Legal Information

Win32 Multimedia Programmer's Reference

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1985 - 1996 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Windows, Win32, and Win32s are registered
trademarks; and Visual C++ and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. OS/2 is a registered trademark licensed to
Microsoft Corporation.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Multimedia Applications

A multimedia application is an application that incorporates sound, video, or both. It delivers information
more powerfully than printed material or standard sound and video. Unlike printed material, a multimedia
application contains more than a series of static images or text. Unlike standard sound or video
presentations, a multimedia application allows the user to navigate through media and interact with
information quickly and easily. Even when the focus of the application is to help a user produce a printed
document or perform calculations, the application can use sound, video, or both to enrich the user's
experience.

Developing multimedia applications can be as simple as adding an existing sound or video recording to
an application or as complex as building an editing tool for customizing multimedia presentations.

Practically any computer that uses the Microsoft® Windows® operating system and has a VGA monitor
and a sound card can exploit multimedia features. Millions of computer users already own equipment like
this, and many also have compact disc (CD) players. More and more, these computers are becoming the
final delivery system for information. People are sending electronic mail instead of letters. Instead of
reaching for a bulky printed encyclopedia, they are enjoying the full-color graphics, sound, and video of a
CD-based encyclopedia.

The definition of a multimedia computer has been established by an industry-wide group, the Multimedia
PC Marketing Council. This council has defined two sets of minimum specifications for multimedia
computers. For a description of these specifications, see Multimedia PC Specifications. An application
does not need to take full advantage of all of this hardware to qualify as a multimedia application.

About Multimedia Applications

An increasing number of applications are using sound and video in new and exciting ways. For example,
real estate agents have long organized descriptions and photographs of homes in large catalogs.
Because these catalogs are printed on paper, the presentation of the homes is limited to a picture and
some text. When the catalog is produced as a multimedia application, the agent can include a guided
audio and visual tour of the inside and outside of these homes. Having potential buyers view these
listings is a powerful sales tool and could prevent wasted trips to unsuitable locations.

This real estate application is just one example of what you can do with multimedia. You can use
multimedia to create applications that play, edit, and capture sounds and images. You can also create
applications that can control multimedia hardware, such as CD players, joysticks, video-cassette
recorders, and MIDI (Musical Instrument Digital Interface) devices.

Many developers use multimedia to improve applications that did not use sound and video when they
were first designed and written. For example, developers are adding voice-annotation capabilities to
word-processing applications, and video clips to presentation-graphics applications.

Some applications integrate multimedia features more completely. Software developers are creating
hundreds of such applications, such as entertainment programs, computerized reference works, and
educational programs. Because extensive use of sound or video requires a great deal of data-storage
space, these applications are often distributed on CDs.

You can create multimedia applications for anyone who routinely needs fast access to large amounts of
data. These applications are often written for niche markets; the multimedia real estate catalogue
discussed earlier is a good example.

Building a Multimedia Application

Before writing a multimedia application, you should be familiar with programming in the Windows
environment.

When using the multimedia services, you must include the appropriate header files in all source-code files
that call multimedia functions. These header files depend on declarations made in the WINDOWS.H
header file, so you must first include WINDOWS.H. The multimedia headers files are: DIGITALV.H,
MCIAVI.H, MMSYSTEM.H, MSACM.H, VCR.H, and VFW.H. To determine which header is needed for a
multimedia element, use the QuickInfo button in the reference page for the element, or refer to the SDK
file WIN32API.CSV.

You must also link to the appropriate import library when linking an application that uses multimedia
interfaces. The import libraries are MSACM32.LIB, WINMM.LIB, and VFW32.lib. Use QuickInfo or
WIN32API.CSV to determine which import library to use to resolve a call to a multimedia function.

Version Checking

You may need to check the installed version of the multimedia system, particularly if your application
takes advantage of features that were not available in previous systems. Use the GetVersionEx function
to check the version.

Multimedia Technologies

This section presents an overview of some of the multimedia technologies.

Multimedia Data Formats

Windows supports three distinct types of multimedia data: MIDI, waveform audio, and video.

MIDI sounds are stored as a series of instructions. A synthesizer (often part of the computer's sound card)
interprets the instructions to produce the sound. The MIDI Mapper provides standard patch services for
device-independent playback of MIDI files. Standard patch services ensure that different MIDI
synthesizers use the same instrument sounds to reproduce the music in a MIDI file. However, because
different synthesizers interpret MIDI instructions with greatly varying quality, the sound heard by the user
cannot be guaranteed. This sound format can store music, and sometimes sound effects, but voice is not
a practical option. MIDI is easy to edit and the storage requirements are low. Windows MIDI files typically
have a .MID file extension.

Waveform audio is a digitized recording of a sound. You can typically edit waveform audio using
insertions and deletions, or you can modify it using filters. This sound format can store voice, music, and
sound effects exactly as they should be heard by the user. Compared to MIDI sound, however, editing
waveform audio is difficult and the storage requirements are high.

Windows supports a tagged file structure called the Resource Interchange File Format (RIFF). There are
two RIFF file formats currently defined for audio files.

RIFF type Filename extension Description
RMID .RMI MIDI audio file
WAVE WAV Waveform audio file

The multimedia file input and output (I/O) services include functions for working with RIFF files. For
information about using these functions, see File Input and Output.

Video is a multiple-track recording that includes waveform audio and moving images. The moving images
are recorded as a series of still images. Windows video files typically have a .AVI file extension.

Multimedia Playback with One Function Call

You can play waveform-audio files, CDs, video clips, or MIDI files in your application with a call to a single
function: MCIWndCreate. This function creates window of class type MCIWND_WINDOW_CLASS with a
button that the user can use to play or stop the playback, a trackbar that displays the current position in
the file, and, in the case of a video clip, an area in which the video is displayed. The following call to
MCIWndCreate plays the video clip SAMPLE.AVI:

MCIWndCreate (hwndParent, // parent window handle
g _hinst, // instance handle
WS VISIBLE | WS CHILD | MCIWNDF SHOWALL, // window styles
"sample.avi"); // filename

Another function, PlaySound, also enables you to implement multimedia playback with a single function
call. You can use this function to play a waveform-audio file. For example, the following line of code plays
the sound stored in the file CHIMES.WAV:

PlaySound("chimes.wav", NULL, SND SYNC);

Note PlaySound cannot play a waveform-audio file larger than will fit in available memory.

Multimedia Audio Services

Multimedia audio services control different types of audio devices, including waveform, MIDI, and auxiliary
audio devices. Many of the following concepts apply to more than one type of device:

* Querying audio devices

¢ Opening and closing audio device drivers

¢ Allocating and preparing audio data blocks

¢ Managing audio data blocks

¢ Using the MMTIME structure

¢ Handling errors with multimedia audio functions

Querying Audio Devices

Before playing or recording audio, you must determine the capabilities of the audio hardware present in
the system. Audio capability can vary from one multimedia computer to the next; applications should not
make assumptions about the audio hardware present in a given system.

Getting the Number of Devices

Use the following functions to determine how many devices of a certain type are available in a given
system.

Function Description

auxGetNumDevs Retrieves the number of auxiliary audio
devices present in the system.

midilnGetNumDevs Retrieves the number of MIDI input devices
present in the system.

midiOutGetNumbDevs Retrieves the number of MIDI output devices
present in the system.

wavelnGetNumDevs Retrieves the number of waveform input
devices present in the system.

waveOutGetNumDev Retrieves the number of waveform output
s devices present in the system.

Audio devices are identified by a device identifier. The device identifier is determined implicitly from the
number of devices present in a given system. Device identifiers range from zero to one less than the
number of devices present. For example, if there are two MIDI output devices in a system, valid device
identifiers are 0 and 1.

Getting the Capabilities of a Device

After you determine how many devices of a certain type are present in a system, you can inquire about
the capabilities of each device. Use the following functions to determine the capabilities of audio devices.

Function Description

auxGetDevCaps Retrieves the capabilities of a given auxiliary
audio device.

midilnGetDevCaps Retrieves the capabilities of a given MIDI
input device.

midiOutGetDevCaps Retrieves the capabilities of a given MIDI
output device.

wavelnGetDevCaps Retrieves the capabilities of a given
waveform input device.

waveOutGetDevCaps Retrieves the capabilities of a given
waveform output device.

Each of these functions takes a pointer to a structure that it fills with information on the capabilities of a
specified device. The following list shows the structures that correspond to each of the device-inquiry
functions.

Function Structure
auxGetDevCaps AUXCAPS

midilnGetDevCaps MIDIINCAPS
midiOutGetDevCaps MIDIOUTCAPS
wavelnGetDevCaps WAVEINCAPS
waveOutGetDevCaps WAVEOUTCAPS

Opening and Closing Audio Device Drivers

After getting the capabilities of an audio device, you must open the device before you can use it. Audio
devices aren't guaranteed to be shareable, so a particular device might not be available when you
request it. If this happens, you should notify the user and allow the user to try to open the device again.
When you open an audio device, be sure to close it as soon as you finish using it.

Use the following functions to open and close different types of audio devices.

Function Description

midilnOpen Opens a specified MIDI input device for recording.
midilnClose Closes a specified MIDI input device.
midiOutOpen Opens a MIDI output device for playback.
midiOutClose Closes a specified MIDI output device.
wavelnOpen Opens a waveform input device for recording.
wavelnClose Closes a specified waveform input device.
waveOutOpen Opens a waveform output device for playback.
waveOutClose Closes a specified waveform output device.

About Device Handles

Each function that opens an audio device takes as parameters a device identifier, a pointer to a memory
location, and some parameters unique to each type of device. The memory location is filled with a device
handle. Use this device handle of identify the open audio device when calling other audio functions.

The distinction between audio-device identifiers and audio-device handles is subtle, but very important.
Don't confuse the two in your application. The following are differences between device identifiers and
device handles.

¢ Device identifiers are determined implicitly from the number of devices present in a system, which is
obtained by using the device-numbering functions: auxGetNumDevs, joyGetNumDevs,
midilnGetNumDevs, midiOutGetNumDevs, mixerGetNumDevs, wavelnGetNumDevs, and
waveOutGetNumDevs. There is a one-to-one correspondence between a device identifier and the
physical device it represents.

¢ Device handles are returned when device drivers are opened by using the device-opening functions:
midilnOpen, midiOutOpen, mixerOpen, wavelnOpen, and waveOutOpen. There may be more
than one for a device. You can think of a device instance as a logical copy of the physical device.

¢ The device-capabilities and volume functions can take either a device identifier or a device handle.
These functions are midilnGetDevCaps, midiOutGetDevCaps, midiOutGetVolume,
midiOutSetVolume, wavelnGetDevCaps, waveOutGetDevCaps, waveOutGetVolume,
waveOutSetVolume. All other functions take device handles.

There are no functions for opening and closing auxiliary audio devices. Auxiliary audio devices don't need
to be opened and closed like MIDI and waveform devices because there is no continuous data transfer
associated with them. All auxiliary audio functions take device identifiers to identify devices.

Allocating and Preparing Audio Data Blocks

Some multimedia audio functions require applications to allocate data blocks to pass to the device drivers
for playback or recording purposes. Each of these functions uses a structure (or header) to describe its
data block. The following table identifies these functions and their associated header structures. (The
MMSYSTEM.H file defines the data structures for these headers.)

Function Header Purpose
structure
waveOutWrite WAVEHDR Waveform playback
wavelnAddBuffer WAVEHDR Waveform recording
midiOutLongMsg MIDIHDR MIDI system-exclusive
playback
midilnAddBuffer MIDIHDR MIDI system-exclusive
recording

Before you use one of the functions listed above to pass a data block to a device driver, you must allocate
memory for the data block according to the guidelines discussed in the following topics.

Allocating Memory for Audio Data Blocks

Before preparing a data block, you must allocate memory for the data block and the header structure that
describes the data block.

Preparing Audio Data Blocks

Before you pass an audio data block to a device driver, you must prepare the data block by passing it to a
header-preparation function. When the device driver is finished with the data block and returns it, you
must clean up this preparation by passing the data block to a header clean-up function before any
allocated memory can be freed.

Windows provides the following functions for preparing and cleaning up audio data blocks.

Function Description
midilnPrepareHeader Prepares a MIDI-input data block.

midilnUnprepareHeader Cleans up the preparation on a MIDI-
input data block.

midiOutPrepareHeader Prepares a MIDI-output data block.

midiOutUnprepareHeader Cleans up the preparation on a MIDI-
output data block.

wavelnPrepareHeader Prepares a waveform-input data block.

wavelnUnprepareHeader Cleans up the preparation on a
waveform-input data block.

waveOutPrepareHeader Prepares a waveform-output data
block.

waveOutUnprepareHeader Cleans up the preparation on a
waveform-output data block.

Managing Audio Data Blocks

Unless the audio data is small enough to be contained in a single data block, applications must
continually supply the device driver with data blocks until playback or recording is complete. This is true
for waveform input and output, and for MIDI system-exclusive input messages. Regular MIDI channel
messages don't require data blocks for input or output.

Even if a single data block is used, applications must be able to determine when a device driver is
finished with the data block so the application can free the memory associated with the data block and
header structure. There are three ways to determine when a device driver is finished with a data block:

¢ Specify a window to receive a message sent by the driver when it is finished with a data block.

¢ Specify a callback function to receive a message sent by the driver when it is finished with a data
block.

¢ Poll a bit in the dwFlags member of the WAVEHDR or MIDIHDR data structure sent with each data
block.

If an application doesn't get a data block to the device driver when needed, there can be an audible gap
in playback or a loss of incoming recorded information. Use a double-buffering scheme to stay at least
one data block ahead of the device driver.

Note To get time-stamped MIDI input data, you must use a callback function.

Using a Window to Process Driver Messages

The easiest type of callback function to use to process driver messages is a window callback. To use a
window callback, specify the CALLBACK_WINDOW flag in the dwFlags parameter and a window handle
as the dwCallback parameter of the device-opening function. Driver messages will be sent to the window-
procedure function for the window identified by the handle in dwCallback.

Messages sent to the window function are specific to the audio device type used.

Using a Callback Function to Process Audio Driver Messages

You can also write your own callback function to process messages sent by the device driver. To use a
callback function, specify the CALLBACK_FUNCTION flag in the dwFlags parameter and the address of
the callback in the dwCallback parameter of the device-opening function.

Messages sent to a callback function are similar to messages sent to a window, except that they have two
doubleword parameters instead of one unsigned-integer and one doubleword parameter.

Callback functions for the multimedia audio services are often called from another thread running
asynchronously from the application's thread. It is therefore important to use critical sections to protect
data shared between the callback routine and the rest of the application. For more information about
critical sections, see Synchronization.

In 16-bit Windows, there is a limited set of APIs that an audio callback function may call. In 32-bit
Windows, that strict limitation has been removed. However, it is strongly recommended that a 32-bit audio
callback function restrain its calls to a similar set of functions. Here is the recommended list:

EnterCriticalSection ReleaseSemaphore
LeaveCriticalSection SetEvent

midiOutLongMsg timeGetSystemTime
midiOutShortMsg timeGetTime

OutputDebugString timeKillEvent
PostMessage timeSetEvent

PostThreadMessage

If your audio callback function does stray from this list, it should be careful not to call APIs that take a long
time to complete. In particular, calling wave and midi APIs may result in a deadlock.

If an audio callback shares data with other code, a Critical Section or similar mutual exclusion mechanism
should be used to protect the integrity of the data.

Use one of the following techniques to pass instance data from an application to a callback function
residing in a dynamic link library:

¢ Pass the instance data using the dwinstance parameter of the function that opens the device driver.

¢ Pass the instance data using the dwUser member of the WAVEHDR and MIDIHDR structures that
identify an audio data block being sent to a device driver.

If you need more than 32 bits of instance data, pass a pointer to a structure containing the additional
information.

Managing Audio Data Blocks by Polling

In addition to using a callback function, you can poll the dwFlags member of a WAVEHDR or MIDIHDR
structure to determine when an audio device is finished with a data block. There are times when it's better
to poll dwFlags rather than wait for a window to receive messages from the drivers. For example,
immediately after you call the waveOutReset function to release pending data blocks, you can poll to be
sure that the data blocks are indeed done before proceeding to call the waveOutUnprepareHeader
function and free the memory for the data block.

Using the MMTIME Structure

Windows uses a structure called MMTIME to represent time. Multimedia audio functions that use
MMTIME include wavelnGetPosition and waveOutGetPosition. The timeGetSystemTime function also
uses MMTIME to represent system time.

Setting the Time Format

MMTIME can represent time in one or more different formats including milliseconds, samples, Society of
Motion Picture and Television Engineers (SMPTE), and MIDI song-pointer formats. The wType member
specifies the format used to represent time. Before calling a function that uses the MMTIME structure,
you must set the wType member to indicate your requested time format. Be sure to check wType after
the call to see if the requested time format is supported. If the requested time format is not supported, the
time is specified in an alternate time format selected by the device driver and the wType member is
changed to indicate the selected time format. MMSYSTEM.H defines the following flags for the wType
member of the MMTIME structure.

Flag Description

TIME_MS Milliseconds

TIME_SAMPLES Number of waveform audio samples
TIME_BYTES Number of waveform audio bytes
TIME_SMPTE SMPTE time

TIME_MIDI MIDI song-position pointer

Getting the System Time

Use the timeGetSystemTime or timeGetTime function to get the system time. System time is defined as
the time (in milliseconds) since Windows was started. For more information, see Multimedia Timers.

Handling Errors with Multimedia Audio Functions

Multimedia audio functions return a nonzero error code. A set of functions convert these error codes into a
textual description of the error. The application must still look at the error value itself to determine how to
proceed, but textual descriptions of errors can be used in dialog boxes describing errors to users.

The following functions can be used to get textual descriptions of multimedia audio errors.

Function Description

midilnGetErrorText Retrieves a textual description of a

specified MIDI input error.

midiOutGetErrorText Retrieves a textual description of a
specified MIDI output error.

wavelnGetErrorText Retrieves a textual description of a
specified waveform input error.

waveOutGetErrorText Retrieves a textual description of a
specified waveform output error.

The only multimedia audio functions that don't return error codes are the device-numbering functions.
These functions return a value of zero if no devices are present in a system, or if any errors are
encountered by the function.

The Multimedia Documentation

It is not necessary to read all the multimedia documentation to develop a multimedia application, unless it
is a very complex multimedia application. The documentation is divided into parts; the parts you need to
read depend on the type of application you are writing. Each part has overviews for several multimedia
interfaces.

The Media Control Interface book discusses how to design applications that use the media control
interface (MCI) — which offers applications a standard set of commands to use when communicating with
any multimedia device. The MCIWnd Window Class discusses how to design applications that use an
interface based on window classes. This interface is useful is you want to add sound or video to an
application and you do not need to implement complicated editing or recording functionality. MClI is useful
if you want to implement a customized user interface for your sound or video files but you do not need to
take full advantage of the capabilities of a particular device. Although many MCI commands are
appropriate for any multimedia device, some commands exploit the features of a particular device or
class of devices. You can use this interface to implement a customized user interface and achieve greater
control over a multimedia device.

The Multimedia Audio book contains overviews that describe how to design applications that use
multimedia interfaces. These interfaces are: waveform audio, musical instrument digital interface (MIDI),
audio compression manager, and audio mixers. These interfaces allow applications to achieve nearly
complete control over an audio or video presentation. Read these parts if your application needs to take
full advantage of one or more multimedia devices, if you plan to implement recording or editing features,
or if you need a custom format for your data.

The Video for Windows book contains overviews that describe video interfaces. The interfaces can be
used to work with video files, and manage compression and decompression services for these files. The
AVIFile functions and macros allow you to access waveform audio and audio-video interleaved (AVI) files
as one or more data streams. The video compression manager provides support for video compression.
The window class, AVICap, makes it easier to develop an interface for video capture. You use custom file
and stream handlers to read from or write to a file that is in a nonstandard format. The DrawDib functions
provide high performance image-drawing capabilities for DIBs.

The Miscellaneous Multimedia Services book discusses other multimedia interfaces. These interfaces
include joysticks, multimedia timers, the file input and output services for multimedia files.

The Multimedia Reference book contains descriptions of each multimedia element:

¢ Multimedia functions

e Multimedia structures

¢ Multimedia messages

e Multimedia macros

¢ Multimedia commands

¢ Multimedia command strings
¢ Multimedia interfaces

¢ Multimedia types

¢ Multimedia constants

The Appendix contains several useful references:

¢ Multimedia PC Specifications
¢ Manufacturer and Product Identifiers
¢ |nstallable Drivers

MCIWnd Window Class

MCIWnd is a window class for controlling multimedia devices. A library of functions, messages, and
macros associated with MCIWnd provides a simple method to add multimedia playback or recording
capabilities to your applications.

About the MCIWnd Window Class

The MCIWnd Window class is easy to use. By using a single function, MCIWndCreate your application
can create a control that plays any device that uses the media control interface (MCI). These devices
include CD audio, waveform-audio, MIDI, and video devices.

Automating playback is also quick and easy. Using only one function and two macros, an application can
create an MCIWnd window with the appropriate media device, play the device, and close both the device
and the window when the content has finished playing.

Note Some devices play content that is stored in files. Other devices, such as CD audio devices,
play content that is stored in another medium. For purposes of clarity, this overview refers to both
circumstances as "playing the device."

MCIWnd Window User Interface

MCIWnd provides additional features to adjust the look of the MCIWnd window, customize the behavior of
your application, and tune playback performance. The following features are included in the MCIWnd
window:

Atoolbar with Play, Stop, Record and Menu buttons

A trackbar that controls positioning within the playback content
¢ A pop-up menu containing common commands

A playback area for video and other devices that display images

The following illustration shows the initial state of user-controlled video playback. The sample file used is
CLOCK.AVI.

{ewc msdncd, EWGraphic, bsd23537 0 /a "SDK.BMP"}

The MCIWnd window includes a playback area for video and other devices that display images during
playback. MCIWnd omits the playback area from waveform-audio devices, MIDI sequencers, and other
devices that do not write to the display. The following illustration shows the waveform-audio playback
area.

{ewc msdncd, EWGraphic, bsd23537 1 /a "SDK.BMP"}

The Play button is located in the lower-left corner of the MCIWnd window. It appears when the content is
stopped. The user can play the content in the following ways:

¢ To play the content from the current playback position, select the Play button.

¢ To play the content full-screen from the current playback position, select the Play button while holding
down the CTRL key.

¢ To play the content backward from the current playback position, select the Play button while holding
down the SHIFT key.

The Menu button, located next to the Play button, activates a menu that allows the user to open and
close audio-video interleaved (AVI) files, and to adjust the image size, playback speed, and volume. (The
user can also activate the menu by clicking the right mouse button whenever the cursor is in the client
area of the window.) The menu also includes commands to change the configuration of the current
device, to copy the playback content to the clipboard, and to issue MCI commands.

The trackbar to the right of the Menu button represents the duration of the playback (or recorded)
content. The slider on the trackbar represents the current playback position within the content. When the
slider is positioned at the left end of the trackbar, the current playback position is the beginning of the
content. The user can move to different locations in the content by dragging the slider along the trackbar.
The Stop button is located in the lower-left corner of the MCIWnd window. It appears when the content is
played. The following illustration shows video playback in progress.

{ewc msdncd, EWGraphic, bsd23537 2 /a "SDK.BMP"}

The MCIWnd controls can also include a Record button for devices that can record. The Record button
is marked with a red circle and appears only when the device is capable of recording.

Note The playback window must be aligned on a four-pixel boundary for the best video playback
performance. Typically, the Microsofte Windows® operating system aligns the window automatically
when it is created. If a user moves or stretches the window from its initial position, video playback

speed might be reduced by half.

Multimedia Playback

The MCIWndCreate function provides the means for controlling an MCIWnd window and the device
associated with it. In general, this function registers the MCIWnd window class and creates an MCIWnd
window for using MCI services. This section describes how to use MCIWndCreate to perform the
following tasks:

¢ Adding user-controlled playback.

¢ Automating playback.

¢ Using window styles to change the MCIWnd window.
¢ Allowing the user to specify devices and files.

Adding User-Controlled Playback

You can add user-controlled playback to an existing application by calling the MCIWndCreate function as
follows:

MCIWndCreate (hwndParent, hInstModule, NULL, "filename.typ"):

The MCIWndCreate parameters identify handles to the parent window and to the module instance
associated with the MCIWnd window. They also specify window styles and the filename (or device name)
to associate with the MCIWnd window.

MCIWndCreate automatically performs the following steps that, for other window classes, you would
implement in your code yourself:

. Register the MCIWnd window class.

. Create the MCIWnd window.

. Load the specified content.

. Establish the current playback position at the beginning of the content.
. Display the device control.

. Display the playback area of the window, if needed.

o O WN -~

Automating Playback

You can automate playback in your application by using MCIWndCreate and the MCIWndPlay macro,
along with either the MCIWndDestroy or the MCIWndClose macro. To automate playback, specify the
MCIWNDF_NOPLAYBAR and MCIWNDF_NOTIFYMODE styles in the MCIWndCreate dwStyle
parameter. Specify the MCIWNDF_NOPLAYBAR style to hide the toolbar, and the
MCIWNDF_NOTIFYMODE style to issue an appropriate notification message when the device stops

playing.

You can play the device or file specified in MCIWndCreate by using MCIWndPlay. The MCIWndPlay
macro starts playing the content from its current playback position and continues to its end.

You can destroy or close an MCIWnd window by using the MCIWndDestroy or MCIWndClose macro.
The MCIWndDestroy macro closes the device or file and destroys the MCIWnd window by invalidating its
handle. If your application can reuse the MCIWnd window, use MCIWndClose to close the device without
destroying the window.

Your application can detect when the device stops playing and automatically close the window. To do this,
specify the MCIWNDF_NOTIFYMODE style for the dwStyle parameter of MCIWndCreate. This causes
the device to send a MCIWNDM_NOTIFYMODE message whenever it changes modes. Your application
can trap this message to determine whether the device has stopped playing. When the device stops
playing, the application closes the window.

Using Window Styles to Change the MCIWnd Window

As with any window, you can change the appearance and behavior of an MCIWnd window by choosing
from the standard window styles specified with the CreateWindow function. In addition, you can choose
from several other window styles that are specific to MCIWnd windows. With these styles, your
application can change these MCIWnd windows in the following ways:

e Change window size.

¢ Hide or display controls.

¢ |ssue notification messages.

¢ Display information in the title bar.

You can set window styles by specifying them in the MCIWndCreate function, or you can use the
MCIWndChangeStyles macro to change the style of an existing MCIWnd window. You can also query an
MCIWnd window for its current styles by using the MCIWndGetStyles macro.

For a list of the MCIWnd-specific window styles, see MCIWndCreate.

Allowing the User to Specify Devices and Files

You can associate a device or file with an existing MCIWnd window by using the MCIWndOpenDialog,
MCIWndOpen, and MCIWndOpeninterface macros, and the GetOpenFileNamePreview function.

To let a user of your application select a file to play, use MCIWndOpenDialog. This macro displays the
Open dialog box (shown following) for choosing a file and associates the selected file with the current
MCIWnd window.

{ewc msdncd, EWGraphic, bsd23537 3 /a "SDK.BMP"}

You can let a user of your application select a file to associate with an MCIWnd window and preview that
file by using GetOpenFileNamePreview and MCIWndOpen. The GetOpenFileNamePreview function
displays the Open dialog box for choosing a file and lets the user preview (play) its contents. When the
name of an existing file is specified in the dialog box, GetOpenFileNamePreview provides a small
control to let the user preview the contents of the file. You can associate a specified file, selected with
GetOpenFileNamePreview or specified in another manner, with an MCIWnd window by using
MCIWndOpen.

You can also use MCIWndOpen to specify a device to associate with an MCIWnd window. For example,
you can use a device name, such as "CDAudio".

To associate an MCIWnd window with a file interface or data-stream interface to multimedia data, use the
MCIWndOpenlnterface macro. For more information about file and data-stream interfaces, see AVIFile
Functions and Macros.

Note Before associating a new file or device with an MCIWnd window, MCIWndOpenDialog and
MCIWndOpen close any device currently associated with the window. Your application does not need
to close any open devices before using these macros.

Playback Controls

MCIWnd includes several macros for controlling playback. This section describes how to use these
macros to perform the following tasks:

* Determining and changing the current position.
e Starting, pausing, and resuming playback.

* Defining playback scope.

¢ Reversing playback.

¢ Looping playback.

Determining and Changing the Current Position

When a file or device is associated with an MCIWnd window, the playback position is initially set at the
start of the content, regardless of the media type. During playback, the playback position moves linearly
through the content and, if playback is uninterrupted, eventually reaches the end of the content. If an
interruption occurs, the current playback position is the location at which playback was stopped or
paused.

You can retrieve the locations for the beginning and end of the content by using the MCIWndGetStart
and MCIWndGetEnd macros. You can determine the length of the content by subtracting the value
returned by MCIWndGetStart from the value returned by MCIWndGetEnd, or by using the
MCIWndGetLength macro. You can retrieve the current playback position by using the
MCIWndGetPosition macro, or you can retrieve the playback position as a null-terminated string by
using the MCIWndGetPositionString macro.

To change the current playback position, use the MCIWndHome, MCIWndEnd, and MCIWndSeek
macros. You can move the playback position to the start of the content by using MCIWndHome or to the
end of the content by using MCIWndEnd. Use MCIWndSeek to move the playback position to any
location in the content.

You can also step through the content by using the MCIWndStep macro. Beginning from the current
playback position, this macro moves the playback position forward or backward by a specified increment.

Note The units used to specify position vary among the different media types and devices. For
example, the playback position for AVI files used by the MCIAVI device is measured in frames; the
playback position for CD audio, waveform-audio, and MIDI files is measured in milliseconds.

Devices for other media types and third-party devices might use other units. For information about
determining these units, see Playback Enhancements.

Starting, Pausing, and Resuming Playback

MCIWndPlay is the most general playback macro. This macro lets you play a file or device from the
current playback position. Playback continues through the end of the content unless it is interrupted.

You can temporarily interrupt a device that is playing by using the MCIWndPause macro. To resume
playback from the paused position, use the MCIWndResume macro. Some devices do not support the
pause and resume commands. These devices usually map MCIWndPause to the MCIWndStop macro,
which stops playback or recording. You can restart a device that does not support pause or resume by
using MCIWndPlay, which starts playback from the current playback position.

Defining Playback Scope

MCIWnd provides macros that allow you to define the playback scope. The scope is the portion of the
playback you want to play. For example, you can play the content from a position other than the beginning
position by using the MCIWndPlayFrom macro. This macro moves to the specified position, begins
playback, and continues to the end of the content. Similarly, you can play the content to a specified end
point by using the MCIWndPlayTo macro. This macro starts at the current playback position and plays
until it reaches the specified position or the end of the content is reached, whichever comes first.

Also, you can define both the beginning and ending positions by using the MCIWndPlayFromTo macro.
This macro moves to the specified starting position and plays until the specified ending position or the

end of the content is reached.

Reversing Playback

Some devices support playback in the reverse direction. You can play the content of such a device in the
reverse direction by using the MCIWndPlayReverse macro. This macro defines the playback scope from
the current playback position to the beginning of the content. The digital-video device, MCIAVI.DRYV, can
play backward. Devices that cannot play backward, such as CD audio, can issue an error message when
MCIWndPlayReverse is invoked.

Looping Playback

MCIWnd supports playback as a continuous loop. You can play the content of a file or device repeatedly
as a loop by using the MCIWndSetRepeat macro in combination with the Play button on the toolbar. The
video playback device, MCIAVI, supports playback loops. To determine if continuous playback has been

activated, use the MCIWndGetRepeat macro.

Multimedia Recording

You can implement recording capabilities in your application by using the user interface built into
MCIWnd. You can use the MCIWndCreate function and the MCIWndNew macro to provide controls for
starting and stopping recording and for saving the recorded information. Using MCIWndCreate, you can
specify window styles to display an MCIWnd window and to include the Record button on the toolbar.
Using MCIWndNew, you can specify the device type that is being recorded and specify that the
information is to be captured in a new file.

If your application requires more sophistication, you can automate and customize the recording by using
the MCIWndRecord macro. For more information, see Customizing the Recording Process.

Note Some devices, such as CD audio and MCIAVI, are used for playback only. Other devices,
such as waveform-audio devices, can be used for recording. If you specify a device that cannot
record, MCIWnd omits the Record button from the toolbar.

Saving Recorded Content

After completing the recording, you can save the content by using the MCIWndSave or
MCIWndSaveDialog macro, or by using the GetSaveFileNamePreview function with MCIWndSave. The
MCIWndSave macro saves data in the file associated with the MCIWnd window. The
MCIWndSaveDialog macro lets the user specify a flename and save the recorded data in the specified
file. The GetSaveFileNamePreview function displays the SaveAs dialog box for choosing a file and lets
the user preview (play) the file. When the name of an existing file is specified in the SaveAs dialog box,
GetSaveFileNamePreview provides a small control in the dialog box to let the user preview the contents
of the file. You can save the recorded data in a file selected with GetSaveFileNamePreview by using
MCIWndSave.

Playback Enhancements

After you have configured your application to play multimedia data using an MCIWnd window, you can
enhance and adjust the window's appearance and behavior. This section describes how to perform the
following tasks:

¢ Specifying time formats

¢ Adjusting speed, volume, and zoom

* Providing controls for cropping and stretching images
e Using MCIWnd palettes

¢ Providing status updates

¢ Using a multiple document interface

Specifying Time Formats

Multimedia data types typically can use time to identify significant positions within their content. Common
time formats are milliseconds, tracks, and frames; other less common time formats, such as SMPTE
(Society of Motion Picture and Television Engineers) 24, also exist. Time is the format and reference
system for waveform-audio, MIDI, and CD audio data. Video supports time even though it is recorded as
a sequence of frames (stream) that is typically played at a specific speed. Several macros are available
for designating time format.

You can retrieve the current time format for a file or device by using the MCIWndGetTimeFormat macro.
You can change the current time format to any other time format supported by a device by using the
MCIWndSetTimeFormat macro. Or you can the set the time format to milliseconds or frames by using
the MCIWndUseTime or MCIWndUseFrames macros.

Note Noncontinuous formats, such as tracks and SMPTE, can cause the toolbar to behave
erratically. For these time formats, you might want to turn off the toolbar by specifying the
MCIWNDF_NOPLAYBAR window style when creating an MCIWnd window.

Adjusting Speed, Volume, and Zoom

The speed, volume, and zoom macros provide the functionality of the View, Volume, and Speed
commands on the MCIWnd menu. The macros described in this section are generally used with video
and other devices that display images during playback.

Some devices support multiple playback speed changes. You can set the playback speed for these
devices by using the MCIWndSetSpeed macro. This macro defines the playback speed as 1000. Higher
values indicate faster speeds. Lower values indicate slower speeds.

You can retrieve the current playback speed by using the MCIWndGetSpeed macro. This macro uses the
same values and range as those used by MCIWndSetSpeed.

Some devices support volume changes. You can adjust or set the volume by using the
MCIWndSetVolume macro. This macro defines the normal volume level as 1000. Higher values indicate
louder volumes. Lower values indicate quieter volumes.

You can retrieve the current volume level by using the MCIWndGetVolume macro. This macro uses the
same numerical values and range as those used by MCIWndSetVolume.

For devices that use a playback window, MCIWnd supports a zoom feature that sets the size of the
playback image. You can set the playback image size by using the MCIWndSetZoom macro. The macro
redefines the playback image size while maintaining a constant aspect ratio for the image. The zoom
value is defined as a percentage of the original image size. Thus, 100 represents the original image size,
50 indicates the image shown is half its original size, and 200 indicates that the image shown is twice its
original size.

You can retrieve the current zoom value by using the MCIWndGetZoom macro. This macro uses the
same values and range as those used by MCIWndSetZoom.

Note The standard MCI CD audio and waveform-audio drivers do not support volume or speed
changes.

Providing Controls for Cropping and Stretching Images

MCIWnd allows you to crop and stretch images of a video clip. To understand these features, you need to
understand the relationships between frame size, source rectangle, destination rectangle, and playback
area.

A video clip consists of several frames, each containing one image. The frame size of a video clip is the
size of the image in the current frame. Typically, a video clip has one frame size because all the images in
the clip are the same size.

The source rectangle is a rectangular area that overlays the frames of a video clip. The source rectangle
defines the portion of each frame that is displayed during playback. When a video clip is loaded with
MCIWnd, the source rectangle is initialized with the same dimensions and position as the initial frame of
the video clip.

The destination rectangle is a rectangular area that defines a virtual playback window. The destination
rectangle receives the image data from the source rectangle for each frame of the video clip. When the
source and destination rectangle dimensions are different, MCIWnd adjusts the image data horizontally
and vertically as needed to fill the destination rectangle. When a video clip is loaded with MCIWnd, the
destination rectangle is initialized with the same dimensions and position as the initial frame of the video
clip.

The playback area is the portion of an MCIWnd window an application uses to display the video clip. The
playback area is the client area of an MCIWnd window or the portion of the client area that excludes the
MCIWnd toolbar. When a video clip is loaded with MCIWnd, the playback area is initialized with the same
dimensions and position as the initial frame of the video clip.

You can crop a video clip by using the MCIWndGetSource and MCIWndPutSource macros to alter the
source rectangle. Cropping an image determines only which portion of the frames are displayed during
playback; it does not alter the content of the file being played. Before you crop an image, you can retrieve
the current size of the source rectangle by using MCIWndGetSource. After the new size and location of
the source rectangle are calculated, you can set the cropping boundaries of the source rectangle by using
MCIWndPutSource.

You can stretch a video clip by using the MCIWndGetDest and MCIWndPutDest macros to alter the
destination rectangle. When you stretch a video clip, you lengthen or shorten the frame size of a video
clip vertically, horizontally, or in both directions. Before you stretch an image, you can retrieve the current
size and location of the destination rectangle by using MCIWndGetDest. The MCIWndPutDest macro
allows you to redefine the destination rectangle. Stretching can distort the image during playback, but it
does not alter the content of the file being played.

If the size of the destination rectangle becomes larger than the playback area, you can specify which
portion of the playback area will display the video clip by using MCIWndPutDest.

Note The MCIWndPutDest macro does not change the size of the playback area. To stretch the
MCIWnd window along with the destination rectangle, you need to know the current size of the
MCIWnd window and issue new window dimensions based on the destination rectangle. You can
retrieve the MCIWnd window dimensions by using the GetWindowRect function and resize the
MCIWnd window by using the SetWindowPos function.

Using MCIWnd Palettes

Playing video clips with 8-bit color depth (256-color capacity) requires a palette to define the colors being
used. Sometimes, the palette included with a video clip is not the most appropriate palette to use during
playback. In this case, MCIWnd provides three ways to manage palettes for playback:

¢ Retrieve a handle to the palette associated with an MCIWnd window by using the
MCIWndGetPalette macro. The palette is not necessarily associated exclusively with the MCIWnd
window. Other applications can access, and even invalidate, the palette handle. Consequently, your
application should anticipate the global use of the palette and, when finished with the palette, should
not free it.

¢ Specify a new palette to use with the video clip associated with an MCIWnd window by using the
MCIWndSetPalette macro.

¢ Realize the palette associated with an MCIWnd window to the system palette by using the
MCIWndRealize macro. This macro calls the RealizePalette function with the palette associated with
the MCIWnd window. If your application message handlers for WM_PALETTECHANGED and
WM_QUERYNEWPALETTE call only RealizePalette or MCIWndRealize, you must forward these
messages to MCIWnd if you do not handle them yourself.

Note When a video clip with 8-bit color depth is loaded into the MCIWnd window, the palette
included with that clip replaces the palette associated with the MCIWnd window.

Providing Status Updates

MCIWnd uses timers to periodically update information in the window title bar and scroll bar, and to send
notification messages to the parent window. One timer controls the update period of the active MCIWnd
window, and a second timer controls the update period for MCIWnd windows that are inactive. Your
application can use the MCIWnd timer macros to retrieve the current timer settings and to adjust the
update periods.

You can set the update period used by the active window timer by using the MCIWndSetActiveTimer
macro. This macro sets the period used by MCIWnd to update the trackbar, to update the playback
position reported in the window title bar, and to notify the parent window that the media has changed. You
can retrieve the current update period used by the active window timer by using the
MCIWndGetActiveTimer macro. The default update period for the active window timer is 500
milliseconds.

You can set the update period used by the inactive window timer by using the MCIWndSetlnactiveTimer
macro. This macro sets the period used by MCIWnd to update the trackbar, to update the playback
position reported in the window caption, and to notify the parent window that the media has changed. You
can retrieve the current update period used by the inactive window timer by using the
MCIWndGetInactiveTimer macro. The default update period for the inactive window timer is 2000
milliseconds.

Your application can simultaneously set the update period for both timers by using the
MCIWndSetTimers macro. The storage for the value of the update period is limited to 16 bits. If a larger
quantity for either update period is needed, set the timers individually.

Using a Multiple Document Interface

Applications that use a multiple document interface (MDI) might need to specify window styles that are
not available through the MCIWndCreate function. For these applications, you can register and create an
MCIWnd window by using the MCIWndRegisterClass function with the CreateWindowEx function. The
MCIWndRegisterClass function registers the MCIWND_WINDOW_CLASS window class and then
CreateWindowEXx creates an instance of an MCIWnd window.

Error Messages and Notifications

MCIWnd uses MCI to control the devices that play and record multimedia data. In general, MCIWnd
displays MCI errors in an error dialog box. An MCI error is generated whenever an MCI command fails.
For example, if your application tries to resume paused playback by using the MCIWndResume macro
and the current device does not support resume, an error is reported to the user.

MCIWnd allows you two choices for handling error messages:

¢ You can prevent error messages from reaching the user. To prevent the display of MCI error
messages, specify the MCIWNDF_NOERRORDLG window style when you create an instance of an
MCIWnd window by using the MCIWndCreate or CreateWindowEXx function.

¢ You can redirect them to your application for display. To redirect MCI error messages to your
application, specify the MCIWNDF_NOTIFYERROR window style when you create an instance of an
MCIWnd window by using MCIWndCreate or CreateWindowEX.

When error notification is enabled, MCIWnd sends each notification message
(MCIWNDM_NOTIFYERROR) to the main message handler of the parent of the MCIWnd window. Your
application must have a message handler to process the notification messages it receives.

You can obtain a textual description of the most recent MCI error message by using the
MCIWndGetError macro. This macro returns the text in an application-defined buffer. If the error string is
longer than the buffer, MCIWnd truncates the string.

You can route all notifications to another window by using the MCIWndSetOwner macro.

Communicating with MCI Devices

The driver of each MCI device maintains a list of its current settings and capabilities, so it can issue an
accurate response when it is queried for information.

When you want to communicate with an MCI device, you can use MCIWnd macros and functions. Many
of the most common MCI commands and queries are defined as macros. However, if the task you want to
perform is unavailable as a function or macro, you can send MCI commands directly to the device driver
by using the MCIWndSendString macro or by using either the message form or string form of the MCI
commands. Using the MCIWndSendString macro is equivalent to using the mciSendString function as
follows:

mciSendString(sz, Null, 0, Null)

The parameters of MCIWndSendString include only the window handle and the string form of the
command. To retrieve the information returned by a string command, use the MCIWndReturnString
macro.

For more information about MCI, see MCI.

Note You must exclude the device alias from the MCI command when you use
MCIWndSendString. The MCIWnd library adds this alias when it sends the command to the MCI
device.

Communication with MCI Devices

It is possible for each MCI device to use one of more of the following as identifiers:

¢ a device identifier

* adevice name

e an alias

¢ the filename of the currently loaded content.

MCIWnd provides macros you can use to retrieve this information. You can then use this information to
communicate through MCI directly with MCI devices associated with MCIWnd windows.

You can retrieve the identifier of the current MCI device by using the MCIWndGetDevicelD macro. The
MCI device identifier is a numerical value that identifies the instance of the MCI device your application is
using. Your application can use this identifier when communicating with an MCI device by using the
mciSendCommand function.

To retrieve the name of the current MCI device, use the MCIWndGetDevice macro. The MCI device
name is a null-terminated string that identifies the device type associated with an MCIWnd window. Your
application can use this name when communicating with an MCI device by using mciSendCommand.

You can retrieve the alias of the current MCI device by using the MCIWndGetAlias macro. Your
application can use this alias when communicating with an MCI device by using the mciSendString
function. -

Finally, you can retrieve the filename used by an MCI device by using the MCIWndGetFileName macro.
The filename identifies the content currently associated with an MCIWnd window. Your application can
use this filename when communicating with a MCI device by using mciSendCommand or
mciSendString.

MCI Device Capabilities

MCIWnd includes the following macros to let you query MCI devices for their capabilities.

Macro Description

MCIWndCanConfig Determines whether a device has a
configuration dialog box to support
multiple configurations, such as the

MCIAVI device.
MCIWndCanEject Determines whether a device has a
software-controlled eject function.
MCIWndCanPlay Determines whether a device can play
the existing content.
MCIWndCanRecord Determines whether a device can record.
MCIWndCanSave Determines whether a device can store
data.
MCIWndCanWindow Determines whether a device supports

MCI window commands (such as
window, put and where).

These macros return TRUE if the device supports the specific capability, or FALSE otherwise.

Using the MCIWnd Window Class

This section contains examples demonstrating how to perform the following tasks:

¢ Creating an MCIWnd window

¢ Automating playback for MCIWnd
¢ Pausing and resuming playback

¢ Limiting the playback scope

¢ Recording with MCIWnd controls

¢ Customizing the recording process
¢ Cropping an image

e Stretching an image

¢ Stretching an image and window

Creating an MCIWnd Window

The MCIWndCreate function registers and creates an MCIWnd window. The window can be a parent,
child, or pop-up window. The following example creates an MCIWnd window as a child window and lets
the user control playback by providing access to the trackbar and the Play, Stop, and Menu buttons. The
example specifies a handle of a parent window and specifies NULL for the window styles, so the default
window styles of WS_CHILD, WS_BORDER, and WS_VISIBLE are used to create the MCIWnd window.

// Global variable and constants
// extern HINSTANCE g hinst; instance handle
// extern HWND g hwndMCIWnd; MCIWnd window handle

case WM COMMAND:
switch (wParam) {
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd, g hinst, NULL,
"sample.avi");
break;
}

break;

Note You could also specify NULL for both the parent window handle and the window styles, in
which case the default window styles would be WS_OVERLAPPED and WS_VISIBLE.

Automating Playback for MCIWnd

You can automate playback for MCIWnd by specifying certain window styles in the MCIWndCreate
function. To play the device, the window needs a parent window to process notification messages, a
playback area to play AVI files, and notification of device mode changes to identify when playback stops.
The window does not need a toolbar. You can set these characteristics by specifying the appropriate
styles in MCIWndCreate.

The following example uses menu commands to create an MCIWnd window to play content from several
different types of devices. The MCIWndCreate function creates the MCIWnd window, and devices and
files are loaded by using the MCIWndOpen macro in the device-specific commands. When a device
finishes playing, you close the device by trapping the MCIWNDM_NOTIFYMODE message and issuing
the MCIWndClose macro.

case WM COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:

dwMCIWndStyle = WS_CHILD | // child window
WS VISIBLE | // visible
MCIWNDF NOTIFYMODE | // notifies of mode changes
MCIWNDF NOPLAYBAR; // hides toolbar

g_hwndMCIWnd = MCIWndCreate (hwnd,
g _hinst, dwMCIWndStyle, NULL);

break;

case IDM PLAYCDA:
LoadNGoMCIWnd (hwnd, "CDAudio");
break;

case IDM PLAYWAVE:
LoadNGoMCIWnd (hwnd, "SoundWave.WAV");
break;

case IDM PLAYMIDI:
LoadNGoMCIWnd (hwnd, "MIDIFile.MID");
break;

case IDM PLAYAVT:
LoadNGoMCIWnd (hwnd, "AVIFile.AVI");
break;

case IDM EXIT:
MCIWndDestroy (g _hwndMCIWnd) ;
DestroyWindow (hwnd) ;
break;

}

break;

case MCIWNDM NOTIFYMODE:
if (lParam == MCI _MODE STOP) // device stopped
{
MessageBox (hwnd,"", "Closing Device",MB OK) ;
MCIWndClose (g _hwndMCIWnd) ;
}

break;

// Handle other messages here.

//
//
//
//
//
//
//

LoadNGoMCIWnd - automatically loads and plays a multimedia device

hwnd - handle to the parent window
lpstr - pointer to device or filename played by device

Global variable
extern HINSTANCE g hwndMCIWnd; instance handle to MCIWnd window

VOID LoadNGoMCIWnd (HWND hwnd, LPSTR lpstr)

{

MessageBox (hwnd, lpstr, "Loading Device", MB OK);
MCIWndOpen (g hwndMCIWnd, lpstr, NULL); // new device in window
MCIWndPlay (g hwndMCIWnd) ; // plays device

Pausing and Resuming Playback

You can interrupt playback of a device or file associated with an MCIWnd window by using the
MCIWndPause macro. You can then restart playback by using the MCIWndResume macro. If the device
does not support resume or if an error occurs, you can use the MCIWndPlay macro to restart playback.

The following example creates an MCIWnd window and plays an AVI file. Pause and resume menu
commands are available to the user to interrupt and restart playback.

MCIWnd window styles are changed temporarily by using the MCIWndChangeStyles macro to inhibit an
MCI error dialog box from being displayed if MCIWndResume fails.

case WM COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:
g_hwndMCIWnd =
g _hinst,
WS CHILD | WS VISIBLE |
MCIWNDF NOPLAYBAR |
MCIWNDF NOTIFYMODE,
"sample.avi") ;

MCIWndPlay (g _hwndMCIWnd) ;
break;

case IDM PAUSEMCIWND:
MCIWndPause (g _hwndMCIWnd) ;

MessageBox (hwnd, "MCIWnd",
break;
case IDM RESUMEMCIWND:
MCIWndChangeStyles (//
g_hwndMCIWnd, !/

//
//

MCIWNDF NOERRORDLG,
MCIWNDEF NOERRORDLG) ;

1Result =

if (1Result) {
MessageBox (hwnd,

//

creates and plays clip

MCIWndCreate (hwnd,

//
//
//

standard styles
hides toolbar
notifies of mode changes

// pauses playback

"Pausing Playback", MB OK) ;

// resumes playback
hides error dialog messages
MCIWnd window
mask of style to change
suppresses MCI error dialogs

MCIWndResume (g hwndMCIWnd) ;

// device doesn't resume

"MCIWnd",

"Resume with Stop and Play", MB OK);
MCIWndStop (g _hwndMCIWnd) ;
MCIWndPlay (g _hwndMCIWnd) ;

MCIWndChangeStyles (
g_hwndMCIWnd,
MCIWNDF NOERRORDLG,
NULL) ;
}
break;

}

break;

// Handle other messages here.

// resumes original styles

Limiting the Playback Scope

Controlling playback begins with the MCIWndPlay macro, which plays the content or file associated with
an MCIWnd window from the current playback position to the end of the content. If you want to limit
playback to a specific portion of the content or file, you can choose from the other playback MCIWnd
macros: MCIWndPlayFrom, MCIWndPlayTo, and MCIWndPlayFromTo.

You also need to set an appropriate time format. The time format determines whether the content is
measured in frames, milliseconds, tracks, or some other units.

The following example creates an MCIWnd window and provides menu commands to play the last third,
first third, or middle third of the content. These menu commands use MCIWndPlayFrom,
MCIWndPlayTo, and MCIWndPlayFromTo to play the content segments. The example also uses the
MCIWndGetStart and MCIWndGetEnd macros to identify the beginning and end of the content, and it
uses the MCIWndHome macro to move the playback position to the beginning of the content.

The MCIWndCreate function uses the WS_CAPTION and MCIWNDF_SHOWALL styles in addition to the
standard window styles to display the filename, mode, and current playback position in the title bar of the
MCIWnd window.

case WM COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd,

g _hinst,
WS CHILD | WS VISIBLE | WS CAPTION |
MCIWNDF SHOWALL,
"sample.avi");

break;
case IDM PLAYFROM: // plays last third of clip
MCIWndUseTime (g _hwndMCIWnd); // millisecond format

// Get media start and end positions.
lStart = MCIWndGetStart (g _hwndMCIWnd) ;
1End = MCIWndGetEnd(g_hwndMCIWnd) ;

// Determine playback end position.
1PlayStart = 2 * (lEnd - 1Start) / 3 + 1Start;

MCIWndPlayFrom (g hwndMCIWnd, lPlayStart);
break;

case IDM PLAYTO: // plays first third of clip
MCIWndUseTime (g _hwndMCIWnd); // millisecond format

// Get media start and end positions.
l1Start = MCIWndGetStart (g hwndMCIWnd) ;
1End = MCIWndGetEnd (g hwndMCIWnd) ;

// Determine playback start position.
1PlayEnd = (lEnd - 1lStart) / 3 + 1Start;

MCIWndHome (g _hwndMCIWnd) ;
MCIWndPlayTo (g _hwndMCIWnd, 1PlayEnd);
break;

case IDM PLAYSOME: // plays middle third of clip
MCIWndUseTime (g _hwndMCIWnd); // millisecond format

// Get media start and end positions.
l1Start = MCIWndGetStart (g hwndMCIWnd) ;
1End = MCIWndGetEnd (g _hwndMCIWnd) ;

// Determine playback start and end positions.
1PlayStart = (lEnd - 1Start) / 3 + 1lStart;
1PlayEnd = 2 * (lEnd - 1lStart) / 3 + 1Start;

MCIWndPlayFromTo (g _hwndMCIWnd, lPlayStart, 1lPlayEnd);
break;

// Handle other commands here.

}

Recording with MCIWnd Controls

The following example records waveform audio using the built-in controls of the MCIWnd window. The
example creates an MCIWnd window by using the MCIWNDF_RECORD window style with the
MCIWndCreate function to add a Record button to the toolbar. The MCIWndNew macro indicates a new
file is associated with the MCIWnd window and that a waveform-audio device will provide its content. A
second menu command, IDM_SAVEMCIWND, lets the user save the recording and select a filename by
using the MCIWndSaveDialog macro.

case WM COMMAND:

switch (wParam) {

case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd, g hinst,

WS VISIBLE | MCIWNDEF RECORD, NULL) ;

MCIWndNew (g hwndMCIWnd, "waveaudio");
break;

case IDM SAVEMCIWND:
MCIWndSaveDialog (g _hwndMCIWnd) ;
break;

Customizing the Recording Process

You can customize the recording process, taking complete control of most everything — from creating the
MCIWnd window to saving the recorded information in a file. The following example queries the MCI

device for recording and saving capabilities, and includes menu commands to record at the beginning or
end of the content.

The following example uses the MCIWndCreate function to create a new window and allows you to
specify an existing file to store the recorded data and the MCIWndNew macro to associate a new file with
the window. Alternatively, you can use the MCIWndOpen or MCIWndOpenDialog macro to specify a file.

The example uses the MCIWndCanRecord macro to verify that the device can record and the
MCIWndCanSave macro to verify that the device save information. The example sets the current
playback position by using the MCIWndHome and MCIWndEnd macros. The example starts recording
by using the MCIWndRecord macro. After the information is recorded, the example saves it by using the
MCIWndSaveDialog macro.

case WM COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate(hwnd, g hinst,
WS _VISIBLE | WS CHILD |

MCIWNDF RECORD, // add Record button
NULL) ;
MCIWndNew (g _hwndMCIWnd, "waveaudio"); // new file

if (MCIWndCanRecord (g _hwndMCIWnd))
{
MessageBox (hwnd,
"Press the red button on the toolbar to record.",
"MCIWnd Record",
MB OK);
}
else
{
MessageBox (hwnd,
"This device doesn't record.",
"MCIWnd Record",
MB OK);
}
break;
case IDM RECORDATSTART:
if (MCIWndCanRecord (g hwndMCIWnd))
{
MCIWndHome (g_hwndMCIWnd) ;
MCIWndRecord (g _hwndMCIWnd) ;
}
else
{
MessageBox (hwnd,
"This device doesn't record.",
"MCIWnd Record",
MB_OK) ;

}
break;
case IDM RECORDATEND:
if (MCIWndCanRecord (g hwndMCIWnd))
{
MCIWndEnd (g _hwndMCIWnd) ;
MCIWndRecord (g _hwndMCIWnd) ;
}
else
{
MessageBox (hwnd,
"This device doesn't record.",
"MCIWnd Record",
MB_OK) ;
}
break;
case IDM SAVEMCIWND:
if (MCIWndCanSave (g_hwndMCIWnd))

MCIWndSaveDialog (g _hwndMCIWnd) ;
}

break;

// Handle other messages here.

Cropping an Image

The following example creates an MCIWnd window and loads an AVI file. The window includes a crop
command in the menu, which crops one-quarter of the height or width from each of the four sides of the
frame. The example retrieves the current (initial) dimensions of the source rectangle by using the
MCIWndGetSource macro. The modified source rectangle is half the original height and width and is
centered in the original frame. The call to the MCIWndPutSource macro redefines the coordinates of the
source rectangle.

// extern RECT rSource, rDest;

case WM COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate(hwnd,

g_hinst,
WS_CHILD | WS VISIBLE,
"sample.avi");

break;
case IDM CROPIMAGE: // crops image
MCIWndGetSource (g _hwndMCIWnd, &rSource); // source rectangle
rDest.left = rSource.left + // new boundaries
((rSource.right - rSource.left) / 4);
rDest.right = rSource.right -
((rSource.right - rSource.left) / 4);

rDest.top = rSource.top +
((rSource.bottom - rSource.top) / 4);

rDest.bottom = rSource.bottom -
((rSource.bottom - rSource.top) / 4);

MCIWndPutSource (g hwndMCIWnd, &rDest); // new source rectangle
}

break;

// Handle other messages here.

Stretching an Image

The following example stretches the images of a video clip. It increases the dimensions of the destination
rectangle by using the MCIWndPutDest macro. The size of the playback area remains unchanged, so
the result is a distorted, magnified image. The examples uses the MCIWndPutDest function to reposition
the destination rectangle with respect to the playback area, providing a way to view different portions of

the stretched image.

extern RECT rCurrent, rDest;
case WM _COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:
g_hwndMCIWnd = MCIWndCreate (hwnd,
g_hinst,
WS_CHILD | WS VISIBLE,
"sample.avi");
break;
case IDM STRETCHIMAGE:

MCIWndGetDest (g_hwndMCIWnd, &rCurrent);

rDest.top = rCurrent.top;
rDest.right = rCurrent.right;
rDest.left = rCurrent.left +

((rCurrent.left - rCurrent.right) *
rDest.bottom = rCurrent.top +
((rCurrent.bottom - rCurrent.top)

MCIWndPutDest (g_hwndMCIWnd, &rDest);
break;

case IDM MOVEDOWN: //
MCIWndGetDest (g _hwndMCIWnd,
rCurrent.top -= 100;
rCurrent.bottom -= 100;
MCIWndPutDest (g _hwndMCIWnd,
break;

case IDM MOVEUP: //
MCIWndGetDest (g_hwndMCIWnd,
rCurrent.top += 100;
rCurrent.bottom += 100;
MCIWndPutDest (g_hwndMCIWnd,
break;

case IDM MOVELEFT: //

MCIWndGetDest (g_hwndMCIWnd,

rCurrent.right += 100;

rCurrent.left += 100;

MCIWndPutDest (g_hwndMCIWnd,

break;

IDM MOVERIGHT: /7
MCIWndGetDest (g_hwndMCIWnd,
rCurrent.right -= 100;
rCurrent.left -= 100;
MCIWndPutDest (g _hwndMCIWnd,
break;

//

move toward

&rCurrent) ;

&rCurrent) ;

move toward

&rCurrent) ;

&rCurrent) ;

move toward

&rCurrent) ;

&rCurrent) ;

move toward
&rCurrent) ;

case

&rCurrent) ;

// stretch destination RECT 3:2,

// destination RECT
// new boundaries

3);

2);
new destination

bottom of image
// destination RECT
// new boundaries

// new destination
top of image

// destination RECT
// new boundaries

// new destination
left edge of image
// destination RECT
// new boundaries

// new destination
right edge of image

// destination RECT
// new boundaries

//

new destination

}

break;

// Handle other messages here.

Stretching an Image and Window

The following example stretches the images of a video clip and changes the aspect ratio of the displayed
frames. The frames displayed in the MCIWnd window are twice the height and three times the width of
the original frame. The MCIWndGetDest and MCIWndPutDest macros retrieve and redefine the
destination rectangle coordinates. The GetWindowRect and SetWindowPos functions manage changes
to the MCIWnd window dimensions.

// extern RECT rCurrent, rDest;

case WM _COMMAND:
switch (wParam)
{
case IDM CREATEMCIWND:

g_hwndMCIWnd = MCIWndCreate (hwnd,
g_hinst,
WS _CHILD | WS_VISIBLE,
"sample.avi");
break;

case IDM RESIZEWINDOW: // destination RECT and playback area

GetWindowRect (g_hwndMCIWnd, &rWin); // window size
MCIWndGetDest (g _hwndMCIWnd, &rCurrent); // destination RECT
rDest.top = rCurrent.top; // new boundaries

rDest.right = rCurrent.right;
rDest.left = rCurrent.left +

((rCurrent.left - rCurrent.right) * 3);
rDest.bottom = rCurrent.top +

((rCurrent.bottom - rCurrent.top) * 2);
MCIWndPutDest (g _hwndMCIWnd, &rDest):; // new RECT

SetWindowPos (g _hwndMCIWnd, // window to resize
NULL, // z-order: don't care
0, 0, // position: don't care
rDest.right - rDest.left, // width
(rWin.bottom - rWin.top + // height (window -
(rCurrent.bottom - rCurrent.top) + // original RECT +
(rDest.bottom - rDest.top)), // new RECT
SWP_NOMOVE | SWP_NOZORDER | SWP_NOACTIVATE);

break;

}

break;

// Handle other messages here.

MCIWnd Reference

This section describes the functions, messages, and macros associated with the MCIWnd window class.
These elements are grouped as follows.

Window Management

MCIWndChangeStyles
MCIWndCreate

MCIWndGetStyles
MCIWndRegisterClass

File and Device Management
MCIWndClose

MCIWndDestroy
MCIWndEject
MCIWndNew
MCIWndOpen
MCIWndOpenDialog
MCIWndSave

MCIWndSaveDialog

Playback Options

MCIWndGetRepeat
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat

Recording
MCIWndRecord

Positioning
MCIWndEnd
MCIWndGetEnd

MCIWndGetLength
MCIWndGetPosition

MCIWndGetPositionString
MCIWndGetStart
MCIWndHome
MCIWndSeek

MCIWndStep

Pause and Resume Playback

MCIWndGetRepeat
MCIWndPlay

MCIWndPlayFrom
MCIWndPlayFromTo

MCIWndPlayReverse
MCIWndPlayTo
MCIWndSetRepeat

Performance Tuning

MCIWndGetSpeed
MCIWndGetVolume

MCIWndGetZoom
MCIWndSetSpeed
MCIWndSetVolume
MCIWndSetZoom

Image and Palette Adjustments

MCIWndGetDest
MCIWndGetPalette
MCIWndGetSource
MCIWndPutDest
MCIWndPutSource
MCIWndRealize
MCIWndSetPalette

Event and Error Notification

MCIWndGetError
MCIWNDM NOTIFYERROR
MCIWNDM NOTIFYMEDIA
MCIWNDM NOTIFYMODE
MCIWNDM NOTIFYPOS
MCIWNDM NOTIFYSIZE

Time Formats

MCIWndGetTimeFormat
MCIWndSetTimeFormat
MCIWndUseFrames
MCIWndUseTime
MCIWndValidateMedia

Status Updates

MCIWndGetActiveTimer
MCIWndGetinactiveTimer
MCIWndSetActiveTimer
MCIWndSetlnactiveTimer
MCIWndSetTimers

Device Capabilities

MCIWndCanConfig
MCIWndCanEject

MCIWndCanPlay
MCIWndCanRecord
MCIWndCanSave
MCIWndCanWindow

MCI Device Settings

MCIWndGetAlias
MCIWndGetDevice
MCIWndGetDevicelD
MCIWndGetFileName
MCIWndGetMode

MCI Command-String Interface

MCIWndReturnString
MCIWndSendString

MCIWnd Functions

The following functions are used with MCIWnd.

GetOpenFileNamePreview
GetSaveFileNamePreview
MCIWndCreate

MCIWndRegisterClass

MCIWnd Messages

The following messages are used with MCIWnd.

MCIWNDM_CAN_CONFIG
MCIWNDM_CAN_EJECT
MCIWNDM_CAN_PLAY

MCIWNDM_CAN_RECORD

MCIWNDM
MCIWNDM
MCIWNDM

CAN_SAVE
CAN_WINDOW
CHANGESTYLES
EJECT

MCIWNDM

MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM

MCIWNDM_

MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM

GETACTIVETIMER
GETALIAS
GET_DEST
GETDEVICE
GETDEVICEID
GETEND
GETERROR
GETFILENAME
GETINACTIVETIMER
GETLENGTH
GETMODE
GETPALETTE
GETPOSITION
GETREPEAT
GET_SOURCE
GETSPEED
GETSTART
GETSTYLES

MCIWNDM_GETTIMEFORMAT

MCIWNDM
MCIWNDM

GETVOLUME
GETZOOM

MCIWNDM

MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM

NEW
NOTIFYERROR
NOTIFYMEDIA
NOTIFYMODE
NOTIFYPOS
NOTIFYSIZE
OPEN
OPENINTERFACE
PLAYFROM

MCIWNDM_PLAYREVERSE

MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM
MCIWNDM

PLAYTO
PUT_DEST
PUT_SOURCE
REALIZE
RETURNSTRING
SENDSTRING
SETACTIVETIMER
SETINACTIVETIMER
SETOWNER
SETPALETTE
SETREPEAT

MCIWNDM_SETSPEED

MCIWNDM_SETTIMEFORMAT
MCIWNDM_SETTIMERS
MCIWNDM_SETVOLUME
MCIWNDM_SETZOOM
MCIWNDM_VALIDATEMEDIA

MCIWnd Macros

The following macros are used with MCIWnd.

MCIWndCanConfig
MCIWndCanEject
MCIWndCanPlay
MCIWndCanRecord
MCIWndCanSave
MCIWndCanWindow
MCIWndChangeStyles
MCIWndClose
MCIWndDestroy

MCIWndEject
MCIWndEnd

MCIWndGetActiveTimer
MCIWndGetAlias
MCIWndGetDest
MCIWndGetDevice
MCIWndGetDevicelD
MCIWndGetEnd
MCIWndGetError
MCIWndGetFileName
MCIWndGetinactiveTimer
MCIWndGetLength
MCIWndGetMode
MCIWndGetPalette
MCIWndGetPosition

MCIWndGetPositionString
MCIWndGetRepeat
MCIWndGetSource

MCIWndGetSpeed
MCIWndGetStart

MCIWndGetStyles
MCIWndGetTimeFormat
MCIWndGetVolume
MCIWndGetZoom
MCIWndHome
MCIWndNew

MCIWndOpen
MCIWndOpenDialog
MCIWndOpeninterface
MCIWndPause
MCIWndPlay
MCIWndPlayFrom
MCIWndPlayFromTo
MCIWndPlayReverse

MCIWndPlayTo
MCIWndPutDest

MCIWndPutSource
MCIWndRealize
MCIWndRecord
MCIWndResume

MCIWndReturnString
MCIWndSave

MCIWndSaveDialog
MCIWndSeek

MCIWndSendString
MCIWndSetActiveTimer
MCIWndSetlnactiveTimer
MCIWndSetOwner
MCIWndSetPalette
MCIWndSetRepeat
MCIWndSetSpeed
MCIWndSetTimeFormat
MCIWndSetTimers
MCIWndSetVolume
MCIWndSetZoom
MCIWndStep

MCIWndStop
MCIWndUseFrames

MCIWndUseTime
MCIWndValidateMedia

MCI

The Media Control Interface (MCI) provides standard commands for playing multimedia devices and
recording multimedia resource files. These commands are a generic interface to nearly every kind of
multimedia device.

About MCI

MCI provides applications with device-independent capabilities for controlling audio and visual
peripherals. Your application can use MCI to control any supported multimedia device, including
waveform-audio devices, MIDI sequencers, CD audio devices, and digital-video (video playback) devices.

MCI Command Strings and Messages

MCI supports command strings and command messages. You can use either strings or messages, or
both, in your MCI application.

e The command-message interface consists of constants and structures. You use the
mciSendCommand function to send a message to an MCI device.

¢ The command-string interface provides a textual version of the command messages. You use the
mciSendString function to send a string to an MCI device. Command strings duplicate the
functionality of the command messages. The Microsoft Windows operating system converts the
command strings to command messages before sending them to the MCI driver for processing.

The command messages that retrieve information do so in the form of structures, which are easy to
interpret in a C application. These structures can contain information on many different aspects of a
device. The command strings that retrieve information do so in the form of strings, and can only retrieve
one string at a time. Your application must parse or test each string to interpret it. You might find that the
command messages are easier to use than the command strings in some cases, but the command
strings are easy to remember and implement. Some MCI applications use command strings when the
return value will not be used (other than to verify success) and command messages when retrieving
information from the device.

When commands are discussed, this overview uses the string form of the command followed by the
message form in parentheses.

Command Strings

MCI supports command strings and command messages. This section discusses how to use MCI
command strings. For information about the command-message interface, see Command Messages.

