
256-Color Support in OLE 2.0 Containers

PSS ID Number: Q98872
Authored 16-May-1993 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

If a client application draws a 256-color object in OLE version 1.0,
the palette is always realized and used during the OleDraw command. As
a result, the palette from the last object displayed is always used,
causing previously drawn objects to update poorly.

In OLE version 2.0, OleDraw does not realize the palette
automatically. Instead, a container must call
IViewObject::GetColorSet() to retrieve the logical palette for each of
its displayed objects. With this information, the container can
construct a palette that best suits all of its displayed objects.

MORE INFORMATION

To get the equivalent of OLE 1.0 functionality in an OLE 2.0
container, IViewObject::GetColorSet must still be used to get a
logical palette for an object, and in turn a palette must be created
and realized from this information.

The following C++ function demonstrates the implementation of a
drawing routine for an OLE 2.0 container that behaves similar to an
OLE 1.0 client application.

Sample Code

void DrawObject(LPOLEOBJECT lpOleObject)
{
LPVIEWOBJECT lpViewObject;

 // Get a pointer to IViewObject.
 lpOleObject->QueryInterface(IID_IViewObject,
 (LPVOID FAR *) &lpViewObject);

 // If the QI succeeds, get the LOGPALETTE for the object.
 if (lpView)
 lpView->GetColorSet(DVASPECT_CONTENT, -1, NULL, NULL, NULL,
 &pColorSet);

 HPALETTE hPal=NULL;
 HPALETTE hOldPal=NULL;

 // If a LOGPALETTE was returned (not guaranteed), create the
 // palette and realize it. Note: A smarter application
 // would want to get the LOGPALETTE for each of its visible
 // objects, and try to create a palette that satisfies all of the
 // visible objects. Also, OleStdFree() is use to free the
 // returned LOGPALETTE.
 if ((pColorSet))
 {
 hPal = CreatePalette((const LPLOGPALETTE) pColorSet);
 hOldPal = SelectPalette(hDC, hPal, FALSE);
 RealizePalette(hDC);
 OleStdFree(pColorSet);
 }

 // Draw the object.
 OleDraw(m_lpOleObject, DVASPECT_CONTENT, hDC, &rect);

 // If we created a palette, restore the old one and destroy
 // the object.
 if (hPal)
 {
 SelectPalette(hDC,hOldPal,FALSE);
 DeleteObject(hPal);
 }

 // If a view pointer was successfully returned, it needs to be
 // released.
 if (lpView)
 lpView->Release();
}

Additional reference words: 1.00 2.00 3.50 4.00 95
KBCategory: kbole kbprg
KBSubcategory: LeTwoPrs

Adding Type Libraries as Resources to .DLL and .EXE Files

PSS ID Number: Q122285
Authored 01-Nov-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02

A type library can be added as a resource to an .EXE or .DLL file by using
the following statement in the .RC file:

 1 typelib TEST.TLB

TEST.TLB is the type library to be added as a resource.

If a type library is added as a resource, a separate .TLB file need not be
shipped with the application. LoadTypeLib() and LoadRegTypeLib() can be
used to load the type library from the .EXE or .DLL file in which it exists
as a resource.

NOTE: OLE version 2.02 or higher is needed to read a type library from an
.EXE file.

Additional reference words: 2.00 Automation
KBCategory: kbole kbprg
KBSubcategory: LeTwoAto

BUG: (I)CntrOutl Does Not Set Target Device Information

PSS ID Number: Q108310
Authored 08-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

During the print process from (I)CntrOutl, a server application is asked to
render its display with the TARGETDEVICE structure set to NULL instead of
containing a valid structure. This implies that (I)CntrOutl wants a screen
representation rather than a printed representation of the object.

CAUSE

(I)CntrOutl is not filling out the TARGETDEVICE structure; it prefers to
use a screen representation on the printer, rather than request the printed
presentation.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: Accelerator Causes Crash in ISvrOutl Embedded in C12Test

PSS ID Number: Q108311
Authored 08-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

After embedding an ISvrOutl object in Cl2Test or Cl32Test, pressing the
ALT+BACKSPACE accelerator (Undo) results in a general protection (GP) fault
within ISvrOutl.

STATUS

Microsoft has confirmed this to be a problem in the Cl2Test (Cl32Test) test
application. We are researching this problem and will post new information
here as it becomes available.

Additional reference words: 2.01 3.50 4.00 Outline Server Inplace GPF gp-
fault crash
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: Borland WINSIGHT Causes GP Faults w/ Some OLE Sample

PSS ID Number: Q112410
Authored 08-Mar-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

If Borland's WINSIGHT tool is running when you start some of the sample
applications that have been included in the OLE 2.01 SDK, a general
protection (GP) Fault will occur before the main application window
appears.

The following OLE 2.01 SDK sample applications are affected:

 cl2test.exe
 sr2test.exe
 outline.exe
 cntroutl.exe
 svroutl.exe
 icntrotl.exe
 isvrotl.exe

STATUS

Microsoft has confirmed this to be a problem in the OLE SDK version 2.01.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 2.01 toolkit gpf gp-fault buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: Cannot Paste Link SR2TEST Object in OLE 1.0 Client

PSS ID Number: Q108932
Authored 20-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

The Paste Link option is not available in an OLE 1.0 client application
after copying an unsaved SR2TEST object to the clipboard.

CAUSE

SR2TEST is not setting the OLEMISC_CANLINKBYOLE1 bit in the Link Source
Descriptor that it places onto the clipboard.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

Additional reference words: 2.01 3.50 4.00 test
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: CL2TEST Does Not Display Prompt String from GetCurFile()

PSS ID Number: Q111014
Authored 03-Feb-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

IPersistFile::GetCurFile() returns S_FALSE to indicate that the document
has no currently associated file. In this case, GetCurFile() returns the
default prompt string for the filename (as would be displayed in the Save
As dialog box under the File menu) in the lplpszFileName parameter.

When CL2TEST calls IPersistFile::GetCurFile(), and GetCurFile() returns
S_FALSE, CL2TEST fails to display the returned prompt string.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION

To call IPersistFile::GetCurFile() on an object embedded in CL2TEST, click
the object using the right mouse button, choose PersistFile Method from the
pop-up menu, then choose GetCurFile.

Additional reference words: 2.01 3.50 4.00 95 Toolkit
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: CL2TEST Fails to Parse Filenames with Extended

PSS ID Number: Q109548
Authored 04-Jan-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

When attempting to insert a new embedded object from a file, CL2TEST fails
with the error STG_E_FILENOTFOUND if the filename or directory name
provided contains an extended character.

STATUS

Microsoft has confirmed this to be a problem with the CL2TEST sample
application in the Object Linking and Embedding Software Development Kit
(SDK) version 2.01. We are researching this problem and will post new
information here as it becomes available.

This problem does not occur with 32-bit OLE.

MORE INFORMATION

To insert a new embedded object from a file into a CL2TEST document, from
use CL2TEST's Insert menu, choose Embed From File.

Additional reference words: 2.01 toolkit buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: CL2TEST Handles Icon Aspect Incorrectly

PSS ID Number: Q111339
Authored 09-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

Selecting the iconic aspect when inserting an object in CL2TEST results in
the object being created and displayed with the content aspect.

CAUSE

CL2TEST is passing the DVASPECT_CONTENT flag to the embedded object when
calling IViewObject::Draw. The correct flag to pass is DVASPECT_ICON.

STATUS

Microsoft has confirmed this to be a problem in the CL2TEST test
application included with the Object Linking and Embedding SDK version
2.01. We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION

To specify a custom FORMATETC when inserting an object into CL2TEST, choose
the "Select FormatETC" button found on CL2TEST's Create Invisible dialog
box (from the Insert menu, choose Object).

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: CL2TEST Not Properly Activating Links to Embedded

PSS ID Number: Q111340
Authored 09-Feb-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

Double-clicking a link to an embedded object in CL2TEST results in the
activation remaining on CL2TEST. The correct action would be for the
container of the embedded object to obtain the activation and edit the
object visually (if possible).

STATUS

Microsoft has confirmed this to be a problem in the Object Linking and
Embedding SDK version 2.01.

This is not a problem with the Visual C++ 2.x CL32TEST under Windows NT
3.5.

Additional reference words: 2.01 toolkit buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: CreateFromTemplate of OLE 2 Object into OLE 1 Container

PSS ID Number: Q111595
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 2.01 or later object is inserted into an OLE 1.0 container using
OleCreateFromTemplate(). The OLE libraries start the server, but then the
object creation fails, or a blank object is created.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG: Deleting an Open Packager Object Causes GP Fault

PSS ID Number: Q108931
Authored 20-Dec-1993 Last modified 15-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

Deleting an object from within the Object Packager results in a general
protection (GP) fault.

CAUSE

The object is being edited in its server as a result of double-clicking the
Content window. Deleting the object while in this state causes the Object
Packager to GP fault.

STATUS

Microsoft has confirmed this to be a problem in Object Packager version
2.01. We are researching this problem and will post new information here as
it becomes available.

This problem does not occur on Windows NT 3.5, with Object Packager 3.5.

Additional reference words: 2.01 GPF gp-fault crash
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoApp

BUG: DIB Can Be Returned Only on TYMED_HGLOBAL

PSS ID Number: Q98679
Authored 11-May-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

IDataObject::GetData returns DV_E_FORMATETC when requesting a
device-independent bitmap (DIB) from an OLE object.

CAUSE

The DIB must be returned in a STGMEDIUM of type TYMED_HGLOBAL.

RESOLUTION

Add TYMED_HGLOBAL to the tymed member of the FORMATETC structure being
passed to IDataObject::GetData.

STATUS

Microsoft has confirmed this to be a problem the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledgebase as it becomes
available.

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoDdc

BUG: Embedded Object's Size Changes When it Is Run

PSS ID Number: Q110872
Authored 01-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

A non-running embedded object is resized in an OLE 2.01 container
application. The next time the object is run, it snaps back to its previous
size.

CAUSE

The container application failed to call IOleObject::SetExtent() after
calling OleRun().

RESOLUTION

IOleObject::SetExtent() can be called only when an object is running. If an
object is resized while it is not running, the container application should
take note of this. When the object is subsequently run, the container
should then inform the object of its new size by calling
IOleObject::SetExtent().

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base when it
becomes available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoCdt

BUG: First Entry in Paste Special Dialog Is Blank

PSS ID Number: Q110798
Authored 28-Jan-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

The first format entry in the Paste Special dialog box is blank after
copying an OLE2Link object from an OLE 1.0 client to the clipboard.

NOTE: An OLE2Link object is created by the OLE 1.0 compatibility layer when
an OLE 2.0 link is copied from an OLE 2.0 application to the clipboard, and
then pasted into an OLE 1.0 client application.

CAUSE

The CLSID and lpszFullUserTypeName of the OBJECTDESCRIPTOR structure are
left blank by the OLE 1.0 compatibility layer.

STATUS

Microsoft has confirmed this to be a problem in the OLE libraries version
2.01. We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

This is not a problem in 32-bit OLE.

Additional reference words: 2.01 buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG: Iconic OLE Object Prints as Black Rectangle on

PSS ID Number: Q110796
Authored 28-Jan-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

Calling OleDraw() or IViewObject::Draw() to print an iconic OLE object to a
PostScript printer results in a black rectangle being drawn.

CAUSE

Internally, the OLE DLLs (dynamic-link libraries) are using the DrawIcon()
function to draw the icon. DrawIcon() requires the target device to support
the SRCINVERT ROP (raster operation) code. PostScript does not support this
particular ROP code.

RESOLUTION

An application can call OleDraw() or IViewObject::Draw() using a memory DC
(device context). A bitmap of the memory DC can be retrieved, which can be
used with the BitBlt() function to get the correct output to the printer.

STATUS

Microsoft has confirmed this to be a problem in the OLE Libraries version
2.01.

This is not a problem in 32-bit OLE.

Additional reference words: 2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoPrs

BUG: IEnumUnknown Is Not Remoted

PSS ID Number: Q110799
Authored 28-Jan-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

All calls to IOleContainer::EnumObjects() fail.

CAUSE

IOleContainer::EnumObjects() returns a pointer to IEnumUnknown. The current
implementation of OLE does not include remoting code for the IEnumUnknown
interface. There is no proxy and stub code, therefore the methods in this
interface cannot be marshaled to another process.

STATUS

Microsoft has confirmed this to be a problem in the OLE Libraries version
2.01. We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

Additional reference words: 2.01 buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoCdt

BUG: Insert Object from Zero Length File Causes GP Fault

PSS ID Number: Q108371
Authored 09-Dec-1993 Last modified 15-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

Creating an object from a zero length file that does not have a valid file
class extension results in a general protection (GP) fault after displaying
the message, "Not enough memory to perform this operation. Close one or
more applications and try again."

CAUSE

When creating an object from a file that does not have a valid class
extension, the Object Packager is invoked to generate the embedded object.
In the case of a zero length source file, the Packager document-level DDE
window is rendered invalid before a terminate message can be sent to it.

STATUS

Microsoft has confirmed this to be a problem in the Object Linking and
Embedding (OLE) libraries version 2.01.

While the operation still fails with Object Packager 3.5 under Windows NT
3.5, the Object Packager provides a better error message.

Additional reference words: 2.01 gpf gp fault
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG: Invisible MSDRAW Object Retains Keyboard Focus

PSS ID Number: Q110715
Authored 27-Jan-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft OLE version 1.0
 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, version 3.5

SYMPTOMS

When an invisible MSDRAW object is inserted as an OLE embedded object,
the object retains the keyboard focus. This behaviour is incorrect. The
MSDRAW object should not take the focus until it has been made visible.

This problem occurs whether the MSDRAW object is inserted into an
OLE 1.0 client application or into an OLE 2.0 container application.

STATUS

Microsoft has confirmed this to be a problem with MSDRAW version 1.0. We
are researching this problem and will post new information here as it
becomes available.

Additional reference words: 1.00 2.00 3.50
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoApp

BUG: IOleCache::Cache Returns Incorrect Error Value

PSS ID Number: Q110488
Authored 24-Jan-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 2.0 container application calls IOleCache::Cache for a particular
FORMATETC and is returned the value OLE_S_FORMATETC_NOTSUPPORTED. A
subsequent call to IOleCache::Cache with the same FORMATETC returns
CACHE_S_SAMECACHE.

CAUSE

The OLE 2.0 server application has a message filter installed and is
rejecting all incoming calls. The default object handler cannot get the
information from the server to fill the cache, but the cache is still
created. A more appropriate return value would be
OLE_S_SOMECACHES_NOTUPDATED.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 2.01 3.50 4.00 95
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoPrs

BUG: IOleCache::Cache(), ADVF_DATAONSTOP, and OLE 1.0 Objects

PSS ID Number: Q111614
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 2.0 container application document contains an embedded OLE 1.0
object. The container calls IOleCache::Cache() to control the cached
presentation data for the object, and specifies ADVF_DATAONSTOP as the
advise flag to Cache(). The user makes some changes to the object in the
OLE 1.0 server, then attempts to update the object's presentation in the
server by choosing the Update command from the File menu. Finally, the user
closes the object server.

In this specific scenario, the object's presentation in the server is not
updated. The object's native data, however, is correct.

CAUSE

When the user selects Update, the presentation for the object does not go
across to the cache or the container, because the container specified
ADVF_DATAONSTOP as the cache option. As part of the update operation, the
server internally marks the object as "not dirty". Because the object is
not dirty, when the server is subsequently closed, it does not send any
data to the container or the cache.

RESOLUTION

Container applications should not specify the ADVF_DATAONSTOP flag when
calling IOleCache::Cache(). Instead, they should specify ADVFCACHE_ONSAVE.
When ADVFCACHE_ONSAVE is used, the OLE 1.0 object's cached presentation
data will be updated correctly.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoPrs

BUG: IOleObject::Close(OLECLOSE_NOSAVE) and DoVerb()

PSS ID Number: Q111577
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 2.0 container application inserts a new embedded object into a
document. The container calls IOleObject::Update() on the object to update
the cache, then calls IOleObject::Close(OLECLOSE_NOSAVE) to transition the
object back to the running state. Finally, the container tries to rerun the
object by calling IOleObject::DoVerb().

In this particular scenario, DoVerb() will return STG_E_FILENOTFOUND, and
the object will not be rerun.

CAUSE

Because the container specifies OLECLOSE_NOSAVE when calling Close(), the
object is never saved to persistent storage. However, the object has
internally been marked as not being a brand new object. Consequently, when
the container calls DoVerb(), the object's handler calls
IPersistStorage::Load() on the object, attempting to put the object into
the running state. This call will fail, because the object has never been
saved.

RESOLUTION

The solution to this problem is for the container to specify
OLECLOSE_SAVEIFDIRTY when calling Close().

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 2.10 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoCdt

BUG: IROT::Register() and IOL::SetDisplayName() Inconsistency

PSS ID Number: Q111607
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

IRunningObjectTable::Register() allows monikers that are not valid
filenames to be registered as file monikers. However, if the display name
string passed to IOleLink::SetSourceDisplayName() is not a valid filename,
SetSourceDisplayName() returns STG_E_FILENOTFOUND.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION

This inconsistency may become apparent when an OLE application is calling
IOleLink::SetSourceDisplayName() to change the source of a link object. It
is possible that a new file moniker that is not a valid source name will be
registered on the running object table--for example, a moniker of "New 1"
for a new, as yet unsaved document. It will not be possible to use
SetSourceDisplayName() to link to this object, however, because "New 1" is
not a valid filename, and therefore it will be rejected by
SetSourceDisplayName().

Additional reference words: 2.01 3.10 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoLnk

BUG: Object Packager GPFs w/ Paths Greater Than 64 Characters

PSS ID Number: Q109116
Authored 21-Dec-1993 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

Packaging an object that has a fully qualified path of more than 64 letters
results in a general protection (GP) fault in the Object Packager.

CAUSE

MS-DOS paths have a limit of 64 characters. The Object Packager does not
correctly handle scenarios that involve File Manager paths greater than
this limit.

STATUS

Microsoft has confirmed this to be a problem in the Windows 3.1 Object
Packager.

This problem does not occur with Object Packager 3.5 on Windows NT 3.5.

MORE INFORMATION

Steps to Reproduce

1. Create a directory structure in File Manager that results in a path
 greater than 64 characters. You must use File Manager because MS-DOS
 will not allow a directory structure this large to be created.

2. Use File Manager to copy a file into this new subdirectory. File Manager
 must be used because MS-DOS will not recognize this directory.

3. Select the file from within File Manager.

4. Choose Copy from the File menu.

5. Choose the Copy To Clipboard button to place the filename and path on
 the clipboard.

6. Launch CntOutl and Paste Link.

Additional reference words: 2.10 3.10 GPF GP-Fault buglist2.01
KBCategory: kbole kbbuglist

KBSubcategory: LeTwoApp

BUG: OLE 1.0 Server Launched for Paste Link

PSS ID Number: Q111578
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 1.0 server application copies an object to the clipboard, then
enters the blocked state. An OLE 2.0 container application then attempts to
paste a link to the object from the clipboard. The OLE 2.0 application is
frozen.

Next, the OLE 1.0 application is shut down. This unfreezes the OLE 2.0
container application, which proceeds to paste the link to the OLE 1.0
object. However, an instance of the OLE 1.0 server is launched. Normally,
the server is not run in a paste-link scenario.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG: OLE 2.0 Compatibility Layer Uses Document IDataObject

PSS ID Number: Q111585
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

Whenever the OLE 1.0 client compatibility layer uses IDataObject, it uses
the OLE 2.0 server's document-level data object rather than the server's
pseudo-object data object.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION

One of the side-effects of this problem is that the following key is
required in the OLE 2.0 server application's CLSID listing in the
registration database

 GetSet
 |- X = 3, 1, 32, 1

where X is application-dependent. If this key is missing from the
registration database, then any attempt to embed the OLE 2.0 object into an
OLE 1.0 client will fail, even if the server application fully supports
IDataObject::EnumFormatEtc.

The GetSet key is used by server applications to describe the formats that
an object is capable of rendering, or having set. OLE looks at this key
when it needs to know which formats an object supports, without having to
run the object. This key is required in this situation because the OLE 1.0
compatibility layer is always going to refer to the registration database
to enumerate the formats supported by the server application. This
particular key represents the METAFILEPICT format, which must be supported
for OLE 1.0 compatibility.

Additional reference words: 2.01 3.50 4.00 toolkit
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoPrs

BUG: OLE 2.0 Containers & 1.0 Objects that Close w/out Saving

PSS ID Number: Q109547
Authored 04-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE version 1.0
 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

When an OLE 1.0 object is inserted into an OLE 2.0 container document and
then closed without an update being invoked, the correct streams for that
object are not written to storage. Any subsequent attempt by the container
to load the object will fail.

CAUSE

When the OLE 1.0 object is closed without an update, the OLE 2.0 container
receives an IAdviseSink::OnClose() message without having first received an
IClientSite::SaveObject() message. Unless the container takes steps to work
around this problem, incorrect streams will be saved.

RESOLUTION

To protect against this scenario, OLE 2.0 containers that want data to be
available after an OLE 1.0 object closes without updating can implement
code similar to the following pseudocode:

 OleCreate();
 OleRun();
 IOleObject::Update(); \\ To get a snapshot of the data.
 OleSave(); \\ To save the data to storage.
 IOleObject::DoVerb();

Alternatively, the container could just delete any objects that call
IAdviseSink::OnClose() without first calling IClientSite::SaveObject().

STATUS

Microsoft has confirmed this to be a problem in the products listed at the
beginning of this article. We are researching this problem and will post
new information here as it becomes available.

MORE INFORMATION

For more information about known idiosyncrasies of embedding or linking OLE
1.0 objects into OLE 2.0 containers, please see the "Compatibility with OLE
1.0" section of the OLE SDK Help file.

Additional reference words: 1.00 2.00 2.01 3.50 4.00 toolkit
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG: OLE 2.0 Does Not Support CF_OWNERDISPLAY

PSS ID Number: Q109552
Authored 04-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

If an application places a data transfer object onto the clipboard and that
data object enumerates CF_OWNERDISPLAY as one of the clipboard formats, the
application will not receive the WM_PAINTCLIPBOARD message.

CAUSE

The WM_PAINTCLIPBOARD message is sent to the clipboard owner in order to
paint the clipboard viewer window. After performing an OleSetClipboard,
clipboard ownership belongs to the OLE libraries. Because no window handle
information is passed with OleSetClipboard, the OLE libraries cannot
forward this message to the calling application.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoDdc

BUG: OLE Type Emulation for Previously Loaded Objects

PSS ID Number: Q111608
Authored 14-Feb-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

OLE type emulation is the process that allows the application user to
specify that all objects of some particular type are henceforth to be
activated as objects of some alternate, emulating type. When objects of the
original type are subsequently run, the server for the emulating type is
launched to serve them.

However, this emulation does not occur for objects of the original type
that were already in the loaded state when the type emulation occurred.
When such objects are subsequently run, they are run as the original type,
not the emulating type. The original server is launched, not the server for
the emulating type.

CAUSE

When an object is in the loaded state, its object handler is running. The
handler is, in general, particular to the original type for that object,
and therefore cannot emulate another object type.

STATUS

Microsoft has confirmed this to be a problem with the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION

If a container application has previously loaded instances of the original
type, it should reload each such object as the alternative, emulating type
the next time that object is run.

For more information on OLE type emulation, see "Emulating Different Object
Types" in the Object Linking and Embedding Software Development Kit (SDK)
version 2.01 "Programmer's Reference" help file.

Additional reference words: 2.01 3.50 4.00 95

KBCategory: kbole kbbuglist
KBSubcategory: LeTwoUim

BUG: OleConvertStorageToOLESTREAM() Fails When CLSID Is NULL

PSS ID Number: Q111611
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

The OleConvertStorageToOLESTREAM() API (application programming interface)
call is used to convert the storage of an embedded object from the OLE 2.0
storage model to the OLE 1.0 storage model. However, if the OLE 2.0 object
has a CLSID of NULL, then OleConvertStorageToOLESTREAM() fails with a
return code of OLE_E_CLASS.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION

Note that it is unusual for an embedded object to have a CLSID of NULL.
However, after IOleLink::SetSourceDisplayName() has been called to change
the source of an embedded link object, it is possible for that link object
to have a CLSID of NULL.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoPst

BUG: OleCreate and IOleCache::Cache Fail with Multiple TYMEDs

PSS ID Number: Q109543
Authored 04-Jan-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

The OLE 2.01 creation functions [OleCreate(), OleCreateFromData(), and so
forth] and IOleCache::Cache() fail if multiple values are specified for the
TYMED field of the FORMATETC parameter. The functions fail even if the
object server supports at least one of the TYMED values specified.

STATUS

Microsoft has confirmed this to be a problem in version 2.01 of the OLE
libraries. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

This is not a problem in 32-bit OLE.

Additional reference words: 2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoCom

BUG: OLERENDER_ASIS Results in Blank Embedded Object

PSS ID Number: Q110714
Authored 27-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

If an OLE 1.0 client application contains an embedded object and copies the
object to the clipboard and an OLE 2.0 container application then performs
a paste operation by creating a new embedded object based on the clipboard
data by calling OleGetClipboard() and then calling OleCreateFromData(), the
resulting embedded object appears blank in the container's document if the
OLE 2.0 container specifies OLERENDER_ASIS as the renderOpt parameter to
OleCreateFromData().

CAUSE

The OLE 1.0 compatibility layer has placed the CF_EMBEDSOURCE format onto
the clipboard on behalf of the OLE 1.0 client application. This is
incorrect. When copying an embedded object to the clipboard, the
CF_EMBEDDEDOBJECT format should be supplied.

NOTE: The DOBJVIEW test application supplied with the OLE Software
Development Kit (SDK) version 2.01 can be used to determine which clipboard
formats are supplied by the clipboard data object.

RESOLUTION

An OLE 2.0 container application can avoid specifying OLERENDER_ASIS as the
renderOpt parameter to OleCreateFromData() when the clipboard data object
does not supply the CF_EMBEDDEDOBJECT format.

STATUS

Microsoft has confirmed this to be a problem in the products listed at the
beginning of this article. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoCdt

BUG: Paste Link Disabled Across the Network

PSS ID Number: Q108939
Authored 20-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

The OleQueryLinkFromData application programming interface (API) function
returns failure when clipbook data from another machine is copied to the
local clipboard, even if the clipbook contains all of the data needed to
create a link.

CAUSE

cfLinkSource is not being rendered by the OLE libraries when data is being
transferred via NetDDE.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

Reference words: 2.01 3.50 4.00 Paste Link
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoDdc

BUG: Paste-Linking a 256-Color Paintbrush Object

PSS ID Number: Q111612
Authored 14-Feb-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries for Windows NT, version 2.1

SYMPTOMS

A 256-color bitmap is loaded into Microsoft Paintbrush version 3.11
(included with Windows 3.11) and 3.50 (included with Windows NT 3.5). The
image is selected and then copied to the clipboard. An OLE 2.0 application
then pastes a link to the object from the clipboard. To perform the paste-
link operation, the container calls OleCreateLinkFromData(), specifying
OLERENDER_FORMAT as the rendering option and CF_DIB as the desired format.

The resulting link object in the OLE 2.0 application has an incorrect
appearance, such as being colored solid black.

STATUS

Microsoft has confirmed this to be a problem with the Object Linking and
Embedding libraries version 2.01. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION

Normally an OLE 2.0 application will specify OLERENDER_DRAW as the
rendering option. This allows OLE to cache a metafile presentation for the
object. When a metafile is cached, the 256-color Paintbrush object is
displayed correctly.

Additional reference words: 2.00 2.01 2.10 3.50
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoApp

BUG: Printing Does Not Work from CL2TEST.EXE

PSS ID Number: Q112413
Authored 08-Mar-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft Visual C++ 32-bit Edition, versions 2.0 and 2.1
 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SYMPTOMS

Printing does not work correctly from CL2TEST.EXE or CL32TEST.EXE. Choosing
Print from the File menu results in a blank printout.

CAUSE

Printing has not been correctly implemented in the test container
application.

STATUS

Microsoft has confirmed this to be a problem in the CL2TEST test
application included with the Microsoft products listed at the beginning of
this article. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

Additional reference words: 2.00 2.01 2.10 3.50
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: Relative Monikers and OLE 1.0 Link Objects

PSS ID Number: Q111609
Authored 14-Feb-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

When a link object from an OLE 2.0 application is copied to the clipboard
and then pasted into an OLE 1.0 application, the OLE 2.0 emulation layer
preserves the object's relative moniker. If the OLE 1.0 application
document is closed and then reopened by an OLE 2.0 version of the
application, OLE 2.0 will create a full moniker for the linked object by
appending the preserved relative moniker to the file moniker for the
document. This full moniker will be incorrect, because it will point to the
new document rather than to the first OLE 2.0 application's document that
contains the original linked object.

However, OLE 2.0 will still be able to bind to the linked object by
following the absolute moniker that is also stored with the object
(providing that the absolute location of the original linked object has not
changed). At the time of this binding, OLE will then correct the full
moniker for the object.

STATUS

Microsoft has confirmed this to be a problem with the Object Linking and
Embedding libraries version 2.01. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 2.10 buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG: Retaining Clipboard IDataObject Causes Unexpected Result

PSS ID Number: Q109545
Authored 04-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An application holding on to a clipboard IDataObject pointer, and making
repeated calls to IDataObject::EnumFormatEtc() through that pointer, may
find that the set of formats returned by EnumFormatEtc() changes between
calls.

RESOLUTION

As noted in the Object Linking and Embedding SDK version 2.01
documentation, an application that calls OleGetClipboard() to retrieve an
IDataObject interface pointer should hold on to that IDataObject pointer
only for a very short time.

STATUS

Microsoft has confirmed this to be a problem in the products listed at the
beginning of this article. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION

Steps to Reproduce

1. Copy an object from an OLE 1.0 server to the clipboard.

2. Call OleGetClipboard() to obtain an IDataObject pointer to the
 clipboard object.

3. Call IDataObject::EnumFormatEtc() to enumerate the available formats.

4. Without calling IDataObject::Release(), copy an object from an OLE 2.0
 server to the clipboard.

5. Call IDataObject::EnumFormatEtc() again. The formats enumerated have
 changed to the formats provided by the new OLE 2.0 object.

The OLE2UI library's implementation of the Paste Special dialog box
(provided in the Object Linking and Embedding SDK version 2.01) works
around this problem. The Paste Special dialog box is launched by calling
OleUIPasteSpecial(). If the user changes the contents of the clipboard
while this dialog is up, the OLE2UI code detects the change and responds by
ending the dialog box. When this happens, OleUIPasteSpecial() returns
OLEUI_PSERR_CLIPBOARDCHANGED.

The dialog box detects changes to the clipboard contents by calling
SetClipboardViewer() to splice itself into the clipboard viewer chain.

Additional reference words: 2.01 3.50 4.00 toolkit
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoDdc

BUG: Set Line Height on ISvrOutl Object Causes GPF in Cl2Test

PSS ID Number: Q108930
Authored 20-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

In certain circumstances, editing the Line Height of an ISvrOutl object
embedded within Cl2Test results in a general protection (GP) fault after
displaying the following message:

 GDI - An error has occurred in your application. If you choose Ignore,
 you should save your work in a new file. If you choose Close, your
 application will terminate.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

MORE INFORMATION

Steps to Reproduce

1. Launch ISvrOutl, create a line item.
2. Edit/Copy the line.
3. Launch CL2TEST.EXE.
4. Edit/Paste.
5. Edit/Outline/Open or double-click the object.
6. Within ISvrOutl, Line/Set Line Height.
7. Enter 1 in the height field, choose OK.

Additional reference words: 2.01 3.50 4.00 In Place Inplace sample gpf gp-
fault
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: SR2TEST Menu Items Enabled Incorrectly

PSS ID Number: Q109546
Authored 04-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

During an in-place activation session, SR2TEST sometimes incorrectly
enables menu items on its Edit menu.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here as it becomes available.

MORE INFORMATION

Steps to Reproduce Problem

1. Start SR2TEST.

2. Start CL2TEST.

3. Create a new CL2TEST document.

4. Insert an SR2TEST object in-place into the CL2TEST document.

5. While the SR2TEST object is still in-place active within CL2TEST, choose
 Delete from the Edit menu to delete the shape.

At this point, the Cut, Copy, and Delete menu items on the Edit menu are
still enabled. This is incorrect because there is no shape remaining in the
SR2TEST object to cut, copy, or delete.

Additional reference words: 2.01 3.50 4.00 toolkit
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: SR2TEST Won't Close After Editing Link Object

PSS ID Number: Q108935
Authored 20-Dec-1993 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

After editing a linked SR2TEST object from CL2TEST, SR2TEST fails to shut
down after first displaying the following message box:

 Error Document not unlocked. Attempt Self-unlocking?

CAUSE

The BindToSource button from the Properties dialog box was chosen in
CL2TEST before running the object. CL2TEST is not properly releasing the
bind context, locking SR2TEST open.

STATUS

Microsoft has confirmed this to be a problem in the CL2TEST test
application shipped with the OLE Toolkit version 2.01. We are researching
this problem and will post new information here as it becomes available.

This is not a problem with CL32TEST included with the 32-bit OLE libraries.

Additional reference words: 2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: Status Bar Not Redrawn With SR2TEST When In-Place

PSS ID Number: Q109541
Authored 04-Jan-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

After inserting an SR2TEST object into the in-place version of the OUTLINE
sample application, the status bar will not be redrawn until the container
application's window is resized.

STATUS

Microsoft has confirmed this to be a problem in the SR2TEST sample
application included with the OLE SDK version 2.01. We are researching this
problem and will post new information here in the Microsoft Knowledge Base
as it becomes available.

This is not a problem with SR32TEST included with the 32-bit OLE libraries.

MORE INFORMATION

Steps to Reproduce

1. Run ICNTOUTL.EXE.
2. Choose Insert Object from Edit menu.
3. Choose OleTest SrTest 2.0 Shape from the list box.
4. Choose OK.
5. Resize the container window.

Additional reference words: 2.01 In Place Inplace
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: SVROUTL Link Not Displayed Correctly in CNTROUTL

PSS ID Number: Q110871
Authored 01-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

Selecting the Paste Link menu item in the CNTROUTL sample application does
not correctly display the contents of the link if the source application is
the SVROUTL sample application.

This problem occurs only if the information created in SVROUTL is edited
further after the Edit Copy operation in SVROUTL, but before the Paste Link
operation in CNTROUTL. In this situation, the resulting link object is
displayed as originally copied to the clipboard, and does not reflect the
changes made after the copy operation.

STATUS

Microsoft has confirmed this to be a problem with the CNTROUTL and SVROUTL
samples included with the Microsoft products listed at the beginning of
this article. We are researching this problem and will post new information
here as it becomes available.

MORE INFORMATION

This problem occurs only when the SVROUTL link object is first pasted into
CNTROUTL. After the initial paste operation, any further modifications to
the information in SVROUTL are correctly reflected in the display of the
linked object in CNTROUTL.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoTls

BUG: Windows OLE DLLs Do Not Convert Mac OLESTREAM

PSS ID Number: Q112412
Authored 08-Mar-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SYMPTOMS

The OLE 2.01 libraries will not convert a Mac OLESTREAM to a Windows
OLESTREAM. Similarly, the Windows OLE dynamic-link libraries (DLLs) will
not convert a Mac IStorage to a Windows OLESTREAM.

STATUS

Microsoft has confirmed this to be a problem in the OLE SDK version 2.01.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION

The Macintosh OLE 2.0 libraries will be able to convert non-Macintosh
OLESTREAMs by means of OleConvertOLESTREAMToIStorage. At this time, there
are no known Macintosh OLE 1.0 applications that generate Windows-
compatible files that contain Mac OLESTREAMs.

Additional reference words: 2.01 buglist2.01
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoArc

BUG:IOleObject::IsUpToDate Returns Wrong Value for Manual

PSS ID Number: Q111655
Authored 15-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

To determine whether an OLE link needs to be updated, an OLE 2.0 container
application needs to call IOleObject::IsUpToDate. If this method returns
S_FALSE, the link needs to be updated; otherwise, the link can be
considered up to date. However, calling IOleObject::IsUpToDate on a manual
link while the link server is not running results in an a return value of
S_FALSE, even if the link is current. The result of this is that OLE 2.0
container applications may update links unnecessarily.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoLnk

CLEANDB.EXE Not Included in OLE 2.01 SDK

PSS ID Number: Q109431
Authored 04-Jan-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

The Registration Database Cleaner (CLEANDB.EXE), which shipped with the OLE
2.0 SDK, is no longer shipped in version 2.01 of the OLE SDK.

CLEANDB.EXE was used to remove keys from the registration database that
were added by pre-release versions of OLE 2.0 but not used in the final
version. Because these keys are obsolete, CLEANDB.EXE was removed from the
OLE SDK in version 2.01.

Additional reference words: 2.01
KBCategory: kbole kbprg
KBSubcategory: LeTwoTls

Containers Should Not Query for IOleInPlaceActiveObject

PSS ID Number: Q98678
Authored 11-May-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

OLE (object linking and embedding) version 2.0 container applications
should never call QueryInterface to get a pointer to the
IOleInPlaceActiveObject interface. Instead, the container should
AddRef() the pointer passed to IOleInPlaceUIWindow::SetActiveObject
and save it until needed.

Consider the scenario in which a nested object is currently inplace
active; that is, the container contains an object and this contained
object in turn holds another object that is inplace active. The
container has a pointer only to the "outer" object, and is not aware
of the "inner" object. Calling QueryInterface to get a pointer to
IOleInPlaceActiveObject is meaningless on the outer object because the
outer object is not currently inplace active. The only reliable way to
get a pointer to the correct IOleInPlaceActiveObject interface is
through IOleInPlaceUIWindow::SetActiveObject.

Objects capable of inplace activation should guard against this case,
and never return IOleInPlaceActiveObject from QueryInterface.

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoInp

Corrections for Inside OLE 2 Sample Code

PSS ID Number: Q113255
Authored 29-Mar-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, version 2.1, included with:
 - Microsoft Windows NT, version 3.5

SUMMARY

The sample code for the book "Inside OLE 2," by Kraig Brockschmidt
(Microsoft Press) was originally written to be compatible with OLE 2.0.
This code has been updated to be compatible with OLE 2.01, and also to fix
some problems in the original code. This article describes the changes that
were made in updating the code. The changes are described in detail in the
"More Information" section of this article below; below a quick list of the
problems that required changes:

 - Compiler Errors on IViewObject::Draw()
 - Compiler Errors on OleUIAddVerbMenu()
 - Compiler Errors on OleStdGetObjectDescriptorFromOleObject()
 - Compiler Errors on IDS_CLOSE
 - Linker Fails with CLASSLIB Sample
 - Compiler Errors Referencing GETICON.H
 - Incorrect Prototypes for LibMain() and WEP()
 - Patron GP Faults During Activate As
 - Patron's Convert To Fails
 - CLASSLIB String Allocations Fail with Some Compilers
 - CImpIPolyline::WriteToFile() Returns an Incorrect Value
 - CImpIOleObject::GetClientSite() Returns an Incorrect Value
 - Polyline Registers a Format with an Uninitialized String
 - DataTran Reference Counting Problem
 - Component Cosmo Fails to Release Polyline Object
 - Cosmo Fails to Load When Used with HCosmo Handler
 - Patron Does Not Work with Some Printer Drivers
 - ClassLib Creates Table of Invalid String Pointers
 - Errors in Enumerator Samples
 - Samples GP Fault When Closing Iconized Documents

Updated Sample Code Available

The INOLE2 Software Library sample contains a complete source tree for
updated "Inside OLE 2" sample code. All of the changes described in this
article have already been made to the INOLE2 code.

The easiest way to update all of the "Inside OLE 2" samples is to get a
completely new source tree from INOLE2, and then rebuild the samples from
scratch under OLE 2.01. This article can then be used as a reference,
explaining what changes were made and why there were necessary.

INOLE2 can be downloaded as a self-extracting file from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL and download INOLE2.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download INOLE2.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get INOLE2.EXE

NOTE: This archive contains subdirectories, be sure to use the -d command
line switch during extraction.

MORE INFORMATION

BOOKUI.DLL

If the original source code to the Inside OLE 2 samples is updated
according to this article, and the samples are then rebuilt to be
compatible with OLE 2.01, it will also be necessary to rebuild an OLE 2.01
version of the OLE2UI library for the samples to use. To do so, build a
library called BOOKUI.DLL according to the instructions in the OLE 2.01
SDK.

Use this new DLL to replace the INOLE2\BUILD\BOOKUI.DLL file included with
the book.

If the samples are rebuilt from the INOLE2 Software Library sample, it is
not necessary to manually rebuild BOOKUI.DLL, because INOLE2 already
includes an updated version of BOOKUI.DLL.

1. Compiler Errors on IViewObject::Draw()

Problem:

The prototype for IViewObject::Draw() changed between OLE 2.0 and OLE 2.01.
In 2.0 the lprcBounds and lprcWBounds parameters were prototyped as "const
LPRECTL"; in 2.01 they are prototyped as "LPCRECTL". This change causes
the HCosmo (Chapter 11) and Polyline (Chapters 11 and 16) sample
applications to fail during compilation under 2.01.

Solution:

To correct this error, update all references to IViewObject::Draw() in
the Inside OLE 2 sample code by changing const LPRECTL to LPCRECTL.

This change will be necessary in the following files:

 interfac\iviewobj.cpp
 interfac\iviewobj.h

 chap11\hcosmo\hcosmo.h
 chap11\hcosmo\iviewobj.cpp

 chap11\polyline\iviewobj.cpp
 chap11\polyline\polyline.h

 chap16\polyline\iviewobj.cpp
 chap16\polyline\polyline.h

2. Compiler Errors on OleUIAddVerbMenu()
--

Problem:

The prototype for OleUIAddVerbMenu() changed between OLE 2.0 and OLE 2.01.
The OLE2UI library version OLE 2.01 added an additional parameter to
OleUIAddVerbMenu(). This new parameter is an integer value called
"idVerbMax", and it indicates the largest number the container allows for a
verb menu item identifier. The idVerbMax parameter immediately follows the
idVerbMin parameter.

The Patron sample applications were written for the OLE 2.0 version of the
user interface library, which did not include this new parameter.
Consequently, these samples do not compile with the OLE 2.01 header files.
This difference affects the versions of Patron found in Chapters 9, 12, 13,
14, and 15.

Solution:

To correct this problem, perform the following two steps:

1. Build an OLE 2.01 version of BOOKUI.DLL, as described in problem 1
 above.

2. Update all calls to OleUIAddVerbMenu() in Patron by passing "ID_VERBMAX"
 (already defined in RESOURCE.H) as the idVerbMax parameter. For example,
 in the function CPage::FQueryObjectSelected(), change the following

 OleUIAddVerbMenu(NULL, NULL, hMenu, MENUPOS_OBJECT
 , IDM_VERBMIN, FALSE, 0, &hMenuTemp);

 to read as follows:

 OleUIAddVerbMenu(NULL, NULL, hMenu, MENUPOS_OBJECT
 , IDM_VERBMIN, IDM_VERBMAX, FALSE, 0, &hMenuTemp);

 This change will be necessary in the functions
 CPage::FQueryObjectSelected() and CTenant::AddVerbMenu() in each of the
 following files:

 chap09\patron\page.cpp
 chap09\patron\tenant.cpp

 chap12\patron\page.cpp
 chap12\patron\tenant.cpp

 chap13\patron\page.cpp
 chap13\patron\tenant.cpp

 chap14\patron\page.cpp
 chap14\patron\tenant.cpp

 chap15\patron\page.cpp
 chap15\patron\tenant.cpp

3. Compiler Errors on OleStdGetObjectDescriptorFromOleObject()
--

Problem:

The prototype for OleStdGetObjectDescriptorFromOleObject() changed between
OLE 2.0 and OLE 2.01. Version 2.01 of the OLE2UI library added an
additional parameter to OleStdGetObjectDescriptorFromOleObject(). This new
parameter, "lpSizelHim", is an LPSIZEL value and points to a structure that
indicates the dimensions of the object. The lpSizelHim parameter was added
to the end of the existing parameter list.

The Patron sample applications were written for the OLE 2.0 version of the
user interface library, which did not include this new parameter.
Consequently, these samples do not compile with the OLE 2.01 header files.
This difference affects the versions of Patron in Chapters 9, 12, 13, 14,
and 15.

Solution:

To correct this problem, perform the following two steps:

1. Build an OLE 2.01 version of BOOKUI.DLL, as described in problem 1
 above.

2a. To quickly solve the problem, update all calls to
 OleStdGetObjectDescriptorFromOleObject() in Patron by passing NULL as
 the lpSizelHim parameter.

2b. For a more complete solution to the problem, first declare a local
 variable:

 SIZEL szl;

 Then replace the code:

 stm.hGlobal=OleStdGetObjectDescriptorDataFromOleObject
 (m_pIOleObject, NULL, m_fe.dwAspect, ptl);

 with the code:

 SETSIZEL(szl, (10*(m_rcl.right-m_rcl.left))
 , (10 * (m_rcl.bottom-m_rcl.top)));

 stm.hGlobal=OleStdGetObjectDescriptorDataFromOleObject
 (m_pIOleObject, NULL, m_fe.dwAspect, ptl, &szl);

 This code correctly computes the size of the object and then stores
 those extents into the object descriptor.

These changes will be necessary in the function
CTenant::CopyEmbeddedObject() in each of the following files:

 chap09\patron\tenant.cpp
 chap12\patron\tenant.cpp
 chap13\patron\tenant.cpp
 chap14\patron\tenant.cpp
 chap15\patron\tenant.cpp

These changes will also be necessary in the function
CTenant::CopyLinkedObject(), found in TENANT.CPP in Chapters 12, 13, 14,
and 15.

4. Compiler Errors on IDS_CLOSE

Problem:

The OLE2UI.H header file shipped with OLE 2.01 defines a symbol IDS_CLOSE.
This symbol causes a conflict with a symbol of the same name defined in the
Cosmo samples.

This conflict affects the versions of Cosmo in Chapters 10, 13, 14, and 16.
The files affected are COSMO.RC and RESOURCE.H.

Solution:

To correct the problem, rename IDS_CLOSE in RESOURCE.H to IDS_CLOSE2, and
change the single occurrence of IDS_CLOSE in COSMO.RC to IDS_CLOSE2 in each
chapter. These changes are necessary in the following files:

 chap10\cosmo\cosmo.rc
 chap10\cosmo\resource.h

 chap13\cosmo\cosmo.rc
 chap13\cosmo\resource.h

 chap14\cosmo\cosmo.rc
 chap14\cosmo\resource.h

 chap16\cosmo\cosmo.rc
 chap16\cosmo\resource.h

5. Linker Fails with CLASSLIB Sample

Problem:

There is an error in the FILES.LST file in the CLASSLIB directory of the
sample code. The first entry in this file, "cstrtable.obj", is a valid long
filename under Windows NT, but the file created during compilation is
actually "cstrtabl.obj" (no "e" on table). This causes no problems with a
16-bit compiler, because the extra "e" is ignored. However, it will
cause an error with a 32-bit compiler.

Solution:

To solve the problem, remove the "e", thus changing "cstrtable.obj"
to "cstrtabl.obj".

6. Compiler Errors Referencing GETICON.H
--

Problem:

In OLE 2.0, container applications must include the file GETICON.H, which
is supplied with the OLE Software
Development Kit (SDK) version 2.0. In OLE 2.01, applications no longer need
to include GETICON.H, because the information in that file has been moved
to other header files. Because it is no longer needed, GETICON.H is not
included with the OLE 2.01 SDK.

The Patron sample applications of Chapters 14 and 15 were written for OLE
2.0, so they include GETICON.H. Because this file is no longer available,
these versions of Patron fail to compile with the OLE 2.01 SDK.

Solution:

To correct the problem, comment out or delete the line "#include
<geticon.h>" in TENANT.CPP. This change is necessary in the following
files:

 chap14\patron\tenant.cpp
 chap15\patron\tenant.cpp

7. Incorrect Prototypes for LibMain() and WEP()

Problem:

The LibMain() and WEP() functions in all of the DLL samples are prototyped
incorrectly. These prototypes cause errors when using some compilers (for
example, Borland C++ 4.0); they do not cause problems with other compilers
(for example, Microsoft Visual C++ versions 1.0 and 1.5).

Solution:

The DLL samples in Inside OLE 2 implement the LibMain() and WEP() functions
as follows:

 HANDLE FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSeg
 , WORD cbHeapSize, LPSTR lpCmdLine)
 {
 ...

 return hInstance;
 }

 void FAR PASCAL WEP(int bSystemExit)
 {
 return;
 }

To match the Windows SDK specifications, both of these functions should
return an int:

 int FAR PASCAL LibMain(HANDLE hInstance, WORD wDataSeg
 , WORD cbHeapSize, LPSTR lpCmdLine)
 {
 ...

 return (int)hInstance;
 }

 int FAR PASCAL WEP(int bSystemExit)
 {
 return 0;
 }

To solve this problem, make the changes above to all occurrences of
LibMain() and WEP() in the Inside OLE 2 sample code.

8. Patron GP Faults During Activate As

Summary:

The Patron sample applications from Chapters 14 and 15 support the OLE 2
Convert dialog box. Choosing Activate As from this dialog box sometimes
causes a GP fault.

Problem:

The problem lies in the way that the CTenant::Close() function uses the
fReopen flag. When Close() determines that there are no references to the
tenant IStorage, it normally resets the internal state of the tenant to
default values. As part of this process, it sets the member m_pIStorage to
NULL. However, if fReopen is TRUE, this assignment to NULL is skipped.

This can lead to situations where m_pIStorage is non-NULL but the storage
itself has been destroyed. Thus m_pIStorage is an invalid pointer, and
trying to call through it causes a GP fault.

To correct this problem, ensure that the m_pIStorage variable is set to
NULL any time its reference count is 0 (zero). This correction involves

removing a condition in the CTenant::Close() function, which is found in
the Patron source file TENANT.CPP.

Solution:

To correct this problem, edit the code to CTenant::Close() as follows:

Where you see the lines

 if (!fReopen)
 m_pIStorage=NULL;

remove the "if" statement, leaving:

 m_pIStorage=NULL;

The fReopen flag was used in an attempt to provide some optimization when
performing Activate As, but this flag is not necessary. The updated Inside
OLE 2 sample code referenced above has removed the flag entirely. This
affects the TENANT.CPP, TENANT.H, and PAGE.CPP source files of the PATRON
samples in Chapters 14 and 15.

9. Patron's Convert To Fails

Summary:

The Patron sample applications from Chapters 14 and 15 support the OLE 2
Convert dialog box. When Convert To is chosen from this dialog box, PATRON
fails to perform the conversion properly.

Problem:

The problem is that CPage::FConvertObject() releases the page's IStorage
pointer without committing it. Because Patron uses transacted storage, this
discards all changes, including the conversion that just happened.

The code in error (listed on Page 817 of Inside OLE 2) is as follows:

 if ((CF_SELECTCONVERTTO & ct.dwFlags)
 && !IsEqualCLSID(ct.clsid, ct.clsidNew))
 {
 LPSTORAGE pIStorage;

 //This should be the only close necessary.
 m_pTenantCur->RectGet(&rcl, FALSE);
 m_pTenantCur->StorageGet(&pIStorage);
 m_pTenantCur->Close(FALSE, FALSE);

 hr=OleStdDoConvert(pIStorage, ct.clsidNew);
 pIStorage->Release();

This code does not commit the changes to the storage affected by
OleStdDoConvert before releasing pIStorage.

Solution:

To correct this problem, include a call to pIStorage->Commit() before
releasing the storage:

 if ((CF_SELECTCONVERTTO & ct.dwFlags)
 && !IsEqualCLSID(ct.clsid, ct.clsidNew))
 {
 LPSTORAGE pIStorage;

 //This should be the only close necessary.
 m_pTenantCur->RectGet(&rcl, FALSE);
 m_pTenantCur->StorageGet(&pIStorage);
 m_pTenantCur->Close(FALSE, FALSE);

 hr=OleStdDoConvert(pIStorage, ct.clsidNew);

 pIStorage->Commit(STGC_ONLYIFCURRENT);
 pIStorage->Release();

 ...

10. CLASSLIB String Allocations Fail with Some Compilers
--

Summary:

The Inside OLE 2 sample code includes a CLASSLIB library. Compiling the
CStringTable class from this library may cause string space allocation
failures with some compilers.

Problem:

The problem is an uninitialized local variable "cchUsed" in the function
CStringTable::FInit(). This routine is found in the CLASSLIB source file
SCSTRTABL.CPP.

Solution:

Initialize cchUsed to zero, for example, change the line

 UINT cchUsed;

to read as follows:

 UINT cchUsed=0;

11. CImpIPolyline::WriteToFile() Returns an Incorrect Value

Summary:

The Polyline sample DLL in Chapter 4 contains a function,
CImpIPolyline::WriteToFile(), which returns an incorrect value.

Problem:

If WriteToFile()'s write operation succeeds, it should return NOERROR.
Instead, it returns POLYLINE_E_WRITEFAILURE.

Solution:

In the code for the CImpIPolyline::WriteToFile() function, change the lines
that read

 return (m_pObj->m_fDirty) ?
 NOERROR : ResultFromScode(POLYLINE_E_WRITEFAILURE);

to read as follows:

 return (!m_pObj->m_fDirty) ?
 NOERROR : ResultFromScode(POLYLINE_E_WRITEFAILURE);

Make this change to the Chapter 4 version of Polyline.
CImpIPolyline::WriteToFile() is in the Polyline source file IPOLYLIN.CPP.

12. CImpIOleObject::GetClientSite() Returns an Incorrect Value
--

Summary:

The Cosmo sample applications in Chapters 10, 13, 14 and 16 contain a
function, CImpIOleObject::GetClientSite(), that returns an incorrect value.

Problem:

When GetClientSite() encounters no errors, it should return NOERROR.
Instead, it returns E_NOTIMPL.

Solution:

In the code for CImpIOleObject::GetClientSite(), change the line that reads

 return ResultFromScode(E_NOTIMPL);

to read as follows:

 return NOERROR;

Make this change to the versions of Cosmo in Chapters 10, 13, 14 and 16.
CImpIOleObject::GetClientSite() is in the Cosmo source file IOLEOBJ.CPP.

13. Polyline Registers a Format with an Uninitialized String
--

Summary:

The Polyline sample DLLs in Chapters 5, 6, 11 and 16 attempt to register a
clipboard format using an uninitialized string. As a result, data formats
do not get properly transferred during clipboard, drag & drop, and compound
document operations.

Problem:

The offending line is:

 m_cf=RegisterClipboardFormat(PSZ(IDS_STORAGEFORMAT));

At constructor time, the stringtable referenced by the PSZ macro (this
macro tries to access the member CPolyine::m_pST) has not been initialized,
so m_cf is not set properly.

Solution:

To correct the error, the line of code listed above that initializes m_cf
must be moved into the function CPolyline::FInit(). Specifically, move the
line of code to occur after the code that initializes the stringtable:

 if (!m_pST->FInit(IDS_POLYLINEMIN, IDS_POLYLINEMAX))
 return FALSE;

 m_cf=RegisterClipboardFormat(PSZ(IDS_STORAGEFORMAT));

Make this one-line change to the versions of Polyline in Chapters 5, 11,
and 16. CPolyline::FInit() is in the Polyline source file POLYLINE.CPP.

Correcting this error in the Chapter 6 version of Polyline requires an
extra step. All lines initializing the FORMATETC arrays m_rgfeGet[0] and
m_rgfeSet[0] in which m_cf is stored must also be moved into
CPolyline::FInit(). The most convenient way to make this change is to
simply move all the FORMATETC initialization to the end of FInit(). Note
that Polyline does not use the FORMATETC arrays in Chapters 11 and 16, so
this extra step is not necessary in those chapters.

14. DataTran Reference Counting Problem

Summary:

The DataTran data transfer object in Chapter 7 has a reference-counting
problem in the function CImpIDataObj::GetData(). As a result, storage
elements in the STGMEDIUM returned by GetData() may become invalid while
they are still in use.

Problem:

GetData() incorrectly fails to call AddRef() on any IStorage or IStream
pointer contained in the STGMEDIUM it returns.

Solution:

To correct this error, add the following lines of code to GetData(),
immediately after the line "*pSTM = pRen->stm;":

 /*
 * Must remember to AddRef any other objects

 * in the STGMEDIUM: storages and streams.
 */
 if (TYMED_ISTORAGE==pSTM->tymed)
 pSTM->pstg->AddRef();

 if (TYMED_ISTREAM==pSTM->tymed)
 pSTM->pstm->AddRef();

GetData() is in the DataTran source file IDATAOBJ.CPP.

15. Component Cosmo Fails to Release Polyline Object
--

Summary:

The Component Cosmo samples in Chapter 6, 7, 8, 11 and 16 fail to fully
clean up their allocations when closing a document. As a result, files may
not be saved completely and unused code is left in memory.

Problem:

In the function CCosmoDoc::~CCosmoDoc(), CoCosmo obtains an IDataObject
pointer on the Polyline object it maintains in the document. It then fails
to release this pointer, resulting in the problems listed above.

Solution:

In the code for CCosmoDoc::~CCosmoDoc(), add a call to
IDataObject::Release().

Change the lines

 if (SUCCEEDED(hr))
 pIDataObject->DUnadvise(m_dwConn);

to read as follows:

 if (SUCCEEDED(hr))
 {
 pIDataObject->DUnadvise(m_dwConn);
 pIDataObject->Release();
 }

CCosmoDoc::~CCosmoDoc() is in the CoCosmo source file DOCUMENT.CPP.

16. Cosmo Fails to Load When Used with HCosmo Handler

Summary:

The Cosmo sample applications in Chapter 10, 13, 14, or 16, when they are
being used in conjunction with the custom object handler HCosmo from
Chapter 11, fail to load and activate a Cosmo object. This problem occurs
when a container application is reloading a Cosmo object from a saved file,
and also when a container application is reactivating a Cosmo object after

the object has been first created and then deactivated.

Problem:

The problem actually lies in HCosmo. HCosmo incorrectly keeps the object
stream open in the object's IStorage. It does this so that it can perform
low-memory saves without having to reopen the stream.

However, when a process has a stream open and that stream has a particular
IStorage as its parent, the OLE 2 implementation of STORAGE.DLL does not
allow the process to open the stream a second time from the same parent
IStorage. Therefore, when the Cosmo application receives the IStorage
pointer from HCosmo, and attempts to open the same object stream that
HCosmo already has open, the attempt to open the stream fails.

This problem shows up in HCosmo's implementation of IOleObject::DoVerb().
HCosmo delegates the DoVerb() call to the default handler, and the default
handler attempts to launch Cosmo. As described above, Cosmo cannot open the
object stream, so it returns an error of STG_E_READFAULT to the default
handler, which in turn returns STG_E_READFAULT to HCosmo.

As noted above, HCosmo keeps the object stream open so that it can perform
low-memory saves without having to reopen the stream. However, this is not
necessary. Because HCosmo never makes changes to the object, it never has
to save anything in a low-memory situation. Specifically, it never has to
save any changes to the storage when its IPersistStorage::Save() is called
with the fSameAsLoad flag set to TRUE. Because this is the only case where
an IPersistStorage implementation should not attempt to allocate memory, it
is totally unnecessary for HCosmo to cache any pointers to the stream.

Solution:

To correct the problem, make the following five changes to HCosmo's
IPersistStorage implementation (HCosmo's implementation of IPersistStorage
is in the source file IPERSTOR.CPP):

1. In CImpIPersistStorage::InitNew(), add the lines below immediately
 before the call to WriteClassStg():

 m_pObj->m_pIStream->Release();
 m_pObj->m_pIStream=NULL;

2. In CImpIPersistStorage::Load(), replace the line

 m_pObj->m_pIStream=pIStream;

 with the following:

 pIStream->Release();
 m_pObj->m_pIStream=NULL;

3. In CImpIPersistStorage::Save(), remove all the code inside the "if
 (fSameAsLoad)" condition (it is unnecessary).

4. In CImpIPersistStorage::SaveCompleted(), remove the lines of code below

 that occur inside the "if (NULL!=pIStorage)" condition:

 hr=pIStorage->OpenStream("CONTENTS", 0, STGM_DIRECT
 | STGM_READWRITE | STGM_SHARE_EXCLUSIVE, 0
 , &pIStream);

 if (FAILED(hr))
 return hr;

 if (NULL!=m_pObj->m_pIStream)
 m_pObj->m_pIStream->Release();

 m_pObj->m_pIStream=pIStream;

5. In CImpIPersistStorage::HandsOffStorage(), remove the condition and body
 of code below:

 if (NULL!=m_pObj->m_pIStream)
 {
 m_pObj->m_pIStream->Release();
 m_pObj->m_pIStream=NULL;
 }

The m_pIStream member of CFigure can then be eliminated entirely, because
it is no longer used in this IPersistStorage implementation.

17. Patron Does Not Work with Some Printer Drivers
--

Summary:

The Patron sample applications do not work correctly with certain printer
drivers, including the standard PostScript driver.

One symptom of failure is getting a blank document window when creating a
new Patron document; that is, no page image appears. Another symptom is
getting a GP fault in the printer driver when attempting to execute
the Printer Setup command from Patron's File menu.

Problem:

The problem is caused by the fact that Patron is not sensitive to the
variable length of the DEVMODE structure returned by the printer driver.
Patron normally obtains the DEVMODE data by calling the Windows PrintDlg()
API; it then copies that data to a private stream in its Compound File.
However, Patron only copies sizeof(DEVMODE) bytes, and therefore loses any
additional driver-specific information that might exist at the end of the
DEVMODE structure.

Some printer drivers, such as the Hewlett-Packard (HP) LaserJet PCL
drivers, use no extra information. Patron works correctly with these
drivers. Other drivers, such as the standard PostScript driver, use extra
information; with these drivers, Patron fails.

Solution:

To correct this problem, change the implementation of Patron's CPages class
so that it works with variable length DEVMODE structures, and therefore
with all printer drivers.

The changes are too extensive to list in this article; as noted at the top
of this article, an updated version of the Inside OLE 2 sample code source
tree is available on the Software Library. The following is a brief
overview of the code that needs to be changed to correct this problem:

The CPages class is defined in the header file PAGES.H, and implemented in
PAGES.CPP. The functions that need to be updated are:

 - CPages::DevmodeSet() and CPages::DevModeGet() in all chapters
 - CPages::ConfigureForDevice() in Chapters 2 and 5
 - CPages::DevReadConfig() in all chapters other than 2 and 5

After these changes have been made, the new Patron will be unable to read
files generated by previous versions of Patron. There is no automatic
conversion facility provided in these samples. To convert a file from the
old Patron format to the new Patron format, follow these steps:

1. Run an old version of Patron from Chapter 14.
2. Run a new version of Patron from Chapter 15 (or, run the old Chapter 15
 Patron and the new Chapter 14 Patron).
3. Load the old file into the old Patron.
4. Transfer all objects from the old Patron to the new Patron, using the
 clipboard or drag-and-drop method.
5. Save the new document in the new Patron.

18. ClassLib Creates Table of Invalid String Pointers

Summary:

The ClassLib sample framework implements a string table class called
CStringTable. In certain situations the implementation of this class can
create a table of invalid string pointers.

Problem:

The function CStringTable::FInit() allocates a block of memory and loads
strings from the application's resources into that memory. It then
initializes a table of far pointers into that memory, one pointer for each
string.

FInit() then reallocates the memory block, in order to free up any unused
space. This reallocation could move the memory block. Because the far
pointers in the pointer array point into the block that has moved, they all
become invalid.

Solution:

To avoid this problem, delete the following lines in the
CStringTable::FInit() function:

 //Now reallocate the string memory to however much we used, plus 1
 psz=(LPSTR)_frealloc(m_pszStrings, cchUsed+1);

 if (NULL!=psz)
 m_pszStrings=psz;

This solution wastes a little memory, but is simpler than trying to
recompute all the string pointers; ClassLib is intended to be a simple
example.

CStringTable::FInit() is in ClassLib's CSTRABL.CPP file.

19. Errors in Enumerator Samples

Summary:

The enumerator samples in "Inside OLE 2" contain two errors. This section
describes the errors and the changes necessary to fix them. The changes are
detailed for the IEnumRect enumerator found in Chapter 3; similar changes
are required in all enumerators in the book's sample code.

Problem 1:

If the first parameter to an enumerator's Next() function (called "celt" in
the OLE 2 documentation, "cRects" in the sample) is 1, it is permissible
for the last parameter (called "pceltFetched" in the documentation,
"pdwRects" in the sample) to be NULL. IEnumRect::Next() simply returns
FALSE in this case, which is incorrect.

Solution 1:

To correct this error, change the lines of code in IEnumRect::New() that
read

 if (NULL==pdwRects)
 return FALSE;

 *pdwRects=0L;

to read as follows:

 if (NULL==pdwRects)
 {
 if (1L!=cRect)
 return FALSE;
 }
 else
 *pdwRects=0L;

Problem 2:

IEnumRect::Next() stores an incorrect value into the out parameter
pdwRects.

Solution 2:

To correct this error, change the line of code in IEnumRect::New() that
reads

 *pdwRects=(cRectReturn-cRect);

to read as follows:

 if (NULL!=pdwRects)
 *pdwRects=cRectReturn;

The same changes should be made to the IENUM.CPP files in the following
"Inside OLE 2" sample code directories:

 interface
 chap03\enumc
 chap03\enumcpp
 chap06\polyline
 chap06\ddataobj
 chap06\edataobj
 chap07\datatran

20. Samples GP Fault When Closing Iconized Documents
--

Summary:

The sample applications may cause a GP fault when closing one or more
iconized documents.

Problem:

The CClient::QueryCloseAllDocuments() function (found in the ClassLib
source file CCLIENT.CPP) can cause this GP fault through incorrect use of
its local variable hPrevClose.

Solution:

To correct this problem, change the code to
CClient::QueryCloseAllDocuments() by adding the two lines below that read
"hPrevClose=NULL":

BOOL CClient::QueryCloseAllDocuments(BOOL fClose)
 {
 ...

 for (; hWndT; hWndT=GetWindow(hWndT, GW_HWNDNEXT))
 {
 if (NULL!=hPrevClose)
 {
 pDoc=(LPCDocument)SendMessage(hPrevClose
 , DOCM_PDOCUMENT, 0, 0L);
 CloseDocument(pDoc);

 hPrevClose=NULL; // ADD THIS LINE
 }

 ...

 //Close the last window as necessary.
 if (fClose && NULL!=hPrevClose)
 {
 pDoc=(LPCDocument)SendMessage(hPrevClose, DOCM_PDOCUMENT, 0, 0L);
 CloseDocument(pDoc);
 hPrevClose=NULL; // ADD THIS LINE
 }

 ...

Additional reference words: 2.01 gpf gp-fault
KBCategory: kbole kbfile
KBSubcategory: LeTwoOth

Determining If an Object Is Capable of Visual Editing

PSS ID Number: Q99045
Authored 20-May-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

It is impossible for a container to consistently determine whether an
object will attempt negotiation for visual editing. However, by
determining whether the object supports the IOleInPlaceObject
interface, the container may want to assume that the negotiation will
occur.

The default object handler will always fail a call to QueryInterface
for IOleInPlaceObject if the object is in the loaded state. The
container must first run the object and then query for the
IOleInPlaceObject interface. If this QueryInterface call succeeds,
then the container can assume that the object supports visual editing,
and may start negotiation on the execution of a verb.

MORE INFORMATION

The following C++ code returns TRUE if an object may start visual
negotiation when IOleObject::DoVerb is called:

BOOL fCanInPlaceActivate(LPOLEOBJECT lpObject)
{
LPOLEINPLACEOBJECT lpInPlaceObject;
BOOL retval;

 // Run the object.
 OleRun(lpObject);

 // Query for IOleInPlaceObject.
 HRESULT herr = lpObject->QueryInterface(IID_IOleInPlaceObject,
 (LPVOID FAR *)
 lpInPlaceObject);

 // Check the return value.
 if (herr == NOERROR)
 {
 retval = TRUE;
 lpInPlaceObject->Release();
 }
 else

 retval = FALSE;

 lpObject::Close(OLECLOSE_NOSAVE);

 return retval;
}

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbprg kbcode
KBSubcategory: LeTwoInp

DOCERR: DISPCALC and OP_MULTIPLY

PSS ID Number: Q114972
Authored 18-May-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SUMMARY

In the "OLE 2.0 Programmer's Reference," volume 2, page 12,
please change the following line:

 Calculator.Op OP_MULTIPLY

to read as follows:

 Calculator.Op = 3 ' OP_MULTIPLY

MORE INFORMATION

In order to set the Op method to multiply, you have to use the
equal sign("=") to set the Op member equal to 3.

For easier reading, you should add the following line after the "DIM
Calculator As Object" line:

 Const OP_MULTIPLY = 3

This allows you to use the OP_MULTIPLY value instead of the hard-coded
value of 3.

This code snippet has been corrected in the Online documentation provided
with Visual C++ 2.x and the Win32 SDK.

Additional reference words: 2.01
KBCategory: kbole kbdocerr
KBSubCategory: LeTwoOth

DOCERR: F1 Help for Menu Items in an OLE 2.0 Container

PSS ID Number: Q118897
Authored 01-Aug-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

The "OLE 2.0 Programmer's Reference," volume 1, describes on pages 727
through 731 how an application that you would like to be a container for
inplace edited objects can support F1 Help for menu items. This information
is also contained in the OLE Technical Note CSHELP.DOC.

The application may have its own keyboard message filter added so that it
can intercept the F1 key, or it may ask the OLE default object handler to
add a message filter. A sample keyboard message filter is provided for
applications that you would like to implement their own message filters.
However, the sample message filter does not handle the case properly when
an object is inplace activated.

This article contains a sample message filter that properly handles the
inplace activated case.

MORE INFORMATION

If the sample message filter is used, when an object is inplace activated
and the application attempts to provide F1 Help for one of the server's
menu items, the server processes the menu command instead of providing
Help. F1 Help works properly for menu items handled by the container.

In the sample filter, if an object is inplace activated and the F1 key is
pressed, the message filter sends the registered message OM_POST_WM_COMMAND
to the frame window. The frame window handles OM_POST_WM_COMMAND by posting
a WM_COMMAND message to the container or the server as appropriate. After
the OM_POST_WM_COMMAND message is sent (and thus after the WM_COMMAND
message is posted), the filter calls IOleWindow::ContextSensitiveHelp(TRUE)
for both the frame window and the inplace activated object, to enter
context-sensitive Help mode. OLE's LRPC call to ContextSensitiveHelp() for
the inplace activated object gives the server application the opportunity
to check its message queue, and the WM_COMMAND message gets processed
before the ContextSensitiveHelp() method is executed in the server. Because
the inplace activated object does not know that it should be in context-
sensitive Help mode, it processes the WM_COMMAND message as normal.

To correctly provide F1 Help for all menu items, the container may use the
standard OLE 2.0 implementation of F1 menu processing. To use the standard

OLE 2.0 implementation of F1 menu processing, pass non-NULL pointers to the
"lpFrame" and "lpActiveObj" parameters of OleSetMenuDescriptor().

Alternatively, the container may use the revised filter (listed below). In
the revised filter, the calls to IOleWindow::ContextSensitiveHelp() are
made before OM_POST_WM_COMMAND is sent to the frame window. This ensures
that the server enters context-sensitive Help mode before the WM_COMMAND
message is posted. One side effect is that if the F1 key is pressed while
the current selection is a popup menu, the message filter will need to exit
context-sensitive Help mode by calling
IOleWindow::ContextSensitiveHelp(FALSE) for both the frame window and the
inplace activated object.

Sample Code

/* Compile options needed: (or ; Assemble options needed:)
*/

MessageFilterProc(int nCode, WPARAM wParam, LPARAM lParam)
{
 LPMSG lpMsg = (LPMSG) lParam;

 // If it is not the F1 key then let the message
 // (without modification) go to the next proc
 // in the message filter chain.
 if (lpMsg && lpMsg->message == WM_KEYDOWN &&
 lpMsg->wParam == VK_F1) {
 HMENU hmenuPopUp;

 // Container app can not know what the current menu
 // selection is if an object is getting inplace
 // edited in it, because the menu bar is shared and
 // the menu messages are intercepted and dispatched
 // to the appropriate process by OLE's frame
 // window sub-classing (see Box 3). So, when the
 // container sends the OM_POST_WM_COMMAND,
 //
 // if (an object is getting inplace edited)
 // it will go to Box 3, and OLE posts WM_COMMAND
 // to the right process.
 // else
 // it will go to Box 4, which is app's own
 // frame wnd proc, and its OM_POST_WM_COMMAND
 // code can post the WM_COMMAND for the
 // current selection (that the app maintains).
 //
 // With this scheme the same message filter proc can
 // be used whether the object is getting inplace
 // edited or not.
 // NOTE 1: If the current selection is a popup menu,
 // then WM_COMMAND can not be generated, so the code
 // for OM_POST_WM_COMMAND returns handle of the popup
 // menu, otherwise it returns NULL
 // NOTE 2: Do uOmPostWmCommand =

 // RegisterWindowMessage("OM_POST_WM_COMMND")
 // at startup.

 // call the frame and active inplace object's
 // ContextSensitiveHelp() methods.
 lpFrame->ContextSensitiveHelp(TRUE);
 lpInPlaceActiveObj->ContextSensitiveHelp(TRUE);

 // when either of these 2 objects receive the WM_COMMAND
 // they will call the other one's ContextSensitiveHelp()
 // method. Note that the tree walk will not happen if the
 // CSH mode has been entered because of F1 on selected menu.

 if (hmenuPopup = (HMENU)SendMessage(hwndFrame,
 uOmPostWmCommand,
 0, 0L)) {
 // Now the apps have 4 options:
 // 1. Give Help for the popup menu and cancel the
 // menu mode as well as the CSH mode (WORD does
 // this).
 // 2. Change the cursor to question mark cursor
 // (== SHIFT+F1), and do not disturb the menu
 // state, and enter the CSH mode. (EXCEL does
 // this)
 // 3. Remove the CSH mode and cancel the menu mode.
 // 4. Leave the menu state as it is and ignore the
 // F1 key (ie. don't pass the F1 key down the
 // msg filter chain).
 //
 // We (OLE) recommend option 4, and if the container
 // app wants us to install the message filter, then
 // this is what we will do. In this sample code also
 // we are going for option 4.

 lpFrame->ContextSensitiveHelp(FALSE);
 lpInPlaceActiveObj->ContextSensitiveHelp(FALSE);
 return TRUE; // let the system know that we have
 // handled the message
 }

 // Change message value to be WM_CANCELMODE and then call
 // the next proc in the message filter chain. When windows
 // USER's menu processing code sees this message it will
 // bring down menu state and come out of its menu processing
 // loop.

 lpMsg->message = WM_CANCELMODE;
 lpMsg->wParam = NULL;
 lpMsg->lParam = NULL;
 }
 return CallNextHookEx (hMsgHook, nCode, wParam, lParam);
}

Additional reference words: 2.01 3.50 4.00 Containers docerr
KBCategory: kbole kbdocerr

KBSubCategory: LeTwoCli

DOCERR: OleGetClipboard Not Needed Before OleSetClipboard

PSS ID Number: Q104961
Authored 04-Oct-1993 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0

The function descriptions for OleSetClipboard and OleGetClipboard in
the OLE version 2.0 "Programmer's Reference: Creating Programmable
Applications" manual incorrectly state that an application must obtain
access to the clipboard by successfully calling OleGetClipboard before
making a call to OleSetClipboard. In fact, a call to OleGetClipboard
is not required before making a call to OleSetClipboard.

This documentation error also appears in the OLE version 2.0 online
reference file, OLE2API.HLP, in the function descriptions for
OleSetClipboard and OleGetClipboard.

The correct information is in the OLE 2.0 documentation included with
Visual C++ 2.0.

Additional reference words: 2.00
KBCategory: kbole kbdocerr
KBSubcategory: LeTwoDdc

DOCERR: Text Corrections for Inside OLE 2

PSS ID Number: Q113188
Authored 29-Mar-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

SUMMARY

This article contains a list of errors in the text of the book "Inside OLE
2," by Kraig Brockschmidt (Microsoft Press).

Many of the errors listed below also affect the book's sample code; the
descriptions for those errors include references to another Knowledge Base
article, which describes the problems (and their solutions) in more detail.

For additional information on these problems and their solutions, please
see the following article(s) in the Microsoft Knowledge Base:

ARTICLE-ID: Q113255
TITLE : SAMPLE: Corrections for Inside OLE 2 Sample Code

The sample code for "Inside OLE 2" was originally written to be compatible
with OLE 2.0. This code has been updated to be compatible with OLE 2.01,
and also to fix some problems in the original code. The entire source tree
for the updated sample code is included in the INOLE2 Software Library
sample. INOLE2 can be found in the Microsoft Software Library by searching
on the word INOLE2.

MORE INFORMATION

List of Text Errors

Page 71: The second line of the last paragraph should read "with all the
 functions in the preceding table...". The book has "tale"
 instead of "table".

Pages 82- The exact implementations of CImpIEnumRECT::Next on these pages
83, 92- are incorrect--for more information, see the section "Errors in
93: Enumerator Samples" in the Knowledge Base article "SAMPLE:
 Corrections for Inside OLE 2 Sample Code."
 Also, on page 83 there should be no space between "book" and
 "1632" in the text "#include <book 1632.h>".

Page 105: The second use of QueryInterface in the Transitive property
 should read "pInterface2->QueryInterface(IInterface3)". The
 book has IInterface2 as the parameter to QueryInterface,
 which is incorrect.

Page 157: A space is missing between "LPLPVOID" and "ppv" in the
 last parameter of the declaration CKoala::QueryInterface.

Page 161: The prototype for WEP should return an int, not VOID.

Page 197: The line of code under "if (IsEqual(riid, IID_IAnimal))"
 should read "*ppv=(LPVOID)m_pAnimal". In the text the
 underscore is mistakenly a space, dash, and space.

Page 199: A space is missing between "LPLPVOID" and "ppv" in the
 last parameter of the declaration CKoala::QueryInterface.

Page 243: The second sentence in the second paragraph should read:

 "The Structured Storage definition of IStream allows streams
 to contain up to 2^64 (2 raised to the 64th power)
 addressable bytes of data."

 The text incorrectly reads "264" instead of "2^64."

Pages 257- The code listings for CPages::DevModeSet, CPages::DevModeGet,
259: and CPages::ConfigureForDevice should be changed to correct a
 problem with certain printer drivers in Patron. For more
 information on this problem, see the section "Patron Does Not
 Work with Some Printer Drivers" in the Knowledge Base article
 "SAMPLE: Corrections for Inside OLE 2 Sample Code."

Pages 289- Both LibMain and WEP functions should return an int.
290: For more information, see the section "Incorrect Prototypes for
 LibMain() and WEP()" in the Knowledge Base article "SAMPLE:
 Corrections for Inside OLE 2 Sample Code."

Page 316: The implementation of CImpIEnumFormatEtc::Next is incorrect.
 For more information on this problem, see the section "Errors in
 Enumerator Samples" in the Knowledge Base article "SAMPLE:
 Corrections for Inside OLE 2 Sample Code."

Page 331: The description of IDataObject::GetCanonicalFormatEtc
 is incorrect. For correct details, see the Microsoft Object
 Linking and Embedding version 2.0 "Programmer's Reference."

Page 365: The "const LPRECTL" parameter to IViewObject::Draw
 should be of type "LPCRECTL" to match OLE 2.01. The book
 is correct for OLE 2.0. For more information, see the section
 "Compiler Errors on IViewObject::Draw()" in the Knowledge
 Base article "SAMPLE: Corrections for Inside OLE 2 Sample Code."

Page 368: The call to pIViewObject->Draw about should read:

 "pIViewObject->Draw(dwAspect, -1, NULL, NULL, 0, hdcDraw,
 lprcBounds, NULL, NULL, 0);". In the book, the dwAspect and
 hDC parameters are incorrect.

Page 399: When CImpIDataObject::GetData calls AddRef() before returning,
 it should also call AddRef on any IStorage or IStream pointer

 inside the STGMEDIUM, if that is the medium in use. For more
 information, see the section "Datatran Reference Counting
 Problem" in the Knowledge Base article "SAMPLE: Corrections
 for Inside OLE 2 Sample Code."

Page 437: The word "consumer" in the caption of Figure 8-6 should be
 "target."

Pages 544- In OLE 2.01 there is a new, additional parameter to
546: OleUIAddVerbMenu called "idVerbMax", which comes immediately
 after "idVerbMin." This parameter was not present in OLE 2.0.
 For information on how this change affects the sample code, see
 the section "Compiler Errors on OleUIAddVerbMenu" in
 the Knowledge Base article "SAMPLE: Corrections for Inside
 OLE 2 Sample Code."

Page 554: Under OLE 2.01 the OleStdGetObjectDescriptorFromOleObject
 function (used in the Patron sample application) requires an
 additional LPSIZEL as the last parameter. For more information
 on how this change affects the sample code, see the section
 "Compiler Errors on OleStdGetObjectDescriptorFromOleObject()"
 in the Knowledge Base article "SAMPLE: Corrections for Inside
 OLE 2 Sample Code."

Pages 614- No ellipsis ("...") is necessary to separate functions in
622: Listing 10-5. There is no code omitted from the listing in these
 places.

Page 630: The right curly brace just above the "else" at the bottom
 of the page should be indented to align with the call
 to ModifyMenu above it.

Pages 663- The bottom of page 663 mentions how a handler should hold
665: onto open streams for low-memory save situations. This is
 important ONLY for elements that are entirely manipulated
 by the handler and never touched by the server. The handler
 should not cache or hold pointers to the same elements the
 server must access. For more information on this problem, see
 the section "Component Cosmo Fails to Release Polyline Object"
 in the Knowledge Base article "SAMPLE: Corrections for Inside
 OLE 2 Sample Code."

 If a handler manipulates and changes data unaffected by
 the server, it must fulfill the IPersistStorage contract for
 only those formats. The server is responsible for all
 others that it modifies.

Page 668: The "const LPRECTL" parameter to IViewObject::Draw
 should be of type "LPCRECTL" to match OLE 2.01. The book
 is correct for OLE 2.0. For more information on how this change
 affects the sample code, see the section "Compiler Errors on
 IViewObject::Draw()" of the Knowledge Base article "SAMPLE:
 Corrections for Inside OLE 2 Sample Code."

Page 687: There should not be "//" before the large bold "IOLEOBJ.CPP"

 in this code listing. The label is not part of the code.

Page 788: Same problem with OleStdGetObjectDescriptorFromOleObject
 as described above for page 554.

Page 814: Same problem with OleUIAddVerbMenu as described above for
 pages 544-546.

Page 817: Remove the second parameter to pTenantCur->Close. It should
 read "pTenantCur->Close(FALSE);". For more information on this
 problem, see the section "Patron GP Faults During Activate As"
 in the Knowledge Base article "SAMPLE: Corrections for Inside
 OLE 2 Sample Code."

Page 817: There should be a call to pIStorage->Commit(STGC_ONLYIFCURRENT)
 immediately after the call to OleStdDoConvert and before
 the call to pIStorage->Release. For more information, see
 the section "Patron Convert To Fails" of the Knowledge Base
 article "SAMPLE: Corrections for Inside OLE 2 Sample Code."

Page 819: Remove the second parameter to pTenantCur->Close. It should
 read "pTenantCur->Close(FALSE);". This matches the change
 necessary for a bug resolution described in the section "Patron
 GP Faults During Activate As" in the Knowledge Base article
 "SAMPLE: Corrections for Inside OLE 2 Sample Code."

Page 846: The parenthetical entry in the fourth line of the last
 paragraph should read "(linked objects are NOT allowed...)".
 The book reads "now" instead of "not".

Page 861: The second sentence of the third paragraph under "Active
 vs. UI Active and Inside-Out Objects" should read:

 "The answer...as they are visible-end users DO NOT have to
 double-click..."

 The DO NOT is important.

NOTE: Versions of "Inside OLE 2" printed after March 1994 (third printing
or later) have been corrected.

Additional reference words: 2.01 mspress docerr
KBCategory: kbole kbdocerr
KBSubcategory: LeTwoOth

FIX: SR2TEST GP Faults During Object Shutdown

PSS ID Number: Q104141
Authored 08-Sep-1993 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0

SYMPTOMS

A general protection (GP) fault occurs when calling IOleObject::Close()
on an SR2TEST object.

CAUSE

SR2TEST does not properly handle the case in which IOleObject::Close()
is called after OleInPlaceObject::UIDeactivate() without first calling
IOleInPlaceObject::InPlaceDeactivate().

RESOLUTION

Call IOleInPlaceObject::InPlaceDeactivate() before calling
IOleObject::Close.

STATUS

Microsoft has confirmed this to be a problem in OLE version 2.0. This
problem was corrected in OLE version 2.01.

Additional reference words: 2.00 gpf gp-fault
KBCategory: kbole kbfixlist kbbuglist
KBSubcategory: LeTwoTls

FIX: TYPE_E_CANTLOADLIBRARY Error on Win32s

PSS ID Number: Q131051
Authored 02-Jun-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft Win32s version 1.20

SYMPTOMS

A 32-bit OLE Automation server that implements dual or vtable binding
interfaces finds that loading the type library or a typeinfo from the type
library fails under Win32s version 1.20 with this error:

 TYPE_E_CANTLOADLIBRARY

CAUSE

A problem in OpenFile in Win32s version 1.20 causes the search for
STDOLE32.TLB to be done incorrectly.

STATUS

Microsoft has confirmed this to be a bug in Win32s version 1.20. This bug
was corrected in Win32s version 1.25a, which can be obtained from the
Microsoft Software Library by searching for PW1118.EXE.

Download PW1118.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for PW1118.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PW1118.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get PW1118.EXE

Additional reference words: 2.0 2.00
KBCategory: kbprg kbole kbfixlist kbbuglist kbfile
KBSubcategory: LeTwoArc

FORMATETC for IDataObject::DAdvise Must be Validated

PSS ID Number: Q114600
Authored 08-May-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

Applications implementing IDataObject must validate the FORMATETC structure
that is passed to IDataObject::DAdvise(). Some commercial applications,
such as Microsoft Excel 5.0, will try to set up an Advise on their own
native format before setting up an Advise on the format selected by the
user in the Paste Special dialog box while creating a link.

MORE INFORMATION

When validating the FORMATETC structure, the server application needs to
allow wildcard Advises to succeed. A Wildcard Advise is an Advise set up by
the default link object so that it can properly maintain the time-of-last-
change. A Wildcard Advise is requested by passing a FORMATETC with cfFormat
= 0, ptd = NULL, dwAspect = -1L, and tymed = -1L. Code to validate the
FORMATETC structure might look as follows:

 // if not a Wildcard Advise and the data format is not supported,
 // return failure.

 if(!(pfmtetc->cfFormat == NULL &&
 pfmtetc->ptd == NULL &&
 pfmtetc->dwAspect == -1L &&
 pfmtetc->lindex == -1L &&
 pfmtetc->tymed == -1L)
 && FAILED(hres = QueryGetData(pfmtetc)))
 return hres;

 // Now pass on to the Data Advise holder

For more information on the IDataObject::DAdvise() member function, please
refer to pages 436-439 of the "OLE Programmer's Reference, Volume 1".

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoSvr

How to Obtain Documentation for MS Graph 5.0 Automation

PSS ID Number: Q131049
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Graph 5.0
 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

Documentation of the Microsoft Graph version 5.0 automation properties and
methods can be found in the VBAGRP.EXE self-extracting file in the library
of the ADK/ADT section of the MSACCESS forum on Compuserve.

Additional reference words: 2.0 3.50 4.00 2.00
KBCategory: kbprg
KBSubcategory: LeTwoAto

How to Test OLE Applications with Outline

PSS ID Number: Q131154
Authored 04-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft OLE Libraries for Windows and Win32s, versions 2.01, 2.02,
 and 2.03
 - Microsoft OLE Libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

SUMMARY

To understand how an OLE application should handle an OLE scenario, you may
find it helpful to examine an existing application that handles that
scenario correctly.

The OUTLINE series of OLE sample applications can provide a log of debug
output. This log shows all of the OLE calls that the OUTLINE application
handles and the OLE calls that it makes. Examining this log is a useful OLE
problem-solving tool, and an excellent way to learn about OLE programming.

MORE INFORMATION

The OUTLINE series consists of four different applications: CNTROUTL (OLE
container), SVROUTL (OLE server), ICNTROTL (in-place editing-capable
OLE container), and ISVROTL (in-place editing-capable OLE server). The
OUTLINE series is included as sample code with the OLE SDK and with the
Win32 SDK.

Each of the four OUTLINE applications implements a Debug Level dialog
box. The following table show the debugging information produced by each
debug level value:

Debug Level Debugging Information Produced

 0 No debug messages (default).
 1 Print message when a Document or Application is destroyed.
 2 Trace every OLE API and method call.
 3 Give a more OUTLINE app specific context to the OLE calls.
 4 Track all memory reference counts (AddRef/Release).

The debug output forms a log of all the incoming and outgoing OLE method
calls that OUTLINE handles. Use the DBWIN tool to capture and display this
output. Note that although there are both 16-bit and 32-bit versions of
the OUTLINE samples, DBWIN can currently only be used to capture output

from the 16-bit samples.

Benefits to Examining the Watch Log

The first benefit to examining the watch log produced by one of the
OUTLINE samples is that it shows the series of calls that an OLE
application needs to make in order to handle a given OLE scenario. For
example, to see what calls an OLE container application needs to make when
transitioning an embedded object from the loaded to the running state,
double-click an object embedded into a CNTROUTL document to run that
object; then examine the log that CNTROUTL produces.

The next benefit arises from the fact that the source code to the OUTLINE
samples is included with Microsoft Visual C++. The watch log shows you
the key calls that OUTLINE makes to handle some particular scenario.
Using a GREP utility, you can search the OUTLINE source code for those
calls, and then examine that code. The OUTLINE source code is a very
thorough implementation of OLE functionality.

In addition, you can run the OUTLINE application under a debugger, setting
break points before the key calls, and then stepping through that code.

Finally, the OUTLINE source code contains many source code comments labeled
"OLE2NOTE." These comments contain in-depth discussions of some of the
more detailed aspects of OLE programming.

Additional reference words: kbinf 2.01 2.02 2.03 3.50 4.00
KBCategory: kbole kbtshoot
KBSubcategory: LeTwoTls

How Visual Basic Automation Statements Map to OLE Calls

PSS ID Number: Q122288
Authored 01-Nov-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02
 - Microsoft Visual Basic for Windows, version 3.0

SUMMARY

This article lists the OLE API and interface calls to which the Visual
Basic CreateObject and GetObject calls map. Each listing shows how to
obtain the IDispatch of an OLE Automation object. You can then invoke a
property or method of the OLE Automation object by using
IDispatch::GetIDsOfNames and IDispatch::Invoke.

MORE INFORMATION

The code listed below does not do any error checking. When you implement
it, you should add the code to do necessary error checking. See the OLE SDK
documentation for more information about each function or interface. Each
code listing shows how to obtain the pointer to IDispatch of an Automation
object in the pdisp variable.

CreateObject(progID)

This creates a new automation object and returns a pointer to the IDispatch
of that object.

CLSID clsid;
LPUNKNOWN punk;
LPDISPATCH pdisp;

OleInitialize(NULL), if OLE isn't already loaded.
CLSIDFromProgID(progID, &clsid);
CoCreateInstance(clsid, NULL, CLSCTX_SERVER,
 IID_IUnknown, (LPVOID FAR*)&punk);
punk->QueryInterface(IID_IDispatch, (LPVOID FAR*)&pdisp);
punk->Release();

GetObject(filename, progID)

GetObject has three different semantics depending on the number of
parameters passed. An automation object must implement IPersistFile to
support GetObject(filename, progID).

CLSID clsid;
LPUNKNOWN punk;

LPDISPATCH pdisp;
LPPERSISTFILE pPF;

OleInitialize(NULL), if OLE isn't already loaded
CLSIDFromProgID(progID, &clsid);
CoCreateInstance(clsid, NULL, CLSCTX_SERVER,
 IID_IUnknown, (LPVOID FAR*)&punk);
punk->QueryInterface(IID_IPersistFile, (LPVOID FAR*)&pPF);
punk->Release();

pPF->Load(filename, 0);
pPF->QueryInterface(IID_IDispatch, (LPVOID FAR*)&pdisp);
pPF->Release();

GetObject(filename,)

GetObject has three different semantics depending on the number of
parameters passed. An automation object must implement IPersistFile to
support GetObject(filename,).

LPBC pbc;
ULONG cEaten;
LPMONIKER pmk;
LPDISPATCH pdisp;

OleInitialize(NULL), if OLE isn't already loaded
CreateBindCtx(0, &pbc);
MkParseDisplayName(pbc, filename, &cEaten, &pmk);
BindMoniker(pmk, 0, IID_IDispatch, (LPVOID FAR*)&pdisp);
pmk->Release();
pbc->Release();

GetObject(, progID)

GetObject has three different semantics depending on the number of
parameters passed. An automation object must call RegisterActiveObject to
support GetObject(, progID).

CLSID clsid;
LPUNKNOWN punk;
LPDISPATCH pdisp;

OleInitialize(NULL), if OLE isn't already loaded
CLSIDFromProgID(progID, &clsid);
GetActiveObject(clsid, NULL, (LPVOID FAR*)&punk);
punk->QueryInterface(IID_IDispatch, (LPVOID FAR*)&pdisp);
punk->Release();

Additional reference words: 2.00 3.00
KBCategory: kbold kbprg kbcode
KBSubcategory: LeTwoAto

Insert Link from File Changes Current Directory

PSS ID Number: Q109553
Authored 04-Jan-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

The Insert Object dialog box allows a user to insert a linked object into
the container document from a file residing on disk. This action changes
the current working directory to the drive and directory in which the file
resides. If this file is located on a network drive and the network drive
becomes unavailable after the link is established, any subsequent attempt
to insert an embedded object will fail until the working directory is
changed to a drive and directory that is accessible.

The problem materializes when the OLE 2.0 libraries attempt to WinExec a
server application for a subsequent embedded object. In this situation, the
call to WinExec fails because the current working directory is invalid.

The Open common dialog box changes the current working directory unless
OFN_NOCHANGEDIR is specified. The UI Change Source dialog box depends on
the change directory functionality, however, and therefore the Insert
Object dialog box cannot be modified to correct the problem.

Additional reference words: 2.01 OpenFile
KBCategory: kbole kbprg
KBSubcategory: LeTwoTls

Limits of VB 3.0 & Disptest as Automation Controllers

PSS ID Number: Q122287
Authored 01-Nov-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft Visual Basic for Windows, version 3.0
 - Microsoft OLE Libraries for Windows and Win32s, version 2.02

SUMMARY

Visual Basic version 3.0 for Windows and Disptest (the automation
controller that shipped with OLE version 2.0) have the following
limitations as automation controllers in addition to those described on
pages 67-69 of the OLE 2 Programmer's Reference, Volume 2:

 - Parameters cannot be passed by reference to Automation properties or
 methods.

 - Array elements cannot be accessed.

 - When an exception is raised by an automation object, the value of
 the wCode field of the EXCEPINFO structure is not used. Instead the
 value 440 is displayed.

MORE INFORMATION

Parameters Cannot Be Passed by Reference
--

Visual Basic version 3.0 for Windows and Disptest cannot pass parameters by
reference to automation properties and methods.

This is a limitation of Visual Basic version 3.0 and Disptest, not of OLE
Automation. OLE Automation allows building controllers that pass parameters
by reference.

Here are three workarounds:

 - Use return values of properties and methods to return a value instead of
 using byref parameters for this purpose. This approach cannot be used
 when a property or method returns multiple values.

 -or-

 - Use third party controllers (see the list below) while you wait for a
 future version of Visual Basic, or use Visual Basic for Applications,
 which ships with Microsoft Excel version 5.0. Microsoft Visual Basic for
 Applications cannot be redistributed by or incorporated into products
 that are not manufactured by Microsoft. However, if user of your
 application has Microsoft Excel version 5.0 installed, you can use its

 Visual Basic for Applications as a controller of any Automation server.

 Here are two known third-party controllers:

 NOTE: The products included here are manufactured by vendors
 independent of Microsoft; we make no warranty, implied or otherwise,
 regarding these products' performance or reliability.

 Softbridge Basic Language
 Mystic River Software, Inc. 125 CambridgePark Drive, Cambridge MA 02140
 Tel:1-800-298-3500, 617-497-1585
 Fax:617-864-7747

 Summit BasicScript
 Summit Software Company, 2844 Sweet Road, Jamesville, NY 13078
 Tel: 315-677-9000
 Fax: 315-677-3224
 Internet: info@summsoft.com
 Compuserve: 71211,3504

 -or-

 - Write a DLL that has exported functions that correspond to Automation
 methods and properties exposed by the automation server. Visual Basic
 version 3.0 can call these exported DLL functions, which in turn can
 call the corresponding automation properties or methods in the
 automation server. This approach works because Visual Basic version 3.0
 can pass parameters by reference to DLL functions.

 The DLL functions can pass parameters by reference to the properties and
 methods of the automation method or property because OLE supports
 passing parameters by reference. This approach may not be suitable for
 some automation servers that implement nested objects.

Array Elements Cannot Be Accessed

Array elements cannot be accessed in Visual Basic version 3.0 or Disptest.
As a result, code similar to the following code cannot be executed in
Visual Basic version 3.0 or in Disptest if selection returns a safearray.
This is because safearray elements cannot be accessed in Visual Basic
version 3.0 or in Disptest.

 Value = ObjVar.Selection(I)
 ObjVar.Selection(I) = Value

Workarounds include using indexed properties, third-party controllers,
Visual Basic for Applications in Microsoft Excel version 5.0, or waiting
for a future release of Visual Basic.

Indexed properties are properties that take parameters. For example,
in the example code, Selection could be made a property that takes an
index parameter. Here is a description in the .ODL file of an indexed
parameter called Value whose property type is VARIANT:

 [propget] VARIANT Value(long index);
 [propput] void Value(long index, VARIANT NewValue);

In a dispinterface, an indexed property should be used under the 'methods'
keyword. A Microsoft Foundations Classes (MFC) implementation can use the
DISP_PROPERTY_PARAM macro in the dispatch map to implement an indexed
property.

The disadvantage of implementing array element access using indexed
properties is the performance penalty caused by each indexed property
access requiring the overhead of an RPC/LRPC call (for LocalServer
Automation objects).

Value of EXCEPINFO.wCode Not Displayed on Exceptions
--

When an automation object raises an exception by returning DISP_E_EXCEPTION
from IDispatch::Invoke and by filling the pexcepinfo parameter of this
method, Visual Basic version 3.0 and Disptest will ignore the value
returned in the wCode field of the EXCEPINFO structure, instead returning
the value 440. Note that either the wCode or scode field of EXCEPINFO
should be set to 0 -- both cannot be used.

Workarounds include using third-party controllers, Visual Basic for
Applications in Microsoft Excel version 5.0, or waiting for a future
release of Visual Basic.

Additional reference words: 2.00 3.00 5.00
KBCategory: kbole kbprg kb3rdparty
KBSubcategory: LeTwoAto

Object Creation Overview

PSS ID Number: Q104139
Authored 08-Sep-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

The actual process of creating an OLE object can seem confusing when
first learning OLE. To elucidate the object creation process, this
article describes the steps taken by the OLE 2.0 libraries in response
to a call to OleCreate(), with the OLERENDER_DRAW format passed as the
renderopt parameter. This article gives a basic overview of the object
creation process; it does not describe specific application
programming interfaces (APIs) in detail.

MORE INFORMATION

Typically, the container application presents the user with a dialog
box containing the various types of objects that can be created on a
particular system. These object types are enumerated from the
Registration Database--each entry in the database has a name that the
user can understand, as well as a unique identifier for the object
type called a CLSID.

The container tells OLE that it wants to create an object. At this
point, the container gives OLE the CLSID of the desired object, a
pointer to a child storage within the container's compound file, and a
pointer variable for OLE to return a pointer to a requested interface
(typically IOleObject):

 Container OLE
 ----------- -----------
OleCreate	--->	
 ----------- -----------

The OLE libraries then consult the registration database to find the
name of the executable file associated with the CLSID:

 Container OLE
 ----------- -----------

OleCreate	--->	
 ----------- -----------
 |
 V
 Reg DB

The server is then started with the -Embedding flag. When the server
parses the command line and sees the -Embedding flag, it knows that it
is being started on behalf of OLE and should remain hidden until it is
explicitly told to become visible. At this point, the server registers
a pointer to its IClassFactory interface with OLE:

 Container OLE Server
 ----------- ----------- -----------------
OleCreate	--->		--->	
			<---	IClassFactory
 ----------- ----------- -----------------
 |
 V
 Reg DB

OLE calls the server through the IClassFactory interface and asks to
instantiate an object, returning the pointer to the interface
requested by the container in the creation routine:

 Container OLE Server
 ----------- ----------- ------------------
OleCreate	--->		--->			
			<---	IClassFactory		
			--->	-------------		
			<---	-	IOleObject	
					IDataObject	
					etc	

 ----------- ----------- ------------------
 |
 V
 Reg DB

OLE queries the object for the IDataObject interface, and then calls
GetData method to fill the presentation cache with a metafile,
device-independent bitmap (DIB), or a bitmap. Later, when the
container asks the object to draw itself, OLE will intercept the call
and use one of the entries in the presentation cache:

 Container OLE Server

 ----------- ----------- ------------------
OleCreate	--->		--->			
			<---	IClassFactory		
			--->	-------------		
			<---	-	IOleObject	
					IDataObject	
					etc	

 ----------- ----------- ------------------
 | |
 V v
 Reg DB Cache

At this point, the creation routine returns to the container. Now, the
container will generally query the interface pointer returned for the
IViewObject interface. The container uses the IViewObject interface to
ask the object to notify the container (through the container's
IAdviseSink interface) every time the object's view changes, so that
the container can update its display. At this point, the server
creates an advise holder to notify the object of its changes:

 Container OLE Server
 -------------- ------------- ------------------
				IClassFactory		

	--->	IOleObject	----->	IOleObject		
					IDataObject	
					etc	

IAdviseSink	<---		<---	IOleAdviseHolder		
 -------------- ------------- ------------------
 | |
 V v
 Reg DB Cache

Note, the object still is not visible at this point. Now an explicit
call to IOleObject::DoVerb() must be made with the verb OLEIVERB_SHOW.
This tells the server to make the object visible for editing.

Every time the user makes a change to the object, the object calls OLE
through the advise holder to notify the libraries that the view has
been changed. The libraries then query the object for the new
presentation(s) to fill the presentation cache. Then the advise sink
of the container application is called to notify the container that
its view is no longer up to date, and should be repainted.

The container then in turn tells OLE to draw the object, at which
point the libraries render the information from the cache.

At some point, the user tells the server that he or she is finished
editing the object. The server tells the container that it is now
going away, and that the object needs to be saved into the container's
persistent storage. The container responds by telling the object to
save itself into a substorage of the container's compound file. The

OLE libraries "intercept" this call and save internal state
information, as well as the presentation cache, into streams of this
substorage. Then, the libraries tell the object to save itself into
the container provided substorage.

After saving the object, the container's compound file resembles the
following:

Root Storage
 | --------------- * = Stream
 |---| object | - = Storage
 | | sub-storage |
 | ---------------
 | | ****************
 | |---* OLE State *
 | | ****************
 | | ****************
 | |---* Presentation *
 | | ****************
 | | ****************
 | |---* Native Data *
 | ****************
 | ***************
 | * Container *
 |--- * State *
 * Information *

The container can continue to redraw the object even though the server
application is no longer around because the object's presentation is
stored in OLE's internal cache:

 Container OLE
 -------------- -------------
	--->	IOleObject
IAdviseSink	<---	
 -------------- -------------
 | |
 V v
 Reg DB Cache

Now the user can save the document in the container application and
exit. Upon exiting, the container queries the object for the
IViewObject interface so the container can tell OLE to stop sending
updates. Then the container asks the object to close.

If the user now reloads the document, or moves the document to another

machine, the OLE libraries can still render the object because the
presentation is actually stored within the container's compound file.
When the object is reloaded, the libraries can refill the presentation
cache from the information stored within the compound file.

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoCdt

Objects in .EXE Cannot be Aggregated

PSS ID Number: Q114598
Authored 08-May-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

Attempting to create an aggregate object with a Non-Control object
implemented in another .EXE is not possible. Passing a value for the
punkOuter parameter of IClassFactory::CreateInstance() in this situation
results in the error value CLASS_E_NOAGGREGATION.

The proxy for IClassFactory returns this error value immediately, without
calling the CreateInstance() method in the object. According to the rules
of aggregation, the Non-Control Object must not reference count the pointer
to the controlling IUnknown. If the parts of the aggregate object reside in
separate process spaces, the proxy for the controlling IUnknown will be
freed prematurely due to the lack of this reference count. Without the
interface proxy, the pointer to the controlling IUnknown stored by the Non-
Control Object is no longer valid, causing problems when delegating calls
to the outer IUnknown.

For more information on the process of Aggregation, please refer to
the "OLE 2 Programmer's Reference", "Working with Windows's Objects".

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoOh

OLE 2.02 Update for Windows and Win32s

PSS ID Number: Q121835
Authored 19-Oct-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02

SUMMARY

The file OLE202.EXE contains upgrades and additions to the 16-bit OLE files
shipped with the Win32 SDK for Windows NT 3.5. This also includes the
32-bit counterparts for Win32s to the 16-bit tools shipped with the 16-bit
OLE2 SDK. These files supercede the components of the OLE version 2.01 SDK
for Windows 3.1x and Windows for Workgroups.

For additional information regarding Win32s availability, please see the
following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q122235
 TITLE : Microsoft Win32s Upgrade

For additional information regarding the availability of updated OLE 2.02
libraries, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q123087
 TITLE : WW1116: OLE Version 2.02

MORE INFORMATION

Download OLE202.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for OLE202.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download OLE202.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get OLE202.EXE

OLE202.EXE holds the following 16-bit updates and additions to the OLE202
SDK that shipped with Windows NT version 3.5:

LRPCSPY.EXE
DOBJVIEW.EXE
IROTVIEW.EXE
OLE2VIEW.EXE
COMPOBJ.DLL
OLENLS.H
VARIANT.H
DISPATCH.H
OLE2DISP.LIB
OLE2NLS.LIB
TYPELIB.LIB

and additions:

RPCSPY32.EXE
DOBJVW32.EXE
IROTVW32.EXE
OLE2VW32.EXE

NOTE: The tools contained in OLE202.EXE are designed to work with Windows
3.1 (16-bit) or Win32s 1.2, and the OLE 2.02 DLLs only. Do not mix the OLE
2.02 DLLs with the OLE 2.01 DLLs. You must install the OLE 2.02 DLLs over
the OLE 2.01 DLLs. The tools include new automation features such as vtable
binding and OLE32 tools for Win32s. Please see the Win32 OLE help file or
the OLEHLP.TXT file for details about the new automation features.

Additional reference words: 2.01 2.02 3.50 3.10 1.20
KBCategory: kbole kbtool kbfile
KBSubcategory: letwomisc

OleCreateFromFile() Does Not Check for Reserved Names

PSS ID Number: Q111015
Authored 03-Feb-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

Before an OLE 2.0 container application calls OleCreateFromFile() to create
an embedded object from the contents of a named file, it must make sure
that the filename it passes as the lpszFile parameter to
OleCreateFromFile() is not a reserved MS-DOS device name, such as COM1 or
LPT1. This check is necessary because OleCreateFromFile() does not perform
such a check itself.

A container application generally obtains the filename to pass to
OleCreateFromFile() by presenting the user with the Insert Object dialog
box. Many containers use the OLE2UI library implementation of the Insert
Object dialog box, by calling OleUIInsertObject(). OleUIInsertObject()
performs a check to make sure that the filename supplied by the user is not
a reserved MS-DOS device name; if the user supplies a filename such as
"COM1", OleUIInsertObject() brings up a modal dialog box stating "File COM1
Does Not Exist."

Therefore, container applications that use OleUIInsertObject() do not have
to perform a check for reserved names.

Additional reference words: 2.01
KBCategory: kbole
KBSubcategory: LeTwoCdt

Passing Structures in OLE Automation

PSS ID Number: Q122289
Authored 01-Nov-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02
 - Microsoft Visual Basic for Windows, version 3.0

SUMMARY

OLE Automation does not allow structures to be passed as parameters.
Automation servers that work with standard controllers can model a
structure as an automation object. Automation servers that work with
custom controllers can pass structures as a safearray of VT_UI1 or
by passing a data transfer object that supports IDataObject.

MORE INFORMATION

OLE Automation does not support passing structures as parameters to
automation methods and properties. Here are some ways to work around this:

NOTE: Standard controllers are products such as Visual Basic that can
control any automation server. A custom controller is written to
control a specific automation server.

If the Automation server is designed to work with standard controllers such
as Visual Basic, the structure could be modeled as an automation object.
For example, consider this structure:

struct point {
 short x;
 short y;
};

This could modeled as an automation object with two properties, x and y.
Visual Basic code such as the following could be used to get and set the
values of the properties. Note how the CreateLine method, which required
two points as parameters, is implemented as taking references to two
automation objects.

Dim Application As Object
Dim P1 As Object
Dim P2 As Object
Dim Line As Object
:
Set P1 = Application.CreatePoint()
P1.x = 3
P1.y = 4
Set P2 = Application.CreatePoint()
P2.x = 20

P2.y = 21
Set Line = Application.CreateLine(P1, P2)

The CreatePoint method returns a Point automation object whose x & y
properties are set. The type of the value returned by CreatePoint is
IDispatch* or a pointer to an object that supports automation. The
CreateLine method takes two parameters of type IDispatch* or a pointer
to an object that supports automation.

The disadvantage of this solution is that if the automation server is
not an inproc server, each property access will result in the overhead
of an LRPC/RPC call.

If the automation server is designed to work with custom controllers,
the structure could be serialized into a safearray of VT_UI1 and the
resultant binary data could be passed as a parameter of type
SAFEARRAY(unsigned char). Another solution is to create a data transfer
object that supports IDataObject. The IUnknown of this data transfer
object could be passed in a parameter of type IUnknown*. The server
could then use IDataObject::GetData with a private clipboard format
to get the storage medium in which the structure was serialized. Both
these solutions will not work with standard controllers such as Visual
Basic.

NOTE: Serializing the structure into a BSTR will not work because
the Unicode-ANSI conversions done by OLE's 16:32 bit interoperablity
layer assumes that BSTRs contain strings and not binary data. Consequently,
binary data passed in BSTRs can be corrupted by such conversions. However,
serializing binary data into BSTRs will work if both controller and server
are 16-bit. It will also work if both the controller and server are 32-bit
and both support Unicode. This is because 32-bit OLE supports only Unicode,
not ANSI. A safearray of VT_UI is preferred because of these limitations
of passing binary data through BSTRs.

Additional reference words: 2.00 3.00
KBCategory: kbole kbprg kbcode
KBSubcategory: LeTwoAto

Passing Variant Parameters in OLE Automation

PSS ID Number: Q104960
Authored 04-Oct-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

A variant must be initialized using VariantInit after creation and
before it is passed to a function. A variant with a valid value must
be cleared using VariantClear before a new value is assigned to it.

A variant must be passed to or from a function in a valid state and
the contents of the variant must be correctly freed. This requires
that the following be done:

1. On creation of a variant, call VariantInit before passing it to a
 function.

2. A function that is passed a variant should clear it using
 VariantClear to free the previous contents before assigning it a
 new value.

VariantInit sets the vt field of the VARIANT (or VARIANTARG) structure
to VT_EMPTY but does not free the contents of the variant.
VariantClear frees the contents of the variant depending on the
current value of the vt field and then sets the vt field to VT_EMPTY.

Passing an uninitialized variant to a function is a common error. This
may cause problems when the VariantClear call in the function tries to
free the contents of the uninitialized variant based on the undefined
value of the vt field.

Additional reference words: 2.00 2.01 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoAto

PRB: Calling IOleObject::InitFromData Returns E_NOTIMPL

PSS ID Number: Q108312
Authored 08-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE version 1.0
 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

After an OLE 2.0 container successfully returns from a call to OleCreate(),
a subsequent call to IOleObject::InitFromData() returns with a failure of
E_NOTIMPL.

CAUSE

The object being manipulated is an OLE 1.0 object.

RESOLUTION

This is a limitation of an OLE 1.0 server application. Contact the
manufacturer of the server application to find out the availability of an
OLE 2.0-compliant version of the server.

MORE INFORMATION

OLE 1.0 does not have a feature equivalent to IOleObject::InitFromData, and
therefore the OLE 2.0 libraries cannot synthesize this functionality in the
OLE 1.0 compatibility layer.

If the object application is an OLE 2.0-compliant application, the error is
returned by the object application's implementation of this method.

Additional reference words: 1.00 2.00 2.01 3.50 4.00
KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoArc

PRB: Compiler Doesn't Lay Out Overloaded Functions in Order

PSS ID Number: Q131104
Authored 04-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

 - Microsoft Visual C++ for Windows, version 1.52
 - Microsoft Visual C++, 32-Bit Edition, version 2.1

SYMPTOMS

The Microsoft Visual C++ compiler does not lay out overloaded functions in
the vtable in the order in which they are declared. This does not adhere to
the COM binary standard. (See the OLE Specification section 3.1.1.1 for a
discussion of the COM binary standard.) If there are no overloaded
functions, the COM binary standard is followed.

In general, it is not a good idea to use overloaded methods in a COM
interface because this precludes use of the interface from languages like C
that do not support overloading.

CAUSE

All the overloads of a function are laid out together in successive entries
in the reverse order of their declaration, overall in the order of the
first overload of each name. Therefore given this declaration:

class A {
 virtual void a();
 virtual void b();
 virtual void a(int);
 virtual void b(int);
};

Entries in the vtable are laid out in this order: A::a(int), A::a(),
A::b(int), A::b(). The COM binary standard requires that functions be laid
out in the order in which they are declared.

STATUS

This behavior is built into the design. It cannot be modified because of
legacy code that depends on this behavior.

Additional reference words: 2.03 1.52 4.00 3.50 2.10

KBCategory: kbprg kbole kbprb
KBSubcategory: LeTwoArc

PRB: Compound File Sharing Problems on Novell Netware

PSS ID Number: Q131050
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03

NOTE: Novell Netware is manufactured by a vendor independent of Microsoft;
we make no warranty, implied or otherwise, regarding this product's
performance or reliability.

SYMPTOMS

STGM_SHARE_DENY_WRITE is ineffective when opening compound files on a
network drive when the computer is running Novell Netware version 4.1 or
earlier.

For example with the following code, the open will succeed the first time
as expected, but it will also succeed in subsequent openings, which should
not happen because of STGM_SHARE_DENY_WRITE.

 hr = StgOpenStorage(szFileName, NULL, STGM_TRANSACTED | STGM_READWRITE |
 STGM_SHARE_DENY_WRITE, NULL, 0, &lpStg);

CAUSE

This problem is caused by incorrect range locking done by Novell Netware.

RESOLUTION

This problem doesn't occur if the computer is running the Microsoft
Network.

STATUS

We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 2.0 2.00
KBCategory: kb3rdparty kbprg kbnetwork kbprb
KBSubcategory: LeTwoPst

PRB: GetData Returns Outdated Data for OLE 1.0 Object

PSS ID Number: Q110716
Authored 27-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

If an OLE 2.0 container application document contains an embedded OLE 1.0
object, and the container calls IDataObject::GetData() to retrieve data for
that object, the data returned is out of date, and does not reflect the OLE
1.0 server's most recent changes to the object.

CAUSE

OLE 1.0 embedded object servers only update the cache when the user chooses
the Update command from the File menu. OLE 1.0 objects do not update the
cache for every change to the object. Therefore, an OLE 1.0 object's cache
often contains outdated data.

RESOLUTION

The container can obtain the latest object data by calling
IOleObject::Update(). This function ensures that any data or view caches
maintained inside the object are up to date.

REFERENCES

For more information on known idiosyncrasies of embedding OLE 1.0 objects
into OLE 2.0 containers, see "Working with OLE 1 Servers" in the OLE
Software Development Kit (SDK) version 2.01 Programmer's Reference.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoArc

PRB: GP Fault When Using 16-Bit Automation DLLs

PSS ID Number: Q131047
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03

SYMPTOMS

After dynamically loading and then unloading one of the 16-bit OLE
Automation DLLs (OLE2DISP.DLL, LOE2NLS.DLL, or TYPELIB.DLL), you experience
a general protection (GP) fault in COMPOBJ.DLL.

CAUSE

If any of the 16-bit OLE Automation DLLs (OLE2DISP.DLL, LOE2NLS.DLL, or
TYPELIB.DLL) is dynamically loaded, it should not be unloaded until after
OleUninitialize has been called. Otherwise a general protection (GP) fault
can occur in COMPOBJ.DLL.

RESOLUTION

If you dynamically load any of the 16-bit OLE Automation DLLs
(OLE2DISP.DLL, LOE2NLS.DLL, or TYPELIB.DLL), don't unload it until
OleUninitialize has been called.

STATUS

This requirement is by design.

Additional reference words: GPF
KBCategory: kbprg kbole kbprb
KBSubcategory: LeTwoAto

PRB: IOleObject::IsUpToDate() and OLE 1.0 Link Objects

PSS ID Number: Q111613
Authored 14-Feb-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 2.0 container application calls IOleObject::IsUpToDate to determine
whether or not an OLE 1.0 link object is up to date. IsUpToDate() returns
S_FALSE, even though the object is actually up to date.

CAUSE

The OLE 1.0 compatibility layer always considers OLE 1.0 link objects to be
out of date. If the OLE 1.0 object is not running, the compatibility layer
always returns S_FALSE to IOleObject::IsUpToDate().

MORE INFORMATION

This problem can occur whenever an OLE 2.0 container application loads a
document that contains links to OLE 1.0 objects. As part of loading the
document, the link container updates any out of date automatic links. To
find the out of date links, the container calls IOleObject::IsUpToDate() on
each link that has a link-update option of OLEUPDATE_ALWAYS.

As described above, IsUpToDate will always return S_FALSE for an OLE 1.0
object that is not running. The container application will then update the
link object (which requires running the object's server), even if it was
not actually out of date.

For more information on the known idiosyncrasies of embedding or linking
OLE 1.0 objects into OLE 2.01 containers, see "Working with OLE 1 Servers"
in the OLE SDK version 2.01 "Programmer's Reference."

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole
KBSubcategory: LeTwoArc

PRB: IROT::IsRunning() Returns S_FALSE for OLE 1.0 Servers

PSS ID Number: Q109544
Authored 04-Jan-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

When an OLE 2.0 container application calls
IRunningObjectTable::IsRunning() on the moniker for a linked OLE 1.0
object, IsRunning() returns S_FALSE even if that OLE 1.0 object is already
running.

CAUSE

OLE 1.0 objects do not register themselves in the running object
table while they are running.

RESOLUTION

Calling IMoniker::IsRunning() on the moniker for a linked OLE 1.0 object
correctly returns S_OK if the object is indeed running.

As noted in the OLE SDK version 2.01 documentation for
IRunningObjectTable::IsRunning(), clients of a moniker should not call
IRunningObjectTable::IsRunning() directly; instead, they should call
IMoniker::IsRunning().

Additional reference words: 2.01 3.50 4.00 irot
KBCategory: kbole
KBSubcategory: LeTwoLnk

PRB: LoadTypeLib Does Not Register Type Library

PSS ID Number: Q131055
Authored 02-Jun-1995 Last modified 12-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

SYMPTOMS

LoadTypeLib will not register the type library if the path of the type
library is specified in the szFileName parameter. For backward
compatibility, LoadTypeLib will register the type library if the path is
not specified.

RESOLUTION

RegisterTypeLib should be used to register a type library.

STATUS

This behavior is by design.

Additional reference words: 2.0 2.00
KBCategory: kbprg kbprb
KBSubcategory: LeTwoAto

PRB: Menu Mnemonics Not Working During In-Place Activation

PSS ID Number: Q104460
Authored 19-Sep-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

The menu mnemonics for an object do not operate properly, causing the
system to hang.

CAUSE

The server application is not calling OleTranslateAccelerator inside
of its message loop.

RESOLUTION

For menu commands to be dispatched properly during in-place editing,
OLE 2.0 needs to have the server application call
OleTranslateAccelerator, even if the server application does not have
accelerator support. This OLE application programming interface (API)
does the needed translation of key messages, and ensures that the
appropriate action occurs.

To be more efficient, a server application need only pass "keystroke"
messages to OleTranslateAccelerator. The following code demonstrates
what the message loop for an OLE server application should look like:

Sample Code

 // Message loop for an OLE server.
 //
 while (GetMessage(&msg, NULL, NULL))
 {
 if (m_fInplaceActive) // If currently active in place.
 if (msg.message >= WM_KEYFIRST && msg.message <= WM_KEYLAST)
 // If it is a "keystroke" message.
 if (OleTranslateAccelerator(...) == NOERROR)
 continue; // OLE handled the message

 TranslateMessage(...);
 DispatchMessage(...);
 }

MORE INFORMATION

When the object's server is a stand-alone .EXE and the in-place active
object gets a keystroke message that is not a recognized accelerator,
the object must check to see if the message is one that the container
recognizes by calling the OleTranslateAccelerator function. If the
container does not want the keystroke, then the
OleTranslateAccelerator function will return FALSE. In this case, the
object should continue using its normal TranslateMessage and
DispatchMessage code.

If the container accepts the keystroke, OLE will call the container's
IOleInPlaceFrame::TranslateAccelerator member function to translate
the message. The container may call the Windows TranslateAccelerator
and/or TranslateMDISysAccel functions to process the accelerator key,
or do its own special processing.

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoInp

PRB: Object Appears Larger During Visual Editing

PSS ID Number: Q104791
Authored 29-Sep-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

An OLE 2.0 object appears larger during visual editing compared to the
loaded state.

CAUSE

The Windows application programming interface (API) LPtoDP is being
used to convert the size of the object from MM_HIMETRIC to MM_TEXT.
The object is then drawn with the MM_TEXT coordinates as the bounding
rectangle.

RESOLUTION

LPtoDP is dependent on the current mapping mode to perform a
conversion from logical points to device points. For a more accurate
transformation, a function must be written to "manually" convert the
units from MM_HIMETRIC to MM_TEXT by using GetDeviceCaps to get the
logical pixels per inch for use in the conversion. The OLE2UI library,
included with the OLE 2.0 toolkit, already includes several
transformation functions to properly convert the units:

 XformWidthInPixelsToHimetric - Converts an int width into HiMetric
units
 XformWidthInHimetricToPixels - Converts an int width from HiMetric
units
 XformHeightInPixelsToHimetric - Converts an int height into HiMetric
 units
 XformHeightInHimetricToPixels - Converts an int height from HiMetric
 units
 XformRectInPixelsToHimetric - Converts a rect into HiMetric units
 XformRectInHimetricToPixels - Converts a rect from HiMetric units
 XformSizeInPixelsToHimetric - Converts a SIZEL into HiMetric units
 XformSizeInHimetricToPixels - Converts a SIZEL from HiMetric units

For more information on these functions, consult the "User Interface
Dialog Help" help file (OLE2UI.HLP) included with the OLE 2.0 toolkit.

Additional reference words: 2.00 3.50 4.00

KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoPrs

PRB: OleCreate Problems with Borland Compiler

PSS ID Number: Q104461
Authored 19-Sep-1993 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0

SYMPTOMS

Using the OLE 2.0 application programming interface (API), OleCreate
can cause unexpected behavior and return unexpected error codes when
used in an application compiled with the Borland C++ compiler.

CAUSE

At link time, the Borland file IMPORT.LIB is included before the OLE
2.0 libraries. In the IMPORT.LIB file there is a reference to the OLE
1.0 OleCreate function.

RESOLUTION

Include OLE2.LIB before IMPORT.LIB when specifying the libraries for
linking.

Additional reference words: 2.00 third party third-party 3rd
KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoApp

PRB: Paste Link Option Does Not Appear in OLE 1.0 Clients

PSS ID Number: Q98680
Authored 11-May-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE version 1.0
 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SYMPTOMS

The Paste Link option remains unavailable (grayed) in an OLE version
1.0 client when an OLE version 2.0 object places its data on the
clipboard.

CAUSE

The CF_OBJECTDESCRIPTOR and CF_LINKSRCDESCRIPTOR formats do not have
the OLEMISC_CANLINKBYOLE1 bit set in the dwStatus member of the
OBJECTDESCRIPTOR structure.

RESOLUTION

Add the OLEMISC_CANLINKBYOLE1 flag to the dwStatus member of the
OBJECTDESCRIPTOR structure.

