extended media mode, and not a LINEMEDIAMODE __ constant, or more than one bit is on in the
parameter value.

Also, long filenames are now permitted for [pszAppFilename; 8.3 names are acceptable, but no longer
required.

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so; the function will work the same way for all
applications.

See Also
LINEEXTENSIONID, VARSTRING

lineGetCallinfo

Overview
Overview

The lineGetCalllnfo function enables an application to obtain fixed information about the specified call.
LONG lineGetCalllnfo(

HCALL hCall,
LPLINECALLINFO /pCallinfo

),

Parameters
hCall

A handle to the call to be queried. The call state of hCall can be any state.
IpCallinfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion of
the request, this structure is filled with call-related information. Prior to calling lineGetCalllnfo, the
application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks
A separate LINECALLINFO structure exists for every inbound or outbound call. The structure contains
primarily fixed information about the call. An application would typically be interested in checking this
information when it receives its handle for a call by the LINE_CALLSTATE message, or each time it
receives notification by a LINE_CALLINFO message that parts of the call information structure have
changed. These messages supply the handle for the call as a parameter.

See Also
LINE CALLINFO, LINE CALLSTATE, LINECALLINFO

lineGetCallStatus

Overview
Overview

The lineGetCallStatus function returns the current status of the specified call.
LONG lineGetCallStatus(

HCALL hCall,
LPLINECALLSTATUS /pCallStatus

),

Parameters
hCall

A handle to the call to be queried. The call state of hCall can be any state.
IpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful completion
of the request, this structure is filled with call status information. Prior to calling lineGetCallStatus,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks

The lineGetCallStatus function returns the dynamic status of a call, whereas lineGetCallinfo returns
primarily static information about a call. Call status information includes the current call state, detailed
mode information related to the call while in this state (if any), as well as a list of the available API
functions the application can invoke on the call while the call is in this state. An application would typically
be interested in requesting this information when it receives notification about a call state change by the
LINE_CALLSTATE message.

See Also
LINE_CALLSTATE, LINECALLSTATUS, lineGetCallinfo

lineGetConfRelatedCalls

Overview
Overview

The lineGetConfRelatedCalls function returns a list of call handles that are part of the same conference
call as the specified call. The specified call is either a conference call or a participant call in a conference
call. New handles are generated for those calls for which the application does not already have handles,
and the application is granted monitor privilege to those calls.

LONG lineGetConfRelatedCalls(

HCALL hCall,
LPLINECALLLIST IpCallList

),

Parameters
hCall

A handle to a call. This is either a conference call or a participant call in a conference call. For a
conference parent call, the call state of hCall can be any state. For a conference participant call, it
must be in the conferenced state.

IpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of
the request, call handles to all calls in the conference call are returned in this structure. The first call in
the list is the conference call, the other calls are the participant calls. The application is granted
monitor privilege to those calls for which it does not already have handles; the privileges to calls in the
list for which the application already has handles is unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_NOCONFERENCE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks

The specified call can either be a conference call handle or a handle to a participant call. For example, a
consultation call that has not yet been added to a conference call is not part of a conference. The first
entry in the list that is returned is the conference call handle, the other handles are all the participant calls.
The specified call is always one of the calls returned in the list. Calls in the list to which the application
does not already have a call handle are assigned monitor privilege; privileges to calls for which the
application already has handles are unchanged. The application can use lineSetCallPrivilege to change
the privilege of the call.

Note that if ineGetConfRelatedCalls is called immediately after a call is added to a conference using
lineCompleteTransfer, lineGetConfRelatedCalls may not return a complete list of related calls because
TAPI waits to receive a LINE_CALLSTATE message indicating that the call has entered
LINECALLSTATE_CONFERENCED before it considers the call to actually be part of the conference (that

is, the conferenced state is confirmed by the service provider). Once the application has received the
LINE_CALLSTATE message, lineGetConfRelatedCalls returns complete information.

The application can invoke lineGetCallinfo and lineGetCallStatus for each call in the list to determine
the call's information and status, respectively.

See Also
LINE_CALLSTATE, lineCompleteTransfer, lineGetCallinfo, lineGetCallStatus, lineSetCallPrivilege

lineGetCountry

Overview
Overview

The lineGetCountry function fetches the stored dialing rules and other information related to a specified
country, the first country in the country list, or all countries.

LONG lineGetCountry(

DWORD dwCountrylD,
DWORD dwAPIVersion,
LPLINECOUNTRYLIST IpLineCountryList

),

Parameters
dwCountrylD

The country ID (not the country code) of the country for which information is to be obtained. If the
value 1 is specified, information on the first country in the country list is obtained. If the value 0 is
specified, information on all countries is obtained (which may require a great deal of
memory—20Kbytes or more).

dwAPIVersion

The highest version of TAPI supported by the application (not necessarily the value negotiated by
lineNegotiateAPIVersion on some particular line device).

IpLineCountryList

A pointer to a location to which a LINECOUNTRYLIST structure will be loaded. Prior to calling
lineGetCountry, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILECORRUPT,
LINEERR_OPERATIONFAILED, LINEERR_INVALCOUNTRYCODE,
LINEERR_STRUCTURETOOSMALL, LINEERR_INVALPOINTER.

Remarks

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
LINECOUNTRYLIST, lineNegotiateAPIVersion

lineGetDevCaps

Overview
Overview

The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information is valid for all addresses on the line device.

LONG lineGetDevCaps(

HLINEAPP hLineApp,

DWORD dwDevicelD,

DWORD dwAPIVersion,

DWORD dwExtVersion,
LPLINEDEVCAPS IpLineDevCaps

),

Parameters
hLineApp

The handle to the application's registration with TAPI.
dwDevicelD

The line device to be queried.
dwAPIVersion

The version number of the Telephony API to be used. The high-order word contains the major version
number; the low-order word contains the minor version number. This number is obtained by
lineNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained
by lineNegotiateExtVersion. It can be left zero if no device-specific extensions are to be used.
Otherwise, the high-order word contains the major version number; the low-order word contains the
minor version number.

IpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the
request, this structure is filled with line device capabilities information. Prior to calling
lineGetDevCaps, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NOMEM, LINEERR_INCOMPATIBLEAPIVERSION,
LINEERR_OPERATIONFAILED, LINEERR_INCOMPATIBLEEXTVERSION,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALAPPHANDLE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NODRIVER,
LINEERR_OPERATIONUNAVAIL, LINEERR_NODEVICE.

Remarks

Before using lineGetDevCaps, the application must negotiate the API version number to use, and, if
desired, the extension version to use.

The API and extension version numbers are those under which TAPI and the service provider must
operate. If version ranges do not overlap, the application, API, or service-provider versions are
incompatible and an error is returned.

One of the fields in the LINEDEVCAPS structure returned by this function contains the number of
addresses assigned to the specified line device. The actual address IDs used to reference individual
addresses vary from zero to one less than the returned number. The capabilities of each address may be
different. Use lineGetAddressCaps for each available <dwDevicelD, dwAddressID> combination to
determine the exact capabilities of each address.

See Also
LINEDEVCAPS, lineGetAddressCaps, lineNegotiateAPIVersion, lineNegotiateExtVersion

lineGetDevConfig

Overview
Overview

The lineGetDevConfig function returns an "opaque" data structure object, the contents of which are
specific to the line (service provider) and device class. The data structure object stores the current
configuration of a media-stream device associated with the line device.

LONG lineGetDevConfig(

DWORD dwDevicelD,
LPVARSTRING /pDeviceConfig,
LPCSTR IpszDeviceClass

),

Parameters
dwDevicelD

The line device to be configured.
IpDeviceConfig

A pointer to the memory location of type VARSTRING where the device configuration structure is
returned. Upon successful completion of the request, this location is filled with the device
configuration. The dwStringFormat field in the VARSTRING structure will be set to
STRINGFORMAT_BINARY. Prior to calling lineGetDevConfig, the application should set the
dwTotalSize field of this structure to indicate the amount of memory available to TAPI for returning
information.

IpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose
configuration is requested. Valid device class lineGetlID strings are the same as those specified for
the function.

Return Values

Returns zero if the function is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_NODRIVER, LINEERR_INVALDEVICECLASS,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALPOINTER, LINEERR_RESOURCEUNAVAIL,
LINEERR_STRUCTURETOOSMALL, LINEERR_OPERATIONFAILED, LINEERR_NOMEM,
LINEERR_UNINITIALIZED, LINEERR_NODEVICE.

Remarks
Call states are device specific.

The lineGetDevConfig function can be used to retrieve a data structure from TAPI that specifies the
configuration of a media stream device associated with a particular line device. For example, the contents
of this structure could specify data rate, character format, modulation schemes, and error control protocol
settings for a "datamodem" media device associated with the line.

Typically, an application will call lineGetID to identify the media stream device associated with a line, and
then call lineConfigDialog to allow the user to set up the device configuration. It could then call

lineGetDevConfig, and save the configuration information in a phone book (or other database)
associated with a particular call destination. When the user later wishes to call the same destination
again, lineSetDevConfig can be used to restore the configuration settings selected by the user. The
functions lineSetDevConfig, lineConfigDialog, and lineGetDevConfig can be used, in that order, to
allow the user to view and update the settings.

The exact format of the data contained within the structure is specific to the line and media stream API
(device class), is undocumented, and is undefined. The structure returned by this function cannot be
directly accessed or manipulated by the application, but can only be stored intact and later used in
lineSetDevConfig to restore the settings. The structure also cannot necessarily be passed to other
devices, even of the same device class (although this may work in some instances, it is not guaranteed).

See Also
lineConfigDialog, lineGetID, lineSetDevConfig, VARSTRING

lineGeticon

Overview
Overview

The lineGetlcon function allows an application to retrieve a service line device-specific (or provider-
specific) icon for display to the user.

LONG lineGetlcon(

DWORD dwDevicelD,
LPCSTR IpszDeviceClass,
LPHICON Iphicon

),

Parameters
dwDevicelD

The line device whose icon is requested.
IpszDeviceClass

A pointer to a NULL-terminated string that identifies a device class name. This device class allows the
application to select a specific sub-icon applicable to that device class. This parameter is optional and
can be left NULL or empty, in which case the highest-level icon associated with the line device rather
than a specified media stream device would be selected.

Iphicon

A pointer to a memory location in which the handle to the icon is returned.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_BADDEVICEID, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALDEVICECLASS, LINEERR_UNINITIALIZED,
LINEERR_NOMEM, LINEERR_NODEVICE.

Remarks

The lineGetlcon function causes the provider to return a handle (in [phlcon) to an icon resource
(obtained from Loadlcon) that is associated with the specified line. The icon handle is for a resource
associated with the provider. The application must use Copylcon if it wishes to reference the icon after
the provider is unloaded, which is unlikely to happen as long as the application has the line open.

The IpszDeviceClass parameter allows the provider to return different icons based on the type of service
being referenced by the caller. The permitted strings are the same as for lineGetID. For example, if the
line supports the Comm API, passing "COMM" as IpszDeviceClass causes the provider to return an icon
related specifically to the Comm device functions of the service provider. The parameters "tapi/line”, "", or
NULL may be used to request the icon for the line service.

For applications using an API version less than 0x00020000, if the provider does not return an icon
(whether because the given device class is invalid or the provider does not support icons), TAPI
substitutes a generic Win32 Telephony line device icon. For applications using API version 0x00020000 or

greater, TAPI substitutes the default line icon only if the IpszDeviceClass parameter is "tapi/line", " or

NULL. For any other device class, if the given device class is not valid or the provider does not support
icons for the class, lineGetlcon returns LINEERR_INVALDEVICECLASS.