You can send a string command by using the mciSendString function, which includes parameters for the
string command and a buffer for any returned information.

Sending Command Strings

Windows provides two functions to send command strings to devices and to query devices for error
information:

¢ The mciSendString function sends a command string to an MCI device.
¢ The mciGetErrorString function returns the error string corresponding to an error number.

The mciSendString function returns zero if successful. If the function fails, the low-order word of the
return value contains an error code. You can pass this error code to mciGetErrorString to get a text
description of it.

Syntax of Command Strings

MCI command strings use a consistent verb-object-modifier syntax. Each command string includes a
command, a device identifier, and command arguments. Arguments are optional for some commands and
required for others.

A command string has the following form:

command device_id arguments

These components contain the following information:

e The command specifies an MCI command, such as open, close, or play.
¢ The device_id identifies an instance of an MCI driver. The device id is created when the device is

opened.

The arguments specify the flags and variables used by the command. Flags are keywords recognized
with the MCI command. Variables are numbers or strings that apply to the MCI command or flag.

For example, the play command uses the arguments "from position" and "to position" to indicate the
positions at which to start and end play. You can list the flags used with a command in any order.
When you use a flag that has a variable associated with it, you must supply a value for the variable.

Unspecified (and optional) command arguments assume a default value.

The following example function sends the play command with the "from" and "to" flags.

DWORD PlayFromTo (LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo)

{

char achCommandBuff[128];

// Form the command string.
wsprintf (achCommandBuff, "play %s from %$u to %u",
lpstrAlias, dwFrom, dwTo);

// Send the command string.
return mciSendString (achCommandBuff, NULL, 0, NULL);

Data Types for Command Variables

You can use the following data types for the variables in a command string:

Data type
Strings

Signed long
integers

Rectangles

Description

String data types are delimited by leading and
trailing white spaces and quotation marks. MCI
removes single quotation marks from a string. To
put a quotation mark in a string, use a set of two
quotation marks where you want to embed your
quotation mark. To use an empty string, use two
quotation marks delimited by leading and trailing
white spaces.

Signed long integer data types are delimited by
leading and trailing white spaces. Unless otherwise
specified, integers can be positive or negative. If
you use negative integers, you should not separate
the minus sign and the first digit with a space.

Rectangle data types are an ordered list of four
signed short values. White space delimits this data
type and separates each integer in the list.

Command Messages

MCI supports command strings and command messages. This section discusses how to use MCI
command messages. For information about the command-string interface, see Command Strings.

The command-message interface is designed to be used by applications requiring a C-language interface
to control multimedia devices. It uses a message-passing paradigm to communicate with MCI devices.
You can send a command by using the mciSendCommand function.

Sending Command Messages

The Microsoft Windows operating system provides two functions for sending command messages to
devices and to query devices for error information: mciSendCommand and mciGetErrorString. The
mciSendCommand function sends a command message to an MCI device. The mciGetErrorString
function returns the error string corresponding to an error number.

The mciSendCommand function returns zero if successful. If the function fails, the low-order word of the
return value contains an error code. You can pass this error code to mciGetErrorString to get a text
description of it.

Syntax of Command Messages

MCI command messages consist of the following three elements:

¢ A constant message value
e A structure containing parameters for the command
¢ Aset of flags specifying options for the command and validating fields in the parameter block

The following example sends the MCI_PLAY command to the device identified by a device identifier.

mciSendCommand (wDevicelD, // device identifier
MCI PLAY, // command message
0, // flags

(DWORD) (LPVOID) &mciPlayParms) ; // parameter block

The device identifier given in the first parameter is retrieved when the device is opened using the
MCI_OPEN command. The last parameter is the address of an MCI_PLAY_PARMS structure, which
might contain information about where to begin and end playback. Many MCI command messages use a
structure to contain parameters of this kind. The first member of each of these structures identifies the
window that receives an MM_MCINOTIFY message when the operation finishes.

Classifications of MClI Commands

MCI defines four command classifications: system, required, basic, and extended. The following list
describes these command classifications:

e System commands are handled by MCI directly, rather than by the driver.

* Required commands are handled by the driver. All MCI drivers must support the required commands
and flags.

e Basic commands (or optional commands) are used by some devices. If a device supports a basic
command, it must support a defined set of flags for that command.

e Extended commands are specific to a device type or driver. Extended commands include commands,
like the put (MCI_PUT) and where (MCI_WHERE) commands for the digitalvideo and overlay
device types, and extensions to existing commands (like the "stretch" flag of the status
(MCI_STATUS) command for the overlay device type).

While system and required commands are the minimum command set for any MCI driver, basic and
extended commands are not supported by all drivers. Your application can always use system and
required commands and their flags, but if it needs to use a basic or extended command or flag, it should
first query the driver by using the capability (MCI_GETDEVCAPS) command. The following sections
summarize the specific commands in each category.

System Commands
MCI processes the following system commands directly, rather than passing them to MCI devices.

String Message Description
break MCI_BREAK Sets a break key for an MCI device.

sysinfo MCI_SYSINFO Returns information about MCI devices.

Required Commands
All MCI devices support the following required commands.

String Message Description

capability MCI_GETDEVCAPS Obtains the capabilities of a
device.

close MCI_CLOSE Closes the device.

info MCI_INFO Obtains textual information from
a device.

open MCI_OPEN Initializes the device.

status MCI_STATUS Obtains status information from

the device. Some of this
command's flags are not
required, so it is also a basic
command.

Devices must also support a standard set of command flags for the required commands.

Basic Commands

The following list summarizes the basic commands. The use of these commands by an MCI device is
optional.

String Message
load MCI LOAD
ause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
save MCI_SAVE
seek MCIl _SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP

Description
Loads data from a file.

Stops playing. Playback or recording
can be resumed at the current
position.

Starts transmitting output data.

Starts recording input data.

Resumes playing or recording on a
paused device.

Saves data to a disk file.

Seeks forward or backward.

Sets the operating state of the device.
Obtains status information about the
device. This is also a required
command; since some of its flags are
not required, it is also listed here.
(The optional items support devices
that use linear media with identifiable
positions.)

Stops playing.

If a driver supports a basic command, it must also support a standard set of flags for the command.

Extended Commands

Some MCI devices have additional commands, or they add flags to existing commands. While some
extended commands apply only to a specific device driver, most of them apply to all drivers of a particular
device type. For example, the command set for the sequencer device type extends the set (MCI_SET)
command to add time formats that are needed by MIDI sequencers. o

You should not assume that the device supports the extended commands or flags. You can use the
capability (MCI_GETDEVCAPS) command to determine whether a specific feature is supported, and

your application should be ready to deal with "unsupported command" or "unsupported function" return

values.

The following extended commands are available with the listed device types.

Device types Description

MCI_CONFIGURE digitalvideo Displays a configuration

String Message
configure

cue MCI_CUE
delete MCI_DELETE
escape MCI_ESCAPE
freeze MCI_FREEZE
put MCI_PUT

dialog box.
digitalvideo, Prepares for playing or
waveaudio recording.

waveaudio Deletes a data segment
from the media file.

videodisc Sends custom
information to a device.

overlay Disables video
acquisition to the frame
buffer.

digitalvideo, Defines the source,

overlay destination, and frame

windows.

realize MCI_REALIZE
setaudio MCI_SETAUDIO
setvideo MCI_SETVIDEO
signal MCI_SIGNAL
spin MCI_SPIN

step MCI STEP
unfreeze @ MCI_UNFREEZE
update MCI_UPDATE
where MCI_WHERE
window MCI_WINDOW

digitalvideo

digitalvideo

digitalvideo
digitalvideo

videodisc

digitalvideo,
videodisc

overlay

digitalvideo

digitalvideo,
overlay

digitalvideo,
overlay

Tells the device to select
and realize its palette
into a device context of
the displayed window.

Sets audio parameters
for video.

Sets video parameters.

Identifies a specified
position with a signal.

Starts the disc spinning
or stops the disc from
spinning.

Steps the play one or
more frames forward or
reverse.

Enables the frame buffer
to acquire video data.

Repaints the current
frame into the device
context.

Obtains the rectangle
specifying the source,
destination, or frame
area.

Controls the display
window.

MCI Functions, Macros, and Messages

Most MCI applications use the mciSendString and mciSendCommand functions dozens of times. MCI
provides some other useful functions that your application will use less frequently.

The device identifier required by most MCl commands is typically retrieved in a call to the open
(MCI_OPEN) command. If you need a device identifier but do not want to open the device — for example,
if you want to query the capabilities of the device before taking any other action — you can call the
mciGetDevicelD function.

The mciGetCreatorTask function allows your application to use a device identifier to retrieve a handle to
the task that created that identifier.

You can use the mciGetYieldProc and mciSetYieldProc functions to assign and retrieve the address of
the callback function associated with the "wait" (MCI_WAIT) flag.

The mciGetErrorString function retrieves a string that describes an MCI error value. Each string that
MCI returns, whether data or an error description, is a maximum of 128 characters. Dialog box fields that
are smaller than 128 characters will truncate the longer strings returned by MCI. For more information
about these strings, see Constants: MCIERR Return Values.

The MCI macros are tools you can use to create and disassemble values that specify time formats. These
time formats are used in many MCI commands. The formats acted on by the macros are
hours/minutes/seconds (HMS), minutes/seconds/frames (MSF), and tracks/minutes/seconds/frames
(TMSF). The following table lists the macros and their descriptions.

Macro Description

MCI_HMS_HOUR Retrieves the hours component from an HMS
value.

MCI_HMS_MINUTE Retrieves the minutes component from an
HMS value.

MCI_HMS_SECOND Retrieves the seconds component from an
HMS value.

MCI_MAKE_HMS Creates an HMS value.

MCI_MAKE_MSF Creates an MSF value.

MCI_MAKE_TMSF Creates a TMSF value.

MCI_MSF_FRAME Retrieves the frames component from an MSF
value.

MCI_MSF_MINUTE Retrieves the minutes component from an
MSF value.

MCI_MSF_SECOND Retrieves the seconds component from an
MSF value.

MCI_TMSF_FRAME Retrieves the frames component from a TMSF
value.

MCI_TMSF_MINUTE Retrieves the minutes component from a
TMSF value.

MCI_TMSF_SECOND Retrieves the seconds component from a
TMSF value.

MCI_TMSF_TRACK Retrieves the tracks component from a TMSF
value.

MCI also provides two messages: MM_MCINOTIFY and MM_MCISIGNAL. The MM_MCINOTIFY

message notifies an application of the outcome of an MCI command whenever that command specifies
the "notify" (MCI_NOTIFY) flag. The MM_MCISIGNAL message is specific to digital-video devices; it
notifies the application when a specified position is reached.

The Wait, Notify, and Test Flags

Most MCI commands include flags that modify the command. The "wait" (MCI_WAIT) and "notify"

(MCI_NOTIFY) flags are common to every command. The "test" (MCI_TEST) flag is available to digital-
video and VCR devices. This section describes the use of these flags.

The Wait Flag

MCI commands usually return to the user immediately, even if it takes several minutes to complete the
action initiated by the command. You can use the "wait" (MCI_WAIT) flag to direct the device to wait until
the requested action is completed before returning control to the application.

For example, the following play command will not return control to the application until the playback
completes:

mciSendString ("play mydevice from 0 to 100 wait",
lpszReturnString, lstrlen(lpszReturnString), NULL);

Note The user can cancel a wait operation by pressing a break key. By default, this key is
CTRL+BREAK. Applications can redefine this key by using the break (MCI_BREAK) command.
(MCI_BREAK uses the MCI_BREAK_PARMS structure.) When a wait operation is canceled, MCI
attempts to return control to the application without interrupting the command associated with the
"wait" flag.

The Notify Flag

The "notify" (MCI_NOTIFY) flag directs the device to post an MM_MCINOTIFY message when the device
completes an action. Your application must have a window procedure to process the MM_MCINOTIFY
message for notification to have any effect. An MM_MCINOTIFY message indicates that the processing
of a command has completed, but it does not indicate whether the command was completed successfully,
failed, or was superseded or aborted.

The application specifies the handle to the destination window for the message when it issues a
command. In the command-string interface, this handle is the last parameter of the mciSendString
function. In the command-message interface, the handle is specified in the low-order word of the
dwCallBack member of the structure sent with the command message. (Every structure associated with
a command message contains this member.)

The Test Flag

The "test" (MCI_TEST) flag queries the device to determine if it can execute the command. The device
returns an error if it cannot execute the command. It returns no error if it can handle the command. When
you specify this flag, MCI returns control to the application without executing the command.

This flag is supported by digital-video and VCR devices for all commands except open (MCI_OPEN) and
close (MCI_CLOSE).

Command Shortcuts and Variations

You can use several shortcuts when working with MCl commands. These shortcuts enable you to use a
single identifier to refer to all the devices your application has opened, or to open a device without
explicitly issuing an open (MCI_OPEN) command.

Using All as a Device Identifier

You can specify "all" (MCI_ALL_DEVICE_ID) as a device identifier for any command that does not return
information. When you specify "all", MCI sends the command sequentially to all devices opened by the
current application.

For example, the close "all" command closes all open devices and the play "all" command starts playing
all devices opened by the application. Because MCI sequentially sends the commands to the MCI
devices, there is an interval between when the first and last devices receive the command.

Using "all" is a convenient way to broadcast a command to all your devices, but you should not rely on it
to synchronize devices; the timing between messages can vary.

Automatically Opening a Device

When you issue a command and specify a device that is not open, MCI tries to open the device before
implementing the command. The following rules apply to automatically opening devices:

¢ The automatic open feature works only with the command-string interface.
¢ The automatic open feature fails for commands that are specific to custom device drivers.
¢ Automatically opened devices do not respond to commands that use "all" as a device name.

e The automatic open feature does not let your application specify the "type" flag. Without the device
name, MCI determines the device name from the entries in the registry. To use a specific device, you
can combine the device name with the filename by using the exclamation point, as described in the
reference material for the open command.

If an application uses the automatic open feature to open a device, the application should check the
return value of every subsequent open command to verify that the device is still open. MCI also
automatically closes any device that it automatically opens. MCI typically closes a device in the following
situations:

¢ The command is completed.

You abort the command.

¢ You request notification in a subsequent command.
MCI detects a failure.

MCI Devices

Every MCI multimedia device supports a core set of MCl commands in a way that makes sense for that
device. For example, the play (MCI_PLAY) command causes the open device to play a file or track, no
matter what kind of data the device works with. This section discusses MCI devices and how they
respond to standard MCIl commands.

Device Control

To control an MCI device, you open the device, send the necessary commands to it, and then close the
device. The commands can be very similar, even for completely different MCI devices. For example, the
following series of MCI commands plays the sixth track of an audio CD by using the command-string
interface:

mciSendString ("open cdaudio", lpszReturnString,
lstrlen(lpszReturnString), NULL);

mciSendString ("set cdaudio time format tmsf", lpszReturnString,
lstrlen (lpszReturnString), NULL);

mciSendString ("play cdaudio from 6 to 7", lpszReturnString,
lstrlen (lpszReturnString), NULL);

mciSendString ("close cdaudio", lpszReturnString,
lstrlen (lpszReturnString), NULL);

The next example shows a similar series of MCI commands that plays the first 10,000 samples of a
waveform-audio file:

mciSendString (
"open c:\mmdata\purplefi.wav type waveaudio alias finch",
lpszReturnString, lstrlen(lpszReturnString), NULL);

mciSendString ("set finch time format samples", lpszReturnString,
lstrlen (lpszReturnString), NULL);

mciSendString ("play finch from 1 to 10000", lpszReturnString,
lstrlen(lpszReturnString), NULL);

mciSendString ("close finch", 1lpszReturnString,
lstrlen (lpszReturnString), NULL);

These examples illustrate some interesting facts about MCI commands:

* The same basic commands (open, set, play, and close) are used with CD audio and waveform-
audio devices. The same MCI commands are used with all MCI devices.

¢ The open command for the waveform-audio device includes a filename specification. The waveform-
audio device is a compound device (one associated with a data file), while the CD audio device is a
simple device (one without an associated data file).

¢ The set command specifies time formats in each case, but the time-format flag for the CD audio
device specifies tracks/minutes/seconds/frames (TMSF) format, while the time format used with the
waveform-audio device specifies "samples".

¢ The variables used with the "from" and "to" flags are appropriate to the respective time format. For
example, for the CD audio device, the variables specify a range of tracks, but for the waveform-audio
device, the variables specify a range of samples.

Playback and Positioning

A number of MCI commands, such as play (MCI_PLAY), stop (MCI_STOP), pause (MCI_PAUSE),
resume (MCI_RESUME), and seek (MCI_SEEK), affect the playback or positioning of a multimedia file. If
an MCI device receives a playback command while another playback command is in progress, it accepts
the command and either stops or supersedes the previous command.

Many MCI commands, such as set (MCI_SET), do not affect playback. A notification from one of these
commands does not interfere with pending playback or position commands as long as the notifications
are not performed from the same instance of the driver. For example, you can issue a set or status
(MCI_STATUS) command while a device is performing a seek command without stopping or superseding
the seek command.

However, there can be only one pending notification. For example, if an application requests a notification
for play and follows that request with status "start position notify," the play notification will return
"superseded" and the notification for the status command will return when it is finished. In this case,
however, the play command will still succeed, even though the application did not receive the notification.

Device Types

MCI recognizes a basic set of device types. A device type is a set of MCI drivers that share a common
command set and are used to control similar multimedia devices or data files. Many MCI commands,
such as open (MCI_OPEN), require you to specify a device type.

The following table lists the defined device types. The current implementation of MCI includes command
sets for a subset of these devices.

Device type Constant Description

cdaudio MCI_DEVTYPE_CD_AUDIO CD audio player

dat MCI_DEVTYPE_DAT Digital-audio tape
player

digitalvideo MCI_DEVTYPE_DIGITAL_VIDEO Digital video in a
window (not GDI-

based)
other MCI_DEVTYPE_OTHER Undefined MCI
device
overlay MCI_DEVTYPE_OVERLAY Overlay device
(analog video in a
window)
scanner MCI_DEVTYPE_SCANNER Image scanner
sequencer MCI DEVTYPE_SEQUENCER MIDI sequencer
ver MCI_DEVTYPE_VCR Video-cassette
recorder or player
videodisc MCI_DEVTYPE_VIDEODISC Videodisc player
waveaudio MCI_DEVTYPE_WAVEFORM_AUDIAudio device that
0] plays digitized

waveform files

In this document, the names of device types are bold. Device-type names are used with the command-
string interface. Device-type constants are used with the command-message interface.

Device Names

For each device type, there might be several MCI drivers that share the command set but operate on
different data formats. To uniquely identify an MCI driver, MCIl uses device names.

Device names are identified either in the [mci] section of the SYSTEM.INI file or in the appropriate part of
the registry. This information identifies all MCI drivers to Windows. The entries in the [mci] section use the

following form:
device_name = driver_filename.extension
The following example shows a typical [mci] section from SYSTEM.INI:

[mci]
cdaudio=mcicda.drv
sequencer=mciseq.drv
waveaudio=mciwave.drv
avivideo=mciavi.drv

If an MCI driver is installed using a device name that already exists in SYSTEM.INI or the registry, the
system appends an integer to the device name of the new driver, creating a unique device name. In the
preceding example, an additional driver installed using the "cdaudio" device name would be assigned the
device name "cdaudio1".

Driver Support for MCI Commands

MCI drivers provide the functionality for MCl commands. The system software performs some basic data-
management tasks, but all the multimedia playback, presentation, and recording is handled by the
individual MCI drivers.

Drivers vary in their support for MCl commands and command flags. Because multimedia devices can
have widely different capabilities, MCl is designed to let individual drivers extend or reduce the command
sets to match the capabilities of the device. For example, the record (MCI_RECORD) command is part of
the command set for MIDI sequencers, but the MCISEQ driver included with Windows does not support
this command. The reference topic for the record command explains that devices of the sequencer
device type recognize the command; this does not mean that all devices of this type support the
command. Applications should use the capability (MCI_GETDEVCAPS) command to determine the
capabilities of a particular device.

Default Behavior of Drivers

In many situations, the MCI command specifications define the default values and behavior for drivers of
a particular device type. Since multimedia devices can have a wide range of features (and limitations),
there can be undefined areas of behavior. Also, drivers might handle exceptions differently, based on the
capabilities of the device.

For example, consider the following commands sent to a waveform-audio driver:

mciSendString ("open sound.wav alias sound", lpszReturnString,
lstrlen (lpszReturnString), NULL);

mciSendString ("play sound notify", lpszReturnString,
lstrlen(lpszReturnString), NULL);

mciSendString ("record sound from O notify", lpszReturnString,
lstrlen(lpszReturnString), NULL);

The record command returns a "Parameter out of range" value and stops the playback started by the
previous play command. One might expect the driver to validate the record command before stopping
playback, but the driver stops the playback first.

Working with MCI Devices

This section describes how to perform the following tasks:

¢ Opening a device

¢ Retrieving information about a device

¢ Obtaining MCI system information

¢ Playing a device

¢ Recording

* Stopping, pausing, and resuming a device
¢ Closing a device

In addition, this section provides you with shortcuts you can use with MCI commands.

Opening a Device

Before using a device, you must initialize it by using the open (MCI_OPEN) command. This command
loads the driver into memory (if it isn't already loaded) and retrieves the device identifier you will use to
identify the device in subsequent MCI commands. You should check the return value of the
mciSendString or mciSendCommand function before using a new device identifier to ensure that the
identifier is valid. (You can also retrieve a device identifier by using the mciGetDevicelD function.)

Like all MCI command messages, MCI_OPEN has an associated structure. These structures are
sometimes called parameter blocks. The default structure for MCI_OPEN is MCI_OPEN_PARMS. Certain
devices (such as waveform and overlay) have extended structures (such as
MCI_WAVE_OPEN_PARMS and MCI_OVLY_OPEN_PARMS) to accommodate additional optional
parameters. Unless you need to use these additional parameters, you can use the MCI_OPEN_PARMS
structure with any MCI device.

The number of devices you can have open is limited only by the amount of available memory.

Using an Alias

When you open a device, you can use the "alias" flag to specify a device identifier for the device. This
flag lets you assign a short device identifier for compound devices with lengthy filenames, and it lets you
open multiple instances of the same file or device.

For example, the following command assigns the device identifier "birdcall" to the lengthy filename C:
\NABIRDS\SOUNDS\MOCKMTNG.WAV:

mciSendString (
"open c:\nabirds\sounds\mockmtng.wav type waveaudio alias birdcall",
lpszReturnString, lstrlen(lpszReturnString), NULL);

In the command-message interface, you specify an alias by using the IpstrAlias member of the
MCI_OPEN_PARMS structure.

Specifying a Device Type

When you open a device, you can use the "type" flag to refer to a device type, rather than to a specific
device driver. The following example opens the waveform-audio file C:\WINDOWS\CHIMES.WAV (using
the "type" flag to specify the waveaudio device type) and assigns the alias "chimes":

mciSendString (
"open c:\windows\chimes.wav type waveaudio alias chimes",
lpszReturnString, lstrlen(lpszReturnString), NULL);

In the command-message interface, the functionality of the "type" flag is supplied by the IpstrDeviceType
member of the MCI_OPEN_PARMS structure.

Simple and Compound Devices

MCI classifies device drivers as compound or simple. Drivers for compound devices require the name of a
data file for playback; drivers for simple devices do not.

Simple devices include cdaudio and videodisc devices. There are two ways to open simple devices:

¢ Specify a pointer to a null-terminated string containing the device name from the registry or the
SYSTEM.INI file.

For example, you can open a videodisc device by using the following command:

mciSendString ("open videodisc", lpszReturnString,
lstrlen (lpszReturnString), NULL);

In this case, "videodisc" is the device name from the registry or the [mci] section of SYSTEM.INI.

¢ Specify the actual name of the device driver. Opening a device using the device-driver filename,
however, makes the application device-specific and can prevent the application from running if the
system configuration changes. If you use a filename, you do not need to specify the complete path or
the filename extension; MCI assumes drivers are located in a system directory and have the .DRV
filename extension.

Compound devices include waveaudio and sequencer devices. The data for a compound device is
sometimes called a device element. This document, however, generally refers to this data as a file, even
though in some cases the data might not be stored as a file.

There are three ways to open a compound device:

e Specify only the device name. This lets you open a compound device without associating a filename.
Most compound devices process only the capability (MCl_GETDEVCAPS) and close (MCI_CLOSE)
commands when they are opened this way.

¢ Specify only the filename. The device name is determined from the associations in the registry.

¢ Specify the filename and the device name. MCI ignores the entries in the registry and opens the
specified device name.

To associate a data file with a particular device, you can specify the filename and device name. For
example, the following command opens the waveaudio device with the flename MYVOICE.SND:

mciSendString ("open myvoice.snd type waveaudio", lpszReturnString,
lstrlen (lpszReturnString), NULL);

In the command-string interface, you can also abbreviate the device name specification by using the
alternative exclamation-point format, as documented with the open command.

Opening a Device Using the Filename Extension

If the open (MCI_OPEN) command specifies only the filename, MCI uses the filename extension to select
the appropriate device from the list in the registry or the [mci extensions] section of the SYSTEM.INI file.
The entries in the [mci extensions] section use the following form:

filename_extension=device_name

MCI implicitly uses device _name if the extension is found and if a device name has not been specified in
the open command.

The following example shows a typical [mci extensions] section:

[mci extensions]
wav=waveaudio
mid=sequencer
rmi=sequencer

Using these definitions, MCI opens the waveaudio device if the following command is issued:

mciSendString ("open train.wav", lpszReturnString,
lstrlen(lpszReturnString), NULL);

New Data Files

To create a new data file, simply specify a blank filename. MCI does not save a new file until you save it
by using the save (MCI_SAVE) command. When creating a new file, you must include a device alias with
the open (MCI_OPEN) command.

The following example opens a new waveaudio file, starts and stops recording, then saves and closes
the file:

mciSendString ("open new type waveaudio alias capture", lpszReturnString,
lstrlen (lpszReturnString), NULL);
mciSendString ("record capture", lpszReturnString,
lstrlen (lpszReturnString), NULL);
mciSendString ("stop capture", lpszReturnString,
lstrlen (lpszReturnString), NULL);
mciSendString ("save capture orca.wav", lpszReturnString,
lstrlen (lpszReturnString), NULL);
mciSendString ("close capture", lpszReturnString,
lstrlen (lpszReturnString), NULL);

Shareable Devices

The "shareable" (MCI_OPEN_SHAREABLE) flag of the open (MCI_OPEN) command lets multiple
applications access the same device (or file) and device instance simultaneously. If your application
opens a device or file as shareable, other applications can also access it by opening it as shareable. The
shared device or file gives each application the ability to change the parameters governing its operating
state. Each time a device or file is opened as shareable, MCI returns a unique device identifier, even
though the identifiers refer to the same instance.

If your application opens a device or file without specifying that it is shareable, no other application can
access it until your application closes it. Also, if a device supports only one open instance, the open
command will fail if you specify the shareable flag.

If your application opens a device and specifies that it is shareable, your application should not make any
assumptions about the state of this device. Your application might need to compensate for changes made
by other applications accessing the device.

Most compound files are not shareable; however, you can open multiple files, or you can open a single
file multiple times. If you open a single file multiple times, MCI creates an independent instance for each,
with each instance having a unique operating status.

If you open multiple instances of a file, you must assign a unique device identifier to each. You can use an
alias, as described in the following section, to assign a unique name for each file.

Retrieving Information About a Device

Every device responds to the capability (MCl_GETDEVCAPS), status (MCI_STATUS), and info
(MCI_INFO) commands. These commands obtain information about the device. For example, the
following command returns "true" if a cdaudio device can eject the disc:

mciSendString (
"capability cdaudio can eject",
lpszReturnString, lstrlen(lpszReturnString), NULL);

The flags listed for the required and basic commands provide a minimum amount of information about a
device. Many devices supplement the required and basic commands with extended flags to provide
additional information about the device.

Obtaining MCI System Information

The sysinfo (MCI_SYSINFQO) command obtains system information about MCI devices. MCI handles this
command without relaying it to any MCI device. For the command-message interface, MCI returns the
system information in the MCI_SYSINFO_PARMS structure.

You can use the sysinfo (MCI_SYSINFO) command to retrieve information such as the number of MCI
devices on a system, the number of MCI devices of a particular type, the number of open MCI devices,
and the names of the devices. This command is often called more than once to retrieve a particular piece
of information. For example, you might retrieve the number of devices of a particular type in the first call
and then enumerate the names of the devices in the next.

Playing a Device

The play (MCI_PLAY) command starts playing a device. Without any flags, this command starts playing
from the current position and plays until the command is interrupted or until the end of the media or file is
reached. After playback, the current position is at the end of the media. You can also use the seek
(MCI_SEEK) command to change the current position.

Most devices that support the play command also support the "from" (MCI_FROM) and "to" (MCI_TO)
flags. These flags indicate the position at which the device should start and stop playing. For example, the
following command plays a CD audio disc from the beginning of the first track:

mciSendString ("play cdaudio from 0", lpszReturnString,
lstrlen (lpszReturnString), NULL);

Some device types extend this command to exploit the capabilities of a particular device. For example,
the play command for the videodisc device type includes the "fast" (MCI_VD_PLAY_FAST), "slow"
(MCI_VD_PLAY_SLOW), and "scan" (MCI_VD_PLAY_SCAN) flags.

Note The units assigned to the position value depend on the time format used by the device. Each
device has a default time format, but you should specify the time format by using the set (MCI_SET)
command before issuing any commands that use position values.

Playing an AVI File

Video files in Windows are made up of at least two interleaved data streams: a video (pictorial) stream
and an audio stream. You can easily play these audio-video interleaved (AVI) files by using MCI
commands. The following sections discuss playing AV files.

Setting Up an MCIAVI Playback Window
Your application can specify the following options to define the playback window for playing an AVI file:

¢ Use the MCIAVI driver's default pop-up window.

¢ Specify a parent window and window style that the MCIAVI driver can use to create the playback
window.

¢ Specify a playback window for the MCIAVI driver to use for playback.

¢ Play the AVI file on a full-screen display.

If your application does not specify any window options, the MCIAVI driver creates a default window for
playing the sequence. The driver creates this playback window for the open (MCI_OPEN) command, but
it does not display the window until your application sends a command to either display the window or
play the file. This default playback window is a pop-up window with a sizing border, title bar, a thick frame,
a window menu, and a Minimize button.

Your application can also specify a parent window handle and a window style when it issues the open
command. In this case, the MCIAVI driver creates a window based on these specifications instead of the
default pop-up window. Your application can specify any window style available for the CreateWindow
function. Styles that require a parent window, such as WS_CHILD, should include a parent window
handle.

Your application can also create its own window and supply the handle to the MCIAVI driver by using the
window (MCI_WINDOW) command. The MCIAVI driver uses this window instead of creating one of its
own.

When the MCIAVI driver creates the playback window or obtains a window handle from your application, it
does not display the window until your application either plays the sequence or sends a command to
display the window. Your application can use the window command to display the window without playing
the sequence. For example, the following command displays the window using the command-string
interface:

mciSendString ("window movie state show", lpszReturnString,
lstrlen (lpszReturnString), NULL);

In this example, "movie" is an alias for the digital-video device.

Your application can also play an AVI file full-screen. To play full-screen, modify the play (MCI_PLAY)
command with the "fullscreen” (MCI_MCIAVI_PLAY_FULLSCREEN) flag. When your application uses
this flag, the MCIAVI driver uses a 320- by 240-pixel full-screen format for playing the sequence. For
example, the following command plays the opened file full-screen (using "movie" as an alias):

mciSendString ("play movie fullscreen", lpszReturnString,
lstrlen(lpszReturnString), NULL);

Changing the Playback State for an AVI file

Your application can use the seek (MCI_SEEK) command to move the current position to the beginning,
the end, or an arbitrary position in an AVI file. There are two seek modes for the MCIAVI driver: exact and
inexact. Your application can change the seek mode by using the set (MCI_SET) command. When you
use set "seek exactly on", the MCIAVI driver seeks exactly to the frame your application specifies. This
might cause a delay if the file is temporally compressed and your application does not specify a key
frame. When you use set "seek exactly off", the MCIAVI driver seeks to the nearest key frame in a
temporally compressed file.

Some MCI commands let your application alter the playback of an AVI file in other ways. For example, an
AVl file, by default, plays at its normal speed, but your application can increase or decrease this speed by
using the "speed" flag with the set command. For AVl files, a speed value of 1000 is typical. Thus, to play
a movie at half its typical speed, your application can use the command set "movie speed 500";
alternatively, it can use set "movie speed 2000" to play the sequence at twice its normal speed.

The setaudio (MCI_SETAUDIO) command lets your application control the audio portion of an AVI file.
Your application can mute audio during playback or, in the case of multiple audio stream files, select the
audio stream that is played.

The MCIAVI driver has a dialog box to control some of its playback options. Some of the options available
to the user include selecting window-oriented or full-screen playback, selecting the seek mode, and
zooming the image. Your application can have MCIAVI display this dialog box by using the configure
(MCI_CONFIGURE) command.

Stream Handlers

The data in an AVI file is treated as a series of streams. An AVI file typically contains an audio and video
stream, and there might also be a custom stream that contains text or some other custom data. The
MCIAVI driver can use different handlers for these data streams. For more information about custom AVI
files, see Custom File and Stream Handlers.

Recording

The general MCI specification supports recording with digital-video, MIDI sequencer, video-cassette
recorder (VCR), and waveform-audio devices; however, only waveform-audio and VCR devices currently
implement recording capabilities. You can insert or overwrite recorded information into an existing file or
record into a new file. To record to an existing file, open a waveform-audio device and file as you would
normally. To record into a new file, when you open the device specify "new" as the device name if you are
using the command-string interface. If you are using the command-message interface, specify a zero-
length filename.

When MCI creates a new file for recording, the data format is set to a default format specified by the
device driver. To use a format other than the default format, you can use the set (MCI_SET) command.

To begin recording, use the record command (or MCI_RECORD and the MCI_RECORD_PARMS
structure).

If you record in insert mode to an existing file, you can use the "from" (MClI_FROM) and "to" (MCI_TO)
flags of the record command to specify starting and ending positions for recording. For example, if you
record to a file that is 20 seconds long, and you begin recording at 5 seconds and end recording at 10
seconds, the resulting file will be 25 seconds long. The file will have a 5-second segment inserted 5
seconds into the original recording.

If you record with overwrite mode to an existing file, you can use the "from" and "to" flags to specify
starting and ending locations of the section that is overwritten. For example, if you record to a file that is
20 seconds long, and you begin recording at 5 seconds and end recording at 10 seconds, you still have a
recording 20 seconds long, but the section beginning at 5 seconds and ending at 10 seconds will have
been replaced.

If you do not specify an ending location, recording continues until you send a stop (MCI_STOP)
command, or until the driver runs out of free disk space. If you record to a new file, you can omit the
"from" flag or set it to zero to start recording at the beginning of a new file. You can specify an ending
location to terminate recording when recording to a new file.

The record command is sometimes accurate to within only 1 second of the starting location, such as with
VCR devices. To record more accurately, you should use the cue (MCI_CUE) command. This command
is recognized by digital-video, VCR, and waveform-audio devices. For more information about recording
with VCR devices, see VCR Services.

Saving a Recorded File

When recording is complete, use the save command (or MCI_SAVE and the MCI_SAVE_PARMS
structure) to save the recording before closing the device.

Note If you close the device without saving, the recorded data is lost.

Checking Input Levels (PCM Only)

To get the level of the input signal before recording on a PCM (Pulse Code Modulation) waveform-audio
input device, use the status (MCI_STATUS) command. Specify the "level" flag (or the
MCI_STATUS_ITEM flag and set the dwltem member of the MCI_STATUS_PARMS structure to
MCI_WAVE_STATUS_LEVEL). The average input signal level is returned. The left-channel value is in the
high-order word and the right- or mono-channel value is in the low-order word.

The input level is represented as an unsigned value. For 8-bit samples, this value is in the range 0
through 127 (0x7F). For 16-bit samples, it is in the range 0 through 32,767 (OX7FFF).

Stopping, Pausing, and Resuming a Device

The stop (MCI_STOP) command suspends the playing or recording of a device. Many devices also
support the pause (MCI_PAUSE) command. The difference between stop and pause depends on the
device. Usually pause suspends operation but leaves the device ready to resume playing or recording
immediately.

Using the play (MCI_PLAY) or record (MCI_RECORD) command to restart a device resets the locations
specified with the "to" (MCI_TO) and "from" (MCI_FROM) flags before the device was paused or stopped.
Without the "from" flag, these commands reset the starting location to the current position. Without the
"to" flag, they reset the ending location to the end of the media. To continue playing or recording without
resetting a previously specified stop position, use the play or record command's "to" flag to specify an
ending position.

Some devices support the resume (MCI_RESUME) command to restart a paused device. This command
does not change the "to" and "from" locations specified with the play or record command that preceded
the pause command.

Closing a Device

The close (MCI_CLOSE) command releases access to a device or file. MCI frees a device when all tasks
using a device have closed it. To help MCI manage the devices, your application must close each device
or file when it is finished using it.

When you close an external MCI device that uses its own media instead of files (such as CD audio), the
driver leaves the device in its current mode of operation. Thus, if you close a CD audio device that is
playing, even though the device driver is released from memory, the CD audio device will continue to play
until it reaches the end of its content.

Note Closing an application with open MCI devices can prevent other applications from using those
devices until Windows is restarted.

MCI Implementations for Specific Devices

The following sections discuss using MCI commands with specific MCI devices:

e MCIAVI
e VCR services

MCIAVI

An AVI file can contain more than two streams — for example, a video sequence, an English soundtrack,
and a French soundtrack. Your application can use a stream independently of the other streams in the
file.

The digitalvideo device type controls video files. For a list of the MCI commands recognized by digital-
video devices, see Digital-Video Command Set.

The MCIAVI driver plays video sequences and other data streams under the control of MCl commands.
Data streams can contain images, audio, and palettes. The image data can consist of images with either
color palettes or true-color information.

Audio is synchronized with the video within one-thirtieth of a second. If audio hardware is not available,
however, the driver plays only the video stream. The MCIAVI driver can drop video frames, if necessary,
to play a stream without audio interruption.

Your application can use the MCIWnd window class services instead of the MCl command interface to
control any MCI driver. This window class handles many of the details of managing the window supporting
the MCI device and simplifies the programming required to send the MCI commands. Your application
can use the MCIWnd library services directly to control the MCI device, or it can have MCIWnd display a
toolbar, scroll bar, and menus that let the user control the device. For more information about the
MCIWnd window class, see MCIWnd Window Class.

VCR Services

Windows provides VCR services through a device driver that is based on the MCI command set for
VCRs. This section describes the MCI Video System Control Architecture (VISCA) driver and explains
how to use it to control a VCR.

The ver device type controls VCRs. For a list of the MCI commands recognized by VCR devices, see
VCR Command Set.

The MCI VISCA Driver

The MCI VISCA driver controls Sony VISCA-compatible VCRs, such as the CVD-1000 VDeck. The
VISCA driver controls the tape transport, channel tuners, and VCR input and output channels.

Searching and Positioning with a VCR

The VISCA driver uses two methods to track videotape movement within the VCR tape transport:
timecode information and tape counters. Timecode information is timing information that has been
recorded on the videotape. Most VCRs allow timecodes to be recorded without destroying audio and
video tracks. Tape counters estimate the amount of videotape that travels past the videotape head to
obtain a position.

Both timecode information and tape counters increase as the videotape moves from beginning to end.
Because of its accuracy, using timecode information to position a videotape is almost always preferable to
using tape counters.

The MCI command flags for specifying positioning information are expressed as time dependencies: "time
format”, "duration”, "from", "to", and "seek". (Also, the status "position" command returns its time value in
the current time format.)

The VISCA driver uses the set "time mode" command to select the type of positioning to use with a
videotape. When the time mode is set to "timecode", the status "position" and set "time format"
commands use the timecode on the videotape. When the time mode is set to "counter”, the status
"position" and set "time format" commands use counters.

An application can set the time mode to "detect" if it doesn't matter that there might be two sources of
position information. When in detect mode, the VISCA driver uses timecode information for positioning
when any of the following conditions occur:

¢ The timecode information is present when the driver is opened.

¢ You change a videotape with the set "door open" command and timecode information is present on
the videotape.

¢ The set "time mode" command is reissued.

If timecode information cannot be found, the driver uses the tape counters.

To determine the current positioning method, issue the status "time type" command, which returns either
"timecode" or "counter". You can also identify the current positioning mode by using the status "time

mode" command, which returns "timecode", "counter”, or "detect".

The status "counter" command retrieves the current tape counter value, regardless of the current
positioning method; however, you can use this counter reading only with the set "counter” command.

The VISCA driver can retrieve the native timecode format recorded on a videotape by using the status
"timecode type" and status "frame rate" commands together. For example, if timecode type is "smpte"
and frame rate is 25, the native timecode format recorded on the videotape is SMPTE 25.

The VISCA driver can also retrieve the counter resolution by using the status "counter resolution”
command, which returns "seconds" or "frames". The counter format might still be set to SMPTE 30, but
the return value returns only a frame of 0. If the current time type is counter, then this resolution applies
also to the value returned by status "position".

Capturing Frames

Frame-capturing commands provide still images for a frame-capture device. A frame-capture device is a
separate piece of hardware capable of reading and storing the video image. The VISCA driver supports
the freeze (MCI_FREEZE) command to stabilize a still image for capturing. Also, the unfreeze
(MCI_UNFREEZE) command can be used to restart the tape transport following a freeze command.

The freeze command provides a high-quality, stabilized, time-base - corrected image for a frame-capture
device. This command exists because a device might not always deliver its maximum-quality output
image during playback or while paused; such a video image is not suitable for capturing.

The unfreeze command unlocks the tape transport and resumes the transport mode in effect before the
freeze command.

When your application needs to record a video image on the VCR, use the freeze "input" command or the
cue (MCI_CUE) command to record the image.

Selecting Inputs

The VISCA driver supports three input types: video, audio, and timecode. The video inputs include two
standard channels (lines 1 and 2), an SVideo channel, an auxiliary channel, and a channel from an
internal tuner. The audio inputs include two standard channels (lines 1 and 2) and a channel from an
internal tuner. The timecode input is internal to the VCR.

The normal outputs carry the currently selected inputs when the VCR is recording or when the tape
transport is stopped, and they carry the contents of the videotape when the tape transport is playing or
paused. The monitored outputs carry the same information as the normal outputs plus current timecode
and channel information.

Assuming the appropriate external inputs are connected to your VCR and you have decided what you
want to record, you can select the inputs to be recorded. For example, to record or view from the "svideo"
video and the "line 1" audio inputs, you would use the setvideo (MCI_SETVIDEO) and setaudio
(MCI_SETAUDIO) commands to select these input sources. You can verify these selections by using the
status (MCI_STATUS) command.

By default, the monitor shows exactly what appears as the output. Sometimes, however, you might want
to view one source while recording from another. This is a common practice using the tuner. For example,
you might want to watch channel 4 while you record channel 7. In this case, you have two logical tuner
inputs. You could set up the VCR by using the following commands:

To review one source while recording from another

1. Use the settuner (MCI_SETTUNER) command to select the channels to watch and record.
2. Use the setvideo command to select the video-recording source.

3. Use the setaudio command to select the audio-recording source.
4

. Use the setvideo command to route the channel 4 video input to the monitored output to display it
on-screen.
5. Use the setaudio command to route the channel 4 audio input to the monitored output to play the
audio.

6. Verify your selections by using the status command.

The VISCA driver also supports a special input type for audio and video called mute. Mute allows the

selection of "no input," which is useful when recording a blank signal.

Selecting Recording Tracks

Three types of recording tracks exist on a videotape: video, audio, and timecode. You have only one
video or timecode track, but you can use more than one audio track. When you do so, make track 1 the
main audio track.

The VISCA driver supports two operating modes: assemble and insert. In assemble mode, all tracks are
selected to be recorded. In insert mode, tracks can be independently selected for recording. Most VCRs
are in assemble mode by default. Use the set (MCI_SET) command to change these modes.

Recording and Editing

The record (MCI_RECORD) command provides simple recording and is accurate to approximately 1
second of the starting position. To record more accurately, or if you expect to edit the video content while
simultaneously operating multiple decks, you should use the cue (MCI_CUE) command.

The cue command prepares the device for recording or playing. Use the cue "input" command to prepare
the device for recording. The cue command is required because an application must know when the
device is ready to perform the command (and because it can take several minutes to prepare for a play
(MCI_PLAY) or record command). T

The VCR prepares itself for recording or playing by seeking to the in-point, which is the current position or
the position specified by using the cue "from" command. If the "preroll" flag is specified with the cue
command, however, the VCR positions itself the preroll distance from the in-point. The "preroll" flag also
indicates that the VCR uses any applicable editing mode, so it's important that you use "preroll",
especially when you want the most accurate recording. (Use the capability (MCl_GETDEVCAPS)
command with the "can preroll" flag to check whether the preroll mode is supported.)

Note When you record using "from" and "to" positions, the "from" position is included in the edit, and
the "to" position is not.

For more information about recording, see Recording.

Using the Clock While Editing

When editing, you might want to record segments from one VCR to another. You can begin recording at a
specific time and position on one VCR while another begins playing at the same time and position by
specifying an action (play or record), a position, and a time for each VCR.

Both VCRs must use the same clock for this type of editing; the clock helps synchronize both devices.
You can determine if two VCRs share the same clock by using the status (MCI_STATUS) command with
the "clock id" flag to query each VCR. If the identification numbers returned by the status command are
the same, the devices use the same clock. As a shared resource, the clock can be connected to multiple
VCRs. The VISCA driver supports only one shared clock.

You can also determine clock resolution by using the status "clock increment rate" command. This
command returns the number of increments the clock supports per second. For example, if the clock is
updated every millisecond, the command returns 1000 as the clock increment rate. The advantage of
using the increment rate is that the rate is expressed as an integer; otherwise, the increment would be a
(single- or double-precision) floating-point value. As an integer, manipulating the increment rate is a
simple operation and is not susceptible to rounding errors. You can reset the clock by using the set
(MCI_SET) command with the "clock 0" (zero) flag. o

When issuing a play (MCI_PLAY), record (MCI_RECORD), or seek (MCI_SEEK) command, you can
specify when the command is to be executed. The characteristics of the VCRs being used determine

when to start each VCR. The timing must account for the amount of preroll each device requires and the
amount of time needed to complete the MCI commands used to set up the edit session. To do this,
retrieve the clock time and add a waiting interval of 5 to 10 seconds. (The waiting interval must be long
enough to let the preroll and any outstanding MCI commands finish executing.)

To ensure that the waiting period is long enough, place the record command last in your application and
check the time immediately before it. If the interval is too short, restart the play command. Alternatively,
you could check the time immediately after the last command of the script to verify that there is enough
time to send and complete all the commands.

Device-Specific Command Sets

The following sections list the commands supported by each device type:

* CD audio command set

¢ Digital-video command set

¢ MIDI Sequencer command Set
¢ VCR command set

¢ Videodisc command set
¢ Video-overlay command set

¢ Waveform-audio command set

CD Audio Command Set

CD audio devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP

sysinfo MCI_SYSINFO

Digital-Video Command Set

Digital-video devices (for example, the MCIAVI driver) support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
capture MCI_CAPTURE
close MCI_CLOSE
configure MCI_CONFIGURE
copy MCI_COPY
cue MCI_CUE
cut MCI_CUT
delete MCI_DELETE
freeze MCI_FREEZE
info MCI_INFO
list MCI_LIST
load MCI_LOAD
monitor MCI_MONITOR
open MCI_OPEN
aste MCI_PASTE
pause MCI_PAUSE
play MCI_PLAY
put MCI_PUT
quality MCI_QUALITY
realize MCI_REALIZE
record MCI_RECORD
reserve MCI_RESERVE
restore MCI_RESTORE
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
setaudio MCI_SETAUDIO
setvideo MCI_SETVIDEO
signal MCI_SIGNAL
status MCI_STATUS
step MCI_STEP
stop MCI_STOP
sysinfo MCI_SYSINFO
undo MCI_UNDO
unfreeze MCI_UNFREEZE
update MCI_UPDATE
where MCI_WHERE

window MCI_WINDOW

MIDI Sequencer Command Set

The MIDI sequencer supports the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP

sysinfo MCI_SYSINFO

VCR Command Set

VCRs support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
cue MCI_CUE
freeze MCI_FREEZE
index MCI_INDEX
info MCI_INFO
list MCI_LIST
mark MCI_MARK
ause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
setaudio MCI_SETAUDIO
settimecode MCI_SETTIMECODE
settuner MCI_SETTUNER
setvideo MCI_SETVIDEO
status MCI_STATUS
step MCI_STEP
stop MCI_STOP
sysinfo MCI_SYSINFO

unfreeze MCI_UNFREEZE

Videodisc Command Set

Videodisc devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
escape MCI_ESCAPE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
resume MCI_RESUME
seek MCI_SEEK
set MCI_SET
spin MCI_SPIN
status MCI_STATUS
step MCI_STEP
sto MCI_STOP

sysinfo MCI_SYSINFO

Video-Overlay Command Set

Video-overlay devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
freeze MCI_FREEZE
info MCI_INFO

load MCI_LOAD
open MCI_OPEN

put MCI_PUT

save MCI_SAVE

set MCI_SET
status MCI_STATUS
sysinfo MCI_SYSINFO
unfreeze MCI_UNFREEZE
where MCI_WHERE

window MCI_WINDOW

Waveform-Audio Command Set

Waveform-audio devices support the following set of commands:

String form Message form
break MCI_BREAK
capability MCI_GETDEVCAPS
close MCI_CLOSE
cue MCI_CUE
delete MCI_DELETE
info MCI_INFO
open MCI_OPEN
pause MCI_PAUSE
play MCI_PLAY
record MCI_RECORD
resume MCI_RESUME
save MCI_SAVE
seek MCI_SEEK
set MCI_SET
status MCI_STATUS
stop MCI_STOP
sysinfo MCI_SYSINFO

Using MCI Command Strings

This section contains examples demonstrating how to use the MCI command-string interface to perform
the following tasks:

¢ Sending a command

* Opening multiple AVI files

¢ Changing the playback state
¢ Converting strings

Sending a Command

The following example function sends the play command with the "from" and "to" flags.

DWORD PlayFromTo (LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo)
{
char achCommandBuff[128];
wsprintf (achCommandBuff, "play %s from %u to %u",
lpstrAlias, dwFrom, dwTo);
return mciSendString (achCommandBuff, NULL, 0, NULL);

Opening Multiple AVI Files

If your application opens multiple files, it should include routines such as the following simple functions.
The application would use the "initAVI" function during its initialization and the "termAVI" function during
its termination.

// Initialize the MCIAVI driver. This returns TRUE if OK,
// FALSE on error.

BOOL initAVI (VOID)
{
// Perform additional initialization before loading first file.
return mciSendString ("open digitalvideo", NULL, 0, NULL) == 0;
}

// Close the MCIAVI driver.
void termAVI (VOID)
{
mciSendString ("close digitalvideo", NULL, 0, NULL);

Changing the Playback State

The following examples show how to use the pause, resume, stop, and seek commands.

// Assume the file was opened with the alias 'movie'.

// Pause play.
mciSendString ("pause movie", NULL, 0, NULL);

// Resume play.
mciSendString ("resume movie", NULL, 0, NULL);

// Stop play.
mciSendString ("stop movie", NULL, 0, NULL);

// Seek to the beginning.
mciSendString ("seek movie to start", NULL, 0, NULL);

The following example shows how to change the seek mode:

// Set seek mode with the string interface.
// Assume the file was opened with the alias 'movie'.

void SetSeekMode (BOOL fExact)
{
if (fExact)
mciSendString ("set movie seek exactly on", NULL, 0, NULL);

else
mciSendString ("set movie seek exactly off", NULL, 0, NULL);

Converting Strings

When you use the string interface, all values passed with the command and all return values are text
strings, so your application needs conversion routines to translate from variables to strings or back again.
The following example retrieves the source rectangle and converts the returned string into rectangle
coordinates.

void GetSourceRect (LPSTR lpstrAlias, LPRECT lprc)
{

char achRetBuff[128];

char achCommandBuff[128];

// Build the command string.
wsprintf (achCommandBuff, "where %s source", lpstrAlias);
SetRectEmpty (1lprc) ; // clears the RECT

// Send the command.

if (mciSendString(achCommandBuff, achRetBuff,
sizeof (achRetBuff), NULL) == 0){

// The rectangle is returned as "x y dx dy".

// Both x and y are 0 because this is the source
// rectangle. Translate the string into the RECT
// structure.

char *p;

p = achRetBuff; // point to the return string
while (*p != ' ") p++; // go past the x (0)

while (*p == "' ") p++; // go past spaces

while (*p != "' ') p++; // go past the y (0)

while (*p == "' ") p++; // go past spaces

// Retrieve the width.

for (; *p !'= " '; pt+)
lprc->right = (10 * lprc->right) + (*p - '0');
while (*p == "' ") p++; // go past spaces

// Retrieve the height.
for (; *p =" "'; p++)
lprc->bottom = (10 * lprc->bottom) + (*p - '0'");

Note RECT structures are handled differently in MCI than in other parts of Windows; in MClI, the
right member contains the width of the rectangle and the bottom member contains its height. In the
string interface, a rectangle is specified as X7, Y1, X2, and Y2. The coordinates X7 and Y71 specify
the upper-left corner of the rectangle, and the coordinates X2 and Y2 specify the width and height.

Using MCI Command Messages

This section contains examples demonstrating how to perform the following tasks:

¢ Closing all MCI devices used by an application

* Opening a simple device by using the device nhame
¢ Opening a simple device by using the device-type constant
* Opening a compound device by using the filename
* Verifying the output device

e Handling MCI errors

¢ Playing a waveform-audio file

¢ Playing a MIDI file

¢ Playing a compact disc track

¢ Playing a movie

e Using the MCI_NOTIFY flag

¢ Retrieving information about a movie

¢ Retrieving compact disc track-specific information
* Recording with a waveform-audio device

Closing All MCI Devices Used by an Application
The following example closes all of the MCI devices that are opened by an application.

UINT wDevicelID;
DWORD dwReturn;

// Closes all MCI devices opened by this application.
// Waits until devices are closed before returning.

if (dwReturn = mciSendCommand (MCI ALL DEVICE ID, MCI CLOSE, MCI WAIT,
NULL))

// Error, unable to close all devices.

Opening a Simple Device by Using the Device Name

The following example opens a CD audio device by specifying the device name.

UINT wDevicelID;
DWORD dwReturn;
MCI OPEN_ PARMS mciOpenParms;

// Opens a CD audio device by specifying the device name.

mciOpenParms.lpstrDeviceType = "cdaudio";

if (dwReturn = mciSendCommand (NULL, MCI OPEN, MCI OPEN TYPE,
(DWORD) (LPVOID) &mciOpenParms))

// Error, unable to open device.

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelD;

Opening a Simple Device by Using the Device-Type Constant

The following example opens a CD audio device by specifying a device-type constant.

UINT wDevicelID;
DWORD dwReturn;
MCI OPEN_ PARMS mciOpenParms;

// Opens a CD audio device by specifying a device-type constant.
mciOpenParms.lpstrDeviceType = (LPCSTR) MCI DEVTYPE CD AUDIO;
if (dwReturn = mciSendCommand (NULL, MCI OPEN,

MCI OPEN TYPE | MCI OPEN TYPE ID, (DWORD) (LPVOID) &mciOpenParms))

// Error, unable to open device.

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelD;

Opening a Compound Device by Using the Filename

The following example opens the waveform-audio device by specifying a waveform-audio file named
"TIMPANIL.WAV".

UINT wDevicelD;
DWORD dwReturn;
MCI OPEN_ PARMS mciOpenParms;

// Opens a waveform-audio device by specifying the device and filename.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "timpani.wav";
if (dwReturn = mciSendCommand (NULL, MCI OPEN,

MCI OPEN TYPE | MCI OPEN ELEMENT, (DWORD) (LPVOID) &mciOpenParms))

// Error, unable to open device.

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelD;

Verifying the Output Device

After opening the sequencer, you should check whether the MIDI mapper was available and selected as
the output device. The following example uses the MCI_STATUS command to verify that the MIDI mapper

is the output device for the MCI sequencer.
UINT wDevicelID; // valid MCI sequencer ID

DWORD dwReturn;
MCI STATUS PARMS mciStatusParms;

// Make sure the opened device is the MIDI mapper.

mciStatusParms.dwItem = MCI SEQ STATUS PORT;

if (dwReturn = mciSendCommand (wDeviceID, MCI STATUS,

(DWORD) (LPVOID) &mciStatusParms))

// Error sending MCI_ STATUS command.
return;

}

if (LOWORD (mciStatusParms.dwReturn) == MIDI MAPPER)
// The MIDI mapper is the output device.

Else

// The MIDI mapper is not the output device.

MCI_STATUS ITEM,

Handling MCI Errors

You should always check the return value of the mciSendCommand function. If it indicates an error, you
can use mciGetErrorString to get a textual description of the error.

The following example passes the MCI error code specified by dwError to mciGetErrorString, and then
displays the resulting textual error description using the MessageBox function.

// Uses mciGetErrorString to get a textual description of an MCI error.
// Displays the error description using MessageBox.
void showError (DWORD dwError)
{
char szErrorBuf [MAXERRORLENGTH] ;
MessageBeep (MB_ICONEXCLAMATION) ;
if (mciGetErrorString (dwError, (LPSTR) szErrorBuf, MAXERRORLENGTH))
MessageBox (hMainWnd, szErrorBuf, "MCI Error",
MB TICONEXCLAMATION) ;
else
MessageBox (hMainWnd, "Unknown Error", "MCI Error",
MB TICONEXCLAMATION) ;

Note To interpret an mciSendCommand error return value yourself, mask the high-order word (the
low-order word contains the error code). If you pass the error return value to mciGetErrorString,
however, you must pass the entire doubleword value.

Playing a Waveform-Audio File

The following example opens a waveform-audio device and plays the waveform-audio file specified by the
InszWAVEFileName parameter.

// Plays a specified waveform-audio file using MCI_OPEN and MCI PLAY.
// Returns when playback begins. Returns 0L on success, otherwise
// returns an MCI error code.
DWORD playWAVEFile (HWND hWndNotify, LPSTR lpszWAVEFileName)
{
UINT wDevicelID;
DWORD dwReturn;
MCI OPEN PARMS mciOpenParms;
MCI PLAY PARMS mciPlayParms;

// Open the device by specifying the device and filename.
// MCI will choose a device capable of playing the specified file.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = lpszWAVEFileName;
if (dwReturn = mciSendCommand (0, MCI OPEN,

MCI OPEN TYPE | MCI OPEN ELEMENT, (DWORD) (LPVOID) é&mciOpenParms))

// Failed to open device. Don't close it; just return error.
return (dwReturn);

}

// The device opened successfully; get the device ID.
wDevicelID = mciOpenParms.wDevicelID;

// Begin playback. The window procedure function for the parent

// window will be notified with an MM MCINOTIFY message when

// playback is complete. At this time, the window procedure closes

// the device.

mciPlayParms.dwCallback = (DWORD) hWndNotify;

if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY, MCI NOTIFY,
(DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

return (OL);

Playing a MIDI File

The following example opens a MIDI sequencer device, verifies that the MIDI mapper was selected as the
output port, plays the MIDI file specified by the lpszMIDIFileName parameter, and closes the device after
playback is complete.

// Plays a specified MIDI file by using MCI _OPEN and MCI_ PLAY. Returns
// as soon as playback begins. The window procedure function for the
// specified window will be notified when playback is complete.
// Returns OL on success; otherwise, it returns an MCI error code.
DWORD playMIDIFile (HWND hWndNotify, LPSTR lpszMIDIFileName)
{

UINT wDevicelID;

DWORD dwReturn;

MCI OPEN_ PARMS mciOpenParms;

MCI PLAY PARMS mciPlayParms;

MCI STATUS PARMS mciStatusParms;

MCI SEQ SET PARMS mciSegSetParms;

// Open the device by specifying the device and filename.
// MCI will attempt to choose the MIDI mapper as the output port.
mciOpenParms.lpstrDeviceType = "sequencer";
mciOpenParms.lpstrElementName = lpszMIDIFileName;
if (dwReturn = mciSendCommand (NULL, MCI_ OPEN,

MCI OPEN TYPE | MCI OPEN ELEMENT,

(DWORD) (LPVOID) &mciOpenParms))

// Failed to open device. Don't close it; just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelID;

// Check if the output port is the MIDI mapper.

mciStatusParms.dwItem = MCI SEQ STATUS PORT;

if (dwReturn = mciSendCommand (wDeviceID, MCI STATUS,
MCI STATUS ITEM, (DWORD) (LPVOID) é&mciStatusParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

// The output port is not the MIDI mapper.
// Ask if the user wants to continue.
if (LOWORD (mciStatusParms.dwReturn) != MIDI MAPPER)
{
if (MessageBox (hMainWnd,
"The MIDI mapper is not available. Continue?",
"", MB_YESNO) == IDNO)

// User does not want to continue. Not an error;
// just close the device and return.
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);

return (0L);

// Begin playback. The window procedure function for the parent

// window will be notified with an MM MCINOTIFY message when

// playback is complete. At this time, the window procedure closes

// the device.

mciPlayParms.dwCallback = (DWORD) hWndNotify;

if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY, MCI NOTIFY,
(DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

return (OL);

Playing a Compact Disc Track

The following example opens a CD audio device, plays the track specified by the bTrack parameter, and
closes the device after playback is complete.

// Plays a specified audio track using MCI_OPEN, MCI PLAY. Returns as
// soon as playback begins. The window procedure function for the
// specified window will be notified when playback is complete.
// Returns 0L on success; otherwise, returns an MCI error code.
DWORD playCDTrack (HWND hWndNotify, BYTE bTrack)
{

UINT wDevicelID;

DWORD dwReturn;

MCI OPEN_ PARMS mciOpenParms;

MCI SET PARMS mciSetParms;

MCI PLAY PARMS mciPlayParms;

// Open the CD audio device by specifying the device name.
mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand (NULL, MCI_ OPEN,

MCI OPEN _TYPE, (DWORD) (LPVOID) é&mciOpenParms))

// Failed to open device. Don't close it; just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDevicelID = mciOpenParms.wDevicelID;

// Set the time format to track/minute/second/frame (TMSF).
mciSetParms.dwTimeFormat = MCI FORMAT TMSF;
if (dwReturn = mciSendCommand (wDeviceID, MCI SET,

MCI SET TIME FORMAT, (DWORD) (LPVOID) &mciSetParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);

return (dwReturn);
}
// Begin playback from the given track and play until the beginning
// of the next track. The window procedure function for the parent
// window will be notified with an MM MCINOTIFY message when
// playback is complete. Unless the play command fails, the window
// procedure closes the device.
mciPlayParms.dwFrom = 0L;
mciPlayParms.dwTo = O0L;
mciPlayParms.dwFrom = MCI MAKE TMSF (bTrack, 0, 0, 0);
mciPlayParms.dwTo = MCI MAKE TMSF (bTrack + 1, 0, 0, 0);
mciPlayParms.dwCallback = (DWORD) hWndNotify;
if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY,

MCI FROM | MCI TO | MCI NOTIFY, (DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

return (0L);

}

To specify a position relative to a track on a compact disc, you must use the track/minute/second/frame
(TMSF) time format.

Playing a Movie

The following examples show how to set up and play an audio-video interleaved (AVI) file.

Opening the Playback Window

The following example shows how to use the MCI_OPEN command to set a parent window and create a
child of that window.

MCI_DGV_OPEN PARMS mciOpen;

mciOpen.lpstrElementName = lpstrFile; // Set the filename.
mciOpen.dwStyle = WS CHILD; // Set the style.
mciOpen.hWndParent = hWnd; // Give a window handle.

if (mciSendCommand (0, MCI_ OPEN,
(DWORD) (MCI OPEN ELEMENT|MCI DGV _OPEN PARENT|MCI DGV OPEN),
(DWORD) (LPSTR) &émciOpen) == 0)

// Open operation is successful. Continue.

Setting Up the Playback Window

The following example finds the dimensions needed to play an AVI file, creates a window corresponding
to that size, and plays the file in the window by using the MCIAVI driver.

HWND hwnd;
MCI DGV_RECT PARMS mciRect;

// Get the movie dimensions with MCI_WHERE.

mciSendCommand (wDeviceID, MCI WHERE, MCI DGV_WHERE SOURCE,
(DWORD) (LPSTR) &mciRect) ;

// Create the playback window. Make it bigger for the border.
// Note that the right and bottom members of RECT structures in MCI
// are unusual; rc.right is set to the rectangle's width, and
// rc.bottom is set to the rectangle's height.
hwndMovie = CreateWindow ("mywindow", "Playback",
WS_CHILD|WS BORDER, 0,0,
mciRect.rc.right+ (2*GetSystemMetric (SM_CXBORDER)),
mciRect.rc.bottom+ (2*GetSystemMetric (SM_CYBORDER)),
hwndParent, hInstApp, NULL);

if (hwndMovie) {
// Window created OK; make it the playback window.

MCI DGV_WINDOW PARMS mciWindow;
mciWindow.hWnd = hwndMovie;

mciSendCommand (wDevicelD, MCI WINDOW, MCI DGV _WINDOW HWND,
(DWORD) (LPSTR) &mciWindow) ;

Playing the AVI File

Before using the mciSendCommand function to send the MCI_PLAY command, your application
allocates the memory for the structure, initializes the members it will use, and sets the flags
corresponding to the members used in the structure. (If your application does not set a flag for a structure
member, MCI drivers ignore the member.) For example, the following example plays a movie from the
starting position specified by dwFrom to the ending position specified by dwTo. (If either position is zero,
the example is written so that the position is not used.)

DWORD PlayMovie (WORD wDevID, DWORD dwFrom, DWORD dwTo)

{

MCI DGV_PLAY PARMS mciPlay; // play parameters
DWORD dwFlags = 0;

// Check dwFrom. If it is != 0 then set parameters and flags.
if (dwFrom) {
mciPlay.dwFrom = dwFrom; // set parameter

dwFlags |= MCI_FROM; // set flag to validate member
}
// Check dwTo. If it is != 0 then set parameters and flags.
if (dwTo) {

mciPlay.dwTo = dwTo; // set parameter

dwFlags |= MCI TO; // set flag to validate member

}

// Send the MCI PLAY command and return the result.
return mciSendCommand (wDevID, MCI PLAY, dwFlags,
(DWORD) (LPVOID) &mciPlay) ;

Changing the Current Position

To change the current position in a device element, use the MCI_SEEK command message along with
the MCI_TO flag and the MCI_SEEK_PARMS structure. If you use the dwTo member to specify a seek
position with MCIl_SEEK, you should query the time format and set it, if necessary.

In addition to specifying a position with the dwTo member, you can specify the MCI_SEEK_TO_START or
MCI_SEEK_TO_END flags for the dwParam1 parameter of the mciSendCommand function to find the
starting and ending positions of the device element. If you use one of these flags, don't specify the
MCI_TO flag.

Setting the Time Format

Use the MCI_SET command message along with the MCI_SET_PARMS structure to set the time format
for an open device. Set the dwTimeFormat member to one of the following constants.

Constant Time format

MCI_FORMAT_BYTES Bytes (in pulse code modulated
[PCM] format files)

MCI_FORMAT_MILLISECONDS Milliseconds

MCI_FORMAT_MSF Minute/second/frame
MCI_FORMAT_SAMPLES Samples
MCI_FORMAT_SMPTE_24 SMPTE, 24 frame
MCI_FORMAT_SMPTE_25 SMPTE, 25 frame
MCI_FORMAT_SMPTE_30 SMPTE, 30 frame
MCI_FORMAT_SMPTE_30DROP SMPTE, 30 frame drop
MCI_FORMAT_TMSF Track/minute/second/frame

MCI_SEQ_FORMAT_SONGPTR MIDI song pointer

The following example sets the time format to milliseconds on the device specified by the wDevicelD
variable:

UINT wDevicelD;
MCI SET PARMS mciSetParms;

// Set time format to milliseconds.

mciSetParms.dwTimeFormat = MCI_ FORMAT MILLISECONDS;
if (mciSendCommand (wDeviceID, MCI SET, MCI SET TIME FORMAT,
(DWORD) &mciSetParms))
// Error, unable to set time format.
return FALSE;
else
// Time format set successfully.
return TRUE;

Changing Sequencer Synchronization

To change the synchronization mode of a sequencer device, use the MCI_SET command message with
the MCI_SEQ_SET_MASTER and MCI_SEQ_SET_SLAVE flags. Two members in the
MCI_SEQ_SET_PARMS structure, dwMaster and dwSlave, are used to specify the master and slave
synchronization modes.

The master synchronization mode controls synchronization information sent by the sequencer to an
output port. The slave synchronization mode controls where the sequencer gets its timing information to
play a MIDI file. Following are the constants for the dwMaster member and their corresponding master
synchronization modes.

Constant Synchronization mode
MCI_SEQ_MIDI MIDI Synchronization. Send timing information to
output port using MIDI timing clock messages.

MCI_SEQ_SMPTE SMPTE Synchronization. Send timing
information to output port using MIDI quarter-
frame messages.

MCI_SEQ_NONE No Synchronization. Send no timing information.