MORE INFORMATION

OLE 1.0 clients do not support links to embedded objects. OLE 2.0
containers that support links to embedded objects should not set this
flag if the object being placed on the clipboard could result in a
link to an embedded object. Removing this flag prevents an OLE 1.0
client from attempting to make a link in this scenario.

Additional reference words: 1.00 2.00 3.50 4.00
KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoDdc

PRB: Problem with ScrollBar Control While Activated In-place

PSS ID Number: Q108942
Authored 20-Dec-1993 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01

SUMMARY

It is not possible to use a ScrollBar child control inside a window that
will be used as the in-place window in a container application.

SYMPTOMS

The ScrollBar control does not generate WM_VSCROLL or WM_HSCROLL messages
to its parent window.

CAUSE

One way to understand this problem is to examine the case where you have
an OLE container application that inserts an in-place capable object into
itself using the Insert Object menu option.

When the object is created, and if the container application allows the
object to embed itself in-place in the container application, it will set
the parent of its editing window to be a window that belongs to the
container.

Therefore, a situation occurs where two applications are running; that is,
the container and the server. The server application created and owns the
window procedure for a window that the object lives in; however, the parent
of this window is a window of the container application.

Imagine now that the object's editing window (created by the server and
parented by the container) contains a ScrollBar child control. When the
user clicks the ScrollBar control by using the left mouse button, a
WM_LBUTTONDOWN message is generated that gets handled internally by
Windows's ScrollBar child control code.

This code makes a check to ensure that the message queue that has just
delivered this message is also owned by the current active application. If
they are not, the message will not be processed further and scroll bar
messages will not be sent to the ScrollBar control's parent.

This is the case with the in-place scenario described above, and the root
of the problem.

The active application is the container application but the message queue
that delivered the scroll bar message belongs to the server application.

Also note that this problem does not apply to in-place editing windows that
have scroll bars that were created using the WS_HSCROLL or WS_VSCROLL
style. The message processing for these scroll bars is slightly different
from ScrollBar child controls.

RESOLUTION

Instead of creating a child control with the "scrollbar" class, create a
new window class (for example, MYSCROLL) whose window procedure forwards
WM_VSCROLL and WM_HSCROLL messages to its parent.

Then you can create windows of this class with either WS_HSCROLL or
WS_VSCROLL. Then position these windows the same way you would position
ScrollBar controls. When you enable/disable the scroll bar, use the
SB_HORZ, SB_VERT flags in the call to EnableScrollBar.

NOTE: You must have one row of pixels of the little window's client area
visible or Windows will hide the horizontal scroll bar. This does not apply
to the vertical scroll bar; that is, you do not need to have a column of
pixels visible.

Additional reference words: 2.00 2.01
KBCategory: kbole kbprg kbprb
KBSubcategory: LeTwoApp

PRB: Property or Method Name Not Recognized on Some Machines

PSS ID Number: Q131053
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03

SYMPTOMS

If the sLangage and iCountry fields in the [intl] section of WIN.INI are
missing or have incorrect entries, IDispatch::GetIDsOfNames fails (it
returns the DISP_E_UNKNOWNNAME error) if it is implemented using
DispGetIDsOfNames or CreateStdDispatch and a typeinfo created using an
INTERFACEDATA structure.

CAUSE

If an automation server's IDispatch is implemented using a typeinfo created
from the INTERFACEDATA structure, access of properties or methods may fail
on some computers. These computers may have missing or incorrect sLanguage
and iCountry fields in the [intl] section of WIN.INI. These fields are used
by DispGetIDsOfNames and CreateStdDispatch's IDispatch::GetIDsOfNames to
obtain locale information. These functions fail (DISP_E_UNKNOWNNAME) if the
locale information cannot be obtained.

RESOLUTION

To solve this problem, modify the fields in WIN.INI to look similar to
this:

 [intl]
 sLanguage=enu
 iCountry=1

Where:

 - enu means U.S. English.
 - iCountry specifies the country code. This number matches the country's
 international telephone code, except for Canada, which is 2. The default
 is 1.

You can also change these fields by using the International Control Panel
applet by selecting the appropriate Country and Language.

STATUS

This behavior is by design. This problem doesn't occur with typeinfos
obtained from type libraries. Microsoft strongly recommends that type

libraries be used for the implementation of IDispatch. The INTERFACEDATA
approach was a temporary solution to create typeinfos while type libraries
were in Beta.

Additional reference words: 2.0 2.00
KBCategory: kbprg kbole kbprb
KBSubcategory: LeTwoAto

PRB: Some OLE Containers Do Not Call IViewObject::Draw

PSS ID Number: Q131155
Authored 04-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

SYMPTOMS

A custom OLE rendering handler finds that its IViewObject::Draw method is
never called by some OLE container applications.

CAUSE

Some OLE container applications never call IViewObject::Draw. These
applications do not use the caching and drawing services provided by the
object handler. Instead, they do their own caching and drawing of the
presentations for OLE objects embedded in their documents.

Two examples of such container applications are Microsoft Word version 6.0
and Microsoft Excel version 5.0. They cache metafile representations of
embedded OLE objects, and then do their own drawing of those metafiles.

STATUS

This behavior is by design. It is not possible to get Microsoft Word or
Microsoft Excel to use a handler's drawing services.

Additional reference words: 2.01 3.50 4.00 5.00 6.00
KBCategory: kbole kbprb
KBSubcategory: LeTwoOh

PRB: Synchronous OLE Call Fails If in Inter-task SendMessage

PSS ID Number: Q131056
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

SYMPTOMS

A synchronous OLE call made by the recipient of an inter-task SendMessage
fails.

CAUSE

The cause is discussed in detail in the "More Information" section of this
article.

RESOLUTION

Use PostMessage instead of an inter-task SendMessage.

STATUS

This behavior is by design.

MORE INFORMATION

See the beginning of chapter 13 in the OLE 2 Programmer's Reference Volume
1 for the categories of OLE calls. An understanding of these categories is
required for this article.

The majority of OLE calls are synchronous calls. A synchronous call to a
different process yields to that process and waits for a reply from that
process. In addition, OLE has input-synchronized calls that relate to the
inplace-activation interfaces. Input-synchronized calls are implemented
using an inter-task SendMessage.

16-bit Windows doesn't allow a task to yield while in an inter-task
SendMessage because a system deadlock could occur. The deadlock occurs
because a message for the sender could be present at the top of the
shared system queue, and this prevents other tasks, including the
recipient of the SendMessage, from retrieving their messages from the

system queue until the sender does. The sender cannot retrieve its message
because it is waiting for the inter-task SendMessage to return.

In 32-bit Windows, each process has its own system queue and this
architecture normally prevents deadlock problem from occuring. However,
when one process is inplace active in another process's window, the system
queues of the two processes are synchronized as in 16-bit windows, so the
deadlock could occur. To prevent this, OLE stops synchronous OLE calls from
being made while the caller is the recipient of an input-synchronized call.

OLE determines if the caller of the synchronous call is a recipient of
an input-synchronized call by using the InSendMessage() API. This broad
check prevents a synchronous call from being made if the caller is
currently a recipient of any inter-task SendMessage.

Additional reference words: 2.0 2.00
KBCategory: kbprg kbole kbprb
KBSubcategory: LeTwoArc

Properties with Optional Parameters Not Supported

PSS ID Number: Q131048
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

Properties with optional parameters are currently not supported by the
IDispatch::Invoke implementation provided by the OLE system (DispInvoke
and CreateStdDispatch). For example, the following results in an error from
MKTYPLIB.EXE:

[propput]
void MyProperty([in] BSTR bstrValue, [in, optional] VARIANT vIndex,);
[propget]
BSTR MyProperty([in, optional] VARIANT vIndex);

Properties with non-optional parameters are allowed. For example, the
following is acceptable:

[propput] void MyProperty([in] short nIndex, [in] BSTR bstrValue);
[propget] BSTR MyProperty([in] short nIndex);

Additional reference words: 2.0 2.00 3.50 4.00
KBCategory: kbprg kbole
KBSubcategory: LeTwoAto

Reference Counting Rules

PSS ID Number: Q104138
Authored 08-Sep-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

In the component object model, an interface's lifetime is controlled
through reference counting. The reference count for an interface is
manipulated through the AddRef() and Release() member functions
inherited from IUnknown. The AddRef() member increments an interface's
reference count, and the Release() method decrements it. Once an
interface's reference count goes to zero, there are no longer any
valid pointers to that interface. If the reference count on all of an
object's interfaces is zero, then the object can be freed because
there are no longer any pointers to the object.

MORE INFORMATION

Reference Counting Rules

The following list is a copy of the reference counting rules (taken
from pages 83 and 84 of the OLE 2.0 specification) that must be
followed. Small code samples have been added in this article to help
clarify the rules.

1. Every new copy of an interface pointer must be AddRef()'d, and
 every destruction of an interface pointer must be Release()'d
 except where subsequent rules explicitly permit otherwise.

 a. In-Out parameters to functions: The caller must AddRef() the
 actual parameter, because it will be Release()'d by the callee
 when the out-value is stored on top of it.

 LPOLEOBJECT lpObject;
 .
 . // Get pointer to IOleObject.
 .
 LPVIEWOBJECT lpView = lpObject;

 lpObject->AddRef()

 // GetViewObject is a theoretical function that takes a
 // pointer to anything derived from IUnknown, and then

 // returns a pointer to IViewObject in the same variable
 // passed as the parameter. The AddRef() above is needed so
 // that the original pointer to IOleObject is not freed.

 GetViewObject(lpView);

 b. Fetching a global variable: The local copy of an interface
 pointer fetched from an existing copy of the pointer in a global
 variable must be independently reference counted because called
 functions might destroy the copy in the global while the local
 copy is still alive.

 void function()
 {
 // Get a pointer to IOleObject from a global variable.
 LPOLEOBJECT lpOleObject = glpObject;

 // This AddRef() is needed so that the interface
 // pointed to by the global variable, glpObject,
 // does not get released by a different part of
 // the applications code.

 lpOleObject->AddRef();
 .
 . // use lpOleObject;
 .
 lpOleObject->Release();
 }

 c. New pointers synthesized out of "thin air": A function that
 synthesizes an interface pointer using special internal
 knowledge rather than obtaining it from some other source must
 do an initial AddRef() on the newly synthesized pointer.
 Important examples of such routines include instance creation
 routines, implementations of IUnknown::QueryInterface, and so
 forth.

 STDMETHDOIMP IUnknown::QueryInteface(REFIID iidInterface,
 LPVOID FAR *ppvObj)
 {
 *ppvObj = NULL;
 SCODE sc = E_NOINTERFACE;

 if (iidInterface == IUnknown)
 {
 *ppvObj = this;

 // This AddRef() is needed because a new pointer
 // was just created.

 AddRef();
 sc = S_OK;
 }

 return ResultFromScode(sc);

 }

 d. Returning a copy of an internally stored pointer: Once the
 pointer has been returned, the callee has no idea how its
 lifetime relates to that of the internally stored copy of the
 pointer. Thus, the callee must AddRef() the pointer copy before
 returning to it.

 // m_lpOleObject is a private member variable of a C++ class.
 // GetOleObject is a member function to return access to this
 // pointer.

 void GetOleObject (LPVOID FAR *ppObject)
 {
 *ppObject = m_lpOleObject;

 // This AddRef() is needed due to this rule.

 m_lpOleObject->AddRef();
 }

2. Special knowledge on the part of a piece of code about the
 relationships of the beginnings and endings of the lifetimes of two
 or more copies of an interface pointer can allow AddRef()/Release()
 pairs to be omitted.

 a. In-parameters to functions: The copy of an interface pointer
 that is passed as an actual parameter to a function has a
 lifetime that is nested in that of the pointer used to
 initialize the value. Therefore, the actual parameter need not
 be separately reference counted.

 void function (LPOLEOBJECT lpOleObject)
 {

 // Can use lpOleObject in this function
 // without doing AddRef() and Release().

 }

 b. Out-parameters from functions, including return values: To set
 the out parameter, the function itself by Rule 1 must have a
 stable copy of the interface pointer. On exit, the
 responsibility for releasing the pointer is transferred from the
 callee to the caller. Thus, the out parameter need not be
 referenced counted.

 LPVIEWOBJECT lpView;

 HERROR hErr = lpOleObject->QueryInterface(IID_IViewObject,
 (LPVOID FAR *)lpView);

 if (hErr = NOERROR)
 {
 // The QueryInterface succeeded. lpView does not have

 // to be AddRef()'d because it has already been done
 // by the QueryInterface method.
 }

 c. Local variables: A function implementation clearly has
 omniscient knowledge of the lifetimes of each of the pointer
 variables allocated on the stack frame. It can therefore use
 this knowledge to omit redundant AddRef()/Release() pairs.

 void function()
 {
 LPOLEOBJECT lpTempObject;
 .
 .
 .
 lpTempObject = lpObject;
 .
 . // lpTempObject can be used
 . // without reference counting as long as
 . // it is known that the lifetime of lpObject
 . // outside of this function call.
 .
 }

 d. Backpointers. Some data structures are of the nature of
 containing two components, A and B, each with a pointer to the
 other. If the lifetime of one component (A) is known to contain
 the lifetime of the other (B), then the pointer from the second
 component back to the first (from B to A) need not be reference
 counted. Often, avoiding the cycle that would otherwise be
 created is important in maintaining the appropriate freeing
 behavior.

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoCom

Returning Floats and Doubles from Automation methods

PSS ID Number: Q122286
Authored 01-Nov-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02

SUMMARY

Automation properties or methods implemented with the C calling convention
in the Windows 16-bit operating system can't return type Float or Double.
This includes the Date type, which is a floating-point type. To work around
this, you can implement them using the Pascal calling convention.

MORE INFORMATION

Automation methods and properties can be marked as using one of the calling
conventions described by the CALLCONV enumeration. This calling convention
is used by the standard IDispatch implementation provided by
CreateStdDispatch and by DispInvoke to call property accessor functions or
methods. Note that the an automation controller does not directly use these
calling conventions.

Because of a C Language implementation limitation, automation properties
and methods that return Float or Double cannot use the C calling
convention. You need to use the Pascal calling convention.

For example, describe a method or automation property that returns a Float
or Double as follows in the .ODL file:

[propget] float pascal MyProperty();
float pascal MyMethod();

Additional reference words: 2.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoAto

Rules for Freeing BSTRs in OLE Automation

PSS ID Number: Q108934
Authored 20-Dec-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

The callee frees a BSTR passed in as a by-reference parameter before
assigning the parameter a new value. In all other cases, the caller frees
the BSTR.

MORE INFORMATION

OLE Automation defines the BSTR data type to handle strings that are
allocated by one component and freed by another. The rule for freeing a
BSTR is as follows:

The callee frees a BSTR passed in as a by-reference parameter before
assigning the parameter a new value. In all other cases, the caller frees
the BSTR.

In other words, the caller handles BSTRs as follows:

1. Free BSTR returned by called function or returned through a by-
 reference parameter of called function.

2. Free BSTR passed as a by-value parameter to a function.

The callee handles BSTRs as follows:

1. Free BSTR passed in as a by-reference parameter before assigning a new
 value to the parameter. Do not free if a new value is not assigned to
 the by-reference parameter.

2. Do not free BSTR passed in as a by-value parameter.

3. Do not free BSTR that has been returned to caller.

4. If a BSTR passed in by the caller is to be stored by the callee, store
 a copy using SysAllocString(). The caller will release the BSTR that it
 passed in.

5. If a stored BSTR is to be returned, return a copy of the BSTR. The
 caller will release the BSTR that is returned.

Additional reference words: 2.01 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoAto

SAMPLE: BINARY: Transfer Binary Data Using OLE Automation

PSS ID Number: Q131046
Authored 02-Jun-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

BINARY is an OLE Automation server that you can obtain from the Microsoft
Software Library. It demonstrates how to transfer binary data using a
SAFEARRAY of unsigned char. The CTRL directory in this sample contains an
automation controller that will obtain the binary data from the server.

Binary data can be transferred with OLE Automation by using a SAFEARRAY of
unsigned char (VT_ARRAY|VT_UI1). Binary data can also be transferred by
passing the IUnknown of a data trasfer object that supports IDataObject.
This sample uses the first approach, not the second.

Standard controllers like Visual Basic cannot access binary data
transferred through automation. For more information about this, please see
the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q122289
 TITLE : Passing Structures in OLE Automation

See the README.TXT in the sample for details on how to compile and run the
sample. After you download BINARY.EXE, use the following command to run it:

 BINARY.EXE -d

This builds the directory structure for you.

Download BINARY.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for BINARY.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download BINARY.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get BINARY.EXE

Additional reference words: 3.50 4.00
KBCategory: kbole kbprg kbcode kbfile
KBSubcategory: LeTwoAt

SAMPLE: DECODE16: OLE Error Code Decoder Tool

PSS ID Number: Q122956
Authored 16-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02

DECODE16 is a sample decoder of 16-bit OLE version 2.02 error codes. See
the DECODE32 sample for a decoder of 32-bit OLE error codes. Enter the
HRESULT in hexadecimal format, and press the Decode button.

Download DECODE16.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DECODE16.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DECODE16.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DECODE16.EXE

Download DECODE32.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DECODE32.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DECODE32.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DECODE32.EXE

Additional reference words: 2.02
KBCategory: kbole kbcode kbfile
KBSubcategory: LeTwoTls

SAMPLE: DECODE32: OLE Error Code Decoder Tool

PSS ID Number: Q122957
Authored 16-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries, version 2.1, included with:
 - Microsoft Windows NT, version 3.5

DECODE32 is a sample decoder for 32-bit OLE version error codes. See
the DECODE16 sample for a decoder for 16-bit OLE error codes. In addition
to decoding the HRESULT, DECODE32 also uses FormatMessage() to provide a
description of the error. Enter the HRESULT in hexadecimal format and press
the Decode button.

Download DECODE32.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DECODE32.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DECODE32.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DECODE32.EXE

Download DECODE16.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DECODE16.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DECODE16.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DECODE16.EXE

Additional reference words: HRESULT SCODE DECODE
KBCategory: kbole kbcode kbfile
KBSubcategory: LeTwoTls

SAMPLE: DRGDRPS: OLE Drag-Drop Source

PSS ID Number: Q122955
Authored 16-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

OLE version 2.02 and later provide drag-drop functionality that allows data
to be dragged between and within applications. DRGDRPS is a sample that
provides an OLE drag-drop Source that allows data of format CF_TEXT to be
dragged from it.

The DRGDRPS sample implements IDataObject, IDropSource, and IEnumFormatEtc
interfaces. It calls DoDragDrop when the user clicks on its main window to
initiate a drag. It allows copying of data by dragging to a drag-drop
target.

Download DRGDRPS.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DRGDRPS.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DRGDRPS.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DRGDRPS.EXE

See the DRGDRPT sample for an example of an OLE drag-drop target. Download
DRGDRPT.EXE, a self-extracting file, from the Microsoft Software Library
(MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DRGDRPT.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DRGDRPT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com

 Change to the \SOFTLIB\MSLFILES directory
 Get DRGDRPT.EXE

See the SIMPDND sample in the OLE2 SDK for a more complex drag-drop
example.

Additional reference words: 2.02 3.50 4.00
KBCategory: kbole kbcode kbfile
KBSubcategory: LeTwoDdc

SAMPLE: DRGDRPT: OLE Drag-Drop Target

PSS ID Number: Q122954
Authored 16-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

OLE version 2.0 provides drag-drop functionality that allows data to be
dragged between and within applications. DRGDRPT is a sample application
for an OLE drag-drop target that allows data of format CF_TEXT to be
dropped on it. DRGDRPT implements the IDropTarget interface. It registers
its main window as a drop target using RegisterDragDrop.

Download DRGDRPT.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DRGDRPT.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DRGDRPT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DRGDRPT.EXE

For an example of an OLE drag-drop source, see the DRGDRPS code sample.
Download DRGDRPS.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DRGDRPS.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DRGDRPS.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get DRGDRPS.EXE

See the SIMPDND sample in the OLE2 SDK for a more complex drag-drop

example.

Additional reference words: 2.02 3.50 4.00
KBCategory: kbole kbcode kbfile
KBSubcategory: LeTwoDdc

SAMPLE: MFCINP16: Inproc 16-bit MFC Automation Object

PSS ID Number: Q130843
Authored 30-May-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE version 2.03
 - Microsoft Foundation Classes (MFC) included with
 Microsoft Visual C++ for Windows, version 1.52

SUMMARY

MFC's App Wizard will not generate an inproc OLE Automation server. This
article gives you the steps to follow to create an inproc automation server
using MFC. MFCINP16, a sample available in the Microsoft Software Library,
is a 16-bit inproc automation object that was created using the steps in
this article.

Download MFCINP16.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MFCINP16.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MFCINP16.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get MFCINP16.EXE

MORE INFORMATION

MFC's App Wizard doesn't generate inproc (DLL) OLE servers because it is
not possible for MFC to fully implement one that can open into a separate
window. MFC needs to hook into the client's main message retrieval loop to
translate accelerators of the separate window and to implement idle-time
processing. OLE doesn't provide such a mechansim. It is entirely possible
to implement an inproc server in MFC with no user interface or with a very
simple user interface. This article shows you how.

Steps to Create a 16-Bit Inproc Automation Object in MFC
--

It is assumed that Visual C++ version 1.51 or greater and the Control
Development Kit have been installed.

1. Use INPROC.CPP, INPROC.H, and STDAFX.H from the sample as the starting
 point. Copy these into a new directory. The names INPROC.CPP and
 INPROC.H can be changed to something more appropriate for your project.

2. Create a new project by choosing New from the Project menu and selecting
 the Windows dynamic-link library as the type. Add INPROC.CPP to this
 project. (The sample uses inproc for the project name.)

3. From the Options menu, choose Project and select Compiler. Add the
 following in the C/C++ CompilerOptions dialog box under the
 CustomOptions category in the OtherOptions edit control:

 /D "_USRDLL"

 From the Options menu, choose Project and select Linker. Add the
 following libraries in the LinkerOptions dialog box under the Input
 category in the Libraries edit control:

 ole2, compobj, ole2disp, typelib, ole2nls, mfcoleui, storage

4. Choose ClassWizard from the Project menu. ClassWizard will complain that
 the .CLW file does not exist. It will ask you to rebuild the .CLW file
 by opening the project in App Studio and running ClassWizard.

5. Open AppStudio by choosing it from the Tools menu. Save the resource
 file, and run ClassWizard from AppStudio by choosing ClassWizard from
 the Resource menu. The CLW file will now be built after you choose OK in
 the SelectSourceFiles dialog box. Complet the following steps:

 a. Select the OLE Automation tab in the MFC ClassWizard dialog.

 b. Choose the AddClass button, and add a class of type CCmdTarget.

 c. Select the OLEAutomation check box.

 d. Select the OLECreatable check box, and provide an ExternalName
 (progID) if this is a top-level automation object. This external name
 will be used by the automation controller/client to create the
 object. (The sample creates a class called TestObject, which has an
 external name Inproc.TestObject.)

6. Add the required automation properties and methods to the newly
 created class. (The sample creates a method called TestMethod that
 returns void and has no parameters. The method calls MessageBeep.)

7. Attempt to build the project. Visual C++ will ask if you want to
 create a default .DEF file. Edit the default .DEF file to export the
 following:

 DllGetClassObject
 DllCanUnloadNow
 DllRegisterServer

8. Build the project. Register the inproc Automation object by choosing
 RegisterControl from the Tools menu.

9. VB.MAK and VB.FRM in the sample are Visual Basic version 3.0 files that
 you can use to control the object.

Additional reference words: 2.03 1.52
KBCategory: kbole kbprg kbfile
KBSubcategory: LeTwoAto

SAMPLE: MFCINP32 Inproc 32-bit MFC Automation Object

PSS ID Number: Q130842
Authored 30-May-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE version 2.03
 - Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 2.0

SUMMARY

MFC's App Wizard in Visual C++ version 2.0 will not generate an inproc OLE
Automation server. This article gives steps you can follow to create an
inproc automation server using MFC. You can also obtain a sample (MFCINP32)
from the Microsoft Software Library that is a 32-bit inproc automation
object created by following the steps in this article.

Download MFCINP32.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MFCINP32.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MFCINP32.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get MFCINP32.EXE

NOTE: The App Wizard in Visual C++ version 2.1 and above does generate an
inproc OLE Automation server.

MORE INFORMATION

MFC's App Wizard doesn't generate inproc (DLL) OLE servers because it is
not possible for MFC to fully implement one that can open into a separate
window. MFC needs to hook into the client's main message retrieval loop to
translate accelerators of the separate window and to implement idle-time
processing. OLE doesn't provide such a mechansim. It is entirely possible
to implement an inproc server in MFC with no user interface or with a very
simple user interface. This article provides the instructions to do this.

Steps to Create 32-Bit Inproc Automation Object in MFC
--

It is assumed that Visual C++ version 2.0 and the Control Development Kit
have been installed.

1. Use INPROC.CPP, INPROC.H, and STDAFX.H from the sample as the starting
 point. Copy these into a new directory. The names INPROC.CPP and
 INPROC.H can be changed to something more appropriate for your project.

2. Create a new project of type Dynamic-Link Library. (Do not select MFC
 AppWizard DLL.) Add INPROC.CPP to this project.

3. Create an .ODL file (INPROC.ODL) containing a modification of the
 following code, and add it to the project.

 [uuid(ABEBE5A0-0C69-11CE-B774-00DD01103DE1), version(1.0)]
 library inproc
 {
 importlib("stdole32.tlb");
 //{{AFX_APPEND_ODL}}
 };

 Don't use the same UUID as the one shown here. Instead generate a new
 one by running GUIDGEN.EXE, and use that value. The library name can be
 changed from inproc to a name more appropriate for your project. The
 version number can also be changed.

4. Create the .DEF file (INPROC.DEF) containing the following code, and add
 it to the project.

 LIBRARY INPROC
 EXPORTS
 DllGetClassObject
 DllCanUnloadNow
 DllRegisterServer

 The library name can be changed from INPROC to a name more appropriate
 for your project.

5. Select Project Settings, as follows:

 - In the ProjectSettings dialog box under General, select Use MFC in a
 shared DLL.

 - In the ProjectSettings dialog box under C/C++, remove _AFXDLL, and
 add _USRDLL and _WINDLL under Preprocessor definitions.

 - In the ProjectSettings dialog under Link, add the following libraries
 to Object/Library modules:

 ole32.lib oleaut32.lib

6. Choose ClassWizard from the Project menu. ClassWizard will complain that
 the .CLW file does not exist. It will ask you to rebuild the .CLW file
 by opening the .RC file and running ClassWizard again.

7. Open your .RC file or create a new .RC file by choosing New from the

 File menu and selecting Resource Script. Save the new .RC file
 (INPROC.RC). Now bring up ClassWizard. The .CLW file will now be built
 after you choose OK in the SelectSourceFiles dialog box. Follow these
 steps:

 a. Select the OLE Automation tab in the ClassWizard dialog.

 b. Choose the AddClass button, and add a class of type CCmdTarget.

 c. Select the OLEAutomation check box.

 d. Select the OLECreatable check box, and provide an ExternalName
 (progID) if this is a top-level automation object. This external name
 is used by the automation controller/client to create the object.
 (The sample creates a class called TestObject that has an external
 name Inproc.TestObject.)

8. Add the required automation properties and methods to the newly created
 class. (The sample creates a method called TestMethod that returns void
 and has no parameters. The method calls MessageBeep.)

9. Build the project. Register the inproc Automation object by using the
 Tools/RegisterControl menu.

10. Note that a 16 bit controller like Visual Basic version 3.0 cannot
 control a 32-bit inproc automation object because 16-bit to 32-bit
 interoperability is not supported with inproc automation objects.
 Instead, write a 32-bit controller to control this 32-bit inproc
 automation object.

Additional reference words: 2.00 3.00
KBCategory: kbole kbprg kbfile kbcode
KBSubcategory: LeTwoAto

SAMPLE: Multilingual OLE Automation Object

PSS ID Number: Q107698
Authored 24-Nov-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

MULTLING demonstrates how to create an OLE automation object that supports
multiple languages. This allows the controller of an automation object to
access properties and methods using any of the languages that are
supported.

Download MULTLING.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MULTLING.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MULTLING.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get MULTLING.EXE

MORE INFORMATION

This multilingual OLE automation object sample checks the Locale ID (LCID)
passed methods of the IDispatch interface to determine the language being
used by the automation controller. The object supports access of properties
and methods in English, French, and German.

One Type Library Per Language

The automation object registers three different type libraries in the
registration database--one for each supported language. The type libraries
have the same UUIDs but different locale attributes. Each type library is
loaded at object creation and the ITypeInfo interface is obtained from each
as follows (see LoadTypeInfo in MAIN.CPP):

 LoadRegTypeLib(LIBID_Hello, 1, 0, lcid, &ptlib);
 ptlib->GetTypeInfoOfGuid(IID_IHello, &ptinfo);

Also see ENGLISH.ODL, FRENCH.ODL, GERMAN.ODL, and HELLO.REG.

Interpret LCID in IDispatch Methods

The implementation of IDispatch::GetTypeInfo, GetIDsOfNames, and Invoke
checks the value of the lcid parameter to determine the locale ID and uses
the appropriate ITypeInfo for that language (See CHello::GetTypeInfo,
GetIDsOfNames, and Invoke in HELLO.CPP).

To Run

The multilingual automation object exposes one VT_BSTR property
(HelloMessage) and one method (SayHello).

ProgID : HelloMultiLingual.Hello

Method and Property Names:

English French German Action

HelloMessage SalutMessage HalloNachricht Sets or gets the
 HelloMessage string.
SayHello DitSalut SagHallo Displays the HelloMessage
 in an edit control.

Use the AUTOCTRL sample to control the multilingual automation object. The
AUTOCTRL automation controller allows the locale ID to be specified.

Update the path in HELLO.REG to the current location of the object and the
type libraries.

To Compile

Requires OLE 2.01 or later.

Include device=vmb.386 in the [386Enh] section of SYSTEM.INI.
Note that vmb.386 can be found in \OLE2\BIN.
Run the WXSERVER.EXE from \OLE2\BIN before running the makefile.

Additional reference words: 2.00 3.50 4.00 multi-lingual softlib
MULTLING.EXE
KBCategory: kbole kbfile
KBSubcategory: LeTwoAto

SAMPLE: OLE Automation '94 Documentation and Samples

PSS ID Number: Q124385
Authored 29-Dec-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.02

SUMMARY

You can get a draft of the second edition of OLE 2 Programmer's Reference,
Volume 2 and the samples it contains from two files (OA94DOC.EXE and
OA94SAMP.EXE). The final version will be released in 1995. The samples
demonstrate many of the new Automation features.

IMPORTANT: After downloading OA94SAMP.EXE, run it in an empty directory
using the -d option to maintain the directory structure:

 OA94SAMP.EXE -d

Download OA94DOC.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for OA94DOC.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download OA94DOC.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get OA94DOC.EXE

Download OA94SAMP.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for OA94SAMP.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download OA94SAMP.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory

 Get OA94SAMP.EXE

MORE INFORMATION

OLE Automation '94 is the version of OLE Automation that shipped
with version 2.02 of the OLE libraries.

Contents for OA94DOC

The OA94DOC.EXE self-extracting file contains a draft of the second edition
of OLE 2 Programmer's Reference, Volume 2. It documents the following new
features introduced in OLE Automation '94:

 VTBL binding and dual interfaces.
 Error handling mechanisms for interfaces that support vtable binding.
 New registration flags for RegisterActiveObject().
 New ODL Attributes.
 Multiple type libraries can now be stored in an executable (.EXE) file
 or DLL. These libraries can be loaded using LoadTypeLibFromResource.
 MkTypLib includes DEFINE_GUID macros in the generated header file for
 each element (interface, dispinterface, and so forth) defined in the
 type library.
 SafeArrayPtrOfIndex().
 VT_UI1 data type.
 Additions to ITypeInfo Structures and Enumerations.
 Additions to National Language Support LCTYPE constants in 16 bit.

You will fild a discussion of the new features in TECHNOTE.DOC, which
is included in OA94DOC.EXE.

Contents for OA94SAMP

The OA94SAMP.EXE self-extracting file contains the samples referenced in
OA94DOC. The following samples are included:

 HELLO - A simple automation object that implements a dual interface.
 HELLCTRL - A simple automation controller that controls HELLO
 using vtable binding.
 LINES - A more complex automation object that implements several dual
 interfaces and two collections.
 BROWSEH - (Browse Helper) An inproc (DLL) automation object that
 exposes properties and methods that allow easy browsing of a type
 library. This sample doesn't implement dual interfaces.
 BROWSE - An automation controller that uses late-binding to control
 BROWSEH. It displays the type library information obtained from
 BROWSEH. The INVHELP.CPP file in this sample contains helper
 functions that allow easy creation of any late-binding automation
 controller.

The WIN16 directory contains 16-bit versions of the samples, and the WIN32
directory contains a version that you can compile for 16-bit or 32-bit by

changing the dev option in the makefile to compile for 16- or 32-bit and
changing the HOST option to compile a 32-bit version for Windows NT or for
Windows 95. The .REG entries for the samples in the WIN32 directory are set
up for 32-bit, so you need to change them to the 16-bit keys if you are
compiling for the 16-bit environment.

The 32-bit version of the samples for NT use Unicode.

The 32-bit version of the samples for Windows 95 use Unicode with the OLE
API and interfaces and use ANSI with the Windows 95 API. This is because
Windows 95 uses ANSI and 32-bit OLE uses Unicode, regardless of the
platform. The samples do the appropriate Unicode-to-ANSI conversions to
support this.

See the README.TXT file for each sample for more details.

Additional reference words:
KBCategory: kbole kbprg kbcode kbfile
KBSubcategory: LeTwoAto

SAMPLE: OLE Automation Collection

PSS ID Number: Q107546
Authored 23-Nov-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

COLLECT demonstrates how to create an OLE automation collection object.

COLLECT can be found in the Software/Data Library by searching on the word
COLLECT, the Q number of this article, or S14424. COLLECT was archived
using the PKware file-compression utility.

MORE INFORMATION

The collection object implements the following methods and properties: Add
Method, Count Property, Item Property, NewEnum Property, and Remove Method.

Error handling in the collection object involves raising exceptions.
CreateStdDispatch does not allow exceptions to be raised, so the collection
object implements the IDispatch interface using DispGetIDsOfNames and
DispInvoke.

Add Method

Description: Adds the indicated item to the collection. If an object
 is created, it should be returned.
Arguments: Varies. It can be a pointer to the object that is to be
 added or it can the information required to create the
 object.
Return type: Varies. If no object is created, the return type should
 be void. If an object is created, the return type should
 be VT_DISPATCH.

Note: The Add method is not appropriate for all collections, so it is not
required. For many application-created collections, objects are
automatically added to the collection for the user.

Count Property

Description: Returns the number of items in the collection. Read-only
 property.
Arguments: None.

Return type: VT_I4.

Item Property

Description: Returns the indicated item in the collection.
Argument: Specifies the index. Some collections allow various types
 of indexing. For example, this sample allows an integer or
 string to be specified as an index.
Return type: VT_DISPATCH.

Note: Item is the default value for the object, so it should have the
special DISPID, DISPID_VALUE. MkTypLib automatically assigns this DISPID if
the default attribute is specified in the ODL file.

_NewEnum Property

Description: Returns an enumerator that supports IEnumVariant for the
 items currently in the collection. Read-only property.
Arguments: None.
Return type: VT_UNKNOWN.

Note: NewEnum will not be accessible to users and must have the restricted
attribute in the ODL file. The NewEnum method must have a special DISPID,
DISPID_NEWENUM. The defining characteristic of a collection is the ability
for a user to iterate over the items in it. Some languages will have built-
in support for collections. The NewEnum method allows an OLE automation
controller to support "for each" iteration over a collection:

 For Each Item In Collection
 Debug.Print Item.Text
 Next Item

OLE automation controllers that support "for each" iteration will call the
NewEnum method on the collection object and then QueryInterface on the
resulting IUnknown to get the desired IEnumVariant.

Remove Method

Description: Removes the specified item from the collection.
Argument: Specifies the index. Some collections allow various types
 of indexing. For example, this sample allows an integer
 or string to be specified as an index.
Return type: void.

Note: The object is not deleted. It is simply removed from the collection.
Remove should support the same kinds of indexing as the Item() method for
the same collection. The Remove method is not appropriate for all
collections, so it is not required. For many application-created
collections, objects are automatically removed the collection for the user.

To Run

The collection sample application object exposes the following:

 ProgID : Collection.Application

 Method and Property Names Notes

 [App Object]
 Collection (read only prop) Returns empty collection.
 New Item (method) Creates and returns new item.

 [Item Object]
 Text (default prop) Sets and returns string.

 [Collection Object]
 See above for exposed properties and methods.

Update the path in HELLO.REG to the current location of the object and the
type libraries.

To Compile

Requires OLE version 2.01 or later.

Include device=vmb.386 in the [386Enh] section of SYSTEM.INI.
Note that vmb.386 can be found in \OLE2\BIN.
Run WXSERVER.EXE from \OLE2\BIN before running the makefile.

Additional reference words: 2.00 3.50 4.00 softlib COLLECT.EXE
KBCategory: kbole kbfile
KBSubcategory: LeTwoAto

SAMPLE: OLE Automation Controller Sample

PSS ID Number: Q106080
Authored 31-Oct-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

AUTOCTRL demonstrates how to create an OLE automation controller.

AUTOCTRL can be found in the Software/Data Library by searching on the
word AUTOCTRL, the Q number of this article, or S14364. AUTOCTRL was
archived using the PKware file-compression utility.

MORE INFORMATION

This OLE automation controller sample demonstrates how to create an
OLE automation object and how to access its properties and methods.

Creating an Automation Object

[CreateObject() in file AUTOCTRL.CPP.]

The user is prompted for the ProgID of the automation object to be
created. CLSIDFromProgID is used to obtain the CLSID of the object;
CoCreateInstance is used to create the object.

Accessing Properties and Methods

IDispatch::GetIDsOfNames is used to obtain the ID of the property or
method to be accessed; IDispatch::Invoke is used to access the
property or method. This controller prompts the user for the locale
ID; however, many controllers such as Visual Basic use the default
system locale ID.

Setting a Property

[See SetProperty() in AUTOCTRL.CPP.]

The user is prompted for the property name, property value, property
type and locale ID. This controller supports three types: VT_BSTR,
VT_I2 and VT_R4. Setting the property requires an implicit named
parameter, which represents the new value of the property. The DISPID

of this implicit named parameter is DISPID_PROPERTYPUT.

Getting a Property

[See GetProperty() in AUTOCTRL.CPP.]

The user is prompted for the property name, property type, and locale
ID.

Invoking a Method

[See InvokeMethod() in AUTOCTRL.CPP.]

The user is prompted for the method name and the locale ID. This
controller supports only methods without parameters.

Additional reference words: 2.00 3.50 4.00 softlib AUTOCTRL.EXE
KBCategory: kbole kbfile
KBSubcategory: LeTwoAto

SAMPLE: OLE Automation Inproc Object

PSS ID Number: Q107982
Authored 01-Dec-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

AUTODLL demonstrates how to create a OLE automation inproc object.

Download AUTODLL.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for AUTODLL.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download AUTODLL.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get AUTODLL.EXE

MORE INFORMATION

AUTODLL implements a OLE automation inproc object (DLL server) called Hello
that exposes one property, HelloMessage, and one method, SayHello. It uses
an OLE provided IDispatch implementation that is created using
CreateStdDispatch.

The AUTODLL dynamic-link library (DLL) uses the memory allocator used by
the calling task. This is required of all inproc objects. The new and
delete operators are redefined to use the calling task's memory allocator
and all memory management is done using the redefined new and delete.

The interface that AUTODLL exposes is described using an object description
language (HELLO.ODL). The mktyplib tool is used to create a type library
(HELLO.TLB) from HELLO.ODL. CreateStdDispatch is then used to implement an
IDispatch interface using the interface description in the type library.

AUTODLL exports DllGetClassObject, which is called by OLE to get the class
factory. OLE uses this classfactory to create a Hello object. Automation

controllers use the IDispatch interface exposed by the Hello object to
access its property and method. AUTODLL also exports DllCanUnloadNow.

The SIMPAUTO sample in the Software/Data library demonstrates the
implementation of an automation object with the same methods and properties
as AUTODLL, but which is an EXE. The main differences between the two
samples are in the MAIN.CPP file.

To Run

The Hello object exposes the following:

 ProgID : SimpleAutomationInProc.Hello

 Method & Property Names Notes
 --
 HelloMessage (prop) Sets and returns string.
 SayHello (method) Displays HelloMessage in an edit
 control.

Update the path in HELLO.REG to the current location of the object and the
type library.

To Compile

Requires OLE 2.01 or later.

Include device=vmb.386 in the [386Enh] section of SYSTEM.INI.
Note that vmb.386 can be found in \OLE2\BIN.
Run the WXSERVER.EXE from \OLE2\BIN before running the makefile.

Files

MAIN.CPP Does initialization, redefines new and delete, implements
 DllGetClassObject, DllCanUnloadNow. and contains code that
 calls CreateStdDispatch.
HELLO.CPP Implements the HELLO object.
HELLOCF.CPP Implements the HELLO class factory.
HELLO.ODL Object Description Language that describes the property and
 method that HELLO exposes.
HELLO.H Defines the HELLO object and the class factory.
TLB.H Header file created by mktyplib.
MAKEFILE Makefile for project.
VB.MAK,
VB.FRM Visual Basic project files to control this sample.

Additional reference words: 2.00 3.50 4.00 server softlib AUTODLL.EXE
KBCategory: kbole kbfile
KBSubcategory: LeTwoAto

SAMPLE: Ole2View 1.33 Update Available in Software Library

PSS ID Number: Q122244
Authored 01-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Visual C++ for Windows, version 1.5
 - Microsoft Visual C++, 32-bit Edition, version 2.0

SUMMARY

An update to the OLE2View sample application is available in the Microsoft
Software Library (MSL) as a self-extracting file named OLE2V.EXE. This file
contains both 16- and 32-bit versions of Ole2View version 1.33.

This new release of the sample application fixes several bugs (mostly of a
cosmetic nature) found in the versions of Ole2View that shipped with Visual
C++ versions 1.5 and 2.0 and with the Win32 Software Development Kit (SDK)
for Windows NT version 3.5.

Download OLE2V.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for OLE2V.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download OLE2V.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get OLE2V.EXE

MORE INFORMATION

Files Included in OLE2V.EXE

OLE2VIEW.EXE - Ole2View 1.33 (Win16)
DEFO2V.DLL - IDataObject and ITypeLib interface viewers (Win16)
OLE2VW32.EXE - Ole2View 1.33 (Win32)
DEFO2V32.DLL - IDataObject and ITypeLib interface viewers (Win32)
OLE2VIEW.HLP - Helpfile

Version 1.33 Changes

- The 32-bit version was made 100% compatible with Windows 95 in terms of
 using the right colors, and so on.

- A Bug that appears in the Japanese version of Windows (display of
 spurious characters) was fixed.

- DEFO2V32.DLL was changed to include only the ANSI versions of the
 interface viewers. Now DispplayIDataObjectA, DispplayIDispatchA,
 DispplayITypeInfoA, and DispplayITypeLibA are gone. DispplayIDataObject,
 DispplayIDispatch, DispplayITypeInfo, and DispplayITypeLib are now ANSI;
 they used to be Unicode. This change was made to simplify debugging
 DEFO2V and because the Unicode versions were never called.

Please report bugs to Microsoft and make suggestions by sending electronic
mail to this alias:

 ole2view@microsoft.com

Additional reference words: 2.00 1.50 visualc 3.50 softlib
KBCategory: kbother kbprg kbfile
KBSubcategory: letwomisc

SAMPLE: SAFEARAY: Use of Safe Arrays in Automation

PSS ID Number: Q131086
Authored 02-Jun-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

SAFEARAY is an OLE Automation server application that demonstrates the
use of safe arrays.

Download SAFEARAY.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services.

 - CompuServe
 GO MSL
 Search for SAFEARAY.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SAFEARAY.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get SAFEARAY.EXE

MORE INFORMATION

SAFEARAY implements the following methods (in addition to the standard
application object methods).

SlowSort: Sorts an input safearray of BSTRs and returns the sorted array
and the time required for the sort. The array is passed by reference
because it needs to be modified by the sort. SlowSort uses
SafeArrayGetElement and SafeArrayPutElement to access the array
elements.

FastSort: Has the same functionality as SlowSort but uses
SafeArrayAccessData to get a pointer to the array elements. This allows
array elements to be accessed directly instead of using
SafeArrayGetElement and SafeArrayPutElement. This accounts for the speed
improvement over SlowSort.

Average: Finds the average of an input safe array of integers. The array
is not passed by reference.

GetArray: Creates and returns a safe array of BSTRs.

See the README.TXT included for instructions to compile and run this
sample.

Additional reference words: 3.50 4.00
KBCategory: kbprg kbfile
KBSubcategory: LeTwoAt

SAMPLE: Simple OLE 2.0 Container

PSS ID Number: Q99464
Authored 30-May-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

There is a sample application called SIMPLE in the Software/Data
Library that demonstrates how to implement an OLE version 2.0
container application. SIMPLE is intended to be the simplest OLE 2.0
container that is capable of visual editing. SIMPLE demonstrates the
use of the OLE 2.0 libraries from a C++ application.

Download SIMPLE.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SIMPLE.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SIMPLE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SIMPLE.EXE

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbfile
KBSubcategory: LeTwoInp

SAMPLE: Simple OLE Automation Object Sample

PSS ID Number: Q107981
Authored 01-Dec-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

SIMPAUTO demonstrates how to create a simple OLE automation object.

Download SIMPAUTO.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SIMPAUTO.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SIMPAUTO.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SIMPAUTO.EXE

MORE INFORMATION

SIMPAUTO implements a simple OLE automation object called Hello that
exposes one property, HelloMessage, and one method, SayHello. It uses an
OLE-provided IDispatch implementation that is created using
CreateStdDispatch.

The interface that SIMPAUTO exposes is described using an object
description language (HELLO.ODL). The mktyplib tool is used to create a
type library (HELLO.TLB) from HELLO.ODL. CreateStdDispatch() is then used
to implement an IDispatch interface using the interface description in the
type library.

SIMPAUTO registers a class factory if it is started with the -Automation
command-line switch. OLE uses this classfactory to create a Hello object.
Automation controllers uses the IDispatch interface exposed by the Hello
object to access its property and method.

The AUTODLL sample in the Software Library demonstrates the

implementation of an inproc automation object with the same methods and
properties as SIMPAUTO, but which is a DLL. The main differences between
the two samples are in the MAIN.CPP file.

To Run

The Hello object exposes the following:

 ProgID : SimpleAutomation.Hello

 Method and Property Names Notes
 --
 HelloMessage (prop) Sets and returns string.
 SayHello (method) Displays HelloMessage in an edit
 control.

Update the HELLO.REG file in two places to include the full path
information to the HELLOEXE and the HELLO.TLB files. Change the lines from
the following:

 LocalServer = hello.exe -Automation
 win16 = hello.tlb

to something similar to the following:

 LocalServer = c:\source\simpauto\hello.exe -Automation
 win16 = c:\source\simpauto\hello.tlb

To Compile

Requires OLE 2.01 or later.

Include device=vmb.386 in the [386Enh] section of SYSTEM.INI. Note that
vmb.386 can be found in \OLE2\BIN. Run the WXSRVER.EXE from \OLE2\BIN
before running the makefile.

Files

MAIN.CPP Does initialization, creates main window, contains message
 retriever, and contains code that calls CreateStdDispatch.
HELLO.CPP Implements the HELLO object.
HELLOCF.CPP Implements the HELLO class factory.
HELLO.ODL Object description Language that describes the property and
 method that HELLO exposes.
HELLO.H Defines the HELLO object and the class factory.
TLB.H Header file created by mktyplib.
MAKEFILE Makefile for project.
VB.MAK,
VB.FRM Visual Basic project files to control this sample.

Additional reference words: 2.00 3.50 4.00 softlib SIMPAUTO.EXE
KBCategory: kbole kbfile

KBSubcategory: LeTwoAto

SAMPLE: TYPEBLD: How to Use ICreateTypeLib & ICreateTypeInfo

PSS ID Number: Q131105
Authored 04-Jun-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.03
 - Microsoft OLE libraries included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95

SUMMARY

The TYPEBLD sample demonstrates how to create an OLE Automation type
library using the ICreateTypeLib and ICreateTypeInfo interfaces.

Download TYPEBLD.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for TYPEBLD.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TYPEBLD.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get TYPEBLD.EXE

See the README.TXT file included in the sample for instructions on to
compile and run this sample.

MORE INFORMATION

The type library that is created is called HELLO.TLB and corresponds to one
that would have been built by MKTYPLIB.EXE if it had compiled the following
.ODL file.

Sample .ODL File

[
 uuid(2F6CA420-C641-101A-B826-00DD01103DE1), // LIBID_Hello
 helpstring("Hello 1.0 Type Library"),
 lcid(0x0409),
 version(1.0)

]
library Hello
{
#ifdef WIN32
 importlib("stdole32.tlb");
#else
 importlib("stdole.tlb");
#endif

 [
 uuid(2F6CA422-C641-101A-B826-00DD01103DE1), // IID_IHello
 helpstring("Hello Interface")
]
 interface IHello : IUnknown
 {
 [propput] void HelloMessage([in] BSTR Message);
 [propget] BSTR HelloMessage(void);
 void SayHello(void);
 }
 [
 uuid(2F6CA423-C641-101A-B826-00DD01103DE1), // IID_DHello
 helpstring("Hello Dispinterface")
]
 dispinterface DHello
 {
 interface IHello;
 }

 [
 uuid(2F6CA421-C641-101A-B826-00DD01103DE1), // CLSID_Hello
 helpstring("Hello Class")
]
 coclass Hello
 {
 dispinterface DHello;
 interface IHello;
 }
}

Additional reference words: 3.50 4.00
KBCategory: kbole kbfile kbcode
KBSubcategory: LeTwoAt

SIMPSVR Implements IDataObject::GetData Incorrectly

PSS ID Number: Q114599
Authored 08-May-1994 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.01

The simple server sample application (SIMPSVR.EXE) included with the OLE
2.01 SDK incorrectly implements the IDataObject::GetData() method. The code
checks the cfFormat member of the FORMATEC structure to see if the format
is CF_BITMAP. If so, the code continues, filling out the STGMEDIUM with a
METAFILEPICT. The code should be comparing the cfFormat with
CF_METAFILEPICT.

The sample code continues to work correctly because the STGMEDIUM structure
is filled out appropriately for CF_METAFILEPICT. The default handler puts
the information into the cache based on the value that is returned, rather
than on the value that is requested.

The sample code included with Visual C++ for Windows version 1.5x has been
corrected. It now compares against CF_METAFILEPICT.

Additional reference words: 2.01
KBCategory: kbole kbprg
KBSubcategory: LeTwoSvr

Sizing OLE 2.0 Objects and OLEMISC_RECOMPOSEONRESIZE

PSS ID Number: Q114014
Authored 21-Apr-1994 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

Some server applications want to have their presentation displayed
differently based on the size of the object in the container application.
For example, if version 6.0 of Microsoft Word For Windows is used as a
server application, Word for Windows will rewrap the text of an object
based on the object size in the container. This is accomplished in a server
application by setting the OLEMISC_RECOMPOSEONRESIZE bit in the MiscStatus
bits.

However, for setting the OLEMISC_RECOMPOSEONRESIZE bit to work, the
container application must properly implement its sizing code by honoring
the OLEMISC_RECOMPOSEONRESIZE bit returned by IOleObject::GetMiscStatus().

MORE INFORMATION

To properly honor the OLEMISC_RECOMPOSEONRESIZE bit, the container needs to
check the MiscStatus bits by calling IOleObject::GetMiscStatus(). Once the
status bits are retrieved, the container can then check to see if the
OLEMISC_RECOMPOSEONRESIZE bit is set. If the bit is set, then the server
wishes to be notified every time the object size changes in the container.
To inform the server application the object has been resized, the container
needs to call IOleObject::SetExtent() to set the new size of the object.
However, IOleObject::SetExtent() only works while the object is in the
running state. The container application should check if the object is
already in a running state by calling the OleIsRunning() function. This is
important because the container needs to restore the state of the object
once the operation is complete. If the object was not in the running state,
OleRun() needs to be called such that the IOleObject::SetExtent() call
takes effect. At this point the IOleObject::SetExtent() method call can be
made, and should be followed with a call to IOleObject::Update() to update
the presentation of the object in the container. Finally, if this section
of code ran the server, then it needs to transition the server back to the
loaded state by calling IOleObject::Close().

NOTE: Some container applications may want to come up with a more elaborate
scheme for keeping servers running. Starting and stopping servers is an
expensive process, so the container application might come up with a way to
keep the last X (X being application specific) servers held in the running
state.

The following code is a simple implementation for the container:

// Pass this function a pointer to the object's IOleObject interface,
// the Aspect that has changed size, and the new size of the object.
// returns TRUE if the object had the Recompose on Resize bit set.

BOOL fChkResize(LPOLEOBJECT lpObject, DWASPECT dwAspect, LPSIZEL lpsizel)
{
 DWORD dwStatus = 0; // For the status bits
 BOOL fShutdown = FALSE; // don't shut the object down
 BOOL retval = FALSE;

 // Get the status bits.
 lpObject->GetMiscStatus(DVASPECT_CONTENT, &dwStatus);

 // is recompose on resize set?
 if (dwStatus & OLEMISC_RECOMPOSEONRESIZE)
 {
 retval = TRUE; // the bit was set

 // if the object isn't running, start the object and remember.
 if (!OleIsRunning(lpObject)
 {
 OleRun(lpObject);
 fShutdown = TRUE;
 }

 // set the extent
 lpObject->SetExtent(dwAspect, lpsizel);

 // update the cache
 lpObject->Update();

 // go back to the loaded state only if the object was in the
 // loaded state upon entry to this function.
 if (fShutdown)
 lpObject->Close(OLECLOSE_SAVEIFDIRTY);
 }
 return retval;
}

Additional reference words: 2.00 2.01 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoPrs

Summary List of OLE Bugs

PSS ID Number: Q112036
Authored 28-Feb-1994 Last modified 21-Apr-1995

The information in this article applies to:

 - Microsoft OLE version 1.0
 - Microsoft OLE Libraries for Windows and Win32s, versions 2.0 and 2.01

SUMMARY

The information in this article is a summary of individual articles
contained in the Microsoft Knowledge Base (as of 4/21/95). These articles
can be found by querying on the article's ID number or on words in the
title and text. The Microsoft Knowledge Base can be accessed on CompuServe
(go mdkb) and on the Internet (through ftp.microsoft.com or
www.microsoft.com).

BUG LISTING

 - BUG: OleCreateLinkFromFile Fails on CD-ROM-Based File
 - BUG: DIB Can Be Returned Only on TYMED_HGLOBAL
 - BUG: SR2TEST GP Faults During Object Shutdown
 - BUG: (I)CntrOutl Does Not Set Target Device Information
 - BUG: Accelerator Causes Crash in ISvrOutl Embedded in C12Test
 - BUG: Insert Object from Zero Length File Causes GP Fault
 - BUG: Set Line Height on ISvrOutl Object Causes GPF in Cl2Test
 - BUG: Deleting an Open Packager Ojbect Causes GP Fault
 - BUG: Cannot Paste Link SR2TEST Object in OLE 1.0 Client
 - BUG: SR2TEST Won't Close After Editing Link Object
 - BUG: Paste Link Disabled Across the Network
 - BUG: Object Packager GPFs w/Paths Greater Than 64 Characters
 - BUG: Status Bar Not Redrawn With SR2TEST When In-Place
 - BUG: Cursor Does Not Update with Sr2Test and ICntOutl
 - BUG: OleCreate and IOleCache::Cache Fail with Multiple TYMEDs
 - BUG: IROT::IsRunning() Returns S_FALSE for OLE 1.0 Servers
 - BUG: Retaining Clipboard IDataObject Causes Unexpected Result
 - BUG: SR2TEST Menu Items Enabled Incorrectly
 - BUG: OLE 2.0 Containers & 1.0 Objects that Close w/out Saving
 - BUG: CL2TEST Fails to Parse Filenames with Extended Characters
 - BUG: Insertion of Large .WAV Object Fails
 - BUG: OLE 2.01 Does Not Support CF_OWNERDISPLAY
 - BUG: IOleCache::Cache Returns Incorrect Error Value
 - BUG: OLERENDER_ASIS Results in Blank Embedded Object
 - BUG: Invisible MSDRAW Object Retains Keyboard Focus
 - BUG: Iconic OLE Object Prints as Black Rectangle on PostScript
 - BUG: First Entry in Paste Special Dialog Is Blank
 - BUG: IEnumUnknown Is Not Remoted
 - BUG: SVROUTL Link Not Displayed Correctly in CNTROUTL
 - PRB: Embedded Object's Size Changes When it Is Run
 - BUG: Embedded Object's Size Changes When it is Run

 - BUG: SVROUTL Link Not Displayed Correctly in CNTROUTL
 - BUG: CL2TEST Does Not Display Prompt String from GetCurFile()
 - BUG: CL2TEST Handles Icon Aspect Incorrectly
 - BUG: CL2TEST Not Properly Activating Links to Embedded Objects
 - BUG: IOleObject::Close(OLECLOSE_NOSAVE) and DoVerb()
 - BUG: OLE 1.0 Server Launched for Paste Link
 - BUG: OLE 2.0 Compatibility Layer Uses Document IDataObject
 - BUG: CreateFromTemplate of OLE 2 Object into OLE 1 Container
 - BUG: IROT::Register() and IOL::SetDisplayName() Inconsistency
 - BUG: OLE Type Emulation for Previously Loaded Objects
 - BUG: Relative Monikers and OLE 1.0 Link Objects
 - BUG: OleConvertStorageToOLESTREAM() Fails When CLSID Is NULL
 - BUG: Paste-Linking a 256-Color Paintbrush Object
 - PRB: IOleObject::IsUpToDate() and OLE 1.0 Link Objects
 - BUG: IOleCache::Cache(), ADVF_DATAONSTOP, and OLE 1.0 Objects
 - BUG: IOleObject::IsUpToDate Returns Wrong Value for Manual Link
 - BUG: Borland WINSIGHT Causes GP Faults w/Some OLE Sample Apps
 - BUG: Windows OLE DLLs Do Not Convert Mac OLESTREAM
 - BUG: Printing Does Not Work from CL2TEST.EXE

BUG: OleCreateLinkFromFile Fails on CD-ROM-Based File

Article ID: Q86408

In an OLE client application, the
OleCreateLinkFromFile function returns the value OLE_ERROR_DRIVE.

--
BUG: DIB Can Be Returned Only on TYMED_HGLOBAL
--

Article ID: Q98679

IDataObject::GetData returns DV_E_FORMATETC when requesting a
device-independent bitmap (DIB) from an OLE object.

BUG: SR2TEST GP Faults During Object Shutdown

Article ID: Q104141

A general protection (GP) fault occurs when calling IOleObject::Close()
on an SR2TEST object.

BUG: (I)CntrOutl Does Not Set Target Device Information

Article ID: Q108310

During the print process from (I)CntrOutl, a server application is asked to
render its display with the TARGETDEVICE structure set to NULL instead of

containing a valid structure. This implies that (I)CntrOutl wants a screen
representation rather than a printed representation of the object.

BUG: Accelerator Causes Crash in ISvrOutl Embedded in C12Test

Article ID: Q108311

After embedding an ISvrOutl object in Cl2Test, pressing the ALT+BACKSPACE
accelerator (Undo) results in a general protection (GP) fault within
ISvrOutl.

--
BUG: Insert Object from Zero Length File Causes GP Fault
--

Article ID: Q108371

Creating an object from a zero length file that does not have a valid file
class extension results in a general protection (GP) fault after displaying
the message, "Not enough memory to perform this operation. Close one or
more applications and try again."

BUG: Set Line Height on ISvrOutl Object Causes GPF in Cl2Test

Article ID: Q108930

In certain circumstances, editing the Line Height of an ISvrOutl object
embedded within Cl2Test results in a general protection (GP) fault after
displaying the following message:

 GDI - An error has occurred in your application. If you choose Ignore,
 you should save your work in a new file. If you choose Close, your
 application will terminate.

BUG: Deleting an Open Packager Ojbect Causes GP Fault

Article ID: Q108931

Deleting an object from within the Object Packager results in a general
protection (GP) fault.

BUG: Cannot Paste Link SR2TEST Object in OLE 1.0 Client

Article ID: Q108932

The Paste Link option is not available in an OLE 1.0 client application
after copying an unsaved SR2TEST object to the clipboard.

--
BUG: SR2TEST Won't Close After Editing Link Object
--

Article ID: Q108935

After editing a linked SR2TEST object from CL2TEST, SR2TEST fails to shut
down after first displaying the following message box:

 Error Document not unlocked. Attempt Self-unlocking?

BUG: Paste Link Disabled Across the Network

Article ID: Q108939

The OleQueryLinkFromData application programming interface (API) function
returns failure when clipbook data from another machine is copied to the
local clipboard, even if the clipbook contains all of the data needed to
create a link.

--
BUG: Object Packager GPFs w/Paths Greater Than 64 Characters
--

Article ID: Q109116

Packaging an object that has a fully qualified path of more than 64 letters
results in a general protection (GP) fault in the Object Packager.

--
BUG: Status Bar Not Redrawn With SR2TEST When In-Place
--

Article ID: Q109541

After inserting an SR2TEST object into the in-place version of the OUTLINE
sample application, the status bar will not be redrawn until the container
application's window is resized.

BUG: Cursor Does Not Update with Sr2Test and ICntOutl

Article ID: Q109542

After inserting an Sr2Test object within the in-place Outline sample
application, cursor display is not handled correctly when the cursor is
positioned over the in-place object.

BUG: OleCreate and IOleCache::Cache Fail with Multiple TYMEDs

Article ID: Q109543

The OLE 2.01 creation functions [OleCreate(), OleCreateFromData(), and so
forth] and IOleCache::Cache() fail if multiple values are specified for the
TYMED field of the FORMATETC parameter. The functions fail even if the
object server supports at least one of the TYMED values specified.

--
BUG: IROT::IsRunning() Returns S_FALSE for OLE 1.0 Servers
--

Article ID: Q109544

When an OLE 2.01 container application calls
IRunningObjectTable::IsRunning() on the moniker for a linked OLE 1.0
object, IsRunning() returns S_FALSE even if that OLE 1.0 object is already
running.

BUG: Retaining Clipboard IDataObject Causes Unexpected Result

Article ID: Q109545

An application holding on to a clipboard IDataObject pointer, and making
repeated calls to IDataObject::EnumFormatEtc() through that pointer, may
find that the set of formats returned by EnumFormatEtc() changes between
calls.

BUG: SR2TEST Menu Items Enabled Incorrectly

Article ID: Q109546

During an in-place activation session, SR2TEST sometimes incorrectly
enables menu items on its Edit menu.

BUG: OLE 2.0 Containers & 1.0 Objects that Close w/out Saving

Article ID: Q109547

When an OLE 1.0 object is inserted into an OLE 2.0 container document and
then closed without an update being invoked, the correct streams for that
object are not written to storage. Any subsequent attempt by the container
to load the object will fail.

--
BUG: CL2TEST Fails to Parse Filenames with Extended Characters
--

Article ID: Q109548

When attempting to insert a new embedded object from a file, CL2TEST fails
with the error STG_E_FILENOTFOUND if the filename or directory name
provided contains an extended character.

BUG: Insertion of Large .WAV Object Fails

Article ID: Q109549

In some cases, inserting a large .WAV file object into either an OLE 1.0 or
OLE 2.0 container will fail.

--
BUG: OLE 2.01 Does Not Support CF_OWNERDISPLAY
--

Article ID: Q109552

If an application places a data transfer object onto the clipboard and that
data object enumerates CF_OWNERDISPLAY as one of the clipboard formats, the
application will not receive the WM_PAINTCLIPBOARD message.

BUG: IOleCache::Cache Returns Incorrect Error Value

Article ID: Q110488

An OLE 2.0 container application calls IOleCache::Cache for a particular
FORMATETC and is returned the value OLE_S_FORMATETC_NOTSUPPORTED. A
subsequent call to IOleCache::Cache with the same FORMATETC returns
CACHE_S_SAMECACHE.

--
BUG: OLERENDER_ASIS Results in Blank Embedded Object
--

Article ID: Q110714

If an OLE 1.0 client application contains an embedded object and copies the
object to the clipboard and an OLE 2.0 container application then performs
a paste operation by creating a new embedded object based on the clipboard
data by calling OleGetClipboard() and then calling OleCreateFromData(), the
resulting embedded object appears blank in the container's document if the
OLE 2.0 container specifies OLERENDER_ASIS as the renderOpt parameter to
OleCreateFromData().

BUG: Invisible MSDRAW Object Retains Keyboard Focus

Article ID: Q110715

When an invisible MSDRAW object is inserted as an OLE embedded object,
the object retains the keyboard focus. This behaviour is incorrect. The
MSDRAW object should not take the focus until it has been made visible.

This problem occurs whether the MSDRAW object is inserted into an
OLE 1.0 client application or into an OLE 2.0 container application.

--
BUG: Iconic OLE Object Prints as Black Rectangle on PostScript
--

Article ID: Q110796

Calling OleDraw() or IViewObject::Draw() to print an iconic OLE object to a
PostScript printer results in a black rectangle being drawn.

BUG: First Entry in Paste Special Dialog Is Blank

Article ID: Q110798

The first format entry in the Paste Special dialog box is blank after
copying an OLE2Link object from an OLE 1.0 client to the clipboard.

NOTE: An OLE2Link object is created by the OLE 1.0 compatibility layer when
an OLE 2.0 link is copied from an OLE 2.0 application to the clipboard, and
then pasted into an OLE 1.0 client application.

BUG: IEnumUnknown Is Not Remoted

Article ID: Q110799

All calls to IOleContainer::EnumObjects() fail.

BUG: SVROUTL Link Not Displayed Correctly in CNTROUTL

Article ID: Q110871

Selecting the Paste Link menu item in the CNTROUTL sample application does
not correctly display the contents of the link if the source application is
the SVROUTL sample application.

This problem occurs only if the information created in SVROUTL is edited
further after the Edit Copy operation in SVROUTL, but before the Paste Link
operation in CNTROUTL. In this situation, the resulting link object is
displayed as originally copied to the clipboard, and does not reflect the
changes made after the copy operation.

--
PRB: Embedded Object's Size Changes When it Is Run

--

Article ID: Q110872

A non-running embedded object is resized in an OLE 2.01 container
application. The next time the object is run, it snaps back to its previous
size.

--
BUG: Embedded Object's Size Changes When it is Run
--

Article ID: Q111004

A non-running embedded object is resized in an OLE 2.01 container
application. The next time the object is run, it snaps back to its previous
size.

BUG: SVROUTL Link Not Displayed Correctly in CNTROUTL

Article ID: Q111006

Selecting the Paste Link menu choice in the CNTROUTL sample application
does not correctly display the contents of the link if the source
application is the SVROUTL sample application.

This problem occurs only if the information created in SVROUTL is edited
further after the Edit Copy operation in SVROUTL, but before
the Paste Link operation in CNTROUTL. In this situation, the resulting
link object is displayed as originally copied to the clipboard, and does
not reflect the changes made after the copy operation.

BUG: CL2TEST Does Not Display Prompt String from GetCurFile()

Article ID: Q111014

IPersistFile::GetCurFile() returns S_FALSE to indicate that the document
has no currently associated file. In this case, GetCurFile() returns the
default prompt string for the filename (as would be displayed in the Save
As dialog box under the File menu) in the lplpszFileName parameter.

When CL2TEST calls IPersistFile::GetCurFile(), and GetCurFile() returns
S_FALSE, CL2TEST fails to display the returned prompt string.

--
BUG: CL2TEST Handles Icon Aspect Incorrectly
--

Article ID: Q111339

Selecting the iconic aspect when inserting an object in CL2TEST results in

the object being created and displayed with the content aspect.

--
BUG: CL2TEST Not Properly Activating Links to Embedded Objects
--

Article ID: Q111340

Double-clicking a link to an embedded object in CL2TEST results in the
activation remaining on CL2TEST. The correct action would be for the
container of the embedded object to obtain the activation and edit the
object visually (if possible).

--
BUG: IOleObject::Close(OLECLOSE_NOSAVE) and DoVerb()
--

Article ID: Q111577

An OLE 2.0 container application inserts a new embedded object into a
document. The container calls IOleObject::Update() on the object to update
the cache, then calls IOleObject::Close(OLECLOSE_NOSAVE) to transition the
object back to the running state. Finally, the container tries to rerun the
object by calling IOleObject::DoVerb().

In this particular scenario, DoVerb() will return STG_E_FILENOTFOUND, and
the object will not be rerun.

BUG: OLE 1.0 Server Launched for Paste Link

Article ID: Q111578

An OLE 1.0 server application copies an object to the clipboard, then
enters the blocked state. An OLE 2.0 container application then attempts to
paste a link to the object from the clipboard. The OLE 2.0 application is
frozen.

Next, the OLE 1.0 application is shut down. This unfreezes the OLE 2.0
container application, which proceeds to paste the link to the OLE 1.0
object. However, an instance of the OLE 1.0 server is launched. Normally,
the server is not run in a paste-link scenario.

--
BUG: OLE 2.0 Compatibility Layer Uses Document IDataObject
--

Article ID: Q111585

Whenever the OLE 1.0 client compatibility layer uses IDataObject, it uses
the OLE 2.0 server's document-level data object rather than the server's
pseudo-object data object.

--

BUG: CreateFromTemplate of OLE 2 Object into OLE 1 Container
--

Article ID: Q111595

An OLE 2.01 object is inserted into an OLE 1.0 container using
OleCreateFromTemplate(). The OLE libraries start the server, but then the
object creation fails, or a blank object is created.

BUG: IROT::Register() and IOL::SetDisplayName() Inconsistency

Article ID: Q111607

IRunningObjectTable::Register() allows monikers that are not valid
filenames to be registered as file monikers. However, if the display name
string passed to IOleLink::SetSourceDisplayName() is not a valid filename,
SetSourceDisplayName() returns STG_E_FILENOTFOUND.

BUG: OLE Type Emulation for Previously Loaded Objects

Article ID: Q111608

OLE type emulation is the process that allows the application user to
specify that all objects of some particular type are henceforth to be
activated as objects of some alternate, emulating type. When objects of the
original type are subsequently run, the server for the emulating type is
launched to serve them.

However, this emulation does not occur for objects of the original type
that were already in the loaded state when the type emulation occurred.
When such objects are subsequently run, they are run as the original type,
not the emulating type. The original server is launched, not the server for
the emulating type.

BUG: Relative Monikers and OLE 1.0 Link Objects

Article ID: Q111609

When a link object from an OLE 2.0 application is copied to the clipboard
and then pasted into an OLE 1.0 application, the OLE 2.0 emulation layer
preserves the object's relative moniker. If the OLE 1.0 application
document is closed and then reopened by an OLE 2.0 version of the
application, OLE 2.0 will create a full moniker for the linked object by
appending the preserved relative moniker to the file moniker for the
document. This full moniker will be incorrect, because it will point to the
new document rather than to the first OLE 2.0 application's document that
contains the original linked object.

However, OLE 2.0 will still be able to bind to the linked object by

following the absolute moniker that is also stored with the object
(providing that the absolute location of the original linked object has not
changed). At the time of this binding, OLE will then correct the full
moniker for the object.

--
BUG: OleConvertStorageToOLESTREAM() Fails When CLSID Is NULL
--

Article ID: Q111611

The OleConvertStorageToOLESTREAM() API (application programming interface)
call is used to convert the storage of an embedded object from the OLE 2.0
storage model to the OLE 1.0 storage model. However, if the OLE 2.0 object
has a CLSID of NULL, then OleConvertStorageToOLESTREAM() fails with a
return code of OLE_E_CLASS.

--
BUG: Paste-Linking a 256-Color Paintbrush Object
--

Article ID: Q111612

A 256-color bitmap is loaded into Microsoft Paintbrush version 3.11. The
image is selected and then copied to the clipboard. An OLE 2.0 application
then pastes a link to the object from the clipboard. To perform the paste-
link operation, the container calls OleCreateLinkFromData(), specifying
OLERENDER_FORMAT as the rendering option and CF_DIB as the desired format.

The resulting link object in the OLE 2.0 application has an incorrect
appearance, such as being colored solid black.

--
PRB: IOleObject::IsUpToDate() and OLE 1.0 Link Objects
--

Article ID: Q111613

An OLE 2.0 container application calls IOleObject::IsUpToDate to determine
whether or not an OLE 1.0 link object is up to date. IsUpToDate() returns
S_FALSE, even though the object is actually up to date.

BUG: IOleCache::Cache(), ADVF_DATAONSTOP, and OLE 1.0 Objects

Article ID: Q111614

An OLE 2.0 container application document contains an embedded OLE 1.0
object. The container calls IOleCache::Cache() to control the cached
presentation data for the object, and specifies ADVF_DATAONSTOP as the
advise flag to Cache(). The user makes some changes to the object in the
OLE 1.0 server, then attempts to update the object's presentation in the
server by choosing the Update command from the File menu. Finally, the user
closes the object server.

In this specific scenario, the object's presentation in the server is not
updated. The object's native data, however, is correct.

--
BUG:IOleObject::IsUpToDate Returns Wrong Value for Manual Link
--

Article ID: Q111655

To determine whether an OLE link needs to be updated, an OLE 2.0 container
application needs to call IOleObject::IsUpToDate. If this method returns
S_FALSE, the link needs to be updated; otherwise, the link can be
considered up to date. However, calling IOleObject::IsUpToDate on a manual
link while the link server is not running results in an a return value of
S_FALSE, even if the link is current. The result of this is that OLE 2.0
container applications may update links unnecessarily.

BUG: Borland WINSIGHT Causes GP Faults w/Some OLE Sample Apps

Article ID: Q112410

If Borland's WINSIGHT tool is running when you start some of the sample
applications that have been included in the OLE 2.01 SDK, a general
protection (GP) Fault will occur before the main application window
appears.

The following OLE 2.01 SDK sample applications are affected:

 cl2test.exe
 sr2test.exe
 outline.exe
 cntroutl.exe
 svroutl.exe
 icntrotl.exe
 isvrotl.exe

--
BUG: Windows OLE DLLs Do Not Convert Mac OLESTREAM
--

Article ID: Q112412

The OLE 2.01 libraries will not convert a Mac OLESTREAM to a Windows
OLESTREAM. Similarly, the Windows OLE dynamic-link libraries (DLLs) will
not convert a Mac IStorage to a Windows OLESTREAM.

--
BUG: Printing Does Not Work from CL2TEST.EXE
--

Article ID: Q112413

Printing does not work correctly from CL2TEST.EXE. Choosing Print from the
File menu results in a blank printout.

Additional reference words: 1.00 2.00
KBCategory: kbole kbbuglist
KBSubCategory: LeTwoOth

The Component Object Model

PSS ID Number: Q104140
Authored 08-Sep-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, version 2.0
 - Microsoft OLE Libraries, included with:
 - Microsoft Windows NT, versions 3.5 and 3.51
 - Microsoft Windows 95

SUMMARY

The Component Object Model is a specification that describes the
process of communicating through interfaces, acquiring access to
interfaces through the QueryInterface method, determining pointer
lifetime through reference counting, and re-using objects through
aggregation.

MORE INFORMATION

Object

An object is an item in the system that exposes interfaces to
manipulate the data or properties of the object. An object is created
by directly or indirectly calling the CoCreateInstance() application
programming interface (API), which in turn creates a new instance of
the object and returns a pointer to a requested interface. For more
details, see pages 93 and 94 of the "OLE 2.0 Design Specification."

Interfaces

An interface is a group of related functions. Communication between
two objects in a system occurs by calling the functions in an
interface through a pointer to that interface. An interface pointer is
originally obtained at the time the object is created.

A good example of an interface is a window that supports drag and
drop. The window exposes an interface with methods that could be used
during drag and drop. The object being dragged could communicate with
the window through this interface. Such an interface might resemble
the following:

 interface IDropTarget : IUnknown {
 virtual HRESULT DragEnter() = 0; // Mouse entered the window.
 virtual HRESULT DragOver() = 0; // Called each mouse move.
 virtual HRESULT DragLeave() = 0; // Mouse left the window.
 virtual HRESULT Drop() = 0; // Item dropped on the window.
 };

For more information on interfaces, refer to pages 57-60 of the "OLE
2.0 Design Specification."

IUnknown

All interfaces used in the component object model are derived from a
base interface called IUnknown. The methods contained within IUnknown
are related because they deal with object maintenance. The IUnknown
interface is defined as:

 interface IUnknown {
 virtual HRESULT QueryInterface(REFIID, VOID FAR *) = 0;
 virtual ULONG AddRef() = 0;
 virtual ULONG Release() = 0;
 };

IUnknown::QueryInterface is used for interface negotiation. The other
methods are used for reference counting to control the life of the
object.

More information on the IUnknown interface can be found on pages 81-83
of the "OLE 2.0 Design Specification."

Interface Negotiation

Given a pointer to a particular interface, an object can be queried
for another interface. This is done by calling the QueryInterface()
method in an interface. The following code demonstrates querying for
the IOleObject interface:

 // Assume that a pointer to an arbitrary interface, pint,
 // exists.

 LPOLEOBJECT pOleObject;
 HRESULT hErr;

 // Query the interface.
 hErr = pint->QueryInterface(IID_IOleObject, (LPVOID FAR *)
 &pOleObject);

 if (hErr == NOERROR)
 // Object supports this IOleObject. The IOleObject
 // methods can now be called through pOleObject.
 else
 // Object does not support IOleObject.

Reference Counting

Interface lifetime is controlled through reference counting. To
increment the reference count on an interface, call the AddRef()
method. To decrement the reference count on an interface, call the

Release() method. Once an interface's reference count goes to zero,
the pointer to that interface is no longer valid. If the reference
count on all of an object's interfaces is zero, then the object can be
freed because there are no longer any pointers to the object.

More information on reference counting can be found on pages 83 and 84
of the "OLE 2.0 Design Specification."

Aggregation

Aggregation is the ability of an object to be re-used or extended
dynamically, without having to recompile the original object code. For
more information on the process of aggregation, please refer to the
"OLE 2.0 Design Specification," pages 61-63.

Additional reference words: 2.00 3.50 4.00
KBCategory: kbole kbprg
KBSubcategory: LeTwoCom

Using MKTYPLIB /h Option to Output C or C++ Style Header file

PSS ID Number: Q124597
Authored 05-Jan-1995 Last modified 21-Apr-1995

The information in this article applies to:

 - The Type Library Generator (MKTYPLIB.EXE), included with:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft Visual C++, 32-bit Edition, version 2.0
 on the following platform: x86

SUMMARY

In addition to generating type libraries, MKTYPLIB can output a C or C++
style header file if you use the optional /h option. When you use the /h
option, MKTYPLIB creates a header file with the name specified following
the /h option. Any existing file of the same name will be overwritten
without warning.

MKTYPLIB always uses the "libraryname" from the LIBRARY keyword in the
ODL file to create the #ifndef wrappers in the generated header file,
regardless of the name specified for the file on the command line.

MORE INFORMATION

Consider this ODL file (MYPROJ.ODL):

 // example ODL file
 library MYPROJ
 {
 ...
 }

If you run MKTYPLIB on this ODL file by using this command line:

 C:\> MKTYPLIB /h odlfile.h myproj.odl

the ODLFILE.H generated by MKTYPLIB looks like this:

 #ifndef _MYPROJ_H_
 #define _MYPROJ_H_
 ...
 #endif

This can cause problems when compiling source files if another header file
also uses _MYPROJ_H_ in its #ifndef wrappers. Only the first file to use
_MYPROJ_H_ will actually be included in the source file.

If you are using the _<filename>_H_ convention for #ifndef wrappers, make

sure none of your header files have the same name as your type library.
Alternatively, use a different naming convention for the #ifndef wrappers
in your header files.

Additional reference words: 2.00 3.50
KBCategory: kbole kbtool
KBSubCategory: LeTwoTls

16-Bit App WNetGetCaps Call Return Value on Win32

PSS ID Number: Q120359
Authored 08-Sep-1994 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

16-bit Windows-based applications often call WNetGetCaps() to determine the
capabilities of the installed network. When a Windows-based application
running on Windows NT calls WNetGetCaps(), the return value is 0x8004,
which corresponds to WNNC_NET_Multinet | WNNC_SUBNET_WinWorkgroups.

However, the Windows NT Windows on Windows (WOW) layer and Windows 95 do
not support the Windows for Workgroups Multinet (MNet) APIs, so a call to
one of these APIs returns a failed Dynalink error.

The return value of WNetGetCaps() may not seem technically correct for
Windows for Workgroups. It was designed to be compatible with all existing
16-bit Windows-based applications.

If you need to determine whether a 16-bit Windows-based application is
running on Windows NT or MS-DOS/Windows version 3.1, use GetWinFlags().
GetWinFlags() returns a WF_WINNT flag if the application is running under
WOW on Windows NT.

GetWinFlags() is an existing function that was modified in WOW to add the
following flag:

 #define WF_WINNT 0x4000

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: SubSys

32-Bit Scroll Ranges

PSS ID Number: Q104311
Authored 13-Sep-1993 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

You can use 32-bit scroll ranges by calling GetScrollPos(); however, you
cannot get 32-bit positions for notifications sent while thumb tracking,
that is, via the SB_THUMBPOSITION message. This is because thumb position
information is not queryable via an application programming interface
(API). You only can obtain the 32-bit scroll information only before or
after the scroll has taken place.

The scroll bar APIs allow setting a scroll range up to 0x7FFFFFFF via
SetScrollRange(), and setting a scroll position within that range using
SetScrollPos(). If the WM_HSCROLL or WM_VSCROLL message is processed, the
information returned for scroll bar position, nPos, is only a 16-bit value.
To obtain the 32-bit information, the GetScrollPos() API must be used.

Additional reference words: 3.10 3.50 scrollbar
KBCategory: kbprg
KBSubcategory: UsrCtl

Accessing Parent Window's Menu from Child Window w/ focus

PSS ID Number: Q92527
Authored 09-Nov-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In an MDI-like application, the user must be allowed to pull down menus in
the parent window by using menu mnemonics even though the child window or
one of its children may have the focus. This can be done by creating child
windows without a system menu or by processing the WM_MENUCHAR and
WM_SYSCOMMAND/SC_KEYMENU messages to programatically pull down the parent's
menu.

MORE INFORMATION

If a child window with a system menu has the focus and the user attempts to
access the parent's menu with the keyboard using the menu mnemonic
(ALT+mnemonic character), Windows will beep and the parent's menu will not
be pulled down. This problem occurs because the parent window does not have
the focus and because the window with the focus does not have a menu
corresponding to the mnemonic. (Child windows cannot have menus other than
the system menu.)

If the child window with the focus does not have a system menu, Windows
assumes that the menu mnemonic is for the nearest ancestor with a system
menu and passes the message to that parent. Consequently, it is possible to
use menu mnemonics to pull down a parent's menu if the descendant windows
do not have system menus.

If the child window with the focus has a system menu, Windows will beep if
a menu mnemonic corresponding to a parent menu is typed. This can be
prevented and the parent menu can be dropped down using the following code
in the window procedure of the child window:

 case WM_MENUCHAR:
 PostMessage(hwndWindowWithMenu, WM_SYSCOMMAND, SC_KEYMENU, wParam);
 return(MAKELRESULT(0, 1));

WM_MENUCHAR is sent to the child window when the user presses a key
sequence that does not match any of the predefined mnemonics in the current
menu. wParam contains the mnemonic character. The child window posts a
WM_SYSCOMMAND/SC_KEYMENU message to the parent whose menu is to be dropped
down, with lParam set to the character that corresponds to the menu
mnemonic.

The above code can also be used if the child window with the focus does not

have a system menu but an intermediate child window with a system menu
exists between the child with the focus and the ancestor whose menu is to
be dropped. In this case, the code would be placed in the intermediate
window's window procedure.

Additional reference words: 3.10 3.00 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Accessing the Application Desktop from a Service

PSS ID Number: Q115825
Authored 05-Jun-1994 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5 and 3.51

SUMMARY

Under Windows NT, version 3.1, if you want a service to have access to the
application desktop, you must run the service in the LocalSystem account. A
service process running in the LocalSystem account (or a process started
from such a service) can display message boxes, windows, and dialog boxes.
Processes that are running in the LocalSystem account are not terminated by
the system during logoff. A number of changes were made to Windows NT,
version 3.5, that affect the way Windows NT interacts with these services.
In addition, Windows NT 3.51 has a richer set of desktop APIs.

NOTE: Running interactive services under the system account is a VERY
dangerous practice. This is especially true of the command processor and
batch files. A user who wants to control the system can just hit CTRL+C
to get an interactive system command prompt.

MORE INFORMATION

The following are new features of Windows NT, version 3.5, that affect
services:

 - The account of the logged in user is the only account granted access to
 the application desktop. The LocalSystem no longer has access.
 Therefore, it is possible to get access to the desktop by impersonating
 the user before making any USER or GDI calls.

 - Console and GUI applications started from a service process during a
 particular logon session are run on an invisible window station and
 desktop that are unique to that session. The window station and desktop
 are created automatically when the first application in the session
 starts; they are destroyed when the last application exits. There is no
 way to make these invisible desktops visible.

 - If you want a service to interact with the logged-on user, specify the
 SERVICE_INTERACTIVE_PROCESS flag in the call to CreateService(). For
 example:

 schService = CreateService(
 schSCManager,
 serviceName,
 serviceName,
 SERVICE_ALL_ACCESS,
 SERVICE_INTERACTIVE_PROCESS | SERVICE_WIN32_OWN_PROCESS,

 SERVICE_DEMAND_START,
 SERVICE_ERROR_NORMAL,
 lpszBinaryPathName,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL);

 - If you use CreateProcess() to launch your process and you want your
 service to log onto the users desktop, assign the lpdesktop parameter of
 the STARTUPINFO struct with "WinSta0\\Default".

 - Services that simply need a visible user notification can do this by
 calling MessageBox() with the MB_SERVICE_NOTIFICATION flag. Using the
 MB_DEFAULT_DESKTOP_ONLY flag works as well, but only if the user's
 desktop is active. If the workstation is locked or a screen saver is
 running, the call will fail.

 NOTE: If you are writing code for an application that can be run as
 either a service or an executable, you can't use MB_SERVICE_NOTIFICATION
 as well as a non-NULL hwndOwner.

 - Any output done to a window is not displayed or made available to the
 application in any way. Attempts to read bits from the display results
 in a failure.

 - GUI services do not receive WM_QUERYENDSESSION/WM_ENDSESSION messages
 at logoff and shutdown; instead, they receive CTRL_LOGOFF_EVENT
 and CTRL_SHUTDOWN_EVENT events. These services are not terminated by the
 system at logoff.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseService

Accessing the Event Logs

PSS ID Number: Q108230
Authored 07-Dec-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Event logs are used to store significant events, such as warnings, errors,
or information. There are five operations that can be performed on event
logs through the event logging application programming interface (API):
backup, clear, query, read, and write.

The default event logs are the Application event log, the Security event
log, and the System event log. Access to these event logs is determined by
which account the application is running under.

MORE INFORMATION

The following table shows which accounts are granted access to which logs
and what type of access is granted under Windows NT 3.1:

 Log Account Access Granted

 Application LocalSys read write clear
 Admins read write clear
 ServerOp read write clear
 World read write

 Security LocalSys read write clear
 Admins read clear

 System LocalSys read write clear
 Admins read clear
 ServerOp read clear
 World read

 Table 1 - access granted in Windows NT 3.1

The Local System account (LocalSys) is a special account that may be used
by Windows NT services. The Administrator account (Admins) consists of the
administrators for the system. The Server Operator account (ServerOp)
consists of the administrators of the domain server. The World account
includes all users on all systems.

Changes made were for Windows NT 3.5:

 Log Account Access Granted

 Application LocalSys read write clear
 Admins read write clear
 ServerOp read write clear
 World read write

 Security LocalSys read write clear
 Admins read clear
 World read clear *

 System LocalSys read write clear
 Admins read write clear **
 ServerOp read clear
 World read

 Table 2 - access granted under Windows NT 3.5

 * Users that have been granted manage auditing and security log rights
 can read and clear the Security log.

 ** Admins can write to the System log.

The following table shows which types of access are required for the
corresponding event logging API:

 Event Logging API Access Required

 OpenEventLog() read
 OpenBackupEventLog() read
 RegisterEventSource() write
 ClearEventLog() clear

 Table 3 - access required for event logging APIs

As an example, OpenEventLog() requires read access (see Table 2). A member
of the ServerOp account can call OpenEventLog() for the Application event
log and the System event log, because ServerOp has read access for both of
these logs (see Table 1). However, a member of the ServerOp account cannot
call OpenEventLog() for the Security log, because it does not have read
access for this log (see Table 1).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Accessing the Macintosh Resource Fork

PSS ID Number: Q106663
Authored 11-Nov-1993 Last modified 02-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Resource forks are implemented as NTFS streams named AFP_Resource. There is
no structure to the fork; it is exactly whatever the Macintosh writes to
it. The resource fork can be written to using standard Win32 application
programming interfaces (APIs). Refer to the forks as
<FileName>:AFP_Resource.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Accurately Showing on the Screen What Will Print

PSS ID Number: Q75469
Authored 21-Aug-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Many applications have an option where the screen display is set to
closely correspond to the printed output. This article discusses some
of the issues involved in implementing this feature.

MORE INFORMATION

If a screen font is available that exactly matches (or at least very
closely corresponds to) the chosen printer font, then the process is
very straightforward and consists of seven steps:

1. Retrieve a device context (DC) or an information context (IC) for
 the printer.

2. Call EnumFontFamilies() to obtain a LOGFONT structure for the chosen
 printer font. The nFontType parameter to the EnumFontFamilies() callback
 function specifies if a given font is a device font.

3. Get a DC for the screen.

4. Convert the lfHeight and lfWidth members of the LOGFONT structure
 from printer resolution units to screen resolution units. If a
 mapping mode other than MM_TEXT is used, round-off error may occur.

5. Call CreateFontIndirect() with the LOGFONT structure.

6. Call SelectObject(). GDI will select the appropriate screen font to
 match the printer font.

7. Release the printer device context or information context and the
 screen device context.

If a screen font that corresponds to the selected printer font is not
available, the process is more difficult. It is possible to modify the
character placement on the screen to match the printer font to show
justification, line breaks, and page layout. However, visual
similarity between the printer fonts and screen fonts depends on a
number of factors, including the number and variety of screen fonts
available, the selected printer font, and how the printer driver
describes the font. For example, if the printer has a serifed Roman-

style font, one of the GDI serifed Roman-style fonts will appear to be
very similar to the printer font. However, if the printer has a
decorative Old English-style font, no corresponding screen font will
typically be available. The closest available match would not be very
similar.

To have a screen font that matches the character placement of a
printer font, do the following:

1. Perform the seven steps above to retrieve an appropriate screen
 font.

2. Get the character width from the TEXTMETRIC structure returned by
 the EnumFonts function in step 2 above. Use this information to
 calculate the page position of each character to be printed in the
 printer font.

3. Allocate a block of memory and specify the spacing between
 characters. Make sure that this information is in screen resolution
 units.

4. Specify the address of the memory block as the lpDx parameter to
 ExtTextOut(). GDI will space the characters as listed in the array.

Additional reference words: 3.00 3.10 3.50 4.00 95 WYSIWYG
KBCategory: kbprg
KBSubcategory: GdiPrn

Action of Static Text Controls with Mnemonics

PSS ID Number: Q65883
Authored 26-Sep-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The text of a static control may contain a mnemonic, which is a
character with which the user can access the control. A mnemonic is
indicated to the user by underlining the character in the text of the
control, and is created by preceding the desired character with an
ampersand (&).

Mnemonic characters are used in conjunction with the ALT key to allow
quick access to a control with the keyboard. When the user enters the
key combination of the ALT key and the mnemonic character, Windows
sets the input focus to the corresponding control and performs the
same action as when the mouse is clicked on that control. Push
buttons, option buttons, and check boxes all behave in this manner.

Because static text controls do not accept the focus, the behavior of
a mnemonic in a static text control is different. When the user enters
the mnemonic of a static text control, the focus is set to the next
enabled nonstatic control. A static text control with a mnemonic is
primarily used to label an edit control or list box. When the user
enters the mnemonic, the corresponding control gains the focus.

In this context, the order in which windows are created is important.
In a dialog box template, the control defined on the line following
the static text control is considered to be "next."

When the user enters the mnemonic of a static text control and the
next control is either another static text control or a disabled
control, Windows searches for a control that is nonstatic and enabled.
In some cases, it may be preferable to disable the mnemonic of a
static text control when the control it labels is also disabled. For
more information, please query in the Microsoft Knowledge Base on the
following word:

 mnemonic

MORE INFORMATION

The dialog box described by the following dialog box template might be
displayed by an application when the user chooses Open from the File
menu:

IDD_FILEOPEN DIALOG LOADONCALL MOVEABLE DISCARDABLE 9, 22, 178, 112
CAPTION "File Open..."
STYLE WS_CAPTION | DS_MODALFRAME | WS_SYSMENU | WS_VISIBLE | WS_POPUP
BEGIN
 CONTROL "File&name:", ID_NULL, "static",
 SS_LEFT | WS_GROUP | WS_CHILD, 5, 5, 33, 8
 CONTROL "", ID_NAMEEDIT, "edit",
 ES_LEFT | ES_AUTOHSCROLL | WS_BORDER | WS_TABSTOP
 | WS_CHILD | ES_OEMCONVERT, 40, 4, 90, 12
 CONTROL "Directory:", ID_NULL, "static", SS_LEFT | WS_CHILD,
 5, 20, 35, 8
 CONTROL "", ID_PATH, "static", SS_LEFT | WS_CHILD, 40, 20, 91, 8
 CONTROL "&Files:", ID_NULL, "static", SS_LEFT | WS_GROUP
 | WS_CHILD, 5, 33, 21, 8
 CONTROL "", ID_FILELIST, "listbox", LBS_NOTIFY | LBS_SORT
 | LBS_STANDARD | LBS_HASSTRINGS | WS_BORDER | WS_VSCROLL
 | WS_TABSTOP | WS_CHILD, 5, 43, 66, 65
 CONTROL "&Directories:", ID_NULL, "static", SS_LEFT | WS_GROUP
 | WS_CHILD, 75, 33, 49, 8
 CONTROL "", ID_DIRLIST, "listbox", LBS_NOTIFY | LBS_SORT
 | LBS_STANDARD | LBS_HASSTRINGS | WS_BORDER | WS_VSCROLL
 | WS_TABSTOP | WS_CHILD, 75, 43, 65, 65
 CONTROL "OK", IDOK, "button", BS_DEFPUSHBUTTON | WS_TABSTOP
 | WS_CHILD, 139, 4, 35, 14
 CONTROL "Cancel", IDCANCEL, "button", BS_PUSHBUTTON | WS_TABSTOP
 | WS_CHILD, 139, 23, 35, 14
END

In this dialog box, one static text control, with identifier ID_PATH,
is used to display the current path. The other four static text
controls label other controls, as follows:

 "File&name" labels the ID_NAMEEDIT edit control
 "Directory" labels the ID_PATH static control display
 "&Files" labels the ID_FILELIST list box
 "&Directories" labels the ID_DIRLIST list box

When the user enters the key combination ALT+N, Windows sets the focus
to the edit control identified in the dialog template as ID_NAMEEDIT,
because it is the next enabled nonstatic control. If that edit control
was disabled by the EnableWindow function, pressing ALT+N would move
the focus to the next enabled nonstatic control. This control would be
the list box identified as ID_FILELIST.

Note that the static control "Directory" has no mnemonic; therefore,
keyboard input does not affect it.

When the user enters ALT+F, the focus moves to the ID_FILELIST list
box, if it is enabled. In the same manner, ALT+D moves the focus to
the ID_DIRLIST list box.

If ID_DIRBOX is disabled, ALT+D moves the focus to the OK button, the
next enabled nonstatic control. Windows treats this as if the user
pressed and released the mouse button over the OK button. For more
information on how to prevent this behavior, query the Microsoft

Knowledge Base on the following word:

 mnemonic

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 radio shortcut
KBCategory: kbprg
KBSubcategory: UsrCtl

Add-On Allows SystemParameterInfo() to Get/Set System

PSS ID Number: Q125695
Authored 01-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

The SystemParameterInfo() API provides functionality to set and get many
Windows System Parameters based on the action flag if Windows extension #1
is installed. Here are some examples:

 - The Full Window Drag system parameter can be retrieved or set by using
 SPI_GETDRAGFULLWINDOWS/SPI_SETDRAGFULLWINDOWS as the action flag in the
 SystemParameterInfo() API. When full drag windows is enabled, users can
 move entire windows instead of just moving the outline. This makes it
 easier to see how a window looks while being resized. This feature is
 not available with Windows, so calling SystemParameterInfo using the
 SPI_GETDRAGFULLWINDOWS or SPI_SETDRAGFULLWINDOWS flag will always fail.
 However, this feature will be available if an add-on product, Windows
 extension #1, is installed.

 - The Font Smoothing setting can be retrieved or set by using
 SPI_GETFONTSMOOTHING or SPI_SETFONTSMOOTHING as the action flag
 in the SystemParameterInfo() API. Enabling this system setting tells
 Windows to draw smooth characters using font anti-aliasing. This feature
 is not available with Windows. Thus the call to SystemParameterInfo with
 the SPI_GETFONTSMOOTHING or SPI_SETFONTSMOOTHING flag will always fail.
 However, this Font Smoothing feature will be available if an add-on
 product, Windows extension #1, is installed.

 - SystemParameterInfo(SPI_GETWINDOWSEXTENSION, 1, 0, 0) returns true if
 Windows extension #1 is installed otherwise false. The Second parameter
 denotes Windows extension #1.

Additional reference words: 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWnd

Adding a Custom Template to a Common Dialog Box

PSS ID Number: Q86720
Authored 15-Jul-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SUMMARY

Many applications developed for the Microsoft Windows environment using
dialog boxes from the common dialogs library (COMMDLG.DLL) require custom
dialog templates. An application generally uses a custom dialog box
template to add controls to a standard common dialog box. The text below
discusses the steps required to implement a custom dialog box template with
a common dialog box.

A custom dialog box template is most often used in conjunction with a hook
function. For details on using a hook function with one of the common
dialog boxes, query on the following words in the Microsoft Knowledge Base:

 steps adding hook function

MORE INFORMATION

CDDEMO, one of the advanced sample applications provided with version 3.1
of the Microsoft Windows Software Development Kit (SDK), demonstrates
adding a hook function to the File Open dialog box. The five steps required
to modify the CDDEMO application to use a custom dialog box template in its
File Open dialog box are as follows:

 1. Edit the FILEOPEN.DLG template in the Windows SDK advanced sample
 applications directory (by default, C:\WINDEV\SAMPLES\COMMDLG). All
 existing controls must remain in the dialog template; add
 additional controls, if desired. To demonstrate the process, make a
 copy of the FILEOPEN.DLG template and include it in the CDDEMO.RC
 file. Modify the title of the "Cancel" button to "CANCEL." Renaming
 the button minimizes the potential for error while demonstrating
 that the application loaded the custom dialog box template.

 2. In the application, modify the Flags member of the OPENFILENAME
 data structure to include the OFN_ENABLETEMPLATE initialization
 flag.

 3. Specify MAKEINTRESOURCE(FILEOPENORD) as the value of the
 lpTemplateName member of the OPENFILENAME data structure.

 4. Specify ghInst as the value of the hInstance member of the
 OPENFILENAME data structure.

 5. Use the #include directive to include DLGS.H in the CDDEMO.RC file.

If an application adds a hook function to a common dialog box, the hook
receives all messages addressed to the dialog box. With the exception of
the WM_INITDIALOG message, the hook function receives messages before its
associated common dialog box does. If the hook function processes a message
completely, it returns TRUE. If the common dialog box must provide default
processing for a message, the hook function returns FALSE.

In the hook function, the application should process messages for any new
controls added through the custom dialog box template. If the standard
common dialog box template contains a control that is unnecessary in a
particular application, hide the control when the hook function processes
the WM_INITDIALOG message. Use the ShowWindow() API to hide a control; do
not delete any controls from the common dialog box template. To indicate
that the common dialog boxes DLL does not function properly if any controls
are missing, the debug version of Windows displays FatalExit 0x0007.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Adding a Hook Function to a Common Dialog Box

PSS ID Number: Q86721
Authored 15-Jul-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Many applications developed for the Microsoft Windows environment using
dialog boxes from the common dialogs library (COMMDLG.DLL) require hook
functions. A hook function for one of the common dialog boxes is similar to
a subclass procedure for a standard Window control, such as an edit
control. Through a hook function, an application can process all messages
addressed to the dialog box. The text below discusses the steps required to
implement a hook function with a common dialog box.

A hook function is most often used in conjunction with a custom dialog
template. For details using a custom dialog template with one of the
common dialog boxes, query on the following words in the Microsoft
Knowledge Base:

 steps add custom template

MORE INFORMATION

The hook function receives all messages addressed to a common dialog box.
With the exception of the WM_INITDIALOG message, the hook function receives
messages before its associated common dialog box does. If the hook function
processes a message completely, it returns TRUE. If the common dialog box
must provide default processing for a message, the hook function returns
FALSE.

CDDEMO, one of the advanced sample applications provided with version 3.1
of the Microsoft Windows Software Development Kit (SDK), demonstrates
adding a hook function to the File Open dialog box. The eight steps
involved in this process are as follows:

 1. Add the standard common dialog box to the application without the
 hook function.

 2. In the application's module definition (DEF) file, list the hook
 procedure name (for example, MyHookProc) in the EXPORTS section.

 3. Define a FARPROC variable (for example, lpfnHookProc)

 4. In the application, before completing the OPENFILENAME data
 structure, call the MakeProcInstance function to create a procedure
 instance address for the hook procedure.

 5. Set the lpfnHook member of the OPENFILENAME data structure to the
 procedure address of the hook function.

 6. Specify OFN_ENABLEHOOK as one of the initialization flags in the
 Flags member of the OPENFILENAME structure.

 7. Code the hook function to process messages as required. A sample
 hook function follows below.

 8. After the user dismisses the common dialog box, call the
 FreeProcInstance function to free the procedure instance address.

The following code is a sample hook function:

 BOOL FAR PASCAL MyHookProc(HWND hDlg, unsigned message,
 WORD wParam, LONG lParam)
 {
 switch (message)
 {
 case WM_INITDIALOG:
 OutputDebugString("Hello hook function!");
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDD_MYNEWCONTROL:
 // Perform appropriate processing here...
 return TRUE;

 default:
 break;
 }
 break;

 default:
 break;
 }
 return FALSE;
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Adding Categories for Events

PSS ID Number: Q115947
Authored 07-Jun-1994 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

SUMMARY

The ReportEvent() API accepts a category ID as one of the arguments. The
"Microsoft Win32 Programmer's Reference" states that you can add your own
categories for events. This article shows you how to add categories that
will be recognized by the Event Viewer; however, the article assumes that
you already know how to create a message file and add an event source to
the registry. For information about basic event logging, please see the
logging sample in the Q_A\SAMPLES\logging directory on the "Win32 SDK" CD.

NOTE: The logging example that comes with Visual C++ 2.0 does not bind the
MESSAGES.RC to the MESSAGES.DLL unlike the logging example that accompanies
the Win32 SDK or NSDN Level 2. Binding MESSAGES.RC to the MESSAGES.DLL can
be accomplished by adding MESSAGES.RC to MESSAGES.MAK.

NOTE: If you notice that there are some entries that have a .DLL name and a
driver name while you are attempting to read messages from the event log,
this means that the event message source has more than one message file.
This means you need to parse the string and load each message file.

MORE INFORMATION

Just like events, category IDs are simply IDs in message file resources.
However, in order to use categories, the following two requirements must be
met:

 - The category IDs must be sequentially numbered, starting with a
 message ID of 1.

 - The event source entry in the registry must specify the category
 message file and the number of categories in the message file.

The first requirement is simply a matter of setting the MessageID entries
in the message file for the categories. If all of your categories are
listed at the top of the message file, you can assign the ID of 1 to the
first message. Each message after that automatically gets the next ID value
unless you specify otherwise in the MessageID entry.

The category entries in the registry are made by adding values to your
event key. Normally, your event log application key already contains
EventMessageFile and TypesSupported entries. You should add the following
two entries:

 - CategoryMessageFile

 - CategoryCount

The CategoryMessageFile entry is of type REG_EXPAND_SZ. It should be set to
the full path to the message file that contains the categories.

The CategoryCount entry is a REG_DWORD type. You should set this entry to
the number of categories in the message file specified in
CategoryMessageFile.

REFERENCES

"Microsoft Win32 Programmer's Reference," Microsoft Corporation.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Adding Custom Error Strings to an MCI Device Driver

PSS ID Number: Q76411
Authored 23-Sep-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, an application can use
mciGetErrorString() to obtain the string associated with an error code
returned from a media control interface (MCI) device driver.

An MCI driver can use a STRINGTABLE resource to store its error strings.
The identifier constant for each string should correspond to the error
value returned by the DriverProc function. This value must be greater than
or equal to the constant MCIERR_CUSTOM_DRIVER_BASE to avoid confusion with
the predefined MCI error codes.

MORE INFORMATION

For example, the Pioneer LaserDisc device driver, MCIPIONR.DRV, included
with the Microsoft Device Development Kit (DDK) for Windows 3.1, contains
the following declarations in its header file, MCIPIONR.H:

#define MCIERR_PIONEER_ILLEGAL_FOR_CLV (MCIERR_CUSTOM_DRIVER_BASE)
#define MCIERR_PIONEER_NOT_SPINNING (MCIERR_CUSTOM_DRIVER_BASE+1)
#define MCIERR_PIONEER_NO_CHAPTERS (MCIERR_CUSTOM_DRIVER_BASE+2)
#define MCIERR_PIONEER_NO_TIMERS (MCIERR_CUSTOM_DRIVER_BASE+3)

Its resource file, MCIPIONR.RC, contains the following STRINGTABLE
definition:

STRINGTABLE
BEGIN
 MCIERR_PIONEER_ILLEGAL_FOR_CLV, "Illegal operation for CLV type disc."
 MCIERR_PIONEER_NOT_SPINNING, "The disc must be spun up to perform this \
operation."
 MCIERR_PIONEER_NO_CHAPTERS, "Chapters are not supported for this disc."
 MCIERR_PIONEER_NO_TIMERS, "All timers are in use. Cannot enable \
notification."
END

When mciGetErrorString() receives a value greater than or equal to
MCIERR_CUSTOM_DRIVER_BASE, it looks in the driver's resource table for a
string with the corresponding identifier.

Additional reference words: 3.00 3.10 3.50 4.00 95

KBCategory: kbmm kbprg
KBSubcategory: MMMisc

Adding Point Sizes to the ChooseFont() Common Dialog Box

PSS ID Number: Q99668
Authored 03-Jun-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

When a TrueType font (or any other scalable font) is selected in the
ChooseFont() common dialog box, a list of reasonable point sizes is
displayed for selection. In some cases it is necessary to change this
list to allow fewer or more selections.

The initial list of point sizes is hard-coded into COMMDLG.DLL but can
be changed programmatically using a common dialog box hook function.

MORE INFORMATION

Most scalable fonts can be created at nearly any point size. Some
TrueType fonts can be sized from 4 points to 999 points. A complete
list of available point sizes for a font of this type would contain
about 1000 elements, which can be prohibitively long and
time-consuming to construct.

The ChooseFont() common dialog box attempts to limit the selection by
listing only a few of the available point sizes in the size selection
combo box.

In certain cases, it may be desirable to offer more point-size
selections in this dialog box. In this case, a common dialog box hook
procedure can be used to insert point sizes when a specific font is
selected.

The following steps describe a technique that will allow new point
sizes to be added to the size selection combo box. Pay special
attention to step number 4:

1. In your common dialog box hook procedure, look for WM_COMMAND
 messages with wParam equal to the font name combo box (which is
 "cmb1" for Windows version 3.1).

2. When you get this message(s), check for the font name you are
 looking for (for example, you can compare the current selection to
 "Courier New"). If it's not the font you want, return.

3. If this is the font you want, post yourself a user-defined
 message. In response to this message, add the new point size to the
 Point Size combo box (which is "cmb3" for Windows 3.1). It's a good

 idea to double-check here that the point size you are adding isn't
 already in the combo box (so you don't get duplicates).

4. Once you add the new point size, set the item data for the new
 item equal to the point size you are adding. For example, if you
 are adding the string "15" to the combo box, you need to set the
 item data of this new item to 15.

The following code fragment demonstrates the above steps:

// Common Dialog ChooseFont() hook procedure.

UINT CALLBACK __export FontHook(HWND hwnd, UINT wm, WPARAM wParam,
LPARAM lParam)
{
 char szBuf[150];
 DWORD dwIndex;

 switch(wm)
 {
 case WM_COMMAND:
 // See if the notification is for the "Font name" combo box.
 if (wParam == cmb1)
 {
 switch (HIWORD(lParam))
 {
 case CBN_SETFOCUS:
 case CBN_KILLFOCUS:
 break;
 default:
 // Check to see if it's the font we're looking for.
 dwIndex = SendDlgItemMessage(hwnd, cmb1, CB_GETCURSEL,
 0, 0);
 if (dwIndex != CB_ERR)
 SendDlgItemMessage(hwnd, cmb1, CB_GETLBTEXT, (WPARAM)
 dwIndex, (LPARAM) ((LPSTR) szBuf));

 // Compare list box contents to the font we are looking for.
 // In this case, it's "Courier New".
 if (strcmp(szBuf, "Courier New") == 0)
 // It's the font we want. Post ourselves a message.
 PostMessage(hwnd, WM_ADDNEWPOINTSIZES, 0, 0L);
 }
 }
 break;

 case WM_ADDNEWPOINTSIZES:
 // First look to see if we've already added point sizes to this
 // combo box.
 if (SendDlgItemMessage(hwnd, cmb3, CB_FINDSTRING, -1,
 (LPARAM)(LPCSTR)"6") == CB_ERR)
 {
 // Not found, add new point size.
 dwIndex = SendDlgItemMessage(hwnd, cmb3, CB_INSERTSTRING,
 0, (LPARAM)(LPSTR)"6");

 // Also set the item data equal to the point size.
 SendDlgItemMessage(hwnd, cmb3, CB_SETITEMDATA,
 (WPARAM)dwIndex, 6);
 }
 return TRUE; // Don't pass this message on.
 }
 return FALSE;
}

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Adding to or Removing Windows from the Task List

PSS ID Number: Q99800
Authored 08-Jun-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1 and 3.5

There are no functions included in the Windows Software Development
Kit (SDK) to add or remove windows from the task list. All top-level
windows (that is, windows without parents) that are visible will
automatically appear in the task list. A window can be removed from
the task list by making it hidden. Call ShowWindow() with the SW_HIDE
parameter to hide the window. To make it visible again, call
ShowWindow() with the appropriate parameter such as SW_SHOW or
SW_SHOWNORMAL.

Additional reference words: 3.00 3.10 3.50 tasklist
KBCategory: kbprg
KBSubcategory: UsrMisc

Additional Information for WIN32_FIND_DATA

PSS ID Number: Q120697
Authored 18-Sep-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

This article contains additional information about the WIN32_FIND_DATA
members.

The WIN32_FIND_DATA structure contains three members that store the
creation, last access, and last write time of a file. The time format
for these three members (ftCreationTime, ftLastAccessTime, and
ftLastWriteTime) are expressed in the Universal Time Convention (UTC).
These three data members can be converted from UTC time to local time by
calling the FileTimeToLocalFileTime api.

The WIN32_FIND_DATA structure contains two members that store the file
size: nFileSizeHigh and nFileSizeLow. They are described as being the high
and low order words of the size, but they are actually DWORDs. Therefore,
nFileSizeHigh will be zero unless the file size is greater than 0xffffffff
(4.2 Gig).

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Additional Remote Debugging Requirement

PSS ID Number: Q106066
Authored 31-Oct-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The printed and online documentation for remote debugging with WinDbgRm
fail to mention one requirement. The binaries must be in the same drive and
directory on both the target machine and the development machine.

WinDbg also expects to find the source files in the same directory in which
the the binary file was built, but will browse for the source if it is not
found in this location. WinDbg will automatically locate the source if the
files are specified to the compiler with fully qualified paths.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Administrator Access to Files

PSS ID Number: Q102099
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

A user that is a member of the Administrator group is not automatically
granted access to any file on the local machine. For an administrator to
access a file, permission must be specifically granted (as for any user) in
the file's discretionary access control list (DACL).

If an administrator wants to access a file that he or she is not granted
access to, the administrator must first take ownership of that file. Once
ownership is taken, the administrator will have full access to the file. It
is important to note that administrator cannot give ownership back to the
original owner. If this were so, the administrator could take ownership of
a file, examine it, and then assign it back to the original owner without
that owner's knowledge.

NOTE: Because administrators have backup privileges, an administrator could
back up a file (or entire volume) and restore it onto another system. The
administrator could then take ownership of a file on this new system
without the owner's knowledge. Please keep this in mind when thinking about
file security.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Advanced Graphics Settings Slider under Windows 95

PSS ID Number: Q127066
Authored 12-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

The following table shows exactly what the Advanced Graphics Settings
Slider control does:

Slider Hardware Memory Accelerated
Control Cursor Mapped I/O Functions

None No No Safe mode level 2
Basic No No Safe mode level 1
Most No Yes All
Full Yes Yes All

NOTES:

 - The hardware cursor adjusts the SWCursor switch in SYSTEM.INI [display]
 section. It applies only to S3 and WD drivers.

 - The Memory Mapped I/O adjusts the MMIO switch in SYSTEM.INI [display]
 section. It applies only to the S3 driver.

 - Accelerated Functions adjusts the SafeMode switch in WIN.INI [Windows]
 section. It applies to all DIB engine minidrivers. Level 1 allows basic,
 safe acceleration, such as srcCopy bitblt, patblt, and so on. Level 2
 completely bypasses the driver for all operations (except cursor).

Additional reference words: 4.00 95 Video SYSTEM Applet
KBCategory: kbprg
KBSubcategory: UsrCtl

Advantages of Device-Dependent Bitmaps

PSS ID Number: Q94918
Authored 25-Jan-1993 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

A DDB (device-dependent bitmap) is much faster than a DIB (device
independent-bitmap) to BitBlt(). For this reason, it is often a good
strategy under Win32 (as well as under Windows 3.1) to create a DDB from a
DIB when caching or calling *Blt() functions.

The slight drawback of memory overhead for the DDB is handled well by
Win32. Under Windows 3.1, the DDB memory could be marked as discardable.
Under Win32, the memory will be paged out if system resources become tight
(at least until the next repaint); if the memory is marked as
PAGE_READONLY, it can be efficiently reused, [see VirtualProtect() in the
Win32 application programming interface (API) Help file].

However, saving the DDB to disk as a mechanism for transfer to other
applications or for later display (another invocation) is not recommended.
This is because DDBs are driver and driver version dependent. DDBs do not
have header information, which is needed for proper translation if passed
to another driver or, potentially, to a later version of the driver for the
same card.

MORE INFORMATION

Windows 95 and Windows NT 3.5 and later support DIBSections. DIBSections
are the fastest and easiest to manipulate, giving the speed of DDBs with
direct access to the DIB bits. NOTE: Win32s does not support DIBSections.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: GdiBmp

Allocating and Using Class and Window Extra Bytes

PSS ID Number: Q34611
Authored 22-Aug-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The WNDCLASS structure contains two fields, cbClsExtra and cbWndExtra,
which can be used to specify a number of additional bytes of memory to
be allocated to the class structure itself or to each window created
using that class.

MORE INFORMATION

Every application that uses class extra bytes and window extra bytes
must specify the appropriate number of bytes before the window class
is registered. If no bytes are specified, an attempt to store
information in extra bytes will cause the application to write into
some random portion of Windows memory, causing data corruption.

Windows version 3.1 will FatalExit if extra bytes are used improperly.

If an application does not use class extra bytes or window extra
bytes, it is important that the cbClsExtra and cbWndExtra fields be
set to zero.

Class and window extra bytes are a scarce resource. If more than 4
extra bytes are required, use the GlobalAlloc fucntion to allocate a
block of memory and store the handle in class or window extra bytes.

Class Extra Bytes

For example, setting the value of the cbClsExtra field to 4 will cause
4 extra bytes to be added to the end of the class structure when the
class is registered. This memory is accessible by all windows of that
class. The number of additional bytes allocated to a window's class
can be retrieved through the following call to the GetClassWord
function:

 nClassExtraBytes = GetClassWord(hWnd, GCW_CBCLSEXTRA);

The additional memory can be accessed one word at a time by specifying
an offset, in BYTES (starting at 0), as the nIndex parameter in calls
to the GetClassWord function. These values can be set using the
SetClassWord function.

The GetClassLong and SetClassLong functions perform in a similar
manner and get or set four bytes of memory respectively:

 nClassExtraBytes = GetClassLong(hWnd, GCL_CBCLSEXTRA);

NOTE: A Win32-based application should use GetClassLong and SetClassLong,
because the GCW_ indices are obsolete under Win32.

Window Extra Bytes

Assigning a value to cbWndExtra will cause additional memory to be
allocated for each window of the class. If, for example, cbWndExtra is
set to 4, every window created using that class will have 4 extra
bytes allocated for it. This memory is accessible only by using the
GetWindowWord and GetWindowLong functions, and specifying a handle
to the window. These values can be set by calling the SetClassWord
or SetClassLong functions. As with the class structures, the offset
is always specified in bytes.

An example of using window extra bytes would be a text editor that has
a variable number of files open at once. The file handle and other
file-specific variables can be stored in the window extra bytes of the
corresponding text window. This eliminates the requirement to always
consume memory for the maximum number of handles or to search a data
structure each time a window is opened or closed.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

AllocConsole() Necessary to Get Valid Handles

PSS ID Number: Q89750
Authored 29-Sep-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

If a graphical user interface (GUI) application redirects a standard
handle, such as stderr or stdout, and then spawns a child process, the
output of the child process will not be seen unless the AllocConsole()
application programming interface (API) is called before the standard
handle is redirected.

If an application spawns a child process without calling AllocConsole()
first, the child's console window will appear on the screen and the GUI
application will not be able to control this window (for example, it cannot
minimize the child window). In addition, users can terminate the child
process by choosing Close from the console window's Control (system) menu.
This causes users to think that only the window is closed, when in
actuality, the entire application is terminated. This can cause the user to
lose data in the console window.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Allowing Only One Application Instance on Win32s

PSS ID Number: Q124134
Authored 19-Dec-1994 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, 1.15a, and 1.2

SUMMARY

The entry point for both Windows-based and Win32-based applications is:

 int WinMain(hInstance, hPrevInstance, lpszCmdLine, nCmdShow)

 HINSTANCE hInstance; /* Handle of current instance */
 HINSTANCE hPrevInstance; /* Handle of previous instance */
 LPSTR lpszCmdLine; /* Address of command line */
 int nCmdShow; /* Show state of window */

You can allow only one instance of your Windows-based application to run
at a time by using hPrevInstance to determine if there is already an
existing application instance; then exit the process if there is one. If
there is no previous instance, hPrevInstance is NULL.

However, in a Win32-based application, hPrevInstance is always NULL.
Therefore, you cannot determine if another instance of your application
has been started simply by examining hPrevInstance. This article gives you
a method you can use.

MORE INFORMATION

Use one of the following four methods to determine if there is an existing
application instance on Win32s:

 - Synchronize with a named object, such as a file mapping.

 -or-

 - Synchronize with a global atom.

 -or-

 - Synchronize with a private message.

 -or-

 - Use FindWindow() to check for the application.

Using a File Mapping

Using a file mapping works well on any Win32 platform. The global atom is a
cheaper resource, whereas a file mapping will cost a page of memory. A
private message is good if you want to inform the first instance that the
user attempted to start a second instance, and then let it handle the
request -- post a message, become the active application, and so on.

NOTE: You need to clean up before terminating the second instance.
FindWindow() doesn't require cleanup, but this method will not work as
reliably in a preemptive multitasking environment, such as Windows NT,
because you can get in a race condition.

The following code fragment demonstrates how a file mapping can be used
to allow only one instance of a Win32-based application. This code should
avoid any race conditions. Place this code at the beginning of WinMain().

The code creates a file mapping named MyTestMap using CreateFileMapping().
If MyTestMap already exists, then you know that there is already a running
instance of this application. A similar technique would be used with a
global atom.

Sample Code

 HANDLE hMapping;

 hMapping = CreateFileMapping((HANDLE) 0xffffffff,
 NULL,
 PAGE_READONLY,
 0,
 32,
 "MyTestMap");
 if(hMapping)
 {
 if(GetLastError() == ERROR_ALREADY_EXISTS)
 {
 //
 // Display something that tells the user
 // the app is already running.
 //
 MessageBox(NULL, "Application is running.", "Test", MB_OK);
 ExitProcess(1);
 }
 }
 else
 {
 //
 // Some other error; handle error.
 //
 MessageBox(NULL, "Error creating mapping", "Test", MB_OK);
 ExitProcess(1);
 }

Additional reference words: 1.10 1.20
KBCategory: kbprg kbcode
KBSubcategory: W32s

Alternative to PtInRegion() for Hit-Testing

PSS ID Number: Q121960
Authored 24-Oct-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

It may be useful to perform hit-testing on an object that is defined by a
polygon. To accomplish this, you could call CreatePolygonRgn() to create a
region from the polygon, and then call PtInRegion() to determine if the
point falls within the region. However, this method can be expensive both
in terms of GDI resources, and in terms of speed. If a polygon is complex,
CreatePolygonRgn() will often fail due to lack of memory in Windows because
regions are in GDI's heap.

The code below provides a better method. Use it to determine if a point
lies within a polygon. It is fast and does not use regions. The trick lies
in determining the number of times an imaginary line drawn from the point
you want to test crosses edges of your polygon. If the line crosses edges
an even number of times, the point is outside the polygon. If it crosses an
odd number of times it is inside. The line is drawn horizontally from the
point to the right.

MORE INFORMATION

WARNING: ANY USE BY YOU OF THE CODE PROVIDED IN THIS ARTICLE IS AT YOUR OWN
RISK. Microsoft provides this code "as is" without warranty of any kind,
either express or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose. The
references below do not constitute a recommendation. You are encouraged to
examine any resource to determine whether or not it meets your needs. These
books are not recommended over any others.

The following code is based on an algorithm presented in "Algorithms" by
Robert Sedgewick, Addison-Wesley, 1988, 2nd ed. ISBN 0201066734. The
algorithm is on p.354, in the section "Inclusion in a Polygon" in the
chapter "Elementary Geometric Methods." It is also discussed in "Computer
Graphics" by Foley, van Dam, Feiner and Hughes, Addison-Wesley, 1990, 2nd
ed. ISBN 0201121107, chapter 2, section 1, p.34.