See Also
lineGetID

lineGetID

Overview
Overview

The lineGetID function returns a device ID for the specified device class associated with the selected
line, address, or call.

LONG lineGetID(

HLINE hLine,

DWORD dwAddressID,
HCALL hCall,

DWORD dwSelect,
LPVARSTRING IpDevicelD,
LPCSTR IpszDeviceClass

),

Parameters
hLine

A handle to an open line device.
dwAddressID

An address on the given open line device.
hCall

A handle to a call.
dwSelect

Specifies whether the requested device ID is associated with the line, address or a single call. The
dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT _ constants:

LINECALLSELECT_LINE

Selects the specified line device. The hLine parameter must be a valid line handle; hCall and
dwAddressID are ignored.

LINECALLSELECT_ADDRESS

Selects the specified address on the line. Both hLine and dwAddressID must be valid; hCall is
ignored.

LINECALLSELECT_CALL

Selects the specified call. hCall must be valid; hLine and dwAddressID are both ignored.

IpDevicelD

A pointer to a memory location of type VARSTRING, where the device ID is returned. Upon
successful completion of the request, this location is filled with the device ID. The format of the
returned information depends on the method used by the device class API for naming devices. Prior
to calling lineGetlID, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

IpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose ID is
requested. Valid device class strings are those used in the SYSTEM.INI section to identify device
classes.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_NOMEM, LINEERR_INVALADDRESSID,
LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED,
LINEERR_INVALCALLSELECT, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NODEVICE, LINEERR_UNINITIALIZED.

Remarks

The lineGetID function can be used to retrieve a line-device ID when given a line handle. This is useful
after a line device has been opened using LINEMAPPER as a device ID in order to determine the real
line-device ID of the opened line. This function can also be used to obtain the device ID of a phone device
or media device (for device classes such as COM, wave, MIDI, phone, line, or NDIS) associated with a
call, address or line. This ID can then be used with the appropriate API (such as phone, midi, wave) to
select the corresponding media device associated with the specified call.

See Device Classes in TAPI for device class names.

A vendor that defines a device-specific media mode also needs to define the corresponding device-
specific (proprietary) API to manage devices of the media mode. To avoid collisions on device class
names assigned independently by different vendors, a vendor should select a name that uniquely
identifies both the vendor and, following it, the media type. For example: "intel/video".

See Also
VARSTRING

lineGetLineDevStatus

Overview
Overview

The lineGetLineDevStatus function enables an application to query the specified open line device for its
current status.

LONG lineGetLineDevStatus(

HLINE hLine,
LPLINEDEVSTATUS IpLineDevStatus

),

Parameters
hLine

A handle to the open line device to be queried.
IpLineDevStatus

A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion of
the request, this structure is filled with the line's device status. Prior to calling lineGetLineDevStatus,
the application should set the dwTotalSize field of this structure to indicate the amount of memory
available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER,
LINEERR_STRUCTURETOOSMALL, LINEERR_NOMEM, LINEERR_UNINITIALIZED,
LINEERR_OPERATIONFAILED, LINEERR_OPERATIONUNAVAIL.

Remarks

An application uses lineGetLineDevStatus to query the line device for its current line status. This status
information applies globally to all addresses on the line device. Use lineGetAddressStatus to determine
status information about a specific address on a line.

See Also
LINEDEVSTATUS, lineGetAddressStatus

lineGetMessage

The lineGetMessage function returns the next TAPI message that is queued for delivery to an application
that is using the Event Handle notification mechanism (see linelnitializeEx for further details).

LONG lineGetMessage(

HLINEAPP hLineApp,
LPLINEMESSAGE /pMessage,
DWORD dwTimeout

)a

Parameters
hLineApp

The handle returned by linelnitializeEx. The application must have set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.

IpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure will
contain the next message which had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no message
can be returned. If dwTimeout is zero, the function checks for a queued message and returns
immediately. If dwTimeout is INFINITE, the function's time-out interval never elapses.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_NOMEM.

Remarks

If the lineGetMessage function has been called with a non-zero timeout and the application calls
lineShutdown on another thread, this function will return immediately with
LINEERR_INVALAPPHANDLE.

If the timeout expires (or was zero) and no message could be fetched from the queue, the function
returns with the error LINEERR_OPERATIONFAILED.

See Also
linelnitializeEx, LINEINITIALIZEEXPARAMS, LINEMESSAGE, lineShutdown

lineGetNewCalls

Overview
Overview

The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application is granted monitor privilege to these calls.

LONG lineGetNewCalls(

HLINE hLine,

DWORD dwAddressID,
DWORD dwSelect,
LPLINECALLLIST /pCallList

),

Parameters
hLine

A handle to an open line device.
dwAddressID

An address on the given open line device.
dwSelect

The selection of calls that are requested. Note that dwSelect can only have one bit set. This
parameter uses the following LINECALLSELECT _ constants:

LINECALLSELECT_LINE

Selects calls on the specified line device. The hLine parameter must be a valid line handle;
dwAddressID is ignored.

LINECALLSELECT_ADDRESS

Selects calls on the specified address on the specified line device. Both hLine and dwAddressID
must be valid.

IpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion of
the request, call handles to all selected calls are returned in this structure. Prior to calling
lineGetNewCalls, the application should set the dwTotalSize field of this structure to indicate the
amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALCALLSELECT,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALLINEHANDLE, LINEERR_STRUCTURETOOSMALL,
LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED, LINEERR_NOMEM.

