Getting Started Using MCIWnd

MCIWnd is a window class for controlling multimedia devices. A library of functions, messages, and
macros associated with MCIWnd provides a simple method to add multimedia playback or recording
capabilities to your applications.

Using a single function, your application can create a control that plays devices such as video, CD
audio, waveform audio, MIDI (Musical Instrument Digital Interface), or any device that uses the Media
Control Interface (MCI). Automating playback is also quick and easy. Using a function and two macros,
an application can create an MCIWnd window with the appropriate media device, play the device, and
close both the device and the window when the content has finished playing.

Note Some devices, such as CD audio devices, play content that is stored on a medium. Other
devices play content that is stored in files. For purposes of clarity, this book refers to both
circumstances as "playing the device."

MCIWnd Window User Interface

MCIWnd provides additional features to adjust the look of the MCIWnd window, customize the behavior
of your application, and tune playback performance. The major features of the MCIWnd window include
the following:

e Atoolbar with Play, Stop, Record and Menu buttons

A trackbar that controls positioning within the playback content

e A pop-up menu containing common commands

A playback area for video and other devices requiring it

The MCIWnd window includes a playback area for video, animation, and other devices that display
images during playback. MCIWnd omits the playback area from waveform-audio devices, MIDI
sequencers, and other devices that do not write to the display.

The Play button is located in the lower-left corner of the MCIWnd window. It appears when the content
is stopped. The user can play the content in the following ways:

¢ To play the content from the current position, select the Play button.

¢ To play the content full-screen from the current position, select the Play button while holding down
the CTRL key.

¢ To play the content backward from the current position, select the Play button while holding down
the SHIFT key.

The Menu button, located next to the Play button, activates a menu that allows the user to open and
close audio-video interleaved (AVI) files, and to adjust the image size, playback speed, and volume.
(The user can also activate the menu by clicking the right mouse button whenever the cursor is in the
client area of the window.) The menu also includes commands to change the configuration of the
current device, to copy the playback content to the clipboard, and to issue MCI commands.

The trackbar to the right of the Menu button represents the duration of the playback (or recorded)
content. The slider on the trackbar represents the current position within the content. When the slider is
positioned at the left end of the trackbar, the current position is the beginning of the content. The user
can move to different locations in the content by dragging the slider along the trackbar.

The MCIWnd controls can also include a Record button for devices that can record. The Record button
is marked with a red circle and appears only when the device is capable of recording.

Note The playback window must be aligned on a four-pixel boundary for the best video playback
performance. Typically, the Microsoft Windows operating system aligns the window automatically when
it is created. If a user moves or stretches the window from its initial position, video playback speed
might be reduced by half.

Multimedia Playback

The MCIWndCreate function is the basis for controlling an MCIWnd window and the device associated
with it. In general, this function registers the MCIWnd window class and creates an MCIWnd window
for using MCI services. This section describes how to use this function to perform the following tasks:

¢ Add user-controlled playback to an application

Automate playback in an application

Use window styles to change the appearance and behavior of an MCIWnd window

Allow the user to select files and MCI devices for playback

User-Controlled Playback

You can add user-controlled playback to an existing application by calling the MCIWndCreate function
as follows:

MCIWndCreate (hwndParent, hInstModule, NULL, "filename.typ"):;

The MCIWndCreate parameters identify handles to the parent window and to the module instance
associated with the MCIWnd window. They also specify window styles and the filename (or device
name) to associate with the MCIWnd window.

MCIWndCreate automatically performs the following steps that, for other window classes, you would
normally have to code in your application:

. Registers the MCIWnd window class.

. Creates the MCIWnd window.

. Loads the specified content.

. Establishes the current position at the beginning of the content.

. Displays the device control.

. Displays the playback area of the window if needed.

o O WN =

Automated Playback

You can automate playback in your application by using MCIWndCreate and the MCIWndPlay macro,
along with either the MCIWndDestroy or the MCIWndClose macro. To automate playback, specify the
MCIWNDF_NOPLAYBAR and MCIWNDF_NOTIFYMODE styles in the dwStyle parameter.
MCIWNDF_NOPLAYBAR hides the toolbar, and MCIWNDF_NOTIFYMODE issues an appropriate
notification message when the device stops playing.

You can play the device or file specified in MCIWndCreate by using MCIWndPlay. MCIWndPlay starts
playing the content from its current position and continues to its end.

You can destroy or close an MCIWnd window by using the MCIWndDestroy or MCIWndClose macro.
MCIWndDestroy closes the device or file and destroys the MCIWnd window by invalidating its handle.
If your application can reuse the MCIWnd window, use MCIWndClose to close the device without
destroying the window.

Your application can detect when the device stops playing and automatically close the window. To do
this, specify the MCIWNDF_NOTIFYMODE style for the dwStyle parameter of MCIWndCreate. This
causes the device to send a MCIWNDM_NOTIFYMODE message whenever it changes modes. Your
application can trap this message to determine whether the device has stopped playing and, if so,
close the window.

MCIWnd Window Styles

As with any window, you can change the appearance and behavior of an MCIWnd window by choosing
from the standard Microsoft Win32 window styles. In addition, you can choose from several other
window styles that are specific to MCIWnd windows. With these styles, your application can change
these MCIWnd windows in the following ways:

e Change window size.

¢ Hide or display controls.

¢ |ssue notification messages.

¢ Display information in the title bar.

You can set window styles by specifying them in the MCIWndCreate function, or you can use the
MCIWndChangeStyles macro to change the style of an existing MCIWnd window. You can also query
an MCIWnd window for its current styles by using the MCIWndGetStyles macro.

For a list of the MCIWnd-specific window styles, see the description of MCIWndCreate in the
Reference section.

Additional Methods to Specify Files
You can associate a device or file with an existing MCIWnd window by using the MCIWndOpenDialog,
MCIWndOpen, and MCIWndOpenlinterface macros, and the GetOpenFileNamePreview function.

To let a user of your application select a file to play, use MCIWndOpenDialog. This macro displays the
Open dialog box for choosing a file and associates the selected file with the current MCIWnd window.

You can let a user of your application select a file to associate with an MCIWnd window and preview
that file by using GetOpenFileNamePreview and MCIWndOpen. GetOpenFileNamePreview displays
the Open dialog box for choosing a file and lets the user preview (play) its contents. When the name of
an existing file is specified in the dialog box, GetOpenFileNamePreview provides a small control to let
the user preview the contents of the file. You can associate a specified file, selected with
GetOpenFileNamePreview or specified in another manner, with an MCIWnd window by using
MCIWndOpen.

You can also specify a device, such as "CDAudio," to associate with an MCIWnd window by using
MCIWndOpen.

To associate an MCIWnd window with a file interface or data-stream interface to multimedia data, use
MCIWndOpenlinterface. For more information about file and data-stream interfaces, see AVIFile
Functions and Macros.

Note Before associating a new file or device with an MCIWnd window, MCIWndOpenDialog and
MCIWndOpen implicitly close any device currently associated with the window. Your application does
not need to close any open devices before using these macros.

Playback Controls

MCIWnd includes several macros for controlling playback. This section describes how to use these
macros to perform the following tasks:

¢ Determine and change the current position.

e Start, pause, and resume playback.

¢ Play a portion of the content (scope).

¢ Play backward.

¢ Play in a continuous loop.

Current Position

When a file or device is associated with an MCIWnd window, the position is initially set at the start of
the content, regardless of the media type. During playback, the position moves linearly through the
content and, if playback is uninterrupted, eventually reaches the end of the content. If an interruption
occurs, the current position is the location in the content where playback was stopped or paused.

You can retrieve the locations for the beginning and end of the content by using the MCIWndGetStart
and MCIWndGetEnd macros. You can determine the length of the content by subtracting the value
returned by MCIWndGetStart from the value returned by MCIWndGetEnd, or by using the
MCIWndGetLength macro. You can retrieve the current position by using the MCIWndGetPosition
macro, or you can retrieve the position as a null-terminated string by using the

MCIWndGetPositionString macro.

To change the current position, use the MCIWndHome, MCIWndEnd, and MCIWndSeek macros. You
can move the playback position to the start of the content by using MCIWndHome or to the end of the
content by using MCIWndEnd. Use MCIWndSeek to move the playback position to any location in the
content.

You can also step through the content by using the MCIWndStep macro. Beginning from the current
position, this macro moves the position forward or backward by a specified increment.

Note The units used to specify position vary among the different media types and devices. For
example, the position for AVI files used by the MCIAVI device is measured in frames; the position for
CD audio, waveform-audio, and MIDI files is measured in milliseconds.

Devices for other media types and third-party devices might use other units. For information about
determining these units, see Playback Enhancements.

Starting, Pausing, and Resuming Playback

MCIWndPlay is the most general playback macro. This macro lets you play a file or device from the
current position. Playback continues through the end of the content unless it is interrupted.

You can temporarily interrupt a device that is playing by using the MCIWndPause macro. You can
resume playback from the paused position by using the MCIWndResume macro. Some devices do not
support the pause and resume commands. These devices usually map MCIWndPause to the
MCIWndStop macro, which stops playback or recording. You can restart a device that does not
support pause or resume by using MCIWndPlay, which starts playback from the current position.

Playback Scope

MCIWnd provides macros that allow you to define the playback scope. The scope is the portion of the
playback you want to play. For example, you can play the content from a position other than the
beginning position by using the MCIWndPlayFrom macro. This macro seeks the specified location,
begins playback, and continues to the end of the content. Similarly, you can play the content to a
specified end point by using the MCIWndPlayTo macro. MCIWndPlayTo starts at the current position
and plays until the specified location or the end of the content is reached, whichever comes first.

Also, you can define both the beginning and ending positions by using the MCIWndPlayFromTo
macro. This macro seeks the specified beginning location and plays until the specified ending location
or the end of the content is reached.

Reverse Playback

Some devices support playback in the reverse direction. You can play the content of such a device in
the reverse direction by using the MCIWndPlayReverse macro. This macro defines the playback
scope from the current position to the beginning of the content. The digital-video device, MCIAVI, can
play backward. Devices that cannot play backward, such as CD audio, can issue an error message
when MCIWndPlayReverse is invoked.

Playback Loops

MCIWnd supports playback as a continuous loop. You can play the content of a file or device
repeatedly as a loop by using the MCIWndSetRepeat macro in combination with the Play button on
the toolbar. The video playback device, MCIAVI, supports playback loops. To determine if continuous
playback has been activated, use the MCIWndGetRepeat macro.

Multimedia Recording

You can implement recording capabilities in your application by using the user interface built into
MCIWnd. You can use the MCIWndCreate function and the MCIWndNew macro to provide controls for
starting and stopping recording and for saving the recorded information. Using MCIWndCreate, you
can specify window styles to display an MCIWnd window and to include the Record button on the
toolbar. Using MCIWndNew, you can specify the device type that is being recorded and that the
information is to be captured in a new file.

If your application requires more sophistication, you can automate and customize the recording by
using the MCIWndRecord macro. For additional information about customizing the recording process,
see Customizing the Recording Process.

Note Some devices, such as CD audio and MCIAVI, are used for playback only. Other devices, such
as waveform-audio devices, can be used for recording. If you specify a device that cannot record,
MCIWnd omits the Record button from the toolbar.

Saving Recorded Content

After completing the recording, you can save the content by using the MCIWndSave or
MCIWndSaveDialog macro, or by using the GetSaveFileNamePreview function with MCIWndSave.
MCIWndSave saves data in the file associated with the MCIWnd window. MCIWndSaveDialog lets
the user specify a filename and save the recorded data in the specified file. GetSaveFileNamePreview
displays the SaveAs dialog box for choosing a file and lets the user preview (play) the file. When the
name of an existing file is specified in the SaveAs dialog, GetSaveFileNamePreview provides a small
control in the dialog box to let the user preview the contents of the file. You can save the recorded data
in a file selected with GetSaveFileNamePreview by using MCIWndSave.

Playback Enhancements

When your application can play multimedia data using an MCIWnd window, you can enhance and
adjust the window's appearance and behavior. This section describes how to perform the following
tasks:

e Specify time formats.

¢ Adjust speed, volume, and zoom.

¢ Provide controls for cropping and stretching images.

e Use palettes.

¢ Provide status updates.

e Use a multiple document interface.

Time Formats

Multimedia data types typically can use time to identify significant positions within their content.
Common time formats are milliseconds, tracks, and frames; other less common time formats, such as
SMPTE 24, also exist. Time is the format and reference system for waveform-audio, MIDI, and CD
audio data. Video supports time even though it is recorded as a sequence of frames (stream) that is
normally played at a specific speed. Several macros are available for designating time format.

You can retrieve the current time format for a file or device by using the MCIWndGetTimeFormat
macro. You can change the current time format to any other time format supported by a device by
using the MCIWndSetTimeFormat macro. Or you can the set the time format to milliseconds or
frames by using the MCIWndUseTime or MCIWndUseFrames macros.

Note Noncontinuous formats, such as tracks and SMPTE (Society of Motion Picture and Television
Engineers), can cause the toolbar to behave erratically. For these time formats, you might want to turn
off the toolbar by specifying the MCIWNDF_NOPLAYBAR window style when creating an MCIWnd
window.

Speed, Volume, and Zoom

The speed, volume, and zoom macros provide the functionality of the View, Volume, and Speed
commands of the MCIWnd menu. The macros in this section are generally used with video and other
devices that display images during playback.

Some devices support multiple playback speed changes. You can set the playback speed for these
devices by using the MCIWndSetSpeed macro. This macro defines the normal playback speed as
1000. Higher values indicate faster speeds. Lower values indicate slower speeds.

You can retrieve the current playback speed by using the MCIWndGetSpeed macro. This macro uses
the same numerical values and range as MCIWndSetSpeed.

Some devices support volume changes. You can adjust or set the volume by using the
MCIWndSetVolume macro. This macro defines the normal volume level as 1000. Higher values
indicate louder volumes. Lower values indicate quieter volumes.

You can retrieve the current volume level by using the MCIWndGetVolume macro. This macro uses
the same numerical values and range as MCIWndSetVolume.

For devices that use a playback window, MCIWnd supports a zoom feature that sets the size of the
playback image. You can set the playback image size by using the MCIWndSetZoom macro. The
macro redefines the playback image size while maintaining a constant aspect ratio for the image. The
zoom value is defined as a percentage of the original image size. Thus, 100 represents the original
image size, 50 indicates the image is shown half its original size, and 200 indicates the image is shown
twice its original size.

You can retrieve the current zoom value by using the MCIWndGetZoom macro. This macro uses the
same numerical values and range as MCIWndSetZoom.

Note The standard MCI CD audio and waveform-audio drivers do not support volume or speed
changes.

Cropping and Stretching Images

MCIWnd allows you to crop and stretch images of a video clip. To understand these features, you need
to understand the relationships between frame size, source rectangle, destination rectangle, and
playback area.

A video clip consists of several frames, each containing one image. The frame size of a video clip is the
size of the image in the current frame. Typically, a video clip has one frame size because all the images
in the clip are the same size.

The source rectangle is a rectangular area that overlays the frames of a video clip. The source
rectangle defines the portion of each frame that is displayed during playback. When a video clip is
loaded with MCIWnd, the source rectangle is initialized to the same dimensions and position as the
initial frame of the video clip.

The destination rectangle is a rectangular area that defines a virtual playback window. The destination
rectangle receives the image data from the source rectangle for each frame of the video clip. When the
source and destination rectangle dimensions are different, MCIWnd adjusts the image data horizontally
and vertically as needed to fill the destination rectangle. When a video clip is loaded with MCIWnd, the
destination rectangle is initialized to the same dimensions and position as the initial frame of the video
clip.

The playback area is the portion of an MCIWnd window an application uses to display the video clip.
The playback area is the client area of an MCIWnd window or the portion of the client area that
excludes the MCIWnd toolbar. When a video clip is loaded with MCIWnd, the playback area is
initialized to the same dimensions and position as the initial frame of the video clip.

You can crop a video clip by using the MCIWndGetSource and MCIWndPutSource macros to alter
the source rectangle. Cropping an image determines only which portion of the frames are displayed
during playback; it does not alter the content of the file being played. Before you crop an image, you
can retrieve the current size of the source rectangle by using MCIWndGetSource. After the new size
and location of the source rectangle are calculated, you can set the cropping boundaries of the source
rectangle by using MCIWndPutSource.

You can stretch a video clip by using the MCIWndGetDest and MCIWndPutDest macros to alter the
destination rectangle. When you stretch a video clip, you lengthen or shorten the frame size of a video
clip vertically, horizontally, or in both directions. Before you stretch an image, you can retrieve the
current size and location of the destination rectangle by using MCIWndGetDest. MCIWndPutDest
allows you to redefine the destination rectangle. Stretching can distort the image during playback, but it
does not alter the content of the file being played.

If the size of the destination rectangle becomes larger than the playback area, you can specify which
portion of the playback area will display the video clip by using MCIWndPutDest.

Note MCIWndPutDest does not change the size of the playback area. To stretch the MCIWnd
window along with the destination rectangle, you need to know the current size of the MCIWnd window
and issue new window dimensions based on the destination rectangle. You can retrieve the MCIWnd
window dimensions by using the GetWindowRect function and resize the MCIWnd window by using
the SetWindowPos function.

MCIWnd Palettes

Playing video clips or animations with 8-bit color depth (256-color capacity) requires a palette to define
the colors being used. Sometimes, the palette included with a video clip is not the most appropriate
palette to use during playback. In this case, MCIWnd provides three ways to manage palettes for
playback.

You can retrieve a handle to the palette associated with an MCIWnd window by using the
MCIWndGetPalette macro. The palette is not necessarily associated exclusively with the MCIWnd
window. Other applications can access, and even invalidate, the palette handle. Consequently, your
application should anticipate the global use of the palette and, when finished with the palette, should
not free it.

You can also specify a new palette to use with the video clip or animation associated with an MCIWnd
window by using the MCIWndSetPalette macro.

Finally, you can realize the palette associated with an MCIWnd window to the system palette by using
the MCIWndRealize macro. This macro calls the RealizePalette function with the palette associated
with the MCIWnd window. If your application message handlers for WM_PALETTECHANGED and
WM_QUERYNEWPALETTE call only RealizePalette or MCIWndRealize, you must forward these
messages to MCIWnd if you do not handle them.

Note When a video clip or animation with 8-bit color depth is loaded into the MCIWnd window, the
palette included with that clip replaces the palette associated with the MCIWnd window.

Status Updates

MCIWnd uses timers to periodically update information in the window title bar and scroll bar, and to
send notification messages to the parent window. One timer controls the update period of the active
MCIWnd window, and a second timer controls the update period for MCIWnd windows that are
inactive. Your application can use the MCIWnd timer macros to retrieve the current timer settings and
to adjust the update periods.

You can set the update period used by the active window timer by using the MCIWndSetActiveTimer
macro. This macro sets the period used by MCIWnd to update the trackbar, to update the position
reported in the window title bar, and to notify the parent window that the media has changed. You can
retrieve the current update period used by the active window timer by using the
MCIWndGetActiveTimer macro. The default update period for the active window timer is 500
milliseconds.

You can set the update period used by the inactive window timer by using the
MCIWndSetinactiveTimer macro. This macro sets the period used by MCIWnd to update the trackbar,
to update the position reported in the window caption, and to notify the parent window that the media
has changed. You can retrieve the current update period used by the inactive window timer by using
the MCIWndGetlnactiveTimer macro. The default update period for the inactive window timer is 2000
milliseconds.

Your application can simultaneously set the update period for both timers by using the
MCIWndSetTimers macro. This macro limits the size of each update period to 16 bits. If a larger
quantity for either update period is needed, set the timers individually.

Multiple Document Interface Windows

Applications that use a multiple document interface (MDI) might need to specify window styles that are
not available through the MCIWndCreate function. For these applications, you can register and create
an MCIWnd window by using the MCIWndRegisterClass function with the CreateWindowEx function.
MCIWndRegisterClass registers the MCIWND_WINDOW_CLASS window class and then
CreateWindowEXx creates an instance of an MCIWnd window.

Error Messages and Notifications

MCIWnd uses MCI to control the devices that play and record multimedia data. In general, MCIWnd
displays MCI errors in an error dialog box. An MCI error is generated whenever an MCl command fails.
For example, if your application tries to resume paused playback by using the MCIWndResume macro
and the current device does not support resume, an error is reported to the user.

MCIWnd allows you two choices for handling error messages: you can prevent error messages from
reaching the user, or you can redirect them to your application for display. To prevent the display of
MCI error messages, specify the MCIWNDF_NOERRORDLG window style when you create an
instance of an MCIWnd window by using the MCIWndCreate or CreateWindowEXx function. To
redirect MCI error messages to your application, specify the MCIWNDF_NOTIFYERROR window style
when you create an instance of an MCIWnd window by using MCIWndCreate or CreateWindowEx.

When error notification is enabled, MCIWnd sends each natification message
(MCIWNDM_NOTIFYERROR) to the main message handler of the parent of the MCIWnd window.
Your application must have a message handler to process the notification messages it receives.

You can obtain a textual description of the most recent MCI error message by using the
MCIWndGetError macro. This macro returns the text in an application-defined buffer. If the error string
is longer than the buffer, MCIWnd truncates the string.

You can route all notifications to another window by using the MCIWndSetOwner macro.

Communicating with MCI Devices

The driver of each MCI device maintains a list of its current settings and capabilities, so it can issue an
accurate response when it is queried for information. When you want to communicate with an MCI
device, you can use MCIWnd macros and functions, or you can send MCI commands directly to the
device by using either the message or string form of the commands. For more information about MCI,
see Chapter 3, "MCI Overview."