Sample Code

#include "windows.h"
#include "limits.h"
BOOL G_PtInPolygon(POINT *rgpts, WORD wnumpts, POINT ptTest,

 RECT *prbound) ;
BOOL G_PtInPolyRect(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound) ;
BOOL Intersect(POINT p1, POINT p2, POINT p3, POINT p4) ;
int CCW(POINT p0, POINT p1, POINT p2) ;

/***

 * FUNCTION: G_PtInPolygon
 *
 * PURPOSE
 * This routine determines if the point passed is in the polygon. It uses

 * the classical polygon hit-testing algorithm: a horizontal ray starting

 * at the point is extended infinitely rightwards and the number of
 * polygon edges that intersect the ray are counted. If the number is odd,

 * the point is inside the polygon.
 *
 * RETURN VALUE
 * (BOOL) TRUE if the point is inside the polygon, FALSE if not.
 ***/

BOOL G_PtInPolygon(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound)
{
 RECT r ;
 POINT *ppt ;
 WORD i ;
 POINT pt1, pt2 ;
 WORD wnumintsct = 0 ;

 if (!G_PtInPolyRect(rgpts,wnumpts,ptTest,prbound))
 return FALSE ;

 pt1 = pt2 = ptTest ;
 pt2.x = r.right + 50 ;

 // Now go through each of the lines in the polygon and see if it
 // intersects
 for (i = 0, ppt = rgpts ; i < wnumpts-1 ; i++, ppt++)
 {
 if (Intersect(ptTest, pt2, *ppt, *(ppt+1)))
 wnumintsct++ ;
 }

 // And the last line
 if (Intersect(ptTest, pt2, *ppt, *rgpts))
 wnumintsct++ ;

 return (wnumintsct&1) ;
}

/***

 * FUNCTION: G_PtInPolyRect
 *
 * PURPOSE
 * This routine determines if a point is within the smallest rectangle
 * that encloses a polygon.
 *
 * RETURN VALUE
 * (BOOL) TRUE or FALSE depending on whether the point is in the rect or

 * not.
 ***/

BOOL G_PtInPolyRect(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound)
{
 RECT r ;
 // If a bounding rect has not been passed in, calculate it
 if (prbound)
 r = *prbound ;
 else
 {
 int xmin, xmax, ymin, ymax ;
 POINT *ppt ;
 WORD i ;

 xmin = ymin = INT_MAX ;
 xmax = ymax = -INT_MAX ;

 for (i=0, ppt = rgpts ; i < wnumpts ; i++, ppt++)
 {
 if (ppt->x < xmin)
 xmin = ppt->x ;
 if (ppt->x > xmax)
 xmax = ppt->x ;
 if (ppt->y < ymin)
 ymin = ppt->y ;
 if (ppt->y > ymax)
 ymax = ppt->y ;
 }
 SetRect(&r, xmin, ymin, xmax, ymax) ;
 }
 return (PtInRect(&r,ptTest)) ;
}

/***

 * FUNCTION: Intersect
 *
 * PURPOSE
 * Given two line segments, determine if they intersect.
 *
 * RETURN VALUE
 * TRUE if they intersect, FALSE if not.
 ***/

BOOL Intersect(POINT p1, POINT p2, POINT p3, POINT p4)
{
 return (((CCW(p1, p2, p3) * CCW(p1, p2, p4)) <= 0)
 && ((CCW(p3, p4, p1) * CCW(p3, p4, p2) <= 0))) ;
}

/***

 * FUNCTION: CCW (CounterClockWise)
 *
 * PURPOSE
 * Determines, given three points, if when travelling from the first to
 * the second to the third, we travel in a counterclockwise direction.
 *
 * RETURN VALUE
 * (int) 1 if the movement is in a counterclockwise direction, -1 if
 * not.
 ***/

int CCW(POINT p0, POINT p1, POINT p2)
{
 LONG dx1, dx2 ;
 LONG dy1, dy2 ;

 dx1 = p1.x - p0.x ; dx2 = p2.x - p0.x ;
 dy1 = p1.y - p0.y ; dy2 = p2.y - p0.y ;

 /* This is basically a slope comparison: we don't do divisions because

 * of divide by zero possibilities with pure horizontal and pure
 * vertical lines.
 */
 return ((dx1 * dy2 > dy1 * dx2) ? 1 : -1) ;
}

/***
 * The above code might be tested as follows:
 ***/
void PASCAL TestProc(HWND hWnd)
{
 POINT rgpts[] = {0,0, 10,0, 10,10, 5,15, 0,10};
 WORD wnumpts = 5;
 POINT ptTest = {3,10};
 RECT prbound = {0, 0, 20, 20};
 BOOL bInside;

 bInside = G_PtInPolygon(rgpts, wnumpts, ptTest, &prbound);

 if (bInside)
 MessageBox(hWnd, "Point is inside!", "Test", MB_OK);
 else
 MessageBox(hWnd, "Point is outside!", "Test", MB_OK);
}
/* code ends */

Additional reference words: 3.00 3.10 3.50 4.00 95 hittest hit-test fails
KBCategory: kbprg kbcode
KBSubcategory: GdiMisc

Alternatives to Using GetProcAddress() With LoadLibrary()

PSS ID Number: Q92862
Authored 16-Nov-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

When loading a DLL with LoadLibrary(), an alternative to calling
GetProcAddress() for each of your DLL entry points is to have the DLL
initialization function initialize a global structure or array containing
the addresses of these DLL entry points, then call a DLL function from your
executable which will return the address of this structure or array to your
executable. You can then call your DLL functions via the function pointers
in this structure or array.

MORE INFORMATION

The best place to initialize this structure or array of function pointers
would be in the DLL_PROCESS_ATTACH code of your DLL's main entry point. The
structure or array containing these function pointers must be declared as
either a global variable or as dynamically allocated memory (malloc(),
GlobalAlloc(), etc.) in your DLL in order for the executable to be able to
address this memory properly.

It is also possible, though not as clean, to export the global structure or
array of function pointers so that your executable can use the structure or
array by name directly in your executable. For more information on how to
declare and export global data in a Win32 DLL, please see the following
article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q90530
 TITLE : Exporting Data From a DLL

Be careful not to call these DLL functions via the function pointers after
the DLL is unloaded via FreeLibrary(). After FreeLibrary() is called, these
function pointer addresses are invalid and calling them will result in an
access violation.

This technique of returning pointers to DLL entry points is a supported
technique and will work on all hardware platforms that Windows NT supports.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

An Efficient Animation Algorithm

PSS ID Number: Q75431
Authored 20-Aug-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

An application that shows an animated image cannot rely solely on Windows
graphical device interface (GDI) functions because they will be too slow.
Instead, the application must create its own set of bitmaps. This article
discusses the process required and provides tips to improve performance and
memory use.

This information applies to any type of animation or fast drawing, from
painting the game pieces in Reversi to updating the time each second in
Clock.

MORE INFORMATION

There are three major steps to this process:

1. Allocate the bitmap.

It is preferable to allocate a single bitmap to store all the different
"cels"--the components of the animated scene. The contents of the bitmap
should be arranged in a column that is wide enough to hold a single cel;
the height is determined by the number of cels. To improve memory usage,
the bitmap should be discardable.

For example, given the definitions of the three constants below, the
following code allocates the correct size bitmap:

 X_SIZE = width of the cel
 Y_SIZE = height of the cel
 NUM_CELS = number of cels in the animated sequence

 HBITMAP hbm;

 hbm = CreateDiscardableBitmap(hDC, X_SIZE, NUM_CELS * Y_SIZE);
 if (!hbm)
 {
 // error - could not allocate bitmap
 }

2. Prepare the bitmaps.

To draw into the bitmap, it must be selected into a display context (DC).
Allocate a (temporary) compatible DC for this purpose:

 if (hTmpDC = CreateCompatibleDC(hDC))
 {
 HBITMAP hOldBm;

 hOldBm = SelectObject(hTmpDC, hbm);
 // and so forth
 }

In many cases, all cels will share the same background. Rather than drawing
this background several times onto the bitmap, draw it once onto the first
cel and copy it to the other cels, as the following code demonstrates:

 // GDI calls to draw to hbm from (0, 0) to (X_SIZE, Y_SIZE)

 for (i = 1; i < NUM_CELS; i++) // Perform the copy
 BitBlt(hTmpDC, 0, i * Y_SIZE, X_SIZE, Y_SIZE, hTmpDC, 0, 0,
 SRCCOPY);

After the background is copied, draw the foreground on each cel, using
regular GDI calls (in TRANSPARENT drawing mode). The coordinates for cel
"i" in bitmap hbm are:

 x_pos: 0 to (X_SIZE - 1)
 y_pos: (i * Y_SIZE) to (((i + 1) * Y_SIZE) - 1)

If the cels in the bitmap contain sequential images, animating to the
screen is simplified.

To finish this step, release the temporary DC.

 SelectObject(hTmpDC, hOldBm);
 DeleteDC(hTmpDC);

3. Animate.

A temporary, off-screen DC is required to allow the application to select
the bitmap. Note that selecting the object may fail if the bitmap has been
discarded. If this has occurred, another bitmap must be allocated (if
memory allows) and the bitmap must be initialized (as outlined in step 2,
above).

 if ((hTmpDC = CreateCompatibleDC(hDC)) != NULL)
 {
 HBITMAP hOldBm;

 if (!(hOldBm = SelectObject(hTmpDC, hbm))
 // must re-allocate bitmap. Note that this MAY FAIL!!!

At this point, call the BitBlt() function to copy the various stages of the
animation sequence to the screen. If the cels in the bitmap contain
sequential images, a simple loop will do the job nicely, as the following
code demonstrates:

 for (i = 0; i < NUM_CELS; i++)
 {
 BitBlt (hDC, x_pos, y_pos, X_SIZE, Y_SIZE, hTmpDC, 0,
 i * Y_SIZE, SRCCOPY);

 // Some form of delay goes here. A real-time wait, based on
 // clock ticks, is recommended.
 }

When the drawing is done, delete the temporary DC:

 SelectObject(hTmpDC, hOldBm);
 DeleteDC(hTmpDC);

It is important to cancel the selection of the bitmap between passes
through the for loop. This allows the bitmap to be discarded if the system
runs low on memory.

Additional reference words: 3.00 3.10 3.50 4.00 95 animation
KBCategory: kbprg
KBSubcategory: GdiBmp

Application Can Allocate Memory with DdeCreateDataHandle

PSS ID Number: Q85680
Authored 17-Jun-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

An application can use the DdeCreateDataHandle function to create a
handle to a block of data. The application can use the handle to pass
the data to another application in a dynamic data exchange (DDE)
conversation using the Dynamic Data Exchange Management Libraries
(DDEML). All DDEML functions refer to blocks of memory using data
handles.

An application can allocate memory and manually create a data handle
associated with the memory (using method 1 below), or automatically by
using the DdeCreateDataHandle function (method 2 below).

Method 1

1. Obtain a block of memory using the GlobalAlloc or LocalAlloc
 function or by declaring a variable in your application.

2. Fill the block of memory with the desired data.

3. Call the DdeCreateDataHandle function to create a data handle
 associated with the block of memory.

Method 2

1. Call the DdeCreateDataHandle function with the lpvSrcBuf parameter
 set to NULL, the cbInitData parameter set to zero, and the
 offSrcBuf parameter set to the number of bytes of memory required.

2. To retrieve a handle to the memory block, specify the data handle
 returned by DdeCreateDataHandle as the hData parameter of the
 DdeAccessData function. This operation is similar to calling the
 GlobalLock function on a handle returned from GlobalAlloc.

3. Use the pointer to fill the memory block with data.

4. Call DdeUnaccessData to unaccess the object. This operation is
 similar to calling the GlobalUnlock function on a handle returned
 from GlobalAlloc.

The following code fragment demonstrates method 2:

 // Retrieve the length of the data to be stored
 cbLen = lstrlen("This is a test") + 1;

 // Create the data handle and allocate the memory
 hData = DdeCreateDataHandle(idInst, NULL, 0, cbLen,
 hszItem, wFmt, 0);

 // Access the data handle
 lpstrData = (LPSTR)DdeAccessData(hData, NULL);

 // Fill the block of memory
 lstrcpy(lpstrData, "This is a test");

 // Unaccess the data handle
 DdeUnaccessData(hData);

When an application obtains a data handle from DdeCreateDataHandle,
the application should next call DdeAccessData with the handle. If a
data handle is first specified as a parameter to a DDEML function
other than DdeAccessData, when the application later calls
DdeAccessData, the application receives only read access to the
associated memory block.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Application Exception Error Codes

PSS ID Number: Q101774
Authored 21-Jul-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

Many exception errors are not processed by applications. The most common
exception error is EXCEPTION_ACCESS_VIOLATION (c0000005). It occurs when a
pointer is dereferenced and the pointer points to inaccessible memory or a
write operation is attempted on read-only memory. If an application does
not trap an exception, the Win32 module, UnhandledExceptionFilter, will do
one of the following: display a message box, invoke Dr. Watson, or attach
your application to a debugger.

The following are standard exception errors:

 EXCEPTION_ACCESS_VIOLATION
 EXCEPTION_ARRAY_BOUNDS_EXCEEDED
 EXCEPTION_BREAKPOINT
 EXCEPTION_DATATYPE_MISALIGNMENT
 EXCEPTION_FLT_DENORMAL_OPERAND
 EXCEPTION_FLT_DIVIDE_BY_ZERO
 EXCEPTION_FLT_INEXACT_RESULT
 EXCEPTION_FLT_INVALID_OPERATION
 EXCEPTION_FLT_OVERFLOW
 EXCEPTION_FLT_STACK_CHECK
 EXCEPTION_FLT_UNDERFLOW
 EXCEPTION_ILLEGAL_INSTRUCTION
 EXCEPTION_IN_PAGE_ERROR
 EXCEPTION_INT_DIVIDE_BY_ZERO
 EXCEPTION_INT_OVERFLOW
 EXCEPTION_INVALID_DISPOSITION
 EXCEPTION_NONCONTINUABLE_EXCEPTION
 EXCEPTION_PRIV_INSTRUCTION
 EXCEPTION_SINGLE_STEP
 EXCEPTION_STACK_OVERFLOW

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

Application Version Marking in Windows 95

PSS ID Number: Q125705
Authored 01-Feb-1995 Last modified 16-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Applications designed for Windows 95, whether 16- or 32-bit, should be
marked for Windows version 4.0 so they receive the full benefit of new user
interface features in Windows 95. Applications marked as being designed for
earlier versions of Windows will display behavior consistent with the
Windows version 3.1 user interface, which is not always identical to
Windows 95 behavior.

Executables marked for Windows version 4.0 will load on Windows 95, Windows
NT version 3.5, Win32s version 1.15, and later versions, but not on earlier
versions.

NOTE: This article deals solely with marking executable files as compatible
with a particular Windows version. This is different from the version
resources (VS_VERSION_INFO) that may be contained in an executable.

MORE INFORMATION

The Microsoft Visual C++ version 2.1 linker defaults to marking executables
for Windows version 4.0 while the version 2.0 linker defaults to 3.1. To
override the default, the Microsoft Visual C++ linkers accept the following
syntax for the /SUBSYSTEM option:

 /SUBSYSTEM:WINDOWS,4.0

In the development environment, you can change the /SUBSYSTEM option by
going to the Project menu, selecting Settings, selecting either Win32 Debug
or Win32 Release, choosing the Link tab, and editing the Project Options.

You may need to perform a full link for this to take effect, but subsequent
incremental linking with this switch will work correctly.

To mark a 16-bit executable as Windows version 4.0 compatible, use the
16-bit resource compiler (RC.EXE) from the Windows 95 SDK to bind the
resources into the executable file. By default, this version of RC marks
the executable for version 4.0, but this can be overridden by using
the -30 or -31 switch.

An application will display several behavioral differences depending on
which Windows version the application is compatible with:

1. All standard control windows owned by a version 4.0 application are

 drawn with a chiseled 3D look. The same effect can be obtained for
 dialogs owned by a version 3.1 application by using the DS_3DLOOK dialog
 style. (This style is ignored on other Windows platforms.)

2. Thunks created using the Windows 95 SDK Thunk Compiler will not work
 unless the 16-bit thunk DLL is marked for version 4.0.

3. Windows version 3.1 allowed 16-bit applications to share GDI resources
 such as font or bitmap handles. For backwards compatibility, Windows 95
 does not clean up objects left undeleted by a 16-bit version 3.x
 application when that application terminates because these objects may
 be in use by another application. Instead, such objects remain valid as
 long as there are any 16-bit applications running. When all 16-bit
 applications are closed, these objects are freed.

 On the other hand, is is assumed that 16-bit version 4.0 applications
 follow the Windows 95 guidelines, and do not share objects. Thus, all
 objects owned by a 16-bit version 4.0-based application are freed when
 the application terminates.

 Win32-based applications cannot freely share GDI objects, so all owned
 objects are freed when a Win32-based application terminates regardless
 of the version of the application.

4. New window messages, such as WM_STYLECHANGED, are only sent to windows
 owned by a version 4.0 application.

5. Printer DCs are reset during StartPage() in applications marked with
 version 4.0

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrMisc

Assigning Mnemonics to Owner-Draw Push Buttons

PSS ID Number: Q67716
Authored 12-Dec-1990 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

An application that uses owner-draw push buttons is always responsible for
the appearance of the buttons. It might seem that in doing so, the ability
to assign a mnemonic character to an owner-draw button is lost because text
containing the mnemonic may not be displayed.

Fortunately, this is not the case. If an owner-draw button should be
activated by ALT+X, place "&X" into the button text. NOTE: You have to use
DrawText() to get the & character to underline the next character. Using
TextOut() will not cause the & character to underline the next character in
the string.

When the ALT key is pressed in combination with any character, Windows
examines the text of each control to determine which control, if any, uses
that particular mnemonic. With an owner-draw button, the text exists, but
may not necessarily be used to paint the button.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Associating Data with a List Box Entry

PSS ID Number: Q74345
Authored 16-Jul-1991 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, an application can use the
LB_SETITEMDATA and LB_GETITEMDATA messages to associate additional
information with each entry in a list box. These messages enable an
application to associate an arbitrary LONG value with each entry and to
retrieve that value. This article documents how an application uses these
messages.

MORE INFORMATION

In this example, the application will associate a 64-byte block of data
with each list box entry. This is accomplished by allocating a global
memory block and using the LB_SETITEMDATA message to associate the handle
of the memory block with the appropriate list box item.

During list box initialization, the following code is executed for each
list box item:

 if ((hLBData = GlobalAlloc(GMEM_MOVEABLE, 64)))
 {
 if ((lpLBData = GlobalLock(hLBData)))
 {
 // Store data in 64-byte block.

 GlobalUnlock(hLBData);
 }
 }
// NOTE: The MAKELONG is not needed on 32-bit platforms.
 SendMessage(hListBox, LB_SETITEMDATA, nIndex, MAKELONG(hLBData, 0));

To retrieve the information associated with a list box entry, the following
code can be used:

// NOTE: The return from LB_GETITEMDATA is a long on 32-bit platforms.
 if ((hLBData = LOWORD(SendMessage(hListBox, LB_GETITEMDATA,
 nIndex, 0L))))
 {
 if ((lpLBData = GlobalLock(hLBData)))
 {
 // Access or manipulate the data or both.

 GlobalUnlock(hLBData);
 }
 }

Before the application terminates, it must free the memory associated with
each list box item. The following code frees the memory associated with one
list box item:

 if ((hLBData = LOWORD(SendMessage(hListBox, LB_GETITEMDATA,
 nIndex, 0L))))
 GlobalFree(hLBData);

These techniques can be used to associated data with an entry in a combo
box by substituting the CB_SETITEMDATA and CB_GETITEMDATA messages.

Additional reference words: 3.00 3.10 3.50 4.00 95 combobox listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Authoring Windows Help Files for Performance

PSS ID Number: Q74937
Authored 05-Aug-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The Windows Help Compiler allows an application developer to create
hypertext documentation, richly annotated with color and graphics.
This article discusses methods to author help files to achieve maximum
performance when the file is used. These comments apply to Windows
Help versions 3.06 and later.

This information is subject to change in future versions of the Help
Compiler and of the Help application as new technology is incorporated
into these products.

There are four major suggestions:

1. Use OPTCDROM=1 for all files destined for CD-ROM (compact-disk
 read-only memory), and potentially on files where up to an
 additional 10K of size is not significant.

2. Use bitmaps placed with data for small bitmaps that are referenced
 only once or infrequently in the help file.

3. Use bitmaps not placed with data for large bitmaps, all bitmaps
 referenced frequently, or bitmaps referenced by two or more topics
 that generally will be viewed in succession.

4. Use segmented hypergraphics to generate graphics with multiple hot
 spots, rather than several bitmaps positioned next to each other.

Coincidentally, suggestions 2, 3, and 4 are also generally space-saving
techniques as well.

MORE INFORMATION

1. Use OPTCDROM=1 for files destined for CD-ROM.

 When OPTCDROM is placed in the [OPTIONS] section of the .HPJ file,
 the topic information in the help file is aligned on 2K boundaries.
 This option is aimed at maximizing performance on CD-ROM drives,
 where reading aligned information can be significantly faster.

 Estimates indicate that sequential reads from CD-ROM can be up to
 twice as fast when aligned. While reads are not always sequential,

 a high percentage can be, depending on how the help file is
 authored. Minor improvements have also been noted on magnetic
 media.

 This option can cause up to 10K of additional file space to be
 used.

2. Store small bitmaps with data.

 Placing bitmaps with data keeps the graphical and textual
 information in the same location in the help file. This avoids
 reading from different locations on disk to display a topic. Seeks
 to different locations are exceptionally time consuming on CD-ROM,
 and can be time consuming on magnetic media. Bitmaps with data also
 help maximize the effects of the OPTCDROM option.

 Up to 12K of compressed topic text is buffered in memory. Since
 bitmaps are kept with the topic text, they take advantage of this
 buffering. Thus, topics under 12K in compressed size generally do
 not need to be reread when the window is resized or redrawn.

 Note that large bitmaps kept with data may cause performance to
 become worse. Topics may be laid out twice as part of scroll bar
 removal. Topics over 12K in size will be read, laid out, and then
 reread as they are laid out a second time before display. Bitmaps
 are often the cause of exceeding the 12K size. Bitmaps NOT kept
 with data are buffered elsewhere (see #3 below), and if the
 remaining textual data is less than 12K, the topic will be read
 from disk only once.

 Bitmaps with data cost space only when the same bitmap is used more
 than once in the help file. If a bitmap is used frequently, not
 placing it "with data" may be more appropriate, unless the
 performance benefit is determined to outweigh the size hit.

3. Store large and frequently accessed bitmaps separately.

 The 50 most recently accessed bitmaps not stored with data are
 cached in memory. This means that the bitmap may have to be read
 from disk only once if two successively displayed help topics
 reference it. Unlike bitmaps stored with data, these cached bitmaps
 only have to be reread if they are bumped out of the cache by the
 subsequent display of 50 more bitmaps, or by low memory conditions.

 Cached bitmaps not stored with data cost some speed when they are
 typically displayed by the user only once in a session. Since they
 are stored in a different portion of the help file from the topic
 text, an additional seek is required to locate them. This cost, if
 incurred, is generally negligible on disk, and high on CD-ROM.
 Note, however, that this cost MAY be less than the cost of reading
 the topic twice, if the topic is laid out twice as a result of not
 needing scroll bars, and is larger than 12K.

4. Use segmented hypergraphics.

 Segmented hypergraphics is the term used to describe the ability to
 take a single bitmap, and define several regions that are hot
 spots. Hot spots can overlap, and can each perform different
 actions.

 The primary benefit of using segmented hypergraphics is that a
 single bitmap can be used. Previous techniques utilizing several
 bitmaps carefully placed in the topic text to generate a single
 image have the drawback of requiring several bitmap-locating
 operations at display time, which can translate to several disk
 seeks and reads. On CD-ROM, especially, this can be quite
 significant.

 The only cost involved in using segmented hypergraphics is that the
 segmented hypergraphics editor must be used to define the hot spots
 within the bitmaps.

In summary, there are a few simple authoring techniques that can
improve performance of help files. While especially significant for
CD-ROM hosted help files, they are of benefit to disk-based help files.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Availability of Microsoft Network SDKs

PSS ID Number: Q115604
Authored 31-May-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
 - Windows for Workgroups SDK, version 3.11
 - Microsoft LAN Manager SDK

SUMMARY

The following SDKs are available for programmers writing network
applications on Microsoft platforms:

Microsoft Windows for Workgroups SDK

This is available on the April 1994 (and later) Microsoft Developer Network
(MSDN) Level 2 CDs.

The SDK, documentation, debug kernel, and other files for network
programmers on Windows for Workgroups, version 3.11 are available on the
April 1994 MSDN. This SDK includes APIs for the network extensions to
Windows for Workgroups, version 3.11.

Microsoft LAN Manager SDK

This is available on CompuServe:

 Forum: msnet
 Section: 3 (LM on OS/2)

The libraries in this section contain the SDK.

The SDK for LAN Manager programming on MS-DOS, Windows, and OS/2 is
available on CompuServe.

The documentation is available in two books:

 - "Microsoft LAN Manager, A Programmer's Guide," Ralph Ryan, Microsoft
 Press, ISBN 1-55615-166-7.

 - "Microsoft LAN Manager Programmer's Reference," Microsoft Corporation,
 Microsoft Press, ISBN 1-55615-313-9.

This SDK includes APIs for writing distributed applications and
administration programs for Microsoft LAN Manager.

LAN Manager APIs for Windows NT

The file DOC\SDK\MISC\LMAPI.HLP on the CD describes the ported LAN Manager
APIs APIs. Windows NT supports 32-bit equivalents of most of the LAN
Manager APIs.

The LAN Manager APIs are included in the header file LMACCESS.H and in the
import library NETAPI32.LIB. These APIs are described in the Win32 API help
file.

Windows Sockets APIs

The Windows Sockets APIs are available through the SDKs. The file
WINSOCK.HLP gives the details.

The files needed to support Windows Sockets APIs (conforming to the Windows
Sockets specifications) for Microsoft LAN Manager may be obtained in the
following locations:

 - CompuServe (lib 10 in the MSNETWORKS forum, titled LMSOCK.ZIP).

 -or-

 - Internet (FTP.MICROSOFT.COM, ADVSYS\LANMAN\SUP-ED\WINSOCK).

The Windows Sockets specifications, libraries, header files and samples may
also be obtained from the Internet location mentioned above, in the
ADVSYS\WINSOCK directory.

Microsoft Remote Procedure Call (RPC)

The support for RPC is included in the Win32 SDKs. The Win32 API help file
includes the RPC APIs. The RPC.HLP file gives the details of RPC support.

RPC support files for MS-DOS and Microsoft Windows may be obtained from the
Win32SDK CD-ROM. The directory MSTOOLS\RPC_DOS has the required files.

NOTE: Microsoft also provides other kinds of network APIs. For example, the
NetBIOSCall() API provides a mechanism to write NetBIOS applications on
Microsoft Windows; on Windows NT this is accomplished with the Netbios()
API. Information on these other APIs may be obtained from the Windows and
Win32 SDK documentation.

Additional reference words: 3.10 3.50 4.00 95 3.11 msdnl2
KBCategory: kbref
KBSubcategory: NtwkMisc

Avoid Calling SendMessage() Inside a Hook Filter Function

PSS ID Number: Q74857
Authored 31-Jul-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

A hook filter function should not call SendMessage() to pass intertask
messages because this behavior can create a deadlock condition in
Windows. If a hook filter function is called as a result of an
intertask SendMessage(), and if the hook function then yields control
with an intertask SendMessage(), a message deadlock condition may
occur. For this reason, hook filters should use PostMessage() rather
than SendMessage() to pass messages to other applications.

NOTE: A hook filter can use SendMessage() to pass a message to the
current task because this will not yield the control.

Section 1.1.5 of the "Microsoft Windows Software Development Kit Reference
Volume 1" from the Windows SDK version 3.0 documentation has more
information on message deadlocks.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrHks

Background, Foreground, and System Palette Management

PSS ID Number: Q72386
Authored 23-May-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

On a device that supports the Microsoft Windows palette management APIs, an
application can create a logical palette, select the palette into a device
context (DC), and realize the palette. Realizing a logical palette maps its
colors to the system (hardware) color palette. The GetDeviceCaps() API is
available to inform an application whether the device is capable of
supporting palette management functions and, if so, the size of its system
palette. This article discusses the different types of logical palettes and
the effect of each on the system palette when a logical palette is
realized.

MORE INFORMATION

When a logical palette is selected into a DC, it can be selected as either
a foreground or a background palette. Setting the bForceBackground
parameter of the SelectPalette() API to TRUE selects the palette as a
background palette. If this parameter is FALSE, the palette can be selected
as a foreground palette. A palette will be selected as a foreground palette
only if the DC into which the palette is selected is one of the five cached
DCs managed by the GetDC() API and the DC is retrieved on behalf of the
active window. If the DC is returned by CreateDC() or CreateCompatibleDC()
or if the window is not the active window, the palette will be forced
into the background.

The status as a foreground or a background palette affects how the colors
in the logical palette are mapped into the system palette when the logical
palette is realized.

When a foreground palette is realized, every entry in the system palette
that can be modified by an application is accessible to the logical
palette. Logical palette entries are mapped into the system palette
starting at the first available entry. Because a logical palette entry that
exactly matches a reserved system palette entry is mapped to that system
entry, it does not consume a separate palette slot. If the logical palette
has more entries than available slots in the system palette, the available
slots are filled, in order, from the logical palette. The remaining logical
palette entries are mapped to the closest colors already present in the
system palette. There is one exception to this rule: if a logical palette
entry is marked with the PC_RESERVED flag, no colors will be mapped to that
entry. If all available system palette entries are reserved, additional

colors will not be mapped to any entry and will be displayed as black on
the screen.

A palette entry marked as PC_NOCOLLAPSE will always take a separate slot if
available, just as for PC_RESERVED. Unlike a PC_RESERVED color, if no slots
are available, it will map to the nearest color, and other colors may map
onto it.

The first available entry in the system palette is the first palette entry
not marked as used. For example, assume a device with 256 palette entries,
20 of which are reserved for the system. An application realizes a palette
of 36 colors on this device; therefore, the first 36 entries are marked
used. Another application realizes a 100-entry palette; therefore, the next
100 entries are marked used. If a third application receives the input
focus and realizes a foreground palette with 236 entries, Windows maps the
first 100 colors into the remainder of the system palette. Each of the
remaining 136 colors of the logical palette is mapped into the closest
color available in the system palette.

When a background palette is realized, any empty positions in the system
palette are filled. Any colors that remain are mapped to the closest color
in the system palette. A background palette entry cannot overlay a
foreground entry in the system palette; however, a foreground palette entry
can overlay a background entry in the system palette.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPal

Background Colors Affect BitBlt() from Mono to Color

PSS ID Number: Q41464
Authored 22-Feb-1989 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

When using BitBlt() to convert a monochrome bitmap to a color bitmap, GDI
transforms all white bits (1) to the background color of the destination
device context (DC). GDI transforms all black bits (0) to the text (or
foreground) color of the destination DC.

When using BitBlt() to convert a color bitmap to a monochrome bitmap, GDI
sets to white (1) all pixels that match the background color of the source
DC. All other bits are set to black (0).

These features are mentioned in the BitBlt() documentation.
manual.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiBmp

BeginPaint() Invalid Rectangle in Client Coordinates

PSS ID Number: Q19963
Authored 17-Dec-1987 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

The BeginPaint() function returns a pointer to a PAINTSTRUCT data structure
through its second parameter. The rcPaint field of this structure specifies
the update rectangle in client-area coordinates (relative to the upper-left
corner of the window client area).

This update rectangle also serves as the clipping area for painting in
the window, unless the invalid area of the window is expanded using the
InvalidateRect() function.

Additional reference words: 3.00 3.10 3.5 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrPnt

Binary and Source Compatibility Under Windows NT

PSS ID Number: Q93213
Authored 01-Dec-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

There are currently three hardware platforms for which Win32-based
applications can be written; they are Intel (x86), MIPS, and DEC Alpha.
Binary compatibility across these hardware platforms is not a viable
alternative. Therefore, Windows NT offers source compatibility. This means
that developers may create versions of their Win32 applications for each
CPU by recompiling.

For example, suppose that you have written a Win32-based application in C
and have used a 32-bit compiler that targets the Intel platform. In order
to produce a Win32-based application that runs on DEC Alpha, you would
purchase a 32-bit compiler that targets Alpha and recompile your code.

MORE INFORMATION

It is important not to confuse source compatibility across hardware
platforms with binary compatibility across application execution
environments. Windows NT and Win32s do support binary compatibility between
different application execution environments. For example, the typical
16-bit Windows-based application can be run without modification on any
Windows NT machine. On the MIPS and Alpha platforms, this is achieved
through emulation. In addition, it is possible to design an x86 Win32-based
application so that it runs on Windows 3.1. This is achieved through
Win32s.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Binary Compatibility Basics

PSS ID Number: Q95162
Authored 02-Feb-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Because of differing instruction sets between processors, object code is
not binary-compatible across platforms. To enable object code compiled for
processor X to run on processor Y, a virtual machine must be created on
processor Y to emulate processor X's instructions, which results in a
considerable performance hit. For this reason, Windows NT offers a strong
source compatibility, which makes it a relatively simple matter to compile
the same code into native object code for each platform.

The Hardware Abstraction Layer (HAL), smooths over differences between
hardware implementations. All access to the hardware from the operating
system (OS) goes through the HAL, which makes changing of both the hardware
and the OS itself much simpler. The HAL, however, does not emulate the
instruction set of the platform; a common misconception.

MORE INFORMATION

Source code is compiled into executable or object code for the instruction
set of a specific processor or family (x86, 680x0, R3000/4000, and so
forth). This code runs natively only on that type of processor. Remember,
this reduces to 1's and 0's, hence binary, so even if two processors have a
large overlap in the available instructions (and they do; MOVs, XORs, or
whatever at the assembly language level), what is actually executed is not
even relatively "high level" human-readable assembly code but merely a
series of bytes that by convention/definition only are assigned the
meanings that are human-readable at the assembly language level.

For example, probably every microprocessor has an OR instruction. On the
Intel x86, the OR instruction may be represented in the instruction stream
by the bytes "09 [effective address]" (see page 456 of Microsoft's
80386/80486 Programming Guide, 2nd Ed.). On the R4000, however, it's nearly
guaranteed to be something different.

Thus, if you want to run an executable compiled for Intel on a MIPS chip,
you must run a program that behaves as an Intel instruction interpreter
(similar to a Basic interpreter, but much more complex). Such a program is
called an emulator, and will scan through the Intel object code and then in
turn execute equivalent commands in MIPS form on the processor. But the
emulator must do much more than that; it must also create a "virtual
machine," a complete software execution environment that behaves similar to
the original hardware/software environment that the executable was

originally compiled for.

Note that even in an ideal case, every processor X instruction requires
about 5-20 instructions on processor Y. The object code interpreter must
examine the next instruction/byte, compare its value to known instruction
values via some kind of table (depending on the implementation), and then
execute the equivalent native instruction. There is room for optimization
but it will never be very fast (relative to native code).

Therefore, run non-native object code only if you absolutely must. Below is
a binary compatibility table for Windows NT:

 System Binary-Compatible on NT?
 ------ ------------------------

 Win16 apps Yes (via Insignia's x86 emulation code)
 Win32 apps No (must re-compile)
 POSIX apps No (POSIX is a source-code standard)(1)
 OS/2 1.x apps No (Don't run on non-x86 machines at all)(2)

Notes: (1) POSIX 1003.1 is a C-language source-level standard for basic
operating system services. POSIX applications don't need to be binary-
compatible even on the same instruction set! That is, a POSIX application
compiled and linked for SCO on x86 will NOT run on x86 Windows NT POSIX or
x86 Sun/Interactive POSIX. (2) OS/2 1.x support is technically feasible but
would have required more work on the non-Intel platforms, and was not
considered a high priority.

The Hardware Abstraction Layer (HAL)

A common misconception is that the HAL should allow binary compatibility.
The Windows NT HAL has absolutely nothing to do with the issue discussed
above; that is, running code complied for processor X on processor Y. Nor
is the HAL akin to a "virtual machine" implementation; it does not simulate
anything. Rather, the HAL is simply an example of a good modular software
design that deals with the issue of differences in hardware design between
machines with the same instruction set (or between instruction sets).

The HAL provides a set of services to the rest of the Windows NT executive
that abstracts and "hides" the differences between low- level hardware-
software interfaces, such as with DMA controllers, programmable interrupt
controllers, clocks and timers, and so forth. In a typical pre-Windows NT
operating system, there is lots of code embedded throughout the operating
system (particularly in device drivers) that is specifically tied to
particular implementations of hardware services (a particular PIC, a
particular DMA chip, and so forth). If one of these hardware pieces is
changed, lots of code scattered throughout the system will break. As a
result, the hardware never changed and a typical 486/66 machine today uses
the same low-function hardware devices that appear in the IBM AT 286 (if
not the IBM PC itself).

In Windows NT, any other part of the OS (including the kernel and all
device drivers) that needs to deal with those low-level devices now uses
HAL services, and is therefore isolated from changes in the hardware. If

you change those hardware pieces you only need to change the HAL. This
results in at least the following two advantages:

 - A cleaner, easier to write and debug design for the OS and device
 drivers.
 - The real possibility for innovation and change in the underlying
 hardware.

But the HAL does not provide an abstract instruction set, or the services
necessary for running object code from processor X on processor Y. It is
possible to write an such as OS if you are willing to take the huge
performance hit, but Windows NT isn't it. And because a well-designed OS
such as Windows NT can provide a very complete level of source-code
compatibility across instruction sets, and therefore a relatively painless
way of getting native-code versions of Win32-based applications, probably
no one will be willing to take that performance hit in a mainstream
operating system, no matter how fast the hardware.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Broadcasting Messages Using PostMessage() & SendMessage()

PSS ID Number: Q64296
Authored 28-Jul-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

When SendMessage() is used to send a broadcast message (hwnd = 0xFFFF or
hwnd = -1), the message is sent to all top-level windows. A message
broadcast by PostMessage() is only sent to top-level windows that are
visible, enabled, and have no owner.

You might observe the effect of the difference when, for example, the top-
level window of your application calls DialogBox() to present a modal
dialog box. While the modal dialog box exists, its owner (your top-level
window) will be disabled. Messages broadcast using PostMessage() will not
reach the top-level window because the window is disabled, and will not
reach the dialog box because the dialog box has an owner. Messages
broadcast using SendMessage() will reach both the top-level window and the
dialog.

In Windows 3.1, PostMessage() will broadcast to invisible and disabled
windows just like SendMessage() already does.

Both PostMessage() and SendMessage() actually broadcast using the same
broadcast procedure. This procedure does some additional screening to make
sure that pop-up menus, the task manager window, and icon title windows are
insulated from broadcast messages.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

BUG: Bad Characters in 32-bit App on Win32s on Russian

PSS ID Number: Q126865
Authored 06-Mar-1995 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft Win32s versions 1.2 and 1.25

SYMPTOMS

When compiling, linking, and running a Russian application which was built
using Microsoft Visual C++ version 2 under on Windows NT version 3.5 the
application runs correctly. If this application is run on Russian Windows
version 3.1 with the Win32s libraries version 1.2 or 1.25 installed, some
parts of the user interface appear as meaningless set of characters.

CAUSE

The strings in the resources are stored in UNICODE format. Yet you must
pass all strings to Windows 3.1 in ANSI format. The drawing of the
resources is done by Windows 3.1. Win32s simply reads the 32-bit resources,
converts them to the 16-bit format equivalent, and passes the resources to
Windows 3.1. One stage of the conversion is to convert the UNICODE strings
into ANSI strings. This conversion for the Russian language is broken.

STATUS

Microsoft has confirmed this to be a problem in the product(s) listed at
the beginning of this article. This bug will be fixed in the next release
of Win32s.

Additional reference words: Cyrillic Russia 2.00 garbage corruption
KBCategory: kbbuglist
KBSubcategory: WIntlDev W32s

BUG: Console Applications Do Not Receive Signals on Windows

PSS ID Number: Q130717
Authored 25-May-1995 Last modified 30-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Console applications call SetConsoleCtrlHandler() to install or remove
application-defined callback functions to handle signals. On Windows 95,
the signal handler function only gets called for the CTRL_C_EVENT and
CTRL_BREAK_EVENT signals; the signal handler function is never called for
the CTRL_SHUTDOWN_EVENT, CTRL_LOGOFF_EVENT, and CTRL_CLOSE_EVENT signals.

CAUSE

Windows 95 sends CTRL_C_EVENT and CTRL_BREAK_EVENT signals to console
applications that have installed signal handers, but does not send
CTRL_SHUTDOWN_EVENT, CTRL_LOGOFF_EVENT, or CTRL_CLOSE_EVENT signals.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: Win95 4.00 console event signal
KBCategory: kbprg kbbuglist
KBSubcategory: BseCon

BUG: CreateDC Does Not Thunk DEVMODE Structure Correctly

PSS ID Number: Q128701
Authored 06-Apr-1995 Last modified 07-Apr-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS

Under Win32s version 1.2 and 1.25, when a Win32-based application displays
a printer setup dialog box that calls PrintDlg with the PD_PRINTSETUP flag
and the printing orientation is changed from Portrait to Landscape, the
DEVMODE structure obtained from the PrintDlg call to CreateDC is passed and
creates a printer DC. If the printer driver is a postscript driver,
anything printed using this DC is still in Portrait mode.

CAUSE

The thunking layer for CreateDC does not thunk the DEVMODE structure for
the postcript driver correctly.

RESOLUTION

To work around the problem, avoid calling CreateDC with a DEVMODE
structure. Instead, directly create the pinter DC by calling PrintDlg with
the PD_RETURNDC flag. Then change the printing orientation from within the
print dialog box.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.20 1.25 3.10 3.50
KBCategory: kbprg kbbuglist
KBSubcategory: GdiPrn

BUG: ESC/ENTER Keys Don't Work When Editing Labels in

PSS ID Number: Q130691
Authored 24-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51 and 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS

When editing labels in a TreeView control, you should be able to press the
ESC key to cancel the changes or press the ENTER key to accept the changes.
However, when the TreeView control is contained in a dialog box,
IsDialogMessage processes the ESC and ENTER keystrokes and does not pass
them on to the edit control created by the TreeView control, so the
keystrokes have no effect.

CAUSE

The TreeView control creates and subclasses the edit control used for
in-place editing. The subclass procedure does not process the WM_GETDLGCODE
and WM_CHAR messages for the edit control properly.

RESOLUTION

To work around the problem, subclass the edit control and return
DLGC_WANTALLKEYS in response to the WM_GETDLGCODE message. Then process the
WM_CHAR messages for VK_ESCAPE and VK_RETURN.

To subclass the edit control, obtain the handle to the edit control by
using the TVM_GETEDITCONTROL message in response to the TVN_BEGINLABELEDIT
notification. Remove the subclassing when the TVN_ENDLABELEDIT notification
is received.

In response to the WM_CHAR|VK_ESCAPE message, have the application send
the TVM_ENDEDITLABELNOW with fCancel = TRUE message to cancel the edit. In
response to the WM_CHAR|VK_ENTER message, have the application send the
TVM_ENDEDITLABELNOW with fCancel = FALSE message to accept the edit.

All other WM_CHAR messages should be passed on to the default edit control
window procedure.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.30 4.00 95
KBCategory: kbprg kbui kbbuglist
KBSubcategory: UsrCtl W32s

BUG: FindFirstFile() Does Not Handle Wildcard (?) Correctly

PSS ID Number: Q130860
Authored 30-May-1995 Last modified 12-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 4.0

SYMPTOMS

In Windows 95, the FindFirstFile() function interprets a wildcard (?) as
"any character" instead of "zero or one character," its true meaning. This
incorrect interpretation causes some searches to return invalid results.
For example, if the files, TEMP.TXT and TEMPTEMP.TXT, are in the same
directory, the following code finds the TEMPTEMP.TXT file, but not the
TEMP.TXT file:

 HANDLE hFind;
 WIN32_FIND_DATA findData = {0};

 hFind = FindFirstFile ("TEM?????.???", &findData);

 if (hFind == INVALID_HANDLE_VALUE)
 MessageBox (hwnd, "FindFirstFile() failed.", NULL, MB_OK);
 else
 {
 do
 {
 MessageBox (hwnd, findData.cFileName, "File found", MB_OK);
 }
 while (FindNextFile(hFind, &findData));

 CloseHandle (hFind);
 }

Windows NT correctly finds both the TEMP.TXT and TEMPTEMP.TXT files.

WORKAROUND

To work around this problem, choose an alternative wildcard search and
apply further processing to eliminate files that are found by the
alternative search, but do not match the original search. For example, the
code above could be changed to search for TEM*.* instead of TEM?????.???.
Then you could make an additional test for filenames that are up to 8
characters in length, followed by a ".", followed by up to 3 more
characters (8.3).

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products

listed at the beginning of this article. We are researching this bug
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

Additional reference words: win95 4.00 regular expression wild
KBCategory: kbprg kbbuglist
KBSubcategory:

BUG: GetKerningPairs Sometimes Fails on Win32s Version 1.2

PSS ID Number: Q125872
Authored 07-Feb-1995 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.2 and 1.25a

SYMPTOMS

GetKerningPairs will sometimes fail on Win32s version 1.2 causing the
32-bit application to exit mysteriously. The problem may only occur once in
a while with many successful runs interrupted by a single unsuccessful run.

CAUSE

The thunking layer for GetKerningPairs contains a bug in the code that
allocates a temporary buffer passed to the 16-bit version of
GetKerningPairs. The errant code executes whenever the number of kerning
pairs requested is equal to or less than 128. Requesting GetKerningPairs to
return 129 or more kerning pairs forces the thunking layer to use an
alternative buffer allocation method.

RESOLUTION

To work around the problem, ensure that the number of kerning pairs
requested from GetKerningPairs is greater than 128.

Typically, kerning pairs are retrieved with two calls to GetKerningPairs.
The first call retrieves the number of kerning pairs available. A buffer is
allocated based on the number of pairs returned. Then the second call to
GetKerningPairs retrieves the kerning pairs into the buffer.

To avoid the bug in GetKerningPairs, follow these steps:

1. Retrieve the number of kerning pairs available from GetKerningPairs.

2. Check that this value is greater than 128. If it is less than or
 equal to 128, reset the variable to an arbitrary value greater than
 128 -- like 129.

3. Use the new value to allocate the buffer of KERNINGPAIRS and pass
 this new value with the buffer to the second GetKerningPairs call.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes

available.

Additional reference words: 1.20 font kerning
KBCategory: kbprg kbbuglist
KBSubcategory: GdiFnt

BUG: MDI Child Window's "Minimize" System Menu Disabled

PSS ID Number: Q110795
Authored 28-Jan-1994 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, version 3.1

SYMPTOMS

After creating a new multiple document interface (MDI) child window in an
MDI application, the child window's Minimize System menu option will be
disabled after the following actions:

1. The MDI child window is created and in the topmost z-order.

2. The user accesses the MDI child window's System menu through the
 shortcut keys: ALT+SPACE, RIGHT ARROW.

These actions will cause the child window's System menu to appear with the
Minimize menu option disabled. This behavior can be demonstrated with File
Manager. From File Manager's Window menu, choose New Window. Next, press
ALT+SPACE and then press the RIGHT ARROW key to bring up the new window's
System menu. The Minimize option will be disabled.

NOTE: The Minimize menu item is not disabled if the System menu is accessed
through the ALT+"-" (minus) shortcut key or the mouse. Also, the Minimize
menu item is not disabled if the window is moved.

RESOLUTION

This problem may be avoided if the MDI parent calls GetSystemMenu() after
creating the MDI child window. If the parent calls GetSystemMenu
(hwndMDIChild, TRUE) for the MDI child window, the System menu is reset to
the Windows default state, thus eliminating the problem.

STATUS

Microsoft has confirmed this to be a bug in Windows version 3.1 and
Windows NT version 3.1. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION

Although MDI is supported, it is discouraged. New users find it complicated
to understand, so Microsoft is encouraging ISVs to use SDI or greatly
simplify their interfaces to act like an SDI (there are some advantages to

coding using MDI).

Additional reference words: buglist3.10 3.10
KBCategory: kbprg kbbuglist
KBSubcategory: UsrMdi

BUG: Menu Bar Covered By Main Window Client Area

PSS ID Number: Q109539
Authored 04-Jan-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, version 3.1

SYMPTOMS

In an application, the lower half of the menu bar is covered by the client
area of the main window.

CAUSE

This problem can be caused by a command with a null menu string or
separator at the end of the menu bar. For example, if the following menus
are used in a window, they will display the problem:

 PROBLEMMENU MENU DISCARDABLE
 BEGIN
 POPUP "&Popup 1"
 BEGIN
 MENUITEM "&Menu Item 1", 1
 END
 MENUITEM "", 2
 END

-or-

 PROBLEMMENU MENU DISCARDABLE
 BEGIN
 POPUP "&Popup 1"
 BEGIN
 MENUITEM "&Menu Item 1", 1
 END
 MENUITEM SEPARATOR
 END

RESOLUTION

To work around this problem, remove the command with a null menu string or
separator at the end of the menu bar.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed

at the beginning of this article. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: utoff overlayed view toolbar
KBCategory: kbprg kbbuglist
KBSubcategory: UsrMen

BUG: Pressing SHIFT+ESC Doesn't Generate WM_CHAR on Windows

PSS ID Number: Q129861
Authored 08-May-1995 Last modified 08-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Pressing SHIFT+ESC in an application running under Windows 95 doesn't
generate a WM_CHAR message even though it does generates a WM_CHAR
message for applications running under Windows version 3.x and Windows NT.

CAUSE

The key table that TranslateMessage on Windows 95 uses to generate the
WM_CHAR messages doesn't include the SHIFT+ESC key combination.

RESOLUTION

If you need to use this key combination, use the WM_KEYDOWN or WM_KEYUP
messages.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available. This bug is scheduled to be corrected in a future
version of Windows 95.

Additional reference words: 4.00
KBCategory: kbui kbbuglist
KBSubcategory: UsrInp

BUG: Race Between 2 Threads Sharing a Socket Causes Problem

PSS ID Number: Q126346
Authored 21-Feb-1995 Last modified 01-May-1995

The information in this article applies to:

 - Microsoft Win32 Device Development Kit (DDK) for Windows NT
 version 3.5

SYMPTOMS

Packets between the TCP, UDP, and IP layers are lost.

CAUSE

There appears to be a problem with a race condition between two threads
that share a socket where one is closing a socket while the other tries to
call recvfrom() on the same socket. This causes problems the next time a
socket is bound to the same UDP port.

RESOLUTION

The vendor should implement a workaround within the application so that
this race condition does not occur.

STATUS

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION

This Sockets/UDP problem was discovered while testing the TX1000 NCPI
driver for Windows NT. Here are some notes showing what appears to be
happening:

Thread 1 Thread 2
-------- ---------
Create DGRAM socket x
Bind socket x to:
 IPADDR = ANY
 PORT = 1571
Create thread 2 ----------------->
 RecvFrom on socket x
 ...

 Packet received on x (recvfrom completes)
 <---------------signal main thread
Process rec'd packet wait for main thread to consume buffer
Signal buffer available--------->
 RecvFrom on socket x
 ... { repeats many times }

Normal Shutdown Sequence (on Last Packet)

 Packet received on x (recvfrom completes)
 <---------------signal main thread
Process rec'd packet wait for main thread to consume buffer
Signal buffer available--------->
Application done (1) RecvFrom on socket x
(2) close socket x
 (3) RecvFrom fails with expected error
 Thread terminates

Usually, events occur in sequence (1, 2, then 3). In this normal case, the
socket is cleared correctly, and everything works the next time the
application runs.

Shutdown Sequence that Causes Problems (on Last Packet)

 Packet received on x (recvfrom completes)
 <---------------signal main thread
Process rec'd packet wait for main thread to consume buffer
Signal buffer available--------->
Application done
(1) close socket x (2) RecvFrom on socket x
 (3) RecvFrom fails with expected error
 Thread terminates

In this case, the sequence is slightly different. The closesocket()
function from main thread starts, but does not complete, before thread 2
runs. While thread 1 is suspended awaiting completion of closesocket(),
thread 2 runs and posts next recvfrom() on same socket. The closesocket()
function completes successfully, and recvfrom() fails as in normal case.
But the next time the application runs and binds to the same UDP port, the
following occurs:

 - All socket calls (bind(), recvfrom()) are successful

 - All incoming packets to that UDP port are discarded before reaching the
 application -- recvfrom() never completes. The following command shows
 that the "receive errors" count has been incremented once for each
 incoming packet that was lost:

 netstat -s -p udp

The conclusion is that in this case the socket was not cleaned up properly
due to the race condition between the closesocket() and the recvfrom()
functions.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: NtwkWinsock

BUG: SetWindowPlacement and ptMin.x or ptMax.x = -1

PSS ID Number: Q110793
Authored 28-Jan-1994 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, 4.0

SYMPTOMS

Passing an X coordinate value of -1 to SetWindowPlacement causes the
parameter to be ignored. If ptMinPosition.x is set to -1,
SetWindowPlacement won't reset the minimized window coordinate; this is
also true for ptMaxPosition.x. This was undocumented in the Windows 3.1 SDK
documentation.

CAUSE

This problem is caused by the use of -1 as a special value. A value of -1
in the X coordinate causes the API (application programming interface) to
use the window's current coordinate for the specified parameter.

RESOLUTION

Microsoft has confirmed this to be a bug in the products list above.

This behavior may be a problem for application developers because they may
want to set the maximized or minimized horizontal coordinate of a window to
-1. To avoid this problem, the developer should trap values of -1, and use
a value of -2 or 0 (zero) as appropriate.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbbuglist
KBSubcategory: UsrWndw

BUG: SNMP Service Produces Bad "Error on getproc(InitEx) 127"

PSS ID Number: Q130699
Authored 25-May-1995 Last modified 30-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

When the SNMP service is started with debug level 2 or greater, it returns
this error message:

 error on getproc(InitEx) 127

RESOLUTION

This error message should be ignored.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION

How to Start the SNMP Service

The SNMP service can be started from either the control panel or from
a console window.

Type "net help start snmp" in a console box to see how to configure error
logging of the SNMP agent.

The syntax of the command is:

 net start snmp [/logtype: type] [/loglevel: level]

where:

 - /LOGTYPE: type determines where the log will be created. The possible
 values are 2 for file, 4 for eventlog, and 6 for both. The default is 4.
 The file option creates a file under \WINNT\SYSTEM32 called SNMPDBG.LOG.

 - /LOGLEVEL: level determines the debug level. The higher the number, the

 more the detail obtained. The default is 1 (minimum), and the range is
 from 1 to 20.

Here is an example:

 net start snmp /logtype:6 /loglevel:10

This starts the SNMP service with loglevel 10, and logs events in the
eventlog as well as in SNMPDBG.LOG.

The SNMP service can also be started from a console window without typing
"net start." This makes all error messages go to the console window and can
be used to help in debugging when writing SNMP applications. For example,
the following starts the SNMP service:

 cmd-prompt> snmp

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkSnmp

BUG: Using WM_SETREDRAW w/ TreeView Control Gives Odd Results

PSS ID Number: Q130611
Authored 23-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51 and 4.0

SYMPTOMS

If a program uses the WM_SETREDRAW message to turn off updating of a
TreeView control before adding items, the TreeView control can behave
strangely.

For example, if the item being added to the control uses the TVI_FIRST
style to insert it to the top of the tree and the top of the tree is
scrolled above the top of the visible window, it may be impossible to bring
the item into view.

Another possible symptom is that the TreeView control doesn't repaint
itself at all. These problems occur only if the program has used the
WM_SETREDRAW message to turn off updating the TreeView control.

RESOLUTION

Don't use the WM_SETREDRAW message with the TreeView control while adding
items to the control.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 95
KBCategory: kbprg kbbuglist
KBSubcategory: UsrCtl

BUG: Win32 SDK Ver. 3.5 Bug List for Win32 SDK and Win32 API

PSS ID Number: Q121907
Authored 23-Oct-1994 Last modified 03-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

The following is a list of bugs in the Win32 SDK and Win32 API (version
3.5) that were known at the time of its release. The list is divided
into four sections: Base, GDI, Networking, and User.

MORE INFORMATION

Base

 - SetLastErrorEx() does not raise a RIP_INFO debug event.

 - Overlapped I/O does not work on CD-ROM drives.

 - CDECL should be defined to __cdecl in WINDEF.H.

 - EVENTLOGRECORD strings are incorrectly given as type WCHAR in winnt.h.
 The online help correctly gives the strings as type TCHAR.

 - SetComputerName(""); sets computer name to an empty string at reboot,
 which the logon service cannot handle. The Network applet does not
 allow this computer name. Your code should check for this case as well.

 - Registry allows remote access to certain performance data, but not
 local access.

 - RegCreateKeyEx() puts the class string in all created subkeys.

 - Call FileTimeToLocalFileTime() with a structure containing 0, then pass
 the result to FileTimeToSystemTime(). FileTimeToSystemTime() returns a
 bad value in SystemTime.wHour.

 - DLL does not receive DLL_PROCESS_DETACH if last thread in process calls
 ExitThread().

GDI

 - Return values for certain GetBitmapBits() calls are not the same on
 Windows and Windows NT.

 - Return values for certain StretchBlt() calls are not the same on

 Windows and Windows NT.

 - When a transparent window is present and full drag is enabled, the
 display is not refreshed correctly when a window is dragged.

 - GetCharABCWidths() returns twice the width for character 0x92 that
 GetTextExtentPoint() returns using Arial font.

 - Use a True Type font off the network, produce a few glyphs, and kill
 the network connection. You get an in page memory exception if you
 try to use the font with different (not cached) glyphs. Restore the
 network connection and try to use the font. The font was tagged as
 invalid, so all subsequent TextOut() calls fail.

 - CreateDC() returns ERROR_MOD_NOT_FOUND instead of ERROR_ACCESS_DENIED
 for a printer with no access rights. The problem is that GDI does not
 check for ERROR_ACCESS_DENIED when the open printer fails; GDI directly
 tries to do a LoadLibrary() on the pszDevice.

 - EndDoc() reports success when given an information context (IC).

 - AbortDoc() reports success when given an information context (IC).

 - glGet() doesn't generate GL_INVALID_OPERATION error code when it is
 called within glBegin()/glEnd().

Networking

 - For MS-DOS clients, NetAccessGetInfo() returns code 53.
 (ERROR_BAD_NETPATH) for the local server.

 - For MS-DOS clients, NetServerEnum2() with a bad domain should return
 error 2320, but it returns Windows NT error code 6118.

 - For MS-DOS clients, NetShareGetInfo() level 2 fails with error 87.

 - For MS-DOS clients, NetShareGetInfo() level 3 returns NERR_Success,
 but level 3 is not a valid level.

 - NetWkstaGetInfo() returns a platform id of PLATFORM_ID_OS2 for a
 downlevel Windows for Workgroups machine.

 - NetUserAdd() remoted from a 16-bit application to a server with a
 long name fails with error 59 (unexpected network error).

 - NetServiceEnum() resumehandle and prefMaxLen fields are ignored.

 - NetGetDCName() with domain name of "." or "?" returns error 2102
 (NERR_NetNotStarted), not 2453 (NERR_DCNotFound).

 - NetUseEnum() with a preferred buffer size less than 40 bytes returns
 ERROR_MORE_DATA, rather than NERR_BufTooSmall.

 - NetServerEnum() with a zero length buffer returns ERROR_MORE_DATA,

 rather than NERR_BufTooSmall.

 - NetScheduleJobEnum() with a small preferred buffer size returns
 ERROR_MORE_DATA, rather than NERR_BufTooSmall.

 - NetStatisticsGet() remoted to a downlevel OS/2 server does not
 work for the service "LanmanWorkstation".

 - NetAccessEnum() with NULL base path causes an access violation.

 - NetUserModalsGet() level 2 returns error 87 (ERROR_INVALID_PARAMETER).

 - Network API doc errors: NetUserModals() supports a level 3 structure in
 Windows NT 3.5, NetGroupSetUsers() also supports level 1,
 NetAccessCheck() is in docs but not the header files, and the
 NetAuditClear()/NetAuditRead() service parameter should be marked as a
 reserved field that must be NULL.

 - NetConfigGet() and NetConfigGetAll() return error 2146 when remoted to
 Windows NT. This API should only work from Windows NT to a downlevel
 machine. It should return ERROR_NOT_SUPPORTED or NERR_InvalidApi is
 remoted to Windows NT.

 - NetWkstaUserSetInfo() level 0 returns error 124 (invalid level).

 - NetReplImportDirUnlock() returns error 87 (NERR_Invalid_Parameter) if
 the directory is not locked.

 - NetReplExportDirEnum() ignores suggested buffer size.

 - NetUseEnum() level 2 remoted to an OS/2 machine returns error 50
 (ERROR_NOT_SUPPORTED), not error 124 (ERROR_INVALID_LEVEL).

 - NetConfigSet() returns success when remoted to Windows NT.

 - NetWkstaUserSetInfo() called with an incorrect level returns error 87
 (INVALID_PARAMETER), rather than error 124 (ERROR_INVALID_LEVEL).

 - NetMessageNameEnum() with a zero length buffer returns NERR_Success,
 rather than NERR_BufTooSmall.

User

 - DDESPY frees locked global objects when filtering out WM_DDE_INITIATE
 messages.

 - GetTabbedTextExtent(), TabbedTextOut(), TextOut(), and DrawText() GP
 fault with bad string length values.

 - Journal Recording causes improper icon title painting.

 - With a WH_MSGFILTER installed, MSGF_NEXTWINDOW is not sent when the
 user Alt-Tabs to the next window.

 - Active Screen Saver doesn't allow WH_JOURNALPLAYBACK hook.

 - 122-key kbd: WSCtrl, Jump, Finish keys are VK_NONAME.

 - Using of NumLock key for PF1 in terminal emulation programs does not
 work.

 - Calling GetKeyState()/GetKeyboardState() from a thread that is not
 reading from an input queue causes a QEVENT_UPDATEKEYSTATE to be posted
 to the queue, but it is never removed. If the input queue is being
 read, the key state is one update event out of date.

 - System hang during journalling if a hung application exists and many
 system events are posted to the hung application.

 - Windows NT does not wait for all applications to return their response
 from WM_QUERYENDSESSION before starting to destroy an application. This
 can cause data loss in OLE.

 - WM_GETMINMAXINFO not used when window has WS_CAPTION and WS_THICKFRAME.

 - Edit control clips italic text.

 - Hotkeys are not checked during journal playback.

 - OLE 2.01 server creates a window and uses SetParent() on the window of
 the container. When the container is resized to a smaller window than
 the server, the container can no longer be resized with the mouse over
 the server window. This is a side effect of calling SetParent() on a
 window that does not have style WS_CHILD.

 - GetSystemMetrics() does not check parameter to see if it is within
 range and returns garbage for out of range values.

 - Windows applications with focus can be overlapped.

 - In large font video mode, AdjustWindowRect() returns bad width if the
 window does not have a menu and a bad height if the window has a menu.

 - Prototypes for SetSystemCursor() and LoadCursorFromFile() are missing
 from WINUSER.H.

Additional reference words: 3.50 buglist3.50
KBCategory: kbprg kbnetwork kbbuglist
KBSubcategory: BseMisc GdiMisc NtwkMisc UsrMisc

BUG: Win32 SDK Version 3.5 Bug List - OLE

PSS ID Number: Q122679
Authored 09-Nov-1994 Last modified 10-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

The following lists the bugs in the Win32 SDK and OLE API that were known
when the SDK was released.

MORE INFORMATION

 - Packager will report that there is not enough memory when you try to
 package a file which is in use.

 - VB can't activate Word object if Word is running in separate VDM.

 - MFC 2.5 OLE 2.0 Automation Server fails initialization.

 - If a client thread terminates without calling CoUnitialize(), its
 servers in the same process are not released.

 - OLE 2.0 hides application aborts. The server does not receive the
 exception.

 - CoCreateInstance() returns REGDB_E_CLASSNOTREG when the object create
 fails, instead of the return code from DllGetClassObject() from the
 inproc server DLL.

 - OLE objects inherit only "system" environment variables, not "user"
 environment variables.

 - Users can log on and start an ole app before the OLE service is
 autostarted.

 - Passing CoMarshalInterface() a NULL pUnk (pointer to IUnknown)
 causes an access violation.

 - CoGetClassObject() returns E_OUTOFMEMORY when DllGetClassObject()
 fails.

 - If an OLE Server which dies after registering its class, the container
 will stall waiting for CoGetClassObject() to succeed.

 - Class cache never shrinks - all classes are treated as InUse.

 - Default handler causes RPC_E_FAULT exceptions during OnClose.

 - ::SetColorScheme() does not validate lpLogPal.

 - Messages for server ownerdraw menuitems on menu bar go to the
 container.

 - The server is started if you "Insert" a "Link from File" choosing
 icon format.

 - IsLinkUpToDate() returns S_FALSE after object creation. This can cause
 containers to run the server twice during creation of the object.

 - Setting the link source with IOL::SetSourceMoniker() does not update
 the presentation cache, even though it does run the server app.

 - AddRef() does not marshall count back properly for return value.

 - BindToStorage() on non-existent file returns MK_E_INVALIDEXTEN.

 - IOleCache::Cache() fails for ICON aspect unless metafile format is
 used.

 - IOleCache2::DiscardCache() does not persist uncaches.

 - If an enhanced metafile node exists and IOleCache::Cache is used to
 cache multiple NULL FORMATETCs, a node is added.

 - IViewObject::GetColorSet() after flushing cache should return
 OLE_E_BLANK, but signals Win32 error 0x8007000e.

 - OleDuplicateMedium() does not GlobalUnlock() source METAFILEPICT in
 the error case.

 - Iconic aspect has incorrect colors when played in metafile.

 - OLE Cache has a limit of 100 nodes, but accepts more and never
 returns from the call.

 - GetColorSet() for WMF should return LOGPALLETE, which is the union
 of colors used in the contained CreatePalette() calls. GetColorSet()
 only returns the first colorset found in this case.

Additional reference words: 3.50
KBCategory: kbprg kbbuglist
KBSubcategory: LeTwoMisc

BUG: Win32 SDK Version 3.5 Bug List - WinDbg Debugger

PSS ID Number: Q122681
Authored 09-Nov-1994 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

The following is a list of bugs in the WinDbg debugger that were known
at the time of the release of the Win32 SDK version 3.5.

MORE INFORMATION

 - Enter rgbGlobal, s in watch window (note: rgbGlobal is defined as a
 character array). The variable is displayed as a character string and
 an array that can be expanded. When expanding the array, the value of
 each element is "CAN0026: Error: bad format string."

 - REP and REPE are the same prefix codes. REPE is to be used for string
 comparisons and REP for all other instructions. WinDbg always uses REP.

 - Type information defined in a DLL is not available when the current
 context is another DLL or an EXE.

 - Breakpoint message classes do not match class list in SPY.

 - C++ expresssion evaluator doesn't handle default function arguments.
 This is because the compiler does not include them in the debug
 information.

 - Locals window updates on radix change.

 - Evaluation of a function with breakpoints returns an incomplete result.

 - The Memory Window can't be scrolled up before the starting address.

 - Locals window collapses expanded structures on change of scope, such
 as stepping into a block (not a new function).

 - The value of array members cannot be changed.

 - The expression evaluator does not handle casting from a class to a
 primitive data type.

 - Remove Last in Quickwatch only works once when multiple items are added
 to the watch list in a single quickwatch session.

 - The return value type is not reported for ?<FuncName>.

 - Function evaluation reports "Error: function requires implicit
 conversion" for a function taking a structure (not a pointer to
 a structure).

 - Watch window shift-key selection is not consistent: sometimes all
 characters from the beginning of the expression to the caret position
 are selected, sometimes 2 characters are selected.

 - User DLLs dialog silently discards edits after picking a DLL and
 changing the radio button from suppress to load.

 - Information windows don't maintain color after structure expansion.

 - WinDbg disassembles F2 66 F0 F0 AF as "repne lock lock sca" not
 "repne lock lock scasw".

 - Breakpoints may not work correctly in multithreaded apps in areas not
 protected by critical sections.

 - Choosing Stop Debugging and Restart causes memory leak (100K per
 iteration).

 - Combo box in dialog for browsing symbol files is too narrow to show
 the *.dbg.

 - Debug.Watch does not set default watch expression to the selection
 made in the source window.

 - If you set a conditional breakpoint, you step over it with an F10, and
 the condition is not currently satisfied, the program will run to
 completion, rather than stepping.

 - Long expression (?arg00+arg01+...+arg31) causes debuggee to run to
 termination.

 - ?<function returning near pointer> displays segment.

 - Windbg hangs if exited during aedebug start.

 - A vararg function evaluation fails on Mips and Alpha.

 - Private members may not be evaluatable.

 - First Command Window prompt after connecting to target machine for
 kernel debugging is ">", not "KDx86>", "KDMIPS>", or "KDALPHA>".

 - Context expression evaluation of item up the callstack cannot be
 evaluated and causes CXX0036: Error: bad context {...} specification.

 - Alpha: Disassembly of RS, RC, RPCC, FETCH, and FETCH_M instructions
 displays no operand.

 - Help file says "u" command is for unfreezing a thread. The "u" command
 is for unassemble; it is the "z" command that is used for unfreezing a
 thread.

 - Automatic forward searching not done by breakpoint dialog. Otherwise,
 when setting a breakpoint on a line that does not contain executable
 code, the breakpoint is set on the next executable line.

 - Automatic forward searching not done when modules are loaded. Otherwise,
 when setting a breakpoint on a line that does not contain executable
 code, the breakpoint is set on the next executable line.

 - OK button not always active on Set Process dialog.

 - Alpha: Large enumerated value not displayed correctly (16-bits instead
 of 32-bits).

 - The Delete button in User DLLs dialog is always active.

 - ?Spinlock::Spinlock should display the prototype for the function, but
 it causes CXX0046: Error: argument list required for member function.

 - Flat callstack displayed debugging 16-bit Windows-based application.

 - File menu Save_All is not enabled consistently on all platforms.

 - Page up/down goes farther than scroll thumb in the Memory Window.

 - Page up/down doesn't move scroll thumb in Memory Window.

 - Disassembler option "Display Symbols" ignored on Alpha.

 - Ppcodes always displayed in lower case in MIPS disasembly, even if
 "Uppercase symbols and opcodes" is checked.

 - Create several workspaces for a single program, choose Delete from the
 Program menu, and select several of the workspaces. WinDbg locks up
 when you select OK.

 - Deleting the last debugger DLL causes an access violation.

 - Bad caret movement when editing Memory Window with ASCII format.

 - Calls window not updated if the current thread is changed with the
 Set Thread dialog. The Calls window is updated if the Command window is
 used to set the current thread.

 - Thread-specific translations of segment registers is not done. The
 segment register is translated using thread 0's descriptor table.

 - When stepping over a function which contains a breakpoint, execution
 halts, but there is no message indicating that a breakpoint was hit.

 - Value of "this" pointer is incorrect in a virtual function in a derived
 class.

 - Based pointers in flat segments are displayed as a 16-bit value, not a
 32-bit value. In addition, nothing happens when you click the expansion

 button.

 - WINDBG won't set a breakpoint on code placed in memory and then
 executed.

 - Windbg does not know about all exceptions that can occur while
 debugging 16-bit code.

 - Alpha: CVTxx instructions disassembled with 3 operands, instead of
 only 2 operands. The first operand is wrong, the second operand would be
 the correct first operand, and the third operand would be the correct
 second operand.

 - !help <str> reports that there is no help available.

 - Set a breakpoint on a function call which spans multiple source lines,
 but don't set the breakpoint on the last line. Save the information and
 leave the debugger. When you restart WinDbg with the saved information,
 WinDbg cannot resolve the breakpoint.

 - Alpha: Cannot step through call through a function pointer.

 - Commands sxeld and sxdld cause the debugger to stop when a DLL is
 loaded.

 - If there are no symbols loaded, double-clicking a symbol in the call
 stack produces a disassembly window with a starting address of 0.

 - The following context operators cause "CXX0036: Error: bad context {...}
 specification":

 ?{,functest.c,functest.exe}count
 ?{,functest.c,}count

 The following context operators cause "CXX0017: Error: symbol not
 found":
 ?{,,functest.exe}count
 ?{,,}count

 - When the current instruction is "cmp dword ptr [esp+18],01", the
 register window shows a calculation based on [esp], rather than
 [esp+18].

 - WinDbg displays only the first letter of a 'const WCHAR *const'
 variable. Casting the variable to a WCHAR * in the Watch window
 works around the problem.

 - Run windbg -g cmd.exe and invoke a batch file that repeatedly invokes
 another command; WinDbg will leak memory.

 - x86: f2a6 is disassembled as "repnee cmpsb", not "repne cmpsb",
 f2a7 is disassembled as "repnee cmpsb", not "repne cmpsd",
 f2ae is disassembled as "repnee scasb", not "repne scasb",
 f2af is disassembled as "repnee scasd", not "repne scasd",
 f0a6 is disassembled as "locke cmpsb", not "lock cmpsb",

 f0af is disassembled as "locke scasd", not "lock scasd",
 f32ea6 is disassembled as "rep cmpsb", not "repe cmpsb",
 f326a7 is disassembled as "rep cmpsd", not "repe cmpsd",
 f32ea7 is disassembled as "rep cmpsd", not "repe cmpsd",
 f366a7 is disassembled as "rep cmpsw", not "repe cmpsw",
 f36665a7 is disassembled as "rep cmpsw", not "repe cmpsw",
 f326ae is disassembled as "rep scasb", not "repe scasb",
 f365af is disassembled as "rep scasd", not "repe scasd",
 f33eaf is disassembled as "rep scasd", not "repe scasd",
 f3f0af is disassembled as "rep locke scasw", not "repe lock scasw",
 f366af is disassembled as "rep scasw", not "repe scasw",
 f36636af is disassembled as "rep scasw", not "repe scasw".

 - dc doesn't accept the '&' prefix for an address specifier.

 - CXX0004: Error: syntax error on reference to float array. For
 example, the error is produced by "g .115;?Pf[8], where Pf is
 declared float Pf[11].

 - If you have a DLL built with multiple files with the same name (that
 live in different source directories), you cannot set a break point in
 2nd file with same name.

 - Error "CXX0034: Error: types incompatable with operator" accessing
 members, member functions, and overloaded operators of base classes
 and virtual base classes or a derived class.

 - Alpha: WinDbg doesn't display floating part of a float constant.

 - Crash dumps fail because of bad symbol lookup. This breaks !process
 when kernel debugging as well.

Additional reference words: 3.50
KBCategory: kbtool kbbuglist
KBSubcategory: TlsWindbg

BUG: Win32 Ver 3.5 SDK Bug List at Release - Subsystems & WOW

PSS ID Number: Q122048
Authored 25-Oct-1994 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

The following is a list of the bugs in the Win32 version 3.5 SDK that were
known when Win32 version 3.5 was released. The list is divided into three
sections: OS/2 Subsystem, POSIX Subsystem, and Windows on Win32 (WOW).

MORE INFORMATION

OS/2 Subsystem

 - Extended characters in editors don't work with right-hand Alt key.

 - DosRmDir() returns ERROR_PATH_NOT_FOUND, not ERROR_FILE_NOT_FOUND, if
 passed the name of a directory that does not exist.

 - CTRL-X doesn't show with OS/2 Epsilon, although it is received by the
 application.

 - DosSelectDisk() returns error if disk not ready, but not under OS/2.

 - DosFindFirst() doesn't find config.sys in the registry.

 - Ctrl-C doesn't centre text in Word 5.5 for OS/2.

 - Ctrl-C will not cancel Fortran 5.1 setup.

 - DosQApptype() returns ERROR_INVALID_EXE_SIGNATURE (191) if pszFileName
 does not use the correct .EXE format, but OS/2 returns
 ERROR_BAD_EXE_FORMAT (193).

 - DosMove() returns error 80 if the target file exists, but OS/2 returns
 error 5.

 - DosSetFileMode() returns error 0x02 if the file does not exist, but
 OS/2 returns error 0xCE.

 - OS/2 subsystem doesn't load REXXINIT.DLL on startup, as OS/2 does,
 so OS/2 applications using REXX will fail on the first attempt.

 - Flags3 field not preserved between DosDevIOCtl/ASYNC_SETDCB and
 DosDevIOCtl/ASYNC_GETDCB. Flags3 is always returned with a value of 3.

 - Many vio functions return the wrong error code.

 - Epsilon not jumping back after matching braces.

 - NetHandleGetInfo() returns error 87 at level 2 or level 3.

 - DosCreateThread() corrupts 11 words of temporary (under OS/2, only
 2 words are corrupted).

 - UUPC OS/2 1.x application tries to open and write to the com port. CTS
 and DTR come up, but RTS never does.

 - SQL 4.2 setup fails to configure sort order.

 - DosKillProcess() of ancestor with DKP_PROCESSTREE succeeds, but OS/2
 returns ERROR_NOT_DESCENDANT.

 - DosCWait() with DCWA_PROCESSTREE returns when the process terminates,
 not when the tree terminates.

 - OS/2 CMD.EXE hangs after running Epsilon or PWB.

 - Signals not held while resizing data segments with DosReallocSeg().

POSIX Subsystem

 - printf() doesn't check to see if writing fails on the first character;
 it tries to write the second character instead of returning an error.

Windows on Win32 (WOW)

 - GlobalSize() of handle returned by GetMetaFile() may not match.

 - Invalid TEMP environment variable causes problems, whereas Windows 3.1
 will use the root if the TEMP environment variable is invalid.

 - GetExitCodeProcess() does not return exit codes for WOW applications.

 - Floating point exceptions are not reported to the debugger.

 - Segment Load Failure in KRNL386 after using WINDISK.EXE.

 - Locking at negative offset fails on WOW with EACCES, but works under
 Windows.

 - WIN16 emulator incorrectly handles FBSTP instruction on MIPS, Alpha,
 and x86 with no math coprocessor.

 - WOW passes wrong size buffer to spooler when 16-bit application passes
 wrong size structure to WOW.

 - WOW uses Windows 3.0 devmode structure, not 3.1 devmode structure,
 which has two extra fields.

 - Fast Alt+Tab between WOW apps selects the File menu from one of the
 applications.

 - WM_MENUSELECT wParam and lParam are lost in PostMessage().

 - EndDeferWindowPos() returns 0 for success, but returns nonzero for
 success under Windows.

Additional reference words: 3.50 buglist3.50
KBCategory: kbprg kbbuglist
KBSubcategory: SubSys

BUG: Win32s 1.2 Bug List (at the Time of its Release)

PSS ID Number: Q121906
Authored 23-Oct-1994 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32s version 1.2

The following is a list of the known bugs in Win32s version 1.2 at the
time of its release.

 - EM_GETWORDBREAKPROC return code is incorrect.

 - Int 3 cannot be trapped via Structured Exception Handling (SEH) on
 Win32s.

 - GlobalAlloc(GMEM_FIXED) from 32-bit .EXE locks memory pages. It is
 more efficient to use GlobalAlloc(GMEM_MOVEABLE) and call GlobalFix()
 if necessary.

 - WinHlp32.exe will not run.

 - C Run-time functions getdcwd()/getcwd() do not work.

 - PlayMetaFileRecord()/EnumMetaFile() contain incorrect lpHTable.

 - Print setup common dialog does not work as expected (the dialog does
 not appear in some situations).

 - Size of memory mapped files is rounded to a whole number of pages,
 meaning that the size is a multiple of 4096 bytes.

 - Functions chdrive() and SetCurrentDirectory() fail on PCNFS network
 drives.

 - Calling CreateWindowEx() with a 32-bit menu handle causes int 3.

 - GetExitCodeProcess() does not return exit codes for Win16 applications.

 - FindFirstFile()/FindNextFile() return local time, not Universal
 Coordinated Time (UTC) time. This behavior matches Windows 3.1, but not
 Windows NT.

 - Memory passed to Netbios() must be allocated with GlobalAlloc().

 - biSizeImage field of BITMAPINFOHEADER is zero

 - CreateFile() on certain invalid long filenames closes Windows.

 - Only the first CBT hook gets messages.

 - GlobalUnlock() sets an error of ERROR_INVALID_PARAMETER.

 - CreateFile() with share options of 0 does not lock file.

 - lstrcmp()/lstrcmpi() do not use the collate table correctly.

 - FreeLibrary() in DLL_PROCESS_DETACH crashes system.

 - LockResource() does not return NULL if hResource is invalid.

 - sndPlaySound() may cause a crash or may work poorly.

 - GetVolumeInformation() fails for Universal Naming Convention (UNC)
 root path.

 - Stubbed API GetFileAttributesW() does not return -1 on error.

 - Code page CP_MACCP not supported.

 - Invalid LCIDs are not recognized.

 - CreateFile() fails to open an existing file in share mode.

 - CreateDirectory()/RemoveDirectory() handle errors differently on
 Windows NT and Win32s.

 - SetCurrentDirctory() returns different error codes than on Windows NT.

 - FindText() leaks memory.

 - FindText() may cause GP fault.

 - Not all 32-bit DLLs have correct version numbers.

 - WINMM16.DLL has no version information.

 - RegEnumValue() and other Registry functions return ERROR_SUCCESS even
 though they are not implemented. Win32s implements only the registry
 functions supported by Windows.

 - COMPOBJ.DLL calls FreeLibrary() on w32sys.dll, leaving the FP exception
 vector invalid. Causes crash, often out to MS-DOS. A binary patch for
 COMPBOJ.DLL is available in the Microsoft OLE 2.02 appnote WW1116.

 - CreatePolyPolygonRgn() is not closing the polygons.

 - SetDIBits() with DIB_PAL_INDICES is not supported (this behavior matches
 Windows 3.1, but not Windows NT).

 - Progman gets restored when debugger app exits.

 - Cannot do ReadProcessMemory (RPM) on memory that has a hardware break
 point set on it.

 - Pointer to common dialog structures (lParam) becomes invalid.

 - ResumeThread() while debugging writes to debuggee stack.

 - Fault in initialization if app has more than 128K bytes of local data.
 This is because the application stack is limited to 128K.

 - Using CVW debugger, exception will terminate the app being debugged.

 - RealizePalette() error on Windows NT is -1, but is not defined under
 Win32s.

 - Using StartDoc() does not produce document from printer.

 - Can't open file using full path with different drive in common dialog.

 - GetFileInformationByHandle() doesn't return correct file attribute.

 - GlobalReAlloc(x,y,GMEM_MOVEABLE) returns wrong handle type.

 - Thread Local Storage (TLS) data not initialized to zero in TlsAlloc().

 - spawnl() does not pass parameters to an MS-DOS application.

 - Incorrect context at EXIT_PROCESS_DEBUG_EVENT.

 - Win32s doesn't support language files other than default (l_intl.nls).

 - SetLocaleInfoW()/SetLocaleInfoA() not implemented.

 - GetScrollPos() fails if scroll pos is 0.

 - SetScrollPos() fails if last scroll pos is 0.

 - FreeLibrary() may crash when using universal thunks.

 - Win32s does not support forwarded exports.

 - GetCurrentDirectory() returns wrong directory after calling
 GetOpenFileName(). The workaround is to call SetCurrentDirectory(".")
 right after returning from the call to GetOpenFileName().

 - Changing system locale in Win32s will not have an effect until Win32s
 is loaded again, unlike on Windows NT.

 - Module management APIs missing ANSI to OEM translation.

 - LoadString() leaks memory if the string is a null string.

Additional reference words: 1.20
KBCategory: kbprg kbbuglist
KBSubcategory: W32s

BUG: Win32s 1.25a Bug List

PSS ID Number: Q130138
Authored 11-May-1995 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

The following is a list of the known bugs in Win32s version 1.25 at the
time of its release.

 - Incorrect context at EXIT_PROCESS_DEBUG_EVENT.

 - Progman gets restored when debugger app exits.

 - Using StartDoc() does not produce document from printer.

 - EM_GETWORDBREAKPROC return code is incorrect.

 - Int 3 cannot be trapped via Structured Exception Handling (SEH) on
 Win32s.

 - Win32s does not open all files in RAW mode, as Windows NT does.

 - Cannot do ReadProcessMemory (RPM) on memory that has a hardware
 breakpoint set on it.

 - C run-time functions getdcwd()/getcwd() do not work.

 - GetFullPathName() returns the root directory for any drive that is not
 the current drive.

 - PlayMetaFileRecord()/EnumMetaFile() contains incorrect lpHTable.

 - Size of memory mapped files is rounded to a whole number of pages,
 meaning that the size is a multiple of 4096 bytes.

 - Functions chdrive() and SetCurrentDirectory() fail on PCNFS network
 drives.

 - GetExitCodeProcess() does not return exit codes for 16-bit Windows-based
 applications.

 - Memory passed to Netbios() must be allocated with GlobalAlloc().

 - biSizeImage field of BITMAPINFOHEADER is zero.

 - CreateFile() on certain invalid long filesnames closes Windows.

 - Only the first CBT hook gets messages.

 - Most registry functions return the Windows 3.1 return codes, not the
 Windows NT return codes.

 - GlobalReAlloc(x,y,GMEM_MOVEABLE) returns wrong handle type.

 - GetVolumeInformation() fails for Universal Naming Convention (UNC)
 root path.

 - ResumeThread while debugging writes to debuggee stack.

 - GetShortPathName() doesn't fail with a bad path, as it does on
 Windows NT.

 - CreateDirectory()/RemoveDirectory() handle errors differently than on
 Windows NT.

 - SetCurrentDirctory() returns different error codes than on Windows NT.

 - FindText() leaks memory.

 - Win32s doesn't support language files other than default (l_intl.nls).

 - spawnl does not pass parameters to an MS-DOS-based application.

 - Win32s does not support forwarded exports.

 - GetDlgItemInt() only translates numbers <= 32767 (a 16-bit integer).

 - Changing system locale in Win32s will not have an effect until Win32s
 is loaded again, unlike on Windows NT.

 - Module Management APIs missing ANSI to OEM translation.

 - When WS_TABSTOP is passed to CreateWindow(), this forces a
 WS_MAXIMIZEBOX.

 - Stubbed API FindFirstFileW() does not return -1 to indicate failure.

 - SearchPath() and OpenFile() don't work properly with OEM chars in the
 filename.

 - GetSystemInfo() doesn't set correct ProcessorType for the Pentium.

 - FormatMessage() doesn't set last error.

 - FormatMessage() fails with LANG_NEUTRAL | SUBLANG_DEFAULT, but works
 with LANG_ENGLISH | SUBLANG_ENGLISH_US.

 - After calling CreateFile() on a write-protected floppy GetLastError()
 returns 2, instead of 19, as it should.

 - VirtualProtect() with anything other than PAGE_NOACCESS, PAGE_READ, OR
 PAGE_READWRITE yields unpredictable page protections.

 - COMPAREITEMSTRUCT, DELETEITEMSTRUCT, DRAWITEMSTRUCT, AND
 MEASUREITEMSTRUCT incorrectly sign-extend fields.

 - GetWindowTextLength() & GetWindowText() incorrectly sign-extend the
 return value.

 - MoveFile() fails on Windows for Workgroups when the source is remote and
 the destination is local.

Additional reference words: 1.25 1.25a
KBCategory: kbprg kbbuglist
KBSubcategory: W32s

BUG: WNetGetUniversalName Fails Under Windows 95

PSS ID Number: Q131416
Authored 11-Jun-1995 Last modified 12-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

The WNetGetUniversalName function takes a drive-based path for a network
resource and obtains a data structure that contains a more universal form
of the name. This function always fails with error 1200 when called from a
32-bit application running under Windows 95.

WORKAROUND

The functionality provided by WNetGetUniversalName can be implemented using
the Win32 network enumeration functions WNetOpenEnum and WNetEnumResource.
Here is an example of how to use these functions to implement similiar
functionality:

#include <windows.h>
#include <stdio.h>

// Function Name: GetUniversalName
//
// Parameters: szUniv - contains the UNC equivalent of szDrive
// upon completion
//
// szDrive - contains a drive based path
//
// Return value: TRUE if successful, otherwise FALSE
//
// Comments: This function assumes that szDrive contains a
// valid drive based path.
//
// For simplicity, this code assumes szUniv points
// to a buffer large enough to accomodate the UNC
// equivalent of szDrive.

BOOL GetUniversalName(char szUniv[], char szDrive[])
{
 // get the local drive letter
 char chLocal = toupper(szDrive[0]);

 // cursory validation
 if (chLocal < 'A' || chLocal > 'Z')
 return FALSE;

 if (szDrive[1] != ':' || szDrive[2] != '\\')

 return FALSE;

 HANDLE hEnum;
 DWORD dwResult = WNetOpenEnum(RESOURCE_CONNECTED, RESOURCETYPE_DISK,
 0, NULL, &hEnum);

 if (dwResult != NO_ERROR)
 return FALSE;

 // request all available entries
 const int c_cEntries = 0xFFFFFFFF;
 // start with a reasonable buffer size
 DWORD cbBuffer = 50 * sizeof(NETRESOURCE);
 NETRESOURCE *pNetResource = (NETRESOURCE*) malloc(cbBuffer);

 BOOL fResult = FALSE;

 while (TRUE)
 {
 DWORD dwSize = cbBuffer,
 cEntries = c_cEntries;

 dwResult = WNetEnumResource(hEnum, &cEntries, pNetResource,
 &dwSize);

 if (dwResult == ERROR_MORE_DATA)
 {
 // the buffer was too small, enlarge
 cbBuffer = dwSize;
 pNetResource = (NETRESOURCE*) realloc(pNetResource, cbBuffer);
 continue;
 }

 if (dwResult != NO_ERROR)
 goto done;

 // search for the specified drive letter
 for (int i = 0; i < (int) cEntries; i++)
 if (pNetResource[i].lpLocalName &&
 chLocal == toupper(pNetResource[i].lpLocalName[0]))
 {
 // match
 fResult = TRUE;

 // build a UNC name
 strcpy(szUniv, pNetResource[i].lpRemoteName);
 strcat(szUniv, szDrive + 2);
 _strupr(szUniv);
 goto done;
 }
 }

done:
 // cleanup
 WNetCloseEnum(hEnum);

 free(pNetResource);

 return fResult;

}

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 Win95
KBCategory: kbnetwork kbbuglist kbcode
KBSubcategory: NtwkWinnet

Button and Static Control Styles Are Not Inclusive

PSS ID Number: Q74297
Authored 15-Jul-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

The class-specific window styles for button controls (BS_*) are mutually
exclusive, as are the class-specific window styles for static controls
(SS_*). In other words, they cannot be OR'd together as can most styles for
edit controls, list boxes, and combo boxes.

For example, the following style is invalid:

 BS_OWNERDRAW | BS_AUTORADIOBUTTON

A button control is either owner-draw or it is not. In the same
manner, the following style is also invalid:

 SS_LEFT | SS_GRAYFRAME

WINDOWS.H defines button and static styles sequentially (1, 2, 3...),
instead of as individual bits (1, 2, 4...) as other control's styles are
defined. If sequential styles are OR'd together, the resulting style may be
completely different from that intended.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Calculating String Length in Registry

PSS ID Number: Q94920
Authored 25-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

When writing a string to the registry, you must specify the length of the
string, including the terminating null character (\0). A common error is to
use strlen() to determine the length of the string, but to forget that
strlen() returns only the number of characters in the string, not including
the null terminator.

Therefore, the length of the string should be calculated as:

 strlen(string) + 1

Note that a REG_MULTI_SZ string, which contains multiple null-terminated
strings, ends with two (2) null characters, which must be factored into the
length of the string. For example, a REG_MULTI_SZ string might resemble the
following in memory:

 string1\0string2\0string3\0laststring\0\0

When calculating the length of a REG_MULTI_SZ string, add the length of
each of the component strings, as above, and add one for the final
terminating null.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Calculating Text Extents of Bold and Italic Text

PSS ID Number: Q74298
Authored 15-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

GetTextExtent() can be used to calculate the extent of a string. The value
returned may need to be adjusted, depending upon the style of the font.
When an italic or bold font is requested and none are available, the
graphics device interface (GDI) may simulate those styles using an existing
raster or vector font.

MORE INFORMATION

GDI-simulated bold and italic fonts both include overhangs. The
overhang is specified in a TEXTMETRIC structure obtained by calling
the GetTextMetrics function. The proper method for calculating the
extent of a line of italic or bold text is shown below:

 dwExtent = GetTextExtent(hDC, lpString, nCount);
 GetTextMetrics(hDC, &tm);
 xExtent = LOWORD(dwExtent) - tm.tmOverhang;

Listed below are examples of italic text alignment. If the next
character is not italic, the overhang should not be subtracted
from the extent returned from the GetTextExtent function. The
overhang needs to be subtracted only when the next character has the
same style.

 GetTextExtent yields
 this as the extent:

 ||
 / / \/
 / / / / / / / /| |
 /---/ / / / / / / | |
 / / /---/ /---/ /---/ |---|
 / / / / / / / / | |
 ----- / / / / / / | |
 ^ /\ /\
 Overhang || ||
 Because the next Start the nonitalic H
 character is italic, here because it does not
 start the next slant and would partially
 character within the overwrite the previous

 overhang of the italic character.
 current character

The overhang for bold characters synthesized by GDI is generally 1
because GDI synthesizes bold fonts by outputting the text twice,
offsetting the second output by one pixel, effectively increasing the
width of each character by one pixel. Calculating the extent of the
bold text is similar to the method for italic text. The
GetTextExtent function always returns the extent of the text plus 1
for bold text. Thus by subtracting the tmOverhang(1), the proper
extent is achieved.

 || ||
 || ||
 ||===||
 || ||
 || ||
 ---<= This line represents the "extra" overhang of 1.
 /\
 ||
 GetTextExtent yields
 this as the extent of the
 bold H.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Calculating The Logical Height and Point Size of a Font

PSS ID Number: Q74299
Authored 15-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

To create a font in the Microsoft Windows graphical environment given only
the required point size, an application must calculate the logical height
of the font because the CreateFont() and CreateFontIndirect() functions use
logical units to specify height.

To describe a font to the user, an application can calculate a font's point
size, given its height. This article provides the formulas required to
perform these calculations for the MM_TEXT mapping mode. You will have to
derive a new equation to calculate the font size in another mapping mode.

MORE INFORMATION

To calculate the logical height, use the following formula:

 Point Size * LOGPIXELSY
 height = Internal Leading + -------------------------
 72

LOGPIXELSY is the number of pixels contained in a logical inch on the
device. This value is obtained by calling the GetDeviceCaps() function with
the LOGPIXELSY index. The value 72 is significant because one inch contains
72 points.

The problem with this calculation is that there is no method to determine
the internal leading for the font because it has not yet been created. To
work around this difficulty, use the following variation of the formula:

 -(Point Size * LOGPIXELSY)
 height = --------------------------
 72

This formula may also be written as follows:

 plf->lfHeight = -MulDiv (nPtSize, GetDeviceCaps (hdc, LOGPIXELSY), 72);

When an application calls the CreateFont() or CreateFontIndirect()
functions and specifies a negative value for the height parameter, the font
mapper provides the closest match for the character height rather than the
cell height. The difference between the cell height and the character

height is the internal leading, as demonstrated by the following diagram:

 ---------- <------------------------------
 | | |- Internal Leading |
 | | | | <--------- |
 | | | | | |- Cell Height
	---			- Character Height
 ---------- <------------------------------

The following formula computes the point size of a font:

 (Height - Internal Leading) * 72
 Point Size = --------------------------------
 LOGPIXELSY

The Height and Internal Leading values are obtained from the
TEXTMETRIC data structure. The LOGPIXELSY value is obtained from the
GetDeviceCaps function as outlined above.

Round the calculated point size to the nearest integer. The Windows
MulDiv() function rounds its result and is an excellent choice to
perform the above calculation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Calculating the Point Size of a Font

PSS ID Number: Q74300
Authored 15-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The generic formula listed below can be used to compute the point size of a
font in the MM_TEXT mapping mode. Any other mapping mode will require a
different equation, because the Height will be in a different unit.

MORE INFORMATION

 (Height - Internal Leading) * 72
 Point Size = ---------------------------------
 LOGPIXELSY

 Height - Cell height obtained from the TEXTMETRIC structure.

 Internal Leading - Internal leading obtained from TEXTMETRIC
 structure.

 72 - One point is 1/72 of an inch.

 LOGPIXELSY - Number of pixels contained in a logical inch on the
 device. This value can be obtained by calling the
 GetDeviceCaps() function and specifying the LOGPIXELSY
 index.

The value returned from this calculation should be rounded to the nearest
integer. The Windows MulDiv() function rounds its result and is an
excellent choice for performing the above calculation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Calculating the TrueType Checksum

PSS ID Number: Q102354
Authored 03-Aug-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

To calculate a TrueType checksum:

1. Sum all the ULONGS in the .TTF file, except the checkSumAdjust
 field (which contains the calculated checksum). Note that TrueType
 files are big-endian, while Windows and Windows NT are little-endian,
 so the bytes must be swapped before they are summed.

2. Subtract the result from the magic number 0xb1b0afba.

MORE INFORMATION

Example

1. Open the SYMBOL.TTF distributed with Windows NT. It is 64492 bytes
 long.

2. Step through the 16123 ULONGS, summing each one, except for the
 checkSumAdjust field for the file (which in this case is
 0xa7a81151).

3. Subtract the result from 0xb1b0afba. The result is 0xa7a81151.

The TrueType font file specification is available from several sources,
including the Microsoft Software Library (query on the word
TTSPEC1).

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Call the Windows Help Search Dialog Box from Application

PSS ID Number: Q86268
Authored 01-Jul-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

In the Microsoft Windows environment, an application can invoke the Search
dialog box of the Windows Help application independent of the main help
window. For example, many applications have an item like "Search for Help
on" in their Help menus.

An application can invoke the Search dialog box via the WinHelp
function by specifying HELP_PARTIALKEY as the value for the fuCommand
parameter and by specifying a pointer to an empty string for the
dwData parameter. The following code demonstrates how to call the
Windows Help Search dialog box from an application:

LPSTR lpszDummy,
 lpszHelpFile;

// Allocate memory for strings
lpszDummy = malloc(5);
lpszHelpFile = malloc(MAX_PATH);

// Initialize an empty string
lstrcpy(lpszDummy, "");

// Initialize the help filename
lstrcpy(lpszHelpFile, "c:\\windows\\myhelp.hlp");

// Call WinHelp function
WinHelp(hWnd, lpszHelpFile, HELP_PARTIALKEY, (DWORD)lpszDummy);

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Calling 16-bit Code from Win32-based Apps in Windows 95

PSS ID Number: Q125715
Authored 02-Feb-1995 Last modified 01-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

As a developer, you may need to access the functionality provided by a 16-
bit DLL from your Win32-based applications. This is true particularly when
you do not have the source code for the DLL so that you can port it to
Win32. This article discusses the mechanism by which Win32-based DLLs can
call Windows-based DLLs. The mechanism is called a thunk and the method
implemented under Windows 95 is called a flat thunk.

The three major steps in writing the thunk code are:

1. Creating the Thunk Script
2. Building the Win32-based DLL
3. Building the Windows-based DLL

MORE INFORMATION

The recommended way to design a thunk call is to isolate all thunk
specific code in DLLs (a 16-bit DLL and a 32-bit DLL, to provide both sides
of the thunk). That way, you can install certain DLLs on one platform and
replace them on another platform, for portability.

Designing a new flat thunk involves creating a thunk script (.THK file).
This script is compiled with the Thunk Compiler into an assembly file. This
file is assembled using two different flags: -DIS_32 and -DIS_16. This
allows you to create both the 16-bit and 32-bit object modules. These
object modules are linked in the Windows-based and Win32-based DLLs,
respectively. The following diagram summarizes the files involves in
building the DLLs.

 +------------+
 | 32to16.THK |
 +------------+
 |
 +------------+
 | 32to16.ASM |
 +------------+
 / \
 +-----------+ +-----------+
 | 32THK.OBJ | | 16THK.OBJ |
 +-----------+ +-----------+
 / \
 +-------+ +-------+ +-------+

 | APP32 | -> | DLL32 | -- THUNK -- | DLL16 |
 +-------+ +-------+ +-------+

Creating the Thunk Script

You need to create a script that will be used by the thunk compiler to
create a thunk. A thunk script contains the function prototype and a
specification for the input and output values. You need to include the
following statement to create a 32-bit to 16-bit thunk call:

 enablemapdirect3216 = true

The following is an example of a simple thunk script for a function that
has no input and output:

 enablemapdirect3216 = true

 void MyThunk16()
 {
 }

The following is an example of script that takes two parameters and
returns a value. The second parameter is an output parameter and
contains a pointer that is passed back to the Win32-based DLL.

 enablemapdirect3216 = true

 typedef int BOOL;
 typedef char *LPSTR;

 BOOL MyThunk32(LPSTR lpstrInput, LPSTR lpstrOutput)
 {
 lpstrOutput = output;
 }

The statement "lpstrOutput = output" tells the script compiler that the
16-bit code will return an address that needs to be converted from a
selector:offset pointer to a flat memory pointer.

The following thunk script uses more complex parameter types, such as
structures. This example also shows how to specify input and output
parameters.

 enablemapdirect3216 = true

 typedef int BOOL;
 typedef unsigned int UINT;
 typedef char *LPSTR;

 typedef struct tagPOINT {
 INT x;
 INT y;
 } POINT;

 typedef POINT *LPPOINT;

 typedef struct tagCIRCLE {
 POINT center;
 INT radius;
 } CIRCLE;
 typedef CIRCLE *LPCIRCLE

 void MyThunk32(LPCIRCLE lpCircleInOut)
 {
 lpCircleInOut = InOut;
 }

The statement "lpCircleInOut = InOut" tells the script compiler that
this pointer is going to be used for input and output. This means that
conversion from a flat memory pointer to a 16-bit selector:offset and
vice-versa needs to be accomplished.

The thunk compiler usage is as follows:

 thunk.exe /options <inputfile> -o <outputfile>

The following command line shows how to create a 16-bit thunk code.

 thunk -t thk 32to16.thk -o 32to16.asm

The "-t thk" option tells the thunk compiler to prefix the thunk
functions in the assembly language file with "thk_." This will create an
assembly language file.

Building the Win32-based DLL (DLL32)

1. In the DllEntryPoint function (DllMain if you're using the Microsoft
 C Run-time libraries) in your Win32-based DLL, you must make a call
 to the imported function thk_ThunkConnect32, as shown here:

 BOOL WINAPI DllMain(HINSTANCE hDLLInst,
 DWORD fdwReason,
 LPVOID lpvReserved)
 {
 if (!thk_ThunkConnect32("DLL16.DLL",
 "DLL32.DLL",
 hDLLInst,
 fdwReason))
 {
 return FALSE;
 }
 switch (fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 break;

 case DLL_PROCESS_DETACH:
 break;

 case DLL_THREAD_ATTACH:
 break;

 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
 }

2. Include the following lines in the EXPORT section of the module
 definition (DEF) file for DLL32.

 thk_ThunkData32

3. Export the function that you are thunking to.

4. Assemble the assembly language file produced by the thunk compiler as a
 32-bit object module. The following line shows an example:

 ml /DIS_32 /c /W3 /nologo /coff /Fo thk32.obj 32to16.asm

5. Link this object module as part of the Win32-based DLL (DLL32).

Building the Windows-based DLL (DLL16)

1. The Windows-based DLL must export a function named "DllEntryPoint". This
 function must make a call to an imported function thk__ThunkConnect16.

 BOOL FAR PASCAL __export DllEntryPoint(DWORD dwReason,
 WORD hInst,
 WORD wDS,
 WORD wHeapSize,
 DWORD dwReserved1,
 WORD wReserved 2)
 {
 if (!thk_ThunkConnect16("DLL16.DLL",
 "DLL32.DLL",
 hInst,
 dwReason))
 {
 return FALSE;
 }
 return TRUE;
 }

2. Include the following lines in the IMPORTS section of the module
 definition (DEF) file for DLL16:

 C16ThkSL01 = KERNEL.631
 ThunkConnect16 = KERNEL.651

3. Include the following lines in the EXPORTS section of the module
 definition (DEF) file for DLL16. The THK_THUNKDATA16 is defined in the

 object file that is assembled from the output of the thunk compiler.

 THK_THUNKDATA16 @1 RESIDENTNAME
 DllEntryPoint @2 RESIDENTNAME

4. Once you have done that you need to assemble the assembly language
 file produced by the thunk compiler as a 16-bit object module. The
 following line shows an example:

 ml /DIS_16 /c /W3 /nologo /Fo thk16.obj 16to32.asm

5. Link this object module as part of the 16-bit DLL (DLL16) object file.

6. Mark the Windows-based DLL as version 4.0. To do this you can use the
 resource compiler (RC.EXE). The following line shows the syntax:

 rc -40 <DLL file>

 This -40 option is available in the resource compiler that is provided
 with the Windows 95 SDK and later SDKs.

Additional reference words: 4.00 95 flat thunk win16
KBCategory: kbprg
KBSubcategory: SubSys BseMisc

Calling 32-bit Code from 16-bit Apps in Windows 95

PSS ID Number: Q125718
Authored 02-Feb-1995 Last modified 01-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

It is often desirable to port 16-bit Windows-based applications to Win32 a
little at a time, rather than all at once. For example, you may want to
port Windows-based DLLs to Win32, but still be able to call them from 16-
bit code. This article discusses the mechanism by which Windows-based DLLs
can call Win32-based DLLs. The mechanism is called a thunk and the method
implemented under Windows 95 is called a flat thunk.

The three major steps in writing the thunk code are:

1. Creating the Thunk Script
2. Building the Windows-based DLL
3. Building the Win32-based DLL

MORE INFORMATION

The recommended way to design a thunk call is to isolate all thunk
specific code in DLLs (a 16-bit DLL and a 32-bit DLL, to provide both sides
of the thunk). That way, you can install certain DLLs on one platform and
replace them on another platform, for portability.

Designing a new flat thunk involves creating a thunk script (.THK file).
This script is compiled with the Thunk Compiler into an assembly file. This
file is assembled using two different flags: -DIS_32 and -DIS_16. This
allows you to create both the 16-bit and 32-bit object modules. These
object modules are linked in the Windows-based and Win32-based DLLs,
respectively. The following diagram summarizes the files involves in
building the DLLs.

 +------------+
 | 16to32.THK |
 +------------+
 |
 +------------+
 | 16to32.ASM |
 +------------+
 / \
 +-----------+ +-----------+
 | 16THK.OBJ | | 32THK.OBJ |
 +-----------+ +-----------+
 / \
 +-------+ +-------+ +-------+

 | APP16 | -> | DLL16 | -- THUNK -- | DLL32 |
 +-------+ +-------+ +-------+

Creating the Thunk Script

You need to create a script that will be used by the thunk compiler to
create a thunk. A thunk script contains the function prototype and a
specification for the input and output values. You need to include the
following statement to create a 16-bit to 32-bit thunk call:

 enablemapdirect1632 = true

By default, the Win32-based DLL is loaded only on the first encounter of a
16->32 thunk. Because late binding is used, 16-bit code must not depend on
any action taken by the initialization of the Win32-based DLL. Also a
loading failure of the Win32-based DLL will not be detected until the first
16->32 thunk has been called. To disable late binding of the Win32-based
DLL add the following line in your thunk script:

 preload32=true;

The following is an example of a simple thunk script for a function that
has no input and output:

 enablemapdirect1632 = true

 void MyThunk32()
 {
 }

The following is an example of script that takes two parameters and
returns a value. The second parameter is an output parameter and
contains a pointer that is passed back to the Windows-based DLL.

 enablemapdirect1632 = true

 typedef int BOOL;
 typedef char *LPSTR;

 BOOL MyThunk32(LPSTR lpstrInput, LPSTR lpstrOutput)
 {
 lpstrOutput = output;
 }

The statement "lpstrOutput = output" tells the script compiler that
the 32-bit code will return an address that needs to be converted from
flat memory pointer to a selector:offset pointer.

The following thunk script uses more complex parameter types, such as
structures. This example also shows how to specify input and output
parameters.

 enablemapdirect1632 = true

 typedef int BOOL;
 typedef unsigned int UINT;
 typedef char *LPSTR;

 typedef struct tagPOINT {
 INT x;
 INT y;
 } POINT;
 typedef POINT *LPPOINT;

 typedef struct tagCIRCLE {
 POINT center;
 INT radius;
 } CIRCLE;
 typedef CIRCLE *LPCIRCLE

 void MyThunk32(LPCIRCLE lpCircleInOut)
 {
 lpCircleInOut = InOut;
 }

The statement "lpCircleInOut = InOut" tells the script compiler that
this pointer is going to be used for input and output. This means that
conversion from a 16-bit selector:offset to a flat memory pointer and
vice-versa needs to be accomplished.

The thunk compiler usage is as follows:

 thunk.exe /options <inputfile> -o <outputfile>

The following line shows how to create a 16-bit thunk code.

 thunk -t thk 16to32.thk -o 16to32.asm

The "-t thk" option tells the thunk compiler to prefix the thunk
functions in the assembly language file with "thk_". This will create
an assembly language file.

Building the Windows-based DLL (DLL16)

1. The Windows-based DLL must export a function named "DllEntryPoint". This
 function must make a call to an imported function thk__ThunkConnect16.

 BOOL FAR PASCAL __export DllEntryPoint(DWORD dwReason,
 WORD hInst,
 WORD wDS,
 WORD wHeapSize,
 DWORD dwReserved1,
 WORD wReserved 2)
 {
 if (!thk_ThunkConnect16("DLL16.DLL",
 "DLL32.DLL",
 hInst,
 dwReason))

 {
 return FALSE;
 }
 return TRUE;
 }

2. Include the following lines in the IMPORTS section of the module
 definition (DEF) file for DLL16.

 C16ThkSL01 = KERNEL.631
 ThunkConnect16 = KERNEL.651

3. Include the following lines in the EXPORTS section of the module
 definition (DEF) file for DLL16. The THK_THUNKDATA16 is defined in the
 object file that is assembled from the output of the thunk compiler.

 THK_THUNKDATA16 @1 RESIDENTNAME
 DllEntryPoint @2 RESIDENTNAME

4. Once you have done that you need to assemble the assembly language
 file produced by the thunk compiler as a 16-bit object module. The
 following line shows an example:

 ml /DIS_16 /c /W3 /nologo /Fo thk16.obj 16to32.asm

5. Link this object module as part of the 16-bit DLL (DLL16) object file.

6. Mark the Windows-based DLL as version 4.0. To do this you can use the
 resource compiler (RC.EXE). The following line shows the syntax:

 rc -40 <DLL file>

 This -40 option is available in the resource compiler that is provided
 with the Windows 95 SDK and later SDKs.

Building the Win32-based DLL (DLL32)

1. In the DllEntryPoint function (DllMain if you're using the Microsoft
 C Run-time libraries) in your Win32-based DLL, you must make a call
 to the imported function thk_ThunkConnect32, as shown here:

 BOOL WINAPI DllMain(HINSTANCE hDLLInst,
 DWORD fdwReason,
 LPVOID lpvReserved)
 {
 if (!thk_ThunkConnect32("DLL16.DLL",
 "DLL32.DLL",
 hDLLInst,
 fdwReason))
 {
 return FALSE;
 }
 switch (fdwReason)
 {

 case DLL_PROCESS_ATTACH:
 break;

 case DLL_PROCESS_DETACH:
 break;

 case DLL_THREAD_ATTACH:
 break;

 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
 }

2. Include the following lines into the EXPORT section of the module
 definition (DEF) file for DLL32:

 thk_ThunkData32

3. Export the function that you are thunking to.

4. Assemble the assembly language file produced by the thunk compiler as a
 32-bit object module. The following line shows an example:

 ml /DIS_32 /c /W3 /nologo /coff /Fo thk32.obj 16to32.asm

5. Link this object module as part of the Win32-based DLL (Win32).

Additional reference words: 4.00 95 flat thunk win16
KBCategory: kbprg
KBSubcategory: SubSys BseMisc

Calling a New 32-bit API from a 16-bit Application

PSS ID Number: Q125674
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 supports a new set of APIs for 32-bit applications. These APIs
are exported by USER32, GDI32, KERNEL32, and so on. In Windows 95, some of
these new APIs are also exported by the 16-bit counterpart DLLs in the
system such as USER16, GDI16, and so on. But 16-bit applications running on
Windows 95 should not call these new APIs from the 16-bit system DLLs
because these calls are not unsupported and might be removed from the
16-bit system DLLs in the future.

MORE INFORMATION

APIs such as WindowFromDC(), SetWindowRgn(), SetForeGroundWindow(), and so
on for 16-bit USER window management and PolyBezier(), PolyBezierTo(), and
so on for 16-bit GDI graphics management are exported from the 16-bit
system DLLs.

Even though these APIs are intended for 32-bit applications, the 16-bit
system DLLs export some of them. 16-bit Windows 95 Applications should not
call them. They are not supported and the APIs will not work as intended.

If Windows 95 Applications need to use these APIs, port the 16-bit
application to 32-bit. This is the best solution and is the one that
Microsoft recommends. One addtional solution is to write a 32-bit DLL that
actually calls the 32-bit API; then the 16-bit application can thunk into
this 32-bit DLL. However, Microsoft strongly discourages developers from
having applications thunk into sytem DLLs (16- or 32-bit).

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrMisc

Calling a Win32 DLL from a Win16 App on Win32s

PSS ID Number: Q97785
Authored 21-Apr-1993 Last modified 22-Mar-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2

SUMMARY

A Windows version 3.1 application can call a Win32 dynamic-link library
(DLL) under Win32s using Universal Thunks.

The following are required components (in addition to the Windows 3.1
application and the Win32 DLL):

 - A 16-bit DLL that provides the same entry points as the Win32 DLL.
 This serves as the 16-bit end for the Universal Thunk. The
 programmer must also include code that will detect whether the
 32-bit side is loaded.

 - A Win32 DLL that sets up the Universal Thunk. This serves as the
 32-bit end of the Universal Thunk. This DLL is supported only under
 Win32s.

 - A Win32 EXE that loads the 32-bit DLL described above.

NOTE: Universal Thunks were designed to work with a Win32-based application
calling a 16-bit DLL. The method described here has limitations. Because
the application is 16-bit, no 32-bit context is created, so certain calls
will not work from the Win32 DLL. For example, the first time you call
malloc() or new() from a DLL entrypoint called by the 16-bit application,
the system will hang. This is because MSVCRT20.DLL is using TLS to store C
Run-time state information and there is no TLS set up.

MORE INFORMATION

The following diagram illustrates how the pieces fit together:

 ----------- ----------- ---------
 | Win32 EXE |-->| Win32 DLL |<->| Win32 |
 32-bit | (stub) | | (UT) | | DLL |
 ----------- ----------- ---------
 /|\ /|\
 -----------------|--------|-------------------------
 | \|/
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (UT) |
 --------- ------------

The load order is as follows: The Windows 3.1 application loads the 16-bit
DLL. The 16-bit DLL checks to see whether the 32-bit side has been
initialized. If it has not been initialized, then the DLL spawns the 32-bit
EXE (stub), which then loads the 32-bit DLL that sets up the Universal
Thunks with the 16-bit DLL. Once all of the components are loaded and
initialized, when the Windows 3.x application calls an entry point in the
16-bit DLL, the 16-bit DLL uses the 32-bit Universal Thunk callback to pass
the data over to the 32-bit side. Once the call has been received on the
32-bit side, the proper Win32 DLL entry point can be called.

Note that the components labeled Win32 DLL (UT) and Win32 DLL in the
diagram above can be contained in the same Win32 DLL. Remember that the
code in the Win32 DLL (UT) portion isn't supported under Windows NT, so
this code must be special-cased if the DLLs are combined.

For more information, please see the "Win32s Programmer's Reference."

For a sample program, see the following file on CompuServe, in the
MSWIN32 forum:

 LIB 14 !dir /des /long /lib:all rev*.*
 [76150,2543] Lib:14
 REVUT./Bin Bytes: 8848, Count: 205, 10-Jan-94 Last:29-Jul-94

 Title : Revut
 Keywords: UT UNIVERSAL THUNK WIN32S 32-BIT DLL 16-BIT APP

 16-bit app calling a 32 bit dll under win32s (reverse UT)

Additional reference words: 1.10 1.20 reverse universal thunk
KBCategory: kbprg
KBSubcategory: W32s

Calling a Win32 DLL from a Win16 Application Under WOW

PSS ID Number: Q104009
Authored 02-Sep-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Under Windows NT, it is possible to call routines in a Win32 dynamic-link
library (DLL) from a 16-bit Windows application using an interface called
Windows on Win32 (WOW) Generic Thunking. This is not to be confused with
Win32s Universal Thunks, which provides this functionality under Windows
3.1.

NOTE: Windows 95 also supports Generic Thunks.

WOW presents a few new 16-bit application programming interfaces (APIs)
that allow you to load the Win32 DLL, get the address of the DLL routine,
call the routine (passing it up to thirty-two 32-bit arguments), convert
16:16 (WOW) addresses to 0:32 addresses (useful if you need to build up a
32-bit structure that contains pointers and pass a pointer to it), and free
the Win32 DLL.

The Generic Thunks specification is included on the Win32 SDK CD in
\DOC\SDK\MISC\GENTHUNK.TXT. However, the 3.1 version of this document does
not include correct information for all of the function prototypes. The 3.5
version of the document has been corrected and it includes information on
new APIs introduced in 3.5 for thunking.

The following prototypes should be used:

 DWORD FAR PASCAL LoadLibraryEx32W(LPCSTR, DWORD, DWORD);
 DWORD FAR PASCAL GetProcAddress32W(DWORD, LPCSTR);
 DWORD FAR PASCAL CallProc32W(DWORD, ..., LPVOID, DWORD, DWORD);
 DWORD FAR PASCAL GetVDMPointer32W(LPVOID, UINT);
 BOOL FAR PASCAL FreeLibrary32W(DWORD);

Note that although these functions are called in 16-bit code, they need to
be provided with 32-bit handles, and they return 32-bit handles.

In addition, be sure that your DLL routines are declared with the _stdcall
convention; otherwise, you will get an access violation.

CallProc32W() is a Pascal function which was designed to take a variable
number of arguments, a Proc address, a mask, and the number of parameters.
The mask is used to specific which arguments should be treated as being
passed by value and which parameters should be translated from 16:16
pointers to flat pointers. Note that the low-order bit of the mask
represents the last parameter, the next lowest bit represents the next to
the last parameter, and so forth.

NOTE: It is a good idea to test the Win32 DLL by calling it from a Win32-
based application before attemting to call it from a 16-bit Windows-based
application, because the debugging support is superior in the 32-bit
environment.

MORE INFORMATION

Sample

The following code fragments can be used as a basis for Generic Thunks.
Assume that the 16-bit Windows-based application is named app16, that the
Win32 DLL is named dll32, and that the following are declared:

 typedef void (FAR PASCAL *MYPROC)(LPSTR);

 DWORD ghLib;
 MYPROC hProc;
 char FAR *TestString = "Hello there";

The DLL routine is defined in dll32.c as follows:

 void WINAPI MyPrint(LPTSTR lpString, HANDLE hWnd)
 {
 ...
 }

Attempt to load the library in the app16 WinMain():

 if(NULL == (ghLib = LoadLibraryEx32W("dll32.dll", NULL, 0))) {
 MessageBox(NULL, "Cannot load DLL32", "App16", MB_OK);
 return 0;
 }

Attempt to get the address of MyPrint():

 if(NULL == (hProc = (MYPROC)GetProcAddress32W(ghLib, "MyPrint"))) {
 MessageBox(hWnd, "Cannot call DLL function", "App16", MB_OK);
 ...
 }

Call MyPrint() and pass it TestString and hWnd as arguments:

 CallProc32W((DWORD) TestString, (DWORD) hWnd|0xffff0000, hProc, 2, 2);

The hWnd is OR'd with 0xffff0000, because this is the way to convert a 16-
bit window handle to a 32-bit window handle in Windows NT. If you wanted to
convert a 32-bit window handle to a 16-bit window handle, you would simply
truncate the upper word. Note that this only works for windows handles, not
for other types of handles. In Windows NT 3.5, you should use the following
functions exported by WOW32.DLL: WOWHandle32() and WOWHandle16(), rather
than relying on this relationship. These functions (and many others) are
discussed in \DOC\SDK\MISC\GENTHUNK.TXT.

A mask of 2 (0x10) is given because we want to pass TestString by reference
(WOW translates the pointer) and we want to pass the handle by value.

Free the library right before exiting WinMain():

 FreeLibrary32W(ghLib);

NOTE: When linking the Windows-based application, you need to put the
following statements in the .DEF file, indicating that the functions will
be imported from the WOW kernel:

 IMPORTS
 kernel.LoadLibraryEx32W
 kernel.FreeLibrary32W
 kernel.GetProcAddress32W
 kernel.GetVDMPointer32W
 kernel.CallProc32W

The complete sample is also available in the Microsoft Software Library.

Download GTHUNKS.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for GTHUNKS.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GTHUNKS.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get GTHUNKS.EXE

Faults

On MIPS systems, an alignment fault will occur when a Win32-based
application deferences a pointer to unaligned data that was passed by a 16-
bit Windows application. As a workaround, declare the parameter with the
UNALIGNED keyword. For example,

 void func(DWORD *var);

becomes

 void func(DWORD unaligned *var);

An application can use SetErrorMode() to specify SEM_NOALIGMENTFAULTEXCEPT
flag. If this is done, the system will automatically fix up alignment

faults and make them invisible to the application.

The default value of this error mode is OFF for MIPS, and ON for ALPHA. So
on MIPS platforms, an app MUST call SetErrorMode() and specify
SEM_NOALIGMENTFAULTEXCEPT if it wants the system to automatically fix
alignment faults. This call does not have to be made on ALPHA platforms.
This flag has no effect on x86 systems. Note that the fix above is
preferable.

Additional reference words: 3.10 3.50 4.00 softlib GTHUNKS.EXE
KBCategory: kbprg kbfile
KBSubcategory: SubSys

Calling a Win32 DLL from an OS/2 Application

PSS ID Number: Q119217
Authored 10-Aug-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

SUMMARY

The OS/2 subsystem provides a general mechanism that allows 16-bit OS/2 and
PM applications to load and call a Win32 DLL. This feature is useful if you
would like to call one of the Win32 APIs without having to spawn a Win32
application to do so; it is also useful if you are porting your OS/2
application to Win32 in stages. A small set of APIs (described in the "MORE
INFORMATION" section, below) provides this functionality to your
application.

To take full advantage of this feature, write a small Win32 DLL to provide
the thunk. The OS/2 application calls the thunk DLL, which in turn calls
the real Win32 API, using the parameters that were passed from the OS/2
application. You could call the Win32 DLL directly, but the OS/2 subsystem
thunking mechanism has only one generic pointer parameter. Most Win32 APIs
require different numbers or types of parameters, so the thunking layer is
required to retrieve the parameters from the parameter pointer. The
parameter pointer typically points to a structure that contains the actual
parameters.

You will also need to modify your OS/2 application to call the thunking
APIs described below.

MORE INFORMATION

The following are the header file, descriptions, and import statements for
the 16-bit APIs that are used by the OS/2 application to load and call the
thunk DLL. The APIs are defined in the same manner as the OS/2 APIs.

Header File

 extern USHORT pascal far
 Dos32LoadModule(PSZ DllName, PULONG pDllHandle);

 extern USHORT pascal far
 Dos32GetProcAddr(ULONG Handle, PSZ pszProcName, PULONG pWin32Thunk);

 extern USHORT pascal far
 Dos32Dispatch(ULONG Win32Thunk, PVOID pArguments, PULONG pRetCode);

 extern USHORT pascal far

 Dos32FreeModule(ULONG DllHandle);

 extern USHORT pascal far
 FarPtr2FlatPtr(ULONG FarPtr, PULONG pFlarPtr);

 extern USHORT pascal far
 FlatPtr2FarPtr(ULONG FlatPtr, PULONG pFarPtr);

API Descriptions

 Dos32LoadModule

 USHORT pascal far Dos32LoadModule (
 PSZ DLLName,
 PULONG pDllHandle);

 Purpose:

 Load the Win32 thunk DLL that will intermediate between the OS/2
 application and the Win32 APIs.

 Parameters:

 DLLName - Name of the thunk DLL.
 pDllHandle - Receives the module handle of the DLL. Used as an
 argument to Dos32GetProcAddr.

 Return:

 If NO_ERROR is returned, the value pointed to by pDllHandle is used for
 other WIN32 thunk APIs as described below. It is invalid for usage with
 regular OS/2 APIs.

 If ERROR_MOD_NOT_FOUND is returned, the value pointed to by pDLLHandle
 is undefined.

 Dos32GetProcAddr

 USHORT pascal far Dos32GetProcAddr (
 ULONG DllHandle,
 PSZ pszProcName,
 PULONG pWin32Thunk);

 Purpose:

 Get a flat pointer to a routine in the Win32 thunk DLL previously opened
 by Dos32LoadModule.

 Parameters:

 DllHandle - Handle obtained through Dos32LoadModule.
 pszProcName - Name of the API to be called.

 pWin32Thunk - Receives pointer to the thunk routine.

 Return:

 If NO_ERROR is returned, then pszProcName is exported by the thunk DLL.

 If ERROR_PROC_NOT_FOUND or ERROR_INVALID_HANDLE is returned, then the
 value pointed to by pWin32Thunk is undefined.

 Dos32Dispatch

 USHORT pascal far Dos32Dispatch (
 ULONG Win32Thunk,
 PVOID pArguments,
 PULONG pRetCode);

 Purpose:

 Call the thunk routine through the pointer obtained through
 Dos32GetProcAddr.

 Parameters:

 Win32Thunk - Thunk routine obtained through Dos32GetProcAddr.
 pArguments - Argument for thunk routine.
 pRetCode - Error code returned from the thunk routine.

 The structure pointed to by pArguments is application specific and
 the value is not modified to the OS/2 subsystem.

 On the Win32 side (in the thunk DLL), the thunk looks like:

 ULONG MyFunc (
 PVOID pFlatArg);

 The OS/2 subsystem does translate pArguments from a 16:16 pointer to
 a flat pointer (pFlatArg). To translate pointers inside the structure,
 use FarPtr2FlatPtr.

 Return:

 If NO_ERROR is returned, then pFlatArg is a valid pointer.

 Dos32FreeModule

 USHORT pascal far Dos32FreeModule (
 ULONG DllHandle);

 Purpose:

 Unload the Win32 thunk DLL that is intermediating between the OS/2
 application and the Win32 APIs.