Remarks

An application can use lineGetNewcCalls to obtain handles to calls for which it currently has no handles.
The application can select the calls for which handles are to be returned by basing this selection on scope
(calls on a specified line, or calls on a specified address). For example, an application can request call
handles to all calls on a given address for which it currently has no handle. The application is always
given monitor privilege to the new call handles. Also, when opening a line, an application uses this
function to become aware of existing calls.

The application can invoke lineGetCalllnfo and lineGetCallStatus for each call in the list to determine
the call's information and status, respectively. It can use lineSetCallPrivilege to change its privilege to
owner.

See Also
LINECALLLIST, lineGetCallinfo, lineGetCallStatus, lineSetCallPrivilege

lineGetNumRings

Overview
Overview

The lineGetNumRings function determines the number of rings an inbound call on the given address
should ring prior to answering the call.

LONG lineGetNumRings(

HLINE hLine,
DWORD dwAddressID,
LPDWORD /pdwNumRings

),

Parameters
hLine

A handle to the open line device.
dwAddressID

An address on the line device.
IpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings requests.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALADDRESSID, LINEERR_OPERATIONFAILED, LINEERR_INVALLINEHANDLE,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_UNINITIALIZED,
LINEERR_NOMEM.

Remarks

The lineGetNumRings and lineSetNumRings functions, when used in combination, provide a
mechanism to support the implementation of toll-saver features across multiple independent applications.

An application that receives a handle for a call in the offering state and a LINE_LINEDEVSTATE ringing
message should wait a number of rings equal to the number returned by lineGetNumRings before
answering the call in order to honor the toll-saver settings across all applications. The lineGetNumRings
function returns the minimum of all application's number of rings specified by lineSetNumRings.
Because this number may vary dynamically, an application should invoke lineGetNumRings each time it
has the option to answer a call. If no application has called lineSetNumRings, the number or rings
returned is OXFFFFFFFF. A separate LINE_LINEDEVSTATE ringing message is sent to the application for
each ring cycle.

If call classification is performed by TAPI of answering all calls of unknown media mode and filtering the
media stream, TAPI honors this number as well.

Note that this operation is purely informational and does not in itself affect the state of any calls on the line
device.

See Also
LINE_LINEDEVSTATE, lineSetNumRings

lineGetProviderList

Overview
Overview

The lineGetProviderList function returns a list of service providers currently installed in the telephony
system.

LONG lineGetProviderList(

DWORD dwAPIVersion,
LPLINEPROVIDERLIST IpProviderList

),

Parameters
dwAPIVersion

The highest version of TAPI supported by the application (not necessarily the value negotiated by
lineNegotiateAPIVersion on some particular line device).

IpProviderList

A pointer to a memory location where TAPI will return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotalSize field of this structure to
indicate the amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILECORRUPT,
LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL.

Remarks

Although this is a new function which older applications would not be expected to call, for backward
compatibility, they should not be prevented from doing so. The function will work the same way for all
applications.

See Also
lineNegotiateAPIVersion, LINEPROVIDERLIST

lineGetRequest

Overview
Overview

The lineGetRequest function retrieves the next by-proxy request for the specified request mode.
LONG lineGetRequest(

HLINEAPP hLineApp,
DWORD dwRequestMode,
LPVOID IpRequestBuffer

),

Parameters
hLineApp

The application's usage handle for the line portion of TAPI.
dwRequestMode

The type of request that is to be obtained. Note that dwRequestMode can only have one bit set. This
parameter uses the following LINEREQUESTMODE_ constants:

LINEREQUESTMODE_MAKECALL

A tapiRequestMakeCall request.

IpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the
buffer and the interpretation of the information placed in the buffer depends on the request mode. The
application-allocated buffer is assumed to be of sufficient size to hold the request.

If dwRequestMode is LINEREQUESTMODE_MAKECALL, interpret the content of the request buffer
using the LINEREQMAKECALL structure.

If dwRequestMode is LINEREQUESTMODE_MEDIACALL, interpret the content of the request buffer
using the LINEREQMEDIACALL structure.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPHANDLE, LINEERR_NOTREGISTERED, LINEERR_INVALPOINTER,
LINEERR_OPERATIONFAILED, LINEERR_INVALREQUESTMODE, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOMEM, LINEERR_UNINITIALIZED, LINEERR_NOREQUEST.

Remarks

A telephony-enabled application can request that a call be placed on its behalf by invoking
tapiRequestMakeCall. These requests are queued by TAPI and the highest priority application that has
registered to handle the request is sent a LINE_REQUEST message with indication of the mode of the
request that is pending. Typically, this application is the user's call-control application. The
LINE_REQUEST message indicates that zero or more requests may be pending for the registered
application to process; after receiving LINE_REQUEST, it is the responsibility of the recipient application
to call lineGetRequest until LINEERR_NOREQUEST is returned, indicating that no more requests are

pending.

Next, the call-control application that receives this message invokes lineGetRequest, specifying the
request mode and a buffer that is large enough to hold the request. The call-control application then
interprets and executes the request.

After execution of lineGetRequest, TAPI purges the request from its internal queue, making room
available for a subsequent request. It is therefore possible for a new LINE_ REQUEST message to be
received immediately upon execution of lineGetRequest, should the same or another application issue
another request. It is the responsibility of the request recipient application to handle this scenario by some
mechanism (for example, by making note of the additional LINE_REQUEST and deferring a subsequent
lineGetRequest until processing of the preceding request completes, by getting the subsequent request
and buffer as necessary, or by another appropriate means).

Note that the subsequent LINE_ REQUEST should not be ignored because it will not be repeated by TAPI.

See Also
LINE_REQUEST, LINEREQMAKECALL, tapiRequestMakeCall

lineGetStatusMessages

Overview
Overview

The lineGetStatusMessages function enables an application to query which notification messages the
application is set up to receive for events related to status changes for the specified line or any of its
addresses.