Many of the most common MCI commands and queries are defined as macros; however, if the task
you want to perform is unavailable as a function or macro, you can issue MCI commands directly to the
device driver by using the MCIWndSendString macro. This macro is equivalent to using the
mciSendString function as follows:

mciSendString(sz, Null, 0, Null)

The parameters of MCIWndSendString include only the window handle and the string form of the
command. To retrieve the information returned by a string command, use the MCIWndReturnString
macro.

Note You must exclude the device alias from the MCI command when you use MCIWndSendString.
The MCIWnd library adds this alias when it sends the command to the MCI device.

Communication with MCI Devices

Each MCI device can have several identifications associated with it that include the following: a device
identifier, a device name, an alias, and the filename of the currently loaded content. MCIWnd provides
macros you can use to retrieve this information. You can then use this information to communicate
through MCI directly with MCI devices associated with MCIWnd windows.

You can retrieve the identifier of the currently open MCI device by using the MCIWndGetDevicelD
macro. The MCI device identifier is a numerical value that identifies the instance of the MCI device your
application is using. Your application can use this identifier when communicating with an MCI device by
using the mciSendCommand function.

To retrieve the name of the currently open MCI device, use the MCIWndGetDevice macro. The MCI
device name is a null-terminated string that identifies the device type associated with an MCIWnd
window. Your application can use this name when communicating with an MCI device by using
mciSendCommand.

You can retrieve the alias of the currently open MCI device by using the MCIWndGetAlias macro. Your
application can use this alias when communicating with an MCI device by using the mciSendString
function. -

Finally, you can retrieve the filename currently used by the MCI device by using the
MCIWndGetFileName macro. The filename identifies the content currently associated with an
MCIWnd window. Your application can use this filename when communicating with a MCI device by
using mciSendCommand or mciSendString.

MCI Device Capabilities

Each MCI device has functions and features that identify how it can be useful. MCIWnd includes the
following macros to let you query MCI devices for these capabilities.

Macro Description

MCIWndCanPlay Determines whether a device can play the
existing content.

MCIWndCanRecord Determines whether a device can record.

MCIWndCanWindow Determines whether a device supports MCI
window commands (such as window, put
and where).

MCIWndCanSave Determines whether a device can store data.

MCIWndCanEject Determines whether a device has a
software-controlled eject function.

MCIWndCanConfig Determines whether a device has a

configuration dialog box to support multiple
configurations, such as the MCIAVI device.

These macros return TRUE if the device supports the specific capability or FALSE otherwise.

Using the MCIWnd Window Class

This section contains examples demonstrating how to perform the following tasks:

¢ Create an MCIWnd window.

¢ Automate playback.

e Pause and resume playback.

¢ Limit the playback scope.

¢ Record with MCIWnd controls.

¢ Customize the recording process.
e Crop an image.

e Stretch an image.

e Stretch an image and window.

Creating an MCIWnd Window

The MCIWndCreate function registers and creates an MCIWnd window. The window can be a parent,
child, or pop-up window. The following example creates an MCIWnd window as a child window and lets
the user control playback by providing access to the trackbar and the Play, Stop, and Menu buttons.
The example specifies a handle of a parent window and NULL for the window styles, so the default
window styles of WS_CHILD, WS_BORDER, and WS_VISIBLE are used to create the MCIWnd
window.

// Global variable and constants
// extern HINSTANCE g hinst; instance handle
// extern HWND g hwndMCIWnd; MCIWnd window handle

case WM _COMMAND:
switch (LOWORD (wParam)) {
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd, g hinst, NULL,
"sample.avi");
break;
}

break;

Note You could also specify NULL for the parent window handle and for the window styles, in which
case the default window styles would be WS_OVERLAPPED and WS_VISIBLE.

Automating Playback

You can automate playback for MCIWnd by specifying a few window styles in the MCIWndCreate
function. To play the device, the window needs a parent window to process notification messages, a
playback area to play AVI files, and notification of device mode changes to identify when playback
stops. The window does not need a toolbar. You can set these characteristics by specifying the
appropriate styles in MCIWndCreate.

The following example uses menu commands to create an MCIWnd window to play content from
several different types of devices. MCIWndCreate creates the MCIWnd window, and devices and files
are loaded by using the MCIWndOpen macro in the device-specific commands. When a device
finishes playing, it is closed by trapping the MCIWNDM_NOTIFYMODE message and issuing the
MCIWndClose macro.

case WM _COMMAND:
switch (LOWORD (wParam)) {
case IDM_CREATEMCIWND:

dwMCIWndStyle = WS CHILD | // child window

WS VISIBLE | // visible

MCIWNDF NOTIFYMODE | // notifies of mode
changes

MCIWNDF NOPLAYBAR; // hides toolbar

g_hwndMCIWnd = MCIWndCreate (hwnd,
g _hinst, dwMCIWndStyle, NULL);

break;

case IDM PLAYCDA:
LoadNGoMCIWnd (hwnd, "CDAudio");

break;

case IDM PLAYWAVE:
LoadNGoMCIWnd (hwnd, "SoundWave.WAV");
break;

case IDM PLAYMIDTI:
LoadNGoMCIWnd (hwnd, "MIDIFile.MID");
break;

case IDM PLAYAVTI:
LoadNGoMCIWnd (hwnd, "AVIFile.AVI");
break;

case IDM EXIT:
MCIWndDestroy (g _hwndMCIWnd) ;
DestroyWindow (hwnd) ;
break;

}

break;

case MCIWNDM NOTIFYMODE:
if (lParam == MCI MODE STOP) { // device stopped
MessageBox (hwnd,"", "Closing Device",MB OK) ;
MCIWndClose (g hwndMCIWnd) ;
}

break;

// Handle other messages here.

// LoadNGoMCIWnd - Automatically loads and plays a multimedia device.

//
//
//
//
//
//

hwnd - handle to the parent window
lpstr - pointer to device or filename played by device

Global variable
extern HINSTANCE g hwndMCIWnd; instance handle to MCIWnd window

VOID LoadNGoMCIWnd (HWND hwnd, LPSTR lpstr)

{

MessageBox (hwnd, lpstr, "Loading Device", MB OK);
MCIWndOpen (g hwndMCIWnd, lpstr, NULL); // new device in window
MCIWndPlay (g hwndMCIWnd) ; // plays device

Pausing and Resuming Playback

You can interrupt playback of a device or file associated with an MCIWnd window by using the
MCIWndPause macro. You can then restart playback by using the MCIWndResume macro. If the
device does not support resume or an error occurs, you can use the MCIWndPlay macro to restart
playback.

The following example creates an MCIWnd window and plays an AVI file. Pause and resume menu
commands are available to the user to interrupt and restart playback.

MCIWnd window styles are changed temporarily by using the MCIWndChangeStyles macro to inhibit
an MCI error dialog box from being displayed if MCIWndResume fails.

case WM _COMMAND:
switch (LOWORD (wParam)) {

case IDM CREATEMCIWND: // creates and plays clip
g_hwndMCIWnd = MCIWndCreate (hwnd,

g_hinst,

WS_CHILD | WS_VISIBLE | // standard styles

MCIWNDEF NOPLAYBAR | // hides toolbar

MCIWNDF NOTIFYMODE, // notifies of mode changes

"sample.avi");

MCIWndPlay (g _hwndMCIWnd) ;

break;

case IDM PAUSEMCIWND: // pauses playback
MCIWndPause (g hwndMCIWnd) ;

MessageBox (hwnd, "MCIWnd", "Pausing Playback", MB OK);

break;
case IDM RESUMEMCIWND: // resumes playback
MCIWndChangeStyles (// hides error dialog
messages
g_hwndMCIWnd, // MCIWnd window
MCIWNDF NOERRORDLG, // mask of style to change
MCIWNDF NOERRORDLG) ; // suppresses MCI error
dialogs
1Result = MCIWndResume (g _hwndMCIWnd) ;
if (1Result) { // device doesn't resume
MessageBox (hwnd, "MCIWnd",
"Resume with Stop and Play", MB OK);
MCIWndStop (g_hwndMCIWnd) ;
MCIWndPlay (g_hwndMCIWnd) ;
MCIWndChangeStyles (// resumes original styles
g_hwndMCIWnd,
MCIWNDF NOERRORDLG,
NULL) ;
}
break;
}
break;

// Handle other messages here.

Limiting the Playback Scope

Controlling playback begins with the MCIWndPlay macro, which plays the content or file associated
with an MCIWnd window from the current position to the end of the content. If you want to limit
playback to a specific portion of the content or file, you can choose from the other playback MCIWnd

macros: MCIWndPlayFrom, MCIWndPlayTo, and MCIWndPlayFromTo.

You also need to set an appropriate time format. The time format determines whether the content is
measured in frames, milliseconds, tracks, or some other units.

The following example creates an MCIWnd window and provides menu commands to play the last
third, first third, or middle third of the content. These menu commands use MCIWndPlayFrom,
MCIWndPlayTo, and MCIWndPlayFromTo to play the content segments. The example also uses the
MCIWndGetStart and MCIWndGetEnd macros to identify the beginning and end of the content, and
the MCIWndHome macro to move the playback position to the beginning of the content.

The MCIWndCreate function uses the WS_CAPTION and MCIWNDF_SHOWALL styles in addition to
the standard window styles to display the filename, mode, and current position in the title bar of the
MCIWnd window.

case WM COMMAND:
switch (LOWORD (wParam)) {
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd,

g _hinst,
WS CHILD | WS VISIBLE | WS CAPTION |
MCIWNDF SHOWALL,
"sample.avi");

break;
case IDM PLAYFROM: // plays last third of clip
MCIWndUseTime (g _hwndMCIWnd) ; // millisecond format

// Get media start and end positions.
l1Start = MCIWndGetStart (g hwndMCIWnd) ;
1End = MCIWndGetEnd (g _hwndMCIWnd) ;

// Determine playback end position.
lPlayStart = 2 * (1lEnd - 1Start) / 3 + 1Start;

MCIWndPlayFrom (g hwndMCIWnd, 1lPlayStart);

break;
case IDM PLAYTO: // plays first third of clip
MCIWndUseTime (g_hwndMCIWnd) ; // millisecond format

// Get media start and end positions.
1Start = MCIWndGetStart (g _hwndMCIWnd) ;
1End = MCIWndGetEnd (g _hwndMCIWnd) ;

// Determine playback start position.
1PlayEnd = (lEnd - 1lStart) / 3 + 1lStart;

MCIWndHome (g _hwndMCIWnd) ;
MCIWndPlayTo (g _hwndMCIWnd, 1PlayEnd);
break;
case IDM PLAYSOME: // plays middle third of clip
MCIWndUseTime (g _hwndMCIWnd) ; // millisecond format

// Get media start and end positions.
Istart = MCIWndGetStart (g hwndMCIWnd) ;
1End = MCIWndGetEnd (g hwndMCIWnd) ;

// Determine playback start and end positions.
1PlayStart = (lEnd - 1Start) / 3 + 1lStart;
1PlayEnd = 2 * (lEnd - 1Start) / 3 + 1lStart;

MCIWndPlayFromTo (g _hwndMCIWnd, lPlayStart, 1lPlayEnd);
break;

// Handle other commands here.

Recording with MCIWnd Controls

The following example records waveform audio using the built-in controls of the MCIWnd window. The
example creates an MCIWnd window by using the MCIWNDF_RECORD window style with the
MCIWndCreate function to add a Record button to the toolbar. The MCIWndNew macro indicates a
new file is associated with the MCIWnd window and that a waveform-audio device will provide its
content. A second menu command, IDM_SAVEMCIWND, lets the user save the recording and select a
filename by using the MCIWndSaveDialog macro.

case WM COMMAND:

switch (LOWORD (wParam)) {

case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd, g hinst,

WS VISIBLE | MCIWNDF RECORD, NULL) ;

MCIWndNew (g _hwndMCIWnd, "waveaudio");
break;

case IDM SAVEMCIWND:
MCIWndSaveDialog (g _hwndMCIWnd) ;
break;

Customizing the Recording Process

You can customize the recording process, taking complete control of most everything — from creating
the MCIWnd window to saving the recorded information in a file. The following example provides a
more general case than "Recording with MCIWnd Controls" earlier in this chapter in adding the
recording feature to an application. It queries the MCI device for recording and saving capabilities, and
includes menu commands to record at the beginning or end of the content.

The following example uses the MCIWndCreate function to create a new window and allows you to
specify an existing file to store the recorded data, or it allows you to use an existing window and uses
the MCIWndNew, MCIWndOpen, or MCIWndOpenDialog macros to specify a file. Then it uses the
MCIWndCanRecord and MCIWndCanSave macros to verify that the device can record and save
information. The example then sets the current position by using the MCIWndHome, MCIWndEnd,
and MCIWndSeek macros. The MCIWndRecord macro is used to start recording, and the
MCIWndStop or the MCIWndPause macro stops recording. After the information is recorded, it is
saved by using the MCIWndSave or MCIWndSaveDialog macros.

case WM _COMMAND:
switch (LOWORD (wParam)) {
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd, g hinst,
WS VISIBLE | WS _CHILD |

MCIWNDF RECORD, // adds Record button
NULL) ;
MCIWndNew (g hwndMCIWnd, "waveaudio"); // new file

if (MCIWndCanRecord (g hwndMCIWnd)) {
MessageBox (hwnd,
"Press the red button on the toolbar to start recording."
"MCIWnd Record",
MB_OK) ;
}
else {
MessageBox (hwnd,
"This device doesn't record.",
"MCIWnd Record",
MB_OK) ;
}
break;
case IDM RECORDATSTART:
if (MCIWndCanRecord (g _hwndMCIWnd)) {
MCIWndHome (g_hwndMCIWnd) ;
MCIWndRecord (g _hwndMCIWnd) ;
}
else {
MessageBox (hwnd,
"This device doesn't record.",
"MCIWnd Record",
MB OK) ;
}
break;
case IDM RECORDATEND:
if (MCIWndCanRecord(g hwndMCIWnd)) {
MCIWndEnd (g _hwndMCIWnd) ;

MCIWndRecord (g _hwndMCIWnd) ;
}
else {
MessageBox (hwnd,
"This device doesn't record.",
"MCIWnd Record",
MB_OK) ;
}
break;
case IDM SAVEMCIWND:
if (MCIWndCanSave (g _hwndMCIWnd))
MCIWndSaveDialog (g _hwndMCIWnd) ;
}

break;

// Handle other messages here.

Cropping an Image

When you crop an image, you trim one or more edges of the video content from view during playback.
Cropping allows you to choose which portions of the content to view without changing the content of
the clip.

You can crop one or more edges from a video clip by redefining the dimensions of the source
rectangle. The source rectangle overlays each frame in a video clip, encompassing the portion of each
image used during playback. Initially, the source rectangle is as large as the video frame size.

The following example creates an MCIWnd window and loads an AVI file. The window includes a crop
command in the menu, which crops one-quarter of the height or width off each of the four sides of the
frame. The example retrieves the current (initial) dimensions of the source rectangle by using the
MCIWndGetSource macro. The modified source rectangle is one-half the original height and width
and centered in the original frame. The call to the MCIWndPutSource macro redefines the coordinates
of the source rectangle.

// extern RECT rSource, rDest;

case WM _COMMAND:
switch (LOWORD (wParam)) {
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd,
g _hinst,
WS CHILD | WS VISIBLE,
"sample.avi");

break;
case IDM CROPIMAGE: // crops image
MCIWndGetSource (g hwndMCIWnd, &rSource); // source rectangle
rDest.left = rSource.left + // new boundaries
((rSource.right - rSource.left) / 4);
rDest.right = rSource.right -
((rSource.right - rSource.left) / 4);
rDest.top = rSource.top +

((rSource.bottom - rSource.top) / 4);
rDest.bottom = rSource.bottom -
((rSource.bottom - rSource.top) / 4);

MCIWndPutSource (g _hwndMCIWnd, &rDest); // new source rectangle
}

break;

// Handle other messages here.

Stretching an Image

The following example stretches the images of a video clip. It increases the dimensions of the
destination rectangle by using the MCIWndPutDest macro. The size of the playback area remains

unchanged, so the result is a distorted, zoomed image. MCIWndPutDest is also used to reposition the
destination rectangle with respect to the playback area, providing a way to view different portions of the

stretched image.

// extern RECT rCurrent, rDest;
case WM COMMAND:
switch (LOWORD (wParam)) {
case IDM CREATEMCIWND:
g_hwndMCIWnd =
g_hinst,
WS _CHILD |
"sample.avi");
break;

case IDM STRETCHIMAGE:

MCIWndGetDest (g_hwndMCIWnd,

WS_VISIBLE,

MCIWndCreate (hwnd,

// stretches dest. rectangle 3:2
// leaves playback area same size
&rCurrent); // dest. rectangle

// new boundaries

rDest.top = rCurrent.top;
rDest.right = rCurrent.right;
rDest.left = rCurrent.left +

((rCurrent.left - rCurrent.right) *
rCurrent.top +
((rCurrent.bottom - rCurrent.top)

rDest.bottom =

MCIWndPutDest (g _hwndMCIWnd,
break;

case IDM MOVEDOWN:
MCIWndGetDest (g _hwndMCIWnd,
rCurrent.top -= 100;
rCurrent.bottom -= 100;
MCIWndPutDest (g_hwndMCIWnd,
break;

case IDM MOVEUP:
MCIWndGetDest (g_hwndMCIWnd,
rCurrent.top += 100;
rCurrent.bottom += 100;
MCIWndPutDest (g_hwndMCIWnd,
break;

case IDM MOVELEFT:

MCIWndGetDest (g_hwndMCIWnd,

rCurrent.right += 100;

rCurrent.left += 100;

MCIWndPutDest (g_hwndMCIWnd,

break;

IDM MOVERIGHT:
MCIWndGetDest (g _hwndMCIWnd,
rCurrent.right -= 100;
rCurrent.left -= 100;
MCIWndPutDest (g _hwndMCIWnd,
break;

case

3);

* 2);

&rDest); // new dest. rectangle

// moves toward bottom of image

&rCurrent); // dest. rectangle
// new boundaries
srCurrent); // new dest. rectangle

// moves toward top of image

&rCurrent); // dest. rectangle
// new boundaries
&rCurrent); // new dest. rectangle

// moves toward image left edge
&rCurrent); // dest. rectangle
// new boundaries

&rCurrent); // new dest. rectangle

// moves toward image right edge

&rCurrent); // dest. rectangle
// new boundaries
&rCurrent); // new dest. rectangle

break;

// Handle other messages here.

Stretching an Image and Window

The following example stretches the images of a video clip and changes the aspect ratio of the
displayed frames. The frames displayed in the MCIWnd window are twice the height and three times
the width of the original frame. The MCIWndGetDest and MCIWndPutDest macros retrieve and

redefine the destination rectangle coordinates. The GetWindowRect and SetWindowPos functions

manage changes to the MCIWnd window dimensions.

// extern RECT rCurrent, rDest;
case WM COMMAND:
switch (LOWORD (wParam)) {
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd,
g_hinst,
WS_CHILD | WS VISIBLE,
"sample.avi");
break;

case IDM RESIZEWINDOW:

// stretches dest.

rectangle

// and playback area 3:2

GetWindowRect (g _hwndMCIWnd,
MCIWndGetDest (g_hwndMCIWnd,

&rWin) ;
&rCurrent) ;

rDest.top = rCurrent.top;
rDest.right = rCurrent.right;
rDest.left = rCurrent.left +

// window size
// dest. rectangle
// new boundaries

((rCurrent.left - rCurrent.right) * 3);
rDest.bottom = rCurrent.top +
((rCurrent.bottom - rCurrent.top) * 2);
MCIWndPutDest (g hwndMCIWnd, &rDest); // new dest. rectangle
SetWindowPos (g _hwndMCIWnd, // window being resized
NULL, // z-order: don't care
0, O, // position: don't care
rDest.right - rDest.left, // width
(rWin.bottom - rWin.top + // height (window -
(rCurrent.bottom - rCurrent.top) + // orig dest. rect. +
(rDest.bottom - rDest.top)), // new dest. rect.)

SWP_NOMOVE |
break;

SWP_NOZORDER |

}

break;

// Handle other messages here.

SWP_NOACTIVATE) ;

MCIWnd Reference

This section describes the functions, messages, macros, and notifications associated with the MCIWnd
window class. These elements are grouped as follows.