Following are the constants for the dwSlave member and their corresponding slave synchronization
modes.

Constant Synchronization mode

MCI_SEQ_FILE File Synchronization. Get timing information from
MIDI file.

MCI_SEQ_MIDI MIDI Synchronization. Get timing information
from input port using MIDI timing clock
messages.

MCI_SEQ_SMPTE SMPTE Synchronization. Get timing information
from input port using MIDI quarter-frame
messages.

MCI_SEQ_NONE No Synchronization. Get timing information from
MCI commands only and ignore timing
information (such as tempo changes) that are in
the MIDI file.

Note Currently, for master synchronization, the MCI MIDI sequencer supports only the No
Synchronization mode (MCI_SEQ_NONE). For slave synchronization, it supports only the File
Synchronization mode (MCI_SEQ_FILE) and the No Synchronization mode (MCI_SEQ_NONE).

Using the MCI_NOTIFY Flag

The following example shows how the MCI_NOTIFY flag is used with the MCI_PLAY command. The
handle to the window procedure that will process the MM_MCINOTIFY message is specified in hwnd.

MCI DGV _PLAY PARMS mciPlay;
DWORD dwFlags;

mciPlay.dwCallback = MAKELONG (hwnd, 0);
dwFlags = MCI NOTIFY;

mciSendCommand (wMCIDeviceID, MCI PLAY, dwFlags, (DWORD) (LPSTR)é&mciPlay);

Retrieving Information About a Movie

The following example sets the time format to frames and obtains the current position if the device is
playing.

MCI DGV _SET PARMS mciSet;
MCI DGV _STATUS PARMS mciStatus;

// Put in frame mode.
mciSet.dwTimeFormat = MCI FORMAT FRAMES;
mciSendCommand (wDeviceID, MCI SET,
MCI_SET TIME FORMAT,
(DWORD) (LPSTR) &mciSet) ;

mciStatus.dwItem = MCI STATUS MODE;
mciSendCommand (wDeviceID, MCI STATUS,
MCI STATUS ITEM,
(DWORD) (LPSTR) &mciStatus) ;

// If device is playing, get the position.
if (mciStatus.dwReturn == MCI MODE PLAY) {
mciStatus.dwItem = MCI STATUS POSITION;
mciSendCommand (wDeviceID, MCI STATUS, MCI_ STATUS ITEM,
(DWORD) (LPSTR) &mciStatus) ;

// Update the position from mciStatus.dwReturn.
}

Retrieving Compact Disc Track-Specific Information

For CD audio devices, you can get the starting location and length of a track by specifying the
MCI_TRACK flag and setting the dwTrack member of MCI_STATUS_PARMS to the desired track
number. To get the starting location of a track, set the dwltem member to MCI_STATUS_POSITION. To
get the length of a track, set dwltem to MCI_STATUS_LENGTH. For example, the following example
retrieves the total number of tracks on the compact disc and the starting location of each track. Then, it
uses the MessageBox function to report the starting locations of the tracks.

// Uses the MCI STATUS command to get and display the
// starting times for the tracks on a compact disc.
// Returns OL if successful; otherwise, it returns an
// MCI error code.
DWORD getCDTrackStartTimes (VOID)
{

UINT wDevicelID;

int i, iNumTracks;

DWORD dwReturn;

DWORD dwPosition;

DWORD *pMem;

char szTempString[64];

char szTimeString[512] = "\O"; // room for 20 tracks

MCI_ OPEN_PARMS mciOpenParms;

MCI SET PARMS mciSetParms;

MCI STATUS PARMS mciStatusParms;

// Open the device by specifying the device name.

mciOpenParms.lpstrDeviceType = "cdaudio";
if (dwReturn = mciSendCommand (NULL, MCI OPEN,
MCI OPEN TYPE, (DWORD) (LPVOID) &mciOpenParms))

// Failed to open device.
// Don't close device; just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelD;

// Set the time format to minute/second/frame (MSF) format.
mciSetParms.dwTimeFormat = MCI_ FORMAT MSF;
if (dwReturn = mciSendCommand (wDeviceID, MCI SET,
MCI SET TIME FORMAT,
(DWORD) (LPVOID) &mciSetParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

}

// Get the number of tracks;

// limit to number that can be displayed (20).
mciStatusParms.dwItem = MCI STATUS NUMBER OF TRACKS;
if (dwReturn = mciSendCommand (wDeviceID, MCI STATUS,

MCI STATUS ITEM, (DWORD) (LPVOID) é&mciStatusParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

}
iNumTracks
iNumTracks

mciStatusParms.dwReturn;
min (iNumTracks, 20);

// Allocate memory to hold starting positions.

pMem = (DWORD *)LocalAlloc (LPTR,
iNumTracks * sizeof (DWORD)) ;
if (pMem == NULL)

{
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);

return (-1);

// For each track, get and save the starting location and
// build a string containing starting locations.
for (i=1; i<=iNumTracks; i++)
{
mciStatusParms.dwltem = MCI STATUS POSITION;
mciStatusParms.dwTrack = i;
if (dwReturn = mciSendCommand (wDevicelD,
MCI STATUS, MCI_ STATUS ITEM | MCI TRACK,
(DWORD) (LPVOID) &mciStatusParms)) {
mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

pMem[i-1] = mciStatusParms.dwReturn;

wsprintf (szTempString,
"Track %2d - %02d:%02d:%02d\n", i,
MCI MSF MINUTE (pMem[i-11),
MCI MSF_ SECOND (pMem[i-11),
MCI MSF FRAME (pMem[i-11));

lstrcat (szTimeString, szTempString);

// Use MessageBox to display starting times.
MessageBox (hMainWnd, szTimeString,
"Track Starting Position", MB ICONINFORMATION) ;

// Free memory and close the device.
LocalFree ((HANDLE) pMem) ;
if (dwReturn = mciSendCommand (wDevicelD,
MCI CLOSE, 0, NULL)) {
return (dwReturn);

return (OL);

Recording with a Waveform-Audio Device

The following example opens a waveform-audio device with a new file, records for the specified time,
plays the recording, and prompts the user to save the recording if desired.

// Uses the MCI_OPEN, MCI RECORD, and MCI_SAVE commands to record and
// save a waveform-audio file. Returns OL if successful; otherwise,
// it returns an MCI error code.
DWORD recordWAVEFile (DWORD dwMilliSeconds)
{

UINT wDevicelD;

DWORD dwReturn;

MCI OPEN PARMS mciOpenParms;

MCI RECORD PARMS mciRecordParms;

MCI SAVE PARMS mciSaveParms;

MCI PLAY PARMS mciPlayParms;

// Open a waveform-audio device with a new file for recording.
mciOpenParms.lpstrDeviceType = "waveaudio";
mciOpenParms.lpstrElementName = "";
if (dwReturn = mciSendCommand (0, MCI OPEN,

MCI OPEN ELEMENT | MCI OPEN TYPE,

(DWORD) (LPVOID) &mciOpenParms))

// Failed to open device; don't close it, just return error.
return (dwReturn);

// The device opened successfully; get the device ID.
wDeviceID = mciOpenParms.wDevicelD;

// Begin recording and record for the specified number of
// milliseconds. Wait for recording to complete before continuing.
// Assume the default time format for the waveform-audio device
// (milliseconds) .
mciRecordParms.dwTo = dwMilliSeconds;
if (dwReturn = mciSendCommand (wDeviceID, MCI RECORD,
MCI TO | MCI _WAIT, (DWORD) (LPVOID) é&mciRecordParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

// Play the recording and query user to save the file.
mciPlayParms.dwFrom = 0L;
if (dwReturn = mciSendCommand (wDeviceID, MCI PLAY,

MCI FROM | MCI WAIT, (DWORD) (LPVOID) &mciPlayParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn);

}
if (MessageBox (hMainWnd, "Do you want to save this recording?",
", MB_YESNO) == 1IDNO)

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (0L);

// Save the recording to a file named TEMPFILE.WAV. Wait for
// the operation to complete before continuing.
mciSaveParms.lpfilename = "tempfile.wav";
if (dwReturn = mciSendCommand (wDeviceID, MCI SAVE,

MCI SAVE FILE | MCI WAIT, (DWORD) (LPVOID) sgmciSaveParms))

mciSendCommand (wDeviceID, MCI CLOSE, 0, NULL);
return (dwReturn):;

return (OL);

MCI Reference

This section describes the MCI functions, structures, messages, macros, commands, and command
strings. These elements are grouped as follows.

Notifications

MM_MCINOTIFY
MM_MCISIGNAL

Retrieving Information

mciGetCreatorTask
mciGetDevicelD

mciGetErrorString

Sending Commands
mciSendCommand
mciSendString

Time Formats

MCI_HMS_HOUR
MCI_HMS_MINUTE
MCI_HMS_SECOND
MCI_MAKE_HMS
MCI_MAKE_MSF
MCI_MAKE_TMSF
MCI_MSF_FRAME
MCI_MSF_MINUTE
MCI_MSF_SECOND
MCI_TMSF_FRAME
MCI_TMSF_MINUTE
MCI_TMSF_SECOND
MCI_TMSF_TRACK

Yield Procedures

mciGetYieldProc
mciSetYieldProc

Configuring a Device
break

configure
e

D
A
O
Q)

index

MCI_BREAK
MCI_BREAK_PARMS
MCI_CONFIGURE
MCI_DGV_SET_PARMS
MCI_DGV_SETAUDIO_PARMS
MCI_DGV_SETVIDEO PARMS
MCI_ESCAPE

MCI_INDEX
MCI_SEQ_SET_PARMS
MCI_SET

MCI_SET _PARMS
MCI_SETAUDIO
MCI_SETTIMECODE
MCI_SETTUNER
MCI_SETVIDEO

MCI_SPIN
MCI_VCR_SET_PARMS
MCI_VCR_SETAUDIO_PARMS
MCI_VCR_SETTUNER_PARMS
MCI_VCR_SETVIDEO_PARMS
MCI VD ESCAPE _PARMS
MCI WAVE SET PARMS

set

setaudio

settimecode

settuner

setvideo

Spi

Controlling Playback
freeze

load
MCI_DGV_FREEZE_PARMS
MCI_DGV_LOAD_PARMS
MCI_DGV_PAUSE_PARMS
MCI_DGV_PLAY_PARMS
MCI
MCI
MCI
MCI

DGV_RESUME_PARMS
DGV_STOP_PARMS
FREEZE
LOAD
MCI_LOAD_PARMS
MCI_OVLY_LOAD_PARMS
MCI_PAUSE
MCI_PLAY
MCI_PLAY_PARMS
MCI_RESUME
MCI_STOP
MCI_UNFREEZE
MCI_VCR_PLAY_PARMS
MCI_VD_PLAY_PARMS

Controlling the Position
cue

mark

MCI_CUE
MCI_DGV_CUE_PARMS
MCI_DGV_SIGNAL_PARMS
MCI_DGV_STEP_PARMS
MCI_MARK

MCI_SEEK

MCI_SEEK_PARMS
MCI_SIGNAL

MCI_STEP
MCI_VCR_CUE_PARMS
MCI_VCR_SEEK_PARMS
MCI_VCR_STEP_PARMS
MCI_VD_STEP_PARMS

MCI_COPY

MCI_CUT

MCI_DELETE
MCI_DGV_COPY_PARMS
MCI_DGV_CUT_PARMS
MCI DGV_DELETE PARMS
MCI_DGV_PASTE_PARMS
MCIi_PASTE

MCI_UNDO
MCI_WAVE_DELETE_PARMS
aste

:

c
=}
Q.
(o]

Miscellaneous
MCI _GENERIC PARMS

Opening and Closing
close

MCI_CLOSE
MCI_DGV_OPEN_PARMS
MCI_OPEN
MCI_OPEN_PARMS
MCI_OVLY_OPEN_PARMS
MCI_WAVE_OPEN_PARMS
open

g

Realizing a Palette

MCI_REALIZE
realize

Repainting a Frame

MCI_DGV_UPDATE_PARMS
MCI_UPDATE

update

Retrieving Information

capability
info

MCI_DGV_INFO_PARMS
MCI_DGV_LIST_PARMS
MCI_DGV_STATUS_PARMS
MCI_GETDEVCAPS
MCI_GETDEVCAPS_PARMS
MCI_INFO
MCI_INFO_PARMS
MCI_LIST

MCI_STATUS
MCI_STATUS_PARMS
MCI_SYSINFO
MCI_SYSINFO_PARMS
MCI_VCR_LIST_PARMS
MCI_VCR_STATUS_PARMS

MCI_DGV_RECORD_PARMS
MCI_DGV_SAVE_PARMS
MCI_OVLY_SAVE_PARMS
MCI_RECORD
MCI_RECORD_PARMS
MCI_SAVE
MCI_SAVE_PARMS
MCI_VCR_RECORD_PARMS

Video Control

capture

MCI_CAPTURE
MCI_DGV_MONITOR_PARMS
MCI_DGV_QUALITY_PARMS
MCI_DGV_RESERVE_PARMS
MCI_DGV_RESTORE_PARMS
MCI_MONITOR
MCI_QUALITY

#

Window or Display Rectangles

MCI_DGV_PUT_PARMS
MCI_DGV_RECT_PARMS
MCI_DGV_WINDOW_PARMS
MCI_OVLY_ RECT_PARMS
MCI_OVLY_ WINDOW_PARMS
MCI_PUT

MCI_WHERE
MCI_WINDOW

MCI Functions

The following functions are used with MCI.

mciGetCreatorTask
mciGetDevicelD
mciGetErrorString
mciGetYieldProc
mciSendCommand

mciSendString
mciSetYieldProc

MCI Structures

The following structures are used with MCI.

MCI_BREAK_PARMS
MCI_DGV_CAPTURE_PARMS
MCI_DGV_COPY_PARMS
MCI_DGV_CUE_PARMS
MCI_DGV_CUT_PARMS
MCI_DGV_DELETE_PARMS
MCI_DGV_FREEZE_PARMS
MCI_DGV_INFO_PARMS
MCI_DGV_LIST_PARMS
MCI_DGV_LOAD_PARMS
MCI_DGV_MONITOR_PARMS
MCI_DGV_OPEN_PARMS
MCI_DGV_PASTE_PARMS
MCI_DGV_PAUSE_PARMS
MCI_DGV_PLAY_PARMS
MCI_DGV_PUT_PARMS
MCI_DGV_QUALITY_PARMS
MCI_DGV_RECORD_PARMS
MCI_DGV_RECT_PARMS
MCI_DGV_RESERVE_PARMS
MCI_DGV_RESTORE_PARMS
MCI_DGV_RESUME_PARMS
MCI_DGV_SAVE_PARMS
MCI_DGV_SET_PARMS
MCI_DGV_SETAUDIO_PARMS
MCI_DGV_SETVIDEO_PARMS
MCI_DGV_SIGNAL_PARMS
MCI_DGV_STATUS_PARMS
MCI_DGV_STEP_PARMS
MCI_DGV_STOP_PARMS
MCI_DGV_UPDATE_PARMS
MCI_DGV_WINDOW_PARMS
MCI_GENERIC_PARMS
MCI_GETDEVCAPS_PARMS
MCI_INFO_PARMS
MCI_LOAD_PARMS
MCI_OPEN_PARMS
MCI_OVLY_LOAD_PARMS
MCI_OVLY_OPEN_PARMS
MCI_OVLY_RECT_PARMS
MCI_OVLY_SAVE_PARMS
MCI_OVLY_ WINDOW_PARMS
MCI_PLAY_PARMS
MCI_RECORD_PARMS
MCI_SAVE_PARMS
MCI_SEEK_PARMS
MCI_SEQ_SET_PARMS
MCI_SET_PARMS
MCI_STATUS_PARMS
MCI_SYSINFO_PARMS
MCI_VCR_CUE_PARMS

VCR_LIST_PARMS

MCI

VCR_PLAY_PARMS

MCI

VCR_RECORD_PARMS

MCI

MCI

VCR_SEEK_PARMS

MCI

VCR_SET_PARMS

VCR_SETAUDIO_PARMS
VCR_SETTUNER_PARMS

MCI
MCI

MCI

VCR_SETVIDEO_PARMS

MCI

VCR_STATUS_PARMS

VCR_STEP_PARMS

MCI

MCI

VD_ESCAPE_PARMS

MCI

VD_PLAY_PARMS

MCI

VD_STEP_PARMS

WAVE_DELETE_PARMS

MCI

WAVE_OPEN_PARMS

MCI

WAVE_SET_PARMS

MCI

MCI Messages

The following messages are used with MCI.

MM_MCINOTIFY
MM_MCISIGNAL

MCI Macros

The following macros are used with MCI.

MCI_HMS_HOUR
MCI_HMS_MINUTE
MCI_HMS_SECOND
MCI_MAKE_HMS
MCI_MAKE_MSF
MCI_MAKE_TMSF
MCI_MSF_FRAME
MCI_MSF_MINUTE
MCI_MSF_SECOND
MCI_TMSF_FRAME
MCI_TMSF_MINUTE
MCI_TMSF_SECOND
MCI_TMSF_TRACK

MCI Commands

The following commands are used with MCI.

MCI_BREAK
MCI_CAPTURE
MCI_CLOSE
MCI_CONFIGURE
MCI_COPY
MCI_CUE
MCI_CUT
MCI_DELETE
MCI_ESCAPE
MCI_FREEZE
MCI_GETDEVCAPS
MCI_INDEX
MCI_INFO
MCI_LIST
MCI_LOAD
MCI_MARK
MCI_MONITOR
MCI_OPEN
MCI_PASTE
MCI_PAUSE
MCI_PLAY
MCI_PUT
MCI_QUALITY
MCI_REALIZE
MCI_RECORD
MCI_RESERVE
MCI_RESTORE
MCI_RESUME
MCI_SAVE
MCI_SEEK
MCI_SET
MCI_SETAUDIO
MCI_SETTIMECODE
MCI_SETTUNER
MCI_SETVIDEO
MCI_SIGNAL
MCI_SPIN
MCI_STATUS
MCI_STEP
MCI_STOP
MCI_SYSINFO
MCI_UNDO
MCI_UNFREEZE
MCI_UPDATE
MCI_WHERE
MCI_WINDOW

break
capabilit
capture
close

o

ﬁaudio
settimecode

Waveform Audio

This overview explains how to use the waveform and auxiliary audio services of the Microsoft Win32
application programming interface (API) to add sound to applications.

About Waveform Audio

Adding sound to your application can make it more efficient and more fun to use. You can improve your
users' efficiency by using sounds to get their attention at critical points, to help them avoid mistakes, or to
let them know that a time-consuming operation has finished. You can help them have more fun by adding
music or sound effects.

This overview explains how to do the following things with sound:

¢ Play waveform audio.

¢ Use waveform-audio services.
¢ Record waveform audio.

¢ Use auxiliary audio devices.

¢ Use audio clipboard formats.

This overview documents several methods for adding sound to your application. The simplest method
documented here is that of using the PlaySound function. Most of the other waveform-audio API
elements documented in this overview are relatively low-level. However, the MCI overview documents an
interface to multimedia programming that offers method of adding sound to your application that is simpler
and faster than using the waveform-audio sound API.

The PlaySound Function

You can use the PlaySound function to play waveform audio, as long as the sound fits into available
memory. (The sndPlaySound function offers a subset of the capabilities of PlaySound. To maximize the
portability of your Win32-based application, use PlaySound, not sndPlaySound.)

The PlaySound function allows you to specify a sound in one of three ways:

¢ As a system alert, using the alias stored in the WIN.INI file or the registry
¢ As afilename
¢ As aresource identifier

The PlaySound function allows you to play a sound in a continuous loop, ending only when you call
PlaySound again, specifying either NULL or the sound identifier of another sound for the pszSound
parameter.

You can use PlaySound to play the sound synchronously or asynchronously, and to control the behavior
of the function in other ways when it must share system resources.

For examples of how to use PlaySound in your Win32-based applications, see Playing WAVE
Resources.

Waveform-Audio Files

In the Microsoft Windows operating system, most waveform-audio files use the .WAV filename extension.
The following statement plays the CA\SOUNDS\BELLS.WAV file:

PlaySound ("C:\\SOUNDS\\BELLS.WAV", NULL, SND_ SYNC);

If the specified file does not exist, or if the file does not fit into the available memory, PlaySound plays the
default system sound. If no default system sound has been defined, PlaySound fails without producing
any sound. If you do not want the default system sound to play, specify the SND_NODEFAULT flag, as
shown in the following example:

PlaySound ("C:\\SOUNDS\\BELLS.WAV", NULL, SND SYNC | SND NODEFAULT) ;

Looping Sounds

If you specify the SND_LOOP and SND_ASYNC flags for the fdwSound parameter of the PlaySound
function, the sound will continue to play repeatedly as shown in the following example:

PlaySound ("C:\\SOUNDS\\BELLS.WAV", NULL, SND LOOP | SND ASYNC);

If you want to loop a sound, you must play it asynchronously; you cannot use the SND_SYNC flag with
the SND_LOOP flag. A looped sound will continue to play until you call PlaySound to play another sound.
To stop playing a sound (looped or asynchronous) without playing another sound, use the following
statement:

PlaySound (NULL, NULL, O0);

Playing Sounds Specified in the Registry

The PlaySound function will also play sounds referred to by a keyname in the registry. This allows users
to assign their own sounds to system alerts and warnings, or to user actions, such as a mouse button
click. Sounds that are associated with system alerts and warnings are called sound events.

To play a sound event, call PlaySound with the pszSound parameter pointing to a string containing the
name of the registry entry that identifies the sound. For example, to play the sound associated with the
"MouseClick" entry and to wait for the sound to complete before returning, use the following statement:

PlaySound ("MouseClick", NULL, SND SYNC);

If the specified registry entry or the waveform-audio file it identifies does not exist, or if the file does not fit
into the available memory, PlaySound plays the default system sound.

The sound events that are predefined by the system can vary with the platform. The following list gives
the sound events that are defined for all implementations of the Win32 API:

SystemAsterisk
SystemExclamation
SystemExit
SystemHand
SystemQuestion
SystemStart

If an application registers its own sound events, the user can configure the sound event by using the
standard Control Panel interface. The application should register the sound event by using the standard
registry functions; for more information, see Registry. The entries belong at the same position in the
registry hierarchy as the rest of the sound events. This position varies with the Win32 implementation.
The appropriate data value also varies with the implementation.

The sndPlaySound function always searches the registry for a keyname matching IpszSound before
attempting to load a file with this name. The PlaySound function accepts flags that specify the location of
the sound.

Waveform-Audio Interface

This section documents the waveform-audio interface, which is used by applications that need the
greatest possible control over audio devices. The functions and structures of this interface are named with
the prefix "wave".

Devices and Data Types

This section describes working with waveform-audio devices, and includes information on how to open,
close and query them for their capabilities. It also describes how to keep track of the devices in a system
by using device handles and device identifiers.

Opening Waveform-Audio Output Devices

Use the waveOutOpen function to open a waveform-audio output device for playback. This function
opens the device associated with the specified device identifier and returns a handle of the open device
by writing the handle of a specified memory location.

Some multimedia computers have multiple waveform-audio output devices. Unless you want to open a
specific waveform-audio output device in a system, you should use the WAVE_MAPPER flag for the
device identifier when you open a device. The waveOutOpen function chooses the device in the system
that is best able to play the specified data format.

Querying Audio Devices
Windows provides the following functions to determine how many devices of a certain type are available
in a system.

Function Description
auxGetNumDevs Retrieves the number of auxiliary output
devices present in the system.

WavelnGetNumDevs Retrieves the number of waveform-audio
input devices present in the system.

WaveOutGetNumDev Retrieves the number of waveform-audio
s output devices present in the system.

Audio devices are identified by a device identifier. The device identifier is determined implicitly from the
number of devices present in a system. Device identifiers range from zero to one less than the number of
devices present. For example, if there are two waveform-audio output devices in a system, valid device
identifiers are 0 and 1.

After you determine how many devices of a certain type are present in a system, you can use one of the
following functions to query the capabilities of each device.

Function Description
auxGetDevCaps Retrieves the capabilities of a specified auxiliary

output device.

wavelnGetDevCaps Retrieves the capabilities of a specified
waveform-audio input device.

waveOutGetDevCaps Retrieves the capabilities of a specified
waveform-audio output device.

Each of these functions fills a structure with information about the capabilities of a specified device. The
following table lists the structures that correspond to each of these functions.

Function Structure
auxGetDevCaps AUXCAPS
wavelnGetDevCaps WAVEINCAPS
waveOutGetDevCaps WAVEOUTCAPS

Standard formats are listed in the dwFormats member of the WAVEOUTCAPS structure. Waveform-
audio devices can support nonstandard formats. To determine whether a particular format (standard or
nonstandard) is supported by a device, you can call the waveOutOpen function with the
WAVE_FORMAT_QUERY flag. This flag does not open the device. You specify the format in question in
the WAVEFORMATEX structure pointed to by the pwfx parameter passed to waveOutOpen. For
information about setting up this structure, see Devices and Data Types.

Waveform-audio output devices vary in the capabilities they support. The dwSupport member of the
WAVEOUTCAPS structure indicates whether a device supports such capabilities as volume and pitch
changes.

Device Handles and Device Identifiers

Each function that opens an audio device specifies a device identifier, a pointer to a memory location, and
some parameters that are unique to each type of device. The memory location is filled with a device
handle. Use this device handle to identify the open audio device when calling other audio functions.

The difference between identifiers and handles for audio devices is subtle but important:

¢ Device identifiers are determined implicitly from the number of devices present in a system. This
number is obtained by using the auxGetNumDevs, wavelnGetNumDevs, or waveOutGetNumDevs
function.

¢ Device handles are returned when device drivers are opened by using the wavelnOpen or
waveOutOpen function.

There are no functions that open or close auxiliary audio devices. Auxiliary audio devices need not be
opened and closed like waveform-audio devices because there is no continuous data transfer associated
with them. All auxiliary audio functions use device identifiers to identify devices.

Waveform-Audio Output Data Types
The following data types are defined for waveform-audio output functions.

Type Description
HWAVEOUT Handle to an open waveform-audio output
device.

WAVEFORMATEX Structure that specifies the data formats
supported by a particular waveform-audio input
device. This structure is also usedfor waveform-
audio input devices.

WAVEHDR Structure used as a header for a block of
waveform-audio input data. This structure is
also used for waveform-audio input devices.

WAVEOUTCAPS Structure used to query the capabilities of a
particular waveform-audio output device.

Specifying Waveform-Audio Data Formats

When you call the waveOutOpen function to open a device driver for playback or to query whether the
driver supports a particular data format, use the pwfx parameter to specify a pointer to a
WAVEFORMATEX structure containing the requested waveform-audio data format. The
WAVEFORMATEX structure is an extended version of the WAVEFORMAT structure. It contains all the
members of WAVEFORMAT, and adds two more: a wBitsPerSample member, which contains extra
information required for the PCM (Pulse Code Modulation) format, and a cbSize member at the end. You
can append data to the structure following cbSize as long as you fill cbSize with the size of the data. You

can use the WAVEFORMATEX structure to describe PCM data, although you could also use the
PCMWAVEFORMAT structure. When the waveform-audio format type is not PCM, you must use
WAVEFORMATEX instead of WAVEFORMAT.

The outmoded WAVEFORMAT structure does not contain all the information required to describe the
PCM format. The PCMWAVEFORMAT structure includes a WAVEFORMAT structure along with an
additional member containing PCM-specific information. The PCMWAVEFORMAT structure has also
been superseded by the WAVEFORMATEX structure.

There are also two clipboard formats you can use to represent audio data: CF_WAVE and CF_RIFF. Use
the CF_WAVE format to represent data in one of the standard formats, such as 11 kHz or 22 kHz PCM.
Use the CF_RIFF format to represent more complex data formats that cannot be represented as standard
waveform-audio files.

Writing Waveform-Audio Data

After successfully opening a waveform-audio output device driver, you can begin playing a sound.
Windows provides the waveOutWrite function for sending data blocks to waveform-audio output devices.

Use the WAVEHDR structure to specify the waveform-audio data block you are sending using
waveOutWrite. This structure contains a pointer to a locked data block, the length of the data block, and
some flags. This data block must be prepared before you use it; for information about preparing a data
block, see Audio Data Blocks.

After you send a data block to an output device by using waveOutWrite, you must wait until the device
driver is finished with the data block before freeing it. If you are sending multiple data blocks, you must
monitor the completion of data blocks to know when to send additional blocks. For more information
about data blocks, see Audio Data Blocks.

PCM Waveform-Audio Data Format

The IpData member of the WAVEHDR structure points to the waveform-audio data samples. For 8-bit
PCM data, each sample is represented by a single unsigned data byte. For 16-bit PCM data, each
sample is represented by a 16-bit signed value. The following table summarizes the maximum, minimum,
and midpoint values for PCM waveform-audio data.

Data format Maximum value Minimum value Midpoint value
8-bit PCM 255 (OxFF) 0 128 (0x80)
16-bit PCM 32,767 (Ox7FFF)- 32,768 0

(0x8000)

PCM Data Packing

The order of the data bytes varies between 8-bit and 16-bit formats and between mono and stereo
formats. The following list describes data packing for the different PCM waveform-audio data formats.

PCM
waveform-
audio format
Description

8-bit mono Each sample is 1 byte that corresponds to a single
audio channel. Sample 1 is followed by samples 2, 3,
4, and so on.

8-bit stereo Each sample is 2 bytes. Sample 1 is followed by
samples 2, 3, 4, and so on. For each sample, the first
byte is channel 0 (the left channel) and the second
byte is channel 1 (the right channel).

16-bit mono Each sample is 2 bytes. Sample 1 is followed by
samples 2, 3, 4, and so on. For each sample, the first
byte is the low-order byte of channel 0 and the second
byte is the high-order byte of channel 0.

16-bit stereo Each sample is 4 bytes. Sample 1 is followed by
samples 2, 3, 4, and so on. For each sample, the first
byte is the low-order byte of channel O (left channel);
the second byte is the high-order byte of channel 0;
the third byte is the low-order byte of channel 1 (right
channel); and the fourth byte is the high-order byte of
channel 1.

Closing Waveform-Audio Output Devices

After waveform-audio playback is complete, call waveOutClose to close the output device. If
waveOutClose is called while a waveform-audio file is playing, the close operation fails and the function
returns an error code indicating that the device was not closed. If you do not want to wait for playback to
end before closing the device, call the waveOutReset function before closing. This ends playback and
allows the device to be closed. Be sure to use the waveOutUnprepareHeader function to clean up the
preparation on all data blocks before closing the device.

Playing Waveform-Audio Files

It's easy to play sounds in your application by using the functions, macros, and messages discussed in
this overview. The techniques and elements documented here operate only on waveform audio; that is,
digitized representations of a sound's physical shape. If you want to add music to your application, and
you do not care about other kinds of sounds, you might want to use MIDI. For a discussion of a simple
playback MIDI implementation, see the MCIWnd Window Class. For a discussion of the MIDI interface,
see Musical Instrument Digital Interface (MIDI).

You can use the following functions to play waveform audio in your application in a single function call:

Function Description

MessageBeep Plays the sound that corresponds to a specified
system-alert level.

sndPlaySound Plays the sound that corresponds to the system
sound entered in the registry or the contents of the
specified filename.

PlaySound Provides all the functionality of sndPlaySound and
can directly access resources.

The MessageBeep function is a standard part of the Win32 API; because its capabilities are very limited
and it is documented elsewhere, it is not discussed here.

The functions listed provide the following methods of playing waveform audio:

¢ Playing waveform-audio files associated with system-alert levels

¢ Playing waveform-audio files specified by entries in the registry

¢ Playing in-memory WAVE resources

¢ Playing waveform-audio files stored on a hard disk or compact disc - read-only memory (CD-ROM)

The sndPlaySound and PlaySound functions load an entire waveform-audio file into memory and, in
effect, limit the size of file they can play. Use sndPlaySound and PlaySound to play waveform-audio
files that are relatively small — up to about 100K. These two functions also require the sound data to be in
a format that is playable by one of the installed waveform-audio drivers, including the wave mapper.

For larger sound files, use the Media Control Interface (MCI) services. For more information, see MCI.

Using Window Messages to Manage Waveform-Audio Playback

The following messages can be sent to a window procedure function for managing waveform-audio
playback.

Message Description

MM_WOM_CLOSE Sent when the device is closed by using the
waveOutClose function.

MM_WOM_ DONE Sent when the device driver is finished with a
data block sent by using the waveOutWrite
function.

MM _WOM_ OPEN Sent when the device is opened by using the
waveOutOpen function.

A wParam and IParam parameter is associated with each of these messages. The wParam parameter
always specifies a handle of the open waveform-audio device. For the MM_WOM_DONE message,

IParam specifies a pointer to a WAVEHDR structure that identifies the completed data block. The IParam
parameter is unused for the MM_WOM_CLOSE and MM_WOM_OPEN messages.

The most useful message is probably MM_WOM_DONE. When this message signals that playback of a
data block is complete, you can clean up and free the data block. Unless you need to allocate memory or
initialize variables, you probably do not need to process the MM_WOM_OPEN and MM_WOM_CLOSE
messages.

The callback function for waveform-audio output devices is supplied by the application. For information
about this callback function, see the waveOutProc function.

Retrieving the Current Playback Position

You can monitor the current playback position within the file while waveform audio is playing by using the
waveOutGetPosition function.

For waveform-audio devices, samples are the preferred time format in which to represent the current
position. Thus, the current position of a waveform-audio device is specified as the number of samples for
one channel from the beginning of the waveform-audio file. To query the current position of a waveform-
audio device, set the wType member of the MMTIME structure to TIME_SAMPLES and pass this
structure to waveOutGetPosition.

The MMTIME structure can represent time in one or more different formats, including milliseconds,
samples, SMPTE (Society of Motion Picture and Television Engineers), and MIDI song pointer formats.
The wType member specifies the format used to represent time. Before calling a function that uses the
MMTIME structure, you must set wType to indicate your requested time format. Be sure to check wType
after the call to see whether the requested time format is supported. If the requested time format is not
supported, the device driver specifies the time in an alternate time format and changes the wType
member to the selected time format.

For more information about the MMTIME structure, see Multimedia Timers.

Stopping, Pausing, and Restarting Playback

You can stop or pause playback while waveform audio is playing. After playback has been paused, you
can restart it. Windows provides the following functions for controlling waveform-audio playback.

Function Description
waveOutPause Pauses playback on a waveform-audio output
device.

waveOutReset Stops playback on a waveform-audio output
device and marks all pending data blocks as
done.

WaveOutRestart Resumes playback on a paused waveform-
audio output device.

Pausing a waveform-audio device by using waveOutPause might not be instantaneous; the driver may
finish playing the current block before pausing playback.

Generally, as soon as the first waveform-audio data block is sent by using the waveOutWrite function,
the waveform-audio device begins playing. If you do not want the sound to start playing immediately, call
waveOutPause before calling waveOutWrite. Then, when you want to begin playing waveform-audio
data, call waveOutRestart.

You cannot use waveOutRestart to restart a device that has been stopped with waveOutReset; you
must use waveOutWrite to send the first data block to resume playback on the device.

Looping Playback

Looping a sound is controlled by the dwLoops and dwFlags members in the WAVEHDR structures
passed to the device with the waveOutWrite function. Use the WHDR_BEGINLOOP and
WHDR_ENDLOORP flags in the dwFlags member to specify the beginning and ending data blocks for
looping.

To loop a single data block, specify both flags for the same block. To specify the number of loops, use the
dwLoops member in the WAVEHDR structure for the first block in the loop.

You can call the waveOutBreaklLoop function to stop a looping sound.

Changing the Volume of Waveform-Audio Playback

Windows provides the following functions to query and set the volume level of waveform-audio output
devices.

Function Description

waveOutGetVolume Retrieves the current volume level of the specified
waveform-audio output device.

waveOutSetVolume Sets the volume level of the specified waveform-
audio output device.

Not all waveform-audio devices support volume changes. Some devices support individual volume control
on both the left and right channels. For information about how to determine the volume-control
capabilities of waveform-audio devices, see Devices and Data Types.

Some applications allow the user to control the volume for all audio devices in a system. (Many
applications of this type use the audio mixer services; for more information, see Audio Mixers.) Unless
your application is capable of this kind of master volume control, you should open an audio device before
changing its volume. You should also query the volume level before changing it and restore the volume
level to its previous level as soon as possible.

Volume is specified in a doubleword value. When the audio format is stereo, the upper 16 bits specify the
relative volume of the right channel and the lower 16 bits specify the relative volume of the left channel.
For devices that do not support left- and right-channel volume control, the lower 16 bits specify the
volume level, and the upper 16 bits are ignored.

Volume-level values range from 0x0 (silence) to OxFFFF (maximum volume) and are interpreted
logarithmically. The perceived volume increase is the same when increasing the volume level from
0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

Changing Pitch and Playback Rate

Some waveform-audio output devices can vary the pitch and the playback rate of waveform-audio data.
Not all waveform-audio devices support pitch and playback-rate changes. For information about how to
determine whether a particular waveform-audio device supports pitch and playback rate changes, see
Devices and Data Types.

The differences between changing pitch and playback rate are as follows:

¢ Changing the playback rate is performed by the device driver and does not require specialized
hardware. The sample rate is not changed, but the driver interpolates by skipping or synthesizing
samples. For example, if the playback rate is changed by a factor of two, the driver skips every other
sample.

¢ Changing the pitch requires specialized hardware. The playback rate and sample rate are not
changed.

Windows provides the following functions to query and set waveform-audio pitch and playback rates.

Function Description

waveOutGetPitch Retrieves the pitch for the specified
waveform-audio output device.

waveOutGetPlaybackRate Retrieves the playback rate for the
specified waveform-audio output device.

waveOutSetPitch Sets the pitch for the specified
waveform-audio output device.

waveOutSetPlaybackRate Sets the playback rate for the specified
waveform-audio output device.

The pitch and playback rates are changed by a factor specified with a fixed-point number packed into a
doubleword value. The upper 16 bits specify the integer part of the number; the lower 16 bits specify the
fractional part. For example, the value 1.5 is represented as 0x00018000L. The value 0.75 is represented
as 0x0000CO000L. A value of 1.0 (0x00010000) means the pitch or playback rate is unchanged.

Recording Waveform Audio

If the MCI waveform-audio recording services do not meet the specifications of your application, you can
handle waveform-audio recording using the waveform-audio services. For more information, see MCI.

Waveform-Audio Input Data Types
The following data types are defined for waveform-audio input functions:

Type Description

HWAVEIN Handle of an open waveform-audio input device.

WAVEFORMATEX Structure that specifies the data formats
supported by a particular waveform-audio input
device. This structure is also used for waveform-
audio output devices.

WAVEHDR Structure used as a header for a block of
waveform-audio input data. This structure is also
used for waveform-audio output devices.

WAVEINCAPS Structure used to inquire about the capabilities of
a particular waveform-audio input device.

Querying Waveform-Audio Input Devices

Before recording waveform audio, you should call the wavelnGetDevCaps function to determine the
waveform-audio input capabilities of the system. This function fills a WAVEINCAPS structure with
information about the capabilities of a specified device. This information includes the manufacturer and
product identifiers, a product name for the device, and the version number of the device driver. In
addition, the WAVEINCAPS structure provides information about the standard waveform-audio formats
that the device supports.

Opening Waveform-Audio Input Devices

Use the wavelnOpen function to open a waveform-audio input device for recording. This function opens
the device associated with the specified device identifier and returns a handle of the open device by
writing the handle of a specified memory location.

Some multimedia computers have multiple waveform-audio input devices. Unless you know you want to
open a specific waveform-audio input device in a system, you should use the WAVE_MAPPER constant
for the device identifier when you open a device. The wavelnOpen function will choose the device in the
system best able to record in the specified data format.

Managing Waveform-Audio Recording

After you open a waveform-audio input device, you can begin recording waveform-audio data. Waveform-
audio data is recorded into application-supplied buffers specified by a WAVEHDR structure. These data
blocks must be prepared before they are used; for more information, see Audio Data Blocks.

Windows provides the following functions to manage waveform-audio recording.

Function Description

wavelnAddBuffer Sends a buffer to the device driver so it can be filled
with recorded waveform-audio data.

wavelnReset Stops waveform-audio recording and marks all
pending buffers as done.
wavelnStart Starts waveform-audio recording.

wavelnStop Stops waveform-audio recording.

Use the wavelnAddBuffer function to send buffers to the device driver. As the buffers are filled with
recorded waveform-audio data, the application is notified with a window message, callback message,
thread message, or event, depending on the flag specified when the device was opened.

Before you begin recording by using wavelnStart, you should send at least one buffer to the driver, or
incoming data could be lost.

Before closing the device using wavelnClose, call wavelnReset to mark any pending data blocks as
being done.

Using Window Messages to Manage Waveform-Audio Recording
The following messages can be sent to a window procedure function for managing waveform-audio
recording.

Message Description

MM_WIM_CLOSE Sent when the device is closed by using the
wavelnClose function.

MM_WIM_DATA Sent when the device driver is finished with a
buffer sent by using the wavelnAddBuffer
function.

MM_WIM_OPEN Sent when the device is opened by using the

wavelnOpen function.

The IParam parameter of MM_WIM_DATA specifies a pointer to a WAVEHDR structure that identifies the
buffer. This buffer might not be completely filled with waveform-audio data; recording can stop before the
buffer is filled. Use the dwBytesRecorded member of the WAVEHDR structure to determine the amount
of valid data present in the buffer.

The most useful message is probably MM_WIM_DATA. When your application finishes using the data
block sent by the device driver, you can clean up and free the data block. Unless you need to allocate
memory or initialize variables, you probably do not need to use the MM_WIM_OPEN and

MM WIM CLOSE messages.

The callback function for waveform-audio input devices is supplied by the application. For information
about this callback function, see the wavelnProc function.

Auxiliary Audio Interface

Auxiliary audio devices are audio devices whose output is mixed with the MIDI and waveform-audio
output devices in a multimedia computer. An example of an auxiliary audio device is the CD audio output
from a CD-ROM drive.

Querying Auxiliary Audio Devices

Not all multimedia systems have auxiliary audio support. You can use the auxGetNumDevs function to
determine the number of controllable auxiliary devices present in a system.

To get information about a particular auxiliary audio device, use the auxGetDevCaps function. This
function fills an AUXCAPS structure with information about the capabilities of a specified device. This
information includes the manufacturer and product identifiers, a product name for the device, and the
device-driver version number.

Changing the Volume of Auxiliary Audio-Devices

Windows provides the following functions to query and set the volume for auxiliary audio devices.

Function Description

auxGetVolume Retrieves the current volume setting of the
specified auxiliary output device.

auxSetVolume Sets the volume of the specified auxiliary output
device.

Not all auxiliary audio devices support volume changes. Some devices can support individual volume
changes on both the left and the right channels.

Volume is specified in a doubleword value, as with the waveform-audio and MIDI volume-control
functions. When the audio format is stereo, the upper 16 bits specify the relative volume of the right
channel and the lower 16 bits specify the relative volume of the left channel. For devices that do not
support left- and right-channel volume control, the lower 16 bits specify the volume level, and the upper
16 bits are ignored.

Volume-level values range from 0x0 (silence) to 0OxFFFF (maximum volume) and are interpreted
logarithmically. The perceived volume increase is the same when increasing the volume level from
0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

Audio Data Blocks

The wavelnAddBuffer and waveOutWrite functions require applications to allocate data blocks to pass
to the device drivers for recording or playback purposes. Both of these functions use the WAVEHDR
structure to describe its data block.

Before using one of these functions to pass a data block to a device driver, you must allocate memory for
the data block and the header structure that describes the data block. The headers can be prepared and
unprepared by using the following functions.

Function Description
wavelnPrepareHeader Prepares a waveform-audio input data
block.

wavelnUnprepareHeader Cleans up the preparation on a
waveform-audio input data block.

waveOutPrepareHeader Prepares a waveform-audio output data
block.

waveOutUnprepareHeader Cleans up the preparation on a
waveform-audio output data block.

Before you pass an audio data block to a device driver, you must prepare the data block by passing it to
either wavelnPrepareHeader or waveOutPrepareHeader. \WWhen the device driver is finished with the
data block and returns it, you must clean up this preparation by passing the data block to either
wavelnUnprepareHeader or waveOutUnprepareHeader before any allocated memory can be freed.

Unless the waveform-audio input and output data is small enough to be contained in a single data block,
applications must continually supply the device driver with data blocks until playback or recording is
complete.

Even if a single data block is used, an application must be able to determine when a device driver is
finished with the data block so the application can free the memory associated with the data block and
header structure. There are several ways to determine when a device driver is finished with a data block:

¢ By specifying a callback function to receive a message sent by the driver when it is finished with a
data block

¢ By using an event callback

¢ By specifying a window or thread to receive a message sent by the driver when it is finished with a
data block

¢ By polling the WHDR_DONE bit in the dwFlags member of the WAVEHDR structure sent with each
data block

If an application does not get a data block to the device driver when needed, there can be an audible gap
in playback or a loss of incoming recorded information. This requires at least a double-buffering scheme
— staying at least one data block ahead of the device driver.

The following sections describe ways to determine when a device driver is finished with a data block:

e Using a callback function to process driver messages
e Using an event callback to process driver messages
e Using a window or thread to process driver messages
¢ Managing data blocks by polling

Using a Callback Function to Process Driver Messages

You can write your own callback function to process messages sent by the device driver. To use a
callback function, specify the CALLBACK_FUNCTION flag in the fdwOpen parameter and the address of
the callback in the dwCallback parameter of the wavelnOpen or waveOutOpen function.

Messages sent to a callback function are similar to messages sent to a window, except they have two
DWORD parameters instead of a UINT and a DWORD parameter. For details on these messages, see
Playing Waveform-Audio Files.

To pass instance data from an application to a callback function, use one of the following techniques:

¢ Pass the instance data using the dwinstance parameter of the function that opens the device driver.

¢ Pass the instance data using the dwUser member of the WAVEHDR structure that identifies an audio
data block being sent to a device driver.

If you need more than 32 bits of instance data, pass a pointer to a structure containing the additional
information.

Using an Event Callback to Process Driver Messages

To use an event callback, use the CreateEvent function to retrieve the handle of an event. In the call to
the waveOutOpen function, specify CALLBACK_EVENT for the fdwOpen parameter. After calling the
waveOutPrepareHeader function but before sending waveform-audio data to the device, create a
nonsignaled event by calling the ResetEvent function, specifying the event handle retrieved by
CreateEvent. Then, inside a loop that checks whether the WHDR_DONE bit is set in the dwFlags
member of the WAVEHDR structure, call the WaitForSingleObject function, specifying as parameters
the event handle and a time-out value of INFINITE.

Because event callbacks do not receive specific close, done, or open natifications, an application might
have to check the status of the process it is waiting for after the event occurs. It is possible that a number
of tasks could have been completed by the time WaitForSingleObject returns.

Using a Window or Thread to Process Driver Messages

To use a window callback function, specify the CALLBACK_WINDOW flag in the fdwQOpen parameter and
a window handle in the low-order word of the dwCallback parameter of the wavelnOpen or
waveOutOpen function. Driver messages will be sent to the window procedure for the window identified
by the handle in dwCallback.

Similarly, to use a thread callback, specify CALLBACK_THREAD and a thread handle in the call to
wavelnOpen or waveOutOpen. In this case, messages are posted to the specified thread instead of to a
window.

Messages sent to the window or thread callback are specific to the audio device type used. For more
information about these messages, see Playing Waveform-Audio Files.

Managing Data Blocks by Polling

In addition to using a callback function, you can poll the dwFlags member of a WAVEHDR structure to
determine when an audio device is finished with a data block. Sometimes it is better to poll dwFlags than
to wait for another mechanism to receive messages from the drivers. For example, after you call the
waveOutReset function to release pending data blocks, you can immediately poll to be sure that the data
blocks have been released before calling waveOutUnprepareHeader and freeing the memory for the
data block.

You can use the WHDR_DONE flag to test the dwFlags member. As soon as the WHDR_DONE flag is
set in the dwFlags member of the WAVEHDR structure, the driver is finished with the data block.

Handling Errors with Audio Functions

The waveform-audio and auxiliary-audio functions return a nonzero value when an error occurs. Windows
provides functions that convert these error values into textual descriptions of the errors. The application
must still examine the error values to determine how to proceed, but textual descriptions of errors can be
used in dialog boxes that describe errors to users.

You can use the following functions to retrieve textual descriptions of audio error values:

Function Description

wavelnGetErrorText Retrieves a textual description of a specified
waveform-audio input error.

waveOutGetErrorText Retrieves a textual description of a specified
waveform-audio output error.

The only audio functions that do not return error values are auxGetNumDevs, wavelnGetNumDevs,
and waveOutGetNumbDevs. These functions return zero if no devices are present in a system or if they
encounter any errors.

Using Waveform and Auxiliary Audio

This section demonstrates implementing waveform and auxiliary audio in your application. The following
topics are discussed:

¢ Playing WAVE resources
¢ Determining nonstandard format support
¢ Processing the MM_WOM_DONE message

Playing WAVE Resources

You can use the PlaySound function to play a sound that is stored as a resource. Although this is also
possible using the sndPlaySound function, sndPlaySound requires that you find, load, lock, unlock, and
free the resource; PlaySound achieves all of this with a single line of code.

PlaySound Example
PlaySound ("SoundName", hInst, SND RESOURCE | SND ASYNC);

sndPlaySound Example
The SND_MEMORY flag indicates that the IpszSoundName parameter is a pointer to an in-memory

image of the WAVE file. To include a WAVE file as a resource in an application, add the following entry to
the application's resource script (.RC) file.

soundName WAVE c:\sounds\bells.wav

The name soundName is a placeholder for a name that you supply to refer to this WAVE resource. WAVE
resources are loaded and accessed just like other application-defined Windows resources. The
PlayResource function in the following example plays a specified WAVE resource.

BOOL PlayResource (LPSTR lpName)
{

BOOL DbRtn;

LPSTR lpRes;

HANDLE hResInfo, hRes;

// Find the WAVE resource.

hResInfo = FindResource (hInst, lpName, "WAVE");
if (hResInfo == NULL)
return FALSE;

// Load the WAVE resource.

hRes = LoadResource (hInst, hResInfo);
if (hRes == NULL)
return FALSE;

// Lock the WAVE resource and play it.

1lpRes = LockResource (hRes) ;
if (lpRes != NULL) {
bRtn = sndPlaySound(lpRes, SND MEMORY | SND SYNC |
SND NODEFAULT) ;
UnlockResource (hRes) ;
}
else
bRtn = 0;

// Free the WAVE resource and return success or failure.

FreeResource (hRes) ;
return bRtn;

To play a WAVE resource by using this function, pass to the function a pointer to a string containing the
name of the resource, as shown in the following example.

PlayResource ("soundName") ;

Using the PCMWAVEFORMAT Structure

For PCM audio data, use the PCMWAVEFORMAT structure to specify the data format. The following
example shows how to set up a PCMWAVEFORMAT structure for 11.025 kilohertz (kHz) 8-bit mono and
for 44.1 kHz 16-bit stereo. After setting up PCMWAVEFORMAT, the example calls the
IsFormatSupported function to verify that the PCM waveform output device supports the format. The
source code for IsFormatSupported is shown in an example in Determining Nonstandard Format Support.

UINT wReturn;
PCMWAVEFORMAT pcmWaveFormat;

// Set up PCMWAVEFORMAT for 11 kHz 8-bit mono.

pcmWaveFormat.wf.wFormatTag = WAVE FORMAT PCM;
pcmWaveFormat.wf.nChannels = 1;
pcmWaveFormat.wf.nSamplesPerSec = 11025L;
pcmWaveFormat.wf.nAvgBytesPerSec = 11025L;
pcmWaveFormat.wf.nBlockAlign = 1;
pcmWaveFormat.wBitsPerSample = 8;

// See if format is supported by any device in system.
wReturn = IsFormatSupported (&pcmWaveFormat, WAVE MAPPER) ;
// Report results.

if (wReturn == 0)
MessageBox (hMainWnd, "11 kHz 8-bit mono is supported.",
"", MB ICONINFORMATION) ;
else if (wReturn == WAVERR BADFORMAT)
MessageBox (hMainWnd, "11 kHz 8-bit mono NOT supported.",
"", MB ICONINFORMATION) ;
else
MessageBox (hMainWnd, "Error opening waveform device.",
"Error", MB ICONEXCLAMATION) ;

// Set up PCMWAVEFORMAT for 44.1 kHz 16-bit stereo.

pcmWaveFormat.wf.wFormatTag = WAVE FORMAT PCM;
pcmWaveFormat.wf.nChannels = 2;
pcmWaveFormat.wf.nSamplesPerSec = 44100L;
pcmWaveFormat.wf.nAvgBytesPerSec = 176400L;
pcmWaveFormat.wf.nBlockAlign = 4;
pcmWaveFormat.wBitsPerSample = 32;

// See if format is supported by any device in the system.
wReturn = IsFormatSupported (&pcmWaveFormat, WAVE MAPPER) ;
/ Report results.
if (wReturn == 0)

MessageBox (hMainWnd, "44.1 kHz 16-bit stereo is supported.",
"", MB ICONINFORMATION) ;

else if (wReturn == WAVERR BADFORMAT)
MessageBox (hMainWnd, "44.1 kHz 16-bit stereo NOT supported.",
"", MB ICONINFORMATION) ;
else
MessageBox (hMainWnd, "Error opening waveform device.",
"Error", MB ICONEXCLAMATION) ;

Determining Nonstandard Format Support

To see whether a device supports a particular format (standard or nonstandard), you can call the
waveOutOpen function with the WAVE_FORMAT_QUERY flag. The following example uses this
technique to determine whether a waveform-audio device supports a specified format.

// Determines whether the specified waveform-audio output device

// supports a specified waveform-audio format. Returns

// MMSYSERR NOERROR if the format is supported, WAVEERR BADFORMAT if
// the format is not supported, and one of the other MMSYSERR error
// codes if there are other errors encountered in opening the

// specified waveform-audio device.

MMRESULT IsFormatSupported (LPWAVEFORMATEX pwfx, UINT uDevicelID)
{

return (waveOutOpen (

NULL, // ptr can be NULL for query
uDevicelD, // the device identifier

pwix, // defines requested format

NULL, // no callback

NULL, // no instance data

WAVE _FORMAT QUERY)); // query only, do not open device

}

This technique for determining nonstandard format support also applies to waveform-audio input devices.
The only difference is that the wavelnOpen function is used in place of waveOutOpen to query for format
support.

To determine whether a particular waveform-audio data format is supported by any of the waveform-audio
devices in a system, use the technique illustrated in the previous example, but specify the
WAVE_MAPPER constant for the uDevicelD parameter.

Example of Writing Waveform Data

The following example illustrates the steps required to allocate and set up a WAVEHDR structure and
write a block of data to a waveform output device.

// Global wvariables.

HANDLE hData = NULL; // handle of waveform data memory
HPSTR 1pData = NULL; // pointer to waveform data memory

void WriteWaveData (void)

{

HWAVEQOUT hWwaveOut;
HGLOBAL hWaveHdr;
LPWAVEHDR lpWaveHdr;
HMMIO hmmio;

UINT wResult;
HANDLE hFormat;
WAVEFORMAT *pFormat;
DWORD dwDataSize;

// Open a waveform device for output using window callback.

if (waveOutOpen ((LPHWAVEOUT) §hWaveOut, WAVE MAPPER,
(LPWAVEFORMAT) pFormat,
(LONG) hwndApp, OL, CALLBACK WINDOW))

MessageBox (hwndApp,
"Failed to open waveform output device.",
NULL, MB OK | MB ICONEXCLAMATION) ;
LocalUnlock (hFormat) ;
LocalFree (hFormat) ;
mmioClose (hmmio, 0);
return;

// Allocate and lock memory for the waveform data.

hData = GlobalAlloc (GMEM MOVEABLE | GMEM SHARE, dwDataSize);
if ('hData)
{
MessageBox (hwndApp, "Out of memory.",
NULL, MB OK | MB ICONEXCLAMATION) ;
mmioClose (hmmio, O0);
return;
}
if ((lpData = GlobalLock (hData)) == NULL)
{
MessageBox (hwndApp, "Failed to lock memory for data chunk.",
NULL, MB OK | MB ICONEXCLAMATION) ;
GlobalFree (hData) ;
mmioClose (hmmio, 0);
return;

// Read the waveform data subchunk.

if (mmioRead (hmmio, (HPSTR) lpData, dwDataSize) != (LRESULT)dwDataSize)
{

MessageBox (hwndApp, "Failed to read data chunk.",

NULL, MB OK | MB ICONEXCLAMATION) ;

GlobalUnlock (hData) ;

GlobalFree (hData) ;

mmioClose (hmmio, O0);

return;

}
// Allocate and lock memory for the header.

hWaveHdr = GlobalAlloc (GMEM MOVEABLE | GMEM SHARE,
(DWORD) sizeof (WAVEHDR)) ;
if (hWaveHdr == NULL)
{
GlobalUnlock (hData) ;
GlobalFree (hData) ;
MessageBox (hwndApp, "Not enough memory for header.",
NULL, MB OK | MB ICONEXCLAMATION) ;

return;
}
lpWaveHdr = (LPWAVEHDR) GlobalLock (hWaveHdr) ;
if (lpWaveHdr == NULL)

{
GlobalUnlock (hData) ;
GlobalFree (hData) ;
MessageBox (hwndApp,
"Failed to lock memory for header.",
NULL, MB OK | MB ICONEXCLAMATION) ;
return;

}

// After allocation, set up and prepare header.

lpWaveHdr->1pData = lpData;

lpWaveHdr->dwBufferLength = dwDataSize;

lpWaveHdr->dwFlags = 0L;

lpWaveHdr->dwLoops = 0L;

waveOutPrepareHeader (hWaveOut, lpWaveHdr, sizeof (WAVEHDR)) ;

// Now the data block can be sent to the output device. The
// waveOutWrite function returns immediately and waveform
// data is sent to the output device in the background.

wResult = waveOutWrite (hWaveOut, lpWaveHdr, sizeof (WAVEHDR)) ;
if (wResult != 0)
{
waveOutUnprepareHeader (hWaveOut, lpWaveHdr,
sizeof (WAVEHDR)) ;

GlobalUnlock (hData);

GlobalFree (hData) ;

MessageBox (hwndApp, "Failed to write block to device",
NULL, MB OK | MB_ICONEXCLAMATION);

return;

Processing the MM_WOM_DONE Message

The following example shows how to process the MM_WOM_DONE message. This example assumes
the application does not play multiple data blocks, so it can close the output device after playing a single
data block.

// WndProc--Main window procedure.

LRESULT FAR PASCAL WndProc (HWND hWnd, UINT msg, WPARAM wParam,
LPARAM l1Param)

{

switch (msgqg)

{
case MM _WOM DONE:

// A waveform-audio data block has been played and

// can now be freed.

waveOutUnprepareHeader ((HWAVEOUT) wParam,
(LPWAVEHDR) lParam, sizeof (WAVEHDR));

// Free hData memory.

waveOutClose ((HWAVEOUT) wParam) ;
break;

}

return DefWindowProc (hWnd, msg, wParam, lParam);

Waveform Audio Reference

This section describes the functions, structures, and messages associated with waveform audio. These
elements are grouped as follows.

Auxiliary Devices
AUXCAPS

auxGetDevCaps
auxGetNumDevs
auxGetVolume

auxOutMessage
auxSetVolume

Easy Playback

PlaySound
sndPlaySound

Errors

wavelnGetErrorText
waveOutGetErrorText

Opening and Closing
PCMWAVEFORMAT
MM _WIM_CLOSE
MM _WIM_OPEN
MM _WOM CLOSE
MM _WOM_ OPEN
WAVEFORMAT
WAVEFORMATEX
wavelnClose
wavelnProc
wavelnOpen
waveOutClose
waveOutProc
waveOutOpen
WIM_CLOSE
WIM_OPEN
WOM_CLOSE
WOM_ OPEN

Pitch

waveOutGetPitch
waveOutSetPitch

Playback Rate

waveOutGetPlaybackRate
waveOutSetPlaybackRate

Playback Progress
MM_WOM_DONE

waveOutBreaklLoop
waveOutPause

waveOutReset
waveOutRestart
WOM_DONE

Playing

MM _WOM DONE
WAVEHDR
waveOutPrepareHeader
waveOutUnprepareHeader
waveOutWrite

WOM_ DONE

Querying a Device
WAVEINCAPS

wavelnGetDevCaps
wavelnGetNumDevs
WAVEOUTCAPS
waveOutGetDevCaps
waveOutGetNumDevs

Recording

MM WIM DATA
wavelnAddBuffer
wavelnPrepareHeader
wavelnReset
wavelnStart
wavelnStop
wavelnUnprepareHeader
WIM DATA

Retrieving Device ldentifiers

wavelnGetID
waveOutGetID

Retrieving the Current Position

wavelnGetPosition
waveOutGetPosition

Sending Custom Messages

wavelnMessage
waveOutMessage

Volume

waveOutGetVolume
waveOutSetVolume

Waveform Functions

The following functions are used with waveform audio.

auxGetDevCaps
auxGetNumDevs
auxGetVolume
auxOutMessage
auxSetVolume
PlaySound

sndPlaySound
wavelnAddBuffer

wavelnClose
wavelnGetDevCaps
wavelnGetErrorText
wavelnGetID
wavelnGetNumDevs
wavelnGetPosition

wavelnMessage
wavelnOpen

wavelnPrepareHeader
wavelnProc

wavelnReset
wavelnStart

wavelnStop
wavelnUnprepareHeader
waveOutBreakLoop
waveOutClose
waveOutGetDevCaps
waveOutGetErrorText
waveOutGetID
waveOutGetNumDevs
waveOutGetPitch
waveOutGetPlaybackRate
waveOutGetPosition
waveOutGetVolume

waveOutMessage

waveOutOpen
waveOutPause

waveOutPrepareHeader
waveOutProc
waveOutReset
waveOutRestart
waveOutSetPitch
waveOutSetPlaybackRate
waveOutSetVolume
waveOutUnprepareHeader
waveOutWrite

Waveform Structures

PCMWAVEFORMAT
WAVEFILTER
WAVEFORMAT
WAVEFORMATEX
WAVEHDR
WAVEINCAPS
WAVEOUTCAPS

Waveform Messages

MM_WIM_CLOSE
MM_WIM_DATA
MM_WIM_OPEN
MM_WOM_CLOSE
MM_WOM_DONE
MM_WOM_OPEN
WIM_CLOSE
WIM_DATA
WIM_OPEN
WOM_CLOSE
WOM_DONE
WOM_OPEN

Musical Instrument Digital Interface
(MIDI)

The Musical Instrument Digital Interface (MIDI) is a protocol and set of commands for storing and
transmitting information about music. MIDI output devices interpret this information and use it to
synthesize music.

About MIDI

The Microsoft Win32 application programming interface (API) provides the following methods for
applications to work with MIDI data:

e The Media Control Interface (MCI). Although the simplest way to play a MIDI file is to use the
MCIWnd window class, you can also use MCI commands to create a customized interface to a MIDI
device. For more information about the MCIWnd window class, see MCIWnd Window Class. For
more information about MCI, see MCI, or Media Control Interface (MCI).

e Stream buffers. This format allows an application to manipulate buffers of time-stamped MIDI data for

playback. Stream buffers are useful to applications that require more precise control over output than
MCI offers.

e MIDI services. Applications that need the most precise control of MIDI data typically use these low-
level services.

This overview discusses each of these methods and provides an overview of the the MIDI Mapper.

The MIDI Mapper

The MIDI Mapper's standard patch services provide device-independent MIDI file playback for
applications. The MIDI Mapper can be used with the MCI MIDI sequencer or with low-level MIDI output
services.

MIDI Notational Conventions

Unless stated otherwise, all references to MIDI channel numbers use the logical channel numbers 1
through 16. These logical channel numbers correspond to the physical channel numbers 0 through 15
that are actually part of the MIDI message. All references to MIDI program-change and key values use
the physical values 0 through 127. All numbers are decimal unless preceded by Ox prefix, in which case
they are hexadecimal.

In the discussion of the MIDI Mapper, the term source refers to the input side of the MIDI Mapper. The
term destination refers to the output side of the MIDI Mapper. For example, a source channel is the MIDI
channel of a message sent to the MIDI Mapper, and a destination channel is the MIDI channel of a
message sent from the MIDI Mapper to an output device.

The MIDI Mapper and Windows

The MIDI Mapper is part of the system software. The following illustration shows how the MIDI Mapper
relates to other elements of the audio services.

{ewc msdncd, EWGraphic, bsd23538 0 /a "SDK_A01.WMF"}

From the viewpoint of an application, the MIDI Mapper looks like another MIDI output device. The MIDI
Mapper receives messages sent to it by the low-level MIDI output functions midiOutShortMsg and
midiOutLongMsg. The MIDI Mapper modifies these messages and redirects them to a MIDI output
device according to the current MIDI setup map. The current MIDI setup map is selected by the user by
means of the MIDI Control Panel option. Only the user can select the current setup map; applications
cannot change the current setup map.

The MIDI Mapper Architecture

The MIDI Mapper uses a MIDI setup map to determine how to translate and redirect the messages it
receives. A MIDI setup map consists of the following types of maps.

e Channel map
e Patch map
e Key map

The following illustration shows the roles of channel, patch, and key maps in a MIDI setup map.

{ewc msdncd, EWGraphic, bsd23538 1 /a "SDK_A02.WMF"}

The Channel Map

The channel map affects all MIDI channel messages. MIDI channel messages include note-on, note-off,
polyphonic-key-aftertouch, control-change, program-change, channel-aftertouch, and pitch-bend-change
messages. The MIDI Mapper uses a single channel map with an entry for each of the 16 MIDI channels.
Each channel-map entry specifies the following:

¢ Adestination channel for the MIDI message
¢ Adestination output device for the MIDI message
¢ An optional patch map specifying other possible modifications for the MIDI message

The destination channel is set to one of the 16 MIDI channels. MIDI messages are modified to reflect
each new channel assignment. For example, if the destination channel entry for MIDI channel 4 is set to
6, all MIDI messages sent to channel 4 will be mapped to channel 6, as shown in the following illustration.

{ewc msdncd, EWGraphic, bsd23538 2 /a "SDK_A05.WMF"}

In this example, the MIDI status byte 0x93 is mapped to 0x95. The low-order of a MIDI status byte
specifies the channel number. Source channels are set to either active or inactive. Messages sent to
inactive source channels are ignored, so an inactive channel is in effect muted or turned off.

The destination output device is set to one of the available MIDI output devices. A MIDI output device can
be an internal synthesizer or a physical MIDI output port.

MIDI system messages are MIDI messages (with status bytes) from 0xFO to OxFF. There is no channel
associated with MIDI system messages, so they cannot be mapped. MIDI system messages are sent to
all MIDI output devices listed in a channel map.

Patch Maps

Each channel map entry can have an associated patch map. Patch maps affect MIDI program-change
and volume-controller messages. Program-change messages tell a synthesizer to change the instrument
sound (patch) for a specified channel. Volume-controller messages set the volume for a channel.

A patch map has a translation table with an entry for each of the 128 program-change values. Each patch
map specifies the following:

¢ Adestination program-change value
e Avolume scalar

¢ An optional key map

When program-change messages are received by the MIDI Mapper, the destination program-change
value is substituted for the program-change value in the message. For example, if the destination
program-change value for program-change 16 is 18, the MIDI Mapper modifies the MIDI program-change
message as shown in the following illustration.

{ewc msdncd, EWGraphic, bsd23538 3 /a "SDK_A03.WMF"}

The Volume Scalar

The purpose of the volume scalar is to allow adjustments between the relative output levels of different
patches on a synthesizer. For example, if the bass patch on a synthesizer is too loud compared with its
piano patch, you can change the setup map to scale the bass volume down or the piano volume up.

The volume scalar specifies a percentage value for changing all MIDI main-volume controller messages
that follow an associated program-change message. For example, if the volume scalar value is 50%, the
MIDI Mapper modifies MIDI main-volume controller messages as shown in the following illustration:

{ewc msdncd, EWGraphic, bsd23538 4 /a "SDK_A04.WMF"}

Key Maps

Each entry in the patch-map translation table can have an associated key map. Key maps affect note-on,
note-off, and polyphonic-key-aftertouch messages. A key map has a translation table with an entry for
each of the 128 MIDI key values. For example, if the entry for key value 60 is 72, the MIDI Mapper
modifies MIDI note-on messages as shown in the following illustration.

{ewc msdncd, EWGraphic, bsd23538 5 /a "SDK_A06.WMF"}

Key maps are useful with synthesizers that have key-based percussion instruments with a particular
percussion sound assigned to each key. Key maps are usually assigned to the first patch in the patch
maps on the percussion channels (10 and 16).

Summary of Maps and MIDI Messages

Following are the status bytes for MIDI messages and the map types that affect each message.

MIDI status
0x80-0x8F
0x90-0x9F
O0xAO0-OxAF

0xB0-0xBF
0xCO0-0xCF
0xDO0-0xDF
OxE0-OxEF
0xFO-OxFF

¢ The high-order four bits represent the status value. The low-order four bits represent the channel

information.

e Patch maps affect only controller 7 (main volume).

Description
Note off
Note on

Polyphonic-key
aftertouch

Control change
Program change
Channel aftertouch
Pitch-bend change
System

Map types

Channel maps, key maps
Channel maps, key maps
Channel maps, key maps

Channel maps, patch maps
Channel maps, patch maps
Channel maps

Channel maps

Not mapped

e System messages are sent to all devices listed in a channel map.