 Parameter:

 DllHandle - Handle obtained through Dos32LoadModule.

 Return:

 If NO_ERROR is returned, then DllHandle corresponds to a Win32 DLL
 previously loaded by Dos32LoadModule. After the call, DllHandle is no
 longer valid. Otherwise, ERROR_INVALID_HANDLE is returned.

 FarPtr2FlatPtr

 USHORT pascal far FarPtr2FlatPtr (
 ULONG FarPtr,
 PULONG pFlatPtr);

 Purpose:

 Translates a segmented far pointer to a flat pointer.

 Parameters:

 FarPtr - Segmented far pointer.
 pFlatPtr - Points to flat pointer.

 Return:

 If NO_ERROR is returned, FarPtr is a valid 16:16 pointer and pFlatPtr
 contains a valid flat pointer to be used by Win32 code. Otherwise,
 ERROR_INVALID_PARAMETER is returned and pFlatPtr is undefined.

 FlatPtr2FarPtr

 USHORT pascal far FlatPtr2FarPtr (
 ULONG FlatPtr,
 PULONG pFarPtr);

 Purpose:

 Translates a flat pointer to a segmented far pointer.

 Parameters:

 FlatPtr - Flat pointer.
 pFarPtr - Points to a segmented far pointer.

 Return:

 If NO_ERROR is returned, the flat pointer maps to a valid segmented
 pointer in the 16-bit application's context and pFarPtr contains a valid
 segmented pointer to be used by 16-bit OS/2 code. Otherwise,
 ERROR_INVALID_PARAMETER is returned and pFarPtr is undefined.

IMPORTS Section for the Module Definition File
--

 IMPORTS
 DOSCALLS.DOS32LOADMODULE
 DOSCALLS.DOS32GETPROCADDR
 DOSCALLS.DOS32DISPATCH
 DOSCALLS.DOS32FREEMODULE
 DOSCALLS.FARPTR2FLATPTR
 DOSCALLS.FLATPTR2FARPTR

Additional reference words: 3.50 OS2
KBCategory: kbprg
KBSubcategory: SubSys

Calling CRT Output Routines from a GUI Application

PSS ID Number: Q105305
Authored 17-Oct-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

To use C Run-time output routines, such as printf(), from a GUI
application, it is necessary to create a console. The Win32 application
programming interface (API) AllocConsole() creates the console. The CRT
routine setvbuf() removes buffering so that output is visible immediately.

This method works if the GUI application is run from the command line or
from File Manager. However, this method does not work if the application is
started from the Program Manager or via the "start" command. The following
code shows how to work around this problem:

 int hCrt;
 FILE *hf;

 AllocConsole();
 hCrt = _open_osfhandle(
 (long) GetStdHandle(STD_OUTPUT_HANDLE),
 _O_TEXT
);
 hf = _fdopen(hCrt, "w");
 *stdout = *hf;
 i = setvbuf(stdout, NULL, _IONBF, 0);

This code opens up a new low-level CRT handle to the correct console output
handle, associates a new stream with that low-level handle, and replaces
stdout with that new stream. This process takes care of functions that use
stdout, such as printf(), puts(), and so forth. Use the same procedure for
stdin and stderr.

Note that this code does not correct problems with handles 0, 1, and 2. In
fact, due to other complications, it is not possible to correct this, and
therefore it is necessary to use stream I/O instead of low-level I/O.

MORE INFORMATION

When a GUI application is started with the "start" command, the three
standard OS handles STD_INPUT_HANDLE, STD_OUTPUT_HANDLE, and
STD_ERROR_HANDLE are all "zeroed out" by the console initialization
routines. These three handles are replaced by valid values when the GUI
application calls AllocConsole(). Therefore, once this is done, calling
GetStdHandle() will always return valid handle values. The problem is that

the CRT has already completed initialization before your application gets a
chance to call AllocConsole(); the three low I/O handles 0, 1, and 2 have
already been set up to use the original zeroed out OS handles, so all CRT
I/O is sent to invalid OS handles and CRT output does not appear in the
console. Use the workaround described above to eliminate this problem.

In the case of starting the GUI application from the command line without
the "start" command, the standard OS handles are NOT correctly zeroed out,
but are incorrectly inherited from CMD.EXE. When the application's CRT
initializes, the three low I/O handles 0, 1, and 2 are initialized to use
the three handle numbers that the application inherits from CMD.EXE. When
the application calls AllocConsole(), the console initialization routines
attempt to replace what the console initialization believes to be invalid
standard OS handle values with valid handle values from the new console. By
coincidence, because the console initialization routines tend to give out
the same three values for the standard OS handles, the console
initilization will replace the standard OS handle values with the same
values that were there before--the ones inherited from CMD.EXE. Therefore,
CRT I/O works in this case.

It is important to realize that the ability to use CRT routines from a GUI
application run from the command line was not by design so this may not
work in future versions of Windows NT or Windows. In a future version, you
may need the workaround not just for applications started on the command
line with "start <application name>", but also for applications started on
the command line with "application name".

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Calling DdePostAdvise() from XTYP_ADVREQ

PSS ID Number: Q102571
Authored 04-Aug-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The documentation for DdePostAdvise() in the Windows 3.1 Software
Development Kit "Programmer's Reference, Volume 2: Functions" states
the following in the Comments section:

 If a server calls DdePostAdvise() with a topic/item/format name set
 that includes the set currently being handled in an XTYP_ADVREQ
 callback, a stack overflow may result.

MORE INFORMATION

This is merely a warning against calling DdePostAdvise() from within a
DDE callback function's XTYP_ADVREQ transaction, because it may result
in a stack overflow.

Like window procedures, DDE callbacks must be coded with care to avoid
infinite recursion (eventually resulting in a stack overflow). Because
DdePostAdvise() causes DDEML to send an XTYP_ADVREQ transaction to the
calling application's DDE callback function, calling DdePostAdvise()
on the same topic/item/format name set as the one currently being
handled results in an infinite loop.

An analogous piece of code that has become a classic problem in
Windows programming involves calling UpdateWindow() in a WM_PAINT
case:

 case WM_PAINT:
 InvalidateRect (hWnd, NULL, TRUE);
 UpdateWindow (hWnd);

Calling UpdateWindow() as in the code above causes a WM_PAINT message
to be sent to a window procedure, and thus results in the same type of
infinite recursion that occurs when calling DdePostAdvise() from an
XTYP_ADVREQ transaction.

An example of a situation that would lend itself to this scenario
would be one where data needs to be updated as a result of a previous
data change. There are two ways to work around the stack overflow
problem in this case:

 - Post a user-defined message and handle the data change

 asynchronously. For example,

 // in DdeCallback:
 case XTYP_ADVREQ:
 if ((!DdeCmpStringHandles (hsz1, ghszTopic)) &&
 (!DdeCmpStringHandles (hsz2, ghszItem)) &&
 (fmt == CF_SOMEFORMAT))
 {
 HDDEDATA hData;

 hData = DdeCreateDataHandle ();
 PostMessage (hWnd, WM_DATACHANGED,hData,);
 return (hData);
 }
 break;

 // in MainWndProc():
 case WM_DATACHANGED:
 DdePostAdvise (idInst, ghszTopic, ghszItem);
 :

 - Return CBR_BLOCK from the XTYP_ADVREQ and let DDEML suspend further
 transactions on that conversation, while the server prepares data
 asynchronously.

More information on how returning CBR_BLOCK allows an application to
process data "asynchronously" may be derived from Section 5.8.6 of the
Windows 3.1 Software Development Kit (SDK) "Programmer's Reference,
Volume 1: Overview," or by querying on the following words in the
Microsoft Knowledge Base:

 DDEML and CBR_BLOCK

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Calling LoadLibrary() on a 16-bit DLL

PSS ID Number: Q123731
Authored 07-Dec-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.15a and 1.2

SUMMARY

In Win32-based applications, LoadLibrary() returns an HINSTANCE and
GetLastError() is used to determine the error. If HINSTANCE is NULL, the
DLL was not successfully loaded. If the HINSTANCE is not null, the DLL was
loaded and the usage count was incremented; however, you may still see that
the last error was set if the DLL is a 16-bit DLL.

NOTE: At this point, the DLL is loaded and the usage count is incremented.
Call FreeLibrary() to unload the DLL.

MORE INFORMATION

In order to see all possible error returns, you'll need to call
SetLastError(0) before calling LoadLibrary(). If HINSTANCE is not NULL and
GetLastError() is ERROR_BAD_EXE_FORMAT, the DLL is a 16-bit DLL. You can
access the DLL resources and/or printer APIs from your Win32-based
application.

To call routines in the 16-bit DLL, you should load and call the DLL via
the Universal Thunk. This increments the usage count again. Later, you can
use FreeLibrary() to free the DLL from the 16-bit code, but this won't
unload the DLL from memory unless you already called FreeLibrary() from the
32-bit code. This is because the usage count is not zero. We recommend you
call FreeLibrary() from the 32-bit code after the DLL is loaded by the
16-bit code, so the DLL isn't unloaded and then reloaded.

REFERENCES

For more information on how to get resources from a 16-bit DLL, please see
the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q105761
 TITLE : Getting Resources from 16-bit DLLs Under Win32s

For more information on Universal Thunk, please see Chapter 4 of the Win32s
Programmer's Reference.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Cancelling Overlapped I/O

PSS ID Number: Q90368
Authored 13-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

There is no routine in the Win32 API to cancel an asynchronous request once
it has been issued. When a thread does an overlapped I/O (that is, a
write), the system starts up another thread to do the I/O and leaves your
thread free to do other work. Once it is started, there is no way to stop
it.

If it necessary to interrupt the I/O, you can either

 - Split the writes into batches and check for interruptions. For example,
 you could break a 20 megabyte (MB) write into 20, 1 MB writes.

 -or-

 - Create another thread yourself to handle the I/O. Terminating the thread
 will cancel the I/O. You should have a thread in the process explicitly
 close the handle to the device.

 -or-

 - Close the handle to the device with the pending I/O. The close has the
 net effect of cancelling the I/O.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Cancelling WaitCommEvent() with SetCommMask()

PSS ID Number: Q105302
Authored 17-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

If a serial port is in nonoverlapped mode (without FILE_FLAG_OVERLAPPED)
and SetCommMask() is called, the call does not return until any pending
WaitCommEvent() calls return. This apparently contradicts the following
statement from the SetCommMask() Help

 If SetCommMask() is called for a communications resource while a wait
 is pending for that resource, WaitCommEvent() returns an error.

and the following statement from the WaitCommEvent() Help:

 If a process attempts to change the device handle's event mask by
 using the SetCommMask() function while a WaitCommEvent() operation
 is in progress, WaitCommEvent() returns immediately.

However, this is the expected behavior. If you open a serial port in the
nonoverlapped mode, then you can do only one thing at a time with the
serial port. SetCommMask() must block while the WaitCommEvent() call is
blocking.

If the serial port was opened with FILE_FLAG_OVERLAPPED, WaitCommEvent()
will return after SetCommEvent() has been called.

Additional reference words: 3.10 com1 com2
KBCategory: kbprg
KBSubcategory: BseCommapi

Cannot Load <exe> Because NTVDM Is Already Running

PSS ID Number: Q103863
Authored 01-Sep-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

WinDbg can debug 16-bit Windows-based applications running on Windows NT,
under the Win16 VDM (virtual MS-DOS machine), NTVDM. By default, each
16-bit Windows-based application run as a thread in NTVDM. On Windows NT
3.5, each application can be run in a separate address space.

If NTVDM is running when the debugger tries to start the application, you
get the following error message:

 Cannot load <exe> because NTVDM is already running

Under Windows NT 3.5, to work around this problem, go to the WinDbg Options
menu, choose Debug, and check Separate WOW VDM, to allow the debuggee to be
run in a different address space.

Alternatively, you could terminate NTVDM. On Windows NT 3.1, your only
choice is to terminate NTVDM, because separate address spaces for 16-bit
Windows-based application are not supported.

To terminate NTVDM, run PView, select NTVDM, and choose "Kill Process."
Note that there may be two NTVDM processes. The one that you want to
terminate has one thread for each Windows-based application (plus a few
more).

The Windows NT WinLogon is set up to automatically start WoWExec, which
automatically starts the Win16 VDM. This behavior can be changed by
removing WoWExec from:

 HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Shell

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsWindbg

Captions for Dialog List Boxes

PSS ID Number: Q24646
Authored 16-Dec-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

To place text into the caption bar specified for a list box, use the
SetWindowText() function. First, use GetDlgItem() to get the handle of
the list box, then call SetWindowText() to set the list box caption.

MORE INFORMATION

The following code fragment illustrates the necessary steps. Note: The
list box includes the WS_CAPTION window style.

 ...
 BOOL FAR PASCAL TemplateDlg(hWndDlg, message, wParam, lParam)
 ...
 switch (message)
 {
 case WM_INITDIALOG:
 ...
 /* The following line sets the Listbox caption */
 SetWindowText(GetDlgItem(hWndDlg, IDDLISTBOX),
 (LPSTR)"Caption");
 for (i = 0; i < CSTR; i++) {
 LoadString(hInstTemplate, IDSSTR1+i, (LPSTR)szWaters, 12);
 SendDlgItemMessage(hWndDlg, IDDLISTBOX, LB_ADDSTRING, 0,
 (LONG)(LPSTR)szWaters);
 }
 SendDlgItemMessage(hWndDlg, IDDLISTBOX, LB_SETCURSEL, iSel, 0L);
 ...
 return TRUE;

 case WM_COMMAND:
 ...

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Caret Position & Line Numbers in Multiline Edit Controls

PSS ID Number: Q68572
Authored 22-Jan-1991 Last modified 27-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

This article explains how to determine the position (row and column) of the
caret and the line number of the first visible line of text in a multiline
edit control.

MORE INFORMATION

Edit controls process several messages that return information relevant to
the position of the caret within the control. These messages help an
application determine the line number of the caret relative to the number
of lines of text in the control.

Once the line number is known, the application can compute the caret's
character position within that line and the line number of the first
visible line of text in the control.

An edit control must be subclassed in order to track the caret position
because the position changes with mouse clicks and keystrokes. The subclass
procedure must process the WM_KEYDOWN and WM_LBUTTONDOWN messages, and
compute the caret position upon receipt of each message.

The remainder of this article describes three procedures:

 - Finding the line number of the caret position
 - Finding the column number of the caret position
 - Finding the line number of the first visible line

Note that you may replace any mention of the SendMessage API in this
article with the SendDlgItemMessage function. Also note that the term
return value refers to the value returned by the SendMessage or the
SendDlgItemMessage function.

Finding the Line Number of the Caret Position

Perform the following two steps:

1. Send the EM_GETSEL message to the edit control. The high-order word
 of the return value is the character position of the caret relative
 to the first character in the control.

2. Send the EM_LINEFROMCHAR message to the edit control and specify the
 value returned from step 1 as wParam. Add 1 to the return value to
 get the line number of the caret position because Windows numbers
 the lines starting at zero.

Finding the Column Number of the Caret Position

Perform the following three steps:

1. Send the EM_GETSEL message to the edit control. The high-order word
 of the return value is the character position of the caret relative
 to the first character in the control.

2. Send the EM_LINEINDEX message with wParam set to -1. The value
 returned is the count of characters that precede the first
 character in the line containing the caret.

3. Subtract the value returned in step 2 from the value in step 1 and
 add 1 because Windows numbers the columns starting at zero. This
 result is the column number of the caret position.

Finding the Line Number of the First Visible Line

Windows 3.1 and later define the EM_GETFIRSTVISIBLELINE message, which an
application can send to a single line or a multiline edit control. For
single line edit controls, this value returned for the message is the
offset of the first visible character. For multiline edit controls,
the value returned is the number of the first visible line.

Under Windows 95, it would be more efficient to use a combination of
GetCaretPos() and EM_CHARFROMPOS.

If an application must be compatible with Windows 3.0, it can perform
the following 10-step procedure:

1. Follow steps 1 and 2 of "Finding the Line Number of the Caret
 Position," presented above, and save the line number.

2. Call the GetCaretPos function to fill a POINT structure with the
 caret's coordinates relative to the client area of the edit
 control. (The client area is inside the border.)

3. Call the GetDC function using the handle to the edit control to
 retrieve a handle to a device context for the edit control. Store
 this handle in a variable named hDC.

4. Send the WM_GETFONT message to the edit control. The return value
 is a handle to the font used by the edit control. If the value
 returned is NULL, proceed to step 6 because the control is using
 the system default font.

5. Call the SelectObject function to select the font used by the edit
 control into hDC. Do not call the SelectObject function if

 WM_GETFONT returned NULL in step 4. Save the value returned by
 SelectObject in the hOldFont variable.

6. Call the GetTextMetrics function with hDC to fill a TEXTMETRIC
 data structure with information about the font used by the edit
 control (the font which is selected into hDC). The field of
 interest is tmHeight.

7. While the vertical coordinate of the caret is greater than the
 value of tmHeight, subtract tmHeight from the vertical coordinate
 and subtract 1 from the line number of the caret from step 1.

8. Repeat step 7 until the vertical coordinate of the caret is less
 than or equal to tmHeight.

9. Call SelectObject to select hOldFont back into hDC. Then call
 ReleaseDC to return the display context to the system.

10. The value remaining in the line number variable is the line number
 of the first visible line in the edit control.

Additional reference words: 3.00 3.10 3.50 4.00 95 caretpos
KBCategory: kbprg
KBSubcategory: UsrCrt

Case Sensitivity in Atoms

PSS ID Number: Q38901
Authored 07-Dec-1988 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

If the same string is added to an atom table twice, but a different case is
used, the string is only stored once; only the first one is present.

The "Microsoft Windows 2.0 Software Development Kit Update" for versions
2.03 and 2.1 states that atoms are case insensitive.

This means that when the AddAtom() function is used, the case is ignored
when atoms are compared. Therefore, if AddAtom("DIR") is called, and then
AddAtom("dir"), the single atom "DIR" (with a reference count of 2) will
result. If AddAtom("dir") is called first, the single atom "dir" will
result.

Similarly, the other atom-handling functions are case insensitive. For
example, calling FindAtom("dIr") will find the atom "dir", "DIR", or "Dir",
and so on.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Cases Where "Normal" Window Position, Size Not Available

PSS ID Number: Q68583
Authored 22-Jan-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

In Windows version 3.0, the "normal" size and position of a window is
not available when that window is maximized (zoomed) or minimized
(represented as an icon). In Windows version 3.1, two new functions
named GeWindowPlacement and SetWindowPlacement have been added
which provide access to normal position information.

MORE INFORMATION

The remainder of this article provides two possible ways to work
around this limitation in Windows version 3.0:

1. If the normal size is needed only as the application is shut down,
 restore the window and retrieve its position before closing the
 application. The following call can be used to restore the window
 whose window handle is hWnd:

 SendMessage(hWnd, WM_SYSCOMMAND, SC_RESTORE, 0L);

 The GetWindowRect or GetClientRect functions can then be used
 to obtain the window's position.

2. If the normal size is needed at all times, keep track of the
 position every time the window receives a WM_MOVE message. If the
 IsIconic and IsZoomed functions both return FALSE, assume the
 window is normal and update the position values. Otherwise, do not
 change the saved position information.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Centering a Dialog Box on the Screen

PSS ID Number: Q74798
Authored 30-Jul-1991 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK, version 3.5 and 3.51

When an application developed for the Microsoft Windows graphical
environment displays a dialog box, centering the dialog box on the
screen is sometimes desirable. However, on systems with high-
resolution displays, the application displaying the dialog box may be
nowhere near the center of the screen. In these cases, it is
preferable to place the dialog near the application requesting input.

To center a dialog box on the screen before it is visible, add the
following lines to the processing of the WM_INITDIALOG message:

 {
 RECT rc;

 GetWindowRect(hDlg, &rc);

 SetWindowPos(hDlg, NULL,
 ((GetSystemMetrics(SM_CXSCREEN) - (rc.right - rc.left)) / 2),
 ((GetSystemMetrics(SM_CYSCREEN) - (rc.bottom - rc.top)) / 2),
 0, 0, SWP_NOSIZE | SWP_NOACTIVATE);
 }

This code centers the dialog horizontally and vertically.

Under Windows 95, you should use the new style DS_CENTER to get the same
effect.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrDlgs

Chaining Parent PSP Environment Variables

PSS ID Number: Q96209
Authored 10-Mar-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Some MS-DOS-based applications change the environment variables of their
parent application by chaining through the program segment prefix (PSP).
With Windows NT, this functionality doesn't work if the parent is a
Win32-based application.

MORE INFORMATION

When an MS-DOS-based application is started from a single command shell
(SCS), the application inherits a new copy of the environment variables.
Any attempts by the MS-DOS-based application to modify its parent's
environment variables will not work. When the MS-DOS-based application
exits, the SCS will be "restored" to its original state. If another
MS-DOS-based application is started, the second application will receive
the same environment that the first MS-DOS-based application received.

If an MS-DOS-based application (B) is spawned by another MS-DOS-based
application (A), any modifications to application A's environment variables
will be reflected when application B exits.

For more information on how environment variables are set, please see the
following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q96268
 TITLE : How Environment Variables Are Set in Windows NT

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseMisc

Changes to the MSTest WFndWndC()

PSS ID Number: Q108227
Authored 07-Dec-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 SDK, versions 3.1 and 3.5

A change made to MS-TEST WFndWnd() and WFndWndC() may cause them not to
work as they did previously. Specifically, treatment of the first parameter
of WFndWnd() and WFndWndC() has changed.

Previously, "" and NULL resulted in the caption of the window being
ignored. Now, "" means the window must have an empty caption and NULL means
to ignore the caption altogether.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Changing a List Box from Single-Column to Multicolumn

PSS ID Number: Q68580
Authored 22-Jan-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32, SDK versions 3.5, 3.51, and 4.0
-

SUMMARY

A list box cannot be changed from single column to multicolumn by
altering the list box's style bits "on the fly."

The effect of switching a single-column list box to multicolumn can be
achieved by creating one single column and one multicolumn list box.
Initially, hide the multicolumn list box. To switch the list boxes,
hide the single-column list box and show the multicolumn list box.

MORE INFORMATION

In general, programmatically changing the style bits of a window
usually leads to unstable results. The method of switching between two
windows (hiding one and showing the other) can safely switch window
styles.

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Changing How Pop-Up Menus Respond to Mouse Actions

PSS ID Number: Q65256
Authored 28-Aug-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The TrackPopupMenu function allows an application to receive input
from a menu that is displayed anywhere within the application's client
area. This article demonstrates how to change the menu's default
behavior for mouse selections.

MORE INFORMATION

The default action for floating pop-up menus maintained with
TrackPopupMenu is as follows:

1. If the menu is displayed in response to a keystroke, the pop-up
 menu is visible until the user selects a menu item or presses ESC.

2. If the menu is displayed in response to a WM_*BUTTONUP message, it
 acts as if it were displayed in response to a keystroke.

NOTE: In the context of this article, the * in the WM_*BUTTONUP and
WM_*BUTTONDOWN messages can be L (left mouse button), M (middle mouse
button), or R (right mouse button).

An application can change the behavior of a floating pop-up menu
displayed in response to a WM_*BUTTONDOWN message to keep it visible
after the mouse button is released. However, when an application uses
the techniques described below, it changes the menu's user interface.
Specifically, to change menu selections with the mouse, the user must
first release the mouse button and then press it again. Dragging the
mouse between items with the button down, without releasing the button
at least once, will not change the selection.

To cause a floating pop-up menu to remain visible after it is
displayed in response to a WM_*BUTTONDOWN message, follow these four
steps:

1. In the application, allocate a 256 byte buffer to hold the key
 state.

2. Call the GetKeyboardState function with a far pointer to the buffer
 to retrieve the keyboard state.

3. Set the keyboard state for the VK_*BUTTON index in the keyboard

 state array to 0.

4. Call SetKeyboardState with a far pointer to the buffer to register
 the change with Windows.

The keyboard state array is 256 bytes. Each byte represents the state
of a particular virtual key. The value 0 indicates that the key is up,
and the value 1 indicates that the key is down. The array is indexed
by the VK_ values listed in Appendix A of the "Microsoft Windows
Software Development Kit Reference Volume 2" for version 3.0.

The code fragment below changes the state of the VK_LBUTTON to 0 (up)
during the processing of a WM_LBUTTONDOWN message. This causes
TrackPopupMenu to act as if the menu were displayed as the result of a
WM_LBUTTONUP message or of a keystroke. Therefore, the menu remains
visible even after the mouse button is released and the WM_LBUTTONUP
message is received. Items on this menu can be selected with the mouse
or the keyboard.

 switch (iMessage)
 {
 case WM_LBUTTONDOWN:
 static BYTE rgbKeyState[256];

 GetKeyboardState(rgbKeyState);
 rgbKeyState[VK_LBUTTON] = 0; // 0==UP, 1==DOWN
 SetKeyboardState(rgbKeyState);

 // Create the pop-up menu and call TrackPopupMenu.
 break;
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Changing Hypertext Jump Color in Windows Help

PSS ID Number: Q75111
Authored 12-Aug-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The author of a file to be used with Windows Help can alter the
default color of hypertext jump strings. This specification overrides
both the default behavior of showing these strings as underlined green
text and any color preference listed in the WIN.INI file. This article
explains the steps required to make this type of modification.

MORE INFORMATION

This feature must be used with care. There are situations when the
user may require a jump color other than the default. The profile
strings in the WIN.INI file provide an opportunity to specify a color
value appropriate for the particular situation. For more information
on these settings, query on the following words:

 prod(winsdk) and jumpcolor

To specify the color of a context jump when the RTF Help text is
created using Microsoft Word for Windows, follow the six steps listed
below. This procedure is a modification of the steps listed on page
17-11 of the "Microsoft Windows Software Development Kit Tools"
manual.

1. Place the cursor at the point in the text where the jump term will
 be entered.

2. Choose Character from the Format menu and specify the double-
 underline attribute and the desired text color. Word for Windows
 provides 6 colors, along with auto, black, and white.

3. Type the jump word or words.

4. Choose Character from the Format menu. Turn off the double-
 underline attribute and choose the default text color and hidden
 text.

5. Type a percent sign (%), followed by the context string assigned to
 the topic. For example, JumpText%ContextString, where JumpText is
 given the desired color and %ContextString is hidden text.

6. Choose Character from the Format menu. Turn off hidden text.

After all topics have been created, save the file as RTF (rich text
format) and build the .HLP file. For more information on this process,
refer to Chapters 15 through 19 of the "Windows Software Development
Kit (SDK) Tools" manual.

It is also possible to modify the six color values that Word for
Windows provides as defaults. This can be done by modifying the color
table in the RTF header. To do this, load the RTF file into Word for
Windows, however, do not convert the file from RTF. For more
information on the RTF color table, refer to page 389 of the
"Microsoft Word for Windows Technical Reference" (Microsoft Press).

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Changing Print Settings Mid-Job

PSS ID Number: Q85679
Authored 17-Jun-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In Windows 3.1 and later, print settings can be changed on a page-by-page
basis through the ResetDC() API.

MORE INFORMATION

An application can pass a new DEVMODE structure (containing new print
settings) to ResetDC() between pages to change the print settings. For
example, this function makes it possible to change the paper bin or paper
orientation for each page in a print job. Note that ResetDC() cannot be
used to change the driver name, device name, or the output port.

Before calling ResetDC(), the application must ensure that all objects
(other than stock objects) that were previously selected into the
printer device context are selected out.

Additional reference words: 3.10 3.50 4.00 95 dmOrientation
dmDefaultSource
dmPaperSize hDC WM_DEVMODECHANGE ExtDeviceMode
KBCategory: kbprg
KBSubcategory: GdiPrn

Changing the Controls in a Common Dialog Box

PSS ID Number: Q82299
Authored 30-Mar-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

One reason to incorporate the common dialogs library routines into an
application is the ability to use the basic functionality of one or more of
the common dialogs and tailor it to the needs of a particular application.

All of the predefined controls must be present for the Common Dialogs
DLL (COMMDLG.DLL) to properly interact with a dialog box. Each predefined
control in the dialog box must retain its control ID value. For these
reasons, an application cannot delete unnecessary controls from a dialog
box.

To prevent the user from interacting with a given control, move the control
off screen by specifying very large coordinate values [for example, (4000,
4000)]. The application must also disable the control to prevent it from
receiving the focus when the user uses the TAB key to cycle through the
controls. Failing to disable the control can create "mystery" tab stops
where the input focus disappears.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Changing the Font Used by Dialog Controls in Windows

PSS ID Number: Q74737
Authored 29-Jul-1991 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

In Windows 3.x, there are two ways to specify the font used by dialog
controls:

1. The FONT statement can be used in the dialog template to specify
 the font used by ALL the controls in the dialog box.

 -or-

2. The WM_SETFONT message can be sent to one or more dialog controls
 during the processing of the WM_INITDIALOG message.

If a font is specified in the dialog template, the controls will use a
bold version of that font. The following code demonstrates how to
change the font used by dialog box controls to a nonbold font using
WM_SETFONT. The font should be deleted with DeleteObject() when the
dialog box is closed.

HWND hDlg;
HFONT hDlgFont;
LOGFONT lFont;

case WM_INITDIALOG:
 /* Get dialog font and create non-bold version */
 hDlgFont = NULL;
 if ((hDlgFont = (HFONT)SendMessage(hDlg, WM_GETFONT, 0, 0L))
 != NULL)
 {
 if (GetObject(hDlgFont, sizeof(LOGFONT), (LPSTR)&lFont)
 != NULL)
 {
 lFont.lfWeight = FW_NORMAL;
 if ((hDlgFont = CreateFontIndirect(&lFont)) != NULL)
 {
 SendDlgItemMessage(hDlg, CTR1, WM_SETFONT, hDlgFont, 0L);
 // Send WM_SETFONT message to desired controls
 }
 }
 }
 else // user did not specify a font in the dialog template
 { // must simulate system font
 lFont.lfHeight = 13;
 lFont.lfWidth = 0;
 lFont.lfEscapement = 0;

 lFont.lfOrientation = 0;
 lFont.lfWeight = 200; // non-bold font weight
 lFont.lfItalic = 0;
 lFont.lfUnderline = 0;
 lFont.lfStrikeOut = 0;
 lFont.lfCharSet = ANSI_CHARSET;
 lFont.lfOutPrecision = OUT_DEFAULT_PRECIS;
 lFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;
 lFont.lfQuality = DEFAULT_QUALITY;
 lFont.lfPitchAndFamily = VARIABLE_PITCH | FF_SWISS;
 lFont.lfFaceName[0] = NULL;
 hDlgFont = CreateFontIndirect(&lFont);

 SendDlgItemMessage(hDlg, CTR1, WM_SETFONT, hDlgFont,
 (DWORD)TRUE);
 // Send WM_SETFONT message to desired controls
 }

 return TRUE;
 break;

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Changing/Setting the Default Push Button in a Dialog Box

PSS ID Number: Q67655
Authored 08-Dec-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The default push button in a dialog box is defined to be the button that is
pressed when the user chooses the ENTER key, provided that the input focus
is not on another button in the dialog box. The default push button is
visually distinguished from other buttons by a thick dark border. This
article describes how to change the default push button.

MORE INFORMATION

To change the default push button, perform the following three steps:

1. Send the BM_SETSTYLE message to the current default push button to
 change its border to that of a regular push button.

2. Send a DM_SETDEFID message to the dialog box to change the ID of the
 default push button.

3. Send the BM_SETSTYLE message to the new default push button to
 change its border to that of a default push button.

The following is sample code that performs the three steps:

Sample Code

 // Reset the current default push button to a regular button.
 SendDlgItemMessage(hDlg, <ID of current default push button>,
 BM_SETSTYLE, BS_PUSHBUTTON, (LONG)TRUE);

 // Update the default push button's control ID.
 SendMessage(hDlg, DM_SETDEFID, <ID of new default push button>,
 0L);

 // Set the new style.
 SendDlgItemMessage(hDlg, <ID of new default push button>,
 BM_SETSTYLE, BS_DEFPUSHBUTTON, (LONG)TRUE);

NOTE: For Win32, the (LONG) casts should be changed to (LPARAM).

Note, however, that ANY push button that has the input focus will have a
dark border. A default push button will retain this dark border even when

the input focus is transferred to another control in the dialog box,
provided the new control is not another push button.

For example, if the input focus is on an edit control, check box, radio
button, or any control other than a push button, and the ENTER key is
pressed, Windows sends a WM_COMMAND message to the dialog box procedure
with the wParam set to the control ID of the default push button.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Character Sets Supported by Hangeul (Korean) Windows Versions

PSS ID Number: Q130055
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 4.0
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

Hangeul (Korean) Windows version 3.1 supports the Wansung code set only.
However Hangeul Windows 95 will support the XWansung code set.

MORE INFORMATION

Two different Hangeul character standards exist in Korea. One is Wansung,
and the other is Johap. The Korean government issued a Korean standard code
set (KSC5601-1987), which is Wansung code set. Hangeul Windows version 3.1
supports this character set only.

Later, the Korean government amended and added to the standard and issued a
new one (KSC5601-1992), which contains both Wansung and Johap code sets.

Hangeul Windows version 3.1 and Hangeul Windows 95 will not support the
KSC5601-1992 standard. Instead, Hangeul Windows 95 will support the
XWansung (Microsoft Extended Wansung) standard, which is an extended
version of the KSC5601-1987 standard.

The XWansung Code system contains some Johab characters (not all the Johap
codes). Johab characters were added into the vacant Range of old Wansung
Code of Hangeul Windows version 3.1. Here are the details on the XWansung
code set:

Number of characters:

 Exisitng Wansung = 8,836
 Additional Assigned = 8,822 (Johab)
 Additional Reserved = 4,770

 Total characters = 22,428

Leading byte range: 0x81-0xFE
Trailing byte range: 0x41-5A,0x61-0x7A,0x81-0xFE

Additional reference words: 1.20 3.10 4.00 3.50 Hangul Chohap kbinf
KBCategory: kbother
KBSubcategory: wintldev

Checking for Administrators Group

PSS ID Number: Q111542
Authored 14-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

It is often useful to know if the account under which your application is
running is a member of the "Administrators" group. The sample code below
demonstrates a method of making this determination:

Sample Code

BOOL IsAdmin(void)
{
 HANDLE hProcess, hAccessToken;
 UCHAR InfoBuffer[1024];
 PTOKEN_GROUPS ptgGroups = (PTOKEN_GROUPS)InfoBuffer;
 DWORD dwInfoBufferSize;
 SID_NAME_USE snuInfo;
 UCHAR szAccountName[256], szDomainName[256];
 DWORD dwAccountNameSize, dwDomainNameSize;
 UINT x;

 hProcess = GetCurrentProcess();

 if(!OpenProcessToken(hProcess,TOKEN_READ,&hAccessToken))
 return(FALSE);

 if(!GetTokenInformation(hAccessToken,TokenGroups,InfoBuffer,
 1024, &dwInfoBufferSize)) return(FALSE);

 for(x=0;x<ptgGroups->GroupCount;x++)
 {
 dwAccountNameSize = 256;
 dwDomainNameSize = 256;

 LookupAccountSid(NULL, ptgGroups->Groups[x].Sid,
 szAccountName, &dwAccountNameSize,
 szDomainName, &dwDomainNameSize, &snuInfo);

 if(!strcmp(szAccountName,"Administrators") &&
 !strcmp(szDomainName,"BUILTIN"))
 return(TRUE);
 }
 return(FALSE);
}

MORE INFORMATION

The sample code above begins by obtaining a handle to the access token via
the OpenProcessToken() API (application programming interface). The
GetTokenInformation() API is then called to obtain the TOKEN_GROUPS
structure for the access token. The sample then looks up the name of each
group via the LookupAccountSid() API and compares it to Administrators. If
a group with an account name Administrators and domain name "BUILTIN" is
found, then the sample returns TRUE indicating the user is a member of the
Administrators group.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Choosing the Debugger That the System Will Spawn

PSS ID Number: Q103861
Authored 01-Sep-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

With Windows NT version 3.1, it is possible to have the system spawn a
debugger whenever an application faults. The capability is controlled
by the following Registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 AeDebug

This key contains the following values:

 Auto
 Debugger

If the value of Auto is set to "0" (zero), then the system will
generate a pop-up window, and if the user chooses Cancel, spawn the
debugger that is specified in the Debugger value. If the value of Auto
is set to "1", then the system will automatically spawn the debugger
that is specified in the Debugger value.

After installing Windows NT 3.1, the Debugger value is set to DRWTSN32
-p %ld -e %ld -g and the Auto value is set to 1.

If the Win32 SDK is installed, then the Debugger value is changed to
<MSTOOLS>\BIN\WINDBG -p %ld -e %ld and the Auto value is set to 0.

MORE INFORMATION

The DRWTSN32 debugger is a post-mortem debugger similar in functionality to
the Windows 3.1 Dr. Watson program. DRWTSN32 generates a log file
containing fault information about the offending application. The following
data is generated in the DRWTSN32.LOG file:

 - Exception information (exception number and name)
 - System information (machine name, user name, OS version, and so forth
 - Task list
 - State dump for each thread (register dump, disassembly, stack walk,
 symbol table)

A record of each application error is recorded in the application event
log. The application error data for each crash is stored in a log file
named DRWTSN32.LOG, which by default is placed in your Windows directory.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Clarification of COMMPROP dwMax?xQueue Members

PSS ID Number: Q94950
Authored 26-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The entry for the COMMPROP structure in the Win32 Programmer's Reference
states that for the dwMaxTxQueue and dwMaxRxQueue members, "a value of 0
means that this field is not used".

MORE INFORMATION

This statement means that the provider does not restrict you to maximum Rx
and Tx queue values, and these members [returned by GetCommProperties()]
should not be used to determine the size of your transmit and receive
buffers when calling SetupComm().

Based on the memory present in the system, the Windows NT serial driver
determines a default Rx queue size (currently 128 bytes on low memory
systems and 4K on high memory systems). The current Rx and Tx queue sizes
are located in the dwCurrentTxQueue and dwCurrentRxQueue members.

SetupComm() allows you to change these default queue sizes. However, you
should not assume that the given serial driver will allocate any memory.
The queue size allocated is stored in the dwCurrentRxQueue member of the
COMMPROP structure. You may use this information to set the XonLim and
XoffLim members of the device control block (DCB) structure.

The Microsoft-supplied serial driver attempts to allocate at least the
amount requested for the RXQUEUE and, failing this, the request will also
fail. The driver never attempts to allocate memory for the TXQUEUE.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Clarification of SearchPath() Return Value

PSS ID Number: Q115826
Authored 05-Jun-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1

SUMMARY

The entry for "SearchPath()" in the "Win32 Programmer's Reference" says
that the return value will be one of the following:

 - The length (in characters) of the string copied to the buffer.

 -or-

 - 0 if the function fails [see "GetLastError()" in the "Win32 Programmer's
 Reference" for more information].

If the specified file is not found, then the return value is 0, but
the value retrieved by GetLastError() is not changed.

In order to distinguish the "file not found" condition from another
error (out of memory, invalid parameter, and so forth), call
SetLastError() with a value of NO_ERROR before calling SearchPath().

MORE INFORMATION

This behavior is by design. The recommended way to check the return
status for SearchPath() is:

 return value > buffer length buffer too small
 return value = 0 file not found or another error
 return value <= buffer length file found

Handle the case where the return value is 0 as follows:

 TCHAR szFilename[] = "MyFile.Txt";
 TCHAR szPathname[MAX_PATH];
 LPTSTR lpszFilename;

 SetLastError(NO_ERROR);
 if(!SearchPath(NULL, szFilename, NULL, MAX_PATH, szPathname,
 &lpszFilename))
 {
 if(GetLastError() == NO_ERROR)
 Display("File not found.");
 else
 Display("SearchPath failed!");

 }

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseFileio

Clarification of the "Country" Setting

PSS ID Number: Q102765
Authored 10-Aug-1993 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Under Windows NT, the "Country" choice affects currency, date/time and
number format, and so forth. The "Language" choice affects sorting, names
of the days of the weeks and months, and so forth. These settings allow the
user to choose the appropriate language and country format. For example, if
you are British and living in the U.S., you can pick a locale of English
(British) at setup time, then use Control Panel later to change your
country to U.S. so that currency is in dollars instead of pounds.

In Windows 95, there is not both a Country and a Language choice. You are
asked for a single Regional Setting.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: UsrNls WintlDev

Clearing a Message Box

PSS ID Number: Q74444
Authored 18-Jul-1991 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

During the processing of the MessageBox() function, Windows creates a
bitmap to save the part of the screen covered by the message box. Normally,
before the MessageBox() function returns, Windows repaints the portion of
the screen covered by the message box using the bitmap. In this scenario,
when the user clicks on a button to dismiss the message box, the message
box disappears immediately.

It is important to note that under low memory conditions, Windows will
discard the bitmap. If the bitmap is discarded and a significant amount of
processing takes place between the MessageBox() call and painting the
application's window, the vestigial image of the message box will remain on
the screen during the processing. If the user clicks on this image with the
mouse, the underlying window will receive the mouse messages. This can
cause unexpected (and possibly undesirable) effects.

To address this problem, call UpdateWindow() immediately after
MessageBox(). The parameter to UpdateWindow() should be the parent window
of the message box (or of the application's main window if the message box
has no parent). This will cause the application to paint the affected
window if the bitmap has been discarded. The message box will disappear
immediately under all circumstances.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Client Service For Novell Netware Doesn't Support Named Pipes

PSS ID Number: Q129317
Authored 24-Apr-1995 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The Windows NT Client Service for Novell NetWare does not support named
pipes. Consequently, 16-bit Novell NetWare client applications running on
Windows NT cannot connect to Novell NetWare named pipe server applications.
There are currently no plans to add named pipe support to the Windows NT
Client Service for Novell NetWare.

For more information on Novell NetWare named pipes, consult the following
Novell documentation:

 - NetWare Client for OS/2 User's Guide
 - NetWare Client for MS-DOS and Microsoft Windows User's Guide

Additional reference words: 3.10 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkMisc

Clipboard Memory Sharing in Windows

PSS ID Number: Q11654
Authored 26-Oct-1987 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The following are questions and answers on the topic of Clipboard memory
sharing:

Q. Does the Clipboard UNLOCK before freeing the handle when I tell it to
 SetClipboardData()?

A. Yes, the Clipboard UNLOCKs before freeing the handle when you
 SetClipboardData().

Q. Does the Clipboard actually copy my global storage to another
 block, or does it just retain the value of my handle for
 referencing my block?

A. The Clipboard is sharable; it retains the value of the handle.

Q. Does GetClipboardData() remove the data from the Clipboard, or
 does it allow me to reference the data without removing it from
 the Clipboard?

A. The data handle returned by GetClipboardData() is controlled by
 the Clipboard, not by the application. The application should
 copy the data immediately, instead of relying on the data handle
 for long-term use. The application should not free the data
 handle or leave it locked. To remove data from the Clipboard,
 call SetClipboardData().

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrClp

ClipCursor() Requires WINSTA_WRITEATTRIBUTES

PSS ID Number: Q106384
Authored 07-Nov-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

The documentation for ClipCursor() states that the calling process must
have WINSTA_WRITEATTRIBUTES access to the window station. However, this
permission does not have to be enabled programmatically because the system
always grants the Local Login SID (the interactive user)
WINSTA_WRITEATTRIBUTES access, regardless of the permission groups to which
the user belongs.

MORE INFORMATION

The following code shows how to confine the cursor to the application
window during WM_ACTIVATE processing. Note that the clip cursor region must
be restored to its previous state each time the application deactivates.

Sample Code

 static RECT rcOldClip;
 .
 .
 .

 case WM_ACTIVATE:{
 short fActive = LOWORD(wParam);

 if(fActive){
 RECT rcNewClip;

 /* Record the area in which the cursor can move. */
 GetClipCursor(&rcOldClip);

 /* Get the dimensions of the application's client area. */
 GetClientRect(hWnd, &rcNewClip);

 /* Convert to screen coordinates. */
 MapWindowPoints(hWnd, NULL, (LPPOINT)&rcNewClip, 2);

 /* Confine the cursor to the application's window. */
 ClipCursor(&rcNewClip);
 }
 else{

 /* Restore the cursor to its previous area. */
 ClipCursor(&rcOldClip);
 }
 break;
 }

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: GdiCurico

Combo Box w/Edit Control & Owner-Draw Style Incompatible

PSS ID Number: Q82078
Authored 25-Mar-1992 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

The owner-draw combo box styles (CBS_OWNERDRAWFIXED and
CBS_OWNERDRAWVARIABLE) are incompatible with the combo box styles that
contain an edit control (combo box styles CBS_SIMPLE and
CBS_DROPDOWN). A combo box with either the CBS_SIMPLE or CBS_DROPDOWN
style displays the currently selected item in its associated edit
control. When an owner-draw style is specified for the combo box style
CBS_SIMPLE or CBS_DROPDOWN, the current selection may not be
displayed. Using the SetWindowText function to display the current
selection in response to a CBN_SELCHANGE message may not be effective.

MORE INFORMATION

An owner-draw combo box can contain bitmaps or other graphic elements
in its list box. Therefore, to correctly display the current
selection, it is necessary to display a bitmap or other graphic
element in the edit control. Because edit controls are not designed to
display graphics, there is no natural method to display the current
selection in an owner-draw combo box with an edit control.

The combo box style CBS_DROPDOWNLIST, which has a static text area
instead of an edit control, can display any item, including graphics.
Use this style combo box with the owner-draw styles.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

COMCTL32 APIs Unsupported in the Win32 SDK

PSS ID Number: Q105300
Authored 17-Oct-1993 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5
 - Microsoft Win32s version 1.2

The library COMCTL32.LIB was included in the Win32 SDK because the PERFMON
sample makes use of it. The library is part of the Windows for Workgroups
(WFW) COMMCTRL.LIB. However, Microsoft does not officially support
COMCTL32.LIB or recommend the use of these application programming
interfaces (APIs), and therefore they have not been documented in the SDK.

Microsoft does not recommend using these APIs, because Microsoft is
providing the new controls in Windows 95, Windows NT 3.51, and Win32s 1.3.

If you must absolutely use COMCTL32 with earlier versions, the
documentation can be found in the WFW SDK. Be aware that these APIs are
unsupported, and code that you write will not work on Windows 95 and
Windows NT 3.51.

Additional reference words: 1.20 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrCtl W32s

Common Dialog Boxes and the WM_INITDIALOG Message

PSS ID Number: Q74610
Authored 24-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SUMMARY

An application using the common dialog box library (COMMDLG.DLL) can
override any information initialized in the DLL by handling the
WM_INITDIALOG message in its dialog hook function. If the application is
using a private dialog template, it should also initialize all private
dialog items while handling this message.

After processing the WM_INITDIALOG message, the hook function should
return FALSE if it has set the focus to a dialog control, and return
TRUE if Windows should set the focus.

MORE INFORMATION

For example, consider an application that is using the Open File common
dialog box (via GetOpenFileName()) but does not want the Drives combo box
to appear in the dialog box. Since all dialog items in the standard dialog
template must be included in the application's private dialog template, the
application will need to include code to disable and hide the Drives combo
box and the corresponding "Drives:" static text control. This code would be
implemented in the WM_INITDIALOG case of the dialog hook function, as
follows:

 case WM_INITDIALOG:
 hWnd = GetDlgItem(hDlg, cmb2); // Get Drives combo box handle
 EnableWindow(hWnd, FALSE); // No longer receives input,
 // no longer a tabstop
 SetWindowPos(hWnd, NULL, 0, 0, 0, 0, SWP_HIDEWINDOW);

 hWnd = GetDlgItem(hDlg, stc4); // Get "Drives:" static control
 EnableWindow(hWnd, FALSE); // no longer an accelerator
 SetWindowPos(hWnd, NULL, 0, 0, 0, 0, SWP_HIDEWINDOW);

 // Initialize private dialog items here...

 return(TRUE); // Let Windows set the focus

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Common File Mapping Problems and Platform Differences

PSS ID Number: Q125713
Authored 02-Feb-1995 Last modified 27-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0
 - Microsoft Win32s, version 1.3

SUMMARY

This article addresses some common problems encountered when using file
mapping. It also points out some platform differences in the file mapping
implementation.

This article does not describe the procedures for performing file mapping.
For information on using file mapping, please see the File Mapping
overview in the Microsoft Win32 Programmer's Reference. Also see the
descriptions for CreateFileMapping(), OpenFileMapping(), MapViewOfFile(),
MapViewOfFileEx(), UnmapViewOfFile(), and FlushViewOfFile().

MORE INFORMATION

Name Space Conflicts

The names of event, semaphore, mutex, and file-mapping objects share
the same name space, so it is not possible to have two different object
types with the same name. It is an error to attempt to create or open an
object of one type using a name that is already being used by an object of
another type.

CreateFileMapping() and OpenFileMapping() will fail if they specify an
object name that is in use by an object of another type. In both cases,
GetLastError() will return ERROR_INVALID_HANDLE (6).

To avoid conflicts between object types, one solution is to include
the object type in the name. For example, use "EV_myapp_block_ready" for an
event object name and "FM_myapp_missile_data" for a file mapping object
name.

Necessity of Unmapping All Views of a Mapped File

Windows maintains an internal handle to a file mapping object for each
view of that object, whether created by MapViewOfFile() or
MapViewOfFileEx(). This internal handle is kept in addition to the handle
returned by CreateFileMapping(). The internal handle is not closed until
the view associated with the handle is unmapped by calling
UnmapViewOfFile(). To completely close a file mapping object requires that

all handles for the object, including internal handles, be closed. Thus, to
close a file mapping object, all views of that object must be unmapped, and
the handle returned by CreateFileMapping() must be closed.

Extant unmapped views of a file mapping object will NOT cause a
CloseHandle() on the object's handle to fail. In other words, when your
handle to the object is closed successfully, it is not necessarily true
that all views have been unmapped, so the file mapping object has not
necessarily been freed.

Failure to properly unmap all views of the object and to close the handle
to the object will cause leaks in the application's paged pool,
nonpaged pool, virtual bytes, and also in the system wide committed bytes.

Restrictions on the Size of File Mapping Objects
--

The size of a file mapping object backed by the system paging file is
limited to available system virtual memory (meaning the amount of memory
that could be committed with a call to VirtualAlloc()).

On Windows NT, the size of a file mapping object backed by a named disk
file is limited by available disk space. The size of a mapped view of
an object is limited to the largest contiguous block of unreserved
virtual memory in the process performing the mapping (at most, 2GB minus
the virtual memory already reserved by the process).

On Win32s, the size of a file mapping object backed by a named disk
file is limited to available system virtual memory, due to the virtual
memory management implementation of Win32s. Win32s allocates regular
virtual memory for the memory mapped section even though it does not
need swap space, and the amount of VM set by Windows is too small to use
for mapping large files. As with Windows NT, available disk space will
also impose a limitation.

On Windows 95, the size of a file mapping object backed by a named disk
file is limited to available disk space. The size of a mapped view of
an object is limited to the largest contiguous block of unreserved
virtual memory in the shared virtual arena. This block will be at most
1GB, minus any memory in use by other components of Windows 95 which use
the shared virtual arena (such as 16-bit Windows-based applications). Each
mapped view will use memory from this arena, so this limit applies to the
total size of all non-overlapping mapped views for all applications running
on the system.

Mapped File May Not be Automatically Grown
--

If the size specified for a file mapping object backed by a named disk
file in a call to CreateFileMapping() is larger than the size of the
file used to back the mapping, the file will normally be grown to the
specified size by the CreateFileMapping() call.

On Windows NT only, if PAGE_WRITECOPY is specified for the fdwProtect
parameter, the file will not automatically be grown. This will cause

CreateFileMapping() to fail, and GetLastError() will return
ERROR_NOT_ENOUGH_MEMORY (8). To set the size of the file before calling
CreateFileMapping(), use SetFilePointer() and SetEndOfFile().

MapViewOfFileEx() and Valid Range of lpvBase
--

On Windows NT, views of file mapping objects are mapped in the address
range of 0-2 GB. Passing an address outside of this range as the
lpvBase parameter to MapViewOfFileEx() will cause it to fail, and
GetLastError() will return ERROR_INVALID_PARAMETER (87).

On Windows 95, views of file mapping objects are mapped in the address
range of 2-3 GB (the shared virtual arena). Passing an address outside of
this range will cause MapViewOfFileEx() to fail, and GetLastError() will
return ERROR_INVALID_ADDRESS (487). Note that future updates to Windows 95
may change the mapping range to 0-2 GB, as on Windows NT.

MapViewOfFileEx() and Allocation Status of lpvBase
--

If an address is specified for the lpvBase parameter of MapViewOfFileEx(),
and there is not a block of unreserved virtual address space at that
address large enough to satisfy the number of bytes specified in the
cbMap parameter, then MapViewOfFileEx() will fail, and GetLastError() will
return ERROR_NOT_ENOUGH_MEMORY (8). This does not mean that the system is
low on memory or that the process cannot allocate more memory. It simply
means that the virtual address range requested has already been reserved
in that process.

Prior to calling MapViewOfFileEx(), VirtualQuery() can be used to determine
an appropriate range of unreserved virtual address space.

MapViewOfFileEx() and Granularity of lpvBase
--

For the lpvBase parameter specified in a call to MapViewOfFileEx(), you
should use an integral multiple of the system's allocation granularity. On
Windows NT, not specifying such a value will cause MapViewOfFileEx() to
fail, and GetLastError() to return ERROR_MAPPED_ALIGNMENT (1132). On
Windows 95, the address is rounded down to the nearest integral multiple of
the system's allocation granularity.

To determine the system's allocation granularity, call GetSystemInfo().

Addresses of Mapped Views

When mapping a view of a file (or shared memory), it is possible to either
let the operating system determine the address of the view, or to specify
an address as the lpvBase parameter of the MapViewOfFileEx() function. If
the file mapping is going to be shared among multiple processes, then
the recommended method is to use MapViewOfFile() and let the operating
system select the mapping address for you. There are good reasons for doing
so:

 - On Windows NT, views are mapped independently into each process's
 address space. While it may be convenient to try to map the view at
 the same address in each process, the specified virtual address range
 may not be free in all of the processes involved. Therefore, the mapping
 could fail in one (or more) of the processes trying to share the
 file mapping.

 - On Windows 95, file mapping objects exist in the 2-3 GB address range
 (the shared virtual arena). Therefore, once the initial address for the
 view is determined, additional views of the mapping will be mapped to
 the same address in each process anyway, and there is no benefit in
 trying to force the initial mapping to a specific address. For the
 second and subsequent views of a mapping object, if the address
 specified for lpvBase does not match the actual address where Windows 95
 has mapped the view, then MapViewOfFileEx() fails, and GetLastError()
 returns ERROR_INVALID_ADDRESS (487). Additionally, when attempting to
 map the first view at a pre-determined address, that address may already
 be in use by other components of Windows 95 which use the shared virtual
 arena. Note that future updates to Windows 95 may change the mapping
 range to 0-2 GB, as on Windows NT.

If it is absolutely necessary to create the mappings at the same address
in multiple processes under Windows NT, here are two possible approaches:

1. Pick an appropriate address and manage the virtual address space so that
 this address is left available. This means basing your DLLs, allocating
 memory at specific locations, and using a tool such as Process Walker to
 observe the virtual address space pattern. As soon as possible in the
 execution of the application, either reserve the desired address space
 or perform the mapping. One good place to do this is in the
 PROCESS_ATTACH handling in a DLL, because it is called before the
 executable itself is started. NOTE: There is still no guarantee that
 some DLL will not have already loaded at the address in question. If not
 all involved processes can map at the predetermined address, they can
 either fail or try a new address.

 -or-

2. Have all processes involved negotiate an appropriate address. The
 processes can all use the VirtualQuery() function to scan their
 address spaces until a common address is found in each process
 that has a large enough unreserved block. This requires that all
 processes involved map the address at the same time. A process that
 starts after the address has been determined must map at that address,
 and fail if it cannot do so. Alternatively, the negotiation process
 could be repeated, with each process remapping at the new address. Then,
 all pointers into the mapping must be readjusted.

The second method is far more likely to succeed. It can also be combined
with the first to make it more likely that an appropriate address will be
found quickly.

When views are mapped to different addresses under Windows NT, the
difficulty that arises is storing pointers to the mapping within the

mapping itself. This is because a pointer in one process does not point
to the same location within the mapping in another process. To overcome
this problem, store offsets rather than pointers in the mapping, and
calculate actual addresses in each process by adding the base address of
the mapping to the offset. It is also possible to used based pointers and
thus perform the base + offset conversion implicitly. A short SDK sample
called BPOINTER demonstrates this technique.

Additional Platform Differences

Additional limitations when performing file mapping under Windows 95:

1. The dwOffsetHigh parameters of MapViewOfFile() and MapViewOfFileEx() are
 not used, and should be zero. Windows 95 uses a 32-bit file system.

2. The dwMaximumSizeHigh parameter of CreateFileMapping() is not used,
 and should be zero. Again, this is due to the 32-bit file system.

3. The SEC_IMAGE and SEC_NOCACHE flags for the fdwProtect parameter of
 CreateFileMapping() are not supported.

4. If the FILE_MAP_COPY flag is used to map a view of a file mapping
 object, the object must have been created using PAGE_WRITECOPY
 protection. Additionally, the object must be backed by a named
 file rather than the system paging file (in other words, a valid file
 handle, not (HANDLE)0xFFFFFFFF, must be specified for the hFile
 parameter of CreateFileMapping()). Failure to do either of these
 causes MapViewOfFile() to fail, and GetLastError() to return
 ERROR_INVALID_PARAMETER (87).

5. If two or more processes map a PAGE_WRITECOPY view of the same file
 mapping object (by using a named object, for example), they are able
 to see changes made to the view by the other process(es). The actual
 disk file is not modified, however. Under Windows NT, if one process
 writes to the view, it receives its own copy of the modified pages and
 will not affect the pages in the other process(es) or the disk file.

Additional reference words: 1.30 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Complete Enumeration of System Fonts

PSS ID Number: Q99672
Authored 03-Jun-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Complete enumeration of system fonts is a two-phase process.
Applications should first call EnumFontfamilies with NULL as the
family name to enumerate all the font face names in the system.
Applications should then take each face name and call EnumFontFamilies
again to obtain the style names (for TrueType fonts only) or the
supported point sizes (for raster fonts only). The style names are not
supported for the raster and vector fonts. Because TrueType and vector
fonts are continuously scalable, their point sizes are not enumerated.

MORE INFORMATION

The following steps detail the enumeration:

1. Call EnumFontFamilies with NULL as the family name (lpszFamily) to list
 one font from each available font family.

2. In the EnumFontFamProc callback function, look at the nFontType
 parameter.

3. If nFontType has the TRUETYPE_FONTTYPE flag set, then call
 EnumFontFamilies with the family name set to the font's type face
 name (lfFaceName of the ENUMLOGFONT structure). The callback
 function is called once for each style name. This enumeration is
 useful if the application is interested in finding a TrueType font
 with a specific style name (such as "Outline"). Because a TrueType
 font is continuously scalable, it is not necessary to enumerate a
 given font for point sizes. An application may use any desired
 point size. If the application is listing the enumerated TrueType
 fonts, it can simply choose some representative point sizes in a
 given range. The point sizes recommended by "The Windows Interface:
 An Application Design Guide" (page 159, Section 8.4.1.4) are 8, 9,
 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 36, 48, and 72. All
 TrueType fonts are available on both displays and printers, so an
 application can be sure that the font appears the same on the
 display and the printer.

4. If nFontType has the RASTER_FONTTYPE flag set, then call
 EnumFontFamilies with the family name set to the font's type face
 name. The callback function is called once for each available point
 size. Raster fonts can be scaled only in multiples of the available

 point sizes. Because scaled raster fonts are usually not appealing
 to the user, applications may choose to limit themselves to the
 available sizes. Because Microsoft Windows version 3.1 does not
 define style names for raster fonts, there is no need to enumerate
 for style names.

 If the nFontType also has the DEVICE_FONTTYPE flag set, then the
 current font is a raster font available to the printer driver for
 use with the printer. The printer may have these fonts in hardware
 or be capable of downloading them when necessary. Applications that
 use such fonts should be aware that similar raster fonts may not be
 available on the display device. The converse is also true. If the
 DEVICE_FONTTYPE flag is not set, then applications should be aware
 that a similar font may not be available on the printer. Fonts
 generated by font packages such as Adobe Type Manager (ATM) are
 listed as device fonts.

5. If nFontType has neither the TRUETYPE_FONTTYPE nor the
 RASTER_FONTTYPE flags set, then the enumerated font is a vector
 font. Vector fonts are also continuously scalable so they do not
 have to be enumerated for point sizes. Because Windows 3.1 does not
 support style names for vector fonts, there is no need to enumerate
 them for style names. Vector fonts are generally used by devices
 such as plotters that cannot support raster fonts. These fonts
 generally have a poor appearance on raster devices, so many
 applications avoid them.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Computing the Size of a New ACL

PSS ID Number: Q102103
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

When adding an access-allowed access control entry (ACE) to a discretionary
access control list (DACL), it is useful to know the exact size needed for
the new DACL. This is particularly useful when creating a new DACL and
copying over the existing ACEs. The below code computes the size needed for
a DACL if an access-allowed ACE is added:

 ACL_SIZE_INFORMATION AclInfo;

 GetAclInformation(pACL,&AclInfo,sizeof(ACL_SIZE_INFORMATION),
 AclSizeInformation))

 dwNewACLSize = AclInfo.AclBytesInUse +
 sizeof(ACCESS_ALLOWED_ACE) +
 GetLengthSid(UserSID) - sizeof(DWORD);

MORE INFORMATION

The call to GetAclInformation() takes a pointer to an ACL. This point is
supplied by your program and should point to the DACL you want to add an
access-allowed ACE to. The GetAclInformation() call fills out a
ACL_SIZE_INFORMATION structure, which provides size information on the ACL.

The second statement computes what the new size of the ACL will be if an
access-allowed ACE is added. This is accomplished by adding the current
bytes being used to the size of an ACCESS_ALLOWED_ACE. We then add the size
of the security identifier (SID) (provided by your application) that is to
used in the AddAccessAllowedAce() API call. Subtracting out the size of a
DWORD is the final adjustment needed to obtain the exact size. This adjust
is to compensate for a place holder member in the ACCESS_ALLOWED_ACE
structure which is used in variable length ACEs.

When adding an ACE to an existing ACL, often there is not enough free space
in the ACL to accommodate the additional ACE. In this situation, it is
necessary to allocate a new ACL and copy over the existing ACEs and then
add the access-allowed ACE. The above code can be used to determine the
amount of memory to allocate for the new ACL.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Conditionally Activating a Button in Windows Help

PSS ID Number: Q76534
Authored 26-Sep-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

An application can add buttons to the Windows Help engine button
bar. There may be times when the button should be activated or
deactivated based on an external condition.

For example, if an application adds a tutorial button to the bar and
the user has not chosen to install the tutorial, the button should be
dimmed to indicate that the tutorial is not available.

MORE INFORMATION

The following code fragment demonstrates activating and deactivating
buttons using the macro facility:

char szMacro[255];
 .
 .
 .
/* Bring up the Help engine with the HLP file */
/* This code fragment assumes that a button has */
/* been defined with an ID of TUTORIAL_BUTTON */
WinHelp (hWnd, lpHelpFile, HELP_CONTENTS, 0L)

if (fTutorial)
/* If the tutorial is installed, the macro should enable the button */
 lstrcpy(szMacro,"EnableButton('TUTORIAL_BUTTON')");
else
/* If the tutorial is not installed, the macro should disable the
 button */
 lstrcpy(szMacro,"DisableButton('TUTORIAL_BUTTON')");

/* Run the appropriate macro */
WinHelp (hWnd, lpHelpFile, HELP_COMMAND, (LONG)szMacro);

Additional reference words: 3.10 3.50 4.00 95 grayed out disabled
unavailable
KBCategory: kbtool
KBSubcategory: TlsHlp

Considerations for CreateCursor() and CreateIcon()

PSS ID Number: Q73667
Authored 02-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

An application can use the CreateCursor() and CreateIcon() APIs
to create icons and cursors on the fly. The application determines
the shape at run time.

When the shape of the icons and the cursors is known in advance, an
application should use LoadIcon() and LoadCursor().

An application that uses CreateIcon() must call DestroyIcon() to free the
memory used by the icon when it is no longer needed. An application that
uses CreateCursor() must call DestroyCursor() to release the memory used by
the cursor when it is no longer needed.

An application can call DestroyIcon() and DestroyCursor() only when the
icon or the cursor is not in use. For example, if the cursor created by
CreateCursor() has been specified in a SetCursor call, it must not be
destroyed until it has been released by another SetCursor() call.

An application can only use DestroyIcon() and DestroyCursor() to destroy
icons and cursors created by CreateIcon() and CreateCursor(). It should not
try to destroy icons and cursors loaded with LoadIcon() and LoadCursor().

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiCurico

Consoles Do Not Support ANSI Escape Sequences

PSS ID Number: Q84240
Authored 05-May-1992 Last modified 18-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Windows NT does not support ANSI escape sequences. There is some
functionality that this affects (for example, changing the color of the
prompt). This also affects a very limited number TTY-type programs that
rely on the console for escape support to be provided.

This feature is is under review and is being considered for future
releases.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Controlling the Caret Color

PSS ID Number: Q84054
Authored 29-Apr-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

When an application creates a custom caret using a bitmap, it is
possible to specify white or black for the caret color. In the case of
Windows running on a monochrome display, the application can cause the
caret to be the color of the display (white, green, amber, and so
forth, as appropriate). However, because the caret color is determined
by Windows at run time based on the hardware installed, the
application cannot guarantee what color will be used under all
circumstances. This article provides information about using color in
a custom caret.

MORE INFORMATION

To create a caret, first create a bitmap with the desired pattern. To
display the caret, Windows exclusive-ORs (XORs) and takes the opposite
of the result (the NOT of the result) of the bitmap with the
background of the client window. Therefore, to create a white caret,
create a bitmap that when XOR'd with the window background will have
an opposite value that will create a white color. It is when the caret
blinks that Windows uses the reverse of the bitmap XOR'd with the
background to draw the caret; this creates the white blink seen on the
screen.

The bitmap for the caret cannot use a color palette. Windows does not
use the color values from the palette in its calculations but the
indices into the palette. While it is possible to use palette indices
successfully, perfect symmetry of the colors in the palette is
required. This is unlikely. For each color in the palette, its exact
opposite color must be in the palette, in the exactly opposite index
position.

However, when the application creates bitmaps itself, it has complete
control over the bits. Therefore, the application can create the
perfect counterpart that corresponds to the window background color.
If the application uses this information to create the caret bitmap,
when Windows creates the caret, it can choose the closest color
available in the system palette.

Therefore, to create a white caret (or a black one, if the screen has
too many light elements), the task is straightforward. Windows always
reserves a few colors in the system palette and makes them available

to all applications. On a color display, these colors include black
and white. On a monochrome display, these colors are whatever the
monochrome color elements are.

Because black and white (or the monochrome screen colors) are always
available, the application simply creates a bitmap that, when XOR'd
with the screen background color, produces black or white.
The technique involves one main principle: background XOR background =
FALSE. Anything XOR'd with itself returns FALSE, which in bitmap terms
maps to the color black.

The process of creating a caret from the background color involves the
four steps discussed below:

1. Create a pattern brush the same as the window background

2. Select the pattern brush into a memory display context (DC)

3. Use the PATCOPY option of the PatBlt function to copy the brush
 pattern into the caret bitmap.

4. Specify the caret bitmap in a call to the CreateCaret function.

When this caret is XOR'd with the background, black will result. When
the caret blinks, and is therefore displayed, Windows computes the
opposite of the caret and XOR's this value into the background. This
yields NOT(background XOR background) = NOT(FALSE) = TRUE which
corresponds to WHITE. The first background represents the caret
bitmap and the second is the current background color of the window.

Note that half the time the custom bitmap is displayed (when the caret
"blinks") the other half of the time the background is displayed,
(between "blinks").

If the background color is light gray or lighter [RGB values
(128, 128, 128) through (255, 255, 255)], then a black caret is
usually desired. The process of creating a black caret is just as
straightforward. Modify step 1 of the process given above to
substitute the inverse of the background for the background bitmap.
When the caret blinks, it will show black. The equation that
corresponds to this case is NOT(inverse of background XOR background)
= NOT(TRUE) = FALSE which corresponds to BLACK.

To change the caret color to something other than black or white
requires considerably more work, with much less reliable results
because the application must solve the following equation:

 NOT(caret XOR background) = desired_color on the
 "blink" of the caret.

where the value for the caret color must be determined given the
desired color. A series of raster operations is required to solve this
type of equation. (For more information on raster operations, see
chapter 11 of the "Microsoft Windows [3.0] Software Development Kit
Reference, Volume 2" or pages 573-585 of the "Microsoft Windows [3.1]

Software Development Kit Programmer's Reference, Volume 3: Messages,
Structures, and Macros.")

Even after solving this equation, the color actually displayed is
controlled by Windows and the colors in the current system palette.
With colors other than black or white, an exact match for the desired
color may not be available. In that case, Windows will provide the
closest match possible. Because the palette is a dynamic entity and
can be modified at will, it is impossible to guarantee a particular
result color in all cases. The colors black and white should be safe
most of the time because it is quite unusual for an application to
modify the reserved system colors. Even when an application does
change the system palette, it most likely retains a true black and a
true white.

As long as a black and white remain in the palette (which is usually
the case), this algorithm will provide a white or black caret.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCrt

Converting a Linear Address to a Flat Offset on Win32s

PSS ID Number: Q115080
Authored 18-May-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SUMMARY

Win32s flat code and data selectors are not zero-based. Linear addresses
retrieved through a VxD can be used in a Win32-based application running
under Win32s, after one small change is made.

In addition, there are two Universal Thunk APIs that are used to convert
segmented addresses to flat addresses and vice versa.

MORE INFORMATION

Linear Address to Flat Address

Win32s does not base linear addresses at 0, so that exceptions will be
generated when null pointers are dereferenced. Therefore, an access
violation occurs when:

1. a 16-bit DLL calls a VxD to retrieve a linear address (the VxD got
 the address by translating a physical address to a linear address)
 through DPMI function 0800h (map physical to linear).

2. the 16-bit DLL returns the address to a Win32-based application through
 the Universal Thunk.

3. the Win32-based application uses this linear address.

In order to convert a linear address (based at 0) to a flat offset, add
the base to the linear address. To do this, get the offset through
GetThreadSelectorEntry() with the DS or CS and then subtract that base from
the linear address that was returned by the VxD.

Segmented Address to Flat Address

The following Win32s Universal Thunk APIs are used for address
translation:

 - UTSelectorOffsetToLinear (segmented address to flat address)

 - UTLinearToSelectorOffset (flat address to segmented address)

NOTE: In the nested function call

 UTLinearToSelectorOffset(UTSelectorOffsetToLinear(x));

where x is a segmented address, you may not necessarily get the original
value of x back. It is by design that the sel:off pair may be different.
If the memory was allocated by a 16-bit application, Win32s does not
have x in its LinearAddress->selector translation tables. Therefore,
when UTLinearToSelectorOffset() is called, new selectors are created.

Additional reference words: 1.10 1.20 gpf gp-fault
KBCategory: kbprg
KBSubcategory: W32s

Converting Colors Between RGB and HLS (HBS)

PSS ID Number: Q29240
Authored 26-Apr-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The code fragment below converts colors between RGB (Red, Green,
Blue) and HLS/HBS (Hue, Lightness, Saturation/Hue, Brightness,
Saturation).

MORE INFORMATION

/* Color Conversion Routines --

RGBtoHLS() takes a DWORD RGB value, translates it to HLS, and
stores the results in the global vars H, L, and S. HLStoRGB takes the
current values of H, L, and S and returns the equivalent value in an
RGB DWORD. The vars H, L, and S are only written to by:

 1. RGBtoHLS (initialization)
 2. The scroll bar handlers

A point of reference for the algorithms is Foley and Van Dam,
"Fundamentals of Interactive Computer Graphics," Pages 618-19. Their
algorithm is in floating point. CHART implements a less general
(hardwired ranges) integral algorithm.

There are potential round-off errors throughout this sample.
((0.5 + x)/y) without floating point is phrased ((x + (y/2))/y),
yielding a very small round-off error. This makes many of the
following divisions look strange.
*/

#define HLSMAX RANGE /* H,L, and S vary over 0-HLSMAX */
#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
 /* HLSMAX BEST IF DIVISIBLE BY 6 */
 /* RGBMAX, HLSMAX must each fit in a byte. */

/* Hue is undefined if Saturation is 0 (grey-scale) */
/* This value determines where the Hue scrollbar is */
/* initially set for achromatic colors */
#define UNDEFINED (HLSMAX*2/3)

void RGBtoHLS(lRGBColor)
DWORD lRGBColor;

{
 WORD R,G,B; /* input RGB values */
 BYTE cMax,cMin; /* max and min RGB values */
 WORD Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max
*/

 /* get R, G, and B out of DWORD */
 R = GetRValue(lRGBColor);
 G = GetGValue(lRGBColor);
 B = GetBValue(lRGBColor);

 /* calculate lightness */
 cMax = max(max(R,G), B);
 cMin = min(min(R,G), B);
 L = (((cMax+cMin)*HLSMAX) + RGBMAX)/(2*RGBMAX);

 if (cMax == cMin) { /* r=g=b --> achromatic case */
 S = 0; /* saturation */
 H = UNDEFINED; /* hue */
 }
 else { /* chromatic case */
 /* saturation */
 if (L <= (HLSMAX/2))
 S = (((cMax-cMin)*HLSMAX) + ((cMax+cMin)/2)) / (cMax+cMin);
 else
 S = (((cMax-cMin)*HLSMAX) + ((2*RGBMAX-cMax-cMin)/2))
 / (2*RGBMAX-cMax-cMin);

 /* hue */
 Rdelta = (((cMax-R)*(HLSMAX/6)) + ((cMax-cMin)/2)) / (cMax-cMin);
 Gdelta = (((cMax-G)*(HLSMAX/6)) + ((cMax-cMin)/2)) / (cMax-cMin);
 Bdelta = (((cMax-B)*(HLSMAX/6)) + ((cMax-cMin)/2)) / (cMax-cMin);

 if (R == cMax)
 H = Bdelta - Gdelta;
 else if (G == cMax)
 H = (HLSMAX/3) + Rdelta - Bdelta;
 else /* B == cMax */
 H = ((2*HLSMAX)/3) + Gdelta - Rdelta;

 if (H < 0)
 H += HLSMAX;
 if (H > HLSMAX)
 H -= HLSMAX;
 }
}

/* utility routine for HLStoRGB */
WORD HueToRGB(n1,n2,hue)
WORD n1;
WORD n2;
WORD hue;
{

 /* range check: note values passed add/subtract thirds of range */

 if (hue < 0)
 hue += HLSMAX;

 if (hue > HLSMAX)
 hue -= HLSMAX;

 /* return r,g, or b value from this tridrant */
 if (hue < (HLSMAX/6))
 return (n1 + (((n2-n1)*hue+(HLSMAX/12))/(HLSMAX/6)));
 if (hue < (HLSMAX/2))
 return (n2);
 if (hue < ((HLSMAX*2)/3))
 return (n1 + (((n2-n1)*(((HLSMAX*2)/3)-hue)+(HLSMAX/12))/(HLSMAX/6))
);
 else
 return (n1);
}

DWORD HLStoRGB(hue,lum,sat)
WORD hue;
WORD lum;
WORD sat;
{
 WORD R,G,B; /* RGB component values */
 WORD Magic1,Magic2; /* calculated magic numbers (really!) */

 if (sat == 0) { /* achromatic case */
 R=G=B=(lum*RGBMAX)/HLSMAX;
 if (hue != UNDEFINED) {
 /* ERROR */
 }
 }
 else { /* chromatic case */
 /* set up magic numbers */
 if (lum <= (HLSMAX/2))
 Magic2 = (lum*(HLSMAX + sat) + (HLSMAX/2))/HLSMAX;
 else
 Magic2 = lum + sat - ((lum*sat) + (HLSMAX/2))/HLSMAX;
 Magic1 = 2*lum-Magic2;

 /* get RGB, change units from HLSMAX to RGBMAX */
 R = (HueToRGB(Magic1,Magic2,hue+(HLSMAX/3))*RGBMAX +
(HLSMAX/2))/HLSMAX;
 G = (HueToRGB(Magic1,Magic2,hue)*RGBMAX + (HLSMAX/2)) / HLSMAX;
 B = (HueToRGB(Magic1,Magic2,hue-(HLSMAX/3))*RGBMAX +
(HLSMAX/2))/HLSMAX;
 }

 return(RGB(R,G,B));
}

Additional reference words: 3.00 3.10 3.50 4.00 95 color RGB HLS HBS
KBCategory: kbprg
KBSubcategory: GdiPal

Copy on Write Page Protection for Windows NT

PSS ID Number: Q103858
Authored 01-Sep-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

SUMMARY

The Windows NT's Copy on Write page protection is a concept that allows
multiple applications to map their virtual address spaces to share the same
physical pages, until an application needs to modify the page and have its
own instance copy. This is part of a technique called Lazy Evaluation,
which allows the system to not waste time by committing resources, time, or
execution until/unless absolutely necessary. Copy on Write allows the
virtual memory manager to save memory and execution time.

MORE INFORMATION

Copy on Write works as follows: In generic terms, an application can load
something into its virtual memory (for example, a code section or DLL
code). Virtual memory is mapped to physical memory. Another process may
want to load the same thing into its virtual memory. As long as neither
process writes to this memory, they can map to, and share, the same
physical pages.

If either process needs to write to this memory, because the memory is
marked as Copy on Write, the physical page frame will be copied somewhere
else in physical memory. Fixups are made for the virtual memory mapping of
the writing process. Both applications now have their own instance of the
memory contents. In short, applications can share the same physical memory
with Copy on Write, until one of the applications has to modify the
contents. At that point, a new copy of the contents is made, and the
writing process has its own copy.

It should be emphasized that this is not to say that applications are
sharing memory in the sense that one application can write to it and
another can read what the first one wrote; as long as applications are only
going to read a piece of memory (for example, a code section), then the
physical pages supporting that memory for the applications can be shared.
Once the application needs to write to the memory (for example, in the form
of a fixup), then that application must have a new physical page so that
the modifications are not seen by other processes. The processes are no
longer sharing the same physical pages.

Applications

When multiple instances of the same Windows-based application load, you may

notice that most, if not all, of their instance handles (hInstance) have
the same value. In fact, almost all of the windows on the desktop have this
value, which represents the base address where the application loaded in
virtual memory.

Each of the instances of the same application running has its own protected
virtual address space to run in. If each of these applications can load
into its default base address, each will map to, and be able to share, the
same physical pages in memory. Using Copy on Write, the system will allow
these applications to share the same physical pages until one of the
applications modifies a page. Then a copy is made in physical memory, and
that process's virtual memory is fixed up to use the new physical page. If
for some reason one of these instances cannot load in the desired base
address, it will get its own physical pages. See the section on DLLs below
for more explanation.

DLLs

Dynamic-link libraries (DLLs) are created with a default base address to
load at. Assuming that multiple applications call the DLL, they will all
try to load it within their own address space at that default virtual
address. If they are all successful, they can all map that virtual address
space to share the same physical pages.

However, if for some reason the DLL cannot be loaded within the process's
address space at the default address, it will load the DLL elsewhere. The
DLL must be copied into another physical address frame. The reason is that
fixups for jump instructions in a DLL are written as specific locations
within the DLL's pages. If the DLL can be loaded at the same base address
for each process, the second to the nth process does not have to write that
memory location for the jump. If a process cannot load the DLL at the
specified base address, the locations written in the DLL's jumps will be
different for this process. This forces the fixup to write a new location
into the jump, and the Copy on Write will automatically force a new
physical page.

Note that all references to data must be fixed up too. If this causes
virtual memory of the code section to be updated, then the process will
again go through the Copy on Write process. For example, if there are a
great many places in the code section that make reference into data in a
DLL, if the DLL cannot be loaded at its default location, the locations in
the code section data in the DLL are referenced will have to be modified.
If this is one of multiple instances of a process, these fixups must go
through the copy on write process, and the virtual memory pages of the
process's code section will not be able to map and share the same physical
pages as the other instances. If there are a lot of references to the data
in the DLL by the code section, this can essentially cause the entire code
section to be copied to new physical pages.

POSIX

In POSIX, there is a fork() instruction that basically creates two copies
of the same program. It is an expensive process for the system to copy the

address space of one process into another. Instead, under Windows NT, the
system simply marks the parent's pages with Copy on Write. This way new
physical frames are copied only if and when they are needed (have been
modified). The system does not waste time or memory if all of the address
space doesn't need to be copied. (For more information, see "Inside Windows
NT" by Microsoft Press).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Copying Compressed Files

PSS ID Number: Q130331
Authored 17-May-1995 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5 and 3.51

SUMMARY

It is not possible to copy NTFS compressed files without uncompressing
them. This functionality is not available in Windows NT versions 3.5 and
3.51; however, this feature may be included in a future version of Windows
NT.

Compressed files are expanded via memory-mapped files. This minimizes the
performance hit of expanding the file.

MORE INFORMATION

One of the new features found in Windows NT 3.51 is file compression.
Files or directories can be compressed or decompressed by calling
DeviceIoControl() with one of the following compression flags:

 FSCTL_SET_COMPRESSION : Sets the compression state of a file or
 directory.

 FSCTL_GET_COMPRESSION : Obtains the compression state of a file
 or directory.

Two additional FSCTL codes are documented in the Win32 SDK as "not
implemented in this release." They are FSCTL_READ_COMPRESSION and
FSCTL_WRITE_COMPRESSION. These additional FSCTL codes will be part of
the functionality that will allow you to read and write files on an
NTFS compressed drive without having to decompress them first. Again,
this functionality may be included in a future release of Windows NT.

Additional reference words: 3.50 NTFS File Compression
KBCategory: kbprg kbusage
KBSubcategory: BseFileIo

Correct Use of Try/Finally

PSS ID Number: Q83670
Authored 19-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Try/finally, used correctly, helps to provide a robust application.
However, if used incorrectly it can cause unnecessary overhead. any
flow of control out of the try body of try/finally is an abnormal
termination that can cause hundreds of instructions to be executed on
an x86 system, and thousands on a MIPS machine, even if control leaves
the try body via a control statement on the very last statement of the
try body. The language definition states that control must leave the
try body sequentially for normal termination to occur (that is,
execution falls through the bottom of the try body).

The following sample demonstrates an incorrect use of try/finally:

/* Incorrect use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 return;
 }
 .
 .
 } finally {
 .
 .
 }
 return;
}

The overhead can be avoided in the above example by moving the return
AFTER the end of the finally clause. The following provides more
detail on the correct use of try/finally.

MORE INFORMATION

Execution of a termination handler due to abnormal termination of a
try body is expensive. Abnormal termination occurs when control leaves
a try body in any way other than by falling through the bottom.
Intentionally branching out of a try body is still an abnormal
termination.

In the above example, abnormal termination of the try body occurs if
the return in the middle of the try body is executed. If the predicate
of the if is false, then extremely efficient execution of the finally
clause occurs because this is not abnormal termination and the finally
clause is called directly by inline code.

When abnormal termination occurs hundreds to thousands of instructions
are executed because an unwind must be executed, which must search
backward through frames to determine if any termination handlers
should be called. On an x86 system, this executes the C run-time
handler and examines the handler list. On a MIPS machine, this also
causes the function table to be searched and the prologue of each
intervening function to be executed backwards interpretively.

You should always avoid the execution of a termination handler as a
result of the abnormal termination of a try body by a return, or other
direct flow of control out of the try body. Abnormal termination
occurs whenever control leaves the try body other than by falling
through the bottom. This can occur because of a return, goto,
continue, or break. It can also occur because of an exception, which
presumably cannot be avoided.

In the above example, abnormal termination in the nonexception case
can be eliminated easily as follows:

/* Correct use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 } else {
 .
 .
 }

 } finally {
 .
 .
 }
 return;
}

Now both clauses of the if fall through to the termination handler in
all but exceptional cases and execute the termination handler in the
most efficient way. This also has the same logical execution as the
previous sample.

In summary, the correct use of try/finally is a powerful method to
help you write robust applications. Care should be taken to ensure the
correct use of try/finally.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

CPU Quota Limits Not Enforced

PSS ID Number: Q100329
Authored 20-Jun-1993 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

SUMMARY

On page 88 of "Inside Windows NT," Table 4-1 indicates that a process
object contains a quota limit for the maximum amount of processor time that
the process can use.

This limit is not enforced in Windows NT versions 3.1 or 3.5x.

MORE INFORMATION

The key to understanding Windows NT thread scheduling and resultant
application behavior is knowing the central algorithm used. This algorithm
is very simple, and is the same one a number of other operating systems
use. It is "run the highest priority thread ready." A list of ready
threads or processes exists; it is often called the "dispatch queue" or
"eligible queue." The queue entries are in order based on their individual
priority. A hardware-driven real-time clock or interval timer will
periodically interrupt, passing control to a device driver that calls the
process or thread scheduler. The thread scheduler will take the highest
priority entry from the queue and dispatch it to run.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

CreateFile() Using CONOUT$ or CONIN$

PSS ID Number: Q90088
Authored 08-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

If you attempt to open a console input or output handle by calling the
CreateFile() function with the special CONIN$ or CONOUT$ filenames, this
call will return INVALID_HANDLE_VALUE if you do not use the proper sharing
attributes for the fdwShareMode parameter in your CreateFile() call. Be
sure to use FILE_SHARE_READ when opening "CONIN$" and FILE_SHARE_WRITE when
opening "CONOUT$".

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

CreateFileMapping() SEC_* Flags

PSS ID Number: Q108231
Authored 07-Dec-1993 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The definition of CreateFileMapping() is as follows:

 HANDLE CreateFileMapping(hFile, lpsa, fdwProtect, dwMaximumSizeHigh,
 dwMaximumSizeLow, lpszMapName)

 HANDLE hFile;
 LPSECURITY_ATTRIBUTES lpsa;
 DWORD fdwProtect;
 DWORD dwMaximumSizeHigh;
 DWORD dwMaximumSizeLow;
 LPCTSTR lpszMapName;

The following flags are four possible values for the parameter fdwProtect:

 SEC_COMMIT
 All pages of a section are to be set to the commit state.
 SEC_IMAGE
 The file specified for a section's file mapping is an executable
 image file.
 SEC_NOCACHE
 All pages of a section are to be set as noncacheable.
 SEC_RESERVE
 All pages of a section are to be set to the reserved state.

If none of these flags are specified, SEC_COMMIT is the default. This
behaves the same way as MEM_COMMIT in VirtualAlloc().

MORE INFORMATION

Windows NT

The SEC_RESERVE flag is intended for file mappings that are backed by the
paging file, and therefore use SEC_RESERVE only when hFile is -1. The pages
are reserved just as they are when the MEM_RESERVE flag is used in
VirtualAlloc(). The pages can be committed by subsequently using the
VirtualAlloc() application programming interface (API), specifying
MEM_COMMIT. Once committed, these pages cannot be decommitted.

The SEC_NOCACHE flag is intended for architectures that require various

locking structures to be located in memory that is not ever fetched into
the CPU cache. On x86 and MIPS machines, use of this flag just slows down
the performance because the hardware keeps the cache coherent. Certain
device drivers may require noncached data so that programs can write
through to the physical memory. SEC_NOCACHE requires that either
SEC_RESERVE or SEC_COMMIT be used in addition to SEC_NOCACHE.

The SEC_IMAGE flag indicates that the file handle points to an executable
file, and it should be loaded as such. The mapping information and file
protection are taken from the image file, and therefore no other options
are allowed when SEC_IMAGE is used.

Windows 95

Under Windows NT, the Win32 loader simply sits on top of the memory mapped
file subsystem, and so when the loader needs to load a PE executable, it
simply calls down into the existing memory mapped file code. Therefore, it
is extremely easy for to support SEC_IMAGE in CreateFileMapping() under
Windows NT.

In Windows 95, the loader is more complex and the memory mapped files are
simple and only support the bare minimum of functionality to make the
existing MapViewOfFile() work. Therefore, Windows 95 does not support
SEC_IMAGE. There is support for SEC_NOCACHE, SEC_RESERVE and SEC_COMMIT.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseMm

Creating a Font for Use with the Console

PSS ID Number: Q105299
Authored 17-Oct-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

It is possible to use FontEdit to create a font that can be used by the
console. The following must be true:

 - The face name must be System, Terminal, or Courier
 - The font size must be different from any of the other console fonts
 - The font must be fixed pitch
 - The font must not be italic

In addition, in the U.S. market, the font should support codepage 437.

Install the font from the Control Panel. After rebooting, the font will be
available to the console.

An EnumFonts() call is made by the console during its initialization to
determine what fonts are available. The console saves a set of one-to-one
mappings between the font sizes listed and a set of LOGFONTs. The console
never has direct knowledge of what file is used.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: GdiFnt

Creating a Hidden MDI Child Window

PSS ID Number: Q70080
Authored 09-Mar-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Whenever Windows creates a new multiple-document interface (MDI) child
window in response to a WM_MDICREATE message, it makes that child window
visible.

The information below describes how to create a hidden MDI child window
without causing an unattractive "flash" on the screen as the window is
created visible and then hidden.

MORE INFORMATION

A code fragment such as the following can be used to create an
invisible MDI child:

MDICREATESTRUCT mcs; // structure to pass with WM_MDICREATE
HWND hWndMDIClient; // the MDI client window
HWND hwnd; // temporary window handle

 ...

// assume that we have already filled out the MDICREATESTRUCT...

// turn off redrawing in the MDI client window
SendMessage(hwndMDIClient, WM_SETREDRAW, FALSE, 0L);

/*
 * Create the MDI child. It will be created visible, but will not
 * be seen because redrawing to the MDI client has been disabled
*/
hwnd = (WORD)SendMessage(hwndMDIClient,
 WM_MDICREATE,
 0,
 (LONG)(LPMDICREATESTRUCT)&mcs);

// hide the child
ShowWindow(hwnd, SW_HIDE);

// turn redrawing in the MDI client back on,
// and force an immediate update
SendMessage(hwndMDIClient, WM_SETREDRAW, TRUE, 0L);
InvalidateRect(hwndMDIClient, NULL, TRUE);

UpdateWindow(hwndMDIClient);
 ...

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMdi

Creating a List Box That Does Not Sort

PSS ID Number: Q68116
Authored 08-Jan-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

A Windows list box with the LBS_STANDARD style will sort the list of items
into alphabetical order before displaying them in the control.

To create a list box that will not sort, you must remove the LBS_SORT bit
from the window style. The following style specification removes this bit:

 (LBS_STANDARD | LBS_HASSTRINGS) & ~LBS_SORT

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Creating a List Box with No Vertical Scroll Bar

PSS ID Number: Q68115
Authored 08-Jan-1991 Last modified 16-May-1995

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

A Windows list box with the LBS_STANDARD style will display a vertical
scroll bar if there are more items in the list than can be displayed in the
client area of the list box.

To create a list box that will not use a vertical scroll bar, you must
remove the WS_VSCROLL bit from the window style. The following style
specification removes this bit:

 (LBS_STANDARD | LBS_HASSTRINGS) & ~WS_VSCROLL

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Creating a List Box Without a Scroll Bar

PSS ID Number: Q11365
Authored 01-Dec-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows versions
 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

When LBS_STANDARD is used as follows

 LBS_NOTIFY | LBS_SORT | WS_BORDER | LBS_STANDARD

the following results (as defined in WINDOWS.H):

 LBS_STANDARD = #00A00003;
 /* LBS_NOTIFY | LBS_SORT | WS_VSCROLL | WS_BORDER */

To create a dialog box that contains a list box without the vertical scroll
bar, use NOT WS_VSCROLL as the style for creating a list box control
without a vertical scroll bar, as follows:

 (LBS_STANDARD & ~WS_VSCROLL) // NOT WS_VSCROLL

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Creating a Logical Font with a Nonzero lfOrientation

PSS ID Number: Q104010
Authored 02-Sep-1993 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

SUMMARY

To create a font that writes in a direction other than left to right, an
application should specify a nonzero lfEscapement in the LOGFONT structure
that is passed to CreateFontIndirect(). This method works under Windows NT
regardless of the graphics mode of the device context.

To create a font where the characters themselves are rotated, the
application should specify a nonzero lfOrientation in the LOGFONT structure
that is passed to CreateFontIndirect(). However, this setting is ignored in
Windows NT unless the graphics mode is set to GM_ADVANCED.

Therefore, to successfully create a logical font with a nonzero
lfOrientation, use

 SetGraphicsMode(hDC, GM_ADVANCED)

to set the graphics mode of the device context to GM_ADVANCED.

MORE INFORMATION

The TTFONTS sample program is a good way to quickly and easily see the
effects of the lfEscapement and lfOrientation fields. However, TTFONTS does
not set the graphics mode of its test window HDC to GM_ADVANCED. As a
result, the lfOrientation field apparently is ignored. It is easy to modify
the DISPLAY.C module of TTFONTS in order to set the graphics mode of the
window HDC to GM_ADVANCED.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: GdiFnt

Creating a Multiple Line Message Box

PSS ID Number: Q67210
Authored 27-Nov-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Message boxes are used to provide information to the user of an
application. Error messages and warnings are also provided through message
boxes. This article provides details on using message boxes in
applications.

MORE INFORMATION

Message boxes are modal windows. When an application displays an
application modal message box, which is the default message box type, the
user cannot interact with any part of that application until the message
box has been dismissed. However, the user may use the mouse or keyboard to
activate another application and interact with it while the message box is
displayed. Certain critical errors that may affect all of Windows are
displayed in system modal message boxes. Windows will not perform any
operations until the error condition is acknowledged and the system modal
message box is dismissed.

There are times where it is necessary to display a long message in a
message box. Windows does this when you start an MS-DOS-based application
that uses graphics from inside an MS-DOS window. To break a message into
many lines, insert a newline character into the message text. Here is a
sample MessageBox() call:

 MessageBox(hWnd, "This is line 1.\nThis is line 2.", "App",
 MB_OK | MB_ICONQUESTION);

If the text of a message is too long for a single line, Windows will
break the text into multiple lines.

System modal message boxes treat the newline character as any other. A
newline character is displayed as a black block in the text. Because system
modal message boxes are designed to work at all times, even under extremely
low memory conditions, it does not provide the ability to display more than
one line of text.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Creating a Nonblinking Caret

PSS ID Number: Q74607
Authored 24-Jul-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK)versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The Microsoft Windows graphical environment is designed to provide a
blinking caret. However, using a timer and the SetCaretBlinkTime()
function, an application can "trick" the caret into not blinking.

MORE INFORMATION

Although Windows is designed to blink the caret at a specified interval, a
timer function and SetCaretBlinkTime() can be used to prevent Windows from
turning the caret off by following these three steps:

1. Call SetCaretBlinkTime(10000), which instructs Windows to blink the
 caret every 10,000 milliseconds (10 seconds). This results in a
 "round-trip" time of 20 seconds to go from OFF to ON and back to
 OFF (or vice versa).

2. Create a timer, using SetTimer(), specifying a timer procedure and a
 5,000 millisecond interval between timer ticks.

3. In the timer procedure, call SetCaretBlinkTime(10000). This resets
 the timer in Windows that controls the caret blink.

When an application implements this procedure, Windows never removes the
caret from the screen, and the caret does not blink.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCrt

Creating a World SID

PSS ID Number: Q111543
Authored 14-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The sample code below demonstrates how to create a World Security
Identifier (SID). The World SID (S-1-1-0) is a group that includes all
users. To determine if a SID (perhaps in an Access Control Entry) is the
World SID, you must first create a World SID to compare it to. Once you
have created a World SID, you can use the EqualSid() API (application
programming interface) to determine equality.

Sample Code

PSID psidWorldSid;
SID_IDENTIFIER_AUTHORITY siaWorldSidAuthority =
 SECURITY_WORLD_SID_AUTHORITY;

psidWorldSid = (PSID)LocalAlloc(LPTR,GetSidLengthRequired(1));

InitializeSid(psidWorldSid, &siaWorldSidAuthority, 1);
*(GetSidSubAuthority(psidWorldSid, 0)) = SECURITY_WORLD_RID;

Additional reference words: 3.10 and 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Creating Access Control Lists for Directories

PSS ID Number: Q115948
Authored 07-Jun-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The discretionary access control list (DACL) for a directory usually
differs from that of a file. When assigning security to a directory, you
are often specifying both the security for the directory and the security
for any contained files and directories.

A directory's ACL will normally contain at least two access control
entries (ACE):

 - An ACE for the directory itself and any subdirectories.

 - An ACE for any files in the directory.

If an ACE is to apply to object in the directory (subdirectories and
files), the ACE is marked as an OBJECT_INHERIT_ACE and/or a
CONTAINER_INHERIT_ACE. (In this article, a container means a directory.)

For example, when you use File Manager to set the security on a directory
to "Change (RWXD)(RWXD)," the directory's DACL contains the following two
ACEs:

 ACE1 (applies to files in the directory)
 ACE flags: INHERIT_ONLY_ACE | OBJECT_INHERIT_ACE
 Access Mask: DELETE | GENERIC_READ | GENERIC_WRITE |
 GENERIC_EXECUTE

 ACE2 (applies to the directory and subdirectories)
 ACE flags: CONTAINER_INHERIT_ACE
 Access Mask: DELETE | FILE_GENERIC_READ | FILE_GENERIC_WRITE |
 FILE_GENERIC_EXECUTE

MORE INFORMATION

The ACE flags are part of the ACE header. The structure of an ACE header
can be found in the online help by searching on "ACE_HEADER".

In the above example, ACE1 applies only to contained files through the
INHERIT_ONLY_ACE flag. If INHERIT_ONLY_ACE is not specified in an ACE, the
ACE applies only to the current container.

NOTE: Adding one of these ACEs to a directory does not change the security

for any contained files or directories. The ACEs are only copied to files
and directories created after the ACEs have been added to the directory.

When adding your own security to files, it is easy to create a
combination that File Manager does not recognize as a "standard"
setting. This is shown in file manager as "special" security.

If you want to match the DACLs you create to those used by File Manager,
you can set the security of a file or directory in File Manager and then
check the DACLs and ACEs. A tool for this is provided as a sample called
"Check_SD" in the Win32 SDK. Check_SD can be found in the
Q_A\SAMPLES\CHECK_SD directory on the Win32 SDK CD.

REFERENCES

 - "Microsoft Win32 Programmer's Reference," Microsoft Corporation.

 - "Microsoft Win32 SDK API Reference help file," Microsoft Corporation.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Creating and Using a Custom Caret

PSS ID Number: Q74514
Authored 22-Jul-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, creating a custom
caret is simple. Windows has a series of caret control, creation, and
deletion functions specifically designed to make manipulating the
caret easy.

MORE INFORMATION

The caret is a shared system resource. Unlike brushes, pens, device
contexts and such, but like the cursor, only one caret is available
under Windows. Also, like the cursor, an application can define a
custom shape for the caret.

The CreateCaret() function creates a custom caret. Its syntax is as
follows:

 void CreateCaret(HWND hWnd, HBITMAP hBitmap,
 int nWidth, int nHeight);

The caret shape can be a line, a block, or a bitmap specified as the
hBitmap parameter. If the hBitmap parameter contains a valid handle [a
bitmap handle returned from the CreateBitmap(), CreateDIBitmap(), or
LoadBitmap() function], CreateCaret() ignores the values of its nWidth
and nHeight parameters and uses the dimensions of the bitmap. If
hBitmap is NULL, the caret is a solid block; if hBitmap is one, the
caret is a gray block. The nWidth and nHeight parameters specify the
caret size in logical units. If either nWidth or nHeight is zero, the
caret width or height is set to the window-border width or height.

If an application uses a bitmap for the caret shape, the caret can be
in color; unlike the cursor, the caret is not restricted to
monochrome.

CreateCaret() automatically destroys the previous caret shape, if any,
regardless of which window owns the caret. The new caret is initially
hidden; call the ShowCaret() function to display the caret.

Because the caret is a shared resource, a window should create a caret
only when it has the input focus or is active. It should destroy the
caret before it loses the input focus or becomes inactive. Only the
window that owns the caret should move it, show it, hide it, or modify

it in any way.

Other functions related to the caret are the following:

 - SetCaretPos()
 This function moves the caret to the specified position (in logical
 coordinates).

 - GetCaretPos()
 This function retrieves the caret's current position (in screen
 coordinates).

 - ShowCaret()
 This function shows the caret on the display at the caret's current
 position. When shown, the caret flashes automatically. If the caret
 is not owned by the window specified in the call, the caret is not
 shown.

 - HideCaret()
 This function hides the caret by removing it from the display
 screen. HideCaret() hides the caret only if the window handle
 specified in the call is the window that owns the caret. Hiding the
 caret does not destroy it.

 NOTE: Hiding the caret is cumulative; ShowCaret() must be called once
 for every call to HideCaret(). For example, if HideCaret() is called
 five times, ShowCaret() must be called five times for the caret
 to be shown.

 - DestroyCaret()
 This function removes the caret from the screen, frees the caret
 from the current owner-window, and destroys the current shape of
 the caret. It destroys the caret only if the current task owns the
 caret. This call should be used in conjunction with CreateCaret().
 DestroyCaret() does not free or destroy a bitmap used to define the
 caret shape.

 - SetCaretBlinkTime()
 This function sets the caret blink rate. After the blink rate is
 set, it remains the same until the same window changes it again,
 another window changes it, another application changes it, or
 Windows is rebooted.

 - GetCaretBlinkTime()
 This function returns the current caret blink rate.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCrt

Creating Autosized Tables with Windows Help

PSS ID Number: Q81233
Authored 01-Mar-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5 and 3.51

SUMMARY

A Windows Help file can contain a table to present information in a
consistent manner. Help 3.1 supports "autosized" tables where the
relative widths of the columns remain the same, even as the absolute
size of the table changes. The absolute size is determined by the size
of the Windows Help window.

MORE INFORMATION

To create an autosized table in the RTF file, create a centered table.
Create the text for the table using the minimum possible width for
each column. If the Help window is larger, the columns will be wider
and Help will compute where the text wraps based on the available
width. If the user sizes the Help window smaller than the table's
authored size, Help will display a horizontal scroll bar.

In Word for Windows version 1.1, use the Table command on the Format
menu to create a centered table. In Word for Windows 2.0, create a
table, then choose Row Height from the Table menu and choose the
Center button in the Alignment group.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsHlp

Creating Instance Data in a Win32s DLL

PSS ID Number: Q109620
Authored 05-Jan-1994 Last modified 24-Feb-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

SUMMARY

The Win32 dynamic-link libraries (DLLs) that are running on Win32s use
shared data by default. This means that any global data in the DLL is
shared by all processes that use the DLL. Thread local storage (TLS) can be
used to create instance data; that is, data in the DLL that is specific to
each process.

The Win32s "Programmer's Reference" mentions that TLS can be used to create
instance data, but provides no details. The sample code below shows the
source for a DLL that uses instance data on both Win32 and Win32s. The
sample code was built using Microsoft Visual C++, 32-bit edition.

If you use a development environment that does not have similar support for
TLS, you should still be able to use the API (application programming
interface) calls. The API calls for TLS are TlsAlloc, TlsGetValue,
TlsSetValue, and TlsFree.

MORE INFORMATION

One reason for wanting to create instance data on Win32s is to create a DLL
that behaves identically on Win32s and Win32 (although it introduces extra
overhead on Windows NT and Windows 95). Another way to create a DLL that
behaves identically on Win32s and Win32 is to share all of the data in
the Win32-based DLL. For additional information, please see the following
article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q109619
 TITLE : Sharing All Data in a DLL

Sample Code

/* Compile options used: /LD /MD
*/

int __declspec(thread) nVar = 0; // Variables should be initialized

int __declspec(dllexport) GetVar()
{
 return nVar;
}

void __declspec(dllexport) SetVar(int nNew)
{
 nVar = nNew;
}

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Creating Lines with a Nonstandard Pattern

PSS ID Number: Q34614
Authored 22-Aug-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The Microsoft Windows graphical environment provides six predefined
pens for drawing dotted, dashed, and solid lines. However, an
application cannot draw fine gray lines, such as those on a Microsoft
Excel spreadsheet, with these pens. This article describes how to
create such lines.

MORE INFORMATION

An application can use the LineDDA function to produce any type of
patterned line. Based on the endpoints of a line, LineDDA calculates
each point on the line and calls an application-defined callback
function for each point. The callback function is free to use the
calculated points in any manner desired. An application can draw a
gray line similar to those used in Excel by calling the the SetPixel
function in the callback function to draw every other point.

For example, the following code calculates all points on the line from
coordinates (30, 40) to (100, 100). Then it calls the function pointed
to by the lpfnLineProc variable with the points and the handle to a
device context (hDC) as parameters:

 LineDDA(30, 40, 100, 100, lpfnLineProc, (LPSTR)hDC);

For more information on this function, see pages 4-272 and 4-273 of
the "Microsoft Windows Software Development Kit Reference, Volume 1"
for Windows 3.0 or pages 568 and 569 of the "Microsoft Windows
Software Development Kit: Programmer's Reference, Volume 2: Functions"
for Windows 3.1. Charles Petzold's book "Programming Windows 3"
(Microsoft Press, 1990) demonstrates using the LineDDA function in a
programming example on pages 593 through 598.

The following code fragment draws 50 random Excel-style lines. Note
that the LineProc function must be listed as an EXPORT in the module
definition (DEF) file:

 case WM_PAINT:
 {
 HDC hDC;
 int nIndex;

 PAINTSTRUCT ps;

 hDC = BeginPaint(hWnd, &ps);

 for (nIndex = 0; nIndex < 50; nIndex++)
 LineDDA(rand() / 110, rand() / 110, rand() / 110,
 rand() / 110, lpfnLineProc, (LPSTR)hDC);

 EndPaint(hWnd, &ps);
 break;
 }

void FAR PASCAL LineProc(x, y, lpData)
short x, y;
LPSTR lpData;
{
 static short nTemp = 0;

 if (nTemp == 1)
 SetPixel((HDC)lpData, x, y, 0L);

 nTemp = (nTemp + 1) % 2;
}

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDrw

Creating Windows in a Multithreaded Application

PSS ID Number: Q90975
Authored 26-Oct-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

In a multithreaded application, any thread can call the CreateWindow() API
to create a window. There are no restrictions on which thread(s) can create
windows.

It is important to note that the message loop and window procedure for the
window must be in the thread that created the window. If a different thread
creates the window, the window won't get messages from DispatchMessage(),
but will get messages from other sources. Therefore, the window will appear
but won't show activation or repaint, cannot be moved, won't receive mouse
messages, and so on.

MORE INFORMATION

Normally, windows created in different threads process input independently
of each other. The windows have their own input states and the threads are
not synchronized with eachother in regards to input processing.

In order to have threads to share input state, have one thread call
AttachThreadInput() to have its input processing attached to another
thread. What this means is that these two threads will use a Windows 3.1
style system queue. The threads will still have separate input, but they
will take turns reading out of the same queue.

Creating a window can force an implicit AttachThreadInput(), when a parent
window is created in one thread and the child window is being created in
another thread. When windows are created (or set) in separate threads with
a parent-child relationship, the input queues are attached.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Creating/Managing User Accounts Programmatically

PSS ID Number: Q119671
Authored 20-Aug-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

Windows NT and the Windows NT Advanced Server use the same APIs that
Microsoft LAN Manager uses to create and maintain user- and group-account
information. For example, to create a new global group, use NetGroupAdd().
To create a new user, use NetUserAdd(). To add the user to the global
group, use NetGroupAddUser(). Local groups are created by using
NetLocalGroupAdd() and members are added to local groups by using
NetLocalGroupAddMember().

MORE INFORMATION

The APIs NetGroupAdd(), NetUserAdd(), NetGroupAddUser(),
NetLocalGroupAdd(), and NetLocalGroupAddMember() require access at the
administrator or accounts-operator level to run successfully. Windows NT
includes the following built-in groups:

 - Administrators

 - Power Users

 - Users

 - Guests

Members of the Administrators group can fully administer user accounts;
only Administrators can assign user rights and access privileges for
resources. Members of the Power Users group can create accounts only in the
Power Users, Users, and Guests groups; they can also maintain and delete
the accounts they create. However, a Power User can neither change nor
delete an account in these groups if the account was created by someone
else. A member of the Users group can create, maintain, and delete accounts
in local groups that he or she has created. Guests can neither create nor
delete accounts.

REFERENCES

In the Win32 SDK, version 3.1, the documentation for the ported LAN Manager
APIs is available in the file LMAPI.HLP on the SDK CD. In the installed
Win32 SDK, version 3.5, the ported LAN Manager APIs are documented in the
Help file "Win32 API Reference".

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: NtwkLmapi

Critical Sections Versus Mutexes

PSS ID Number: Q105678
Authored 22-Oct-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

Critical sections and mutexes provide synchronization that is very similar,
except that critical sections can be used only by the threads of a single
process. There are two areas to consider when choosing which method to use
within a single process:

1. Speed. The Synchronization overview says the following about
 critical sections:

 ... critical section objects provide a slightly faster, more
 efficient mechanism for mutual-exclusion synchronization.

 Critical sections use a processor-specific test and set instruction
 to determine mutual exclusion.

2. Deadlock. The Synchronization overview says the following about
 mutexes:

 If a thread terminates without releasing its ownership of a
 mutex object, the mutex is considered to be abandoned. A waiting
 thread can acquire ownership of an abandoned mutex, but the wait
 function's return value indicates that the mutex is abandoned.

 WaitForSingleObject() will return WAIT_ABANDONED for a mutex that
 has been abandoned. However, the resource that the mutex is
 protecting is left in an unknown state.

 There is no way to tell whether a critical section has been
 abandoned.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseSync

CS_SAVEBITS Class Style Bit

PSS ID Number: Q31073
Authored 01-Jun-1988 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

If the CS_SAVEBITS style is included when registering a pop-up window, a
bitmap copy of the screen image that the window will obscure is saved in
memory when the window is displayed.

The bitmap is redisplayed at its original location and no WM_PAINT messages
are sent to the obscured windows if the following is true when the window
is removed from the display:

 - The memory used by the saved bitmap has not been discarded.

 - Other screen actions have not invalidated the image that has been
 stored.

As a general rule, this bit should not be set if the window will cover
more than half the screen; a lot of memory is required to store color
bitmaps.

The window will take longer to be displayed because memory needs to be
allocated. The bitmap also needs to be copied over each time the
window is shown.

Use should be restricted to small windows that come up and are then
removed before much other screen activity takes place. Any memory
calls that will discard all discardable memory, and any actions that
take place "under" the window, will invalidate the bitmap.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrPnt

CTRL+C Exception Handling Under WinDbg

PSS ID Number: Q97858
Authored 22-Apr-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

An exception is raised for CTRL+C only if the process is being debugged.
The purpose is to make it convenient for the debugger to catch CTRL+C in
console applications. For the purposes of this article, the debugger is
assumed to be WinDbg.

MORE INFORMATION

When the console server detects a CTRL+C, it uses CreateRemoteThread() to
create a thread in the client process to handle the event. This new thread
then raises an exception IF AND ONLY IF the process is being debugged. At
this point, the debugger either handles the exception or it continues the
exception unhandled.

The "gh" command marks the exception as having been handled and continues
the execution. The application does not notice the CTRL+C, with one
exception: CTRL+C causes alertable waits to terminate. This is most
noticable when executing:

 while((c = getchar()) != EOF) - or - while(gets(s))

It is not possible to get the debugger to stop the wait from terminating.

The "gn" command marks an exception as unhandled and continues the
execution. The handler list for the application is searched, as documented
for SetConsoleCtrlHandler(). The handler is executed in the thread created
by the console server.

After the exception is handled, the thread created to handle the event
terminates. The debugger will not continue to execute the application if Go
On Thread Termination is not enabled (from the Options menu, choose Debug,
and select the Go On Thread Termination check box). The thread and process
status indicate that the application is stopped at a debug event. As soon
as the debugger is given a go command, the dead thread disappears and the
application continues execution.

There are three cases where CTRL+C doesn't cause the program to stop
executing (instead it causes a "page down"):

1. When CTRL+C is already being handled.

2. When the debugger is in the foreground and a source window has the
 focus (both must be true).

3. When the CTRL+C exception is disabled (through the Debugger
 Exceptions dialog box).

This follows the convention of the WordStar/Turbo C/Turbo Pascal editor
commands.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

CTYPE Macros Function Incorrectly

PSS ID Number: Q94323
Authored 04-Jan-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

When an application that is linked to CRTDLL.LIB is compiled without
defining _MT and _DLL, the CTYPE.H family of macros will not operate
correctly.

To define _MT and _DLL on the CL command line, just add the following to
the command line:

 -D_MT -D_DLL

By adding these defines, the CTYPE macros will be properly initialized.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

Custom Controls Must Use CS_DBLCLKS with Dialog Editor

PSS ID Number: Q71223
Authored 10-Apr-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

For a custom control to function properly with the Dialog Editor, the
custom control window class must include the CS_DBLCLKS style.

If the custom control does not have the CS_DBLCLKS style, double-
clicking the control in the Dialog Editor does not cause the custom
control function to display its style dialog box. However, the
control's style dialog box is still accessible from the Styles command
on the Edit menu.

MORE INFORMATION

The Dialog Editor subclasses each control it creates and processes
WM_LBUTTONDBLCLK messages. In response to this message, the custom
control is asked to display its style dialog box.

If the custom control window class does not have the CS_DBLCLKS style,
Windows does not send any WM_LBUTTONDBLCLK messages to the control. As
a result, the Dialog Editor does not call the style dialog box
function for the custom control and no dialog box appears.

NOTE: This article does not apply to the resource editor included with the
Visual C++ development environment.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Customizing a Pop-Up Menu

PSS ID Number: Q12118
Authored 23-Oct-1987 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The following are three methods to customize a pop-up menu:

1. Use the word SEPARATOR in a pop-up menu, to produce a horizontal
 bar.

2. Use the word MENUBREAK, to start the menus on another column.

3. Place the vertical bar symbol in the menu string to display a
 vertical bar on the menu.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Customizing the FileOpen Common Dialog in Windows 95

PSS ID Number: Q125706
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows version 3.x, customizing the FileOpen common dialog meant
providing a special hook function, and in most cases, a custom dialog box
template. This custom dialog box template is created by modifying the
standard FileOpen dialog box template used by COMMDLG, which was actually
made available as part of the Windows versopm 3.1 SDK.

In Windows 95, the new dialog box templates will no longer be made
available for modification. Instead, an application should provide a dialog
template that includes only the items to be added to the standard dialog
box. COMMDLG will then create this dialog as a child of the standard dialog
box. Because it is a child, it must have the WS_CHILD style set.

Note that the Windows version 3.1 method of customizing common dialogs by
modifying the dialog templates will still work for 16-bit applications.

MORE INFORMATION

Follow these steps to customize the FileOpen common dialog in Windows 95:

1. Create a dialog box template that will have all the controls you
 want to add to the FileOpen common dialog. Be sure to specify the
 styles:

 WS_CHILD | WS_VISIBLE | DS_3DLOOK | DS_CONTROL | WS_CLIPSIBLINGS

 WS_CHILD is specified because without it, the call to GetOpenFileName()
 fails. COMMDLG creates the dialog specified as a child of the standard
 FileOpen common dialog box. As a result, the hDlg passed to the
 application's hook function will be the child of the standard
 FileOpen dialog box. To get a handle to the standard dialog box from
 the hook function, call GetParent (hDlg).

 WS_CLIPSIBLINGS is specified so that overlapping controls paint
 properly.

 DS_3DLOOK is a new style for Windows 95 that gives the dialog box
 a nonbold font, and gives all the controls the 3D look.

 DS_CONTROL is another new style that among other things allows the
 user to tab between the controls of a dialog box to the controls
 of a child dialog box. As mentioned above, the dialog template will

 be created as a child of the standard FileOpen common dialog box,
 so specifying this style will allow tabbing from the application-defined
 controls to the standard controls.

2. Include a static control in your dialog template, specifying a control
 ID of stc32. This control will serve as a placeholder for the standard
 controls.

 If there is no stc32 control specified, COMMDLG places all the new
 controls defined in your dialog template below the standard controls and
 looks at the size of the static control to attempt to fit all the
 standard controls in it. If it is not big enough, COMMDLG resizes this
 stc32 control to make room for the standard controls, and then
 repositions the new controls with respect to the resized stc32 control.

 Be sure to use the #include directive to include DLGS.H in your .RC
 file, as stc32 is defined in <dlgs.h>.

3. Initialize the Flags member of the OPENFILENAME structure to include the
 following flags:

 OFN_EXPLORER | OFN_ENABLETEMPLATE | OFN_ENABLEHOOK

 OFN_ENABLETEMPLATEHANDLE may be used instead of OFN_ENABLETEMPLATE if
 you want to specify a handle to a memory block containing a preloaded
 dialog box template.

4. If the OFN_ENABLETEMPLATE flag is set, specify the name of your
 application-defined template in the lpTemplateName field of the
 OPENFILENAME structure, and specify your application's instance handle
 in the hInstance field.

 If the OFN_ENABLETEMPLATEHANDLE flag is set, specify the handle to the
 memory block containing your dialog box template in the hInstance field
 of the OPENFILENAME structure.

5. Specify the address of a dialog box procedure associated with your
 dialog box in the lpfnHook field of the OPENFILENAME structure.

6. Process appropriate notifications and messages as a result of adding
 new controls.

REFERENCES

Much of the information contained in this article is derived from the
MSDN Technical Article entitled "Using the Common Dialogs Under Windows
95." Please refer to that article for more information.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Dangers of Uninitialized Data Structures

PSS ID Number: Q74277
Authored 15-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

In general, all fields in structures passed to functions in the
Microsoft Windows graphical environment should be initialized. If a
field is not initialized, it may contain random data, which can cause
unexpected behavior.

For example, before an application registers a window class, it must
initialize the cbClsExtra and cbWndExtra fields of the WNDCLASS data
structure. Windows allocates cbClsExtra bytes for the class, and
cbWndExtra bytes for each window created using the class. If these
fields contain large random values, the application may run out of
memory quickly.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

DDE Error Message: Application Using DDE Did Not Respond

PSS ID Number: Q94955
Authored 26-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, version 4.0

SUMMARY

DDEML displays a dialog box with the following error message when a
terminate deadlock occurs, often caused by a DDE application not
terminating correctly:

 Application using DDE did not respond to the System's Exit command

MORE INFORMATION

A terminate deadlock situation occurs when DDEML times out while
waiting for a responding terminate.

This message box appears when a DDEML application calls
DdeUninitialize() with conversations still active. DdeUninitialize()
posts WM_DDE_TERMINATE messages for each open conversation, and waits
for a corresponding WM_DDE_TERMINATE for a set period of time. This
time is actually set in the [DDEML] section of the WIN.INI file

 [DDEML]
 ShutdownTimeout= ?
 ShutdownRetryTimeout=?

where both are defined as integers defaulting to 30000 milliseconds.
These WIN.INI entries were purposely not documented to discourage
people from setting them to some other value.

If DDEML does not receive a response within the set period of time, it
brings up the message box to allow the user to choose to either quit,
wait longer, or wait indefinitely. This was done to work around a
problem in Windows 3.0 where the system locks up if an application
attempts to post a message to a non-existent window, and to allow the
user to save his work.

Additional reference words: 3.10 3.00 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

DdeInitialize(), DdeNameService(), APPCMD_FILTERINITS

PSS ID Number: Q108925
Authored 20-Dec-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

DdeInitialize() and DdeNameService() work as complimentary functions during
initialization of a server application. When called for the first time to
initialize a server application, DdeInitialize() will cause DDEML to append
the APPCMD_FILTERINITS flag to the third parameter of the function call by
default. Once this flag is set, client applications will not be able to
connect to the server until it is reset. This flag is reset when the
function DdeNameService() is called to register the service name with
DDEML. Also, if the server wishes to remain anonymous, then DdeInitialize()
must be called the second time to specifically turn off the
APPCMD_FILTERINITS flag.

MORE INFORMATION

The DdeInitialize() function registers an application with DDEML. This
function must be called by both the client and the server applications
before calling any other DDEML function.

When the server application calls DdeInitialize() for the first time, DDEML
appends the APPCMD_FILTERINITS flag to the third parameter of the function
call, regardless of whether the application specifies this flag. This flag
when used, will prevent DDEML from sending the XTYP_CONNECT and
XTYP_WILDCONNECT transactions to the server application until the server
has created its string handles and performed other application-specific
initialization. The server application then calls DdeNameService() to
register its service name with DDEML so that other client or server
applications are notified of its existence. Calling DdeNameService() after
the server has gone through the process of initialization turns off the
APPCMD_FILTERINITS flag.

Some DDEML server applications might not want to register their names with
DDEML because of various reasons (for example, the server application is a
custom server application that wants to service particular clients, and
thus wishes to remain anonymous to the rest of the system).

In special cases like this, an application may choose not to call the
DdeNameService() function, because this function broadcasts the name of the
server to all DDEML applications on the system. Not calling the
DdeNameService() function, however, causes the APPCMD_FILTERINIT flag not
to be reset properly, thus keeping the server from getting any XTYP_CONNECT
or XTYP_WILDCONNECT transactions even from its clients.

One other way to reset this flag is to call DdeInitialize() a second time,
without specifying the APPCMD_FILTERINITS flag.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

DDEML Application-Instance IDs Are Thread Local

PSS ID Number: Q94091
Authored 23-Dec-1992 Last modified 01-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1 and 3.5

When using the DDEML (Dynamic Data Exchange Management Library) libraries
from a spawned thread, the application-instance ID that is returned in the
lpidInst parameter of DdeInitialize is thread local.

Therefore, the application-instance ID cannot be used by any other thread
that is spawned by the process, nor can it be inherited from the parent.

To use the DDEML libraries within a thread, it is necessary to make both
the DdeInitialize call and to use the DdeUninitialize call from within the
thread; otherwise, there is no way to terminate the DDEML session.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrDde

Dealing w/ Lengthy Processing in Service Control Handler

PSS ID Number: Q120557
Authored 14-Sep-1994 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 and 3.51

The service control handler function must return within 30 seconds. If it
does not, the Service Control Manager will return the following error:
"Error 2186 - The service is not responding to the control function".

If a service needs to do lengthy processing when the service is in the
service control handler, it should create a secondary thread to perform the
lengthy processing and then return. This prevents the service from tying up
the service control handler thread.

If you are processing a SERVICE_CONTROL_STOP, you may wish to register a
status of SERVICE_STOP_PENDING. The dwWaitHint should be at least 30
seconds. You can make the control panel applet wait for a long time if you
send multiple SERVICE_STOP_PENDING states which update the dwCheckPoint and
use a long dwWaitHint.

The system shutting down is another event that limits the service control
handler. The dwCtrlCode parameter for the service control handler returns
SERVICE_CONTROL_SHUTDOWN. A service then has approximately 20 seconds to
perform cleanup tasks. If the tasks are not done, the system shuts down
regardless if the service shutdown is complete. If the user has selected
"restart", all processes will halt quickly. If instead the system is left
in the "shutdown" state, the service processes continue to run.

If you need a longer time to shut down or earlier notification, consider
using SetConsoleCtrlHandler() or SetProcessShutdownParameters() instead of
using SERVICE_CONTROL_SHUTDOWN. This is the same mechanism that the Service
Controller uses to get its notification.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Debugging a Service with WinDbg

PSS ID Number: Q98890
Authored 18-May-1993 Last modified 27-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The following steps illustrate how to debug a service under Windows NT
using WinDbg, which ships with the Win32 Software Development Kit (SDK).
For illustration purposes, this procedure uses the SERVICE sample, which is
built with debugging information by default. This sample is located in:

 Win32 SDK 3.1:
 MSTOOLS\SAMPLES\SERVICE

 Win32 SDK 3.5:
 MSTOOLS\SAMPLES\WIN32\SERVICE

 Win32 SDK 3.51 and 4.0:
 MSTOOLS\SAMPLES\WIN32\WINNT\SERVICE

MORE INFORMATION

 1. Build the sample.

 2. Install the Simple service with the following command:

 Win32 SDK 3.1:
 instsrv simple <drive>:\mstools\samples\service\simple.exe

 Win32 SDK 3.5 and later:
 simple - install

 Upon success, you will receive the message "CreateService Success".

 3. Use the Control Panel's Services application to start the Simple
 service. With the Win32 SDK 3.5, you can also use

 sc start simpleservice

 The SC.EXE is located in MSTOOLS\BIN.

 4. Use PView to get the process ID (PID) for the Simple service. For
 instance, if PView shows the process as simple(0xD5), then the PID
 is 0xD5.

 5. If using SDK versions 3.1 or 3.5, convert the PID from hexadecimal to

 decimal. For example, 0xD5 is 213 in decimal. Later versions of WinDbg
 use hexadecimal PIDs.