Window Management

MCIWndChangeStyles
MCIWndCreate
MCIWndGetStyles
MCIWndRegisterClass

File and Device Management

MCIWndClose

MCIWndDestroy
MCIWndEject
MCIWndNew
MCIWndOpen
MCIWndOpenDialog
MCIWndSave
MCIWndSaveDialog
Playback Options

MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat

Recording

MCIWndRecord
Positioning

MCIWndEnd
MCIWndGetEnd

MCIWndGetlLength
MCIWndGetPosition

MCIWndGetPositionString
MCIWndGetStart
MCIWndHome
MCIWndSeek

MCIWndStep
Pause and Resume Playback

MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat

Performance Tuning

MCIWndGetSpeed
MCIWndGetVolume

MCIWndGetZoom
MCIWndSetSpeed
MCIWndSetVolume
MCIWndSetZoom

Image and Palette Adjustments

MCIWndGetDest
MCIWndGetPalette
MCIWndGetSource
MCIWndPutDest
MCIWndPutSource
MCIWndRealize
MCIWndSetPalette

Event and Error Notification

MCIWndGetError
MCIWNDM NOTIFYERROR
MCIWNDM_ NOTIFYMEDIA
MCIWNDM_NOTIFYMODE
MCIWNDM NOTIFYPOS
MCIWNDM NOTIFYSIZE

Time Formats

MCIWndGetTimeFormat
MCIWndSetTimeFormat
MCIWndUseFrames
MCIWndUseTime
MCIWndValidateMedia

Status Updates

MCIWndGetActiveTimer
MCIWndGetlnactiveTimer
MCIWndSetActiveTimer
MCIWndSetlnactiveTimer
MCIWndSetTimers

Device Capabilities

MCIWndCanConfig
MCIWndCanEject

MCIWndCanPlay
MCIWndCanRecord

MCIWndCanSave
MCIWndCanWindow

MCI Device Settings

MCIWndGetAlias
MCIWndGetDevice
MCIWndGetDevicelD
MCIWndGetFileName
MCIWndGetMode

MCI Command-String Interface

MCIWndReturnString
MCIWndSendString

MCIWnd Functions

An application uses the MCIWnd functions to register the MCIWnd window class or to register and
create an MCIWnd window. An MCIWnd window can use standard window styles as well as a set of
MCIWnd-specific styles.

GetOpenFileNamePreview

BOOL GetOpenFileNamePreview (LPOPENFILENAME lpofn);

Selects a file by using the Open dialog box. The dialog box also allows the user to preview the
currently specified AVI file. This function augments the capability found in the GetOpenFileName
function.

¢ Returns a handle of the selected file.

Ipofn
Address of an OPENFILENAME structure used to initialize the dialog box. On return, the structure
contains information about the user's file selection.

GetSaveFileNamePreview

BOOL GetSaveFileNamePreview (LPOPENFILENAME lpofn);

Selects a file by using the SaveAs dialog box. The dialog box also allows the user to preview the
currently specified file. This function augments the capability found in the GetSaveFileName function.

¢ Returns a handle of the selected file.

Ipofn
Address of an OPENFILENAME structure used to initialize the dialog box. On return, the structure
contains information about the user's file selection.

MCIWndCreate

HWND MCIWndCreate (HWND hwndParent, HINSTANCE hInstance, DWORD dwStyle,
LPSTR szFile);

Registers the MCIWnd window class and creates an MCIWnd window for using MCI services.
MCIWndCreate can also open an MCI device or file (such as an AVI file) and associate it with the
MCIWnd window.

¢ Returns a handle of an MCIWnd window if successful or zero otherwise.

hwndParent
Handle of the parent window.
hinstance
Handle of the module instance to associate with the MCIWnd window.
dwStyle
Flags defining the window style. In addition to specifying the window styles used with the
CreateWindowEXx function, you can specify the following styles to use with MCIWnd windows:
MCIWNDF_NOAUTOSIZEWINDOW
Will not change the dimensions of an MCIWnd window when the image size changes.
MCIWNDF_NOAUTOSIZEMOVIE
Will not change the dimensions of the destination rectangle when an MCIWnd window size
changes.
MCIWNDF_NOERRORDLG
Inhibits display of MCI errors to users.
MCIWNDF_NOMENU
Hides the Menu button from view on the toolbar and prohibits users from accessing its pop-up
menu.
MCIWNDF_NOOPEN
Hides the open and close commands from the MCIWnd menu and prohibits users from accessing
these choices in the pop-up menu.
MCIWNDF_NOPLAYBAR
Hides the toolbar from view and prohibits users from accessing it.
MCIWNDF_NOTIFYANSI
Causes MCIWnd to use an ANSI string instead of a Unicode string when notifying the parent
window of device mode changes. This flag is used in combination with
MCIWNDF_NOTIFYMODE and is exclusive to Windows NT.
MCIWNDF_NOTIFYMODE
Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYMODE message
whenever the device changes operating modes. The /Param parameter of this message identifies
the new mode, such as MCI_MODE_STOP.
MCIWNDF_NOTIFYPOS
Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYPOS message
whenever a change in the playback or record position within the content occurs. The IParam
parameter of this message contains the new position in the content.
MCIWNDF_NOTIFYMEDIA
Causes MCIWnd to notify the parent window with an MCIWNDM_NOTIFYMEDIA message
whenever a new device is used or a data file is opened or closed. The /IParam parameter of this
message contains a pointer to the new filename.
MCIWNDF_NOTIFYSIZE
Causes MCIWnd to notify the parent window when the MCIWnd window size changes.

MCIWNDF_NOTIFYERROR

Causes MCIWnd to notify the parent window when an MCI error occurs.
MCIWNDF_NOTIFYALL
Causes all MCIWNDF window notification styles to be used.
MCIWNDF_RECORD
Adds a Record button to the toolbar and adds a new file command to the menu if the MCI device
has recording capability.
MCIWNDF_SHOWALL
Causes all MCIWNDF_SHOW styles to be used.
MCIWNDF_SHOWMODE
Displays the current mode of the MCI device in the window title bar. For a list of device modes,
see the MCIWndGetMode macro.
MCIWNDF_SHOWNAME
Displays the name of the open MCI device or data file in the MCIWnd window title bar.
MCIWNDF_SHOWPOS
Displays the current position within the content of the MCI device in the window title bar.
szFile
Null-terminated string indicating the name of an MCI device or data file to open.

Default window styles for a child window are WS_CHILD, WS_BORDER, and WS_VISIBLE.
MCIWndCreate assumes a child window when a non-NULL handle of a parent window is specified.

Default window styles for a parent window are WS_OVERLAPPEDWINDOW and WS_VISIBLE.
MCIWndCreate assumes a parent window when a NULL handle of a parent window is specified.

Use the window handle returned by this function for the window handle in the MCIWnd macros. If your
application uses this function, it does not need to use the MCIWndRegisterClass function.

MCIWndRegisterClass

BOOL MCIWndRegisterClass (HINSTANCE hInstance);

Registers the MCI window class MCIWND_WINDOW_CLASS.

¢ Returns zero if successful.

hinstance
Handle of the device instance.

After registering the MCI window class, use the CreateWindow or CreateWindowEx functions to
create an MCIWnd window. If your application uses this function, it does not need to use the
MCIWndCreate function.

MCIWnd Macros and Messages

Applications use messages to communicate with MCIWnd windows and MCI devices associated with
these windows. MCIWnd macros provide a shorthand method of sending these messages. The macros

are based on the SendMessage function. Definitions of the macros identify the corresponding
messages that are sent to MCIWnd windows.

You can control properties and behavior of MCIWnd windows by using the following macros and
messages.

MCIWndCanConfig

BOOL MCIWndCanConfig (hwnd)

// Corresponding message
MCIWNDM CAN CONFIG
wParam = 0;

lParam = 0;

Determines if an MCI device can display a configuration dialog box.

¢ Returns TRUE if the device supports configuration or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndCanEject

BOOL MCIWndCanEject (hwnd)

// Corresponding message
MCIWNDM CAN EJECT

wParam = 0;

lParam = 0;

Determines if an MCI device can eject its media.

¢ Returns TRUE if the device can eject its media or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndCanPlay

BOOL MCIWndCanPlay (hwnd)

// Corresponding message
MCTWNDM CAN_PLAY

wParam = 0;

lParam = 0;

Determines if an MCI device can play a data file or content of some other kind.

¢ Returns TRUE if the device supports playing the data or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndCanRecord

BOOL MCIWndCanRecord (hwnd)

// Corresponding message
MCIWNDM CAN RECORD
wParam = 0;

lParam = 0;

Determines if an MCI device supports recording.

¢ Returns TRUE if the device supports recording or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndCanSave

BOOL MCIWndCanSave (hwnd)

// Corresponding message
MCTIWNDM CAN_ SAVE

wParam = 0;

lParam = 0;

Determines if an MCI device can save data.

¢ Returns TRUE if the device supports saving data or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndCanWindow

BOOL MCIWndCanWindow (hwnd)

// Corresponding message
MCIWNDM CAN WINDOW
wParam = 0;

lParam = 0;

Determines if an MCI device supports window-oriented MCI commands.

¢ Returns TRUE if the device supports window-oriented MCI commands or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndChangeStyles

LONG MCIWndChangeStyles (hwnd, mask, value)

// Corresponding message
MCIWNDM CHANGESTYLES

wParam (WPARAM) (UINT) mask;
lParam = (LPARAM) (LONG) value;

Changes the styles used by the MCIWnd window.

e Returns zero.

hwnd
Handle of the MCIWnd window.

mask
Mask that identifies the styles that can change. This mask is the bitwise OR operator of all styles
that will be permitted to change.

value
New style settings for the window. Specify zero for this parameter to turn off all styles identified in
the mask. For a list of the available styles, see the MCIWndCreate function.

For an example of using MCIWndChangeStyles, see "Pausing and Resuming Playback" earlier in this
chapter.

MCIWndClose

LONG MCIWndClose (hwnd)

// Corresponding command

MCI CLOSE
wParam = 0;
lParam = 0;

Closes an MCI device or file associated with an MCIWnd window. Although the MCI device closes, the
MCIWnd window is still open and can be associated with another MCI device.

e Returns zero.

hwnd
Handle of the MCIWnd window.

MCIWndDestroy

VOID MCIWndDestroy (hwnd)

// Corresponding message

WM_CLOSE
wParam = 0;
lParam = 0;

Closes an MCI device or file associated with an MCIWnd window and destroys the window.

e No return value.

hwnd
Handle of the MCIWnd window.

MCIWndEject

LONG MCIWndEject (hwnd)

// Corresponding message
MCIWNDM EJECT

wParam = 0;

lParam = 0;

Sends a command to an MCI device to eject its media.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndEnd

LONG MCIWndEnd (hwnd)

// Corresponding command

MCI_SEEK

wParam = 0;

1Param (LPARAM) (LONG) MCIWND END;

Moves the current position to the end of the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndGetActiveTimer

UINT MCIWndGetActiveTimer (hwnd)

// Corresponding message
MCIWNDM GETACTIVETIMER
wParam = 0;

lParam = 0L;

Retrieves the update period used when the MCIWnd window is the active window.

¢ Returns the update period in milliseconds. The default is 500 milliseconds.

hwnd
Handle of the MCIWnd window.

MCIWndGetAlias

UINT MCIWndGetAlias (hwnd)

// Corresponding message
MCIWNDM GETALIAS

wParam = 0;

lParam = 0;

Retrieves the alias used to open an MCI device or file with the mciSendString function.

e Returns the device alias.

hwnd
Handle of the MCIWnd window.

MCIWndGetDest

LONG MCIWndGetDest (hwnd, prc)

// Corresponding message
MCIWNDM GET DEST

wParam = 0;

lParam (LPARAM) (LPRECT) prc;

Retrieves the coordinates of the destination rectangle used for zooming or stretching the images of an
AVI file during playback.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

prc
Address of a RECT structure to return the coordinates of the destination rectangle.

MCIWndGetDevice

LONG MCIWndGetDevice (hwnd, lp, len)

// Corresponding message
MCIWNDM GETDEVICE

wParam (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) 1lp;

Retrieves the name of the currently open MCI device.

¢ Returns zero if successful or a nonzero value otherwise.
hwnd
Handle of the MCIWnd window.
I
Address of an application-defined buffer to return the device name.

len
Size, in bytes, of the buffer.

If the null-terminated string containing the device name is longer than the buffer, MCIWnd truncates it.

MCIWndGetDevicelD

UINT MCIWndGetDevicelID (hwnd)

// Corresponding message
MCIWNDM GETDEVICEID
wParam = 0;

lParam = 0;

Retrieves the identifier of the currently open MCI device to use with the mciSendCommand function.

¢ Returns the device identifier.

hwnd
Handle of the MCIWnd window.

MCIWndGetEnd

LONG MCIWndGetEnd (hwnd)

// Corresponding message
MCIWNDM GETEND

wParam = 0;

lParam = 0;

Retrieves the location of the end of the content of an MCI device or file.

¢ Returns the location in the current time format.

hwnd
Handle of the MCIWnd window.

MCIWndGetError

LONG MCIWndGetError (hwnd, lp, len)

// Corresponding message
MCIWNDM GETERROR

wParam = (WPARAM) (UINT) len;
lParam (LPARAM) (LPVOID) lp;

Retrieves the last MCI error encountered.

¢ Returns the integer error value if successful.
hwnd
Handle of the MCIWnd window.
I
Address of an application-defined buffer used to return the error string.
len
Size, in bytes, of the error buffer.

If Ip is a valid pointer, a null-terminated string corresponding to the error is returned in its buffer. If the
error string is longer than the buffer, MCIWnd truncates it.

MCIWndGetFileName

LONG MCIWndGetFileName (hwnd, lp, len)

// Corresponding message
MCIWNDM GETFILENAME

wParam (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) 1lp;

Retrieves the filename currently used by an MCI device.

e Returns 0 if successful or 1 otherwise.
hwnd
Handle of the MCIWnd window.
I
Address of an application-defined buffer to return the filename.
len
Size, in bytes, of the buffer.

If the null-terminated string containing the filename is longer than the buffer, MCIWnd truncates the
filename.

MCIWndGetlnactiveTimer

UINT MCIWndGetInactiveTimer (hwnd)

// Corresponding message
MCIWNDM GETINACTIVETIMER
wParam = 0;
lParam = 0L;

Retrieves the update period used when the MCIWnd window is the inactive window.

¢ Returns the update period, in milliseconds. The default value is 2000 milliseconds.

hwnd
Handle of the MCIWnd window.

MCIWndGetLength

LONG MCIWndGetLength (hwnd)

// Corresponding message
MCIWNDM GETLENGTH

wParam = 0;

lParam = 0;

Retrieves the length of the content or file currently used by an MCI device.

¢ Returns the length. The units for the length depend on the current time format.

hwnd
Handle of the MCIWnd window.

This value added to the value returned for the MCIWndGetStart macro equals the end of the content.

MCIWndGetMode

LONG MCIWndGetMode (hwnd, lp, len)

// Corresponding message
MCIWNDM GETMODE

wParam = (WPARAM) (UINT) len;
lParam (LPARAM) (LPSTR) 1lp:;

Retrieves the current operating mode of an MCI device. MCI devices have several operating modes,
which are designated by constants.

¢ Returns an integer corresponding to the MCI constant defining the mode.
hwnd

Handle of the MCIWnd window.
I

Address of the application-defined buffer used to return the mode.

len
Size, in bytes, of the buffer.

If the null-terminated string describing the mode is longer than the buffer, it is truncated.
Not all devices can operate in every mode. For example, the MCIAVI device is a playback device; it

doesn't support the recording mode. The following modes can be retrieved by using
MCIWNDM_GETMODE:

Operating mode MCI constant

not ready MCI_MODE_NOT_READY
open MCI_MODE_OPEN
paused MCI_MODE_PAUSE
playing MCI_MODE_PLAY
recording MCI_MODE_RECORD
seeking MCI_MODE_SEEK

stopped MCI_MODE_STOP

MCIWndGetPalette

HPALETTE MCIWndGetPalette (hwnd)

// Corresponding message
MCIWNDM GETPALETTE
wParam = 0;

lParam = 0;

Retrieves a handle of the palette used by an MCI device.

¢ Returns the handle of the palette if successful.

hwnd
Handle of the MCIWnd window.

MCIWndGetPosition

LONG MCIWndGetPosition (hwnd)

// Corresponding messages
MCIWNDM GETPOSITION
wParam = 0;

lParam = 0;

Retrieves the numerical value of the current position within the content of the MCI device.

¢ Returns an integer corresponding to the current position. The units for the position value depend on
the current time format.

hwnd
Handle of the MCIWnd window.

MCIWndGetPositionString

LONG MCIWndGetPositionString (hwnd, lp, len)

// Corresponding messages
MCIWNDM GETPOSITION

wParam (WPARAM) (UINT) len;
lParam = (LPARAM) (LPTSTR) 1lp;

Retrieves the numerical value of the current position within the content of the MCI device. This macro
also provides the current position in string form in an application-defined buffer.

¢ Returns an integer corresponding to the current position. The units for the position value depend on
the current time format.

hwnd
Handle of the MCIWnd window.

I
Address of an application-defined buffer used to return the position. Use zero to inhibit retrieval of
the position as a string.

If the device supports tracks, the string position information is returned in the form TT.MM:SS:FF
where TT corresponds to tracks, MM and SS correspond to minutes and seconds, and FF
corresponds to frames.

len
Size, in bytes, of the buffer. If the null-terminated string is longer than the buffer, it is truncated. Use
zero to inhibit retrieval of the position as a string.

MCIWndGetRepeat

BOOL MCIWndGetRepeat (hwnd)

// Corresponding message
MCIWNDM GETREPEAT

wParam = 0;

lParam = 0;

Determines if continuous playback has been activated.

¢ Returns TRUE if continuous playback is activated or FALSE otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndGetSource

LONG MCIWndGetSource (hwnd, prc)

// Corresponding message
MCIWNDM GET SOURCE

wParam = 0;

lParam (LPARAM) (LPRECT) prc;

Retrieves the coordinates of the source rectangle used for cropping the images of an AVI file during
playback.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

prc
Address of a RECT structure to contain the coordinates of the source rectangle.

MCIWndGetSpeed

LONG MCIWndGetSpeed (hwnd)

// Corresponding message
MCIWNDM GETSPEED

wParam = 0;

lParam = 0;

Retrieves the playback speed of an MCI device.

¢ Returns the playback speed if successful. The value for normal speed is 1000. Larger values
indicate faster speeds; smaller values indicate slower speeds.

hwnd
Handle of the MCIWnd window.

MCIWndGetStart

LONG MCIWndGetStart (hwnd)

// Corresponding message
MCIWNDM GETSTART

wParam = 0;

1Param 0;

Retrieves the location of the beginning of the content of an MCI device or file.

¢ Returns the location in the current time format.
hwnd
Handle of the MCIWnd window.

Typically, the return value is zero; but some devices use a nonzero starting location. Seeking to this
location sets the device to the start of the media.

MCIWndGetStyles

UINT MCIWndGetStyles (hwnd)

// Corresponding message
MCIWNDM GETSTYLES

wParam = 0;

lParam = 0;

Retrieves the flags specifying the current MCIWnd window styles used by a window.
¢ Returns a value representing the current styles of the MCIWnd window. The return value is the
bitwise OR operator of the MCIWnd window styles (MCIWNDF flags).

hwnd
Handle of the MCIWnd window.

MCIWndGetTimeFormat

LONG MCIWndGetTimeFormat (hwnd, lp, len)

// Corresponding message
MCIWNDM GETTIMEFORMAT

wParam (WPARAM) (UINT)
lParam = (LPARAM) (LPSTR)

len;
lp;

Retrieves the current time format of an MCI device in two forms: as a numerical value and as a string.

¢ Returns an integer corresponding to the MCI constant defining the time format.

hwnd

Handle of the MCIWnd window.

Ip

Address of a buffer to contain the null-terminated string form of the time format.

len
Size, in bytes, of the buffer.

If the time format string is longer than the return buffer, MCIWnd truncates the string.

An MCI device can support one or more of the following time formats:

Time format

Bytes

Frames

Hours, minutes, seconds
Milliseconds

Minutes, seconds, frames
Samples

SMPTE 24

SMPTE 25

SMPTE 30 drop

SMPTE 30 (non-drop)
Tracks, minutes, seconds, frames

MCI constant
MCI_FORMAT_BYTES
MCI_FORMAT_FRAMES
MCI_FORMAT_HMS
MCI_FORMAT_MILLISECONDS
MCI_FORMAT_MSF
MCI_FORMAT_SAMPLES
MCI_FORMAT_SMPTE_24
MCI_FORMAT_SMPTE_25
MCI_FORMAT_SMPTE_30DROP
MCI_FORMAT_SMPTE_30
MCI_FORMAT_TMSF

MCIWndGetVolume

LONG MCIWndGetVolume (hwnd)

// Corresponding message
MCIWNDM GETVOLUME

wParam = 0;

lParam = 0;

Retrieves the current volume setting of an MCI device.

¢ Returns the current volume setting. The default value is 1000. Higher values indicate louder
volumes; lower values indicate quieter volumes.

hwnd
Handle of the MCIWnd window.

MCIWndGetZoom

UINT MCIWndGetZoom (hwnd)

// Corresponding message
MCIWNDM GETZOOM

wParam = 0;

lParam = 0;

Retrieves the current zoom value used by an MCI device.

¢ Returns the most recent values used with MCIWndSetZoom.

hwnd
Handle of the MCIWnd window.

A return value of 100 indicates the image is not zoomed. A value of 200 indicates the image is enlarged
to twice its original size. A value of 50 indicates the image is reduced to half its original size.

MCIWndHome

LONG MCIWndHome (hwnd)

// Corresponding command

MCI_SEEK

wParam = 0;

1Param (LPARAM) (LONG) MCIWND START;

Moves the current position to the beginning of the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndNew

LONG MCIWndNew (hwnd, 1lp)

// Corresponding message
MCIWNDM NEW

wParam = 0;

lParam = (LPARAM) (LPVOID) 1lp;

Creates a new file for the current MCI device.

¢ Returns zero if successful or an error otherwise.
hwnd
Handle of the MCIWnd window.

I
Address of a buffer containing the name of the MCI device that will use the file.