Media Control Interface (MCI)

The MCI MIDI sequencer is the MCI system component that plays MIDI files. Applications can play MIDI
files easily using MCI, but MCI imposes the following restrictions on MIDI capabilities:

¢ MCI supports MIDI output only.

e MCI does not allow close synchronization between MIDI events and other real-time events (such as
video).

If you need accurate MIDI synchronization, you must use the stream buffers or the MIDI services. If you
need MIDI input capabilities, you must use the MIDI services.

The MCI MIDI sequencer plays standard MIDI files and resource interchange file format (RIFF) MIDI files,
known as RMID files. Standard MIDI files conform to the Standard MIDI Files 1.0 specification. Because
RMID files are standard MIDI files with a RIFF header, information about standard MIDI files also applies
to RMID files. For more information about RIFF files, see File Input and Output.

Although there are currently three kinds of standard MIDI files, the MCI sequencer plays only two of them:
Format 0 and Format 1 MIDI files.

For more information about controlling multimedia devices (including sequencers) using MCI commands,
see MCI.

Stream Buffers

Applications can use stream buffers to send streams of MIDI events to a device. Each stream buffer is a
block of memory pointed to by a MIDIHDR structure. This block of memory contains data for one or more
MIDI events, each of which is defined by a MIDIEVENT structure. An application controls the buffer by
calling the stream-manipulation functions, such as midiStreamOpen, midiStreamOut, and
midiStreamClose.

Stream Buffer Format

The IpData member of the MIDIHDR structure points to a stream buffer, and the dwBufferLength
member specifies the actual size of this buffer. The dwBytesRecorded member of MIDIHDR specifies
the number of bytes in the buffer that are actually used by the MIDI events; this value must be less than
or equal to the value specified by dwBufferLength.

Each of the MIDI events in the stream buffer is specified by a MIDIEVENT structure, which contains the
time for the event, a stream identifier, an event code, and, when appropriate, parameters for the event.
Each of these MIDIEVENT structures must begin on a doubleword boundary. If necessary, pad bytes
must be added to the end of the structure to ensure that the next one starts on a doubleword boundary.

Timing Information

Timing information for a MIDI event is stored in the dwDeltaTime member of the MIDIEVENT structure.
Time is given in ticks, as defined in the Standard MIDI Files 1.0 specification. The length of a tick is
defined by the time format and possibly the tempo associated with the stream. For more information
about streams, see MIDI| Streams.

Atick is expressed either as microseconds per quarter note or as ticks of SMPTE (Society of Motion
Picture and Television Engineers) time. Applications that send MIDI messages individually or use
unprocessed MIDI messages use quarter note time and tempo information to determine the duration of a
tick. Applications that preprocess MIDI messages can store the elapsed time as a count of the SMPTE
units being used.

Quarter note time is indicated with a zero in the high-word bit (bit 15) of the time-division word. The
remainder of the word contains the ticks per quarter note. A tempo associated with a stream of MIDI data
is kept in units (microseconds per quarter note) consistent with the Standard MIDI Files 1.0 specification.
For example, a quarter note in 4/4 time that uses a tempo of 500,000 microseconds per quarter note
plays at the rate of 120 beats per minute.

SMPTE time division formats completely specify the length of a tick without the need for tempo
information. In using SMPTE time formats, MIDI sequences can be synchronized with other SMPTE
events, such as video or striped audio. SMPTE time is indicated with a 1 in the high-order bit (bit 15) of
the time-division word. The rest of the most-significant byte specifies the SMPTE format in use as
negative values. The supported SMPTE formats and their corresponding values (in parentheses) are 24
(-24), 25 (-25), 30 (-30), and 30 drop (-29). The low byte of the time-division word specifies the number of
ticks per SMPTE frame.

Event Types

The dwEvent member of the MIDIEVENT structure describes the MIDI event that is to take place. Short
events fit entirely into this member. Long events require one or more doubleword values in addition to the
dwEvent member to store the event descriptions.

The high byte of the dwEvent member contains information about whether the event is long or short and
about whether a callback is generated along with the event. In addition, this byte is used to describe the
event type. The remaining 24 bits of the dwEvent member are used either to contain the event
parameters (for short messages) or to contain the length of the event parameters (for long messages). To
extract information from the dwEvent member, use the MEVT_EVENTTYPE and MEVT_EVENTPARM
macros.

For a description of the predefined event types, see the reference material for the MIDIEVENT structure.

MIDI Streams

MIDI events occur in the context of a stream of MIDI data. Although an application can use several
streams to define musical data, the MIDI mapper does not recognize multiple streams. Most applications
that use streams use a single MIDI stream.

The following functions work with streams:

midiStreamClose Closes a MIDI stream.

midiStreamOpen Opens a MIDI stream and retrieves a
handle.

midiStreamOut Plays or queues a stream (buffer) of MIDI
data to a MIDI output device.

midiStreamPause Pauses playback of a specified MIDI
stream.

midiStreamPosition Retrieves the current position in a MIDI
stream.

midiStreamProperty Sets and retrieves stream properties.

midiStreamRestart Restarts playback of a paused MIDI
stream.

midiStreamStop Turns off all notes on all MIDI channels

for the specified MIDI stream.

MIDI Services

Most applications will be able to use the MCI MIDI sequencer or stream buffers (and the midiStreamOut
function) to implement all the MIDI functionality they need. Serious MIDI developers — those producing
MIDI authoring or sequencing tools — can use either a combination of the stream capabilities and the
MIDI services or use only the MIDI services. This section presents general information about using the
MIDI services.

Querying MIDI Devices

Before playing or recording MIDI data, you must determine the capabilities of the MIDI hardware present
in the system. MIDI capability can vary from one multimedia computer to the next; applications should not
make assumptions about the hardware present in a given system.

Windows provides the following functions to determine how many MIDI devices are available for input or
output in a given system:

midilnGetNumDevs Retrieves the number of MIDI input
devices present in the system.
midiOutGetNumbDevs Retrieves the number of MIDI output

devices present in the system.

Like other audio devices, MIDI devices are identified by a device identifier, which is determined implicitly
from the number of devices present in a given system. Device identifiers range from zero to the number of
devices present, minus one. For example, if there are two MIDI output devices in a system, valid device
identifiers are 0 and 1.

After you determine how many MIDI input or output devices are present in a system, you can inquire
about the capabilities of each device. Windows provides the following functions to determine the
capabilities of audio devices:

midilnGetDevCaps Retrieves the capabilities of a given
MIDI input device and places this
information in the MIDIINCAPS
structure.

midiOutGetDevCaps Retrieves the capabilities of a given
MIDI output device and places this
information in the MIDIOUTCAPS
structure.

Each of these functions has a parameter specifying the address of a structure that the function fills with
information about the capabilities of a specified device.

Opening and Closing Device Drivers

You must open a MIDI device before using it, and you should close the device as soon as you finish using
it. Windows provides the following functions to open and close different types of MIDI devices:

midilnClose Closes a specified MIDI input device.

midilnOpen Opens a specified MIDI input device for
recording.

midiOutClose Closes a specified MIDI output device.

midiOutOpen Opens a MIDI output device for playback.

Each function that opens a MIDI device takes as parameters a device identifier, an address of a memory
location, and some parameters unique to MIDI devices. The memory location is filled with a device
handle, which is used to identify the open audio device in calls to other audio functions.

Many MIDI functions can accept either a device handle or a device identifier. Although you can use a
device handle wherever you would use a device identifier, you cannot always use a device identifier when
a handle is called for.

Note MIDI devices are not necessarily shareable, so a particular device may not be available when
a user requests it. If this happens, the application should notify the user and allow the user to try to
open the device again.

Allocating and Preparing MIDI Data Blocks

The midiOutLongMsg, midilnAddBuffer, and midiStreamOut functions require that applications to
allocate data blocks to pass to the device drivers for playback or recording purposes. Each of these
functions uses a MIDIHDR structure to describe its data block.

Before you use one of these functions to pass a data block to a device driver, you must allocate memory
for the buffer and the header structure that describes the data block.

Windows provides the following functions for preparing and cleaning up MIDI data blocks:

midilnPrepareHeader Prepares a MIDI input data block.

midilnUnprepareHeader Cleans up the preparation of a MIDI
input data block.

midiOutPrepareHeader Prepares a MIDI output data block.

midiOutUnprepareHeader Cleans up the preparation of a MIDI
output data block.

Before you pass a MIDI data block to a device driver, you must prepare the buffer by passing it to the
midilnPrepareHeader or midiOutPrepareHeader function. When the device driver is finished with the
buffer and returns it, you must clean up this preparation by passing the buffer to the
midilnUnprepareHeader or midiOutUnprepareHeader function before any allocated memory can be
freed.

Managing MIDI Data Blocks

Applications that use data blocks for passing system-exclusive messages (using the midiOutLongMsg
and midilnAddBuffer functions) and stream buffers (using the midiStreamOut function) must continually
supply the device driver with data blocks until playback or recording is complete.

Even if a single data block is used, an application must be able to determine when a device driver is
finished with the data block so it can free the memory associated with the data block and header
structure. Three methods can be used to determine when a device driver is finished with a data block:

e Specify a callback function to receive a message sent by the driver when it is finished with a data
block. To get time-stamped MIDI input data, you must use a callback function.
e Use an event callback (for output only).

¢ Use a window or thread callback to receive a message sent by the driver when it is finished with a
data block.

If an application does not get a data block to the device driver when it is needed, an audible gap in
playback or a loss of incoming recorded information can occur. At a minimum, an application should use a
double-buffering scheme to stay at least one data block ahead of the device driver.

Using a Callback Function to Process Driver Messages

You can write your own callback function to process messages sent by the device driver. To use a
callback function, specify the CALLBACK_FUNCTION flag in the dwFlags parameter and the address of
the callback function in the dwCallback parameter of the midilnOpen or midiOutOpen function.

Messages sent to a callback function are similar to messages sent to a window, except they have two
doubleword parameters instead of an unsigned integer parameter and a doubleword parameter. For more
information about these messages, see Sending System-Exclusive Messages and Managing MIDI

Recording.

Use one of the following techniques to pass instance data from an application to a callback function:

e Use the dwCallbackinstance parameter of the function that opens the device driver.

¢ Use the dwUser member of the MIDIHDR structure that identifies a data block being sent to a MIDI
device driver.

If you need more than 32 bits of instance data, pass an address of a structure containing the additional
information.

Using an Event Callback to Process Driver Messages

To use an event callback, use the CreateEvent function to retrieve the handle of an event and specify
CALLBACK_EVENT in the call to the midiOutOpen function.

An event callback is set by anything that might cause a function callback. Unlike callback functions and
window or thread callbacks, event callbacks do not receive specific close, done, or open notifications.
Therefore, an application may have to check the status of the process it is waiting for after the event
occurs.

For more information about event callbacks, see Using an Event Callback to Manage Buffered Playback.

Using a Window or Thread Callback to Process Driver Messages

To use a window callback, specify the CALLBACK_WINDOW flag in the dwFlags parameter and a
window handle in the low-order word of the dwCallback parameter of the midilnOpen or midiOutOpen

function. Driver messages will be sent to the window procedure function for the window identified by the
handle in dwCallback.

Similarly, to use a thread callback, specify the CALLBACK_THREAD flag and a thread identifier in the call
to midilnOpen or midiOutOpen. In this case, messages will be posted to the specified thread instead of
to a window.

Messages sent to a window or thread callback are specific to the MIDI device used. For more information
about these messages, see Sending System-Exclusive Messages and Managing MIDI Recording.

Requesting Time Formats

Windows uses the MMTIME structure to represent time in one or more different formats, including
milliseconds, samples, SMPTE, and MIDI song pointer formats. The wType member specifies the time

format.

The midiStreamPosition function uses the MMTIME structure. Before calling this function, you must set
the wType member to indicate your requested time format. To see if the requested time format is
supported, check wType after the call. If the requested time format is not supported, the time is specified
in an alternate time format selected by the device driver and the wType member is changed to indicate
the selected time format.

For more information about the MMTIME structure, see Multimedia Timers.

Handling Errors with MIDI Functions

MIDI audio functions return a nonzero error code. For MIDI-associated errors, the midilnGetErrorText
and midiOutGetErrorText functions retrieve textual descriptions for the error codes. The application must
still look at the error value itself to determine how to proceed, but it can use the error descriptions in
dialog boxes to inform users of the error conditions.

The only MIDI functions that do not return error codes are the midilnGetNumDevs and
midiOutGetNumbDevs functions. These functions return a value of zero if no devices are present in a
system or if any errors are encountered by the function.

Playing MIDI Files

You should use the MCI MIDI sequencer to play MIDI files whenever you can. If the sequencer services
do not meet the needs of your application, you can manage MIDI playback by using stream buffers or the
MIDI services.

MIDI Output Data Types

Windows defines the following data types for MIDI output functions:

HMIDIOUT Handle of a MIDI output device.
MIDIHDR Header for a block of MIDI system-exclusive or
stream data.

MIDIOUTCAPS Structure used to inquire about the capabilities of
a particular MIDI output device.

Querying MIDI Output Devices

Before playing a MIDI file, you should use the midiOutGetDevCaps function to determine the capabilities
of the MIDI output device that is present in the system. This function takes an address of a
MIDIOUTCAPS structure, which it fills with information about the capabilities of the given device. This
information includes the manufacturer and product identifiers, a product name for the device, and the
version number of the device driver (specified in the wMid, wPid, szPname, and vDriverVersion
members, respectively).

MIDI output devices can be either internal synthesizers or external MIDI output ports. The wTechnology
member of the MIDIOUTCAPS structure specifies the technology of the device.

If the device is an internal synthesizer, additional device information is available in the wVoices, wNotes,
and wChannelMask members. The wVoices member specifies the number of voices that the device
supports. Each voice can have a different sound or timbre. Voices are organized into MIDI channels. The
wNotes member specifies the polyphony of the device — that is, the maximum number of notes that can
be played simultaneously. The wChannelMask member is a bit representation of the MIDI channels that
the device responds to. For example, if the device responds to the first eight MIDI channels,
wChannelMask is Ox00FF. If the device is an external output port, wVoices and wNotes are unused, and
wChannelMask is set to OxFFFF.

The dwSupport member of the MIDIOUTCAPS structure indicates whether the device driver supports
volume changes, patch caching, and streaming. Volume changes are supported only by internal
synthesizer devices. External MIDI output ports do not support volume changes. For information about
changing volume, see Changing Internal MIDI Synthesizer Volume.

Opening MIDI Output Devices

To open a MIDI output device for playback, use the midiOutOpen function. This function opens the
device associated with the specified device identifier and returns a handle of the open device by writing
the handle to a specified memory location.

One of the parameters of midiOutOpen is a doubleword value. This value specifies a window or thread
handle, an event handle, or the address of a callback function that is used to monitor the progress of the
playback of MIDI system-exclusive data and stream buffers. Monitoring enables the application to
determine when to send additional data blocks and when to free data blocks that have been sent. For
more information about these methods, see Managing MIDI Data Blocks.

Sending MIDI Messages with Stream Buffers

When your application works with stream buffers, it uses the midiStreamOut function to send all (short
and long) MIDI messages to the device. To specify stream data blocks, use the MIDIHDR and
MIDIEVENT structures. The MIDIHDR structure contains an address of a locked data block, the data-
block length, and some assorted flags. The data is stored in the form of MIDIEVENT structures. The
system imposes a size limit of 64K on stream buffers.

After you use midiStreamOut to send a stream buffer of data, you must wait until the device driver is
finished with the data block before freeing it. If you are sending multiple data blocks, you must monitor the
completion of each data block so you know when to send additional blocks. For information about
different techniques for monitoring data-block completion, see Managing MIDI Data Blocks.

Sending Individual MIDI Messages

You can work with individual MIDI messages by using the following functions:

midiOutLongMsg Sends a buffer of MIDI data to the specified
MIDI output device. Use this function to
send system-exclusive messages to a MIDI
device.

midiOutReset Turns off all notes on all channels for a
specified MIDI output device. Any pending
system-exclusive buffers and stream
buffers are marked as done and returned
to the application.

midiOutShortMsg Sends a MIDI message to a specified MIDI
output device.

To send any MIDI message (except for system-exclusive messages), use midiOutShortMsg.

Sending System-Exclusive Messages

MIDI system-exclusive messages are the only MIDI messages that will not fit into a single doubleword
value. System-exclusive messages can be any length. Windows provides the midiOutLongMsg function
for sending system-exclusive messages to MIDI output devices. To specify MIDI system-exclusive data
blocks, use the MIDIHDR structure.

After you send a system-exclusive data block using midiOutLongMsg, you must wait until the device
driver is finished with the data block before freeing it. If you are sending multiple data blocks, you must
monitor the completion of each data block so you know when to send additional blocks. For information
about different techniques for monitoring data-block completion, see Managing MIDI Data Blocks.

Note Any MIDI status byte other than a system-real-time message will terminate a system-exclusive
message. If you are using multiple data blocks to send a single system-exclusive message, do not
send any MIDI messages other than system-real-time messages between data blocks.

Using a Window or Thread to Manage Buffered Playback

The following messages can be sent to a window or thread for managing playback of MIDI system-
exclusive messages or stream buffers:

MM_MOM_CLOSE Sent when the device is closed by using the
midiOutClose function.

MM_MOM DONE Sent when the device driver is finished with a
data block sent by using the
midiOutLongMsg or midiStreamOut
function.

MM_MOM_OPEN Sent when the device is opened by using the
midiOutOpen function.

A wParam parameter and an /Param parameter are associated with each of these messages. The
wParam parameter always specifies the handle of an open MIDI device. For MM_MOM_DONE, /Param
specifies an address of a MIDIHDR structure identifying the completed data block. The IParam parameter
is unused for MM_MOM_CLOSE and MM_MOM_OPEN.

The most useful message is probably MM_MOM_DONE. Unless you need to allocate memory or initialize
variables, you probably do not need to process MM_MOM_OPEN and MM_MOM_CLOSE. When
playback of a data block is complete, you can clean up and free the data block.

Using a Callback Function to Manage Buffered Playback

You can define your own callback function to manage buffered playback of MIDI output devices. The
callback function is documented as MidiOutProc.

The following messages can be sent to the wMsg parameter of the MidiOutProc callback function.

MOM_CLOSE Sent when the device is closed by using the
midiOutClose function.

MOM_DONE Sent when the device driver is finished with a data
block sent by using the midiOutLongMsg or
midiStreamOut function.

MOM_OPEN Sent when the device is opened by using the
midiOutOpen function.

These messages are similar to those sent to window procedure functions, but the parameters are
different. A handle of the open MIDI device is passed as a parameter to the callback function, along with
the doubleword of instance data passed by using midiOutOpen.

After the driver is finished with a data block, you can clean up and free the data block. Because of the
suggested restrictions on callback functions, it is better not to do this from within the callback function.

Using an Event Callback to Manage Buffered Playback

To use an event callback, use the CreateEvent function to retrieve the handle of an event. In a call to the
midiOutOpen function, specify CALLBACK_EVENT for the dwFlags parameter. After using the
midiOutPrepareHeader function but before sending MIDI events to the device, create a nonsignaled
event by calling the ResetEvent function, specifying the event handle retrieved by CreateEvent. Then,
inside a loop that checks whether the MHDR_DONE bit is set in the dwFlags member of the MIDIHDR
structure, use the WaitForSingleObject function, specifying the event handle and a time-out value of
INFINITE as parameters.

An event callback is set by anything that might cause a function callback.

Because event callbacks do not receive specific close, done, or open natifications, an application may
need to check the status of the process it is waiting for after the event occurs. It is possible that a number
of tasks could be completed by the time WaitForSingleObject returns.

Resetting MIDI Output

The midiOutReset function turns off all notes on all MIDI channels for a specified MIDI device. Then, the
function marks any pending system-exclusive buffers as done and returns them to the application. This
function can be useful in an application that uses MIDI output to provide the user with the ability to reset

MIDI output.
Note Terminating a system-exclusive message without sending an EOX (end-of-exclusive) byte can

cause problems for the receiving device. The midiOutReset function does not send an EOX byte
when it terminates a system-exclusive message, because applications are responsible for doing this.

Changing Internal MIDI Synthesizer Volume

Windows provides the following functions to retrieve and set the volume level of internal MIDI synthesizer
devices:

midiOutGetVolume Retrieves the volume level of the specified
internal MIDI synthesizer device.

midiOutSetVolume Sets the volume level of the specified internal
MIDI synthesizer device.

Not all MIDI output devices support volume changes. Some devices can support individual volume
changes on both the left and right channels. For information on how to determine if a particular device
supports volume changes, see Querying MIDI Output Devices.

Unless your application is designed to be a master volume-control application (provides the user with
volume control for all audio devices in a system), you should open an audio device before changing its
volume. You should also check the volume level before changing it and restore the volume level to its
previous level as soon as possible.

Volume is specified as a doubleword value. The upper 16 bits specify the relative volume of the right
channel, and the lower 16 bits specify the relative volume of the left channel.

For devices that do not support individual volume changes on both the left and right channels, the lower
16 bits specify the volume level and the upper 16 bits are ignored. Values for the volume level range from
0x0 (silence) to OXFFFF (maximum volume) and are interpreted logarithmically. The perceived volume
increase is the same when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to
0x5000.

Preloading Patches with Internal MIDI Synthesizers

Some internal MIDI synthesizer devices cannot keep all of their patches loaded simultaneously. These
devices must preload their patch data.

Windows provides the following functions to request that a synthesizer preload and cache specified
patches:

midiOutCachePatches Requests that an internal MIDI

synthesizer device preload and cache

specified melodic patches.

midiOutCacheDrumPatche Requests that an internal MIDI

s synthesizer device preload and cache
specified key-based percussion
patches.

For information on how to determine if a particular device supports preloading patches, see Querying
MIDI Output Devices.

Recording MIDI Audio

To record MIDI audio data, you must use the MIDI input functions. MCI does not provide a device handler
for recording MIDI audio.

MIDI Input Data Types

Windows defines the following data types for the MIDI input functions:

HMIDIIN Handle of a MIDI input device.

MIDIHDR Header for a stream buffer or a block of MIDI
system-exclusive data. For input applications, this
structure records only system-exclusive data
(streaming is not supported for MIDI input).

MIDIINCAPS Structure used to inquire about the capabilities of a
MIDI input device.

Querying MIDI Input Devices

Before recording MIDI audio, you should use the midilnGetDevCaps function to determine the
capabilities of the MIDI input device that is present in the system. This function takes an address of a
MIDIINCAPS structure, which it fills with information about the capabilities of the given device. This
information includes the manufacturer and product identifiers, a product name for the device, and the
version number of the device driver.

Opening MIDI Input Devices

To open a MIDI input device for recording, use the midilnOpen function. This function opens the device
associated with the specified device identifier and returns a handle of the open device by writing the
handle to a specified memory location.

If you use the MIDI_IO_STATUS flag with midilnOpen, the system uses the MIM_MOREDATA message
to alert your application's callback function when it is not processing MIDI data fast enough to keep up
with the input device driver. (The MM_MIM_MOREDATA message does the same job with window
callbacks. However, for performance reasons, most applications will use callback functions instead of
window callbacks.) If your application processes MIDI data in a separate thread, boosting the thread's
priority can have a significant impact on the application's ability to keep up with the data flow.

Managing MIDI Recording

After you open a MIDI device, you can begin recording MIDI data. Windows provides the following
functions for managing MIDI recording:

midilnAddBuffe Sends a buffer to the device driver so it can be filled

r with recorded system-exclusive MIDI data.

midilnReset Stops MIDI recording and marks all pending buffers
as done.

midilnStart Starts MIDI recording and resets the time stamp to
zero.

midilnStop Stops MIDI recording.

To send buffers to the device driver for recording system-exclusive messages, use midilnAddBuffer. The
application is notified as the buffers are filled with system-exclusive recorded data. For more information
about the notification techniques, see Managing MIDI Data Blocks.

The midilnStart function begins the recording process. When recording system-exclusive messages,
send at least one buffer to the driver before starting recording. To stop recording, use midilnStop. Before
closing the device by using the midilnClose function, mark any pending data blocks as being done by
calling midilnReset.

Applications that require time-stamped data use a callback function to receive MIDI data. If your timing
requirements are not strict, you can use a window or thread callback. However, you cannot use an event
callback to receive MIDI data.

To record system-exclusive messages with applications that do not use stream buffers, you must supply
the device driver with buffers. These buffers are specified by using a MIDIHDR structure.

Managing MIDI Thru

You can connect a MIDI input device directly to a MIDI output device so that when the input device
receives an MIM_DATA message, the system sends a message with the same MIDI event data to the
output device driver. To connect a MIDI output device to a MIDI input device, use the midiConnect
function. -

To achieve the best possible performance with multiple outputs, an application can choose to supply a
special form of MIDI output driver, called a thru driver. Although the system allows only one MIDI output
device to be connected to a MIDI input device, multiple MIDI output devices can be connected to a thru
driver. An application on such a system could connect the MIDI input device to this thru device and
connect the MIDI thru device to as many MIDI output devices as needed. For more information about thru
drivers, see the Windows device-driver documentation.

Using Messages to Manage MIDI Recording

The following messages can be sent to a window or thread callback procedure for managing MIDI
recording:

MM_MIM_CLOSE Sent when a MIDI input device is closed by
using the midilnClose function.

MM_MIM_DATA Sent when a complete MIDI message is
received. (This message is used for all MIDI
messages except system-exclusive
messages.)

MM _MIM _ERROR Sent when an invalid MIDI message is
received. (This message is used for all MIDI
messages except system-exclusive

messages.)

MM_MIM_LONGDAT Sent when either a complete MIDI system-

A exclusive message is received or when a
buffer has been filled with system-exclusive
data.

MM_MIM_LONGERR Sent when an invalid MIDI system-exclusive

OR message is received.

MM_MIM_MOREDAT Sent when an application is not processing

A MIM_DATA messages fast enough to keep up

with the input device driver.

MM_MIM_OPEN Sent when a MIDI input device is opened by
using the midilnOpen function.

A wParam parameter and an /Param parameter are associated with each of these messages. The
wParam parameter always specifies the handle of an open MIDI device. The /Param parameter is unused
for the MM_MIM_CILOSE and MM_MIM_OPEN messages.

For the MM_MIM_LONGDATA message, IpMidiHdr specifies an address of a MIDIHDR structure that
identifies the buffer for system-exclusive messages. The buffer may not be completely filled, because the
size of the system-exclusive messages is usually not known before being recorded and because buffers
whose total size can contain the largest expected message must be allocated. To determine the amount
of valid data present in the buffer, use the dwBytesRecorded member of the MIDIHDR structure.

Using a Callback Function to Manage MIDI Recording

You can define your own callback function to manage recording for MIDI input devices. The callback
function is documented as MidilnProc.

The following messages can be sent to the wMsg parameter of the MidilnProc callback function:

MIM_CLOSE Sent when the device is closed by using the
midilnClose function.

MIM_DATA Sent when a complete MIDI message is received
(this message is used for all MIDI messages
except system-exclusive messages).

MIM_ERROR Sent when an invalid MIDI message is received
(this message is used for all MIDI messages
except system-exclusive messages).

MIM_LONGDATA Sent when either a complete MIDI system-
exclusive message is received or when a buffer
has been filled with system-exclusive data.

MIM_LONGERRO Sent when an invalid MIDI system-exclusive

R message is received.

MIM_MOREDATA Sent when an application is not processing
MIM_DATA messages fast enough to keep up
with the input device driver.

MIM_OPEN Sent when the MIDI input device is opened by
using the midilnOpen function.

These messages are similar to those sent to window procedure functions, but the parameters are
different. A handle of the open MIDI device is passed as a parameter to the callback function, along with
the doubleword of instance data that was passed by using midilnOpen.

For the MIM_LONGDATA message, IpMidiHdr specifies an address of a MIDIHDR structure that identifies
the buffer for system-exclusive messages. The buffer might not be completely filled. To determine the
amount of valid data present in the buffer, use the dwBytesRecorded member of the MIDIHDR structure.

After the device driver is finished with a data block, you can clean up and free the data block.

Receiving Time-Stamped MIDI Messages

Because of the delay between when the device driver receives a MIDI message and the time the
application receives the message, MIDI input device drivers time stamp the MIDI message with the time
that the message was received. MIDI time stamps, which are defined as the time the first byte of the
message was received, are specified in milliseconds. The midilnStart function resets the time stamps for

a device to zero.

As stated previously, to receive time stamps with MIDI input, you must use a callback function. The
dwParam?2 parameter of the callback function specifies the time stamp for data associated with the
MIM_DATA and MIM_LONGDATA messages.

Receiving Running-Status Messages

The Standard MIDI Files 1.0 specification allows the use of running status when a message has the same
status byte as the previous message. When running status is used, the status byte of subsequent
messages can be omitted. All MIDI input device drivers are required to expand messages using running
status into complete messages, so that you always receive complete MIDI messages from a MIDI input

device driver.

Processing MIDI Data from Two MIDI Sources

The MIDI subsystem can route MIDI messages from two data sources to a single MIDI output device for
concurrent playback. For example, one source can be background music or a bass line that has been
pre-recorded and stored in a file. The second source can be live data from a MIDI instrument, such as a
keyboard or guitar.

Both data sources send MIDI data to a single MIDI device that is identified with one handle. Send one
data stream by using the midiStreamOut function and one or more stream buffers. This data stream
typically contains prerecorded data that is packed into the buffer.

Send the second data stream (typically from a MIDI instrument) asynchronously by using the
midiOutShortMsg function. The running status of a stream buffer will not be adversely affected by the
asynchronous calls made by the second data stream.

Each short message sent with midiOutShortMsg must be a complete MIDI message, with a status byte
and the appropriate number of data bytes. If the status byte is omitted, midiOutShortMsg returns an
error. (However, there is no running status with stream output.)

Creating MIDI Files

The Musical Instrument Digital Interface (MIDI) specifications are published by and are copyrighted
material of the MIDI Manufacturers Association (MMA). The following list describes the specifications
which are of the greatest general interest:

MIDI Detailed Specification

The MIDI Detailed Specification explains the MIDI hardware and software protocols. This is useful to
those developing multimedia applications which implement MIDI support by using MIDI functions to
record, edit, and/or play MIDI data.

Standard MIDI Files 1.0

The Standard MIDI Files specification defines a way to interchange time-stamped MIDI data between
different applications on the same or different hardware platforms. This is useful to developers writing
applications that read and parse disk files containing MIDI data and/or write MIDI data files to disk.

General MIDI System - Level 1

The General MIDI (GM) specification defines a minimum MIDI configuration of a "General MIDI System".
This system consists of a specific class of MIDI playback devices and is of interest to multimedia
developers who author MIDI files. Most PC sound cards and MIDI synthesizers manufactured today are
compatible with the GM specification. MIDI files which are authored to the GM specification should
generally sound as they were intended to sound, no matter which GM-compatible device they are played
on.

For current information, contact the MMA at the address or phone numbers listed here.

MIDI Manufacturers Association
PO Box 3173

La Habra, CA 90632-3173
Phone: (310) 947-8689

Fax: (310) 947-4569

To enable MIDI files to be a viable format for representing music in multimedia computing, Windows
follows the General MIDI System Level 1 specification. We also provide some additional MIDI authoring
guidelines:

e Authoring Guidelines for MIDI Files
e Standard MIDI Patch Assignments
e Standard MIDI Key Assignments

Authoring Guidelines for MIDI Files

Follow these guidelines to author device-independent MIDI files for Windows:

Use the standard MIDI patch assignments and key assignments.

Always send a program-change message to a channel to select a patch before sending other
messages to that channel. For the two percussion channels (10 and 16), select program number 0.
Always follow a MIDI program-change message with a MIDI main-volume controller message
(controller number 7) to set the relative volume of the patch.

Use a value of 80 (0x50) for the main-volume controller for normal listening levels. For quieter or
louder levels, you can use lower or higher values.

Use only the following MIDI messages: note-on with velocity, note-off, program change, pitch bend,
main volume (controller 7), and damper pedal (controller 64). Internal synthesizers are required to
respond to these messages and most MIDI musical instruments respond to them as well.

Standard MIDI Patch Assignments

The standard MIDI patch assignments for authoring MIDI files for use with Windows are based on the
MIDI Manufacturers Association (MMA) General MIDI Mode specification. Following are the standard

MIDI patch assignments.

Piano

0 Acoustic grand piano
1 Bright acoustic piano
2 Electric grand piano
3 Honky-tonk piano

4 Rhodes piano

5 Chorused piano

6 Harpsichord

7 Clavinet

Guitar

Chromatic
Percussion

8 Celesta

9 Glockenspiel
10 Music box
11 Vibraphone
12 Marimba

13 Xylophone
14 Tubular bells
15 Dulcimer

Bass

24 Acoustic guitar (nylon)32 Acoustic bass
25 Acoustic guitar (steel) 33 Electric bass

26 Electric guitar (jazz)

(finger)

Organ

16 Hammond organ
17 Percussive organ
18 Rock organ

19 Church organ

20 Reed organ

21 Accordion

22 Harmonica

23 Tango accordion

Strings
40 Violin
41 Viola

34 Electric bass (pick) 42 Cello

27 Electric guitar (clean) 35 Fretless bass
28 Electric guitar (muted) 36 Slap bass 1

29 Overdriven guitar
30 Distortion guitar
31 Guitar harmonics

Ensemble

48 String ensemble 1
49 String ensemble 2
50 Synth. strings 1
51 Synth. strings 2
52 Choir Aahs

53 Voice Oohs

54 Synth voice

55 Orchestra hit

Pipe

72 Piccolo
73 Flute

74 Recorder

75 Pan flute
76 Bottle blow
77 Shakuhachi
78 Whistle

37 Slap bass 2
38 Synth bass 1
39 Synth bass 2

Brass

56 Trumpet

57 Trombone

58 Tuba

59 Muted trumpet
60 French horn
61 Brass section
62 Synth. brass 1
63 Synth. brass 2

Synth Lead
80 Lead 1 (square)
81 Lead 2 (sawtooth)

82 Lead 3 (calliope
lead)

83 Lead 4 (chiff lead)
84 Lead 5 (charang)
85 Lead 6 (voice)
86 Lead 7 (fifths)

43 Contrabass

44 Tremolo strings

45 Pizzicato strings
46 Orchestral harp

47 Timpani

Reed

64 Soprano sax
65 Alto sax

66 Tenor sax
67 Baritone sax
68 Oboe

69 English horn
70 Bassoon

71 Clarinet

Synth Pad

88 Pad 1 (new age)
89 Pad 2 (warm)

90 Pad 3 (polysynth)

91 Pad 4 (choir)
92 Pad 5 (bowed)
93 Pad 6 (metallic)
94 Pad 7 (halo)

79 Ocarina 87 Lead 8 (brass +
lead)

Sound Effects

120 Guitar fret noise
121 Breath noise
122 Seashore

123 Bird tweet

124 Telephone ring
125 Helicopter

126 Applause

127 Gunshot

95 Pad 8 (sweep)

Standard MIDI Key Assignments

The standard MIDI key assignments for percussion instruments are based on the MMA General MIDI
Mode specification. The following illustration shows the standard key assignments for MIDI files authored
for Windows.

{ewc msdncd, EWGraphic, bsd23538 6 /a "SDK_A01.WMF"}

Using MIDI

This section contains examples demonstrating how to perform the following tasks:

¢ Using the MCI MIDI sequencer
¢ Using midiOutShortMsg to send individual MIDI messages

Using the MCI MIDI Sequencer

Like all MCI devices, the MCI MIDI sequencer responds to standard MCl commands. This section
discusses how to retrieve a sequence division type and how to retrieve and set a tempo. For more
information about MCI, see MCI.

Retrieving the Sequence Division Type

The division type of a MIDI sequence determines the amount of time between MIDI events in the
sequence. To determine the division type of a sequence, use the MCI_STATUS command and set the
dwltem member of the MCI_STATUS_PARMS structure to MCI_SEQ_STATUS_DIVTYPE .

If the MCI_STATUS command is successful, the dwReturn member of the MCI_STATUS_PARMS
structure will contain one of the following values to indicate the division type.

Value Division type
MCI_SEQ_DIV_PPQN PPQN (parts-per-quarter note)
MCI_SEQ_DIV_SMPTE_24 SMPTE, 24 fps (frames per
second)
MCI_SEQ_DIV_SMPTE_25 SMPTE, 25 fps
MCI_SEQ_DIV_SMPTE_30 SMPTE, 30 fps

MCI_SEQ_DIV_SMPTE_30DROP SMPTE, 30 fps drop frame

You must know the division type of a sequence to change or query its tempo. You cannot change the
division type of a sequence by using the MCI sequencer.

Querying and Setting the Tempo

To retrieve the tempo of a sequence, use the MCI_STATUS command and set the dwltem member of the
MCI_STATUS_PARMS structure to MCI_SEQ_STATUS_TEMPO. If the MCI_STATUS command is
successful, the dwReturn member of the MCI_STATUS_PARMS structure contains the current tempo.

To change tempo, use the MCI_SET command with the MCI_SEQ_SET_PARMS structure, specifying the
MCI_SEQ_SET_TEMPO flag and setting the dwTempo member of the structure to the desired tempo.

The way tempo is represented depends on the division type of the sequence. If the division type is PPQN,
the tempo is represented in beats per minute. If the division type is one of the SMPTE division types, the
tempo is represented in frames per second. For information about determining the division type of a
sequence, see Retrieving the Sequence Division Type.

Using midiOutShortMsg to Send Individual MIDI Messages

The following example uses the midiOutShortMsg function to send a specified MIDI event to a given
MIDI output device:

UINT sendMIDIEvent (HMIDIOUT hmo, BYTE bStatus, BYTE bDatal,
BYTE bData?2)
{
union {
DWORD dwData;
BYTE bDatal4];
bous

// Construct the MIDI message.

u.bbData[0] = bStatus; // MIDI status byte
u.bData[l] = bDatal; // first MIDI data byte
u.bData[2] = bData2; // second MIDI data byte
u.bData[3] = 0;

// Send the message.
return midiOutShortMsg (hmo, u.dwData);

}

Note MIDI output drivers are not required to verify data before sending it to an output port.
Applications must ensure that only valid data is sent.

MIDI Reference

This section describes the functions, macros, messages, and structures associated with the Musical
Instrument Digital Interface (MIDI). These elements are grouped as follows.

Allocating and Managing Buffers

MIDIHDR
midilnAddBuffer
midilnPrepareHeader
midilnUnprepareHeader
midiOutPrepareHeader
midiOutUnprepareHeader

Callback Functions

MidilnProc
MidiOutProc

Device Capabilities

MIDIINCAPS
midilnGetDevCaps
midilnGetID
midilnGetNumDevs
MIDIOUTCAPS
midiOutGetDevCaps
midiOutGetID
midiOutGetNumDevs
MIDISTRMBUFFVER

Error Processing

midilnGetErrorText
midiOutGetErrorText
MIM_ERROR
MIM_LONGERROR
MM_MIM_ERROR

MM MIM LONGERROR

Managing MIDI Streams
midiStreamClose
midiStreamOpen
midiStreamOut
midiStreamPause
midiStreamPosition

midiStreamProperty
midiStreamRestart

midiStreamStop

Opening and Closing Devices
midilnClose

midilnOpen

midiOutClose

midiOutOpen
MIM_CLOSE

MIM_OPEN
MM_MIM_CLOSE
MM_MIM_OPEN
MM_MOM_CLOSE
MM_MOM_OPEN
MOM_CLOSE
MOM_OPEN

Output Devices

KEYARRAY
midiOutCacheDrumPatches
midiOutCachePatches
midiOutGetVolume
midiOutSetVolume
PATCHARRAY

Playing a Message or Messages
MEVT_EVENTPARM
MEVT_EVENTTYPE

MIDIEVENT

midiOutLongMsg
midiOutReset

midiOutShortMsg
midiStreamOut
midiStreamPause
midiStreamRestart
midiStreamStop

MM MOM DONE

MM MOM POSITIONCB
MOM DONE

MOM POSITIONCB

Recording

midiConnect
midiDisconnect
midilnReset
midilnStart
midilnStop
MIDIPROPTEMPO
MIDIPROPTIMEDIV
MIM DATA

MIM LONGDATA
MIM_MOREDATA
MM_MIM_DATA

MM MIM MOREDATA
MM MIM LONGDATA

Sending Messages to Devices

midilnMessage
midiOutMessage

MIDI Functions

The following functions are used with MIDI.

midiConnect
midiDisconnect
midilnAddBuffer
midilnClose
midilnGetDevCaps
midilnGetErrorText
midilnGetID
midilnGetNumDevs

midilnMessage

midilnOpen
midilnPrepareHeader

midilnProc

midilnReset

midilnStart

midilnStop
midilnUnprepareHeader
midiOutCacheDrumPatches
midiOutCachePatches
midiOutClose
midiOutGetDevCaps
midiOutGetErrorText
midiOutGetID
midiOutGetNumDevs
midiOutGetVolume
midiOutLongMsg
midiOutMessage
midiOutOpen

midiOutPrepareHeader
MidiOutProc

midiOutReset
midiOutSetVolume

midiOutShortMsg

midiOutUnprepareHeader
midiStreamClose

midiStreamOpen
midiStreamOut
midiStreamPause
midiStreamPosition

midiStreamProperty
midiStreamRestart

midiStreamStop

MIDI Structures

The following structures are used with MIDI.

MIDIEVENT
MIDIHDR
MIDIINCAPS
MIDIOUTCAPS
MIDIPROPTEMPO
MIDIPROPTIMEDIV
MIDISTRMBUFFVER

MIDI Messages

The following messages are used with MIDI.

MIM_CLOSE
MIM_DATA
MIM_ERROR
MIM_LONGDATA
MIM_LONGERROR
MIM_MOREDATA
MIM_OPEN
MM_MIM_CLOSE
MM_MIM_DATA
MM_MIM_ERROR
MM_MIM_LONGDATA
MM_MIM_LONGERROR
MM_MIM_MOREDATA
MM_MIM_OPEN
MM_MOM_CLOSE
MM_MOM_DONE
MM_MOM_OPEN
MM_MOM_POSITIONCB
MOM_CLOSE
MOM_DONE
MOM_OPEN
MOM_POSITIONCB

MIDI Macros

The following macros are used with MIDI.

MEVT_EVENTPARM
MEVT_EVENTTYPE

MIDI Types
The following types are used with MIDI.

KEYARRAY
PATCHARRAY

Audio Compression Manager

This overview describes the services available in the audio compression manager (ACM) and explains
the programming techniques used to access these services.

About the Audio Compression Manager

The audio compression manager adds system-level support for the following services:

¢ Transparent run-time audio compression and decompression
¢ Waveform-audio data format selection

¢ Waveform-audio data filter selection

¢ Waveform-audio data format conversion

¢ Waveform-audio data filtering

Mapping Waveform-Audio Devices

The Microsoft® Win32® application programming interface (API) provides a set of standard functions for
audio devices. These functions issue calls to device drivers that manage hardware devices. The system
uses a module called a "mapper" to manage installed devices. The mapper uses special hooks in the
driver interface to intercept calls and to act as an intermediary between the system and the drivers
installed in the system. The mapper is responsible for matching an application's requests for access to a
device with the available devices and for finding a device that meets the current application's audio
requirements. The system provides mappers for standard driver types: waveform-audio, MIDI (Musical
Instrument Digital Interface), and auxiliary devices.

The ACM is an extension of the basic multimedia system and is installed as a mapper. This means the
ACM uses the driver-interface mapper hooks for waveform-audio devices. Using these hooks allows the
ACM to decode or encode waveform-audio data before passing it to or from a waveform-audio device
driver. The difference between the ACM and the standard system mapper is that the ACM can search for
a waveform-audio device that supports a specified format or find a combination of a waveform-audio
device and an ACM compressor or decompressor that supports a specified format.

When an application requests that the system open a waveform-audio device for input or output, the
request specifies the format and device. When the specified device is the mapper, the mapper must find a
device that supports the specified format. The mapper implemented in the ACM searches for an installed
waveform-audio device that supports the specified format. If the ACM cannot find such a device, it
searches for a waveform-audio device and a compressor or decompressor that together support the
format. Specifically, the ACM searches for a compressor or decompressor that converts the specified
format into a format that is supported by an installed waveform-audio device. After the ACM finds a device
that supports the converted format, it can honor requests to play or record the format originally requested,
even though no installed waveform-audio device directly supports that format.

In addition to format conversion, the ACM also offers services to support compression, decompression,
filtering, format selection, and filter selection. It provides a standard API that it supports by calling its own
drivers.

How the Audio Compression Manager Works

The ACM uses existing driver interface hooks to override the default mapping algorithm for waveform-
audio devices. This allows the ACM to intercept device-open calls. After a call has been intercepted, the
ACM can perform a variety of tasks to process the audio data, such as inserting an external compressor
or decompressor into the sequence.

The ACM manages the following types of drivers:

e Compressor and decompressor (codec) drivers
e Format converter drivers
e Filter drivers

Compressors and decompressors change one format type to another. For example, a compressor or
decompressor can change a PCM (Pulse Code Modulation) file to an ADPCM (Adaptive Differential Pulse
Code Modulation) file. Format converters change the format, but not the data type. For example, a
converter can change 44-kHz, 16-bit data to 44-kHz, 8-bit data. Filters do not change the data format at
all, but they change the waveform-audio data in some manner. For example, a filter could combine a data
stream and an echo of itself. A single ACM driver, or a filter tag or format tag within a driver, might also
support combinations of the preceding types.

For waveform-audio output, the ACM passes each buffer of data to the converter as it arrives. The
converter decompresses the data and returns the decompressed data to the ACM in a "shadow" buffer.
The ACM then passes the decompressed shadow buffer to the waveform-audio driver. The ACM allocates
the shadow buffers whenever it receives a prepare message.

For waveform-audio input, the ACM passes empty shadow buffers to the driver. It uses a background task
to receive a notification after the driver has filled the shadow buffer. The ACM then passes the buffers to
the driver for compression. After compression is finished, the driver passes the data to the application.

Audio Compression Manager Functions and Structures

The ACM functions fall into several categories. Naming conventions for the functions make it easy to
identify these categories. Function names (with two exceptions) are of the form acmGroupFunction,
where Group designates the ACM category (such as "Driver," "Format," "FormatTag," "Filter," "FilterTag,"
or "Stream"), and Function describes the action performed by the function.

The functions in the filter and format groups are very similar. Almost every function that acts on filters has
a parallel function that acts on formats.

In the format group, some functions use waveform-audio format tags (the wFormatTag member of a
WAVEFORMATEX structure) while others require full waveform-audio formats (the full WAVEFORMATEX
structure). (For reference information about the WAVEFORMATEX structure, see Error.)

In the filter group, some functions use waveform-audio filter tags (the dwFilterTag member of a
WAVEFILTER structure), while others require full waveform-audio filters (the full WAVEFILTER structure).

The functions in the stream group represent the many steps involved in a conversion: opening a
conversion instance, preparing for the conversion, performing the conversion, cleaning up after the
conversion is complete, and closing the conversion instance.

Functions Called by the System

The system calls three different kinds of application-defined functions. Callback functions are functions in
your application that the system calls in response to a request made by an application. Hook procedures
help an application handle the customization of dialog boxes. A driver procedure is an application's
implementation of its own codec, converter, or filter.

The callback functions have the following names:

e acmDriverEnumCallback
¢ acmFilterEnumCallback

¢ acmFilterTagEnumCallback
¢ acmFormatEnumCallback

¢ acmFormatTagEnumCallback
e acmStreamConvertCallback

Most of the enumeration functions in the ACM use callback functions. For example, when you call an
enumeration function, the ACM enumerates the items by repeatedly calling the application through the
callback function.

Some functions cannot be called from within these callback functions. Functions that cannot be called
manipulate internal ACM structures that are used by the enumeration functions. The following functions
should not be called from within a callback function:

e acmDriverAdd

e acmbDriverPriority
e acmDriverRemove

The system calls the following functions to help an application handle the customization of dialog boxes:

¢ acmFilterChooseHookProc
¢ acmFormatChooseHookProc

The following function is specified as a prototype that allows an application to use a customized codec,
converter, or filter. A function conforming to this prototype may be passed as an argument to the
acmDriverAdd function.

e acmDriverProc

Using the Audio Compression Manager

This section contains examples demonstrating how to perform the following tasks:

e Retrieving a string that describes a filter

¢ Producing a dialog box for selecting a filter

¢ Producing a dialog box for selecting a specific type of format
* Producing a dialog box for selecting restricted formats

* Producing a dialog box for selecting a format for saving

¢ Producing a dialog box for selecting a format for recording
¢ Converting data from one format to another

¢ Multistep format conversion

* Finding a specific format

* Finding a specific driver

¢ Adding drivers within an application

* Generating a nonstandard format

Retrieving a String That Describes a Filter

An application often needs to display a string that describes the current format. This task can be
accomplished easily with the acmFilterTagDetails and acmFilterDetails functions. These functions must
be called with the appropriate filter or filter tag. The following example shows how to use these functions.

BOOL GetFilterDescription

(

LPWAVEFILTER pwfltr,

LPTSTR pszFilterTag,
LPTSTR pszFilter
MMRESULT mmr;

// Retrieve the name for the filter tag of the specified filter.
if (NULL != pszFilterTag) {
ACMFILTERTAGDETAILS aftd;

// Initialize all unused members of the ACMFILTERTAGDETAILS
// structure to zero.
memset (&aftd, 0, sizeof (aftd));

// Fill in the required members of the ACMFILTERTAGDETAILS
// structure for the ACM FILTERTAGDETAILSF FILTERTAG query.
aftd.cbStruct = sizeof (aftd);

aftd.dwFilterTag = pwfltr->dwFilterTag;

// Ask the ACM to find the first available driver that
// supports the specified filter tag.
mmr = acmFilterTagDetails (NULL, &aftd,
ACM FILTERTAGDETAILSF FILTERTAG) ;
if (MMSYSERR NOERROR != mmr) {
// No ACM driver is available that supports the
// specified filter tag.
return (FALSE);

// Copy the filter tag name into the calling application's
// buffer.
lstrcpy (pszFilterTag, aftd.szFilterTagqg);

}

// Retrieve the description of the attributes for the specified
// filter.
if (NULL !'= pszFilter) {

ACMFILTERDETAILS afd;

// Initialize all unused members of the ACMFILTERDETAILS
// structure to zero.
memset (&afd, 0, sizeof (afd));

// Fill in the required members of the ACMFILTERDETAILS
// structure for the ACM FILTERDETAILSF FILTER query.

afd.cbStruct = sizeof (afd);
afd.dwFilterTag = pwfltr->dwFilterTag;
afd.pwfltr = pwfltr;

afd.cbwfltr pwfltr->cbStruct;

// Ask the ACM to find the first available driver that
// supports the specified filter.
mmr = acmFilterDetails (NULL, é&afd, ACM FILTERDETAILSF FILTER);
if (MMSYSERR NOERROR != mmr) {
// No ACM driver is available that supports the
// specified filter.
return (FALSE);

}

// Copy the filter attributes description into the calling
// application's buffer.
lstrcpy(pszFilter, afd.szFilter);

return (TRUE) ;

Producing a Dialog Box for Selecting a Filter

An application can allow users to select an arbitrary filter operation and apply it to waveform-audio data.
In the following example, the application allocates a buffer to hold the filter and then uses the
acmFilterChoose function to select the filter. The functions in this example must be called with the
appropriate filter or filter tag.

MMRESULT mmr;
ACMFILTERCHOOSE afc;
PWAVEFILTER pwfltr;
DWORD cbwfltr;

// Determine the maximum size required for any valid filter
// for which the ACM has a driver installed and enabled.

mmr = acmMetrics (NULL, ACM METRIC MAX SIZE FILTER, &cbwfltr);
if (MMSYSERR NOERROR != mmr) {

// The ACM probably has no drivers installed and
// enabled for filter operations.
return (mmr);

}

// Dynamically allocate a structure large enough to hold the
// maximum sized filter enabled in the system.
pwfltr = (PWAVEFILTER)LocalAlloc (LPTR, (UINT)cbwfltr);
if (NULL == pwfltr) {
return (MMSYSERR NOMEM) ;

// Initialize the ACMFILTERCHOOSE members.
memset (&afc, 0, sizeof (afc));

afc.cbStruct = sizeof (afc);

afc.fdwStyle = 0L; // no special style flags
afc.hwndOwner = hwnd; // hwnd of parent window
afc.pwfltr = pwfltr; // wfltr to receive selection
afc.cbwfltr = cbwfltr; // size of wfltr buffer
afc.pszTitle = TEXT ("Any Filter Selection");

// Call the ACM to bring up the filter-selection dialog box.
mmr = acmFilterChoose (&afc) ;
if (MMSYSERR NOERROR == mmr) {
// The user selected a valid filter. The pwfltr buffer,
// allocated above, contains the complete filter description.

}

// Clean up and exit.
LocalFree ((HLOCAL)pwfltr) ;
return (mmr);

Producing a Dialog Box for Selecting a Specific Type of Format

You might want an application to allow the user to select a format from a restricted list of formats in a
dialog box. Restrictions might limit the number of channels, the sampling rate, the waveform-audio format
tag, or the number of bits per sample. In all of these cases, you can generate the list by using the
acmFormatChoose function, setting the fdAwEnum and pwfxEnum members of the

ACMFORMATCHOOSE structure. The following example illustrates this process.

MMRESULT mmr;
ACMFORMATCHOOSE afc;
WAVEFORMATEX wfxSelection;
WAVEFORMATEX wifxEnum;

// Initialize the ACMFORMATCHOOSE members.
memset (&afc, 0, sizeof (afc));

afc.

afc

afc.
afc.
afc.
afc.

//
//

cbStruct = sizeof (afc);

.fdwStyle = 0L; // no special style flags
hwndOwner = hwnd; // hwnd of parent window
pwix = swfxSelection; // wfx to receive selection
cbwfx = sizeof (wfxSelection);

pszTitle = TEXT ("16 Bit PCM Selection");

Request that all 16-bit PCM formats be displayed for the user

to select from.

memset (&wfxEnum, 0, sizeof (wfxEnum));
wfxEnum.wFormatTag = WAVE FORMAT PCM;

wfxEnum.wBitsPerSample = 16;
afc.fdwEnum = ACM FORMATENUMF WEFORMATTAG |
ACM FORMATENUMF WBITSPERSAMPLE;
afc.pwfxEnum = &wfxEnum;
mmr = acmFormatChoose (&afc);
if ((MMSYSERR NOERROR != mmr) && (ACMERR CANCELED != mmr))

{

// There was a fatal error in bringing up the list
// dialog box (probably invalid input parameters).

Producing a Dialog Box for Selecting Restricted Formats

You might want to use the dialog box created by the acmFormatChoose function, but limit or control the
formats in the dialog box. You can do this by using the ACMFORMATCHOOSE_STYLEF_ENABLEHOOK

flag to hook the dialog procedure. The application can then filter the formats by responding to the
MM_ACM_FORMATCHOOQOSE message in the message procedure for the dialog box.

Producing a Dialog Box for Selecting a Format for Saving

You might want an application to save existing waveform-audio data in another format. For example, a
waveform-audio editor could save a waveform-audio file as a compressed file. To list only the suggested
destination formats for a specified source format in the dialog box created by the acmFormatChoose
function, specify the source format in the pwfxEnum member and the
ACM_FORMATENUMF_SUGGEST flag in the fdwEnum member of the ACMFORMATCHOOSE
structure.

Similarly, to list valid destination formats for a specified format, use the
ACM_FORMATENUMF_CONVERT flag instead of the ACM_FORMATENUMF_SUGGEST flag.

Producing a Dialog Box for Selecting a Format for Recording

An application can allow the user to select a format for which an installed waveform-audio device
provides native support. For example, you might want a waveform-audio editor to record new waveform-
audio data without using an ACM compressor or decompressor to provide a translation layer. To do this,
use the acmFormatChoose function, specifying the ACM_FORMATENUMF_HARDWARE and
ACM_FORMATENUMF_INPUT flags in the fdwEnum member of the ACMFORMATCHOOSE structure.

Converting Data from One Format to Another

The ACM uses stream functions to support data format conversion. Converters in the ACM change the
format, but not the data type. For example, a converter module can change 44-kHz, 16-bit data to 44-kHz,
8-bit data.

The following ACM functions support data format conversion. They are listed in the order in which you
would typically use them.

e The acmStreamOpen function opens a conversion stream.
¢ The acmStreamSize function calculates the appropriate size of the source or destination buffer.

¢ The acmStreamPrepareHeader function prepares source and destination buffers to be used in a
conversion.

¢ The acmStreamConvert function converts data in a source buffer into the destination format, writing
the converted data into the destination buffer.

¢ The acmStreamUnprepareHeader function cleans up the source and destination buffers prepared
by acmStreamPrepareHeader. You must call this function before freeing the source and destination
buffers.

¢ The acmStreamClose function closes a conversion stream.

When converting data, first identify the source format, then choose the destination format. The easiest
way to do this is by using the acmFormatChoose function, which displays a format-selection dialog box
and returns the user's format choice.

When you know the source and destination formats, you can use acmStreamOpen to open a conversion
stream. Then you can use the acmStreamSize function to determine the appropriate buffer sizes.

The next step is to prepare the buffers to be used in the conversion by using acmStreamPrepareHeader.

To perform the conversion, use acmStreamConvert until all the buffers have been processed. When the
conversion is complete, use acmStreamUnprepareHeader to clean up the buffers and then use
acmStreamClose to close the conversion stream.

Multistep Format Conversion

Sometimes the ACM cannot convert data from one format to another in a single step. For example, an
application might need to convert 16-bit, 44-kHz stereo data to 11-kHz mono ADPCM. If the compressor
or decompressor cannot do this conversion directly, the application might attempt it in two steps. This
usually means making one conversion between two PCM formats, then another conversion to the final
format type.

To convert in two steps, use the acmFormatSuggest function to find a PCM format that matches the
ADPCM format. Then use two conversion streams to perform the conversion. For example, perform one
conversion from 16-bit, 44-kHz stereo PCM to 16-bit, 11-kHz mono, then convert from 16-bit, 11-kHz
mono to 11-kHz mono ADPCM.

Multistep conversion also happens when either the source or the destination format is not PCM. If the
source format is not PCM, it should be changed to a PCM format before conversion. If the destination
format is not PCM, the source must be converted to an intermediate PCM format and then converted to
the final destination format.

The most straightforward conversions occur when the source and destination formats are both PCM
formats. When either the source or destination format is not PCM, the conversion might require an
additional step. If both source and destination formats are not PCM, the conversion will usually require
more than one step, and, in some instances, conversion might not be possible.

Finding a Specific Format

An application might have only a partial specification for a format when it needs the full specification. For
example, the specification might stipulate an 11-kHz mono, 4-bit ADPCM format, but not the average
bytes per second. The application can get the full format without user intervention by using the
acmFormatEnum function and specifying flags in the fdwEnum parameter.

Finding a Specific Driver

You might want your application to send a message directly to a specific driver or to identify certain
drivers from the list. For example, you might want your application to identify those drivers that support
filters and then query each driver to determine which filter tags it supports. You can use the
acmDriverEnum function to obtain a handle to the desired driver or drivers; this handle can then be used
to communicate with that driver.

Note that when an application installs a local driver for its own use, the acmDriverAdd function returns a
driver handle, which can be used to communicate with the driver. It is not necessary to use
acmDriverEnum in this case.

Adding Drivers Within an Application

If you need your application to implement its own compression routines internally, the application can add
drivers to the ACM by calling the acmDriverAdd function. The application implements the driver by
providing a function that conforms to the acmDriverProc prototype. After the application has added the
driver, the application can use the driver through the ACM as it would use any other driver.

The ACM treats drivers as either global or local. An application specifies whether a driver should be
added as global or local when it calls acmDriverAdd. There are two differences between global and local
drivers:

¢ Drivers added as global drivers are not shared with other applications.

¢ An application can directly alter the priority of a global driver (but not a local driver) by calling the
acmDriverPriority function. The ACM conducts a prioritized search when seeking an appropriate
driver to provide an implementation of a function call. The ACM always gives local drivers higher
priority than global drivers. The most recently added local driver has highest priority.

Generating a Nonstandard Format

Sometimes an application needs a nonstandard format. For example, an application might need a 16-kHz
ADPCM-format file. Because 16 kHz is nonstandard, the enumeration functions will not generate this
format. In fact, short of custom coding the format algorithms into the application, there is no reliable way
to generate a nonstandard format. It is sometimes possible, however, to generate an analogous format by
setting up a valid PCM format with all the required information and then using the acmFormatSuggest
function. Because compressors and decompressors try to suggest a format that is closest to the desired
format, the number of channels and frequency are usually preserved.

Audio Compression Manager Reference

This section describes the functions, structures, and messages associated with the ACM. These elements
are grouped as follows.

Drivers

acmDriverAdd
acmDriverClose
ACMDRIVERDETAILS
acmDriverEnum
acmDriverEnumCallback
acmDriverlD
acmDriverMessage
acmDriverOpen

acmDriverPriority
acmDriverProc

acmDriverRemove

Filters

ACMFILTERCHOOSE
acmFilterChooseHookProc
ACMFILTERDETAILS
acmFilterEnum
acmFilterEnumCallback
ACMFILTERTAGDETAILS
acmFilterTagEnum
acmFilterTagEnumCallback

Formats

ACMFORMATCHOOSE
acmFormatChooseHookProc
ACMFORMATDETAILS
acmFormatEnum
acmFormatEnumCallback
acmFormatSuggest
ACMFORMATTAGDETAILS
acmFormatTagEnum
acmFormatTagEnumCallback

Messages

MM_ACM_FILTERCHOOSE
MM_ACM_FORMATCHOOSE

Streams

acmStreamClose
acmStreamConvert
acmStreamConvertCallback
ACMSTREAMHEADER
acmStreamMessage
acmStreamOpen

acmStreamPrepareHeader
acmStreamReset

acmStreamSize
acmStreamUnprepareHeader
Miscellaneous

acmGetVersion
acmMetrics

Audio Compression Functions

The following functions are used with audio compression.

acmDriverAdd
acmDriverClose
acmbDriverDetails
acmDriverEnum
acmDriverEnumCallback
acmbDriverlD

acmDriverMessage
acmDriverOpen

acmDriverPriority
acmDriverProc

acmDriverRemove
acmFilterChoose
acmFilterChooseHookProc
acmFilterDetails
acmFilterEnum
acmFilterEnumCallback

acmFilterTagDetails
acmFilterTagEnum

acmFilterTagEnumCallback
acmFormatChoose

acmFormatChooseHookProc
acmFormatDetails
acmFormatEnum
acmFormatEnumCallback

acmFormatSuggest
acmFormatTagDetails
acmFormatTagEnum

acmFormatTagEnumCallback
acmGetVersion

acmMetrics
acmStreamClose
acmStreamConvert
acmStreamConvertCallback
acmStreamMessage
acmStreamOpen
acmStreamPrepareHeader
acmStreamReset
acmStreamSize

acmStreamUnprepareHeader

Audio Compression Structures

The following structures are used with audio compression.

ACMDRIVERDETAILS
ACMFILTERCHOOSE
ACMFILTERDETAILS
ACMFILTERTAGDETAILS
ACMFORMATCHOOSE
ACMFORMATDETAILS
ACMFORMATTAGDETAILS
ACMSTREAMHEADER

Audio Compression Messages

The following messages are used with audio compression.

MM_ACM_FILTERCHOOSE
MM_ACM_FORMATCHOOSE

Audio Mixers

This overview presents general information about using audio mixer services.

About Audio Mixers

Audio mixer services control the routing of audio lines to a destination device for playing or recording.
These services can also control volume and other effects. Many of the techniques required to use these
services are similar to those for audio devices discussed in other multimedia overviews.

Mixer Architecture

The basic element of the mixer architecture is an audio line. An audio line consists of one or more
channels of data originating from a single source or a system resource. For example, a stereo audio line
has two data channels, but it is considered a single audio line because it originates from a single source.

The mixer architecture provides routing services to manage audio lines on a computer. You can use the
routing services if you have adequate hardware devices and software drivers installed. The mixer
architecture allows several audio source lines to map to a single destination audio line.

Each audio line can have mixer controls associated with it. A mixer control can perform any number of
functions (such as control volume), depending on the characteristics of the associated audio line.

Control Types

The mixer services include the following classes of standard controls to associate with audio lines:

¢ Audio mixer custom controls
e Faders

e Switches
¢ Time controls

Audio Mixer Custom Controls

Custom controls are the most generic of the mixer controls. These controls allow a mixer driver to define
the control's characteristics, and by implication, the visual representation of the control.

Faders

The fader controls are typically vertical controls that can be adjusted up or down. These controls have a
linear scale and use the MIXERCONTROLDETAILS_UNSIGNED structure to retrieve and set control
details. The following table describes the types of faders.

Control Description

Fader General fade control. The range of acceptable values is
0 through 65,535.

Volume General volume fade control. The range of acceptable
values is 0 through 65,535. For information about
changing this range, see the documentation for your
mixer device.

Bass Bass volume fade control. The range of acceptable
values is 0 through 65,535. The limits of the bass
frequency band are hardware specific. For information
about band limits, see the documentation for your mixer
device.

Treble Treble volume fade control. The range of acceptable
values is 0 through 65,535. The limits of the treble
frequency band are hardware specific. For information
about the band limits, see the documentation for your
mixer device.

Equalizer Graphic equalizer control. The range of acceptable
values for one band of the equalizer is 0 through
65,535. The number of equalizer bands and their limits
are hardware specific. For information about the
equalizer, see the documentation for your mixer device.
You can use the
MIXERCONTROLDETAILS_LISTTEXT structure to
retrieve text labels for the equalizer.

Lists

The list controls provide single-select or multiple-select states for complex audio lines. These controls use
the MIXERCONTROLDETAILS_BOOLEAN structure to retrieve and set control properties. The
MIXERCONTROLDETAILS_LISTTEXT structure is also used to retrieve all text descriptions of a
multiple-item control. The following table describes the types of list controls.

Control Description

Single-select Restricts the control selection to one item at a time.
Unlike the multiplexer control, this control can be
used to control more than audio source lines. For
example, you could use this control to select a low-
pass filter from a list of filters supported by a mixer

device.
Multiplexer Restricts the line selection to one source line at a
(MUX) time.

Multiple-select Allows the user to select multiple items from a list
simultaneously. Unlike the mixer control, the
multiple-select control can be used to control more
than audio source lines.

Mixer Allows the user to select source lines from a list
simultaneously.

Meters

The meter controls measure data passing through an audio line. These controls use the
MIXERCONTROLDETAILS_BOOLEAN, MIXERCONTROLDETAILS_SIGNED, and

MIXERCONTROLDETAILS_UNSIGNED structures to retrieve and set control properties. The following

table describes the types of meters.

Control

Boolean

Peak

Signed

Unsigned

Description

Measures whether an integer value is FALSE/OFF (zero)
or TRUE/ON (nonzero).

Measures the deflection from 0 in both the positive and
negative directions. The range of integer values for the
peak meter is - 32,768 through 32,767.

Measures integer values in the range of - 231 through
(231 - 1). The mixer driver defines the limits of this
meter.

Measures integer values in the range of 0 through (232 -
1). The mixer driver defines the limits of this meter.

Numbers

The number controls allow the user to enter numerical data associated with a line. The numerical data is
expressed as signed integers, unsigned integers, or integer decibel values. These controls use the
MIXERCONTROLDETAILS_SIGNED and MIXERCONTROLDETAILS_UNSIGNED structures to retrieve

and set control properties. The following table describes the types of number controls.

Control
Signed

Unsigned

Decibel

Percent

Description

Allows integer values entered in the range of -
231 through (231 - 1).

Allows integer values entered in the range of 0
through (232 - 1).

Allows integer decibel values to be entered, in
tenths of decibels. The range of values for this
control is - 32,768 through 32,767.

Allows values to be entered as percentages.

Sliders

The slider controls are typically horizontal controls that can be adjusted to the left or right. These controls
use the MIXERCONTROLDETAILS_SIGNED structure to retrieve and set control properties. The
following table describes the types of sliders.

Control Description

Slider Has a range of - 32,768 through 32,767. The
mixer driver defines the limits of this control.

Pan Has a range of -32,768 through 32,767. The

mixer driver defines the limits of this control, with
0 as the midrange value.

QSound Pan Provides expanded sound control through
QSound. This control has a range of -15 through
15.

Switches

The switch controls are two-state switches. These controls use the
MIXERCONTROLDETAILS_BOOLEAN structure to retrieve and set control properties. The following
table describes the types of switches.

Control Description

Boolean The generic switch. It can be set to TRUE or
FALSE.

Button Set to TRUE for all buttons that the driver should

handle as though they had been pressed. If the
value is FALSE, no action is taken.

On/Off An alternative switch that is represented by a
graphic other than the one used for the Boolean
switch. It can be set to ON or OFF.

Mute Mutes an audio line (suppressing the data flow of
the line) or allows the audio data to play. This
switch is frequently used to help control the lines
feeding into the mixer.

Mono Switches between mono and stereo output for a
stereo audio line. Set to OFF to play stereo data
as separate channels. Set to ON to combine data
from both channels into a mono audio line.

Loudness Boosts low-volume bass for an audio line. Set to
ON to boost low-volume bass. Set to OFF to set
volume levels to normal. The amount of boost is
hardware specific. For more information, see the
documentation for your mixer device.