LONG lineGetStatusMessages(

HLINE hLine,
LPDWORD IpdwLineStates,
LPDWORD /pdwAddressStates

),

Parameters
hLine

A handle to the line device.
IpdwLineStates

A bit array that identifies for which line device status changes a message is to be sent to the
application. If a flag is TRUE, that message is enabled; if FALSE, it is disabled. Note that multiple
flags can be set. This parameter uses the following LINEDEVSTATE__ constants:

LINEDEVSTATE_OTHER

Device-status items other than those listed below have changed. The application should check the
current device status to determine which items have changed.

LINEDEVSTATE_RINGING

The switch tells the line to alert the user. Service providers notify applications on each ring cycle by
sending LINE_LINEDEVSTATE messages containing this constant. For example, in the United
States, service providers send a message with this constant every six seconds.

LINEDEVSTATE_CONNECTED

The line was previously disconnected and is now connected to TAPI.
LINEDEVSTATE_NUMCOMPLETIONS

The number of outstanding call completions on the line device has changed.
LINEDEVSTATE_DISCONNECTED

This line was previously connected and is now disconnected from TAPI.
LINEDEVSTATE_MSGWAITON

The "message waiting" indicator is turned on.
LINEDEVSTATE_MSGWAITOFF

The "message waiting" indicator is turned off.
LINEDEVSTATE_INSERVICE

The line is connected to TAPI. This happens when TAPI is first activated or when the line wire is
physically plugged in and in service at the switch while TAPI is active.

LINEDEVSTATE_OUTOFSERVICE

The line is out of service at the switch or physically disconnected. TAPI cannot be used to operate
on the line device.

LINEDEVSTATE_MAINTENANCE

Maintenance is being performed on the line at the switch. TAPI cannot be used to operate on the
line device.

LINEDEVSTATE_OPEN

The line has been opened by some application.
LINEDEVSTATE_CLOSE

The line has been closed by some application.
LINEDEVSTATE_NUMCALLS

The number of calls on the line device has changed.
LINEDEVSTATE_TERMINALS

The terminal settings have changed.
LINEDEVSTATE_ ROAMMODE

The roam mode of the line device has changed.
LINEDEVSTATE_BATTERY

The battery level has changed significantly (cellular).
LINEDEVSTATE_SIGNAL

The signal level has changed significantly (cellular).
LINEDEVSTATE_DEVSPECIFIC

The line's device-specific information has changed.
LINEDEVSTATE_REINIT

Items have changed in the configuration of line devices. To become aware of these changes (for
example, the appearance of new line devices) the application should reinitialize its use of TAPI.
The hDevice parameter of the LINE_LINEDEVSTATE message is left NULL for this state change
as it applies to any of the lines in the system.

LINEDEVSTATE_LOCK

The locked status of the line device has changed.
LINEDEVSTATE_REMOVED

The device is being removed from the system by the service provider (most likely through user
action, through a control panel or similar utility). A LINE_LINEDEVSTATE message with this value
will normally be immediately followed by a LINE_CLOSE message on the device. Subsequent
attempts to access the device prior to TAPI being reinitialized will result in LINEERR_NODEVICE
being returned to the application. If a service provider sends a LINE_LINEDEVSTATE message
containing this value to TAPI, TAPI will pass it along to applications which have negotiated TAPI
version 0x00010004 or above; applications negotiating a previous API version will not receive any
notification.

IndwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
If a flag is TRUE, that message is enabled; if FALSE, disabled. Multiple flags can be set. This

parameter uses the following LINEADDRESSSTATE_ constants:
LINEADDRESSSTATE_OTHER

Address-status items other than those listed below have changed. The application should check
the current address status to determine which items have changed.

LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status has changed.
LINEADDRESSSTATE_INUSEZERO

The address has changed to idle (it is now in use by zero stations).
LINEADDRESSSTATE_INUSEONE

The address has changed from being idle or from being in use by many bridged stations to being in
use by just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address has changed from being in use by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This is the result of events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address has changed, including the number of rings for determining a
"no answer" condition. The application should check the address status to determine details about
the address's current forwarding status.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address have changed.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALLINEHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALPOINTER,
LINEERR_RESOURCEUNAVAIL, LINEERR_NOMEM, LINEERR_UNINITIALIZED.

Remarks

TAPI defines a number of messages that notify applications about events occurring on lines and
addresses. An application may not be interested in receiving all address and line status change
messages. The lineSetStatusMessages function can be used to select which messages the application
wants to receive. By default, address status and line status reporting is disabled.

See Also
LINE CLOSE, LINE_LINEDEVSTATE, lineSetStatusMessages

lineGetTranslateCaps

Overview
Overview

The lineGetTranslateCaps function returns address translation capabilities.
LONG lineGetTranslateCaps(

HLINEAPP hLineApp,
DWORD dwAPIVersion,
LPLINETRANSLATECAPS IpTranslateCaps

),

Parameters
hLineApp

The application handle returned by linelnitializeEx. If an application has not yet called the
linelnitializeEx function, it can set the hLineApp parameter to NULL.

dwAPIVersion

The highest version of TAPI supported by the application (not necessarily the value negotiated by
lineNegotiateAPIVersion on some particular line device).

IpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure will be loaded. Prior to calling
lineGetTranslateCaps, the application should set the dwTotalSize field of this structure to indicate
the amount of memory available to TAPI for returning information.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INCOMPATIBLEAPIVERSION, LINEERR_NOMEM, LINEERR_INIFILECORRUPT,
LINEERR_OPERATIONFAILED, LINEERR_INVALAPPHANDLE, LINEERR_RESOURCEUNAVAIL,
LINEERR_INVALPOINTER, LINEERR_STRUCTURETOOSMALL, LINEERR_NODRIVER.