MCIWndOpen

LONG MCIWndOpen (hwnd, szFile, wFlags)

// Corresponding message

MCIWNDM OPEN

wParam = (WPARAM) (UINT) wFlags;
lParam (LPARAM) (LPVOID) szFile;

Opens an MCI device and associates it with an MCIWnd window. For MCI devices that use data files,
this macro can also open a specified data file, name a new file to be created, or display a dialog box to
let the user select a file to open.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

szFile
Address of a null-terminated string identifying the filename or MCI device name to open. Specify -1
for this parameter to display the Open dialog box.

wFlags
Flags associated with the device or file to open. The MCIWNDOPENF_NEW flag specifies a new file
is to be created with the name specified in szFile.

MCIWndOpenDialog

LONG MCIWndOpenDialog (hwnd)

// Corresponding command
MCI_OPEN

wParam = -1;

1Param 0;

Opens a user-specified data file and corresponding type of MCI device, and associates them with an
MCIWnd window. This macro displays the Open dialog box for the user to select the data file to
associate with an MCI window.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndOpenlinterface

MCIWndOpenInterface (hwnd, pUnk)

// Corresponding message

MCIWNDM OPENINTERFACE

wParam = 0;

lParam = (LPARAM) (LPUNKNOWN) pUnk;

Attaches the data stream or file associated with the specified interface to an MCIWnd window.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

pUnk
Address of an IAVI interface that points to a file or a data stream in a file.

For information about IAVI interfaces, see Chapter 6, "AVIFile Functions and Macros ."

MCIWndPause

LONG MCIWndPause (hwnd)

// Corresponding command
MCI_ PAUSE

wParam = 0;

lParam = 0;

Sends a command to an MCI device to pause playing or recording.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndPlay

LONG MCIWndPlay (hwnd)

// Corresponding command

MCI PLAY
wParam = 0;
lParam = 0;

Sends a command to an MCI device to start playing from the current position in the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndPlayFrom

LONG MCIWndPlayFrom(hwnd, 1lPos)

// Corresponding message
MCIWNDM PLAYFROM

wParam = 0;

lParam (LPARAM) (LONG) 1Pos;

Plays the content of an MCI device from the specified location to the end of the content or until another
command stops playback.
¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

IPos
Starting location. The units for the starting location depend on the current time format.

You can also specify both a starting and ending location for playback by using the
MCIWndPlayFromTo macro.

MCIWndPlayFromTo

LONG MCIWndPlayFromTo (hwnd, 1lStart, 1lEnd)

// Corresponding command and message
MCI SEEK

wParam = 0;

1Param (LPARAM) (LONG) 1l1lStart;

MCIWNDM PLAYTO
wParam = 0;
lParam = (LPARAM) (LONG) 1lEnd;

Plays a portion of content between specified starting and ending locations. This macro seeks to the
specified point to begin playback, then plays the content to the specified ending location. This macro is
defined using the MCIWndSeek and MCIWndPlayTo macros, which in turn use the MCI_SEEK
command and the MCIWNDM_PLAYTO message.

e Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

IStart
Position to seek; it is also the starting location.

IEnd
Ending location.

The units for the seek position depend on the current time format.

MCIWndPlayReverse

LONG MCIWndPlayReverse (hwnd)

// Corresponding message
MCIWNDM PLAYREVERSE
wParam = 0;

lParam = 0;

Plays the current content in the reverse direction, beginning at the current position and ending at the
beginning of the content or until another command stops playback.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndPlayTo

LONG MCIWndPlayTo (hwnd, 1lPos)

// Corresponding message
MCIWNDM PLAYTO

wParam = 0;

lParam (LPARAM) (LONG) 1Pos;

Plays the content of an MCI device from the current position to the specified ending location or until
another command stops playback. If the specified ending location is beyond the end of the content,
playback stops at the end of the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

IPos
Ending location. The units for the ending location depend on the current time format.

You can also specify both a starting and ending location for playback by using the
MCIWndPlayFromTo macro.

MCIWndPutDest

LONG MCIWndPutDest (hwnd, prc)

// Corresponding message
MCIWNDM PUT DEST

wParam = 0;

lParam (LPARAM) (LPRECT) prc;

Redefines the coordinates of the destination rectangle used for zooming or stretching the images of an
AVI file during playback.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

prc
Address of a RECT structure containing the coordinates of the destination rectangle.

MCIWndPutSource

LONG MCIWndPutSource (hwnd, prc)

// Corresponding message
MCIWNDM PUT SOURCE

wParam = 0;

lParam (LPARAM) (LPRECT) prc;

Redefines the coordinates of the source rectangle used for cropping the images of an AVI file during
playback.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

prc
Address of a RECT structure containing the coordinates of the source rectangle.

MCIWndRealize

LONG MCIWndRealize (hwnd, £fBkgnd)

// Corresponding message
MCIWNDM REALIZE

wParam = (WPARAM) (BOOL) fBkgnd;
lParam = 0;

Realizes the palette currently used by the MCI device in an MCIWnd window. This macro is defined
with the MCIWNDM_REALIZE message.

¢ Returns zero if successful or an error otherwise.

hwnd

Handle of the MCIWnd window.
fBkgnd

Background flag. Specify TRUE for this parameter if the window is a background application.
MCIWNDM_REALIZE uses the palette of the MCI device and calls the RealizePalette function. If your
application explicitly handles the WM_PALETTECHANGED and WM_QUERYNEWPALETTE
messages, you should use this message in your application instead of using RealizePalette. If the
body of one of these message handlers contains only RealizePalette, forward the message to the
MCIWnd window, which will automatically realize the palette.

MCIWndRecord

LONG MCIWndRecord (hwnd)

// Corresponding command
MCI_RECORD
wParam = 0;
lParam = 0;

Begins recording content using the MCI device. The recording process begins at the current position in
the content and will overwrite existing data for the duration of the recording.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

The function that an MCI device performs during recording depends on the characteristics of the
device. An MCI device that uses files, such as a waveform-audio device, sends data to the file during
recording. An MCI device that does not use files, such as a video-cassette recorder, receives and
externally records data on another medium.

MCIWndResume

LONG MCIWndResume (hwnd)

// Corresponding command

MCI RESUME
wParam = 0;
lParam = 0;

Resumes playback or recording content from the paused mode. This macro restarts playback or
recording from the current position in the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndReturnString

LONG MCIWndReturnString (hwnd, 1lp, len)

// Corresponding message
MCIWNDM RETURNSTRING

wParam (WPARAM) (UINT) len;
lParam = (LPARAM) (LPVOID) 1lp;

Retrieves the reply to the most recent MCI string command sent to an MCI device. Information in the
reply is supplied as a null-terminated string.
¢ Returns an integer corresponding to the MCI string.
hwnd
Handle of the MCIWnd window.
I
Address of an application-defined buffer to contain the null-terminated string.

len
Size, in bytes, of the buffer.

If the null-terminated string is longer than the buffer, the string is truncated.

MCIWndSave

LONG MCIWndSave (hwnd, szFile)

// Corresponding command

MCI_ SAVE

wParam = 0;

lParam (LPARAM) (LPVOID) szFile;

Saves the content currently used by an MCI device. This macro can save the content to a specified
data file or display the Save dialog box to let the user select a filename to store the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

szFile
Null-terminated string containing the name and path of the destination file. Specify - 1 for this
parameter to display the Save dialog box.

MCIWndSaveDialog

LONG MCIWndSaveDialog (hwnd)

// Corresponding command
MCI_ SAVE

wParam = 0;

lParam = -1;

Saves the content currently used by an MCI device. This macro displays the Save dialog box to let the
user select a filename to store the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndSeek

LONG MCIWndSeek (hwnd, 1lPos)

// Corresponding command

MCI SEEK

wParam = 0;

lParam (LPARAM) (LONG) 1Pos;

Moves the playback position to the specified location in the content.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

IPos
Position to seek. You can specify a position using the current time format, the MCIWND_START
constant to designate the beginning of the content, or the MCIWND_END constant to designate the
end of the content.

MCIWndSendString

LONG MCIWndSendString (hwnd, sz)

// Corresponding message
MCIWNDM SENDSTRING

wParam = 0;

lParam (LPARAM) (LPSTR) sz;

Sends an MCI command in string form to the device associated with the MCIWnd window.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

sz
String command to send to the MCI device.

The message handler for MCIWndSendString (and MCIWNDM_SENDSTRING) appends a device

alias to the MCI command you send to the device. Therefore, you should not use any alias in an MCI

command that you issue with MCIWndSendString.

For more information about MCI string commands, see Chapter 4, "MCI Command Strings."

MCIWndSetActiveTimer

VOID MCIWndSetActiveTimer (hwnd, active)

// Corresponding message
MCIWNDM SETACTIVETIMER

wParam = (WPARAM) (UINT) active;
lParam = 0L;

Sets the update period used by MCIWnd to update the trackbar in the MCIWnd window, update
position information displayed in the window title bar, and send notification messages to the parent
window when the MCIWnd window is active.

e No return value.

hwnd
Handle of the MCIWnd window.

active
Update period, in milliseconds. The default is 500 milliseconds.

MCIWndSetlnactiveTimer

VOID MCIWndSetInactiveTimer (hwnd, inactive)

// Corresponding message

MCIWNDM SETINACTIVETIMER

wParam = (WPARAM) (UINT) inactive;
lParam = 0;

Sets the update period used by MCIWnd to update the trackbar in the MCIWnd window, update
position information displayed in the window title bar, and send notification messages to the parent
window when the MCIWnd window is inactive.

¢ No return value.
hwnd
Handle of the MCIWnd window.
inactive
Update period, in milliseconds. The default is 2000 milliseconds.

MCIWndSetOwner

LONG MCIWndSetOwner (hwnd, hwndP)

// Corresponding message
MCIWNDM SETOWNER

wParam = (WPARAM) hwndP;
lParam = 0;

Sets the window to receive notification messages associated with the MCIWnd window.

e Returns zero.

hwnd
Handle of the MCIWnd window.

hwndP
Handle of the window to receive the notification messages.

MCIWndSetPalette

MCIWndSetPalette (hwnd, hpal)

// Corresponding message

MCIWNDM SETPALETTE

wParam = (WPARAM) (HPALETTE) hpal;
lParam = 0;

Sends a palette handle to the MCI device associated with the MCIWnd window.

¢ Returns zero if successful or an error otherwise.
hwnd

Handle of the MCIWnd window.
hpal

Palette handle.

MCIWndSetRepeat

VOID MCIWndSetRepeat (hwnd, f)

// Corresponding message
MCIWNDM SETREPEAT

wParam = 0;

lParam = (LPARAM) (BOOL) f;

Sets the repeat flag associated with continuous playback. The MCIWNDM_SETREPEAT message
works in conjunction with the MCI_PLAY command to provide a continuous playback loop.
¢ Returns zero.

hwnd
Handle of the MCIWnd window.

New state of the repeat flag. Specify TRUE to turn on continuous playback.
Currently, MCIAVI is the only device that supports continuous playback.

MCIWndSetSpeed

LONG MCIWndSetSpeed (hwnd, iSpeed)

// Corresponding message
MCIWNDM SETSPEED

wParam = 0;

lParam = (LPARAM) (UINT) iSpeed;

Sets the playback speed of an MCI device.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

iSpeed
Playback speed. Specify 1000 for normal speed, larger values for faster speeds, and smaller values
for slower speeds.

MCIWndSetTimeFormat

LONG MCIWndSetTimeFormat (hwnd, 1p)

// Corresponding message
MCIWNDM SETTIMEFORMAT

wParam = 0;

lParam (LPARAM) (LPSTR) 1lp:;

Sets the time format of an MCI device.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

Ip
Address of a buffer containing the null-terminated string indicating the time format. Specify "frames"
to set the time format to frames, or "ms" to set the time format to milliseconds.

An application can specify time formats other than frames or milliseconds as long as the formats are
supported by the MCI device. Noncontinuous formats, such as tracks and SMPTE, can cause the
trackbar to behave erratically. For these time formats, you might want to turn off the toolbar by using
the MCIWndChangeStyles macro and specifying the MCIWNDF_NOPLAYBAR window style.

If you want to set the time format to frames or milliseconds, you can also use the MCIWndUseFrames
or MCIWndUseTime macro. For a list of time formats, see the MCIWndGetTimeFormat macro.

MCIWndSetTimers

VOID MCIWndSetTimers (hwnd, active, inactive)

// Corresponding message

MCIWNDM SETTIMERS

wParam = (WPARAM) (UINT) active;
lParam = (LPARAM) (UINT) inactive;

Sets the update periods used by MCIWnd to update the trackbar in the MCIWnd window, update the
position information displayed in the window title bar, and send notification messages to the parent
window.

e No return value.

hwnd
Handle of the MCIWnd window.

active
Update period used by MCIWnd when it is the active window. The default value is 500 milliseconds.
Storage for this value is limited to 16 bits.

inactive
Update period used by MCIWnd when it is the inactive window. The default value is 2000
milliseconds. Storage for this value is limited to 16 bits.

MCIWndSetVolume

LONG MCIWndSetVolume (hwnd, iVol)

// Corresponding message
MCIWNDM SETVOLUME

wParam = 0;

lParam (LPARAM) (UINT) iVol;

Sets the volume level of an MCI device.

e Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

iVol
New volume level. Specify 1000 for normal volume level. Specify a higher value for a louder volume
or a lower value for a quieter volume.

MCIWndSetZoom

VOID MCIWndSetZoom (hwnd, iZoom)

// Corresponding message
MCIWNDM SETZOOM

wParam = 0;

lParam = (LPARAM) (UINT) iZoom;

Resizes a video image according to a zoom factor. This marco adjusts the size of an MCIWnd window
while maintaining a constant aspect ratio.

e No return value.

hwnd
Handle of the MCIWnd window.

iZoom
Zoom factor expressed as a percentage of the original image. Specify 100 to display the image at its
authored size, 200 to display the image at twice its normal size, or 50 to display the image at half its
normal size.

MCIWndStep

LONG MCIWndStep (hwnd, n)

// Corresponding command
MCI STEP

wParam = 0;

lParam (LPARAM) (long) n;

Moves the current position in the content forward or backward by a specified increment.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

n
Step value. Negative values step the device through the content in reverse. The units for the step
value depend on the current time format.

MCIWndStop

LONG MCIWndStop (hwnd)

// Corresponding command

MCI_ STOP
wParam = 0;
lParam = 0;

Stops playing or recording the content of the MCI device associated with the MCIWnd window.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndUseFrames

LONG MCIWndUseFrames (hwnd)

// Corresponding message
MCIWNDM SETTIMEFORMAT
wParam = 0;

lParam = TEXT ("frames");

Sets the time format of an MCI device to frames.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndUseTime

LONG MCIWndUseTime (hwnd)

// Corresponding message
MCIWNDM SETTIMEFORMAT
wParam = 0;

lParam = TEXT ("ms");

Sets the time format of an MCI device to milliseconds.

¢ Returns zero if successful or an error otherwise.

hwnd
Handle of the MCIWnd window.

MCIWndValidateMedia

VOID MCIWndValidateMedia (hwnd)

// Corresponding message
MCIWNDM VALIDATEMEDIA
wParam = 0;

lParam = 0;

Updates the starting and ending locations of the content, the current position in the content, and the
trackbar according to the current time format.

e No return value.

hwnd

Handle of the MCIWnd window.
Typically, you should not need to use this macro; however, if your application changes the time format
of a device without using MCIWnd; the starting and ending locations of the content, as well as the
trackbar, continue to use the old format. You can use this macro to update these values.

MCIWnd Notifications

The MCIWnd message handler can send event notifications to the parent of an MCIWnd window in the
form of MCIWNDM_NOTIFY messages. You can enable notification for an event type by specifying an
appropriate style for an MCIWnd window when the window is created or its styles are updated. The
following notifications are specific to MCIWnd windows.

MCIWNDM_NOTIFYERROR

MCIWNDM NOTIFYERROR
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LONG) errorCode;

Notifies the parent window of an application that an MCI error occurred.
hwnd
Handle of the MCIWnd window.

errorCode
Numerical code for the MCI error.

You can enable MCI error notification by specifying the MCIWNDF_NOTIFYERROR window style.

MCIWNDM_NOTIFYMEDIA

MCIWNDM NOTIFYMEDIA
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LPSTR) lp;

Notifies the parent window of an application that the media has changed.

hwnd
Handle of the MCIWnd window.

Ip
Address of a null-terminated string containing the new filename. If the media is closing, it specifies a
null string.

You can enable natification of media changes by specifying the MCIWNDF_NOTIFYMEDIA window
style.

MCIWNDM_NOTIFYMODE

MCIWNDM NOTIFYMODE
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LONG) mode;

Notifies the parent window of an application that the operating mode of the MCI device has changed.
hwnd
Handle of the MCIWnd window.

mode
Integer corresponding to the MCI mode.

You can enable natification of mode changes of an MCI device by specifying the
MCIWNDF_NOTIFYMODE window style.

MCIWNDM_NOTIFYPOS

MCIWNDM NOTIFYPOS
wParam = (WPARAM) (HWND) hwnd;
lParam = (LPARAM) (LONG) pos;

Notifies the parent window of an application that the window position has changed.
hwnd

Handle of the MCIWnd window.
pos

Describes the new position.

You can enable natification of changes in the position of an MCIWnd window by specifying the
MCIWNDF_NOTIFYPOS window style.

MCIWNDM_NOTIFYSIZE

MCIWNDM NOTIFYSIZE
wParam = (WPARAM) (HWND) hwnd;
lParam = 0;

Notifies the parent window of an application that the window size has changed.

hwnd
Handle of the MCIWnd window.

You can enable notification of changes in the size of an MCIWnd window by specifying the
MCIWNDF_NOTIFYSIZE window style.

Multimedia Possibilities

A multimedia application delivers information in ways that can be more powerful than printed material
or standard video and sound. Unlike printed material, a multimedia application communicates using
more than a series of static images or text. Unlike standard video or sound presentations, a multimedia
application allows the user to navigate through media and interact with information quickly and easily.
The new information media that typically define a multimedia application are sound and video. An
application that incorporates sound, video, or both is a multimedia application.

For many years, computers were expected to arrange data, but not to deliver it. The result of the user's
work was typically printed on paper. Today, however, inexpensive computers are capable of
overcoming many of the inherent limitations of printed material. Practically any computer that uses the
Microsoft® Windows® operating system and has a VGA monitor and a sound card can exploit many of
the features of a multimedia application. Millions of computer users already own equipment like this,
and many also have more powerful multimedia computers with monitors that can display 256 colors or
more and compact disc (CD) players. More and more, these computers are becoming the final delivery
system for information. People are sending electronic mail instead of letters. Instead of reaching for a
bulky printed encyclopedia, they are enjoying the full-color graphics, sound, and animation of a CD-
based encyclopedia.

A multimedia application written for the Microsoft Win32® application programming interface (API)
delivers information in ways that a printed page cannot. Even when the focus of the application is to
help a user produce a printed document or perform calculations, the application can use sound, video,
or both to enrich the user's experience.

The definition of a multimedia computer has been established by an industry-wide group, the
Multimedia PC Marketing Council. This council has defined two sets of minimum specifications for
multimedia computers. For a description of these specifications, see Multimedia PC Specifications. An
application does not need to take full advantage of all of this hardware to qualify as a multimedia
application.

Developing multimedia applications can be as simple as adding an existing sound or video recording to
an application or as complex as building an editing tool for customizing multimedia presentations. No
matter how complex your goal, this volume will help you achieve it.

The intended audience for this book is programmers who already have some background in the
opportunities presented by multimedia computing. It focuses strictly on helping readers implement the
multimedia features of the Win32 API. This book will help programmers who want to incorporate
multimedia capabilities into their applications, create multimedia-based applications, or create tools for
writing or editing multimedia publications.

What You Can Do with Multimedia

If you think about it for a few minutes, you are sure to come up with a number of applications that could
use sound and video in new and exciting ways. For example, real estate agents have long organized
descriptions and photographs of homes in large catalogs. Because these catalogs are printed on
paper, the presentation of the homes is limited to a small picture and a paragraph or two of text. If the
catalog were produced as a multimedia application, on the other hand, it could display a guided audio
and visual tour of the inside and outside of these homes. Having potential buyers view these listings
could be a powerful sales tool and could prevent wasted trips to unsuitable locations.

This real estate application is just one example of what you can do with multimedia. You can use
multimedia to create applications that play, edit, and capture sounds and images. You can also create
applications that can control multimedia hardware, such as CD players, video-cassette recorders, and
MIDI (Musical Instrument Digital Interface) devices. For entertainment applications, the Win32 API also
supports the use of joysticks and provides a timer mechanism that is more accurate than the standard
Win32 timers.

Many developers use multimedia to improve applications that did not use sound and video when they
were first designed and written. For example, developers are adding voice-annotation capabilities to
word-processing applications, or video clips to presentation-graphics applications. More generally,
developers are adding sounds to all types of applications; for example, to request input from the user
(such as a password) or to signify an action (such as opening or closing a file).

Some applications integrate multimedia features more completely. Software developers are creating
hundreds of such applications, such as entertainment programs, computerized reference works, and
educational programs. Because extensive use of sound or video requires a great deal of data-storage
space, these applications are often distributed on CDs.

You can create multimedia applications for anyone who routinely needs fast access to large amounts of
data. These applications are often written for niche markets; the multimedia real estate catalogue
discussed earlier is a good example. The possible variety and uses of such applications are almost
limitless:

¢ Doctors could consolidate their records about a case on a CD, including not only all the relevant
reports and histories but also such items as videotapes of surgical procedures and consultations
with the client.

¢ Telephone directories for businesses could include full-color graphics, sophisticated search
capabilities, audio clips, and detailed maps.