Stereo Enhanced Increases stereo separation. Set to ON to
increase stereo separation. Set to OFF for no
enhancement.

Time Controls

The time controls allow the user to enter timing-related data, such as an echo delay or reverberation. The
time data is expressed as positive integers. Types of time controls include the following:

Control Description

Microsecond Supports timing data expressed in microseconds.
The range of acceptable values is 0 through (232
-1).

Millisecond Supports timing data expressed in milliseconds. The
range of acceptable values is 0 through (232 -1).

Mixer Device Queries

The mixer services provide functions for determining the number of mixer devices present in the system
and the capabilities of the devices. You can also use a mixer services function to determine the device
identifier for a mixer device.

You can use the mixerGetNumDevs function to determine how many mixer devices are present in the
system. Mixer devices are identified by a device identifier. Device identifiers are determined implicitly from
the number of devices present in a given system. They range from zero through one less than the number
of devices present.

Before using a mixer device, you must determine its capabilities. Audio capabilities can vary from one
multimedia computer to another, so applications need to work with a variety of audio hardware.

You can use the mixerGetDevCaps function to determine the capabilities of mixer devices. This function
fills a MIXERCAPS structure with information about the capabilities of a specified device.

The mixerGetlD function retrieves the audio mixer device identifier associated with a specified device
handle. For example, you could use this function to retrieve the device identifier for an audio mixer and
then use the device identifier to adjust the volume or to display another control.

Opening and Closing Mixer Devices

When you want to use a mixer device, you can either simply begin using it or you can explicitly open the
device before using it. Explicitly opening a mixer device offers two main benefits:

¢ |t guarantees the continued existence of that mixer device.
¢ It lets you receive notification of audio line and control changes.

You can use the mixerOpen function to explicitly open a mixer device. This function takes as parameters
a device identifier, a pointer to a memory location, and other values unique to each type of device. The
memory location is filled with a device handle. Use this device handle to identify the open mixer device
when calling other audio mixer functions. As long as a handle of a mixer device exists, the device
continues to exist in the system. If a configuration change occurs to the mixer device and it hasn't been
explicitly opened, your application might suddenly be unable to access it.

Note The difference between device identifiers and device handles is important. Device handles are
returned when you open a device driver by using mixerOpen. Device identifiers are determined
implicitly from the number of devices present in a system; this number is obtained by using the
mixerGetNumbDevs function.

You can use the mixerClose function to close a mixer device. You should close the device after you finish
using it.

Window Callback Services

The mixer services provide window callback services so that your application can process messages from
mixer drivers. To use these services, specify the CALLBACK_WINDOW flag in the fdwOpen parameter
and a window handle in the dwCallback parameter of the mixerOpen function. Driver messages are sent
to the window procedure function for the window identified by the handle in dwCallback. The messages
are specific to the audio device type.

Audio Line and Control Queries

The mixer services provide functions for determining information about audio lines, audio-line controls,
and control details. The services also provide functions for setting control details.

You can use the mixerGetLinelnfo function to retrieve information about a specified audio line. This
function fills the MIXERLINE structure for a specified source audio line, destination audio line, or line
identifier. The structure includes the destination line number, the number of channels in the audio line, as
well as a short and a long name for the audio line.

The mixerGetLineControls function retrieves general information about one or more controls associated
with an audio line. This function fills the MIXERLINECONTROLS structure with information about the
specified control or controls. You can use mixerGetLineControls to retrieve control properties for one of
the following:

¢ All controls for a specified source line
¢ A specified control for a specified source line
¢ The first control of a specific class for a specified source line

The mixerGetControlDetails function retrieves properties of a single control associated with an audio
line. This function fills the MIXERCONTROLDETAILS structure with the current values for a control.

The mixerSetControlDetails function uses the contents of the MIXERCONTROLDETAILS structure to
set the properties of the specified control. You must ensure that all members of this structure are filled
before you call mixerSetControlDetails.

Audio Mixer Reference

This section describes the functions, structures, and messages associated with audio mixers. These
elements are grouped as follows.

Querying Devices
MIXERCAPS

mixerGetDevCaps
mixerGetNumDevs

Opening and Closing
mixerClose

mixerOpen

Retrieving Mixer Identifiers
mixerGetID

Retrieving Line Controls
MIXERCONTROL

mixerGetLineControls
MIXERLINECONTROLS

Changing Control Attributes

MIXERCONTROLDETAILS
MIXERCONTROLDETAILS _BOOLEAN
MIXERCONTROLDETAILS_LISTTEXT
MIXERCONTROLDETAILS_SIGNED
MIXERCONTROLDETAILS_UNSIGNED
mixerGetControlDetails
mixerSetControlDetails

Retrieving Line Information

mixerGetLinelnfo

MIXERLINE

MM MIXM CONTROL CHANGE
MM MIXM LINE CHANGE

Sending User-Defined Messages
mixerMessage

Audio Mixer Functions

The following functions are used with audio mixers.

mixerClose
mixerGetControlDetails
mixerGetDevCaps
mixerGetlD
mixerGetLineControls
mixerGetLinelnfo
mixerGetNumDevs
mixerMessage

mixerOpen
mixerSetControlDetails

Audio Mixer Structures

The following structures are used with audio mixers.

MIXERCAPS

MIXERCONTROL
MIXERCONTROLDETAILS
MIXERCONTROLDETAILS_BOOLEAN
MIXERCONTROLDETAILS_LISTTEXT
MIXERCONTROLDETAILS_SIGNED
MIXERCONTROLDETAILS_UNSIGNED
MIXERLINE

MIXERLINECONTROLS

Audio Mixer Messages

The following messages are used with audio mixers.

MM_MIXM_CONTROL_CHANGE
MM_MIXM_LINE_CHANGE

AVIFile Functions and Macros

AVIFile functions and macros provide access to time-based files that use the resource information file
format (RIFF), such as waveform-audio and audio-video interleaved (AVI) files. These functions and
macros manage RIFF files, making it unnecessary for you to manage and navigate through the RIFF
architecture.

About AVIFile Functions and Macros

The AVIFile functions and macros handle the information in time-based files as one or more data streams
instead of tagged blocks of data called chunks. Data streams refer to the components of a time-based
file. An AVI file can contain several different types of data, such as a video sequence, an English
soundtrack, and a French soundtrack. Using AVIFile, an application can access each of these
components separately.

Note Although the AVIFile functions and macros work with any RIFF file, this overview demonstrates
their use with AVI files only. AVI files are typically the time-based files used with the AVIFile macros
and functions.

AVIFile functions and macros are contained in a dynamic-link library. To initialize the library, use the
AVIFilelnit function. After you initialize the library, you can use any of the AVIFile functions or macros. To
release the library, use the AVIFileExit function. AVIFile maintains a reference count of the applications
that are using the library, but not those that have released it. Your applications should balance each use
of AVIFilelnit with a call to AVIFileExit to completely release the library after each application finishes
using it.

Function Data Types and Return Values

The AVIFile functions and macros use file and stream handlers implemented with OLE technology. The
standard data type of an OLE function is STDAPI, and the function returns an HRESULT value (zero for
success or an error otherwise). If a function returns a value other than an HRESULT, the type of the
function's prototype has a slightly different syntax that embeds the return value type in parentheses
following STDAPI_. For example, a function that returns a LONG data value uses STDAPI_(LONG) in

the prototype statement.

AVIFile Operations

This section describes the AVIFile file input and output (1/O) operations.

* Opening and Closing Files

¢ Reading from a File

¢ Writing to a File

¢ Using the Clipboard with AVI Files

Opening and Closing Files

An application must open an AVI file before reading or writing. To open an AVI file, use the AVIFileOpen
function. AVIFileOpen returns the address of an AVl file interface that contains the handle of the open file
and increments the reference count of the file.

The AVIFileOpen function supports the OF flags used with the OpenFile function. If an application writes
to an existing file, it must include the OF_WRITE flag in AVIFileOpen. Similarly, if your application creates
and writes to a new file, you must include the OF_CREATE and OF_WRITE flags in AVIFileOpen.

When you open a file using AVIFileOpen, you can use a default file handler or you can specify a custom
file handler to read and write to the file and its data streams. In either case, AVIFile searches the registry
for the correct file handler to use. You must ensure custom file handlers are in the registry before an
application can access them.

You can increment the reference count of a file by using the AVIFileAddRef function. For example, you
might want to do this when passing a handle of the file interface to another application, or when you want
to keep a file open while using a function that would normally close the file.

You can close a file by using the AVIFileRelease function. The AVIFileRelease function decrements the
reference count of an AVI file, saves changes made to the file, and when the reference count reaches
zero, closes the file. Your applications should balance the reference count by including a call to
AVIFileRelease for each use of AVIFileOpen and AVIFileAddRef.

Note An application can open a file with one or more program threads. However, for the best
possible performance, only one thread should access the file at any one time.

Reading from a File

You can retrieve information about an open file by using the AVIFilelnfo function. This function fills the
AVIFILEINFO structure with such information as the maximum data rate, the number of streams in the
file, whether the file uses an index, and whether the file is copyrighted.

To retrieve supplementary information in an AVI file, use the AVIFileReadData function. Supplementary
information is applicable to the entire file and is not included in the normal file headers. For example, the
name of the company or person who holds the copyrights of a file could be supplementary information.
Supplementary information does not adhere to a specific format; it can be file specific. AVIFileReadData
returns the supplementary information in an application-supplied buffer.

Writing to a File

You can write supplementary information to a file that has been opened with write privileges by using the
AVIFileWriteData function. This function copies the information from an application-supplied buffer and
places it in one or more chunks in the file. The "INFO" chunk is a common RIFF chunk type in which the

function stores supplementary information. For a description of RIFF files and their data chunks, see File
Input and Output.

Using the Clipboard with AVI Files

The clipboard provides convenient, temporary storage that an application can use to copy or transfer AVI
files. AVIFile includes clipboard functions that you can use with disk or memory files.

You can copy a file to the clipboard by using the AVIPutFileOnClipboard function. To write a file that is
on the clipboard to memory or disk, use the AVIGetFromClipboard function.

You can clear a file from the clipboard by using the AVIClearClipboard function. This function does not
clear other types of information, such as text, from the clipboard. If you use clipboard functions in your
application, clear the clipboard with AVIClearClipboard before closing the application or closing the file
on the clipboard. You can call AVIClearClipboard in your application whether or not
AVIPutFileOnClipboard has been used.

Note If your application copies a file to the clipboard and the file contains stream data that might
change, you can create a memory file of cloned streams by using the AVIMakeFileFromStreams
function. You can then place the file on the clipboard and then release the original file without
invalidating it.

Stream Operations

Most of the features of AVIFile focus on data streams. This section describes the functions and macros
that deal with streams and stream data.

¢ Opening and Closing Streams

¢ Reading from a Stream

* Working with Compressed Video Data in a Stream
¢ Creating a File from Existing Streams

¢ Writing Streams to a File

¢ Positioning in Streams

e Creating Temporary Streams

* Editing Streams

Opening and Closing Streams

Opening data streams is similar to opening files. You can open a stream by using the AVIFileGetStream
function. This function creates a stream interface, places a handle of the stream in the interface, and
returns a pointer to the interface. AVIFileGetStream also maintains a reference count of the applications
that have opened a stream, but not of those that have closed it.

If you want to access a single stream in a file, you can open the file and the stream by using the
AVIStreamOpenFrompFile function. This function combines the operations and function arguments of the
AVIFileOpen and AVIFileGetStream functions.

To access more than one stream in a file, use AVIFileOpen once followed by multiple calls to
AVIFileGetStream.

You can increment the reference count of a stream by using the AVIStreamAddRef function to keep a
stream open when using a function that would normally close the stream.

You can close a stream by using the AVIStreamRelease function. This function decrements the reference
count of the stream and closes it when the reference count reaches zero. Your applications should
balance the reference count by including a call to AVIStreamRelease for each use of the
AVIFileGetStream, AVIFileCreateStream, AVIStreamAddRef, or AVIStreamOpenFromFile function.
When you release a stream that has been opened by using AVIStreamOpenFromFile, AVIFile closes the
file containing the stream. If your application releases a file that has open data streams, AVIFile will not
close the streams until all of the streams are released.

Reading from a Stream

You can retrieve information about an open stream by using the AVIStreamlinfo function. This function
fills the AVISTREAMINFO structure with information such as the type of data in the stream, the
compression method used when writing stream data, the suggested buffer size, the playback rate, and a
text description of the stream.

Some members of the AVISTREAMINFO structure are also present in the AVIFILEINFO structure. The
information in the AVIFILEINFO structure applies to the entire file. The information in the
AVISTREAMINFO structure is specific to the accessed stream and has precedence over the information
in the AVIFILEINFO structure.

If a stream has supplementary information associated with it, you can retrieve this information by using
the AVIStreamReadData function. This function returns the information in an application-supplied buffer.
Supplementary stream information might include configuration settings for the compression and
decompression methods used on a stream. You can obtain the required buffer size by using the
AVIStreamDataSize macro.

You can retrieve formatting information about a stream by using the AVIStreamReadFormat function.
This function returns a stream-specific structure in an application-supplied buffer. For a video stream, the
buffer contains formatting information in a BITMAPINFO structure. For an audio stream, the buffer
contains formatting information in a WAVEFORMATEX or PCMWAVEFORMAT structure. For other
stream types, the stream handler returns information specific to the stream. You can determine the
required buffer size by using AVIStreamReadFormat and specifying a NULL buffer address or by using
the AVIStreamFormatSize macro.

You can retrieve the multimedia content in a stream by using the AVIStreamRead function. This function
copies raw data from the stream into an application-supplied buffer. For video streams, this function
retrieves the bitmapped images that make up the frame content. For audio streams, this function retrieves
waveform-audio samples that make up the sound content. You can determine the required buffer size by
using AVIStreamRead and specifying a NULL buffer address or by using the AVIStreamSampleSize
macro.

Some AVI stream handlers introduce delays associated with software and hardware initialization or
coordination. You can inform these handlers to prepare for data streaming by using the
AVIStreamBeginStreaming function. This function lets the stream handler allocate and initialize the
resources it needs. To inform these handlers when streaming has ended, use the
AVIStreamEndStreaming function. This function lets the stream handler deallocate the resources it
allocated for AVIStreamBeginStreaming.

The AVIStreamRead function does not provide decompression services. For information about
compressing and decompressing audio streams, see Audio Compression Manager. For information about
compressing and decompressing video streams, see Video Compression Manager. For information about
compressing and decompressing individual frames in a video stream, see Working with Compressed
Video Data in a Stream.

Working with Compressed Video Data in a Stream

AVIFile provides several ways for you to access compressed video streams.

If you want to display one or more frames of a compressed video stream, you can retrieve the frames by
using the AVIStreamRead function and forwarding the compressed frame data to DrawDib functions to
display them. DrawDib functions can display images of several image depths and automatically dither
images for displays that cannot handle certain types of device-independent bitmaps (DIBs). These
functions work with uncompressed and compressed images. For more information about DrawDib
functions, see DrawDib Functions.

AVIFile provides functions for decompressing a single video frame. To allocate resources, use the
AVIStreamGetFrameOpen function. This function creates a buffer for the decompressed data.

You can decompress a single video frame by using the AVIStreamGetFrame function. This function
decompresses the frame and retrieves a complete frame of image data, returning the address of the DIB
in the BITMAPINFOHEADER structure. Your application can display the DIB by using standard drawing
functions or by using the DrawDib functions.

If your application makes successive calls to AVIStreamGetFrame, the function overwrites its buffer with
each retrieved frame.

When you finish using AVIStreamGetFrame and the decompressed DIB is in its buffer, you can release
the allocated resources by using the AVIStreamGetFrameClose function.

For more information about decompressing images, see Video Compression Manager.

Creating a File from Existing Streams

One way to create a file that contains data streams is to combine existing streams into a new file. The
streams that provide data for the new file can reside in memory or in one or more files.

You can build a file from several streams by using the AVISave function. This function creates a file and
writes the data streams specified in its calling sequence to the file. The calling sequence for AVISave
uses a variable number of arguments that include interfaces for the streams combined in the new file.

You can also combine data streams in a new file by using the AVISaveV function. This function provides
the same functionality as AVISave, but when you use AVISaveV, your application specifies the data
streams as an array, not as a variable number of arguments.

You can create a dialog box in which the user can select compression settings for the new file by using
the AVISaveOptions function. The dialog box displays the current compression settings and lets the user
edit them. Compression setting changes are stored in an AVICOMPRESSOPTIONS structure.

You can also include a callback function with AVISave and AVISaveV that your application can use to
display the progress of writing the file and, if needed, let the user cancel the save operation. You can
include the address of the callback function in the calling sequence of AVISave or AVISaveV.

You can let the user select a filename for the new file by using the GetSaveFileNamePreview function.
This function displays the Save As dialog box in which the user can preview the first stream (normally the
video stream) of an AVl file.

You can create a file interface pointer (and a virtual file) for a group of streams by using the
AVIMakeFileFromStreams function. Other AVIFile functions can use the file interface pointer returned by
this function to access the streams in the virtual file. After you finish using the virtual file, delete the file
interface pointer by using the AVIFileRelease function.

Note To minimize image and audio degradation, avoid compressing an AVI file more than once.
Combine uncompressed pieces of video in your editing system and then compress the final product.
For information about compression options, see Video Compression Manager.

Writing Streams to a File

You can also create a file containing data streams by writing a new data stream to a file.

You can create a new stream in a new or existing file by using the AVIFileCreateStream function. This
function defines a new stream according to the characteristics described in an AVISTREAMINFO
structure, creates a stream interface for the new stream, increments the reference count of the stream,
and returns the address of the stream-interface pointer.

Before you write the content of the stream, you must specify the stream format. You can set the stream
format by using the AVIStreamSetFormat function. When setting the format of a video stream, you must
supply this function with a BITMAPINFO structure containing the appropriate information. When setting
the format of an audio stream, you must supply a WAVEFORMAT or WAVEFORMATEX structure
containing the appropriate information. The information you need to supply to the function for other
stream types depends on the stream type and the stream handler.

You can write the multimedia content in a stream by using the AVIStreamWrite function. This function
copies raw data from an application-supplied buffer into the specified stream. The default AVI file handler
appends information to the end of a stream. The default WAVE handler can write waveform-audio data
within a stream as well as at the end of a stream.

You can write supplementary information about the file or stream that is not included in the
AVIFileCreateStream or AVIStreamSetFormat function by using the AVIFileWriteData and
AVIStreamWriteData functions. You can record data that is applicable to the entire file, such as copyright
information and modification history, by using AVIFileWriteData. You can record stream-specific
information, such as compression and decompression settings, by using AVIStreamWriteData. The
supplementary information is stored in separate chunks within the file.

You can close the stream after you finish writing to the new stream by using the AVIStreamRelease
function. This function clears buffers used in recording the stream data, and it completes and closes any
incomplete data chunks in the file.

Positioning in Streams

AVIFile provides several ways to locate and move to a position in a data stream. The functions and
macros in this section let your application find the starting position, length, and key frames (containing a
complete image in the sample) within a stream. The functions and macros also associate time with
positions in a stream by calculating the elapsed time needed to play a stream from its beginning to any
point in a stream.

Finding the Starting Position

You can retrieve the sample number of the first frame in a video stream by using the AVIStreamStart
function. (The frames of a movie might start at sample 0 or 1, depending on the preference of the author.)
You can also obtain this information by using the AVIStreamlInfo function. This function stores the sample
number in the dwStart member of the AVISTREAMINFO structure. You can retrieve the starting time of a
stream's first sample by using the AVIStreamStartTime macro.

You can retrieve the stream length by using the AVIStreamLength function. This function returns the
number of samples in the stream. You can also obtain this information by using the AVIStreamInfo
function. This function stores the stream length in the dwLength member of the AVISTREAMINFO
structure. To retrieve the length of a stream in milliseconds, use the AVIStreamLengthTime macro.

In a video stream, each sample generally corresponds to a frame of video. There might, however, be
samples for which no video data is present. If you call the AVIStreamRead function specifying one of
those positions, it returns a data length of 0 bytes. You can find samples that contain data by using the
AVIStreamFindSample function and specifying the FIND_ANY flag.

In an audio stream, each sample corresponds to one data block of audio data. For example, if the audio
data has a 22 kHz ADPCM (Adaptive Differential Pulse Code Modulation) format, each sample for
AVIStreamLength corresponds to a block of 256 bytes of compressed audio data. This block of audio
data contains approximately 500 audio samples when uncompressed. The functions and macros of
AVIFile, however, treat each 256-byte block as a single sample.

Note Valid positions within a stream range from the beginning to the end of the stream, which is the
sum of the stream starting point and its length. The position represented by the sum of the starting
position and the length corresponds to a time after the last data has been rendered; it does not
contain any data. You can retrieve the sample number that represents the end of the stream by using
the AVIStreamEnd macro. You can retrieve the time value in milliseconds that represents the end of
the stream by using the AVIStreamEndTime macro.

Finding Sample and Key Frames

You can search for different types of samples in a stream by using the AVIStreamFindSample function.
This function searches backward or forward through a stream for a sample of the appropriate type,
beginning with the sample number you specify. You can search for different types of samples in a stream
by specifying a flag in the AVIStreamFindSample calling sequence. Specify the FIND_ANY flag to locate
nonempty samples or to skip samples that lack data. Specify the FIND_KEY flag to search for key frames
that contain the data to render a complete image without needing to reference previous frames. Specify
the FIND_FORMAT flag to search for changes to the format. AVIStreamFindSample is used mainly with
video streams.

Several macros that use AVIFile functions supplement the stream search features. The following list
provides a brief description of each macro. The macros that search for a specific position or type of data
require a starting location to be specified in the stream.

Macro Description

AVIStreamisKeyFrame Indicates whether a sample in a
specified stream is a key frame.

AVIStreamNearestKeyFrame Locates the key frame at or
preceding a specified position in a
stream.

AVIStreamNearestKeyFrameTi Determines the time corresponding

me to the beginning of the key frame

T nearest (at or preceding) a
specified time in a stream.

AVIStreamNearestSample Locates the nearest nonempty
sample at or preceding a specified
position in a stream.

AVIStreamNearestSampleTime Determines the time corresponding
to the beginning of a sample that is
nearest to a specified time in a

stream.

AVIStreamNextKeyFrame Locates the next key frame
following a specified position in a
stream.

AVIStreamNextKeyFrameTime Returns the time of the next key
frame in a stream, starting at a
given time.

AVIStreamNextSample Locates the next nonempty sample
from a specified position in a
stream.

AVIStreamNextSampleTime Returns the time that a sample
changes to the next sample in the

stream.

AVIStreamPrevKeyFrame Locates the key frame that
precedes a specified position in a
stream.

AVIStreamPrevKeyFrameTime Returns the time of the previous
key frame in the stream, starting at

a given time.

AVIStreamPrevSample Locates the nonempty sample that
precedes a specified position in a
stream.

AVIStreamPrevSampleTime Determines the time at which the
previous sample replaces its
predecessor in the stream.

AVIiStreamSampleToSample Returns the sample in a stream
that occurs at the same time as a
sample that occurs in a second
stream.

Switching Between Samples and Time

You can determine the elapsed time from the beginning of a stream to a sample using the
AVIStreamSampleToTime function. This function converts the sample number to a time value expressed
in milliseconds. For a video frame (which spans several milliseconds), this value represents the time the
sample begins to play since playback began and assumes the video clip plays at normal speed. For an
audio sample (which has several samples in a millisecond), the time value corresponds to the time at

which the sample begins to play and assumes the audio stream plays at normal speed.

Conversely, you can find the sample number associated with a time value by using the

AVIStreamTimeToSample function. This function converts the millisecond value to a sample number and
assumes the video clip plays at normal speed.

Because AVIStreamSampleToTime returns the time at which a frame begins to play, the relationship
between AVIStreamSampleToTime and AVIStreamTimeToSample is not truly inverse. They determine
the position in a file more acurately than they determine time. For example, two consecutive audio
samples might both play in the same millisecond. Using AVIStreamSampleToTime to convert the sample
numbers would result in identical time values. If you convert the time value back to a sample number by
using AVIStreamTimeToSample, a single sample would be referenced.

Creating Temporary Streams

Temporary streams can be beneficial in several ways. You can use a temporary stream as a work stream,
for example, when changing the stream format. Or you can create a temporary stream to hold portions of
other streams that have been copied.

You can create a stream in memory that is not associated with any file by using the AVIStreamCreate
function. This function returns the address of the interface to the new stream in a specified location and is
used internally by other functions that create temporary streams.

You can create a compressed stream from an uncompressed stream by using the
AVIMakeCompressedStream function. You identify the stream to compress, the compression method
and compression options, and the handler for the new stream.

When you finish using a stream created with AVIStreamCreate or AVIMakeCompressedStream, close
the stream by using the AVIStreamRelease function. AVIStreamRelease frees the resources the
temporary stream used.

Editing Streams

You can create a stream that you can edit by using the CreateEditableStream function. This function
initializes the environment for editing a stream. This includes creating an interface to the new stream, and
internal edit tables that track changes made to the stream. CreateEditableStream returns a stream
pointer to an editable stream that is required by other stream-editing functions. The editable stream
pointer can also be used by other AVIFile functions that accept stream pointers.

You can cut one or more samples from an editable stream by using the EditStreamCut function. To
remove samples from the editable stream, this function adds an entry to the edit table. The function then
places a copy of the cut samples in a new temporary stream whose interface pointer is returned in a
variable.

You can copy one or more samples from an editable stream into a temporary stream by using the
EditStreamCopy function. EditStreamCopy places copies of the samples in a new temporary stream
whose interface pointer is returned in a variable.

You can copy one or more samples from a stream and paste them into an editable stream by using the
EditStreamPaste function. To insert the samples at the specified position, this function adds an entry in
the edit table of the target editable stream.

You can duplicate an editable stream by using the EditStreamClone function. This function returns a
pointer to the stream interface of the new stream. You can copy these streams to the clipboard or use
them to maintain a trail of edits made to a stream.

You can change several of the characteristics of an editable stream by using the EditStreamSetinfo
function. This function updates the priority setting, language, scale and rate, starting time, quality setting,
destination rectangle dimensions and coordinates, and the textual description of the stream. These items
are stored in the AVISTREAMINFO structure associated with the editable stream.

You can also change the textual description of an editable stream by using the EditStreamSetName
function. This function updates the szName member of the AVISTREAMINFO structure associated with
the editable stream.

The editing functions work on streams. You need to cut and paste each stream individually, and then use
the AVIMakeFileFromStreams function to create a new file pointer.

Note The edit tables in an editable stream maintain all the changes for a stream. The source stream
is never changed.

Using AVIFile Functions and Macros

This section contains examples demonstrating how to perform the following tasks:

¢ Opening an AVI file

* Opening streams in an AVI file and closing the file

¢ Reading streams from an AVI file

¢ Reading from one stream and writing to another

* Using the editing functions and putting a file on the clipboard

Opening an AVI File

The following example initializes the AVIFile library using the AVIFilelnit function and opens an AVI file
using the AVIFileOpen function. The function uses a default file handler.

// LoadAVIFile - loads AVIFile and opens an AVI file.

//

// szfile - filename

// hwnd - window handle
//

VOID LoadAVIFile (LPCSTR szFile, HWND hwnd)
{

LONG hr;

PAVIFILE pfile;

AVIFileInit () ; // opens AVIFile library
hr = AVIFileOpen (&pfile, szFile, OF SHARE DENY WRITE, OL);

if (hr !'= 0){
ErrMsg ("Unable to open %s", szFile);

return;
}
//
// Place functions here that interact with the open file.
//

AVIFileRelease (pfile); // closes the file
AVIFileExit () // releases AVIFile library

Opening Streams in an AVI File and Closing the File

The following example opens all the streams in an AVI file using the AVIFileGetStream function. If an
error is encountered, the file is closed.

// InsertAVIFile - opens the streams in an AVI file.

//

// pfile - file-interface pointer from AVIFileOpen

//

// Global variables

// gcpavi - count of the number of streams in an AVI file
// gapavi[] = array of stream-interface pointers

void InsertAVIFile (PAVIFILE pfile, HWND hwnd, LPSTR lpszFile)
{

int i

gcpavi = 0;

// Open the streams until a stream is not available.
for (i = gcpavi; i1 < MAXNUMSTREAMS; i++) {
gapavi[i] = NULL;
if (AVIFileGetStream(pfile, &gapavil[il], 0L, i - gcpavi)
I= AVIERR OK)
break;

if (gapavi[i] == NULL)
break;
}
// Display error message-stream not found.
if (gcpavi == 1i)
{
ErrMsg ("Unable to open %s'", lpszFile);
if (pfile) // If file is open, close it
AVIFileRelease (pfile);

return;
}
else {
gcpavi = i - 1;
}
//
// . Place functions to process data here.

//
}

Reading Streams from an AVI File

The following subroutine obtains stream information from an AVI file and determines the stream type from
the AVISTREAMINFO structure returned by the AVIStreamlinfo function.

// StreamTypes - opens the streams in an AVI file and determines
// stream types.

//

// Global variables

// gcpavi - count of streams in an AVI file

// gapavi[] = array of stream-interface pointers

void StreamTypes (HWND hwnd)
{

AVISTREAMINFO avis;
LONG r, lHeight = 0;
WORD w;
int i;
RECT rc;

// Walk through all streams.
for (1 = 0; i < gcpavi; i++) {
AVIStreamInfo (gapavil[i], &avis, sizeof (avis));
if (avis.fccType == streamtypeVIDEO) ({

// Place video-processing functions here.

}
else 1if (avis.fccType == streamtypeAUDIO) {

// Place audio-processing functions here.

}
else if (avis.fccType == streamtypeTEXT) {

// Place text-processing functions here.

}

Reading from One Stream and Writing to Another

The following example reads data from a stream, compresses it into a new stream, and writes the
compressed data into a stream of a new file.

// SaveSmall - copies a stream of data from one file, compresses
// the stream, and writes the compressed stream to a new file.
//

// ps stream interface pointer

// lpFilename - new AVI file to build

//

void SaveSmall (PAVISTREAM ps, LPSTR lpFilename)
{

PAVIFILE pf;
PAVISTREAM psSmall;
HRESULT hr;
AVISTREAMINFO strhdr;

BITMAPINFOHEADER bi;
BITMAPINFOHEADER biNew;

LONG 1StreamSize;
LPVOID 1p0ld;
LPVOID 1lpNew;

// Determine the size of the format data using
// AVIStreamFormatSize.
AVIStreamFormatSize (ps, 0, &lStreamSize);

if (1StreamSize > sizeof(bi)) // Format too large?
return;
1StreamSize = sizeof (bi);
hr = AVIStreamReadFormat (ps, 0, &bi, &lStreamSize); // Read format
if (bi.biCompression != BI RGB) // Wrong compression format?
return;

hr = AVIStreamInfo (ps, &strhdr, sizeof (strhdr));

// Create new AVI file using AVIFileOpen.
hr = AVIFileOpen (&pf, lpFilename, OF WRITE | OF CREATE, NULL);
if (hr != 0)

return;

// Set parameters for the new stream.
biNew = bi;
biNew.biWidth /= 2;
biNew.biHeight /= 2;
biNew.biSizeImage = ((((UINT)biNew.biBitCount * biNew.biWidth
+ 31)&~31) / 8) * biNew.biHeight;
SetRect (&strhdr.rcFrame, 0, 0, (int) biNew.biWidth,
(int) biNew.biHeight) ;

// Create a stream using AVIFileCreateStream.
hr = AVIFileCreateStream(pf, &psSmall, &strhdr);
if (hr != 0) { //Stream created OK? If not, close file.

AVIFileRelease (pf);
return;

// Set format of new stream using AVIStreamSetFormat.
hr = AVIStreamSetFormat (psSmall, 0, &biNew, sizeof (biNew)) ;
if (hr !'= 0) {

AVIStreamRelease (psSmall) ;

AVIFileRelease (pf);

return;

// Allocate memory for the bitmaps.
1pOld = GlobalAllocPtr (GMEM MOVEABLE, bi.biSizelImage);
1pNew GlobalAllocPtr (GMEM MOVEABLE, biNew.biSizelImage);

// Read the stream data using AVIStreamRead.
for (lStreamSize = AVIStreamStart (ps); lStreamSize <
AVIStreamEnd (ps); l1lStreamSize++) {
hr = AVIStreamRead (ps, 1lStreamSize, 1, 1lpOld, bi.biSizelImage,
NULL, NULL);

//

// Place error check here.

//

// Compress the data.
CompressDIB (&bi, 1lpOld, &biNew, lpNew)

// Save the compressed data using AVIStreamWrite.
hr = AVIStreamWrite (psSmall, 1lStreamSize, 1, lpNew,
biNew.biSizeImage, AVITF KEYFRAME, NULL, NULL) ;

// Close the stream and file.
AVIStreamRelease (psSmall) ;
AVIFileRelease (pf);

Using the Editing Functions and Putting a File on the Clipboard

The following example cuts, copies, or deletes segments from an array of streams. The cut and copied
streams are merged into a new file and placed on the clipboard. The functions used include
EditStreamClone, EditStreamCopy, and EditStreamCut.

// Global variables

// gcpavi - count of streams in an AVI file

// gapavi[] - array of stream-interface pointers, used as data source
// gapaviSel[] - stream-interface pointers of edited streams

// galSelStart[] - edit starting point in each stream

// galSellen[] - length of edit to make in each stream

// gapaviTemp[] - array of stream-interface pointers put on clipboard
//

// Comment :

// The editable streams in gapaviSel have been

// initialized with CreateEditableStream.

//

case MENU CUT:
case MENU COPY:
case MENU DELETE:
{
PAVIFILE pf;
int i;

// Walk list of selections and make streams out of each section.

gcpaviSel = 0; // index counter for destination streams
for (i = 0; i < gcpavi; i++) {
if (galSelStart[i] != -1) {
if (wParam == MENU COPY)

EditStreamCopy (gapavi[i], &galSelStartl[il],

&galSellen[i], &gapaviSel[gcpaviSel++]);
else {

EditStreamCut (gapavi[i], &galSelStart([il],

&galSellen[i], &gapaviSel[gcpaviSel++])

’

// Put on the clipboard if segment is not deleted.

if (gcpaviSel && wParam != MENU DELETE) {
PAVISTREAM gapaviTemp [MAXNUMSTREAMS] ;
int i;

// Clone the edited streams, so that if the user does
// more editing, the clipboard won't change.
for (i = 0; i < gcpaviSel; i++) |

gapaviTemp[i] = NULL;

EditStreamClone (gapaviSel[i], &gapaviTemp[il]);

//

// Place error check here.

//

// Create a file from the streams and put on clipboard.
AVIMakeFileFromStreams (&pf, gcpaviSel, gapaviTemp) ;
AVIPutFileOnClipboard(pf);

// Release clone streams.

for (i = 0; i < gcpaviSel; i++) {
AVIStreamRelease (gapaviTemp[i]) ;

}

// Release file put on clipboard.
AVIFileRelease (pf);

}

// Release streams created.
for (i = 0; i < gcpaviSel; i++)
AVIStreamRelease (gapaviSel[i]);

AVIFile Reference

This section describes the functions, structures, and macros for applications using the AVIFile services.
These elements are grouped as follows:

AVIFile Library Operations

AVIFilelnit
AVIFileExit

Opening and Closing AVI Files

AVIFileOpen
AVIFileAddRef

AVIFileRelease
GetOpenFileNamePreview

Reading from a File
AVIFilelnfo
AVIFILEINFO
AVIFileReadData

Writing to a File
AVIFileWriteData

Using the Clipboard

AVIPutFileOnClipboard
AVIGetFromClipboard

AVIClearClipboard

Opening and Closing Streams
AVIFileGetStream

AVIStreamOpenFromFile
AVIStreamAddRef

AVIStreamRelease

Reading Stream Information

AVISTREAMINFO
AVIStreamReadData
AVIStreamDataSize
AVIStreamReadFormat
AVIStreamFormatSize
AVIStreamRead
AVIStreamSampleSize
AVIStreamBeginStreaming
AVIStreamEndStreaming

Decompressing Video Data in a Stream
AVIStreamGetFrameOpen

AVIStreamGetFrame
AVIStreamGetFrameClose

Creating a File from Existing Streams

AVISave

AVISaveV
AVISaveOptions
GetSaveFileNamePreview
AVIMakeFileFromStreams

Writing Individual Streams

AVIFileCreateStream
AVIStreamSetFormat
AVIStreamWrite
AVIFileWriteData
AVIStreamWriteData
AVIStreamRelease

Finding the Starting Position in a Stream
AVIStreamStart
AVIStreamStartTime

AVIStreamLength
AVIStreamLengthTime

AVIStreamFindSample
AVIStreamEnd

AVIStreamEndTime

Finding Sample and Key Frames

AVIStreamFindSample
AVIStreamisKeyFrame

AVIStreamNearestKeyFrame
AVIStreamNearestKeyFrameTime

AVIStreamNearestSample

AVIStreamNearestSampleTime
AVIStreamNextKeyFrame
AVIStreamNextKeyFrameTime
AVIStreamNextSample
AViStreamNextSampleTime
AVIStreamPrevKeyFrame
AVIStreamPrevKeyFrameTime
AVIStreamPrevSample
AVIStreamPrevSampleTime
AVIStreamSampleToSample

Switching Between Samples and Time

AVIStreamSampleToTime
AVIiStreamTimeToSample

Creating Temporary Streams
AVIStreamCreate

AVIMakeCompressedStream
AVIStreamRelease

Editing AVI Streams

CreateEditableStream
EditStreamCut

EditStreamCopy

EditStreamPaste
EditStreamClone
EditStreamSetinfo
EditStreamSetName

AVIFile Functions

The following functions are used with AVIFile.

AVIBuildFilter
AVIClearClipboard
AVIFileAddRef
AVIFileCreateStream
AVIFileEndRecord
AVIFileExit
AVIFileGetStream
AVIFilelnfo
AVIFilelnit
AVIFileOpen
AVIFileReadData
AVIFileRelease
AVIFileWriteData

AVIGetFromClipboard
AViIMakeCompressedStream
AVIMakeFileFromStreams
AViMakeStreamFromClipboard

AVIPutFileOnClipboard
AVISave

AVISaveOptions

AVISaveOptionsFree
AVISaveV

AVIStreamAddRef
AVIStreamBeginStreaming
AVIStreamCreate
AVIStreamEndStreaming

AVIStreamFindSample
AVIStreamGetFrame

AVIStreamGetFrameClose
AVIStreamGetFrameOpen
AVIStreaminfo
AVIStreamLength

AVIStreamOpenFromFile
AVIStreamRead

AVIStreamReadData
AVIStreamReadFormat
AVIStreamRelease
AVIiStreamSampleToTime
AVIStreamSetFormat
AVIStreamStart
AViStreamTimeToSample
AVIStreamWrite
AVIStreamWriteData
CreateEditableStream
EditStreamClone
EditStreamCopy
EditStreamCut
EditStreamPaste
EditStreamSetinfo
EditStreamSetName

AVIFile Structures

The following structures are used with AVIFile.

AVICOMPRESSOPTIONS
AVIFILEINFO
AVISTREAMINFO

AVIFile Macros

The following macros are used with AVIFile.

AVIStreamDataSize
AVIStreamEnd
AVIStreamEndTime
AVIStreamFormatSize

AVIStreamlsKeyFrame
AVIStreamLengthTime
AVIStreamNearestKeyFrame
AVIStreamNearestKeyFrameTime
AVIStreamNearestSample

AVIStreamNearestSampleTime
AVIStreamNextKeyFrame

AVIStreamNextKeyFrameTime
AVIStreamNextSample
AVIiStreamNextSampleTime
AVIStreamPrevKeyFrame
AVIStreamPrevKeyFrameTime
AVIStreamPrevSample
AVIStreamPrevSampleTime
AVIStreamSampleSize

AVIStreamSampleTo?ample
AVIStreamStartTime

Video Compression Manager

The video compression manager (VCM) provides access to the interface used by installable compressors
to handle real-time data. Applications can use installable compressors to perform the following tasks:

e Compress and decompress video data.

e Send a renderer compressed video data and have it draw it to the display.
e Compress, decompress, or draw data with application-defined renderers.
e Use renderers to handle text and custom data.

About the Video Compression Manager

Typically, installable compressors operate with video-image data stored in audio-video interleaved (AVI)
files. This overview explains the programming techniques used to access installable compressors through
VCM and covers the following topics:

e VCM and the Video for Windows architecture

e Compressing and decompressing image data from your application
e Using VCM renderers to draw data from your application

e VCM functions and structures

Before you read this overview, you should be familiar with the Microsoft Win32 graphic services. In
particular, bitmaps and bitmap-related structures, such as BITMAPINFO and BITMAPINFOHEADER, are
used extensively by VCM. For additional information about the BITMAPINFO and BITMAPINFOHEADER
structures, see Bitmaps.

Note The audio compression manager (ACM) provides system-level support for audio compression
and decompression drivers. For a description of the audio compression services, see Audio
Compression Manager.

VCM Architecture

VCM is an intermediary between an application and compression and decompression drivers. The
compression and decompression drivers compress and decompress individual frames of data.

When an application makes a call to VCM, VCM translates the call into a message. The message is sent
by using the ICSendMessage function to the appropriate compressor or decompressor, which
compresses or decompresses the data. VCM receives the return value from the compression or
decompression driver and then returns control to the application.

If a macro is defined for a message, the macro expands to an ICSendMessage function call supplying
appropriate parameters for that message. If a macro is defined for a message, your application should
use it rather than the message. In this overview, these macros follow messages in parentheses.

System Entries for Compressors, Decompressors, and Renderers

The system uses entries in the registry to find VCM drivers. These entries are in the form of two four-
character codes separated by a period. The first four-character code is defined by the system and can be
one of the following:

Four-character codeDescription

"VIDC" Identifies compressors and decompressors.
"VIDS" Identifies video-stream renderers.

"TXTS" Identifies text-stream renderers.

"AUDS" Identifies audio-stream handlers.

Custom renderers can define their own four-character codes.

The second four-character code is defined by the driver. Typically, the second four-character code
corresponds to the type of data the driver can handle.

When opening a VCM driver, an application specifies the type of driver and the type of data handler it
needs. Typically, this information comes from the stream header. The system tries to open the specified
data handler, but if it fails, the system searches the registry for a driver that has the required handler.

When searching for the driver, the system tries to match the four-character codes specified for the driver
type and data handler with those specified in the driver entry. For example, if an application specifies the
compressor MSSQ, the system searches the registry for the driver entry VIDC.MSSQ. If it cannot find a
match, it opens each driver corresponding to the driver type and locates one that can handle the type of
data your application specifies. In the previous example, if the system could not find VIDC.MSSQ, it
would open all drivers with the "VIDC" four-character code and locate one that can handle the data.

VCM Services

In general, an application uses VCM to perform the following tasks:

e |ocate, open, or install a compressor or decompressor.
¢ Configure or obtain configuration information about the compressor or decompressor.
e Use a series of functions to compress, decompress, or draw the data.

The functions and macros of the DrawDib library perform these tasks implicitly and might provide the
most convenient way to use VCM. For more information about the DrawDib library, see DrawDib.

The following sections describe tasks you can perform by using VCM:

e Compressor and decompressor basics

¢ User-selected compressors

e Compressor and decompressor installation and removal

e Compressor and decompressor configuration

¢ Getting information about compressors and decompressors
¢ Single-image compression

e Seguence compression

* Image-data compression

¢ Single-image decompression

* |mage-data decompression

¢ Monitoring the progress of compressors and decompressors
* Hardware drawing capabilities

Compressor and Decompressor Basics

To open and locate a compressor, you can use the ICLocate and ICOpen functions. You can use
ICLocate to find a compressor of a specific type and to obtain a handle of it for use in other VCM
functions. To open a compressor, you can use ICOpen. Your application uses the handle returned by this
function to identify the opened compressor when it uses other VCM functions.

To open and locate a decompressor, applications can use the ICDecompressOpen and ICDrawOpen
macros. These macros use ICLocate for operation.

When your application hass finished using a compressor or decompressor, it must close it to free any
resources used for compression or decompression. Your application can use the ICClose function to
close the compressor or decompressor.

Also, your application can enumerate the compressors or decompressors on a system by using the
ICInfo function.

Note The stream header in an AVI file contains information about the stream type and the specific
handler for that stream. Within the stream header, the fccType and fccHandler members identify the
stream type and the stream handler specified for the stream.

User-Selected Compressors

When compressing data, your application can use the ICCompressorChoose function to create a dialog
box in which the user can select the compressor. You can specify flags for this function to allow the user
to specify the key-frame frequency and the movie-data rate, or to display a preview window.

The compressor selected by the user is automatically opened and its handle is returned in the hic
member of the COMPVARS structure specified in ICCompressorChoose.

If you use ICCompressorChoose, use the ICCompressorFree function to close the compressor and
free any resources associated with the COMPVARS structure.

Compressor and Decompressor Installation and Removal

An application can use compressors and decompressors that are already installed on a system running
the Microsoft Windows operating system. An application can also install compressors and decompressors
for general or special uses. Most applications will not need to install or remove compressors or
decompressors because they are usually installed by a setup program. An application might, however,
install a compressor directly or install a function as a compressor.

An application can install a compressor or decompressor (or a function used as a compressor or
decompressor) by using the ICInstall function. This function creates an entry in the registry identifying the
compressor or decompressor. Your application or another application can search the registry to determine
if the system contains a compressor or decompressor suitable for its data. Use ICInstall to install all
compression and decompression drivers.

An application can locate and open an installed compressor or decompressor by using the ICLocate and
ICOpen functions. When an application finishes using a compressor or decompressor, it closes it by using
the ICClose function.

An application can remove the registry entry for an installed compressor or decompressor by using the
ICRemove function. This function removes the registry entry of a compressor or decompressor that is not
currently loaded in memory.

An application can restrict the use of a compressor or decompressor by installing, opening, closing, and
removing it.

Alternatively, to use a function internally as a compressor or decompressor without installing it in the
registry, an application can use the ICOpenFunction function. This function requires the calling
application to have the address of the function to be used as a compressor or decompressor. When the
application finishes using the function, it must close it by using ICClose. Because the function was not
installed, the application does not need to remove the function from the registry.

The internal structure of a function used as a compressor or decompressor should be the same as the
DriverProc entry-point function used by installable drivers. For more information about the DriverProc
entry-point function, see Installable Drivers.

Note An application installing a function as a compressor or decompressor must remove the
function before the application is closed so other applications do not try to use the function. When
removing a function, the application must identify it with the four-character code used to install it.

Compressor and Decompressor Configuration

Your application can configure the compressor or decompressor automatically, or it can allow the user to
configure them. If it is practical, allow the user to configure the compressor or decompressor; this frees
you from considering all the options for the compressor or decompressor.

The user can configure the compressor or decompressor by using a configuration dialog box. You can
send the ICM_CONFIGURE message to VCM (or use the ICQueryConfigure macro) to determine if a
compressor or decompressor can display a configuration dialog box. If so, send the ICM_CONFIGURE
message (or use the ICConfigure macro) to display it.

Your application can send the ICM_GETSTATE and ICM_SETSTATE messages (or use the
ICGetStateSize, ICGetState, and ICSetState macros) to get and set the status for a compressor or
decompressor. If your application creates or modifies the status, it must obtain the layout of the
compressor or decompressor data before restoring its status. Alternatively, if your application obtains the
status from a compressor or decompressor and uses it to restore the status in a subsequent session, it
must ensure that it restores only status information obtained from the compressor or decompressor it is
currently using.

Getting Information About Compressors and Decompressors

To get general information about a compressor or decompressor, your application can use the ICGetlinfo
function. This function fills an ICINFO structure with information about the compressor or decompressor.
Your application must allocate the memory for the ICINFO structure and pass a pointer to it in ICGetInfo.
Unless your application searches for a particular compressor or decompressor, the flags in the ICINFO
structure provide the most useful information about the capabilities of a compressor or decompressor.

To get the default key-frame rate and default quality value of a compressor or decompressor, your
application can send the ICM_GETDEFAULTKEYFRAMERATE and ICM_GETDEFAULTQUALITY
messages (or use the ICGetDefaultKeyFrameRate and ICGetDefaultQuality macros).

To determine the best display format of a compressor or decompressor, your application can use the
ICGetDisplayFormat function.

To determine if a compressor or decompressor can display an About dialog box, send the ICM_ABOUT
message (or use the ICQueryAbout macro). You can also display the About dialog box of a compressor
or decompressor by sending the ICM_ABOUT message and changing the value of the wParam
parameter (or by using the ICAbout macro).

Single-Image Compression

You can use the ICImageCompress function to compress a single image. This function returns a handle
of the compressed device-independent bitmap (DIB). The compressed DIB is packed using the CF_DIB
format.

Sequence Compression

Your application can use the ICSeqCompressFrame, ICSeqCompressFrameStart, and
ICSeqgCompressFrameEnd functions to compress a sequence of frames. These functions use the data

stored in the COMPVARS structure. Applications use the ICCompressorChoose function to allow the
user to select a compressor, open it, and set the compression parameters in the COMPVARS structure;
however, applications can set the parameters in the structure manually.

Before an application can begin compressing a sequence of frames, it must use
ICSeqCompressFrameStart to allocate the necessary resources. After the resources are allocated, the
application can use ICSeqCompressFrame to compress each frame individually. The frame rate and
key-frame frequency used in compressing the sequence are specified in members of the COMPVARS
structure. The return value for ICSeqCompressFrame points to the compressed data.

When an application finishes compressing a sequence, it can use ICSeqCompressFrameEnd to free
system resources allocated for ICSeqCompressFrameStart. To free the resources allocated for the
COMPVARS structure, the application can use the ICCompressorFree function.

Image-Data Compression

Your application can use a series of ICCompress functions and macros to compress data. The functions
and macros can help you perform the following tasks:

e Determine the compression format to use for a specified input format.
e Prepare the compressor.

e Compress the data.

e End compression.

Your application can increase control over the compression process by using the ICCompress functions
and macros. This group of functions and macros handles individual frames, rather than the sequence as a
whole. For example, your application can identify the frames to compress as key frames by using the
ICCompress function.

A compressor receives data in one format, compresses the data, and returns a compressed version of the
data using a specified format. The typical input format specifies DIBs using the BITMAPINFO structure.
The typical output format specifies compressed DIBs, also using the BITMAPINFO structure.

Note To minimize image and audio degradation during playback, avoid compressing an AVI file
more than once. Combine uncompressed pieces of video in your editing system and then compress
the final product.

Compressor and Compression Format Selection

If you want to compress data and your application requires a specific output format, send the
ICM_COMPRESS_QUERY message (or use the ICCompressQuery macro) to query the compressor to
determine if it supports the input and output formats.

If the output format is not important to your application, you need only find a compressor that can handle
the input format. To determine if a compressor can handle the input format, you can send
ICM_COMPRESS_QUERY, specifying NULL for the /Param parameter. This message does not return the
output format to your application. Your application can determine the buffer size needed for the data
specifying the compression format by sending the ICM_COMPRESS _GET FORMAT message (or use
the ICCompressGetFormatSize macro). You can also retrieve the format data by sending
ICM_COMPRESS_GET_FORMAT (or the ICCompressGetFormat macro).

If you want to determine the largest buffer that the compressor could require for compression, send the
ICM_COMPRESS_GET_SIZE message (or use the ICCompressGetSize macro). You can use the
number of bytes returned by the ICSendMessage function to allocate a buffer for subsequent image
compressions.

Compressor Initialization

After your application selects a compressor that can handle the input and output formats it needs, you
can initialize the compressor by using the ICM_COMPRESS_BEGIN message (or use the
ICCompressBegin macro). This message requires the compressor handle and the input and output
formats.

Data Compression

You can use the ICCompress function to compress a frame. Your application must use this function
repeatedly until all the frames in a sequence are compressed. Your application must also track and
increment the number of each frame compressed with ICCompress. The compressor uses this value to

check if frames are sent out of order during fast temporal compression (storing differences between
successive frames). If your application recompresses a frame, it should use the same frame number as
when the frame was first compressed. If your application compresses a still-frame image, it can specify a
frame number of zero.

Your application can use the ICCOMPRESS KEYFRAME flag to make the frame compressed by
ICCompress a key frame.

When VCM returns control to your application after compressing a frame, VCM stores the compressed
data in the structures referenced by the [pbiOutput and IpData parameters. If your application needs to
move the compressed data, it can find its size in the biSizelmage member of the BITMAPINFO structure
specified in IpbiOutput.

Note Your application must allocate the structures and buffers that store the uncompressed and
compressed data. If the compressor supports temporal compression, your application must also
allocate a structure and buffer to hold the format and data for the previous frame of information.

Ending Compression

After your application has compressed the data, it can use the ICCompressEnd macro to notify the
compressor that it has finished. If you want to restart compression after using this function, your
application must reinitialize the compressor by sending the ICM_COMPRESS BEGIN message (or use

the ICCompressBegin macro).

Single-Image Decompression

You can use the ICimageDecompress function to decompress a single image. This function returns a
handle of the decompressed DIB. The decompressed DIB is stored in the CF_DIB format.

Image-Data Decompression

Your application uses a series of ICDecompressEx functions to control the decompressor. The functions
can help you perform the following tasks:

e Select a decompressor.

¢ Prepare the decompressor.
e Decompress the data.

e End decompression.

Your application handles decompression similarly to the way it handles compression, except that the input
format is a compressed format and the output format is a displayable format. The input format for
decompression is usually obtained from the stream header. After determining the input format, your
application can use the ICLocate or ICOpen functions to find a decompressor that can handle it.

The ICDecompressEx functions and macros are a superset of the ICDecompress function group and
provide more capabilities. The functionality of ICDecompressEx, ICDecompressExBegin,
ICDecompressExEnd, and ICDecompressExQuery replaces that of the ICDecompress,

ICDecompressBegin, ICDecompressEnd, and ICDecompressQuery functions. Use the
ICDecompressEx functions and macros in place of the ICDecompress equivalents.

Decompressor and Decompression Format Selection

If you want to decompress data and your application requires a specific output format, you can use the
ICDecompressExQuery function to query the decompressor to determine if it supports the input and
output formats.

If the output format is not important in your application, you need only find a decompressor that can
handle the input format. To determine if a decompressor can handle the input format, use
ICDecompressExQuery and specify NULL for the IpbiDst parameter. Your application can determine the
buffer size needed for the data specifying the decompression format by sending the
ICM_DECOMPRESS_GET _FORMAT message (or use the ICDecompressGetFormatSize macro). You
can also send ICM_DECOMPRESS_GET_FORMAT (or the ICDecompressGetFormat macro) to
retrieve the format data. The decompressor returns its suggested format in a BITMAPINFO structure.
This format typically preserves the most information during decompression. Your application should
ensure that the decompressor returns successfully before it decompresses the information.

Because your application allocates the memory required for decompression, it needs to determine the
maximum memory the decompressor can require for the output format. The
ICM_DECOMPRESS_GET_FORMAT message obtains the number of bytes the decompressor uses for
the default format.

If your application defines its own format by using ICDecompressExQuery, it must also obtain a palette
for the bitmap; ICDecompressExQuery does not provide palette definitions. (Most applications use
standard formats and do not need to obtain a palette.) Your application can obtain the palette by sending
the ICM_DECOMPRESS_GET PALETTE message (or use the ICDecompressGetPalette macro).

Decompressor Initialization

After your application selects a decompressor that can handle the input and output formats it needs, you
can initialize the decompressor by using the ICDecompressExBegin function. This function requires the
decompressor handle and the input and output formats.

Data Decompression

You can use the ICDecompressEx function to decompress a frame. Your application must use this
function repeatedly until all the frames in a sequence are decompressed.

If your video stream lags behind other components (such as audio) during playback, your application can
specify the ICDECOMPRESS_HURRYUP flag to speed decompression. To do this, a decompressor
might extract only the information it needs to decompress the next frame and not fully decompress the
current frame. Therefore, your application should not try to draw the decompressed data when it uses this
flag.

After your application has decompressed the data, it can send the ICM_DECOMPRESSEX_ END
message (or use the ICDecompressExEnd macro) to notify the decompressor that it has finished. If you
want to restart decompression after using this function, your application must reinitialize the

decompressor by using ICDecompressExBegin.

Monitoring the Progress of Compressors and Decompressors

Your application can monitor the progress of a lengthy operation performed by a compressor or
decompressor by sending it the address of a callback function. You can use the ICSetStatusProc
function to send the address to the compressor or decompressor. When the compressor or decompressor
receives this address, it sends status messages to the function. These messages indicate whether the

operation is starting, stopping, yielding, or proceeding.

Hardware Drawing Capabilities

Some renderers can draw directly to video hardware as they decompress video frames. These renderers
return the VIDCF_DRAW flag in response to the ICGetInfo function. When using this type of renderer,
your application does not have to handle the decompressed data. It lets the renderer retain the
decompressed data for drawing.

If your application uses a renderer with drawing capabilities, it must handle the following tasks:

e Select a renderer.

¢ Specify image formats.

¢ |nitialize the renderer.

¢ Draw the data.

e Control drawing parameters.

Renderer Selection

The ICDrawOpen macro opens a renderer that can draw images with the specified format. It returns a
handle of a renderer if it is successful, or zero otherwise. This macro uses the ICLocate function to open
the renderer.

Specifying Image Formats

Because your application does not need to draw the decompressed data, it does not require a specific
output format. It must, however, ensure that the renderer can draw using the input format by using the
ICM_DRAW_QUERY message (or use the ICDrawQuery macro). This message cannot determine if a
renderer can draw a bitmap. If your application must determine if the renderer can draw the bitmap, use
this message with the ICDrawBegin function.

Your application can have a renderer suggest an input format by using the ICDrawSuggestFormat
function. This function is used when a renderer separates the drawing capabilities from the
decompressing capabilities. Most applications using the drawing functions will not need to determine the
output format.

Renderer Initialization

The ICDrawBegin function initializes a renderer and tells it the drawing destination. This function can also
perform the following tasks:

¢ Determine whether the renderer supports a specific input format.

¢ Specify whether the drawing operation occupies a window or the entire screen.
¢ Specify the part of the image to display using the source rectangle.

¢ Define the playback rate of the image sequence.

Some renderers buffer the compressed data to operate more efficiently. Your application can send the
ICM_GETBUFFERSWANTED message (or use the ICGetBuffersWanted macro) to determine the
number of buffers the renderer requests. Your application should preload these buffers and send them to
the renderer before drawing.

Drawing the Data

You can use the ICDraw function to decompress the data for drawing. The renderer, however, does not
start drawing data until your application sends the ICM_DRAW_START message (or uses the
ICDrawsStart macro). When your application calls this function, the renderer begins to draw the frames at
the rate specified by the dwRate parameter divided by the dwScale parameter; these parameters were

supplied when the application initialized the renderer by using the ICDrawBegin function. Drawing
continues until your application sends the ICM_DRAW_STOP message (or uses the ICDrawStop macro).

Note If a renderer buffers the data before drawing, your application should not use the ICDrawStart
macro until it has sent the number of frames the renderer returned for the ICGetBuffersWanted
macro.

The ITime parameter of ICDraw specifies the time to draw a frame. The renderer divides this integer by
the time scale specified with ICDrawBegin to obtain the actual time. Times for ICDraw functions are
relative to ICDrawStart. ICDrawStart sets the clock to zero. For example, if your application specifies
1000 for the time scale and 75 for ITime, the renderer draws the frame 75 milliseconds into the sequence.

Controlling Drawing Parameters
You can monitor the clock of a renderer by sending the ICM_DRAW_GETTIME message (or use the

ICDrawGetTime macro), and you can set the clock of a renderer that can draw data by sending the
ICM_DRAW_SETTIME message (or use the ICDrawSetTime macro).

To change the current position while a renderer is drawing, your application can send the
ICM_DRAW_WINDOW message (or use the ICDrawWindow macro) for repositioning the window.
Applications typically use this message whenever the window changes.

If the playback window gets a realize-palette message, your application must send the
ICM_DRAW_REALIZE message (or use the ICDrawRealize macro) to have the renderer realize the
palette again for playback. Applications can change the palette by sending the

ICM DRAW_ CHANGEPALETTE message (or use the ICDrawChangePalette macro) and obtain the
current palette by sending the ICM_DRAW_GET PALETTE message.

Some renderers must be specifically instructed to display frames passed to them. Sending the
ICM_DRAW_RENDERBUFFER message (or use the ICDrawRenderBuffer macro) causes these
renderers to draw the frame.

Using the Video Compression Manager

This section contains examples demonstrating how to perform the following tasks:

¢ Locating and opening compressors and decompressors
¢ [nstalling compressors and decompressors

¢ Configuring compressors and decompressors

¢ Obtaining information about compressors and decompressors
¢ Determining a compressor's output format

e Compressing data

¢ Determining a decompressor's output format

e Decompressing data

¢ Determining if a driver can handle the input format

¢ Preparing to draw data

¢ Drawing data

* Monitoring compressor and decompressor progress

Locating and Opening Compressors and Decompressors

The following example uses the ICLocate function to find a compressor that can compress an 8-bits-per-
pixel bitmap.

BITMAPINFOHEADER bih;
HIC hIC

// Initialize the bitmap structure.

bih.biSize = sizeof (RITMAPINFOHEADER) ;

bih.biWidth = bih.biHeight = 0;

bih.biPlanes = 1;

bih.biCompression = BI RGB; // standard RGB bitmap
bih.biBitcount = 8; // 8 bits-per-pixel format
bih.biSizeImage = 0;

bih.biXPelsPerMeter = bih.biYPelsPerMeter = 0;
bih.biClrUsed = bih.biClrImportant = 256;

hIC = ICLocate (ICTYPE VIDEO, OL, (LPBITMAPINFOHEADER) ¢&bih,
NULL, ICMODE COMPRESS) ;

The following example enumerates the decompressors in the system to find one that can handle the
format of its images. This example uses ICTYPE_VIDEO (which is equivalent to the "VIDC" four-
character code) and the ICDecompressQuery macro to determine if a compressor or decompressor
supports the image format.

for (i=0; ICInfo(fccType, 1, &icinfo); i++)
{
hic = ICOpen (icinfo.fccType, icinfo.fccHandler, ICMODE QUERY) ;
if (hic)
{
// Skip this compressor if it can't handle the format.
if (fccType == ICTYPE VIDEO && pvIn != NULL &&
ICDecompressQuery (hic, pvIn, NULL) != ICERR OK)

ICClose (hic) ;
continue;

}

// Find out the compressor name.
ICGetInfo (hic, &icinfo, sizeof(icinfo));

// Add it to the combo box.

n = ComboBox AddString (hwndC,icinfo.szDescription);
ComboBox SetItembData (hwndC, n, hic);

}

The following example attempts to locate a specific compressor to compress the 8-bit RGB format to an
8-bit RLE format.

BITMAPINFOHEADER bihIn, bihOut;
HIC hIC

// Initialize the bitmap structure.

biSize = bihOut.biSize = sizeof (RITMAPINFOHEADER) ;
bihIn.biWidth = bihIn.biHeight = bihOut.biWidth = bihOut.biHeight = 0;
bihIn.biPlanes = bihOut.biPlanes= 1;
bihIn.biCompression = BI RGB; // standard RGB bitmap for input
bihOut.biCompression = BI RLES; // 8-bit RLE for output format
bihIn.biBitcount = bihOut.biBitCount = 8; // 8 bits-per-pixel format
bihIn.biSizeImage = bihOut.biSizeImage = 0;
bihIn.biXPelsPerMeter = bih.biYPelsPerMeter =

bihOut.biXPelsPerMeter = bihOut.biYPelsPerMeter = 0;
bihIn.biClrUsed = bih.biClrImportant =

bihOut.biClrUsed = bihOut.biClrImportant = 256;
hIC = ICLocate (ICTYPE VIDEO, oL,
(LPBITMAPINFOHEADER) &bihIn,
(LPBITMAPINFOHEADER) &bihOut, ICMODE COMPRESS) ;

Installing Compressors and Decompressors

The following example shows how an application can install a function as a compressor or decompressor
using the ICInstall function.

// This function looks like a DriverProc entry point.

LRESULT MyCodecFunction (DWORD dwID, HDRVR hDriver,
UINT uiMessage, LPARAM lParaml, LPARAM lParam?2);

// This function installs the MyCodecFunction as a compressor.

result = ICInstall (ICTYPE VIDEO, mmioFOURCC('s','a',6 'm','p"),
(LPARAM) (FARPROC) &MyCodecFunction, NULL, ICINSTALL_FUNCTION),‘

Configuring Compressors and Decompressors

The following example uses the ICQueryConfigure macro to demonstrate how to test whether a
compressor supports the configuration dialog box and to display it if it does.

// If the compressor handles a configuration dialog box, display it
// using our application window as the parent window.

if (ICQueryConfigure (hIC)) ICConfigure (hIC, hwndApp);

The following example shows how to obtain the state data using the ICGetState macro.

dwStateSize = ICGetStateSize (hIC); // gets size of buffer required
h = GlobalAlloc (GHND, dwStateSize); // allocates buffer
ICGetState (hIC, (LPVOID)lpData, dwStateSize); // gets the state data

// Store the state data as required.

The following example shows how to restore state data using the ICSetState macro. State data restored
by applications should not contain any changes to the state data obtained from a driver.

ICSetState (hIC, (LPVOID)lpData, dwStateSize); // sets new state data

Obtaining Information About Compressors and Decompressors

The following example uses the ICGetInfo function to obtain information about a compressor or
decompressor.

ICINFO ICInfo;
ICGetInfo (hIC, &ICInfo, sizeof(ICInfo));

The following example uses the ICGetDefaultKeyFrameRate and ICGetDefaultQuality macros to obtain
the default values.

DWORD dwKeyFrameRate, dwQuality;
dwKeyFrameRate = ICGetDefaultKeyFrameRate (hIC) ;
dwQuality = ICGetDefaultQuality (hIC);

The following example uses the ICQueryAbout and ICAbout macros to display an About dialog box for
the compressor or decompressor, if the dialog box exists.

// If the compressor has an About dialog box, display it.

if (ICQueryAbout (hIC)) ICAbout (hIC, hwndApp) ;

Determining a Compressor's Output Format

The following example uses the ICCompressGetFormat size macro to determine the buffer size needed
for the data specifying the compression format, allocates a buffer of the appropriate size using the
GlobalAlloc function, and retrieves the compression format information using the

ICCompressGetFormat macro.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;
// *lpbiIn must be initialized to the input format.

dwFormatSize = ICCompressGetFormatSize (hIC, lpbilIn);
h = GlobalAlloc (GHND, dwFormatSize);

lpbiOut = (LPBITMAPINFOHEADER)GlobalLock (h);
ICCompressGetFormat (hIC, lpbiIn, lpbiOut);

The following example uses the ICCompressQuery macro to determine whether a compressor can
handle the input and output formats.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Both *1pbiIn and *lpbiOut must be initialized to the respective
// formats.

if (ICCompressQuery (hIC, lpbiIn, 1lpbiOut) == ICERR OK)
{

// Format is supported; use the compressor.
}

The following example uses the ICCompressGetSize macro to determine the buffer size, and it allocates
a buffer of that size using GlobalAlloc.

// Find the worst-case buffer size.
dwCompressBufferSize = ICCompressGetSize (hIC, lpbiIn, lpbiOut);

// Allocate a buffer and get lpOutput to point to it.
h = GlobalAlloc (GHND, dwCompressBufferSize);
lpOutput = (LPVOID)Globallock(h);

Compressing Data

The following example compresses image data for use in an AVl file. It assumes the compressor does not
support the VIDCF_CRUNCH or VIDCF_TEMPORAL flags, but it does support VIDCF_QUALITY. The
example uses the ICCompressBegin macro, the ICCompress function, and the ICCompressEnd
macro.

DWORD dwCkID;

DWORD dwCompFlags;

DWORD dwQuality;

LONG 1NumFrames, lFrameNum;

// Assume dwNumFrames is initialized to the total number of frames.
// Assume dwQuality holds the proper quality wvalue (0-10000).

// Assume lpbiOut, 1lpOut, 1lpbiIn, and lpIn are initialized properly.

// If OK to start, compress each frame.
if (ICCompressBegin (hIC, lpbiIn, 1lpbiOut) == ICERR_OK)
{

for (lFrameNum = 0; lFrameNum < l1NumFrames; lFrameNum++)

{
if (ICCompress (hIC, 0, lpbiOut, 1pOut, lpbiIn, lplIn,
&dwCkID, &dwCompFlags, lFrameNum,
0, dwQuality, NULL, NULL) == ICERR_OK)

// Write compressed data to the AVI file.

// Set 1lpIn to the next frame in the sequence.

// Handle compressor error.

}
ICCompressEnd (hIC) ; // terminate compression
}

else

{
// Handle the error identifying the unsupported format.

Determining a Decompressor's Output Format

The following example determines the buffer size needed for the data specifying the decompression

format using the ICDecompressGetFormatSize macro, allocates a buffer of the appropriate size using
the GlobalAlloc function, and retrieves the decompression format information using the

ICDecompressGetFormat macro.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Assume *1lpbilIn points to the input (compressed) format.
dwFormatSize = ICDecompressGetFormatSize (hIC, lpbilIn);

h = GlobalAlloc (GHND, dwFormatSize):;

lpbiOut = (LPBITMAPINFOHEADER)GlobalLock (h);
ICDecompressGetFormat (hIC, lpbiIn, lpbiOut);

The following example shows how an application can use the ICDecompressQuery macro to determine
if a decompressor can handle the input and output formats.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Assume *lpbilIn & *1lpbiOut are initialized to the respective
// formats.

if (ICDecompressQuery (hIC, 1lpbiIn, lpbiOut) == ICERR OK)
{

// Format is supported - use the decompressor.
}

The following code fragment shows how to get the palette information using the
ICDecompressGetPalette macro.