 6. At a command prompt, go to the directory containing the sample and type

 start windbg

 to start WinDbg in its own command shell.

 7. In WinDbg, choose Open from the File menu and open the source file
 (SIMPLE.C).

 8. Set breakpoints at (for example) lines 326, 335, 337, 344, and 353.
 The lines will not change color at this point, but the breakpoints
 are successfully set.

 9. Open a command window in WinDbg and type

 .attach <PID>

 Note that the lines where breakpoints are set will have changed
 colors.

10. Type "g" (a go command) in the WinDbg command window to restart
 after the thread that WinDbg uses to do the .attach terminates.

11. At the command prompt, start the client by typing

 Win32 SDK 3.1:
 client \\.\pipe\simple boo

 Win32 SDK 3.5 and later:
 client [-pipe <pipename>] [-string <string>]

12. Press F5 (a go command) to debug the service. The breakpoint hit
 will be on line 335. Press F5 again to go to the next breakpoint.
 Keep pressing F5 until line 326 waits again for a client to
 connect. Try connecting another client and repeat the same steps.

Exiting WinDbg will kill the service, which must be restarted manually
with the Control Panel.

Services must log on as LocalSystem for this to work correctly; otherwise,
you will not have permission to debug the service.

The manual translation of the PID from hexadecimal to decimal will not
be needed in the future once the .attach command is modified so that
it accepts hexadecimal.

NOTE: Under Windows NT 3.5 and later, because services do not have access
to the user's desktop by default, one additional step must be taken to
debug services with Windbg. In order to debug services, the user must check
the startup option "Allow Service to interact with Desktop" in the Services
control panel applet. You can do the same thing programmatically by setting
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<DisplayName>\Type to

0x110.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Debugging a System-Wide Hook

PSS ID Number: Q102428
Authored 03-Aug-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Debugging a system-wide hook such as a journal hook must be done with the
extreme caution. When an application installs such a hook, it effectively
takes control of user input. In effect, this disables the interface with
the debugger. For example, after installing a journal record hook, you must
unhook the record hook when you want to allow the debugger to regain
control.

It is not possible to use an interactive debugger to debug an actively
installed journal hook using a single machine. It is possible to use a
remote debugger, because one interface can be blocked (or recording) while
the other one does the debugging.

MORE INFORMATION

System-wide input hook procedures can be thought of as being in three
possible states:

 unhooked (not installed)
 suspended
 hooked (installed)

In the unhooked state, the procedure imposes no control over user input. In
the hooked state, all user input specifically defined to be handled by this
hook passes through this procedure. In the suspended state, all user input
specifically defined to be handled by this hook is completely blocked.

In the case of a journal record hook, the suspended state can be achieved
when a breakpoint is reached within the hook procedure. When this happens,
all user input (system wide, that is) in the form of mouse and keyboard
input is blocked, and thus you cannot interact with the debugger or any
other application as you normally would. Fortunately, when the user presses
the CTRL+ESC or the CTRL+ALT+DEL key combinations, all system-wide hooks
are automatically unhooked, returning the system to the unhooked state.

Once this has occurred, it is likely that the application with the journal
hook is now in a undefined state (because it had the hook pulled out from
underneath it, so to speak). Fortunately, the system will send all
applications the WM_CANCELJOURNAL message to indicate that it has removed
the hook. A well behaved application can intercept this message and adjust
its state accordingly.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrHks

Debugging Applications Under Win32s

PSS ID Number: Q102430
Authored 03-Aug-1993 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

SUMMARY

To start debugging a Win32-based application, make sure that it runs
correctly under Windows NT. Use either WinDbg or NTSD to track down any
problems.

Then, install the debugging libraries for Windows 3.1 and the debug version
of Win32s. Hook the machine to another machine running a terminal emulator
and watch for any warnings that are issued. Be sure to select the
Win32sDebug flags carefully--selecting too many will generate more
information than you may care to see; selecting too few may cause you to
miss important information and warnings.

If you need to debug on Win32s, there are currently two options:

 - Use wdeb386 (note that this method is very tricky).

 - Use remote WinDbg (WDBG32S.EXE) if you are not familiar with using a
 kernel debugger. This method requires two machines: a Win32s
 machine to run the application and the remote debugger and a Windows NT
 machine to run WinDbg.

If you have Microsoft Visual C++ 32-bit Edition version 1.0, CodeView for
Win32s is an additional option. CodeView for Win32s is a user-level
debugger; remote debugging is not necessary, and therefore CodeView for
Win32s does not require a second machine. CVW32S does not come with Visual
C++ 2.0 and later. You can still use CVW32S.EXE with later versions of
Visual C++, if you link with /PDB:none and /INCREMENTAL:no and if you do
not use new features such as templates or C++ exception handling.

MORE INFORMATION

When performing remote debugging, make sure that the cable is set up
exactly as specified in the Win32s Programmer's Reference. The remote
WinDbg does not support software flow control, so it is very important that
the hardware flow control is set up properly. If it is not set up
correctly, you will have problems as the buffers overflow.

WinDbg supports XON/XOFF (software) flow control, which means that the
standard 3-wire cable can now be used, although the default is still
hardware handshaking (5-wire cable). To enable XON/XOFF, you must specify
the XON flag in the serial transport parameters on both WinDbg and
remote WinDbg.

To enable XON/XOFF in the remote WinDbg:

1. Select Options to bring up the Transport dynamic-link library (DLL)
 dialog box.

2. Select the serial transport and make any needed modifications to
 the communications port or baud rate parameters.

3. Place the XON flag at the end of the Parameters box. For example,
 "COM1:19200 XON". Note that the space is needed.

To enable XON/XOFF on WinDbg:

1. Select Options/Debug DLLs.

2. Select the proper serial transport layer.

3. Choose the Change button.

4. Add XON to the end of the Parameters line: "COM1:19200 XON".

It is very important that both sides of the debugger use the same protocol.
If they do not, both debuggers will probably hang. Also, the remote
debugging environment requires that binaries be located on the same
drive/directory on both the development and target systems. For example, if
WIN32APP.EXE is built from sources in a C:\DEV\WIN32APP directory, the
binary should be located in this directory on both systems. If you build
your source files by specifying fully qualified paths for the compiler, the
compiler will place this information with the debug records which will
allow WinDbg to automatically locate the appropriate source files.

For additional information on remote debugging, please see the "Win32s
Programmer's Reference" which is included with the Win32 SDK.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Debugging Console Apps Using Redirection

PSS ID Number: Q102351
Authored 03-Aug-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

To redirect the standard input (STDIN) for a console application named
APP.EXE from a file named INPUT.TXT, the following syntax is used:

 app < input.txt

However, the following syntax will not work when attempting to debug
this application using WinDbg with STDIN redirected:

 windbg app < input.txt

To debug the application as desired, use

 windbg cmd /c "app < input.txt"

MORE INFORMATION

This will allow WinDbg to debug whatever goes on in the cmd window. A
dialog box will be displayed that says "No symbolic Info for Debuggee."
This message refers to CMD.EXE; dismiss this dialog box. When the child
process (APP.EXE) is started, the command window will read "Stopped at
program entry point." To continue, type "g" at the command window. Note
that APP.EXE will begin executing, then you can open the source file and
set breakpoints.

This technique is also useful when debugging an application that behaves
differently when run with a debugger than it does when it is run in the
command window.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Debugging DLLs Using WinDbg

PSS ID Number: Q97908
Authored 25-Apr-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

This article describes the process of debugging dynamic-link libraries
(DLLs) under WinDbg. As a further example, debugging File Manager
extensions under Windows NT is discussed in the "More Information" section
in this article.

MORE INFORMATION

The application and the DLL must be built with certain compiler and linker
switches so that debugging information is included. These switches can be
found in the $(cdebug) and $(ldebug) macros, respectively, which are
defined in NTWIN32.MAK.

NOTE: It is important to disable optimization with -Od or locals will not
be available in the locals window and line numbers may not match the
source.

The application is loaded into WinDbg either by specifying "windbg
<filename>" on the command prompt or by starting WinDbg from the program
group and specifying <filename> in the Program Open dialog box (from the
Program menu, choose Open). Note that <filename> is the name of the
application, not the DLL. It is not necessary to specify the name of the
DLL to be debugged.

The DLL is loaded either when execution of the application begins or
dynamically through a call to LoadLibrary(). In the first case, simply
press F8 to begin execution. All DLLs and symbolic information are loaded.
To trace through the DLL code, breakpoints can be set in the DLL using a
variety of methods:

 - From the Debug menu, choose Breakpoints. The dialog box is Program Open.

 -or-

 - Open the source file and use F9 or the "hand" button on the toolbar.

 -or-

 - Go to the Command window and type:

 bp[#] <Options>

 <Options>:

 addr break at address
 @line break at line

In the case that the DLL is dynamically loaded, pressing F8 causes all
other DLLs and symbolic information to load. The same methods described
above can be used to set breakpoints; however, the user will get a dialog
box indicating that the breakpoint was not instantiated. After the call to
LoadLibrary() has been executed, all breakpoints are instantiated (it is
possible to note the color change if the DLL source window is open) and
will behave as expected.

To set a breakpoint in a DLL that is not loaded, specify the context when
setting the breakpoint. The syntax for a context specifier is:

 {proc, module, exe}addr

 -or-

 {proc, module, exe}@line

Example: {func, module.c, app.exe}0x50987. The first two parameters are
optional, so {,,app.exe}0x50987 or {,,app.exe}func could be used instead.

For example, assume that we are trying to debug a File Manager extension
under Windows NT that has been built with full debugging information. The
procedure to debug the extension is as follows:

1. Open a Command window.
2. Start WinDbg WINFILE.
3. Set a breakpoint on FmExtensionProc().
4. At the Command window, type "g" and press ENTER. The debugger will
 continue executing the program form the point where it stopped
 (which could be from the beginning, at the breakpoint, and so on).

WinDbg will start WINFILE and when FmExtensionProc() is executed, WinDbg
will break into the WINFILE process.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Debugging OLE 2.0 Applications Under Win32s

PSS ID Number: Q123812
Authored 11-Dec-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY

The following are available to help you debug your OLE 2.0 applications
under Win32s:

 - Debug versions of the OLE DLLs, included with Win32s. (See the Win32s
 Programmer's Reference for more information on the debug DLLs.)

 - Failure/trace messages.

 - The OLE SDK for Win32s, version 1.2, included on the Microsoft Developer
 Network (MSDN) CD.

For information on a utility that will convert OLE error codes into
error message, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q122957
 TITLE : SAMPLE: DECODE32: OLE Error Code Decoder Tool

MORE INFORMATION

The debug version of OLE can send diagnostic information to the debug
terminal. To enable this feature, include the following lines in the
SYSTEM.INI:

 [Win32sDbg]
 ole20str=xxxxx
 ole20str16=yyy

Use ole20str for 32-bit OLE and ole20str16 for 16-bit OLE. Set them to a
combination of the following letters (case sensitive):

 f - Failure message, kind of asserts.
 v - Verbose. General purpose messages.
 1 - Trace special translation activity for 32/16 interoperability.
 i - Trace initialization of OLE.
 t - Trace termination and cleanup of OLE.

The following tools are contained in the OLE SDK for Win32s, version 1.2:

 - DFVIEW - Show the content of storage files.

 - LRPCSPY - Monitor LRPC messages sent by 16-bit OLE applications (does
 not require Win32s).

 - RPCSPY32 - Monitor LRPC messages from both 16-bit and 32-bit OLE
 applications.

 - DOBJVIEW and DOBJVW32 - View objects placed on the clipboard as well as
 objects transferred by drag and drop.

 - IROTVIEW and IROTVW32 - Display the contents of the OLE running object
 table (ROT).

 - OLE2VIEW and OLE2VW32 - Identify objects, interfaces, inproc and local
 servers, registration database entries, and so on.

Additional reference words: 1.20
KBCategory: kbole kbprg
KBSubcategory: W32s

Debugging the Win32 Subsystem

PSS ID Number: Q105677
Authored 22-Oct-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The instructions on page 1-18 of Part II of the Win32 "Programmer's Guide"
included with the Win32 Device Driver Kit (DDK) says to use NTSD -d -p -1
to attach to the Win32 subsystem process and enable debugging of its user-
mode drivers. This results in the error:

 NTSD: cannot debug PID -1
 error = 5

To enable this procedure to work properly, change the GlobalFlag value
under:

 HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Control\
 Session Manager

Remove the flag 0x00080000 from 0x211a0000 to make it 0x21120000. The
0x00080000 flag disables the ability to debug CSRSS.EXE (the client
server run time subsystem), which is specified by the "-p -1"
parameter.

It is also possible to debug CSRSS using "WinDbgRm -c -p-1" instead of
NTSD. Make sure that WinDbgRm defaults to debugging using TLPIPE.DLL
as its transport layer, then run "windbgrm -c -p-1" on the debuggee.

On the debugger machine, make sure that CSRSS.EXE and any dynamic-link
libraries (DLLs) that you are debugging in association with it are in
the same directory, and run WinDbg. To set the transport DLL, choose
Debug from the Options menu, choose Transport DLLs, and set the
transport DLL to TLPIPE. Set the host name entries to be the machine
name of the debuggee.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Debugging Universal Thunks

PSS ID Number: Q105756
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

The general recommendation for an application targeted for Win32s is to
debug it under Windows NT, then make sure that the application works under
Win32s. However, Universal Thunks are not supported on Windows NT, so it is
not possible to debug Win32-based applications that use the Universal Thunk
in this manner.

To debug across the Universal Thunk, you can use WDEB386, which is
available with the Windows 3.1 Software Development Kit (SDK). If you are
not familiar with WDEB386, you may find it simpler to use other methods. In
that case, be sure to install the debug version of Windows 3.1 and the
debug version of Win32s and enable suitable notifications for Win32s
(unimplemented functions and messages, verbose, and so forth). You may find
OutputDebugString() useful for displaying extra information.

For more information on WDEB386, please see the Knowledge Base article
"Tips On Installing WDEB386." For information on installing the debug
version of Windows, please see your Windows SDK documentation.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Default Attributes for Console Windows

PSS ID Number: Q90837
Authored 22-Oct-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Console attributes (screen fonts, screen colors, insert/overstrike, etc.)
are stored by console title within each user's profile. When a profile for
a new window is not found, the .DEFAULT configuration is used.

MORE INFORMATION

You can change the start font, screen colors, pop up colors, and
insert/overstrike defaults using REGEDT32. Under the key HKEY_USERS, there
is a .DEFAULT along with an entry for each user who has an account on that
machine. Select DEFAULT\Console\Configuration. Use Edit.AddValue to add
FontSize as a REG_DWORD to change the default font, Add ScreenColors and
PopupColors as REG_DWORDs to change those defaults. To reset the console to
be in insert mode rather than overstrike mode, add InsertMode as REG_SZ and
set it to ON.

To get the right settings for the font size and colors you should first set
your MS-DOS Prompt window font size and colors. Look up Console\MS-DOS
Prompt\Configuration under your account and write down the values for the
keys you need to add. Then go back to DEFAULT\Console\Configuration and add
those values.

The DEFAULT configuration is read when the user chooses the Command
prompt. However, if the user chooses to run a command shell via the
File Manager (selecting CMD.EXE and choosing Run from the File menu),
the DEFAULT configuration will not be read out of the registry.

WARNING:

RegEdit is a very powerful utility that facilitates directly changing
the Registry Database. Using RegEdit incorrectly can cause serious
problems, including hard disk corruption. It may be necessary to
reinstall the software to correct some problems. Microsoft does not
support changes made with RegEdit. Use this tool at your own risk.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Default Edit Control Entry Validation Done by Windows

PSS ID Number: Q74266
Authored 15-Jul-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

Under the Microsoft Windows graphical environment, multiline and
single-line edit controls do not accept characters with virtual key
code values less than 0x20. The two exceptions are the TAB and ENTER
keys; users can enter these characters only in a multiline edit
control.

If an application creates an edit control with the ES_LOWERCASE or
ES_UPPERCASE style, text entry is converted into the specified case.

If an application creates an edit control with the ES_OEMCONVERT
style, the text is converted from the ANSI character set to the OEM
character set and then back to ANSI for display in the control.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Default Stack in Win32-Based Applications

PSS ID Number: Q97786
Authored 21-Apr-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

SUMMARY

By default, space is reserved for applications in the following manner:

 1 megabyte (MB) reserved (total virtual address space for the stack)

 1 page committed (total physical memory allocated when stack is
 created)

 Note: The -stack linker option can be used to modify both of these
 values.

The default stack size is taken from the process default reserve stack
size.

The operating system will grow the stack as needed by committing 1 page
blocks (4K on an x86 machine) out of the reserved stack memory. Once all of
the reserved memory has been committed, Windows NT will attempt to continue
to grow the stack into the memory adjacent to the memory reserved for the
stack, as shown in the following example on an x86 machine:

 |<--- Total 1 MB for stack --->|<--- Adjacent memory --->|
 --
4K	1020K
 --

However, once the stack grows to the point that the adjacent area is not
free (and this may happen as soon as the reserved 1 MB has been committed),
the stack cannot grow any farther. Therefore, it is very risky to rely on
this memory being free. Applications should take care to reserve all the
memory that will be needed by increasing the amount of memory reserved for
the stack.

In other cases, it may be desirable to reduce the amount of memory reserved
for the stack.

The /STACK option in the linker and the STACKSIZE statement in the DEF file
can be used to change both the amount of reserved memory and the amount of
committed memory. The syntax for each method is shown below:

 /STACK:[reserve][,commit]

 STACKSIZE [reserve][,commit]

MORE INFORMATION

Each new thread gets its own stack space of committed and reserved memory.
CreateThread() has a stacksize parameter, which is the commit size. If a
new size is not specified in the CreateThread() call, the new thread
takes on the same stack size as the thread that created it, whether that be
the default value, a value defined in the DEF file, or by the linker
switch. If the commit size specified is larger than the default process
stack size, the stack size is set to the commit size. When specifying a
stack size of 0, the commit size is taken from the process default commit.

The system handles committing more reserved stack space when needed, but
cannot reserve or commit more than the total amount initially reserved (or
committed if no additional is reserved). Remember that the only resource
consumed by reserving space is addresses in your process. No memory or
pagefile space is allocated. When the memory is actually committed, both
memory and pagefile resources are allocated. There is no harm in reserving
a large area if it might be needed.

As always, automatic variables are placed on the stack. All other static
data is located in the process address space. Because they are static, they
do not need to be managed like heap memory.

Note that under Win32s 1.2 and earlier, stacks are limited to a maximum of
128K (this limit has been increased with Win32s 1.25a). The same stack is
used on the 16-bit side of a Universal Thunk (UT). A 16:16 pointer is
created and it points to the top of the 32-bit stack. The selector base is
set in such a way that the 16-bit code is allocated at least an 8K stack.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Default/Private Dialog Classes, Procedures, DefDlgProc

PSS ID Number: Q68566
Authored 22-Jan-1991 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The information below explains the differences between default and
private dialog classes, their associated dialog procedures, and using
the DefDlgProc() function.

This information is organized as a comparison between private and
default dialog classes, covering class registration, dialog templates,
dialog creation, and message processing.

Note that the source to the DefDlgProc() function is provided with the
Windows Software Development Kit (SDK) version 3.0. The code is
supplied on the Sample Source 2 disk in the DEFDLG.C file. By default,
DEFDLG.C is placed into the \SAMPLES\DEFPROCS directory if the SDK
installation program copies the sample source code.

There are many functions and macros used in DefDlgProc() that are
internal to Windows and cannot be used by applications. No additional
information is available on these functions and macros.

MORE INFORMATION

All dialog classes are window classes, just as all dialog boxes are
windows. All dialog classes must declare at least DLGWINDOWEXTRA in
the cbWndExtra field of the WNDCLASS structure before the dialog class
is registered. The Windows Dialog Manager uses this area to store
special information for dialog boxes.

The default dialog class is registered by Windows at startup. The
window procedure for this class is known as DefDlgProc(), which is
located in Windows's USER module. DefDlgProc() calls the application-
provided dialog function, which returns TRUE if it processes a message
completely or FALSE if DefDlgProc should process the message further.

If an application registers a private dialog class, it provides a
window procedure for the dialog box. The window procedure is the same
as that for any other application window and returns a LONG value.
Messages that are not processed by this window function are passed to
DefDlgProc().

Dialog Class Registration

Windows registers the default dialog class, which is represented by
the value 0x8002. Windows uses this class when an application creates
a dialog box using the DialogBox() or CreateDialog() functions, but
specifies no class in the dialog resource template.

To use a private dialog class, the application must specify the fields
of a WNDCLASS structure and call RegisterClass(). This is the same
procedure that Windows uses to register the default dialog class.

In either case, the value in the cbWndExtra field of the WNDCLASS
structure must contain a value of at least DLGWINDOWEXTRA. These bytes
are used as storage space for dialog-box specific information, such as
which control has the focus and which button is the default.

When a dialog class is registered, the lpfnWndProc field of the
WNDCLASS structure must contain a function pointer. For the default
dialog class, this field points to DefDlgProc(). For a private class,
the field points to application-supplied procedure that returns a LONG
(as does a normal window procedure) and passes all unprocessed
messages to DefDlgProc().

Dialog Templates

Resource scripts are almost identical whether used with a default or a
private dialog class. Dialog boxes using a private class must use the
CLASS statement in the dialog template. The name given in the CLASS
statement must match the name of class that exists (is registered)
when the dialog box is created.

Dialog Creation and the lpfnDlgFunc Parameter

Applications create dialog boxes using the function DialogBox(),
CreateDialog(), or one of the variant functions such as
DialogBoxIndirect(). The complete list of functions is found on page 1-
43 of the "Microsoft Windows Software Development Kit Reference Volume
1."

All dialog box creation calls take a parameter called lpfnDlgFunc,
which can either be NULL or the procedure instance address of the
dialog box function returned from MakeProcInstance(). When the
application specifies a private dialog class and sets lpfnDlgFunc to a
procedure instance address, the application processes each message for
the dialog box twice. The message processing proceeds as follows:

1. Windows calls the dialog class procedure to process the message. To
 process a message in the default manner, this procedure calls
 DefDlgProc().

2. DefDlgProc() calls the procedure specified in the dialog box creation

 call.

The procedure specified in lpfnDlgFunc must be designed very
carefully. When it processes a message, it returns TRUE or FALSE and
does not call DefDlgProc(). These requirements are the same as for any
other dialog procedure.

Using a dialog procedure in conjunction with a private dialog class
can be very useful. Processing for the private dialog class can be
generic and apply to a number of dialog boxes. Code in the dialog
procedure is specific to the particular instance of the private dialog
class.

Dialog Message Processing

In dialog boxes with the default class, the application provides a
callback dialog function that returns TRUE or FALSE, depending on
whether or not the message was processed. As mentioned above,
DefDlgProc(), which is the window procedure for the default dialog
class, calls the application's dialog function and uses the return
value to determine whether it should continue processing the message.

In dialog boxes of a private class, Windows sends all messages to the
application-provided window procedure. The procedure either processes
the message like any other window procedure or passes it to
DefDlgProc(). DefDlgProc() processes dialog-specific functions and passes
any other messages to DefWindowProc() for processing.

Some messages are sent only to the application-supplied procedure
specified in the call to CreateDialog() or DialogBox(). Two examples of
functions that Windows does not send to the private dialog class
function are WM_INITDIALOG and WM_SETFONT.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Defining Private Messages for Application Use

PSS ID Number: Q86835
Authored 19-Jul-1992 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows environment, an application can define a private
message for its own use without calling the RegisterWindowMessage API.
Message numbers between 0x8000 and 0xBFFF are reserved for this purpose.

For Windows NT and Windows 95, the system defines a new message WM_APP
(value 0x8000). Applications can make use of the range WM_APP through
0xBFFF for private messages without conflict. The only requirement is that
the .EXE file must be marked version 4.0 (use the linker switch
/subsystem:windows,4.0). Windows NT 3.5 and 3.51 and Windows 95 will run
applications marked version 4.0.

MORE INFORMATION

The documentation for the WM_USER message lists four ranges of message
numbers as follows:

 Message Number Description
 -------------- -----------

 0 through WM_USER-1 Messages reserved for use by Windows.

 WM_USER through 0x7FFF Integer messages for use by private window
 classes.

 0x8000 through 0xBFFF Messages reserved for use by Windows.

 0xC000 through 0xFFFF String messages for use by applications.

 Greater than 0xFFFF Reserved by Windows for future use.

When an application subclasses a predefined Windows control or
provides a special message in its dialog box procedure, it cannot use
a WM_USER+x message to define a new message because the predefined
controls use some WM_USER+x messages internally. It was necessary to
use the RegisterWindowMessage function to retrieve a unique message
number between 0xC000 and 0xFFFF.

To avoid this inconvenience, messages between 0x8000 and 0xBFFF were
redefined to make them available to an application. Messages in this
range do not conflict with any other messages in the system.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

Definition of a Protected Server

PSS ID Number: Q102447
Authored 03-Aug-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The Win32 application programming interface (API) reference briefly
discusses creating a "protected server" that assigns security to private
objects. This article explains the concept of a protected server" and its
relationship to private objects.

MORE INFORMATION

A protected server is an application that provides services to clients.
These services could be as simple as saving and retrieving information from
a database while issuing security checks to verify that the client has
proper access.

A private object is an application-defined data structure that both the
client and server recognize. Private objects are not registered with nor
recognized by the Windows NT operating system; they are entirely
application-defined.

It is not uncommon for security to be assigned to private objects in a
protected server's database. For example, when a client asks the server to
create a new object in the database, the server could use the
CreatePrivateObjectSecurity() Win32 API to create a security descriptor
(SD) for the new private object. The server would then store the SD with
the private object in the database. It is important to note that there is
nothing in the SD that associates it with the private object. Instead, it
is up to the protected server to maintain that association in the private
object or in the database. It is likely that the private object and the
associated SD would be stored together in a single database record.

A protected server application is responsible for checking a client's
access before providing information. For example, when a client asks the
server to retrieve some data, the server would go out and locate the record
(which would contain the private object and SD) and bring a copy of the SD
into memory. It would then call the AccessCheck() Win32 API passing the SD,
the clients access token, and the desired access mask. AccessCheck() will
check the client's access against the object's SD to determine if access is
permitted. Depending on the result of AccessCheck(), the protected server
would either provide the requested information or deny access.

In conclusion, a protected server is a application that performs operations
on private objects that are entirely user defined. The protected server is

responsible for associating security descriptors to those objects and must
take the steps necessary to verify a client's access.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Detecting Closure of Command Window from a Console App

PSS ID Number: Q102429
Authored 03-Aug-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Win32 console applications run in a command window. For the console
application to detect when the console is closing, register a console
control handler and look for the following values in your case statement:

 CTRL_CLOSE_EVENT User closes the console
 CTRL_LOGOFF_EVENT User logs off
 CTRL_SHUTDOWN_EVENT User shuts down the system

For an example, see the CONSOLE sample. For more information, see the entry
for SetConsoleCtrlhandler() in the Win32 application programming interface
(API) reference.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Detecting Data on the Communications Port

PSS ID Number: Q118625
Authored 25-Jul-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

To detect whether there is any data available on the communications (COM)
port without calling ReadFile(), use the ClearCommError() API. The field
COMSTAT.CbInQue contains the number of bytes not yet read by a call to
ReadFile().

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Detecting Keystrokes While a Menu Is Pulled Down

PSS ID Number: Q35930
Authored 29-Sep-1988 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

In the Windows environment, there are two methods that an application
can use to receive notification that a key is pressed while a menu is
dropped down:

 - The easier method is to process the WM_MENUCHAR message that is sent
 to an application when the user presses a key that does not correspond
 to any of the accelerator keys defined for the current menu.

 - The other method is to use a message filter hook specified with the
 SetWindowsHook function. The hook function can process a message
 before it is dispatched to a dialog box, message box, or menu.

The hook functions and the WM_MENUCHAR message are documented in the
Microsoft Windows SDK "Reference: Volume 1" for version 3.0 and in
"Programmer's Reference, Volume 3: Messages, Structures, and Macros" for
version 3.1.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrInp

Detecting Logoff from a Service

PSS ID Number: Q104122
Authored 07-Sep-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

Sometimes it is handy for a service to know whether or not a user is logged
on to the system. For example, suppose that there are circumstances under
which the service displays a dialog box and waits for the user to respond.
If this is done while the user is logged off, the service is blocked until
the user logs on again.

Unfortunately, there is no direct way for a service to detect whether or
not a user is logged on. There is, however, an indirect method. If you
supply MB_DEFAULT_DESKTOP_ONLY as one of the flags in the fuStyle parameter
of MessageBox(), the function will fail if no one is logged on or if a
screen saver is running.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Detecting the Presence of NetBIOS in Win32s

PSS ID Number: Q110844
Authored 31-Jan-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2

The way to determine whether NetBIOS is present from a Win32 application
running on Win32s is to issue an invalid NetBIOS command (such as 0xB2) and
check that the return code is 0x3 (Illegal command).

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Detecting Windows NT from an MS-DOS-Based Application

PSS ID Number: Q100290
Authored 17-Jun-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1 and 3.5

SUMMARY

There are calls that MS-DOS-based applications can make that are not
supported under Windows NT. For example, calling Interrupt 25h to read the
disk is not supported under Windows NT. Therefore, in some cases MS-DOS-
based applications will need to know whether or not they are running under
Windows NT.

Interrupt 21h, function 3306h can be used by MS-DOS-based applications to
detect whether or not they are running under Windows NT. On return,
registers BL and BH will contain the operating system major and minor
numbers, respectively. If your application is running under Windows NT, the
return will be:

 BL = 5
 BH = 50

MORE INFORMATION

Note that it is important to check both BL and BH, because MS-DOS 5.0 will
also return a 5 in BL.

The following code demonstrates how to detect the operating system version
from an MS-DOS-based application:

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <io.h>

void main()
{
 unsigned char cbh = 0;
 unsigned char cbl = 0;

 _asm {
 mov ax, 3306h
 int 21h
 mov cbh, bh
 mov cbl, bl
 }

 printf("After int 21h\n");
 printf("%u, %u (bh, bl)\n", cbh, cbl);
}

Additional reference words: 3.10 3.50 determine
KBCategory: kbprg
KBSubcategory: SubSys

Detecting x86 Floating Point Coprocessor in Win32

PSS ID Number: Q124207
Authored 21-Dec-1994 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

In Windows NT (x86) and Windows 95, floating point is emulated by the
operating system, in the event that a numeric coprocessor is not present.
This allows Win32-based applications to be compiled with floating point
instructions present, which will be trapped by the operating system at
runtime in the event that a coprocessor is not present. This behavior is
transparent to the application, so it is difficult to detect.

In some cases, it is useful to execute code based on the presence of a
numeric coprocessor, so this article explains how to do it.

MORE INFORMATION

One approach you can use to detect whether a coprocessor is present is to
read the CR0 (System Control Register). This is not possible from Ring 3
application code under Windows NT, so a different approach is outlined
below.

To determine whether a coprocessor is present on a computer using the x86
platform running Windows NT, you need to determine if the registry entry
HKEY_LOCAL_MACHINE\\HARDWARE\\DESCRIPTION\\System\\FloatingPointProcessor
is present. If this key is present, a numeric coprocessor is present.

On the MIPS and Alpha platforms, this registry key is not present because
floating point support is built-in. The following function indicates
whether a numeric coprocessor is present on Windows NT. If the function
returns TRUE, a coprocessor is present. If the function returns FALSE, and
GetLastError() indicates ERROR_RESOURCE_DATA_NOT_FOUND, a coprocessor is
not present. Otherwise, an error occured while attempting to detect for a
coprocessor. Some error checking is omitted, for brevity.

BOOL IsCoProcessorPresent(void)
{
 #define MY_ERROR_WRONG_OS 0x20000000
 HKEY hKey;
 SYSTEM_INFO SystemInfo;

 // return FALSE if we are not running under Windows NT
 // this should be expanded to cover alternative Win32 platforms

 if(!(GetVersion() & 0x7FFFFFFF))

 {
 SetLastError(MY_ERROR_WRONG_OS);
 return(FALSE);
 }

 // we return TRUE if we're not running on x86
 // other CPUs have built in floating-point, with no registry entry

 GetSystemInfo(&SystemInfo);

 if((SystemInfo.dwProcessorType != PROCESSOR_INTEL_386) &&
 (SystemInfo.dwProcessorType != PROCESSOR_INTEL_486) &&
 (SystemInfo.dwProcessorType != PROCESSOR_INTEL_PENTIUM))
 {
 return(TRUE);
 }

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

"HARDWARE\\DESCRIPTION\\System\\FloatingPointProcessor",

 0,
 KEY_EXECUTE,
 &hKey) != ERROR_SUCCESS)
 {
 // GetLastError() will indicate ERROR_RESOURCE_DATA_NOT_FOUND
 // if we can't find the key. This indicates no coprocessor present
 return(FALSE);
 }

 RegCloseKey(hKey);
 return(TRUE);
}

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg kbcode
KBSubcategory: BseFltpt

Determining Available RGB Values of an Output Device

PSS ID Number: Q27225
Authored 03-Mar-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The best way to determine the colors supported by a device is to
enumerate the solid pens from a device context (DC) associated with
that device. The EnumObjects function enumerates the pens supported by
a specified device and calls a callback function for each pen. To do
so, EnumObjects requires three parameters: a device context associated
with the desired device as the hDC parameter, OBJ_PEN as the value of
the nOjbectType parameter, and the procedure-instance address of a
callback function as the lpObjectFunc parameter.

MORE INFORMATION

The first parameter for the callback function, lpLogObject, points to
a LOGPEN data structure that describes each enumerated pen. When the
lopnStyle field of the LOGPEN structure contains the PS_SOLID value,
the application can retrieve and store the value of the lopnColor
field.

NOTE: For true color devices (devices that support more than 8 bits-
per-pixel of color resolution), Windows enumerates only a subset of
the supported pens. These devices support almost any color.

The following code demonstrates the process described above:

int cMaxRGB, nCnt, nSolid; // Global variables for system RGB colors

void GetColorList(HWND hWnd)
{
 HDC hdc;
 FARPROC lpProcCallback;
 HANDLE hmem;
 BYTE FAR *lpmem;

 nCnt = nSolid = 0;
 hdc = GetDC(hWnd);
 cMaxRGB = GetDeviceCaps(hdc, NUMCOLORS);
 if (cMaxRGB >= 0x7FFF)
 return; // All colors available. Enumeration not required.

 lpProcCallback = MakeProcInstance(Callback, hInst);

 // Allocate space for color table
 hmem = GlobalAlloc(GHND, sizeof(COLORREF) * cMaxRGB);
 lpmem = GlobalLock(hmem);

 EnumObjects(hdc, OBJ_PEN, lpProcCallback, lpmem);

 FreeProcInstance(lpProcCallback);

 // Use the color table stored in the first nSolid entries of a
 // COLORREF array stored in lpmem.

 GlobalUnlock(hmem);
 GlobalFree(hmem);
 ReleaseDC(hWnd, hdc);
 return;
}

The source for the enumeration callback function is below. The
callback function must be listed in the EXPORTS section of the module
definition (DEF) file.

int FAR PASCAL Callback(LPLOGPEN lpLogPen, LPSTR lpData)
{
 nCnt++;
 if (lpLogPen->lopnStyle == PS_SOLID) // solid pen
 {
 COLORREF FAR *lpDest = (COLORREF FAR *)lpData + nSolid++;

 *lpDest = lpLogPen->lopnColor; // remember the solid color
 }

 if (nCnt >= cMaxRGB)
 return 0;
 return 1;
}

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPal

Determining Selected Items in a Multiselection List Box

PSS ID Number: Q71759
Authored 01-May-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

To obtain the indexes of all the selected items in a multiselection list
box, the LB_GETSELITEMS message should be sent to the list box.

The message LB_GETCURSEL cannot be used for this purpose because it is
designed for use in single-selection list boxes.

Another approach is to send one LB_GETSEL message for every item of the
multiselection list box to get its selection state. If the item is
selected, LB_GETSEL returns a positive number. The indexes can be built
into an array of selected items.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Determining System Version from a Win32-based Application

PSS ID Number: Q92395
Authored 04-Nov-1992 Last modified 12-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0
 - Microsoft Win32s, versions 1.2, 1.25a, and 1.3

SUMMARY

In order to create a Win32-based application that takes advantage of the
features of each platform, it is necessary to determine the operating
system on which the application is currently running.

You can use GetVersion() or GetVersionEx() to determine what operating
system and version your application is running under. NOTE: GetVersion() is
supported on Windows 3.1, but GetVersionEx() is new to the Win32 API. A
Win32-based application might be running under MS-DOS/Windows using the
Win32s extension, Windows NT Workstation, Windows NT Server, or Windows 95.

MORE INFORMATION

According to the documentation, the return value of GetVersion() is a DWORD
that specifies the major and minor version numbers. GetVersionEx() uses
members of the OSVERSIONINFO structure (dwMajorVersion and dwMinorVersion).

The following table shows the return values from GetVersion() under various
environments:

+--+
| Environment | LOWORD | HIWORD |
+==+
| Win32s on | Windows version 3.1 | RESERVED * |
| Windows 3.1 | | |
+--+
| Windows NT 3.x | Windows version | RESERVED ** |
| | | |
+--+
| Windows 95 | Windows version 4.0 | RESERVED *** |
| | | |
+--+

 * The highest bit is 1. The remaining bits specify build number.
 Note that the version of MS-DOS cannot be determined as it can under
 Windows 3.x.
 ** The highest bit is 0. The remaining bits specify build number.
*** The highest bit is 1. The remaining bits are reserved.

The following sample code can be used to test the values returned by

GetVersion().

Sample Code 1

#include <windows.h>

void main()
{

 DWORD dwVersion;
 char szVersion[80];

 dwVersion = GetVersion();

 if (dwVersion < 0x80000000) {
 // Windows NT
 wsprintf (szVersion, "Microsoft Windows NT %u.%u (Build: %u)",
 (DWORD)(LOBYTE(LOWORD(dwVersion))),
 (DWORD)(HIBYTE(LOWORD(dwVersion))),
 (DWORD)(HIWORD(dwVersion)));
 }
 else if (LOBYTE(LOWORD(dwVersion))<4) {
 // Win32s
 wsprintf (szVersion, "Microsoft Win32s %u.%u (Build: %u)",
 (DWORD)(LOBYTE(LOWORD(dwVersion))),
 (DWORD)(HIBYTE(LOWORD(dwVersion))),
 (DWORD)(HIWORD(dwVersion) & ~0x8000));
 } else {
 // Windows 95
 wsprintf (szVersion, "Microsoft Windows 95 %u.%u (Build: %u)",
 (DWORD)(LOBYTE(LOWORD(dwVersion))),
 (DWORD)(HIBYTE(LOWORD(dwVersion))),
 (DWORD)(HIWORD(dwVersion) & ~0x8000));
 }

 MessageBox(NULL, szVersion, "Version Check", MB_OK);
}

The following sample code can be used to test the values returned by
GetVersionEx(). NOTE: The actual build number is derived by masking
dwBuildNumber with 0xFFFF.

Sample Code 2

{
 OSVERSIONINFO osvi;
 char szVersion [80];

 memset(&osvi, 0, sizeof(OSVERSIONINFO));
 osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO);
 GetVersionEx (&osvi);

 if (osvi.dwPlatformId == VER_PLATFORM_WIN32s)

 wsprintf (szVersion, "Microsoft Win32s %d.%d (Build %d)",
 osvi.dwMajorVersion,
 osvi.dwMinorVersion,
 osvi.dwBuildNumber & 0xFFFF);

 else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS)
 wsprintf (szVersion, "Microsoft Windows 95 %d.%d (Build %d)",
 osvi.dwMajorVersion,
 osvi.dwMinorVersion,
 osvi.dwBuildNumber & 0xFFFF);

 else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT)
 wsprintf (szVersion, "Microsoft Windows NT %d.%d (Build %d)",
 osvi.dwMajorVersion,
 osvi.dwMinorVersion,
 osvi.dwBuildNumber & 0xFFFF);

 MessageBox(NULL, szVersion, "Version Check", MB_OK);
}

In order to distinguish between Windows NT Workstation and Windows NT
Server, use the registry API to query the following:

 \HKEY_LOCAL_MACHINE\SYSTEM
 \CurrentControlSet
 \Control
 \ProductOptions

The result will be one of the following:

 WINNT Windows NT Workstation is running.
 SERVERNT Windows NT Server (3.5 or later) is running.
 LANMANNT Windows NT Advanced Server (3.1) is running.

Additional reference words: 1.20 1.30 3.10 3.50 4.00 detect
KBCategory: kbprg
KBSubcategory: BseMisc

Determining the Maximum Allowed Access for an Object

PSS ID Number: Q115945
Authored 07-Jun-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The AccessCheck() API call can be used to determine the maximum access to
an object allowed for a subject. (In this article, a subject means a
program running in a specific user's security context.) When using
AccessCheck() for this purpose, perform the following steps:

1. Obtain a security descriptor that has owner, group, and DACL
 information.

2. If you are not impersonating a client, obtain an impersonation token by
 calling ImpersonateSelf. This token is passed as the client token in the
 AccessCheck() call.

3. Create a generic mapping structure. The contents of this structure will
 vary depending on the object being used.

4. Call AccessCheck() and request "MAXIMUM_ALLOWED" as the desired access.

If the AccessCheck() call succeeds after the above steps have been
completed, the dwGrantedAccess parameter to AccessCheck() contains a
mask of the object-specific rights that are granted by the security
descriptor.

MORE INFORMATION

In most situations, you should not use this method of access determination.
If you need access to an object to perform a task, simply try to open the
object using the required access.

The AccessCheck() API is mainly intended for use with private objects
created by an application. However, it can be used with predefined objects.
The generic mapping values and specific rights for many of the predefined
objects (files and so forth) may be found in WINNT.H.

REFERENCES

Please see the Security Overview in the "Win32 Programmer's Reference" and
the "Win32 SDK API Reference" for more information.

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseSecurity

Determining the Network Protocol Used By Named Pipes

PSS ID Number: Q126766
Authored 01-Mar-1995 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

This article discusses how to determine or set the network protocol used by
named pipes.

Named pipes are implemented using the server message block (SMB) redirector
and server. As such, they can use whatever protocols are bound into the
server and the client.

Both the redirector and the server maintain independent lists of transports
that they are active on. The redirector contacts the remote server. The
redirector will use the highest priority transport that both the client and
the server support.

The priority for the transports is set using the Network control panel
applet. Go into the Bindings button, select Workstation, and use the up and
down buttons to rearrange the order that the redirector will use while
trying to connect to the remote server.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Determining the Number of Visible Items in a List Box

PSS ID Number: Q78952
Authored 05-Dec-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

To determine the number of items that are currently visible in a list
box, an application must consider the following cases:

1. There are many items in the list box (some items are not visible).

2. There are few items in the list box (the bottom area of the list
 box is empty).

3. The heights of the items may vary (an owner-draw list box or use of
 a font other than the system default).

MORE INFORMATION

The following code segment can be used to determine the number of
items visible in a list box:

Sample Code

int ntop, nCount, nRectheight, nVisibleItems;
RECT rc;

ntop = SendMessage(hwndList, LB_GETTOPINDEX, 0, 0);
 // Top item index.

nCount = SendMessage(hwndList, LB_GETCOUNT, 0, 0);
 // Number of total items.

GetClientRect(hwndList, &rc);
 // Get list box rectangle.

nRectheight = rc.bottom - rc.top;
 // Compute list box height.

nVisibleItems = 0; // Initialize counter.

while ((nRectheight > 0) && (ntop < nCount))
 // Loop until the bottom of the list box

 // or the last item has been reached.
 {
 SendMessage(hwndList, LB_GETITEMRECT, ntop, (DWORD)(&itemrect));
 // Get current line's rectangle.

 nRectheight = nRectheight - (itemrect.bottom - itemrect.top);
 // Subtract current line height.

 nVisibleItems++; // Increase item count.
 ntop++; // Move to the next line.
 }

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Determining the Topmost Pop-Up Window

PSS ID Number: Q66943
Authored 14-Nov-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

When an application has many pop-up child windows (with a common parent
window), the GetNextWindow() function can be used when one pop-up window is
closed to determine the next topmost pop-up window that remains.

The following code fragment shows a window procedure for simple pop-up
windows (modified from the PARTY program in Petzold's "Programming
Windows"). In the WM_CLOSE case, the handle received by the pop-up window
procedure is the handle of the pop-up to be closed. This sample activates
the topmost pop-up window that remains by giving it the focus.

long FAR PASCAL PopupWndProc (hWnd, iMessage, wParam, lParam)
 HWND hWnd;
 unsigned iMessage;
 WORD wParam;
 LONG lParam;
 {
 HWND hWndPopup;

 switch (iMessage)
 {
 case WM_CLOSE:
 hWndPopup = GetNextWindow(hWnd, GW_HWNDNEXT);
 if (hWndPopup)
 SetFocus(hWndPopup);
 break;
 }

 return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
 }

NOTE: In Windows 3.1, two messages are sent to an application when its Z-
order is changing: WM_WINDOWPOSCHANGING and WM_WINDOWPOSCHANGED. When a
window is closed (as in the example shown above) these two message will be
sent to all window procedures.

For additional information on changing the Z-order of an MDI window, query
on the following words in the Microsoft Knowledge Base:

 WM_WINDOWPOSCHANGED and MDICREATESTRUCT and WS_EX_TOPMOST

Additional reference word: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Determining the Visible Area of a Multiline Edit Control

PSS ID Number: Q88387
Authored 24-Aug-1992 Last modified 27-Jun-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

The multiline edit control provided with Microsoft Windows versions
3.0 and 3.1 does not provide a mechanism that allows an application to
determine the currently visible lines of text. This article outlines
an algorithm to provide that functionality.

MORE INFORMATION

The general idea is to determine the first and last visible lines and
obtain the text of those lines from the edit control. The following
steps detail this process:

1. A Windows-3.1-based application can use the newly available
 message, EM_GETFIRSTVISIBLELINE, to determine the topmost visible
 line.

 A Windows-3.0-based application can use a technique described in the
 following Microsoft Knowledge Base article to determine the line
 number of the first visible line:

 ARTICLE-ID: Q68572
 TITLE : Caret Position & Line Numbers in Multiline Edit Controls

2. Obtain the edit control's formatting rectangle using EM_GETRECT.
 Determine the rectangle's height using this formula:

 nFmtRectHeight = rect.bottom - rect.top;

3. Obtain the line spacing of the font used by the edit control to
 display the text. Use the WM_GETFONT message to determine the font
 used by the edit control. Select this font into a display context
 and use the GetTextMetrics function. The tmHeight field of the
 resulting TEXTMETRIC structure is the line spacing.

4. Divide the formatting rectangle's height (step 2) with the line
 spacing (step 3) to determine the number of lines. Compute the line
 number of the last visible line based on the first visible line
 (step 1) and the number of visible lines.

5. Use EM_GETLINE for each line number from the first visible line to
 the last visible line to determine the visible lines of text.
 Remember that the last visible line may not necessarily be at the
 bottom of the edit control (the control may only be half full). To
 detect this case, use EM_GETLINECOUNT to know the last line and
 compare its number with the last visible line. If the last line
 number is less than the last visible line, your application should
 use EM_GETLINE only on lines between the first and the last line.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Determining Visible Window Area When Windows Overlap

PSS ID Number: Q75236
Authored 15-Aug-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

There is no Windows API that reports the portion of an application's
window that is not obscured by other windows. To determine which areas
of the window are covered, it is necessary to walk through the window
list managed by Windows.

Each window that precedes the application's window is "above" that
window on the screen. Using the IntersectRect() function, check the
rectangle of the window with any windows above to see if they
intersect. Any window that is above the application's window and
intersects its window rectangle obscures part of the application's
window. By accumulating the positions of all windows that overlap the
application's window, it is possible to determine which areas of the
window are covered and which are not.

MORE INFORMATION

The following sample code demonstrates this procedure:

 GetWindowRect(hWnd, &rMyRect); /* Get the window dimensions
 * for the current window.
 */
 /* Start from the current window and use the GetWindow()
 * function to move through the previous window handles.
 */
 for (hPrevWnd = hWnd;
 (hNextWnd = GetWindow(hPrevWnd, GW_HWNDPREV)) != NULL;
 hPrevWnd = hNextWnd)
 {
 /* Get the window rectangle dimensions of the window that
 * is higher Z-Order than the application's window.
 */
 GetWindowRect(hNextWnd, &rOtherRect);

 /* Check to see if this window is visible and if intersects
 * with the rectangle of the application's window. If it does,
 * call MessageBeep(). This intersection is an area of this
 * application's window that is not visible.
 */
 if (IsWindowVisible(hNextWnd) &&
 IntersectRect(&rDestRect, &rMyRect, &rOtherRect))

 {
 MessageBeep(0);
 }
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Determining Whether a WOW App is Running in Enhanced Mode

PSS ID Number: Q101893
Authored 26-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Windows NT and Windows NT Advanced Server will run a Windows 3.1
application in 386 enhanced mode on X86 machines (standard mode on RISC
machines). The proper way to determine whether a Windows 3.1 application is
in enhanced mode is to call GetWinFlags() and do a bit test for
WF_ENHANCED. This method is described on pages 486-487 in the Windows 3.1
Software Development Kit (SDK) "Programmer's Reference, Volume 2:
Functions."

MORE INFORMATION

Calling Interrupt 2F with AX=1600h

This method, which is described in the Windows 3.1 Device Development Kit
(DDK) checks to see whether a 386 memory manager is running. If Windows 3.1
is running in enhanced mode, it returns AL = 3 and 2 for standard mode.
Windows NT's WOW (Windows 16 on Windows NT) returns AL=0, which means
enhanced mode Windows is not running.

DWORD GetWinFlags()

The GetWinFlags() function retrieves the current Windows system and
memory configuration.

The configuration returned by GetWinFlags() can be a combination of the
following values:

 Value Meaning
 --
 WF_80x87 System contains an Intel math coprocessor.
 WF_CPU286 System CPU is an 80286.
 WF_CPU386 System CPU is an 80386.
 WF_CPU486 System CPU is an i486.
 WF_ENHANCED Windows is running in 386-enhanced mode. The WF_PMODE
 flag is always set when WF_ENHANCED is set.
 WF_PAGING Windows is running on a system with paged memory.
 WF_PMODE Windows is running in protected mode. In Windows 3.1,
 this flag is always set.
 WF_STANDARD Windows is running in standard mode. The WF_PMODE

 flag is always set when WF_STANDARD is set.
 WF_WIN286 Same as WF_STANDARD.
 WF_WIN386 Same as WF_ENHANCED.

NOTE: When running in Windows NT, WF_WINNT will also be returned to tell
the 16-bit Windows-based application that you are running in Windows NT.

Example:

The following example uses the GetWinFlags() function to display
information about the current Windows system configuration:

Sample Code

int len;
char szBuf[80];
DWORD dwFlags;

dwFlags = GetWinFlags();

len = sprintf(szBuf, "system %s a coprocessor",
 (dwFlags & WF_80x87) ? "contains" : "does not contain");
TextOut(hdc, 10, 15, szBuf, len);

len = sprintf(szBuf, "processor is an %s",
 (dwFlags & WF_CPU286) ? "80286" :
 (dwFlags & WF_CPU386) ? "80386" :
 (dwFlags & WF_CPU486) ? "i486" : "unknown");
TextOut(hdc, 10, 30, szBuf, len);

len = sprintf(szBuf, "running in %s mode",
 (dwFlags & WF_ENHANCED) ? "enhanced" : "standard");
TextOut(hdc, 10, 45, szBuf, len);

len = sprintf(szBuf, "%s WLO",
 (dwFlags & WF_WLO) ? "using" : "not using");
TextOut(hdc, 10, 60, szBuf, len);

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Determining Whether an Application is Console or GUI

PSS ID Number: Q90493
Authored 15-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

In order to determine whether an application is console or GUI, you must
parse the EXEheader. The header contains a field called 'Subsystem'. This
field determines both the subsystem the application is to run under and the
type of interface it requires. The values consist of:

 IMAGE_SUBSYSTEM_NATIVE 1
 IMAGE_SUBSYSTEM_WINDOWS_GUI 2
 IMAGE_SUBSYSTEM_WINDOWS_CUI 3
 IMAGE_SUBSYSTEM_OS2_CUI 5
 IMAGE_SUBSYSTEM_POSIX_CUI 7

MORE INFORMATION

Sample Code

#include <windows.h>
#include <winnt.h>

VOID main(int, char **);
DWORD AbsoluteSeek(HANDLE, DWORD);
VOID ReadBytes(HANDLE, LPVOID, DWORD);
VOID WriteBytes(HANDLE, LPVOID, DWORD);
VOID CopySection(HANDLE, HANDLE, DWORD);

#define XFER_BUFFER_SIZE 2048

VOID
main(int argc, char *argv[])
{
 HANDLE hImage;

 DWORD bytes;
 DWORD iSection;
 DWORD SectionOffset;
 DWORD CoffHeaderOffset;
 DWORD MoreDosHeader[16];

 ULONG ntSignature;

 IMAGE_DOS_HEADER image_dos_header;
 IMAGE_FILE_HEADER image_file_header;
 IMAGE_OPTIONAL_HEADER image_optional_header;
 IMAGE_SECTION_HEADER image_section_header;

 if (argc != 2)
 {
 printf("USAGE: %s program_file_name\n", argv[1]);
 exit(1);
 }

 /*
 * Open the reference file.
 */
 hImage = CreateFile(argv[1],
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 if (INVALID_HANDLE_VALUE == hImage)
 {
 printf("Could not open %s, error %lu\n", argv[1], GetLastError());
 exit(1);
 }

 /*
 * Read the MS-DOS image header.
 */
 ReadBytes(hImage,
 &image_dos_header,
 sizeof(IMAGE_DOS_HEADER));

 if (IMAGE_DOS_SIGNATURE != image_dos_header.e_magic)
 {
 printf("Sorry, I do not understand this file.\n");
 exit(1);
 }

 /*
 * Read more MS-DOS header. */
 ReadBytes(hImage,
 MoreDosHeader,
 sizeof(MoreDosHeader));

 /*
 * Get actual COFF header.
 */
 CoffHeaderOffset = AbsoluteSeek(hImage, image_dos_header.e_lfanew) +
 sizeof(ULONG);

 ReadBytes (hImage, &ntSignature, sizeof(ULONG));

 if (IMAGE_NT_SIGNATURE != ntSignature)
 {
 printf("Missing NT signature. Unknown file type.\n");
 exit(1);
 }

 SectionOffset = CoffHeaderOffset + IMAGE_SIZEOF_FILE_HEADER +
 IMAGE_SIZEOF_NT_OPTIONAL_HEADER;

 ReadBytes(hImage,
 &image_file_header,
 IMAGE_SIZEOF_FILE_HEADER);

 /*
 * Read optional header.
 */
 ReadBytes(hImage,
 &image_optional_header,
 IMAGE_SIZEOF_NT_OPTIONAL_HEADER);

 switch (image_optional_header.Subsystem)
 {
 case IMAGE_SUBSYSTEM_UNKNOWN:
 printf("Type is unknown.\n");
 break;

 case IMAGE_SUBSYSTEM_NATIVE:
 printf("Type is native.\n");
 break;

 case IMAGE_SUBSYSTEM_WINDOWS_GUI:
 printf("Type is Windows GUI.\n");
 break;

 case IMAGE_SUBSYSTEM_WINDOWS_CUI:
 printf("Type is Windows CUI.\n");
 break;

 case IMAGE_SUBSYSTEM_OS2_CUI:
 printf("Type is OS/2 CUI.\n");
 break;

 case IMAGE_SUBSYSTEM_POSIX_CUI:
 printf("Type is POSIX CUI.\n");
 break;

 default:
 printf("Unknown type %u.\n", image_optional_header.Subsystem);
 break;
 }
}

DWORD
AbsoluteSeek(HANDLE hFile,
 DWORD offset)

{
 DWORD newOffset;

 if ((newOffset = SetFilePointer(hFile,
 offset,
 NULL,
 FILE_BEGIN)) == 0xFFFFFFFF)
 {
 printf("SetFilePointer failed, error %lu.\n", GetLastError());
 exit(1);
 }

 return newOffset;
}

VOID
ReadBytes(HANDLE hFile,
 LPVOID buffer,
 DWORD size)
{
 DWORD bytes;

 if (!ReadFile(hFile,
 buffer,
 size,
 &bytes,
 NULL))
 {
 printf("ReadFile failed, error %lu.\n", GetLastError());
 exit(1);
 }
 else if (size != bytes)
 {
 printf("Read the wrong number of bytes, expected %lu, got %lu.\n",
 size, bytes);
 exit(1);
 }
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Determining Whether App Is Running as Service or .EXE

PSS ID Number: Q94994
Authored 28-Jan-1993 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

SUMMARY

When debugging Windows NT services, it may be necessary for the service
application to be run interactively.

In this case, the application may determine whether it is being run as a
service or as an executable (interactively) by checking GetLastError()
after the call to StartServiceCtrlDispatcher() in the application's startup
code.

If the application is being run as an executable, the call to
GetLastError() will return with the following:

 ERROR_FAILED_SERVICE_CONTROLLER_CONNECT

An alternative method is to check the return value from GetConsoleMode().
For example:

 ret = GetConsoleMode (GetStdHandle (STD_OUTPUT_HANDLE), &mode);

Although the std handles may exist, they almost certainly will not be
console handles unless there is a console attached. GetConsoleMode() will
fail (with ERROR_INVALID_HANDLE) for non-console handles.

Sample Code

// Call StartServiceCtrlDispatcher() to set up the control
// interface. The API won't return until all services have been
// terminated. At that point, we just exit. See the
// StartServiceCtrlDispatcher() entry in Windows Help.

if (!StartServiceCtrlDispatcherW(ElfSvcDispatchTable) &&
 GetLastError() == ERROR_FAILED_SERVICE_CONTROLLER_CONNECT) {

 // Set a flag indicating you're running as an .EXE, not a service.

}

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Determining Whether the User is an Administrator

PSS ID Number: Q118626
Authored 25-Jul-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

To determine whether or not a user is an administrator, you need to examine
the user's access token with GetTokenInformation(). The access token
represents the user's privileges and the groups to which the user belongs.

When a user starts an application, the access token associated with that
process is the user's access token. To get the process token (and therefore
the user's token), use OpenProcessToken().

The sample code below uses the APIs mentioned in the previous paragraph to
test whether or not the current user is an administrator on the local
machine:

Sample code

 /* BOOL IsAdmin(void)

 returns TRUE if user is an admin
 FALSE if user is not an admin
 */

 BOOL IsAdmin(void)
 {
 HANDLE hProcess, hAccessToken;
 UCHAR InfoBuffer[1024];
 PTOKEN_GROUPS ptgGroups = (PTOKEN_GROUPS)InfoBuffer;
 DWORD dwInfoBufferSize;
 PSID psidAdministrators;
 SID_IDENTIFIER_AUTHORITY siaNtAuthority = SECURITY_NT_AUTHORITY;
 UINT x;

 hProcess = GetCurrentProcess();

 if(!OpenProcessToken(hProcess,TOKEN_READ,&hAccessToken))
 return(FALSE);

 if(!GetTokenInformation(hAccessToken,TokenGroups,InfoBuffer,
 1024, &dwInfoBufferSize)) return(FALSE);

 AllocateAndInitializeSid(&siaNtAuthority, 2,
 SECURITY_BUILTIN_DOMAIN_RID,
 DOMAIN_ALIAS_RID_ADMINS,
 0, 0, 0, 0, 0, 0,
 &psidAdministrators);

 for(x=0;x<ptgGroups->GroupCount;x++)
 {
 if(EqualSid(psidAdministrators, ptgGroups->Groups[x].Sid))
 {
 FreeSid(&psidAdministrators);
 return(TRUE);
 }

 }
 FreeSid(&psidAdministrators);
 return(FALSE);
 }

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Development Tools Do Not Accept Unicode Text

PSS ID Number: Q106065
Authored 31-Oct-1993 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

SUMMARY

Neither the Win32 SDK tools or Visual C++ (VC++) 32-bit Edition tools
support Unicode text. In fact, the C/C++ Language specification says that
the source files are to be written in 7-bit ANSI.

MORE INFORMATION

For example, language-specific resources cannot be specified in Unicode in
the .RC file because RC does not accept the Unicode text. Although the
message compiler has flags for Unicode, the flags are not implemented.

To convert to and from Unicode text, use the UCONVERT utility included in
your MSTOOLS\BIN directory. The source for UCONVERT in the 3.1 SDK is in
MSTOOLS\SAMPLES\SDKTOOLS\UCONVERT. The source for UCONVERT in the 3.5 SDK
is in MSTOOLS\SAMPLES\SDKTOOLS\WINNT\UCONVERT.

The long term solution that Microsoft is working on are Resource
Localization Tools and other methods that will allow the user to localize
the strings in a GUI editor, running on the target machine.

Note that it is possible to specify Unicode escapes in L-quoted strings.
The following is quoted from "Common Statement Parameters" in RC.HLP:

 By default, the characters listed between the double quotation
 marks are ANSI characters and escape sequences are interpreted as
 byte escape sequences. If the string is preceded by the L prefix,
 the string is a wide-character string and escape sequences are
 interpreted as two-byte escape sequences that specify Unicode
 characters. If a double quotation mark is required in the text, you
 must include the double quotation mark twice or use the \" escape
 sequence.

Another alternative is to use user-defined resources and include a binary
(Unicode) file.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

DEVMODE and dmSpecVersion

PSS ID Number: Q96282
Authored 14-Mar-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The dmSpecVersion field of the DEVMODE structure is intended for printer
driver use only; no application programs should test this field. The
purpose of this field is for new printer drivers to be able to recognize
and handle DEVMODE structures created according to previous DEVMODE
structure specification.

MORE INFORMATION

The DEVMODE structure is used for printer and (occasionally) display
drivers when initializing. This structure is tied to the driver--not the
operating system. The dmSpecVersion field does not allow an application to
determine which platform (Windows version 3.1, Windows on Windows, Win32)
the application is running in.

When an application fills a DEVMODE structure, it should set the
dmSpecVersion field to DM_SPECVERSION. This identifies the version of the
DEVMODE structure the application is generating.

If the application is querying to understand an unknown device, then
special attention should be paid to the dmFields, dmSize, and dmDriverExtra
fields. These fields are a reliable means of understanding what fields in
the DEVMODE structure are readable.

The DEVMODE structure consists of public and private parts. The
dmSpecVersion field applies to the public part. Any previously defined
fields are not altered when the DEVMODE specification is updated--more
fields are merely added to the end of the structure. This can mean fields
used in the previous specification are ignored in a later specification.
This functionality is managed by one bitfield describing what fields a
driver actually uses. The new drivers just switch off the obsolete fields.

Applications using DEVMODE should always use the dmSize and dmDriverExtra
fields for allocating/storing/manipulating the structure. These fields
define the sizes of the public and private parts of the structure,
respectively.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Dialog Box Frame Styles

PSS ID Number: Q74334
Authored 16-Jul-1991 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

Dialog boxes can have either the WS_DLGFRAME or the WS_BORDER style. If a
dialog box is created with both of these styles, it will have a caption bar
instead of the expected frame and border. This is because WS_BORDER |
WS_DLGFRAME is equal to WS_CAPTION.

To create a dialog box with a modal dialog frame and a caption, use
DS_MODALFRAME combined with WS_CAPTION.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

DIB_PAL_INDICES and CBM_CREATEDIB Not Supported in Win32s

PSS ID Number: Q108497
Authored 13-Dec-1993 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
 - Microsoft Win32 SDK (Windows 95 only)

The Windows NT implementation of the Win32 application programming
interface (API) includes two new flags, DIB_PAL_INDICES and CBM_CREATEDIB,
that can be used with various device-independent bitmap (DIB) APIs. These
flags are not supported by Windows 3.1, Win32s, or Windows 95.

DIB_PAL_INDICES

In Windows NT, the DIB_PAL_INDICES flag can be used with the following
APIs:

 CreateDIBitmap()
 CreateDIBPatternBrush()
 CreateDIBPatternBrushPt()
 SetDIBits()
 GetDIBits()
 SetDIBitsToDevice()
 StretchDIBits()

When the dwUsage parameter is DIB_PAL_INDICES, the associated DIB does not
have a color table. In this case, the bitmap bits are indices into the
device palette.

Applications written to run on Windows 3.1 or Win32s should use
DIB_PAL_COLORS or DIB_RGB_COLORS instead of DIB_PAL_INDICES.

Windows 95 does not support DIB_PAL_INDICES.

CBM_CREATEDIB

In Windows 3.1, CreateDIBitmap() creates a device-dependent bitmap (DDB)
from a DIB definition and optionally initializes the DDB. In Windows NT,
the CBM_CREATEDIB flag can be used with CreateDIBitmap() to create a new
DIB instead of a DDB.

This functionality is not present in Windows 3.1 or Win32s.

Windows 95 does not support CBM_CREATEDIB. Equivalent functionality is
provided in Windows 95 by CreateDIBSection().

Additional reference words: 1.00 1.10 1.20 4.00
KBCategory: kbprg
KBSubcategory: GdiBmp W32s

Differences Between hInstance on Win 3.1 and Windows NT

PSS ID Number: Q103644
Authored 26-Aug-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0

SUMMARY

In Microsoft Windows version 3.1, an instance handle can be used to
uniquely identify the instance of an application because instance handles
are unique within the scope of an address space. Because each instance of
an application runs in its own address space on Windows NT, instance
handles cannot be used to uniquely identify an instance of an application
running on the system. This article explains why, and some alternative
calls that might assist in uniquely identifying an application instance on
Windows NT.

MORE INFORMATION

Although the concepts for an instance handle are similar on Windows NT and
Windows 3.1, the results you see regarding them might be very different
from what you expect.

With Windows 3.1, when you start several instances of the same application,
they all share the same address space. You have multiple instances of the
same code segment; however, each of these instances has a unique data
segment associated with it. Using an instance handle (hInstance) is a way
to uniquely identify these different instances and data segments in the
address space.

Instance handles are unique to the address space. On Windows NT, when
looking at the value of the instance handle, or the value returned from
GetWindowLong(hWnd, GWL_HINSTANCE), a developer coming from a Windows 3.1
background might be surprised to see that most of the windows on the
desktop return the same value. This is because the return value is the
hInstance for the instance of the application, which is running it its own
address space. (An interesting side note: The hInstance value is the base
address where the application's module was able to load; either the default
address or the fixed up address.)

On Windows NT, running several instances of the same application causes the
instances to start and run in their own separate address space. To
emphasize the difference: multiple instances of the same application on
Windows 3.1 run in the same address space; in Windows NT, each instance has
its own, separate address space. Using an instance handle to uniquely
identify an application instance, as is possible on Windows 3.1, does not
apply in Windows NT. (Another interesting side note: Remember that even if
there are multiple instances of an application, if they are able to load at

their default virtual address spaces, the virtual address pages of the
different applications' executable code will map to the same physical
memory pages.)

In Windows NT, instance handles are not unique in the global scope of the
system; however, window handles, thread IDs, and process IDs are. Here are
some calls that may assist in alternative methods to uniquely identify
instance of applications on Windows NT:

 - GetWindowThreadProcessID() retrieves the identifier of the thread
 that created the given window and, optionally, the identifier of
 the process that created the window.

 - OpenProcess() returns a handle to a process specified by a process
 ID.

 - GetCurrentProcessID() returns the calling process's ID.

 - EnumThreadWindows() returns all of the windows associated with a
 thread.

 - The FindWindow() function retrieves the handle of the top-level
 window specified by class name and window name.

 - To enumerate all of the processes on the system, you can query the
 Registry using RegQueryValueEx() with key HKEY_PERFORMANCE_DATA,
 and the Registry database index associated with the database string
 "Process".

For further details on using these calls, please see the Win32 SDK help
file.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMisc

Differences Between the Win32 3.1 SDK and VCNT 1.0

PSS ID Number: Q105679
Authored 22-Oct-1993 Last modified 18-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.1
 - Microsoft Visual C++ 32-bit Edition, version 1.0

SUMMARY

The following is a list of items included in the retail Win32 SDK that are
not included in the 32-bit Edition of Visual C++ (Intel only):

MORE INFORMATION

Tools

 WinDbg/WinDbgRM
 Process Walker
 Working Set Tuner (WST)
 WinObj
 Setup Toolkit
 Microsoft Test
 Software Compatibility Test (SCT)
 API Profilers: CAP and WAP
 Symedit
 masm386
 Font Editor

Documentation

 LM API Reference (LMAPI.HLP)
 SNMP Programmer's Reference (SNMP.TXT)
 Generic Thunks (GENTHUNK.TXT)
 File Formats (CUSTCNTL.TXT, ENHMETA.TXT, PE.TXT, RESFMT.TXT)

Samples

 BNDBUF MFEDIT
 BOB (named EXITWIN in VC++) MIDIMON
 CDTEST MINREC
 CPL MSGTABLE
 DYNDLG NTFONTS
 GUIGREP NTSD
 LARGEINT PDC
 LOGGING RESDLL
 LOWPASS REVERSE

 MANDEL SCRNSAVE
 MAPI SEMAPHOR
 MAZELORD SPINCUBE
 MCITEST WINNET

Other

 Device Driver Kit (DDK) headers and libraries
 Checked build of Windows NT
 RPC Toolkit
 POSIX headers and libraries
 Microsoft Foundation Classes (MFC) 1.0

The following is a list of items included in the 32-bit Edition of
Visual C++ that are not included in the retail Win32 SDK (Intel only):

Tools

 Visual Workbench/AppStudio/Wizards
 bscmake
 Pharlap TNT DOS-Extender
 Spy++
 Source Profiler
 CodeView for Win32S

Samples

 BOUNCE
 CVTMAKE
 EXITWIN (named BOB in the SDK)

Other

 MFC 2.0

The preliminary Win32 SDK contained the compiler tools, while the
retail Win32 SDK does not. In addition, the preliminary Win32 DDK was
available separately, while the retail DDK is bundled with the retail
SDK.

The Win32 SDK has a separate "Win32s Programmer's Reference," while
VC++ has the same chapters as part of the "Programming Techniques"
manual.

There are tools whose names have changed and tools that are no longer
needed. The SDK linker is LINK32, the VC++ linker is LINK. The SDK
librarian is LIB32, the VC++ librarian is LIB. CVTRES existed in the
SDK to convert the .RES file produced by RC so that it could be used
by the linker, while VC++ has this functionality built into its
linker. These changes may affect your makefiles.

For more information on switching from the Win32 SDK to 32-bit VC++,
see the VC++ file MIGRATE.HLP.

Additional reference words: 3.10
KBCategory: kbtool
KBSubcategory: TlsMisc

Differences Between the Win32 3.5 SDK and Visual C++ 2.0

PSS ID Number: Q125474
Authored 29-Jan-1995 Last modified 30-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5
 - Microsoft Visual C++ 32-bit Edition, version 2.0

SUMMARY

Microsoft Visual C++ version 2.0 contains the compiler tools, headers, and
libraries necessary to develop Win32-based applications. In addition, it
has an integrated development environment (Microsoft Foundation Classes
(MFC) version 3.0) and Wizards to make programming easier. However, there
is still a separate Win32 SDK available through MSDN Level II.

This article lists the things that are included in the Win32 SDK that
are not included in Visual C++ version 2.0.

MORE INFORMATION

The following is a list of items included in the retail Win32 SDK that are
not included in Visual C++ version 2.0 (Intel only):

Tools

WinDbg/WinDbgRM
Process Walker
Working Set Tuner
Software Compatibility Test
Microsoft Test
API Profilers
POSIX headers and libraries
Help Indexing
masm386

Toolkits

RPC Toolkit (and samples)
Setup Toolkit

Documentation

SNMP Programmer's Reference (PROGREF.RTF)
Generic Thunks (GENTHUNK.TXT)
Multicast Extensions to Windows Sockets for Win32
Windows Sockets for Appletalk

File Formats (CUSTCNTL.TXT, ENHMETA.HLP, PE.TXT, RESFMT.TXT)
Writing Great 32-bit Applications for Windows
POSIX Conformance Document
Microsoft Windows NT Version 3.5 Hardware Compatibility List

Additional Samples

Win32: Multimedia:

 BNDBUF NTSD AVIEDI32 MIXAPP
 CDTEST RASBERRY AVIVIEW MOVPLAY
 CPL REBOOT CAPTEST MPLAY
 DYNDLG RNR DSEQFILE PALMAP
 GLOBCHAT SD_FLPPY ICMAPP REVERSE
 INTEROP SERVENUM ICMWALK TEXTOUT
 IOCOMP SIMPLEX LANGPLAY WAVEFILE
 IPXCHAT SNMP MCIPLAY WRITEAVI
 LARGEINT SOCKETS MCIPUZZL
 MANDEL SPINCUBE
 MSGTABLE WDBGEXTS
 NETDDE

SDK Tools:

 ANIEDIT RSHELL
 FONTEDIT TLIST
 IMAGE UCONVERT
 IMAGEDIT WALKER
 NETWATCH WINAT
 REMOTE

Additional reference words: 2.00 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Differentiating Between the Two ENTER Keys

PSS ID Number: Q77550
Authored 20-Oct-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

An application may find it useful to differentiate between the user
pressing the ENTER key on the standard keyboard and the ENTER key on
the numeric keypad. Either action creates a WM_KEYDOWN message and a
WM_KEYUP message with wParam set to the virtual key code VK_RETURN.
When the application passes these messages to TranslateMessage, the
application receives a WM_CHAR message with wParam set to the
corresponding ASCII code 13.

To differentiate between the two ENTER keys, test bit 24 of lParam
sent with the three messages listed above. Bit 24 is set to 1 if the
key is an extended key; otherwise, bit 24 is set to 0 (zero). The
contents of lParam for these messages is documented in the "Microsoft
Windows Software Development Kit Reference Volume 1" for version 3.0
of the SDK and in the SDK Reference Volume 3, "Messages, Structures,
and Macros."

Because the keys in the numeric keypad (along with the function keys)
are extended keys, pressing ENTER on the numeric keypad results in bit
24 of lParam being set, while pressing the ENTER key on the standard
keyboard results in bit 24 clear.

The following code sample demonstrates differentiating between these
two ENTER keys:

 case WM_KEYDOWN:
 if (wParam == VK_RETURN) // ENTER pressed
 if (lParam & 0x1000000L) // Test bit 24 of lParam
 {
 // ENTER on numeric keypad
 }
 else
 {
 // ENTER on the standard keyboard
 }
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: UsrInp

Direct Drive Access Under Win32

PSS ID Number: Q100027
Authored 14-Jun-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

To open a physical hard drive for direct disk access (raw I/O) in a
Win32-based application, use a device name of the form

 \\.\PhysicalDriveN

where N is 0, 1, 2, and so forth, representing each of the physical drives
in the system.

To open a logical drive, direct access is of the form

 \\.\X:

where X: is a hard-drive partition letter, floppy disk drive, or CD-ROM
drive.

MORE INFORMATION

You can open a physical or logical drive using the CreateFile() application
programming interface (API) with these device names provided that you have
the appropriate access rights to the drive (that is, you must be an
administrator). You must use both the CreateFile() FILE_SHARE_READ and
FILE_SHARE_WRITE flags to gain access to the drive.

Once the logical or physical drive has been opened, you can then perform
direct I/O to the data on the entire drive. When performing direct disk
I/O, you must seek, read, and write in multiples of sector sizes of the
device and on sector boundaries. Call DeviceIoControl() using
IOCTL_DISK_GET_DRIVE_GEOMETRY to get the bytes per sector, number of
sectors, sectors per track, and so forth, so that you can compute the size
of the buffer that you will need.

Note that a Win32-based application cannot open a file by using internal
Windows NT object names; for example, attempting to open a CD-ROM drive by
opening

 \Device\CdRom0

does not work because this is not a valid Win32 device name. An application
can use the QueryDosDevice() API to get a list of all valid Win32 device
names and see the mapping between a particular Win32 device name and an

internal Windows NT object name. An application running at a sufficient
privilege level can define, redefine, or delete Win32 device mappings by
calling the DefineDosDevice() API.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Disabling the Mnemonic on a Disabled Static Text Control

PSS ID Number: Q66946
Authored 14-Nov-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Disabling a static text control that contains a mnemonic does not prevent
the control from responding to that key. For more information on static
text controls with mnemonics, query in this Knowledge Base on the word
"mnemonic".

To keep a static text control from processing mnemonics, it must be
subclassed. When the control is disabled, WM_GETTEXT messages must be
intercepted and the subclass procedure should return an empty string in
response to the message.

MORE INFORMATION

When a static text control with a mnemonic is disabled using
EnableWindow(), it turns gray but it does not stop responding to the
mnemonic. This can cause problems because Windows processes the
mnemonic by setting the focus to the next nonstatic, enabled control.

It is necessary to resort to subclassing to prevent the static control
from processing the mnemonic. The subclass procedure should process
the WM_GETTEXT message as follows:

 ...
 // Windows asks the control, hChild, for its text.
 case WM_GETTEXT:
 if (!IsWindowEnabled(hChild))
 {
 *(LPSTR)(lParam) = 0; // A null terminated empty string
 return 0L;
 }
 break;

When the ALT key is held down and a key is pressed, Windows scans the text
of each control to see if the key corresponds to a mnemonic. A WM_GETTEXT
message is sent to each control. Normally, the control processes this
message by returning its text. By returning an empty string in response to
this message, Windows does not find the mnemonic.

Because the mnemonic must work when the control is enabled, the
IsWindowEnabled() function is used to determine the state of the control.

If it is enabled, default processing occurs. Otherwise, the control is
disabled and no text is returned, effectively disabling the mnemonic.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Displaying on the Screen What Will Print

PSS ID Number: Q22553
Authored 09-Oct-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

It is possible for an application to closely simulate on the screen
how an block of text will appear when printed. This article provides
some references and techniques to accomplish this goal.

NOTE: WYSIWYG functionality can be attained in Windows 3.1 by using
TrueType fonts. The following information should be used with non-TrueType
fonts.

MORE INFORMATION

To create a what-you-see-is-what-you-get (WYSIWYG) screen image, the
application must combine the services of the Windows graphics device
interface (GDI), the printer, the display, and fonts. The following
three references provide information that may be helpful:

1. "Pocket Pal -- A Graphic Arts Production Handbook" from
 International Paper Company; discusses issues related to type and
 typesetting.

2. "Bookmaking" by Marsha Lee; discusses issues related specifically
 to making books.

3. "Phototypesetting, A Design Manual" by James Craig.

These books contain information about type, fonts, and stringing
characters together to make text. The following are three points to
remember:

1. Printer manufacturers produce excellent fonts on their printers.
 Use printer fonts as much as possible.

2. GDI must provide some fonts for use with font-deficient display
 drivers.

3. Displays (even high-end ones) have much lower resolution than
 printers.

The best displays attached to microcomputers are approximately 120

dots-per-inch (dpi), while the typical laser printer is 300 dpi. To
produce the same size image (for example, a 9-point capital A), the
printer will illuminate/paint more of its pixels than will the screen.
In particular, the printer will more closely match the requested size
than the display. This leads to integer round-off errors.

Most graphics output devices are raster devices. Due to integer
round-off errors associated with sampling the ideal "A" for different
device resolutions, the origin of characters and words and the ends of
lines on the display will seldom be the same as on a printer. For
example, using a 75-dpi display and 300-dpi printer, the display might
choose a 6 pixel-width for the character "A", while the printer might
choose a 25 or 23 pixel-width for that same character. This mismatch
necessitates adjusting the text on the display to match the output on
the printer.

GDI provides various approaches to find the information needed to
perform the adjustments. The following applications perform this task
with increasing sophistication:

1. Windows Notepad application (does a less-than-ideal job)

2. Windows Write application (does better; however, the point at which
 various screen lines word wrap with different fonts is jagged)

3. Word for Windows (does an excellent job of handling text)

The first two applications are included with the Windows operating
environment.

When Windows starts up, GDI asks each device whether it can support
any fonts. For devices that provide some intrinsic (driver-based)
fonts, GDI enumerates the available fonts and creates a table that
describes them. When an application requests a font from GDI (using
the CreateFont and SelectObject functions), GDI selects the font in
its table that most closely matches the requested font. If no device
font matches well, GDI will attempt to use one of its own fonts.

Ideally, the requested font will be available for all devices. More
realistically, GDI provides a similar font, within the limits of the
device capabilities.

The best way to imitate the appearance of printer fonts on a display
is to assume that the printer has more fonts and greater resolution
than the display. The following nine steps describe one way to
implement a WYSIWYG display:

1. Open a device context (DC) and enumerate the fonts available on the
 printer. Use information from the GetDeviceCaps function with the
 TEXTCAPS parameter to determine how the device can alter the
 appearance of the fonts it provides. Together, the EnumFonts and
 GetDeviceCaps functions will allow the application to determine
 which fonts the device and GDI can provide. The text capabilities
 of the device serve as a filter in the enumeration process.

2. Provide a user interface in the application to allow the user to
 choose one of the fonts (this will result in "printer-centered
 WYSIWYG"). If appropriate, provide a method to choose between sizes
 and other attributes (bold, italic, and so forth). Fonts are most
 commonly selected by point size. One point equals 1/72 of an inch.
 Enumerating fonts returns LOGFONT and TEXTMETRIC structures. The
 quantities in these structures are in logical units that depend on
 the current mapping mode. Assuming that MM_TEXT (the default
 mapping mode) is selected, one logical unit equals one device unit
 (pixel, or pel). Font height and internal leading define the point
 size of the font as follows:

 72 * (tmHeight - tmInternalLeading)
 point_size = -----------------------------------
 GetDeviceCaps(hDC, LOGPIXELSY)

3. Create a LOGFONT structure for the selected font. To ensure
 successful selection of that font into the printer DC, the
 lfHeight, lfWeight, and lfFacename fields must be specified. Weight
 and face name can be copied directly from the LOGFONT structure
 that was returned during the enumeration. The height should be
 computed using the following formula:

 lfHeight = -(point_size * GetDeviceCaps(hDC, LOGPIXELSY) / 72)

 In normal situations, set lfWidth to zero.

4. Once a font has been chosen, select it into the printer DC. Use
 GetTextMetrics and GetTextFace to verify the selection. If the
 steps above are followed, the process should fail only when very
 little memory is available in the system.

5. Create a device context for the display. Use the equation listed in
 step 2 above to compute the logical height for the font to be
 selected into the screen DC. Use CreateFont and SelectObject to
 select this logical font into the display DC, and use
 GetTextMetrics and GetTextFace to retrieve a TEXTMETRIC data
 structure and the face name for the selected font.

6. The font selected for the display is generally not the same as the
 font selected for the printer. To achieve WYSIWYG and the highest
 possible quality of the printed output, it is best to perform all
 page layout computations based on the metrics obtained from the
 printer DC, and force the output on the screen to match the printer
 output as closely as possible. This process generally causes some
 degradation of quality. It is assumed in the remainder of this
 discussion that text quality is most important.

7. Check whether either device supports the GDI escape codes that
 enhance the usability of fonts. One escape code, for example,
 returns the width table for proportionally spaced fonts. These
 escapes are listed in chapter 12 of the "Microsoft Windows Software
 Development Kit Reference, Volume 2." Use the escape code
 QUERYESCSUPPORT to discover whether a device supports a particular
 escape code. The width tables provide data to determine the

 physical extent of character strings to be sent to the printer and
 how to match that extent on the display.

8. If the devices do not support those GDI escapes, select the desired
 font into a printer DC and use the GetTextExtent function to get
 the extent a string will occupy when printed.

9. With the methods outlined in steps 7 and 8, the dimensions of any
 string can be computed for the printer device. This information is
 used to compute page breaks and line breaks. Once the placement and
 extent of a string of text have been determined on the printed
 page, it is possible to create a scaled image on the screen. There
 are three methods of forcing a match between printer and screen:

 a. Take no special action. Put the text on the screen based on
 screen DC text metrics. With this method, only minimal matching
 is obtained.

 b. Use either the GetTextExtent function or the combination of the
 GetCharWidths, SetTextJustification, and SetTextCharacterExtra
 functions to create the same line breaks and justification on
 the screen as on the printed page. This method uses white space
 (usually the space character) to stretch or shrink a string of
 text (action of SetTextJustification) and adds a constant value
 to the width of every character in the font (action of
 SetTextCharExtra). This method achieves reasonable WYSIWYG.

 c. Use the ExtTextOut function and pass a width array to achieve
 the exact placement of each and every character in the string.
 This method provides the highest degree of WYSIWYG; however, it
 also requires character placement algorithms that do not degrade
 the speed of text output too much.

The following functions related to this article are documented in
chapter 4 of the "Microsoft Windows Software Development Kit
Reference, Volume 1:"

 CreateFont
 CreateFontIndirect
 EnumFonts
 Escape
 GetCharWidths
 GetDeviceCaps
 GetTextExtent
 GetTextFace
 GetTextMetrics
 SelectObject
 SetMappingMode
 SetViewportExtent
 SetViewportOrigin
 SetWindowExtent
 SetWindowOrigin

The LOGFONT and TEXTMETRIC data structures are documented in Chapter 7
of the SDK reference, volume 2.

The following device escape functions are documented in Chapter 12 of
the SDK reference, volume 2:

 ENABLEPAIRKERNING
 ENABLERELATIVEWIDTHS
 EXTTEXTOUT
 GETEXTENDEDTEXTMETRICS
 GETEXTENTTABLE
 GETPAIRKERNTABLE
 GETTRACKKERNTABLE
 QUERYESCSUPPORT
 SETKERNTRACK

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Distinguishing Between Keyboard ENTER and Keypad ENTER

PSS ID Number: Q96242
Authored 11-Mar-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

It is possible using ReadConsoleInput() or PeekConsole() to distinguish
between the ENTER key on the main keyboard and the ENTER key on the numeric
keypad. The KEY_EVENT_RECORD structure in the INPUT_RECORD structure must
be used to distinguish between the two keys.

MORE INFORMATION

The following illustrates what the KEY_EVENT_RECORD structure is filled
with after a keyboard ENTER key versus a numeric keypad ENTER key is
pressed.

Keyboard ENTER Key

 KeyEvent.wRepeatCount = 1
 KeyEvent.wVirtualKeyCode = 13
 KeyEvent.wVirtualScanCode = 28
 KeyEvent.dwControlKeyState= 00000000

Numeric Keypad ENTER Key

 KeyEvent.wRepeatCount = 1
 KeyEvent.wVirtualKeyCode = 13
 KeyEvent.wVirtualScanCode = 28
 KeyEvent.dwControlKeyState= 00000100

In the case of the numeric keypad ENTER key, in dwControlKeyState, the
ENHANCED_KEY bit is set.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCon

DLC Information on LLC_DIR_SET_MULTICAST_ADDRESS Command

PSS ID Number: Q129022
Authored 17-Apr-1995 Last modified 18-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The DLC programming interface for Windows NT supports Ethernet multicast
addressing via the LLC_DIR_SET_MULTICAST_ADDRESS command. This command must
be successfully issued before Ethernet multicasts can be received. This
article shows by example how to use the command.

MORE INFORMATION

The following function demonstrates the command.

Sample Code

BOOL DlcSetMulticastAddress(BYTE bAdapter, BYTE *pbResult, BYTE *pbAddress
)

{
 LLC_CCB Ccb;

 Ccb.uchAdapterNumber = bAdapter;
 Ccb.uchDlcCommand = LLC_DIR_SET_MULTICAST_ADDRESS;

 // note: Dlc expects Ethernet addresses to be specified in the
 // non-canonical form. In other words, reverse the bits
 // before passing an Ethernet address.
 //
 // Also, the first byte of the canonical form of an
 // Ethernet multicast address must be 0x01.

 Ccb.u.pParameterTable = (PLLC_PARMS) pbAddress;

 if(!DlcSyncCall(&Ccb))
 return FALSE;
 else
 {
 *pbResult = Ccb.uchDlcStatus;
 return TRUE;
 }
}

// AcsLan wrapper function used by DlcSetMulticastAddress

BOOL DlcSyncCall(PLLC_CCB pCcb)
{
 BOOL fResult = FALSE;
 DWORD dwResult;

 pCcb->hCompletionEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (!pCcb->hCompletionEvent)
 return FALSE;

 int iStatus = (int) AcsLan(pCcb, NULL);
 if (iStatus != ACSLAN_STATUS_COMMAND_ACCEPTED)
 goto done;

 dwResult = WaitForSingleObject(pCcb->hCompletionEvent, INFINITE);

 if (dwResult == WAIT_OBJECT_0)
 fResult = TRUE;

done:
 CloseHandle(pCcb->hCompletionEvent);

 return fResult;
}

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbprg kbcode
KBSubcategory: NtwkMisc

DlgDirList on Novell Drive Doesn't Show Double Dots [..]

PSS ID Number: Q99339
Authored 26-May-1993 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The Microsoft Windows application programming interface (API) function
DlgDirList() can be used to add directories, drives, and/or files to a
list box. On a Novell network with the default login script, the
Windows API may not add the string "[..]" used to represent the parent
directory to the list box. This is due to Novell implementation, and
is not a bug in the Windows API. To make the entry appear, add the
following line to the Novell login script (usually called SHELL.CFG
located in the root directory of the boot drive)

 SHOW DOTS = ON

MORE INFORMATION

A Novell NetWare file server does not include the directory entries
dot (.) and double dot (..) as MS-DOS does. However, the NetWare shell
(version 3.01 or later) can emulate these entries when applications
attempt to list the files in a directory. Turning on Show Dots causes
problems with earlier versions of some 286-based NetWare utilities,
such as BINDFIX.EXE and MAKEUSER.EXE. Make sure you upgrade these
utilities if you upgrade your NetWare shell. For more information,
contact your Novell dealer.

NOTE: With Novell NetWare version 3.1.1, the line SHOW DOTS=ON/OFF can
be added to the NET.CFG file for the same effect.

The same behavior is shown with the API DlgDirListComboBox, and the
messages LB_DIR and CB_DIR.

Additional reference words: 3.10 3.50 3.51 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Do Not Call the Display Driver Directly

PSS ID Number: Q77402
Authored 15-Oct-1991 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK (Windows 95 only)

SUMMARY

In general, a Windows-based application cannot call the Windows display
driver directly to perform graphics primitives. This article details
the reasons this restriction is in place.

MORE INFORMATION

The Windows display driver communicates with the Graphics Device
Interface (GDI) to perform primitive graphics operations. The
parameters of the entry points (or exported functions) in the display
driver are set up according to the standard interface between GDI and
the display driver. The parameters passed by GDI to the display driver
are only meaningful to GDI and to the display driver. A Windows-based
application has no way to obtain these parameters. For example, the
parameter most-commonly passed by GDI to the display driver is a
pointer to a structure called PDEVICE. Memory for this structure is
allocated by GDI, and its contents are specified by the display driver
during the driver's initialization. The pointer to the PDEVICE
structure is private to GDI; furthermore, the structure of PDEVICE
varies among display drivers.

To give another example, when a primitive is to be done to a memory
bitmap, instead of passing a pointer to PDEVICE, GDI passes to the
display driver a pointer to a structure; the structure is usually
referred to as a physical bitmap. Note that this physical bitmap
structure is also called "BITMAP"; do not confuse it with the BITMAP
structure defined in the Windows Software Development Kit. Again, this
physical bitmap structure is not designed to be used by a Windows-based
application. Although the information described in this structure is
somewhat related to the bitmap that the application uses, the pointer
to the physical bitmap structure is private to GDI and cannot be
obtained by the application.

Additional reference words: 3.00 3.10
KBCategory: kbprg
KBSubcategory: GdiMisc

Do Not Forward DDEML Messages from a Hook Procedure

PSS ID Number: Q89828
Authored 30-Sep-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

If an application for Windows uses the Dynamic Data Exchange
Management Library (DDEML) in addition to a message hook [for example,
by calling SetWindowsHook() or SetWindowsHookEx()], it is possible
that your hook procedure will receive messages that are intended for
the DDEML libraries.

For the DDEML libraries to work properly, you must make sure that your
hook function does not forward on any messages that are intended for
the DDEML libraries.

MORE INFORMATION

If your hook procedure receives a code of type MSGF_DDEMGR, you should
return FALSE instead of calling the CallNextHookEx() function.

The way to handle this situation is to use the following code:

 if (MSGF_DDEMGR == code)
 return FALSE;
 else
 {
 ...
 }

In cases where the callback function processes the message, it should
return TRUE.

Note, however, how the message filter function is called from within
DDEML:

 while (TimeOutHasntExpired) {
 GetMesage (&msg, (HWND)NULL, 0, 0);
 if (!CallMsgFilter (&msg, MSGF_DDEMGR))
 DispatchMessage (&msg);
 }

Given this, a callback function that just returns would cause the
CallMsgFilter() call above to return TRUE, and never dispatch the
message. This inevitably causes an infinite loop in the application,
because GetMessage() ends up retrieving the same message over and

over, without dispatching it to the appropriate window for processing.

Therefore, a callback function that processes the message may not just
return TRUE, but should also translate and dispatch messages
appropriately.

The Windows 3.1 SDK's DDEMLCL sample demonstrates how to do this
correctly in its MessageFilterProc() found in DDEMLCL.C:

 if (nCode == MSGF_DDEMGR) {

 /*
 * If a keyboard message is for MDI, let MDI client take care of it.
 * Otherwise, check to see if it is a normal accelerator key.
 * Otherwise, just handle the message as usual.
 */

 if (!TranslateMDISysAccel (hWndMDIClient, lpmsg) &&
 !TranslateAccelerator (hWndFrame, hAccel, lpmsg)) {
 TranslateMessage (lpmsg);
 DispatchMessage (lpmsg);
 }
 return 1;
 }

For more information about message hooks and DDEML, please see the
above mentioned functions in the Windows SDK manual or the online help
facility.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

DOCERR: AddPort, ConfigurePort, DeletePort Fail Remotely

PSS ID Number: Q131223
Authored 06-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0

SYMPTOMS

Using AddPort, ConfigurePort, or DeletePort with the Universal Naming
Convention (UNC) name of a remote server as the first parameter results in
a return value of FALSE. This indicates that a failure has occurred. The
error returned by GetLastError is ERROR_NOT_SUPPORTED. If the first
parameter is the UNC name of the local machine or NULL, the functions
succeed.

CAUSE

Calls to remote servers via AddPort, ConfigurePort and DeletePort are not
supported. The documentation gives the impression that the UNC name for a
remote server is permissible as the first parameter.

RESOLUTION

Use the UNC name to the local server or NULL as the first parameter.

MORE INFORMATION

These functions display a dialog associated with the hWnd that is supplied
in the second parameter. Because the call displays a dialog box and
requires a handle to a window in the second parameter, it is only supported
locally.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg kbdocerr
KBSubcategory: GdiPrn

DOCERR: BUFFER.CREATE Command Not Documented

PSS ID Number: Q123462
Authored 01-Dec-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

This article documents the BUFFER.CREATE command. This is a command that
Microsoft added, so it is not documented in IBM LAN Technical Reference.

MORE INFORMATION

The AcsLan function topic in the Win32 Help file indicates that there are
some differences between Windows NT DLC and the CCB2 interface documented
in the IBM LAN Technical Reference. The most notable is that the buffer
pool must be specified on an open adapter instance basis, not per SAP.
After an adapter has been opened by using the DIR.OPEN.ADAPTER command, a
buffer pool must be given to the DLC driver by using BUFFER.CREATE.

The IBM LAN Technical Reference manual has no reference to BUFFER.CREATE.
However, the DLCAPI.H file contains the following structure with no other
information explaining how to use it:

typedef struct {
 HANDLE hBufferPool; // handle of new buffer pool
 PVOID pBuffer; // any buffer in memory
 ULONG cbBufferSize; // buffer size in bytes
 ULONG cbMinimumSizeThreshold; // minimum locked size
} LLC_BUFFER_CREATE_PARMS, *PLLC_BUFFER_CREATE_PARMS;

Unlike DLC as described in IBM LAN Technical Reference, Windows NT DLC does
not support a buffer pool per SAP, but rather a buffer pool per process.
All buffers given to the application are allocated from the same pool. (You
can also allocate send buffers from the buffer pool, but this is not the
case in general.)

The application gives the buffer pool to DLC by using the BUFFER.CREATE
request. The parameters are:

 - hBufferPool: the returned handle of the buffer pool. Supposedly, DLC can
 share buffer pools between processes but it doesn't, so it's useless.

 - pBuffer: the pointer to application allocated buffer pool. This can be
 allocated by any scheme you wish and can be any size.

 - cbBufferSize: the size of pBuffer.

 - cbMinimumSizeThreshold: the minimum locked size.

Because the buffer is passed on kernel mode, it must be mapped into system
space. It is divided into pages and further subdivided into 256-byte
segments (unknown to the application). DLC tries to return as many
contiguous segments as it can, but you may end up with a fragmented buffer,
containing a relatively long chain of small segments. To your advantage,
the largest DLC receive frame is usually around 4K.

DLC aligns the buffer to a page boundary, discarding any partial page
buffer after the last page. This is not a problem unless you allocate a
buffer less than a page, or one that is not page-aligned. In these cases,
you are in danger of not having a buffer.

Because the buffer must be mapped to system space, DLC needs to lock the
buffers into memory when receiving or sending from the buffers. To increase
performance, DLC tries to keep a certain amount of buffer locked at all
times. It will lock successive pages as the need arises. (In Windows NT,
the smallest lockable region is a page.) You can control the initial locked
area by setting the cbMinimumSizeThreshold value. If DLC does indeed lock
your pages in excess of cbMinimumSizeThreshold, it will try to unlock them
as they are freed up.

Additional reference words: 3.50
KBCategory: kbprg kbdocerr
KBSubcategory: NtwkMisc

DOCERR: CloseClipboard() Suggests Calling DuplicateHandle()

PSS ID Number: Q103240
Authored 19-Aug-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

The documentation for CloseClipboard() suggests using DuplicateHandle() on
a clipboard object before closing the clipboard, in order to use that
object after the clipboard is closed. Doing so results in a return of
ERROR_INVALID_HANDLE.

The Win32 SDK 3.1 documentation is in error. DuplicateHandle() is specified
to work only on console input, console output, events, files, file
mappings, mutexes, pipes, processes, semaphores, and thread handles.

The Win32 SDK 3.5 documentation has been corrected.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbdocerr
KBSubcategory: UsrClp

DOCERR: CreateFile() and Mailslots

PSS ID Number: Q131493
Authored 12-Jun-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SUMMARY

The documentation for CreateFile() API gives incorrect possible return
values while opening a client end of a mailslot. The documentation states:

 If CreateFile opens the client end of a mailslot, the function always
 returns a valid handle, even if the mailslot does not exist.
 In other words, there is no relationship between opening the client
 end and opening the server end of the mailslot.

Actually, CreateFile() returns INVALID_HANDLE_VALUE for a mailslot if the
mailslot client is being created using the "\\." notation to communicate
with a mailslot server on the local system when the server is not up and
running.

MORE INFORMATION

The following code always returns INVALID_HANDLE_VALUE for a handle value
from CreateFile() while opening the client end of the mailslot if the
mailslot server is not up and running to read mailslot messages:

 CreateFile("\\\\.\\mailslot\\testslot",
 GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

GetLastError() in this case returns Error 2: "The system cannot find the
specified file."

This is an expected behavior. Windows NT implementation of local mailslots
does not allow you to open the mailslot if the receiver has not created the
server end with CreateMailslot() API.

Additional reference words: 3.50
KBCategory: kbprg kbnetwork kbdocerr
KBSubcategory: BseIpc

DOCERR: CS_PARENTDC Class Style Description Incorrect

PSS ID Number: Q111005
Authored 03-Feb-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The documentation relating to the CS_PARENTDC window class style in the
Windows SDK versions 3.0 and 3.1 states that CS_PARENTDC "Gives the display
context of the parent window to the window class." The documentation for
the Win32 SDK contains a similar statement. These statements are incorrect.

MORE INFORMATION

A window with the CS_PARENTDC style bit will receive a regular device
context (DC) from the system's cache of device contexts. CS_PARENTDC merely
sets the clipping rectangle of the child to that of the parent so that the
child can draw on the parent. It does not give the child the parent's DC or
DC settings.

CS_PARENTDC is used with all of Windows's standard controls such as edit
controls and list boxes because it can help improve performance when
drawing, especially in a dialog box. For example, dialog box units are not
exact and if a child is drawing in a very small space it might accidentally
draw outside its own border. This style provides a little room for error
and prevents the child from being clipped unexpectedly.

Additional reference words: 3.00 3.10 3.50 4.00 95 WNDCLASS RegisterClass
KBCategory: kbprg kbdocerr
KBSubcategory: UsrCls

DOCERR: DdeCreateDataHandle Documentation Errors

PSS ID Number: Q109131
Authored 22-Dec-1993 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, version 3.1

The documentation for the cbInitData and offSrcBuf parameters to the
DdeCreateDataHandle function are incorrect. Here is the description given
for these two parameters in the current documentation:

 cbInitData Specifies the amount, in bytes, of memory to allocate for
 the global memory object. If this parameter is zero, the
 lpvSrcBuf parameter is ignored.

 offSrcBuf Specifies an offset, in bytes, from the beginning of the
 buffer pointed to by the lpvSrcBuf parameter. The data
 beginning at this offset is copied from the buffer to the
 global memory object.

These parameters should be documented as follows:

 cbInitData Specifies the amount, in bytes, of memory to copy from
 the source buffer specified by lpvSrcBuf.

 offTargetBuf Specifies an offset, in bytes, from the beginning of the
 global memory object* allocated by DdeCreateDataHandle.
 Data from the source buffer is copied to the global
 memory object, beginning at this offset.

 *The size of the global memory object allocated by
 DdeCreateDataHandle is equal to the sum of cbInitData and
 offTargetBuf.

Additional reference words: 3.10
KBCategory: kbprg kbdocerr
KBSubcategory: UsrDde

DOCERR: DdeCreateStringHandle() lpszString param

PSS ID Number: Q102570
Authored 04-Aug-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.10
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The documentation for the DdeCreateStringHandle() function in the
Windows 3.1 Software Development Kit (SDK) "Programmer's Reference,
Volume 2: Functions" incorrectly states that the lpszString parameter
may point to a buffer of a null-terminated string of any length, when
the string is actually limited to 255 characters.

DDEML string-management functions are internally implemented using
global atom functions. DdeCreateStringHandle() in particular,
internally calls GlobalAddAtom(), and therefore inherits the same
limitation as atoms to a maximum of 255 characters in length.

MORE INFORMATION

DDEML applications use string handles extensively to carry out DDE
tasks. To obtain a string handle for a string, an application calls
DdeCreateStringHandle(). This function registers the string with the
system by adding the string to the global atom table, and returns a
unique value identifying the string.

The global atom table table in Windows can maintain strings that are
less than or equal to 255 characters in length. Any attempt to add a
string of greater length to this global atom table will fail. Hence, a
call to DdeCreateStringHandle() fails for strings over 255 characters
long.

This limitation is by design. DDEML applications that use the
DdeCreateStringHandle() function should conform to the 255-character
limit.

This limitation has been preserved on the Windows NT version of DDEML
for compatibility reasons.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbdocerr
KBSubcategory: UsrDde

DOCERR: DeviceIoControl Requires OVERLAPPED Struct w/ Async.

PSS ID Number: Q126282
Authored 19-Feb-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1 and 3.5

The documentation for DeviceIoControl is incomplete. It should warn you
that unexpected behavior may occur when both the following are true:

 - A DeviceIoControl request is followed by another DeviceIoControl request
 on the same handle.

 - There was no OVERLAPPED structure passed into DeviceIoControl after the
 handle to the device or file was opened with FILE_FLAG_OVERLAPPED.

The following is a list of some of the unexpected behavior that may occur:

 - Requests complete before expected.

 - There's undefined data in the returned buffers.

 - Unknown error codes are returned.

 - IRPs are held in a driver while the DeviceIoControl call has already
 returned.

When a handle is requested to a driver or file with FILE_FLAG_OVERLAPPED
specified, the executive prepares itself for all requests on that handle to
be asynchronous. Usually, when the request is sent down with an OVERLAPPED
structure, an event is placed in that OVERLAPPED structure. This event is
then stored in the FILE_OBJECT in kernel mode to use later to signal the
user-mode application when that IRP has been completed. If an event is not
specified, the value will be 0 in the FILE_OBJECT, when a second request is
sent down before the first request completes (and completes), the IO
manager will not have separate signals for the completion of the requests.
Therefore, the request will appear to be completed, while in reality the
IRP has not been completed by the underlying driver.

Please see the current documentation of GetOverlappedResult for more
information on the behavior of the executive when no OVERLAPPED structure
is specified when the handle to the driver or file was opened with
FILE_FLAG_OVERLAPPED.

Additional reference words: 3.10 3.50 FILE_FLAG_OVERLAPPED DDK EVENT
KBCategory: kbprg kbdocerr
KBSubcategory: BseFileio

DOCERR: DEVMODE dmPaperSize Member Documentation Error

PSS ID Number: Q108924
Authored 20-Dec-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

The dmPaperSize member of the DEVMODE structure is documented incorrectly.
The documentation states that the dmPaperSize member may be set to zero if
the length and width of the paper are specified by the dmPaperLength and
dmPaperWidth members, respectively. However, the correct value to use for
user-defined paper sizes is DMPAPER_USER.

DMPAPER_USER is correctly listed in the Microsoft Windows 3.1 SDK
documentation as meaning a user-defined paper size, but is completely
omitted from the Microsoft Windows 3.0 SDK documentation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbdocerr
KBSubcategory: GdiPrn

DOCERR: DragQueryFile() Return Code Can Be Misleading

PSS ID Number: Q115081
Authored 18-May-1994 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0

SYMPTOMS

The documentation for DragQueryFile() in the "Win32 Programmer's
Reference" indicates that the return value is "the count of the
characters copied" or "the required size, in characters, of the buffer".
However, the actual return values do not include the trailing null
character in this count.

RESOLUTION

The correct description for the return value is "the length of the string
returned, not including the terminating null character" or "the length of
the string that would be returned, not including the terminating null
character".

The Win32 SDK 3.5 documentation has been corrected.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbref kbdocerr
KBSubcategory: UsrDnd

DOCERR: EofChar Field of DCB Structure Is Not Supported

PSS ID Number: Q115083
Authored 18-May-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS

The documentation for the device control block (DCB) structure says that
the EofChar field specifies the value of the character used to signal
the end of the data over the communications resource. However, this
setting seems to have no effect.

RESOLUTION

DCB.EofChar is not currently supported in Windows NT.

MORE INFORMATION

When DCB.EofChar is supported, you should call ClearCommError() after
every read to see whether COMSTAT.fEof is set. When COMSTAT.fEof is set,
this means that DCB.EofChar has been received.

Additional reference words: 3.10 3.50
KBCategory: kbref kbdocerr
KBSubcategory: BseCommapi

DOCERR: Error 87 When NetMessageBufferSend Attempts Broadcast

PSS ID Number: Q129289
Authored 24-Apr-1995 Last modified 08-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

The documentation incorrectly states that applications may use
NetMessageBufferSend() to send broadcast messages on the network. This API
does not support broadcasts. If an application calls the
NetMessageBufferSend() API with the second parameter set to "L"*"", the API
fails with error 87 (Invalid Parameter). The "*" parameter is used to
broadcast a message to all the machines on the network.

MORE INFORMATION

Programmers can specify the domain name as the second parameter to send
broadcasts on a particular domain. For example:

 NetMessageBufferSend(NULL, // Run command on local machine.
 L"MYDOMAIN*", // Domain name.
 L"MYNAME", // Sender of message.
 buffer, // Buffer to send.
 buflen); // Size of buffer.

If broadcasts are necessary, use the NetServerEnum() or WNetOpenEnum() API
in conjunction with the WNetEnumResource() API to list domains, and use the
NetMessageBufferSend() API to send a message on each domain as shown above.

REFERENCES

"Message APIs" help file in the Windows Networking API Definitions
section of the online "Win32 SDK Programmer's Reference."

Additional reference words: 3.50
KBCategory: kbnetwork kbdocerr
KBSubcategory: NtwkLmapi

DOCERR: Errors in Win32s Compatibility

PSS ID Number: Q113679
Authored 11-Apr-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.2 and 1.25a

SUMMARY

The following Win32 APIs are not listed in the Win32 Programmer's Reference
as being supported under Win32s. This is incorrect. These Win32 APIs are
supported under Win32s:

 FlushInstructionCache
 GetFileInformationByHandle
 MoveMemory
 TlsAlloc
 RegCreateKeyEx
 RegOpenKeyEx
 RegSetValueEx
 WNetAddConnection
 WNetGetConnection

In addition, all of the BS_ button styles are marked as not supported under
Win32s. However, Win32s supports all of the button styles that Windows 3.1
supports.

MORE INFORMATION

The following Win32 APIs and CRT (C Run-time) routines are supported under
Win32s, with the restrictions noted.

Function  Associated Restriction

===
CreateFile FILE_FLAG_NO_BUFFERING,
 FILE_FLAG_WRITE_THROUGH,
 FILE_FLAG_OVERLAPPED, FILE_DELETE_ON_CLOSE,
 and the security flags are not supported.
 Passing dwShareMode=0 opens the file in
 compatibility mode, not in exclusive mode.

CreateFileMapping SEC_COMMIT is supported, but not
 SEC_IMAGE, SEC_NOCACHE or SEC_RESERVE.
 The size of named shared memory is limited
 by Windows memory.

CreateDIBitmap DIB_PAL_INDICES
CreateDIBPatternBrush DIB_PAL_PHYSINDICES
CreateDIBPatternBrushPt DIB_PAL_LOGINDICES are not supported.

GetDIBits
SetDIBits
SetDIBitsToDevice
StretchDIBits

CreatePolyPolygonRgn The polygon must be closed.

CreateProcess Handle inheritance is not supported.
 Only creation flags supported are
 DEBUG_PROCESS and DEBUG_ONLY_THIS_PROCESS.
 The only priority supported is
 NORMAL_PRIORITY_CLASS. The security
 attributes are ignored.

GetFileInformationByHandle ftCreationTime, ftLastAccessTime,
 dwVolumeSerialNumber, nFileIndexHigh, and
 nFileIndexLow are all 0.

GetFileTime Only lpLastWriteTime is supported.
SetFileTime

GetPrivateProfileString lpszSection parameter cannot be NULL.
GetProfileString

GetSystemMetrics SM_CMOUSEBUTTONS is not supported.

GetSystemPaletteEntries The fourth parameter cannot be NULL.

GetVolumeInformation Volume ID is not supported.

OpenProcess Settings for fdwAccess and fInherit are
 ignored. In the implementation,
 fdwAccess=PROCESS_ALL_ACCESS and
 fInherit=TRUE.

PeekMessage hWnd cannot be -1.

PlaySound SND_ALIAS, SND_FILENAME, and
 SND_NOWAIT are not supported.

RegSetValueEx Only supports the REG_SZ entries.

SetClipboardData Use only a global handle.

SetWindowsHookEx dwThreadId parameter is ignored.

signal SIGBREAK is not supported.

spawn P_WAIT is not supported.

WaitForDebugEvent Any dwTimeOut other than 0 is treated as
 INFINITE.

WNetAddConnection                              Password cannot be NULL, but can be "".

===

Additional reference words: 1.20
KBCategory: kbref kbdocerr
KBSubcategory: W32s

DOCERR: GetWindowPlacement Function Always Returns an Error

PSS ID Number: Q89569
Authored 27-Sep-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When an application developed for the Microsoft Windows graphical
environment uses the GetWindowPlacement() function to retrieve the
show state and position information for a window, the function
always returns FALSE, indicating an error.

CAUSE

The length member of the specified WINDOWPLACEMENT data structure
is not initialized.

RESOLUTION

Initialize the length member and call the GetWindowPlacement()
function as follows:

 BOOL bResult;
 WINDOWPLACEMENT lpWndPl;

 lpWndPl.length = sizeof(WINDOWPLACEMENT);
 bResult = GetWindowPlacement(hWnd, &lpWndPl);

MORE INFORMATION

The need to initialize the length member of the WINDOWPLACEMENT
structure is documented on page 422 of the Microsoft Windows Software
Development Kit (SDK) "Programmer's Reference, Volume 3: Messages,
Structures, and Macros" manual for version 3.1. This information is
not listed in the documentation for the GetWindowPlacement() function on
page 479 of the "Programmer's Reference, Volume 2: Functions" manual.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbdocerr
KBSubcategory: UsrWndw

DOCERR: GLYPHMETRICS Is in Device Units Not Logical Units

PSS ID Number: Q126141
Authored 15-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32s version 1.2
 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The units of the values in the GLYPHMETRICS structure are documented in the
"Win32 Programmer's Reference vol. 5" page 425 and the "Windows 3.1 SDK
Programmer's Reference vol. 3" page 297 as being in logical units. This is
incorrect. The values in the GLYPHMETRICS structure returned by the
GetGlyphOutline function call are in device units, not in logical units.

Additional reference words: 1.20 3.10 3.50 4.00 95
KBCategory: kbprg kbdocerr
KBSubcategory: GdiFnt

DOCERR: Important Information on RPC 1.0 Missing from the

PSS ID Number: Q129142
Authored 18-Apr-1995 Last modified 19-Apr-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows for
 Workgroups version 3.11
 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

This article documents important information about Microsoft RPC version
1.0 that is not included in the Microsoft RPC programming documentation or
in Help. This information is identical to the information contained in the
file RPCREAD.ME included with the Win32 SDK for Windows NT version 3.1.

MORE INFORMATION

Introduction

Microsoft RPC version 1.0 is a toolkit for developing network-aware
distributed applications in C/C++. The RPC toolkit includes:

 - MIDL compilers for Microsoft Windows NT and Microsoft Windows 3.x.

 - C/C++ language header files (.H) and run-time libraries (.LIB and .DLL)
 for Microsoft Windows NT, Microsoft Windows 3.x, and MS-DOS.

 - Sample programs for Microsoft Windows NT, Microsoft Windows 3.x,
 Microsoft Windows for Workgroups, and MS-DOS.

 - RPC reference Help files, Windows Write files, and PostScript files.

The Win32 SDK contains the Microsoft Windows NT and Microsoft Windows 3.x
versions of the RPC SDK.

Installation

The Microsoft Win32 SDK installs the components of the Microsoft RPC
toolkit as part of its standard installation. No additional installation is
required.

To develop client-side distributed applications for MS-DOS, Microsoft
Windows 3.x, and Windows for Workgroups version 3.1, you must install the
Microsoft Windows 3.x/MS-DOS version of the RPC toolkit. Cross-compilation
of Windows version 3.x and MS-DOS clients with Microsoft Windows NT
requires a 16-bit C compiler in the Microsoft Windows NT environment. This

development environment is not installed during RPC SDK setup. The
Microsoft RPC toolkit for MS-DOS and Microsoft Windows 3.x requires:

 - A 16-bit compiler such as Microsoft Visual C++ Development System
 for Windows or the Microsoft C/C++ 7.0 compiler.

 - One of the following:

 - Microsoft Windows for Workgroups version 3.1 (or later) with named
 pipes, NetBIOS, or TCP/IP.

 -or-

 - Microsoft LAN Manager version 2.1 (or later) with named pipes,
 NetBIOS, or TCP/IP.

 -or-

 - DEC PATHWORKS 4.0 (or later) with NetBIOS, TCP/IP, or DECNet.

 -or-

 - Novell Netware 3.x with SPX.

 -or-

 - Other networking software compatible with the Windows Sockets API
 standard.

To install the Microsoft Windows 3.x/MS-DOS version of the RPC toolkit, run
the Setup program in the directory MSTOOLS\RPC_DOS. To start the Setup
program, choose the Run command from the File menu in the Microsoft Windows
3.x Program Manager.

When you install the RPC toolkit in a directory different from the
directory you used for Microsoft C/C++ version 7.0, you must set the
environment variables INCLUDE, LIB, and PATH to point to the directories
that contain the RPC header files, libraries, and DLLs and binaries,
respectively. You cannot install the RPC toolkit in the same directory as
the Visual C++ compiler binaries because of name conflicts.

RPC Documentation

The following Microsoft RPC version 1.0 reference materials are available
in Windows Write format and in PostScript file format:

Microsoft RPC Programmer's Guide and Reference:

 - Part I: Programmer's Guide
 - Part II: MIDL Language Reference
 - Part III: Run-Time API Reference
 - Part IV: Installing RPC
 - Part V: Appendixes

Use the PostScript files to print individual chapters of the documentation
on your PostScript printer.

The following run-time and MIDL reference Help file is available on line:

 RPC.HLP WinHelp MIDL and run-time API reference

RPC sample-program source files are available in the directory
MSTOOLS\SAMPLES\RPC. MS-DOS and Microsoft Windows 3.x versions of some
samples are available when you install the Windows 3.x/MS-DOS version of
the RPC toolkit. The file MSTOOLS\SAMPLES\RPC\README.TXT describes the
available samples.

Release Notes for MIDL compiler

1.0 The following release notes relate to the MIDL compiler and to building
distributed applications.

1.1 Packing and Alignment Considerations
--

You must use the same packing and alignment settings (/Zp switch) for both
the C compiler and the MIDL compiler. Using different packing levels for
the two compilers causes undefined results. Specify the /Zp switch to
verify that the correct packing and alignment settings are used on both
compilers.

This release of the MIDL compiler does not support the switches /Zp1 and
/Zp2 in the MIPS environment, although the compiler does not prevent the
use of /Zp1 and /Zp2.

Use /Zp1 or /Zp2 for 16-bit client platforms. Objects of types with natural
alignment greater than 2 that are allocated on the stack as local variables
in the client application are not necessarily allocated on 4- and 8-byte
boundaries by the C compiler. Because the C compiler does not guarantee
alignment on the stack, marshalling from and unmarshalling into such
objects may cause problems.

Generic stubs (/env generic) must be specified with /Zp1 or /Zp2 in 16-bit
client environments. Generic stubs specified with /Zp1 or /Zp2 cannot be
used in the MIPS environment. MIDL uses /Zp4 by default for generic stubs.

1.2 C Stub Source Code Causes Compilation Warnings
--

The stub files generated by the MIDL compiler may generate warnings when
they are compiled at compiler warning-level 3 and higher. These warnings
can generally be safely ignored.

When your C compiler does not use the same default character sign as the
MIDL compiler, use the MIDL compiler switch /char to generate explicit
declarations in the header file. For more information, see the Microsoft
RPC programming documentation.

1.3 Use Six-Character Filenames on the FAT File System
--

Because RPC version 1.0 appends _C, _X, and similar extensions to
filenames, limit your filenames to six characters or less. Filenames that
total more than eight characters are too long for some file systems and can
fail.

1.4 Specifying Local and UUID Attributes
--

If the base IDL file contains no procedures, you don't have to specify
local or UUID attributes.

1.5 MIDL Extra Server Files in the Windows 3.x/MS-DOS Environment

MIDL does not produce server files in the Windows 3.x/MS-DOS environment.
For this reason, if you specify the /env switch as /env dos or /env win16,
server stubs are not produced. To produce server stubs, specify that the
/env switch is either /env win32 or /env generic.

1.6 Working with Visual C++ on 16-Bit Machines
--

Do not install the 16-bit RPC toolkit in the same directory as Visual C++.
MIDL requires the Microsoft C 7.0 front end for C preprocessing. The
installer will install the Microsoft C 7.0 front end if needed. Use the
/cpp_cmd switch to make sure MIDL is using the right C compiler.

1.7 Memory Leak Possible with Multiple Context Handles

Memory can leak when data argument(s) precede context-handle argument(s)
and the call is directed by another handle. The leak happens on the server
side if the data requires memory allocation and if the context handle that
is used (as opposed to initialized) is invalid. The stub raises an
exception as it is supposed to, but it doesn't do the clean up.

1.8 Use Zero or Positive Values for the size_is and length_is Variables

You must use a zero or a positive value for the size_is and length_is
variables. A negative value for the size_is or length_is variable causes an
exception.

1.9 RPC Cannot Pass More than 63K Worth of Data on 16-Bit Platforms
--

An MS-DOS or Windows 3.x system cannot pass more than 63K worth of data in
a single remote procedure call. Trying to pass more than 63K worth of data
results in undefined behavior.

1.10 Windows 3.x Applications Using the [callback] Attribute

If you use the [callback] attribute for a procedure specified in the IDL
file and if your application runs with Windows 3.x, you must compile all
stubs with the /GA C-compiler switch. Note that the /GA switch should not
be used for Windows callback functions (as opposed to RPC callback
functions) that are called in the context of another process.

1.11 Building RPC Samples with Visual C++ for Microsoft Windows NT
--

You can build RPC applications with the Visual C++ SDK for Microsoft
Windows NT using the RPC*.H files distributed with that SDK. To build RPC
samples with Visual C++ for Windows NT, add the following definition to
RPC.H (this applies to Intel processors only):

 #define _CRTAPI1 _cdecl

Release Notes for RPC Run-Time/Transport Libraries & Windows NT Services
--

2.0 The following release notes are related to the RPC run-time libraries,
transport libraries, and Windows NT services provided with Microsoft RPC
version 1.0.

2.1 RpcServerUseAllProtseqs Requires a Null Security Descriptor

The RpcServerUseAllProtseqs security-descriptor parameter must be set to
NULL in this release of Microsoft RPC version 1.0. The null parameter
allows everyone access.

2.2 Named-Pipes Security Descriptor

Named pipes (ncacn_np) allows everyone access when a null security
descriptor is supplied. This accessibility is independent of whether or not
the account used to start the server has a default ACL.

2.3 Multiple Networks

The Microsoft Locator does not work with a router.

2.4 RpcNsBindingExport IP Addresses

If a server has two IP addresses and as a result is on two subnets,
RpcNsBindingExport adds only one of the two addresses to the name service.
For this reason, clients on one of the two networks cannot import a valid
handle to that server. Clients that already know the server address will
work using either well-known or dynamic endpoints.

2.5 SPX Transport Limitations

The MS-DOS SPX transport does not function in a Windows DOS box or Windows
NT DOS box. The Windows SPX transport does not function in Windows standard
mode or in emulation mode with Windows NT.

2.6 All Machines Must Use the Same SPX Packet Size
--

To use the ncacn_spx protocol sequence (RPC over SPX), both the client and
the server must use the same maximum IPX packet size. Otherwise,
multipacket RPC calls will fail with RPC_S_CALL_FAILED. To adjust the
packet size on a machine running MS-DOS, Windows 3.x, or Windows for
Workgroups, add the following line to your NET.CFG or SHELL.CFG file:

 IPX PACKET SIZE LIMIT=xxxx

Here xxxx is the packet size in bytes.

Consult your Novell documentation for more information. Note that some
older drivers do not support setting IPX PACKET SIZE LIMIT.

To adjust the maximum packet size on machines running Windows NT, use
REGEDT32.EXE to set HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\NWLINKIPX\NetConfig\Driver01\MaxPktSize to the proper value.
Consult the Windows NT Resource Kit for more information on the registry.

2.7 Windows 3.x Applications Using TCP/IP Must Call RpcWinSetYieldInfo
--

Applications based on Windows 3.x that use TCP/IP (ncacn_ip_tcp) must call
the RpcWinSetYieldInfo routine. Applications making RPC calls that don't
call RpcWinSetYieldInfo will always hit an exception. The exception occurs
because Windows Sockets API standard requires that applications yield while
using the network.

2.8 When Writing MS-DOS Applications, Avoid Calling _exit Directly
--

Always write your RPC applications for MS-DOS to call the complete
C-library termination function exit or _cexit rather than the quick
C-library termination function _exit or _c_exit because the
quick-termination functions do not call the atexit function. The MS-DOS
RPC run-time libraries use the atexit function to clean up system
resources. When you call the _exit or _c_exit function, the atexit function
is not invoked and resources are not freed correctly.

Release Notes for Installation & Configuration Issues for This Release
--

3.0 The following release notes are related to installation and
configuration issues for this release:

3.1 Using Microsoft RPC with Microsoft Windows for Workgroups

To successfully run Microsoft RPC distributed applications with Microsoft

Windows for Workgroups version 3.1, you must use the Windows for Workgroups
network services. Stop all real-mode network services before starting
Windows for Workgroups. At the MS-DOS prompt, enter:

 net stop workstation /y
 win

3.2 Creating Installation Disks for Your Distributed Application
--

After you have developed your distributed application using Microsoft RPC,
you should provide a way for your users to install your application.

To enable your users to install your application, perform the following
steps when installing RPC:

1. Copy your executable files.

2. Copy Microsoft RPC run-time and transport DLLs.

3. Set Microsoft RPC-related registry entries as needed.

To provide an installation tool for your users, use the Microsoft Setup
Toolkit for Windows. Microsoft Setup provides important version-control
features that prevent users from overwriting newer versions of the RPC run-
time libraries with older, incompatible versions.