¢ Avoicemail system could be integrated into an electronic mail application. It is feasible that a
combination of multimedia software and hardware could be used to integrate the functions currently
performed by telephones, modems, faxes, voicemail systems, and electronic mail applications.

Multimedia Playback with One Function Call

You can play waveform-audio files, CDs, video clips, or MIDI files in your application with a call to a
single function: MCIWndCreate. This function creates a button that the user can use to play or stop the
playback, a trackbar that displays the current position in the file, and, in the case of a video clip, a
window in which the video is displayed. The following call to MCIWndCreate plays the video clip
SAMPLE.AVI:

MCIWndCreate (hwndParent, // parent window handle
g_hinst, // instance handle
WS _VISIBLE | WS CHILD | MCIWNDF SHOWALL, // window styles
"sample.avi") ; // filename

Another function, PlaySound, also enables you to implement multimedia playback with a single
function call. You can use this function to play a waveform-audio file. For example, the following line of
code plays the sound stored in the file CHIMES.WAV:

PlaySound("chimes.wav", NULL, SND SYNC);

Note PlaySound cannot play a waveform-audio file larger than will fit in available memory. To play
larger files, you should use either the MCIWnd window class or the high-level audio interface. For more
information about the MCIWnd window class than is presented in this section, see Getting Started
Using MCIWnd. For more information about PlaySound, see Waveform Audio.

Multimedia Data Formats

Windows supports three distinct types of multimedia data: waveform audio, MIDI sound, and video.

Waveform audio is a digitized recording of a sound. You can typically edit waveform audio using
insertions and deletions, or you can modify it using filters. This sound format can store voice, music,
and sound effects exactly as they should be heard by the user. Compared to MIDI sound, however,
editing waveform audio is difficult and the storage requirements are high. In Windows, waveform-audio
files typically have a .WAV filename extension.

MIDI sounds are stored as a series of instructions, rather than as a waveform. A synthesizer (often part
of the computer's sound card) interprets the instructions to produce the sound. Because different
synthesizers interpret MIDI instructions with greatly varying quality, the sound heard by the user cannot
be guaranteed. This sound format can store music, and sometimes sound effects, but voice is not a
practical option. Compared to waveform audio, however, MIDI is easy to edit and the storage
requirements are low. In Windows, MIDI sound files typically have a .MID filename extension.

Video is a multiple-track recording that includes waveform audio and moving images. The moving
images are recorded as a series of still images. In Windows, video files typically have an .AVI filename
extension.

Version Checking

You may need to check the installed version of the multimedia system, particularly if your application
takes advantage of features that were not available in previous releases. Although the multimedia
header files contain two version-checking functions, they are obsolete. These obsolete functions are
mmsystemGetVersion and VideoForWindowsVersion. Your application should rely on the standard
Windows functions, GetVersion or GetVersionEx, instead.

The Multimedia Documentation

Unless you are developing a very complex multimedia application, you need not read all of the
multimedia documentation. This volume is divided into five parts; the parts you need to read depend on
the type of application you are writing. Your application can interact with a multimedia device using a
high-level, mid-level, or low-level interface. The parts of this volume mirror this hierarchy of
implementation levels.

Part 1 discusses how to design applications that use high-level interfaces based on window classes.
Read this part if you want to add sound or video to an application and you do not need to implement
complicated editing or recording functionality.

Part 2 discusses how to design applications that use a mid-level interface — called the Media Control
Interface (MCI) — which offers applications a standard set of commands to use when communicating
with a multimedia device. Read this part if you want to implement a customized user interface for your
video or sound files but you do not need to take full advantage of the capabilities of a particular device.

Parts 3, 4, and 5 discuss how to design applications that use a set of low-level multimedia interfaces.
These interfaces allow applications to achieve nearly complete control over an audio or video
presentation. Read these parts if your application needs to take full advantage of one or more
multimedia devices, if you plan to implement recording or editing features, or if you need a custom
format for your data.

High-Level Interfaces

An application can use the MCIWnd window class to play a video, MIDI, or waveform-audio file.
Several functions that play only waveform audio are also available. Part 1 of this volume describes the
most widely used parts of this high-level multimedia interface. In addition, Multimedia Playback with

One Function Call earlier shows you how to use this high-level interface to play a video or sound file
very easily.

Another window class, AVICap, makes it easy to develop an interface for capturing video clips. For
more information about AVICap, see Video Capture.

Mid-Level Interface

MCl is a device-independent interface for controlling virtually any multimedia device. Although many
MCI commands are appropriate for any multimedia device, some commands exploit the features of a
particular device or class of devices. You can use this mid-level interface to implement a customized
user interface and achieve greater control over a multimedia device while still developing applications
simply and quickly. Part 2 of this topic describes MCI.

Low-Level Interfaces

Part 3 of this topic describes advanced video techniques, including how to work with video files, and
how to work with the compression management component that provides compression and
decompression services for these files.

Part 4 describes advanced audio techniques (including MIDI services that are not available through the
MCI interface documented in Part 2), advanced waveform-audio techniques, audio mixers, and the
component for managing audio compression.

Other parts of the low-level interface to multimedia are discussed in Part 5 and the appendixes. These
subjects include joysticks and multimedia timers, the file input and output services for multimedia files,
and file formats for multimedia data files.

MCI Command Messages

The Media Control Interface (MCI) is a high-level command interface to multimedia devices and
resource files. MCI provides standard commands for playing multimedia devices and recording
multimedia resource files. MCl commands are a generic interface to multimedia devices.

There are two forms of MCI commands: strings and messages. You can use either or both forms in
your MCI application. This chapter documents the command-message interface to MCI. For
information about the command-string interface, see Chapter 4, "MCI Command Strings." For an
overview of MCI, including information about whether you should use the string interface or the
message interface in your application, see Chapter 3, "MCI Overview."

The command-message interface is designed to be used by applications requiring a C-language
interface to control multimedia devices. It uses a message-passing paradigm to communicate with MCI
devices. You can send a command by using the mciSendCommand function.

Syntax of Command Messages

MCI command messages consist of the following three elements:

¢ A constant message value
e A structure containing parameters for the command
e Aset of flags specifying options for the command and validating fields in the parameter block

The following example sends the MCI_PLAY command to the device identified by a device identifier:

mciSendCommand (wDevicelD, // device identifier
MCI_ PLAY, // command message
0, // flags

(DWORD) (LPVOID) &mciPlayParms); // parameter block

The device identifier given in the first parameter is retrieved when the device is opened using the
MCI_OPEN command. The last parameter is the address of an MCI_PLAY_PARMS structure, which
might contain information about where to begin and end playback. Many MCI command messages use
a structure to contain parameters of this kind. The first member of each of these structures identifies
the window that receives an MM_MCINOTIFY message when the operation finishes.

Sending Command Messages

The Microsoft Windows operating system provides two functions for sending command messages to
devices and to query devices for error information: mciSendCommand and mciGetErrorString. The
mciSendCommand function sends a command message to an MCI device. The mciGetErrorString
function returns the error string corresponding to an error number.

The mciSendCommand function returns zero if successful. If the function fails, the low-order word of
the return value contains an error code. You can pass this error code to mciGetErrorString to get a
text description of it.

Using MCI Command Messages

This section contains examples demonstrating how to perform the following tasks:

¢ Close all MCI devices used by an application.

¢ Open a simple device by using the device name.
e Open a simple device by using the device-type constant.
¢ Open a compound device by using a filename.

¢ Verify the output device.

e Select the MIDI mapper as the output device.

e Handle MCI errors.

¢ Play a waveform-audio file.

¢ Play a MIDlI file.

¢ Play a compact disc (CD) track.

¢ Play a movie.

¢ Use the MCI_NOTIFY flag.

¢ Retrieve information about a movie.

¢ Retrieve CD track-specific information.

¢ Record with a waveform-audio device.

Closing All MCI Devices Used by an Application

The following example closes all of the MCI devices that are opened by an application:

UINT wDevicelID;
DWORD dwReturn;

// Closes all MCI devices opened by this application.
// Waits until devices are closed before returning.

if (dwReturn = mciSendCommand (MCI ALL DEVICE ID, MCI CLOSE, MCI WAIT,
NULL))

// Error, unable to close all devices.

Opening a Simple Device by Using the Device Name

The following example opens a CD audio device by specifying the device name:

UINT wDevicelD;
DWORD dwReturn;
MCI OPEN_ PARMS mciOpenParms;

// Opens a CD audio device by specifying the device name.

mciOpenParms.lpstrDeviceType = "cdaudio";

if (dwReturn = mciSendCommand (NULL, MCI OPEN, MCI OPEN TYPE,
(DWORD) (LPVOID) &mciOpenParms))

// Error, unable to open device.

// The device opened successfully; get the device ID.
wDevicelID = mciOpenParms.wDevicelID;

Opening a Simple Device by Using the Device-Type Constant

The following example opens a CD audio device by specifying a device-type constant:

UINT wDevicelD;
DWORD dwReturn;
MCI OPEN_ PARMS mciOpenParms;

// Opens a CD audio device by specifying a device-type constant.
mciOpenParms.lpstrDeviceType = (LPCSTR) MCI DEVTYPE CD AUDIO;
if (dwReturn = mciSendCommand (NULL, MCI_ OPEN,

MCI OPEN TYPE | MCI OPEN TYPE ID, (DWORD) (LPVOID) &mciOpenParms))

// Error, unable to open device.

// The device opened successfully; get the device ID.
wDevicelID = mciOpenParms.wDevicelID;

Opening a Compound Device by Using the Filename

The following example opens the waveform-audio device by specifying a waveform-audio file named
"TIMPANI.WAV":

UINT wDevicelID;
DWORD dwReturn;
MCI OPEN_ PARMS mciOpenParms;

// Opens a waveform-audio device by specifying the device and filename.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "timpani.wav";
if (dwReturn = mciSendCommand (NULL, MCI_ OPEN,

MCI OPEN TYPE | MCI OPEN ELEMENT, (DWORD) (LPVOID) &mciOpenParms))

// Error, unable to open device.

// The device opened successfully; get the device ID.
wDevicelID = mciOpenParms.wDevicelD;

Verifying the Output Device

After opening the sequencer, you should check whether the MIDI mapper was available and selected
as the output device. The following example uses the MCI_STATUS command to verify that the MIDI
mapper is the output device for the MCI sequencer:

UINT wDevicelID; // valid MCI sequencer ID
DWORD dwReturn;
MCI STATUS PARMS mciStatusParms;
// Make sure the opened device is the MIDI mapper.
mciStatusParms.dwlItem = MCI_SEQ STATUS PORT;
if (dwReturn = mciSendCommand (wDeviceID, MCI STATUS, MCI STATUS ITEM,
(DWORD) (LPVOID) &mciStatusParms))
// Error sending MCI_STATUS command.
return;
}
if (LOWORD (mciStatusParms.dwReturn) == MIDI MAPPER)
// The MIDI mapper is the output device.

else

// The MIDI mapper is not the output device.

Handling MCI Errors
You should always check the return value of the mciSendCommand function. If it indicates an error,
you can use mciGetErrorString to get a textual description of the error.

The following example passes the MCI error code specified by dwError to mciGetErrorString, and
then displays the resulting textual error description using the MessageBox function.

// Uses mciGetErrorString to get a textual description of an MCI error.
// Displays the error description using MessageBox.
void showError (DWORD dwError)
{
char szErrorBuf [MAXERRORLENGTH] ;
MessageBeep (MB_ICONEXCLAMATION) ;
if (mciGetErrorString (dwError, (LPSTR) szErrorBuf, MAXERRORLENGTH))
MessageBox (hMainWnd, szErrorBuf, "MCI Error",
MB T CONEXCLAMATION) ;
else
MessageBox (hMainWnd, "Unknown Error", "MCI Error",
MB TICONEXCLAMATION) ;

Note To interpret an mciSendCommand error return value yourself, mask the high-order word (the

low-order word contains the error code). If you pass the error return value to mciGetErrorString,
however, you must pass the entire doubleword value.

Playing a Waveform-Audio File

The following example opens a waveform-audio device and plays the waveform-audio file specified by
the IpszWAVEFileName parameter:

// Plays a given waveform-audio file using MCI OPEN and MCI PLAY.
// Returns when playback begins. Returns 0L on success, otherwise
// returns an MCI error code.
DWORD playWAVEFile (HWND hWndNotify, LPSTR lpszWAVEFileName)
{

UINT wDevicelID;

DWORD dwReturn;

MCI OPEN_ PARMS mciOpenParms;

MCI PLAY PARMS mciPlayParms;

// Open the device by specifying the device and filename.
// MCI will choose a device capable of playing the given file.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = lpszWAVEFileName;
if (dwReturn = mciSendCommand (0, MCI OPEN,

MCI OPEN TYPE | MCI OPEN ELEMENT, (DWORD) (LPVOID) é&mciOpenParms))

// Failed to open device. Don't close it; just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelID;

// Begin playback. The window procedure function for the parent

// window will be notified with an MM MCINOTIFY message when

// playback is complete. At this time, the window procedure closes

// the device.

mciPlayParms.dwCallback = (DWORD) hWndNotify;

if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY, MCI NOTIFY,
(DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

return (OL);

Playing a MIDI File

The following example opens a MIDI sequencer device, verifies that the MIDI mapper was selected as
the output port, plays the MIDI file specified by the IpszMIDIFileName parameter, and closes the device
after playback is complete:

// Plays a specified MIDI file by using MCI _OPEN and MCI_ PLAY. Returns
// as soon as playback begins. The window procedure function for the
// given window will be notified when playback is complete. Returns 0L
// on success; otherwise, it returns an MCI error code.
DWORD playMIDIFile (HWND hWndNotify, LPSTR lpszMIDIFileName)
{

UINT wDevicelID;

DWORD dwReturn;

MCI OPEN_ PARMS mciOpenParms;

MCI PLAY PARMS mciPlayParms;

MCI STATUS PARMS mciStatusParms;

MCI SEQ SET PARMS mciSegSetParms;

// Open the device by specifying the device and filename.
// MCI will attempt to choose the MIDI mapper as the output port.
mciOpenParms.lpstrDeviceType = "sequencer";
mciOpenParms.lpstrElementName = lpszMIDIFileName;
if (dwReturn = mciSendCommand (NULL, MCI_ OPEN,

MCI OPEN TYPE | MCI OPEN ELEMENT,

(DWORD) (LPVOID) &mciOpenParms))

// Failed to open device. Don't close it; just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelID;

// Check if the output port is the MIDI mapper.

mciStatusParms.dwItem = MCI SEQ STATUS PORT;

if (dwReturn = mciSendCommand (wDeviceID, MCI STATUS,
MCI STATUS ITEM, (DWORD) (LPVOID) &mciStatusParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

// The output port is not the MIDI mapper.
// Ask if the user wants to continue.
if (LOWORD (mciStatusParms.dwReturn) != MIDI MAPPER)
{
if (MessageBox (hMainWnd,
"The MIDI mapper is not available. Continue?",
"", MB YESNO) == IDNO)

// User does not want to continue. Not an error;
// just close the device and return.
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (OL);

// Begin playback. The window procedure function for the parent
// window will be notified with an MM MCINOTIFY message when
// playback is complete. At this time, the window procedure closes

// the device.

mciPlayParms.dwCallback = (DWORD) hWndNotify;

if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY, MCI NOTIFY,
(DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

return (0L);

Playing a Compact Disc Track

The following example opens a CD audio device, plays the track specified by the bTrack parameter,
and closes the device after playback is complete:

// Plays a given CD audio track using MCI OPEN, MCI PLAY. Returns as
// soon as playback begins. The window procedure function for the given
// window will be notified when playback is complete. Returns OL on
// success; otherwise, returns an MCI error code.
DWORD playCDTrack (HWND hWndNotify, BYTE bTrack)
{

UINT wDevicelID;

DWORD dwReturn;

MCI OPEN_PARMS mciOpenParms;

MCI SET PARMS mciSetParms;

MCI_ PLAY PARMS mciPlayParms;

// Open the CD audio device by specifying the device name.
mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand (NULL, MCI_ OPEN,

MCI OPEN TYPE, (DWORD) (LPVOID) &mciOpenParms))

// Failed to open device. Don't close it; just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelID;

// Set the time format to track/minute/second/frame (TMSF).
mciSetParms.dwTimeFormat = MCI FORMAT TMSF;
if (dwReturn = mciSendCommand (wDeviceID, MCI SET,

MCI SET TIME FORMAT, (DWORD) (LPVOID) &mciSetParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

// Begin playback from the given track and play until the beginning
// of the next track. The window procedure function for the parent
// window will be notified with an MM MCINOTIFY message when
// playback is complete. Unless the play command fails, the window
// procedure closes the device.
mciPlayParms.dwFrom = 0L;
mciPlayParms.dwTo = 0L;
mciPlayParms.dwFrom = MCI MAKE TMSF (bTrack, 0, 0, 0);
mciPlayParms.dwTo = MCI MAKE TMSF (bTrack + 1, 0, 0, 0);
mciPlayParms.dwCallback = (DWORD) hWndNotify;
if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY,

MCI FROM | MCI TO | MCI NOTIFY, (DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

return (OL);

}

To specify a position relative to a track on a CD, you must use the track/minute/second/frame (TMSF)
time format.

Playing a Movie

The following examples show how to set up and play an audio-video interleaved (AVI) file.

Opening the Playback Window

The following example shows how to use the MCI_OPEN command to set a parent window and create
a child of that window:

MCI DGV_OPEN_ PARMS mciOpen;
mciOpen.lpstrElementName = lpstrFile; // set the filename

mciOpen.dwStyle = WS CHILD; // set the style
mciOpen.hWndParent = hWnd; // give a window handle

if (mciSendCommand (0, MCI_ OPEN,
(DWORD) (MCI OPEN ELEMENT|MCI DGV _OPEN PARENT|MCI DGV _OPEN),
(DWORD) (LPSTR) &mciOpen) == 0) {

// Open operation is successful. Continue.

Setting Up the Playback Window

The following example finds the dimensions needed to play an AVI file, creates a window
corresponding to that size, and plays the file in the window by using the MCIAVI driver:

HWND hwnd;
MCI DGV_RECT PARMS mciRect;

// Get the movie dimensions with MCI WHERE.

mciSendCommand (wDeviceID, MCI WHERE, MCI DGV_WHERE SOURCE,
(DWORD) (LPSTR) &mciRect) ;

// Create the playback window. Make it bigger for the border.
// Note that the right and bottom members of RECT structures in MCI
// are unusual; rc.right is set to the rectangle's width, and rc.bottom
// 1s set to the rectangle's height.
hwndMovie = CreateWindow ("mywindow", "Playback",
WS_CHILD|WS BORDER, 0,0,
mciRect.rc.right+ (2*GetSystemMetric (SM_CXBORDER)),
mciRect.rc.bottom+ (2*GetSystemMetric (SM CYBORDER)),
hwndParent, hInstApp, NULL);

if (hwndMovie) {
// Window created OK; make it the playback window.

MCI DGV _WINDOW PARMS mciWindow;
mciWindow.hWnd = hwndMovie;

mciSendCommand (wDeviceID, MCI WINDOW, MCI DGV_WINDOW HWND,
(DWORD) (LPSTR) &mciWindow) ;

Playing the AVI File

Before using the mciSendCommand function to send the MCI_PLAY command, your application
allocates the memory for the structure, initializes the members it will use, and sets the flags
corresponding to the members used in the structure. (If your application does not set a flag for a
structure member, MCI drivers ignore the member.) For example, the following example plays a movie
from the starting location specified by dwFrom to the ending location specified by dwTo. (If either
location is zero, the example assumes the location is not used.)

DWORD PlayMovie (WORD wDevID, DWORD dwFrom, DWORD dwTo)
{
MCI DGV_PLAY PARMS mciPlay; // play parameters
DWORD dwFlags = 0;

// Check dwFrom. If it is != 0 then set parameters and flags.
if (dwFrom) {
mciPlay.dwFrom = dwFrom; // set parameter

dwFlags |= MCI_FROM; // set flag to validate member
}
// Check dwTo. If it is != 0 then set parameters and flags.
if (dwTo) {

mciPlay.dwTo = dwTo; // set parameter

dwFlags |= MCI TO; // set flag to validate member

}

// Send the MCI PLAY command and return the result.
return mciSendCommand (wDevID, MCI PLAY, dwFlags,
(DWORD) (LPVOID) &mciPlay) ;

Using the MCI_NOTIFY Flag
The following example shows how the MCI_NOTIFY flag is used with the MCI_PLAY command. The
handle to the window procedure that will process the MM_MCINOTIFY message is specified in hwnd.

MCI DGV_PLAY PARMS mciPlay;
DWORD dwFlags;

mciPlay.dwCallback = MAKELONG (hwnd, O0);
dwFlags = MCI_NOTIFY;

mciSendCommand (wMCIDeviceID, MCI PLAY, dwFlags, (DWORD) (LPSTR)&mciPlay);

Retrieving Information About a Movie

The following example sets the time format to frames and obtains the current position if the device is
playing:

MCI DGV _SET PARMS mciSet;
MCI DGV_STATUS PARMS mciStatus;

// Put in frame mode.
mciSet.dwTimeFormat = MCI_FORMAT FRAMES;
mciSendCommand (wDeviceID, MCI SET,

MCI SET TIME FORMAT,

(DWORD) (LPSTR) &mciSet) ;

mciStatus.dwItem = MCI_ STATUS MODE;
mciSendCommand (wDeviceID, MCI_ STATUS,
MCI STATUS_ ITEM,
(DWORD) (LPSTR) &mciStatus) ;

// If device is playing, get the position.
if (mciStatus.dwReturn == MCI MODE PLAY) {
mciStatus.dwItem = MCI_ STATUS POSITION;
mciSendCommand (wDevicelD, MCI STATUS, MCI STATUS ITEM,
(DWORD) (LPSTR) &mciStatus) ;

// Update the position from mciStatus.dwReturn.