ICDecompressGetPalette (hIC, 1lpbiIn, lpbilOut);

// Move up to the palette.
lpPalette = (LPBYTE) lpbiOut + lpbi->biSize;

Decompressing Data

The following example shows how an application can initialize a decompressor using the

ICDecompressBegin macro, decompress a frame sequence using the ICDecompress function, and
terminate decompression using the ICDecompressEnd macro.

LPBITMAPINFOHEADER lbpiIn, lpbiOut;
LPVOID lpIn, lpout;
LONG 1INumFrames, lFrameNum;

// Assume lpbiIn and lpbiOut are initialized to the input and output
// format and lpIn and lpOut are pointing to the buffers.
if (ICDecompressBegin (hIC, lpbiIn, lpbiOut) == ICERR_OK)
{

for (lFrameNum = 0; lFrameNum < lNumFrames, lFrameNum++)

{

if (ICDecompress (hIC, 0, lpbiIn, lpIn, lpbiOut,
1pOut) == ICERR OK)

// Frame decompressed OK so we can process it as required.

}

else

{

// Handle the decompression error that occurred.

}
ICDecompressEnd (hIC) ;
}

else
{

// Handle the error identifying an unsupported format.

Determining If a Driver Can Handle the Input Format

The following example shows how to check the input format with the ICDrawQuery macro.

// lpbilIn points to BITMAPINFOHEADER structure indicating the input
// format.

if (ICDrawQuery (hIC, 1lpbiIn) == ICERR OK)
{

// Driver recognizes the input format.
}
else
{

// Need a different decompressor.

}

Preparing to Draw Data

The following example shows the initialization sequence that instructs the decompressor to draw full-

screen. It uses the ICDrawBegin and ICDrawEnd macros.

// Assume lpbiIn has the input format, dwRate has the data rate.

if (ICDrawBegin (hIC, ICDRAW QUERY | ICDRAW FULLSCREEN, NULL, NULL,

Nuvnn., 0, 0, 0, 0, 1lpbiIn, 0, 0, 0, 0, dwRate,
dwScale) == ICERR OK)

// Decompressor supports this drawing so set up to draw.

ICDrawBegin (hIC, ICDRAW FULLSCREEN, hPal, NULL, NULL, O, O,
0, lpbiIn, 0, 0, lbpi->biWidth, lpbi->biHeight, dwRate,
dwScale) ;

// Start decompressing and drawing frames.

// Drawing done. Terminate procedure.
ICDrawEnd (hIC) ;

}

else

{

// Use another renderer to draw data on the screen;
// ICDraw does not support the format.

Drawing Data

The following example uses the ICDraw function and the ICDrawStart, ICDrawStop, ICDrawFlush, and
ICDrawEnd macros to draw data on the screen.

DWORD dwNumBuffers;
// Find out how many buffers need filling before drawing starts.

ICGetBuffersWanted (hIC, &dwNumBuffers);
for (dw = 0; dw < dwNumBuffers; dw++)

{
ICDraw (hIC, 0, lpFormat, lpData, cbData, dw); // fill the pipeline

// Point lpFormat and lpData to next format and buffer.

}
ICDrawStart (hIC); // starts the clock

dw = 0;
while (fPlaying)
{
ICDraw (hIC, 0, lpFormat, lpData, chbData, dw); // fill more buffers

// Point lpFormat and lpData to next format and buffer,
// update dw.

ICDrawStop (hIC); // stops drawing and decompressing when done
ICDrawFlush (hIC); // flushes any existing buffers
ICDrawEnd (hIC) ; // ends decompression

Monitoring Compressor and Decompressor Progress

The following example shows how the ICSetStatusProc function is used to inform the compressor or
decompressor of the callback function address:

ICSetStatusProc (compvars.hic, 0, (LPARAM) (UINT) hwndApp,
&PreviewStatusProc) ;

The following example shows the callback function installed by the previous fragment:

LONG CALLBACK export PreviewStatusProc (LPARAM lParam,
UINT message, LONG 1)

switch (message)

{
MSG msg;
case ICSTATUS START:

// Create and display status dialog box.

break;
case ICSTATUS STATUS:
ProSetBarPos ((int) 1); // sets status bar positions

// Watch for abort message
while (PeekMessage (&émsg, NULL, 0, 0, PM REMOVE))
{

if (msg.message == WM KEYDOWN && msg.wParam ==
VK_ESCAPE)
return 1;

if (msg.message == WM SYSCOMMAND &&
(msg.wParam & OxFFFO) == SC CLOSE)

return 1;

TranslateMessage (&msqg) ;
DispatchMessage (&msqg) ;
}
break;
case ICSTATUS END:

// Close and destroy status dialog box.

break;
case ICSTATUS YIELD:

break;
}

return 0;

Video Compression Manager Reference

This section describes the functions, structures, messages, and macros, associated with VCM. These
elements are grouped as follows.

Compressor Installation and Removal

ICInstall
ICLocate
ICOPEN

ICClose
ICRemove
ICOpenFunction

Locating and Opening a Compressor
ICLocate

ICOPEN

ICDecompressOpen

ICDrawOpen
ICINFO

ICClose

Selecting Compressors

ICCompressorChoose

ICCompressorFree
COMPVARS

Configuring Compressors
ICM CONFIGURE

ICM GETSTATE

ICM SETSTATE
ICSendMessage

Compressor Information

ICGetinfo

ICINFO

ICM_ GETDEFAULTKEYFRAMERATE
ICGetDisplayFormat

ICM_GETDEFAULTQUALITY
ICM_ABOUT

Single Image Compression
ICImageCompress

Sequence Compression

ICSegCompressFrame
ICSeqCompressFrameStart
ICSeqCompressFrameEnd

COMPVARS
ICCompressorChoose

Image Data Compression

ICCOMPRESS
ICM_COMPRESS_GET_FORMAT

ICM_COMPRESS_QUERY
ICM_COMPRESS_GET_SIZE

ICM_COMPRESS_BEGIN
ICM_COMPRESS_END

Compressor Monitoring
ICSETSTATUSPROC

Decompressing Single Images
ICImageDecompress

Decompressing Image Data
ICDECOMPRESSEX
ICDecompressExBegin
ICM_DECOMPRESSEX END
ICM_DECOMPRESS GET FORMAT
ICM _DECOMPRESS GET PALETTE
ICDecompressExQuery
ICDECOMPRESS
ICM_DECOMPRESS BEGIN
ICM_DECOMPRESS END

ICM_DECOMPRESS_QUERY

Using Hardware-Drawing Capabilities

ICGetinfo
ICDRAWBEGIN
ICM_DRAW END
ICM DRAW FLUSH

ICM_DRAW_QUERY
ICDrawSuggestFormat
ICM DRAW START

ICM_DRAW_STOP
ICM_GETBUFFERSWANTED
ICM_DRAW_REALIZE

ICDrawOpen

ICDRAW

ICM DRAW GETTIME

ICM DRAW SETTIME

ICM DRAW WINDOW

ICM DRAW REALIZE

ICM DRAW CHANGEPALETTE

ICM_DRAW_RENDERBUFFER

Video Compression Functions

The following functions are used with video compression.

ICClose

ICCompress
ICCompressorChoose
ICCompressorFree
ICDecompress
ICDecompressEx
ICDecompressExBegin
ICDecompressExQuery
ICDraw

ICDrawBegin
ICDrawSuggestFormat
ICGetDisplayFormat
ICGetinfo
ICImageCompress

ICImageDecompress
ICInfo

ICInstall

ICLocate

ICOpen

ICOpenFunction
ICRemove
ICSendMessage
ICSegCompressFrame
ICSeqCompressFrameEnd

ICSeqCompressFrameStart
ICSetStatusProc

MyStatusProc

Video Compression Structures

The following structures are used with video compression.

COMPVARS
ICCOMPRESS
ICCOMPRESSFRAMES
ICDECOMPRESS
ICDECOMPRESSEX
ICDRAW
ICDRAWBEGIN
ICDRAWSUGGEST
ICINFO

ICOPEN
ICSETSTATUSPROC

Video Compression Messages

The following messages are used with video compression.

ICM_ABOUT

ICM_COMPRESS
ICM_COMPRESS_BEGIN
ICM_COMPRESS_END
ICM_COMPRESS_FRAMES_INFO
ICM_COMPRESS_GET_FORMAT
ICM_COMPRESS_GET_SIZE
ICM_COMPRESS_QUERY
ICM_CONFIGURE
ICM_DECOMPRESS
ICM_DECOMPRESS_BEGIN
ICM_DECOMPRESS_END
ICM_DECOMPRESS_GET_FORMAT
ICM_DECOMPRESS_GET_PALETTE
ICM_DECOMPRESS_QUERY
ICM_DECOMPRESS_SET_PALETTE
ICM_DECOMPRESSEX
ICM_DECOMPRESSEX_BEGIN
ICM_DECOMPRESSEX_END
ICM_DECOMPRESSEX_QUERY
ICM_DRAW

ICM_DRAW_BEGIN

ICM_DRAW _CHANGEPALETTE
ICM_DRAW_END

ICM_DRAW _FLUSH

ICM_DRAW GET PALETTE
ICM_DRAW _GETTIME
ICM_DRAW_QUERY
ICM_DRAW_REALIZE
ICM_DRAW_RENDERBUFFER
ICM_DRAW_SETTIME
ICM_DRAW_START
ICM_DRAW_START PLAY
ICM_DRAW_STOP

ICM_DRAW _STOP_PLAY
ICM_DRAW_SUGGESTFORMAT
ICM_DRAW_WINDOW

ICM_GET
ICM_GETBUFFERSWANTED
ICM_GETDEFAULTKEYFRAMERATE
ICM_GETDEFAULTQUALITY
ICM_GETINFO
ICM_GETQUALITY
ICM_GETSTATE
ICM_SET_STATUS_PROC

ICM_SETQUALITY
ICM_SETSTATE

Video Compression Macros

The following macros are used with video compression.

ICAbout

ICCompressBegin
ICCompressEnd
ICCompressGetFormat
ICCompressGetFormatSize
ICCompressGetSize
ICCompressQuery
ICConfigure
ICDecompressBegin

ICDecompressEnd
ICDecompressExEnd

ICDecompressGetFormat
ICDecompressGetFormatSize
ICDecompressGetPalette
ICDecompressOpen
ICDecompressQuery
ICDecompressSetPalette

ICDrawChangePalette
ICDrawEnd

ICDrawFlush
ICDrawGetTime
ICDrawOpen
ICDrawQuery

ICDrawRealize
ICDrawRenderBuffer
ICDrawSetTime
ICDrawsStart
ICDrawsStartPlay
ICDrawStop

ICDrawStopPlay
ICDrawWindow

ICGetBuffersWanted
ICGetDefaultKeyFrameRate

ICGetDefaultQuality
ICGetState

ICGetStateSize
ICQueryAbout

ICQueryConfigure
ICSetState

Video Capture

You can easily incorporate video capture capabilities into your application by using the AVICap window
class. AVICap provides applications with a simple, message-based interface to access video and
waveform-audio acquisition hardware and to control the process of streaming video capture to disk.

About Video Capture

AVICap supports streaming video capture and single-frame capture in real-time. In addition, AVICap
provides control of video sources that are Media Control Interface (MCI) devices so the user can control
(through an application) the start and stop positions of a video source, and augment the capture operation
to include step frame capture.

The windows you create by using the AVICap window class can perform the following tasks:

Capture audio and video streams to an audo-video interleaved (AVI) file.

Connect and disconnect video and audio input devices dynamically.

View a live incoming video signal by using the overlay or preview methods.

Specify a file to use when capturing and copy the contents of the capture file to another file.
Set the capture rate.

Display dialog boxes that control the video source and format.

Create, save, and load palettes.

Copy images and palettes to the clipboard.

Capture and save a single image as a device-independent bitmap (DIB).

Video Capture: A Minimal Approach

Video capture digitizes a stream of video and audio data, and stores it on a hard disk or some other type
of persistent storage device. This section describes how to add a simple form of video capture to an
application using three statements of code. It also describes how to end or abort a capture session by
sending messages to the capture window.

An AVICap capture window handles the details of streaming audio and video capture to AVI files. This
frees your application from involvement in the AVI file format, video and audio buffer management, and
the low-level access of video and audio device drivers. AVICap provides a flexible interface for
applications. You can add video capture to your application, using only the following lines of code:

hWndC = capCreateCaptureWindow ("My Own Capture Window",
WS_CHILD | WS VISIBLE , 0, 0, 160, 120, hwndParent, nID);

SendMessage (hWndC, WM _CAP DRIVER CONNECT, 0 /* wIndex */, OL);
SendMessage (hWndC, WM CAP SEQUENCE, 0, OL);
A macro interface is also available that provides an alternative to using the SendMessage function and

improves the readability of an application. The following example uses the macro interface to add video
capture to an application.

hWndC = capCreateCaptureWindow ("My Own Capture Window",
WS_CHILD | WS VISIBLE , 0, 0, 160, 120, hwndParent, nID);

capDriverConnect (hWndC, O0);
capCaptureSequence (hWndC) ;
After your application creates a capture window of the AVICap window class and connects it to a video

driver, the capture window is ready to capture data. At this point, your application can simply send the
WM_CAP_SEQUENCE message (or the capCaptureSequence macro) to begin capturing.

Using default settings, WM_CAP_SEQUENCE initiates the capture of video and audio input to a file
named CAPTURE.AVI. Capture continues until one of the following events occurs:

¢ The user presses the ESC key or a mouse button.
¢ Your application stops or aborts capture operation.
¢ The disk becomes full.

In an application, you can stop streaming captured data to a file by sending the WM_CAP_STOP (or the
capCaptureStop macro) message to a capture window. You can also abort the capture operation by
sending the WM_CAP_ABORT message (or the capCaptureAbort macro) to a capture window.

Basic Capture Options

By modifying one or more of the capture parameters defined in the CAPTUREPARMS structure, you can
perform the following tasks:

¢ Change the frame capture rate.
e Specify keyboard or mouse control for ending a capture session.
e Specify a duration for a capture session.

Capture Rate

The capture rate is the number of frames that are captured each second of a capture session. You can
retrieve the current capture rate by using the WM_CAP_GET_SEQUENCE_SETUP message (or the
capCaptureGetSetup macro). The current capture rate is stored in the dwRequestMicroSecPerFrame
member of the CAPTUREPARMS structure. You can set the capture rate by specifying the number of
microseconds between successive frames as the value of this member, then sending the updated
CAPTUREPARMS structure to the capture window by using the WM_CAP_SET SEQUENCE SETUP
message (or the capCaptureSetSetup macro). The default value of dwRequestMicroSecPerFrame is
66667, which corresponds to 15 frames per second.

Keys Ending Capture

You can allow the user to abort a capture session by pressing a key or keystroke combination from the
keyboard, or by pressing the right or left mouse button. If the user aborts a real-time capture session, the
contents of the capture file are discarded. If the user aborts a step-frame capture session, the contents of
the capture file up to the point of aborting the capture are saved.

You can retrieve the settings for aborting a capture session by using the
WM_CAP GET SEQUENCE_ SETUP message (or the capCaptureGetSetup macro). The current
keystroke setting is stored in the vKeyAbort member of the CAPTUREPARMS structure; the current
mouse settings are stored in the fAbortLeftMouse and fAbortRightMouse members. You can set a new
key or keystroke combination by specifying the keycode or keycode combination (as in a CTRL or SHIFT
key combination) as the value of vKeyAbort, or set the left or right mouse button as the abort key by
specifying the fAbortLeftMouse or fAbortRightMouse member. After you set these members, send the
updated CAPTUREPARMS structure to the capture window by using the

WM_CAP_SET SEQUENCE SETUP message (or the capCaptureSetSetup macro). The default value
of vKeyAbort is VK_ESCAPE. You must call the RegisterHotKey function before specifying a keystroke
that can abort a capture session. The default values of fAbortLeftMouse and fAbortRightMouse are
TRUE.

Time Limit
You can limit the duration of a capture operation by using the fLimitEnabled and wTimeLimit members

of the CAPTUREPARMS structure. The fLimitEnabled member indicates whether the capture operation
is to be timed, while wTimeLimit specifies the maximum duration of the capture operation.

You can retrieve the values for fLimitEnabled and wTimeLimit by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). You can enable a
timer for the capture operation by specifying TRUE as the value of fLimitEnabled, or you can set the
duration of the capture operation by specifying a value, in seconds, for wTimeLimit. After you set these
members, send the updated CAPTUREPARMS structure to the capture window by using the
WM_CAP_SET _SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default value
of fLimitEnabled is FALSE.

Capture Windows

Capture windows are conceptually similar to standard controls (such as buttons, list boxes, or scroll bars).
Typically, capture windows use the WS_CHILD and WS_VISIBLE window styles.

Creating an AVICap Capture Window

You can create a capture window of the AVICap window class by using the capCreateCaptureWindow
function. This function returns a window handle that identifies the capture window and is used by an
application to send subsequent messages to the window.

You can create one or more capture windows in an application and connect each capture window to a
different capture device.

Connecting a Capture Window to a Capture Driver

You can dynamically connect or disconnect a capture window to a capture driver. You can connect or
associate a capture window with a capture driver by using the WM_CAP_DRIVER_CONNECT message
(or the capDriverConnect macro). After a capture window and capture driver are connected, you can
send device-specific messages to the capture driver associated with a capture window.

If you have more than one capture device installed on a system, you can connect a capture window to a
particular video capture device driver by specifying an integer for the wParam parameter of the
WM_CAP_DRIVER_CONNECT message. The integer is an index that identifies a video capture driver
listed in the registry or in the [drivers] section of the SYSTEM.INI file. Use zero for the first index entry.

You can retrieve the name and version of an installed capture driver by using the the
capGetDriverDescription function. Your application can use this function to enumerate the installed
capture devices and drivers, so the user can select a capture device to connect to a capture window.

You can retrieve the name of the capture device driver connected to a capture window by using the
WM_CAP _DRIVER_GET_NAME message (or the capDriverGetName macro). To retrieve the version of
an installed capture driver, use the WM_CAP_DRIVER_GET_VERSION message (or the

capDriverGetVersion macro).

You can disconnect a capture window from a capture driver by using the
WM_CAP_DRIVER _DISCONNECT message (or the capDriverDisconnect macro).

When an capture window is destroyed, any connected video capture device drivers are automatically
disconnected.

Parent-Child Window Interaction

Some system-level messages, such as WM_PALETTECHANGED and WM_QUERYNEWPALETTE, are
sent only to top-level and overlapped windows. If a capture window is a child window, its parent must
forward these messages.

Similarly, if the parent window changes size, it might need to send notification messages to the capture
window. Conversely, if the dimensions of the captured video change, the capture window might need to
send notification messages to the parent window. The simplest way to manage this is to always keep the
capture window dimensions equal to the size of the captured video stream, notifying the parent whenever
these dimensions change.

Capture Window Status

You can retrieve the current status of a capture window by using the WM_CAP_GET_ STATUS message
(or the capGetStatus macro). This message retrieves a copy of the CAPSTATUS structure with the
current values of its members. The CAPSTATUS structure contains information regarding the dimensions
of the image, scroll position, and whether overlay or preview of the image is enabled. Because the
information represented in CAPSTATUS is dynamic, your application should refresh the contents of the
structure whenever the size or format of the captured video stream might have changed (such as after
displaying the video format of the capture driver).

Changing the dimensions of the capture window has no effect on the dimensions of the actual captured
video stream. The format dialog box displayed by the video capture device driver controls the dimensions
of the captured video stream.

Capture and Audio Drivers

A capture driver and the underlying hardware can dictate several aspects of video capture, including
acceptable video sources, display options, formats, and compression options. An audio driver specifies
the audio format and an optional compression option used with captured audio data.

Capture Driver Capabilities

You can retrieve the hardware capabilities of the currently connected capture driver by using the

WM_CAP _DRIVER_GET_CAPS message (or the capDriverGetCaps macro). This message returns the
capabilities of the capture driver and underlying hardware in the CAPDRIVERCAPS structure.

Video Dialog Boxes

Each capture driver can provide up to four dialog boxes to control aspects of the video digitization and
capture process, and to define compression attributes used in reducing the size of the video data. The
contents of these dialog boxes are defined by the video capture driver.

The Video Source dialog box controls the selection of video input channels and parameters affecting the
video image being digitized in the frame buffer. This dialog box enumerates the types of signals that
connect the video source to the capture card (typically SVHS and composite inputs), and provides
controls to change hue, contrast, or saturation. If the dialog box is supported by a video capture driver,
you can display and update it by using the WM_CAP_DLG VIDEOSOURCE message (or the

capDlgVideoSource macro).

The Video Format dialog box controls selection of the digitized video frame dimensions and image-depth,
and compression options of the captured video. If the dialog box is supported by a video capture driver,
you can display and update it by using the WM _CAP DLG VIDEOFORMAT message (or the

capDIgVideoFormat macro).

The Video Display dialog box controls the appearance of the video on the monitor during capture. The
controls in this dialog box have no effect on the digitized video data, but they might affect the presentation
of the digitized signal. For example, capture devices that support overlay might allow altering hue and
saturation, key color, or alignment of the overlay. If the dialog box is supported by a video capture driver,
you can display and update it by using the WM_CAP DLG VIDEODISPLAY message (or the

capDlgVideoDisplay macro).

The Video Compression dialog box controls the post-capture video compression attributes. If the dialog
box is supported by a video capture driver, you can display and update it by using the
WM _CAP DLG VIDEOCOMPRESSION message (or the capDIgVideoCompression macro).

Preview and Overlay Modes

A capture driver can implement two methods for viewing an incoming video stream: preview mode and
overlay mode. If a capture driver implements both methods, the user can choose which method to use.

Preview mode transfers digitized frames from the capture hardware to system memory and then displays
the digitized frames in the capture window by using graphics device interface (GDI) functions.
Applications might decrease the preview rate when the parent window loses focus, and increase the
preview rate when the parent window gains focus. This action improves general system responsiveness
because the preview operation is processor intensive.

There are three messages to control the preview operation.

e Use the WM _CAP_SET PREVIEW message to enable or disable preview mode by sending the (or
the capPreview macro) to a capture window.

e Use the WM CAP_SET PREVIEWRATE message (or the capPreviewRate macro) to set the rate at
which frames are displayed in preview mode

e Use the WM _CAP_SET SCALE message (or the capPreviewScale macro) to enable or disable
scaling of the preview video.

When preview and scaling are both enabled, the captured video frame is stretched to the dimensions of
the capture window. Enabling preview mode automatically disables overlay mode.

Overlay mode is a hardware function that displays the contents of the capture buffer on the monitor
without using CPU resources. You can enable and disable overlay mode by sending the
WM_CAP_SET_OVERLAY message (or the capOverlay macro) to a capture window. Enabling overlay
mode automatically disables preview mode.

You can also set the scroll position of the video frame within the client area of the capture window for
preview mode or overlay mode by sending the WM_CAP_SET_SCROLL message (or the
capSetScrollPos macro) to a capture window.

Video Format

You can retrieve the structure that specifies the video format or the size of that structure by sending the
WM_CAP_GET VIDEOFORMAT message (or the capGetVideoFormat and capGetVideoFormatSize
macros) to a capture window. You can set the format of captured video data by sending the
WM_CAP_SET_VIDEOFORMAT message (or the capSetVideoFormat macro) to a capture window.

Video Capture Settings

The CAPTUREPARMS structure contains the control parameters for streaming video capture. This
structure controls several aspects of the capture process, and allows you to perform the following tasks:

¢ Specify the frame rate.

¢ Specify the number of allocated video buffers.

¢ Disable and enable audio capture.

e Specify the time interval for the capture.

¢ Specify whether an MCI device (VCR or videodisc) is used during capture.
¢ Specify keyboard or mouse control for ending streaming.

¢ Specify the type of video averaging applied during capture.

You can retrieve the current capture settings within the CAPTUREPARMS structure by sending the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro) to a capture
window. You can set one or more current capture settings by updating the appropriate members of the
CAPTUREPARMS structure and then sending the WM_CAP_SET SEQUENCE_SETUP message (or
the capCaptureSetSetup macro) and CAPTUREPARMS to a capture window.

Audio Format

You can retrieve the current capture format for audio data or the size of the audio format structure by
sending the WM_CAP_GET_AUDIOFORMAT message (or the capGetAudioFormat and
capGetAudioFormatSize macros) to a capture window. The default audio capture format is mono, 8-bit,
11 kHz PCM (Pulse Code Modulation). When you retrieve the format by using
WM_CAP_GET_AUDIOFORMAT, always use the WAVEFORMATEX structure.

You can set the capture format for audio data by sending the WM_CAP_SET_AUDIOFORMAT message
(or the capSetAudioFormat macro) to a capture window. When setting the audio format, you can pass a
pointer to a WAVEFORMAT, WAVEFORMATEX, or PCMWAVEFORMAT structure, depending on the
specified audio format.

Capture File and Buffers

This section describes tips and options for using the capture file and for specifying buffers for the capture
operation.

¢ Capture Filename

e Saving Captured Data to a New File

* Disk Space Preallocation for the Capture File
¢ |ndex Size

¢ Video and Audio Chunk Granularity

¢ Video Buffers

¢ Audio Buffers

Capture Filename

AVICap, by default, routes video and audio stream data from a capture window to a file named
CAPTURE.AVI in the root directory of the current drive. You can specify an alternate filename by sending
the WM_CAP_FILE_SET CAPTURE_FILE message (or the capFileSetCaptureFile macro) to a capture
window. This message specifies the filename; it does not create, allocate, or open the file. You can
retrieve the current capture filename by sending the WM _CAP_FILE GET CAPTURE FILE message (or

the capFileGetCaptureFile macro) to a capture window.

Saving Captured Data to a New File

If the user wants to save captured data, the application should save the contents of the capture file to
another file by using the WM_CAP_FILE_SAVEAS message (or the capFileSaveAs macro). This
message does not change the name or contents of the capture file. Your application must specify a name
for the new file because the capture file retains its original filename.

Typically, a capture file is preallocated for the largest capture segment anticipated, and only a portion of it
might be used to capture data. This message copies only the portion of the capture file containing the
capture data.

Disk Space Preallocation for the Capture File

Preallocating disk space for the capture file builds a file of a specified size on the disk before the start of a
capture operation. Preallocating a capture file reduces the processing required while capture is in
progress and results in fewer dropped frames. You can preallocate a capture file by using the
WM_CAP_FILE_ALLOCATE message (or the capFileAlloc macro).

Typically, your application should preallocate enough disk space to contain the largest capture file
anticipated. Preallocating disk space does not restrict the size of the captured file. The file size is
automatically enlarged if the captured data exceeds the allocated space. Subsequent write operations to
the capture file reuse the portions of disk space allocated for the file, preserving the size and
fragmentation of the file.

You can also improve capture performance by defragmenting the capture file. To defragment the file, use
a defragmentation utility such as Disk Defragmenter. If you use a defragmented capture file and later
enlarge it, you should defragment the enlarged file. Enlarging a defragmented capture file can fragment
the expanded portion of the file and reduce performance in the capture operation.

You might also improve performance by using an uncompressed disk for video capture. Compressing
data during capture can limit capture throughput to the disk.

An application can reserve a permanent capture file to eliminate the time required to preallocate and
defragment a file each time it is started. Because a capture file can require considerable disk space, and
preallocating a capture file removes all data from an existing capture file, an application should let the
user decide if the file is permanent or temporary.

Index Size

Each AVI file uses an index of a specified size to locate video and audio data chunks within the file. An
entry in the index locates one video frame or waveform-audio buffer. Consequently, the value of the index
size indirectly sets the upper limit on the number of frames that can be captured in a file.

You can retrieve the current index size by using the WM _CAP_GET SEQUENCE SETUP message (or
the capCaptureGetSetup macro). The current index size is stored in the dwindexSize member of the
CAPTUREPARMS structure. You can specify a new index size as the value of dwindexSize and then
send the updated CAPTUREPARMS structure to the capture window by using the

WM_CAP_SET _SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default index
size is 34,952 entries (allowing 32K frames and a proportional number of audio buffers).

Video and Audio Chunk Granularity

The chunk granularity is a logical block size for an AVl file that is used for writing and retrieving audio and
video data chunks. When writing audio and video chunks to disk, AVICap adds filler chunks (RIFF "JUNK"
chunks) as necessary to fill each logical block of data.

You can retrieve the current chunk granularity setting by using the WM _CAP_GET SEQUENCE_SETUP
message (or the capCaptureGetSetup macro). The current chunk granularity is stored in the
wChunkGranularity member of the CAPTUREPARMS structure. You can specify a new chunk
granularity as the value of wChunkGranularity and then send the updated CAPTUREPARMS structure
to the capture window by using the WM_CAP_SET_SEQUENCE_SETUP message (or the
capCaptureSetSetup macro). You can also specify zero for this member to set the chunk granularity to
the sector size of the disk.

Video Buffers

The buffers used with video capture reside in the memory heap. The number of buffers used in a capture
operation can vary and depend on the value of the wNumVideoRequested member of the
CAPTUREPARMS structure and available system memory.

You can retrieve the current value of requested video buffers by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The current
requested number of video buffers is stored in the wNumVideoRequested member of the
CAPTUREPARNMS structure. You can request the placement and number of buffers by updating this
member, and then sending the updated CAPTUREPARMS structure to the capture window by using the
WM_CAP_SET _SEQUENCE_SETUP message (or the capCaptureSetSetup macro).

Audio Buffers

You can control the audio portion of a capture operation in three ways:

¢ Include or exclude audio from the capture operation.
¢ Request a specific number of audio buffers.
¢ Request that audio buffers be a specific size.

You can retrieve the settings for audio buffers by using the WM_CAP GET SEQUENCE _SETUP
message (or the capCaptureGetSetup macro). The fCaptureAudio member of the CAPTUREPARMS
structure specifies whether audio is included or excluded from the capture operation. The current
requested number of audio buffers is stored in the wNumAudioRequested member, and the current
audio buffer size is stored in the dwAudioBufferSize member. You can specify whether to include audio
capture, specify the size and number of audio buffers by updating these members, and send the updated
CAPTUREPARMS structure to the capture window by using the WM_CAP_SET SEQUENCE SETUP
message (or the capCaptureSetSetup macro).

By default, audio is included in the capture operation, and four audio buffers are allocated. The default
value of fCaptureAudio is TRUE. The default buffer size (the value of dwAudioBufferSize) can contain
0.5 seconds of audio data or 10K, whichever is greater.

Capture Variations

In addition to streaming capture based on a constant time interval, AVICap supports the following types of
capture:

* Manual frame capture (programmable control frames that are captured)

Still-image capture
Capture without using disk storage
Streaming capture from an MCI device (real-time and step-frame)

Manual Frame Capture

If you want to individually specify the frames to capture in a video stream, you can control the sequence
by using the WM_CAP_SINGLE_FRAME_OPEN, WM_CAP_SINGLE_FRAME, and
WM_CAP_SINGLE_FRAME_CLOSE messages (or the capCaptureSingleFrameOpen,
capCaptureSingleFrame, and capCaptureSingleFrameClose macros). Typically, these messages are
used to create animation by appending individual frames to the capture file.
WM_CAP_SINGLE_FRAME_OPEN opens a file for a manually driven capture operation.
WM_CAP_SINGLE_FRAME captures an individual frame and appends it to the capture file.
WM_CAP_SINGLE_FRAME_CLOSE closes the file used for manual frame capture.

Note This capture method does not support simultaneous audio capture with video capture.

Still-image Capture

If you want to capture a single frame as a still image, you can use the

WM_CAP_GRAB _FRAME_NOSTOP or WM_CAP_GRAB_FRAME message (or the
capGrabFrameNoStop or capGrabFrame macro) to capture the digitized image in an internal frame
buffer. You can freeze the display on the captured image by using WM_CAP_GRAB_FRAME. Otherwise,
use WM_CAP_GRAB_FRAME_NOSTOP.

Once captured, you can copy the image for use by other applications. You can copy an image from the
frame buffer to the clipboard by using the WM_CAP_EDIT_COPY message (or the capEditCopy macro).
You can also copy the image from the frame buffer to a device-independent bitmap (DIB) by using the
WM_CAP_FILE_SAVEDIB message (or the capFileSaveDIB macro).

Your application can also use the two single-frame capture messages to edit a sequence frame by frame,
or to create a time-lapse photography sequence.

Capture Without Using Disk Storage

You can use capture services without writing the data to a disk file by using the
WM_CAP_SEQUENCE_NOFILE message (or the capCaptureSequenceNoFile macro). This message
is useful only in conjunction with callback functions that allow your application to use the video and audio
data directly. For example, videoconferencing applications might use this message to obtain streaming
video frames. The callback functions would transfer the captured images to the remote computer.

Streaming Capture from an MCI Device

MCI devices augment the capture operation in real-time capture and step-frame capture. You can specify
the MCI device, such as a videodisc or video-cassette recorder (VCR), acting as the video source for your
capture operation by using the WM_CAP_SET_MCI_DEVICE message (or the capSetMCIDeviceName
macro) and specifying the name of the device. You can also retrieve the device name currently set by
using the WM _CAP_GET MCI DEVICE message (or the capGetMCIDeviceName macro).

In real-time capture, the capture window synchronizes the capture operation and compensates for delays
associated with positioning the MCI video source and initializing the resources (such as capture buffers)
required for capturing data. The capture window expects a valid MCI video device to be installed in the
system for capturing data this way.

Specifications for controlling an MCI device are stored in the members of the CAPTUREPARMS
structure. MCl-compatible video sources include VCRs and laserdiscs. If the fMCIControl member of this
structure is set to TRUE, the capture window coordinates MCI operation. The capture window uses the
parameters specified in the dwMCIStartTime and dwMCIStopTime members to obtain the starting and
stopping positions, in milliseconds, of the sequence. If the value of fMCIControl is FALSE, the video
source is not treated as an MCI device and the contents of dwMCIStartTime and dwMCIStopTime are
ignored.

You can use Media Player to quickly verify that an MCI video device is properly connected to the system.
Playing a device with Media Player verifies that the MCI configuration for the device is correct. If an image
appears on the video display, the video source is connected properly to the capture hardware.

In step-frame capture, the capture window synchronizes the capture operation and compensates for the
delays associated with positioning the MCI video source and initializing the resources required for
capturing data. In addition, the capture window ensures that no frames are dropped; it steps through the
video frames individually, ensuring that the frame is captured and stored before capturing the next frame
in the video stream.

Specifications for controlling step-frame capture are stored in the members of the CAPTUREPARMS
structure. Step-frame capture uses the following members in addition to the members used for real-time
capture: fStepMCIDevice, fStepCaptureAt2x, and wStepCaptureAverageFrames. If the
fStepMCIDevice member is set to TRUE, the capture window coordinates step-frame capture. The
capture window uses the parameters specified in the dwMCIStartTime and dwMCIStopTime members
for the starting and stopping positions, in milliseconds, of the sequence. The capture window uses
fStepCaptureAt2x to determine if the capture hardware should capture video frames at twice the normal
resolution and uses wStepCaptureAverageFrames to specify the number of times each frame in the
capture operation is sampled.

If fStepMCIDevice is FALSE, real-time capture is used instead of step-frame capture and the contents of
fStepCaptureAt2x, and wStepCaptureAverageFrames are ignored.

If a step-frame capture is specified and fStepCaptureAt2x is set to TRUE, the capture hardware captures
at twice the specified resolution. (The resolutions of both the height and width are doubled.) The software
interpolates the pixels in the higher resolution image to produce the image at the specified resolution. This
form of averaging can improve the edge definition of images in a frame. You can enable this option if the
hardware does not support hardware-based decimation and you are capturing in the RGB format.

Note If your hardware supports hardware-based decimation, it can capture samples at a higher rate
than specified and use these additional samples to obtain color definitions that are more consistent
with the original image. The additional samples are discarded after they are used, and the hardware
passes samples to the capture driver at the specified rate.

If a step-frame capture is specified, the wStepCaptureAverageFrames member specifies the number of
times a frame is sampled when creating a frame based on the average sample. This averaging technique
reduces the random digitization noise appearing in a frame. A typical value for the number of averages is
5.

For more information about MCI, see MCI.

Advanced Capture Options

This section describes other options you can include in a capture operation.

* Measuring Video Quality

e User-Initiated Capture

¢ Working with Palettes

¢ Embedding Information Chunks in an AVI File
¢ User Data Messages

Measuring Video Quality

One way to measure video quality is to limit the number of captured frames dropped during the capture
operation. When streaming capture has finished, the quality value is compared with the ratio of dropped
frames to total frames. If the percentage of dropped frames is greater than the value of the
wPercentDropForError member of the CAPTUREPARMS structure, AVICap sends an error message to
the error callback function if it is installed.

You can retrieve the current limit of dropped frames (expressed as a percentage) by using the
WM_CAP GET SEQUENCE_SETUP message (or the capCaptureGetSetup macro). You can set a
new limit by specifying a percentage as the value of the wPercentDropForError member of the
CAPTUREPARMS structure, and then sending the updated structure to the capture window by using the
WM_CAP_SET_SEQUENCE_SETUP message (or the capCaptureSetSetup macro). The default value
of wPercentDropForError is 10 percent.

User-Initiated Capture

You can retrieve the current value of the user-initiated capture flag by using the
WM_CAP_GET_SEQUENCE_SETUP message (or the capCaptureGetSetup macro). The value of the
flag is stored in the fMakeUserHitOKToCapture member of the CAPTUREPARMS structure. You can
provide the user with precise control over when to start a capture session by setting this member to
TRUE. AVICap displays a dialog box after allocating all video and audio buffers for a capture session.
This lets the user eliminate capture delays because of software initialization. If your application uses a
small number of video buffers, this dialog box is probably unnecessary. The default value is FALSE.

Working with Palettes

Initially, if the video capture format requires a palette, the capture window uses the palette supplied by the
capture driver. This palette might consist of gray-scale values for black-and-white reproduction, or a broad
selection of color values. You can retrieve an existing palette to replace the default palette by using the
WM_CAP_PAL PASTE or WM_CAP_PAL_OPEN message (or the capPalettePaste or capPaletteOpen
macro). Alternatively, you can create a custom palette to replace the default palette by using the

WM _CAP PAL AUTOCREATE or WM_CAP_PAL MANUALCREATE message (or the capPaletteAuto
or capPaletteManual macro). After you replace the default palette, the capture window and driver use the
replacement palette until you create or open another palette.

The WM_CAP_PAL_AUTOCREATE or WM_CAP_PAL_MANUALCREATE message creates an
optimized palette based on the current video input. This custom palette gives a video sequence the best
color fidelity because it is based on colors that exist in the sequence. The capture window creates a
three-dimensional histogram of the colors it samples. It reduces the number of colors by examining the
absolute error between adjacent colors and consolidating those with the smallest error value.

When sending WM_CAP_PAL_AUTOCREATE, you must specify the number of frames for AVICap to
sample, and specify the size of the color palette. When specifying the number of frames, include enough
frames to ensure that all colors in the sequence are sampled.

You can sample the current frame by using WM_CAP_PAL_MANUALCREATE. By using this message
with several manually selected frames, you can create a palette that contains the colors you want to
appear in the palette.

A palette can contain up to 256 colors. If you merge palettes or if the video sequence is to be displayed
simultaneously with other video or images, you should use a smaller color selection so that colors from
each image or video clip can coexist.

You save a new palette by using the WM_CAP_PAL_SAVE message (or the capPaletteSave macro) and
later retrieve it by using the WM_CAP_PAL OPEN message. You can save a palette for post-processing
of the palette or for use in another application.

You can paste a palette from the clipboard into the capture window by using the WM_CAP _PAL PASTE
message. The capture window passes the palette to the capture driver. Other applications can copy
palettes to the clipboard. You can also copy a palette to the clipboard by using the

WM_CAP_EDIT _COPY message (or the capEditCopy macro). This message copies the video frame
buffer, including the palette, onto the clipboard.

Embedding Information Chunks in an AVI File

You can insert information chunks, such as text or custom data, in an AVI file by using the
WM_CAP_FILE_SET_INFOCHUNK message (or the capFileSetinfoChunk macro). You can also use
this message to clear information chunks from an AVI file.

User Data Messages

You can associate data with a capture window by using the WM_CAP_GET USER_DATA and
WM_CAP_SET _USER_DATA messages (or the capGetUserData and capSetUserData macros). You
can retrieve a LONG data value by using the WM_CAP_GET_USER_DATA message and set a LONG
data value by using the WM_CAP_SET_USER_DATA message.

AVICap Callback Functions

Your application can register callback functions with a capture window to have it notify your application
when the status changes, when errors occur, when video frame and audio buffers become available, and
to yield during streaming capture. The following messages set the callback function.

Message Description
WM_CAP_SET_CALLBACK_CAPCONT Specifies the callback function in
ROL the application called to give

precise control over capture
start and end. You can also use
the
capSetCallbackOnCapControl
macro to send this message.
WM_CAP_SET CALLBACK ERROR Specifies the callback function in
the application called when an
error occurs. You can also use
the capSetCallbackOnError
macro to send this message.
WM_CAP_SET CALLBACK FRAME Specifies the callback function in
the application called when
preview frames are captured.
You can also use the
capSetCallbackOnFrame
macro to send this message.
WM_CAP_SET CALLBACK STATUS Specifies the callback function in
the application called when the
status changes. You can also
use the
capSetCallbackOnStatus
macro to send this message.
WM_CAP_SET_CALLBACK VIDEOSTR Specifies the callback function in
EAM the application called during
streaming capture when a new
video buffer becomes available.
You can also use the
capSetCallbackOnVideoStrea
m macro to send this message.
WM_CAP_SET_CALLBACK _WAVESTR Specifies the callback function in
EAM the application called during
streaming capture when a new
audio buffer becomes available.
You can also use the
capSetCallbackOnWaveStrea
m macro to send this message.
WM_CAP_SET_CALLBACK_YIELD Specifies the callback function in
the application called when
yielding during streaming
capture. You can also use the

capSetCallbackOnYield macro
to send this message.

The following topics describe the different callback functions, the notifications sent to the functions, and

their uses.

Precise Capture Control

A capture window can provide the capture-control callback function with precise control over the moments
that streaming capture begin and end. The first message sent from the capture driver to the callback
procedure sets the nState parameter to CONTROLCALLBACK PREROLL after allocating all buffers and
all other capture preparations are complete. This message gives the application the ability to preroll the
video sources. (The callback function specifies nState as its second parameter.) The callback function
then returns at the exact moment recording is to begin. A return value of TRUE from the callback function
continues capture. A return value of FALSE aborts capture. Once capture begins, the callback function is
called frequently with nState set to CONTROLCALLBACK_CAPTURING to allow the application to end
capture by returning false.

Error

A capture window uses error notification messages to notify your application of AVICap errors, such as
running out of disk space, attempting to write to a read-only file, failing to access hardware, or dropping
too many frames. The content of an error notification includes a message identifier and a formatted text
string ready for display. Your application can use the message identifier to filter the notifications and limit
the messages to present to the user. A message identifier of zero indicates a new operation is starting
and the callback function should clear any displayed error message.

Frame

A capture window uses frame callback notification messages to notify your application when a new video
frame is available. The capture window enables these callback notifications only if the preview rate is

nonzero and streaming capture is not in progress.

Status Callback Functions

A capture window can send messages to the status callback function while capturing video to disk or
during other lengthy operations to notify your application of the progress of an operation. The status
information includes a message identifier and a formatted text string ready for display. Your application
can use the message identifier to filter the notifications and limit the messages to present to the user.
During capture operations, the first message sent to the callback function is always IDS_CAP_BEGIN
and the last is always IDS_CAP_END. A message identifier of zero indicates a new operation is starting
and the callback function should clear the current status.

Videostream

Applications can use videostream callback functions during streaming capture to process a captured
video frame. The capture window calls a videostream callback function just before writing each captured
frame to the disk.

Wavestream

Applications use the wavestream callback functions during streaming capture to process audio buffers.
The capture window calls a wavestream callback function just before writing each audio buffer to the disk.

Yield Callback Functions

Applications can use yield callback functions during streaming capture. (A yield callback function typically
consists of a message loop that calls PeekMessage, TranslateMessage, and DispatchMessage.) The
capture window calls the yield callback function at least once for every captured video frame, but the
exact rate depends on the frame rate and the overhead of the capture driver and disk.

Disabling Callback Functions

You can permanently or temporarily disable any of the callback functions by specifying NULL in place of
the callback function when sending the appropriate message to set a callback function.

Using Video Capture

This section contains examples demonstrating how to perform the following tasks:

e Creating a capture window

¢ Connecting to a capture driver

e Enumerating installed capture drivers

¢ Obtaining the capabilities of a capture driver
* Obtaining the status of a capture window

¢ Displaying dialog boxes to set video characteristics
¢ Obtaining and setting the video format

¢ Previewing video

¢ Enabling video overlay

* Naming the capture file

¢ Formatting audio capture

¢ Changing a video capture setting

e Capturing data

¢ Adding an information chunk

¢ Adding callback functions to an application

* Creating a status callback function

¢ Creating an error callback function

* Creating a frame callback function

Creating a Capture Window
The following example creates a capture window by using the capCreateCaptureWindow function.

hWndC = capCreateCaptureWindow (
(LPSTR) "My Capture Window", // window name if pop-up
WS CHILD | WS VISIBLE, // window style
0, 0, 160, 120, // window position and dimensions
(HWND) hwndParent,
(int) nID /* child ID */);

Connecting to a Capture Driver

The following example connects the capture window with the handle hWndC to the MSVIDEO driver and
then disconnects them using the capDriverDisconnect macro:

fOK = SendMessage (hWndC, WM CAP DRIVER CONNECT, 0, OL);
//

// Or, use the macro to connect to the MSVIDEO driver:
// fOK = capDriverConnect (hWndC, 0);

//

// Place code to set up and capture video here.

//

capDriverDisconnect (hWndC) ;

Enumerating Installed Capture Drivers

The following example uses the capGetDriverDescription function to obtain the names and versions of
the installed capture drivers.

char szDeviceName [80];
char szDeviceVersion[80];

for (wIndex = 0; wIndex < 10; wIndex++)
{
if (capGetDriverDescription (wIndex, szDeviceName,
sizeof (szDeviceName), szDeviceVersion,
sizeof (szDeviceVersion))

// RAppend name to list of installed capture drivers
// and then let the user select a driver to use.

Obtaining the Capabilities of a Capture Driver

The WM_CAP_DRIVER _GET_CAPS message returns the capabilities of the capture driver and
underlying hardware in the CAPDRIVERCAPS structure. Each time an application connects a new
capture driver to the capture window, it should update the CAPDRIVERCAPS structure. The following
example uses the capDriverGetCaps macro to obtain the capture driver capabilities.

CAPDRIVERCAPS CapDrvCaps;

SendMessage (hWndC, WM CAP DRIVER GET CAPS,
sizeof (CAPDRIVERCAPS), (LONG) (LPVOID) &CapDrvCaps);

// Or, use the macro to retrieve the driver capabilities.
// capDriverGetCaps (hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS)):;

Obtaining the Status of a Capture Window

The following example uses the SetWindowPos function to set the size of the capture window to the
overall dimensions of the incoming video stream based on information returned by the capGetStatus
macro in the CAPSTATUS structure.

CAPSTATUS CapStatus;
capGetStatus (hWndC, &CapStatus, sizeof (CAPSTATUS));

SetWindowPos (hWwndC, NULL, 0, 0, CapStatus.uilImageWidth,
CapStatus.uilmageHeight, SWP NOZORDER | SWP NOMOVE) ;

Displaying Dialog Boxes to Set Video Characteristics

Each capture driver can provide up to three different dialog boxes used to control aspects of the video
digitization and capture process. The following example demonstrates how to display these dialog boxes.
Before displaying each dialog box, the example calls the capDriverGetCaps macro and checks the
CAPDRIVERCAPS structure returned to see if the capture driver can display it.

CAPDRIVERCAPS CapDrvCaps;
capDriverGetCaps (hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS))

// Video source dialog box.
if (CapDriverCaps.fHasDlgVideoSource)
capDlgVideoSource (hWndC) ;

// Video format dialog box.
if (CapDriverCaps.fHasDlgVideoFormat)

{
capDlgVideoFormat (hiWwndC) ;

// Are there new image dimensions?
capGetStatus (hWndC, &CapStatus, sizeof (CAPSTATUS));

// If so, notify the parent of a size change.

}

// Video display dialog box.
if (CapDriverCaps.fHasDlgVideoDisplay)
capDlgVideoDisplay (hWndC) ;

Obtaining and Setting the Video Format

The BITMAPINFO structure is of variable length to accommodate standard and compressed data
formats. Because this structure is of variable length, applications must always query the size of the
structure and allocate memory before retrieving the current video format. The following example uses the
capGetVideoFormatSize macro to retrieve the buffer size and then calls the capGetVideoFormat macro
to retrieve the current video format.

LPBITMAPINFO lpbi;
DWORD dwSize;

dwSize = capGetVideoFormatSize (hWndC) ;
lpbi = GlobalAllocPtr (GHND, dwSize);
capGetVideoFormat (hWndC, lpbi, dwSize);

// Access the video format and then free the allocated memory.
Applications can use the capSetVideoFormat macro (or the WM_CAP_SET VIDEOFORMAT message)

to send a BITMAPINFO header structure to the capture window. Because video formats are device
specific, your application should check the return value to determine if the format was accepted.

Previewing Video

The following example uses the capPreviewRate macro to set the frame display rate for preview mode to
66 milliseconds per frame and then uses the capPreview macro to place the capture window in preview
mode.

capPreviewRate (hWndC, 66); // rate, in milliseconds
capPreview (hWndC, TRUE) ; // starts preview

// Preview

capPreview (hWnd, FALSE); // disables preview

Enabling Video Overlay

The following example uses the capDriverGetCaps macro to determine whether a capture driver has
overlay capabilities; if it does, the macro enables the overlay.

CAPDRIVERCAPS CapDrvCaps;
capDriverGetCaps (hWndC, &CapDrvCaps, sizeof (CAPDRIVERCAPS))

if (CapDrvCaps.fHasOverlay)
capOverlay (hWndC, TRUE) ;

Naming the Capture File

The following example uses the capFileSetCaptureFile macro to specify an alternate filename
(MYCAP.AVI) for the capture file and the capFileAlloc macro to preallocate a file of 5 MB.

char szCaptureFile[] = "MYCAP.AVI";

capFileSetCaptureFile (hWndC, szCaptureFile);
capFileAlloc (hWndC, (1024L * 1024L * 5));

Formatting Audio Capture
The following example uses capSetAudioFormat to set the audio format to 11-kHz PCM 8-bit, stereo.

WAVEFORMATEX wfex;

wfex.wFormatTag = WAVE FORMAT PCM;
wfex.nChannels = 2; // Use stereo
wfex.nSamplesPerSec = 11025;
wfex.nAvgBytesPerSec = 22050;

wfex.nBlockAlign = 2;

wfex.wBitsPerSample = 8;

wfex.cbSize = 0;

capSetAudioFormat (hWndC, &wfex, sizeof (WAVEFORMATEX)) ;

Changing a Video Capture Setting

The following example uses the capCaptureGetSetup and capCaptureSetSetup macros to change the
capture rate from the default value (15 frames per second) to 10 frames per second.

CAPTUREPARMS CaptureParms;
float FramesPerSec = 10.0;

capCaptureGetSetup (hWndC, &CaptureParms, sizeof (CAPTUREPARMS)) ;

CaptureParms.dwRequestMicroSecPerFrame = (DWORD) (1.0e6 /
FramesPerSec) ;

capCaptureSetSetup (hWndC, &CaptureParms, sizeof (CAPTUREPARMS)) ;

Capturing Data

The following example uses the capCaptureSequence macro to start video capture and the
capFileSaveAs macro to copy the captured data from the capture file to the file NEWFILE.AVI.

char szNewName[] = "NEWFILE.AVI";
// Set up the capture operation.
capCaptureSequence (hWndC) ;

// Capture.

capFileSaveAs (hWndC, szNewName) ;

Adding an Information Chunk

If you need to include other information in your application in addition to audio and video, you can create
information chunks and insert them into a capture file. Information chunks can contain several types of
information, including the details of a copyright notice, identification of the video source, or external timing
information. The following example stores external timing information — a SMPTE (Society of Motion
Picture and Television Engineers) timecode — in an information chunk and adds the chunk to a capture
file using the capFileSetinfoChunk macro.

// This example assumes the application controls
// the video source for preroll and postroll.
CAPINFOCHUNK cic;

//

//

//

cic.fccInfolID = infotypeSMPTE TIME;
cic.lpData = "00:20:30:12";

cic.cbbhata strlen (cic.lpData) + 1;
capFileSetInfoChunk (hwndC, &cic);

Adding Callback Functions to an Application

An application can register callback functions with the capture window so that it notifies the application in
the following circumstances:

¢ The status changes

e Errors occur

¢ Video frame and audio buffers become available

¢ The application should yield during streaming capture

The following example creates a capture window and registers status, error, video stream, and frame
callback functions in the message-processing loop of an application. It also includes a sample statement
for disabling a callback function. Subsequent examples show simple status, error, and frame callback
functions.

case WM _CREATE:
{

char achDeviceName [80] ;
char achDeviceVersion[100] ;
char achBuffer[100] ;

WORD wDriverCount = 0 ;

WORD wlndex ;

WORD wError ;

HMENU hMenu ;

// Create a capture window using the capCreateCaptureWindow macro.
ghWndCap = capCreateCaptureWindow ((LPSTR) "Capture Window",
WS CHILD | WS VISIBLE, 0, 0, 160, 120, (HWND) hWnd, (int) O0);

// Register the error callback function using the
// capSetCallbackOnError macro.
capSetCallbackOnError (ghWndCap, fpErrorCallback);

// Register the status callback function using the
// capSetCallbackOnStatus macro.
capSetCallbackOnStatus (ghWndCap, fpStatusCallback);

// Register the video-stream callback function using the
// capSetCallbackOnVideoStream macro.
capSetCallbackOnVideoStream (ghWndCap, fpVideoCallback);

// Register the frame callback function using the
// capSetCallbackOnFrame macro.
capSetCallbackOnFrame (ghWndCap, fpFrameCallback);

// Connect to a capture driver

break;
}
case WM _CLOSE:
{
// Use the capSetCallbackOnFrame macro to
// disable the frame callback. Similar calls exist for the other

// callback functions.
capSetCallbackOnFrame (hWndC, NULL) ;

break;

Creating a Status Callback Function

The following example is a simple status callback function. Register this callback by using the
capSetCallbackOnStatus macro.

// StatusCallbackProc: status callback function

// hWnd: capture window handle

// nID: status code for the current status

// lpStatusText: status text string for the current status
//

LRESULT PASCAL StatusCallbackProc (HWND hWnd, int nID,
LPSTR lpStatusText)

if (!ghWndMain)
return FALSE;

if (nID == 0) { // Clear old status messages.
SetWindowText (ghWndMain, (LPSTR) gachAppName) ;
return (LRESULT) TRUE;

}

// Show the status ID and status text...

wsprintf (gachBuffer, "Status# %d: %$s", nID, lpStatusText);

SetWindowText (ghWndMain, (LPSTR)gachBuffer);
return (LRESULT) TRUE;

Creating an Error Callback Function

The following example is a simple error callback function. Register this callback by using the
capSetCallbackOnError macro.

// ErrorCallbackProc: error callback function

// hWnd: capture window handle

// nErrID: error code for the encountered error

// lpErrorText: error text string for the encountered error
//

LRESULT PASCAL ErrorCallbackProc (HWND hWnd, int nErrID,

LPSTR lpErrorText)
if (!ghWndMain)
return FALSE;

if (nErrID == 0) // Starting a new major function.
return TRUE; // Clear out old errors.

// Show the error identifier and text.
wsprintf (gachBuffer, "Error# %d", nErrID);

MessageBox (hWnd, lpErrorText, gachBuffer,
MB OK | MB ICONEXCLAMATION) ;

return (LRESULT) TRUE;

Creating a Frame Callback Function

The following example is a simple frame callback function. Register this callback by using the
capSetCallbackOnFrame macro.

// FrameCallbackProc: frame callback function

// hWnd: capture window handle

// lpVHdr: pointer to struct containing captured
// frame information

//

LRESULT PASCAL FrameCallbackProc (HWND hWnd, LPVIDEOHDR lpVHdr)
{
if (!ghWndMain)
return FALSE;

wsprintf (gachBuffer, "Preview frame# %1d ", gdwFrameNum++) ;
SetWindowText (ghWndMain, (LPSTR)gachBuffer);
return (LRESULT) TRUE ;

Video Capture Reference

This section describes the functions, structures, messages, and macros associated with the AVICap
window class. These elements are grouped as follows.

Basic Capture Operations

capCreateCaptureWindow
WM CAP ABORT

WM_CAP_DRIVER_CONNECT

WM_CAP_SEQUENCE
WM_CAP_STOP

Capture Windows
CAPSTATUS

capGetDriverDescription

WM CAP DRIVER CONNECT
WM CAP DRIVER DISCONNECT
WM CAP GET STATUS

Capture Drivers

CAPDRIVERCAPS
WM_CAP_DRIVER_GET_CAPS
WM_CAP_DRIVER_GET_NAME
WM_CAP_DRIVER_GET_VERSION
WM_CAP_GET_AUDIOFORMAT
WM_CAP_GET_VIDEOFORMAT
WM_CAP_SET_AUDIOFORMAT
WM_CAP_SET_VIDEOFORMAT

Capture Driver Preview and Overlay Modes

WM_CAP_SET_OVERLAY
WM _CAP_SET_PREVIEW
WM_CAP_SET_PREVIEWRATE
WM_CAP_SET_SCALE
WM_CAP_SET_SCROLL

Capture Driver Video Dialog Boxes
WM_CAP DLG VIDEOCOMPRESSION
WM_CAP DLG VIDEODISPLAY

WM CAP DLG VIDEOFORMAT

WM CAP DLG VIDEOSOURCE

Audio Format

WM_CAP_GET_AUDIOFORMAT
WM_CAP_SET_AUDIOFORMAT

Video Capture Settings
CAPTUREPARMS
WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_SET_SEQUENCE_SETUP

Capture File and Buffers

CAPTUREPARMS
WM_CAP_FILE_ALLOCATE

WM _CAP_FILE_GET _CAPTURE_FILE
WM_CAP_FILE_SAVEAS
WM_CAP_FILE_SET_CAPTURE_FILE

Directly Using Capture Data
WM_CAP_SEQUENCE_NOFILE

Capture from MCI Device
WM_CAP_SET_MCI_DEVICE

Manual Frame Capture

WM_CAP_SINGLE_FRAME
WM_CAP_SINGLE_FRAME_CLOSE
WM_CAP_SINGLE_FRAME_OPEN

Still-image Capture

WM_CAP_EDIT_COPY
WM_CAP_FILE_SAVEDIB
WM_CAP_GRAB_FRAME
WM_CAP_GRAB_FRAME_NOSTOP

Advanced Capture Options

WM_CAP_FILE_SET_INFOCHUNK
WM_CAP_GET_USER_DATA
WM_CAP_SET_USER_DATA

Working with Palettes

WM_CAP_EDIT_COPY
WM_CAP_PAL_AUTOCREATE
WM_CAP_PAL_MANUALCREATE
WM_CAP_PAL_OPEN
WM_CAP_PAL_PASTE
WM_CAP_PAL_SAVE

Yielding to Other Applications

WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_SET_CALLBACK_YIELD

WM_CAP_SET_SEQUENCE_SETUP

AVICap Callback Functions

capControlCallback
capErrorCallback
capStatusCallback
capVideoStreamCallback
capWaveStreamCallback

capYieldCallback
WM CAP SET CALLBACK CAPCONTROL

WM_CAP_SET_CALLBACK_ERROR
WM_CAP_SET_CALLBACK_FRAME
WM_CAP_SET_CALLBACK_STATUS

WM_CAP_SET CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM
WM_CAP_SET_CALLBACK_YIELD

Video Capture Functions

The following functions are used with video capture.

capControlCallback
capCreateCaptureWindow
capErrorCallback
capGetDriverDescription
capStatusCallback
capVideoStreamCallback
capWaveStreamCallback
capYieldCallback

Video Capture Structures

The following structures are used with video capture.

CAPDRIVERCAPS
CAPINFOCHUNK
CAPSTATUS
CAPTUREPARMS

Video Capture Messages

The following messages are used with video capture.

WM_CAP_ABORT
WM_CAP_DLG_VIDEOCOMPRESSION
WM_CAP_DLG_VIDEODISPLAY
WM_CAP_DLG_VIDEOFORMAT
WM_CAP_DLG_VIDEOSOURCE
WM_CAP_DRIVER_CONNECT
WM_CAP_DRIVER_DISCONNECT
WM_CAP_DRIVER_GET_CAPS
WM_CAP_DRIVER_GET_NAME
WM_CAP_DRIVER_GET_VERSION
WM _CAP_EDIT_COPY

WM _CAP_FILE_ALLOCATE

WM _CAP FILE GET CAPTURE FILE
WM_CAP_FILE_SAVEAS
WM_CAP_FILE_SAVEDIB
WM_CAP_FILE_SET_CAPTURE_FILE
WM_CAP_FILE_SET_INFOCHUNK
WM_CAP_GET_AUDIOFORMAT
WM_CAP_GET_MCI_DEVICE
WM_CAP_GET_SEQUENCE_SETUP
WM_CAP_GET_STATUS
WM_CAP_GET_USER_DATA

WM _CAP_GET_VIDEOFORMAT

WM _CAP_GRAB_FRAME
WM_CAP_GRAB_FRAME _NOSTOP
WM_CAP_PAL_AUTOCREATE
WM_CAP_PAL_MANUALCREATE
WM_CAP_PAL_OPEN
WM_CAP_PAL_PASTE
WM_CAP_PAL_SAVE

WM_CAP_SEQUENCE

WM_CAP_SEQUENCE_NOFILE
WM_CAP_SET_AUDIOFORMAT

WM_CAP_SET_CALLBACK_CAPCONTROL
WM _CAP_SET_CALLBACK_ERROR

WM _CAP_SET_CALLBACK_FRAME

WM _CAP_SET_CALLBACK_STATUS
WM_CAP_SET_CALLBACK_VIDEOSTREAM
WM_CAP_SET_CALLBACK_WAVESTREAM
WM_CAP_SET_CALLBACK_YIELD
WM_CAP_SET_MCI_DEVICE
WM_CAP_SET_OVERLAY
WM_CAP_SET_PREVIEW
WM_CAP_SET_PREVIEWRATE
WM_CAP_SET_SCALE
WM_CAP_SET_SCROLL
WM_CAP_SET_SEQUENCE_SETUP

WM _CAP_SET_USER _DATA
WM_CAP_SET_VIDEOFORMAT
WM_CAP_SINGLE_FRAME
WM_CAP_SINGLE_FRAME_CLOSE

WM_CAP_SINGLE_FRAME_OPEN
WM_CAP_STOP

Video Capture Macros

The following macros are used with video capture.

capCaptureAbort
capCaptureGetSetup
capCaptureSequence
capCaptureSequenceNoFile
capCaptureSetSetup
capCaptureSingleFrame
capCaptureSingleFrameClose
capCaptureSingleFrameOpen
capCaptureStop
capDlgVideoCompression
capDlgVideoDisplay
capDlgVideoFormat
capDlgVideoSource
capDriverConnect
capDriverDisconnect
capDriverGetCaps
capDriverGetName
capDriverGetVersion
capEditCopy

capFileAlloc
capFileGetCaptureFile
capFileSaveAs
capFileSaveDIB
capFileSetCaptureFile
capFileSetInfoChunk
capGetAudioFormat
capGetAudioFormatSize
capGetMCIiDeviceName
capGetStatus
capGetUserData
capGetVideoFormat
capGetVideoFormatSize
capGrabFrame
capGrabFrameNoStop
capOverlay

capPaletteAuto
capPaletteManual
capPaletteOpen
capPalettePaste
capPaletteSave

capPreview
capPreviewRate
capPreviewScale
capSetAudioFormat
capSetCallbackOnCapControl
capSetCallbackOnError
capSetCallbackOnFrame
capSetCallbackOnStatus
capSetCallbackOnVideoStream
capSetCallbackOnWaveStream
capSetCallbackOnYield

capSetMCIiDeviceName
capSetScrollPos
capSetUserData
capSetVideoFormat

Custom File and Stream Handlers

File and stream handlers are drivers that provide consistent interfaces to an application that controls
multimedia data. The file and stream handlers included in the operating system use video and waveform-
audio data stored in audio-video interleaved (AVI) and waveform-audio files.

You can write handlers to allow your application to write or access multimedia data from another source,
such as a file using a proprietary format, an AVI file that has been expanded to contain additional data
streams, or a handler that generates its own multimedia data. If you have a custom file format for AVI data
that you would like to use with the AVIFile functions and macros, you need to write a custom handler.

About Custom File and Stream Handlers

Your application can use a custom file handler to read from a file or write to a file that is in a nonstandard
format. To do this, your application simply uses the name of your file handler when opening the file or
allocating the file interface. The AVIFile library then uses the functions from your file handler instead of
those from another file handler. The nonstandard format appears as standard AVI data to your application
or to any other application using your custom file handler.

Similarly, your application can use a custom stream handler to read a stream that is in a nonstandard
format. A stream — whether it constitutes audio, video, MIDI, text, or custom data — is a component of an
AVl file. For example, an AVI file that contains a video sequence, an English soundtrack, and a French
soundtrack consists of three streams. Your application can specify the streams in an AVI file to process
and direct each of those streams to a handler that can optimally process the appropriate type of
multimedia data.

Note You must place custom stream and file handlers in one or more DLLs, separated from main
application files.

Handler Architecture

The internal function of a file or stream handler is defined by the handler itself. To an application, a file
handler typically appears as a module to read and write AVI files. Similarly, a stream handler appears as a
module to read and write a specific type of data stream. The consistent stream interface makes the
source and destination of the stream unimportant to the application that uses the handler.

A file handler provides access to a data source consisting of one or more data streams. File handlers
typically provide access to disk files containing one or more data streams, and the internal functions of
the file handler read and write the multimedia data. However, file handlers can work with any data source,
such as a digital transmission channel containing several intermingled data streams.

In contrast, a stream handler processes one type of data and appears as a data stream to an application.
A stream handler can provide data that it manufactures, or it can retrieve data from a file or an external
source. It supplies its data in a format that your application can use.

C++ and OLE Programming Concepts

The file and stream handlers included with Windows use an object-oriented design to promote a standard
interface and to share functionality. These handlers are written in C++ and use the OLE Component
Object Model.

You can develop custom handlers using the C or C++ development systems; however, using C++ is
strongly recommended, because it provides an easier and more straightforward approach to implement a
handler. Using C++, you can explicitly define data as objects, and you can associate the functions that
manipulate the data with the member functions of an object.

This section identifies and briefly summarizes the important concepts of C++ and the OLE Component
Object Model that apply to designing and implementing file and stream handlers. There are many books
written about C++ programming that you can reference for more information. For more information on
OLE, please see the OLE Programmer's Reference.

Classes, Objects, and Interfaces

In the C++ programming language, a class consists of properties (or member data) and methods (or
member functions). The properties are data elements, such as those contained in a structure. The
methods are used for a variety of purposes, such as initialization, assignment, operations, and data
access. You use a class declaration in the same way that you use a structure declaration. Memory is
allocated for a class when you define a class object. Each class object has a data area for its properties
and a table of pointers to the methods it supports.

In OLE, an object consists of data and methods, as it does in C++. However, an OLE object adheres to
stricter rules. The data is strictly internal. An object only exposes interfaces. An interface is a set of related
methods for an object. Each object can support multiple interfaces. All OLE interfaces support the
IUnknown interface.

The Scope Resolution Operator in C++

Two colons (::) are used in C+ + as a scope resolution operator. This operator gives you more freedom in
naming your variables by letting you distinguish between variables with the same name. For example,
MyFile::Read refers to the Read method of the MyFile class of objects, as opposed to YourFile::Read,
which refers to a Read method in the YourFile class.

Virtual Function Tables

A virtual function table is an array of pointers to the methods an object supports. If you're using C, an
object appears as a structure whose first member is a pointer to the virtual function table (IpVtbl); that is,
the first member points to an array containing function pointers. The methods all take a pointer to the
function table as the first parameter. Thus, the following example calls the Read method of a pStream
object:

pStream->1pVtbl->Read (pStream, parameters)

In C+ +, the pointer to the virtual function table, the this pointer, is implicit. The following is equivalent to
the previous example when using C+ +:

pStream->Read (parameters)

The OLE Component Object Model

The objects used by the AVIFile library are all part of the OLE Component Object Model. Primarily, this
means they share certain methods that make them easier to work with, and the values they return are
common to most OLE interface methods.

The OLE Component Object Model of the file and stream handlers uses the OLE IClassFactory interface
to create instances of their object class. As component objects, they implement the the lUnknown
interface, which consists of the Querylinterface, Release, and AddRef methods. The IlUnknown
interface lets an application obtain pointers to other interfaces supported by the same object.