See Also
linelnitializeEXx, lineNegotiateAPIVersion, LINETRANSLATECAPS

lineHandoff

Overview
Overview

The lineHandoff function gives ownership of the specified call to another application. The application can
be either specified directly by its filename or indirectly as the highest priority application that handles calls
of the specified media mode.

LONG lineHandoff(

HCALL hCall,
LPCSTR IpszFileName,
DWORD dwMediaMode

),

Parameters
hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of
hCall can be any state.

IpszFileName

A pointer to a NULL-terminated ASCII string. If this pointer parameter is non-NULL, it contains the
filename of the application that is the target of the handoff. If NULL, the handoff target is the highest
priority application that has opened the line for owner privilege for the specified media mode. A valid
filename does not include the path of the file.

dwMediaMode

The media mode used to identify the target for the indirect handoff. The dwMediaMode parameter
indirectly identifies the target application that is to receive ownership of the call. This parameter is
ignored if IpszFileName is not NULL. Only a single flag may be set in the dwMediaMode parameter at
any one time. This parameter uses the following LINEMEDIAMODE_ constants:

LINEMEDIAMODE_UNKNOWN

The target application is the one that handles calls of unknown media mode (unclassified calls).
LINEMEDIAMODE_INTERACTIVEVOICE

The target application is the one that handles calls with the interactive voice media mode (live
conversations).

LINEMEDIAMODE_AUTOMATEDVOICE

Voice energy is present on the call and the voice is locally handled by an automated application.
LINEMEDIAMODE_DATAMODEM

The target application is the one that handles calls with the data modem media mode.
LINEMEDIAMODE_G3FAX

The target application is the one that handles calls with the group 3 fax media mode.
LINEMEDIAMODE_TDD

The target application is the one that handles calls with the TDD (Telephony Devices for the Deaf)
media mode.

LINEMEDIAMODE_G4FAX

The target application is the one that handles calls with the group 4 fax media mode.
LINEMEDIAMODE_DIGITALDATA

The target application is the one that handles calls that are digital data calls.
LINEMEDIAMODE_TELETEX

The target application is the one that handles calls with the teletex media mode.
LINEMEDIAMODE_VIDEOTEX

The target application is the one that handles calls with the videotex media mode.
LINEMEDIAMODE_TELEX

The target application is the one that handles calls with the telex media mode.
LINEMEDIAMODE_MIXED

The target application is the one that handles calls with the ISDN mixed media mode.
LINEMEDIAMODE_ADSI

The target application is the one that handles calls with the ADSI (Analog Display Services
Interface) media mode.

LINEMEDIAMODE_VOICEVIEW

The media mode of the call is VoiceView.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONFAILED, LINEERR_INVALMEDIAMODE,
LINEERR_TARGETNOTFOUND, LINEERR_INVALPOINTER, LINEERR_TARGETSELF,
LINEERR_NOMEM, LINEERR_UNINITIALIZED, LINEERR_NOTOWNER.

Remarks

The lineHandoff function returns LINEERR_TARGETSELF if the calling application attempted an indirect
handoff (that is, set the IpszFileName parameter to NULL) and TAPI determined that the application is
itself the highest priority application for the given media mode. If LINEERR_TARGETNOTFOUND is
returned, a target for the call handoff was not found. This may occur if the named application did not open
the same line with the LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of lineOpen. Or,
in the case of media-mode handoff, no application has opened the same line with the
LINECALLPRIVILEGE_OWNER bit in the dwPrivileges parameter of lineOpen and with the media mode
specified in the dwMediaMode parameter having been specified in the dwMediaModes parameter of
lineOpen.

Call handoff allows ownership of a call to be passed among applications. There are two types of handoff.
In the first type, if the application knows the filename of the target application, it can simply specify the
filename of that application. If an instance of the target application has opened the line device, ownership
of the call will be passed to the other application; otherwise, the handoff will fail and an error is returned.
This form of handoff will succeed if the call handle is handed off to the same file name as the application
requesting the handoff.

The second type of handoff is based on media mode. In this case, the application indirectly specifies the
target application by means of a media mode. The highest priority application that has currently opened
the line device for that media mode is the target for the handoff. If there is no such application, the
handoff fails and an error is returned.

The lineHandoff function does not change the media mode of a call. To change the media mode of a call,
the application should use lineSetMediaMode on the call, specifying the new media mode. This changes
the call's media as stored in the call's LINECALLINFO structure.

If handoff is successful, the receiving application will receive a LINE_CALLSTATE message for the call.
This message indicates that the receiving application has owner privilege to the call (dwParam3). In
addition, the number of owners and/or monitors for the call may have changed. This is reported by the
LINE_CALLINFO message, and the receiving application can then invoke lineGetCallStatus and
lineGetCallinfo to retrieve more information about the received call.

The receiving application should first check the media mode in LINECALLINFO. If only a single media
mode flag is set, the call is officially of that media mode, and the application can act accordingly. If
UNKNOWN and other media mode flags are set, then the media mode of the call is officially UNKNOWN
but is assumed to be of one of the media modes for which a flag is set in LINECALLINFO. The
application should assume that it ought to probe for the highest priority media mode.

If the probe succeeds (either for that media mode or for another one), the application should set the
media mode field in LINECALLINFO to just the single media mode that was recognized. If the media
mode is for that media mode, the application can act accordingly; otherwise, if it makes a determination
for another media mode, it must first hand off the call to that media mode.

If the probe fails, the application should clear the corresponding media mode flag in LINECALLINFO and
hand off the call, specifying dwMediaMode as LINEMEDIAMODE_UNKNOWN. It should also deallocate
its call handle (or revert back to monitoring).

If none of the media modes succeeded in making a determination, only the UNKNOWN flag will remain
set in the media mode field of LINECALLINFO at the time the media application attempts to hand off the
call back to UNKNOWN. The final lineHandoff will fail if the application is the only remaining owner of the
call. This informs the application that it should drop the call and deallocate its handle, in which case the
call is abandoned. The privileges of the invoking application to the call are unchanged by this operation,
but the application can change its privileges to a call with lineSetCallPrivilege.