Retrieving Compact Disc Track-Specific Information

For CD audio devices, you can get the starting location and length of a track by specifying the
MCI_TRACK flag and setting the dwTrack member of MCI_STATUS_PARMS to the desired track
number. To get the starting location of a track, set the dwltem member to MCI_STATUS_POSITION.
To get the length of a track, set dwltem to MCI_STATUS_LENGTH. For example, the following
example retrieves the total number of tracks on the CD and the starting location of each track. Then, it
uses the MessageBox function to report the starting locations of the tracks.

// Uses the MCI STATUS command to get and display the
// starting times for the tracks on a CD.
// Returns OL if successful; otherwise, it returns an
// MCI error code.
DWORD getCDTrackStartTimes (VOID)
{
UINT wDevicelD;
int i, iNumTracks;
DWORD dwReturn;
DWORD dwPosition;
DWORD *pMem;
char szTempString[64];
char szTimeString[512] = "\O"; // room for 20 tracks
MCI OPEN_ PARMS mciOpenParms;
MCI SET PARMS mciSetParms;
MCI STATUS PARMS mciStatusParms;

// Open the device by specifying the device name.

mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand (NULL, MCI OPEN,
MCI OPEN TYPE, (DWORD) (LPVOID) é&mciOpenParms))

// Failed to open device;
// don't have to close it, just return error.
return (dwReturn):;

}

// The device opened successfully; get the device ID.
wDevicelID = mciOpenParms.wDevicelID;

// Set the time format to minute/second/frame (MSF) format.
mciSetParms.dwTimeFormat = MCI_ FORMAT MSF;
if (dwReturn = mciSendCommand (wDeviceID, MCI SET,
MCI_SET TIME FORMAT,
(DWORD) (LPVOID) &mciSetParms)) {
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

}

// Get the number of tracks;

// 1limit to number that can be displayed (20).

mciStatusParms.dwItem = MCI STATUS NUMBER OF TRACKS;

if (dwReturn = mciSendCommand (wDeviceID, MCI STATUS,
MCI STATUS ITEM, (DWORD) (LPVOID) &mciStatusParms)) {
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

}

iNumTracks = mciStatusParms.dwReturn;

iNumTracks min (iNumTracks, 20);

// Allocate memory to hold starting positions.

pMem = (DWORD *)LocalAlloc (LPTR,
iNumTracks * sizeof (DWORD)) ;

if (pMem == NULL) ({
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (-1);

// For each track, get and save the starting location and
// build a string containing starting locations.
for (i=1; i<=iNumTracks; i++) {
mciStatusParms.dwltem = MCI STATUS POSITION;
mciStatusParms.dwTrack = i;
if (dwReturn = mciSendCommand (wDevicelD,
MCI STATUS, MCI_ STATUS ITEM | MCI TRACK,
(DWORD) (LPVOID) &mciStatusParms)) {
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

pMem[i-1] = mciStatusParms.dwReturn;

wsprintf (szTempString,
"Track %2d - %02d:%02d:%02d\n", i,
MCI MSF MINUTE (pMem[i-11),
MCI MSF_ SECOND (pMem[i-11),
MCI MSF FRAME (pMem[i-11));

lstrcat (szTimeString, szTempString);

// Use MessageBox to display starting times.
MessageBox (hMainWnd, szTimeString,
"Track Starting Position", MB ICONINFORMATION) ;

// Free memory and close the device.
LocalFree ((HANDLE) pMem) ;
if (dwReturn = mciSendCommand (wDevicelD,
MCI CLOSE, 0, NULL)) {
return (dwReturn);

return (OL);

Recording with a Waveform-Audio Device

The following example opens a waveform-audio device with a new file, records for the specified time,
plays the recording, and prompts the user to save the recording if desired:

// Uses the MCI_OPEN, MCI RECORD, and MCI_SAVE commands to record and
// save a waveform-audio file. Returns OL if successful; otherwise,
// it returns an MCI error code.
DWORD recordWAVEFile (DWORD dwMilliSeconds)
{

UINT wDevicelD;

DWORD dwReturn;

MCI OPEN PARMS mciOpenParms;

MCI RECORD PARMS mciRecordParms;

MCI SAVE PARMS mciSaveParms;

MCI PLAY PARMS mciPlayParms;

// Open a waveform-audio device with a new file for recording.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "";
if (dwReturn = mciSendCommand (0, MCI OPEN,

MCI OPEN ELEMENT | MCI OPEN TYPE,

(DWORD) (LPVOID) &mciOpenParms))

// Failed to open device; don't close it, just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelID;

// Begin recording and record for the specified number of
// milliseconds. Wait for recording to complete before continuing.
// Assume the default time format for the waveform-audio device
// (milliseconds) .
mciRecordParms.dwTo = dwMilliSeconds;
if (dwReturn = mciSendCommand (wDeviceID, MCI RECORD,
MCI TO | MCI _WAIT, (DWORD) (LPVOID) &mciRecordParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

// Play the recording and query user to save the file.
mciPlayParms.dwFrom = 0L;
if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY,

MCI FROM | MCI WAIT, (DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

}

if (MessageBox (hMainWnd, "Do you want to save this recording?",
", MB_YESNO) == 1IDNO)

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);

return (0L);

// Save the recording to a file named TEMPFILE.WAV. Wait for
// the operation to complete before continuing.

mciSaveParms.lpfilename = "tempfile.wav";
if (dwReturn = mciSendCommand (wDevicelID, MCI SAVE,

MCI SAVE FILE | MCI WAIT, (DWORD) (LPVOID) &mciSaveParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

return (0L);

MCI Command Reference

This section describes MCl command messages and structures. These elements are grouped as
follows.

Configuring a Device

MCI_BREAK
MCI_BREAK_PARMS
MCI_CONFIGURE
MCI_DGV_SET_PARMS
MCI_DGV_SETAUDIO_PARMS
MCI_DGV_SETVIDEO_PARMS
MCI_ESCAPE

MCI_INDEX
MCI_SEQ_SET_PARMS
MCI_SET

MCI_SET_PARMS
MCI_SETAUDIO
MCI_SETTIMECODE
MCI_SETTUNER
MCI_SETVIDEO

MCI_SPIN
MCI_VCR_SET_PARMS
MCI_VCR_SETAUDIO_PARMS
MCI_VCR_SETTUNER_PARMS
MCI_VCR_SETVIDEO_PARMS
MCI_VD_ESCAPE_PARMS
MCI_WAVE_SET_PARMS

Controlling Playback

MCI_ANIM_PLAY PARMS
MC|_DGV_FREEZE_PARMS
MCI_DGV_LOAD_PARMS
MCI_DGV_PAUSE_PARMS
MCI_DGV_PLAY_PARMS
MCI_DGV_RESUME_PARMS
MCI_DGV_STOP_PARMS
MCI|_FREEZE

MCI_LOAD

MCI_LOAD PARMS
MCI_OVLY LOAD_PARMS
MCI|_PAUSE

MCI_PLAY

MCI_PLAY PARMS
MCI_RESUME

MCI_STOP
MCI_UNFREEZE
MCI_VCR_PLAY_PARMS
MCI_VD_PLAY_PARMS

Controlling the Position

MCI_ANIM_STEP_PARMS
MCI_CUE
MCI_DGV_CUE_PARMS
MCI_DGV_SIGNAL_PARMS

MCI_DGV_STEP_PARMS
MCI_MARK

MCI_SEEK
MCI_SEEK_PARMS
MCI_SIGNAL

MCI_STEP
MCI_VCR_CUE_PARMS
MCI_VCR_SEEK_PARMS
MCI_VCR_STEP_PARMS
MCI_VD_STEP_PARMS

Editing

MCI_COPY

MCI_CUT

MCI_DELETE
MCI_DGV_COPY_PARMS
MCI_DGV_CUT PARMS
MCI_DGV_DELETE_PARMS
MCI_DGV_PASTE_PARMS
MCI_PASTE

MCI_UNDO
MCI_WAVE_DELETE_PARMS

Miscellaneous

MCI_GENERIC_PARMS
Opening and Closing

MCI_ANIM_OPEN_PARMS
MCI_CLOSE
MCI_DGV_OPEN_PARMS
MCI_OPEN
MCI_OPEN_PARMS
MCI_OVLY_OPEN_PARMS
MCI_WAVE_OPEN_PARMS

Realizing a Palette

MCI REALIZE
Repainting a Frame

MCI_ANIM_UPDATE_PARMS
MCI_DGV_UPDATE_PARMS
MCI_UPDATE

Retrieving Information

MCI_DGV_INFO_PARMS
MCI_DGV_LIST_PARMS
MCI_DGV_STATUS_PARMS
MCI_GETDEVCAPS
MCI_GETDEVCAPS_PARMS
MCI_INFO
MCI_INFO_PARMS
MCI_LIST

MCI_STATUS
MCI_STATUS_PARMS
MCI_SYSINFO
MCI_SYSINFO_PARMS
MCI_VCR_LIST PARMS

MCI VCR_STATUS PARMS
Saving

MCI_DGV_RECORD_PARMS
MCI_DGV_SAVE_PARMS
MCI_OVLY_SAVE_PARMS
MCI_RECORD
MCI_RECORD_PARMS
MCI_SAVE
MCI_SAVE_PARMS
MCI_VCR_RECORD_PARMS

Video Control

MCI_CAPTURE
MCI_DGV_MONITOR_PARMS
MCI_DGV_QUALITY_PARMS
MCI_DGV_RESERVE_PARMS
MCI_DGV_RESTORE_PARMS
MCI_MONITOR
MCI_QUALITY
MCI_RESERVE
MCI_RESTORE

Window or Display Rectangles

MCI_ANIM_RECT_PARMS
MCI_ANIM_WINDOW_PARMS
MCI_DGV_PUT_PARMS
MCI_DGV_RECT_PARMS
MCI_DGV_WINDOW_PARMS
MCI_OVLY_RECT_PARMS
MCI_OVLY_WINDOW_PARMS
MCI_PUT

MCI_WHERE

MCI_WINDOW

MCI_BREAK

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI BREAK,
DWORD dwFlags, (DWORD) (LPMCI BREAK PARMS) lpBreak);

Sets a break key for an MCI device. MCI supports this command directly rather than passing it to the
device. Any MCI application can use this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and video-cassette recorder (VCR) devices,
MCI_TEST. For information about these flags, see Chapter 3, "MCI Overview."

IpBreak
Address of an MCI_BREAK_PARMS structure.

You might have to press the break key multiple times to interrupt a wait operation. Pressing the break
key after a device wait is canceled can send the break to an application. If an application has an action
defined for the virtual-key code, then it can inadvertently respond to the break. For example, an
application using VK_CANCEL for an accelerator key can respond to the default CTRL+BREAK key if it is
pressed after a wait is canceled.

Additional Flags
The following additional flags apply to all devices:

MCI_BREAK_HWND
The hwndBreak member of the structure identified by [pBreak contains a window handle that must
be the current window in order to enable break detection for that MCI device. This is usually the
application's main window. If omitted, MCI does not check the window handle of the current window.
MCI_BREAK_KEY
The nVirtKey member of the structure identified by IpBreak specifies the virtual-key code used for
the break key. By default, MCIl assigns CTRL+BREAK as the break key. This flag is required if
MCI_BREAK_OFF is not specified.

MCI_BREAK_OFF
Disables any existing break key for the indicated device.

MCI_CAPTURE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI CAPTURE,
DWORD dwFlags, (DWORD) (LPMCI DGV _CAPTURE PARMS) lpCapture);

Captures the contents of the frame buffer and stores it in a specified file. Digital-video devices
recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpCapture
Address of an MCl_DGV_CAPTURE_PARMS structure.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_DGV_CAPTURE_AS
The IpstrFileName member of the structure identified by IpCapture contains an address of a buffer
specifying the destination path and filename. (This flag is required.)

MCI_DGV_CAPTURE_AT
The rc member of the structure identified by IpCapture contains a valid rectangle. The rectangle
specifies the rectangular region within the frame buffer that is cropped and saved to disk. If omitted,
the cropped region defaults to the rectangle specified or defaulted on a previous MCI_PUT
command that specifies the source area for this instance of the device driver.

MCI_CLOSE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI CLOSE,
DWORD dwFlags, (DWORD) (LPMCIiGENERlciPARMS) lpClose) ;

Releases access to a device or file. All devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
InClose
Address of an MCI_GENERIC_PARMS structure. (You can also use an MCI_CLOSE_PARMS
structure, which is identical to MCI_GENERIC_PARMS. Devices with extended command sets might
replace this structure with a device-specific structure.)

Exiting an application without closing any MCI devices it has opened can leave the device inaccessible.
Your application should explicitly close each device or file when it is finished with it. MCI unloads the
device when all instances of the device or all associated files are closed.

MCI_CONFIGURE

MCIERROR mciSendCommand (MCIDEVICEID wDevicelD, MCI CONFIGURE,
DWORD dwFlags, (DWORD) (LPMCI GENERIC PARMS) lpConfigure);

Displays a dialog box for setting the operating options. Digital-video devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

InConfigure
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

MCI_COPY

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI COPY,
DWORD dwFlags, (DWORD) (LPMCI DGV COPY PARMS) lpCopy);

Copies data to the clipboard. Digital-video devices recognize this command.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpCopy
Address of an MCI_DGV_COPY_PARMS structure.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_DGV_COPY_AT
A rectangle is included in the rc member of the structure identified by JpCopy. The rectangle
specifies the portion of each frame to copy. If the flag is omitted, MCI_COPY copies the entire frame.

MCI_DGV_COPY_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
IpCopy. If you use this flag and also want to copy video, you must also use the
MCI_DGV_COPY_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is copied.)

MCI_DGV_COPY_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
IpCopy. If you use this flag and also want to copy audio, you must also use the
MCI_DGV_COPY_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is copied.)

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by jpCopy. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_TO
An ending location is included in the dwTo member of the structure identified by IpCopy. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_CUE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI CUE,
DWORD dwFlags, (DWORD) (LPMCIiGENERlciPARMS) 1lpCue) ;

Cues a device so that playback or recording begins with minimum delay.Digital-video, VCR, and
waveform-audio devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

IpCue
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags
The following additional flags are used with the digitalvideo device type:

MCI_DGV_CUE_INPUT
A digital-video instance should prepare for recording. If the application has not reserved disk space,
the device reserves the disk space using its default parameters. The application can omit this flag if
the current presentation source is already the external input. (This flag has no effect on selecting the
presentation source.)

MCI_DGV_CUE_NOSHOW
A digital-video instance should prepare for playing the frame specified with the command without
displaying it. When this flag is specified, the display continues to show the image in the frame buffer
even though its corresponding frame is not the current position. For example, if the frame buffer
contains the image from frame 7, the device continues to show frame 7 when this flag is used to cue
the device to any other position. A subsequent cue command without this flag and without the
MCI_TO flag displays the current frame.

MCI_DGV_CUE_OUTPUT
A digital-video instance should prepare for playing. If the workspace is paused, no positioning
occurs. If the workspace is stopped, the position might change to a previous key-frame image. The
application can omit this flag if the current presentation source is already the workspace.

MCI_TO
A workspace position is included in the dwTo member of the structure identified by [pCue. The units
assigned to position values are specified using the MCI_SET_TIME_FORMAT flag of the MCI_SET
command. This is equivalent to seeking to a position, except the device is paused after the
command.

For digitalvideo devices, the lpCue parameter points to an MClI_DGV_CUE_PARMS structure.

VCR Flags
The following additional flags are used with the ver device type:

MCI_FROM
The dwFrom member of the structure pointed to by JpCue contains the starting location specified in
the current time format.

MCI_TO
The dwTo member of the structure pointed to by IpCue contains the ending (pausing) location
specified in the current time format.

MCI_VCR_CUE_INPUT
Prepare for recording.

MCI_VCR_CUE_OUTPUT
Prepare for playing. If neither MCI_VCR_CUE_INPUT nor MCI_VCR_CUE_OUTPUT is specified,
MCI_VCR_CUE_OUTPUT is assumed.

MCI_VCR_CUE_PREROLL

Cue the device to the current position, or the dwFrom position, minus the preroll duration. This will
allow the device to prepare itself before entering record or playback mode.

MCI_VCR_CUE_REVERSE
The direction of the next play or record command is reverse.

When cueing for playback by using the MCI_CUE command with the MCI_VCR_CUE_OUTPUT flag,
you can cancel MCI_CUE by issuing the MCI_PLAY command with MCI_FROM, MCI_TO, or
MCI_VCR_PLAY_REVERSE.

When cueing for recording by using MCI_CUE with the MCI_VCR_CUE_INPUT flag, you can cancel
MCI_CUE by issuing the MCI_ RECORD command with MCI_FROM, MCI_TO, or
MCI_VCR_RECORD_INITIALIZE.

For ver devices, the IpCue parameter points to an MCI_VCR_CUE_PARMS structure.

Waveform-Audio Flags
The following additional flags are used with the waveaudio device type:
MCI_WAVE_INPUT

A waveform-audio input device should be cued.

MCI_WAVE_OUTPUT
A waveform-audio output device should be cued. This is the default flag if a flag is not specified.

MCI_CUT

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI CUT,
DWORD dwFlags, (DWORD) (LPMCIiDG\/iCUTiPARMS) lpCut) ;

Removes data from the file and copies it to the clipboard. Digital-video devices recognize this
command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpCut
Address of an MCI_DGV_CUT_PARMS structure.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_DGV_CUT_AT
Arectangle is included in the rc member of the structure identified by IpCut. The rectangle specifies
the portion of each frame to cut. If the flag is omitted, MCI_CUT cuts the entire frame.

MCI_DGV_CUT_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
IpCut. If you use this flag and also want to cut video, you must also use the
MCI_DGV_CUT_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is cut.)

MCI_DGV_CUT_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
IpCut. If you use this flag and also want to cut audio, you must also use the
MCI_DGV_CUT_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and video
streams is cut.)

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by lpCut. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_TO
An ending location is included in the dwTo member of the structure identified by JpCut. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET.

MCI_DELETE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI DELETE,
DWORD dwFlags, (DWORD) (LPMCI GENERIC PARMS) IlpDelete);

Removes data from the file. Digital-video and waveform-audio devices recognize this command.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these
flags, see Chapter 3, "MCI Overview."

IpDelete
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags
The following flags apply to the digitalvideo device type:

MCI_DGV_DELETE_AT
A rectangle is included in the rc member of the structure identified by lpDelete. The rectangle
specifies the portion of each frame to delete. When this flag is used, the frame is retained in the
workspace and the area specified by the rectangle becomes black. If the flag is omitted,
MCI_DELETE defaults to the entire frame and removes the frame from the workspace.

MCI_DGV_DELETE_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
IpDelete. If you use this flag and also want to delete video, you must also use the
MCI_DGV_DELETE_VIDEO_STREAM flag. (If neither flag is specified, data from all audio and
video streams is deleted.)

MCI_DGV_DELETE_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
IpDelete. If you use this flag and also want to delete audio, you must also use the
MCI_DGV_DELETE_AUDIO_STREAM flag. (If neither flag is specified, data from all audio and
video streams is deleted.)

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by IpDelete. The
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command.

MCI_TO
An ending location is included in the dwTo member of the structure identified by JpDelete. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET.

For digital-video devices, the IpDelete parameter points to an MCI_DGV_DELETE_PARMS structure.

Waveform-Audio Flags
The following flags apply to the waveaudio device type:

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by IpDelete. The
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of
MCI_SET.

MCI_TO
An ending location is included in the dwTo member of the structure identified by [pDelete. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET.

For waveform-audio devices, the IpDelete parameter points to an MClI_WAVE_DELETE_PARMS

structure.

MCI_ESCAPE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI ESCAPE,
DWORD dwFlags, (DWORD) (LPMCI VD ESCAPE PARMS) lpEscape);

Sends a string directly to the device. Videodisc devices recognize this command.

¢ Returns zero if successful or an error otherwise.
dwFlags

MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
IpEscape

Address of an MCl_VD_ESCAPE_PARMS structure.

The data sent with MCI_ESCAPE is device-dependent and is usually passed directly to the hardware
associated with the device.

Additional Flag

The following additional flag applies to videodisc devices:

MCI_VD_ESCAPE_STRING
A command string is specified in the IpstrCommand member of the structure identified by
IpEscape. This flag is required.

MCI_FREEZE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI FREEZE,
DWORD dwFlags, (DWORD) (LPMCI GENERIC PARMS) IlpFreeze);

Freezes motion on the display. Digital-video, video-overlay, and VCR devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

IpFreeze
Address of an MCI_GENERIC_PARMS structure. (Devices with additional parameters might replace
this structure with a device-specific structure.)

Digital-Video Flags
The following additional flags are used by the digitalvideo device type:

MCI_DGV_FREEZE_AT
The re member of the structure identified by IpFreeze contains a valid rectangle. The rectangle
specifies a region within the frame buffer that will have the lock mask bit for each pixel turned on.
The specified pixels will not be updated until their lock mask bit is turned off. If this flag is not
specified, the rectangle defaults to the entire frame buffer. This flag is supported only if the
MCI_GETDEVCAPS command returns TRUE for the MCI_DGV_GETDEVCAPS_CAN_LOCK flag.