You can also use the template batch files provided with Microsoft RPC for
MS-DOS and Windows 3.x to help your users install your distributed
applications. The files DRUNDISK.BAT and WRUNDISK.BAT copy the Microsoft
RPC Setup program and associated files and direct the Microsoft RPC Setup
program to install all needed RPC system files. You must customize the .INF
file for your application. For more information about changing the .INF
file, see the documentation for the Microsoft Setup Toolkit for Windows.

If you use another installation method, you should implement some form of
version control. Version-control methods ensure that you do not distribute
incompatible versions of the RPC run-time and transport libraries that can
cause software errors in your application and other applications.

Some files include an embedded version-control number for use by the Setup
Toolkit for Windows. These files are noted in the lists below.

The following Microsoft Windows 3.x RPC files should be installed in the
system directory or in a directory specified by the LIBPATH environment
variable:

DNETAPI.DLL Non-Microsoft environments for DEC PATHWORKS
 interoperability with Microsoft LAN Manager
NETAPI.DLL Microsoft LAN Manager transport DLL; has version number
 for use with Microsoft Setup
RPCNS1.DLL Microsoft RPC name-service provider
RPCRT1.DLL Microsoft RPC client run-time library
RPC16C1.DLL RPC transport DLL for client-side named pipes
RPC16C3.DLL RPC transport DLL for client-side WinSock TCP/IP

RPC16C3X.DLL RPC transport DLL for client-side WSOCKETS.DLL TCP/IP
RPC16C4.DLL RPC transport DLL for client-side DECnet
RPC16C5.DLL RPC transport DLL for client-side NetBIOS
RPC16C6.DLL RPC transport DLL for client-side SPX

The following MS-DOS RPC files should be installed in a directory that is
specified by the PATH environment variable:

RPCNS.RPC Microsoft RPC name-service provider
RPCNSLM.RPC Microsoft RPC name-service provider LAN Manager support
RPCNSMGM.RPC Microsoft RPC name-service provider support module
RPC16C1.RPC RPC transport DLL for client-side named pipes
RPC16C3.RPC RPC transport DLL for client-side TCP/IP
RPC16C4.RPC RPC transport DLL for client-side DECnet
RPC16C5.RPC RPC transport DLL for client-side NetBIOS
RPC16C6.RPC RPC transport DLL for client-side SPX

You need not install the Microsoft Windows NT versions of the Microsoft RPC
run-time libraries and transports. Microsoft Windows NT computers support
Microsoft RPC version 1.0. If you want to run Microsoft Windows 3.x or
MS-DOS RPC applications with Microsoft Windows NT, install the above RPC
DLLs on the system.

Setting RPC Registry Entries

Your installation procedure should set any registry entries your
application needs. Registry entries are used by the RPC run-time libraries
and the RPC name-service provider to obtain information about the transport
an application intends to use.

By default, MS-DOS and Windows 3.x registry entries are present in the file
RPGREG.DAT in the root directory of the boot drive. You can use a different
file by setting the value of the environment variable RPC_REG_DATA_FILE to
the path and filename of the alternate file.

The RPC Setup program for MS-DOS and Microsoft Windows 3.x creates the
registry file RPCREG.DAT. If you write your own installation program, you
must create RPCREG.DAT and set appropriate entries for the name-service and
NetBIOS transports supported in that environment.

If the Microsoft Locator is the name-service provider:

 \Root\Software\Microsoft\Rpc\NameService\Protocol=ncacn_np
 \Root\Software\Microsoft\Rpc\NameService\NetworkAddress=\\.
 \Root\Software\Microsoft\Rpc\NameService\Endpoint=\pipe\locator
 \Root\Software\Microsoft\Rpc\NameService\DefaultSyntax=3

If CDS is the name-service provider via NSID:

 \Root\Software\Microsoft\Rpc\NameService\Protocol=ncacn_ip_tcp
 \Root\Software\Microsoft\Rpc\NameService\NetworkAddress=NSID host name
 \Root\Software\Microsoft\Rpc\NameService\Endpoint=
 \Root\Software\Microsoft\Rpc\NameService\DefaultSyntax=3

The NetBIOS transport entries have the following form:

 \Root\Software\Microsoft\Rpc\NetBios\ncacn_nb_<A>=<C>

Where:

 <A> is the NetBIOS sub-protocol sequence (nb, ipx, or tcp).
 is a unique digit for each protocol sequence.
 <C> is the lana number.

For example, if you have two net cards in a system, running NetBEUI on both
and TCP/IP on one, and the lana numbers on the system are configured as
NetBEUI on card0 is 0, TCP/IP on card0 is 1, and NetBEUI on card1 is 2,
then the RPC NetBIOS registry entries are:

 \Root\Software\Microsoft\Rpc\NetBios\ncacn_nb_nb0=0
 \Root\Software\Microsoft\Rpc\NetBios\ncacn_nb_nb1=2
 \Root\Software\Microsoft\Rpc\NetBios\ncacn_nb_tcp0=1

For more information about the strings generated in the file RPCREG.DAT,
run Microsoft RPC Setup and inspect the strings.

REFERENCES

RPCREAD.ME in \MSTOOLS\SAMPLES\RPC in Win32SDK for Windows NT version 3.1
on MSDN.

Additional reference words: 6.20 3.10
KBCategory: kbnetwork kbref kbtshoot kbdocerr
KBSubcategory: NtwkRpc

DOCERR: Important Information on RPC 2.0 Missing from the

PSS ID Number: Q129143
Authored 18-Apr-1995 Last modified 19-Apr-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows for
 Workgroups version 3.11
 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

This article contains important information not included in the Microsoft
RPC programming documentation or in Help about Microsoft RPC version 2.0.
This information is identical to the information provided in the RPCREAD.ME
file in the Win32 SDK (MSTOOLS\SAMPLES\RPC\) for Windows NT version 3.5.

Microsoft RPC is a toolkit for developing distributed applications in
C/C++. The toolkit includes:

 - MIDL compiler for Microsoft Windows NT.

 - C/C++ language header files and run-time libraries for Windows NT,
 Microsoft Windows versions 3.x, and MS-DOS.

 - Sample programs for Windows NT, Windows versions 3.x, and MS-DOS.

MORE INFORMATION

This article is organized into the following sections:

 - Installation
 - Documentation
 - Before Using RPC
 - MIDL Issues
 - Run-Time API Issues

Installation

The Windows NT SDK provides the components of the RPC toolkit as part of
its standard installation. No additional installation is required. To
produce MS-DOS and Windows 3.x RPC clients, install version 1.50 of the
Microsoft Visual C/C++ development environment, and then install the MS-
DOS/Win16 RPC tookit from disk. To install the MS-DOS/Windows 3.x version
of the RPC toolkit, use the Setup program in the MSTOOLS\RPC_DOS\DISK1
directory.

Because the 16-bit MIDL compiler is no longer supported, you must develop
applications using the 32-bit MIDL compiler. However, to write MS-DOS or

Windows 3.x applications without a 32-bit C/C++ compiler capable of
targeting MS-DOS, you must compile the IDL file with a 32-bit MIDL compiler
on Windows NT. Then, compile the application and stubs using your C/C++
compiler. To write MS-DOS or Windows 3.x applications using a 32-bit C/C++
compiler that is capable of targeting MS-DOS, compile both the IDL file and
C/C++ files on Windows NT.

Documentation

The RPC Programmer's Guide and Reference is available in Help and includes
conceptual material, MIDL language and command-line references, and
run-time API references.

Because many new features have been included in this version of Microsoft
RPC, see the New in this Version of RPC help topic.

RPC sample program source files are available in the directory
MSTOOLS\SAMPLES\RPC. The MSTOOLS\SAMPLES\RPC\README.TXT file describes each
sample.

Before Using RPC

Read the following section on MIDL and run-time API issues before
attempting to use this version of RPC. These sections contain important
information that is not documented in Help.

MIDL Issues

The 16-bit MIDL compiler for MS-DOS or Windows 3.x is no longer supported.
Use the 32-bit MIDL compiler switch /env with either the DOS or WIN16
option.

Note the following when using this version of the MIDL compiler:

 - When compiling the generated stubs, warnings about different levels of
 pointer indirection or different const specifications are benign.

 - When using the DOS or WIN option of the -env switch, the compiler will
 not set the correct packing level to 2. In this case, you must
 explicitly specify the correct packing level by using the /Zp or /pack
 switch.

 - For Alpha platforms, procedure serialization stubs must be compiled on
 the C compiler by using the -Od switch. The procedure encoding/decoding
 stubs on the Alpha platform should not be compiled as optimized (for
 example, using the -Ox switch). This affects the stubs on the Alpha
 platform only if the serializing procedure uses one of the following
 attributes on top-level parameters:

 - array or ptr attributes, such as size_is or length_is.
 - The switch_is union attribute.

 - A structure whose only member is a conformant string results in an MIDL
 compiler assert.

 - In the osf mode of the compiler, the default allocate and free routines
 map to NdrRpcSmClientAllocate and NdrRpcSmClientFree. The signatures for
 these routines are in RPCNDR.H

Run-Time API Issues

When using the ncacn_spx and ncadg_ipx transports, the server name is
exactly the same as the Windows NT server name. However, because the names
are distributed using Novell protocols, they must conform to the Novell
naming conventions. If a server name is not a valid Novell name, servers
will not be able to create endpoints with the ncacn_spx or ncadg_ipx
transports. The following is a partial list of characters prohibited in
Novell server names:

 " * + . / : ; < = > ? [] \ |

When using ncadg_ipx on Windows 3.x or MS-DOS platforms, use the Windows NT
3.1 model of server naming. That is, a tilde, followed by the servers eight-
digit network number, followed by its twelve-digit Ethernet address.

The ncacn_spx transport is not supported by the version of NWLink supplied
with MS Client 3.0; however, ncadg_ipx is supported.

Backslashes are now optional in the host name for ncacn_np, for consistency
with the other transports.

The datagram protocols (ncadg_ipx, ncadg_ip_udp) have the following
limitations:

 - They do not support callbacks. Any functions using the callback
 attribute will fail.

 - They do not support the RPC security API (RpcBindingSetAuthInfo,
 RpcImpersonateClient, and so on).

Only the ncacn_spx and ncacn_ip_tcp protocols support cancels. For all
other protocols, the cancel routines will return RPC_S_OK, but there will
be no effect. Specifically:

 - RpcCancelThread will alert the specified thread, but will not interrupt
 a pending RPC.

 - RpcTestCancel will return RPC_S_OK if the current thread has been
 alerted.

 - RpcMgmtSetCancelTimeout has no visible effect.

RpcTestCancel, RpcMgmtSetCancelTimeout, and RpcCancelThread are only
supported on Windows NT platforms; all other platforms return
RPC_S_CANNOT_SUPPORT.

The function RpcBindingSetAuthInfo does not accept the value
RPC_C_AUTHN_DEFAULT.

To use the RpcBindingSetAuthInfo routine and, in particular, when using
MS-DOS authentication in this version of RPC, note this information:

 - The constant RPC_C_AUTHN_WINNT has been defined in the header RPCDCE.H.
 This constant should be passed as the AuthnSvc parameter to use the
 Windows NT LAN Manager Security Support Provider (NTLMSSP) service.

 - When using the RPC_C_AUTHN_WINNT authentication service, the
 AuthIdentity parameter should be a pointer to a SEC_WINNT_AUTH_IDENTITY
 structure, defined in RPCDCE.H. This structure contains strings for the
 user's domain, username, and password. You can pass a NULL pointer to
 use the information for the currently logged-in user.

For MS-DOS, you cannot pass NULL because there is no way for RPC to
determine the current user's logon information. However, either a structure
or NULL is acceptable for Windows versions 3.x and Windows NT.

When using authenticated RPC on a system composed of Novell NetWare and
Windows version 3.x (not Windows for Workgroups), you must run the optional
NETBIOS.EXE program before starting Windows.

The 16-bit SDK cannot be installed on a Windows NT computer unless the
current user is an administrator.

Supported Platforms for Runtime APIs

The following function is supported only by 16-bit Windows 3.x platforms:

RpcWinSetYieldInfo

The following functions are supported only by 32-bit Windows NT platforms:

DceErrorInqTest
RpcBindingInqAuthClient
RpcBindingServerFromClient
RpcCancelThread
RpcEpRegister
RpcEpUnregister
RpcIfIdVectorFree
RpcImpersonateClient
RpcNetworkInqProtseqs
RpcObjectInqType
RpcObjectSetInqFn
RpcObjectSetType
RpcProtseqVectorFree
RpcRevertToSelf
RpcServerInqBindings
RpcServerInqIf
RpcServerListen
RpcServerRegisterAuthInfo
RpcServerRegisterIf

RpcServerUnregisterIf
RpcServerUse*Protseq*
RpcMgmtInqIfIds
RpcMgmtInqStats
RpcMgmtIsServerListening
RpcMgmtInqServerPrincName
RpcMgmtSetAuthorizationFn
RpcMgmtSetCancelTimeout
RpcMgmtSetServerStackSize
RpcMgmtStatsVectorFree
RpcMgmtStopServerListening
RpcMgmtWaitServerListen
RpcMgmtEnableIdleCleanup
RpcMgmtEpElt*
RpcMgmtEpUnregister
RpcNsBindingExport
RpcNsBindingUnexport
RpcTestCancel

All other runtime functions are supported on Windows NT, Windows 3.x, and
MS-DOS platforms.

REFERENCES

RPCREAD.ME in \MSTOOLS\SAMPLES\RPC in Win32SDK for Windows NT 3.5 on MSDN.

Additional reference words: 6.20 3.50
KBCategory: kbnetwork kbtshoot kbref kbdocerr
KBSubcategory: NtwkRpc

DOCERR: Media Player Command-Line Switches

PSS ID Number: Q126869
Authored 06-Mar-1995 Last modified 15-May-1995

The information in this article applies to:

 - Microsoft Windows operating system versions 3.1, 3.11
 - Microsoft Windows for Workgroups versions 3.1, 3.11
 - Microsoft Windows NT versions 3.5, 3.51
 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5 and 3.51

Media Player (both the 16-bit MPLAYER.EXE and the 32-bit MPLAY32.EXE)
supports the following command-line syntax:

 MPLAYER /play /close /embedding file

All of the command-line switches and the file name are optional. Their
meanings are as follows:

 /play Play file right away.
 /close Close after playing (only valid with /play).
 /embedding Run as an OLE server.
 file The file or device to open.

This information was inadvertently omitted from the Windows documentation.

In Windows 95 and Windows NT 3.5 and higher, the Media Player also supports
the following switch:

 /open Open the file if specified; otherwise, show the File Open
 dialog.

In addition, the following switches can be used to ensure that the
specified file is of a particular type:

 /VFW The file must be a Video for Windows (.AVI) file.
 /MID The file must be a MIDI (.MID) file.
 /WAV The file must be a Wave Audio (.WAV) file.

Additional reference words: 3.10 3.50 4.00 undocumented win31 wfw wfwg
KBCategory: kbdocerr kbmm
KBSubcategory: MMMisc

DOCERR: TabbedTextOut Tab Positions Really in Logical Units

PSS ID Number: Q113253
Authored 29-Mar-1994 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1 and 3.5

Both the printed and electronic documentation from the Windows 3.0 and 3.1
SDKs, as well as the Win32 SDK, state that the tab positions parameter of
TabbedTextOut() is in device units. This is incorrect. The tab position
array is in logical units. The Windows 3.0 and 3.1 SDKs refer to the tab
position array as lpnTabPositions, while the Win32 SDK calls it
lpnTabStopPositions.

The use of logical units can be seen by using a mapping mode other than the
default MM_TEXT. The output of tabs using TabbedTextOut() reflects the
mapping mode.

Additional reference words: 3.00 3.10 3.50 docerr
KBCategory: kbprg kbdocerr
KBSubcategory: GdiDrw

Drawing a Rubber Rectangle

PSS ID Number: Q114471
Authored 04-May-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Most drawing software uses what is termed a "rubber rectangle". This term
is used to describe the situation where

1. the left mouse button is held down, defining one corner of the
 rectangle

2. the mouse is dragged and released at the point defining the opposite
 corner of the rectangle

3. the rectangle is drawn while the mouse is being dragged, so that it
 looks like the rectangle is being stretched and contracted, like a
 rubber band

MORE INFORMATION

The key to making this work is in the following call, which should be
made in the WM_LBUTTONDOWN case:

 SetROP2(hDC, R2_NOT)

On each WM_MOUSEMOVE message, the rectangle is redrawn in its previous
position. Because of the ROP code, the rectangle appears to be erased. The
new position for the rectangle is calculated and then the rectangle is
drawn.

Note that Windows will only let you draw in the invalid area of the window
if you use a DC returned from BeginPaint(). If you want to use the DC
returned from BeginPaint(), you must first call InvalidateRect() to specify
the region to be updated.

With the DC returned from GetWindowDC(), Windows will restrict your drawing
to the client and non-client areas. With the hDC returned from CreateDC(),
you can write on the entire display, so you must be careful.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDrw

Drawing Outside a Window's Client Area

PSS ID Number: Q33096
Authored 18-Jul-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

When an application uses the BeginPaint or GetDC function to obtain a
device context (DC) for its client window and draws into this DC,
Windows clips the output to the edge of the client window. While this
is usually the desired effect, there are circumstances where an
application draws outside the client area of its window.

MORE INFORMATION

The GetWindowDC function provides a DC that allows an application to
draw anywhere within its window, including the nonclient area.

In the Windows environment, the display is a scarce resource that is
shared by all applications running in the system. Most of the time, an
application should restrict its output to the area of the screen it
has been assigned by the user. However, an application can use the
CreateDC function to obtain a DC for the entire display, as follows:

 hDC = CreateDC("DISPLAY", NULL, NULL, NULL);

Device contexts are another scarce resource in the Windows
environment. When an application creates a DC in response to a
WM_PAINT message, it must call the DeleteDC function to free the DC
before it completes processing of the message.

Painting in the nonclient area of a window is not recommended. If an
application changes the nonclient area of its window, the user can
become confused because the familiar Windows controls change
appearance or are not available. An application should not corrupt
other windows on the display.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDc

DSKLAYT2 Does Not Preserve Tree Structure of Source Files

PSS ID Number: Q87947
Authored 12-Aug-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.5
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

The DSKLAYT2 utility in the Microsoft Setup Toolkit for Windows creates
disk images using the files specified in the .LYT file produced by the
DSKLAYT utility. The created disk images are flat; all files are placed in
the root directory. DSKLAYT2 does not preserve the tree structure of the
source files.

Having flat directories on the setup disks is a limitation of only the
DSKLAYT2 utility. _MSTEST.EXE, the setup driver spawned by SETUP.EXE,
supports a tree structure on the setup disks. Once DSKLAYT2 creates disk
images, manually create subdirectories on each disk. Then move files from
the root directory of the disk to the appropriate position in the tree
structure. (Do not move files between disks.) Make corresponding changes to
the .INF file. In the file description line of each moved file, change the
filename to indicate the file's new location in the tree structure.

Additional reference words: 3.10 3.50 4.00 95 MSSetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

Dsklayt2 Does Not Support Duplicate Filenames

PSS ID Number: Q87906
Authored 11-Aug-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The Dsklayt2 utility in the Microsoft Setup Toolkit for Windows does
not support duplicate filenames in the source tree. If two or more
files have the same name, Dsklayt2 may place more than one of these
files into the root directory of the same setup disk. If this happens,
Dsklayt2 generates a warning message when it creates a disk image for
the disk that warns that the first file is overwritten.

If two or more files in the source tree for an application share the
same name, rename all but one of the files before running the Dsklayt
utility. Use the Rename Copied File option in the Dsklayt utility to
have the filenames changed back to their original names when SETUP.EXE
or _MSTEST.EXE copies the files from the setup disk to the destination
disk.

When Dsklayt2 creates a compressed file, it adds an underscore (_) to
the end of the file extension, replacing the third character if
necessary. Therefore, Dsklayt2 does not support compressed files if
the names of the uncompressed files differ only in the third character
of the file extension.

Additional reference words: 3.10 3.50 4.00 95 MSSetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

Dynamic Loading of Win32 DLLs

PSS ID Number: Q90745
Authored 21-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

When using LoadLibrary() under Win16 or OS/2, the Dynamic Link Library
(DLL) is loaded only once. Therefore, the DLL has the same address in all
processes. Dynamic loading of DLLs is different under Windows NT.

A DLL is loaded separately for each process because each application has
its own address space, unlike Win16 and OS/2. Pages must be mapped into the
address space of a process. Therefore, it is possible that the DLL is
loaded at different addresses in different processes. The memory manager
optimizes the loading of DLLs so that if two processes share the same pages
from the same image, they will share the same physical memory.

Each DLL has a preferred base address, specified at link time. If the
address space from the base address to the base address plus image size is
unavailable, then the DLL is loaded elsewhere and fixups will be applied.
There is no way to specify a load address at load time.

To summarize, at load time the system:

1. Examines the image and determines its preferred base address and
 required size.

2. Finds the address space required and maps the image, copy-on-write,
 from the file.

3. Applies internal fixups if the image isn't at its preferred base.

4. Fixes up all dynamic link imports by placing the correct address for
 each imported function in the appropriate entry of the Import Address
 Table. This table is contiguous with 32-bit addresses, so 1024 imports
 require dirtying only one page.

MORE INFORMATION

The pages containing code are shared, using a copy-on-write scheme. The
term copy-on-write means that the pages are read-only; however, when a
process writes the page, instead of an access violation, the memory manager
makes a private copy of the page and allows the write to proceed. For
example, if two processes start from the same .EXE, both initially have all
pages mapped from the .EXE copy-on-write. As the two processes proceed to
modify pages, they get their own copies of the modified pages. The memory

manager is free to optimize unmodified pages and actually map the same
physical memory into the address space of both processes. Modified pages
are swapped to/from the page file instead of the .EXE file.

There are two kinds of fixups. One is the address of an imported function.
All these fixups are localized in what the Portable Executable (PE)
specification calls the Import Address Table (IAT). This is an array of 32-
bit function pointers, one for each imported API. The IAT is located on its
own page(s), because it is always modified. Calling an imported function is
actually an indirect call through the appropriate entry in this array. In
case that the image is loaded at the preferred address, the only fixups
needed are for imports.

Note that there is an optimization whereby each import library exports a 32-
bit number for each API along with any name and ordinal. This serves as a
"hint" to speed the fixups performed at load time. If the hints in the
program and the DLL do not match, the loader uses a binary search by name.

The other kind of fixup is needed for references to the image's own code or
data when the image can't be loaded at its preferred address. When a page
must be taken out of memory, the system checks to see whether the page has
been modified. If it has not, then the page is still mapped copy-on-write
against the EXE and can be discarded from memory. Otherwise, it must be
written to the page file before it can be removed from memory, so that the
page file is used as the backing store (where the page is recovered from)
rather than the executable image file.

NOTES

The DLL's entry point does not get called for a second LoadLibrary() call
in a process (that is, no second DLL_PROCESS_ATTACH entry). There is one
call to DllEntry/DLL_THREAD_ATTACH per thread no matter the number of times
a thread calls LoadLibrary(). The same goes for FreeLibrary(), but the
DLL_PROCESS_DETACH happens only on the last call (that is, reference count
back to zero for the process).

Global instance data for the DLL is on a per process basis (only one set
per unique process). If it is necessary to ensure that global instance data
is unique for each LoadLibrary() performed in a single process, consider
thread local storage (TLS) as an alternative. This requires multiple
threads of execution, but TLS allows unique data for each ThreadID. There
is very little overhead on the DLL's part; just create a global TLS index
during process initialization. During thread initialization, allocate
memory (via HeapAlloc(), GlobalAlloc(), LocalAlloc(), malloc(), and so on)
and store a pointer to the memory using the global TLS index value in the
function TlsSetValue. Win32 internally stores each thread's pointer by TLS
index and ThreadID to achieve the thread specific storage.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Efficiency of Using SendMessage Versus SendDlgItemMessage

PSS ID Number: Q66944
Authored 14-Nov-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The SendDlgItemMessage function is equivalent to obtaining the
handle of a dialog control using the GetDlgItem function and then
calling the SendMessage function with that handle. The
SendDlgItemMessage function therefore takes slightly longer to
execute than the SendMessage function for the same message, because
an extra call to the GetDlgItem function is required each time the
SendDlgItemMessage function is called.

The GetDlgItem function searches through all controls in a given
dialog box to find one that matches the given ID value. If there are
many controls in a dialog box, the GetDlgItem function can be quite
slow.

If an application needs to send more than one message to a dialog
control at one time, it is more efficient to call the GetDlgItem
function once, using the returned handle in subsequent SendMessage
calls. This saves Windows from searching through all the controls
each time a message is sent. The SendMessage function should also be
used when your application retains handles to controls that receive
messages.

However, if your application needs to send one message to many
controls, such as sending WM_SETFONT messages to all the controls in a
dialog, then the SendDlgItemMessage function will save code in the
application because a call to the GetDlgItem function is not made for
each control.

Note that if the message sent to a control may result in a lengthy
operation (such as sending the LB_DIR message to a list box), then the
overhead in the GetDlgItem call is negligible. Either the
SendDlgItemMessage or SendMessage can be used, whichever is more
convenient.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 dlgitem
KBCategory: kbprg
KBSubcategory: UsrDlgs

EM_SETHANDLE and EM_GETHANDLE Messages Not Supported

PSS ID Number: Q130759
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

The EM_GETHANDLE and EM_SETHANDLE messages are not supported for edit
contols that are created as controls of a 32-bit application under Windows
95. This is due to the way USER is designed under Windows 95. 16-bit
applications work the same way they did under Windows version 3.1. That is,
they can use the EM_GET/SETHANDLE messages. Also Win32-based applications
running under Windows NT will be able to use these messages.

MORE INFORMATION

The EM_GETHANDLE and EM_SETHANDLE messages are used to retrieve and set the
handle of the memory currently allocated for a multiline edit control's
text. USER under Windows 95 is a mixture of 16- and 32-bit code, so edit
controls created inside a 32-bit application cannot use these messages to
retrieve or set the handles. Trying to do so causes the application to
cause a general protection (GP) fault and thereby be terminated by the
System.

One workaround that involves a little code modification is to use the
GetWindowTextLengt(), GetWindowText(), and SetWindowText() APIs to retrieve
and set the text in a edit control.

NOTE: USER is almost completely 16-bit, so 32-bit applications thunk down
to the 16-bit USER. Also note that the EM_GETHANDLE and EM_SETHANDLE
messages cannot be used with Win32s-based applications either.

Additional reference words: 4.00 user controls GPF
KBCategory: kbprg
KBSubcategory: UsrCtl

Enumerating Network Connections

PSS ID Number: Q119216
Authored 10-Aug-1994 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

From the MS-DOS prompt, you can enumerate the network connections (drives)
by using the following command:

 net use

Programmatically, you would call WNetOpenEnum() to start the enumeration of
connected resources and WNetEnumResources() to continue the enumeration.

MORE INFORMATION

The following sample code enumerates the network connections:

Sample Code

 #include <windows.h>
 #include <stdio.h>

 void main()
 {
 DWORD dwResult;
 HANDLE hEnum;
 DWORD cbBuffer = 16384;
 DWORD cEntries = 0xFFFFFFFF;
 LPNETRESOURCE lpnrDrv;
 DWORD i;

 dwResult = WNetOpenEnum(RESOURCE_CONNECTED,
 RESOURCETYPE_ANY,
 0,
 NULL,
 &hEnum);

 if (dwResult != NO_ERROR)
 {
 printf("\nCannot enumerate network drives.\n");
 return;
 }

 printf("\nNetwork drives:\n\n");

 do
 {
 lpnrDrv = (LPNETRESOURCE) GlobalAlloc(GPTR, cbBuffer);

 dwResult = WNetEnumResource(hEnum, &cEntries, lpnrDrv, &cbBuffer
);

 if (dwResult == NO_ERROR)
 {
 for(i = 0; i < cEntries; i++)
 {
 if(lpnrDrv[i].lpLocalName != NULL)
 {
 printf("%s\t%s\n", lpnrDrv[i].lpLocalName,
 lpnrDrv[i].lpRemoteName);
 }
 }
 }
 else if(dwResult != ERROR_NO_MORE_ITEMS)
 {
 printf("Cannot complete network drive enumeration");
 GlobalFree((HGLOBAL) lpnrDrv);
 break;
 }
 GlobalFree((HGLOBAL) lpnrDrv);
 }
 while(dwResult != ERROR_NO_MORE_ITEMS);

 WNetCloseEnum(hEnum);
 }

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: NtwkWinnet

ERROR_BUS_RESET May Be Benign

PSS ID Number: Q111837
Authored 20-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Tape API (application programming interface) functions may return an error
code of ERROR_BUS_RESET when operating on SCSI tape devices. In many cases,
you can ignore this error value and retry the operation. However, this
error is fatal if received during a series of write operations because a
tape drive cannot recover from a bus reset and continue writing.

MORE INFORMATION

When Windows NT boots up it resets the SCSI bus. This bus reset is reported
by the tape drive in response to the first operation after the reset.

The code fragment shown below in the Sample Code section could be used to
check for ERROR_BUS_RESET and clear it. The same technique could be used
for other informational errors, such as ERROR_MEDIA_CHANGED, that may not
be relevant at application startup.

Sample Code

/*
** This is a code fragment only and will not compile and run as is.
*/

 ...
 do {
 dwError = GetTapeStatus(hTape);
 } while (dwError == ERROR_BUS_RESET);
 ...

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Establishing Advise Loop on Same topic!item!format! Name

PSS ID Number: Q95983
Authored 03-Mar-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Sometimes more than one DDEML client application might establish an
advise loop with a server on the same topic!item!format name set. This
article discusses the complexities involved in such a transaction.

MORE INFORMATION

A client application sends an XTYP_ADVSTART to DDEML when it needs
periodic updates on a particular data item from a server, typically
when that particular data item's value changes.

The server application calls DdePostAdvise whenever the value of the
requested data item changes. This results in an XTYP_ADVREQ
transaction being sent to the server's DDEML callback function, where
the server returns a handle to the changed data.

The client then receives the updated data item during the XTYP_ADVDATA
transaction in the case of a hot advise loop. In a warm advise loop,
the XTYP_ADVDATA transaction that the client receives in its callback
does not contain data; it has to specifically request data with an
XTYP_REQUEST transaction.

When more than one client application requests an advise loop on the
same topic!item!format name set, DDEML maintains a list of these
client applications so that it knows that on one call to
DdePostAdvise(), it should send the changed hData to all the
requesting applications in its list.

The server's callback receives an XTYP_ADVREQ transaction as a result
of DdePostAdvise() with the LOWORD (dwData1) containing a count of the
number of ADVREQ transactions remaining to be processed on the same
topic!item!format name set.

This count allows the server application to create its hData as
HDATA_APPOWNED, whereby it could create a data handle just once and
pass the same handle on to its other pending requests on the same
topic!item!format name set. Finally, when the count is down to zero,
DdeFreeDataHandle() can then be called on this hData.

Note that a server needs to call DdePostAdvise() only once regardless
of how many pending advise requests it has on the same

topic!item!format name set. This one call to DdePostAdvise() causes
DDEML to send the appropriate number of XTYP_ADVREQ transactions to
the server's callback.

All these can be easily illustrated using the Windows version 3.1 Software
Development Kit (SDK) DDEML CLIENT and SERVER samples in this manner:

1. Start the SERVER application.

2. a. Start the CLIENT application.
 b. Establish a connection with the SERVER.
 c. Start an advise loop on the item "Rand".

3. a. Start another instance of the client application.
 b. Establish a connection with the SERVER.
 c. Start an advise loop on the item Rand.

4. Bring up DDESPY.

5. Go back to the SERVER and choose ChangeData from the Options menu and
 watch both CLIENT applications update their data.

Results (from DDESPY main window):

1. Two XTYP_ADVREQs (because you have two pending ADVREQs on the same
 test!Rand pair.

2. Changed Rand data is then sent to the first CLIENT in the advise list.

3. The first CLIENT in the advise list receives the data via XTYP_ADVDATA.

4. Changed "Rand" data is sent to the second CLIENT in the advise list.

5. The second CLIENT in the advise list receives its XTYP_ADVDATA.

One caveat to this scenario is when an advise loop is invoked with the
XTYPF_ACKREQ flag set (that is, the client establishes an
XTYP_ADVSTART transaction or'ed with the XTYPF_ACKREQ flag). In this
case, the server does not send the next data item until an ACK is
received from the client for the first data item. During a particular
call to DdePostAdvise(), the server might not necessarily receive
XTYP_ADVREQ in its callback for all active links, and the
LOWORD(dwData1) might not necessarily reach 0 (zero). When the
DDE_FACK from the client finally arrives, DDEML then sends the server
an XTYP_ADVREQ with LOWORD(dwData1) set to CADV_LATEACK, identifying
the late-arriving ACK appropriately.

Advise links of this kind (with XTYPF_ACKREQ flag set) are best suited
to situations where the server sends information faster than a client
can process it--setting the XTYPF_ACKREQ bit ensures that the server
never outruns the client. However, setting this flag also sets a
drawback in circumstances where data transitions may be lost. Thus, in
Windows NT or in similar situations where server outrun is highly
unlikely, it is recommended that the XTYPF_ACKREQ bit not be used to
prevent such data transition loss.

Note that in this delayed ACK update scenario, the count received in
the LOWORD (dwData1) may not be relied upon for creating APPOWNED data
handles as discussed in the earlier paragraphs; where an hData is
created once, and when the count is down to zero, DdeFreeDataHandle()
is called on this hData.

This does not, however, imply that the efficiency provided by APPOWNED
data handles may not be used at all. In this case, a server could
create an APPOWNED data handle once--usually on the first XTYP_ADVREQ
it receives--and associate that handle with a topic!item!format name
set. It could then return this data handle for all subsequent requests
it receives on this topic!item!format set. Each time data changes
thereafter, the server should destroy the old data handle and not
re-render the data [that is, call DdeCreateDataHandle()] until another
request comes through.

This might be better explained as follows:

 case XTYP_ADVREQ:
 if (ThisIsForTheTopicItemFormatSpecified)
 {
 if (bFirstTimeRequested)
 {
 bFirstTimeRequested = FALSE;
 hData = DdeCreateDataHandle();
 }
 return hData;
 }
 break;

 // and then whenever data changes for this topic!item!format
 if (hData)
 {
 DdeFreeDataHandle (hData);
 bFirstTimeRequested = TRUE;
 }
 DdePostAdvise(); // specify topic!item!format here.
 // This causes DDEML to send an
XTYP_ADVREQ
 // which is handled above.

For Microsoft Windows version 3.1 DDEML, the only way for a server
application to distinguish which client's advise request is currently
being responded to is through the XTYP_ADVREQ's hConv parameter. The
hConvPartner field of the CONVINFO structure may be used to
distinguish between clients.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Examining the dwOemId Value

PSS ID Number: Q101190
Authored 07-Jul-1993 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The Win32 application programming interface (API) GetSystemInfo() fills in
the members of a SYSTEM_INFO structure. The dwOemId member represents a
computer identifier that is specific to a particular OEM (original
equipment manufacturer). Windows NT versions 3.1 - 3.51 and Windows 95
always place a zero in the dwOemId member. In later releases, this behavior
will change to include different OEM IDs.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseMisc

Explanation of the NEWCPLINFO Structure

PSS ID Number: Q103315
Authored 22-Aug-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The following is an explanation of the NEWCPLINFO structure:

dwSize: Specifies the length of the structure, in bytes. Set this to
sizeof(NEWCPLINFO).

dwFlags: Specifies Control Panel flags. This is field is currently
unused. Set this field to NULL.

dwHelpContext: Specifies the context number for the topic in the help
project (.HPJ) file that displays when the user selects help for the
application. If dwData is non-NULL, Windows Help will be invoked with
the HELP_CONTEXT fuCommand with dwHelpContext as dwData. If
dwHelpContext is NULL, Windows Help is invoked with the HELP_INDEX
fuCommand.

lData: Specifies data defined by the application. This is passed back
to the application in the CPL_DBLCLK, CPL_SELECT, and CPL_STOP
messages via lParam2.

hIcon: Identifies an icon resource for the application icon. This icon
is displayed in the Control Panel window.

szName: Specifies a null-terminated string that contains the
application name. The name is the short string displayed below the
application icon in the Control Panel window. The name is also
displayed in the Settings menu of Control Panel.

szInfo: Specifies a null-terminated string containing the application
description. The description is displayed at the bottom of the Control
Panel window when the application icon is selected.

szHelpFile: Specifies a null-terminated string that contains the path
of the help file, if any, for the application. If this field is
unused, set it to NULL. The Control Panel will invoke a default
Windows Help file when this field is NULL.

Additional reference words: 3.10 3.50 3.51 4.00 95 cpl control panel
extension
KBCategory: kbprg
KBSubcategory: UsrExt

Exporting Callback Functions

PSS ID Number: Q83706
Authored 19-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

It is not necessary for Win32-based applications to export callback
functions. Windows versions 3.1 and earlier (Win16) need callback functions
primarily for fixing references to global data and ensuring that EMS memory
is not paged out. Neither of these situations applies to the Windows NT
operating system.

MORE INFORMATION

Exports are necessary for any function that must be located at either

 - Run time via GetProcAddress()(dynamic linking)

 -or-

 - Load time via an import library (static linking)

Both of these linking methods require that the name or ordinal number of
the export be known and that their names (or ordinal numbers) be present in
the executable's exported entry table. This enables Windows to determine
the addresses at run time.

Static linking is done by the loader, which performs this lookup for all of
the imported entry points that an executable needs (normally by ordinal
number). In dynamic linking, the system scans by ordinal number or by name
through the DLL (Dynamic Link Library) exports table.

In Win16, exported entries are automatically fixed by the linker to adjust
to the appropriate data segment. Exporting entries on Win32 just adds them
to the module's exported names and ordinal numbers table; the linker does
not need to "fix" them. For code compatibility with Win16, you may want to
continue to use MakeProcInstance() and export all callbacks. This macro
does nothing on Windows NT.

In short,

 On Windows Win32
 --------------------------- -----------------

 Callbacks Export or use MakeProcInstance Use address of fn
 GetProcAddress Must export Must export

 Static linking Must export Must export

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Exporting Data from a DLL or an Application

PSS ID Number: Q90530
Authored 18-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

It is possible for a Win32-based application to be able to address DLL
global variables directly by name from within the executable. This is done
by exporting global data names in a way that is similar to the way you
export a DLL function name. Use the following steps to declare and utilize
exported global data.

1. Define the global variables in the DLL code. For example:

 int i = 1;
 int *j = 2;
 char *sz = "WBGLMCMTP";

2. Export the variables in the module-definition (DEF) file. With the 3.1
 SDK linker, use of the CONSTANT keyword is required, as shown below:

 EXPORTS
 i CONSTANT
 j CONSTANT
 sz CONSTANT

 With the 3.5 SDK linker or the Visual C++ linker, use of the DATA
 keyword is required, as shown below

 EXPORTS
 i DATA
 j DATA
 sz DATA

 Otherwise, you will receive the warning

 warning LNK4087: CONSTANT keyword is obsolete; use DATA

 Alternately, with Visual C++, you can export the variables with:

 _declspec(dllexport) int i;
 _declspec(dllexport) int *j;
 _declspec(dllexport) char *sz;

3. If you are using the 3.1 SDK, declare the variables in the modules that
 will use them (note that they must be declared as pointers because a
 pointer to the variable is exported, not the variable itself):

 extern int *i;
 extern int **j;
 extern char **sz;

 If you are using the 3.5 SDK or Visual C++ and are using DATA, declare
 the variables with _declspec(dllimport) to avoid having to manually
 perform the extra level of indirection:

 _declspec(dllimport) int i;
 _declspec(dllimport) int *j;
 _declspec(dllimport) char *sz;

4. If you did not use _declspec(dllimport) in step 3, use the values by
 dereferencing the pointers declared:

 printf("%d", *i);
 printf("%d", **j);
 printf("%s", *sz);

 It may simplify things to use #defines instead; then the variables can
 be used exactly as defined in the DLL:

 #define i *i
 #define j *j
 #define sz *sz

 extern int i;
 extern int *j;
 extern char *sz;

 printf("%d", i);
 printf("%d", *j);
 printf("%s", sz);

MORE INFORMATION

NOTE: This technique can also be used to export a global variable from an
application so that it can be used in a DLL.

REFERENCE

For more information on the use of EXPORTS and CONSTANT in the Module
Definition File (DEF) file for the 3.1 SDK, see Chapter 4 of the Win32 SDK
"Tools" manual.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Extending Standard Windows Controls Through Superclassing

PSS ID Number: Q76947
Authored 03-Oct-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

A Windows-based application can extend the behavior of a standard Windows
control by using the technique of superclassing. An application can
superclass a standard Windows control by retrieving its window class
information, modifying the fields of the WNDCLASS structure, and
registering a new class. For example, to associate status information with
each button control in an application, the buttons can be superclassed to
provide a number of window extra bytes.

This article describes a technique to access the WNDCLASS structure
associated with the standard "button" class.

MORE INFORMATION

The following five steps are necessary to register a new class that
uses some information from the standard windows "button" class:

1. Call GetClassInfo() to fill the WNDCLASS structure.

2. Save the cbWndExtra value in a global variable.

3. Add the desired number of bytes to the existing cbWndExtra value.

4. Change the lpszClassName field.

5. Call RegisterClass() to register the new class.

The first step will fill the WNDCLASS structure with the data that was used
when the class was originally registered. In this example, the second step
is necessary so that when the "new" extra bytes are accessed, the original
extra bytes are not destroyed. Please note that it is NOT safe to assume
that the original cbWndExtra value was zero. When accessing the "new" extra
bytes, it is necessary to use the original value of cbWndExtra as the base
for any new data stored in the extra bytes. The third step allocates the
new extra bytes. The fourth step specifies the new name of the class to be
registered, and the final step actually registers the new class.

Any new class created in this manner MUST have a unique class name.
Typically, this name would be similar but not identical to the original

class. For example, to superclass a button, an appropriate class name might
be "superbutton." There is no conflict with class names used by other
applications as long as the CS_GLOBALCLASS class style is not specified.
The standard Windows "button" class remains unchanged and can still be used
by the application as normal. In addition, once a new class has been
registered, any number of controls can be created and destroyed with no
extra coding effort. The superclass is simply another class in the pool of
classes that can be used when creating a window.

The sample code below demonstrates this procedure:

BOOL DefineSuperButtonClass(void)
{
#define MYEXTRABYTES 8

 HWND hButton;
 WNDCLASS wc;

 GetClassInfo(NULL, "button", (LPWNDCLASS)&wc);

 iStdButtonWndExtra = wc.cbWndExtra; // Save this in a global

 wc.cbWndExtra += MYEXTRABYTES;

 lstrcpy((LPSTR)wc.lpszClassName, (LPSTR)"superbutton");

 return(RegisterClass((LPWNDCLASS)&wc));
}

It is important to note that the lpszClassName, lpszMenuName, and hInstance
fields in the WNDCLASS structure are NOT returned by the GetClassInfo()
function. Please refer to page 4-153 of the "Microsoft Windows Software
Development Kit Reference Volume 1" for more information. Also, each time a
new class is registered, scarce system resources are used. If it is
necessary to alter many different standard classes, the GetProp(),
SetProp(), and RemoveProp() functions should be used as an alternative
approach to associating extra information with standard Windows controls.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Extracting the SID from an ACE

PSS ID Number: Q102101
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

To access the security identifier (SID) contained in an access control
entry (ACE), the following syntax can be used:

 PSID pSID;

 if((((PACE_HEADER)pTempAce)->AceType) == ACCESS_ALLOWED_ACE_TYPE)
 {
 pSID=(PSID)&((PACCESS_ALLOWED_ACE)pTempAce)->SidStart;
 }

MORE INFORMATION

The "if" statement checks the type of ACE, which is one of the following
values:

 ACCESS_ALLOWED_ACE_TYPE
 ACCESS_DENIED_ACE_TYPE
 SYSTEM_AUDIT_ACE_TYPE

The conditional statement casts pTempAce (the pointer to the ACE) to a
PACCESS_ALLOWED_ACE structure. The address of the SidStart member is then
cast to a PSID and assigned to the pSID variable. pSID can now be used with
any Win32 Security application programming interface (API) that takes a
PSID as a parameter.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

File Manager Passes Short Filename as Parameter

PSS ID Number: Q98575
Authored 09-May-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.1 and 3.5

When starting an application from File Manager by double-clicking a
document associated with the application, if the document resides on an
NTFS partition and has a long (non-8.3 form) filename, File Manager will
pass the short version of the filename (also known as the MS-DOS alias or
8.3 name) to the associated application if the application is an MS-DOS or
16-bit Windows-based application. This is done for compatibility reasons;
applications not aware of long filenames (16-bit Windows-based
applications) can still function correctly. 32-bit Windows-based
applications will be passed the long file name.

This can create confusion, however, if the application displays the name of
the file the application was started with; the short name is displayed even
though the long name was double-clicked.

You can avoid possible confusion by always expanding any filenames passed
to an application via the command line. Do this by calling the
FindFirstFile() application programming interface (API) on these filenames.
FindFirstFile() will always return the file system's version of the
filename in the WIN32_FIND_DATA.cFileName structure member, which the
application can then use in all further references to the file without any
problems.

Additional reference words: 3.10 file name 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING

PSS ID Number: Q99794
Authored 08-Jun-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1 and
 3.5

SUMMARY

The FILE_FLAG_WRITE_THROUGH flag for CreateFile() causes any writes made to
that handle to be written directly to the file without being buffered. The
data is cached (stored in the disk cache); however, it is still written
directly to the file. This method allows a read operation on that data to
satisfy the read request from cached data (if it's still there), rather
than having to do a file read to get the data. The write call doesn't
return until the data is written to the file. This applies to remote writes
as well--the network redirector passes the FILE_FLAG_WRITE_THROUGH flag to
the server so that the server knows not to satisfy the write request until
the data is written to the file.

The FILE_FLAG_NO_BUFFERING takes this concept one step further and
eliminates all read-ahead file buffering and disk caching as well, so that
all reads are guaranteed to come from the file and not from any system
buffer or disk cache. When using FILE_FLAG_NO_BUFFERING, disk reads and
writes must be done on sector boundaries, and buffer addresses must be
aligned on disk sector boundaries in memory.

These restrictions are necessary because the buffer that you pass to the
read or write API is used directly for I/O at the device level; at that
level, your buffer addresses and sector sizes must satisfy any processor
and media alignment restrictions of the hardware you are running on.

MORE INFORMATION

This code fragment demonstrates how to sector-align data in a buffer and
pass it to CreateFile():

 char buf[2 * SECTOR_SIZE - 1], *p;

 p = (char *) ((DWORD) (buf + SECTOR_SIZE - 1) & ~(SECTOR_SIZE - 1));
 h = CreateFile(argv[1], GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_NO_BUFFERING, NULL);
 WriteFile(h, p, SECTOR_SIZE, &dwWritten, NULL);

The pointer p is sector-aligned and points within the buffer.

If you have a situation where you want to flush all open files on the
current logical drive, this can be done by:

 hFile = CreateFile("\\\\.\\c:",);
 FlushFileBuffers(hFile);

This method causes all buffered write data for all open files on the C:
partition to be flushed and written to the disk. Note that any buffering
done by anything other than the system is not affected by this flush; any
possible file buffering that the C Run-time is doing on files opened with C
Run-time routines is unaffected.

When opening a remote file over the network, the server always caches and
ignores the no buffering flag specified by the client. This is by design.
The redirector and server cannot properly implement the full semantics of
FILE_FLAG_NO_BUFFERING over the network. In particular, the requirement for
sector-sized, sector-aligned I/O cannot be met. Therefore, when a Win32-
based application asks for FILE_FLAG_NO_BUFFERING, the redirector and
server treat this as a request for FILE_FLAG_WRITE_THROUGH. The file is not
cached at the client, writes go directly to the server and to the disk on
the server, and the read/write sizes on the network are exactly what the
application asks for. However, the file is cached on the server.

Not caching the client can have a different effect, depending on the type
of I/O. You eliminate the cache hits or read ahead, but you also may reduce
the size of transmits and receives. In general, for sequential I/O, it is a
good idea to cache on the client. For small, random access I/O, it is often
best not to cache.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

FILE_READ_EA and FILE_WRITE_EA Specific Types

PSS ID Number: Q102104
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The FILE_READ_EA and FILE_WRITE_EA specific types provide access to read
and write a file's extended attributes. Specific access types are
represented as bits in the access mask and are specific to the object type
associated with the mask.

Please note that these specific types are used in the definition of
constants such as FILE_GENERIC_READ, and are not intended to be generally
used when specifying access (generic access types are much more
appropriate).

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseFileio

Filenames Ending with Space or Period Not Supported

PSS ID Number: Q115827
Authored 05-Jun-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

CreateFile() removes trailing spaces and periods from file and directory
names. This is done for compatibility with the FAT and HPFS file systems.

Problems can arise when a Macintosh client creates a file on a Windows NT
server. The code to remove trailing spaces and periods is not carried out
and the Macintosh user gets the correctly punctuated filename. The Win32
APIs FindFirstFile() and FindNextFile() return a filename that ends in a
space or in a period; however, there is no way to create or open the file
using the Win32 API.

Applications such as File Manager and Backup check to see whether the
filename ends with a space or period. If the filename does end in a space
or a period, then File Manager and Backup use the alternative name found in
WIN32_FIND_DATA.cAlternateFileName to create and open the file. Therefore,
the full filename is lost.

Additional reference words: 3.10 3.50 4.00 95 winfile ntbackup
KBCategory: kbprg
KBSubcategory: BseFileio

FileTimeToLocalFileTime() Adjusts for Daylight Saving Time

PSS ID Number: Q128126
Authored 27-Mar-1995 Last modified 27-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

Under NTFS, the API GetFileTime() returns the create time, last access
time, and last write time for the specified file. The times returned in the
FILETIME structures are in Universal Coordinated Time (UTC). This is also
the time that NTFS uses. You can use FileTimeToLocalFileTime() to convert a
file time to a local time. However, if you automatically adjust for
Daylight Saving Time, FileTimeToLocalFileTime() will adjust for Daylight
Saving Time based on whether the current date should be adjusted for
Daylight Saving Time, not based on whether the date represented by the
FILETIME structure should be adjusted.

The behavior in this situation is different under FAT, but may be changed
to match the behavior under NTFS in a future version of Windows NT.

MORE INFORMATION

The result of this behavior, which is by design, is that reported file
times under NTFS may change with the start and end of Daylight Saving Time.
For example, suppose that the file TEST.C has a last write FILETIME
representing Jan 1, 1995 9:00pm (UTC), it is not Daylight Saving Time,
and you are in the Pacific time zone. Both the DIR command and the
following sample code report the file time as 1:00pm (LocalTime = UTC - 8).

Sample Code 1

 #include <windows.h>

 void main()
 {
 HANDLE hFile;
 FILETIME ftCreate, ftLastAccess, ftLastWrite, ftLocal;
 SYSTEMTIME st;

 char buf[80];

 // Open the file.

 hFile = CreateFile("test.c",
 GENERIC_READ,
 0,
 NULL,

 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 // Get the file time (in UTC) and convert to local time.

 GetFileTime(hFile, &ftCreate, &ftLastAccess, &ftLastWrite);
 FileTimeToLocalFileTime(&ftLastWrite, &ftLocal);

 // Display the time, as a test.

 FileTimeToSystemTime(&ftLocal, &st);
 GetTimeFormat(LOCALE_USER_DEFAULT, 0, &st, NULL, buf, sizeof(buf));
 MessageBox(NULL, buf, " FILE TIME", MB_OK);
 }

Now, set the date to 7/1/95 and enable Automatically Adjust for Daylight
Saving Time. The DIR command and the sample code above will report the
file time as 2:00pm, because FileTimeToLocalFileTime() has adjusted for
Daylight Saving Time (LocalTime = UTC - 7).

The following sample code will correctly report the file time of TEST.C
with the date set to 7/1/95 under NTFS. The FILETIME structure is
converted to a SYSTEMTIME structure with FileTimeToSystemTime(). Then the
time is converted using SystemTimeToTzSpecificLocalTime(). If you need to
convert back to a FILETIME structure, use SystemTimeToFileTime() after the
conversion to local time.

Sample Code 2

 #include <windows.h>

 void main()
 {
 HANDLE hFile;
 FILETIME ftCreate, ftLastAccess, ftLastWrite;
 SYSTEMTIME stUTC, st;
 char buf[80];

 // Open the file.

 hFile = CreateFile("test.c",
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 // Get the file time (in UTC) and convert to local time.

 GetFileTime(hFile, &ftCreate, &ftLastAccess, &ftLastWrite);
 FileTimeToSystemTime(&ftLastWrite, &stUTC);
 SystemTimeToTzSpecificLocalTime(NULL, &stUTC, &st);

 // Display the time, as a test.

 GetTimeFormat(LOCALE_USER_DEFAULT, 0, &st, NULL, buf, sizeof(buf));
 MessageBox(NULL, buf, "FILE TIME", MB_OK);
 }

The FAT file system stores local time, not UTC. GetFileTime() gets cached
UTC times from FAT. In this sample, the time stored is 1pm and the cached
time is 9pm. When it becomes Daylight Saving Time, sample codes 1 and 2
will demonstrate the same behavior that they do under NTFS, because 9pm is
still used. However, when you restart the machine, the new cached time will
be 8pm (UTC = LocalTime + 7). The call to FileTimeToLocalFileTime() cancels
the adjustment made by GetFileTime() (LocalTime = UTC - 7). Therefore,
sample code 1 will report the correct time under FAT, but sample code 2
will not.

On the other hand, FindFirstFile() on FAT always reads the time from the
file (stored as local time) and converts it into UTC, adjusting for DST
based on the current date. So if FindFirstFile() is called, the date is
changed to a different DST season, and then FindFirstFile() is called
again, the UTC returned by the two calls will be different.

Additional reference words: 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseMisc

First and Second Chance Exception Handling

PSS ID Number: Q105675
Authored 22-Oct-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

Structured exception handling (SEH) takes a little getting used to,
particularly when debugging. It is common practice to use SEH as a
signaling mechanism. Some application programming interfaces (APIs)
register an exception handler in anticipation of a failure condition that
is expected to occur in a lower layer. When the exception occurs, the
handler may correct or ignore the condition rather than allowing a failure
to propagate up through intervening layers. This is very handy in complex
environments such as networks where partial failures are expected and it is
not desirable to fail an entire operation simply because one of several
optional parts failed. In this case, the exception can be handled so that
the application is not aware that an exception has occurred.

However, if the application is being debugged, it is important to realize
that the debugger will see all exceptions before the program does. This is
the distinction between the first and second chance exception. The debugger
gets the "first chance," hence the name. If the debugger continues the
exception unhandled, the program will see the exception as usual. If the
program does not handle the exception, the debugger will see it again (the
"second chance"). In this latter case, the program normally would have
crashed had the debugger not been present.

If you do not want to see the first chance exception in the debugger, then
disable the feature. Otherwise, during execution, when the debugger gets
the first chance, continue the exception unhandled and allow the program to
handle the exception as usual. Check the documentation for the debugger
that you are using for descriptions of the commands to be used.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

FIX: AllocConsole() Does Not Set Error Code on Failure

PSS ID Number: Q105564
Authored 20-Oct-1993 Last modified 19-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The documentation for AllocConsole() states the following:

 If the function succeeds, the return value is TRUE; otherwise, it
 is FALSE. To get extended error information, use the GetLastError()
 function.

Upon failure, AllocConsole() does not set the error code.

STATUS

Microsoft has confirmed this to be a bug in Windows NT 3.1. This problem
was corrected in Windows NT 3.5.

MORE INFORMATION

The following sample code demonstrates the problem:

#include <stdio.h>
#include <windows.h>

void main()
{
 BOOL bSuccess;

/* Comment out the following line and GetLastError() will */
/* return 999; otherwise, GetLastError() returns 1812. */

 FreeConsole();

 SetLastError(999);

 bSuccess = AllocConsole();
 if(!bSuccess)
 puts("AllocConsole failed");
 printf("The last error is: %d\n", GetLastError());
 getchar();
}

Additional reference words: 3.10

KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: BseCon

FIX: APIs Do Incorrect Comparisons

PSS ID Number: Q105804
Authored 25-Oct-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The functions getservbyport() and getprotobynumber() do an incorrect
comparison when two port APIs take a parameter as an integer then do
comparisons of the integer against an unsigned short that is incorrectly
sign-extended. If a port or protocol number greater than 127 is passed into
these routines, they will not return any information.

STATUS

Microsoft has confirmed this to be a problem in Windows NT and Windows NT
Advanced Server version 3.1. This problem was corrected in the latest U.S.
Service Pack for Windows NT and Windows NT Advanced Server version 3.1. For
information on obtaining the Service Pack, query on the following word in
the Microsoft Knowledge Base (without the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.001
KBCategory: kbprg kbbuglist kbfixlist
KBSubCategory: NtwkWinsock

FIX: Cannot Compile from Win32 SDK M Editor (MEP.EXE)

PSS ID Number: Q98918
Authored 18-May-1993 Last modified 18-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The Win32 Software Development Kit (SDK) M Editor compile function uses the
correct extmake line and spawns the compiler correctly, but does not
produce the desired result. The terminating beep is issued, but no messages
appear in the <compile> pseudo file and no object file is produced.

STATUS

Microsoft has confirmed this to be a problem in the products listed at the
beginning of this article. This problem was corrected in the Win32 SDK
version 3.5.

MORE INFORMAION

The method typically used to invoke the compiler from the M Editor is

1. Include the following text switch in the TOOLS.INI

 extmake:<ext> <command>

 where <ext> is the file extension and <command> is the command to be
 carried out when compiling a file of this type. For example:

 extmake:c cl /DWIN32 %s

 NOTE: %s is the current file.

2. To invoke the switch, use Arg Compile (ALT+A CTRL+F3)

Additional reference words: 3.10 mep
KBCategory: kbtool kbprb
KBSubcategory: TlsMep

FIX: GetPrivateProfileSection() Can Read Only 32K Sections

PSS ID Number: Q105681
Authored 22-Oct-1993 Last modified 28-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The documentation for GetProfileSection(), GetProfileString(),
GetPrivateProfileSection(), GetPrivateProfileString(), and
GetPrivateProfileSection() indicate that the application programming
interface (API) can read all the keys and values of a section, regardless
of size. However, these functions only seem to handle sections that are
smaller than 32K, even though the size of the buffer is a DWORD.

CAUSE

The code is casting this value to a signed short, and therefore you are
having problems with sections that are greater than 32K in size.

STATUS

Microsoft has confirmed this to be a problem in Windows NT 3.1. This
problem was corrected in Windows NT 3.5.

Additional reference words: 3.10
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: BseMisc

FIX: Global Constructors Not Called in Alpha DLLs

PSS ID Number: Q98732
Authored 12-May-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

C++ constructors on global variables are not invoked when a dynamic link
library (DLL) is loaded on the Alpha AXP platform.

STATUS

Microsoft has confirmed this to be a problem in Windows NT and Windows NT
Advanced Server version 3.1. This problem was corrected in the latest U.S.
Service Pack for Windows NT and Windows NT Advanced Server version 3.1. For
information on obtaining the Service Pack, query on the following word in
the Microsoft Knowledge Base (without the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.003
KBCategory: kbtool kbfixlist kbbuglist
KBSubCategory: TlsMisc

FIX: High CPU Usage When SNMP Retrieves Performance Counters

PSS ID Number: Q130563
Authored 23-May-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SYMPTOMS

When an SNMP extension agent tries to retrieve performance counters, CPU
utilization jumps to 100 percent.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
version 3.51.

MORE INFORMATION

If an SNMP extension agent tries to retrieve performance counters as in the
following example, the CPU utilization is observed to jump to 100 percent
and stay there until the SNMP service is stopped.

 RegOpenKeyEx(...);
 .
 .
 RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 ...)

To see this, use the Performance Monitor tool in the Administrative Tools
program group.

The same problem can occur when an application is trying to retrieve TCP/IP
performance counters and the Internet MIB II agent is being used to
retrieve the counters.

REFERENCES

For more information, please see the Windows NT 3.5 Resource Kit Vol IV.

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkSnmp

FIX: Internal Error from NetUserEnum()

PSS ID Number: Q108055
Authored 02-Dec-1993 Last modified 29-Nov-1994

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1
--

SYMPTOMS

If you make a NetUserEnum() call from a down-level computer remoted to a
Windows NT machine, the error return is:

 2140 (NERR_InternalError).

This happens only if the down-level computer remotes the API to the Windows
NT computer and provides a buffer size that is greater than zero but less
than the size of one element of the data structure.

STATUS

Microsoft has confirmed this to be a problem in Windows NT and Windows NT
Advanced Server version 3.1. This problem was corrected in the latest U.S.
Service Pack for Windows NT and Windows NT Advanced Server version 3.1. For
information on obtaining the Service Pack, query on the following word in
the Microsoft Knowledge Base (without the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.003
KBCategory: kbtool kbbuglist kbfixlist
KBSubCategory: TlsLmapi

FIX: Low Memory Condition Cause APIs to Return Random Values

PSS ID Number: Q105575
Authored 20-Oct-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

Low memory on a Windows NT computer can cause USER APIs to return random
values. For example, CreateWindowEx() returns a bad value, and
SetWindowLong() and GetWindowLong() do not receive the correct value.

STATUS

Microsoft has confirmed this to be a problem in Windows NT and Windows NT
Advanced Server version 3.1. This problem was corrected in the latest U.S.
Service Pack for Windows NT and Windows NT Advanced Server version 3.1. For
information on obtaining the Service Pack, query on the following word in
the Microsoft Knowledge Base (without the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.001
KBCategory: kbprg kbbuglist kbfixlist
KBSubCategory: UsrMisc

FIX: MFC-Based App Cannot Run Under International Win32s

PSS ID Number: Q125457
Authored 29-Jan-1995 Last modified 11-Apr-1995

The information in this article applies to:

 - Microsoft Win32s version 1.2

SYMPTOMS

When activating a Microsoft Foundations Classes (MFC)-based application
built with Visual C++ version 2.0 under Win32s version 1.2, if the language
setting in Windows or Windows for Workgroups Control panel is set to
anything other than English, German, or French, the following error occurs:

 Win32s - Error: Initialization of a dynamic link library failed.
 The process is terminating abnormally.

This error has also been reported with non-MFC-based applications as well.

CAUSE

CRT startup code causes an unhandled exception in the Win32s DLL
(W32SCOMB.DLL).

RESOLUTION

For an international version of Windows 3.1 or Windows for Workgroups, if
the country and language settings are changed to United States and
English(American), 32-bit MFC-based applications are able to run.

STATUS

Microsoft has confirmed this to be a bug in Win32s version 1.2. This
problem has been corrected in Win32s version 1.25.

Additional reference words: 1.20 w32scomb
KBCategory: kbinterop kbfixlist kbbuglist
KBSubcategory: W32s WIntlDev

FIX: MIDL 2.0 Does Not Handle VAX Floating Point Numbers

PSS ID Number: Q129064
Authored 18-Apr-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SYMPTOMS

RPC applications (client and server) built using MIDL 2.0 (shipped with
Windows NT version 3.5) may get spurious characters or report memory
violations when dealing with VAX floating point numbers.

RESOLUTION

There are two possible resolutions to this problem:

 - Use MIDL 1.0 (shipped with Windows NT version 3.1) to build RPC client
 and server applications.

 -or-

 - On the VAX side, use a compiler switch to make sure the application
 represents its floating point numbers in IEEE format.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
version 3.51.

MORE INFORMATION

Note that Microsoft RPC is binary compatible with DCE RPC. There are four
types of representations for floating point numbers: IEEE, VAX, IBM, and
CRAY. An application built using MIDL 1.0 can recognize IEEE and VAX
representations but not IBM and CRAY. Applications built using MIDL 2.0 can
recognize only IEEE representaion as mentioned above. Both, MIDL 1.0 and
2.0, use IEEE representations to send data.

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkRpc

FIX: MIPS Compiler Assertion with C version 8.0

PSS ID Number: Q102764
Authored 10-Aug-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

You may get the following assertion from the C version 8.0 compiler on
Windows NT under MIPS:

 Microsoft (R) C Centaur Optimizing Compiler Version 8.00.081
 Copyright (c) Microsoft Corp 1984-1992. All rights reserved.

 t516a.cxx
 Assertion failed: prld->symbol->symbolnumber >= 0, file
 E:\src\centaur\drop81\msas\as1coff.c, line 459

 abnormal program termination

CAUSE

You can get an assertion running C 8.0 on Windows NT MIPS if you did not
compile with /Zi or /Z7 or if your external declarations are not at file
scope level (that is, declare them as global).

RESOLUTION

The easiest workaround is to recompile with /Zi or /Z7. Another workaround
is to move all extern declarations to file scope level.

STATUS

There is a fix for this but the problem wasn't deemed critical enough to
change right before the Windows NT 3.1 release. This problem was corrected
in the Win32 SDK, version 3.5.

Additional reference words: 3.10
KBCategory: kbtool kbfixlist kbbuglist
KBSubcategory: TlsMisc

FIX: NDISCloseFile() Does Not Free Image Buffer

PSS ID Number: Q105785
Authored 24-Oct-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The NDISCloseFile() function does not free the buffer that it allocates to
hold the image that was read in.

STATUS

Microsoft has confirmed this to be a problem in Windows NT and Windows NT
Advanced Server version 3.1. This problem was corrected in the latest U.S.
Service Pack for Windows NT and Windows NT Advanced Server version 3.1. For
information on obtaining the Service Pack, query on the following word in
the Microsoft Knowledge Base (without the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.001
KBCategory: kbprg kbbuglist kbfixlist
KBSubCategory: NtwkMisc

FIX: Owner Drawn Items on the Menu Bar Hang Windows NT

PSS ID Number: Q126720
Authored 28-Feb-1995 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

Windows NT supports owner drawn items on the menu bar. However, Windows NT
may stop responding (hang) if multiple windows of same class are created
with the owner drawn menu bar.

STATUS

Microsoft has confirmed this to be a bug in Windows NT version 3.50. This
problems was corrected in Windows NT version 3.51.

MORE INFORMATION

Steps to Reproduce Problem

1. Assign a menu to a window class via RegisterClass().

2. Modify the menu bar to be owner draw in WM_CREATE.

3. Create multiple windows of the same window class.

Windows NT may stop responding, in which case, you must turn off the
computer.

Additional reference words: 3.50
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: UsrMen UsrOwn

FIX: POSIX Does Not Distinguish stdout & stderr

PSS ID Number: Q92769
Authored 15-Nov-1992 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

Programs under POSIX do not distinguish between stdout and stderr. This
causes a variety of symptoms, such as fprints to stdout and stderr ending
up in the same place.

CAUSE

When output is destined for the terminal (or a pipe to a windows
application), the output becomes generic output instead of being destined
for a specific file descriptor, and so forth.

STATUS

Microsoft has confirmed this to be a problem in Windows NT, version 3.1.
This problem was corrected in Windows NT, version 3.5.

MORE INFORMATION

The following sample code can be used to demonstrate the problem.

Sample code

#include <stdio.h>

void main()
{
 freopen("freopen.out", "w", stdout);
 fprintf(stdout, "Hey there.\n");
 fprintf(stderr, "Hey! Not me too!\n");
}

Additional reference words: 3.10 buglist3.10 fixlist3.50
KBCategory: kbprg kbbuglist kbfixlist
KBSubcategory: SubSystem

FIX: Redirecting Output to an MS-DOS-Based Application

PSS ID Number: Q105303
Authored 17-Oct-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The following method is used to redirect output to a child process when it
is started from a GUI application:

1. Declare STARTUPINFO si.

 a. Set the hStdIn, hStdOut, and/or hStdErr field as desired.
 b. Set the dwFlags field to STARTF_USESTDHANDLES.

2. In CreateProcess(), set inherit handles to TRUE.

NOTE: This method does not work when starting MS-DOS-based applications.

RESOLUTION

As a workaround, use AllocConsole(), then the following method:

1. Use SetStdHandle() to set the desired handles to be inherited.

 -or-

 Use DuplicateHandle() to change the inheritance property of handles
 that should not be inherited.

3. In CreateProcess(), set inherit handles to TRUE.

This method creates a blank console window; however, this is necessary
because the method doesn't work otherwise.

STATUS

Microsoft has confirmed this to be a bug in Windows NT 3.1. This problem
was corrected in Windows NT 3.5.

MORE INFORMATION

Note that if you are opening a handle that will be inherited by the
child, set SECURITY_ATTRIBUTES.bInheritHandle = TRUE in the call to
CreateFile(), CreatePipe(), and so forth.

For an example of both methods of redirection, see the INHERIT SDK
sample.

Additional reference words: 3.10 buglist3.10 fixlist3.50
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: BseProcThrd

FIX: SetCaret API May Not Work Correctly in Win32-Based Apps

PSS ID Number: Q105733
Authored 24-Oct-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

The SetCaret() API does not work correctly in multithreaded Win32-based
applications. Code with the following logic fails:

Thread 1: Creates a window and starts another thread.

Thread 2: Uses an API to synchronize the two threads' "Input State,"
attempts to write to the window of Thread 1, and then tries to set the
caret through SetCaret().

STATUS

Microsoft has confirmed this to be a problem in Windows NT and Windows NT
Advanced Server version 3.1. This problem was corrected in the latest U.S.
Service Pack for Windows NT and Windows NT Advanced Server version 3.1. For
information on obtaining the Service Pack, query on the following word in
the Microsoft Knowledge Base (without the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.001
KBCategory: kbprg kbbuglist kbfixlist
KBSubCategory: GdiCurico

FIX: Setsockopt() for Winsock over Appletalk Returns Error

PSS ID Number: Q129062
Authored 18-Apr-1995 Last modified 06-Jun-1995

The information in this article applies to

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SYMPTOMS

After you open a socket of type SOCK_STREAM by using the ATPROTO_ADSP
protocol, and bind to a dynamic socket, the setsockopt() function fails
under these conditions:

 - The setsockopt() function uses the zone name returned by getsockopt()
 (also found by looking at the control panel network entry) with the
 SO_LOOKUP_MYZONE option.

 - The zone name is supplied to setsockopt() with the SO_REGISTER_NAME
 option.

Error code 10022 (WSAINVAL :Invalid Argument) is returned on calling
GetLastError().

RESOLUTION

Instead of passing the string returned by getsockopt() for the zone name,
use the character "*" for the ZoneName member of the WSH_REGISTER_NAME
struct. For example, use this:

 WSH_REGISTER_NAME regName;

 strcpy(regName.ZoneName, "*");

instead of this:

 strcpy(regName.ZoneName, "BLDG/1");

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
3.51.

REFERENCES

Windows Sockets for Appletalk (SFMWSHAT.WRI version 1.2).

Additional reference words: 3.50

KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkWinsock

FIX: SNMP Sample Generates an Application Error

PSS ID Number: Q124961
Authored 17-Jan-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SYMPTOMS

The Win32 SDK for Windows NT 3.5 contains a SNMP sample called SNMPUTIL
(\MSTOOLS\SAMPLES\WIN32\SNMP\SNMPUTIL). Building this sample generates an
executable file that causes an access violation. The message box displayed
resembles the following:

 snmputil.exe - Application Error

 The instruction at <address> referenced memory at <address>. The
 memory could not be "read".

CAUSE

One part of the SNMP run times uses the C run-time routines provided by
CRTDLL.DLL. The other part of the SNMP run times uses the C run-time
routines that the application uses. Because many people are using Visual
C++ to build the samples, the run time routines used are in MSVCRT20.DLL.
The access violation occurs when memory allocated using one run time
version are freed using a different copy of the run time library.

RESOLUTION

One possible solution is to build the sample application using the
CRTDLL.DLL version of the run time library. If you are using the makefile
supplied with the Win32 SDK, one way to accomplish this is to:

1. Copy NTWIN32.MAK from your include directory to the working directory
 for the sample.
2. Change all references to MSVCRT.LIB in NTWIN32.MAK to CRTDLL.LIB.

If you are using a Visual C++ make file, you can:

1. Select the "Ignore All Default Libraries" check box in the Linker
 Project Settings property page.
2. Add CRTDLL.LIB to the "Object/Library Modules" section in the Linker
 Project Settings property page.

NOTE: CRTDLL.LIB does not ship with Visual C++. You can get the CRTDLL.LIB
file from the Win32 SDK in the \MSTOOLS\LIB\CRT\<PLATFORM> directory, where
<PLATFORM> would be replaced with the type of machine you are using (I386,
alpha, and so forth).

If you are using MFC 3.0, you will not be able to use CRTDLL.DLL because
MFC 3.0 uses some functions that are not supplied in CRTDLL.DLL.

STATUS

Microsoft has confirmed that this is a problem in the Microsoft products
listed at the beginning of this article. This problem was corrected in the
Win32 SDK version 3.51.

Additional reference words: 3.50
KBCategory: kbprg kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkSnmp

FIX: StreBlt Sample Causes Windows NT to Stop Responding

PSS ID Number: Q104834
Authored 29-Sep-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

When you run the STREBLT sample, Windows NT may stop responding (hang).

STATUS

This problem was corrected in Windows NT 3.5.

MORE INFORMATION

Steps to Reproduce Problem

1. Build the StreBlt sample using the supplied makefile.

2. The sample displays a dialog box for the main window. There are
 three drop-down list controls titled StretchBltMode, Pattern, and
 Standard ROPs. Select the following in these drop-down lists:

 StretchBltMode BLACKONWHITE
 Pattern NULL_BRUSH
 Standard ROPs PATPAINT

At this point, Windows NT stops responding.

Additional reference words: 3.10
KBCategory: kbprg kbfixlist kbbuglist
KBSubCategory: GdiBmp

FIX: SVCGUID.H Has Wrong UDP Port for SNMP Traps

PSS ID Number: Q129061
Authored 18-Apr-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SYMPTOMS

The file SVCGUID.H used by the Registration and Name Resolution (RnR) APIs
has the UDP trap port for SNMP set to 167:

 #define SVCID_SNMP_TRAP_UDP SVCID_UDP(167)

RESOLUTION

The correct port number for SNMP traps is 162. However, please note that
this entry is not looked at by the SNMP service for Windows NT. Hence, it
cannot cause traps to be sent to the wrong port. SVCGUID.H is used only by
Registration and Name Resolution (RnR) APIs.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
3.51.

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkWinsock

FIX: VirtualLock() on File-Mapped Pages Hangs Computer

PSS ID Number: Q107642
Authored 23-Nov-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

Your computer may stop responding (hang) if you use the VirtualLock()
application programming interface (API) command to lock a file-mapped
page.

STATUS

Microsoft has confirmed this to be a problem in Windows NT and
Windows NT Advanced Server version 3.1. This problem was corrected in
the latest U.S. Service Pack for Windows NT and Windows NT Advanced
Server version 3.1. For information on obtaining the Service Pack,
query on the following word in the Microsoft Knowledge Base (without
the spaces):

 S E R V P A C K

Additional reference words: 3.10 buglist3.10 fixlist3.10.003
KBCategory: kbprg kbfixlist kbbuglist
KBSubCategory: BseMm

FIX: Win32s 1.25a Fix List

PSS ID Number: Q130139
Authored 11-May-1995 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

The following is a list of the known bugs in Win32s version 1.2 that
were fixed in Win32s version 1.25.

 - GlobalAlloc(GMEM_FIXED) from 32-bit .EXE locks memory pages. It is
 more efficient to use GlobalAlloc(GMEM_MOVEABLE) and call GlobalFix()
 if necessary.

 - WINMM16.DLL has no version information.

 - CreateFileMapping() with SEC_NOCOMMIT returns ERROR_INVALID_PARAMETER.

 - PolyPolygon() does not close the polygons.

 - OpenFile() only searches the current directory when only a filename is
 given, not the application directory, the system directory, the windows
 directory, or the directories listed on the path.

 - GetFileInformationByHandle() doesn't return the correct file attribute.

 - GlobalUnlock() sets an error of ERROR_INVALID_PARAMETER.

 - lstrcmp()/lstrcmpi() do not use the collate table correctly.

 - FreeLibrary() in DLL_PROCESS_DETACH crashes the system.

 - FindResource(), LoadResource(), GetProcAddress(), GetModuleFileName(),
 EnumResourceNames(), and other APIs, fail with a NULL hInstance.

 - sndPlaySound() with SND_ASYNC | SND_MEMORY may cause a crash or may work
 poorly.

 - Thread Local Storage (TLS) data is not initialized to 0 in TlsAlloc().

 - The pointer received in the lParam of WM_INITDIALOG in the common dialog
 hook function becomes invalid in the following messages if the pointer
 is "remembered" in a static variable.

 - Stubbed API GetFileAttributesW() does not return -1 on error.

 - Code page CP_MACCP not supported.

 - Invalid LCIDs are not recognized.

 - CreateFile() fails to open an existing file in share mode.

 - GetLocaleInfo() for locale returns system defaults from WIN.INI.

 - GetVolumeInformation() fails with ERROR_INVALID_NAME for volumes
 without a label.

 - VirtualProtect() may miss the last page in an address range.

 - GetLocaleInfo() returns incorrect information for most non-US locales.

 - ANSI/OEM conversions always use code page 437.

 - GetProcAddress() for printer driver APIs is case sensitive.

 - The LanMan APIs are unsupported, but they return 0, which indicates
 that the API was successful. They should return NERR_InvalidAPI (2142).

 - CreateFileW() returns 0 instead of -1 (HFILE_ERROR).

 - lstrcpyn() copies n bytes from source to destination, then appends a
 NULL terminator, instead of copying n-1 bytes and appending the NULL
 terminator.

 - GetDriveType() doesn't report detecting a CD-ROM or a RAM DISK.

 - CRTDLL calls TlsFree() upon each process detach, not just the last.

 - If a DllEntryPoint calls FreeLibrary() when using universal thunks,
 the system can crash.

 - Not all 32-bit DLLs have correct version numbers.

 - GetCurrentDirectory() returns the wrong directory after calling
 GetOpenFileName(). The workaround is to call SetCurrentDirectory(".")
 right after returning from the call to GetOpenFileName().

 - RegEnumValue() and other Registry functions return ERROR_SUCCESS even
 though they are not implemented. Win32s implements only the registry
 functions supported by Windows.

 - AreFileApisANSI()/SetFileApisToANSI()/SetFileApisToOEM() are not
 exported. AreFileApisANSI() should always return TRUE, SetFileApiToOEM()
 should always fail, and SetFileApiToANSI() should always succeed.

 - SetLocaleInfoW()/SetLocateInfoA() are not implemented.

 - GetScrollPos() sets the last error if the scroll position is 0.

 - SetScrollPos() sets the last error if the last scroll position is 0.

 - LoadString() leaks memory if the string is a null string.

 - GetFileVersionInfoSize() fails if the resource section is small and
 close to the end of the file.

 - MoveFile() doesn't call SetLastError() on failure or sets a different

 error than on Windows NT.

 - SetCurrentDirectory() does not work on a CD-ROM drive.

 - GetFileVersionInfoSize() fails if the 2nd parameter is NULL.

 - WSOCK32.DLL is missing exported stubs for unimplemented APIs.

 - Win32s fails to load 64x64 monochrome (black and white) icons.

 - CreateFile() fails when called with a filename with an international
 character.

 - GetCurrentDirectory() returns an OEM string.

 - PrintDlg() causes GP fault if hDevMode!=NULL and another printer is
 selected that uses a larger DevMode buffer.

 - Unicode resources are not properly converted to 8-bit characters.

 - CreateDC() returns an incorrect DEVMODE. This can cause a variety of
 symptoms, like the inability to do a Landscape Print Preview from an
 MFC application or the displayed paper width and height not changing,
 even when you change the paper size.

 - OpenFile() fails on filenames with OEM characters in the name.

 - GetDriveType() fails on a Stacker 3.1 drive.

 - SetCurrentDirectory() fails on Novell client machines.

 - GetProp() returns 0 in the second instance of an app in certain cases.

 - fopen(fn, "w") fails on second call.

 - TLS indices allocated by a module are released when that module is
 freed.

 - CreateWindow() handles STARTUPINFO incorrectly if the application starts
 minimized.

 - CreateFile() creates files with incorrect attributes.

 - Resource sections are now read/write to emulate the behavior of Windows
 NT and Windows 95.

 - Removed the 128K stack limitation.

 - CompareStringW() sometimes uses incorrect locale, primarily Swedish and
 other Scandinavian locales.

 - Added dummy _iob to CRTDLL for applications that reference standard
 handles.

 - Added support for OPENCHANNEL, CLOSECHANNEL, SEXGDIXFORM, and

 DOWNLOADHEADER escapes.

Additional reference words: 1.25 1.25a
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: W32s

FIX: WinDbg FIND Dialog Box Slows Down the System

PSS ID Number: Q105586
Authored 20-Oct-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

Leaving the WinDbg FIND dialog box displayed after searching for some
string causes the CPU to go to 100 percent busy, making the system very
slow.

RESOLUTION

Choosing Cancel in the FIND dialog box allows the system to return to
normal.

STATUS

Microsoft has confirmed this to be a problem in WinDbg. This problem was
corrected in the Win32 SDK, version 3.5.

Additional reference words: 3.10 buglist3.10 fixlist3.50
KBCategory: kbtool kbbuglist kbfixlist
KBSubcategory: TlsWindbg

FIX: Winsock Over Appletalk (DDP) Leaks Memory

PSS ID Number: Q131159
Authored 05-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

A memory leak occurs when you open a socket with address family
AF_APPLETALK, type SOCK_DGRAM, and protocol ATPROTO_BASE + x (where x is a
user-defined number except the ones that are reserved - please refer to the
SDK header file ATALKWSH.H); then once a server is located to send data to,
you send data to it.

Observing with PerfMon, you can see that non-paged memory use keeps on
increasing. It does not decrease even after the application is stopped. If
the application is allowed to continue for a long time, the results are
unpredictable and it is neccessary to restart the computer.

STATUS

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Windows NT
version 3.51.

Additional reference words: 3.50 3.51
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkWinsock

FixBrushOrgEx() and Brush Origins under Win32s

PSS ID Number: Q124191
Authored 21-Dec-1994 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.15, 1.15a, and 1.2

FixBrushOrgEx() is not implemented in the Win32 API, but it is provided for
compatibility with Win32s. If called, the function does nothing, and
returns FALSE.

A brush's origin relates to the origin of the window being painted. If you
move a window, the brush origin needs to be updated or else newly painted
patterns won't line up with the old patterns. On Windows version 3.1, the
system does not automatically update the brush origin when it is selected
into a device context (DC), so applications have to call SetBrushOrg(). On
Windows NT, the system automatically fixes brush origins when necessary.

Win32s uses FixBrushOrgEx() to hide this difference in system behavior. On
Win32s, FixBrushOrgEx() calls SetBrushOrgEx(). A Win32-based application
can check the platform and call SetBrushOrgEx() only if it is Win32s, or it
could simply always call FixBrushOrgEx() wherever a Windows-based
application would call SetBrushOrg() for brush origin tracking.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

FlushViewOfFile() on Remote Files

PSS ID Number: Q95043
Authored 31-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

When flushing a memory-mapped file over a network, FlushViewOfFile()
guarantees that the data has been written from the workstation, but not
that the data resides on the remote disk.

This is because the server may be caching the data on the remote end.
Therefore, FlushViewOfFile() may return before the data has been physically
written to disk.

However, if the file was created via CreateFile() with the flag
FILE_FLAG_WRITE_THROUGH, the remote file system will not perform lazy
writes on the file, and FlushViewOfFile() will return when the actual
physical write is complete.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Format for LANGUAGE Statement in .RES Files

PSS ID Number: Q89822
Authored 30-Sep-1992 Last modified 23-Jun-1995

The information in this article applies to:

- Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The syntax for the LANGUAGE statement in the resource script file is given
as follows on page 289 of the Win32 SDK "Tools User's Guide" manual:

 LANGUAGE major, minor

 major
 Language identifier. Must be one of the constants from WINNLS.H

 minor
 Sublanguage identifier. Must be one of the constants from WINNLS.H

For example, suppose that you want to set the language for the resources in
a file to French. For the major parameter, you would choose the following
constant from the list of language identifiers

 #define LANG_FRENCH 0x0c

and you would have the choice of any of the sublanguages that begin with
SUBLANG_FRENCH in the list of sublanguage identifiers. They are:

 #define SUBLANG_FRENCH 0x01
 #define SUBLANG_FRENCH_BELGIAN 0x02
 #define SUBLANG_FRENCH_CANADIAN 0x03
 #define SUBLANG_FRENCH_SWISS 0x04

RC.EXE does not directly place these constants in the .RES file. It uses
the macro MAKELANGID to turn the parameters into a WORD that corresponds to
a language ID.

NOTE: The following three combinations have special meaning:

Primary language ID Sublanguage ID Meaning

LANG_NEUTRAL SUBLANG_NEUTRAL Language neutral
LANG_NEUTRAL SUBLANG_DEFAULT User default language
LANG_NEUTRAL SUBLANG_SYS_DEFAULT System default language

MORE INFORMATION

The following information is taken from the WINNLS.H file.

 A language ID is a 16-bit value that is the combination of a
 primary language ID and a secondary language ID. The bits are
 allocated as follows:

 +-----------------------+-------------------------+
 | Sublanguage ID | Primary Language ID |
 +-----------------------+-------------------------+
 15 10 9 0 bit

 Language ID creation/extraction macros:

 MAKELANGID - Construct language ID from primary language ID and
 sublanguage ID.
 PRIMARYLANGID - Extract primary language ID from a language ID.
 SUBLANGID - Extract sublanguage ID from a language ID.

The macros are defined as follows

 #define MAKELANGID(p, s) ((((USHORT)(s)) << 10) | (USHORT)(p))
 #define PRIMARYLANGID(lgid) ((USHORT)(lgid) & 0x3ff)
 #define SUBLANGID(lgid) ((USHORT)(lgid) >> 10)

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

FormatMessage() Converts GetLastError() Codes

PSS ID Number: Q94999
Authored 28-Jan-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The FormatMessage() application programming interface (API) allows you
to convert error codes returned by GetLastError() into error strings,
using FORMAT_MESSAGE_FROM_SYSTEM in the dwFlags parameter.

MORE INFORMATION

The following code fragment demonstrates how to get the system message
string:

LPVOID lpMessageBuffer;

FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), //The user default language
 (LPTSTR) &lpMessageBuffer,
 0,
 NULL);

//... now display this string

// Free the buffer allocated by the system

LocalFree(lpMessageBuffer);

REFERENCES

For more information on language identifiers, please see the topic
MAKELANGID in the Win32 Programmer's Reference.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Fractional Point Sizes Not Supported in ChooseFont()

PSS ID Number: Q77843
Authored 28-Oct-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The ChooseFont() common dialog box library routine does not support
fractional point sizes. When a fractional point size is entered, it is
rounded to the nearest integral point size.

Rounding point sizes affects certain printers that support fractional font
sizes. For example, one particular HP LaserJet font cartridge contains an
8.5-point font. The ChooseFont() dialog box displays this font as an 8-
point font.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Freeing Memory for Transactions in a DDEML Client App

PSS ID Number: Q83912
Authored 23-Apr-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

A Dynamic Data Exchange Management Library (DDEML) client application
can request data from a server both synchronously and asynchronously
by calling the DdeClientTransaction function.

To make a synchronous request, the client application specifies
XTYP_REQUEST as the value for the uType parameter to
DdeClientTransaction, and any reasonable value for the uTimeout
parameter.

To make an asynchronous request, the client application specifies
XTYP_REQUEST as the value for the uType parameter to
DdeClientTransaction, and TIMEOUT_ASYNC as the value for the uTimeout
parameter.

The client can also establish an advise loop with a server application
by specifying XTYP_ADVSTART as the value for the uType parameter. In
an advise loop, the client application's callback function receives an
XTYP_ADVDATA transaction each time the specified data item changes in
the server application. (NOTE: This article discusses only hot advise
loops in which changed data is communicated to the application. No
data is transferred for a warm advise loop, only a notification that
the data changed.)

The client application must free the data handle it receives from a
synchronous transaction; however, the client application should not
free the data handle it receives from an asynchronous transaction or
from an advise loop.

MORE INFORMATION

If the client application initiates a synchronous transaction, the
DdeClientTransaction function returns a handle to the requested data.
If the client application initiates an asynchronous transaction, the
DdeClientTransaction function returns either TRUE or FALSE. When the
data becomes available, the DDEML sends the client application an
XTYP_XACT_COMPLETE notification accompanied by a handle to the
requested data. In an active advise loop, the DDEML sends the client
application an XTYP_ADVDATA notification accompanied by a handle to
the updated data.

In the synchronous case, the client application must call
DdeFreeDataHandle before it terminates to free a data handle (and the
associated memory) that it received as the return value from
DdeClientTransaction. If the DDEML server specified HDATA_APPOWNED
when it created the data handle, then the data is invalidated when the
client calls DdeFreeDataHandle; the server must call DdeFreeDataHandle
before terminating to free the associated memory.

In the asynchronous case, the DDEML sends the client application's
callback function an XTYP_XACT_COMPLETE notification when the server
has completed the transaction. A handle to the requested data
accompanies the notification as the hData parameter to the callback
function. This handle is valid until control returns from the client
application's callback function. Once the client application's
callback function returns control, the DDEML may free the data handle
and the client application must not assume that the data handle
received in the callback function remains valid. This fact has two
implications, as follows:

 - The client application cannot call DdeFreeDataHandle on the data
 handle it receives with an XTYP_XACT_COMPLETE transaction. If the
 client invalidates the data handle by freeing it in the client's
 callback function, and the DDEML later attempts to free the handle,
 a Fatal Exit will result.

 - The client application must make a local copy of the data it
 receives with the XTYP_XACT_COMPLETE transaction to use that data
 after the callback function returns.

In an advise loop, the client application should not free the data
handle that it receives as the hData parameter to the callback
function. The DDEML frees the data handle when the client application
returns from its callback function. If the client calls
DdeFreeDataHandle on the data handle, the DDEML will cause a Fatal
Exit when it attempts to free the same data handle.

These rules apply to all data handles, whether or not the server
application specified the HDATA_APPOWNED flag when it created the
handle.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Freeing Memory in a DDEML Server Application

PSS ID Number: Q83413
Authored 12-Apr-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1

SUMMARY

A Dynamic Data Exchange Management Library (DDEML) server application
calls the DdeCreateDataHandle function to allocate a block of memory
for data it will send to a client application. DdeCreateDataHandle
returns a handle to a block of memory that can be passed between
applications.

The server application owns every data handle it creates. However, it
is not necessary to call DdeFreeDataHandle under every circumstance.
This article details the circumstances under which the server
application must call DdeFreeDataHandle and when the DDEML will
automatically free a data handle.

MORE INFORMATION

If the server application specifies the HDATA_APPOWNED flag in the
afCmd parameter to DdeCreateDataHandle, it must explicitly call
DdeFreeDataHandle to free the memory handle. Using HDATA_APPOWNED data
handles is convenient when data, such as system topic information, is
likely to be passed to a client application more than once, because the
server calls DdeCreateDataHandle only once, regardless of the number
of times the data handle is passed to a client application.

When it closes down, a server application must call DdeFreeDataHandle
for each data handle that it has not passed to a client application.
When the server creates a handle without specifying HDATA_APPOWNED,
and passes the handle to a client application in an asynchronous
transaction, the DDEML frees the data handle when the client returns
from its callback function. Therefore, the server is not required to
free the data handle it passes to a client because the DDEML frees the
handle. However, if the data handle is never sent to a client
application, the server must call DdeFreeDataHandle to free the
handle. It is the client application's responsibility to call
DdeFreeDataHandle for any data provided by a server in a synchronous
transaction.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Freeing PackDDElParam() Memory

PSS ID Number: Q94149
Authored 28-Dec-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

When posting DDE messages via PostMessage(), an application first calls
PackDDElParam() and sends its return value (a pointer cast to LPARAM) as
the lParam in PostMessage().

Normally the receiving application is responsible for freeing the structure
[via FreeDDElParam()]. However, if the call to PostMessage() fails, the
posting application must free the packed data. This is also the method used
by 16-bit Windows.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Gaining Access to ACLs

PSS ID Number: Q102098
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

To gain access to a security access control list (SACL), a process must
have the SE_SECURITY_NAME privilege. When requesting access, the calling
process must request ACCESS_SYSTEM_SECURITY in the desired access mask.

There is not a privilege that controls read or write access to a
discretionary access control list (DACL). Instead, access to read and write
an object's DACL is granted by the READ_CONTROL and WRITE_DAC access
rights, respectively. These rights must be specifically granted to the user
(or group containing the user) for DACL read or write access to be granted.
If the owner of an object requests READ_CONTROL or WRITE_DAC, the access
will always be granted.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

GDI Objects and Windows 95 Heaps

PSS ID Number: Q125699
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Under Windows version 3.1, GDI allocates all resources from a single 64K
heap. This limit has caused many applications to run out of GDI resources,
especially when using objects that can really take up a lot of the heap,
like elliptical regions. This caused GDI resources to be dangerously low
when executing several applications at once.

Windows 95 has now introduced a combination of a 16-bit heap and an
additional 32-bit heap. The 16-bit heap is still limited to 64K but the
32-bit heap can grow as large as available memory.

As in Windows version 3.1, the 16-bit GDI.EXE of Windows 95 continues to
have a 16-bit DGROUP segment with a local heap within it, and most logical
objects are still stored in this local heap. The data structures that
describe brushes, bitmap headers, and pens, for example, stay in the 16-bit
heap. All physical objects, like fonts and bitmaps, are now stored in the
32-bit heap. GDI regions have also been moved to the 32-bit heap. Moving
these GDI resources to the 32-bit heap takes the pressure off of the 64K
16-bit heap.

Regions can take up a large amount of resources and were the main source of
problems with GDI memory in Windows version 3.1. This will not be a
limitation in Windows 95 because regions are stored in the 32-bit heap.
Applications will be able to use much more complex regions, and regions
will be more useful now that they are not limited to a local 64K heap.

Windows 95, like Windows NT, will free all GDI resources owned by a 32-bit
process when that process terminates. Windows 95 will also clean up any GDI
resources of 16-bit processes marked as a 4.0 application. Because GDI
objects were sharable between applications in Windows version 3.1, Windows
95 will not immediately clean up GDI resources for 16-bit applications
marked with a version less than 4.0. However, when all 16-bit applications
have finished running, all GDI resources allocated by previous 16-bit
applications will be cleaned up.

Additional reference words: 4.00 Heaps
KBCategory: kbprg
KBSubcategory: GdiGeneral

General Overview of Win32s

PSS ID Number: Q83520
Authored 14-Apr-1992 Last modified 30-Mar-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2

SUMMARY

The following is intended as a general introduction to Win32s. More
information can be found in the "Win32s Programmer's Reference" and by
querying for Knowledge Base articles on "Win32s".

MORE INFORMATION

General Overview

The Win32 API consists of the Window 3.1 (Win16) API, with types stretched
to 32 bits, plus the addition of APIs which offer new functionality, like
threads, security, services, and virtual memory. Applications developed
using the Win32 API are called "Win32-based applications".

Win32s is a set of DLLs and a VxD which allow Win32-based applications to
run on top of Windows or Windows for Workgroups version 3.1. Win32s
supports a subset of the Win32 API, some directly (like memory management)
and some through thunks to the 16-bit systems (particularly GDI and User).
Win32s contains function stubs for the APIs that are not supported, which
return ERROR_NOT_IMPLEMENTED. Win32s also includes 4 new APIs which support
the Universal Thunk (UT). For details on which API are supported under
Win32s, refer to the individual API entries in the help file "Win32 API
Reference." Among the new features gained from Win32 are structured
exception handling (SEH), FP emulation, memory-mapped files, named shared
memory, and sparse memory.

Win32-based applications running on Windows 3.1 will generally be faster
than their Win16 equivalents on Windows 3.1, particularly if they are
memory or floating-point intensive. The actual speed improvement varies
with each application, because it depends on how often you cross the thunk
layer. Each call which uses a thunk is no more than 10 percent slower than
a direct call.

Binary Compatibility

Win32s offers binary compatibility for Win32-based applications on Windows
3.1 and Windows NT.

When you call a Win32 API, two options should be allowed:

 - Option A: Your code should allow for a successful return from the
 function call.

 - Option B: Your code should allow for an unsuccessful return from
 the function call.

For example, if the application is running under Windows 3.1 and a call is
made to one of the supported APIs, then the call returns successfully and
option A is executed. If the call is made while running under Windows NT,
the call again returns successfully and option A should be executed.
However, if running under Windows 3.1 and a Win32 API function is called
that is unsupported, then an error code is returned and option B should be
executed.

If, for example, option A were using a CreateThread() call, then option B
would be alternative code, which would handle the task using a single-
thread solution.

Programming Issues

Win32-based applications cannot use MS-DOS and BIOS interrupts; therefore,
the Win32s VxD has Win32 entries for each Interrupt 21 and the BIOS calls.

The Win32s DLLs may thunk to Win16 when a Win32 application makes a call.
The 32-bit parameters are copied from the 32-bit stack to a 16-bit stack
and the 16-bit entry point is called. The Win32 application has a 128K
stack. When switching to the 16-bit side via UT, the same stack is used,
and a 16:16 stack pointer is created which points to the top of the stack.
The selector base is set so that there is at least an 8K stack for the
16-bit code.

There are other semantic difference between Windows 3.1 and Win32. Windows
3.1 will run applications for Win32 nonpreemptively in a single, shared
address space, while Windows NT runs them preemptively in separate address
spaces. It is therefore important that you test your Win32-based
application on both Windows 3.1 and Windows NT.

If you need to call routines that reside in a 16-bit DLL or Windows from
32-bit code, you can do this using the Win32s Universal Thunk or other
client-server techniques. For a description of UT, please see the
"Win32s Programmer's Reference" and the sample UTSAMPLE.

DDE, OLE, WM_COPYDATA, the clipboard, metafiles, and bitmaps can be used
between 16-bit Windows-based and Win32-based applications on both Windows
3.1 and Windows NT. RPC is not supported from Win32-based applications.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

GetClientRect() Coordinates Are Not Inclusive

PSS ID Number: Q43596
Authored 21-Apr-1989 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The coordinates returned by GetClientRect() are not inclusive. For
example, to draw a border around the edge of the client area, draw it
from the coordinates (Rectangle.left, Rectangle.top) to
(Rectangle.right-1, Rectangle.bottom-1).

Addtional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrPnt

GetCommandLine() Under Win32s

PSS ID Number: Q102762
Authored 10-Aug-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

Under Win32s, GetCommandLine() includes the full drive/path of the
executable, while under Windows NT GetCommandLine() does not include the
full path.

When programs are run from the Program Manager or the File Manager on
Windows 3.1, they are spawned using the full path. As a result, argv[0]
will have the complete path. When a Win32s application is spawned by a 16-
bit application, Windows detects that the application is a Win32s
application. The full path is passed to Win32s regardless of whether or not
WinExec() was invoked with the full path. As a result, 32-bit applications
receive the full path.

When a Win32-based application is spawned from another Win32-based
application, the 32-bit kernel passes the information as given by the
parent process [that is, if a Win32-based application is started via
CreateProcess() from another Win32-based application, argv[0] will contain
the path that the spawning application passed in].

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

GetCurrentTime and GetTickCount Functions Identical

PSS ID Number: Q45702
Authored 13-Jun-1989 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The GetCurrentTime() and GetTickCount() functions are identical. Each
returns the number of milliseconds (+/- 55 milliseconds) since the user
started Windows, and the return value of each function is declared to be a
DWORD.

The following code demonstrates these two functions:

 DWORD dwCurrTime;
 DWORD dwTickCount;
 char szCurrTime[50];

 dwCurrTime = GetCurrentTime ();
 dwTickCount = GetTickCount ();

 sprintf (szCurrTime, "Current time = %lu\nTick count = %lu",
 dwCurrTime, dwTickCount);

 MessageBox (hWnd, szCurrTime, "Times", MB_OK);

NOTE: GetCurrentTime() and GetTickCount() return an unsigned double word
(32-bit DWORD) which gives a maximum count of 4,294,967,296 ticks. This
number will yield a maximum count of 49.71 days which the system keeps
track of running time.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrTim

GetDeviceCaps(hDC, RASTERCAPS) Description

PSS ID Number: Q75912
Authored 09-Sep-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

GetDeviceCaps(hDC, RASTERCAPS) returns the raster capabilities bit
field in the GDIINFO structure, which indicates the raster
capabilities of the device. The RASTERCAPS index of the
GetDeviceCaps() function is documented in the "Microsoft Windows
Software Development Kit Reference Volume 1" on page 4-168. The flags
available include: RC_BANDING, RC_BITBLT, RC_BITMAP64, RC_DI_BITMAP,
RC_DIBTODEV, RC_GDI20_OUTPUT, RC_PALETTE, RC_SCALING, RC_STRETCHBLT,
and RC_STRETCHDIB. The GDIINFO structure itself is documented in the
"Microsoft Windows Device Development Kit Device Driver Adaptation
Guide."

An application should use GetDeviceCaps() to query the printer driver
for device capabilities. For example, before printing a bitmap larger
than 64K, the application should query the driver using
GetDeviceCaps() with the index RASTERCAPS and the flag RC_BITMAP64. If
the application fails to test for the capability and prints a bitmap
larger than 64K, unexpected printer output may occur if the driver
does not support bitmaps larger than 64K.

In particular, if the driver does not support a capability, GDI will
attempt to simulate it using a more fundamental capability of the
driver. However, the resulting GDI simulation is usually slower, is of
lower quality, or differs in some way from a device driver
implementation of the capability.

 Differences in
 GDI Call to Invoke Functionality Resulting
Field Capability Capability or from Supporting or not
Name or Function Function Supporting Capability
------|-------------|--------------------|----------------------------
0	BitBlt		?
 1 | Requires | | ?
 | banding | |
------|-------------|--------------------|----------------------------
 2 | Requires | | ?
 | scaling | |
------|-------------|--------------------|----------------------------
 3 | Supports | | ?

 | >64K bitmaps| |
------|-------------|--------------------|----------------------------
 4 | Supports | ExtTextOut | GDI will call StrBlt() once
 | ExtTextOut, | | for each character to
 | FastBorder, | | simulate the ExtTextOut()
 | GetCharWidth| | function's ability to
 | | | position proportionally-
 | | | spaced characters. This can
 | | | be very slow. GDI simulates
 | | | bold text by overstriking
 | | | one or more times. This
 | | | fails on laser printers.
 | | | Laser printer drivers that
 | | | support ExtTextOut() offset
 | | | the text before overstriking.
 | | |
 | | FastBorder |
 | | |
 | | GetCharWidth | Returns 0 if driver does
 | | | not support GetCharWidth;
 | | | otherwise, it calls
 | | | ExtTextOut() or StrBlt()
 | | | with count = -1 to obtain
 | | | the width of each
 | | | individual character.
------|-------------|--------------------|----------------------------
 5 | Has state | |
 | block | |
------|-------------|--------------------|----------------------------
 6 | Saves | |
 | bitmaps in | |
 | shadow | |
 | memory | |
------|-------------|--------------------|----------------------------
 7 | RC_DI_BITMAP| Supports Get and | If GDI is called upon to
 | | Set DIBs and RLEs | copy a RLE bitmap that
 | | | contains a transparent
 | | | window (region not defined
 | | | by the bitmap), the window
 | | | will be filled by the
 | | | current background color.
 | | |
 | | | The destination for any GDI
 | | | DIB operation is a
 | | | monochrome bitmap.
 | | |
 | | | Unidrv offers a variety of
 | | | halftone dithering
 | | | techniques to simulate a
 | | | range of intensities on
 | | | black and white and color
 | | | printers. GDI does not.
 | | | Unidrv offers intensity
 | | | adjustment to darken and
 | | | lighten halftone output.

 | | | Unidrv does not support RLE
 | | | DIBs at present.
------|-------------|--------------------|----------------------------
 8 | RC_PALETTE | Performs color |
 | | palette management |
------|-------------|--------------------|----------------------------
 9 | RC_DIBTODEV | Supports | See comments above for
 | | SetDIBitsToDevice | RC_DI_BITMAP
------|-------------|--------------------|----------------------------
 10 | RC_BIGFONTS | Supports Windows | This flag specifies the
 | | 3.0 FONTINFO | format of the FONTINFO
 | | structure format | structure passed between
 | | | GDI's SelectObject() call
 | | | and the driver's
 | | | RealizeFont() function. If
 | | | a bit is set, the Windows
 | | | 3.0 format is used.
 | | | Otherwise, the Windows 2.0
 | | | font file format is used.
------|-------------|--------------------|----------------------------
 11 |RC_STRETCHBLT| Supports StretchBlt|
------|-------------|--------------------|----------------------------
 12 | RC_FLOODFILL| Supports flood fill|
------|-------------|--------------------|----------------------------
 13 |RC_STRETCHDIB| Supports | See comments above for
 | | StretchDIBits | RC_DI_BITMAP. Additionally,
 | | | Unidrv has these limits on
 | | | the degree of stretching
 | | | and shrinking supported:
 | | |
 | | | The X and Y axes may be
 | | | scaled independently.
 | | |
 | | | The maximum scale-up factor
 | | | is 256.
 | | |
 | | | The maximum product of the
 | | | X and Y scale-down factors
 | | | is 256.
 | | |
 | | | Therefore, if both axes are
 | | | scaled down equally, the
 | | | maximum scale-down factor
 | | | for each axis is 16.
------|-------------|--------------------|----------------------------

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDc

GetGlyphOutline() Native Buffer Format

PSS ID Number: Q87115
Authored 22-Jul-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The GetGlyphOutline function provides a method for an application to
retrieve the lowest-level information about a glyph in the TrueType
environment. This article describes the format of the data the
GetGlyphOutline function returns.

MORE INFORMATION

A glyph outline is a series of contours that describe the glyph. Each
contour is defined by a TTPOLYGONHEADER data structure, which is
followed by as many TTPOLYCURVE data structures as are required to
describe the contour.

Each position is described by a POINTFX data structure, which
represents an absolute position, not a relative position. The starting
and ending point for the glyph is given by the pfxStart member of the
TTPOLYGONHEADER data structure.

The TTPOLYCURVE data structures fall into two types: a TT_PRIM_LINE
record or a TT_PRIM_QSPLINE record. A TT_PRIM_LINE record is a series
of points; lines drawn between the points describe the outline of the
glyph. A TT_PRIM_QSPLINE record is a series of points defining the
quadratic splines (q-splines) required to describe the outline of the
character.

In TrueType, a q-spline is defined by three points (A, B, and C),
where points A and C are on the curve and point B is off the curve.
The equation for each q-spline is as follows (xA represents the
x-coordinate of point A, yA represents the y-coordinate of point A,
and so on)

 x(t) = (xA-2xB+xC)*t^2 + (2xB-2xA)*t + xA
 y(t) = (yA-2yB+yC)*t^2 + (2yB-2yA)*t + yA

where t varies from 0.0 to 1.0.

The format of a TT_PRIM_QSPLINE record is as follows:

 - Point A on the q-spline is the current position (either pfxStart in

 the TTPOLYGONHEADER, the starting point for the TTPOLYCURVE, or the
 ending point of the previous TTPOLYCURVE).

 - Point B is the current point in the record.

 - Point C is as follows:

 - If the record has two or more points following point B, point C
 is the midpoint between point B and the next point in the
 record.
 - Otherwise, point C is the point following point B.

The following code presents the algorithm used to process a
TT_PRIM_QSPLINE record. While this code demonstrates how to extract
q-splines from a TT_PRIM_QSPLINE record, it is not appropriate for use
in an application.

pfxA = pfxStart; // Starting point for this polygon

for (u = 0; u < cpfx - 1; u++) // Walk through points in spline
 {
 pfxB = apfx[u]; // B is always the current point
 if (u < cpfx - 2) // If not on last spline, compute C
 {
 pfxC.x = (pfxB.x + apfx[u+1].x) / 2; // x midpoint
 pfxC.y = (pfxB.y + apfx[u+1].y) / 2; // y midpoint
 }
 else // Else, next point is C
 pfxC = apfx[u+1];

 // Draw q-spline
 DrawQSpline(hdc, pfxA, pfxB, pfxC);
 pfxA = pfxC; // Update current point
 }

The algorithm above manipulates points directly, using floating-point
operators. However, points in q-spline records are stored in a FIXED
data type. The following code demonstrates how to manipulate FIXED
data items:

FIXED fx;
long *pl = (long *)&fx;

// Perform all arithmetic on *pl rather than on fx
*pl = *pl / 2;

The following function converts a floating-point number into the FIXED
representation:

FIXED FixedFromDouble(double d)
{
 long l;

 l = (long) (d * 65536L);
 return *(FIXED *)&l;

}

In a production application, rather than writing a DrawQSpline
function to draw each q-spline individually, it is more efficient to
calculate points on the q-spline and store them in an array of POINT
data structures. When the calculations for a glyph are complete, pass
the POINT array to the PolyPolygon function to draw and fill the
glyph.

The following example presents the data returned by the
GetGlyphOutline for the lowercase "j" glyph in the 24-point Arial font
of the 8514/a (Small Fonts) video driver:

GetGlyphOutline GGO_NATIVE 'j'
 dwrc = 208 // Total native buffer size in bytes
 gmBlackBoxX, Y = 6, 29 // Dimensions of black part of glyph
 gmptGlyphOrigin = -1, 23 // Lower-left corner of glyph
 gmCellIncX, Y = 7, 0 // Vector to next glyph origin

TTPOLYGONHEADER #1 // Contour for dot on "j"
 cb = 44 // Total size of dot polygon
 dwType = 24 // TT_POLYGON_TYPE
 pfxStart = 2.000, 20.000 // Start at lower-left corner of dot

 TTPOLYCURVE #1
 wType = TT_PRIM_LINE
 cpfx = 3
 pfx[0] = 2.000, 23.000
 pfx[1] = 5.000, 23.000
 pfx[2] = 5.000, 20.000 // Automatically close to pfxStart

TTPOLYGONHEADER #2 // Contour for body of "j"
 cb = 164 // Total size is 164 bytes
 dwType = 24 // TT_POLYGON_TYPE
 pfxStart = -1.469, -5.641

 TTPOLYCURVE #1 // Finish flat bottom end of "j"
 wType = TT_PRIM_LINE
 cpfx = 1
 pfx[0] = -0.828, -2.813

 TTPOLYCURVE #2 // Make hook in "j" with spline
 // Point A in spline is end of TTPOLYCURVE #1
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // two points in spline -> one curve
 pfx[0] = -0.047, -3.000 // This is point B in spline
 pfx[1] = 0.406, -3.000 // Last point is always point C

 TTPOLYCURVE #3 // Finish hook in "j"
 // Point A in spline is end of TTPOLYCURVE #2
 wType = TT_PRIM_QSPLINE
 cpfx = 3 // Three points -> two splines
 pfx[0] = 1.219, -3.000 // Point B for first spline
 // Point C is (pfx[0] + pfx[1]) / 2

 pfx[1] = 2.000, -1.906 // Point B for second spline
 pfx[2] = 2.000, 0.281 // Point C for second spline

 TTPOLYCURVE #4 // Majority of "j" outlined by this polyline
 wType = TT_PRIM_LINE
 cpfx = 3
 pfx[0] = 2.000, 17.000
 pfx[1] = 5.000, 17.000
 pfx[2] = 5.000, -0.250

 TTPOLYCURVE #5 // start of bottom of hook
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // One spline in this polycurve
 pfx[0] = 5.000, -3.266 // Point B for spline
 pfx[1] = 4.188, -4.453 // Point C for spline

 TTPOLYCURVE #6 // Middle of bottom of hook
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // One spline in this polycurve
 pfx[0] = 3.156, -6.000 // B for spline
 pfx[1] = 0.766, -6.000 // C for spline

 TTPOLYCURVE #7 // Finish bottom of hook and glyph
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // One spline in this polycurve
 pfx[0] = -0.391, -6.000 // B for spline
 pfx[1] = -1.469, -5.641 // C for spline

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiTt

GetInputState Is Faster Than GetMessage or PeekMessage

PSS ID Number: Q35605
Authored 16-Sep-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

This article describes a method to quickly determine whether an
application for the Microsoft Windows graphical environment has any
keyboard or mouse messages in its queue without calling the GetMessage
or PeekMessage functions.

NOTE: In Win32, GetInputState is thread-local only.

MORE INFORMATION

The GetInputState function returns this information more quickly than
GetMessage or PeekMessage. GetInputState returns TRUE (nonzero) if
either a keyboard or mouse message is in the application's input
queue. If the application must distinguish between a mouse and a
keyboard message, GetInputState returns the value 2 for a keyboard and
the value 1024 for a mouse message.

Because difficulties may arise if the application loses the input
focus, use GetInputState only in tight loop conditions where execution
speed is critical.

In Win32, message queues are not global as they are in 16-bit Windows. The
message queues are local to the thread. When you call GetInputState, you
are checking to see if there are mouse or keyboard messages for the calling
thread only. If a window created by another thread in the application has
the keyboard input waiting, GetInputState will not be able to check for
those messages.

Additional reference words: 3.00 3.10 3.50 4.00 95 yield
KBCategory: kbprg
KBSubcategory: UsrMsg

GetLastError() May Differ Between Windows 95 and Windows NT

PSS ID Number: Q127991
Authored 22-Mar-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

The extended error codes returned by the GetLastError() API are not
guaranteed to be the same under Windows 95 and Windows NT. This difference
applies to extended error codes generated by calls to GDI, Window
Management, and System Services APIs.

The set of potential error codes returned by any particular Win32 API
depends on many underlying components, including system kernel-mode
components and loaded drivers. The extended error codes are not a part of
the Win32 specification. Therefore, they can change as operating system and
driver code is changed.

It is impossible to get the error codes for each API in synch across
operating system and platforms. Windows NT and Windows 95 have different
code bases. Third-party drivers return error codes that are mapped to Win32
error codes. In addition, it would be difficult to accurately maintain
error code information in the Win32 Programmer's Reference. Therefore, this
information is not included in the documentation.

In general, you should not rely on GetLastError() returning the same values
under Windows 95 and Windows NT. Sometimes, an API will fail and
GetLastError() will return 0 (ERROR_SUCCESS) under Windows 95. This is
because some of the APIs do not set error codes under Windows 95.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseMisc UsrMisc GdiMisc

GetSystemMetrics(SM_CMOUSEBUTTONS) Fails Under Win32s

PSS ID Number: Q124836
Authored 12-Jan-1995 Last modified 24-Feb-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.15, 1.15a, and 1.20

Under Win32s, the Win32 API GetSystemMetrics() is implemented as a direct
thunk to Windows version 3.1. Therefore, the call will return whatever
Windows version 3.1 would return for a similar call to the Windows API
GetSystemMetrics().

GetSystemMetrics() returns zero for all unrecognized parameters. Under
Windows, this includes the new flag SM_CMOUSEBUTTONS, which was introduced
in the Win32 API. Therefore, avoid using the SM_CMOUSEBUTTONS flag when
your Win32-based application is running under Win32s.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Getting a Dialog to Use an Icon When Minimized

PSS ID Number: Q114612
Authored 08-May-1994 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The standard Windows dialog box does not have an icon when it is minimized.
A dialog box can be made to use an icon by replacing the standard dialog
box class with a private dialog box class.

MORE INFORMATION

The standard dialog box class specifies NULL as the value of the hIcon
field of its WNDCLASS structure. So no icon is drawn when the standard
dialog box is minimized.

An icon can be specified by getting the dialog to use a private class as
follows:

1. Register a private class.

 WNDCLASS wc;

 wc.style = CS_DBLCLKS | CS_SAVEBITS | CS_BYTEALIGNWINDOW;
 wc.lpfnWndProc = DefDlgProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = DLGWINDOWEXTRA;
 wc.hInstance = hinst;
 wc.hIcon = LoadIcon(hinst, "DialogIcon");
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = COLOR_WINDOW + 1;
 wc.lpszMenuName = NULL;
 wc.lpszClassName = "MyDlgClass";
 RegisterClass(&wc);

 NOTE: The default dialog window procedure, DefDlgProc(), is used as the
 window procedure of the class. This causes windows of this class to
 behave as standard dialogs. The cbWndExtra field has to be assigned to
 DLGWINDOWEXTRA - the dialog box stores its internal state information in
 these extra window bytes. The icon to be used when the dialog box is
 minimized is assigned to the hIncon field.

2. Get the dialog box to use the private class.

 Use the CLASS statement in the dialog box template to get the dialog box
 to use the private class:

 IDD_MYDIALOG DIALOG 0, 0, 186, 92
 CLASS "MyDlgClass"
 :

3. Create the dialog box using DialogBox() or CreateDialog().

 DialogBox (hinst,
 MAKEINTRESOURCE (IDD_MYDIALOG),
 NULL,
 (DLGPROC)MyDlgFunc);

 MyDlgFunc() is the dialog function implemented by the application. When
 the dialog box is minimized, it will use the icon specified in the
 private class.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Getting and Using a Handle to a Directory

PSS ID Number: Q105306
Authored 17-Oct-1993 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

CreateDirectory() can be used to open a new directory. An existing
directory can be opened by calling CreateFile(). To open an existing
directory with CreateFile(), it is necessary to specify the flag
FILE_FLAG_BACKUP_SEMANTICS. The following code shows how this can be done:

 HANDLE hFile;

 hFile = CreateFile("c:\\mstools",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_BACKUP_SEMANTICS,
 NULL
);
 if(hFile == INVALID_HANDLE_VALUE)
 MessageBox(NULL, "CreateFile() failed", NULL, MB_OK);

The handle obtained can be used to obtain information about the directory
or to set information about the directory. For example:

 BY_HANDLE_FILE_INFORMATION fiBuf;
 FILETIME ftBuf;
 SYSTEMTIME stBuf;
 char msg[40];

 GetFileInformationByHandle(hFile, &fiBuf);
 FileTimeToLocalFileTime(&fiBuf.ftLastWriteTime, &ftBuf);
 FileTimeToSystemTime(&ftBuf, &stBuf);
 wsprintf(msg, "Last write time is %d:%d %d/%d/%d",
 stBuf.wHour,stBuf.wMinute,stBuf.wMonth,stBuf.wDay,stBuf.wYear);
 MessageBox(NULL, msg, NULL, MB_OK);

MORE INFORMATION

Opening directories with CreateFile is not supported on Windows 95.

This code does not work on Win32s, because MS-DOS does not support opening
a directory. If you are looking for the creation time of a directory, use
FindFirstFile(), because it works on all platforms.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Getting Floppy Drive Information

PSS ID Number: Q115828
Authored 05-Jun-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

To get the media type(s) supported by a floppy drive, it is necessary to
call CreateFile() to get a handle to the drive and then DeviceIoControl()
to get the information. However, if there is no floppy disk in the floppy
drive, the following message box may appear when CreateFile() is called for
drive A (\\.\a:):

 There is no disk in the drive. Please insert a disk into drive A:

When calling CreateFile(), be sure to use 0 for the access mode and
FILE_SHARE_READ for the share mode so that the user will not be prompted to
insert a floppy disk:

 CreateFile(
 szFileName,
 0,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL
);

Another way to avoid the message box prompt is to put

 SetErrorMode(SEM_FAILCRITICALERRORS);

before the call to CreateFile().

MORE INFORMATION

The following sample code is based on the code in the FLOPPY SDK sample,
but it simply displays the media type(s) supported by floppy drive A. The
code demonstrates one way to retrieve the supported media without requiring
you to insert a floppy disk in the drive.

Sample Code

#include <windows.h>
#include <stdio.h>

#include <winioctl.h>

DISK_GEOMETRY SupportedGeometry[20];
DWORD SupportedGeometryCount;

VOID
GetSupportedGeometrys(HANDLE hDisk)
{
 DWORD ReturnedByteCount;

 if(DeviceIoControl(
 hDisk,
 IOCTL_DISK_GET_MEDIA_TYPES,
 NULL,
 0,
 SupportedGeometry,
 sizeof(SupportedGeometry),
 &ReturnedByteCount,
 NULL
))
 SupportedGeometryCount = ReturnedByteCount / sizeof(DISK_GEOMETRY);

 else SupportedGeometryCount = 0;
}

VOID
PrintGeometry(PDISK_GEOMETRY lpGeometry)
{
 LPSTR MediaType;

 switch (lpGeometry->MediaType) {
 case F5_1Pt2_512:
 MediaType = "5.25, 1.2MB, 512 bytes/sector";
 break;
 case F3_1Pt44_512:
 MediaType = "3.5, 1.44MB, 512 bytes/sector";
 break;
 case F3_2Pt88_512:
 MediaType = "3.5, 2.88MB, 512 bytes/sector";
 break;
 case F3_20Pt8_512:
 MediaType = "3.5, 20.8MB, 512 bytes/sector";
 break;
 case F3_720_512:
 MediaType = "3.5, 720KB, 512 bytes/sector";
 break;
 case F5_360_512:
 MediaType = "5.25, 360KB, 512 bytes/sector";
 break;
 case F5_320_512:
 MediaType = "5.25, 320KB, 512 bytes/sector";
 break;
 case F5_320_1024:
 MediaType = "5.25, 320KB, 1024 bytes/sector";
 break;

 case F5_180_512:
 MediaType = "5.25, 180KB, 512 bytes/sector";
 break;
 case F5_160_512:
 MediaType = "5.25, 160KB, 512 bytes/sector";
 break;
 case RemovableMedia:
 MediaType = "Removable media other than floppy";
 break;
 case FixedMedia:
 MediaType = "Fixed hard disk media";
 break;
 default:
 MediaType = "Unknown";
 break;
 }
 printf(" Media Type %s\n", MediaType);
 printf(" Cylinders %d, Tracks/Cylinder %d, Sectors/Track %d\n",
 lpGeometry->Cylinders.LowPart, lpGeometry->TracksPerCylinder,
 lpGeometry->SectorsPerTrack
);
}

void main(int argc, char *argv[], char *envp[])
{
 HANDLE hDrive;
 UINT i;

 hDrive = CreateFile(
 "\\\\.\\a:",
 0,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL
);
 if (hDrive == INVALID_HANDLE_VALUE)
 {
 printf("Open failed: %d\n", GetLastError());
 ExitProcess(1);
 }

 GetSupportedGeometrys(hDrive);

 printf("\nDrive A supports the following disk geometries\n");
 for(i=0; i<SupportedGeometryCount; i++)
 {
 printf("\n");
 PrintGeometry(&SupportedGeometry[i]);
 }
 printf("\n");
}

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseMisc

Getting Real Handle to Thread/Process Requires Two Calls

PSS ID Number: Q90470
Authored 15-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The API GetCurrentThread() returns a pseudo-handle rather than the real
handle to the thread. To get the real handle to the thread, you need to use
DuplicateHandle() using the pseudo-handle that is returned from
GetCurrentThread(). In addition, to get the real handle to a process, you
need to call DuplicateHandle() after calling GetCurrentProcess().

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Getting Resources from 16-Bit DLLs Under Win32s

PSS ID Number: Q105761
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

A Win32-based application running under Win32s can load a 16-bit dynamic-
link library (DLL) using LoadLibrary() and free it with FreeLibrary(). This
behavior is allowed primarily so that GetProcAddress() can be called for
printer driver application programming interfaces (APIs).

Calling FindResource() with the handle that LoadLibrary() returns to the
DLL that it just loaded results in an access violation. However, the
Win32-based application can use the following APIs with this handle

 LoadBitmap
 LoadCursor
 LoadIcon

because this results in USER.EXE (16-bit) making calls to KERNEL.EXE.

If you go through a Universal Thunk to get raw resource data from the
16-bit DLL, it is necessary to convert the resource to 32-bit format,
because the resource format is different from the 16-bit format. The 32-bit
format is described in the Software Development Kit (SDK) file
DOC\SDK\FILEFRMT\RESFMT.TXT.

To determine whether a DLL is a 32-bit or 16-bit DLL, check the DLL header.
The DWORD at offset 0x3C indicates where to look for the PE signature.
Compare the 4 bytes there to 0x00004550 to determine whether this is a
Win32 DLL.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Getting the Filename Given a Window Handle

PSS ID Number: Q119163
Authored 09-Aug-1994 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

To find the filename of the program that created a given window under
Windows, you would use GetWindowLong(hWnd, GWL_HINSTANCE) to find the
module handle and then GetModuleFileName() to find the filename. This
method cannot be used under Windows NT because instance handles are not
global, but are unique to the address space in which the application is
running.

If the application that created the window is a Windows-based application,
the name returned is "ntvdm". To get the actual filename, you need to spawn
a Win16 application that will call GetModuleFileName() and pass the
filename back to your application using some form of interprocess
communication (IPC).