See Also
LINECALLINFO, lineGetCallStatus, lineOpen, lineSetCallPrivilege, lineSetMediaMode

lineHold

Overview
Overview

The lineHold function places the specified call on hold.
LONG lineHold(

HCALL hCall
);

Parameters
hCall

A handle to the call to be placed on hold. The application must be an owner of the call. The call state
of hCall must be connected.

Return Values

Returns a positive request ID if the function will be completed asynchronously or a negative error number
if an error has occurred. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if
the function is successful or it is a negative error number if an error has occurred. Possible return values
are:

LINEERR_INVALCALLHANDLE, LINEERR_OPERATIONUNAVAIL, LINEERR_INVALCALLSTATE,
LINEERR_OPERATIONFAILED, LINEERR_NOMEM, LINEERR_RESOURCEUNAVAIL,
LINEERR_NOTOWNER, LINEERR_UNINITIALIZED.

Remarks

The call on hold is temporarily disconnected allowing the application to use the line device for making or
answering other calls. The lineHold function performs a so-called "hard hold" of the specified call (as
opposed to a "consultation call"). A call on hard hold typically cannot be transferred or included in a
conference call, but a consultation call can. Consultation calls are initiated using lineSetupTransfer,

lineSetupConference, or linePrepareAddToConference.

After a call has been successfully placed on hold, the call state typically transitions to onHold. A held call
is retrieved by lineUnhold. While a call is on hold, the application may receive LINE_CALLSTATE
messages about state changes of the held call. For example, if the held party hangs up, the call state
may transition to disconnected.

In a bridged situation, a lineHold operation may possibly not actually place the call on hold, because the
status of other stations on the call may govern (for example, attempting to "hold" a call when other
stations are participating will not be possible); instead, the call may simply be changed to the
LINECONNECTEDMODE_INACTIVE mode if it remains connected at other stations.

See Also

LINE_CALLSTATE, linePrepareAddToConference, lineSetupConference, lineSetupTransfer,
lineUnhold

linelnitialize

Overview
Overview

The linelnitialize function is obsolete. It continues to be exported by TAPI.DLL and TAPI32.DLL for
backward compatibility with applications using API versions 0x00010003 and 0x00010004.

Applications using API version 0x00020000 or greater must use linelnitializeEx instead.

For Windows 95 applications only

The linelnitialize function initializes the application's use of TAPI.DLL for subsequent use of the line
abstraction. It registers the application's specified notification mechanism and returns the number of line
devices available to the application. A line device is any device that provides an implementation for the
line-prefixed functions in the Telephony API.

LONG linelnitialize(

LPHLINEAPP IphLineApp,
HINSTANCE hinstance,
LINECALLBACK IpfnCallback,
LPCSTR IpszAppName,
LPDWORD /IpdwNumDevs

),

Parameters
IphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.
hinstance

The instance handle of the client application or DLL.
IpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls. For more information see lineCallbackFunc.

InszAppName

A pointer to a NULL-terminated ASCII string that contains only displayable ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. This name is
provided in the LINECALLINFO structure to indicate, in a user-friendly way, which application
originated, or originally accepted or answered the call. This information can be useful for call logging
purposes. If IpszAppName is NULL, the application's filename is used instead.

IpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location is
filled with the number of line devices available to the application.

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPNAME, LINEERR_OPERATIONFAILED, LINEERR_INIFILECORRUPT,
LINEERR_RESOURCEUNAVAIL, LINEERR_INVALPOINTER, LINEERR_REINIT,
LINEERR_NODRIVER, LINEERR_NODEVICE, LINEERR_NOMEM,
LINEERR_NOMULTIPLEINSTANCE.

Remarks

If LINEERR_REINIT is returned and TAPI reinitialization has been requested (for example as a result of
adding or removing a Telephony service provider), then linelnitialize requests are rejected with this error
until the last application shuts down its usage of the API (using lineShutdown). At that time, the new
configuration becomes effective and applications are once again permitted to call linelnitialize. If the
LINEERR_INVALPARAM error value is returned, the specified hinstance parameter is invalid.

The application can refer to individual line devices by using line device IDs that range from zero to
dwNumDevs minus one. An application should not assume that these line devices are capable of
anything beyond what is specified by the Basic Telephony subset without first querying their device
capabilities using lineGetDevCaps and lineGetAddressCaps.

Applications should not invoke linelnitialize without subsequently opening a line (at least for monitoring).
If the application is not monitoring and not using any devices, it should call lineShutdown so that memory
resources allocated by TAPI.DLL can be released if unneeded, and TAPI.DLL itself can be unloaded from
memory while not needed.

Another reason for performing a lineShutdown is that if a user changes the device configuration (adds or
removes a line or phone), there is no way for TAPI to notify an application that has a line or phone handle
open at the time. Once a reconfiguration has taken place, causing a LINEDEVSTATE_REINIT message
to be sent, no applications can open a device until all applications have performed a lineShutdown. If
any service provider fails to initialize properly, this function fails and returns the error indicated by the
service provider.

On all TAPI platforms, linelnitialize is equivalent to linelnitializeEx() using the
LINEINITIALIZEEXOPTION_USEHIDDENWINDOW option.

linelnitializeEx

The linelnitializeEx function initializes the application's use of TAPI for subsequent use of the line
abstraction. It registers the application's specified notification mechanism and returns the number of line
devices available to the application. A line device is any device that provides an implementation for the
line-prefixed functions in the Telephony API.