MCI_DGV_FREEZE_OUTSIDE
The area outside the region specified for the MClI_DGV_FREEZE_AT flag is frozen.

For digital-video devices, the IpFreeze parameter points to an MCI_DGV_FREEZE_PARMS structure.

VCR Flags
The following additional flags are used by the ver device type:

MCI_VCR_FREEZE_FIELD
Freeze only one member of the current frame.

MCI_VCR_FREEZE_FRAME

Freeze both fields of the current frame.
MCI_VCR_FREEZE_INPUT

Freeze the current frame on the screen (used for recording).

MCI_VCR_FREEZE_OUTPUT
Freeze the current frame from the VCR (used with frame capture).

For VCR devices, the IpFreeze parameter points to an MCI_GENERIC_PARMS structure.

Video-Overlay Flags
The following additional flag is used by the overlay device type:

MCI_OVLY_RECT
The rc member of the structure identified by IpFreeze contains a valid rectangle. If this flag is not
specified, the device driver will freeze the entire frame.

For video-overlay devices, the IpFreeze parameter points to an MCI_OVLY_RECT_PARMS structure.

MCI_GETDEVCAPS

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI GETDEVCAPS,

DWORD dwFlags, (DWORD) (LPMCI GETDEVCAPS PARMS) lpCapsParms);

Retrieves static information about a device. All devices recognize this command. The parameters and
flags available for this command depend on the selected device. Information is returned in the
dwReturn member of the structure identified by IpCapsParms.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

InCapsParms
Address of an MCI_GETDEVCAPS_PARMS structure.

Additional Flags

The following additional standard and command-specific flags apply to all devices supporting
MCI_GETDEVCAPS:

MCI_GETDEVCAPS_COMPOUND_DEVICE
The dwReturn member is set to TRUE if the device uses data storage that must be explicitly
opened and closed; it is set to FALSE otherwise.

MCI_GETDEVCAPS_DEVICE_TYPE
The dwReturn member is set to one of the values listed in "Constants: Device Types" later in this
chapter.

MCI_GETDEVCAPS_HAS_AUDIO
The dwReturn member is set to TRUE if the device has audio output; it is set to FALSE otherwise.

MCI_GETDEVCAPS_HAS VIDEO
The dwReturn member is set to TRUE if the device has video output; it is set to FALSE otherwise.
For example, the member is set to TRUE for devices that support the animation or videodisc
command set.

MCI_GETDEVCAPS_ITEM
Specifies that the dwltem member of the MCI_GETDEVCAPS_PARMS structure contains one of
the following constants:

MCI_GETDEVCAPS_CAN_EJECT
The dwReturn member is set to TRUE if the device can eject the media; otherwise, it is set to
FALSE.

MCI_GETDEVCAPS_CAN_PLAY
The dwReturn member is set to TRUE if the device can play the media; otherwise, it is set to
FALSE. If a device specifies TRUE, it implies the device supports the MCI_PAUSE and
MCI_STOP commands as well as the MCI_PLAY command.
MCI_GETDEVCAPS_CAN_RECORD
The dwReturn member is set to TRUE if the device supports recording; otherwise, it is set to
FALSE. If a device specifies TRUE, it implies the device supports the MCI_PAUSE and
MCI_STOP commands as well as the MCI_RECORD command.
MCI_GETDEVCAPS_CAN_SAVE
The dwReturn member is set to TRUE if the device can save a file; otherwise, it is set to FALSE.
MCI_GETDEVCAPS_USES_FILES
The dwReturn member is set to TRUE if the device requires a filename; it is set to FALSE
otherwise. Only compound devices use files.

Animation Flags

The following flags can be specified in the dwltem member of MCI_GETDEVCAPS_PARMS for the
animation device type:

MCI_ANIM_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the device can play in reverse; otherwise, it is set to
FALSE.
MCI_ANIM_GETDEVCAPS_CAN_STRETCH
The dwReturn member is set to TRUE if the device can stretch the image to fill the frame;
otherwise, it is set to FALSE.
MCI_ANIM_GETDEVCAPS_FAST_RATE
The dwReturn member is set to the standard fast play rate in frames per second.
MCI_ANIM_GETDEVCAPS_MAX_WINDOWS
The dwReturn member is set to the maximum number of windows that the device can handle
simultaneously.
MCI_ANIM_GETDEVCAPS_NORMAL_RATE
The dwReturn member is set to the normal play rate in frames per second.
MCI_ANIM_GETDEVCAPS_PALETTES
The dwReturn member is set to TRUE if the device can return a palette handle; otherwise, it is set
to FALSE.
MCI_ANIM_GETDEVCAPS_SLOW_RATE
The dwReturn member is set to the standard slow play rate in frames per second.

Digital-Video Flags

The following flags can be specified in the dwltem member of MCI_ GETDEVCAPS_PARMS for the
digitalvideo device type:

MCI_DGV_GETDEVCAPS_CAN_FREEZE
The dwReturn member is set to TRUE if the device can freeze frames; otherwise, it is set to FALSE.
MCI_DGV_GETDEVCAPS_CAN_LOCK
The dwReturn member is set to TRUE if the device can lock; otherwise, it is set to FALSE.
MCI_DGV_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the device can play in reverse; otherwise, it is set to
FALSE.
MCI_DGV_GETDEVCAPS_CAN_STR_IN
The dwReturn member is set to TRUE if the device can stretch input; otherwise, it is set to FALSE.
MCI_DGV_GETDEVCAPS_CAN_STRETCH
The dwReturn member is set to TRUE if the device can stretch an image; otherwise, it is set to
FALSE.
MCI_DGV_GETDEVCAPS_CAN_TEST
The dwReturn member is set to TRUE if the device can perform tests; otherwise, it is set to FALSE.
MCI_DGV_GETDEVCAPS_HAS_STILL
The dwReturn member is set to TRUE if the device can display still images; otherwise, it is set to
FALSE.
MCI_DGV_GETDEVCAPS_MAX_WINDOWS
The dwReturn member is set to the maximum number of windows that the device can handle
simultaneously.
MCI_DGV_GETDEVCAPS_MAXIMUM_RATE
The dwReturn member is set to the maximum play rate for the device, in frames per second.
MCI_DGV_GETDEVCAPS_MINIMUM_RATE
The dwReturn member is set to the minimum play rate for the device, in frames per second.

MCI_DGV_GETDEVCAPS_PALETTES
The dwReturn member is set to TRUE if the device can return a palette handle; otherwise, it is set
to FALSE.

VCR Flags

The following flags can be specified in the dwltem member of MCI_GETDEVCAPS_PARMS for the
vcer device type:

MCI_GETDEVCAPS_CLOCK_INCREMENT_RATE
The dwReturn member is set to the number of increments per second.
MCI_VCR_GETDEVCAPS_CAN_DETECT LENGTH
The dwReturn member is set to TRUE if the device is capable of detecting the length of the media;
otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_FREEZE
The dwReturn member is set to TRUE if the device is capable of freezing the output image;
otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_MONITOR_SOURCES
The dwReturn member is set to TRUE if the device is capable of monitoring sources; otherwise, it is
set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_PREROLL
The dwReturn member is set to TRUE if the device is capable of preroll; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_CAN_PREVIEW
The dwReturn member is set to TRUE if the device is capable of previews; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the device is capable of playing in reverse; otherwise, it is
set to FALSE.

MCI_VCR_GETDEVCAPS_CAN_TEST
The dwReturn member is set to TRUE if the device is capable of testing; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_HAS_CLOCK
The dwReturn member is set to TRUE if the device supports an external clock; otherwise, it is set to
FALSE.

MCI_VCR_GETDEVCAPS_HAS_TIMECODE
The dwReturn member is set to TRUE if device has timecode capability or if this capability is
unknown; otherwise, it is set to FALSE.

MCI_VCR_GETDEVCAPS_NUMBER_OF_MARKS
The dwReturn member is set to the number of marks (99).

MCI_VCR_GETDEVCAPS_SEEK_ACCURACY
The dwReturn member is set to the seek accuracy of the device.

Video-Overlay Flags

The following flags can be specified in the dwltem member of MCI_GETDEVCAPS_PARMS for the
overlay device type:

MCI_OVLY_GETDEVCAPS_CAN_FREEZE
The dwReturn member is set to TRUE if the device can freeze the image; otherwise, it is set to
FALSE.

MCI_OVLY_GETDEVCAPS_CAN_STRETCH
The dwReturn member is set to TRUE if the device can stretch the image to fill the frame;
otherwise, it is set to FALSE.

MCI_OVLY_GETDEVCAPS_MAX_WINDOWS
The dwReturn member is set to the maximum number of windows that the device can handle
simultaneously.

Videodisc Flags

The following flags can be specified in the dwltem member of MCI_GETDEVCAPS_PARMS for the
videodisc device type:

MCI_VD_GETDEVCAPS_CAN_REVERSE
The dwReturn member is set to TRUE if the videodisc player can play in reverse; otherwise, it is set
to FALSE. Some players can play CLV discs in reverse as well as CAV discs.
MCI_VD_GETDEVCAPS_CAV
When combined with other items, specifies that the return information applies to CAV format
videodiscs. This is the default if no videodisc is inserted.
MCI_VD_GETDEVCAPS_CLV
When combined with other items, specifies that the return information applies to CLV format
videodiscs.
MCI_VD_GETDEVCAPS_FAST_RATE
The dwReturn member is set to the standard fast play rate in frames per second.
MCI_VD_GETDEVCAPS NORMAL_RATE
The dwReturn member is set to the normal play rate in frames per second.
MCI_VD_GETDEVCAPS_SLOW_RATE
The dwReturn member is set to the standard slow play rate in frames per second.

Waveform-Audio Flags

The following flags can be specified in the dwltem member of MCI_GETDEVCAPS_PARMS for the
waveaudio device type:

MCI_WAVE_GETDEVCAPS_INPUT
The dwReturn member is set to the total number of waveform input (recording) devices.

MCI_WAVE_GETDEVCAPS_OUTPUT
The dwReturn member is set to the total number of waveform output (playback) devices.

MCI_INDEX

MCIERROR mciSendCommand (MCIDEVICEID wDevicelID, MCI INDEX,
DWORD dwFlags, (DWORD) (LPMCIiGENERlciPARMS) lpIndex) ;

Turns the on-screen display on or off. VCR devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpIndex
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

The information presented in the on-screen display is controlled by the MCI_VCR_SET_INDEX flag in
the MCI_SET command.

Additional Flags
The following additional flags apply to VCR devices:
MCI_SET_OFF

Turns on-screen display off.

MCI_SET_ON
Turns on-screen display on.

MCI_INFO

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI INFO,
DWORD dwFlags, (DWORD) (LPMCIilNFoiPARMS) lpInfo);

Retrieves string information from a device. All devices recognize this command. Information is returned
in the IpstrReturn member of the structure identified by /p/nfo. The dwRetSize member specifies the
buffer length for the returned data.

e Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

Ipinfo
Address of an MCI_INFO_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

Additional Flag

The following additional standard and command-specific flag applies to all devices supporting
MCI_INFO:

MCI_INFO_PRODUCT
Obtains a description of the hardware associated with a device. Devices should supply a description
that identifies both the driver and the hardware used.

Animation Flags
The following additional flags apply to the animation device type:
MCI_ANIM_INFO_TEXT

Obtains the window caption.

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported only by devices that return TRUE
when you call the MCI_GETDEVCAPS command with the MClI_GETDEVCAPS_USES_FILES flag.

CD Audio Flags
The following additional flags apply to the cdaudio device type:

MCI_INFO_MEDIA_IDENTITY
Produces a unique identifier for the audio CD currently loaded in the player being queried. This flag
returns a string of 16 hexadecimal digits.

MCI_INFO_MEDIA_UPC
Produces the Universal Product Code (UPC) that is encoded on an audio CD. The UPC is a string of
digits. It might not be available for all CDs.

Digital-Video Flags
The following additional flags apply to the digitalvideo device type:

MCI_DGV_INFO_ITEM
A constant indicating the information desired is included in the dwltem member of the structure
identified by IpInfo. The following constants are defined for digital-video devices:
MCI_DGV_INFO_AUDIO_ALG
Returns the name for the current audio compression algorithm.

MCI_DGV_INFO_AUDIO_QUALITY

Returns the name for the current audio quality descriptor.

MCI_DGV_INFO_STILL_ALG
Returns the name for the current still image compression algorithm.

MCI_DGV_INFO_STILL_QUALITY
Returns the name for the current still image quality descriptor.
MCI_DGV_INFO_USAGE
Returns a string describing usage restrictions that might be imposed by the owner of the visual or
audible data in the workspace.
MCI_DGV_INFO_VIDEO_ALG
Returns the name for the current video compression algorithm.
MCI_DGV_INFO_VIDEO_QUALITY
Returns the name for the current video quality descriptor.
MCI_INFO_VERSION
Returns the release level of the device driver and hardware. Device driver developers must
document the syntax of the returned string.
MCI_DGV_INFO_TEXT
Obtains the window caption.
MCI_INFO_FILE
Obtains the path and filename of the last file specified with the MCI_OPEN or MCI_LOAD
command. If a file has not been specified, the device returns a null-terminated string. This flag is
supported only by devices that return TRUE to the MClI_GETDEVCAPS_USES_FILES flag of the
MCI_GETDEVCAPS command.

For digital-video devices, IpInfo points to an MCI_DGV_INFO_PARMS structure.

Sequencer Flags
The following additional flags apply to the sequencer device type:
MCI_INFO_COPYRIGHT

Obtains the MIDI file copyright notice from the copyright meta event.

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported only by devices that return TRUE
when you call the MCI_GETDEVCAPS command with the MCl_GETDEVCAPS_USES_FILES flag.

MCI_INFO_NAME
Obtains the sequence name from the sequence/track name meta event.

VCR Flags
The following additional flag applies to the ver device type:

MCI_VCR_INFO_VERSION
Sets IpstrReturn member of the MCI_INFO_PARMS structure to point to the version number. Also
sets the dwRetSize member equal to the length of the string pointed to.

Video-Overlay Flags
The following additional flags apply to the overlay device type:

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported only by devices that return TRUE to
the MCI_GETDEVCAPS_USES_FILES flag of the MCI_GETDEVCAPS command.

MCI_OVLY_INFO_TEXT
Obtains the caption of the window associated with the video-overlay device.

Waveform-Audio Flags
The following additional flags apply to the waveaudio device type:

MCI_INFO_FILE
Obtains the filename of the current file. This flag is supported by devices that return TRUE when you
call the MCI_GETDEVCAPS command with the MCI_GETDEVCAPS_USES_FILES flag.

MCI_WAVE_INPUT
Obtains the product name of the current input.

MCI_WAVE_OUTPUT
Obtains the product name of the current output and its value is device specific.

MCI_LIST

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI LIST,
DWORD dwFlags, (DWORD) (LPMCIiGENERlciPARMS) lpList);

Obtains information about the number and types of inputs available to the device. Digital-video and
VCR devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpList
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Digital-Video Flags
The following additional flags apply to the digitalvideo device type:

MCI_DGV_LIST ALG
The IpstrAlgorithm member of the structure identified by IpList contains an address of a buffer
containing the name of an algorithm. The name is used to retrieve the types of quality descriptors
associated with an algorithm.
MCI_DGV_LIST_COUNT
Returns the number of options of the specified type.
MCI_DGV_LIST_ITEM
A constant indicating the list type is included in the dwltem member of the structure identified by
IpList. This flag is required. Use one of the following constants to indicate the list type:
MCI_DGV_LIST _AUDIO_ALG
The command should retrieve names of audio algorithms.
MCI_DGV_LIST_AUDIO_QUALITY
The command should retrieve audio quality levels. The levels returned are associated with the
algorithm referenced by the IpstrAlgorithm member of the structure identified by IpList. If that
member is specified using the string "current”, then the qualities associated with the current
algorithm are returned.
MCI_DGV_LIST_AUDIO_STREAM
The command should retrieve names of audio streams.
MCI_DGV_LIST _STILL_AL
The command should retrieve names of still algorithms.
MCI_DGV_LIST_STILL_QUALITY
The command should retrieve quality levels. The levels returned are associated with the algorithm
referenced by the IpstrAlgorithm member of the structure identified by IpList. If that member is
specified using the string "current", then the qualities associated with the current algorithm are
returned.
MCI_DGV_LIST_VIDEO_ALG
The command should retrieve names of video algorithms.
MCI_DGV_LIST VIDEO_QUALITY
The command should retrieve video quality levels. The levels returned are associated with the
algorithm referenced by the IpstrAlgorithm member of the structure identified by IpList. If that
member is specified using the string "current", then the qualities associated with the current
algorithm are returned.

MCI_DGV_LIST_VIDEO_SOURCE

The command should return information about the video sources. When used with
MCI_DGV_LIST_COUNT, the command returns the number of video sources. When used with
MCI_DGV_LIST_NUMBER, the command returns the type of a video source. MCI defines the
following types:

MCI_DGV_SETVIDEO_SRC_GENERIC
MCI_DGV_SETVIDEO_SRC_NTSC
MCI_DGV_SETVIDEO SRC_PAL
MCI_DGV_SETVIDEO_SRC_RGB
MCI_DGV_SETVIDEO_SRC_SECAM
MCI_DGV_SETVIDEO_SRC_SVIDEO

There might be more than one source of each type returned. The generic source type is used
when more then one type of signal is allowed for that connector.
MCI_DGV_LIST_VIDEO_STREAM
The command should retrieve names of video streams.
MCI_DGV_LIST_NUMBER
An index is specified in the dwNumber member of the structure identified by IpList. The index must
be an integer between 1 and the value returned for the MCI_DGV_LIST_COUNT flag.

For digital-video devices, IpList points to an MCI_DGV_LIST_PARMS structure.

VCR Flags
The following additional flags apply to the ver device type:
MCI_VCR_LIST_AUDIO_SOURCE

List audio inputs or types.

MCI_VCR_LIST_COUNT
Sets the dwReturn member of the structure identified by IpList to the total number of video or audio
inputs.

MCI_VCR_LIST_NUMBER
Sets the dwReturn member of the structure identified by IpList to the type of the video or audio input
specified by the dwNumber member.

MCI_VCR_LIST_VIDEO_SOURCE
List video inputs or types.

For VCR devices, IpList points to an MCI_VCR_LIST_PARMS structure.

MCI_LOAD

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI LOAD,
DWORD dwFlags, (DWORD) (LPMCI LOAD PARMS) IlpLoad);

Loads a file. Digital-video and video-overlay devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these
flags, see Chapter 3, "MCI Overview."

IpLoad
Address of an MCI_LOAD_PARMS structure. (Devices with additional parameters might replace this
structure with a device-specific structure. For digital-video devices, the IpLoad parameter points to
an MCI_DGV_LOAD_PARMS structure.)

Additional Flag
The following additional flag applies to all devices supporting MCI_LOAD:

MCI_LOAD_FILE
The Ipfilename member of the structure identified by IpLoad contains an address of a buffer
containing the filename.

Video-Overlay Flags

The following additional flag is used with the overlay device type:

MCI_OVLY_RECT
The rc member of the structure identified by IpLoad contains a valid display rectangle that identifies
the area of the video buffer to update.

For video-overlay devices, the IpLoad parameter points to an MCI_OVLY_ LOAD_PARMS structure.

MCI_MARK

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI MARK,
DWORD dwFlags, (DWORD) (LPMCI GENERIC PARMS) lpMark);

Records or erases marks that can be used with the MCI_SEEK command for high-speed searches.
VCR devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpMark
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Additional Flags
The following additional flags apply to VCR devices:
MCI_VCR_MARK_ERASE

Erases a mark at the current position if one exists.

MCI_VCR_MARK_WRITE
Writes a mark at the current position.

MCI_MONITOR

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI MONITOR,
DWORD dwFlags, (DWORD) (LPMCIiDG\/iMONITORiPARMS) lpMonitor) ;

Specifies the presentation source. Digital-video devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpMonitor
Address of an MCI_DGV_MONITOR_PARMS structure.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_DGV_MONITOR_METHOD
A constant indicating the method of monitoring is included in the dwMethod member of the structure
identified by IpMonitor.
When the MCI_DGV_MONITOR _INPUT flag is used in the dwSource member, this selects the
method of monitoring. Typically, different monitoring methods have different implications on how the
hardware is used. The default monitoring method is selected by the device.
MCI_DGV_MONITOR_SOURCE
A constant indicating the monitor source is included in the dwSource member of the structure
identified by IpMonitor.

MCI_OPEN

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI OPEN,
DWORD dwFlags, (DWORD) (LPMCI OPEN PARMS) lpOpen);

Initializes a device or file. All devices recognize this command.

e Returns zero if successful or an error otherwise.
dwFlags
MCI_NOTIFY or MCI_WAIT. For information about these flags, see Chapter 3, "MCI Overview."
IpOpen
Address of an MCI_OPEN_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

The MCI_OPEN_TYPE flag must be used whenever a device is specified in the mciSendCommand
function. If you open a device by specifying a device-type constant, you must specify the
MCI_OPEN_TYPE_ID flag in addition to MCI_OPEN_TYPE. For a list of device-type constants, see
"Constants: Device Types" later in this chapter.

If the MCI_OPEN_SHAREABLE flag is not specified when a device or file is initially opened, all
subsequent MCI_OPEN commands to the device or file will fail. If the device or file is already open and
this flag is not specified, the call will fail even if the first open command specified
MCI_OPEN_SHAREABLE. Files opened for the MCISEQ.DRV and MCIWAVE.DRY devices are
nonshareable.