MORE INFORMATION

To find the filename of an application once you have its window handle,
first use GetWindowThreadProcessId() to find the process ID (PID) of the
process that created the window. Using the PID, query the registry for the
performance data associated with the process. To do this, you have to
enumerate all processes in the system, comparing each PID to the PID of the
process that you are looking for, until the data for that process is found.
(This data includes the name of the process.)

The following sample code demonstrates how to find the filename of the
Program Manager, PROGMAN.EXE, after obtaining its window handle:

Sample Code

 #include <windows.h>
 #include <stdio.h>
 #include <string.h>

 #define Key "SOFTWARE\\Microsoft\\Windows
 NT\\CurrentVersion\\Perflib\\009"

 void GetIndex(char *, char *);
 void DisplayFilename(DWORD);

 /**\

 * Function: void main() *
 * *
 * Purpose : Application entry point *
 * *

 void main()
 {
 HWND hWnd;
 DWORD dwActiveProcessId;

 // Get window handle of Program Manager's main window.

 hWnd = FindWindow("Progman", NULL);

 // Get PID of Program Manager.

 GetWindowThreadProcessId(hWnd, &dwActiveProcessId);

 // Display name of Program Manager's executable file.

 printf("Searching for filename of Program Manager...\n");
 DisplayFilename(dwActiveProcessId);
 }

 /**\
 * Function: void DisplayFilename(DWORD) *
 * *
 * Purpose : Display executable filename of the process whose PID *
 * is passed in as a parameter. *
 * *
 * Comment : The information is retrieved from the performance *
 * data in the registry. *
 * *

 void DisplayFilename(DWORD dwProcessId)
 {
 DWORD CurrentProcessId;
 BOOL bContinue = TRUE;
 char szIndex[256] = "";
 DWORD dwBytes = 12000;
 DWORD dwProcessIdOffset;
 int i;

 PPERF_DATA_BLOCK pdb;
 PPERF_OBJECT_TYPE pot;
 PPERF_INSTANCE_DEFINITION pid;
 PPERF_COUNTER_BLOCK pcb;
 PPERF_COUNTER_DEFINITION pcd;

 // Get the index for the PROCESS object.
 GetIndex("Process", szIndex);

 // Get memory for PPERF_DATA_BLOCK.
 pdb = (PPERF_DATA_BLOCK) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,

 dwBytes);

 // Get performance data.
 while(RegQueryValueEx(HKEY_PERFORMANCE_DATA, (LPTSTR)szIndex, NULL,
 NULL, (LPBYTE)pdb, &dwBytes) ==
 ERROR_MORE_DATA)
 {
 // Increase memory.
 dwBytes += 1000;

 // Allocated memory is too small; reallocate new memory.
 pdb = (PPERF_DATA_BLOCK) HeapReAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,
 (LPVOID)pdb,
 dwBytes);
 }

 // Get PERF_OBJECT_TYPE.
 pot = (PPERF_OBJECT_TYPE)((PBYTE)pdb + pdb->HeaderLength);

 // Get the first counter definition.
 pcd = (PPERF_COUNTER_DEFINITION)((PBYTE)pot + pot->HeaderLength);

 // Get index value for ID_PROCESS.
 szIndex[0] = '\0';
 GetIndex("ID Process", szIndex);

 for(i=0; i< (int)pot->NumCounters; i++)
 {
 if (pcd->CounterNameTitleIndex == (DWORD)atoi(szIndex))
 {
 dwProcessIdOffset = pcd->CounterOffset;
 break;
 }

 pcd = ((PPERF_COUNTER_DEFINITION)((PBYTE)pcd + pcd->ByteLength));
 }

 // Get the first instance of the object.
 pid = (PPERF_INSTANCE_DEFINITION)((PBYTE)pot + pot-
 >DefinitionLength);

 // Get the name of the first process.
 pcb = (PPERF_COUNTER_BLOCK) ((PBYTE)pid + pid->ByteLength);
 CurrentProcessId = *((DWORD *) ((PBYTE)pcb + dwProcessIdOffset));

 // Find the process object for PID passed in, then print its
 // filename.

 for(i = 1; i < pot->NumInstances && bContinue; i++)
 {
 if(CurrentProcessId == dwProcessId)
 {
 printf("The filename is %ls.exe.\n",
 (char *) ((PBYTE)pid + pid->NameOffset));

 bContinue = FALSE;
 }
 else
 {
 pid = (PPERF_INSTANCE_DEFINITION) ((PBYTE)pcb + pcb-
 >ByteLength);
 pcb = (PPERF_COUNTER_BLOCK) ((PBYTE)pid + pid->ByteLength);
 CurrentProcessId = *((DWORD *)((PBYTE)pcb +
 dwProcessIdOffset));
 }
 }
 if(bContinue == TRUE)
 printf("Not found.\b");

 // Free the allocated memory.
 if(!HeapFree(GetProcessHeap(), 0, (LPVOID)pdb))
 printf("HeapFree failed in main.\n");

 // Close handle to the key.
 RegCloseKey(HKEY_PERFORMANCE_DATA);
 }

 /**\
 * Function: void GetIndex(char *, char *) *
 * *
 * Purpose : Get the index for the given counter *
 * *
 * Comment : The index is returned in the parameter szIndex *
 * *

 void GetIndex(char *pszCounter, char *szIndex)
 {
 char* pszBuffer;
 char* pszTemp;
 char szObject[256] = "";
 DWORD dwBytes;
 HANDLE hKeyIndex;
 int i = 0;
 int j = 0;

 // Open the key.
 RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 Key,
 0, KEY_READ,
 &hKeyIndex);

 // Get the size of the counter.
 RegQueryValueEx(hKeyIndex,
 "Counters",
 NULL, NULL, NULL,
 &dwBytes);

 // Allocate memory for the buffer.
 pszBuffer = (char *) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,

 dwBytes);

 // Get the titles and counters.
 RegQueryValueEx(hKeyIndex,
 "Counters",
 NULL, NULL,
 (LPBYTE)pszBuffer,
 &dwBytes);

 // Find the index value for PROCESS.
 pszTemp = pszBuffer;

 while(i != (int)dwBytes)
 {
 while (*(pszTemp+i) != '\0')
 {
 szIndex[j] = *(pszTemp+i);
 i++;
 j++;
 }
 szIndex[j] = '\0';
 i++;
 j = 0;
 while (*(pszTemp+i) != '\0')
 {
 szObject[j] = *(pszTemp+i);
 i++;
 j++;
 }
 szObject[j] = '\0';
 i++;
 j = 0;
 if(*(pszTemp+i) == '\0')
 i++;
 if(strcmp(szObject, pszCounter) == 0)
 break;
 }

 // Deallocate the memory.
 HeapFree(GetProcessHeap(), 0, (LPVOID)pszBuffer);

 // Close the key.
 RegCloseKey(hKeyIndex);
 }

REFERENCES

For more information on working with the performance data, please see one
or all of the following references:

 - The "Win32 Programmer's Reference."

 - The "Windows NT Resource Kit," volume 3.

 - The source code for PView that is included in the Win32 SDK.

 - The "Windows/MS-DOS Developer's Journal," April 1994.

Additional reference words: 3.10 3.50 file name
KBCategory: kbprg
KBSubcategory: BseMisc

Getting the MAC Address for an Ethernet Adapter

PSS ID Number: Q118623
Authored 25-Jul-1994 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

To get the Media Access Control (MAC) address for an ethernet adapter
programmatically, you can use NetBIOS if your card is bound to NetBIOS. Use
the Netbios() NCBASTAT command and provide a "*" as the name in the
NCB.ncb_CallName field. This is demonstrated in the sample code below.

With the NetBEUI and IPX transports, the same information can be obtained
at a command prompt by using:

 net config workstation

The ID given is the MAC address.

Sample Code

 #include <windows.h>
 #include <wincon.h>
 #include <stdlib.h>
 #include <stdio.h>
 #include <time.h>

 typedef struct _ASTAT_
 {
 ADAPTER_STATUS adapt;
 NAME_BUFFER NameBuff [30];
 }ASTAT, * PASTAT;

 ASTAT Adapter;

 void main (void)
 {
 NCB Ncb;
 UCHAR uRetCode;
 char NetName[50];

 memset(&Ncb, 0, sizeof(Ncb));
 Ncb.ncb_command = NCBRESET;
 Ncb.ncb_lana_num = 0;

 uRetCode = Netbios(&Ncb);
 printf("The NCBRESET return code is: 0x%x \n", uRetCode);

 memset(&Ncb, 0, sizeof (Ncb));
 Ncb.ncb_command = NCBASTAT;

 Ncb.ncb_lana_num = 0;

 strcpy(Ncb.ncb_callname, "* ");
 Ncb.ncb_buffer = (char *) &Adapter;
 Ncb.ncb_length = sizeof(Adapter);

 uRetCode = Netbios(&Ncb);
 printf("The NCBASTAT return code is: 0x%x \n", uRetCode);
 if (uRetCode == 0)
 {
 printf("The Ethernet Number is: %02x%02x%02x%02x%02x%02x\n",
 Adapter.adapt.adapter_address[0],
 Adapter.adapt.adapter_address[1],
 Adapter.adapt.adapter_address[2],
 Adapter.adapt.adapter_address[3],
 Adapter.adapt.adapter_address[4],
 Adapter.adapt.adapter_address[5]);
 }
 }

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: NtwkNetbios

Getting the Net Time on a Domain

PSS ID Number: Q98722
Authored 12-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

When trying to execute

 net time /domain:egdomain /set

you may get a message saying the account is not known or the password is
invalid. This can happen if you are logged on using an account whose name
is spelled "Administrator", but the account is a different Administrator
account than the one on the domain controller. For example, if you are
logged on as EGMACHINE\Administrator, and attempt

 net time /domain:egdomain /set

you will get an error message because EGMACHINE\Administrator is not the
same account as EGDOMAIN\Administrator.

The solution is to log off EGMACHINE, log back on as EGMACHINE\PowerUsr1,
then execute the command. Note that a privilege is needed to set the time
on a machine. In the previous example, the account, EGMACHINE\PowerUsr1,
was used to remind us that power users have the needed privilege.

MORE INFORMATION

When running Windows NT while logged on to a domain, doing a NET TIME
without the /DOMAIN parameter, as mentioned above, probably will not yield
the desired results. However, because you are logged on to a domain, you
can do

 net time /domain /set

and a domain controller from the domain you are logged on to will be used.
In other words, if you are logged on to a domain, the /DOMAIN parameter is
necessary, but the actual domain name can optionally be left to default to
the domain you're currently participating in. If your machine is joined to
the a domain, that domain will be the default domain for NET TIME /DOMAIN.

If you are trying to get the time from EGDOMAIN and have done a prior

 net use \\egdomain\ipc$ /user:username

where username can be either a legitimate user name or domain name\user

name pair, or anything that will use the guest access), then the net time
will use the existing connection to the IPC$ share, using the different
user name.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Getting the WinMain() lpCmdLine in Unicode

PSS ID Number: Q90912
Authored 26-Oct-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The prototype for WinMain() is as follows:

 int PASCAL WinMain(
 HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow);

The third parameter is an LPSTR, which specifies an ANSI string. WinMain()
cannot be defined to accept Unicode input because there is no way for the
system to know whether or not the application wants Unicode at the time
WinMain() is called; the system knows once the application has registered a
window class.

To get the arguments in Unicode, use GetCommandLine().

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrNls

GetWindowRect() Returns TRUE with Desktop Window Handle

PSS ID Number: Q129598
Authored 30-Apr-1995 Last modified 01-May-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.2

Under Windows NT and Windows 95, GetWindowRect() returns FALSE (to indicate
failure) if the desktop window handle is used. Under Win32s,
GetWindowRect() returns TRUE if the desktop window handle is used, however,
the RECT structure is not correctly filled in.

On Win32s, GetWindowRect() returns TRUE unconditionally because the 16-bit
Windows GetWindowRect() has no return value. Therefore, before calling
GetWindowRect() on Win32s, you should first check that the window handle is
not the desktop window handle.

Additional reference words: 1.20 GetDesktopWindow HWND_DESKTOP
KBCategory: kbprg
KBSubcategory: W32s

Global Classes in Win32

PSS ID Number: Q80382
Authored 28-Jan-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Under 16-bit Windows, when an application wants to check whether or not a
window class has been previously registered in the system, it typically
checks hPrevInstance. Under 32-bit Windows and Windows NT,
hPreviousInstance is always FALSE, because a class definition is not
available outside the process context of the process that registers it.
Thus, code that checks hPreviousInstance will always register the window
class.

MORE INFORMATION

Under 32-bit Windows and Windows NT, a style of CS_GLOBALCLASS indicates
that the class is available to every DLL in the process, not every
application and DLL in the system, as it does in Windows 3.1.

To have a class registered for every process in the system, it is necessary
to:

1. Register the class in a DLL.

2. Use a style of CS_GLOBALCLASS.

3. List the DLL in the following registry key.

 HKEY_LOCAL_MACHINE\S OFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Windows\
 AppInit_DLLs

 This will force the DLL to be loaded into every process in the system,
 thereby registering the class in each and every process.

For more information, please see "Window Classes in Win32," which is
available on the MSDN CD, starting April 1994.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCls

Global Quota for Registry Data

PSS ID Number: Q94993
Authored 28-Jan-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

Window NT includes a "global quota" on the amount of memory that may be
allocated in the registry. This prevents a broken or malicious application
from effectively crashing the system by filling paged pool with registry
data; however, it does NOT prevent such an application from using up all
available registry space. Similar to the file systems, the registry does
not support per process/user quotas.

MORE INFORMATION

The total amount of memory that may be consumed by registry data (the
hives) is limited by the registry size limit (RSL). The RSL works as a
"global quota" for registry space, both in the paged pool and on disk.

By default, the RSL is 25 percent of the size of the paged pool (the paged
pool is the memory that may be swapped to disk; all user memory is part of
the paged pool). Changing the size of the paged pool also affects the size
of the RSL. See

 HKEY_LOCAL_MACHINE\System\
 CurrentControlSet\
 Control\
 SessionManager\
 MemoryManagement\
 PagedPoolSize

in the registry.

The RSL may also be manually set. The value in bytes may be specified
by setting the value entry for the key

 HKEY_LOCAL_MACHINE\System\
 CurrentControlSet\
 Control\
 RegistrySizeLimit.

This key must have a type of REG_DWORD and a data length of 4 bytes, or it
will be ignored.

If the value entry RegistrySizeLimit is less than 4 megabytes (MB), it will
be forced up to 4 MB. If it is greater than about 80 percent of the size of

the paged pool, it will be set down to 80 percent of the size of the paged
pool. (It is assumed that paged pool is always larger than 5 MB.)

The system must be rebooted for changes in the RSL to take effect.

To ensure that the user can always at least boot and edit the registry if
they somehow set the RSL wrong, the quota is not enforced until after the
first successful loading of a hive (that is, loading of a user profile.)

Note that the RSL sets a maximum, not an allocation (unlike some other such
limits in the system). Setting a large RSL does NOT cause the system to set
aside that much space unless it is actually needed by the registry. It also
does NOT guarantee that that much space will be available for use in the
registry.

Setting the value entry RegistrySizeLimit to 0xffffffff effectively sets
RSL to be as large as paged pool allows (80 percent of paged pool size).

In the initial release of Windows NT, the paged pool defaults to 32 MB, so
the default RSL is 8 MB (enough to support approximately 5000 users). The
paged pool can be set to a maximum of 128 MB, so the RSL can be no larger
than about 102 MB, supporting about 80,000 users (surpassing the realistic
limitations of other parts of the system).

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseMisc

Graphics as Jumps in Windows Help Files

PSS ID Number: Q67884
Authored 28-Dec-1990 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

One of the things that reduces the training required to learn Windows is
the presence of consistent graphical help. You can create Help files that
use graphic images as context jumps or as glossary pop-ups.

MORE INFORMATION

To use a graphic as a context jump, perform the following steps:

1. Create the graphic in your favorite graphics editor. The typical
 Windows developer has at least two tools available for this
 purpose:

 a. Windows Paintbrush, included with the retail release of Windows

 b. SDKPaint, provided with the Windows SDK

 A Note to Paintbrush Users

 When an image is saved from Paintbrush, by default, the entire
 "canvas" is saved to disk, not just the image created. To work
 around this potential problem, after the image is complete, use the
 square outline tool (at the upper right of the tool bar) to select
 the image. If the image is not square, select the smallest bounding
 rectangle, leaving a border if desired. From the Edit menu, choose
 Copy To, and fill in the name of the file in which to save the
 selection.

2. Edit the file that contains the Help text. This is often called the
 .RTF file.

3. Place the cursor where the graphic should occur and turn on the
 strikethrough character format feature of the text editor. Word
 for Windows users should use double underline character formatting
 instead.

4. Insert one of the following text strings:

 {bmc <filename>}

 -or-
 {bml <filename>}
 -or-
 {bmr <filename>}

 This text should be struck through (or double underlined).

5. Turn off the strikethrough (or double underline) character format
 and turn on hidden text character formatting.

6. Type the context string for the jump destination.

7. Turn off hidden text character formatting.

8. Save the .RTF file.

9. Edit the .HPJ file. There must be a [BITMAPS] section in this file,
 and that section must include the name of the bitmap used above.

When the Help file is built, clicking the graphic with the mouse will
cause Help to change to the specified context.

If the graphic has a name or other short text description, we
recommend that the text also be coded as a context jump. This way, the
user can click on either the graphic or the text to perform the jump.
The text also provides a means for users without a mouse to perform
the jump.

More information on Windows Help files is in Chapters 15 through 19 of
the "Microsoft Windows Software Development Kit Tools" manual. Chapter
17 discusses context jumps, glossary pop-ups, and inserting graphics
into the Help file by reference.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Graying the Text of a Button or Static Text Control

PSS ID Number: Q39480
Authored 17-Dec-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1, 3.5, and 3.51

A control is a child window that is responsible for processing
keyboard, mouse, focus, and activation messages, among others. A
control paints itself and processes text strings. The color of the
text in a button or static text control is automatically changed to
gray when the control is disabled with the EnableWindow function.
However, If an application subclasses a control to process WM_PAINT
messages for the control, the application can use the GrayString
function to change the text color.

Additional reference words: 3.00 3.10 3.50 4.00 95 grey
KBCategory: kbprg
KBSubcategory: UsrCtl

Handling COMMDLG File Open Network Button Under Win32s

PSS ID Number: Q117825
Authored 10-Jul-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2

When you run a Win32-based application under Win32s on top of Windows 3.1
without a network, the File Open common dialog box still has a Network
button.

Under Windows NT, the File Open common dialog box that appears when you
call GetOpenFileName() has a Network button only when a network is present.
The API (application programming interface) will either use the Network
button in the dialog box template if it exists or dynamically add the
button if it is not in the template and there is a network present. If
there is no network present but the template contains a Network button, the
button will be hidden.

The dialog box template that is included with the Windows Software
Development Kit (SDK) does not have a Network button because Windows does
not include a network. When the 16-bit Windows-based application is
executed under Windows for Workgroups or under Windows NT, the Network
button is dynamically added, because these operating systems have built-in
networking.

The template that is included with the Win32 SDK has a Network button. If
the Win32-based application is run under a non-networked Windows 3.1, the
Network button is shown; however it is nonfunctional because there is no
network. This happens because the COMMDLG.DLL that provides Windows 3.1
with the common dialog boxes does not recognize networks. Therefore,
GetOpenFileName() does not remove the Network button from the template if
there is no network.

One solution is to leave the button in the template, determine when you are
running under Win32s, and include OFN_NONETWORKBUTTON in the OPENFILENAME
structure when Win32s is present but there is no network present. Define a
hook function that during WM_INITDIALOG checks the Flags field of the
OPENFILENAME struct that lParam is pointing to. If OFN_NONETWORKBUTTON is
used, call ShowWindow(GetDlgItem(hWnd, psh14), SW_HIDE).

Alternatively, if your application will most likely run on networked
Windows 3.1 machines, you can install the COMMDLG.DLL that ships with
Windows for Workgroups 3.11 on all machines, because it is a
redistributable dynamic-link library (DLL). This DLL checks to see if a
network is present and removes the Network button for you if it is not.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbprg
KBSubcategory: W32s

Handling WM_CANCELMODE in a Custom Control

PSS ID Number: Q74548
Authored 23-Jul-1991 Last modified 23-Jun-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

In the Microsoft Windows graphical environment, the WM_CANCELMODE
message informs a window that it should cancel any internal state.
This message is sent to the window with the focus when a dialog box or
a message box is displayed, giving the window the opportunity to
cancel states such as mouse capture.

When a control has the focus, it receives a WM_CANCELMODE message when
the EnableWindow function disables the control or when a dialog box or
a message box is displayed. When a control receives this message, it
should cancel modes, such as mouse capture, and delete any timers it
has created. A control must cancel these modes because an application
may use a notification from the control to display a dialog box or a
message box.

The DefWindowProc function processes WM_CANCELMODE by calling the
ReleaseCapture function, which cancels the mouse capture for whatever
window has the capture. The DefWindowProc function does not cancel any
other modes.

MORE INFORMATION

For example, consider a miniature scroll bar custom control that, when
it receives a mouse click, sets the mouse capture, creates a timer to
provide for repeated scrolling, and sends a WM_VSCROLL message to its
parent application. The timer is used to send WM_VSCROLL messages
periodically to the parent when the mouse button is held down and the
mouse is over the control.

If the application displays a dialog box in response to the WM_VSCROLL
message, the control receives a WM_CANCELMODE message, at which time
it should kill its timer and release the mouse capture. If the
WM_CANCELMODE message is simply passed to the DefWindowProc function,
only the mouse capture is released; the timer remains active. When the
dialog box is closed, the control immediately sends the parent another
WM_VSCROLL message, causing it to display the dialog box again.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg

KBSubcategory: UsrCtl

Height and Width Limitations with Windows SDK Font Editor

PSS ID Number: Q69081
Authored 06-Feb-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

The Microsoft Windows Font Editor (FONTEDIT.EXE) does not allow creation of
fonts in which the height or width of the font is greater than 64 pixels.
This corresponds to a font-file size of approximately 115K.

This is a limitation of the Font Editor, and not of the fonts themselves.
There is no limit to the size of the font file in the font format. Font
files created in the Windows version 2.0 font format cannot be larger than
64K.

The Font Editor displays a message box containing one of these two errors
if the entered Font Size Character Pixel Width or Character Pixel Height is
larger than 64:

 Fixed/maximum width must be a number from 1-64

 Font height must be a number from 1-64 pixels

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsFnt

Help Fonts Must Use ANSI Character Set

PSS ID Number: Q92422
Authored 05-Nov-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

When creating a help file, it is often necessary to access special
characters available in certain fonts. However, when the Windows
Help engine tries to display the special character, it may not appear
correctly.

MORE INFORMATION

Fonts used to create RTF source files for the Windows Help engine must
use the ANSI character set. Fonts that use character sets other than
ANSI may not display properly in the Help engine. The only exception
to this is the Symbol font, which is also supported in Windows Help
version 3.1.

To determine whether a particular font uses the ANSI character set,
run the FONTEST sample included with the Windows Software Development
Kit (SDK). From the Font menu, choose the Choose Font option. In the
Font dialog box, select the font for which you would like to determine
the character set. If the font is an ANSI font, then the tmCharSet
value displayed in the main window will be zero.

Additional reference words: 3.10 3.50 4.00 95 HC HCP
KBCategory: kbtool
KBSubcategory: TlsHlp

Help Universal Localization Kit (HULK) Is Available

PSS ID Number: Q129452
Authored 26-Apr-1995 Last modified 29-Apr-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

Microsoft HULK (Help Universal Localization Kit) is a collection of
editing, testing, and building tools for Microsoft Windows-based Help,
integrated into an easy-to-use environment. It is designed to make
localizing Windows Help projects as smooth as possible, especially if this
work is being done by external vendors.

HULK is available on MSDN (Microsoft Developer Network) Development
Library, under "Unsupported Tools and Utilities." It is provided "as is"
and is not supported by Microsoft.

Additional reference words: kbinf hc.exe hcp.exe
KBCategory: kbtool
KBSubcategory: wintldev

Hooking Console Applications and the Desktop

PSS ID Number: Q108232
Authored 07-Dec-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Under Windows NT, system hooks are limited in two situations: hooking
console windows and hooking the desktop.

Because of the current design of the console and the fact that its user
interface runs in the Win32 server, Windows NT does not support hook calls
in the context of console applications. Thus, if application A sets a
system-wide input hook and text is typed in a console window, application
A's input hook will not be called. The same is true for every type of
Windows hook except for journal record and journal playback hooks.

Hooking a console application will be enabled in Windows NT 3.51.

MORE INFORMATION

Windows NT supports journaling by forcing the console input thread to
communicate with the application that set the hook. In the case of a
console, the call to the hook functions are run in the context of the
application that installed the hook. This forces Windows NT to
synchronously talk to this process in order for it to work; if this process
is busy or blocked (as it is when it is sitting at a breakpoint), the
console thread is hung.

If console applications were typical Win32-based applications, then this
would not be a problem. A design change such as this would require that
each console take an extra thread just to process input. This was not
acceptable to the designers, and therefore console applications are not
implemented in the same way that other Win32-based applications are
implemented.

Similarly, if Windows NT allowed other hooks to freely hook any process,
then these processes could enter a hanging state as well. The reason that
journaling is allowed to hook consoles is that journaling already requires
synchronization between all processes in the system, and a mechanism to
disengage the journaling process (via the CTRL+ESC, ALT+ESC and
CTRL+ALT+DEL keystroke combinations) is provided to prevent hanging the
system message queue.

For similar reasons, 16-bit Windows-based applications cannot hook
Win32-based applications under Windows NT.

The issues above apply equally well to hooking the desktop. If an
application were allowed to hook the desktop, it could potentially hang it.
This is completely unacceptable and violates one of the design principles
of Windows NT: no application should be allowed to bring down the system or
hang the user interface.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrHks

Host Name May Map to Multiple IP Addresses

PSS ID Number: Q110703
Authored 27-Jan-1994 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The sockets function gethostname() returns a string that identifies the
name of the local host. Each host has only one "official" name,
regardless of how many IP addresses it has, but there may be several
"aliases" for the host.

In TCP/IP, there is not a one-to-one mapping between host name and IP
address. The mapping is one-to-many: one host name can have multiple IP
addresses.

The sockets function getsockname() returns the sockaddr that the socket
is bound to.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: NtwkWinsock

Hot Versus Warm Links in a DDEML Server Application

PSS ID Number: Q108927
Authored 20-Dec-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In message-based dynamic-data exchange (DDE), a server application can
readily distinguish between a hot and a warm link as soon as it receives a
request for an advise loop, via the WM_DDE_ADVISE message. This allows the
server to send the appropriate value in the data handle (for example, a
NULL or a valid data handle) to the client application whenever data
changes. In DDEML, there is no way to distinguish between these two links
when the server receives a request for an advise transaction.

MORE INFORMATION

Two applications engaged in a DDE conversation may establish one or more
links (or advise loops) so that the server application sends periodic
updates about the linked item/s to the client, typically when that
particular data item's value changes.

In a hot advise loop, the server immediately sends a data handle to the
changed data item value. In a warm advise loop, however, the server just
notifies the client that the data item value has changed, but does not send
the data handle until the client explicitly requests it.

In message-based DDE, a client requests the server for an update on an item
by posting the WM_DDE_ADVISE message to the server application. Upon
receipt of this message, the server application is able to distinguish
between a request for a hot advise loop and a warm advise loop via the
fDeferUpd bit of the DDEADVISE structure it received in the low-order word
of lParam.

A nonzero fDeferUpd value tells the server that it is a WARM advise loop.
This instructs the server to send a WM_DDE_DATA message with a NULL data
handle whenever the data item changes, and wait for the client to post a
WM_DDE_REQUEST before it sends the handle to the updated data.

A zero fDeferUpd value, however, indicates a HOT advise loop, which then
tells the server to send a WM_DDE_DATA message with the valid data handle
to the changed data item.

In DDEML, a client requests the server for a hot advise loop via the
XTYP_ADVSTART transaction type in a call to the DdeClientTransaction()
function. To request a warm advise loop, the client specifies an
XTYP_ADVSTART transaction or'ed with the XTYPF_NODATA flag. In both cases,

the DDEML passes the same XTYP_ADVSTART to the server callback function,
with no particular flags set, leaving the server with no means to
distinguish between a hot or warm advise request.

Note that DDEML internally remembers the type of advise loop established.

Once an advise loop is established, the server application calls the
DdePostAdvise() function whenever the value of the data item changes. In a
hot advise loop, this causes the DDEML to send the server an XTYP_ADVREQ
transaction to its callback function, where the server then returns a data
handle to the changed data item. The DDEML then sends the XTYP_ADVDATA
transaction to the client's callback function with the data handle.

In a warm advise loop, an XTYP_ADVREQ transaction is not sent to the
server's callback function when the data item changes on a call to
DdePostAdvise(). DDEML takes care of sending the XTYP_ADVDATA transaction
directly to the client's callback function, with the data handle set to
NULL. The server application does not send the handle to the changed data
item until the client issues an XTYP_REQUEST transaction to obtain this
data handle.

Because the type of advise loop (hot versus warm) is not known to the
server application, a good rule of thumb in writing server applications
that support advise loops is to return a data handle in response to both
the XTYP_ADVREQ and the XTYP_REQUEST transactions. This guarantees that a
data handle is returned for both hot and warm advise loops.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

How CREATOR_OWNER and CREATOR_GROUP Affect Security

PSS ID Number: Q126629
Authored 27-Feb-1995 Last modified 07-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

This article discusses the CREATOR_OWNER and CREATOR_GROUP security
identifiers (SID) and how they affect security.

MORE INFORMATION

When logged on, each user is represented by a token object. This token
contains all the SIDs comprising your security context. Tokens identify
one of those SIDs as a default owner for any new objects the user creates,
such as files, processes, events, and so forth. Typically, this is the
user's account (<domain>\<username>). For an administrator however, the
default owner is set to be the local group "Administrators," rather than
the individual's user account.

Each token also identifies a primary group for the user. This group does
not necessarily have to be one the user is a member of (although it is by
default) and it does not determine the objects a user has access to (that
is, it isn't used in access validation decisions). However, by default it
is assigned as the primary group of any objects the user creates. For the
most part, the primary group is required simply for POSIX compatibility,
but the primary group does play a role in object creation.

When a new object is created, the security system has the task of
assigning protection to the new object. The system follows this process:

1. Assign the new object any protection explicitly passed in by the
 object creator.

2. Otherwise, assign the new object any inheritable protection from the
 container the object is created in.

3. Otherwise, assign the new object any protection explicitly passed in by
 the object creator, but marked as "default."

4. Otherwise, if the caller's token has a default DACL, that will be
 assigned to the new object.

5. Otherwise, no protection is assigned to the new object.

In step 2, if the parent container has inheritable access-control entries
(ACE), those are used to generate protection for the new object. In this
case, each ACE is evaluated to see if it should be copied to the new

object's protection. Usually, when an ACE is copied, the SID within that
ACE is copied as is. The two exceptions to this rule are when CREATOR_OWNER
and CREATOR_GROUP are encountered. In this case, the SID is replaced with
the caller's default owner SID or primary group SID.

By default, users logging on to Windows NT are given a primary group of
"Domain Users" (when logging on to a Windows NT Server) or the group called
"None" (when logging onto a Windows NT Workstation system). Therefore, when
you create an object in a container that has an inheritable ACE with the
CREATOR_GROUP SID, you will likely end up with an ACE granting Domain Users
some access. This may not be what you intended.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

How Database WinSock APIs Are Implemented in Windows NT 3.5

PSS ID Number: Q130024
Authored 09-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5 and 3.51

SUMMARY

This article describes the ways in which various WinSock database APIs are
implemented through the Windows NT versions 3.5 and 3.51 implementation of
the WinSock DLL. The article covers the following WinSock database APIs:
gethostbyname(), gethostbyaddr(), getprotobyname(), getprotobynumber(),
getservbyname(), and getservebynumber().

MORE INFORMATION

Following are the steps taken by each API. In a case where more than one
step may be taken to resolve the requested information, the process is not
carried to the next step if the information is resolved in the current
step.

gethostbyname():

1. Check the HOSTS file at %SystemRoot%\System32\DRIVERS\ETC.
2. Do a DNS query if the DNS server is configured for name resolution.
3. Query one or more WINS servers.

gethostbyaddr():

1. Check the HOSTENT cache.
2. Check the HOSTS file at %SystemRoot%\System32\DRIVERS\ETC.
3. Do a DNS query if the DNS server is configured for name resolution.
4. Do an additional NetBIOS remote adapter status to an IP address for its
 NetBIOS name table. This step is specific only to the Windows NT version
 3.51 implementation.

getprotobyname() and getprotobynumber():

1. Check the PROTOCOL file at %SystemRoot%\System32\DRIVERS\ETC.

getservbyname() and getservebynumber():

1. Check the SERVICES files at %SystemRoot%\System32\DRIVERS\ETC.

Additional reference words: 3.50 3.51
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkWinsock

How HEAPSIZE/STACKSIZE Commit > Reserve Affects Execution

PSS ID Number: Q89296
Authored 16-Sep-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The syntax for the module-definition statements HEAPSIZE and STACKSIZE is
as follows

 HEAPSIZE [reserve] [,commit]
 STACKSIZE [reserve] [,commit]

The remarks for HEAPSIZE and STACKSIZE on page 62 of the "Tools User's
Guide" manual that comes with the Win32 SDK state the following:

 When commit is less than reserve, memory demands are reduced but
 execution time is slower.

By default, commit is less than reserve.

The reason that execution time is slower (and it is actually only
fractionally slower), is that the system sets up guard pages and could have
to process guard page faults.

MORE INFORMATION

If the committed memory is less than the reserved memory, the system sets
up guard page(s) around the heap or stack. When the heap or stack grows big
enough, the guard pages start accessing outside the committed area. This
causes a guard page fault, which tells the system to map in another page.
The application continues to run as if you had originally had the new page
committed.

If the committed memory is greater than the reserve, no guard pages are
created and the program faults if it goes outside the committed memory
area.

Experimenting with the commit versus reserve numbers may result in a
combination that would produce noticeable results, but for most
applications, this difference is probably not noticeable. The potential
benefits do not warrant significant experimentation.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

How Keyboard Data Gets Translated

PSS ID Number: Q104316
Authored 13-Sep-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

Keyboard input is acquired by the keyboard driver, which in turn produces a
scan code. This scan code is passed on to the locale-specific Win32
subsystem keyboard driver. This locale-specific driver then converts the
scan code to a virtual key and a Unicode character. The Win32 subsystem
then passes on this information to the application.

All messages in the Win32 application programming interface (API) that
present textual information to a window procedure depend upon how the
window registered its class. For example, if RegisterClassW() was called,
then Unicode is presented; if RegisterClassA() was called, then ANSI is
presented. The conversion of the text is handled by the Window Manager.
This allows an ANSI application to send textual information to a Unicode
application.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrInp

How POSIX Applications are Recognized

PSS ID Number: Q101770
Authored 21-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

The presence of the IMAGE_SUBSYSTEM_POSIX_CUI flag in the Subsystem
field of the image's optional header means that the application is a
32-bit POSIX application.

Additional reference words: 3.10
KBCategory: kbprg
KBSubCategory: SubSys

How to Add an Access-Allowed ACE to a File

PSS ID Number: Q102102
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

This article explains the process of adding an access-allowed (or
access-denied) access control entry (ACE) to a file.

Adding an access-allowed ACE to a file's access control list (ACL) provides
a means of granting or denying (using an access-denied ACE) access to the
file to a particular user or group. In most cases, the file's ACL will not
have enough free space to add an additional ACE, and therefore it is
usually necessary to create a new ACL and copy the file's existing ACEs
over to it. Once the ACEs are copied over and the access-allowed ACE is
also added, the new ACL can be applied to the file's security descriptor
(SD). This process is explained in detail in the section below. Sample code
is provided at the end of this article.

MORE INFORMATION

At the end of this article is sample code that defines a function named
AddAccessRights(), which adds an access-allowed ACE to the specified file
allowing the specified access. Steps 1-17 in the comments of the sample
code are discussed in detail below:

 1. GetUserName() is called to retrieve the name of the currently
 logged in user. The user name is stored in plszUserName[] array.

 2. LookupAccountName() is called to obtain the SID of the user
 returned by GetUserName() in step 1. The resulting SID is stored
 in the UserSID variable and will be used later in the
 AddAccessAllowedACE() application programming interface (API)
 call. The LookupAccountName() API is also providing the user's
 domain in the plszDomain[] array. Please note that
 LookupAccountName() returns the SID of the first user or group
 that matches the name in plszUserName.

 3. GetFileSecurity() is used here to obtain a copy of the file's
 security descriptor (SD). The file's SD is placed into the ucSDbuf
 variable, which is declared a size of
 65536+SECURITY_DESCRIPTOR_MIN_LENGTH for simplicity. This value
 represents the maximum size of an SD, which ensures the SD will be
 of sufficient size.

 4. Here we initialize the new security descriptor (NewSD variable) by

 calling the InitializeSecurityDescriptor() API. Because the
 SetFileSecurity() API requires that the security item being set is
 contained in a SD, we create and initialize NewSD.

 5. Here GetSecurityDescriptorDacl() retrieves a pointer to the
 discretionary access control list (DACL) in the SD. The pointer is
 stored in the pACL variable.

 6. GetAclInformation() is called here to obtain size information on
 the file's DACL in the form of a ACL_SIZE_INFORMATION structure.
 This information is used when computing the size of the new DACL
 and when copying ACEs.

 7. This statement computes the exact number of bytes to allocate for
 the new DACL. The AclBytesInUse member represents the number of
 bytes being used in the file's DACL. We add this number to the
 size of an ACCESS_ALLOWED_ACE and the size of the user's SID.
 Subtracting the size of a DWORD is an adjustment required to
 obtain the exact number of bytes necessary.

 8. Here we allocate memory for the new ACL that will ultimately
 contain the file's existing ACEs plus the access-allowed ACE.

 9. In addition to allocating the memory, it is important to
 initialize the ACL structure as we do here.

10. Here we check the bDaclPresent flag returned by
 GetSecurityDescriptorDacl() to see if a DACL was present in the
 file's SD. If a DACL was not present, then we skip the code that
 copies the file's ACEs to the new DACL.

11. After verifying that there is at least one ACE in the file's DACL
 (by checking the AceCount member), we begin the loop to copy the
 individual ACEs to the new DACL.

12. Here we get a pointer to an ACE in the file's DACL by using the
 GetAce() API.

13. Now we add the ACE to the new DACL. It is important to note that
 we pass MAXDWORD for the dwStartingAceIndex parameter of AddAce()
 to ensure the ACE is added to the end of the DACL. The statement
 ((PACE_HEADER)pTempAce)->AceSize provides the size of the ACE.

14. Now that we have copied all the file's original ACEs over to our
 new DACL, we add the access-allowed ACE. The dwAccessMask variable
 will contain the access mask being granted. GENERIC_READ is an
 example of an access mask.

15. Because the SetFileSecurity() API can set a variety of security
 information, it takes a pointer to a security descriptor. For this
 reason, it is necessary to attach our new DACL to a temporary SD.
 This is done by using the SetSecurityDescriptorDacl() API.

16. Now that we have a SD containing the new DACL for the file, we set
 the DACL to the file's SD by calling SetFileSecurity(). The

 DACL_SECURITY_INFORMATION parameter indicates that we want the
 DACL in the provided SD applied to the file's SD. Please note that
 only the file's DACL is set, the other security information in the
 file's SD remains unchanged.

17. Here we free the memory that was allocated for the new DACL.

The below sample demonstrates the basic steps required to add an access-
allowed ACE to a file's DACL. Please note that this same process can be
used to add an access-denied ACE to a file's DACL. Because the access-
denied ACE should appear before access-allowed ACEs, it is suggested that
the call to AddAccessDeniedAce() precede the code that copies the existing
ACEs to the new DACL.

Sample Code

#define SD_SIZE (65536 + SECURITY_DESCRIPTOR_MIN_LENGTH)

BOOL AddAccessRights(CHAR *pFileName, DWORD dwAcessMask)
{
 // SID variables

 UCHAR psnuType[2048];
 UCHAR lpszDomain[2048];
 DWORD dwDomainLength = 250;
 UCHAR UserSID[1024];
 DWORD dwSIDBufSize=1024;

 // User name variables

 UCHAR lpszUserName[250];
 DWORD dwUserNameLength = 250;

 // File SD variables

 UCHAR ucSDbuf[SD_SIZE];
 PSECURITY_DESCRIPTOR pFileSD=(PSECURITY_DESCRIPTOR)ucSDbuf;
 DWORD dwSDLengthNeeded;

 // ACL variables

 PACL pACL;
 BOOL bDaclPresent;
 BOOL bDaclDefaulted;
 ACL_SIZE_INFORMATION AclInfo;

 // New ACL variables

 PACL pNewACL;
 DWORD dwNewACLSize;

 // New SD variables

 UCHAR NewSD[SECURITY_DESCRIPTOR_MIN_LENGTH];

 PSECURITY_DESCRIPTOR psdNewSD=(PSECURITY_DESCRIPTOR)NewSD;

 // Temporary ACE

 PVOID pTempAce;
 UINT CurrentAceIndex;

 // STEP 1: Get the logged on user name

 if(!GetUserName(lpszUserName,&dwUserNameLength))
 {
 printf("Error %d:GetUserName\n",GetLastError());
 return(FALSE);
 }

 // STEP 2: Get SID for current user

 if (!LookupAccountName((LPSTR) NULL,
 lpszUserName,
 UserSID,
 &dwSIDBufSize,
 lpszDomain,
 &dwDomainLength,
 (PSID_NAME_USE)psnuType))
 {
 printf("Error %d:LookupAccountName\n",GetLastError());
 return(FALSE);
 }

 // STEP 3: Get security descriptor (SD) for file

 if(!GetFileSecurity(pFileName,
 (SECURITY_INFORMATION)(DACL_SECURITY_INFORMATION),
 pFileSD,
 SD_SIZE,
 (LPDWORD)&dwSDLengthNeeded))
 {
 printf("Error %d:GetFileSecurity\n",GetLastError());
 return(FALSE);
 }

 // STEP 4: Initialize new SD

 if(!InitializeSecurityDescriptor(psdNewSD,SECURITY_DESCRIPTOR_REVISION))
 {
 printf("Error %d:InitializeSecurityDescriptor\n",GetLastError());
 return(FALSE);
 }

 // STEP 5: Get DACL from SD

 if (!GetSecurityDescriptorDacl(pFileSD,
 &bDaclPresent,
 &pACL,
 &bDaclDefaulted))

 {
 printf("Error %d:GetSecurityDescriptorDacl\n",GetLastError());
 return(FALSE);
 }

 // STEP 6: Get file ACL size information

 if(!GetAclInformation(pACL,&AclInfo,sizeof(ACL_SIZE_INFORMATION),
 AclSizeInformation))
 {
 printf("Error %d:GetAclInformation\n",GetLastError());
 return(FALSE);
 }

 // STEP 7: Compute size needed for the new ACL

 dwNewACLSize = AclInfo.AclBytesInUse +
 sizeof(ACCESS_ALLOWED_ACE) +
 GetLengthSid(UserSID) - sizeof(DWORD);

 // STEP 8: Allocate memory for new ACL

 pNewACL = (PACL)LocalAlloc(LPTR, dwNewACLSize);

 // STEP 9: Initialize the new ACL

 if(!InitializeAcl(pNewACL, dwNewACLSize, ACL_REVISION2))
 {
 printf("Error %d:InitializeAcl\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 10: If DACL is present, copy it to a new DACL

 if(bDaclPresent) // only copy if DACL was present
 {
 // STEP 11: Copy the file's ACEs to our new ACL

 if(AclInfo.AceCount)
 {
 for(CurrentAceIndex = 0; CurrentAceIndex < AclInfo.AceCount;
 CurrentAceIndex++)
 {
 // STEP 12: Get an ACE

 if(!GetAce(pACL,CurrentAceIndex,&pTempAce))
 {
 printf("Error %d: GetAce\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 13: Add the ACE to the new ACL

 if(!AddAce(pNewACL, ACL_REVISION, MAXDWORD, pTempAce,
 ((PACE_HEADER)pTempAce)->AceSize))
 {
 printf("Error %d:AddAce\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }
 }
 }
 }

 // STEP 14: Add the access-allowed ACE to the new DACL

 if(!AddAccessAllowedAce(pNewACL,ACL_REVISION2,dwAcessMask, &UserSID))
 {
 printf("Error %d:AddAccessAllowedAce",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 15: Set our new DACL to the file SD

 if (!SetSecurityDescriptorDacl(psdNewSD,
 TRUE,
 pNewACL,
 FALSE))
 {
 printf("Error %d:SetSecurityDescriptorDacl",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 16: Set the SD to the File

 if (!SetFileSecurity(pFileName, DACL_SECURITY_INFORMATION,psdNewSD))
 {
 printf("Error %d:SetFileSecurity\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 17: Free the memory allocated for the new ACL

 LocalFree((HLOCAL) pNewACL);
 return(TRUE);
}

NOTE: Security descriptors have two possible formats: self-relative and
absolute. GetFileSecurity() returns an SD in self-relative format, but
SetFileSecurity() expects and absolute SD. This is one reason that the code
must create a new SD and copy the information, instead of simply modifying
the SD from GetFileSecurity() and passing it to SetFileSecurity(). It is
possible to call MakeAbsoluteSD() to do the conversion, but there may not
be enough room in the current ACL anyway, as mentioned above.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

How to Add an SNMP Extension Agent to the NT Registry

PSS ID Number: Q128729
Authored 06-Apr-1995 Last modified 11-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

After developing a new extension agent DLL, you must configure the registry
so that the SNMP extension agent is loaded when the SNMP service is
started. This article shows you how.

MORE INFORMATION

You can use REGEDT32.EXE to configure the registry, or you can have your
SNMP extension agent installation program configure the registry using the
Win32 registry APIs.

To configure an SNMP extension agent in the registry, follow these steps:

1. Walk down:

 HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Services\
 SNMP\
 Parameter\
 ExtensionAgents

 You'll notice at least one entry like this:

 1:REG_SZ:SOFTWARE\Microsoft\LANManagerMIB2Agent\CurrentVersion

 Add an entry for the new extension agent. For the SNMP Toaster sample
 in the SDK, the entry is:

 3:REG_SZ:SOFTWARE\CompanyName\toaster\CurrentVersion

 This entry provides a pointer to another registery entry (see step 2)
 that contains the physical path where the extension agent DLL can be
 found. Note that "CompanyName" and "toaster" strings can be any other
 meaningful strings that will be used in Step 2.

2. Go to:

 HKEY_LOCAL_MACHINE\SOFTWARE

 Create keys that correspond to the new entry in step 1:

 CompanyName\toaster\CurrentVersion

3. Assign the path of the extension agent DLL as the value to the
 CurrentVersion key in step 2. For the SNMP toaster sample agent
 DLL, the entry is:

 Pathname:REG_SZ:D:\mstools\samples\snmp\testdll\testdl.dll

4. Note that names and values in the NT registry are case sensitive.

5. Restart the SNMP service from the control panel. The new extension
 agent DLL will be loaded. Event Viewer in the administrative tools can
 be used to view errors encountered during the startup process of the
 SNMP service and extension agents.

REFERENCES

SNMP.TXT in the \BIN directory of the Win32 SDK.

Windows NT Resource Guide, Chapters 10-14.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: NtwkSnmp

How to Add Windows 95 Controls to Visual C++ 2.0 Dialog

PSS ID Number: Q125686
Authored 01-Feb-1995 Last modified 10-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 - Microsoft Visual C++ version 2.0

SUMMARY

When using Visual C++ version 2.0 on Windows 95, the Windows 95 common
controls do not appear by default on the control palette in the Visual C++
Dialog Editor. Many of these controls may be added, however, by adding an
entry into the registry.

MORE INFORMATION

To add buttons in the Dialog Editor's control palette for TreeView,
ListView, HotKey, Trackbar, Progress, and UpDown controls:

1. Run REGEDIT from the start menu.

2. Select:

 HKEY_CURRENT_USER\Software\Microsoft\Visual C++ 2.0 Dialog Editor

3. Select the New, Binary Value option from the Edit Menu.

4. Rename the new entry "ChicagoControls" without the quotation marks.

5. Select Modify from the edit menu to change the value of ChicagoControls
 to 01 00 00 00. The editor will add the spaces between each pair of
 digits.

6. Exit REGEDIT.

7. Restart Visual C++ version 2.0.

Additional reference words: 2.00 4.00
KBCategory: kbprg
KBSubcategory: UsrCtl

How to Assign Privileges to Accounts for API Calls

PSS ID Number: Q131144
Authored 04-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY

Some new security API calls were added to Win32 in Windows NT version 3.51.
Two of these new calls, LogonUser() and CreateProcessAsUser(), require that
the calling process have certain privileges. If the calling process is a
service running in the Local System account, it will already have these
privileges. Otherwise, the required privileges can be added to an account
by using the "User Rights Policy" dialog box. Run the User Manager and
choose User Rights from the Policies menu to see the dialog box.

NOTE: You must select the "Show Advanced User Rights" check box to see
the privileges mentioned in this article.

MORE INFORMATION

The Win32 API reference documents the required privileges, but it gives
their internal string names instead of the display names. The "User Rights
Policy" dialog box displays the privileges using the display names.

The following table shows the display names associated with the internal
string names:

 Privilege Display Name
 --
 SeTcbPrivilege Act as part of the operating system
 SeAssignPrimary Replace a process level token
 SeIncreaseQuota Increase quotas

Additional reference words:
KBCategory: kbprg
KBSubcategory: BseSecurity

How to Back Up the Windows NT Registry

PSS ID Number: Q128731
Authored 06-Apr-1995 Last modified 23-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

This article shows by example how to back up portions of the Windows NT
registry to be restored later.

MORE INFORMATION

This is normally accomplished by enabling the SeBackupPrivilege and calling
RegSaveKey. The operation can fail with ERROR_ACCESS_DENIED if the caller
does not have access to portions of the key, such as the registry key
HKEY_LOCAL_MACHINE\SECURITY.

If you do not have access to the key, but have backup privilege, pass the
REG_OPTION_BACKUP_RESTORE flag to RegCreateKeyEx in the dwOptions
parameter. This has an effect similar to FILE_FLAG_BACKUP_SEMANTICS with
CreateFile, allowing you to open the key for backup. The resultant key
handle can be used in a subsequent call to RegSaveKey.

To back up the registry from the root, it is necessary to enumerate the
subkeys from the root, opening each subkey with RegCreateKeyEx and saving
the subkey with RegSaveKey.

Sample Code

The following sample source code saves the HKEY_LOCAL_MACHINE registry
key, with each subkey saved to a filename matching the subkey name.

The folloing function performs the save operation:

LONG SaveRegistrySubKey(
 HKEY hKey, // handle of key to save
 LPTSTR szSubKey, // pointer to subkey name to save
 LPTSTR szSaveFileName // pointer to save path/filename
)

If the function succeeds, the return value is ERROR_SUCCESS.
If the function fails, the return value is an error value.

/* Save HKEY_LOCAL_MACHINE registry key, each subkey saved to a file of
 * name subkey
 *

 * this allows us to get around security restrictions which prevent
 * the use of RegSaveKey() on the root key
 *
 * the use of REG_OPTION_BACKUP_RESTORE is not documented in the Win32
 * documentation at this time. The documentation will be changed to
 * reflect this flag. This flag is contained in the WINNT.H header file.
 *
 * the optional target machine name is specified in argv[1]
 *
 * v1.21
 * Scott Field (sfield) 01-Apr-1995
 */

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

LONG SaveRegistrySubKey(HKEY hKey, LPTSTR szSubKey, LPTSTR szSaveFileName);
void PERR(LPTSTR szAPI, DWORD dwLastError);

int main(int argc, char *argv[])
{
 TOKEN_PRIVILEGES tp;
 HANDLE hToken;
 LUID luid;
 LONG rc; // contains error value returned by Regxxx()
 HKEY hKey; // handle to key we are interested in
 LPTSTR MachineName=NULL; // pointer to machine name
 DWORD dwSubKeyIndex=0; // index into key
 char szSubKey[_MAX_FNAME]; // this should be dynamic.
 // _MAX_FNAME is good because this
 // is what we happen to save the
 // subkey as
 DWORD dwSubKeyLength=_MAX_FNAME; // length of SubKey buffer

/*
 if (argc != 2) // usage
 {
 fprintf(stderr,"Usage: %s [<MachineName>]\n", argv[0]);
 return RTN_USAGE;
 }
 */

 // set MachineName == argv[1], if appropriate
 if (argc == 2) MachineName=argv[1];

 //
 // enable backup privilege
 //
 if(!OpenProcessToken(GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES,

 &hToken))
 {
 PERR("OpenProcessToken", GetLastError());
 return RTN_ERROR;
 }

 if(!LookupPrivilegeValue(MachineName, SE_BACKUP_NAME, &luid))

 {
 PERR("LookupPrivilegeValue", GetLastError());
 return RTN_ERROR;
 }

 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 AdjustTokenPrivileges(hToken, FALSE, &tp, sizeof(TOKEN_PRIVILEGES),
 NULL, NULL);

 if (GetLastError() != ERROR_SUCCESS)
 {
 PERR("AdjustTokenPrivileges", GetLastError());
 return RTN_ERROR;
 }

 // only connect if a machine name specified
 if (MachineName != NULL)
 {
 if((rc=RegConnectRegistry(MachineName,
 HKEY_LOCAL_MACHINE,
 &hKey)) != ERROR_SUCCESS)
 {
 PERR("RegConnectRegistry", rc);
 return RTN_ERROR;
 }
 }
 else hKey=HKEY_LOCAL_MACHINE;

 while((rc=RegEnumKeyEx(
 hKey,
 dwSubKeyIndex,
 szSubKey,
 &dwSubKeyLength,
 NULL,
 NULL,
 NULL,
 NULL)
) != ERROR_NO_MORE_ITEMS) { // are we done?

 if(rc == ERROR_SUCCESS)
 {
 LONG lRetVal; // return value from SaveRegistrySubKey

#ifdef DEBUG

 fprintf(stdout,"Saving %s\n", szSubKey);
#endif

 // save registry subkey szSubKey to filename szSubKey
 if((lRetVal=SaveRegistrySubKey(hKey, szSubKey, szSubKey)
) != ERROR_SUCCESS)
 {
 PERR("SaveRegistrySubKey", lRetVal);
 }

 // increment index into the key
 dwSubKeyIndex++;

 // reset buffer size
 dwSubKeyLength=_MAX_FNAME;

 // Continue the festivities
 continue;
 }
 else
 {
 //
 // note: we need to watch for ERROR_MORE_DATA
 // this indicates we need a bigger szSubKey buffer
 //
 PERR("RegEnumKeyEx", rc);
 return RTN_ERROR;
 }

 } // RegEnumKeyEx

 // close registry key we have been working with
 RegCloseKey(hKey);

 // Revoke all privileges this process holds (including backup)
 AdjustTokenPrivileges(hToken, TRUE, NULL, 0, NULL, NULL);

 // close handle to process token
 CloseHandle(hToken);

 return RTN_OK;
}

LONG SaveRegistrySubKey(
 HKEY hKey, // handle of key to save
 LPTSTR szSubKey, // pointer to subkey name to save
 LPTSTR szSaveFileName // pointer to save path/filename
)
{
 HKEY hKeyToSave; // Handle of subkey to save
 LONG rc; // result code from RegXxx
 DWORD dwDisposition;

 if((rc=RegCreateKeyEx(hKey,
 szSubKey, // Name of subkey to open

 0,
 NULL,
 REG_OPTION_BACKUP_RESTORE, // in winnt.h
 KEY_QUERY_VALUE, // minimal access
 NULL,
 &hKeyToSave,
 &dwDisposition)
) == ERROR_SUCCESS)
 {
 // Save registry subkey. If the registry is remote, files will
 // be saved on the remote machine
 rc=RegSaveKey(hKeyToSave, szSaveFileName, NULL);

 // close registry key we just tried to save
 RegCloseKey(hKeyToSave);
 }

 // return the last registry result code
 return rc;
}

void PERR(
 LPTSTR szAPI, // pointer to failed API name
 DWORD dwLastError // last error value associated with API
)
{
 LPTSTR MessageBuffer;
 DWORD dwBufferLength;

 //
 // TODO get this fprintf out of here!
 //
 fprintf(stderr,"%s error! (rc=%lu)\n", szAPI, dwLastError);

 if(dwBufferLength=FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 dwLastError,
 LANG_NEUTRAL,
 (LPTSTR) &MessageBuffer,
 0,
 NULL))
 {

 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,
 dwBufferLength,
 &dwBytesWritten,
 NULL);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }
}

Additional reference words: 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseMisc BseSecurity CodeSam

How to Broadcast Messages Using NetMessageBufferSend()

PSS ID Number: Q131458
Authored 12-Jun-1995 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

The NetMessageBufferSend() API can be used to broadcast a message. To
broadcast a copy a of a particular message to all workstations running
messanger service in a particular domain, the LPWSTR msgname parameter
needs to be specified as "DOMAINNAME*" - where DOMAINNAME is the name of
the domain to which a message is to be sent. In this case, you can use the
following piece of code to call this API:

 #define UNICODE
 #define MESGLEN 50
 WCHAR awcToName[] = TEXT("DomainName*");
 WCHAR awcFromName[] = Text("MyComputer");
 WCHAR awcMesgBuffer[MESGLEN] = Text("This ia Test Message");
 NET_API_STATUS nasStatus;

 nasStatus = NetMessageBufferSend(NULL,
 awcToName,
 awcFromName,
 awcMesgBuffer,
 MESGLEN);

Additional reference words: 3.50 3.51 LanMan
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkMisc

How to Build a Japanese NT 3.50 Application on US NT 3.50

PSS ID Number: Q126744
Authored 01-Mar-1995 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Visual C++, 32-bit Edition, version 2.0
 - Microsoft Windows NT version 3.5

Use the following steps to build a Japanese application on U.S. Windows NT
version 3.5 using the English 32-bit Edition of Visual C++ version 2.0:

1. Copy c_932.nls from your Japanese Windows NT version 3.5 CD or disks.

2. Add c_932.nls to your English Windows NT version 3.5 system directory
 (for example, WINNT35\SYSTEM32.

3. Using REGEDT32.EXE, search for "codepage" in the HKEY_LOCAL_MACHINE
 registry and add this value:

 932 : REG_SZ : c_932.nls

4. Add the "/C932" switch to the RC compiler option in the Project setting
 in the Microsoft Visual C++ IDE (Intergrated Development Environment).

Take similar steps if you want to use U.S. Windows NT version 3.5 as the
development environment and build an application that requires a codepage
that is not present on U.S. Windows NT version 3.5.

Additional reference words: 3.50 msvcj setlocale language
KBCategory: kbprg
KBSubcategory: WIntlDev

How to Calculate Dialog Base Units with Non-System-Based Font

PSS ID Number: Q125681
Authored 01-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

This article shows how to calculate the dialog base unit in Windows for
the dialog box using a font other than System Font. You can use this
calculation to build dialog templates in memory or calculate dialog
dimensions.

MORE INFORMATION

Each dialog box template contains measurements that specify the position,
width, and height of the dialog box and the controls it contains. These
measurements are device independent, so an application can use a single
template to create the same dialog box for all types of display devices.
This ensures that a dialog box will have the same proportions and
appearance on all screens despite differing resolutions and aspect ratios
between screens.

Further, dialog box measurements are given in dialog base units. One
horizontal base unit is equal to one-fourth of the average character width
for the system font. One vertical base unit is equal to one-eighth of the
average character height for the system font. An application can retrieve
the number of pixels per base unit for the current display by using the
GetDialogBaseUnits function. The low-order word of the return value, from
the GetDialogBaseUnits function, contains the horizontal base units
and the high-order word of the return value, from the GetDialogBaseUnits
function, contains the vertical base units.

Using this information, you can compute the dialog base units for a dialog
using font other than system font:

 horz pixels == (horz dialog units * average char width of font) / 4
 vert pixels == (vert dialog units * average char height of font) / 8

As the font of a dialog changes, the actual size and position of a
control also changes.

 - Four pixels is half the average character width of the system font.
 - Eight pixels is half the average character height of the system font.

Here's another version of the same formulas:

horz pixels == 2 * horz dialog units * (average char width of dialog font
 / average char width of system font)

vert pixels == 2 * vert dialog units * (average char height of dialog font
 / average char height of system font)

One dialog base unit is equivalent to the number of pixels per dialog unit
which gives:

1 horz dialog base unit == (2 * average char width dialog font /
 average char width system font) pixels
1 vert dialog base unit == (2 * average char height dialog font /
 average char height system font) pixels

Average character width and height of a font can be computed as follows:

hFontOld = SelectObject(hdc,hFont);
GetTextMetrics(hdc,&tm);
GetTextExtentPoint32(hdc,"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrst"
 "uvwxyz",52,&size);
avgWidth = (size.cx/26+1)/2;
avgHeight = (WORD)tm.tmHeight;

Additional reference words: 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlg

How to Calculate the Height of Edit Control to Resize It

PSS ID Number: Q124315
Authored 28-Dec-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 Software Development Kit (SDK), versions 3.5 and 3.51

SUMMARY

When a program changes the font of an edit control, it must calculate the
new height of the control so that text is displayed correctly. When an edit
control contains a border, the control automatically adds white space
around the text so the text won't interfere with the border.

This article shows by example how a program can modify the height of an
edit control so that text displayed in the control looks right after the
program changes the font.

MORE INFORMATION

The height of the control on creation is calculated as the height of the
control's font plus half of the smaller of the height of the control's font
or the height of the system font. You can use a function similar to the one
below to calculate the new height of an edit control when the font in the
control is changed.

Sample Code

void ResizeEdit(HWND hwndEdit, HFONT hNewFont)
{
 HFONT hSysFont,
 hOldFont;
 HDC hdc;
 TEXTMETRIC tmNew,
 tmSys;
 RECT rc;
 int nTemp;

 //get the DC for the edit control
 hdc = GetDC(hwndEdit);

 //get the metrics for the system font
 hSysFont = GetStockObject(SYSTEM_FONT);
 hOldFont = SelectObject(hdc, hSysFont);
 GetTextMetrics(hdc, &tmSys);

 //get the metrics for the new font
 SelectObject(hdc, hNewFont);

 GetTextMetrics(hdc, &tmNew);

 //select the original font back into the DC and release the DC
 SelectObject(hdc, hOldFont);
 DeleteObject(hSysFont);
 ReleaseDC(hwndEdit, hdc);

 //calculate the new height for the edit control
 nTemp = tmNew.tmHeight + (min(tmNew.tmHeight, tmSys.tmHeight)/2);

 //re-size the edit control
 GetWindowRect(hwndEdit, &rc);
 MapWindowPoints(HWND_DESKTOP, GetParent(hwndEdit), (LPPOINT)&rc, 2);
 MoveWindow(hwndEdit,
 rc.left,
 rc.top,
 rc.right - rc.left,
 nTemp,
 TRUE);
}

Additional reference words: 3.10 3.50 win16sdk
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

How to Change Hard Error Popup Handling in Windows NT

PSS ID Number: Q128642
Authored 05-Apr-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft Windows NT version 3.5

SUMMARY

In an unattended environment, you may want to automatically dispatch hard
error popups that require user intervention. This article gives you the
code you need to change the hard error popup mode.

MORE INFORMATION

Windows NT allows the user to change the handling of hard error popups that
result from application and system errors. Such errors include no disk in
the drive and general protection (GP) faults.

Normally, these events cause a hard error popup to be displayed, which
requires user intervention to dispatch. This behavior can be modified so
that such errors are logged to the Windows NT event log. When the error is
logged to the event log, no user intervention is necessary, and the system
provides a default handler for the hard error. The user can examine the
event log to determine the cause of the hard error.

Registry Entry

The following registry entry controls the hard error popup handling in
Windows NT:

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Control\
 Windows\
 ErrorMode

Valid Modes

The following are valid values for ErrorMode:

 - Mode 0

 This is the default operating mode that serializes the errors and waits
 for a response.

 - Mode 1

 If the error does not come from the system, this is the normal operating
 mode. If the error comes from the system, this logs the error to the
 event log and returns OK to the hard error. No intervention is required
 and the popup is not seen.

 - Mode 2

 This always logs the error to the event log and returns OK to the hard
 error. Popups are not seen.

In all modes, system-originated hard errors are logged to the system log.
To run an unattended server, use mode 2.

Sample Code to Change Hard Error Popup Mode

The following function changes the hard error popup mode. If the function
succeeds, the return value is TRUE. If the function fails, the return value
is FALSE.

BOOL SetGlobalErrorMode(
 DWORD dwErrorMode // specifies new ErrorMode value
)
{
 HKEY hKey;
 LONG lRetCode;

 // make sure the value passed isn't out-of-bounds
 if (dwErrorMode > 2) return FALSE;

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SYSTEM\\CurrentControlSet\\Control\\Windows",
 0,
 KEY_SET_VALUE,
 &hKey) != ERROR_SUCCESS) return FALSE;

 lRetCode=RegSetValueEx(hKey,
 "ErrorMode",
 0,
 REG_DWORD,
 (CONST BYTE *) &dwErrorMode,
 sizeof(DWORD));

 RegCloseKey(hKey);

 if (lRetCode != ERROR_SUCCESS) return FALSE;

 return TRUE;
}

Sample Code to Obtain Hard Error Popup Mode

The following function obtains the hard error popup mode. If the function
succeeds, the return value is TRUE. If the function fails, the return value
is FALSE. If the function succeeds, dwErrorMode contains the error popup
mode. Otherwise, dwErrorMode is undefined.

BOOL GetGlobalErrorMode(
 LPDWORD dwErrorMode // Pointer to a DWORD to place popup mode
)
{
 HKEY hKey;
 LONG lRetCode;
 DWORD cbData=sizeof(DWORD);

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SYSTEM\\CurrentControlSet\\Control\\Windows",
 0,
 KEY_QUERY_VALUE,
 &hKey) != ERROR_SUCCESS) return FALSE;

 lRetCode=RegQueryValueEx(hKey,
 "ErrorMode",
 0,
 NULL,
 (LPBYTE) dwErrorMode,
 &cbData);

 RegCloseKey(hKey);

 if (lRetCode != ERROR_SUCCESS) return FALSE;

 return TRUE;
}

Additional reference words: 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseErrdebug BseMisc CodeSam

How to Change Small Icon for FileOpen and Other Common

PSS ID Number: Q130758
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

Applications that need to display icons on the caption bars of File Open
and other Common Dialogs can do so by installing a hook function and
sending the WM_SETICON message from within the hook function to the common
dialog to change its small icon. Note that OFN_ENABLEHOOK flag (or relavant
flags for other common dialogs) has to be set for your hook function to be
called.

MORE INFORMATION

Under Windows 95, every popup or overlapped window can have two icons
associated with it, a large icon used when the window is minimized and a
small icon used for displaying the system menu icon.

Common Dialogs under Windows 95 do not display a small icon on their
caption bars by default. If you want the application to display its own
icon for the system menu, have the application install a hook funtion for
that common dialog and send the WM_SETICON message when the hook callback
function is called with the WM_INITDIALOG message.

The WM_SETICON message is sent to change or set the small and large icons
of a window. In this case, because you are setting the small icon, wParam
must be set to FALSE.

Code Sample

The following code shows how to do this for a File Open Common Dialog:

 // Fill in the OPENFILENAME structure to support
 // a hook and a template (optional).

 OpenFileName.lStructSize = sizeof(OPENFILENAME);
 OpenFileName.hwndOwner = hWnd;
 OpenFileName.hInstance = g_hInst;
 ...
 ...
 ...
 ...

 OpenFileName.lpfnHook = ComDlg32HkProc;

 OpenFileName.lpTemplateName = NULL;
 OpenFileName.Flags = OFN_SHOWHELP |
 OFN_EXPLORER | OFN_ENABLE_HOOK;

Note that the lpTemplateName parameter is set to NULL. To just install a
hook, one does not need a custom template. The hook function will get
called if it is sepcified in the structure.

Below is the Comdlg32HkgProc hook callback funtion that chages the small
icon. This code below is for the open or save as dialog boxes only.

BOOL CALLBACK ComDlg32HkProc(HWND hDlg,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lPar
{

 HWND hWndParent;
 HICON hIcon;

 switch (uMsg)
 {
 case WM_INITDIALOG:

 hWndParent = GetParent(hDlg);

 hIcon = LoadIcon(g_hInst, "CustomIcon");

 SendMessage(hWndParent,
 WM_SETICON,
 (WPARAM)(BOOL)FALSE,
 (LPARAM)(HICON)hIcon);

 return TRUE;

 break;

 default:
 break;

 }

NOTE: This code calls GetParent() to get the actual window handle of the
common dialog box. This is done for the FileOpen and SaveAs dialog boxes
only. These dialogs, when created with the OFN_EXPLORER look with a hook
and a template (optional), create a seperate dialog to hold all the
controls. This is the dialog handle that is passed in the hook function.
The parent of this dialog is the main common dialog window, whose caption
icon must be modified. The FileOpen and SaveAs dialog boxes with the old
style (no OFN_EXPLORER) need not call GetParent().

All other common dialogs, such as ChooseColor and ChooseFont, behave as the
the Windows version 3.1 common dialogs behaved, so the code listed in this

article does not need to call GetParent(). It can just send the WM_SETICON
message to the hDlg that is passed to the hook function.

Additional reference words: 4.00 user common dialog
KBCategory: kbprg kbcode
KBSubcategory: UsrCmnDlg

How to Change the International Settings Programmatically

PSS ID Number: Q126625
Authored 27-Feb-1995 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 4.0

The International control panel icon allows you to choose international
settings for the time, date, keyboard, and so forth. You can change
these settings from your application code by calling SetLocaleInfo(). Be
sure to broadcast a WM_WININICHANGE message using PostMessage() so that all
applications are notified of the change.

The Win32 API allows you to display the time and date in the correct
international format. Use GetDateFormat() and GetTimeFormat() to get the
date and time in the format specified by the user.

Additional reference words: 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrLoc WintlDev

How to Compile Large Chinese or Korean Help Files

PSS ID Number: Q123331
Authored 29-Nov-1994 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK version 3.5

The Extended Help Compiler is not available in Traditional/Simplified
Chinese Windows version 3.1 SDK extension or in the Korean Windows version
3.1 SDK extension. Therefore, large help files in Chinese or Korean cannot
be compiled under Windows version 3.1 using the extended help compiler.

However, large Chinese or Korean help files can be compiled under Windows
NT, by using Chinese or Korean Help Compiler (HC31.EXE). Make sure the
directory containing the appropriate HC31.EXE is in the path.

If the .HPJ file contains Compress=YES, change it to compress=MEDIUM or to
compress=FALSE.

The resulting .HLP files cannot be displayed correctly under Windows NT. If
you try it, you'll see random symbols in place of the Chinese or Korean
characters. To examine the result of the compilation, exit from Windows NT,
and start Chinese or Korean Windows. Then display the help files.

Additional reference words: fesdk hcp
KBCategory: kbprg kbtool
KBSubcategory: WIntlDev

How to Convert a Binary SID to Textual Form

PSS ID Number: Q131320
Authored 07-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT

SUMMARY

It may be useful to convert a binary SID (security identifier) to a
readable, textual form, for display or manipulation purposes.

One example of an application that makes use of SIDs in textual form is the
Windows NT Event Viewer. If the Event Viewer cannot look up the name
associated with the SID of a logged event, the Event Viewer displays a
textual representation of the SID.

Windows NT also makes use of textual SIDs when loading user configuration
hives into the HKEY_USERS registry key.

Applications that obtain domain and user names can display the textual SID
representation when the Win32 API LookupAccountSid fails to obtain domain
and user information. Such a failure can occur if the network is down, or
the target machine is unavailable.

Sample Code

The following sample code displays the textual representation of the SID
associated with the current user. This source code converts a SID using the
same algorithm that the Windows NT operating system components use.

/*++

A standardized shorthand notation for SIDs makes it simpler to
visualize their components:

 S-R-I-S-S...

In the notation shown above:

 S identifies the series of digits as an SID.
 R is the revision level.
 I is the identifier-authority value.
 S is subauthority value(s).

A SID could be written in this notation as follows:

 S-1-5-32-544

In this example, the SID has a revision level of 1, an identifier-authority

value of 5, first subauthority value of 32, second subauthority value of
544. (Note that the above SID represents the local Administrators group.)

The GetTextualSid function converts a binary SID to a textual string.

The resulting string will take one of two forms. If the IdentifierAuthority
value is not greater than 2^32, then the SID will be in the form:

S-1-5-21-2127521184-1604012920-1887927527-19009
 ^ ^ ^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^
 | | | | | | |
 +-+-+------+----------+----------+--------+--- Decimal

Otherwise, the SID will take the form:

S-1-0x206C277C6666-21-2127521184-1604012920-1887927527-19009
 ^ ^^^^^^^^^^^^^^ ^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^
 | | | | | | |
 | Hexadecimal | | | | |
 +----------------+------+----------+----------+--------+--- Decimal

If the function succeeds, the return value is TRUE. If the function fails,
the return value is FALSE. To get extended error information, call the
Win32 API GetLastError().

--*/

#define RTN_OK 0
#define RTN_ERROR 13

#include <windows.h>
#include <stdio.h>

BOOL GetTextualSid(
 PSID pSid, // binary SID
 LPSTR TextualSID, // buffer for textual representation of SID
 LPDWORD dwBufferLen // required/provided TextualSid buffersize
);

int main(void)
{
 #define MY_BUFSIZE 256 // all allocations should be dynamic
 HANDLE hToken;
 TOKEN_USER ptgUser[MY_BUFSIZE];
 DWORD cbBuffer=MY_BUFSIZE;
 char szTextualSid[MY_BUFSIZE];
 DWORD cbSid=MY_BUFSIZE;
 BOOL bSuccess;

 //
 // obtain current process token
 //
 if(!OpenProcessToken(
 GetCurrentProcess(), // target current process

 TOKEN_QUERY, // TOKEN_QUERY access
 &hToken // resultant hToken
))
 {
 fprintf(stderr, "OpenProcessToken error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 //
 // obtain user identified by current process's access token
 //
 bSuccess=GetTokenInformation(
 hToken, // identifies access token
 TokenUser, // TokenUser info type
 ptgUser, // retrieved info buffer
 cbBuffer, // size of buffer passed-in
 &cbBuffer // required buffer size
);

 // close token handle. Do this even if error above
 CloseHandle(hToken);

 if(!bSuccess)
 {
 fprintf(stderr, "GetTokenInformation error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 //
 // obtain the textual representaion of the SID
 //
 if(!GetTextualSid(
 ptgUser->User.Sid, // user binary SID
 szTextualSid, // buffer for TextualSid
 &cbSid // size/required buffer
))
 {
 fprintf(stderr, "GetTextualSid error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 // display the TextualSid representation
 fprintf(stdout,"%s\n", szTextualSid);

 return RTN_OK;
}

BOOL GetTextualSid(
 PSID pSid, // binary SID
 LPSTR TextualSID, // buffer for textual representaion of SID
 LPDWORD dwBufferLen // required/provided TextualSid buffersize
)

{
 PSID_IDENTIFIER_AUTHORITY psia;
 DWORD dwSubAuthorities;
 DWORD dwSidRev=SID_REVISION;
 DWORD dwCounter;
 DWORD dwSidSize;

 //
 // test if SID passed in is valid
 //
 if(!IsValidSid(pSid)) return FALSE;

 // obtain SidIdentifierAuthority
 psia=GetSidIdentifierAuthority(pSid);

 // obtain sidsubauthority count
 dwSubAuthorities=*GetSidSubAuthorityCount(pSid);

 //
 // compute buffer length
 // S-SID_REVISION- + identifierauthority- + subauthorities- + NULL
 //
 dwSidSize = 15 + 12 + (12 * dwSubAuthorities) + 1;

 //
 // check provided buffer length.
 // If not large enough, indicate proper size and setlasterror
 //
 if (*dwBufferLen < dwSidSize)
 {
 *dwBufferLen = dwSidSize;
 SetLastError(ERROR_INSUFFICIENT_BUFFER);
 return FALSE;
 }

 //
 // prepare S-SID_REVISION-
 //
 wsprintf(TextualSID, "S-%lu-", dwSidRev);

 //
 // prepare SidIdentifierAuthority
 //
 if ((psia->Value[0] != 0) || (psia->Value[1] != 0))
 {
 wsprintf(TextualSID + lstrlen(TextualSID),
 "0x%02hx%02hx%02hx%02hx%02hx%02hx",
 (USHORT)psia->Value[0],
 (USHORT)psia->Value[1],
 (USHORT)psia->Value[2],
 (USHORT)psia->Value[3],
 (USHORT)psia->Value[4],
 (USHORT)psia->Value[5]);
 }
 else

 {
 wsprintf(TextualSID + lstrlen(TextualSID), "%lu",
 (ULONG)(psia->Value[5]) +
 (ULONG)(psia->Value[4] << 8) +
 (ULONG)(psia->Value[3] << 16) +
 (ULONG)(psia->Value[2] << 24));
 }

 //
 // loop through SidSubAuthorities
 //
 for (dwCounter=0 ; dwCounter < dwSubAuthorities ; dwCounter++)
 {
 wsprintf(TextualSID + lstrlen(TextualSID), "-%lu",
 *GetSidSubAuthority(pSid, dwCounter));
 }

 return TRUE;
}

Additional reference words: Convert LookupAccountSid SID String
KBCategory: kbprg
KBSubcategory: BseSecurity BseMisc CodeSam

How to Create 3D Controls in Client Area of Non-Dialog Window

PSS ID Number: Q130763
Authored 25-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

An application that uses standard Windows controls (edit boxes, list boxes,
and so on) as part of a dialog box with the DS_3DLOOK style set, have the
3D look by default. But if an application creates child controls as part of
the main window's client area, these controls do not have the 3D look by
default. Applications should add the WS_EX_CLIENTEDGE style to the list of
styles while creating the child controls to get the new 3D look.

MORE INFORMATION

WS_EX_CLIENTEDGE is the new extended style that gives controls (or any
window for that matter) the new 3D look. When controls are created as part
of a dialog box by using a dialog template based in the resource file,
Windows adds the WS_EX_CLIENTEDGE style to the list of styles.

Some applications use controls as child windows in the client area of the
main window. If the WS_EX_CLIENTEDGE style is not specified, these controls
have the Windows version 3.11 user interface (2D look).

Use CreateWindowEx() to create controls in the client area of a non-dialog
window, and make sure you OR in the WS_EX_CLIENTEDGE style. If your
application is using Microsoft Foundation Classes (MFC) version 3.x, you
can override the CreateEx() member function of the CEdit, CList, or any
other standard control class.

Additional reference words: 4.00 95 user
KBCategory: kbprg kbui
KBSubcategory: UsrCtl

How to Create a Topmost Window

PSS ID Number: Q81137
Authored 26-Feb-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Windows 3.1 introduces the concept of a topmost window that stays
above all the non-topmost windows even when the window is not the
active window.

There are two ways to add the topmost attribute to a window:

1. Use CreateWindowEx to create a new window. Specify WS_EX_TOPMOST as
 the value for the dwExStyle parameter.

2. Call SetWindowPos, specifying an existing non-topmost window and
 HWND_TOPMOST as the value for the hwndInsertAfter parameter.

SetWindowPos can also be used to remove the topmost attribute from a
window. To do so, specify HWND_NOTOPMOST or HWND_BOTTOM as the value
for the hwndInsertAfter parameter.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

How to Create Inheritable Win32 Handles in Windows 95

PSS ID Number: Q118605
Authored 25-Jul-1994 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK)

SUMMARY

Sometimes it is convenient for you to create an object such as a semaphore
or file and then allow a child process to inherit the object's handle. This
provides a means for two or more related processes to easily share an
object.

Although Windows 95 does not have a security system such as the one in
Microsoft Windows NT, Win32 API functions that create objects still use the
SECURITY_ATTRIBUTES structure to determine whether the handle to the newly
created object can be inherited. This article shows how to initialize a
SECURITY_ATTRIBUTES structure to control whether an object handle can be
inherited.

MORE INFORMATION

Win32 API functions that create objects require a SECURITY_ATTRIBUTES
parameter to give a newly created object access-control information and to
determine whether the handle to the object can be inherited.

The SECURITY_ATTRIBUTES structure contains the following members:

 Type Name
 ---- ----
 DWORD nLength;
 LPVOID lpSecurityDescriptor;
 BOOL bInheritHandle;

Secure Win32 operating systems such as Microsoft Windows NT use the
lpSecurityDescriptor member to enforce how and by which processes an object
is accessed. Because Windows 95 does not have a security system, it ignores
lpSecurityDescriptor. Like Microsoft Windows NT, Windows 95 uses the
bInheritHandle member to determine whether an object's handle can be
inherited by child processes.

To initialize a SECURITY_ATTRIBUTES structure so that a handle can be
inherited, set bInheritHandle to TRUE. The following code snippet shows how
to create a mutex with an inheritable handle:

 // Set the length of the structure, allow the handle to be
 // inherited, and use the default security descriptor (which
 // Windows 95 will ignore, but Windows NT will use.) Then create
 // a named, initially unowned mutex whose handle can be

 // inherited.

 SECURITY_ATTRIBUTES sa;
 HANDLE hMutex1;

 sa.nLength = sizeof(sa);
 sa.bInheritHandle = TRUE;
 sa.lpSecurityDescriptor = NULL;

 hMutex1 = CreateMutex(&sa, FALSE, "MUTEX1");

To prevent the handle from being inherited, set bInheritHandle to FALSE.
The following code example demonstrates creating a mutex with a
noninheritable handle:

 // Set the length of the structure, do not allow the handle
 // to be inherited, and use the default security descriptor
 // (which Windows 95 will ignore, but Windows NT will use).
 // Create a named, initially unowned mutex whose handle cannot
 // be inherited.

 SECURITY_ATTRIBUTES sa;
 HANDLE hMutex1;

 sa.nLength = sizeof(sa);
 sa.bInheritHandle = FALSE;
 sa.lpSecurityDescriptor = NULL;

 hMutex1 = CreateMutex(&sa, FALSE, "MUTEX1");

You can also prevent a handle to an object from being inherited by
specifying NULL in the call to Win32 object creation API function instead
of specifying a pointer to a SECURITY_ATTRIBUTES structure. This is
equivalent to setting bInheritHandle to FALSE and lpSecurityDescriptor to
NULL. For example:

 // Use NULL instead of pointer to SECURITY_ATTRIBUTES
 // structure to create a named, initially unowned
 // mutex whose handle cannot be inherited. A NULL security
 // descriptor will be used by Windows NT, but ignored by
 // Windows 95.

 HANDLE hMutex1;
 hMutex1 = CreateMutex(NULL, FALSE, "MUTEX1");

Cross-Platform Compatibility Information
--

Keep in mind that while Windows 95 does not have a security system, Windows
NT does. Windows 95 ignores the lpSecurityDescriptor member of the
SECURITY_ATTRIBUTES, but Windows NT uses it. If access to the object needs
to be controlled in a specific way on Windows NT, then the
lpSecurityDescriptor should be initialized by calling the Win32 security
API functions.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseSecurity

How to Create Non-rectangular Windows

PSS ID Number: Q125669
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 and Windows NT version 3.51 provide a new API called
SetWindowRgn() that makes it easy for applications to create irregularly
shaped windows.

MORE INFORMATION

In previous versions of Windows and Windows NT, it was possible to create
only rectangular windows. To simulate a non-rectangular window required a
lot of work on the application developer's part. Besides handling all
drawing for the window, the application was required to perform hit-testing
and force underlying windows to repaint as necessary to refresh the
"transparent" portions of the window.

Windows 95 and Windows NT version 3.51 greatly simplify this by providing
the SetWindowRgn function. An application can now create a region with any
desired shape and use SetWindowRgn to set this as the clipping region
for the window. Subsequent painting and mouse messages are limited to this
region, and Windows automatically updates underlying windows that show
through the non-rectangular window. The application need only paint the
window as desired.

For more information on using SetWindowRgn, see the Win32 API
documentation.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrMisc

How to Delete Keys from the Windows NT Registry

PSS ID Number: Q127990
Authored 22-Mar-1995 Last modified 23-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

There are two ways to delete registry keys: use REGEDT32.EXE or call
RegDeleteKey() from your application.

The documentation for RegDeleteKey() points out that the specified key to
be deleted must not have subkeys. If the key to be deleted does have
subkeys, RegDeleteKey() will fail with access denied. This happens despite
the fact that the machine account has delete privileges and the registry
handle passed to RegDeleteKey() was opened with delete access. The
additional requirement is that the key must have no subkeys.

This limitation does not exist in 16-bit Windows. The difference exists in
Windows NT because of atomicity and security considerations that 16-bit
Windows does not have.

You can select a key with subkeys and delete it with REGEDT32. This is
because REGEDT32 recursively deletes the subkeys for you, making multiple
call to RegDeleteKey(). You should use recursive subkey deletion in your
application as well, if you need to delete keys that have subkeys.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

How to Design Multithreaded Applications to Avoid Deadlock

PSS ID Number: Q126768
Authored 01-Mar-1995 Last modified 25-May-1995

--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51, and
 4.0
--

SUMMARY

Debugging a multithreaded application that deadlocks is challenging because
the debugger cannot identify for you which thread owns which resource. You
would have to track this information in your code. Because it is difficult
to debug a deadlock situation, it is important to design your application
to avoid deadlock.

This article is a brief introduction to a very complex topic. There are
references at the bottom of this article for additional information.

The key point to keep in mind when designing a multithreaded program is
that resources must always be requested in the same order.

MORE INFORMATION

The Win32 API provides WaitForSingleObject() and WaitForMultipleObjects()
for requesting resources with handles. You would use a different method to
request other resources, depending on the resource type.

Many deadlocks occur because resources are not requested in the same order
by the application threads. For example:

 - Thread 1 holds resource A and wants resource B.

 - Thread 2 holds resoruce B and wants resource A.

Both threads block forever, resulting in deadlock. There are many other
possible scenarios.

To avoid this problem, identify all of your application's critical
resources and order them from least precious to most precious. Design your
code such that if a thread needs several resources, it requests them in
order, starting with the least precious resource. Resources should be freed
in the reverse order and as soon as it is possible. This is not a
requirement to avoid deadlock, but it is good practice.

In the example given above, suppose that resource B is more precious than
resource A. Here's how the code would resolve the situation:

 - Thread 2 already holds B, but because it wants A, it releases
 B and waits for A.

 - Thread 1 grabs B, then begins the task. It releases A when possible.

 - Thread 2 grabs A and waits for B.

 - Thread 1 finishes the task, then releases B.

 - Thread 2 grabs B, finishes the task, then releases A, then releases B.

The reason you should request the least precious resource first is that it
doesn't matter as much if you hold it longer while waiting to acquire all
the resources that you need. If the resource is precious, you want to hold
it for the smallest amount of time possible, so other threads can use it.

REFERENCES

MSDN Development Library, "Detecting Deadlocks in Multithreaded Win32
Applications", by Ruediger Asche.

For more information, refer to a good book on operating system design.

Additional reference words: 3.50 4.00 95 race condition
KBCategory: kbprg
KBSubcategory: BseProcThrd

How to Detect All Program Terminations

PSS ID Number: Q125689
Authored 01-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

The processes for detecting program terminations in fall into two
categories:

 - Win32 processes use WaitForSingleObject() or WaitForMultipleObjects()
 to wait for other Win32 processes, Windows 16-bit processes, and
 MS-DOS-based applications to terminate.

 - Windows 16-bit processes, on the other hand, must use the TOOLHELP
 NotifyRegister() function. The 16-bit processes can be notified when
 other 16-bit processes and MS-DOS-based applications exit, but have the
 limitation of not being notified of Win32 process activity.

MORE INFORMATION

Win32 processes can use WaitForSingleObject() or WaitForMultipleObjects()
to wait for a spawned process. By using CreateProcess() to launch a Win32
process, 16-bit process, or MS-DOS-based application, you can fill in a
PROCESS_INFORMATION structure. The hProcess field of this structure can be
used to wait until the spawned process terminates. For example, the
following code spawns a process and waits for its termination:

 STARTUPINFO StartupInfo = {0};
 StartupInfo.cb = sizeof(STARTUPINFO);
 if (CreateProcess(NULL, szCommandLine, NULL, NULL, FALSE,
 0, NULL, NULL, &StartupInfo, &ProcessInfo))
 {
 WaitForSingleObject(ProcessInfo.hProcess, INFINITE);
 /* Process has terminated */
 ...
 }
 else
 {
 /* Process could not be started */
 ...
 }

If necessary, you can put this code into a separate thread to allow the
initial thread to continue to execute.

This synchronization method is not available to 16-bit processes. Instead,
they must use the TOOLHELP NotifyRegister function to register a callback

function to be called when a program terminates. This method will detect
the termination of 16-bit processes and MS-DOS-based applications, but not
Win32 processes.

The following code shows how to register a callback function with
NotifyRegister():

 FARPROC lpfnCallback;

 lpfnCallback = MakeProcInstance(NotifyRegisterCallback, ghInst);
 if (!NotifyRegister(NULL, (LPFNNOTIFYCALLBACK)lpfnCallback,
 NF_NORMAL))
 {
 MessageBox(NULL, "NotifyRegister Failed", "Error", MB_OK);
 FreeProcInstance(lpfnCallback);
 }

The next section of code demonstrates the implementation of the callback
function:

 BOOL FAR PASCAL __export NotifyRegisterCallback (WORD wID,
 DWORD dwData)
 {
 HTASK hTask; // task that called the notification callback
 TASKENTRY te;

 // Check for task exiting
 switch (wID)
 {
 case NFY_EXITTASK:
 // Obtain info about the task that is terminating
 hTask = GetCurrentTask();
 te.dwSize = sizeof(TASKENTRY);
 TaskFindHandle(&te, hTask);

 // Check if the task that is terminating is our child task.
 // Also check if the hInstance of the task that is
 // terminating is the same as the hInstance of the task
 // that was WinExec'd by us earlier in the program.

 if (te.hTaskParent == ghtaskParent &&
 te.hInst == ghInstChild)
 PostMessage(ghwnd, WM_USER+509, (WORD)te.hInst, dwData);
 break;

 default:
 break;
 }
 // Pass notification to other callback functions
 return FALSE;
 }

The NotifyRegisterCallback() API is called by the 16-bit TOOLHELP DLL in
the context of the process that is causing the event. Problems arising
because of reentrancy and notification chaining makes the callback function

subject to certain restrictions. For example, operations that cause
TOOLHELP events cannot be done in the callback function. (See the TOOLHELP
NotifyRegister function documentation in your Software Development Kit for
events that cause TOOLHELP callbacks.)

There is no way a 16-bit process can be notified when a Win32 process
exits. However, a 16-bit process can use TaskFirst() and TaskNext() to
periodically walk the task list to determine if a Win32 process is still
executing. This technique also works for 16-bit processes and MS-DOS-based
applications. For example, the following code shows how to check for the
existence of a process:

 BOOL StillExecuting(HINSTANCE hAppInstance)
 {
 TASKENTRY te = {0};

 te.dwSize = sizeof(te);
 if (TaskFirst(&te))
 do
 {
 if (te.hInstance == hAppInstance)
 return TRUE; // process found
 } while (TaskNext(&te));

 // process not found
 return FALSE;
 }

Refer to the TermWait sample for complete details on how to use
NotifyRegister and implement a callback function. For additional
information, please search in the Microsoft Knowledge Base using this word:

 TERMWAIT

Additional reference words: 4.00 95 end exit notification notify spawn
terminate termination
KBCategory: kbprg kbcode
KBSubcategory: BseProcThrd

How to Detect Slow CPU & Unaccelerated Video Under Windows 95

PSS ID Number: Q131259
Authored 07-Jun-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

Under Windows 95, use GetSystemMetrics(SM_SLOWMACHINE) to check for low-end
computers. It returns a nonzero value if the computer has a 386 CPU, is low
on memory, or has a slow display card.

The return values (bit flags) are:

 0x0001 - CPU is a 386
 0x0002 - low memory machine (less than 5 megabytes)

The following is notable for video:

 0x0004 - slow (nonaccerated) display card

Additional reference words: 4.00 win95 system display slow machine
KBCategory: kbprg
KBSubcategory: UsrSys

How to Determine If a Device Is Palette Capable

PSS ID Number: Q72387
Authored 23-May-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

On a device that supports the Windows palette management function, an
application can create a logical palette, select the palette into a
device context (DC), and realize the palette, which maps its colors
into the system (hardware) palette. The GetDeviceCaps() API informs
an application whether a given device is capable of performing palette
manipulation and, if so, the size of the palette. This article
discusses the GetDeviceCaps() API and how it is used.

MORE INFORMATION

To determine whether a device can perform palette operations, call the
GetDeviceCaps() API with the RASTERCAPS parameter. If the RC_PALETTE bit of
the return is set, the device supports the palette management functions.

To determine how many colors in the system palette are available for the
application to use, the following parameters can be used in a
GetDeviceCaps() call:

 Parameter Description
 --------- -----------

 SIZEPALETTE Total number of entries in the system palette
 NUMRESERVED Number of reserved (static) colors in the system
 palette

This functionality is demonstrated in the MyPal sample code that is
included on the Windows version 3.x Software Development Kit (SDK)
Source Code 2 disk. For a demonstration, start MyPal and click the
right mouse button.

The reserved colors are entries in the system palette that are used by
Windows and cannot be changed by an application [except by using
SetSystemPaletteUse(), which is not recommended]. The reserved colors are
used for the following purposes:

 Active border
 Active caption
 Background color MDI applications
 Desktop background color

 Push button faces
 Push button edges
 Push button text
 Caption text
 Disabled (gray) text
 Highlight color in controls (to highlight items in the control)
 Highlight text color
 Inactive border
 Inactive caption
 Inactive caption text (new to Windows version 3.1)
 Menu background
 Menu text
 Scroll-bar gray area
 Window background
 Window frame
 Window text

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPal

How to Determine the Japanese OEM Windows Version

PSS ID Number: Q130054
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

Because of the variety of computer manufacturers (NEC, Fujitsu, IBMJ, and
so on) in Japan, sometimes Windows-based applications need to know which
OEM (original equipment manufacturer) manufactured the computer that is
running the application. This article explains how.

MORE INFORMATION

There is no documented way to detect the manufacturer of the computer that
is currently running an application. However, a Windows-based application
can detect the type of OEM Windows by using the return value of the
GetKeyboardType() function.

If an application uses the GetKeyboardType API, it can get OEM ID by
specifying "1" (keyboard subtype) as argument of the function. Each OEM ID
is listed here:

 OEM Windows OEM ID

 Microsoft 00H (DOS/V)
 all AX 01H
 EPSON 04H
 Fujitsu 05H
 IBMJ 07H
 Matsushita 0AH
 NEC 0DH
 Toshiba 12H

Application programs can use these OEM IDs to distinguish the type of OEM
Windows. Note, however, that this method is not documented, so Microsoft
may not support it in the future version of Windows.

As a rule, application developers should write hardware-independent code,
especially when making Windows-based applications. If they need to make a
hardware-dependent application, they must prepare the separated program
file for each different hardware architecture.

Additional reference words: 3.10 1.20 3.50 1.20 kbinf
KBCategory: kbhw

KBSubcategory: wintldev

How to Determine the Type of Handle Retrieved from

PSS ID Number: Q126258
Authored 16-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

OpenPrinter returns a valid handle when a printer name or a server name is
passed to it. Sometimes it may be necessary to determine if the returned
handle is a handle to a printer because some Win32 spooler functions only
accept printer handles and will fail on server handles. The following code
determines if a handle is a printer handle:

BOOL IsPrinterHandle(HANDLE hPrinter)
{
 DWORD cbNeeded;
 DWORD Error;
 BOOL bRet = FALSE;
 LPPRINTER_INFO_2 pPrinter;
 DWORD cbBuf;
 HANDLE hMem = NULL;

 if(!GetPrinter(hPrinter, 2, (LPBYTE)NULL, cbBuf, &cbNeeded))
 {
 Error = GetLastError();

 if(Error == ERROR_INSUFFICIENT_BUFFER)
 {
 hMem = GlobalAlloc(GHND, cbNeeded);
 if (!hMem) return bRet;
 pPrinter = (LPPRINTER_INFO_2)GlobalLock(hMem);
 cbBuf = cbNeeded;
 if(GetPrinter(hPrinter, 2, (LPBYTE)pPrinter, cbBuf, &cbNeeded))
 {
 bRet = TRUE;
 GlobalUnlock(hMem);
 GlobalFree(hMem);
 }
 else SetLastError(ERROR_INVALID_PRINTER_NAME);
 }
 else if(Error == ERROR_INVALID_HANDLE)
 {
 SetLastError(ERROR_INVALID_PRINTER_NAME);
 }
 }
 return bRet;
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: GdiPrn

How to Determine Which Version of Win32s Is Installed

PSS ID Number: Q121091
Authored 26-Sep-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SUMMARY

The "Win32s Programmer's Reference" describes how to use the
GetWin32sInfo() function in a program to determine which version of Win32s
is installed. This article explains how to determine which version of
Win32s is installed interactively.

MORE INFORMATION

Use one of the following two methods to determine interactively which
version of Win32s is installed:

1. Check the WIN32S.INI file in your Windows system directory. The Version
 entry contains the major version and the build number (m.mm.bbb.b). This
 entry should be modified by any Win32-based application which installs a
 later version of Win32s on your Windows machine.

 NOTE: Because it is up to the application vendor to set this value
 when installing Win32s, the value may not be accurate. Microsoft
 strongly urges all independent software vendors (ISVs) to modify the
 WIN32S.INI file so that this information is available to customers.

 -or-

2. If Win32s is installed on top of Windows for Workgroups, select the
 WIN32S16.DLL file from the Windows system directory in File Manager.
 Then from the File menu, choose Properties. The Version line contains
 the major version and the build number.

Version Information

Win32s version 1.1.88 was distributed as Win32s version 1.1 and Win32s
version 1.1.89 was distributed as Win32s version 1.1a.

Win32s version 1.15.103 was distributed as Win32s version 1.15 and Win32s
version 1.15.111 was distributed as Win32s version 1.15a.

Win32s version 1.2.123 was distributed as Win32s version 1.2.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbenv
KBSubCategory: W32s

How to Disable the Screen Saver Programmatically

PSS ID Number: Q126627
Authored 27-Feb-1995 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5 and 3.51

SUMMARY

Under Windows NT, you can disable the screen saver from your application
code. To detect if the screen saver is enabled, use this:

 SystemParametersInfo(SPI_GETSCREENSAVEACTIVE,
 0,
 pvParam,
 0
);

On return, the parameter pvParam will point to TRUE if the screen saver
setting is enabled in the System control panel applet and FALSE if the
screen saver setting is not enabled.

To disable the screen saver setting, call SystemParametersInfo() with this:

 SystemParametersInfo(SPI_SETSCREENSAVEACTIVE,
 FALSE,
 0,
 SPIF_SENDWININICHANGE
);

MORE INFORMATION

When the screen saver is activated by the system, it is run on a desktop
other than the user's desktop (similar to the login desktop displayed when
no one is logged in). Therefore, you cannot use FindWindow() to determine
if the screen saver is currently active.

Here are two methods that you can use to detect if the screen saver is
currently running:

1. Get the name of the current screen saver from the registry, parse the PE
 header of the screen saver binary to get the process name, then check
 for an active process with that name in the performance registry.

 -or-

2. Write a screen saver that would be spawned by the system and would in
 turn spawn the "real" screen saver. The first screen saver could notify
 your application when the screen saver has been activated or
 deactivated.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: GdiScrsav

How to Display Debugging Messages in Windows 95

PSS ID Number: Q125868
Authored 07-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows 95, 16-bit and 32-bit Windows-based applications may use
OutputDebugString() to display debug messages. Furthermore, the 16-bit and
32-bit system DLLs may also display debug messages. This article describes
how to view these messages during application developement.

MORE INFORMATION

It is possible to use the 16-bit DBWIN application to display debug
messages from 16-bit Windows-based applications and from the debugging
versions of system DLLs (such as GDI.EXE, USER.EXE, and KRNL386.EXE). To
receive debug messages via DBWIN, you must install the Windows 95 SDK debug
components.

To receive messages from 32-bit Windows-based applications under Windows
95, you must debug the application with a Win32 debugger such as WinDbg, or
install WDEB386 as a .VxD or in the AUTOEXEC.BAT file. To receive messages
from the debugging versions of the 32-bit system DLLs (KERNEL32.DLL,
USER32.DLL, and GDI32.DLL), you must install the Windows 95 SDK debugging
components, in conjunction with WDEB386.

You can use WDEB386 to display debug messages from both 16-bit and 32-bit
Windows-based applications and from the debugging versions of system
components. Because WDEB386 works over a serial communications port, it is
necessary to use a serial terminal or second computer to operate it. For
more information about configuring and using WDEB386, please search for
articles in the Microsoft Knowledge Base by using this word:

 WDEB386

Alternative system level debuggers, which provide functionality
similiar to WDEB386, may in the future be provided by third-party vendors.

Also, you can write 32-bit application-level debuggers that display debug
messages from the debuggee by handling the DEBUG_EVENT structure member
OUTPUT_DEBUG_STRING_EVENT.

Additional reference words: 3.95 4.00
KBCategory: kbprg
KBSubcategory: BseErrdebug

How to Display Old-Style FileOpen Common Dialog in Windows 95

PSS ID Number: Q131282
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

If you want an application to revert back to the old-style FileOpen or
SaveAs common dialog box, you must either provide a dialog template or a
hook function in addition to not specifying the OFN_EXPLORER flag.

MORE INFORMATION

Windows 95 provides a new flag for the File Open or Save As common dialog
box called OFN_EXPLORER. When set, this flag ensures that the File Open
dialog box displays a user interface that is similar to the Windows
Explorer (or so-called Explorer-style dialog box).

You may want your application to revert to the old Windows version 3.1
style dialog box. For example, you might want to maintain a user interface
consistent with the Windows NT user interface. Windows NT version 3.51
currently does not support the new Explorer-style File Open common dialog
box. The next version of Windows NT, however, should implement this new
feature.)

To display the old-style common dialog box:

 - Don't specify the OFN_EXPLORER value in the OPENFILENAME structure's
 Flags member.

 - Provide a dialog template or a hook. If the application does not have
 either one, a simple hook that always returns FALSE should suffice.

NOTE: When you specify a hook function for the old-style common dialog box
in Windows 95, the hDlg received in the hookProc is the actual handle to
the dialog containing the standard controls. This is not true, however, for
the new Explorer-style common dialog hookProc where the hDlg received is
the handle to a child of the dialog box containing the standard controls.
Therefore, to get a handle to the actual File Open or Save As dialog box,
an application should call GetParent() on the hDlg passed to the hook
procedure.

Additional reference words: 4.00 subdialog
KBCategory: kbprg kbui
KBSubcategory: UsrCmnDlg

How to Draw a Custom Window Caption

PSS ID Number: Q99046
Authored 20-May-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Microsoft Windows draws captions in the caption bar (or title bar) for all
eligible windows in the system. Applications need to specify only the
WS_CAPTION style to take advantage of this facility. The current version of
Microsoft Windows, however, imposes three significant restrictions on the
captions. An application that does not want to be tied by any of these
restrictions may want to draw its own caption. This article lists the
restrictions and the steps required to draw a window caption.

These restrictions also apply to Windows NT, but there are a few
differences for Windows 95.

It is important to note that an application should not draw its own caption
unless it has very good reasons to do so. A window caption is a user
interface object, and rendering it in ways different from other windows in
the system may obstruct the user's conceptual grasp of the Microsoft
Windows user interface.

MORE INFORMATION

Windows and Windows NT

The three important restrictions imposed by Microsoft Windows version 3.1
and Microsoft Windows NT on the caption for a window are:

- It consists of text only; graphics are not allowed.
- All text is centered and drawn with the system font.
- The length of the displayed caption is limited to 78 characters
 even when there is space on the caption bar to accommodate extra
 characters.

An application can essentially render its own caption consisting of any
graphic and text with the standard graphics and text primitives by painting
on the nonclient area of the window. The application should draw in
response to the WM_NCPAINT, WM_NCACTIVATE, WM_SETTEXT, and WM_SYSCOMMAND
messages. When processing these messages, an application should first pass
on the message to DefWindowProc() for default processing, then render its
caption before returning from the message. This ensures that Microsoft
Windows can properly draw the nonclient area. Because drawing the caption

is part of DefWindowProc()'s nonclient area processing, an application
should specify an empty window title to avoid any Windows-initiated drawing
in the caption bar. The following steps indicate the computations needed to
determine the caption drawing area:

1. Get the current window's rectangle using GetWindowRect(). This
 includes client plus nonclient areas and is in screen coordinates.

2. Get a device context (DC) to the window using GetWindowDC().

3. Compute the origin and dimensions of the caption bar. One needs to
 account for the window decorations (frame, border) and window
 bitmaps (min/max/system boxes). Remember that different window
 styles will result in different decorations and a different number of
 min/max/system boxes. Use GetSystemMetrics() to compute the
 dimensions of the frame, border, and the system bitmap dimensions.

4. Render the caption within the boundaries of the rectangle computed
 in step 3. Remember that the user can change the caption bar color
 any time by using the Control Panel. Some components of the caption,
 particularly text backgrounds, may need to be changed based on the
 current caption bar color. Use GetSysColor to determine the current
 color.

The following code sample draws a left-justified caption for a window
(the code sample applies only to the case where the window is active):

Sample Code

 case WM_NCACTIVATE:
 if ((BOOL)wParam == FALSE)
 {
 DefWindowProc(hWnd, message, wParam, lParam);
 // Add code here to draw caption when window is inactive.

 return TRUE;
 }
 // Fall through if wParam == TRUE, i.e., window is active.

 case WM_NCPAINT:
 // Let Windows do what it usually does. Let the window caption
 // be empty to avoid any Windows-initiated caption bar drawing

 DefWindowProc(hWnd, message, wParam, lParam);
 hDC = GetWindowDC(hWnd);
 GetWindowRect(hWnd, (LPRECT)&rc2);

 // Compute the caption bar's origin. This window has a system box
 // a minimize box, a maximize box, and has a resizeable frame

 x = GetSystemMetrics(SM_CXSIZE) +
 GetSystemMetrics(SM_CXBORDER) +
 GetSystemMetrics(SM_CXFRAME);
 y = GetSystemMetrics(SM_CYFRAME);

 rc1.left = x;
 rc1.top = y;

 // 2*x gives twice the bitmap+border+frame size. Since there are
 // only two bitmaps, two borders, and one frame at the end of the
 // caption bar, subtract a frame to account for this.

 rc1.right = rc2.right - rc2.left - 2*x -
 GetSystemMetrics(SM_CXFRAME);
 rc1.bottom = GetSystemMetrics(SM_CYSIZE);

 // Render the caption. Use the active caption color as the text
 // background.

 SetBkColor(hDC, GetSysColor(COLOR_ACTIVECAPTION));
 DrawText(hDC, (LPSTR)"Left Justified Caption", -1,
 (LPRECT)&rc1, DT_LEFT);
 ReleaseDC(hWnd, hDC);
 break;

Windows 95

On Windows 95, the text is not centered and the user can choose the Font.
In addition, your application might want to monitor the WM_WININICHANGED
message, because the user can change titlebar widths, and so forth,
dynamically. When this happens, the application should take the new system
metrics into account, and force a window redraw.

Additional reference words: 3.00 3.10 3.50 4.00 minimum maximum
KbCategory: kbprg kbcode
KbSubCategory: UsrPnt

How to Draw a Gradient Background

PSS ID Number: Q128637
Authored 05-Apr-1995 Last modified 23-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
-

SUMMARY

This article provides source code for drawing a gradient background pattern
similar to the one used in Microsoft Setup applications. The code will
compile and run on Windows version 3.1, Win32s, and Windows 95.

MORE INFORMATION

WARNING: ANY USE BY YOU OF THE CODE PROVIDED IN THIS ARTICLE IS AT YOUR
OWN RISK. Microsoft provides this code "as is" without warranty of any
kind, either express or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose.

/***
* *
* DrawBackgroundPattern() *
* *
* Purpose: This function draws a gradient pattern that *
* transitions between blue and black. This is *
* similar to the background used in Microsoft *
* setup programs. *
* *
***/
void DrawBackgroundPattern(HWND hWnd)
{
 HDC hDC = GetDC(hWnd); // Get the DC for the window
 RECT rectFill; // Rectangle for filling band
 RECT rectClient; // Rectangle for entire client area
 float fStep; // How large is each band?
 HBRUSH hBrush;
 int iOnBand; // Loop index

 // How large is the area you need to fill?
 GetClientRect(hWnd, &rectClient);

 // Determine how large each band should be in order to cover the
 // client with 256 bands (one for every color intensity level)
 fStep = (float)rectClient.bottom / 256.0f;

 // Start filling bands
 for (iOnBand = 0; iOnBand < 256; iOnBand++) {

 // Set the location of the current band
 SetRect(&rectFill,
 0, // Upper left X
 (int)(iOnBand * fStep), // Upper left Y
 rectClient.right+1, // Lower right X
 (int)((iOnBand+1) * fStep)); // Lower right Y

 // Create a brush with the appropriate color for this band
 hBrush = CreateSolidBrush(RGB(0, 0, (255 - iOnBand)));

 // Fill the rectangle
 FillRect(hDC, &rectFill, hBrush);

 // Get rid of the brush you created
 DeleteObject(hBrush);
 };

 // Give back the DC
 ReleaseDC(hWnd, hDC);
}

Additional reference words: 3.00 3.10 3.50 4.00 GRADIENT BACKGROUND DITHER
KBCategory: kbprg kbcode
KBSubcategory: GdiMisc

How to Examine the Use of Process Memory Under Win32s

PSS ID Number: Q129599
Authored 30-Apr-1995 Last modified 01-May-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SUMMARY

Under Windows, tools like HeapWalk and PWalk can be used to examine memory
use of 16-bit code. However, these tools cannot be used to look at memory
use of 32-bit code. This article discusses how to look at process memory
use under Win32s.

MORE INFORMATION

If you run the debug version of Win32s and kernel debugger WDEB386, you can
break into the debugger at any point by pressing CTRL+C and using debug
information from the Win32s VxD. Use the command .w32s to get the list of
information types available.

 #.w32s
 W32S debug routines:

 A - General Info
 B - Print Free LS ranges
 C - Print RRD & Section lists
 D - Print Modules list
 E - Toggle SwapOut trace
 F - Toggle PageFault trace
 G - count present alias pages
 H - List RRD Commit List
 I - Toggle Virtual Alloc/Free trace
 J - Toggle Mapped Section trace
 K - List Locked Pages
 [ESC] Exit W32S Debug Routines

Option C gives you information about the sparse memory usage.

The memory for .EXE and .DLL files is allocated in the sparse memory.
Here's an example printout using option C:

RRD List:
Index Start Size Owner #Commits CommSize #PresPg
00000000 87AA0000 0000E000 00000000 - VIEW - - VIEW - - VIEW -
00000001 87A90000 00001000 00001F37 00000001 00001000 00000001
00000002 87A50000 00040000 00000000 00000000 00000000 00000000
00000003 87A40000 00002000 00000000 - VIEW - - VIEW - - VIEW -
00000004 87A30000 00009000 00000000 - VIEW - - VIEW - - VIEW -
00000005 87A20000 00002000 00000000 - VIEW - - VIEW - - VIEW -

00000006 87A10000 00002000 00000000 - VIEW - - VIEW - - VIEW -
00000007 87910000 00100000 00001F37 00000001 00001000 00000001
00000008 878F0000 00020000 00001F37 00000001 00020000 00000002
00000009 878C0000 00021000 00001F37 00000001 00021000 00000001
0000000A 878B0000 00005000 00000000 00000001 00005000 00000005
0000000B 87860000 00043000 00000000 00000001 00043000 00000031
0000000C 87830000 0002D000 00000000 00000001 0002D000 0000000C
0000000D 87810000 00011000 00000000 00000001 00011000 0000000E
0000000E 80869000 00001000 00001F37 00000001 00001000 00000000
0000000F 87800000 00002000 00001F37 00000001 00002000 00000001
00000010 80635000 00001000 00001F37 00000001 00001000 00000000
 ======== ======== ========
Total 00229000 000CD000 00000056

Sections List:
SecIndex hFile SecSize #Ref #Views CommSize #PresPg
00000001 00000004 00002000 00000000 00000001 00002000 00000001
00000002 00000005 00002000 00000000 00000001 00002000 00000001
00000003 00000006 00009000 00000000 00000001 00009000 00000003
00000004 00000007 00002000 00000000 00000001 00002000 00000001
00000005 00000008 0000E000 00000000 00000001 0000E000 00000001
 ======== ======== ========
Total 0001D000 0001D000 00000007

G. Total 000EA000 0000005D

The Size column contains the reserved size and the CommSize column contains
the committed size. The addresses are zero-based (ring 0), not based on
0xffff0000 (ring 3). Therefore, you must add 0x10000 to the addresses you
see in the list in order to get the ring 3 addresses.

Option D gives you the list of modules and where they reside in memory.
These addresses are zero-based addresses as well, as is any information
that you get from the VxD.

Another way to get information indicating where things are placed in memory
is to set the verbose loader flag (0x20) in the Win32sDebug variable in the
[386Enh] section of the SYSTEM.INI file.

NOTE: Do not add the 0x, just write Win32sDebug=20. The loader then will
print in the debug terminal information about each loaded module. For
example:

Open file D:\WIN32APP\FREECELL\FREECELL.EXE in mode 0xa0
LELDR: allocating 0x11000
LELDR: Module D:\WIN32APP\FREECELL\FREECELL.EXE [1] loaded at 0x87820000
LELDR: obj 1 loaded @ 0x87821000, 0x 5c00 bytes .text,flags=0x60000020
LELDR: obj 2 loaded @ 0x87827000, 0x 0 bytes .bss,flags=0xc0000080
LELDR: obj 3 loaded @ 0x87828000, 0x 200 bytes .rdata,flags=0x40000040
LELDR: obj 4 loaded @ 0x87829000, 0x a00 bytes .data,flags=0xc0000040
LELDR: obj 5 loaded @ 0x8782a000, 0x 2400 bytes .rsrc,flags=0x40000040
LELDR: obj 6 loaded @ 0x8782d000, 0x 200 bytes .CRT,flags=0xc0000040
LELDR: obj 7 loaded @ 0x8782e000, 0x a00 bytes .idata,flags=0x40000040
LELDR: obj 8 loaded @ 0x8782f000, 0x 1e00 bytes .reloc,flags=0x42000040
File D:\WIN32APP\FREECELL\FREECELL.EXE is closed

The addresses here are ring 3 addresses.

REFERENCES

Please see the "Win32s Programmer's Reference" included in the Win32 SDK
for more information about the debugging features. This information is not
included in the version of the Win32s documentation distributed with Visual
C++.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

How to Find Out Which Listview Column Was Right-Clicked

PSS ID Number: Q125694
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

You can use the technique described in this article to find out which
column was clicked after right-clicking the listview column header.

MORE INFORMATION

LVN_COLUMNCLICK notifies a listview's parent window when a column is
clicked using the left mouse button, but no such notification occurs when a
column is clicked with the right mouse button.

Windows 95 sends an NM_RCLICK notification to the listview's parent window
when a column is clicked with the right mouse button, but the message sent
does not contain any information as to which column was clicked, especially
if the window is sized so that the listview is scrolled to the right.

The correct way to determine which column was clicked with the right mouse
button, regardless of whether the listview is scrolled, is to send the
header control an HDM_HITTEST message, which returns the index of the
column that was clicked in the iItem member of the HD_HITTESTINFO struct.
In sending this message, make sure the point passed in the HD_HITTESTINFO
structure is relative to the header control's client coordinates. Do not
pass it a point relative to the listview's client coordinates; if you do,
it will return an incorrect column index value.

The header control in this case turns out to be a child of the listview
control of LVS_REPORT style.

The following code demonstrates this method. Note that while the code
processes the NM_RCLICK notification on a WM_NOTIFY message, you also
process the WM_CONTEXTMENU message, which is also received as a
notification when the user clicks the right mouse button.

case WM_NOTIFY:
{
 if ((((LPNMHDR)lparam)->code == NM_RCLICK))
 {
 HWND hChildWnd;
 POINT pointScreen, pointLVClient, pointHeader;
 DWORD dwpos;

 dwPos = GetMessagePos();

 pointScreen.x = LOWORD (dwPos);
 pointScreen.y = HIWORD (dwPos);

 pointLVClient = pointScreen;

 // Convert the point from screen to client coordinates,
 // relative to the listview
 ScreenToClient (ghwndLV, &pointLVClient);

 // Because the header turns out to be a child of the
 // listview control, we obtain its handle here.
 hChildWnd = ChildWindowFromPoint (ghwndLV, pointLVClient);

 // NULL hChildWnd means R-CLICKED outside the listview.
 // hChildWnd == ghwndLV means listview got clicked: NOT the
 // header.
 if ((hChildWnd) && (hChildWnd != ghwndLV))
 {
 char szClass [50];

 // Verify that this window handle is indeed the header
 // control's by checking its classname.
 GetClassName (hChildWnd, szClass, 50);
 if (!lstrcmp (szClass, "SysHeader32"))
 {
 HD_HITTESTINFO hdhti;
 char szBuffer [80];

 // Transform to client coordinates
 // relative to HEADER control, NOT the listview!
 // Otherwise, incorrect column number is returned.

 pointHeader = pointScreen;
 ScreenToClient (hChildWnd, &pointHeader);

 hdhti.pt = pointHeader;
 SendMessage (hChildWnd,
 HDM_HITTEST,
 (WPARAM)0,
 (LPARAM) (HD_HITTESTINFO FAR *)&hdhti);
 wsprintf (szBuffer, "Column %d got clicked.\r\n", hdhti.iItem);

 MessageBox (NULL, szBuffer, "Test", MB_OK);
 }
 }
 }
 return 0L;
}

Additional reference words: 4.00
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

How to Find the Version Number of Win32s

PSS ID Number: Q125014
Authored 19-Jan-1995 Last modified 20-Jan-1995

--
The information in this articles applies to:

 - Microsoft Win32s, versions 1.0, 1.1, and 1.2
--

SUMMARY

This article describes how to obtain the version number information for
Win32s installed on a Windows 3.1 machine from one of the following places:

 - From an end user perspective, on either Windows for Workgroups 3.11 or
 Windows NT 3.5
 - A 16-bit application running on Windows 3.1
 - A 32-bit application running on Windows 3.1

The following section describes in more details how to obtain this
information in all the above situations.

MORE INFORMATION

From an End User Perspective

Because Win32s does not have a user interface, there is no obvious way to
get the version number information for Win32s that is installed on Windows
3.1. However, end users have the following two options:

 - Read the <windir>\SYSTEM\WIN32S.INI file, which has an entry for version
 information. Because this .INI file can be updated by the Setup program
 of any Win32s application, this information is not completely reliable.

 - From File Manager on Windows for Workgroups 3.11 or Windows NT 3.5,
 select the WIN32S16.DLL and choose Properties from the File menu. This
 method yields a dialog box with version information on Win32s. Remember
 that WIN32S16.DLL is a 16-bit DLL; however, File Manager on Windows NT
 3.5 can still read this version resource information.

From a 16-Bit Application

To get version number information for Win32s from a 16-bit application, use
the Win32s specific function, GetWin32sInfo(), which is documented in the
Win32s Programmer's Reference. This function is exported by the 16-bit
W32SYS.DLL file in Win32s 1.1 and later. The GetWin32sInfo() function fills
a specified structure with the information from Win32s VxD. Usually a 16-
bit Windows setup program should use this function to determine if Win32s

is already installed before continuing installation. Note that a 16-bit
program must use LoadLibrary and GetProcAddress to call the function
because the function did not exist in Win32s version 1.0.

The following example on using GetWin32sInfo() is extracted from the Win32s
Programmer's Reference:

// Example of a 16-bit application that indicates whether Win32s is
// installed, and the version number if Win32s is loaded and VxD is
// functional.

BOOL FAR PASCAL IsWin32sLoaded(LPSTR szVersion)
{
 BOOL fWin32sLoaded = FALSE;
 FARPROC pfnInfo;
 HANDLE hWin32sys;
 WIN32SINFO Info;

 hWin32sys = LoadLibrary("W32SYS.DLL");

 if (hWin32sys > HINSTANCE_ERROR) {
 pfnInfo = GetProcAddress(hWin32sys, "GETWIN32SINFO");
 if (pfnInfo) {
 // Win32s version 1.1 is installed
 if (!(*pfnInfo)((LPWIN32SINFO) &Info)) {

 fWin32sLoaded = TRUE;
 wsprintf(szVersion, "%d.%d.%d.0",
 Info.bMajor, Info.bMinor, Info.wBuildNumber);
 } else
 fWin32sLoaded = FALSE; // Win32s VxD not loaded.
 } else {
 // Win32s version 1.0 is installed.
 fWin32sLoaded = TRUE;
 lstrcpy(szVersion, "1.0.0.0");
 }
 FreeLibrary(hWin32sys);
 } else // Win32s not installed.
 fWin32sLoaded = FALSE;

 return fWin32sLoaded;
}

From a 32-Bit Application

To determine if Win32s is installed, use the function GetVersion(); to then
get the version of Win32s use the function, GetVersionEx(). This function
fills a specified structure with version information of Win32s on Windows
3.1. The following is an example illustrating the use of this function:

// Example of a 32-bit code that determines the operating system installed
// and the version number on all platforms: Windows NT, Windows 95, Win32s.

typedef BOOL (*LPFNGETVERSIONEX) (LPOSVERSIONINFO);

BOOL IsWin32sLoaded(char *szVersion)
{
 BOOL fWin32sLoaded = FALSE;
 DWORD dwGetVer;
 HMODULE hKernel32;
 OSVERSIONINFO ver;
 LPFNGETVERSIONEX lpfnGetVersionEx;

 // First, check if Win32s is installed
 dwGetVer = GetVersion();
 if (!(dwGetVer & 0x80000000))
 {
 // Windows NT is loaded
 // Note, GetVersion will also return version number on Windows NT

 return;
 }
 else if (LOBYTE(LOWORD(dwVersion))< 4)
 {
 // Win32s is loaded
 fWin32sLoaded = TRUE;
 }
 else {
 // Windows 95 is loaded
 // Note, GetVersion will also return version number on Windows 95

 return;
 }

 // Now, let's find the version number of Win32s
 hKernel32 = GetModuleHandle("Kernel32");
 if (hKernel32)
 {
 lpfnGetVersionEx = (LPFNGETVERSIONEX)GetProcAddress(hKernel32,
"GetVersionExA");
 if (lpfnGetVersionEx)
 {
 // Win32s version 1.15 or later is installed
 ver.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 if (!(*lpfnGetVersionEx)((LPOSVERSIONINFO) &ver))
 DisplayError("GetVersionEx");
 else
 wsprintf(szVersion, "%d.%d.%d - %s", ver.dwMajorVersion,
ver.dwMinorVersion,
 ver.dwBuildNumber, PlatformName(ver.dwPlatformId));
 }
 else
 {
// This failure could mean several things
// 1. On an NT system, it indicates NT version 3.1 because GetVersionEx()
// is only implemented on NT 3.5.
// 2. On Windows 3.1 system, it means either Win32s version 1.1 or 1.0 is
// installed. You can distinguish between 1.1 and 1.0 in two ways:

// a. Get version info from WIN32S16.DLL like File Manager on NT does.
// b. Thunk to 16-bit side and call GetWin32sInfo.

 }
 }

 return (fWin32sLoaded);
}

NOTE: In general, 32-bit applications that use Win32s should always ship
with the latest version of Win32s. Therefore the detection code above can
be greatly simplified if determination of previous versions of Win32s is
not needed.

Additional reference words: 3.10 win32s w32s win32 wfw
KBCategory: kbenv
KBSubcategory: W32s

How to Gracefully Fail at Service Start

PSS ID Number: Q115829
Authored 05-Jun-1994 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

SUMMARY

If an error occurs while your service is running or initializing
(SERVICE_START_PENDING) and you need to stop the service process, do the
following:

1. Clean up any resources that are being used (threads, memory, and so
 forth). You should start sending a SERVICE_STOP_PENDING status if the
 clean up process is lengthy. Be sure to update the Service Control
 Manager as demonstrated in the Win32 SDK SERVICE sample.

2. Send out a SERVICE_STOPPED status from the last thread to terminate
 before it calls ExitThread().

3. Set SERVICE_STATUS.dwWin32ExitCode and/or
 SERVICE_STATUS.dwServiceSpecificExitCode to values that indicate why the
 service is stopping. If you return a value for the
 dwServiceSpecificErrorCode field, then the dwWin32ExitCode field should
 be set to ERROR_SERVICE_SPECIFIC_ERROR.