LONG linelnitializeEx(

LPHLINEAPP IphLineApp,

HINSTANCE hinstance,

LINECALLBACK IpfnCallback,

LPCSTR IpszFriendlyAppName,

LPDWORD /pdwNumDevs,

LPDWORD IpdwAPIVersion,
LPLINEINITIALIZEEXPARAMS IpLinelnitializeExParams
);

Parameters
IphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.
hinstance

The instance handle of the client application or DLL. The application or DLL may pass NULL for this
parameter, in which case TAPI will use the module handle of the root executable of the process (for
purposes of identifying call handoff targets and media mode priorities).

IpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification
(for more information see lineCallbackFunc). This parameter is ignored and should be set to NULL
when the application chooses to use the "event handle" or "completion port" event notification
mechanisms.

IpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only displayable ASCII characters. If this
parameter is not NULL, it contains an application-supplied name of the application. This name is
provided in the LINECALLINFO structure to indicate, in a user-friendly way, which application
originated, or originally accepted or answered the call. This information can be useful for call logging
purposes. If lpszFriendlyAppName is NULL, the application's module filename is used instead (as
returned by the Windows AP GetModuleFileName).

IndwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location is
filled with the number of line devices available to the application.

IndwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling this
function, to the highest API version it is designed to support (for example, the same value it would
pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Artificially high values must not
be used; the value must be accurately set (for this release, to 0x00020000). TAPI will translate any
newer messages or structures into values or formats supported by the application's version. Upon
successful completion of this request, this location is filled with the highest API version supported by

TAPI (for this release, 0x00020000), thereby allowing the application to detect and adapt to having
been installed on a system with an older version of TAPI.

IpLinelnitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS containing additional parameters used to
establish the association between the application and TAPI (specifically, the application's selected
event notification mechanism and associated parameters).

Return Values

Returns zero if the request is successful or a negative error number if an error has occurred. Possible
return values are:

LINEERR_INVALAPPNAME, LINEERR_OPERATIONFAILED, LINEERR_INIFILECORRUPT,
LINEERR_INVALPOINTER, LINEERR_REINIT, LINEERR_NOMEM, LINEERR_INVALPARAM.

Remarks

Applications must select one of three mechanisms by which TAPI notifies the application of telephony
events: Hidden Window, Event Handle, or Completion Port.

The Hidden Window mechanism is selected by specifying
LINEINITIALIZEEXOPTION_USEHIDDENWINDOW in the dwOptions field in the
LINEINITIALIZEEXPARAMS structure. In this mechanism (which is the only mechanism available to TAPI
1.x applications), TAPI creates a window in the context of the application during the linelnitializeEx
function, and subclasses the window so that all messages posted to it are handled by a WNDPROC in
TAPI itself. When TAPI has a message to deliver to the application, TAPI posts a message to the hidden
window. When the message is received (which can happen only when the application calls the Windows
GetMessage API), Windows switches the process context to that of the application and invokes the
WNDPROC in TAPI. TAPI then delivers the message to the application by calling the LineCallbackProc,
a pointer to which the application provided as a parameter in its call to linelnitializeEx (or linelnitialize,
for TAPI 1.3 and 1.4 applications). This mechanism requires the application to have a message queue
(which is not desirable for service processes) and to service that queue regularly to avoid delaying
processing of telephony events. The hidden window is destroyed by TAPI during the lineShutdown
function.

The Event Handle mechanism is selected by specifying LINEINITIALIZEEXOPTION_USEEVENT in the
dwOptions field in the LINEINITIALIZEEXPARAMS structure. In this mechanism, TAPI creates an event
object on behalf of the application, and returns a handle to the object in the hEvent field in
LINEINITIALIZEEXPARAMS. The application must not manipulate this event in any manner (for
example, must not call SetEvent, ResetEvent, CloseHandle, and so on) or undefined behavior will
result; the application may only wait on this event using functions such as WaitForSingleObject or
MsgWaitForMultipleObjects. TAPI will signal this event whenever a telephony event notification is
pending for the application; the application must call lineGetMessage to fetch the contents of the
message. The event is reset by TAPI when no events are pending. The event handle is closed and the
event object destroyed by TAPI during the lineShutdown function. The application is not required to wait
on the event handle that is created; the application could choose instead to call lineGetMessage and
have it block waiting for a message to be queued.

The Completion Port mechanism is selected by specifying
LINEINITIALIZEEXOPTION_USECOMPLETION PORT in the dwOptions field in the
LINEINITIALIZEEXPARAMS structure. In this mechanism, whenever a telephony event needs to be sent
to the application, TAPI will send it to the application using PostQueuedCompletionStatus to the
completion port that the application specified in the hCompletionPort field in
LINEINITIALIZEEXPARAMS, tagged with the completion key that the application specified in the
dwCompletionKey field in LINEINITIALIZEEXPARAMS. The application must have previously created
the completion port using CreateloCompletionPort. The application retrieves events using

GetQueuedCompletionStatus. Upon return from GetQueuedCompletionStatus, the application will
have the specified dwCompletionKey written to the DWORD pointed to by the lpCompletionKey
parameter, and a pointer to a LINEMESSAGE structure returned to the location pointed to by
InOverlapped. After the application has processed the event, it is the application's responsibility to call
LocalFree to release the memory used to contain the LINEMESSAGE structure. Because the application
created the completion port (thereby allowing it to be shared for other purposes), the application must
close it; the application must not close the completion port until after calling lineShutdown.

When a multi-threaded application is using the Event Handle mechanism and more than one thread is
waiting on the handle, or the Completion Port notification mechanism and more than one thread is waiting
on the port, it is possible for telephony events to be processed out of sequence. This is not due to the
sequence of delivery of events from TAPI, but would be caused by the time slicing of threads or the
execution of threads on separate processors.

If LINEERR_REINIT is returned and TAPI reinitialization has been requested, for example as a result of
adding or removing a Telephony service provider, then linelnitializeEx requests are rejected with this

error until the last application shuts down its usage of the API (using lineShutdown), at which time the
new co