Case is ignored in the device name, but there cannot be leading or trailing blanks.

To use automatic type selection (via the entries in the registry), assign the filename and file extension
to the IpstrElementName member of the structure identified by IpOpen, set the IpstrDeviceType
member to NULL, and set the MCI_OPEN_ELEMENT flag.

Additional Flags
The following additional flags apply to all devices supporting MCI_OPEN:

MCI_OPEN_ALIAS
An alias is included in the IpstrAlias member of the structure identified by /jpOpen.
MCI_OPEN_SHAREABLE
The device or file should be opened as shareable.
MCI_OPEN_TYPE
A device type name or constant is included in the IpstrDeviceType member of the structure
identified by /pOpen.
MCI_OPEN_TYPE_ID
The low-order word of the IpstrDeviceType member of the structure identified by jpOpen contains a

standard MCI device type identifier and the high-order word optionally contains the ordinal index for
the device. Use this flag with the MCI_OPEN_TYPE flag.

The following additional flags apply to compound devices:

MCI_OPEN_ELEMENT
A filename is included in the IpstrElementName member of the structure identified by lpOpen.
MCI_OPEN_ELEMENT _ID
The IpstrElementName member of the structure identified by JpOpen is interpreted as a
doubleword value and has meaning internal to the device. Use this flag with the
MCI_OPEN_ELEMENT flag.

Animation Flags

The following additional flags are used with the animation device type:

MCI_ANIM_OPEN_NOSTATIC
The device should reduce the number of static (system) colors in the palette to two.

MCI_ANIM_OPEN_PARENT
The parent window handle is specified in the hWndParent member of the structure identified by
IpOpen. The parent window handle is required for some window styles.

MCI_ANIM_OPEN_WS
A window style is specified in the dwStyle member of the structure identified by IpOpen. The
dwsStyle value specifies the style of the window that the driver will create and display if the
application does not provide one. The style parameter takes an integer that defines the window
style. These window style constants are the same as the ones that are used in the CreateWindow
function (for example, WS_CHILD, WS_OVERLAPPEDWINDOW, and WS_POPUP).

For animation devices, the loOpen parameter points to an MCI_ANIM_OPEN_PARMS structure.

Digital-Video Flags
The following additional flags are used with the digitalvideo device type:

MCI_DGV_OPEN_NOSTATIC
The device should reduce the number of static (system) colors in the palette. This increases the
number of colors available for rendering the video stream. This flag applies only to devices that
share a palette with Windows.

MCI_DGV_OPEN_PARENT
The parent window handle is specified in the hWndParent member of the structure identified by
IpOpen.

MCI_DGV_OPEN_WS
A window style is specified in the dwStyle member of the structure identified by /pOpen.

For digital-video devices, the IpOpen parameter points to an MCI_DGV_OPEN_PARMS structure.

Video-Overlay Flags
The following additional flags are used with the overlay device type:

MCI_OVLY_OPEN_PARENT
The parent window handle is specified in the hWndParent member of the structure identified by
IpOpen.

MCI_OVLY_OPEN_WS
A window style is specified in the dwStyle member of the structure identified by JpOpen. The
dwsStyle value specifies the style of the window that the driver will create and display if the
application does not provide one. The style parameter takes an integer that defines the window
style. These constants are the same as the standard window styles (such as WS_CHILD,
WS_OVERLAPPEDWINDOW, or WS_POPUP).

For video-overlay devices, the IpOpen parameter points to an MCI_OVLY_OPEN_PARMS structure.

Waveform-Audio Flag
The following additional flag is used with the waveaudio device type:

MCI_WAVE_OPEN_BUFFER
A buffer length is specified in the dwBufferSeconds member of the structure identified by /pOpen.

For waveform-audio devices, the [pOpen parameter points to an MCI_WAVE_OPEN_PARMS
structure. The MCIWAVE driver requires an asychronous waveform-audio device.

MCI_PASTE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI PASTE,
DWORD dwlags, (DWORD) (LPMCI DGV PASTE PARMS) lpPaste);

Pastes data from the clipboard into a file. Digital-video devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpPaste
Address of an MCl_DGV_PASTE_PARMS structure.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_DGV_PASTE_AT
Arectangle is included in the rc member of the structure identified by IpPaste. The first two values of
the rectangle specify the point within the frame to place the clipboard information. If the rectangle
height and width are nonzero, the clipboard contents are scaled to those dimensions when they are
pasted in the frame. If the flag is omitted, MCI_PASTE defaults to the entire frame rectangle.

MCI_DGV_PASTE_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
IpPaste. If only one audio stream exists on the clipboard, the audio data is pasted into the
designated stream. If more than one audio stream exists on the clipboard, the stream indicates the
starting number for the stream sequences. If you use this flag and also want to paste video, you
must also use the MCI_DGV_PASTE_VIDEO_STREAM flag. (If neither flag is specified, all audio
and video streams are pasted starting with the first audio and video stream. Each pasted stream
retains its original stream number.)

MCI_DGV_PASTE_INSERT
Clipboard data should be inserted in the existing workspace at the position specified by the MCI_TO
flag. Any existing data after the insertion point is moved in the workspace to make room. This is the
default.

MCI_DGV_PASTE_OVERWRITE
Clipboard data should replace data already present in the workspace. The workspace data replaced
follows the insertion point.

MCI_DGV_PASTE_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
IpPaste. If only one video stream exists on the clipboard, the video data is pasted into the
designated stream. If more than one video stream exists on the clipboard, the stream indicates the
starting number for the stream sequences. If you use this flag and also want to paste audio, you
must also use the MCI_DGV_PASTE_AUDIO_STREAM flag. (If neither flag is specified, all audio
and video streams are pasted starting with the first audio and video stream. Each pasted stream
retains its original stream number.)

MCI_TO
A position value is included in the dwTo member of the structure identified by IpPaste. The position
value specifies the position to begin pasting data into the workspace. If this flag is omitted, the
position defaults to the current position.

MCI_PAUSE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI PAUSE,
DWORD dwFlags, (DWORD) (LPMCIiGENERlciPARMS) lpPause) ;

Pauses the current action. Animation, CD audio, digital-video, MIDI sequencer, VCR, videodisc, and
waveform-audio devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

IpPause
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

The difference between the MCI_STOP and MCI_PAUSE commands depends on the device. If
possible, MCI_PAUSE suspends device operation but leaves the device ready to resume play
immediately. With the MCICDA, MCISEQ, and MCIPIONR drivers, the MCI_PAUSE command works
the same as the MCI_STOP command.

For digital-video devices, the [pPause parameter points to an MCI_DGV_PAUSE_PARMS structure.

MCI_PLAY

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI PLAY,
DWORD dwFlags, (DWORD) (LPMCI PLAY PARMS) lpPlay):;

Signals the device to begin transmitting output data. Animation, CD audio, digital-video, MIDI
sequencer, videodisc, VCR, and waveform-audio devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

IpPlay
Address of an MCI_PLAY_PARMS structure. (Devices with extended command sets might replace
this structure with a device-specific structure.)

Additional Flags
The following additional flags apply to all devices supporting MCI_PLAY:

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by IpPlay. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command. If MCI_FROM is not specified, the starting location defaults to the current
position.

MCI_TO
An ending location is included in the dwTo member of the structure identified by JpPlay. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of MCI_SET. If
MCI_TO is not specified, the ending location defaults to the end of the media.

Animation Flags
The following additional flags are used with the animation device type:
MCI_ANIM_PLAY_FAST
Play fast.
MCI_ANIM_PLAY_REVERSE
Play in reverse.

MCI_ANIM_PLAY_SCAN
Play as quickly as possible.
MCI_ANIM_PLAY_SLOW
Play slowly.

MCI_ANIM_PLAY_SPEED
The play speed is included in the dwSpeed member of the structure identified by IpPlay.

For animation devices, IpPlay points to an MCI_ANIM_PLAY_PARMS structure.

Digital-Video Flags
The following additional flags are used with the digitalvideo device type:
MCI_DGV_PLAY_REPEAT

Playback should start again at the beginning when the end of the content is reached.

MCI_DGV_PLAY_REVERSE
Playback should occur in reverse.

MCI_MCIAVI_PLAY_WINDOW

Playback should occur in the window associated with a device instance (the default). (This flag is
specific to MCIAVI.DRV.)

MCI_MCIAVI_PLAY_FULLSCREEN
Playback should use a full-screen display. Use this flag only when playing compressed or 8-bit files.

For digital-video devices, IpPlay points to an MCI_DGV_PLAY_PARMS structure.

VCR Flags
The following additional flags are used with the ver device type:

MCI_VCR_PLAY_AT
The dwAt member of the structure identified by IpPlay contains a time when the entire command
begins, or if the device is cued, when the device reaches the from position given by the MCI_CUE
command.

MCI_VCR_PLAY_REVERSE
Playback should occur in reverse.

MCI_VCR_PLAY_SCAN
Playback should be as fast as possible while maintaining video output.

For VCR devices, IpPlay points to an MCI_VCR_PLAY_PARMS structure.

Videodisc Flags
The following additional flags are used with the videodisc device type:

MCI_VD_PLAY_FAST
Play fast.

MCI_VD_PLAY_REVERSE
Play in reverse.

MCI_VD_PLAY_SCAN
Scan quickly.

MCI_VD_PLAY_SLOW
Play slowly.

MCI_VD _ PLAY_ SPEED
The play speed is included in the dwSpeed member in the structure identified by IpPlay.

For animation devices, IpPlay points to an MCI_VD_PLAY_PARMS structure.

MCI_PUT

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI PUT,
DWORD dwFlags, (DWORD) (LPMCIiGENERlciPARMS) lpDest) ;

Sets the source, destination, and frame rectangles. Animation, digital-video, and video-overlay devices
recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these
flags, see Chapter 3, "MCI Overview."

IpDest
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

Animation Flags
The following additional flags are used with the animation device type:

MCI_ANIM_PUT_DESTINATION
The rectangle defined for MCI_ANIM_RECT specifies the area of the client window used to display
an image. The rectangle contains the offset and visible extent of the image relative to the window
origin. If the frame is being stretched, the source is stretched to the destination rectangle.
MCI_ANIM_PUT_SOURCE
The rectangle defined for MCI_ANIM_RECT specifies a clipping rectangle for the animation image.
The rectangle contains the offset and extent of the image relative to the image origin.
MCI_ANIM_RECT
The rc member of the structure identified by JpDest contains a valid rectangle. If this flag is not
specified, the default rectangle matches the coordinates of the image or window being clipped.

For animation devices, IpDest points to an MCI_ANIM_RECT_PARMS structure.

Digital-Video Flags
The following additional flags are used with the digitalvideo device type:

MCI_DGV_PUT_CLIENT
The rectangle defined for MCl_DGV_RECT applies to the position of the client window. The
rectangle specified is relative to the parent window of the display window.
MCI_DGV_PUT_WINDOW must be set concurrently with this flag.

MCI_DGV_PUT_DESTINATION
The rectangle defined for MCI_DGV_RECT specifies a destination rectangle. The destination
rectangle specifies the portion of the client window associated with this device driver instance that
shows the image or video.

MCI_DGV_PUT_FRAME
The rectangle defined for MCI_DGV_RECT applies to the frame rectangle. The frame rectangle
specifies the portion of the frame buffer used as the destination of the video images obtained from
the video rectangle. The video should be scaled to fit within the frame buffer rectangle.
The rectangle is specified in frame buffer coordinates. The default rectangle is the full frame buffer.
Specifying this rectangle lets the device scale the image as it digitizes the data. Devices that cannot
scale the image reject this command with MCIERR_UNSUPPORTED_FUNCTION. You can use the
MCI_GETDEVCAPS_CAN_STRETCH flag with the MCI_GETDEVCAPS command to determine if
a device scales the image. A device returns FALSE if it cannot scale the image.

MCI_DGV_PUT_SOURCE

The rectangle defined for MCI_DGV_RECT specifies a source rectangle. The source rectangle
specifies which portion of the frame buffer is to be scaled to fit into the destination rectangle.

MCI_DGV_PUT_VIDEO
The rectangle defined for MClI_DGV_RECT applies to the video rectangle. The video rectangle
specifies which portion of the current presentation source is stored in the frame buffer. The rectangle
is specified using the natural coordinates of the presentation source. It allows the specification of
cropping that occurs prior to storing images and video in the frame buffer. The default rectangle is
the full active scan area or the full decompressed images and video.

MCI_DGV_PUT_WINDOW
The rectangle defined for MCI_DGV_RECT applies to the display window. This rectangle is relative
to the parent window of the display window (usually the desktop). If the window is not specified, it
defaults to the initial window size and position.

MCI_DGV_RECT
The rc member of the structure identified by lpDest contains a valid rectangle.

For digital-video devices, IpDest points to an MCI_DGV_PUT_PARMS structure.

Video-Overlay Flags
The following additional flags are used with the overlay device type:

MCI_OVLY_PUT_DESTINATION
The rectangle defined for MCI_OVLY_RECT specifies the area of the client window used to display
an image. The rectangle contains the offset and visible extent of the image relative to the window
origin. If the frame is being stretched, the source is stretched to the destination rectangle.

MCI_OVLY_PUT_FRAME
The rectangle defined for MCI_OVLY_RECT specifies the area of the video buffer used to receive
the video image. The rectangle contains the offset and extent of the buffer area relative to the video
buffer origin.

MCI_OVLY_PUT_SOURCE
The rectangle defined for MCI_OVLY_RECT specifies the area of the video buffer used as the
source of the digital image. The rectangle contains the offset and extent of the clipping rectangle for
the video buffer relative to its origin.

MCI_OVLY_PUT_VIDEO
The rectangle defined for MCI_OVLY_RECT specifies the area of the video source capture by the
video buffer. The rectangle contains the offset and extent of the clipping rectangle for the video
source relative to its origin.

MCI_OVLY_RECT
The rc member of the structure identified by JpDest contains a valid display rectangle. If this flag is
not specified, the default rectangle matches the coordinates of the video buffer or window being
clipped.

For video-overlay devices, IpDest points to an MCI_OVLY_RECT_PARMS structure.

MCI_QUALITY

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI QUALITY,
DWORD dwFlags, (DWORD) (LPMCI DGV _QUALITY PARMS) lpQuality):;

Defines a custom quality level for audio, video, or still image data compression. Digital-video devices
recognize this command.
e Returns zero if successful or an error otherwise.
dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."
IpQuality
Address of an MCI_DGV_QUALITY_PARMS structure.

The name defined for this quality level can be used when setting the audio, video, or still quality with
the MCI_SETAUDIO and MCI_SETVIDEO commands.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_QUALITY_ALG
The IpstrAlgorithm member of the structure identified by IpQuality contains an address of a buffer
containing the name of the algorithm. This algorithm must be supported by the device driver, and
must be compatible with the audio, still, or video descriptor that is used. If this flag is omitted, the
current algorithm is used.

MCI_QUALITY_DIALOG
The device driver should display a dialog box for specifying the quality level. The dialog box has
algorithm-specific fields used internally by the device driver to create a structure describing a
specific quality level.

MCI_QUALITY_HANDLE
The dwHandle member of the structure identified by /pQuality contains a handle to a structure. The
structure contains algorithmic-specific data describing the specific quality level. The format of the
structures for the algorithms is device dependent.

MCI_QUALITY_ITEM
A constant indicating the type of algorithm is included in the dwltem member of the structure
identified by IpQuality.

MCI_QUALITY_NAME
The IpstrName member of the structure identified by IpQuality contains an address of a buffer
containing the quality descriptor.

MCI_REALIZE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI REALIZE,
DWORD dwFlags, (DWORD) (LPMCI GENERIC PARMS) lpRealize);

Causes a graphic device to realize its palette into a device context (DC). Animation and digital-video
devices recognize this command.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video devices, MCI_TEST. For information about these
flags, see Chapter 3, "MCI Overview."

IpRealize
Address of an MCI_GENERIC_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

You should use this command when your application receives the WM_QUERYNEWPALETTE
message.

Animation Flags
The following additional flags are used with the animation device type:
MCI_ANIM_REALIZE_BKGD

Realizes the palette as a background palette.

MCI_ANIM_REALIZE_NORM
Realizes the palette normally. This is the default.

Digital-Video Flags
The following additional flags are used with the digitalvideo device type:
MCI_DGV_REALIZE BKGD

Realizes the palette as a background palette.

MCI_DGV_REALIZE_NORM
Realizes the palette normally. This is the default.

For digital-video devices, the IpRealize parameter points to an MCI_REALIZE_PARMS structure. The
MCI_REALIZE_PARMS structure is identical to the MCI_GENERIC_PARMS structure.

MCI_RECORD

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI RECORD,
DWORD dwFlags, (DWORD) (LPMCI RECORD PARMS) lpRecord):;

Starts recording from the current position or from one specified location to another specified location.
VCR and waveform-audio devices recognize this command. Although digital-video devices and MIDI
sequencers also recognize this command, the MCIAVI and MCISEQ drivers do not implement it.

¢ Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or, for digital-video and VCR devices, MCI_TEST. For information about
these flags, see Chapter 3, "MCI Overview."

InRecord
Address of an MCI_RECORD_PARMS structure. (Devices with extended command sets might
replace this structure with a device-specific structure.)

This command is supported by devices that return TRUE when you call the MCI_GETDEVCAPS
command with the MCI_GETDEVCAPS_CAN_RECORD flag. For the MCIWAVE driver, all data
recorded after a file is opened is discarded if the file is closed without saving it.

Additional Flags
The following additional flags apply to all devices supporting MCI_RECORD:

MCI_FROM
A starting location is included in the dwFrom member of the structure identified by IpRecord. The
units assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command. If MCI_FROM is not specified, the starting location defaults to the current
position.

MCI_RECORD_INSERT
Newly recorded information should be inserted or pasted into the existing data. Some devices might
not support this. If supported, this is the default.

MCI_RECORD_OVERWRITE
Data should overwrite existing data. The MCIWAVE.DRYV device returns
MCIERR_UNSUPPORTED_FUNCTION in response to this flag.

MCI_TO
An ending location is included in the dwTo member of the structure identified by IpRecord. The units
assigned to the position values are specified with the MCI_SET_TIME_FORMAT flag of the
MCI_SET command. If MCI_TO is not specified, the ending location defaults to the end of the
content.

Digital-Video Flags
The following additional flags are used with the digitalvideo device type:

MCI_DGV_RECORD_AUDIO_STREAM
An audio-stream number is included in the dwAudioStream member of the structure identified by
IpRecord. If you omit this flag, audio data is recorded into the first physical stream.
MCI_DGV_RECORD_HOLD
When recording stops, the screen will hold the last image and will not resume showing the video
until an MCI_MONITOR command is issued.
MCI_DGV_RECORD_VIDEO_STREAM
A video-stream number is included in the dwVideoStream member of the structure identified by
IpRecord. If you omit this flag, video data is recorded into the first physical stream.

MCI_DGV_RECT
Arectangle is specified in the re member of the structure identified by IpRecord. The rectangle
specifies the region of the external input used as the source for the pixels compressed and saved.
This rectangle defaults to the rectangle specified (or defaulted) by the MCI_DGV_PUT_VIDEO flag
for the MCI_PUT command. When it is set differently than the video rectangle, what is displayed is
not what is recorded

For digital-video devices, IpRecord points to an MCI_DGV_RECORD_PARMS structure.

VCR Flags
The following additional flags are used with the ver device type:

MCI_VCR_RECORD_AT
The dwAt member of the structure identified by JpRecord contains a time when the entire command
begins, or if the device is cued, when the device reaches the from position given by the cue
command.

MCI_VCR_RECORD_INITIALIZE
Seek the device to the start of the media, begin recording blank video and audio, and record
timecode, if possible.

For VCR devices, IpRecord points to an MCI_VCR_RECORD_PARMS structure.

MCI_RESERVE

MCIERROR mciSendCommand (MCIDEVICEID wDeviceID, MCI RESERVE,
DWORD dwFlags, (DWORD) (LPMCI DGV _RESERVE PARMS) lpReserve);

Allocates contiguous disk space for the workspace of the device driver instance for use with
subsequent recording. Digital-video devices recognize this command.
e Returns zero if successful or an error otherwise.

dwFlags
MCI_NOTIFY, MCI_WAIT, or MCI_TEST. For information about these flags, see Chapter 3, "MCI
Overview."

IpReserve
Address of an MCl_DGV_RESERVE_PARMS structure.

If the workspace contains unsaved data, this data is lost. If disk space is not reserved prior to
recording, the MCI_RECORD command performs an implied reserve with device-specific default
parameters. On some implementations, reserve is not required and might be ignored by the device
driver. Explicitly reserving space gives you better control over when the delay for disk allocation occurs,
how much space is allocated, and where the disk space is allocated. The amount and location of disk
space already reserved for this device instance can be changed by issuing MCI_RESERVE again. Any
allocated and still unused disk space is not deallocated until any recorded data is saved or until the
device driver instance is closed.

If video is turned off with the MCI_OFF flag of the MCI_SETVIDEO command, the space reserved
does not include any video. If audio is turned off with the MCI_OFF flag of the MCI_SETAUDIO
command, the space reserved does not include any audio. If both audio and video are turned off or if
the requested size is zero, no space is reserved and any existing reserved space is deallocated.

Additional Flags
The following additional flags apply to digital-video devices:

MCI_DGV_RESERVE_IN
The IpstrPath member of the structure identified by IpReserve contains an address of a buffer
containing the location of a temporary file. The buffer contains only the drive and directory path of
the file u