You can determine if an object supports a specific interface by using the Querylnterface method. If an
object supports a specified interface, Querylnterface returns a pointer to that interface.

You can increment and decrement the reference count associated with an object by using the AddRef
and Release methods. The reference count lets multiple clients access an object. When an object is used
by the first application, its reference count is set to 1. Applications subsequently use the AddRef method
to increment the count to let the object keep track of the number of times it is accessed.

When an application is done using an object, it calls the Release method to decrement the reference
count. When the reference count is zero, the object is no longer needed and Release frees any resources
it uses and destroys the object. Because an object uses internal resources transparent to the application,
the object is responsible for freeing them. For example, a file handler might need to close open disk files
and free buffer memory when released.

Most OLE interface methods return result handles that are defined by using the HRESULT data type. This
data type is made of a severity code, contextual information, a facility code, and a status code. A return
result handle that indicates success has the value zero. A nonzero value indicates failure and the status
code member of the return result handle provides a basis for additional interpretation. For additional
information about OLE return result handles, see the OLE Programmer's Reference.

IAVIStream and IAVIFile Interfaces

The IAVIStream and JAVIFile interfaces contain the methods used by file and stream handlers. The
PAVISTREAM data type is a pointer to an AVI stream object (through the IAVIStream interface) and the
PAVIFILE data type is a pointer to an AVI file object (through the IAVIFile interface).

To create an object pointer in C, first allocate space for a structure that is large enough to contain the
pointer to the virtual function table and the other data members. Create a virtual function table for the
methods for your type of stream, then set the pointer to the virtual function table to the address of the
virtual function table.

File and Stream Handler Installation

The AVIFile library uses installed stream and file handlers for reading and writing AV files and streams. A
handler is installed when it resides in the Windows SYSTEM directory and the registry contains the
following information needed to describe and identify a handler:

e The 16-byte class identifier for the handler

¢ A brief description of the handler

¢ The name of the file containing the handler

¢ The file extension that a file handler can process

¢ File-access and other properties associated with a file handler

¢ Four-character codes identifying stream types that a stream handler can process

The AVIFile library queries the registry for handlers that are external to an application when opening files
and accessing streams. The result of a successful query returns the filename of a handler that can
process the file or stream type specified in the query. The registry lists each handler by creating three
entries that have the following form:

[HKEY CLASSES ROOT\Clsid\{00010023-0000-0000-C000-000000000046}]
@="Wave File reader/writer"

[HKEY CLASSES ROOT\Clsid\{00010023-0000-0000-C000-

000000000046} \InprocServer32]

@="wavefile.dll"

"ThreadingModel"="Apartment"

[HKEY CLASSES ROOT\Clsid\{00010023-0000-0000-C000-

000000000046 }\AVIFile]

@="3"

These entries consist of the following parts.

Part Description

HKEY_CLASSES_ROOT Identifies the root entry
of the registry.

Clsid Identifies this entry as

a class identifier.

{00010023-0000-0000-C000-000000000046} Specifies an interface
identifier (IID) or class
identifier. This value is
a unique 16-byte
identifier. (The
identifier might also be
referred to as a GUID
or a UUID in other
manuals.)

Wave File reader/writer Specifies a string to
describe the handler.
This string can be
displayed in dialog
boxes for selecting
stream and file
handlers.

InProcServer32 Specifies the file (in

this example,
WAVEFILE.DLL) that
can be loaded to
handle this class.

AVIFile Specifies the
properties of a file
handler. In this
example, the handler
can read and write to
an AVl file.

A file handler can have one or more of its properties stored in the registry. The following constants identify
the properties currently associated with a file.

Constant Description

AVIFILEHANDLER_CANACCEPTNONRG Indicates that a file handler

B can process image data other
than RGB.

AVIFILEHANDLER_CANREAD Indicates that a file handler
can open a file with read
access.

AVIFILEHANDLER_CANWRITE Indicates that a file handler
can open a file with write
access.

When creating a file or stream handler, you can obtain a new identifier by running UUIDGEN.EXE. Always
use UUIDGEN.EXE to create a new identifier. The 16-byte hexadecimal number created by this
executable will uniquely identify your handler.

The AVIFile library uses additional entries in the registry to identify a class identifier based on the file
extension that a file handler can process or a four-character code that a file or stream handler can
process. For example, the following entries associate a class identifier with the file extension .WAV and
the four-character code "WAVE":

[HKEY CLASSES ROOT\AVIFile\Extensions\WAV]
@="{00010023-0000-0000-C000-000000000046}"
[HKEY_CLASSES_ROOT \AVIFile\RIFFHandlers\WAVE]
@="{00010023-0000-0000-C000-000000000046}"

These entries consist of the following parts.

Part Description

HKEY_CLASSES_ROOT Identifies the root
entry of the registry.

AVIFile Identifies this entry
as an entry used by
AVIFile.

Extensions Specifies the file

extension (in this
example, .WAV)
that a file handler
can process.

RIFFHandlers Specifies the four-

character code (in
this example,
"WAVE") a file or
stream handler can
process.

{00010023-0000-0000-C000-000000000046} Specifies an
interface identifier
(IID) or class
identifier.

If you distribute your stream or file handler without a setup application to install it in the user's system, you
must include a .REG file so the user can install the handler. The user will use the registry editor to create
registry entries for your stream or file handler.

The following example shows the contents of a typical .REG file. The first entry in the following example is
the descriptive string for the handler. The second entry identifies the file containing the handler. The third
entry identifies the properties of the file handler (in this case, read-only access to files). The fourth entry
associates the type of file the handler processes (in this case, files with a .JPG filename extension) with
the class identifier.

[HKEY CLASSES ROOT\Clsid\{5C2B8200-E2C8-1068-B1CA-6066188C6002}]
@="JFIF (JPEG) Files"

[HKEY CLASSES ROOT\Clsid\{5C2B8200-E2C8-1068-B1CA-6066188C6002}]
\InprocServer32]

@="jfiffile.dll"

[HKEY CLASSES ROOT\AVIFile\Extensions\JPG]
@="{5C2B8200-E2C8-1068-B1CA-6066188C6002}"

When creating this file, save it with a .REG extension to identify it as an update file for the registry. Also,
substitute a unique IID for the 16-byte code used in the example.

Users can update the registry on their system by using the following procedure:

1. Click the Start menu (or run Program Manager and click the File menu), then click Run.
2. In the Run dialog box, type the following command and press ENTER:
regedit -s filename.reg

Using Custom File and Stream Handlers

* Creating a file or stream handler

e Creating a virtual function table for a stream handler
¢ Creating an object pointer

¢ Obtaining the address of a virtual function table

* Creating a file-handler instance in a DLL

* Determining which interface an object supports

¢ Incrementing the handler reference count

¢ Deleting an object

Creating a File or Stream Handler

In an application written in the C programming language, a file or stream handler usually creates a
function for each method. Your application accesses these functions through an array of function pointers
the stream handler creates. An IAVIStreamVtbl structure contains the array of function pointers. A stream
handler can assign any name it wants to functions it creates for the methods. The position of the function
pointer in the structure implies the correspondence of the function to the method. For example, the first
function pointer in the structure corresponds to the Querylnterface method. Your stream handler must
provide all the functions of an interface.

Creating a Virtual Function Table for a Stream Handler

The following example (written in C) shows how an application (AVIBall) creates the virtual function table
used to reference its services.

HRESULT STDMETHODCALLTYPE AVIBallQueryInterface (PAVISTREAM ps,
REFIID riid, LPVOID FAR* ppvObj);

HRESULT STDMETHODCALLTYPE AVIBallCreate (PAVISTREAM ps,
LONG 1lParaml, LONG lParam?2);

ULONG STDMETHODCALLTYPE AVIBallAddRef (PAVISTREAM ps);

ULONG STDMETHODCALLTYPE AVIBallRelease (PAVISTREAM ps);

HRESULT STDMETHODCALLTYPE AVIBallInfo (PAVISTREAM ps,
AVIStreamHeader FAR * psi, LONG 1lSize);

LONG STDMETHODCALLTYPE AVIBallFindSample (PAVISTREAM ps,
LONG 1lPos, LONG 1lFlags);

HRESULT STDMETHODCALLTYPE AVIBallReadFormat (PAVISTREAM ps,
LONG 1lPos, LPVOID lpFormat, LONG FAR *lpcbFormat);

HRESULT STDMETHODCALLTYPE AVIBallSetFormat (PAVISTREAM ps,
LONG 1Pos, LPVOID lpFormat, LONG cbFormat);

HRESULT STDMETHODCALLTYPE AVIBallRead (PAVISTREAM ps,
LONG 1Start, LONG lSamples, LPVOID lpBuffer, LONG cbBuffer,
LONG FAR * plBytes,LONG FAR * plSamples);

HRESULT STDMETHODCALLTYPE AVIBallWrite (PAVISTREAM ps, LONG lStart,
LONG 1Samples, LPVOID lpBuffer, LONG cbBuffer, DWORD dwFlags);

HRESULT STDMETHODCALLTYPE AVIBallDelete (PAVISTREAM ps,
LONG 1Start, LONG lSamples);

HRESULT STDMETHODCALLTYPE AVIBallReadData (PAVISTREAM ps,
DWORD fcc, LPVOID 1lp,LONG FAR *1lpcb);

HRESULT STDMETHODCALLTYPE AVIBallWriteData (PAVISTREAM ps,
DWORD fcc, LPVOID 1lp,LONG cb);

IAVIStreamVtbl AVIBallHandler = {
AVIBallQueryInterface, // Function pointer for ::QuerylInterface

AVIBallAddRef, // Function pointer for ::AddRef
AVIBallRelease, // Function pointer for ::Release
AVIBallCreate, // Function pointer for ::Create
AVIBallInfo, // Function pointer for ::Info
AVIBallFindSample, // Function pointer for ::FindSample
AVIBallReadFormat, // Function pointer for ::ReadFormat
AVIBallSetFormat, // Function pointer for ::SetFormat
AVIBallRead, // Function pointer for ::Read
AVIBallWrite, // Function pointer for ::Write
AVIBallDelete, // Function pointer for ::Delete
AVIBallReadData, // Function pointer for ::ReadData
AVIBallWriteData // Function pointer for ::WriteData

}i

File handlers use a similar procedure, except they use a different definition for the virtual function table.

Creating an Object Pointer

AVIBall uses the following structure as its object pointer. The first member of this structure points to the
virtual function table that AVIBall uses to access its functions. Applications can cast this structure to the
PAVISTREAM data type. Methods that use the PAVISTREAM data type use only the pointer to the virtual
function table. The members following the pointer to the virtual function table are used internally by
AVIBall.

typedef struct

{

IAVIStreamVtbl FAR * lpvtbl;

// Ball instance data.

ULONG ulRefCount;

DWORD fccType; // is this audio/video?

int width; // size, in pixels, of each frame
int height;

int length; // length, in frames

int size;

COLORREF color; // ball color

} AVIBALL, FAR * PAVIBALL;

Obtaining the Address of a Virtual Function Table

In an application written in the C programming language, you can retrieve the address of the
IAVIStreamVtbl structure by using the NewBall function. This function returns the address of a structure
containing a pointer to IAVIStreamVtbl. Information following the IAVIStreamVtbl pointer specifies data
used internally by AVIBall. Your stream handler can append its own information after the 1AVIStreamVtbl
pointer. This information is returned in subsequent calls to your stream handler.

PAVISTREAM WINAPI NewBall (VOID)

{
PAVIBALL pball;

pball = (PAVIBALL) GlobalAllocPtr (GHND, sizeof (AVIBALL));
if (!pball)
return 0;

pball->1pvtbl = &AVIBallHandler;
pball->1lpvtbl->Create ((PAVISTREAM) pball, 0, 0);
return (PAVISTREAM) pball;

Creating a File-Handler Instance in a DLL

When an application specifies your file-handler DLL or stream handler, the system looks it up in the
registry by its class identifier and loaded. The system then calls the DIIGetClassObject function of the
DLL to create an instance of the file or stream handler. The following example (written in C++) shows how
a file handler creates an instance.

// Main DLL entry point.
STDAPI DllGetClassObject (const CLSID FAR& rclsid,
const IID FAR& riid, void FAR* FAR* ppv)
{
HRESULT hresult;
hresult = CAVIFileCF::Create(rclsid, riid, ppv);
return hresult;
}
HRESULT CAVIFileCF::Create(const CLSID FARG& rclsid,
const IID FAR& riid, void FAR* FAR* ppv)
{
// The following is the class factory creation and not an
// actual PAVIFile.
CAVIFileCF FAR* PAVIFileCF;
IUnknown FAR*pUnknown;
HRESULT hresult;

// Create the instance.
PAVIFileCF = new FAR CAVIFileCF(rclsid, &pUnknown) ;
if (pAVIFileCF == NULL)
return ResultFromScode (E_OUTOFMEMORY) ;

// Set the interface pointer.
hresult = pUnknown->QueryInterface(riid, ppv);
if (FAILED (GetScode (hresult)))
delete pAVIFileCF;
return hresult;

Determining Which Interface an Object Supports

The Querylnterface method lets an application query an object to determine which interfaces it supports.
The sample application sets the ppv pointer to the current interface.

STDMETHODIMP CAVIFileCF::QueryInterface (
const IID FAR& iid,
void FAR* FAR* ppv)

if (iid == IID IUnknown)
*ppv = this; // set the interface pointer
// to this instance
else if (iid == IID IClassFactory)
*ppv = this; // second chance to set the
// interface pointer to this
// instance
else

return ResultFromScode (E NOINTERFACE) ;
AddRef (); //Increment the reference count
return NULL;

Incrementing the Handler Reference Count

The AddRef method increments the stream-hander or file-handler reference count.

STDMETHODIMP (ULONG) CAVIFileCF::AddRef ()
{

return ++m refs;

}

Deleting an Object

The Release method deletes the object when its reference count is zero.

STDMETHODIMP_ (ULONG) CAVIFileCF::Release()
{
if (!--m refs)
{
delete this; // If O, delete this instance.
return 0;

}

return m refs;

Custom File and Stream Handler Reference

The following functions and interfaces are used with custom file and stream handlers.

Custom File and Stream Handler Functions

The following function is used with custom file and stream handlers.

DliGetClassObject

Custom File and Stream Handler Interfaces

The following interfaces and member functions are used with custom file and stream handlers.

IAVIEditStream
IAVIEditStream::Clone
IAVIEditStream::Copy
IAVIEditStream::Cut
IAVIEditStream::Paste
IAVIEditStream::Setinfo
1AVIFile
IAVIFile::CreateStream
IAVIFile::EndRecord
I1AVIFile::GetStream
I1AVIFile::Info
1AVIFile::Open
IAVIFile::ReadData
I1AVIFile::WriteData
I1AVIStream
IAVIStream::Create
IAVIStream::Delete
IAVIStream::FindSample
I1AVIStream::Info
I1AVIStream::Read
I1AVIStream::ReadData
I1AVIStream::ReadFormat
IAVIStream::SetFormat
IAVIStream::Write
1AVIStream::WriteData

IAVIStreaming
IAVIStreaming::Begin
IAVIStreaming::End
IGetFrame
IGetFrame::Begin
IGetFrame::End
IGetFrame::GetFrame
IGetFrame::SetFormat
IlUnknown
IlUnknown::Querylnterface
IlUnknown::AddRef
lUnknown::Release

DrawDib

The DrawDib functions provide high performance image-drawing capabilities for device-independent
bitmaps (DIBs). DrawDib functions support DIBs of 8-bit, 16-bit, 24-bit, and 32-bit image depths.

DrawDib functions write directly to video memory. They do not rely on functions of the graphics device
interface (GDI).

About the DrawDib Functions

Collectively, the DrawDib functions are similar to the StretchDIBits function in that they provide image-
stretching and dithering capabilities. However, the DrawDib functions support image decompression,
data-streaming, and a greater number of display adapters.

You will find it beneficial to use the DrawDib functions in some circumstances. Still, StretchDIBits is more
diverse than the DrawDib functions and should be used when the DrawDib functions cannot provide the
desired functionality. The following list describes factors to consider when deciding whether to use the
DrawDib functions or StretchDIBits.

Color table information format. DrawDib functions display images that use the DIB_RGB_COLORS
format for their color table. If images in your application store color table information with the
DIB_PAL_COLORS or DIB_PAL_INDICES format, you must use StretchDIBits to display them.

Transfer mode. DrawDib functions require that your application use the SRCCOPY transfer mode. If
your application uses StretchDIBits with a transfer mode other than SRCCOPY, you should continue
to use StretchDIBits. Similarly, if you need to use other raster operations in your application, such as
an XOR, use StretchDIBits.

Quality of video and animation playback. You can use the DrawDib functions for data-streaming
applications, such as those that play video clips and animated sequences. The DrawDib functions
outperform StretchDIBits in that they provide higher-quality images and improve motion during
playback.

Display adapters. DrawDib functions support a greater number of display adapters than
StretchDIBits supports. The DrawDib functions support VGA color adapters that provide 16-color
palettes using 4-bit image depth, SVGA adapters that provide 256-color palettes using 8-bit image
depth, and true-color display adapters that provide thousands of colors using 16-bit, 24-bit, and 32-bit
image depths.

The DrawDib functions also improve the speed and quality of displaying images on display adapters
with more limited capabilities. For example, when using an 8-bit display adapter, the DrawDib
functions efficiently dither true-color images to 256 colors. They also dither 8-bit images when using
4-bit display adapters.

Image-stretching. Like StretchDIBits, the DrawDib functions use source and destination rectangles
to control the portion of an image that is displayed. You can crop unwanted portions of an image or
stretch an image by varying the position and size of the source and destination rectangles. If a display
driver does not support image-stretching, the DrawDib functions provide more efficient stretching
capabilities than StretchDIBits.

Compressed images. The DrawDib functions support several compression and decompression
methods, including run-length encoding, JPEG, Cinepak, 411 YUV, and Indeo.

DrawDib Operations

You can access the entire group of DrawDib functions by using the DrawDibOpen function. This function
loads the dynamic-link library (DLL), allocates memory resources, creates a DrawDib device context
(DC), and maintains a reference count of the number of DCs that are initialized. DrawDibOpen also
returns a handle of the new DC that you use with the other DrawDib functions.

You can release a DrawDib DC when you finish using it by using the DrawDibClose function.
DrawDibClose also decrements the reference count of the applications accessing the DLL. The call to
DrawDibClose should be the last DrawDib function in your application.

You can create as many DrawDib DCs as you want. You can use multiple DrawDib DCs to draw several
bitmaps simultaneously. You can also create multiple DrawDib DCs, each with unique characteristics, so
your application can choose and then use the DC with the most appropriate settings. For example, you
can create two DrawDib DCs in an application: one that displays an image at its normal resolution, and
the other that displays an enlarged portion of the image.

To run efficiently, DrawDib functions require information about the display adapter and its driver. The
display profile is obtained by running a series of tests on the display adapter the first time the DLL
containing the DrawDib functions is accessed. The DrawDib functions use this information for all
applications. You can repeat these tests when necessary by using the DrawDibProfileDisplay function.

Note Retrieving and storing the display profile is typically a one-time occurrence. If, however, the
profile information is deleted or another display driver is installed in the system, DrawDib reruns the
tests.

Image Rendering

After you create a DrawDib DC, you can draw a DIB to the screen by using the DrawDibDraw function.
DrawDibDraw dithers true-color bitmaps when displaying them with 8-bit display adapters.

DrawDibDraw also supports video compressors transparently when displaying compressed bitmaps. You
can access the buffer that contains the decompressed image by using the DrawDibGetBuffer function.
DrawDibGetBuffer returns NULL when drawing an uncompressed bitmap. You should prepare your
application to handle compressed and uncompressed bitmaps.

You can refresh an image or a portion of an image displayed by your application by using the
DrawDibUpdate macro.

Sequences of Images

You can display a sequence of bitmaps with the same dimensions and formats by using the
DrawDibDraw function with the DrawDibBegin function. DrawDibBegin improves the efficiency of
DrawDibDraw by preparing the DrawDib DC for drawing.

Note If your application does not use DrawDibBegin, DrawDibDraw implicitly executes it prior to
drawing. If your application uses DrawDibBegin prior to DrawDibDraw, DrawDibDraw does not
have to process the function and wait for it to complete.

The DrawDibBegin function provides DrawDibDraw with the DrawDib DC, the DC handle, the address
of the BITMAPINFOHEADER structure, and the source and destination rectangle dimensions. When you
display a sequence of bitmaps, DrawDibDraw checks the values of these items for each image in the
sequence. If DrawDibDraw detects changes to any of these items, it implicitly calls DrawDibBegin again
to adjust the DrawDib DC settings.

After using DrawDibBegin, you can draw the image sequence by using DrawDibDraw and specifying
one or more flags as appropriate. Specify the DDF_SAME_HDC flag as long as the DC handle has not
changed. Specify the DDF_SAME_DRAW flag when the following parameters for DrawDibDraw have not
changed: the address of the BITMAPINFOHEADER structure and the source and destination rectangle
dimensions.

You can update the flags set with DrawDibBegin by using the DrawDibEnd function followed by another
call to DrawDibBegin. Then use DrawDibEnd to clear the DrawDib DC of its current flags and settings.
The subsequent call to DrawDibBegin reinitializes the DrawDib DC with the appropriate flags and
settings. Alternatively, you can update the flags for a DrawDib DC by using DrawDibBegin without
DrawDibEnd. To do this, you must change at least one of the following settings concurrently with the
flags: the address of the BITMAPINFOHEADER structure, or the source or destination rectangle
dimensions.

You can increase the efficiency of DrawDibDraw for data-streaming operations that use compressed
images, such as playing a video clip, by using the DrawDibStart and DrawDibStop functions. The
DrawDibStart function prepares the DrawDib DC to receive a stream of images by sending a message to
the video compression manager (VCM). When streaming has ended, DrawDibStop sends a message to
VCM indicating that it can release resources it allocated for the data-streaming operation. For more
information about VCM, see Video Compression Manager.

Note You must specify the width and height of the source and destination rectangles in your
application. However, you do not need to specify the origins of the rectangles. Your application can
redefine the origins in DrawDibDraw to use different portions of the image or to update different
portions of the display.

Palettes

The DrawDib functions require that an application respond to two palette-oriented messages:
WM_QUERYNEWPALETTE and WM_PALETTECHANGED. If your application is not palette-aware, you
will need to add a handler for each of these messages. For more information about processing the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages, see Adding Palette Message
Handlers.

You can realize the current DrawDib palette to the DC by using the DrawDibRealize function. You should
realize the palette in response to the WM_QUERYNEWPALETTE or WM_PALETTECHANGED message,
or when you prepare to display an image sequence by using the DrawDibDraw function.

You can draw an image mapped to another palette by using the DrawDibSetPalette function. This
function forces the DrawDib DC to use the specified palette, which can affect the image quality. For
example, an application that is palette-aware might have realized a palette and needs to prevent DrawDib
from realizing its own palette. The application can use DrawDibSetPalette to notify DrawDib of the
palette to use.

You can obtain a handle of the current foreground palette by using the DrawDibGetPalette function. If
your application uses the current foreground palette, it does not have exclusive use of the palette and
another application can invalidate the palette handle. Your application should not free the palette when
you finish using it. Freeing the palette could invalidate the palette handle for another application.

You can prepare DrawDib to receive new color values for its palette by using the DrawDibChangePalette
function. In the code following DrawDibChangePalette, you assign new values for the palette color table.
If the DDF_ANIMATE flag is not set in the DrawDib DC when you call DrawDibChangePalette, you can
enact the palette changes by using DrawDibRealize to realize the palette. You can then use
DrawDibDraw to redraw the image. If the DDF_ANIMATE flag is set in the DrawDib DC, you can animate
the palette and the colors of the displayed bitmap by using DrawDibDraw or DrawDibRealize. You can
update the DDF_ANIMATE flag by using the DrawDibEnd and DrawDibBegin functions.

Note If you free the DrawDib palette while it is selected by a DC, a graphics device interface (GDI)
error can result when the DC uses the palette. Instead, your application should use
DrawDibSetPalette to change the DrawDib DC to use the default palette or another palette.

The DrawDibEnd, DrawDibClose, and DrawDibBegin functions can free the DrawDib palette.
However, these functions should be used only when the palette has not been selected by the DC. The
DrawDibDraw function can also free the palette when it uses the same DrawDib DC, but specifies
different drawing parameters (Ipbi, dxDst, dyDst, dxSrc, or dySrc) or a different format.

Timing
As part of debugging an application, you can obtain information about the amount of time required to

complete repetitive DrawDib operations. The DrawDibTime function returns timing information for the
following operations:

Drawing a bitmap

Decompressing a bitmap

Dithering a bitmap

Stretching a bitmap

Transferring a bitmap by using the BitBIt function

Transferring a bitmap by using the StretchDIBits function

After retrieving a set of values, DrawDibTime resets the count and value for each operation.

The DrawDibTime function is available only in the debug version of the DrawDib functions.

Using DrawDib

This section contains examples demonstrating how to perform the following tasks:

¢ Adding palette message handlers
¢ Drawing a display context
* Animating a palette

Adding Palette Message Handlers

The following example illustrates simple message handlers for the WM _PALETTECHANGED and
WM_QUERYNEWPALETTE messages. The example uses the DrawDibRealize function to process the
WM_QUERYNEWPALETTE message.

Your application should respond to the WM_QUERYNEWPALETTE message by invalidating the
destination window to let the DrawDibDraw function redraw an image. You should respond to the
WM_PALETTECHANGED message by using the DrawDibRealize function to realize the palette.

case WM _PALETTECHANGED:
if ((HWND)wParam == hwnd)
break;
case WM QUERYNEWPALETTE:
hdc = GetDC (hwnd) ;
f = DrawDibRealize (hdd, hdc, FALSE) > 0;
ReleaseDC (hwnd, hdc);
if (f)
InvalidateRect (hwnd, NULL, TRUE);
break;

Drawing a Display Context

The following example prepares a DrawDib DC by using the DrawDibRealize function prior to displaying
several images in a bitmap sequence.

hdc = GetDC (hwnd) ;

DrawDibBegin (hdd, hdc, dxDest, dyDest, lpbi, dxSrc, dySrc, NULL);

DrawDibRealize (hdd, hdc, fBackground);

DrawDibDraw (hdd, hdc, xDst, yDst, dxDst, dyDst, 1lpbi, lpBits,
xSrc, ySrc, dxSrc, dySrc, DDF SAME DRAW|DDF SAME HDC) ;

DrawDibDraw (hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits,
xSrc, ySrc, dxSrc, dySrc, DDF SAME DRAW|DDF SAME HDC) ;

DrawDibDraw (hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, 1lpBits,
xSrc, ySrc, dxSrc, dySrc, DDF SAME DRAW|DDF SAME HDC) ;

ReleaseDC (hwnd, hdc);

Animating a Palette

The following example animates a palette by using the DrawDibRealize, DrawDibChangePalette, and
DrawDibDraw functions.

You can change the colors of a bitmap by using the DrawDibBegin function in combination with
DrawDibChangePalette. First, to allow palette changes, specify the DDF_ANIMATE flag in the call to
DrawDibBegin. Second, set the color table values from the palette entries by using
DrawDibChangePalette.

For example, if Ippe is an address of the PALETTEENTRY array containing the new colors, and Ipbi is the
LPBITMAPINFOHEADER structure used in DrawDibBegin or DrawDibDraw, the following fragment
updates the DIB color table.

hdc = GetDC (hwnd) ;

DrawDibBegin (hdd, , DDF_ANIMATE);
DrawDibRealize (hdd, hdc, fBackground);
DrawDibDraw (hdd, hdc,, DDF _SAME DRAW|DDF SAME HDC) ;

// Call to change color.
DrawDibChangePalette (hDD, iStart, iLen, lppe):

ReleaseDC (hwnd, hdc);

DrawDib Reference

This section describes the DrawDib functions and associated structures. These elements are grouped as
follows:

DrawDib Library Operations
DrawDibOpen

DrawDibClose
DrawDibProfileDisplay

Image Rendering

DrawDibDraw
DrawDibGetBuffer

DrawDibUpdate

Sequences of Images

DrawDibBegin
DrawDibEnd

DrawDibStart
DrawDibStop

Palettes

DrawDibRealize
DrawDibSetPalette
DrawDibGetPalette

DrawDibChangePalette

Timing DrawDib
DRAWDIBTIME

DrawDib Functions

An application uses DrawDib functions to create and manage a DrawDib DC, display and update images
on-screen, manipulate palettes, and to close the DrawDib DC when it's no longer needed. The DrawDib
functions also include a timing function and a test function to determine display characteristics.

The following functions are used with DrawDib.

DrawDibBegin

DrawDibChangePalette
DrawDibClose

DrawDibDraw
DrawDibEnd
DrawDibGetBuffer
DrawDibGetPalette
DrawDibOpen

DrawDibProfileDisplay
DrawDibRealize

DrawDibSetPalette
DrawDibStart

DrawDibStop
DrawDibTime

DrawDib Structures

The following structure is used with DrawDib.

DRAWDIBTIME

DrawDib Macros

The following macro is used with DrawDib.

DrawDibUpdate

Multimedia Timers

The multimedia timer services allow an application to schedule periodic timer events — that is, the
application can request and receive timer messages at application-specified intervals.

About Multimedia Timers

Multimedia timer services allow applications to schedule timer events with the greatest resolution (or
accuracy) possible for the hardware platform. These multimedia timer services allow you to schedule
timer events at a higher resolution than other timer services.

These timer services are useful for applications that demand high-resolution timing. For example, a MIDI
sequencer requires a high-resolution timer because it must maintain the pace of MIDI events within a
resolution of 1 millisecond.

Applications that do not use high-resolution timing should use the SetTimer function instead of
multimedia timer services. The timer services provided by SetTimer post WM_TIMER messages to a
message queue, while the multimedia timer services call a callback function. Applications that want a
waitable timer should use the CreateWaitableTimer function.

Obtaining the System Time

Typically, before an application begins using the multimedia timer services, it retrieves the current system
time. The system time is the time, in milliseconds, since the Microsoft Windows operating system was
started. You can use the timeGetTime or timeGetSystemTime function to retrieve the system time.
These two functions are very similar: timeGetTime returns the system time, and timeGetSystemTime
fills an MMTIME structure with the system time.

Timer Resolution

To determine the minimum and maximum timer resolutions supported by the timer services, use the
timeGetDevCaps function. This function fills the wPeriodMin and wPeriodMax members of the
TIMECAPS structure with the minimum and maximum resolutions. This range can vary across computers
and Windows platforms.

After you determine the minimum and maximum available timer resolutions, you must establish the
minimum resolution you want your application to use. Use the timeBeginPeriod and timeEndPeriod
functions to set and clear this resolution. You must match each call to timeBeginPeriod with a call to
timeEndPeriod, specifying the same minimum resolution in both calls. An application can make multiple
timeBeginPeriod calls, as long as each call is matched with a call to timeEndPeriod.

In both timeBeginPeriod and timeEndPeriod, the uPeriod parameter indicates the minimum timer
resolution, in milliseconds. You can specify any timer resolution value within the range supported by the
timer.

Timer Event Operations

After you have established your application's timer resolution, you can start timer events by using the
timeSetEvent function. This function returns a timer identifier that can be used to stop or identify timer
events. One of the function's parameters is the address of a TimeProc callback function that is called
when the timer event takes place.

There are two types of timer events: single and periodic. A single timer event occurs once, after a
specified number of milliseconds. A periodic timer event occurs every time a specified number of
milliseconds elapses. The interval between periodic events is called an event delay. Periodic timer events
with an event delay of 10 milliseconds or less consume a significant portion of CPU resources.

The relationship between the resolution of a timer event and the length of the event delay is important in
timer events. For example, if you specify a resolution of 5 and an event delay of 100, the timer services
notify the callback function after an interval ranging from 95 to 105 milliseconds.

You can cancel an active timer event at any time by using the timeKillEvent function. Be sure to cancel
any outstanding timers before freeing the memory containing the callback function.

Note The multimedia timer runs in its own thread.

Using Multimedia Timers

This section contains examples demonstrating how to perform the following tasks:

e Obtaining and setting timer resolution
¢ Starting a single timer event

¢ Writing a timer callback function

e Canceling a timer event

Obtaining and Setting Timer Resolution

The following example calls the timeGetDevCaps function to determine the minimum and maximum
timer resolutions supported by the timer services. Before it sets up any timer events, the example
establishes the minimum timer resolution by using the timeBeginPeriod function.

#define TARGET RESOLUTION 1 // l-millisecond target resolution

TIMECAPS tc;
UINT wTimerRes;

if (timeGetDevCaps (&tc, sizeof (TIMECAPS)) != TIMERR NOERROR)
{

// Error; application can't continue.

}

wTimerRes = min(max(tc.wPeriodMin, TARGET RESOLUTION), tc.wPeriodMax);
timeBeginPeriod (wTimerRes) ;

Starting a Single Timer Event

To start a single timer event, an application must call the timeSetEvent function, specifying the amount of
time before the callback occurs, the resolution, the address of the callback function (see TimeProc), and
the user data to supply with the callback function. An application can use a function like the following to
start a single timer event.

UINT SetTimerCallback (NPSEQ npSeq, // sequencer data
UINT msInterval) // event interval

{
npSeg->wTimerID = timeSetEvent (

msInterval, // delay

wTimerRes, // resolution (global variable)
OneShotCallback, // callback function

(DWORD) npSeq, // user data

TIME ONESHOT) ; // single timer event

if (! npSeg->wTimerID)
return ERR TIMER;
else
return ERR NOERROR;
}

For an example of the callback function OneShotCallback, see Writing a Timer Callback Function.

Writing a Timer Callback Function

The following callback function, OneShotTimer, invalidates the identifier for the single timer event and
calls a timer routine to handle the application-specific tasks. For more information, see TimeProc.

void CALLBACK OneShotTimer (UINT wTimerID, UINT msg,
DWORD dwUser, DWORD dwl, DWORD dw2)
{

NPSEQ npSeq; // pointer to sequencer data
npSeq = (NPSEQ)dwUser;
npSegq->wTimerID = O; // invalidate timer ID (no longer in use)

TimerRoutine (npSeq) ; // handle tasks

Canceling a Timer Event

The application must cancel any outstanding timers by calling the timeKillEvent function before it frees
the memory that contains the callback function. To cancel a timer event, it might call the following

function.

void DestroyTimer (NPSEQ npSeq)
{

if (npSeg->wTimerID) { // is timer event pending?
timeKillEvent (npSeqg->wTimerID); // cancel the event
npSeg->wTimerID = O;

Multimedia Timer Reference

This section describes the functions and structures associated with multimedia timer services. These
elements are grouped as follows.

Retrieving the System Time
MMTIME

timeGetSystemTime
timeGetTime

Retrieving Timer Information
TIMECAPS
timeGetDevCaps

Time Events

timeKillEvent
TimeProc
timeSetEvent

Time Periods

timeBeginPeriod
timeEndPeriod

Multimedia Timer Functions

The following functions are used with multimedia timers.

timeBeginPeriod
timeEndPeriod
timeGetDevCaps

timeGetSystemTime
timeGetTime

timeKillEvent
TimeProc
timeSetEvent

Multimedia Timer Structures

The following structures are used with multimedia timers.

MMTIME
TIMECAPS

File Input and Output

The multimedia file I/O services provide more functionality than the standard operating system services,
including support for buffered I/O, resource interchange file format (RIFF) files, memory files, and custom

storage systems. In addition, the multimedia file 1/0 services are optimized for applications sensitive to
performance.

About File Input and Output

Most multimedia applications require file input and output (I/O) — that is, the ability to create, read, and
write disk files. Multimedia file I/O services provide buffered and unbuffered file /0 and support for RIFF
files. The services are extensible with custom I/O procedures that can be shared among applications.

Most applications need only the basic file /O services and the RIFF file I/O services. Applications
sensitive to file /0 performance, such as applications that stream data from compact disc in real time,
can optimize performance by using services to directly access the file 1/0 buffer. Applications that access
custom storage systems, such as file archives and databases, can provide their own 1/O procedure that
reads and writes elements of the storage system.

File Input and Output Services
This section describes procedures for using the following multimedia file I/O services:

e Basic services
o Buffered services

* Resource interchange file format services

e Custom services

Basic Services

Using the basic I/O services is similar to using the run-time file 1/0 services of the C run-time library. Files
must be opened before they can be read or written. After reading or writing, the file must be closed. You
can also change the current read or write location within an open file.

Before you begin any I/O operations to a file, you must open the file by using the mmioOpen function.
This function returns a file handle of type HMMIO. You can use this file handle to identify the open file
when calling other file I/O functions.

Note An HMMIO file handle is not a standard file handle. Do not use HMMIO file handles with
Win32 or C run-time file 1/0O functions.

When you use mmioOpen to open a file, you use a flag to specify whether you are opening it for reading,
writing, or both. You can also specify flags that enable you to create or delete a file. Use the mmioClose
function to close a file when you are finished reading or writing to it.

You can read and write files by using the mmioRead and mmioWrite functions respectively. The next
read or write operation occurs at the current file position or file pointer in a file. The current file position is
advanced each time a file is read or written.

You can also change the current file position by using the mmioSeek function. You should ensure that
you specify a valid location in a file. If you specify an invalid location, such as past the end of the file,
mmioSeek may not return an error, but subsequent 1/O operations could fail.

There are flags you can use with the mmioOpen function for operations beyond basic file /0. By
specifying an MMIOINFO structure, for example, you can open memory files, specify a custom 1/O
procedure, or supply a buffer for buffered 1/0.

Buffered Services

Most of the overhead in file I/O occurs when accessing the media device. If you are reading or writing
many small blocks of information, the device can spend a lot of time moving to the physical location on
the media for each read or write operation. In this case, you can achieve better performance by using
buffered file I/O services. With buffered 1/O, the file /O manager maintains an intermediate buffer larger
than the blocks of information you are reading or writing. It accesses the device only when the buffer must
be filled from or written to the disk.

Before you set up and use buffered file I/O, you must decide whether you want the file I/O manager or the
application to allocate the buffer. It is simpler to let the file I/O manager allocate the buffer. However, you
can let the application allocate the buffer if you want to directly access the buffer or open a memory file.
For more information about using memory files, see Performing Memory File 1/0. For an example of
directly accessing an I/O buffer, see Accessing a File 1/0O Buffer

A buffer allocated by the file I/O manager is called an internal 1/O buffer. To open a file for buffered 1/0
using an internal buffer, specify the MMIO_ALLOCBUF flag when you open the file with the mmioOpen
function. The following illustration shows the initial state of the file /O buffer after a file is opened for a
buffered read operation. The buffering is transparent — you read and seek as if you were using
unbuffered I/O. The mmioOpen function has set pchNext and pchEndRead to point to the beginning of
the file 1/O buffer.

{ewc msdncd, EWGraphic, bsd23539 0 /a "SDK.BMP"}

The following illustration shows the initial state of the file I/O buffer after a file is opened for a buffered
write operation. The mmioOpen function has set pchNext to point to the beginning of the file I/O buffer
and pchEndWrite to point to the end of the buffer.

{ewc msdncd, EWGraphic, bsd23539 1 /a "SDK.BMP"}

The default size of the internal I/O buffer is 8K. If this size is not adequate, you can use the
mmioSetBuffer function to change the buffer size. You can also use this function to enable buffering on a
file opened for unbuffered I/O, or to supply your own buffer for use as a memory file.

You can force the contents of an I/O buffer to be written to disk by using the mmioFlush function.
However, when you close a file by using the mmioClose function, you do not have to call mmioFlush to
flush an 1/0O buffer — the mmioClose function automatically flushes it. If you run out of disk space,
mmioFlush could fail, even if the preceding calls to the mmioWrite function were successful. Similarly,
mmioClose could fail when it is flushing its I/O buffer.

Applications that are performance-sensitive, such as those that stream data in real time from a CD-
ROM, can optimize file I/O performance by directly accessing the 1/O buffer. You should be careful if you
choose to do this, because you bypass some of the safeguards and error checking provided by the file
I/O manager.

The multimedia file I/O manager uses the MMIOINFO structure to maintain state information about an
open file. You use three members in this structure to read and write the I/O buffer: pchNext,
pchEndRead, and pchEndWrite. The pchNext member points to the next location in the buffer to read
or write. You must increment this member as you read and write the buffer. The pchEndRead member
identifies the last valid character you can read from the buffer. Likewise, this member identifies the last
location in the buffer you can write. More precisely, both pchEndRead and pchEndWrite point to the
memory location that follows the last valid data in the buffer. Use the mmioGetinfo and mmioSetinfo
functions to retrieve and set state information about the file /O buffer. The following illustration shows the
state of the 1/O buffer after the application calls mmioAdvance during a read operation. The
mmioAdvance function fills the buffer and sets the pchEndRead pointer to the end of the buffer.

{ewc msdncd, EWGraphic, bsd23539 2 /a "SDK.BMP"}

In the following illustration, the application reads from the I/O buffer at the location specified by pchNext,
and advances the pointer.

{ewc msdncd, EWGraphic, bsd23539 3 /a "SDK.BMP"}
Similarly, for a write operation, the application writes to the I/O buffer and advances the pchNext pointer.
{ewc msdncd, EWGraphic, bsd23539 4 /a "SDK.BMP"}

After the application fills the buffer, it calls mmioAdvance to flush the buffer to disk. The mmioAdvance
function resets pchNext to point to the beginning of the buffer, as shown following.

{ewc msdncd, EWGraphic, bsd23539 5 /a "SDK.BMP"}

When you reach the end of the I/O buffer, you must advance the buffer to fill it from the disk, if you are
reading, or flush it to the disk, if you are writing. Use the mmioAdvance function to advance an I/O buffer.
To fill an I/O buffer from disk, use mmioAdvance with the MMIO_READ flag. If there is not enough data
remaining in the file to fill the buffer, the pchEndRead member of the MMIOINFO structure points to the
location following the last valid byte in the buffer. To flush a buffer to disk, set the MMIO_DIRTY flag in the
dwFlags member of the MMIOINFO structure and then call mmioAdvance with the MMIO_WRITE flag.

For example, during a read operation, the mmioAdvance function sets pchEndRead to point to the end
of valid data in the buffer, as shown following.

{ewc msdncd, EWGraphic, bsd23539 6 /a "SDK.BMP"}

Similarly, during a write operation, the application calls mmioAdvance to flush the buffer and advance
pchNext to the end of valid data in the buffer, as shown following.

{ewc msdncd, EWGraphic, bsd23539 7 /a "SDK.BMP"}

Resource Interchange File Format Services

The preferred format for multimedia files is resource interchange file format (RIFF). The RIFF file I/O
functions work with the basic buffered and unbuffered file I/O services. You can open, read, and write
RIFF files in the same way as other file types. For detailed information about RIFF, see AVIFile Functions
and Macros.

RIFF files use four-character codes to identify file elements. These codes are 32-bit quantities
representing a sequence of one to four ASCII alphanumeric characters, padded on the right with space
characters. The data type for four-character codes is FOURCC. Use the mmioFOURCC macro to convert
four characters into a four-character code. To convert a null-terminated string into a four-character code,
use the mmioStringToFOURCC function.

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of multimedia data, such as a
single frame in a video clip. Each chunk contains the following fields:

¢ Afour-character code specifying the chunk identifier
¢ Adoubleword value specifying the size of the data member in the chunk
e Adata field

The following illustration shows a "RIFF" chunk that contains two subchunks.
{ewc msdncd, EWGraphic, bsd23539 8 /a "SDK.BMP"}

A chunk contained in another chunk is a subchunk. The only chunks allowed to contain subchunks are
those with a chunk identifier of "RIFF" or "LIST". A chunk that contains another chunk is called a parent
chunk. The first chunk in a RIFF file must be a "RIFF" chunk. All other chunks in the file are subchunks of
the "RIFF" chunk.

"RIFF" chunks include an additional field in the first four bytes of the data field. This additional field
provides the form type of the field. The form type is a four-character code identifying the format of the
data stored in the file. For example, Microsoft waveform-audio files have a form type of "WAVE".

"LIST" chunks also include an additional field in the first four bytes of the data field. This additional field
contains the list type of the field. The list type is a four-character code identifying the contents of the list.
For example, a "LIST" chunk with a list type of "INFO" can contain "ICOP" and "ICRD" chunks providing
copyright and creation date information. The following illustration shows a "RIFF" chunk that contains a
"LIST" chunk and one other subchunk (the "LIST" chunk contains two subchunks).

{ewc msdncd, EWGraphic, bsd23539 9 /a "SDK.BMP"}

Multimedia file /O services include two functions you can use to navigate among chunks in a RIFF file:
mmioAscend and mmioDescend. You can use these functions as high-level seek functions. When you
descend into a chunk, the file position is set to the data field of the chunk (8 bytes from the beginning of
the chunk). For "RIFF" and "LIST" chunks, the file position is set to the location following the form type or
list type (12 bytes from the beginning of the chunk). When you ascend out of a chunk, the file position is
set to the location following the end of the chunk.

To create a new chunk, use the mmioCreateChunk function to write a chunk header at the current
position in an open file. The mmioAscend, mmioDescend, and mmioCreateChunk functions use the
MMCKINFO structure to specify and retrieve information about "RIFF" chunks.

Custom Services

Multimedia file 1/0 services use I/O procedures to handle the physical input and output associated with
reading and writing to different types of storage systems, such as file-archival systems and database-
storage systems. Predefined 1/O procedures exist for the standard file systems and for memory files, but
you can supply a custom I/O procedure for accessing a unique storage system by using the
mmiolnstalllOProc function.

To open a file by using a custom 1/O procedure, use the mmioOpen function. Include a plus sign (+) or
the CFSEPCHAR constant in the filename to separate the name of the physical file from the name of the
element of the file you want to open. The following example opens a file element named "element" from a
file named FILENAME.ARC:

mmioOpen ("filename.arc+element", NULL, MMIO READ);

When the file I/O manager encounters a plus sign in a filename, it examines the filename extension to
determine which 1/O procedure to associate with the file. In the previous example, the file I/O manager
would attempt to use the I/O procedure associated with the .ARC filename extension; this 1/0O procedure
would have been installed by using mmiolnstalllOProc. If no I/O procedure is installed, mmioOpen
returns an error.

I/0 procedures must respond to the following messages:

MMIOM_CLOSE
MMIOM_OPEN
MMIOM_READ
MMIOM_WRITE
MMIOM_SEEK
MMIOM_RENAME
MMIOM_WRITEFLUSH

You can also create custom messages and send them to your I/O procedure by using the
mmioSendMessage function. If you define your own messages, make sure they are defined at or above
the value defined by the MMIOM_USER constant.

In addition to processing messages, an I/O procedure must maintain the IDiskOffset member of the
MMIOINFO structure (pointed to by the l[pmmioinfo parameter of the mmioOpen function). The
IDiskOffset member must always contain the file offset to the location that the next MMIOM_READ or
MMIOM_WRITE message will access. The offset is specified in bytes and is relative to the beginning of
the file. The I/O procedure can use the adwinfo member to maintain any required state information. The
I/0 procedure should not modify any other members in the MMIOINFO structure.

Using File Input and Output

This section contains examples demonstrating how to perform the following tasks:

¢ Opening a file with mmioOpen

¢ Creating and deleting a file.

e Seeking to a new position in a file.
¢ Changing the I/O buffer size.

* Accessing a file I/O buffer.

* Generating four-character codes.
¢ Creating a RIFF chunk.

¢ Searching for a RIFF chunk.

¢ Searching for a subchunk.

¢ Performing file I/O on RIFF files.

¢ Performing memory file 1/0.

* |nstalling custom I/O procedures.
e Sharing an I/O procedure with other applications.

Opening a File with mmioOpen

To open a file for basic 1/O operations, set the lpmmioinfo parameter of the mmioOpen function to NULL.
The following example opens a file named "C\SAMPLES\SAMPLE1.TXT" for reading, and checks the
return value for error.

HMMIO hFile;

if ((hFile = mmioOpen ("C:\\SAMPLES\\SAMPLEL.TXT", NULL,

MMIO READ)) != NULL)
// File opened successfully.

else
// File cannot be opened.

Use the dwFlags parameter of mmioOpen to specify flags for opening a file.

Creating and Deleting a File

To create a file, set the dwOpenfFlags parameter of the mmioOpen function to MMIO_CREATE. The
following example creates a file and opens it for reading and writing.

HMMIO hFile;

hFile = mmioOpen ("NEWFILE.TXT", NULL, MMIO CREATE | MMIO READWRITE) ;
if (hFile != NULL)

// File created successfully.
else

// File cannot be created.

If the file you are creating already exists, it will be truncated to zero length.

To delete a file, set the dwOpenFlags parameter of the mmioOpen function to MMIO_DELETE. After you
delete a file, it cannot be recovered by any standard means. If your application is deleting a file at the
request of a user, query the user before deleting the file to make sure the user wants to delete it.

Seeking to a New Position in a File

The following example moves to the beginning of an open file using the mmioSeek function.
mmioSeek (hFile, OL, SEEK SET);

The following example moves to the end of an open file.
mmioSeek (hFile, OL, SEEK END);

The following example moves to a position 10 bytes from the end of an open file.

mmioSeek (hFile, -10L, SEEK END);

Changing the 1/0 Buffer Size

The following example opens a file named SAMPLE.TXT for unbuffered I/O, and then enables buffered

I/0 with an internal 16K buffer using the mmioSetBuffer function.

HMMIO hFile;

if ((hFile = mmioOpen ("SAMPLE.TXT", NULL, MMIO READ))
{

!'= NULL)

// File opened successfully; request an I/0 buffer.

if (mmioSetBuffer (hFile, NULL, 16384L, 0))
// Buffer cannot be allocated.
else

// Buffer allocated successfully.
}

else
// File cannot be opened.

Accessing a File 1/0 Buffer

The following example accesses an I/O buffer directly to read data from a waveform-audio file.

HMMIO hmmio;
MMIOINFO mmioinfo;
DWORD dwDataSize;
DWORD dwCount;
HPSTR hptr;

// Get information about the file I/O buffer.
if (mmioGetInfo (hmmio, &mmioinfo, 0))

{
Error ("Failed to get I/O buffer info.");

mmioClose (hmmio, O0);
return;

}

// Read the entire file by directly reading the file I/0 buffer.
// When the end of the I/0 buffer is reached, advance the buffer.

for (dwCount = dwDataSize, hptr = lpData; dwCount 0; dwCount--)
{
// Check to see if the I/0 buffer must be advanced.
if (mmioinfo.pchNext == mmioinfo.pchEndRead)
{
if (mmioAdvance (hmmio, &mmioinfo, MMIO READ))

{

Error ("Failed to advance buffer.");

mmioClose (hmmio, 0);
return;

}

// Get a character from the buffer.
*hptr++ = *mmioinfo.pchNext++;

}

// End direct buffer access and close the file.
mmioSetInfo (hmmio, &mmioinfo, 0);
mmioClose (hmmio, O0);

When you finish accessing a file I/O buffer, call the mmioSetinfo function, passing an address of the
MMIOINFO structure filled by the mmioGetInfo function. If you wrote to the buffer, set the MMIO_DIRTY
flag in the dwFlags member of the MMIOINFO structure before calling mmioSetinfo. Otherwise, the
buffer will not be flushed to disk.

Generating Four-Character Codes

You can use the mmioFOURCC macro or the mmioStringToFOURCC function to generate four-
character codes. The following example uses mmioFOURCC to generate a four-character code for
"WAVE".

FOURCC fourccID;

fourccID = mmioFOURCC ('W', 'A', 'V', 'E');

The following example uses mmioStringToFOURCC to generate a four-character code for "WAVE".

FOURCC fourccID;

fourccID = mmioStringToFOURCC ("WAVE", 0);

The second parameter in mmioStringToFOURCC specifies flags for converting the string to a four-
character code. If you specify the MMIO_TOUPPER flag, mmioStringToFOURCC converts all alphabetic
characters in the string to uppercase. This is useful when you need to specify a four-character code to
identify a custom 1/O procedure because four-character codes identifying file-extension names must be all
uppercase.

Creating a RIFF Chunk

The following example uses the mmioCreateChunk function to create a chunk with a chunk identifier of
"RIFF" and a form type of "RDIB".

HMMIO hmmio;
MMCKINFO mmckinfo;

mmckinfo.fccType = mmioFOURCC('R', 'D', 'I', 'B');
mmioCreateChunk (hmmio, &mmckinfo, MMIO CREATERIFF);

If you are creating a "RIFF" or "LIST" chunk, you must specify the form type or list type in the fccType
member of the MMCKINFO structure. In the previous example, "RDIB" is the form type.

If you know the size of the data field in a new chunk, you can set the cksize member of the MMCKINFO
structure when you create the chunk. This value will be written to the data size field in the new chunk. If
this value is not correct when you call mmioAscend to mark the end of the chunk, it will be automatically
rewritten to reflect the correct size of the data field.

After you create a chunk by using the mmioCreateChunk function, the file position is set to the data field
of the chunk (8 bytes from the beginning of the chunk). If the chunk is a "RIFF" or "LIST" chunk, the file
position is set to the location following the form type or list type (12 bytes from the beginning of the
chunk).

Searching for a RIFF Chunk

The following example uses the mmioDescend function to search for a "RIFF" chunk with a form type of
"WAVE" to verify that the file that has just been opened is a waveform-audio file.

HMMIO hmmio;
MMCKINFO mmckinfoParent;
MMCKINFO mmckinfoSubchunk;

// Locate a "RIFF" chunk with a "WAVE" form type to make
// sure the file is a waveform-audio file.
mmckinfoParent.fccType = mmioFOURCC('W', 'A', 'V', 'E');
if (mmioDescend (hmmio, (LPMMCKINFO) &mmckinfoParent, NULL,
MMIO FINDRI FF))
// The file is not a waveform-audio file.
else
// The file is a waveform-audio file

Searching for a Subchunk

The following example uses the mmioDescend function to search for the "FMT" chunk in the "RIFF"
chunk of the previous example.

// Find the format chunk (form type "FMT"); it should be
// a subchunk of the "RIFF" parent chunk.
mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ");
if (mmioDescend (hmmio, &mmckinfoSubchunk, &mmckinfoParent,
MMIO FINDCHUNK))
// Error, cannot find the "FMT" chunk.
else
// "FMT" chunk found.

To search for a subchunk (that is, any chunk other than a "RIFF" or "LIST" chunk), identify its parent
chunk in the IpckParent parameter of the mmioDescend function.

If you do not specify a parent chunk, the current file position should be at the beginning of a chunk before
you call the mmioDescend function. If you do specify a parent chunk, the current file position can be
anywhere in that chunk.

If the search for a subchunk fails, the current file position is undefined. You can use the mmioSeek
function and the dwDataOffset member of the MMCKINFO structure describing the parent chunk to seek
back to the beginning of the parent chunk, as in the following example:

mmioSeek (hmmio, mmckinfoParent.dwDataOffset + 4, SEEK SET);

Because dwDataOffset specifies the offset to the beginning of the data portion of the chunk, you must
seek 4 bytes past dwDataOffset to set the file position after the form type.

Performing File 1/0 on RIFF Files

The following example shows how to open a RIFF file for buffered 1/0O, as well as how to descend,
ascend, and read "RIFF" chunks.

// ReversePlay--Plays a waveform-audio file backward.
void ReversePlay ()

{

char szFileName [128]; // filename of file to open

HMMIO hmmio; // file handle for open file
MMCKINFO mmckinfoParent; // parent chunk information
MMCKINFO mmckinfoSubchunk; // subchunk information structure
DWORD dwFmtSize; // size of "FMT" chunk

DWORD dwDataSize; // size of "DATA" chunk
WAVEFORMAT *pFormat; // address of "FMT" chunk

HPSTR lpData; // address of "DATA" chunk

// Get the filename from the edit control.

// Open the file for reading with buffered I/0
// by using the default internal buffer
if (! (hmmio = mmioOpen (szFileName, NULL,

MMIO READ | MMIO ALLOCBUF)))

Error ("Failed to open file.");
return;

}

// Locate a "RIFF" chunk with a "WAVE" form type to make

// sure the file is a waveform-audio file.

mmckinfoParent.fccType = mmioFOURCC ('W', 'A', 'V', 'E');

if (mmioDescend (hmmio, (LPMMCKINFO) &mmckinfoParent, NULL,
MMIO FINDRIFF))

Error ("This is not a waveform-audio file.");
mmioClose (hmmio, O0);
return;

}

// Find the "FMT" chunk (form type "FMT"); it must be

// a subchunk of the "RIFF" chunk.

mmckinfoSubchunk.ckid = mmioFOURCC('f', 'm', 't', ' ');

if (mmioDescend (hmmio, &mmckinfoSubchunk, &mmckinfoParent,
MMIO_FINDCHUNK))

Error ("Waveform-audio file has no "FMT" chunk.");
mmioClose (hmmio, O0);
return;

}

// Get the size of the "FMT" chunk. Allocate
// and lock memory for it.
dwFmtSize = mmckinfoSubchunk.cksize;

// Read the "FMT" chunk.
if (mmioRead (hmmio, (HPSTR) pFormat, dwFmtSize) != dwFmtSize) {
Error ("Failed to read format chunk.");

mmioClose (hmmio, O0);
return;

}

// Ascend out of the "FMT" subchunk.
mmioAscend (hmmio, &mmckinfoSubchunk 0);

// Find the data subchunk. The current file position should be at
// the beginning of the data chunk; however, you should not make
// this assumption. Use mmioDescend to locate the data chunk.
mmckinfoSubchunk.ckid = mmioFOURCC('d', 'a', 't', 'a');
if (mmioDescend (hmmio, &mmckinfoSubchunk, &mmckinfoParent,

MMIO FINDCHUNK))

Error ("Waveform-audio file has no data chunk.");

mmioClose (hmmio, 0);
return;

// Get the size of the data subchunk.
dwDataSize = mmckinfoSubchunk.cksize;
if (dwDataSize == O0L) {

Error ("The data chunk contains no data.");

mmioClose (hmmio, O0);
return;

}

// Open a waveform-audio output device.

// Allocate and lock memory for the waveform-audio data.

// Read the waveform-audio data subchunk.
if (mmioRead (hmmio, (HPSTR) lpData, dwDataSize) != dwDataSize) {
Error ("Failed to read data chunk.");

mmioClose (hmmio, 0);
return;

// Close the file.
mmioClose (hmmio, O0);

// Reverse the sound and play it.

Performing Memory File 1/0

The multimedia file I/O services let you treat a block of memory as a file. This can be useful if you already
have a file image in memory. Memory files let you reduce the number of special-case conditions in your
code because, for I/O purposes, you can treat memory files as if they were disk-based files. You can also
use memory files with the clipboard.

As with I/O buffers, memory files can use memory allocated by the application or by the file /O manager.
In addition, memory files can be either expandable or nonexpandable. When the file I/O manager reaches
the end of an expandable memory file, it expands the memory file by a predefined increment.

To open a memory file, use the mmioOpen function with the szFilename parameter set to NULL and the
MMIO_READWRITE flag set in the dwOpenfFlags parameter. Set the [ommioinfo parameter to point to an
MMIOINFO structure that has been set up as follows:

1

4.
5.

6.

. Set the plOProc member to NULL.
2.
3.

Set the feclOProc member to FOURCC_MEM.

Set the pchBuffer member to point to the memory block. To request that the file /O manager allocate
the memory block, set pchBuffer to NULL.

Set the cchBuffer member to the initial size of the memory block.

Set the adwinfo member to the minimum expansion size of the memory block. For a nonexpandable
memory file, set adwinfo to NULL.

Set all other members to zero.

There are no restrictions on allocating memory for use as a nonexpandable memory file.

Installing Custom 1/O Procedures

To install an I/O procedure associated with the .ARC filename extension, use the mmiolnstalllOProc
function as follows:

mmioInstallIOProc (mmioFOQURCC('A', 'R', 'C', " "),
(LPMMIOPROC) lpmmioproc, MMIO_INSTALLPROC) ;

When you install an 1/0 procedure using mmiolnstalllOProc, the procedure remains installed until you
remove it. The I/O procedure is used for any file you open as long as the file has the appropriate filename
extension.

You can also temporarily install an 1/0 procedure by using the mmioOpen function. In this case, the I/0
procedure is used only with a file opened by using mmioOpen and is removed when the file is closed by
using the mmioClose function. To specify an I/O procedure when you open a file by using mmioOpen,
use the lIpmmioinfo parameter to reference an MMIOINFO structure as follows:

1. Set the fcclOProc member to NULL.
2. Set the plOProc member to the procedure-instance address of the I/O procedure.

3. Set all other members to zero (unless you are opening a memory file, or directly reading or writing to
the file I/O buffer).

Be sure to remove any I/O procedures you have installed before you exit your application.

Sharing an 1/0O Procedure with Other Applications

If you want to share an 1/O procedure with other applications, you need to write a dynamic-link library
(DLL) for your application. You can share the 1/0O procedure by doing one of the following:

¢ Include the code for the 1/0O procedure in the DLL.
¢ Create a function in the DLL that calls the mmiolnstalllOProc function to install the 1/0 procedure.
e Export this function in the module-definitions file of the DLL.

To use the shared 1/O procedure, an application must first call the function in the DLL to install the 1/O
procedure.

File Input and Output Reference

This section describes the functions, macros, messages, and structures associated with multimedia file
input and output. These elements are grouped as follows.

Basic I/O
mmioClose
mmioOpen
mmioRead
mmioRename
mmioSeek
mmioWrite

Buffered 1/1O

mmioAdvance
mmioFlush
mmioGetinfo
MMIOINFO
mmioSetBuffer
mmioSetinfo

RIFF 1IO

mmioAscend
MMCKINFO
mmioCreateChunk
mmioDescend
mmioFOURCC

mmioStringToFOURCC
Custom /O Procedures

I0Proc
mmiolnstalllOProc
MMIOM CLOSE
MMIOM_ OPEN
MMIOM_READ
MMIOM RENAME
MMIOM SEEK
MMIOM WRITE
MMIOM WRITEFLUSH

mmioSendMessage

Multimedia File I/O Functions

The following functions are used with multimedia file 1/O.

I0Proc
mmioAdvance
mmioAscend
mmioClose
mmioCreateChunk
mmioDescend
mmioFlush
mmioGetinfo
mmiolnstalllOProc
mmioOpen
mmioRead
mmioRename
mmioSeek
mmioSendMessage
mmioSetBuffer
mmioSetinfo

mmioStringToFOURCC
mmioWrite

Multimedia File I/O Structures

The following structures are used with multimedia file I/O.

MMCKINFO
MMIOINFO

Multimedia File /0 Messages

The following messages are used with multimedia file I/O.

MMIOM_CLOSE
MMIOM_OPEN
MMIOM_READ
MMIOM_RENAME
MMIOM_SEEK
MMIOM_WRITE
MMIOM_WRITEFLUSH

Joysticks

This overview describes the functions and messages that support joysticks, as well as other ancillary
input devices that track positions within an absolute coordinate system, such as a touch screen, digitizing
tablet, and light pen. Extended capabilities also provide support for rudder pedals, flight yokes, and other
devices that use up to six axes of movement, a point-of-view hat, and 32 buttons.

About Joysticks

The joystick is an ancillary input device for applications that provide alternatives to using the keyboard
and mouse. The joystick provides positional information within a coordinate system that has absolute
maximum and minimum values in each axis of movement.

Joystick services are loaded when the operating system is started. The joystick services can
simultaneously monitor two joysticks, each with two- or three-axis movement. Each joystick can have up
to four buttons. You can use the joystick functions to determine the capabilities of the joysticks and
joystick driver. Also, you can process a joystick's positional and button information by querying the joystick
directly or by capturing the joystick and processing messages from it. The latter method is simpler
because your application does not have to manually query the joystick or track the time to generate
queries at regular intervals.

Joystick Capabilities

Joysticks can support two- or three-axis movement and up to four buttons. Joysticks also support different
ranges of motion and polling frequencies. The range of motion is the distance a joystick handle can move
from its resting position to the position farthest from its resting position. The polling frequency is the time
interval between joystick queries.

Joystick drivers can support either one or two joysticks. You can determine the number of joysticks
supported by a joystick driver by using the joyGetNumDevs function. This function returns an unsigned
integer that contains the number of supported joysticks or zero if there is no joystick support. The return
value does not indicate the number of joysticks attached to the system.

You can determine if a joystick is attached to the system by using the joyGetPos function. This function
returns JOYERR_NOERRGOR if the specified device is attached. Otherwise , it returns
JOYERR_UNPLUGGED.

Each joystick has several capabilities that are available to your application. You can retrieve the
capabilities of a joystick by using the joyGetDevCaps function. This function fills a JOYCAPS structure
with joystick capabilities such as the minimum and maximum values for its coordinate system, the number
of buttons on the joystick, and the minimum and maximum polling frequencies.

Joystick Position

You can query a joystick for position and button information by using the joyGetPos function. For
example, an application can query the joystick for baseline position values. The Joystick Control Panel
property sheet uses this technique when calibrating the joystick.

You can also query a joystick or other device that has extended capabilities by using the joyGetPosEx
function. -

Joystick Notifications

You can capture direct joystick messages to be sent to a function by using the joySetCapture function.
Only one application at a time can capture messages from a joystick, but you can query the joystick from
another application by using the joyGetPos or joyGetPosEx function.

Note A joystick message can fail to reach the application that captured the joystick if a second
application uses joyGetPos or joyGetPosEx to query the joystick at approximately the same time
that the message is sent. In this case, the second application could intercept the message.

If you want to capture messages from two joysticks attached to the system, use joySetCapture twice,
once for each joystick. Your window receives separate and distinct messages for each device.

You can release a captured joystick by using the joyReleaseCapture function. If an application does not
release the joystick before ending, the joystick is automatically released shortly after the capture window
is destroyed.

You cannot capture an unplugged joystick. The joySetCapture function returns JOYERR_UNPLUGGED
if the specified device is unplugged.

Time-Based Notifications

You can notify the operating system to send joystick messages to an application at regular time intervals
by setting the fChanged parameter of joySetCapture to FALSE and by specifying the interval length
between successive messages. To do this, assign the uPeriod parameter a value between the minimum
and maximum polling frequencies for the joystick. You can determine this range by using the
joyGetDevCaps function, which fills the wPeriodMin and wPeriodMax members in the JOYCAPS
structure. If the uPeriod value is outside the range of valid polling frequencies for the joystick, the joystick
driver uses the minimum or maximum polling frequency, whichever is closer to the uPeriod value.

Note Windows sets up a timer event with each call to joySetCapture.

Event-Based Notifications

You can notify Windows to send joystick messages to an application whenever the position of a joystick
axis changes by a value greater than the movement threshold of the device. The movement threshold is
the distance the joystick must be moved before a WM_JOYMOVE message is sent to a window that has
captured the device. The threshold is initially zero. You can set the movement threshold by using the
joySetThreshold function. You can retrieve the minimum polling frequency of the joystick by using the
joyGetDevCaps function.

Joystick Notification Messages

Joystick messages notify your application that a joystick has changed position or that one of its buttons
has changed states. Messages beginning with MM_JOY1 are sent to the function if your application
requests input from the joystick using the identifier JOYSTICKID1, and MM_JOY2 messages are sent if
your application requests input from the joystick using the identifier JOYSTICKID2.

The messages in the following table identify the status of the joystick buttons:

Message Description
MM_JOY1BUTTONDOWN A button on joystick JOYSTICKID1 has
been pressed.

MM_JOY1BUTTONUP A button on joystick JOYSTICKID1 has
been released.

MM_JOY1MOVE Joystick JOYSTICKID1 changed position in
the x- or y-direction.
MM_JOY1ZMOVE Joystick JOYSTICKID1 changed position in

the z-direction.
MM_JOY2BUTTONDOWN A button on joystick JOYSTICKID2 has
been pressed.

MM_JOY2BUTTONUP A button on joystick JOYSTICKID2 has
been released.

MM_JOY2MOVE Joystick JOYSTICKID2 changed position in
the x- or y-direction
MM_JOY2ZMOVE Joystick JOYSTICKID2 changed position in

the z-direction.

All messages report nonexistent buttons as released.

Using Joysticks
This section contains examples demonstrating how to perform the following tasks:

e Getting the driver capabilities
e (Capturing joystick input
¢ Processing joystick messages

The examples are taken from a simple joystick application that retrieves position and button-state
information from the joystick services, plays waveform-audio resources, and paints bullet holes on the
screen when a user presses the joystick buttons.

Getting the Driver Capabilities

The following example uses joyGetNumDevs and joyGetPos to determine whether the joystick services
are available and if a joystick is attached to one of the ports.

JOYINFO joyinfo;
UINT wNumDevs, wDevicelD;
BOOL bDevlAttached, bDev2Attached;

if ((wNumDevs = joyGetNumDevs()) == 0)
return ERR NODRIVER;

bDevlAttached = joyGetPos (JOYSTICKID1, &joyinfo) != JOYERR UNPLUGGED;

bDev2Attached = wNumDevs == 2 && joyGetPos (JOYSTICKIDZ2, &joyinfo) !=
JOYERR UNPLUGGED;

if (bDevlAttached || bDev2Attached) // decide which joystick to use
wDeviceID = bDevlAttached ? JOYSTICKID1 : JOYSTICKIDZ2;

else

return ERR NODEVICE;

Capturing Joystick Input

Most of the code controlling the joystick is in the main window function. In the following portion of the
message handler, the application calls joySetCapture to capture input from the joystick JOYSTICKID1.

case WM CREATE:

if (joySetCapture (hWwnd, JOYSTICKID1l, NULL, FALSE))

{
MessageBeep (MB ICONEXCLAMATION) ;
MessageBox (hiWwnd, "Couldn't capture the joystick.", NULL,

MB OK | MB ICONEXCLAMATION) ;

PostMessage (hWnd, WM CLOSE, 0, 0OL) ;

}

break;

Processing Joystick Messages

The following example illustrates how an application could respond to joystick movements and changes in
the button states. When the joystick changes position, the application moves the cursor and, if either
button is pressed, draws a bullet hole on the desktop. When a joystick button is pressed, the application
draws a hole on the desktop and plays a sound continuously until a button is released. The messages to
watch are MM_JOY1MOVE, MM_JOY1BUTTONDOWN, and MM_JOY1BUTTONUP.

case MM JOYIMOVE : // changed position
if ((UINT) wParam & (JOY BUTTON1 | JOY BUTTONZ2))
DrawFire (hWnd) ;

DrawSight (1Param) ; // calculates new cursor position
break;
case MM JOY1BUTTONDOWN : // button is down

if ((UINT) wParam & JOY BUTTONL)

{
PlaySound (1pButtonl, SND LOOP | SND ASYNC | SND MEMORY) ;

DrawFire (hWnd) ;

}
else if ((UINT) wParam & JOY BUTTONZ)

{
PlaySound (lpButton2, SND ASYNC | SND MEMORY | SND_LOOP);

DrawFire (hWnd) ;
}

break;
case MM JOY1BUTTONUP : // button is up
sndPlaySound (NULL, 0); // stops the sound

break;

Joystick Reference

This section describes the functions, structures, and messages associated with joysticks. The elements
are grouped as follows:

Device Capabilities

joyGetDevCaps

joyGetNumbDevs
JOYCAPS

Querying a Joystick

joyGetPos

joyGetPosEx
JOYINFO

JOYINFOEX
Capturing a Joystick

joyGetThreshold
joyReleaseCapture
joySetCapture
joySetThreshold
MM_JOY1BUTTONDOWN
MM JOY1BUTTONUP
MM JOY1MOVE

MM JOY1ZMOVE

MM JOY2BUTTONDOWN
MM JOY2BUTTONUP
MM JOY2MOVE

MM JOY2ZMOVE

Multimedia Joystick Functions

An application uses the joystick functions to query a joystick driver and to prepare an application to
receive notification messages from a joystick driver.

The following functions are used with multimedia joysticks.

joyGetDevCaps
joyGetNumDevs
joyGetPos
joyGetPosEx
joyGetThreshold
joyReleaseCapture
joySetCapture
joySetThreshold

Multimedia Joystick Structures

The following structures are used with multimedia joysticks.

JOYCAPS
JOYINFO
JOYINFOEX

Multimedia Joystick Messages

The following messages are used with multimedia joysticks.

MM_JOY1BUTTONDOWN
MM_JOY1BUTTONUP
MM_JOY1MOVE
MM_JOY1ZMOVE
MM_JOY2BUTTONDOWN
MM_JOY2BUTTONUP
MM_JOY2MOVE
MM_JOY2ZMOVE

acmDriverAdd

Overview
Group

The acmDriverAdd function adds a driver to the list of available ACM drivers. The driver type and
location are dependent on the flags used to add ACM drivers. After a driver is successfully added, the
driver entry function will receive ACM driver messages.

MMRESULT acmDriverAdd(

LPHACMDRIVERID phadid,
HINSTANCE hinstModule,
LPARAM /Param,

DWORD dwPriority,
DWORD fdwAdd

),

Parameters
phadid

Address that is filled with a handle identifying the installed driver. This handle is used to identify the
driver in calls to other ACM functions.

hinstModule

Handle of the instance of the module whose executable or dynamic-link library (DLL) contains the
driver entry function.

IParam

Driver function address or a notification window handle, depending on the fdwAdd flags.
dwPriority

Window message to send for notification broadcasts. This parameter is used only with the
ACM_DRIVERADDF_NOTIFYHWND flag. All other flags require this member to be set to zero.

fdwAdd

Flags for adding ACM drivers. The following values are defined:
ACM_DRIVERADDF_FUNCTION

The IParam parameter is a driver function address conforming to the acmDriverProc prototype.
The function may reside in either an executable or DLL file.

ACM_DRIVERADDF_GLOBAL

Provided for compatibility with 16-bit applications. For the Win32 API, ACM drivers added by the
acmDriverAdd function can be used only by the application that added the driver. This is true
whether or not ACM_DRIVERADDF_GLOBAL is specified. For more information, see Adding
Drivers Within an Application.

ACM_DRIVERADDF_LOCAL

The ACM automatically gives a local driver higher priority than a global driver when searching for a
driver to satisfy a function call. For more information, see Adding Drivers Within an Application.

ACM_DRIVERADDF_NOTIFYHWND

The IParam parameter is a handle of a notification window that receives messages when changes

to global driver priorities and states are made. The window message to receive is defined by the
application and must be passed in dwPriority. The wParam and IParam parameters passed with
the window message are reserved for future use and should be ignored.
ACM_DRIVERADDF_GLOBAL cannot be specified in conjunction with this flag. For more
information about driver priorities, see the description for the acmDriverPriority function.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate
resources.

See Also
acmDriverProc, acmDriverPriority

acmDriverClose

Overview
Group

The acmDriverClose function closes a previously opened ACM driver instance. If the function is
successful, the handle is invalidated.

MMRESULT acmDriverClose(

HACMDRIVER had,
DWORD fdwClose

),

Parameters
had

Handle of the open driver instance to be closed.
fdwClose

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The driver is in use and cannot
be closed.

MMSYSERR _INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

acmDriverDetails

Overview
Group

The acmDriverDetails function queries a specified ACM driver to determine its capabilities.
MMRESULT acmDriverDetails(

HACMDRIVERID hadid,
LPACMDRIVERDETAILS padd,
DWORD fdwDetails

),

Parameters
hadid

Handle of the driver identifier of an installed ACM driver. Disabled drivers can be queried for details.
padd

Address of an ACMDRIVERDETAILS structure that will receive the driver details. The cbStruct
member must be initialized to the size, in bytes, of the structure.

fdwDetails

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

See Also
ACMDRIVERDETAILS

acmDriverEnum

Overview
Group

The acmDriverEnum function enumerates the available ACM drivers, continuing until there are no more
drivers or the callback function returns FALSE.

MMRESULT acmDriverEnum(

ACMDRIVERENUMCB fnCallback,
DWORD dwinstance,
DWORD fdwEnum

),

Parameters
fnCallback

Procedure instance address of the application-defined callback function.
dwinstance

A 32-bit application-defined value that is passed to the callback function along with ACM driver
information.

fdwEnum

Flags for enumerating ACM drivers. The following values are defined:
ACM_DRIVERENUMF_DISABLED

Disabled ACM drivers should be included in the enumeration. Drivers can be disabled by the user
through the Control Panel or by an application using the acmDriverPriority function. If a driver is
disabled, the fdwSupport parameter to the callback function will have the

ACMDRIVERDETAILS _SUPPORTF_DISABLED flag set.

ACM_DRIVERENUMF_NOLOCAL

Only global drivers should be included in the enumeration.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

The acmDriverEnum function will return MMSYSERR_NOERROR (zero) if no ACM drivers are installed.
Moreover, the callback function will not be called.

See Also
acmDriverPriority

acmDriverEnumCallback

Overview
Group

The acmDriverEnumCallback function specifies a callback function used with the acmDriverEnum
function. The acmDriverEnumCallback name is a placeholder for an application-defined function name.

BOOL ACMDRIVERENUMCB acmDriverEnumCallback(

HACMDRIVERID hadid,
DWORD dwinstance,
DWORD fdwSupport

),

Parameters
hadid

Handle of an ACM driver identifier.
dwinstance

Application-defined value specified in acmDriverEnum.
fdwSupport

Driver-support flags specific to the driver specified by hadid. These flags are identical to the
fdwSupport flags of the ACMDRIVERDETAILS structure. This parameter can be a combination of
the following values:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags. For example, if a driver supports
compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag. For example, if a
driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_DISABLED

Driver has been disabled. An application must specify the ACM_DRIVERENUMF_DISABLED flag
with acmDriverEnum to include disabled drivers in the enumeration.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks
The acmDriverEnum function will return MMSYSERR_NOERROR (zero) if no ACM drivers are installed.

Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also
ACMDRIVERDETAILS, acmDriverEnum, acmDriverAdd, acmDriverRemove, and acmDriverPriority

acmDriveriD

Overview
Group

The acmDriverID function returns the handle of an ACM driver identifier associated with an open ACM
driver instance or stream handle.

MMRESULT acmDriverlD(

HACMOBJ hao,
LPHACMDRIVERID phadid,
DWORD fdwDriverlD

),

Parameters
hao

Handle of the open driver instance or stream handle. This is the handle of an ACM object, such
HACMDRIVER or HACMSTREAM.

phadid

Address that is filled with a handle identifying the installed driver that is associated with hao.
fdwDriverlD

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

acmDriverMessage

Overview
Group

The acmDriverMessage function sends a user-defined message to a given ACM driver instance.
LRESULT acmDriverMessage(

HACMDRIVER had,
UINT uMsg,
LPARAM /Param1,
LPARAM /Param?2

),

Parameters
had

Handle of the ACM driver instance to which the message will be sent.
uMsg

Message that the ACM driver must process. This message must be in the ACMDM_USER message
range (above or equal to ACMDM_USER and less than ACMDM_RESERVED_LOW). The exceptions
to this restriction are the ACMDM_DRIVER_ABOUT, DRV_QUERYCONFIGURE, and
DRV_CONFIGURE messages.

IParam1 and IParam?2

Message parameters.

Return Values

The return value is specific to the user-defined ACM driver message specified by the uMsg parameter.
However, possible error values include the following:

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM The uMsg parameter is not in the
ACMDM_USER range.

MMSYSERR_NOTSUPPORTE The ACM driver did not process
D the message.

Remarks

To display a custom About dialog box from an ACM driver, an application must send the
ACMDM_DRIVER_ABOUT message to the driver. The /Param1 parameter should be the handle of the
owner window for the custom About dialog box, and IParam2 must be set to zero. If the driver does not
support a custom About dialog box, MMSYSERR_NOTSUPPORTED will be returned and it is the
application's responsibility to display its own dialog box. For example, the Control Panel Sound Mapper
option will display a default About dialog box based on the ACMDRIVERDETAILS structure when an
ACM driver returns MMSYSERR_NOTSUPPORTED. An application can query a driver for custom About
dialog box support without the dialog box being displayed by setting /Param1 to - 1L. If the driver supports
a custom About dialog box, MMSYSERR_NOERROR will be returned. Otherwise, the return value is
MMSYSERR_NOTSUPPORTED.

User-defined messages must be sent only to an ACM driver that specifically supports the messages. The

caller should verify that the ACM driver is the correct driver by retrieving the driver details and checking
the wMid, wPid, and vdwDriver members of the ACMDRIVERDETAILS structure.

Never send user-defined messages to an unknown ACM driver.

See Also
DRV_QUERYCONFIGURE, DRV_CONFIGURE, ACMDRIVERDETAILS

acmDriverOpen

Overview
Group

The acmDriverOpen function opens the specified ACM driver and returns a driver instance handle that
can be used to communicate with the driver.

MMRESULT acmDriverOpen(

LPHACMDRIVER phad,
HACMDRIVERID hadid,
DWORD fdwOpen

),

Parameters
phad

Address that will receive the new driver instance handle that can be used to communicate with the
driver.

hadid

Handle of the driver identifier of an installed and enabled ACM driver.
fdwOpen

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate
resources.

MMSYSERR_NOTENABLED The driver is not enabled.

acmbDriverPriority

Overview
Group

The acmDriverPriority function modifies the priority and state of an ACM driver.
MMRESULT acmDriverPriority(

HACMDRIVERID hadid,
DWORD dwPeriority,
DWORD fdwPriority

),

Parameters
hadid

Handle of the driver identifier of an installed ACM driver. If the ACM_DRIVERPRIORITYF_BEGIN and
ACM_DRIVERPRIORITYF_END flags are specified, this parameter must be NULL.

dwPriority

New priority for a global ACM driver identifier. A zero value specifies that the priority of the driver
identifier should remain unchanged. A value of 1 specifies that the driver should be placed as the
highest search priority driver. A value of - 1 specifies that the driver should be placed as the lowest
search priority driver. Priorities are used only for global drivers.

fdwPriority

Flags for setting priorities of ACM drivers. The following values are defined:
ACM_DRIVERPRIORITYF_BEGIN

Change notification broadcasts should be deferred. An application must reenable notification
broadcasts as soon as possible with the ACM_DRIVERPRIORITYF_END flag. Note that hadid
must be NULL, dwPriority must be zero, and only the ACM_DRIVERPRIORITYF_BEGIN flag can
be set.

ACM_DRIVERPRIORITYF_DISABLE

ACM driver should be disabled if it is currently enabled. Disabling a disabled driver does nothing.
ACM_DRIVERPRIORITYF_ENABLE

ACM driver should be enabled if it is currently disabled. Enabling an enabled driver does nothing.
ACM_DRIVERPRIORITYF_END

Calling task wants to reenable change notification broadcasts. An application must call
acmbDriverPriority with ACM_DRIVERPRIORITYF_END for each successful call with the
ACM_DRIVERPRIORITYF_BEGIN flag. Note that hadid must be NULL, dwPriority must be zero,
and only the ACM_DRIVERPRIORITYF_END flag can be set.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_ALLOCATED The deferred broadcast lock is
owned by a different task.

MMSYSERR_INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOTSUPPORTE The requested operation is not

D supported for the specified driver.
For example, local and notify
driver identifiers do not support
priorities (but can be enabled and
disabled). If an application
specifies a nonzero value for
dwPriority for local and notify
driver identifiers, this error will be
returned.

Remarks
All driver identifiers can be enabled and disabled, including global, local and notification driver identifiers.

If more than one global driver identifier needs to be enabled, disabled or shifted in priority, an application
should defer change notification broadcasts by using the ACM_DRIVERPRIORITYF_BEGIN flag. A single
change notification will be broadcast when the ACM_DRIVERPRIORITYF_END flag is specified.

An application can use the function with the acmMetrics ACM_METRIC_DRIVER_PRIORITY metric
index to retrieve the current priority of a global driver. Drivers are always enumerated from highest to
lowest priority by the acmDriverEnum function.

All enabled driver identifiers will receive change notifications. An application can register a notification
message by using the acmDriverAdd function in conjunction with the
ACM_DRIVERADDF_NOTIFYHWND flag. Changes to nonglobal driver identifiers will not be broadcast.

Priorities are simply used for the search order when an application does not specify a driver. Boosting the
priority of a driver will have no effect on the performance of a driver.

See Also
acmMetrics, acmDriverEnum, acmDriverAdd

acmbDriverProc

Overview
Group

The acmDriverProc function specifies a callback function used with the ACM driver. The acmDriverProc
name is a placeholder for an application-defined function name. The actual name must be exported by
including it in the module-definition file of the executable or DLL file.

LRESULT CALLBACK acmDriverProc(

DWORD dwi/D,
HDRIVER hdrvr,
UINT uMsg,
LPARAM /Param1,
LPARAM /Param?2

),

Parameters
awliD

Identifier of the installable ACM driver.
hdrvr

Handle of the installable ACM driver. This parameter is a unique handle the ACM assigns to the
driver.

uMsg

ACM driver message.
IParam1 and IParam2

Message parameters.

Return Values
Returns zero if successful or an error otherwise.

Remarks

Applications should not call any system-defined functions from inside a callback function, except for
PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent, midiOutShortMsg,
midiOutLongMsg, and OutputDebugStr.

See Also

PostMessage, timeGetSystemTime, timeGetTime, timeSetEvent, timeKillEvent, midiOutShortMsq,
midiOutLongMsg

acmDriverRemove

Overview
Group

The acmDriverRemove function removes an ACM driver from the list of available ACM drivers. The
driver will be removed for the calling application only. If the driver is globally installed, other applications
will still be able to use it.

MMRESULT acmDriverRemove(

HACMDRIVERID hadid,
DWORD fdwRemove

),

Parameters
hadid

Handle of the driver identifier to be removed.
fdwRemove

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The driver is in use and cannot
be removed.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

acmkFilterChoose

Overview
Group

The acmFilterChoose function creates an ACM-defined dialog box that enables the user to select a
waveform-audio filter.

MMRESULT acmFilterChoose(

LPACMFILTERCHOOSE pafitrc
);

Parameters
pafitrc

Address of an ACMFILTERCHOOSE structure that contains information used to initialize the dialog
box. When acmFilterChoose returns, this structure contains information about the user's filter
selection.

The pwfltr member of this structure must contain a valid pointer to a memory location that will contain
the returned filter header structure. The cbwfltr member must be filled in with the size, in bytes, of
this memory buffer.

Return Values

Returns MMSYSERR _NOERROR if successful or an error otherwise. Possible error values include the
following:

ACMERR_CANCELED The user chose the Cancel button
or the Close command on the
System menu to close the dialog
box.

ACMERR_NOTPOSSIBLE The buffer identified by the pwfltr
member of the
ACMFILTERCHOOSE structure
is too small to contain the
selected filter.

MMSYSERR _INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NODRIVER A suitable driver is not available
to provide valid filter selections.

See Also
ACMFILTERCHOOSE

acmFilterChooseHookProc

Overview
Group

The acmFilterChooseHookProc function specifies a user-defined function that hooks the
acmFilterChoose dialog box.

UINT ACMFILTERCHOOSEHOOKPROC acmFilterChooseHookProc(

HWND hwnd,

UINT uMsg,
WPARAM wParam,
LPARAM /Param

),

Parameters
hwnd

Window handle for the dialog box.
uMsg

Window message.
wParam and IParam

Message parameters.

Remarks

To customize the dialog box selections, a hook function can optionally process the
MM_ACM_FILTERCHOOSE message.

You should use this function the same way as you use the Common Dialog hook functions for
customizing common dialog boxes.

See Also
acmFilterChoose, MM_ACM_FILTERCHOOSE

acmFilterDetails

Overview
Group

The acmFilterDetails function queries the ACM for details about a filter with a specific waveform-audio
filter tag.

MMRESULT acmFilterDetails(

HACMDRIVER had,
LPACMFILTERDETAILS pafd,
DWORD fdwDetails

),

Parameters
had

Handle of the ACM driver to query for waveform-audio filter details for a filter tag. If this parameter is
NULL, the ACM uses the details from the first suitable ACM driver.

pafd

Address of the ACMFILTERDETAILS structure that is to receive the filter details for the given filter
tag.
fdwDetails

Flags for getting the details. The following values are defined:
ACM_FILTERDETAILSF_FILTER

A WAVEFILTER structure pointed to by the pwfltr member of the ACMFILTERDETAILS structure
was given and the remaining details should be returned. The dwFilterTag member of the
ACMFILTERDETAILS structure must be initialized to the same filter tag pwfltr specifies. This
query type can be used to get a string description of an arbitrary filter structure. If an application
specifies an ACM driver handle for had, details on the filter will be returned for that driver. If an
application specifies NULL for had, the ACM finds the first acceptable driver to return the details.

ACM_FILTERDETAILSF_INDEX

Afilter index for the filter tag was given in the dwFilterindex member of the ACMFILTERDETAILS
structure. The filter details will be returned in the structure defined by pafd. The index ranges from
zero to one less than the cStandardFilters member returned in the ACMFILTERTAGDETAILS
structure for a filter tag. An application must specify a driver handle for had when retrieving filter
details with this flag. For information about what members should be initialized before calling this
function, see the ACMFILTERDETAILS structure.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details requested are not
available.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR _INVALPARAM At least one parameter is invalid.

See Also
WAVEFILTER, ACMFILTERTAGDETAILS

acmFilterEnum

Overview
Group

The acmFilterEnum function enumerates waveform-audio filters available for a given filter tag from an
ACM driver. This function continues enumerating until there are no more suitable filters for the filter tag or
the callback function returns FALSE.

MMRESULT acmFilterEnum(

HACMDRIVER had,
LPACMFILTERDETAILS pafd,
ACMFILTERENUMCB fnCallback,
DWORD dwinstance,

DWORD fdwEnum

),

Parameters
had

Handle of the ACM driver to query for waveform-audio filter details. If this parameter is NULL, the
ACM uses the details from the first suitable ACM driver.

pafd

Address of the ACMFILTERDETAILS structure that contains the filter details when it is passed to the
function specified by fnCallback. When your application calls acmFilterEnum, the cbStruct, pwfltr,
and cbwfltr members of this structure must be initialized. The dwFilterTag member must also be
initialized to either WAVE_FILTER_UNKNOWN or a valid filter tag.

fnCallback

Procedure-instance address of the application-defined callback function.
dwinstance

A 32-bit, application-defined value that is passed to the callback function along with ACM filter details.
fdwEnum

Flags for enumerating the filters for a given filter tag. The following values are defined:
ACM_FILTERENUMF_DWFILTERTAG

The dwFilterTag member of the WAVEFILTER structure pointed to by the pwfltr member of the
ACMFILTERDETAILS structure is valid. The enumerator will enumerate only a filter that conforms
to this attribute. The dwFilterTag member of the ACMFILTERDETAILS structure must be equal to
the dwrFilterTag member of the WAVEFILTER structure.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details for the filter cannot be
returned.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

The acmFilterEnum function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are
installed. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also
WAVEFILTER, ACMFILTERDETAILS, acmDriverAdd, acmDriverRemove, acmDriverPriority

acmFilterEnumCallback

Overview
Group

The acmFilterEnumCallback function specifies a callback function used with the acmFilterEnum
function. The acmFilterEnumcCallback name is a placeholder for an application-defined function name.

BOOL ACMFILTERENUMCB acmFilterEnumCallback(

HACMDRIVERID hadid,
LPACMFILTERDETAILS pafd,
DWORD dwinstance,
DWORD fdwSupport

),

Parameters
hadid

Handle of the ACM driver identifier.
pafd

Address of an ACMFILTERDETAILS structure that contains the enumerated filter details for a filter
tag.
dwinstance

Application-defined value specified in acmFilterEnum.
fdwSupport

Driver-support flags specific to the driver identified by hadid for the specified filter. These flags are
identical to the fdwSupport flags of the ACMDRIVERDETAILS structure, but they are specific to the
filter that is being enumerated. This parameter can be a combination of the following values and
identifies which operations the driver supports for the filter tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter. For
example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the
specified filter. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the
specified filter, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both with the specified filter through a waveform-audio
device. An application should use the acmMetrics function with the

ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indices to get the waveform-audio device identifiers associated with the supporting ACM
driver.

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks

The acmFilterEnum function will return MMSYSERR_NOERROR (zero) if no filters are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also

acmDriverPriority

acmFilterTagDetails

Overview
Group

The acmFilterTagDetails function queries the ACM for details about a specific waveform-audio filter tag.
MMRESULT acmFilterTagDetails(

HACMDRIVER had,
LPACMFILTERTAGDETAILS paftd,
DWORD fdwDetails

),

Parameters
had

Handle of the ACM driver to query for waveform-audio filter tag details. If this parameter is NULL, the
ACM uses the details from the first suitable ACM driver. An application must specify a valid
HACMDRIVER or HACMDRIVERID identifier when using the ACM_FILTERTAGDETAILSF_INDEX
query type. Driver identifiers for disabled drivers are not allowed.

paftd

Address of the ACMFILTERTAGDETAILS structure that is to receive the filter tag details.
fdwDetails

Flags for getting the details. The following values are defined:
ACM_FILTERTAGDETAILSF_FILTERTAG

A filter tag was given in the dwFilterTag member of the ACMFILTERTAGDETAILS structure. The
filter tag details will be returned in the structure pointed to by paftd. If an application specifies an
ACM driver handle for had, details on the filter tag will be returned for that driver. If an application
specifies NULL for had, the ACM finds the first acceptable driver to return the details.

ACM_FILTERTAGDETAILSF_INDEX

A filter tag index was given in the dwFilterTagindex member of the ACMFILTERTAGDETAILS
structure. The filter tag and details will be returned in the structure pointed to by paftd. The index
ranges from zero to one less than the cFilterTags member returned in the ACMDRIVERDETAILS
structure for an ACM driver. An application must specify a driver handle for had when retrieving
filter tag details with this flag.

ACM_FILTERTAGDETAILSF_LARGESTSIZE

Details on the filter tag with the largest filter size, in bytes, are to be returned. The dwkFilterTag
member must either be WAVE_FILTER_UNKNOWN or the filter tag to find the largest size for. If an
application specifies an ACM driver handle for had, details on the largest filter tag will be returned
for that driver. If an application specifies NULL for had, the ACM finds an acceptable driver with the
largest filter tag requested to return the details.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details requested are not
available.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR _INVALPARAM At least one parameter is invalid.

See Also
ACMDRIVERDETAILS

acmFilterTagEnum

The acmFilterTagEnum function enumerates waveform-audio filter tags available from an ACM driver.
This function continues enumerating until there are no more suitable filter tags or the callback function
returns FALSE.

MMRESULT acmFilterTagEnum(

HACMDRIVER had,
LPACMFILTERTAGDETAILS paftd,
ACMFILTERTAGENUMCB fnCallback,
DWORD dwinstance,

DWORD fdwEnum

),

Parameters
had

Handle of the ACM driver to query for waveform-audio filter tag details. If this parameter is NULL, the
ACM uses the details from the first suitable ACM driver.

paftd

Address of the ACMFILTERTAGDETAILS structure that contains the filter tag details when it is
passed to the fnCallback function. When your application calls acmFilterTagEnum, the cbStruct
member of this structure must be initialized.

fnCallback

Procedure instance address of the application-defined callback function.
dwinstance

A 32-bit application-defined value that is passed to the callback function along with ACM filter tag
details.

fdwEnum

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed.
Moreover, the callback function will not be called.

See Also

ACMFILTERTAGDETAILS

acmFilterTagenumCallback

The acmFilterTagEnumCallback function specifies a callback function used with the
acmFilterTagEnum function. The acmFilterTagEnumCallback function name is a placeholder for an
application-defined function name.

BOOL ACMFILTERTAGENUMCB acmFilterTagEnumCallback(

HACMDRIVERID hadid,
LPACMFILTERTAGDETAILS paftd,
DWORD dwinstance,

DWORD fdwSupport

),

Parameters
hadid

Handle of the ACM driver identifier.
paftd

Address of an ACMFILTERTAGDETAILS structure that contains the enumerated filter tag details.
dwinstance

Application-defined value specified in acmFilterTagEnum.
fdwSupport

Driver-support flags specific to the driver identifier hadid. These flags are identical to the fdwSupport
flags of the ACMDRIVERDETAILS structure. This parameter can be a combination of the following
values and identifies which operations the driver supports with the filter tag:

ACMSDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags while using the specified filter tag.
For example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM with the specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the
specified filter tag. For example, if a driver supports resampling of WAVE_FORMAT_PCM with the
specified filter tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both with the specified filter tag through a waveform-
audio device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT

metric indices to get the waveform-audio device identifiers associated with the supporting ACM
driver.

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks

The acmFilterTagEnum function will return MMSYSERR_NOERROR (zero) if no filter tags are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also

acmFilterTagEnum, ACMDRIVERDETAILS, acmMetrics, acmDriverAdd, acmDriverRemove,
acmDriverPriority

acmFormatChoose

The acmFormatChoose function creates an ACM-defined dialog box that enables the user to select a
waveform-audio format.

MMRESULT acmFormatChoose(

LPACMFORMATCHOOSE pfmtc
);

Parameters
pfmtc

Address of an ACMFORMATCHOOSE structure that contains information used to initialize the dialog
box. When this function returns, this structure contains information about the user's format selection.

The pwfx member of this structure must contain a valid pointer to a memory location that will contain
the returned format header structure. Moreover, the cbwfx member must be filled in with the size, in

bytes, of this memory buffer.

Return Values

Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible return values include the
following:

ACMERR_CANCELED The user chose the Cancel button
or the Close command on the
System menu to close the dialog
box.

ACMERR_NOTPOSSIBLE The buffer identified by the pwfx
member of the
ACMFORMATCHOOSE structure
is too small to contain the
selected format.

MMSYSERR _INVALFLAG At least one flag is invalid.

MMSYSERR_INVALHANDLE The specified handle is invalid.

MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NODRIVER A suitable driver is not available
to provide valid format selections.

See Also
ACMFORMATCHOOSE

acmFormatChooseHookProc

The acmFormatChooseHookProc function specifies a user-defined function that hooks the
acmFormatChoose dialog box. The acmFormatChooseHookProc name is a placeholder for an
application-defined name.

UINT ACMFORMATCHOOSEHOOKPROC acmFormatChooseHookProc(

HWND hwnd,

UINT uMsg,
WPARAM wParam,
LPARAM /Param

),

Parameters
hwnd

Window handle for the dialog box.
uMsg

Window message.
wParam and |Param

Message parameters.

Remarks

If the hook function processes one of the WM_CTLCOLOR messages, this function must return a handle
of the brush that should be used to paint the control background.

A hook function can optionally process the MM_ACM_FORMATCHOOSE message.

You should use this function the same way as you use the Common Dialog hook functions for
customizing common dialog boxes.

See Also
acmFormatChoose, MM_ACM_FORMATCHOOSE

acmFormatDetails

The acmFormatDetails function queries the ACM for format details for a specific waveform-audio format

tag.

MMRESULT acmFormatDetails(

HACMDRIVER had,
LPACMFORMATDETAILS pafd,

),

DWORD fdwDetails

Parameters

had

Handle of the ACM driver to query for waveform-audio format details for a format tag. If this parameter
is NULL, the ACM uses the details from the first suitable ACM driver.

pafd

Address of an ACMFORMATDETAILS structure to contain the format details for the given format tag.
fdwDetails

Flags for getting the waveform-audio format tag details. The following values are defined:
ACM_FORMATDETAILSF_FORMAT

A WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS
structure was given and the remaining details should be returned. The dwFormatTag member of
the ACMFORMATDETAILS structure must be initialized to the same format tag as pwfx specifies.
This query type can be used to get a string description of an arbitrary format structure. If an
application specifies an ACM driver handle for had, details on the format will be returned for that
driver. If an application specifies NULL for had, the ACM finds the first acceptable driver to return
the details.

ACM_FORMATDETAILSF_INDEX

A format index for the format tag was given in the dwFormatindex member of the
ACMFORMATDETAILS structure. The format details will be returned in the structure defined by
pafd. The index ranges from zero to one less than the cStandardFormats member returned in the
ACMFORMATTAGDETAILS structure for a format tag. An application must specify a driver handle
for had when retrieving format details with this flag. For information about which members should
be initialized before calling this function, see the ACMFORMATDETAILS structure.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details requested are not
available.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR _INVALPARAM At least one parameter is invalid.

See Also
WAVEFORMATEX, ACMFORMATTAGDETAILS

acmFormatEnum

The acmFormatEnum function enumerates waveform-audio formats available for a given format tag from
an ACM driver. This function continues enumerating until there are no more suitable formats for the format
tag or the callback function returns FALSE.

MMRESULT acmFormatEnum(

HACMDRIVER had,
LPACMFORMATDETAILS pafd,
ACMFORMATENUMCB fnCallback,
DWORD dwinstance,

DWORD fdwEnum

),

Parameters
had

Handle of the ACM driver to query for waveform-audio format details. If this parameter is NULL, the
ACM uses the details from the first suitable ACM driver.

pafd

Address of an ACMFORMATDETAILS structure to contain the format details passed to the
fnCallback function. This structure must have the cbStruct, pwfx, and cbwfx members of the
ACMFORMATDETAILS structure initialized. The dwFormatTag member must also be initialized to
either WAVE_FORMAT_UNKNOWN or a valid format tag.

fnCallback

Procedure instance address of the application-defined callback function.
dwinstance

A 32-bit application-defined value that is passed to the callback function along with ACM format
details.

fdwEnum

Flags for enumerating the formats for a given format tag. The following values are defined:
ACM_FORMATENUMF_CONVERT

The WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS
structure is valid. The enumerator will only enumerate destination formats that can be converted
from the given pwfx format.

ACM_FORMATENUMF_HARDWARE

The enumerator should only enumerate formats that are supported as native input or output
formats on one or more of the installed waveform-audio devices. This flag provides a way for an
application to choose only formats native to an installed waveform-audio device. This flag must be
used with one or both of the ACM_FORMATENUMF_INPUT and
ACM_FORMATENUMF_OUTPUT flags. Specifying both ACM_FORMATENUMF_INPUT and
ACM_FORMATENUMF_OUTPUT will enumerate only formats that can be opened for input or
output. This is true regardless of whether this flag is specified.

ACM_FORMATENUMF_INPUT

Enumerator should enumerate only formats that are supported for input (recording).
ACM_FORMATENUMF_NCHANNELS

The nChannels member of the WAVEFORMATEX structure pointed to by the pwfx member of the
ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that
conforms to this attribute.

ACM_FORMATENUMF_NSAMPLESPERSEC

The nSamplesPerSec member of the WAVEFORMATEX structure pointed to by the pwfx
member of the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a
format that conforms to this attribute.

ACM_FORMATENUMF_OUTPUT

Enumerator should enumerate only formats that are supported for output (playback).
ACM_FORMATENUMF_SUGGEST

The WAVEFORMATEX structure pointed to by the pwfx member of the ACMFORMATDETAILS
structure is valid. The enumerator will enumerate all suggested destination formats for the given
pwfx format. This mechanism can be used instead of the acmFormatSuggest function to allow an
application to choose the best suggested format for conversion. The dwFormatindex member will
always be set to zero on return.

ACM_FORMATENUMF_WBITSPERSAMPLE

The wBitsPerSample member of the WAVEFORMATEX structure pointed to by the pwfx member
of the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that
conforms to this attribute.

ACM_FORMATENUMF_WFORMATTAG

The wFormatTag member of the WAVEFORMATEX structure pointed to by the pwfx member of
the ACMFORMATDETAILS structure is valid. The enumerator will enumerate only a format that
conforms to this attribute. The dwFormatTag member of the ACMFORMATDETAILS structure
must be equal to the wFormatTag member.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details for the format cannot
be returned.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed.
Moreover, the callback function will not be called.

See Also
acmFormatSuggest, WAVEFORMATEX, ACMFORMATDETAILS

acmFormatEnumcCallback

The acmFormatEnumcCallback function specifies a callback function used with the acmFormatEnum
function. The acmFormatEnumcCallback name is a placeholder for the application-defined function
name.

BOOL ACMFORMATENUMCB acmFormatEnumCallback(

HACMDRIVERID hadid,
LPACMFORMATDETAILS pafd,
DWORD dwinstance,

DWORD fdwSupport

),

Parameters
hadid

Handle of the ACM driver identifier.
pafd

Address of an ACMFORMATDETAILS structure that contains the enumerated format details for a
format tag.

dwinstance

Application-defined value specified in the acmFormatEnum function.
fdwSupport

Driver support flags specific to the driver identified by hadid for the specified format. These flags are
identical to the fdwSupport flags of the ACMDRIVERDETAILS structure, but they are specific to the
format that is being enumerated. This parameter can be a combination of the following values and
indicates which operations the driver supports for the format tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags for the specified format. For example,
if a driver supports compression from WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM with
the specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the same format tag while using the
specified format. For example, if a driver supports resampling of WAVE_FORMAT_PCM to the
specified format, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes) with
the specified format. For example, if a driver supports volume or echo operations on
WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both of the specified format tags through a waveform-
audio device. An application should use the acmMetrics function with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM
driver.

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks

The acmFormatEnum function will return MMSYSERR_NOERROR (zero) if no formats are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also

acmDriverRemove, acmDriverPriority

acmFormatSuggest

The acmFormatSuggest function queries the ACM or a specified ACM driver to suggest a destination
format for the supplied source format. For example, an application can use this function to determine one
or more valid PCM formats to which a compressed format can be decompressed.

MMRESULT acmFormatSuggest(

HACMDRIVER had,
LPWAVEFORMATEX pwifxSrc,
LPWAVEFORMATEX pwifxDst,
DWORD cbwifxDst,

DWORD fdwSuggest

),

Parameters
had

Handle of an open instance of a driver to query for a suggested destination format. If this parameter is
NULL, the ACM attempts to find the best driver to suggest a destination format.

pwixSrc

Address of a WAVEFORMATEX structure that identifies the source format for which a destination
format will be suggested by the ACM or specified driver.

pwixDst

Address of a WAVEFORMATEX structure that will receive the suggested destination format for the
pwixSrc format. Depending on the fdwSuggest parameter, some members of the structure pointed to
by pwfxDst may require initialization.

cbwifxDst

Size, in bytes, available for the destination format. The acmMetrics and acmFormatTagDetails
functions can be used to determine the maximum size required for any format available for the
specified driver (or for all installed ACM drivers).

fdwSuggest

Flags for matching the desired destination format. The following values are defined:
ACM_FORMATSUGGESTF_NCHANNELS

The nChannels member of the structure pointed to by pwfxDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching nChannels or fail.

ACM_FORMATSUGGESTF_NSAMPLESPERSEC

The nSamplesPerSec member of the structure pointed to by pwixDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching nSamplesPerSec or
fail.

ACM_FORMATSUGGESTF_WBITSPERSAMPLE

The wBitsPerSample member of the structure pointed to by pwfxDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching wBitsPerSample or
fail.

ACM_FORMATSUGGESTF_WFORMATTAG

The wFormatTag member of the structure pointed to by pwfxDst is valid. The ACM will query
acceptable installed drivers that can suggest a destination format matching wFormatTag or fail.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

See Also
WAVEFORMATEX, acmMetrics, acmFormatTagDetails

acmFormatTagDetails

The acmFormatTagDetails function queries the ACM for details on a specific waveform-audio format tag.
MMRESULT acmFormatTagDetails(

HACMDRIVER had,
LPACMFORMATTAGDETAILS paftd,
DWORD fdwDetails

),

Parameters
had

Handle of the ACM driver to query for waveform-audio format tag details. If this parameter is NULL,
the ACM uses the details from the first suitable ACM driver. An application must specify a valid handle
or driver identifier when using the ACM_FORMATTAGDETAILSF_INDEX query type. Driver identifiers
for disabled drivers are not allowed.

paftd

Address of the ACMFORMATTAGDETAILS structure that is to receive the format tag details.
fdwDetails

Flags for getting the details. The following values are defined:
ACM_FORMATTAGDETAILSF_FORMATTAG

A format tag was given in the dwFormatTag member of the ACMFORMATTAGDETAILS structure.
The format tag details will be returned in the structure pointed to by paftd. If an application
specifies an ACM driver handle for had, details on the format tag will be returned for that driver. If
an application specifies NULL for had, the ACM finds the first acceptable driver to return the
details.

ACM_FORMATTAGDETAILSF_INDEX

A format tag index was given in the dwFormatTaglndex member of the
ACMFORMATTAGDETAILS structure. The format tag and details will be returned in the structure
defined by paftd. The index ranges from zero to one less than the cFormatTags member returned
in the ACMDRIVERDETAILS structure for an ACM driver. An application must specify a driver
handle for had when retrieving format tag details with this flag.

ACM_FORMATTAGDETAILSF_LARGESTSIZE

Details on the format tag with the largest format size, in bytes, are to be returned. The
dwFormatTag member of the ACMFORMATTAGDETAILS structure must either be
WAVE_FORMAT_UNKNOWN or the format tag to find the largest size for. If an application
specifies an ACM driver handle for had, details on the largest format tag will be returned for that
driver. If an application specifies NULL for had, the ACM finds an acceptable driver with the largest
format tag requested to return the details.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The details requested are not

available.
MMSYSERR _INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

See Also
ACMFORMATTAGDETAILS, ACMDRIVERDETAILS

acmFormatTagEnum

The acmFormatTagEnum function enumerates waveform-audio format tags available from an ACM
driver. This function continues enumerating until there are no more suitable format tags or the callback
function returns FALSE.

MMRESULT acmFormatTagEnum(

HACMDRIVER had,
LPACMFORMATTAGDETAILS paftd,
ACMFORMATTAGENUMCB fnCallback,
DWORD dwinstance,

DWORD fdwEnum

),

Parameters
had

Handle of the ACM driver to query for waveform-audio format tag details. If this parameter is NULL,
the ACM uses the details from the first suitable ACM driver.

paftd

Address of the ACMFORMATTAGDETAILS structure that is to receive the format tag details passed
to the function specified in fnCallback. This structure must have the cbStruct member of the
ACMFORMATTAGDETAILS structure initialized.

fnCallback

Procedure instance address of the application-defined callback function.
dwinstance

A 32-bit application-defined value that is passed to the callback function along with ACM format tag
details.

fdwEnum

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

This function will return MMSYSERR_NOERROR (zero) if no suitable ACM drivers are installed.
Moreover, the callback function will not be called.

See Also

ACMFORMATTAGDETAILS

acmFormatTagEnumCallback

The acmFormatTagEnumCallback function specifies a callback function used with the
acmFormatTagEnum function. The acmFormatTagEnumcCallback name is a placeholder for an
application-defined function name.

BOOL ACMFORMATTAGENUMCB acmFormatTagEnumCallback(

HACMDRIVERID hadid,
LPACMFORMATTAGDETAILS paftd,
DWORD dwinstance,

DWORD fdwSupport

),

Parameters
hadid

Handle of the ACM driver identifier.
paftd

Address of an ACMFORMATTAGDETAILS structure that contains the enumerated format tag details.
dwinstance

Application-defined value specified in the acmFormatTagEnum function.
fdwSupport

Driver-support flags specific to the format tag. These flags are identical to the fdwSupport flags of
the ACMDRIVERDETAILS structure. This parameter can be a combination of the following values
and indicates which operations the driver supports with the format tag:

ACMDRIVERDETAILS_SUPPORTF_ASYNC

Driver supports asynchronous conversions with the specified filter tag.
ACMDRIVERDETAILS_SUPPORTF_CODEC

Driver supports conversion between two different format tags where one of the tags is the specified
format tag. For example, if a driver supports compression from WAVE_FORMAT_PCM to
WAVE_FORMAT_ADPCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_CONVERTER

Driver supports conversion between two different formats of the specified format tag. For example,
if a driver supports resampling of WAVE_FORMAT_PCM, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_FILTER

Driver supports a filter (modification of the data without changing any of the format attributes). For
example, if a driver supports volume or echo operations on the specified format tag, this flag is set.

ACMDRIVERDETAILS_SUPPORTF_HARDWARE

Driver supports hardware input, output, or both of the specified format tag through a waveform-
audio device. An application should use acmMetrics with the
ACM_METRIC_HARDWARE_WAVE_INPUT and ACM_METRIC_HARDWARE_WAVE_OUTPUT
metric indexes to get the waveform-audio device identifiers associated with the supporting ACM

driver.

Return Values
The callback function must return TRUE to continue enumeration or FALSE to stop enumeration.

Remarks

The acmFormatTagEnum function will return MMSYSERR_NOERROR (zero) if no format tags are to be
enumerated. Moreover, the callback function will not be called.

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also

acmFormatTagEnum, ACMFORMATTAGDETAILS, ACMDRIVERDETAILS, acmMetrics,
acmDriverAdd, acmDriverRemove, acmDriverPriority

acmGetVersion

The acmGetVersion function returns the version number of the ACM.

DWORD acmGetVersion(VOID);

Parameters
This function takes no parameters.

Return Values

The version number is returned as a hexadecimal number of the form OXxAABBCCCC, where AA is the
major version number, BB is the minor version number, and CCCC is the build number.

Remarks
Win32 applications must verify that the ACM version is at least 0x03320000 (version 3.50) or greater
before attempting to use any other ACM functions. The build number (CCCC) is always zero for the retail
(non-debug) version of the ACM.

To display the ACM version for a user, an application should use the following format (note that the values
should be printed as unsigned decimals):

{
DWORD dw;
TCHAR ach[10];

dw = acmGetVersion () ;
wsprintf (ach, "%u.%.02u", HIWORD (dw) >> 8, HIWORD (dw) & OxOO0FF);

acmMetrics

The acmMetrics function returns various metrics for the ACM or related ACM objects.
MMRESULT acmMetrics(

HACMOBJ hao,
UINT uMetric,
LPVOID pMetric

),

Parameters
hao

Handle of the ACM object to query for the metric specified in uMetric. For some queries, this
parameter can be NULL.

uMetric

Metric index to be returned in pMetric.
ACM_METRIC_COUNT_CODECS

Returned value is the number of global ACM compressor or decompressor drivers in the system.
The hao parameter must be NULL for this metric index. The pMetric parameter must point to a
buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_CONVERTERS

Returned value is the number of global ACM converter drivers in the system. The hao parameter
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to
a doubleword value.

ACM_METRIC_COUNT_DISABLED

Returned value is the total number of global disabled ACM drivers (of all support types) in the
system. The hao parameter must be NULL for this metric index. The pMetric parameter must point
to a buffer of a size equal to a doubleword value. The sum of the
ACM_METRIC_COUNT_DRIVERS and ACM_METRIC_COUNT_DISABLED metric indices is the
total number of globally installed ACM drivers.

ACM_METRIC_COUNT_DRIVERS

Returned value is the total number of enabled global ACM drivers (of all support types) in the
system. The hao parameter must be NULL for this metric index. The pMetric parameter must point
to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_FILTERS

Returned value is the number of global ACM filter drivers in the system. The hao parameter must
be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to a
doubleword value.

ACM_METRIC_COUNT_HARDWARE

Returned value is the number of global ACM hardware drivers in the system. The hao parameter
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to
a doubleword value.

ACM_METRIC_COUNT_LOCAL_CODECS

Returned value is the number of local ACM compressor drivers, ACM decompressor drivers, or
both for the calling task. The hao parameter must be NULL for this metric index. The pMetric
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_CONVERTERS

Returned value is the number of local ACM converter drivers for the calling task. The hao
parameter must be NULL for this metric index. The pMetric parameter must point to a buffer of a
size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_DISABLED

Returned value is the total number of local disabled ACM drivers, of all support types, for the
calling task. The hao parameter must be NULL for this metric index. The pMetric parameter must
point to a buffer of a size equal to a doubleword value. The sum of the
ACM_METRIC_COUNT_LOCAL_DRIVERS and ACM_METRIC_COUNT_LOCAL_DISABLED
metric indices is the total number of locally installed ACM drivers.

ACM_METRIC_COUNT_LOCAL_DRIVERS

Returned value is the total number of enabled local ACM drivers (of all support types) for the
calling task. The hao parameter must be NULL for this metric index. The pMetric parameter must
point to a buffer of a size equal to a doubleword value.

ACM_METRIC_COUNT_LOCAL_FILTERS

Returned value is the number of local ACM filter drivers for the calling task. The hao parameter
must be NULL for this metric index. The pMetric parameter must point to a buffer of a size equal to
a doubleword value.

ACM_METRIC_DRIVER_PRIORITY

Returned value is the current priority for the specified driver. The hao parameter must be a valid
ACM driver identifier of the HACMDRIVERID data type. The pMetric parameter must point to a
buffer of a size equal to a doubleword value.

ACM_METRIC_DRIVER_SUPPORT

Returned value is the fdwSupport flags for the specified driver. The hao parameter must be a valid
ACM driver identifier of the HACMDRIVERID data type. The pMetric parameter must point to a
buffer of a size equal to a doubleword value.

ACM_METRIC_HARDWARE_WAVE_INPUT

Returned value is the waveform-audio input device identifier associated with the specified driver.
The hao parameter must be a valid ACM driver identifier of the HACMDRIVERID data type that
supports the ACMDRIVERDETAILS SUPPORTF_HARDWARE flag. If no waveform-audio input
device is associated with the driver, MMSYSERR_NOTSUPPORTED is returned. The pMetric
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_HARDWARE_WAVE_OUTPUT

Returned value is the waveform-audio output device identifier associated with the specified driver.
The hao parameter must be a valid ACM driver identifier of the HACMDRIVERID data type that
supports the ACMDRIVERDETAILS_SUPPORTF_HARDWARE flag. If no waveform-audio output
device is associated with the driver, MMSYSERR_NOTSUPPORTED is returned. The pMetric
parameter must point to a buffer of a size equal to a doubleword value.

ACM_METRIC_MAX_SIZE_FILTER

Returned value is the size of the largest WAVEFILTER structure. If hao is NULL, the return value is
the largest WAVEFILTER structure in the system. If hao identifies an open instance of an ACM

driver of the HACMDRIVER data type or an ACM driver identifier of the HACMDRIVERID data
type, the largest WAVEFILTER structure for that driver is returned. The pMetric parameter must
point to a buffer of a size equal to a doubleword value. This metric is not allowed for an ACM
stream handle of the HACMSTREAM data type.

ACM_METRIC_MAX_SIZE_FORMAT

Returned value is the size of the largest WAVEFORMATEX structure. If hao is NULL, the return
value is the largest WAVEFORMATEX structure in the system. If hao identifies an open instance of
an ACM driver of the HACMDRIVER data type or an ACM driver identifier of the HACMDRIVERID
data type, the largest WAVEFORMATEX structure for that driver is returned. The pMetric
parameter must point to a buffer of a size equal to a doubleword value. This metric is not allowed
for an ACM stream handle of the HACMSTREAM data type.

pMetric

Address of the buffer to receive the metric details. The exact definition depends on the uMetric index.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The index specified in uMetric
cannot be returned for the
specified hao.

MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOTSUPPORTE The index specified in uMetric is
D not supported.

See Also
WAVEFILTER, WAVEFORMATEX

acmStreamClose

The acmStreamClose function closes an ACM conversion stream. If the function is successful, the
handle is invalidated.

MMRESULT acmStreamClose(

HACMSTREAM has,
DWORD fdwClose

),

Parameters
has

Handle of the open conversion stream to be closed.
fdwClose

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The conversion stream cannot be
closed because an asynchronous
conversion is still in progress.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

acmStreamConvert

The acmStreamConvert function requests the ACM to perform a conversion on the specified conversion
stream. A conversion may be synchronous or asynchronous, depending on how the stream was opened.

MMRESULT acmStreamConvert(

HACMSTREAM has,
LPACMSTREAMHEADER pash,
DWORD fdwConvert

),

Parameters
has

Handle of the open conversion stream.
pash

Address of a stream header that describes source and destination buffers for a conversion. This
header must have been prepared previously by using the acmStreamPrepareHeader function.

fdwConvert

Flags for doing the conversion. The following values are defined:
ACM_STREAMCONVERTF_BLOCKALIGN

Only integral numbers of blocks will be converted. Converted data will end on block-aligned
boundaries. An application should use this flag for all conversions on a stream until there is not
enough source data to convert to a block-aligned destination. In this case, the last conversion
should be specified without this flag.

ACM_STREAMCONVERTF_END

ACM conversion stream should begin returning pending instance data. For example, if a
conversion stream holds instance data, such as the end of an echo filter operation, this flag will
cause the stream to start returning this remaining data with optional source data. This flag can be
specified with the ACM_STREAMCONVERTF_START flag.

ACM_STREAMCONVERTF_START

ACM conversion stream should reinitialize its instance data. For example, if a conversion stream
holds instance data, such as delta or predictor information, this flag will restore the stream to
starting defaults. This flag can be specified with the ACM_STREAMCONVERTF_END flag.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The stream header specified in
pash is currently in use and
cannot be reused.

ACMERR_UNPREPARED The stream header specified in
pash is currently not prepared by
the acmStreamPrepareHeader

function.
MMSYSERR _INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

You must use the acmStreamPrepareHeader function to prepare the source and destination buffers
before they are passed to acmStreamConvert.

If an asynchronous conversion request is successfully queued by the ACM or driver and the conversion is
later determined to be impossible, the ACMSTREAMHEADER structure is posted back to the
application's callback function with the cbDstLengthUsed member set to zero.

See Also
acmStreamPrepareHeader, ACMSTREAMHEADER

acmStreamConvertCallback

The acmStreamConvertCallback function specifies an application-provided callback function to be used
when the acmStreamOpen function specifies the CALLBACK_FUNCTION flag. The
acmStreamConvertCallback name is a placeholder for an application-defined function name.

void CALLBACK acmStreamConvertCallback(

HACMSTREAM has,
UINT uMsg,
DWORD dwinstance,
LPARAM /Param1,
LPARAM /Param?2

),

Parameters
has

Handle of the ACM conversion stream associated with the callback function.
uMsg

ACM conversion stream message. The following values are defined:
MM_ACM_CLOSE

ACM has successfully closed the conversion stream identified by has. The handle specified by has
is no longer valid after receiving this message.

MM_ACM_DONE

ACM has successfully converted the buffer identified by /Param1 (which is a pointer to the
ACMSTREAMHEADER structure) for the stream handle identified by has.

MM_ACM_OPEN

ACM has successfully opened the conversion stream identified by has.
dwinstance

User-instance data given as the dwinstance parameter of the acmStreamOpen function.
IParam1 and IParam?2

Message parameters.

Return Values
This function does not return a value.

Remarks

The following functions should not be called from within the callback function: acmDriverAdd,
acmDriverRemove, and acmDriverPriority.

See Also
acmStreamOpen, ACMSTREAMHEADER, acmDriverAdd, acmDriverRemove, acmDriverPriority

acmStreamMessage

The acmStreamMessage function sends a driver-specific message to an ACM driver.
MMRESULT ACMAPI acmStreamMessage(

HACMSTREAM has,
UINT uMsg,
LPARAM /Param1,
LPARAM /Param?2

),

Parameters
has

Handle of an open conversion stream.
uMsg

Message to send.
IParam1 and IParam?2

Message parameters.

Return Values
Returns the value returned by the ACM device driver.

acmStreamOpen

The acmStreamOpen function opens an ACM conversion stream. Conversion streams are used to
convert data from one specified audio format to another.

MMRESULT acmStreamOpen(

LPHACMSTREAM phas,
HACMDRIVER had,
LPWAVEFORMATEX pwfxSrc,
LPWAVEFORMATEX pwfxDst,
LPWAVEFILTER pwfitr,
DWORD dwcCallback,

DWORD dwinstance,

DWORD fdwOpen

);

Parameters
phas

Address of a handle that will receive the new stream handle that can be used to perform conversions.
This handle is used to identify the stream in calls to other ACM stream conversion functions. If the
ACM_STREAMOPENF_QUERY flag is specified, this parameter should be NULL.

had

Handle of an ACM driver. If this handle is specified, it identifies a specific driver to be used for a
conversion stream. If this parameter is NULL, all suitable installed ACM drivers are queried until a
match is found.

pwixSrc

Address of a WAVEFORMATEX structure that identifies the desired source format for the conversion.
pwixDst

Address of a WAVEFORMATEX structure that identifies the desired destination format for the
conversion.

pwiltr

Address of a WAVEFILTER structure that identifies the desired filtering operation to perform on the
conversion stream. If no filtering operation is desired, this parameter can be NULL. If a filter is
specified, the source (pwfxSrc) and destination (pwfxDst) formats must be the same.

dwCallback

Address of a callback function, a handle of a window, or a handle of an event. A callback function will
be called only if the conversion stream is opened with the ACM_STREAMOPENF_ASYNC flag. A
callback function is notified when the conversion stream is opened or closed and after each buffer is
converted. If the conversion stream is opened without the ACM_STREAMOPENF_ASYNC flag, this
parameter should be set to zero.

dwinstance

User-instance data passed to the callback function specified by the dwCallback parameter. This
parameter is not used with window and event callbacks. If the conversion stream is opened without

the ACM_STREAMOPENF_ASYNC flag, this parameter should be set to zero.
fdwOpen

Flags for opening the conversion stream. The following values are defined:
ACM_STREAMOPENF_ASYNC

Stream conversion should be performed asynchronously. If this flag is specified, the application
can use a callback function to be notified when the conversion stream is opened and closed and
after each buffer is converted. In addition to using a callback function, an application can examine
the fdwStatus member of the ACMSTREAMHEADER structure for the
ACMSTREAMHEADER_STATUSF_DONE flag.

ACM_STREAMOPENF_NONREALTIME

ACM will not consider time constraints when converting the data. By default, the driver will attempt
to convert the data in real time. For some formats, specifying this flag might improve the audio
quality or other characteristics.

ACM_STREAMOPENF_QUERY

ACM will be queried to determine whether it supports the given conversion. A conversion stream
will not be opened, and no handle will be returned in the phas parameter.

CALLBACK_EVENT

The dwCallback parameter is a handle of an event.
CALLBACK_FUNCTION

The dwCallback parameter is a callback procedure address. The function prototype must conform
to the acmStreamConvertCallback prototype.

CALLBACK_WINDOW

The dwCallback parameter is a window handle.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The requested operation cannot
be performed.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate
resources.

Remarks

If an ACM driver cannot perform real-time conversions and the ACM_STREAMOPENF_NONREALTIME
flag is not specified for the fdwOpen parameter, the open operation will fail returning an
ACMERR_NOTPOSSIBLE error code. An application can use the ACM_STREAMOPENF_QUERY flag to
determine if real-time conversions are supported for input.

If an application uses a window to receive callback information, the MM_ACM_OPEN,
MM_ACM_CLOSE, and MM_ACM_DONE messages are sent to the window procedure function to
indicate the progress of the conversion stream. In this case, the wParam parameter identifies the
HACMSTREAM handle. The /Param parameter identifies the ACMSTREAMHEADER structure for

MM_ACM_DONE, but it is not used for MM_ACM_OPEN and MM_ACM_CLOSE.

If an application uses a function to receive callback information, the MM_ACM_OPEN,
MM_ACM_CLOSE, and MM_ACM_DONE messages are sent to the function to indicate the progress of
waveform-audio output. The callback function must reside in a dynamic-link library (DLL).

If an application uses an event for callback notification, the event is signaled to indicate the progress of
the conversion stream. The event will be signaled when a stream is opened, after each buffer is
converted, and when the stream is closed.

See Also
WAVEFORMATEX, WAVEFILTER, ACMSTREAMHEADER, acmStreamConvertCallback

acmStreamPrepareHeader

The acmStreamPrepareHeader function prepares an ACMSTREAMHEADER structure for an ACM
stream conversion. This function must be called for every stream header before it can be used in a
conversion stream. An application needs to prepare a stream header only once for the life of a given
stream. The stream header can be reused as long as the sizes of the source and destination buffers do
not exceed the sizes used when the stream header was originally prepared.

MMRESULT acmStreamPrepareHeader(

HACMSTREAM has,
LPACMSTREAMHEADER pash,
DWORD fdwPrepare

),

Parameters
has

Handle of the conversion steam.
pash

Address of an ACMSTREAMHEADER structure that identifies the source and destination buffers to
be prepared.

fdwPrepare

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

MMSYSERR_NOMEM The system is unable to allocate
resources.

Remarks

Preparing a stream header that has already been prepared has no effect, and the function returns zero.
Nevertheless, you should ensure your application does not prepare a stream header multiple times.

See Also
ACMSTREAMHEADER

acmStreamReset

The acmStreamReset function stops conversions for a given ACM stream. All pending buffers are
marked as done and returned to the application.

MMRESULT acmStreamReset(

HACMSTREAM has,
DWORD fdwReset

),

Parameters
has

Handle of the conversion stream.
fdwReset

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.

Remarks

Resetting an ACM conversion stream is necessary only for asynchronous conversion streams. Resetting
a synchronous conversion stream will succeed, but no action will be taken.

acmStreamSize

The acmStreamSize function returns a recommended size for a source or destination buffer on an ACM
stream.

MMRESULT acmStreamSize(

HACMSTREAM has,
DWORD cbinput,
LPDWORD pdwOutputBytes,
DWORD fdwSize

),

Parameters
has

Handle of the conversion stream.
cbinput

Size, in bytes, of the source or destination buffer. The fdwSize flags specify what the input parameter
defines. This parameter must be nonzero.

pdwOutputBytes

Address of a variable that contains the size, in bytes, of the source or destination buffer. The fdwSize
flags specify what the output parameter defines. If the acmStreamSize function succeeds, this
location will always be filled with a nonzero value.

fdwSize

Flags for the stream size query. The following values are defined:
ACM_STREAMSIZEF_DESTINATION

The cbinput parameter contains the size of the destination buffer. The pdwOutputBytes parameter
will receive the recommended source buffer size, in bytes.

ACM_STREAMSIZEF_SOURCE

The cbinput parameter contains the size of the source buffer. The pdwOutputBytes parameter will
receive the recommended destination buffer size, in bytes.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_NOTPOSSIBLE The requested operation cannot
be performed.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

An application can use this function to determine suggested buffer sizes for either source or destination
buffers. The buffer sizes returned might be only an estimation of the actual sizes required for conversion.

Because actual conversion sizes cannot always be determined without performing the conversion, the
sizes returned will usually be overestimated.

In the event of an error, the location pointed to by pdwOutputBytes will receive zero. This assumes that
the pointer specified by pdwOutputBytes is valid.

acmStreamUnprepareHeader

The acmStreamUnprepareHeader function cleans up the preparation performed by the
acmStreamPrepareHeader function for an ACM stream. This function must be called after the ACM is
finished with the given buffers. An application must call this function before freeing the source and
destination buffers.

MMRESULT acmStreamUnprepareHeader(

HACMSTREAM has,
LPACMSTREAMHEADER pash,
DWORD fdwUnprepare

),

Parameters
has

Handle of the conversion steam.
pash

Address of an ACMSTREAMHEADER structure that identifies the source and destination buffers to
be unprepared.

fdwUnprepare

Reserved; must be zero.

Return Values
Returns zero if successful or an error otherwise. Possible error values include the following:

ACMERR_BUSY The stream header specified in
pash is currently in use and
cannot be unprepared.

ACMERR_UNPREPARED The stream header specified in
pash is currently not prepared by
the acmStreamPrepareHeader
function.

MMSYSERR_INVALFLAG At least one flag is invalid.
MMSYSERR_INVALHANDLE The specified handle is invalid.
MMSYSERR_INVALPARAM At least one parameter is invalid.

Remarks

Unpreparing a stream header that has already been unprepared is an error. An application must specify
the source and destination buffer lengths (cbSrcLength and cbDstLength, respectively) that were used
during a call to the corresponding acmStreamPrepareHeader. Failing to reset these member values will
cause acmStreamUnprepareHeader to fail with an MMSYSERR _INVALPARAM error.

The ACM can recover from some errors. The ACM will return a nonzero error, yet the stream header will
be properly unprepared. To determine whether the stream header was actually unprepared, an application

can examine the ACMSTREAMHEADER_STATUSF_PREPARED flag. If acmStreamUnprepareHeader
returns success, the header will always be unprepared.

See Also
acmStreamPrepareHeader, ACMSTREAMHEADER

auxGetDevCaps

The auxGetDevCaps function retrieves the capabilities of a given auxiliary output device.
MMRESULT auxGetDevCaps(

UINT uDevicelD,
LPAUXCAPS /pCaps,
UINT cbCaps

),

Parameters
uDevicelD

Identifier of the auxiliary output device to be queried. Specify a valid device identifier (see the
following comments section), or use the following constant:

AUX_MAPPER

Auxiliary audio mapper. The function returns an error if no auxiliary audio mapper is installed.
IpCaps

Address of an AUXCAPS structure to be filled with information about the capabilities of the device.
cbCaps

Size, in bytes, of the AUXCAPS structure.

Return Values

Returns MMSYSERR _NOERROR if successful or an error otherwise. Possible error values include the
following:

MMSYSERR _BADDEVICEIDSpecified device identifier is out of
range.

Remarks

The device identifier in uDevicelD varies from zero to one less than the number of devices present.
AUX_MAPPER may also be used. Use the auxGetNumDeyvs function to determine the number of
auxiliary output devices present in the system.

See Also
AUXCAPS, auxGetNumDevs

auxGetNumbDevs

The auxGetNumDevs function retrieves the number of auxiliary output devices present in the system.
UINT auxGetNumDevs(VOID);

Parameters
This function takes no parameters.

Return Values

Returns the number of device. A return value of zero means that no devices are present or that an error
occurred.

auxGetVolume

The auxGetVolume function retrieves the current volume setting of the specified auxiliary output device.
MMRESULT auxGetVolume(

UINT uDevicelD,
LPDWORD /pdwVolume

),

Parameters
uDevicelD

Identifier of the auxiliary output device to be queried.
IpdwVolume

Address of a variable to be filled with the current volume setting. The low-order word of this location
contains the left channel volume setting, and the high-order word contains the right channel setting. A
value of OXFFFF represents full volume, and a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of the specified
location contains the volume level.

The full 16-bit setting(s) set with the auxSetVolume function are returned, regardless of whether the
device supports the full 16 bits of volume-level control.

Return Values

Returns MMSYSERR _NOERROR if successful or an error otherwise. Possible error values include the
following:

MMSYSERR_BADDEVICEID Specified device identifier is out
of range.

Remarks

Not all devices support volume control. To determine whether a device supports volume control, use the
AUXCAPS_VOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by the
auxGetDevCaps function).

To determine whether a device supports volume control on both the left and right channels, use the
AUXCAPS_LRVOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by
auxGetDevCaps).

See Also
auxSetVolume, AUXCAPS, auxGetDevCaps

auxOutMessage

The auxOutMessage function sends a message to the given auxiliary output device. This function also
performs error checking on the device identifier passed as part of the message.

DWORD auxOutMessage(

UINT uDevicelD,
UINT uMsg,
DWORD dwParam1,
DWORD dwParam?2

),

Parameters
uDevicelD

Identifier of the auxiliary output device to receive the message.
uMsg

Message to send.
dwParam1 and dwParam?2

Message parameters.

Return Values
Returns the message return value.

auxSetVolume

The auxSetVolume function sets the volume of the specified auxiliary output device.
MMRESULT auxSetVolume(

UINT uDevicelD,
DWORD dwVolume

),

Parameters
uDevicelD

Identifier of the auxiliary output device to be queried. Device identifiers are determined implicitly from
the number of devices present in the system. Device identifier values range from zero to one less
than the number of devices present. Use the auxGetNumbDevs function to determine the number of
auxiliary devices in the system.

dwVolume

Specifies the new volume setting. The low-order word specifies the left-channel volume setting, and
the high-order word specifies the right-channel setting. A value of OxFFFF represents full volume, and
a value of 0x0000 is silence.

If a device does not support both left and right volume control, the low-order word of dwVolume
specifies the volume level, and the high-order word is ignored.

Return Values

Returns MMSYSERR_NOERROR if successful or an error otherwise. Possible error values include the
following:

MMSYSERR_BADDEVICEID Specified device identifier is out
of range.

Remarks

Not all devices support volume control. To determine whether the device supports volume control, use the
AUXCAPS_VOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by the

auxGetDevCaps function).

To determine whether the device supports volume control on both the left and right channels, use the
AUXCAPS_LRVOLUME flag to test the dwSupport member of the AUXCAPS structure (filled by
auxGetDevCaps).

Most devices do not support the full 16 bits of volume-level control and will use only the high-order bits of
the requested volume setting. For example, for a device that supports 4 bits of volume control, requested
volume level values of 0x4000, Ox4FFF, and 0x43BE will produce the same physical volume setting,
0x4000. The auxGetVolume function will return the full 16-bit setting set with auxSetVolume.

Volume settings are interpreted logarithmically. This means the perceived volume increase is the same
when increasing the volume level from 0x5000 to 0x6000 as it is from 0x4000 to 0x5000.

See Also
AUXCAPS, auxGetDevCaps, auxGetVolume

AVIBuildFilter

The AVIBuildFilter function builds a filter specification that is subsequently used by the
GetOpenFileName or GetSaveFileName function.

STDAPI AVIBuildFilter(

LPTSTR IpszFilter,
LONG cbFilter,
BOOL fSaving

),

Parameters
IpszFilter

Address of the buffer containing the filter string.
CcbFilter

Size, in bytes, of buffer pointed to by IpszFilter.
fSaving

Flag that indicates whether the filter should include read or write formats. Specify TRUE to include
write formats or FALSE to include read formats.

Return Values
Returns AVIERR_OK if successful or an error otherwise. Possible error values include the following:

AVIERR_BUFFERTOOSMALL The buffer size cbFilter was
smaller than the generated filter
specification.

AVIERR_MEMORY There was not enough memory to
complete the read operation.

Remarks

This function accesses the registry for all filter types that the AVIFile library can use to open, read, or write
multimedia files. It does not search the hard disk for filter DLLs and formats.

See Also
GetOpenFileName, GetSaveFileName

AVIClearClipboard

The AVIClearClipboard function removes an AVI file from the clipboard.
STDAPI AVIClearClipboard(VOID);

Parameters
This function takes no parameters.

Return Values
Returns zero if successful or an error otherwise.

AVIFileAddRef

The AVIFileAddRef function increments the reference count of an AVI file.
STDAPI_(ULONG) AVIFileAddRef(

PAVIFILE pfile
);

Parameters
pfile
Handle of an open AVl file.

Return Values
Returns the updated reference count for the file interface.

AVIFileCreateStream

The AVIFileCreateStream function creates a new stream in an existing file and creates an interface to
the new stream.

STDAPI AVIFileCreateStream(

PAVIFILE pfile,
PAVISTREAM * ppavi,
AVISTREAMINFO * psi

),

Parameters
pfile
Handle of an open AVI file.
ppavi

Address of the new stream interface.
psi

Address of a structure containing information about the new stream, including the stream type and its
sample rate.

Return Values

Returns