 The reason for setting these values is that if a service fails its
 operation, but returns an exit code of 0, the following error message is
 returned by default:

 Error 2140: An internal Windows NT error occurred

MORE INFORMATION

When the last service in the process has terminated (you may have multiple
services in the service process), the StartServiceCtrlDispatcher() call
in the main thread returns. The main routine should call ExitProcess()
because all of the services have terminated.

REFERENCES

There is a termination sample in the "Win32 Programmer's Reference," in the
"Services" overview section (58.2.2), "Writing a ServiceMain Function."
This is a simple situation where the service process only consists of one
thread. This thread returns when it is ready to terminate, instead of
calling ExitThread().

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

How to Handle FNERR_BUFFERTOOSMALL in Windows 95

PSS ID Number: Q131462
Authored 12-Jun-1995 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

When an application uses the Open File common dialog with the
OFN_ALLOWMULTISELECT flag, there is a danger that the buffer passed to the
common dialog in the OPENFILENAME.lpstrFile field will be too small. In
this situation, GetOpenFileName() will return an error value and
CommDlgExtendedError() will return FNERR_BUFFERTOOSMALL.

To work around this problem, watch for the Open or OK button to be pressed
in the dialog hook; then reallocate the buffer if necessary.

This technique works on Windows version 3.1, Windows NT, and Windows 95,
but the implementation details are different when dealing with Windows 95
Explorer-type dialog boxes versus traditional Open and Save common dialog
boxes. This article explains how to do it in Windows 95.

MORE INFORMATION

With the introduction of the new common dialogs for Windows 95, a new way
of handling the FNERR_BUFFERTOOSMALL error was developed. It is still
necessary to watch for the Open button to be pressed and reallocate the
buffer if needed, but the way to watch for the OK is much different.

When you install a hook on the Open File common dialog in Windows 95 using
the OPENFILENAME.lpfnHook member, the dialog you are hooking is a child of
the main Open File dialog. Therefore, to intercept the OK button, you need
to subclass the parent dialog. To do this, you can install the hook
procedure and watch for the CDN_INITDONE notification. The Open File dialog
will send this as part of a WM_NOTIFY message when the initialization for
the dialog is complete. For example:

LRESULT CALLBACK DialogHook(HWND hwnd, UINT uMsg, WPARAM wParam,
 LPARAM lParam)
{
 static HWND hwndParentDialog;
 LPOFNOTIFY lpofn;

 switch (uMsg)
 {
 case WM_INITDIALOG:
 // You need to use a copy of the OPENFILENAME struct used to
 // create this dialog. You can store a pointer to the
 // OPENFILENAME struct in the ofn.lCustData so you can retrieve

 // it here in the lParam. Once you have it, you need to hang on
 // to it. Using window properties provides a good thread safe
 // solution to using a global variable.

 SetProp(hwnd, "OFN", lParam);
 return (0);

 case WM_NOTIFY:
 // The OFNOTIFY struct is passed in the lParam of this message.

 lpofn = (LPOFNOTIFY) lParam;

 switch (lpofn->hdr.code)
 {
 CDN_INITDONE:
 // Subclass the parent dialog to watch for the OK
 // button.

 hwndParentDialog = GetParent(hwnd);
 g_lpfnDialogProc =
 (FARPROC) SetWindowLong(hwndParentDialog,
 DWL_DLGPROC,
 OpenFileSubclassProc);
 break;

 }
 return (0);

 case WM_DESTROY:
 // Need to clean up the subclassing we did on the dialog.
 SetWindowLong(hwndParentDialog, DWL_DLGPROC, g_lpfnDialogProc);

 // Also need to free the property with the OPENFILENAME struct
 RemoveProp(hwnd, "OFN");
 return (0);
 }
 return (0);
}

Once the parent dialog is subclassed, the program can watch for the actual
Open button. When the program gets the Open button command, it needs to
check to see if the buffer originally allocated is large enough to handle
all the files selected. The CommDlg_OpenSave_GetFilePath() API will return
the length needed. Here is an example of the subclass procedure:

LRESULT CALLBACK OpenFileSubclassProc(HWND hwnd, UINT uMsg, WPARAM wParam,
 LPARAM lParam)
{
 LPTSTR lpsz;
 WORD cbLength;

 switch (uMsg)
 {
 case WM_COMMAND:
 switch (LOWORD(wParam))

 {
 case IDOK:
 // Need to verify the original buffer size is large
 // enough to handle the files selected. The
 // CommDlg_OpenSave_GetFilePath() API will return the
 // length needed for this buffer.

 cbLength = CommDlg_OpenSave_GetFilePath(hwnd, NULL, 0);

 // OFN_BUFFER_SIZE is the size of the buffer originally
 // used in the OPENFILENAME.lpszFile member.

 if (OFN_BUFFER_SIZE < cbLength)
 {
 // The buffer is too small, so allocate a
 // new buffer.
 lpsz = (LPTSTR) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,
 cbLength);
 if (lpsz)
 {
 // The OFN struct is stored in a property of
 // the dialog window.

 lpofn = (LPOPENFILENAME) GetProp(hwnd, "OFN");

 lpofn->lpstrFile = lpsz;
 lpofn->nMaxFile = cbLength;
 }
 }

 // Now let the dialog handle the message normally.
 break;
 }
 break;
 }

 return (CallWindowProc(g_lpfnDialogProc, hwnd, uMsg, wParam, lParam));
}

The dialog should now return without error. Be aware that the buffer
allocated in the subclass procedure needs to be freed once the dialog
returns.

Finally, this technique only works for 32-bit applications that are using
the Explorer-type common dialogs. For 32-bit applications that don't use
the OFN_EXPLORER flag, Windows 95 thunks to the 16-bit common dialog and
the hook function only gets a copy of the OPENFILENAME structure.

Additional reference words: 4.00
KBCategory: kbui kbprg kbcode
KBSubcategory: UsrCmnDlg

How to Ignore WM_MOUSEACTIVATE Message for an MDI Window

PSS ID Number: Q62068
Authored 18-May-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

In order to make an MDI window to become active and have the caret be in
the same position as when the window was last active you need to process
the WM_MOUSEACTIVATE message and return MA_ACTIVATEANDEAT for the first
time. Therefore, you need to set a Boolean flag in the WM_MDIACTIVATE
message so that the return is set only once. The sample code below can be
used to modify the MULTIPAD sample application. Also, the following is
documentation on MA_ACTIVATE* messages, taken from the Windows 3.0 final
SDK README.WRI file:

 WM_MOUSEACTIVATE

 Return Value The return value specifies whether the window
 should be activated and whether the mouse event
 should be discarded. It must be one of the
 following values:

 Value Meaning
 ----- -------

 MA_ACTIVATE Activate the window.
 MA_NOACTIVATE Do not activate the window.
 MA_ACTIVATEANDEAT Activate the window and
 discard the mouse event.

SAMPLE CODE

/* --- multipad.c MPMDIWndProc section --- */

 case WM_MOUSEACTIVATE: // added
 if (bEatMessage) {
 bEatMessage = FALSE;
 return (LONG)MA_ACTIVATEANDEAT ;
 }
 /* else break */
 break;

 case WM_MDIACTIVATE:
 /* If we're activating this child, remember it */
 if (wParam){
 hwndActive = hwnd;
 hwndActiveEdit = (HWND)GetWindowWord (hwnd, GWW_HWNDEDIT);
 bEatMessage = TRUE; // added
 }

 else{
 hwndActive = NULL;
 hwndActiveEdit = NULL;
 }
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMdi

How to Implement Context-Sensitive Help in Windows 95 Dialogs

PSS ID Number: Q125670
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows versions 3.x, applications implement context-sensitive help for
dialog boxes by installing either a message filter hook, or a task-specific
keyboard hook that monitors the WM_KEYDOWN message and responds to F1 key
presses.

Windows 95 makes it easier because it provides a new WM_HELP message that
gets sent each time the user presses the F1 key, giving the application
a chance to bring up help information on the control that has the keyboard
focus or on the dialog box itself. This new WM_HELP message is not limited
to dialog boxes alone, as it gets sent to any window that has keyboard
focus or to the currently active window.

MORE INFORMATION

Windows 95 also provides a new dialog style, DS_CONTEXTHELP that adds a
question mark button to the dialog box's caption bar. This button, when
clicked, changes the cursor to a question mark with a pointer. When the
user clicks any control in the dialog box, Windows 95 sends a WM_HELP
message for that control. The dialog procedure should process the WM_HELP
message as follows:

 // Define an array of dword pairs,
 // where the first of each pair is the control ID,
 // and the second is the context ID for a help topic,
 // which is used in the help file.
 static const DWORD aMenuHelpIDs[] =
 {
 edt1, IDH_EDT1 ,
 lst1, IDH_LST1 ,
 lst2, IDH_LST2 ,
 0, 0
 };

 case WM_HELP:
 {
 LPHELPINFO lphi;

 lphi = (LPHELPINFO)lparam;
 if (lphi->iContextType == HELPINFO_WINDOW) // must be for a control
 {
 WinHelp (lphi->hItemHandle,

 "GEN32.HLP",
 HELP_WM_HELP,
 (DWORD)(LPVOID)aMenuHelpIDs);
 }
 return TRUE;
 }

Calling WinHelp() with the HELP_WM_HELP parameter as demonstrated above
displays the help topic in a pop-up window.

In addition to the WM_HELP message, Windows 95 provides a new
WM_CONTEXTMENU message that gets sent each time the user right-clicks a
window. Typically this message is processed by displaying a context menu
using the TrackPopupMenu() function. However, this message can be processed
to bring up help information by calling the WinHelp() function to display
the help topic in a pop-up window, as in this example:

 case WM_CONTEXTMENU:
 {
 WinHelp ((HWND)wparam,
 "GEN32.HLP",
 HELP_CONTEXTMENU,
 (DWORD)(LPVOID)aSampleMenuHelpIDs);
 return TRUE;
 }

NOTE: Look at the third parameter (HELP_CONTEXTMENU) passed to WinHelp()
this time. This causes a pop-up menu to come up that displays "What's
This?" text. It then displays the help topic in a pop-up window when the
menu item is selected.

Additional reference words: 4.00
KBCategory: kbprg kbcode
KBSubcategory: UsrDlgs

How to Increase Windows NT System and Desktop Heap Sizes

PSS ID Number: Q125752
Authored 05-Feb-1995 Last modified 06-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SUMMARY

Sometimes, it may be necessary to increase the amount of memory that
Windows NT will make available for the system and desktop heaps. This can
be accomplished by editing an entry in the registration database. System
heap items are things like desktops and one-time-allocated items like
system metrics. The items that come out of the desktop heap are items such
as windows, menus, hook structures, queues, and some thread information.

MORE INFORMATION

The entry to be edited is under:

HKEY_LOCAL_MACHINE\
 System\
 CurrentControlSet\
 Control\
 Session Manager\
 SubSystems\
 Windows

Under this entry, you will find a string similar to the following (the
slash (/) is a line continuation charater):

%SystemRoot%\system32\csrss.exe /
 ObjectDirectory=\Windows /
 SharedSection=1024,512 /
 Windows=On /
 SubSystemType=Windows /
 ServerDll=basesrv,1 /
 ServerDll=winsrv:GdiServerDllInitialization,4 /
 ServerDll=winsrv:UserServerDllInitialization,3 /
 ServerDll=winsrv:ConServerDllInitialization,2 /
 ProfileControl=Off /
 MaxRequestThreads=16

By changing the SharedSection values, you can affect the heap sizes. The
first number (1024 as shown above) is the maximum size of the system wide
heap in kilobytes. The second number (512 as shown above) is the maximum
size of the per desktop heap in kilobytes. A desktop value of 512K can
support approximately 2,500 windows.

The memory you allocate needs to be backed up by paging space. It should

not have much effect on performance if you create the same number of items
with different heap sizes. The main effect is overhead in heap management
and initialization.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: UsrWndw

How to Keep a Window Iconic

PSS ID Number: Q66244
Authored 16-Oct-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

Normally, when an application's main window is being represented by an
icon ("iconic"), you can restore it to an open window by
double-clicking the icon or by choosing the Restore option from the
System menu.

Opening the window can be prevented by placing code into the
application that processes the WM_QUERYOPEN message by returning
FALSE.

If it is necessary to perform processing before the iconic window is
opened, the processing should be done in response to the WM_QUERYOPEN
message. After processing is complete the program can return TRUE and
the window will be opened.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

How to Keep an MDI Window Always on Top

PSS ID Number: Q108315
Authored 08-Dec-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

When creating a multiple document interface (MDI) window, there are no
styles available to have the new window stay on top of the other MDI
windows. Alternatively, two methods are available to achieve this
functionality:

 - Process the WM_WINDOWPOSCHANGED message and call SetWindowPos() to
 change the Z-order of the window.

 - Install a timer for the MDI windows and reset the Z-order of the window
 when processing the WM_TIMER message.

MORE INFORMATION

MDICREATESTRUCT has the field "style", which can be set with the styles for
the new MDI window. Extended styles, such as WS_EX_TOPMOST, are not
available in MDI windows. This field of MDICREATESTRUCT is passed to
CreateWindowEx() in the dwStyle parameter. The dwExStyle field is set to
0L. The two methods shown below cannot be used at the same time in the same
application.

Method 1: Process the WM_WINDOWPOSCHANGED message and call SetWindowPos()
to change the Z-order of the window.

Sample Code

LRESULT CALLBACK MdiWndProc (HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 static HWND hWndAlwaysOnTop = 0;
 switch (message)
 {
 case WM_CREATE :
 if (!hWndAlwaysOnTop)
 {
 SetWindowText (hWnd, "Always On Top Window");
 hWndAlwaysOnTop = hWnd;
 }
 break;
 case WM_WINDOWPOSCHANGED :

 if (hWndAlwaysOnTop)
 {
 WINDOWPOS FAR* pWP = (WINDOWPOS FAR*)lParam;
 if (pWP->hwnd != hWndAlwaysOnTop)
 SetWindowPos (hWndAlwaysOnTop, HWND_TOP, 0, 0, 0, 0,
 SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOSIZE);
 }
 break;
 //
 // Other Messages to process here.
 //
 case WM_CLOSE :
 if (hWndAlwaysOnTop == hWnd)
 hWndAlwaysOnTop = NULL;
 default :
 return DefMDIChildProc (hWnd, message, wParam, lParam);
 }
 return 0L;
}

Method 2: Install a timer for the MDI windows and reset the Z-order of
the window when processing the WM_TIMER message.

Sample Code

LRESULT CALLBACK MdiWndProc (HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 static HWND hWndAlwaysOnTop = 0;
 switch (message)
 {
 case WM_CREATE :
 SetTimer (hWnd, 1, 200, NULL);
 if (!hWndAlwaysOnTop)
 {
 SetWindowText (hWnd, "Always On Top Window");
 hWndAlwaysOnTop = hWnd;
 }
 break;
 case WM_TIMER :
 if (hWndAlwaysOnTop)
 {
 SetWindowPos (hWndAlwaysOnTop, HWND_TOP, 0, 0, 0, 0,
 SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOSIZE);
 }
 break;
 case WM_DESTROY:
 KillTimer (hWnd, 1) ;
 break;
 //
 // Other Messages to process here.
 //
 case WM_CLOSE :
 if (hWndAlwaysOnTop == hWnd)

 hWndAlwaysOnTop = NULL;
 default :
 return DefMDIChildProc (hWnd, message, wParam, lParam);
 }
 return 0L;
}

For additional information on changing the Z-order of child pop-up windows,
please see the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q66943
 TITLE : Determining the Topmost Pop-Up Window

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

How to Look Up a User's Full Name

PSS ID Number: Q119670
Authored 20-Aug-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

Windows NT workstations can be organized into a domain, which is a
collection of computers on a Windows NT Advanced Server network. The domain
administrator maintains centralized user and group account information.

MORE INFORMATION

To find the full name of a user if you have the user name and domain name:

1. Convert the user name and domain name to Unicode, if they are not
 already Unicode strings. This is a requirement of the ported LAN
 Manager APIs that are used in the following steps.

2. Look up the name of the domain controller (DC) for the domain name
 by calling NetServerEnum().

3. Look up the user name by calling NetUserGetInfo()

4. Convert the full user name to ANSI, unless the program is expecting
 to work with Unicode strings.

The sample code below is a function that takes a user name and a domain
name as the first two arguments and returns the user's full name in the
third argument.

For information on how to get the current user and domain, please see the
following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q111544
TITLE : Looking Up the Current User and Domain

Sample Code

 #include <windows.h>
 #include <lm.h>
 #include <stdio.h>

 /**\
 * Function: GetFullName(char *UserName, char *Domain, char *dest); *
 * *

 * Parameters: *
 * UserName: the user name *
 * Domain : the domain to which the user belongs *
 * dest : receives the user's full name *
 * *

 BOOL GetFullName(char *UserName, char *Domain, char *dest)
 {
 WCHAR wszUserName[256]; // Unicode user name
 WCHAR wszDomain[256];
 LPBYTE ComputerName;

 struct _SERVER_INFO_100 *si100; // Server structure
 struct _USER_INFO_2 *ui; // User structure

 // Convert ASCII user name and domain to Unicode.

 MultiByteToWideChar(CP_ACP, 0, UserName,
 strlen(UserName)+1, wszUserName, sizeof(wszUserName));
 MultiByteToWideChar(CP_ACP, 0, Domain,
 strlen(Domain)+1, wszDomain, sizeof(wszDomain));

 // Get the computer name of a DC for the specified domain.

 NetGetDCName(NULL, wszDomain, &ComputerName);

 // Look up the user on the DC.

 if(NetUserGetInfo((LPWSTR) ComputerName,
 (LPWSTR) &wszUserName, 2, (LPBYTE *) &ui))
 {
 printf("Error getting user information.\n");
 return(FALSE);
 }

 // Convert the Unicode full name to ASCII.

 WideCharToMultiByte(CP_ACP, 0, ui->usri2_full_name,
 -1, dest, 256, NULL, NULL);

 return(TRUE);
 }

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbprg
KBSubcategory: NtwkLmapi

How to Make an Application Display Real Units of Measurement

PSS ID Number: Q127152
Authored 13-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Sometimes you need an application to display things in terms of a real unit
of measurement such as an inch or millimeter. When dealing with a printer,
resolution is usually given in dots per inch (DPI), which makes it easy to
convert pixels to real inches. However, on a video display, resolution is
given only in pixels. A given video mode will be some X pixels wide with no
information as to the real dimensions of the display area.

Because there is no way to programmatically determine the real dimensions
of the viewable area on a video display, it is impossible for a program to
determine real output dimensions. Two manual methods for determining real
output dimensions are given in this article.

MORE INFORMATION

When output is destined for a printer, the application can call
GetDeviceCaps() using LOGPIXELSX and LOGPIXELSY to determine dots per real
inch. However, for a video display, LOGPIXELSX and LOGPIXELSY are defined
by the video driver and may vary wildly. These numbers define a logical
inch, which is almost never equal to a real inch.

Applications that need to output real sizes to the video display can use
one of the following two methods for determining output size:

1. The application can ask the user what size monitor is attached. Using
 this value, an application can approximate the actual viewable area, and
 given the resolution of the output (GetDeviceCaps, HORZRES, VERTRES),
 the application can approximate real inches. This solution gives only an
 approximation of a real inch. Several factors can introduce errors into
 this approximation including the size adjustments on digital monitors.

2. The application can ask the user to hold a measuring device to the
 screen and measure a given line. This is the only way to guarantee that
 output on a video display is exactly the expected size, and
 recalibration would be necessary after any adjustment to the monitor.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDisplay

How to Minimize Memory Allocations for New TreeView Control

PSS ID Number: Q130697
Authored 25-May-1995 Last modified 30-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.51 and 4.0

SUMMARY

You can use the new TreeView Common Control to display a hierarchical list
of items. This new control is available for Win32-based applications
running under Windows NT or Windows 95. Applications typically use this
control to display a list of items like directories or files on a given
drive. Each node in a TreeView control allocates about 40 bytes. If the
TreeView control displays a lot of items, applications can easily consume
large amounts of memory, which slows down other applications.

Below are some techniques applications can use to minimize memory
allocations for TreeView controls.

MORE INFORMATION

TreeView controls maintain internal data structures for every node added to
the control. This data structure along with image lists associated with
items and text strings for items can drain the physical memory available on
the system.

Applications that need to display thousands of items or nodes in the
TreeView control can be more proficient about memory allocations by doing
the following:

1. When inserting an item into a TreeView control, ensure that the pszText
 member of the TV_ITEM is not the actual string that needs to be
 displayed, but is the value LPSTR_TEXTCALLBACK. If a string pointer is
 passed, the control stores that string internally by allocating memory
 for it. When this flag is specified, the parent window of the control is
 responsible for storing the name (string). The string in most cases can
 be generated dynamically. In this case, the TreeView control sends the
 parent window a TVN_GETDISPINFO notification message when it needs the
 item text for displaying, sorting, or editing and sends a
 TVN_SETDISPINFO notification message when the item text changes.

2. Fill the TreeView nodes on demand. One way to really minimize memory
 usage in a TreeView control is to fill in only the visible nodes. The
 TV_ITEM struct's cChildren member can be put to good use for this
 purpose. This is used as a flag to indicate whether the item has
 associated child items. It is 1 if the item has one or more child items;
 otherwise, it is 0 (zero). When inserting visible items into the
 TreeView control, set this cChildren member to 1 if that node will have

 child items under it. Do not insert the child items. When the user
 clicks the node, the application receives a TVN_ITEMEXPANDING with
 NM_TREEVIEW.action set to TVE_EXPAND. Insert the child items at that
 point. Then when the user clicks the same node again (to collapse the
 node), the applciation receives a TVN_ITEMEXPANDED with
 NM_TREEVIEW.action set to TVE_COLLAPSE. At that time, collapse the node
 and all its child items by calling TreeView_Expand (hWndTrevview, hItem,
 TVE_COLLAPSE|TVE_COLLAPSERESET). This frees up the memory used up by all
 the children or child items.

3. If the application uses different icons for each child item in the
 TreeView control, specify the I_IMAGECALLBACK value for the iImage and
 iSeletedImage members of the TV_ITEM Structure. This way, the control
 doesn't have to store these images for every child item - thereby
 reducing the memory requirements for the control as a whole.

Additional reference words: 4.00 usage user styles
KBCategory: kbprg
KBSubcategory: TreeView

How to Modify Executable Code in Memory

PSS ID Number: Q127904
Authored 21-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5, 3.51,
 and 4.0

Follow the steps in this article to create self-modifying code; that is, to
modify code pages while they are in memory and execute them there.

NOTE: Self-modifying code is not advised, but there are cases where you may
wish to use it.

Step-by-Step Example

1. Call VirtualProtect() on the code pages you want to modify, with the
 PAGE_WRITECOPY protection.

2. Modify the code pages.

3. Call VirtualProtect() on the modified code pages, with the PAGE_EXECUTE
 protection.

4. Call FlushInstructionCache().

All four steps are required. The reason for calling FlushInstructionCache()
is to make sure that your changes are executed. As processors get faster,
the instruction caches on the chips get larger. This allows more out of
order prefetching to be done. If you modify your code, but do not call
FlushInstructionCache(), the previous instructions may already be in the
cache and your changes will not be executed.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

How to Modify the Width of the Drop Down List in a Combo Box

PSS ID Number: Q131845
Authored 21-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32s version 1.2
 - Microsoft Win32 Software Development KIT (SDK) versions 3.5 and 4.0

SUMMARY

The Windows combo box contains a list box (of the ComboLBox class) within
it. In the standard combo box, this list box has exactly the same width as
the combo box. However, you can make the width of the list box wider or
narrower than the width of the combo box. You may have seen combo box lists
like this in Microsoft Word and Microsoft Excel. This article shows by
example how to subclass a standard combo box class to achieve this
functionality.

MORE INFORMATION

The combo box in Windows is actually a combination of two or more controls;
that's why it's called a "combo" box. For more information about the parts
of a combo box and how they relate to each other, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q65881
 TITLE : The Parts of a Windows Combo Box and How They Relate

To make the combo box list wider or narrower, you need the handle of the
list box control within the combo box. This task is difficult because the
list box is actually a child of the desktop window (for CBS_DROPDOWN and
CBS_DROPDOWNLIST styles). If it were a child of the ComboBox control,
dropping down the list box would clip it to the parent, and it wouldn't
display.

A combo box receives WM_CTLCOLOR messages for its component controls when
they need to be painted. This allows the combo box to specify a color for
these controls. The HIWORD of the lParam in this message is the type of the
control. In case of the combo box, Windows sends it a WM_CTLCOLOR message
with the HIWORD set to CTLCOLOR_LISTBOX when the list box control needs to
be painted. The LOWORD of the lParam contains the handle of the list box
control.

In 32-bit Windows, the WM_CTLCOLOR message has been replaced with multiple
messages, one for each type of control (WM_CTLCOLORBTN). For more
information about this, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q81707

 TITLE : WM_CTLCOLOR Processing for Combo Boxes of All Styles

Once you obtain the handle to the list box control window, you can resize
the control by using the MoveWindow API.

The following code sample demonstrates how to do this. This sample assumes
that you have placed the combo box control in a dialog box.

Sample Code

// Global declarations.

LRESULT CALLBACK NewComboProc (HWND hWnd, UINT message, WPARAM
 wParam, LPARAM lParam); // prototype for the combo box subclass proc

HANDLE hInst; // Current app instance
BOOL bFirst; // a flag

// Dialog procedure for the dialog containing the combo box.

BOOL __export CALLBACK DialogProc(HWND hDlg, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 FARPROC lpfnNewComboProc;

 switch (message)
 {
 case WM_INITDIALOG:

 bFirst = TRUE; // set flag here - see below for usage

 // subclass the combo box

 lpfnOldComboProc = (FARPROC) SetWindowLong (
 GetDlgItem (hDlg, IDC_COMBO1),
 GWL_WNDPROC,
 (LONG)NewComboProc);
 break;

 case WM_DESTROY:
 (FARPROC) SetWindowLong (GetDlgItem (hDlg, IDC_COMBO1),
 GWL_WNDPROC,
 (LONG)lpfnOldComboProc);
 break;
 default:
 break;
 }

 return FALSE;

} // end dialog proc

// Combobox subclass proc.

LRESULT CALLBACK NewComboProc (HWND hWnd, UINT message, WPARAM
 wParam, LPARAM lParam);

{
 static HWND hwndList;
 static RECT rectList;

#ifdef WIN16
 if (WM_CTLCOLOR == message) // combo controls are to be painted.
#else
 if (WM_CTLCOLORLISTBOX == message) // 32 bits has new message.
#endif
 {
 // is this message for the list box control in the combo?
#ifdef WIN16
 if (CTLCOLOR_LISTBOX==HIWORD (lParam)) // need only for 16 bits
 {
#endif
 // Do only the very first time, get the list
 // box handle and the list box rectangle.
 // Note the use of GetWindowRect, as the parent
 // of the list box is the desktop window

 if (bFirst)
 {
#ifdef WIN16
 hwndList = LOWORD (lParam);
#else
 hwndList = (HWND) lParam ; // HWND is 32 bits
#endif
 GetWindowRect (hwndList, &rectList);
 bFirst = FALSE;
 }

 // Resize listbox window cx by 50 (use your size here)

 MoveWindow (hwndList, rectList.left, rectList.top,
 (rectList.right - rectList.left + 50),
 rectList.bottom - rectList.top, TRUE);
#ifdef WIN16
 }
#endif
 }

 // Call original combo box procedure to handle other combo messages.

 return CallWindowProc (lpfnOldComboProc, hWnd, message,
wParam, lParam);
}

Additional reference words: 1.20 3.10 3.50 4.00 95
KBCategory: kbprg kbui kbcode
KBSubcategory: usrctl

How to Obtain a Handle to Any Process with SeDebugPrivilege

PSS ID Number: Q131065
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

SUMMARY

In Windows NT, you can retrieve a handle to any process in the system by
enabling the SeDebugPrivilege in the calling process. The calling process
can then call the OpenProcess() Win32 API to obtain a handle with
PROCESS_ALL_ACCESS.

MORE INFORMATION

This functionality is provided for system-level debugging purposes. For
debugging non-system processes, it is not necessary to grant or enable this
privilege.

This privilege allows the caller all access to the process, including the
ability to call TerminateProcess(), CreateRemoteThread(),
and other potentially dangerous Win32 APIs on the target process.

Take great care when granting SeDebugPrivilege to users or groups.

Sample Code

The following source code illustrates how to obtain SeDebugPrivilege
in order to get a handle to a process with PROCESS_ALL_ACCESS. The
sample code then calls TerminateProcess on the resultant process
handle.

/*++

The SeDebugPrivilege allows you to open any process for debugging purposes.
After enabling the privilege, you can open a target process by using
OpenProcess() with PROCESS_ALL_ACCESS.

By default, this privilege is granted only to SYSTEM and the local
Administrators group.

User Manager | Policies | User Rights | Show Advanced User Rights | Debug
Programs can be used to grant or revoke this privilege to arbitrary users
or groups.

WARNING: This privilege allows all access to a process. A malevolent user
could open a system process, create a remote thread in the system process,

and execute code in the system security context. Great care must be used
when giving out this privilege

--*/

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

#include <windows.h>
#include <stdio.h>

BOOL SetPrivilege(
 HANDLE hToken, // token handle
 LPCTSTR Privilege, // Privilege to enable/disable
 BOOL bEnablePrivilege // TRUE to enable. FALSE to disable
);

void DisplayError(LPTSTR szAPI);

int main(int argc, char *argv[])
{
 HANDLE hProcess;
 HANDLE hToken;
 int dwRetVal=RTN_OK; // assume success from main()

 // show correct usage for kill
 if (argc != 2)
 {
 fprintf(stderr,"Usage: %s [ProcessId]\n", argv[0]);
 return RTN_USAGE;
 }

 if(!OpenProcessToken(
 GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,
 &hToken
)) return RTN_ERROR;

 // enable SeDebugPrivilege
 if(!SetPrivilege(hToken, SE_DEBUG_NAME, TRUE))
 {
 DisplayError("SetPrivilege");

 // close token handle
 CloseHandle(hToken);

 // indicate failure
 return RTN_ERROR;
 }

 // open the process
 if((hProcess = OpenProcess(
 PROCESS_ALL_ACCESS,
 FALSE,

 atoi(argv[1]) // PID from commandline
)) == NULL)
 {
 DisplayError("OpenProcess");
 return RTN_ERROR;
 }

 // disable SeDebugPrivilege
 SetPrivilege(hToken, SE_DEBUG_NAME, FALSE);

 if(!TerminateProcess(hProcess, 0xffffffff))
 {
 DisplayError("TerminateProcess");
 dwRetVal=RTN_ERROR;
 }

 // close handles
 CloseHandle(hToken);
 CloseHandle(hProcess);

 return dwRetVal;
}

BOOL SetPrivilege(
 HANDLE hToken, // token handle
 LPCTSTR Privilege, // Privilege to enable/disable
 BOOL bEnablePrivilege // TRUE to enable. FALSE to disable
)
{
 TOKEN_PRIVILEGES tp;
 LUID luid;
 TOKEN_PRIVILEGES tpPrevious;
 DWORD cbPrevious=sizeof(TOKEN_PRIVILEGES);

 if(!LookupPrivilegeValue(NULL, Privilege, &luid)) return FALSE;

 //
 // first pass. get current privilege setting
 //
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = 0;

 AdjustTokenPrivileges(
 hToken,
 FALSE,
 &tp,
 sizeof(TOKEN_PRIVILEGES),
 &tpPrevious,
 &cbPrevious
);

 if (GetLastError() != ERROR_SUCCESS) return FALSE;

 //

 // second pass. set privilege based on previous setting
 //
 tpPrevious.PrivilegeCount = 1;
 tpPrevious.Privileges[0].Luid = luid;

 if(bEnablePrivilege) {
 tpPrevious.Privileges[0].Attributes |= (SE_PRIVILEGE_ENABLED);
 }
 else {
 tpPrevious.Privileges[0].Attributes ^= (SE_PRIVILEGE_ENABLED &
 tpPrevious.Privileges[0].Attributes);
 }

 AdjustTokenPrivileges(
 hToken,
 FALSE,
 &tpPrevious,
 cbPrevious,
 NULL,
 NULL
);

 if (GetLastError() != ERROR_SUCCESS) return FALSE;

 return TRUE;
}

void DisplayError(
 LPTSTR szAPI // pointer to failed API name
)
{
 LPTSTR MessageBuffer;
 DWORD dwBufferLength;

 fprintf(stderr,"%s() error!\n", szAPI);

 if(dwBufferLength=FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 GetSystemDefaultLangID(),
 (LPTSTR) &MessageBuffer,
 0,
 NULL
))
 {
 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(
 GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,

 dwBufferLength,
 &dwBytesWritten,
 NULL
);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }
}

Additional reference words: 3.10 3.50 3.51 OpenProcess TerminateProcess
KBCategory: kbprg kbcode
KBSubcategory: BseSecurity BseMisc CodeSam

How to Obtain Filename and Path from a Shell Link or Shortcut

PSS ID Number: Q130698
Authored 25-May-1995 Last modified 30-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.51 and 4.0

SUMMARY

The new shell link under Windows 95 (also available for Windows NT after
Windows 95 ships) provides applications and users a way to create shortcuts
or links to objects in the shells namespace. Some applications need to get
the filename and path, given a link or shortcut. The IShellLink OLE
Interface implemented by the shell can be used to obtain this information,
among other things.

MORE INFORMATION

A shell link allows the user or an application to access an oject from
anywhere in the namespace. Links or shortcuts to objects are stored as
binary files. These files contain information such as the path to the
object, working directory, the path of the icon used to display the object,
the description string, and so on.

Given a link or shortcut, applications can use the IShellLink interface and
its functions to obtain all the pertinent information about that object.
The IShellLink interface supports fucntions such as GetPath(),
GetDescription(), Resolve(), GetWorkingDirectory(), and so on.

Code Sample

The following code shows how to obtain the filename or path and description
of a given link file.

// GetLinkInfo() fills the filename and path buffer
// with relevant information
// hWnd - calling app's window handle.
//
// lpszLinkName - name of the link file passed into the function.
//
// lpszPath - the buffer that will receive the filepath name.
//

HRESULT GetLinkInfo(HWND hWnd,
 LPCTSTR lpszLinkName,
 LPSTR lpszPath,
 LPSTR szDescription)
{

 HRESULT hres;
 IShellLink *psl;
 WIN32_FIND_DATA wfd;

// Assume Failure to start with:
 *lpszPath = 0;
 *lpszDescription = 0;

// Call CoCreateInstance to obtain the IShellLink
// Interface pointer. This call fails if
// CoInitialize is not called, so it is assumed that
// CoInitialize has been called.

 hres = CoCreateInstance(CLSID_ShellLink,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IShellLink,
 (LPVOID *)&psl);
 if (SUCCEEDED(hres))
 {
 IPersistFile *ppf;

 bRetVal = TRUE;

// The IShellLink Interface supports the IPersistFile
// interface. Get an interface pointer to it.
 hres = psl->lpVtbl->QueryInterface(psl,
 IID_IPersistFile,
 (LPVOID *)&ppf);
 if (SUCCEEDED(hres))
 {
 WORD wsz[MAX_PATH];

//Convert the given link name string to wide character string.
 MultiByteToWideChar(CP_ACP, 0,
 lpszLinkName,
 -1, wsz, MAX_PATH);
//Load the file.
 hres = ppf->lpVtbl->Load(ppf, wsz, STGM_READ);
 if (SUCCEEDED(hres))
 {
// Resolve the link by calling the Resolve() interface function.
 hres = psl->lpVtbl->Resolve(psl, hWnd,
 SLR_ANY_MATCH |
 SLR_NO_UI);
 if (SUCCEEDED(hres))
 {
 hres = psl->lpVtbl->GetPath(psl, lpszPath,
 MAX_PATH,
 (WIN32_FIND_DATA*)&wfd,
 SLGP_SHORTPATH);
 if(!SUCCEEDED(hres))
 return FALSE;

 hres = psl->lpVtbl->Get(Description(psl,
 lpszDescription,
 MAX_PATH);

 if(!SUCCEEDED(hres))
 return FALSE;

 }
 }
 ppf->lpVtbl->Release();
 }
 psl->lpVtbl->Release();
 }
 return hres;
}

Ensure that the interface pointers are released when the application is
finished using them. For a list of other functions that the IShellLink
Interface supports, please see the documentation on the IShellLink
interface.

NOTE: If applications use C++ instead of C, the interface pointer (psl,
ppf) and the lpVtbl variables are implicit.

Additional reference words: 4.00
KBCategory: kbprg kbcode kbole
KBSubcategory: IShellLink

How to Obtain Fonts, ToolTips, and Other Non-Client Metrics

PSS ID Number: Q130764
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

The SystemParametersInfo() API under Windows 95 has been expanded to
include a new set of FLAGS to set or get system-wide parameters. One such
flag is the SPI_GET/SETNONCLIENTMETRICS flag and the NONCLIENTMETRICS
structure. This flag and the related structure when used with the
SystemsParametersInfo() API can provide applications with a plethora of
information on the non-client metrics system wide.

MORE INFORMATION

Windows 95 provides users with the ability to change the fonts used
(displayed) by menus and message boxes and change the height of caption
bars of windows by simply changing the settings in the Appearance property
sheet. They need only right click the desktop to bring up the Display
properties dialog box; then they can choose the Appearance page. This was
not possible under Windows version 3.1.

Windows 95 applications can programatically change these features with the
help of the SystemParametersInfo() function and the NONCLIENTMETRICS
structure. Windows 95 applications should not randomly change these system
settings unless absolutely necessary because system-wide changes occur.

To obtain the fonts used by message boxes, menus, status bars, and
captions, applications can call SystemParametersInfo() with the
SPI_GETNONCLIENTMETRICS flag, passing the address of the NONCLIENTMETRICS
structure as the third parameter. The system then fills this structure with
all sorts of information. The lfMessageFont, lfMenuFont, lfStatusFont
members of the NONCLIENTMETRICS structure have the font information.

Similarly, applications can change the font used by menus, message boxes,
status bars, and captions by calling SystemParametersInfo() with the
SPI_SETNONCLIENTMETRICS flag. When this flag is spcified, a
NONCLIENTMETRICS structure is filled with the appropriate values if its
address is passed in as the third parameter. Once again, the changes made
this way are reflected system wide, so application designers should use
this flag sparingly.

Additional reference words: 4.00 user controls styles
KBCategory: kbprg
KBSubcategory: UsrSys

How to Obtain Icon Information from an .EXE in Windows 95

PSS ID Number: Q131500
Authored 12-Jun-1995 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

SHGetFileInfo is a new API that Windows 95 provides to allow an application
to extract icon information from a particular file. With the introduction
of large (32x32) and small (16x16) icons in Windows 95, SHGetFileInfo
provides this information as well by filling in the appropriate members of
the SHFILEINFO structure.

MORE INFORMATION

In Windows version 3.1, an application can use the ExtractIcon() to
retrieve the handle of an icon associated with a specified executable file,
dynamic link library, or icon file.

Windows 95 provides a new function, SHGetFileInfo(), which, among other
things, provides this icon information when using the SHGFI_ICON flag. When
the function returns, the handle to the icon is returned in the hIcon
member of the SHFILEINFO structure, and the index of the icon within the
system image list is returned in the iIcon member of the same structure.

The code below demonstrates how to retrieve the Gen32 sample's icon and
associates that icon with a dialog box's button:

 HICON hGen32Icon;
 SHFILEINFO shfi;

 if (SHGetFileInfo ((LPCSTR)"C:\\MySamplesDir\\Gen32\\Gen32.Exe",
 0,
 &shfi,
 sizeof (SHFILEINFO),
 SHGFI_ICON))
 {
 hGen32Icon = shfi.hIcon;

 // Note that this button has been defined in the .RC file
 // to be of BS_ICON style
 SendDlgItemMessage (hDlg,
 IDC_BUTTON,
 BM_SETIMAGE,
 (WPARAM)IMAGE_ICON,
 (LPARAM)(HICON)hGen32Icon);
 }
 else

 {
 // SHGetFileInfo failed...
 }

Windows 95 also introduces the concept of large and small icons associated
with applications where the large icon is displayed when the application
is minimized and the small icon is displayed in the upper-left corner of
the application. This small icon, when clicked, drops down the
application's system menu.

SHGetFileInfo() provides the file's large and small icon information as
well, using the SHGFI_LARGEICON and SHGFI_SMALLICON flags respectively.
SHGFI_LARGEICON returns the handle of the system image list containing the
large icon images, whereas SHGFI_SMALLICON returns that of the system image
list containing the small icon images. These flags, when OR'ed with the
SHGFI_SYSICONINDEX flag, return the icon index within the appropriate
system image list in the iIcon member of the SHFILEINFO struct.

The code sample below demonstrates how to retrieve the small icon
associated with the same GEN32 sample.

 HICON hGen32Icon;
 HIMAGELIST hSysImageList;
 SHFILEINFO shfi;

 hSysImageList = SHGetFileInfo
((LPCSTR)"C:\\MySamplesDir\\Gen32\\Gen32.Exe",
 0,
 &shfi,
 sizeof (SHFILEINFO),
 SHGFI_SYSICONINDEX | SHGFI_SMALLICON);
 if (hSysImageList)
 {
 hGen32Icon = ImageList_GetIcon (hSysImageList,
 shfi.iIcon,
 ILD_NORMAL);
 }
 else
 {
 // SHGetFileInfo failed...
 }

Before closing, the application must call DestroyIcon() to free system
resources associated with the icon returned by ImageList_GetIcon().

NOTE: The SHGetFileInfo() API will be supported in the next release of
Windows NT that supports the new shell interface very similar to Windows
95. This API is not supported in Windows NT version 3.51.

Additional reference words: DLL EXE ICO 32 x 32 16 x 16
KBCategory: kbprg kbcode
KBSubcategory: UsrRsc

How To Open Volumes Under Windows 95

PSS ID Number: Q125712
Authored 02-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 does not support opening disk drives or disk partitions with
CreateFile(), as Windows NT does. Windows 95 also does not support the
DeviceIoControl() IOCTL APIs, as Windows NT does. Instead, low-level disk
access in Windows 95 can be achieved through DeviceIoControl() calls to the
VWIN32 VxD.

MORE INFORMATION

Windows NT supports obtaining a handle to a disk drive or disk partition
by using CreateFile() and specifying the name of the drive or partition
as the filename (e.g. "\\.\PHYSICALDRIVE0" or "\\.\C:"). This handle can
then be used in the DeviceIoControl() Win32 API.

Windows 95 differs in the following ways:

1. Obtaining a disk drive or disk partition handle is not supported.
 The call to CreateFile() will fail, and GetLastError() will return
 error code 2, ERROR_FILE_NOT_FOUND.

2. The DeviceIoControl IOCTL functions (such as IOCTL_DISK_FORMAT_TRACKS)
 are not supported. These IOCTLs require the handle to a disk drive or
 disk partition and thus can't be used.

3. DeviceIoControl() is called using a handle to a VxD rather than a
 handle to a disk drive or disk partition. Obtain a handle to
 VWIN32.VXD by using CreateFile("\\\\.\\VWIN32", ...). Use this
 handle in calls to DeviceIoControl() to perform volume locking
 (Int 21h Function 440Dh, Subfunctions 4Ah and 4Bh), and then to
 perform BIOS calls (Int 13h), Absolute Disk Reads/Writes (Int 25h
 and 26h), or MS-DOS IOCTL functions (Int 21h Function 440Dh).

REFERENCES

The chapter "Device I/O Control in Windows 95" describes the procedures for
using DeviceIoControl() in Windows 95, and contains a description of the MS-
DOS IOCTL functions supported by the VWIN32 VxD.

For information on using CreateFile() to obtain disk drive or disk
partition handles under Windows NT, see the description for CreateFile()
in the Microsoft Windows Programmer's Reference, Volume 3.

For a complete list of IOCTLs, see the description of the DeviceIoControl()
function in the Microsoft Windows Programmer's Reference, Volume 3.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseFileio

How to Overlay Images Using Image List Controls

PSS ID Number: Q125629
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

One of the more interesting controls Windows 95 provides as part of its
new common controls is the image list. Image lists provide an easy way
to manage a group of bitmaps and draw them on the screen, without having
to worry about calling CreateCompatibleDC(), SelectObject(), BitBlt(),
StretchBlt(), and so on.

One interesting feature that image lists provide through the
ImageList_Draw() API is the ability to overlay images -- that is, to draw
an image transparently over another image. Calling ImageList_Draw() with
the last parameter set to an index to an overlay mask instructs the image
list to draw an image, and draw the overlay mask on top of it.

MORE INFORMATION

To overlay images correctly using image lists, follow these steps:

1. Create a bitmap that will have the images you want to draw as well as
 the overlay images you want drawn on top of these images.

 For example, say you have a bitmap of four 16x16 images:

 - a green circle.
 - a red circle.
 - a panda.
 - a frog.

2. Create an image list out of the bitmap you've created in step 1 by using
 ImageList_LoadImage() as shown here:

 hImageList = ImageList_LoadImage (hInst,
 "MyBitmap",
 16,
 4,
 RGB (255,0,0),
 IMAGE_BITMAP,
 0);

3. Decide which images you want to specify as overlay masks, and tag them
 as such by using the ImageList_SetOverlayImage() function. The following
 code specifies the panda and the frog (with 0-based index, this comes
 out to image 2 and 3) as overlay masks 1 and 2.

 NOTE: You can only specify up to four overlay masks per image list.

 ImageList_SetOverlayImage (hImageList,
 2, // 0-based index to image list
 1); // 1-based index to overlay mask.

 ImageList_SetOverlayImage (hImageList,
 3, // 0-based index to image list
 2); // 1-based index to overlay mask.

4. Draw the image. The following code draws the green circle (or image 0 in
 the example image list). Then it draws the panda (overlay image 1 in the
 example) on top of it.

 ImageList_Draw (hImageList,
 0, // 0-based index to imageList of image to draw
 hDC, // handle to a DC
 16, 16 // (x,y) location to draw
 INDEXTOOVERLAYMASK (1)); // Overlay image #1

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrCtl

How to Override Full Drag

PSS ID Number: Q121541
Authored 09-Oct-1994 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0

Windows NT version 3.5 introduces full drag, which allows you to see the
entire window moving or resizing instead of seeing just an outline of the
window moving or resizing. You can enable full drag by running the Desktop
Control Panel applet and selecting the Full Drag checkbox.

When you resize a window with full drag enabled, the application will
receive numerous messages indicating that the window is resizing. (You can
verify this with Spy.) If this has undesirable effects on your application,
you will need to override the full drag feature in your application.

When the moving or resizing starts, the application receives this message:

 WM_ENTERSIZEMOVE (0231)

When the moving or resizing finishes, the application receives this
message:

 WM_EXITSIZEMOVE (0232)

The above messages act as a notification that the window is entering and
exiting a sizing or moving operation. If you want, you can use these
notifications to set a flag to prevent the program from handling a WM_PAINT
message during the move or size operation to override full drag.

Additional reference words: 3.50 3.51 4.00 95
KBCategory: kbprg kbtool
KBSubcategory: UsrWndw

How to Pass Large Memory Block Through Win32s Universal Thunk

PSS ID Number: Q126708
Authored 28-Feb-1995 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY

You can pass a memory address to a thunk routine. The pointer address is
translated via the universal thunk (UT). However, the translated pointer
is only guaranteed for 32K. This article describes ways to pass a larger
memory block through the universal thunk.

MORE INFORMATION

GlobalAlloc()

You can call GlobalAlloc() to allocate a larger memory block on the 32-bit
side of the thunk, copy the data into this memory block, send the handle
to the 16-bit side, and lock the handle on the 16-bit side with
GlobalLock().

VirtualAlloc()

If you allocate the memory using VirtualAlloc(), it will be aligned on a
64K boundary, so that you can address the entire memory block. HeapAlloc()
allocates large memory blocks using VirtualAlloc() as well. NOTE: You
are still limited to 64K of memory, due to the selector tiling.

Allocate a selector

To use this method, get the 32-bit offset used by the Win32-based
application and the selector base for the data selector returned by
GetThreadSelectorEntry(), then calculate the linear address of the memory
block. With this linear address, you can use AllocSelector(),
SetSelectorBase(), and SetSelectorLimit() to access the memory block from
the 16-bit side of the thunk.

NOTE: Sparse memory will cause problems in the general case. Make sure that
the memory range has been not only reserved, but also committed.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

How To Pass Numbers to a Named Range in Excel through DDE

PSS ID Number: Q45714
Authored 14-Jun-1989 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

To send an array to Excel via DDE, you must send the array in TEXT,
CSV, or BIFF clipboard format.

For example, if you want to send three numbers for one ROW in CSV
format, use 1,2,3 (where each number is separated by a comma). If you
want to place three numbers in one COLUMN in CSV format, place the
CR/LF (Od 0a) (carriage return/line feed) characters after each number
in the set.

If you would like to send the numbers via the TEXT format separated into
columns, place the CR/LF characters between each number in the set. To
organize the numbers into one row, place a TAB (09) character between
each number.

In order to send an array of data into a named range, use the following
steps:

1. Highlight the appropriate cells in Excel
2. Set up your typical hot link from Excel, for example:

 =Service|Topic!Item

3. Instead of hitting Enter after typing the above, hit Ctrl+Shift+Enter.
 This will cause your data to come in as an array, rather than as a
 single item.

 NOTE: To do the reverse of this, that is, for a client application to
 POKE data to Excel, the client will have to specify an item name of say,
 "R1C1:R1C2" to poke an array of data to the range R1C1..R1C2.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

How to Perform Auto Repeat as Media Player Does

PSS ID Number: Q124185
Authored 21-Dec-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
 - Microsoft Video for Windows Development Kit (DK) version 1.1

The Media Player (MPLAYER.EXE) included with Microsoft Windows and
Microsoft Windows NT (MPLAY32.EXE) provides an auto-repeat option that
automatically repeats the playback of a multimedia file. You can
incorporate this functionality into your application on Digital Video
devices by using an extension to the standard Media Control Interface (MCI)
commands as follows:

 - When calling the mciSendString() function, add the word "repeat" to the
 play command, as in this example:

 mciSendString("play mov notify repeat", NULL, 0, hWnd);

 - When calling the mciSendCommand() function, set the play flag
 MCI_DGV_PLAY_REPEAT. For example, to add auto repeat functionality to
 the MOVPLAY sample included with the Video for Windows DK, add the
 following line to the playMovie() function in MOVPLAY1.C, right before
 the mciSendCommand() function call:

 dwFlags |= MCI_DGV_PLAY_REPEAT;

"Digital Video Command Set for the Media Control Interface" documents the
Digital Video MCI extensions. It is available on the Microsoft Developer
Network (MSDN) CD. Look for it in the Specifications section of the CD
contents, under "Digital Video MCI Specification." You can also search the
CD using the word MCI_DGV_PLAY_REPEAT for more information about that flag.

Additional reference words: 3.10 3.50 4.00 95 Video for Windows MCIAVI
MCI_PLAY AVI loop continuous play
KBCategory: kbmm kbprg kbdocerr
KBSubcategory: MMVideo

How to Port a 16-bit DLL to a Win32 DLL

PSS ID Number: Q125688
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

There are several significant differences between Win16 DLLs and Win32
DLLs. These differences require more than just a simple recompilation to
turn your Win16 DLL into a Win32 DLL. In this article we will show you how
to port your Win16 DLL to a Win32 DLL.

MORE INFORMATION

The first major difference is that the Win32 DLL entry point is called with
every process attach and detach. Secondly, you must account for the fact
that processes can be multithreaded and as such your DLL entry point will
be called with thread attach and detach messages. You need to ensure that
your DLL is "thread-safe" by using multithreaded libraries and mutual
exclusion for functions in your DLL that would otherwise cause data
corruption when preempted and reentered. This requires that you use Win32
synchronization methods to guard critical resources. Finally, each Win32
process gets its own copy of the Win32 DLL's data.

Step One for Porting Your DLL

The first step in porting a DLL from 16-bit Windows to 32-bit Windows is
moving code from your LibMain (or LibEntry) and _WEP (or WEP) to the new
DLL initialization function. The new DLL initialization function is called
DllMain. You might code your DllMain like this:

BOOL WINAPI DllMain (HANDLE hModule, DWORD fdwReason, LPVOID lpReserved)
{
 switch (fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 /* Code from LibMain inserted here. Return TRUE to keep the
 DLL loaded or return FALSE to fail loading the DLL.

 You may have to modify the code in your original LibMain to
 account for the fact that it may be called more than once.
 You will get one DLL_PROCESS_ATTACH for each process that
 loads the DLL. This is different from LibMain which gets
 called only once when the DLL is loaded. The only time this
 is critical is when you are using shared data sections.
 If you are using shared data sections for statically
 allocated data, you will need to be careful to initialize it

 only once. Check your code carefully.

 Certain one-time initializations may now need to be done for
 each process that attaches. You may also not need code from
 your original LibMain because the operating system may now
 be doing it for you.
 */
 break;

 case DLL_THREAD_ATTACH:
 /* Called each time a thread is created in a process that has
 already loaded (attached to) this DLL. Does not get called
 for each thread that exists in the process before it loaded
 the DLL.

 Do thread-specific initialization here.
 */
 break;

 case DLL_THREAD_DETACH:
 /* Same as above, but called when a thread in the process
 exits.

 Do thread-specific cleanup here.
 */
 break;

 case DLL_PROCESS_DETACH:
 /* Code from _WEP inserted here. This code may (like the
 LibMain) not be necessary. Check to make certain that the
 operating system is not doing it for you.
 */
 break;
 }

 /* The return value is only used for DLL_PROCESS_ATTACH; all other
 conditions are ignored. */
 return TRUE; // successful DLL_PROCESS_ATTACH
}

DllMain Called with Flags

There are several conditions where DllMain is called with the
DLL_PROCESS_ATTACH, DLL_PROCESS_DETACH, DLL_THREAD_ATTACH, or
DLL_THREAD_DETACH flags.

The DLL_PROCESS_ATTACH flag is sent when a DLL is loaded into the address
space of a process. This occurs in both situations where the DLL is loaded
with LoadLibrary, or implicitly during application load. When the DLL is
implicitly loaded, DllMain is executed with DLL_PROCESS_ATTACH before the
processes enter WinMain. When the DLL is explicitly loaded, DllMain is
executed with DLL_PROCESS_ATTACH before LoadLibrary returns.

The DLL_PROCESS_DETACH flag is sent when a process cleanly unloads the DLL

from its address space. This occurs during a call to FreeLibrary, or if the
DLL is implicitly loaded, a clean process exit. When a DLL is detaching
from a process, the individual threads of the process do not call the
DLL_THREAD_DETACH flag.

The DLL_THREAD_ATTACH flag is sent when a new thread is being created in a
process already attached to the DLL. Threads in existence before the
process attached to a DLL will not send the DLL_THREAD_ATTACH flag. The
first thread to attach to the DLL does not send the DLL_THREAD_ATTACH flag;
it sends the DLL_PROCESS_ATTACH flag instead.

The DLL_THREAD_DETACH flag is sent when a thread is exiting cleanly. There
is a situation when DllMain may be called when the thread did not first
send the DLL_THREAD_ATTACH flag. This can happen if there are other threads
still running and the original thread exits cleanly. The thread originally
called DllMain with the DLL_PROCESS_ATTACH flag and later calls DllMain
with the DLL_THREAD_DETACH flag. You may also have DllMain being called
with DLL_THREAD_DETACH if a thread exits but was running in the process
before the call to LoadLibrary.

Situations Where DllMain is Not Called or Is Bypassed

DllMain may not be called at all in dire situations where a thread or
process was killed by a call to TerminateThread or TerminateProcess. These
functions bypass calling DllMain. They are recommended only as a last
resort. Data owned by the thread or process is at risk of loss because the
process or thread could not shut itself down properly.

DllMain may be bypassed intentionally by a process if it calls
DisableThreadLibraryCalls. This function (available with Windows 95 and
Windows NT versions 3.5 and later) disables all DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notifications for a DLL. This enables a process to reduce
its code size and working set. For more information on this function, see
the SDK documentation on DisableThreadLibraryCalls.

Step Two for Porting Your DLL

The second step of porting your DLL involves changing functions that were
declared with __export and included in the module definition (.DEF) file
EXPORTS section. The proper export declaration for the Microsoft Visual C++
32-bit compiler and linker is __declspec(dllexport). This declaration
should be used when prototyping and declaring functions. You do not have to
explicitly declare an exported function in the DEF file for the proper LIB
and EXP files to be created; __declspec(dllexport) will do this for you.
Here's an example of an exported function:

// prototype in DLL is necessary
__declspec(dllexport) DWORD WINAPI DLLFunc1(LPSTR);

// function
__declspec(dllexport) DWORD WINAPI DLLFunc1(LPSTR lpszIn)
{
 DWORD dwRes;

 /* DLL function logic */

 return dwRes;
}

To include the function in an application, prototype the above function in
the application with the __declspec(dllimport) modifier.
__declspec(dllimport) is not necessary, but does improve the speed of your
code that implements the function call. Here's an example:

 __declspec(dllimport) DWORD WINAPI DLLFunc1(LPSTR);

Then, link the DLL's import library (.LIB) file with the application
makefile or project.

Some sections of your DEF file will be ignored by the 32-bit linker because
of architectural differences between Win16 and Win32. You may still use the
EXPORTS section of your DEF if you wish to include ordinals for exported
functions, or to rename exported functions. See your linker documentation
for more information about what is acceptable in a DEF file for a Win32
DLL. Users of other 32-bit compilers and linkers will have to refer to
their documentation for more information on exporting functions.

Applications that link to your DLL may be multithreaded. This possibility
means that you should always build your Win32 DLL as multithreaded to
support preemption and reentrancy. If you use runtime library functions in
your DLL, they may be preempted and reentered. That would cause problems
for a normal runtime library. If you use C runtime or some other runtime
library, you should use a multithreaded version of the runtime library.
Microsoft Visual C++ users should link with the /MT option and include
LIBCMT.LIB. This will include the multithreaded C runtime library.
Optionally, you can select the Multithreaded Run-time Library option in the
project settings in the Visual Workbench. If you are using another runtime
library and cannot get a multithreaded version of the library, you must
protect calls to the library from reentrancy using a mutex or critical
section synchronization object. Information later in this article discusses
this issue.

Other Design Issues You Should Consider

One of the most significant changes to DLLs in 32-bit Windows operating
systems is that each process executes in its own private address space.
This means that a DLL cannot directly share dynamically-allocated memory
between processes. Addresses are 32-bit offsets in a process's address
space. Passing them between processes is possible, but won't work as in
Win16 because each process has its own address space. In another process,
this pointer may address unknown data, or invalid memory space.

"DS != SS" issues common to 16-bit DLLs no longer apply. A Win32 process
executes in its own private address space and there is no segmentation of
this address space. In a Win32 DLL, all functions are called using the
calling thread's stack and all pointers are 32-bit linear addresses. In a
Win32 process or DLL, a FAR pointer is the same as a near pointer. In other

words, a pointer is just a pointer.

If you must share data, you can specify certain global variables to be
shared among processes by using a shared data section in the DLL. For more
information on shared data sections, please search the Microsoft Knowledge
Base using the following words:

 #pragma data_seg

or:

 sections share dll

You can also use a file-mapping object to share memory by sharing the
system page file. This will allow two different processes to share dynamic
memory. For more information on file mapping objects, please search the
Microsoft Knowledge Base using these words:

 shared memory

Another significant change in the behavior of Win32 DLLs from Win16 DLLs is
the inclusion of synchronization. The Win32 API provides synchronization
objects that allow the programmer to implement correct synchronization. You
should be aware that your 32-bit DLL may be preempted and called again from
a different thread in the process. For example, if a thread executing a DLL
function accesses global data and is preempted and another function
modifies the same data, the original thread will resume but will be using
modified data. You'll need to use synchronization objects to resolve this
situation.

Your Win32 DLL may also be preempted by a thread in a different process.
This situation becomes important if the functions use shared data sections
or file mappings. You will need to examine the functions in a DLL to
determine if this will cause problems. If so, you will have to control
access to data or sections of code that are sensitive to this problem.
Mutexes and critical sections are well suited for DLL synchronization. For
more information on synchronization, please search the Microsoft Knowledge
Base using these words:

 synchronization objects

For additional information, please search the Microsoft Knowledge Base
using these words:

 Win32 DLL

Additional reference words: 4.00 LibEntry LibMain Port WEP _WEP Win32
KBCategory: kbprg
KBSubcategory: BseDll

How to Program Keyboard Interface for Owner-Draw Menus

PSS ID Number: Q121623
Authored 12-Oct-1994 Last modified 15-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

You can implement the keyboard interface for owner-draw menus, which allow
a user to access a menu by typing a menu mnemonic, by processing the
WM_MENUCHAR message.

MORE INFORMATION

Menus other than owner-draw menus can specify a menu mnemonic by inserting
an underscore next to a character in the menu string so that the user can
select the menu by typing ALT+<menu mnemonic character>. But in owner-draw
menus, you cannot specify a menu mnemonic in this manner. Instead, you must
process the WM_MENUCHAR message to provide owner-draw menus with menu
mnemnoics.

WM_MENUCHAR is sent when the user types a menu mnemonic that does not
match any of the predefined mnemonics of the current menu. wParam
specifies the ASCII character that corresponds to the key the user
pressed together with the ALT key. The low-order word of lParam
specifies the type of the selected menu and contains:

 - MF_POPUP if the cuurent menu is a popup menu.
 - MF_SYSMENU if the menu is the system menu.

The high-order word of lParam contains the menu handle of the current menu.
The window with the owner-draw menus can process WM_MENUCHAR as follows:

 case WM_MENUCHAR:
 nIndex = Determine index of menu item to be selected from
 character that was typed and handle of the current
 menu.
 return MAKELRESULT(nIndex, 2);

The 2 in the high-order word of the return value informs Windows that
the low-order word of the return value contains the zero-based index
of the menu item to be selected by Windows.

Windows 95 defines four new constants that correspond to the possible
return values from the WM_MENUCHAR message:

Constant Value Meaning

MNC_IGNORE 0 Informs Windows that it should discard the character
 the user pressed and create a short beep on the system
 speaker.
MNC_CLOSE 1 Informs Windows that it should close the active menu.
MNC_EXECUTE 2 Informs Windows that it should choose the item
 specified in the low-order word of the return value.
 The owner window receives a WM_COMMAND message.
MNC_SELECT 3 Informs Windows that it should select the item
 specified in the low-order word of the return value.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg kbui
KBSubcategory: UsrMen

How to Remove Win32s

PSS ID Number: Q120486
Authored 12-Sep-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, 1.15, and 1.2

SUMMARY

To remove Win32s:

1. Remove the following line from the [386Enh] section in the
 SYSTEM.INI file:

 device=<WINDOWS>\<SYSTEM>\win32s\w32s.386

 where <WINDOWS> and <SYSTEM> are where the Windows and System
 directories are, respectively.

2. Modify the following line from the [BOOT] section in the
 SYSTEM.INI file:

 drivers=mmsystem.dll winmm16.dll

 to the following (remove winmm16.dll):

 drivers=mmsystem.dll

3. Delete the following files from the <WINDOWS>\<SYSTEM> subdirectory or
 from the SYSTEM directory in network installations:

 W32SYS.DLL
 WIN32S16.DLL
 WIN32S.INI

4. Delete all the files in the <WINDOWS>\<SYSTEM>\WIN32S subdirectory
 or the <SYSTEM>\WIN32S subdirectory in network installations.
 Then delete subdirectory itself.

5. Restart Windows.

NOTE: <WINDOWS> refers to the windows installation directory. On a
networked Windows installation, the system directory may be located on a
remote share. If you are only removing Win32s from your machine, then you
do not need to remove the shared files (in <SYSTEM> and <SYSTEM>\WIN32S).
Before removing these files from the network share, make sure that all
users that use Win32s have removed the references to Win32s from the
SYSTEM.INI file.

MORE INFORMATION

This information can be found in the Win32s Programmer's Reference
help file.

Additional reference words: 1.00 1.10 1.15 1.20
KBCategory: kbsetup kbprg
KBSubcategory: W32s

How to Right-Justify Menu Items in Windows 95

PSS ID Number: Q125675
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows 95, right-justify (right-align) a menu item by using the
MFT_RIGHTJUSTIFY type in MENUITEMINFOSTRUCTURE.

MORE INFORMATION

There is a new menu type in Windows 95, MFT_RIGHTJUSTIFY type, which you
can use to right justify a menu item. The Windows version 3.1 method of
prefixing the string with "\a" or "\b" will no longer work.

To right justify a menu item in Windows 95:

1. Get the menu handle of the original menu.

2. Get the original menu item information stored in the MENUITEMINFO
 structure.

3. Change the menu item type to include MFT_RIGHTJUSTIFY by or'ing
 the original value with MFT_RIGHTJUSTIFY.

4. Set the new menu item information.

For example, to create a right-justified menu item, add the following code
to WM_CREATE:

 HMENU hMenu;
 MENUITEMINFO mii;
 char szBuffer [80];

 hMenu = GetMenu (hwnd);

 // Get the original value of mii.fType first
 // and OR that with MFT_RIGHTJUSTIFY
 mii.cbSize = sizeof (MENUITEMINFO);
 mii.fMask = MIIM_TYPE;
 mii.dwTypeData= szBuffer;
 mii.cch = sizeof (szBuffer);

 GetMenuItemInfo(hMenu, 1, TRUE, &mii);

 // OR in MFT_RIGHTJUSTIFY type
 mii.fMask = MIIM_TYPE;

 mii.fType = mii.fType | MFT_RIGHTJUSTIFY;

 // Right justify the specified item and all those following it
 SetMenuItemInfo(hMenu, 1, TRUE, &mii);

 return 0;

REFERENCES

For additional information on right justifying menus in Windows 3.1,
please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q67063
TITLE : Inserting Right Justified Text in a Menu in Windows

Additional reference words: 4.00 alignment align
KBCategory: kbprg
KBSubcategory: UsrMen

How to Search for Win32 Articles by KB Subcategory

PSS ID Number: Q115696
Authored 01-Jun-1994 Last modified 21-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The Microsoft Knowledge Base (KB) is categorized by using keywords. This
article lists the category and subcategory keywords specific to articles in
the Microsoft Win32 Software Development Kit (SDK) for Windows NT
Collection.

MORE INFORMATION

Microsoft Win32 SDK KBSubcategory Major and Minor Keywords
--

Each KB article in the Win32 SDK collection may contain one or more product-
specific subcategory keywords (called KBSubcategory keywords) that places
the article in an appropriate Win32 SDK category. Each KBSubcategory word
is composed of the concatenation of a major topic keyword and a minor topic
keyword. For example, you can find all the BASE DLL articles by using
BseDll as the keyword when you query the Microsoft Knowledge Base.

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. For example, to find all
the articles that apply to GDI issues, query on Gdi*. An article usually
has only one subcategory keyword, but it may have more.

Here are the topics and the corresponding KBSubcategory keywords. The minor
topics are in the indented list under each major topic.

Major Topic
 Minor Topic KBSubcategory Keyword

BASE (Bse)
 Comm APIs BseCommapi
 Console BseCon
 DLLs BseDll
 Error Debug BseErrdebug
 Exception Handling BseExcept
 File I/O BseFileio
 Floating Point BseFltpt
 IPC BseIpc
 Base Misc BseMisc
 Memory Management BseMm

 Procedure Threads BseProcThrd
 Security BseSecurity
 Service BseService
 Syncronization BseSync

GDI (Gdi)
 Bitmaps GdiBmp
 Cursors/Icons GdiCurico
 DCs GdiDc
 Display GdiDisplay
 Drawing GdiDrw
 Fonts GdiFnt
 Metafiles GdiMeta
 GDI Misc GdiMisc
 OpenGL GdiOpenGL
 Palettes/Colors GdiPal
 Brushes/Pens GdiPnbr
 Printing GdiPrn
 Screen Saver GdiScrsav
 TrueType GdiTt

MULTIMEDIA
 CD-ROM MMCDROM
 MM File I/O Services MMIO
 Joystick MMJoy
 MediaView MMMediaView
 Midi MMMidi
 Sound Card Mixer Control MMMixer
 Multimedia Timers MMTimer
 Video for Windows (VFW) MMVideo
 Waveform Audio MMWave
 Miscellaneous MMMisc

MISC
 International Issues WIntlDev
 Setup/Install Setins
 Subsystems SubSys

NETWORKING (Ntwk)
 Networking Misc NtwkMisc
 LAN Manager APIs NtwkLmapi
 NetBIOS NtwkNetbios
 RAS APIs NtwkRAS
 RPC NtwkRpc
 SNMP NtwkSnmp
 TC/PIP NtwkTcpip
 WNet APIs NtwkWinnet
 Windows Sockets NtwkWinsock

PEN Wpen*
 Video Drivers WpenVideoDrv
 Pen Drivers WpenTbltDrv
 OAK WpenOemOak
 Recognizer WpenRcgnzr
 Dictionary WpenDict

 Visual Basic WpenVB
 Training WpenTrain
 RC WpenRc
 RCRESULT WpenRcResult
 SYG WpenSyg
 SYV WpenSyv
 SYC WpenSyc
 SYE WpenSye
 Ink WpenInk
 Setup WpenSetup
 Pen applets WpenApps
 control panel apps WpenCpl
 PEN UI WpenPenUI
 Gestures WpenGestures
 Keyboard WpenKeyboard
 Pen Misc WpenMisc

TAPI
 Telephony API Tapi

TOOLS (Tls)
 Dialog Editor TlsDlg
 Font Editor TlsFnt
 Headers TlsHdr
 Help Compiler TlsHlp
 Image Editor TlsImg
 MEP TlsMep
 Misc TlsMisc
 MS Setup TlsMss
 Porting Tool TlsPort
 Profiler TlsPrf
 Resource Compiler TlsRc
 Spy TlsSpy
 WinDbg TlsWindbg

USER (Usr)
 Clipboard UsrClp
 Classes UsrCls
 Common Dialogs UsrCmnDlg
 Controls UsrCtl
 DDE UsrDde
 Dialog/Message Boxes UsrDlgs
 Drag & Drop UsrDnd
 Extension Libraries UsrExt
 Hooks UsrHks
 Input-Mouse/Keyboard UsrInp
 Localization/Intntl. UsrLoc
 MDI UsrMdi
 Menus/Accelerators UsrMen
 User Misc UsrMisc
 Network DDE UsrNetDde
 NLS UsrNls
 Owner Draw UsrOwn
 Resources UsrRes
 New Shell issues UsrShell

 Strict UsrStrict
 Window Manager UsrWndw

WIN32S
 Win32s W32s

Product-Specific Keywords

You can use the KBSubcategory keywords to organize Win32 SDK articles or to
search for specific groups of Win32 SDK articles. For information about
KBSubcategory keywords for other Microsoft developer products, please query
the Microsoft Knowledge Base using these keywords:

 dskbguide and kbkeyword

KB-Wide Keywords

Each article in the Win32 SDK collection also contains at least one
generic, KB-wide category keyword (called a KBCategory keyword). The
KBCategory keywords are standard throughout the Microsoft Knowledge Base,
appearing in all KB articles, regardless of product. You can use the
KBCategory keywords to organize all KB articles or to search for articles
across several Microsoft products. For more information about these
KBCategory keywords, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q94671
 TITLE : Categories and Keywords for All Knowledge Base Articles

Additional reference words: 3.10 3.50 kbkeyword kbsubcats dskbguide
KBCategory: kbref
KBSubcatgory:

How to Select a Listview Item Programmatically in Windows 95

PSS ID Number: Q131284
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SUMMARY

Selecting a listview item in Windows 95 is not as easy as selecting a list
box item was in Windows version 3.1. To select a list box item in Windows
version 3.1, an application sends an LB_SETCURSEL or LB_SETSEL to a single-
or multiple-selection list box respectively. To select a listview item in
Windows 95, an application sends an LVM_SETITEMSTATE message or calls the
ListView_SetItemState() macro.

MORE INFORMATION

An application can force a selection of a listview item. You might want the
application to do this when a user clicks a column other than the first
column of a listview of multiple subitems or columns.

Currently, a listview item is selected only when the user clicks the first
column of that item. However, you many want the application to select the
item regardless of which column in the listview is clicked.

Windows 95 does not provide a separate message or function to set the
current selection in a listview. Instead, it defines item states or LVIS_*
values that determine the listview item's appearance and functionality.
LVIS_FOCUSED and LVIS_SELECTED in particular are the states that determine
a listview item's selection state.

To select a listview item programmatically, an application sets the
listview item's state as follows:

 ListView_SetItemState (hWndListView, // handle to listview
 iWhichItem, // index to listview item
 LVIS_FOCUSED | LVIS_SELECTED, // item state
 0x000F); // mask

Note that the last parameter passed to this macro is a mask specifying
which bits are about to change. LVIS_FOCUSED and LVIS_SELECTED are defined
in <commctrl.h> as 0x0001 and 0x0002 respectively, so you need to set the
last four bits of the mask.

The same principle applies to selecting a treeview item programmatically.
The only difference is that an application sends a TVM_SETITEM message or
calls the TreeView_SetItem() macro.

Because listviews allow multiple selection by default, you can program an
application to select multiple items by simulating a CTRL keydown (or SHIFT
keydown event) prior to setting the item state. For example, the following
code simulates the pressing of the CTRL key:

 BYTE pbKeyState [256];

 GetKeyboardState ((LPBYTE)&pbKeyState);
 pbKeyState[VK_CONTROL] |= 0x80;
 SetKeyboardState ((LPBYTE)&pbKeyState);

Note that if an application simulates a keypress, it must also be
responsible for releasing it by resetting the appropriate bit. For example,
the following code simulates the release of a CTRL key:

 BYTE pbKeyState [256];

 GetKeyboardState ((LPBYTE)&pbKeyState);
 pbKeyState[VK_CONTROL] = 0;
 SetKeyboardState ((LPBYTE)&pbKeyState);

Similarly, retrieving the currently selected item in a listview control
in Windows 95 is not as easy as sending an LB_GETCURSEL message to a
listbox control was in Windows version 3.1.

For listviews, call the ListView_GetNextItem() function with the
LVNI_SELECTED flag specified:

 iCurSel = ListView_GetNextItem (ghwndLV, -1, LVNI_SELECTED);

For treeviews, retrieve the currently selected item by calling the
TreeView_GetNextItem() function with the TVGN_CARET flag
specified or by calling the TreeView_GetSelection() macro directly:

 iCurSel = TreeView_GetNextItem (ghwndTV, NULL, TVGN_CARET);
 or
 iCurSel = TreeView_GetSelection (ghwndTV);

Additional reference words: 4.00 1.30
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

How to Set Foreground/Background Responsiveness in Code

PSS ID Number: Q125660
Authored 01-Feb-1995 Last modified 03-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SUMMARY

In Windows NT version 3.5, you can set foreground/background responsiveness
by using the System Control Panel in Program Manager. Chose Tasking, then
select one of the following through the dialog that is displayed:

 - Best Foreground Application Response Time.

 - Foreground Application More Responsive than Background.

 - Foreground and Background Applications Equally Responsive.

This article describes how to achieve the same thing by using code in a
program. It also explains how to override this setting by using code in a
program.

MORE INFORMATION

You can use the Registry APIs to set foreground/background responsiveness.
The following registry key allows you to specify the priority to give to
the application running in the foreground:

 HKEY_LOCAL_MACHINE\SYSTEM
 CurrentControlSet\
 Control\
 PriorityControl\
 Win32PrioritySeparation

The following values are supported:

 Value Meaning

 0 Foreground and background applications equally responsive
 1 Foreground application more responsive than background
 2 Best foreground application response time

These values correspond to the choices offered in the Tasking dialog
described in the "Summary" section of this article.

To override the setting from your application, use SetPriorityClass() to
change your application's priority class and SetThreadPriority() to set
the priority for a given thread.

NOTE: The thread priority together with the priority class for the process
determine the thread's base priority.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

How to Set the Current Normal Vector in an OpenGL Application

PSS ID Number: Q131130
Authored 04-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

In a Microsoft Win32 OpenGL application, it is common practice to construct
objects with the glBegin function followed by several calls to glVertex.
For example, to create a flat polygon in three-dimensional space, you could
write this code:

 glBegin(GL_POLYGON);
 glVertex3f(.....);
 glVertex3f(.....);
 glVertex3f(.....);
 . . .
 . . .
 glEnd();

Now, if you want to implement a light source or multiple light sources in
your OpenGL application, it is important that you include a call to the
glNormal function between the calls to glBegin and glEnd so that the normal
vector can be used by OpenGL when calculating the color to use when filling
the polygon.

You can perform a vector cross product on two vectors to obtain a third
vector that is perpendicular to the plane containing the two vectors. Using
a vector cross product, you can calculate the vector normal to the polygon
and use that value in your call to glNormal.

MORE INFORMATION

Using cross product math on two vectors of a polygon, you can obtain a
vector that is perpendicular to the polygon. Two sides of a polygon
describe two vectors in the plane of the polygon. With those two vectors,
you can calculate a vector that is perpendicular to the polygon. The length
of the normal vector calculated will not be unit length, and the normal
vector needs to be unit length. Therefore, you need to call
glEnable(GL_NORMALIZE) when you initialize your OpenGL application, so that
normal vectors specified with glNormal are scaled to unit length after
transformation.

Code Sample

You can use the following function to calculate a normal vector for a

polygon. You need to give it three points of the polygon and the points
should be given in clock-wise order when you are facing the front of the
polygon:

//***
// Function: CalculateVectorNormal
//
// Purpose: Given three points of a 3D plane, this function calculates
// the normal vector of that plane.
//
// Parameters:
// fVert1[] == array for 1st point (3 elements are x, y, and z).
// fVert2[] == array for 2nd point (3 elements are x, y, and z).
// fVert3[] == array for 3rd point (3 elements are x, y, and z).
//
// Returns:
// fNormalX == X vector for the normal vector
// fNormalY == Y vector for the normal vector
// fNormalZ == Z vector for the normal vector
//
// Comments:
//
// History: Date Author Reason
// 3/22/95 GGB Created
//***

GLvoid CalculateVectorNormal(GLfloat fVert1[], GLfloat fVert2[],
 GLfloat fVert3[], GLfloat *fNormalX,
 GLfloat *fNormalY, GLfloat *fNormalZ)
 {
 GLfloat Qx, Qy, Qz, Px, Py, Pz;

 Qx = fVert2[0]-fVert1[0];
 Qy = fVert2[1]-fVert1[1];
 Qz = fVert2[2]-fVert1[2];
 Px = fVert3[0]-fVert1[0];
 Py = fVert3[1]-fVert1[1];
 Pz = fVert3[2]-fVert1[2];

 *fNormalX = Py*Qz - Pz*Qy;
 *fNormalY = Pz*Qx - Px*Qz;
 *fNormalZ = Px*Qy - Py*Qx;
}

Code to Call and Use the CalculateVectorNormal Function

Here is an example of how you might call and use the function:

 glBegin(GL_POLYGON);
 glVertex3fv(fVert1);
 glVertex3fv(fVert2);
 glVertex3fv(fVert3);
 glVertex3fv(fVert4);

 // Calculate the vector normal coming out of the 3D polygon.
 CalculateVectorNormal(fVert1, fVert2, fVert3, &fNormalX,
 &fNormalY, &fNormalZ);
 // Set the normal vector for the polygon
 glNormal3f(fNormalX, fNormalY, fNormalZ);
 glEnd();

Additional reference words: 3.50 graphics
KBCategory: kbprg kbcode
KBSubcategory: GdiOpenGL

How to Set Up and Run the RNR Sample Included in the Win32

PSS ID Number: Q131505
Authored 13-Jun-1995 Last modified 14-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

SUMMARY

This article explains how to set up and operate the Service Registration
and Resolution (RNR) sample over the TCP and SPX network protocols. The RNR
sample comes with the Microsoft Win32 (SDK) versions 3.5 and 3.51. It
illustrates the use of the service registration and resolution APIs.

MORE INFORMATION

How to Set Up the RNR Sample

Run rnrsetup /ADD on each client and on the server to call the SetService
API with SERVICE_ADD_TYPE. This call stores the service name type, its
associated GUID, and relevant addressing information for the specified name
spaces in the registry path:

 \HKEY_LOCAL_MACHINE
 \CurrentControlSet
 \Control
 \ServiceProvider
 \ServiceTypes

This information is then retrieved by GetTypeByName() and
GetAddressByName() calls respectively to identify the server's address.

How to Operate the RNR Sample

1. Start rnrsrv on one machine. After setting listening ports on the
 available protocols, the RNR server executes the SetService() call with
 the SERVICE_REGISTER flag to register the network service with the
 specified name spaces. For example, it enables advertising the
 EchoExample service name on the SAP protocol.

2. On the other machine, start rnrclnt using the following syntax:

 rnrclnt /?

 Usage: rnrclnt [/name:SVCNAME] [/type:TYPENAME] [/size:N]
 [/count:N] [/rcvbuf:N] [/sndbuf:N]

 - TYPENAME is initially passed to GetTypeByName() call to return

 the GUID value. The GUID value and SVCNAME is then passed to
 GetAddressByName() to return the address of the server that
 the client can connect to. TYPENAME is defined as EchoExample
 for the RNR sample.

 - SVCNAME specifies which EchoExample server to connect to. If
 SVCNAME is specified as the server name in the Internet domain,
 the TCP protocol will be used. If SVCNAME is specified as
 EchoServer (the RNR service name advertised on SAP), the SPX
 protocol will be used.

 - The other parameters to the rnrclnt have appropriate default
 values and are self explanatory.

Additional reference words: 3.50 3.51
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkWinsock

How to Shade Images to Look Like Windows 95 Active Icon

PSS ID Number: Q128786
Authored 10-Apr-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5 and 4.0

SUMMARY

This article shows by example how to display an image or an icon in a
shaded state, as Windows 95 does for the active icon.

MORE INFORMATION

Step-by-Step Procedure

To obtain the shaded look for your image or icon, follow these six steps:

1. Create a compatible DC and bitmap.

2. Create a monochrome pattern brush with every other pixel on.

3. Fill the memory image with the pattern.

4. BitBlt the source image over the pattern using SRCAND so that only the
 'on' destination pixels are transferred.

5. Color the destination with the pattern, using the highlight color for
 the 'off' pixels and using black for the 'on' pixels.

6. Copy the filtered original from the memory DC to the destination using
 SRCPAINT so that only the 'on' pixels are transferred.

This results in the destination having the original image with every other
pixel colored with the highlight color.

Sample Code

The following function implements these six steps to shade a rectangular
area on a device context:

// ShadeRect
// hDC : the DC on which the area is to be shaded
// lpRect : the coordinates within which to shade
BOOL ShadeRect(HDC hDC, LPRECT lpRect)
{
 COLORREF crHighlightColor, crOldBkColor, crOldTextColor;
 HBRUSH hBrush, hOldBrush;

 HBITMAP hBitmap, hBrushBitmap, hOldMemBitmap;
 int OldBkMode, nWidth, nHeight;
 HDC hMemDC;
 RECT rcRect = { 0, 0, 0, 0};
 // The bitmap bits are for a monochrome "every-other-pixel"
 // bitmap (for a pattern brush)
 WORD Bits[8] = { 0x0055, 0x00aa, 0x0055, 0x00aa,
 0x0055, 0x00aa, 0x0055, 0x00aa };

 // The Width and Height of the target area
 nWidth = lpRect->right - lpRect->left + 1;
 nHeight = lpRect->bottom - lpRect->top + 1;

 // Need a pattern bitmap
 hBrushBitmap = CreateBitmap(8, 8, 1, 1, &Bits);
 // Need to store the original image
 hBitmap = CreateCompatibleBitmap(hDC, nWidth, nHeight);
 // Need a memory DC to work in
 hMemDC = CreateCompatibleDC(hDC);
 // Create the pattern brush
 hBrush = CreatePatternBrush(hBrushBitmap);

 // Has anything failed so far? If so, abort!
 if((hBrushBitmap==NULL) || (hBitmap==NULL) ||
 (hMemDC==NULL) || (hBrush==NULL))
 {
 if(hBrushBitmap != NULL) DeleteObject(hBrushBitmap);
 if(hBitmap != NULL) DeleteObject(hBitmap);
 if(hMemDC != NULL) DeleteDC(hMemDC);
 if(hBrush != NULL) DeleteObject(hBrush);
 return FALSE;
 }

 // Select the bitmap into the memory DC
 hOldMemBitmap = SelectObject(hMemDC, hBitmap);

 // How wide/tall is the original?
 rcRect.right = nWidth;
 rcRect.bottom = nHeight;

 // Lay down the pattern in the memory DC
 FillRect(hMemDC, &rcRect, hBrush);

 // Fill in the non-color pixels with the original image
 BitBlt(hMemDC, 0, 0, nWidth, nHeight, hDC,
 lpRect->left, lpRect->top, SRCAND);

 // For the "Shutdown" look, use black or gray here instead
 crHighlightColor = GetSysColor(COLOR_HIGHLIGHT);

 // Set the color scheme
 crOldTextColor = SetTextColor(hDC, crHighlightColor);
 crOldBkColor = SetBkColor(hDC, RGB(0,0,0));
 SetBkMode(hDC, OPAQUE);

 // Select the pattern brush
 hOldBrush = SelectObject(hDC, hBrush);
 // Fill in the color pixels, and set the others to black
 FillRect(hDC, lpRect, hBrush);
 // Fill in the black ones with the original image
 BitBlt(hDC, lpRect->left, lpRect->top, nWidth, nHeight,
 hMemDC, 0, 0, SRCPAINT);

 // Restore target DC settings
 SetBkMode(hDC, OldBkMode);
 SetBkColor(hDC, crOldBkColor);
 SetTextColor(hDC, crOldTextColor);

 // Clean up
 SelectObject(hMemDC, hOldMemBitmap);
 DeleteObject(hBitmap);
 DeleteDC(hMemDC);
 DeleteObject(hBrushBitmap);
 SelectObject(hDC, hOldBrush);
 DeleteObject(hBrush);

 return TRUE;
}

Additional reference words: 3.50 4.00 hatch darken shadow
KBCategory: kbgraphic kbcode
KBSubcategory: GdiMisc

How to Share Data Between Different Mappings of a DLL

PSS ID Number: Q125677
Authored 01-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Under certain circumstances, 32-bit DLLs might have to share data with
other 32-bit DLLs loaded by a different application or with different
mappings of the same DLL. Because 32-bit DLLs are mapped into the the
calling process's address space, which is private, sharing data with other
DLLs mapped into the address spaces of different applications involves
creating shared data section(s) or using memory mapped files. This article
discusses the former -- creating shared data sections by using the #pragma
statement. Typically, system-wide hooks installed in a DLL need to share
some common data among different mappings.

MORE INFORMATION

Each Win32-based application runs in its own private address space. If a 32-
bit application installs a system-wide hook with the hook callback function
in a DLL, this DLL is mapped into the address space of every application
for which the hook event occured.

Every application that the DLL gets mapped into, gets its own set of
variables (data). Often there will be a scenario where hook callback
functions mapped into different application or process address spaces need
to share some data variables -- such as HHOOK or a Window Handle -- among
all mappings of the DLL.

Because each application's address space is private, DLLs with hook
callback functions mapped into one application's address spaces cannot
share data (variables) with other hook callback functions mapped into a
different application's address space unless a shared data SECTION exists
in the DLL.

Every 32-bit DLL (or EXE) is composed of a collection of sections. Each
section name begins with a period. The section of interest in this article
is the data section. These sections can have one of the following
attributes: READ, WRITE, SHARED, and EXECUTE.

DLLs that need to share data among different mappings can use the #pragma
pre-processor command in the DLL source file to create a shared data
section that contains the data to be shared.

The following sample code shows by example how to define a named-data
section (.sdata) in a DLL.

Sample Code

#pragma data_seg(".sdata")
int iSharedVar = 0;
#pragma data_seg()

The first line directs the compiler to place all the data declared in this
section into the .sdata data segment. Therefore, the iSharedVar variable is
stored in the MYSEC segment. By default, data is not shared. Note that you
must initialize all data in the named section. The data_seg pragma applies
only to initialized data. The third line, #pragma data_seg(), resets
allocation to the default data section.

If one application makes any changes to variables in the shared data
section, all mappings of this DLL will reflect the same changes, so you
need to be carefule when dealing with shared data in applications or DLLs.

You must also tell the linker that the variables in the section you defined
are to be shared by modifying your .DEF file to include a SECTIONS section
or by specifying /SECTION:.sdata, RWS in your link line. Here's an example
SECTIONS section:

 SECTIONS
 .sdata READ WRITE SHARED

In the case of a typical hook DLL, the HHOOK, HINSTDLL, and other variables
can go into the shared data section.

Additional reference words: 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

How to Simulate Changing the Font in a Message Box

PSS ID Number: Q68586
Authored 22-Jan-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

To simulate changing the font in a message box, create a dialog box that
uses the desired font. Specify the style and contents of the dialog box to
reflect the style of the desired message box. The application can also draw
a system icon in the dialog box.

MORE INFORMATION

The message box is a unique object in Windows. Its handle is not available
to an application; therefore, it cannot be modified. An application can
simulate a message box with a different font by creating a dialog box that
looks like a message box.

To change the font in a dialog box, use the optional statement FONT in the
dialog statement of the resource script (.RC) file. For example, resource
file statements for a dialog box displaying an error in Courier point size
12 would be as follows:

 FontError DIALOG 45, 17, 143, 46
 CAPTION "Font Error"
 FONT 12, "Courier"
 STYLE WS_CAPTION | WS_SYSMENU | DS_MODALFRAME
 BEGIN
 CTEXT "Please select the right font", -1, 0, 7, 143, 9
 DEFPUSHBUTTON "OK" IDOK, 56, 25, 32, 14, WS_GROUP
 END

To center the dialog box in the screen, use GetWindowRect() to retrieve the
dimensions of the screen and MoveWindow() to place the dialog box
appropriately. The following code demonstrates this procedure:

 case WM_INITDIALOG:
 GetWindowRect(hDlg, &rc);
 x = GetSystemMetrics(SM_CXSCREEN);
 y = GetSystemMetrics(SM_CYSCREEN);
 MoveWindow (hDlg,
 (x - (rc.right - rc.left)) >> 1, /* x position */
 (y - (rc.bottom - rc.top)) >> 1, /* y position */
 rc.right - rc.left, /* x size */

 rc.bottom - rc.top, /* y size */
 TRUE); /* paint the window */
 return TRUE;

To display a system icon in the dialog box, call the DrawIcon() function
during the processing of a WM_PAINT message. After drawing the desired
icon, the dialog procedure passes control back to the dialog manager by
returning FALSE. The code to paint the exclamation point icon (used in
warning messages) is as follows:

 case WM_PAINT:
 hIcon = LoadIcon(NULL, IDI_EXCLAMATION);
 hDC = GetDC(hDlg);
 DrawIcon(hDC, 20, 40, hIcon);
 ReleaseDC(hDlg, hDC);
 return FALSE;

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

How to Spawn a Console App and Redirect Standard Handles

PSS ID Number: Q126628
Authored 27-Feb-1995 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

This article discusses spawning a console application with CreateProcess()
and redirecting its output. The standard handles are controlled with the
STARTUPINFO fields hStdInput, hStdOutput, and hStdError.

In Windows NT version 3.1, if a windowed application spawned a console
application, you could:

 - Redirect none of its standard handles (don't use STARTF_USESTDHANDLES).

 -or-

 - Redirect all of its standard handles (use STARTF_USESTDHANDLES).

For example, if you redirected hStdInput and hStdOutput, but left hStdError
as 0 or INVALID_HANDLE_VALUE, the console application would fail if it
tried to write to stderr. This is not a problem for a console application
spawning another console application.

In Windows NT version 3.5 and later and in Windows 95, if you set any of
these fields to INVALID_HANDLE_VALUE, Windows NT will assign the default
value to that handle in the console application, rather than leaving it an
invalid value. Therefore, if you set STARTF_USESTDHANDLES, but fail to set
one of the handle fields, this will not cause a problem for the console
application. You can now redirect standard input, but not standard output,
and so forth.

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseProcThrd

How to Specify a Full Path in the ExecProgram Macro

PSS ID Number: Q86477
Authored 07-Jul-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.51 and 4.0

SUMMARY

Windows help files (.HLP files) can be written such that selecting a
designated topic executes a Windows-based application. This is done with
the ExecProgram() macro. If the desired application does not reside in the
same directory as the .HLP file, a full path to the .EXE must be
specified. An invalid path produces an error.

SYMPTOMS

Attempting to execute an application with an invalid path causes
Windows to display the following Help message box:

 Unable to Run Specified File.

CAUSE

A common mistake is to incorrectly specify the subdirectory
delimiters in the path description. This is not a problem with the
Windows Help Compiler.

MORE INFORMATION

The Windows Help Compiler can recognize escape sequences expressed
using the backslash (\) character. When using the ExecProgram() macro,
four backslashes (\\\\) separate each directory in a full path
description:

 ExecProgram("c:\\\\winapps\\\\excel\\\\excel", 0)

With HC31.EXE version 3.10.505 and HCW.EXE version 4.0, you would use only
two backslashes:

 ExecProgram("c:\\winapps\\excel\\excel", 0)

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

How to Specify Filenames/Paths in Viewer/WinHelp Commands

PSS ID Number: Q120251
Authored 07-Sep-1994 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

Both WinHelp and Viewer have commands such as JumpId() that take a filename
as a parameter. Depending on the circumstances under which such commands
are called, the number of backslashes (\) included in the filename as part
of the path may have to be doubled for the command to work correctly. For
example, if JumpId() is called from a HotSpot, you need to use two
backslashes to separate the subdirectory names as in this example:

 JumpId("C:\\MYAPP\\HLPFILE\\MYHLP.HLP","topicx")

But if JumpId() is used as the command associated with a menu item, you
need to use four backslashes to separate the subdirectory names within the
JumpId command, which is itself part of an InsertItem() command. For
example:

 InsertItem("MNU_FILE","my_id","Jump",
 "JumpId('C:\\\\MYAPP\\\\HLPFILE\\\\MY HLP.HLP','topicx')",0)

To avoid having to modify the filename parameter depending on how the
function is called, Microsoft recommends that you use a single forward
slash (/) to separate subdirectory names within the filename. For example:

 JumpId("C:/MYAPP/HLPFILE/MYHLP.HLP","topicx")

A single forward slash will work regardless of how the command is called.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

How to Specify Shared and Nonshared Data in a DLL

PSS ID Number: Q89817
Authored 30-Sep-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

To have both shared and nonshared data in a dynamic-link library (DLL)
which is built with a 32-bit Microsoft C compiler, you need to use the
#pragma data_seg directive to set up a new named section. You then must
specify the correct sharing attributes for this new named data section in
your .DEF file.

The system will try to load the shared memory block created by #pragma
data_seg at the same address in each process. However, if the block cannot
be loaded into the same memory address, the system allocates a new block of
memory for that process and the memory is not shared. No run time warnings
are given when this happens. Using memory-mapped files backed by pagefile
(named shared memory) is a safer option than using #pragma data_seg,
because the APIs will return an error when the mapping fails.

MORE INFORMATION

Below is a sample of how to define a named data section in your DLL. The
first line directs the compiler to include all the data declared in this
section in the .MYSEC data segment. This means that the iSharedVar variable
would be considered part of the .MYSEC data segment. By default, data will
be nonshared.

Note that you must initialize all data in your named section. The data_seg
pragma only applies to initialized data.

The third line, "#pragma data_seg()", directs the compiler to reset
allocation to the default data section.

 #pragma data_seg(".MYSEC")
 int iSharedVar = 0;
 #pragma data_seg()

Below is a sample of the .DEF file that supports the shared and nonshared
segments. This definition will set the default section .MYSEC to be shared.
The default data section is by default non-shared, so any data not in
section .MYSEC will be non-shared.

 LIBRARY MyDll
 SECTIONS
 .MYSEC READ WRITE SHARED

 EXPORTS
 ...

NOTE: All section names must begin with a period character ('.') and
must not be longer than 8 characters, including the period character.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

How to Start an Application at Boot Time Under Windows 95

PSS ID Number: Q125714
Authored 02-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows NT supports a Win32-based application type known as a Service. A
Service may be started at boot time, automatically, by a user with the
Service Control Manager facility or by Win32-based applications that use
the service-related Win32 APIs. The Service Control subsystem and the
associated Win32 APIs are not supported in Windows 95. In place of
services, Windows 95 has two registry keys that will allow users to run
applications before a user logs in when the system first starts up.

MORE INFORMATION

Microsoft recognizes the value that Services and the Service Control
manager have, therefore, we have implemented a smaller version of the
Service Control Manager so that applications can run before a user logs in.
This is known as MPREXE.EXE. At boot time, MPREXE checks two new registry
keys: "RunServices" and "RunServicesOnce".

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 RunServices [key]
 bubba95=service.exe /params [string value]

 ...

 RunServicesOnce [key]

 ...

The value names are arbitrary. The value data is the command line passed to
CreateProcess(). Values under the key RunServicesOnce are deleted after the
application is launched. Because these applications are started before the
user logs onto the system, the user has not been validated and the
applications cannot assume that they have particular networking permissions
enabled. Window 95, unlike Windows NT, only has one security context for
the entire system. Therefore, don't assume that any application that MPREXE
starts has access to a particular network resource because a particular
user has access to this network resource.

Applications started by the RunServices and RunServicesOnce keys will be
closed when the user selects "Close all programs and log on as a different
user" from the Shutdown dialog on the Start Menu. To keep itself from being
closed in this manner, a Win32-based application needs to call
RegisterServiceProcess(). A Win32-based application may also call

RegisterServiceProcess to keep other processes from closing when the user
logs out.

RegisterServiceProcess is implemented only in Windows 95, and is documented
in the online help (WIN32.HLP).

Additional reference words: 3.95 4.00
KBCategory: kbprg
KBSubcategory: BseService

How to Stop a Journal Playback

PSS ID Number: Q98486
Authored 05-May-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0, 3.1,
 and 4.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

To stop a "journal playback" when a specified key is pressed, the
filter function must determine whether the key was pressed and then
call the UnhookWindowsHookEx function to remove the WH_JOURNALPLAYBACK
hook.

MORE INFORMATION

To determine the state of a specified key, the filter function must
call the GetAsyncKeyState function when the nCode parameter equals
HC_SKIP. The HC_SKIP hook code notifies the WH_JOURNALPLAYBACK filter
function that Windows is done processing the current event.

The GetAsyncKeyState function determines whether a key is up or down
at the time the function is called, and whether the key was pressed
after a previous call to the GetAsyncKeyState function. If the most
significant bit of the return value is set, the key is down; if the
least significant bit is set, the key was pressed after a preceding
GetAsyncKeyState call.

If the filter function calls the GetAsyncKeyState function after the
specified key was pressed and released, then the most significant bit
will not be set to reflect a key-down. Thus, a test to check whether
the specified key is down fails. Therefore, the least significant bit
of the return value must be checked to determine whether the specified
key was pressed after a preceding call to GetAsyncKeyState function.
Using this technique of checking the least significant bit requires a
call to the GetAsyncKeyState function before setting the
WH_JOURNALPLAYBACK hook. For example:

// When setting the journal playback hook.
 .
 .
 .
 // Reset the lease significant bit.
 GetAsyncKeyState(VK_CANCEL);

 // Set a system-wide journal playback hook.
 g_hJP = SetWindowsHookEx(WH_JOURNALPLAYBACK,
 FilterFunc,

 g_hInstDLLModule,
 NULL);
 .
 .
 .

// Inside the filter function
 .
 .
 .
 if (nCode == HC_SKIP)
 if (GetAsyncKeyState(VK_CANCEL))
 UnhookWindowsHookEx(g_hJP);
 .
 .
 .

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrHks

How to Subclass a Window in Windows 95

PSS ID Number: Q125680
Authored 01-Feb-1995 Last modified 10-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

While subclassing windows within the same application in Windows 95 is
unchanged from Windows version 3.1, subclassing windows belonging to other
applications is somewhat more complicated in Windows 95. This article
explains the process.

MORE INFORMATION

For a 16-bit application, subclassing methods are the same as they were in
Windows version 3.1. However, Windows 95 performs some behind-the-scenes
magic to make it possible for a 16-bit window to subclass a 32-bit window.

Usually, a subclass consists of saving one window procedure and
substituting another in its place. However, this could present a problem
when a 16-bit application tries to call a 32-bit window procedure. Windows
95 works around this potential problem by providing 32-bit windows with a
16-bit window procedure. All 32-bit windows will have the same selector for
their wndProcs that references code in KRNL386.EXE where the 16-bit
wndProcs for all 32-bit windows are stored. Eventually, each of these
16-bit wndProcs will jump to the real 32-bit window procedure.

Subclassing windows belonging to another process, either 16-bit or 32-bit,
from a 32-bit process or application works as it does in Windows NT. The
difficulty is that each 32-bit process has its own private address space.
Hence, a window procedure's address in one process is not valid in another.
To get a window procedure from one process into another, you need to inject
the subclass procedure code into the other process's address space. There
are a number of ways to do this.

Three Ways to Inject Code Into Another Process's Address Space
--

You can use the registry, hooks, or remote threads and the
WriteProcessMemory() API to inject code into another process's address
space.

If you use the registry, the code that needs to be injected should reside
in a DLL. By either running REGEDIT.EXE or using the registry APIs, add the
\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\AppInit_DLLs key to the
registry if it does not exist. Set its value to a string containing the
DLL's pathname. This key may contain more than one DLL pathname separated
by single spaces. This has the effect, once the machine is restarted, of

loading the library with DLL_PROCESS_ATTACH into every process at its
creation time. While this method is very easy, it also has several
disadvantages. For example, the computer must be restarted before it takes
effect, and the DLL will last the lifetime of the process.

You can also use hooks to inject code into another process's address space.
When a window hooks another thread belonging to a different process, the
system maps the DLL containing the hook procedure into the address space of
the hooked thread. Windows will map the entire DLL, not just the hook
procedure. So to subclass a window in another process, install a
WH_GETMESSAGE hook or another such hook on the thread that owns the window
to be subclassed. In the DLL that contains the hook procedure, include the
subclass window procedure. In the hook procedure, call SetWindowLong() to
enact the subclass. It is important to leave the hook in place until the
subclass is no longer needed, so the DLL remains in the target window's
address space. When the subclass is removed, the hook would be unhooked,
thus unmapping the DLL.

A third way to inject a DLL into another address space involves the use of
remote threads and the WriteProcessMemory() API. It is more flexible and
significantly more complicated than the previously mentioned methods, and
is described in the following reference.

REFERENCES

"Load Your 32-bit DLL into Another Process's Address Space Using
INJLIB" by Jeffrey Richter, MSJ May 1994.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrWndw

How to Support Language Independent Strings in Event Logging

PSS ID Number: Q125661
Authored 01-Feb-1995 Last modified 07-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.1 and 3.5

SUMMARY

Insertion strings in the event log entries are language-independent.
Instead of using string literals as the insertion string, use "%%n" as the
insertion string.

MORE INFORMATION

When the event viewer sees "%%n", it looks up the ParameterMessageFile
value in the registry, under the source of the event, as in this example:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 EventLog\
 Security\
 ...

 -or-

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 EventLog\
 System\
 Service Control Manager

It then calls the LoadLibrary() function of the ParameterMessageFile. Then
it calls FormatMessage() using "n" as the ID.

For example, suppose an event log entry has the source "Service Control
Manager" and the description is "Failed to start the service due
to the following error: %%245."

In the registry, you find:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 EventLog\
 System\
 Service Control Manager

 EventMessageFile...
 ParameterMessageFile REG_SZ kernel32.dll
 TypesSupported...
 ...

Therefore, you need to follow these steps:

1. Use LoadLibrary() with KERNEL32.DLL.

2. Call FormatMessage() using the module handle obtained in step 1 and a
 string ID of 245.

3. Replace %%245 in the description with the string obtained in step 2.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

How to Toggle the NUM LOCK, CAPS LOCK, and SCROLL LOCK Keys

PSS ID Number: Q127190
Authored 14-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

SUMMARY

The documentation for SetKeyboardState() correctly says that you cannot
use this API to toggle the NUM LOCK, CAPS LOCK, and SCROLL LOCK keys.

You can use keybd_event() to toggle the NUM LOCK, CAPS LOCK, and SCROLL
LOCK keys.

MORE INFORMATION

The following sample program turns the NUM LOCK light on if it is off. The
SetNumLock function defined here simulates pressing the NUM LOCK key, using
keybd_event() with a virtual key of VK_NUMLOCK. It takes a boolean value
that indicates whether the light should be turned off (FALSE) or on (TRUE).

The same technique can be used for the CAPS LOCK key (VK_CAPITAL) and the
SCROLL LOCK key (VK_SCROLL).

Sample Code

/* Compile options needed:
*/

#include <windows.h>

void SetNumLock(BOOL bState)
{
 BYTE keyState[256];

 GetKeyboardState((LPBYTE)&keyState);
 if((bState && !(keyState[VK_NUMLOCK] & 1)) ||
 (!bState && (keyState[VK_NUMLOCK] & 1)))
 {
 // Simulate a key press
 keybd_event(VK_NUMLOCK,
 0x45,
 KEYEVENTF_EXTENDEDKEY | 0,
 0);

 // Simulate a key release
 keybd_event(VK_NUMLOCK,

 0x45,
 KEYEVENTF_EXTENDEDKEY | KEYEVENTF_KEYUP,
 0);
 }
}

void main()
{
 SetNumLock(TRUE);
}

Additional reference words: 3.50 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: UsrInp

How to Update the List of Files in the Common Dialogs

PSS ID Number: Q109696
Authored 06-Jan-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SUMMARY

Sometimes it is necessary to update the list of files, without terminating
the dialog box, when using the File Open or Save As common dialog box. This
can be done by simulating a double-click on the list box of directories.
Although the message can be posted from any application, a hook procedure
should be used to post the message to the dialog box window.

MORE INFORMATION

The common dialog box functions that update the list of files and
directories are internal to the common dialog boxes and are not accessible
by applications using the common dialog box routines. The functions are
invoked and the list boxes are updated only when the user double-clicks a
list box.

Sample Code

The following code uses the Cancel button of the common dialog boxes to
update the list boxes:

BOOL CALLBACK __export FileOpenHook (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_COMMAND:
 switch(wParam)
 {
 // This simulates a double-click on the list of directories,
 // effectively forcing the common dialogs to re-read the current
 // directory of files and to refresh the list of files.
 case IDCANCEL :
 PostMessage(hDlg, WM_COMMAND, lst2,
 MAKELPARAM(GetDlgItem(hDlg, lst2), LBN_DBLCLK);
 return TRUE;
 }
 break;
 }
 return FALSE;
}

If the application targets Win32, the notification message to the list box
is sent differently; here is the PostMessage for Win32 applications:

PostMessage (hDlg, WM_COMMAND, MAKEWPARAM (lst2,LBN_DBLCLK),
 (LPARAM)GetDlgItem (hDlg, lst2));

Applications using the IDs of the common dialog box's controls must include
the DLGS.H file.

The templates for the common dialog boxes are in the \SAMPLES\COMMDLG
directory or in the \INCLUDE directory of the Windows SDK installation.

Additional reference words: 3.10 3.50 refresh redraw
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

How to Use a DIB Stored as a Windows Resource

PSS ID Number: Q67883
Authored 28-Dec-1990 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Device-independent bitmaps (DIBs) are a very useful tool for displaying
graphic information in a variety of device environments. With the
appropriate device drivers, Windows can display a DIB with varying results
on any video display or on a graphics printer.

This article discusses the differences between two methods that can be
used to access a DIB from a resource.

MORE INFORMATION

Bitmaps retrieved from resources are very similar to those stored in
.BMP files on disk. The header information is the same for each type of
bitmap. However, depending upon the method used to retrieve the bitmap
from the resource, the bitmap may be a device-independent bitmap (DIB)
or a device-dependent bitmap (DDB).

When the LoadBitmap() function is used to obtain a bitmap from a
resource, the bitmap is converted to a DDB. Typically, the DDB will be
selected into a memory device context (DC) and blt'ed to the screen
for display.

NOTE: If a 256-color bitmap with a palette is loaded from a resource, some
colors will be lost. To display a bitmap with a palette correctly, the
palette must be selected into the destination DC before the image is
transferred to the DC. LoadBitmap() cannot return the palette associated
with the bitmap; therefore, this information is lost. Instead, the colors
in the bitmap are mapped to colors available in the default system palette,
and a bitmap with the system default color depth is returned.

For example, if LoadBitmap() loads a 256-color image into an application
running on a VGA display, the 256 colors used in the bitmap will be mapped
to the 16 available colors, and a 4 bits-per-pixel bitmap will be returned.
When the display is a 256-color 8514 unit, the same action will map the 256
bitmap colors into the 20 reserved system colors, and an 8 bits-per-pixel
bitmap will be returned.

If, instead of calling LoadBitmap(), the application calls FindResource()
(with RT_BITMAP type), LoadResource(), and LockResource(), a pointer to a
packed DIB will be the result. A packed DIB is a BITMAPINFO structure

followed by an array of bytes containing the bitmap bits.

NOTE: If the resource was originally stored as a DDB, the bitmap returned
will be in the DDB format. In other words, no conversion is done.

The BITMAPINFO structure is a BITMAPINFOHEADER structure and an array of
RGBQUADs that define the colors used in the DIB. The pointer to the packed
DIB may be used in the same manner as a bitmap read from disk.

NOTE: The BITMAPFILEHEADER structure is NOT present in the packed DIB;
however, it is present in a DIB read from disk.

REFERENCES

For sample code demonstrating how to use FindResource() with RT_BITMAP,
LoadResource(), and LockResource(), please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q124947
 TITLE : Retrieving Palette Information from a Bitmap Resource

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiBmp

How to Use a Program to Calculate Print Margins

PSS ID Number: Q122037
Authored 25-Oct-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The Windows Software Development Kit (SDK) does not provide a function to
calculate printer margins directly. An application can calculate this
information using a combination of printer escapes and calls to the
GetDeviceCaps() function in Windows or by using GetDeviceCaps() in Windows
NT. This article discusses those functions and provides code fragments as
illustrations.

MORE INFORMATION

An application can determine printer margins as follows:

1. Calculate the left and top margins

 a. Determine the upper left corner of the printable area by using the
 GETPRINTINGOFFSET printer escape in Windows or by calling
 GetDeviceCaps() with the PHYSICALOFFSETX and PHYSICALOFFSETY
 indices in Windows NT. For example:

 // Init our pt struct in case escape not supported
 pt.x = 0; pt.y = 0;

 // In Windows NT, the following 2 calls replace GETPRINTINGOFFSET:
 // pt.x = GetDeviceCaps(hPrnDC, PHYSICALOFFSETX);
 // pt.y = GetDeviceCaps(hPrnDC, PHYSICALOFFSETY);

 // In Windows, use GETPRINTINGOFFSET to fill the POINT struct
 // Drivers are not required to support the GETPRINTINGOFFSET escape,
 // so call the QUERYESCSUPPORT printer escape to make sure
 // it is supported.
 Escape (hPrnDC, GETPRINTINGOFFSET, NULL, NULL, (LPPOINT) &pt);

 b. Determine the number of pixels required to yield the desired margin
 (x and y offsets) by calling GetDeviceCaps() using the LOGPIXELSX and
 LOGPIXELSY flags.

 // Figure out how much you need to offset output. Note the
 // use of the "max" macro. It is possible that you are asking for
 // margins that are not possible on this printer. For example, the HP
 // LaserJet has a 0.25" unprintable area so we cannot get margins of

 // 0.1".

 xOffset = max (0, GetDeviceCaps (hPrnDC, LOGPIXELSX) *
 nInchesWeWant - pt.x);

 yOffset = max (0, GetDeviceCaps (hPrnDC, LOGPIXELSY) *
 nInchesWeWant - pt.y);

 // When doing all the output, you can either offset it by the above
 // values or call SetViewportOrg() to set the point (0,0) at
 // the margin offset you calculated.

 SetViewportOrg (hPrnDC, xOffset, yOffset);
 ... all other output here ...

2. calculate the bottom and right margins

 a. Obtain the total size of the physical page (including printable and
 unprintable areas) by using the GETPHYSPAGESIZE printer escape in
 Windows or by calling GetDeviceCaps() with the PHYSICALWIDTH and
 PHYSICALHEIGHT indices in Windows NT.

 b. Determine the number of pixels required to yield the desired right
 and bottom margins by calling GetDeviceCaps using the LOGPIXELSX and
 LOGPIXELSY flags.

 c. Calculate the size of the printable area with GetDeviceCaps() using
 the HORZRES and VERTRES flags.

 The following code fragment illustrates steps 2a through 2c:

 // In Windows NT, the following 2 calls replace GETPHYSPAGESIZE
 // pt.x = GetDeviceCaps(hPrnDC, PHYSICALWIDTH);
 // pt.y = GetDeviceCaps(hPrnDC, PHYSICALHEIGHT);

 // In Windows, use GETPHYSPAGESIZE to fill the POINT struct
 // Drivers are not required to support the GETPHYSPAGESIZE escape,
 // so call the QUERYESCSUPPORT printer escape to make sure
 // it is supported.
 Escape (hPrnDC, GETPHYSPAGESIZE, NULL, NULL, (LPPOINT) &pt);

 xOffsetOfRightMargin = xOffset +
 GetDeviceCaps (hPrnDC, HORZRES) -
 pt.x -
 GetDeviceCaps (hPrnDC, LOGPIXELSX) *
 wInchesWeWant;

 yOffsetOfBottomMargin = yOffset +
 GetDeviceCaps (hPrnDC, VERTRES) -
 pt.y -
 GetDeviceCaps (hPrnDC, LOGPIXELSY) *
 wInchesWeWant;

NOTE: Now, you can clip all output to the rectangle bounded by xOffset,
yOffset, xOffsetOfRightMargin, and yOffsetOfBottomMargin.

For further information about margins, query in the Microsoft Knowledge
Base by using these words:

 GETPHYSPAGESIZE and GETPRINTINGOFFSET and GetDeviceCaps

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprint kbprg kbcode
KBSubcategory: GdiPrn

How to Use CTL3D Under the Windows 95 Operating System

PSS ID Number: Q130693
Authored 24-May-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

When an application that uses CTL3D is run under Windows 95, CTL3D disables
itself if any dialog box has the DS_3DLOOK style. By default, all
applications based on Windows version 4.0 get the DS_3DLOOK style for all
dialog boxes. This article explains how this affects the way dialog boxes
and controls are displayed under the Windows 95 operating system.

MORE INFORMATION

When CTL3D is disabled, Windows 95 draws dialog boxes and controls using
its own 3D drawing properties. Windows 95 does not draw the static
rectangles and frames in 3D as CTL3D does. For more information about how
these frames and rectangles are drawn under Windows 95, please see the
following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q125684
TITLE : How to Use SS_GRAYRECT SS_BLACKRECT SS_WHITERECT in Windows 95

There are two new static control styles (SS_SUNKEN and SS_ETCHEDFRAME) in
Windows 95 that simulate two of the static panels used in CTL3D. SS_SUNKEN
creates a sunken panel, and SS_ETCHEDFRAME creates a panel with a dipped
edge. There is no static style for creating a raised panel, but you can use
the DrawEdge API to draw a raised panel.

There are also two new static control styles that you can use to create 3D
lines. SS_ETCHEDHORZ creates a dipped horizontal line, and SS_ETCHEDVERT
creates a dipped vertical line.

An application should check the platform version at run time by using the
GetVersion or GetVersionEx function, and then implement appropriate 3D
effects. If the major version is less than 4, the application can use the
CTL3D functions, messages, and controls. If the major version is 4 or
greater, the application should not implement CTL3D; it should create the
proper Windows 95 style controls (or use DrawEdge to draw its 3D panels) to
achieve the desired effects.

Additional reference words: 4.00
KBCategory: kbprg kbui
KBSubcategory: UsrCtl

How to Use DWL_MSGRESULT in Property Sheets & Wizard Controls

PSS ID Number: Q130762
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

Each page in a property sheet or wizard control is an application-defined
modeless dialog box that manages the control windows used to view and edit
the properties of an item. Applications provide the dialog box template
used to create each page as well as the dialog box procedure.

A property sheet or wizard control sends notification messages to the
dialog box procedure for a page when the page is gaining or losing the
focus and when the user chooses the OK, Cancel, or other buttons. The
notifications are sent in the form of WM_NOTIFY messages. The dialog box
procedure(s) for the correspoding page(s) should use the SetWindowLong()
function to set the DWL_MSGRESULT value of the page dialog box to specify
the return value from the dialog box procedure to prevent or accecpt the
change. After doing so, the dialog box procedure must return TRUE in
response to processing the WM_NOTIFY message. If it does not return TRUE,
the return value set in the DWL_MSGRESULT index using the SetWindowLong()
function is ignored by the property sheet or wizard control.

MORE INFORMATION

Dialog box procedures return a BOOL value (TRUE or FALSE). This return
value indicates to the caller of the dialog box function that the dialog
box function either handled the message that it received or did not handle
it. When the dialog box function returns FALSE, it is indicating that it
did not handle the message it received. When the dialog box handles the
message and generates a return value, it typically sets the DWL_MSGRESULT
index of the dialog box with the return value.

The dialog box function of the property sheet or wizard page handles
messages (WM_NOTIFY) sent by the property sheet or wizard control. The
property sheet or wizard control determines whether the page that received
the message processed the message or not by checking the retrun value from
the call to SendMessage(). If the return value is FALSE, the control goes
ahead and does what needs to be done by default. But if the return value is
TRUE, the control checks for the return value by looking at the value
stored in the DWL_MSGRESULT index of that page.

For example, the dialog box function of a property page might trap the
PSN_SETACTIVE notification to prevent it from being activated under certain
circumstances. In this case, the page dialog box function uses the
SetWindowLong() function to set the DWL_MSGRESULT value to -1. If the
dialog box does not return TRUE after setting the DWL_MSGRESULT, the

property sheet control that sent the message completely ignores the return
value because it assumes there is no return value.

Additional reference words: 4.00 common controls user Windows 95
KBCategory: kbprg
KBSubcategory: UsrCtl

How to use ExitExecRestart to Install System Files

PSS ID Number: Q114606
Authored 08-May-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SUMMARY

Some installation procedures require the installation of files (such as
CTL3D.DLL, COMMDLG.DLL, and fonts) that may be in use by Windows at the
time the setup program is run. Windows is likely to have these files open,
so they cannot be installed without causing sharing violations. The Setup
Toolkit provides features to exit Windows, install these files, and then
restart Windows when complete.

MORE INFORMATION

The Setup Toolkit accomplishes the installation of system files as
follows:

1. Before the Setup Toolkit copies a system file, it checks to see if the
 file is currently open. If it is, it copies the file to the destination
 directory, but under a different file name. It then adds this file to
 the "restart list".

2. When CopyFilesInCopyList() is complete, the Setup Toolkit checks the
 "restart list" and generates a .BAT file (named _MSSETUP.BAT) in the
 "restart directory". This .BAT file contains commands which delete the
 system files which were open (in step #1) and rename the new versions to
 their correct names.

3. Windows is exited, the .BAT file executed, then Windows restarted.

4. The .BAT file is then deleted.

 NOTE: The "restart directory" is not deleted. Hence, you should use your
 application's installation directory as your restart directory.

Hence, to install system files, perform the following steps:

1. Mark the system files as "system" in the DSKLAYT program. This is
 accomplished by highlighting all the system files (clicking with the
 CTRL key down) and placing a check in the "System File" check box under
 "File Attributes".

2. Before calling CopyFilesInCopyList() specify the name of your "restart
 directory". Assuming the target directory for your application is stored
 in DEST$ (as in the samples), use the following line:

 SetRestartDir DEST$

 The specified directory does not need to exist. It will be created
 if necessary.

3. After your installation is complete, execute the following code before
 exiting your setup script. Normally this code will be placed at the
 end of the Install subroutine.

 if RestartListEmpty ()=0 then
 '' The following two lines must go on one line.
 MessageBox hwndFrame (), "Windows will now be exited and
 restarted.", "Sample Setup Script", MB_OK+MB_ICONINFORMATION
 eer:
 i%=ExitExecRestart ()
 '' The following three lines must go on one line.
 MessageBox hwndFrame (), "Windows cannot be restared because
 MS-DOS-based applications are active. Close all MS-DOS-based
 applications, and then click OK.", "Sample Setup Script",
 MB_OK+MB_ICONSTOP
 goto eer
 end if

 NOTE: In order to use the MessageBox() function you must add the
 following lines at the beginning of your setup script:

 const MB_ICONINFORMATION = 64
 '' The following two lines must go on one line.
 declare sub MessageBox lib "user.exe" (hwnd%, message$,
 title$, options%)

4. Add the file _MSSETUP.EXE to your source directory and lay it out on
 Disk #1 in DSKLAYT.

5. Add a reference to _MSSETUP.EXE to the [files] section of your .LST
 file. For example,

 if you marked _MSSETUP.EXE to be compressed,

 [files]
 mssetup.ex = _mssetup.exe

 if you did not mark it as compressed,

 [files]
 _mssetup.exe = _mssetup.exe

NOTES:

1. If ExitExecRestart () is successful, your script will be exited. That
 is, ExitExecRestart () will not return. If it does return, an error
 has occurred.

2. This functionality is not available under Windows 3.0. If the user runs

 the above setup script on Windows 3.0, they will receive the message
 that MS-DOS-based applications are running and they will not be able to
 complete the setup. If this is a concern, check the version of Windows
 before executing the above code.

3. If _MSSETUP.EXE is not in your .LST file or not laid out in DSKLAYT,
 you will receive an "assertion failure" message when calling
 ExitExecRestart ().

Additional reference words: 3.10 3.50 setup toolkit mssetup
KBCategory: kbtool kbsetup kbprg kbcode
KBSubcategory: TlsMss

How to Use Hangeul (Korean) Windows Input Method Editor (IME)

PSS ID Number: Q130053
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

Hangeul (Korean) Windows supports the KSC5601-1987 code set, which consists
of several thousands Hangeul characters. The Hangeul Windows IME (Input
Method Editor) allows the user to enter Hangeul Jamos (24 basic components
of Hangeul characters), compose the final characters, and send them to
applications.

MORE INFORMATION

When running Hangeul Windows, you will see a small window with three
buttons in the lower-left corner:

 - The left button toggles between the Roman "A" character and the Korean
 character that is pronounced "GA," which Windows uses to symbolize
 Korean characters.

 - The center button is a graphic of a half box or full box, which selects
 SBCS or DBCS storage (or display) of Roman (but not Hangeul) characters.
 Hangeul characters always take up a double-byte space, unlike some
 Japanese characters (katakana).

 - The right button is the "Hangeul to Hanja" converter.

You can type in English by having the Roman toggle selected. To try typing
Hangeul, the main thing to remember is that there is no apparent logical
connection between the US 101 keyboard and what the you end up typing.
To type like a pro, you need Korean keycaps, a cheat sheet, or a lot of
memory in your brain.

For example, to type the word "Hangeul" type these characters:

 GKS RMF

(Please ignore the spaces between the two characters.) Notice how each
group of three keyboard characters assemble a single Hangeul character.
Hangeul is often made up of three components (called "Jamos"), but
characters can actually be composed of from two to several Jamos.

Here is how to type "Seoul, Korea." Seoul is pronounced locally "sa-ul,"

so try typing these characters:

 TJ DNF ZH FL DK

(Please ignore the spaces between the characters.) The word "Korea" is not
a Korean name; it is the English equivalent, just as Japan is really
Nippon. The word "Korea" in Korean is "Han-guk," so "Seoul, Hanguk" would
be:

 TJD NF GKS RNR

The reason to try "Hanguk" instead of "Korea" is that Hanguk can also be
spelled with Chinese characters. Put the mouse pointer (cursor) on the left
edge of "Han" and click the "Hangeul to Hanja" button. A list box appears.
Select choice #1 by typing 1 or by selecting it with the mouse. Do the same
for the next character, again selecting choice #1. Then it will display
in Hanja.

Most Korean text is in Hangeul not Hanja, notice the 3.1-H readme is all
Hangeul. Hanja is still used in Korea - sometimes.

Additional reference words: 1.20 3.10 3.50 Hangul kbinf
KBCategory: kbother
KBSubcategory: wintldev

How to Use LVIF_DI_SETITEM on an LVN_GETDISPINFO Notification

PSS ID Number: Q131285
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SUMMARY

Windows 95 provides two flags, LVIF_DI_SETITEM and TVIF_DI_SETITEM, for the
listview and treeview controls respectively. When set, these flags instruct
Windows to start storing information for that particular item previously
set as a callback item.

MORE INFORMATION

Windows 95 introduces the concept of callback items for the new listview
and treeview common controls. A callback item is a listview or treeview
item for which the application, not the control, stores the text, icon, or
any appropriate information about the item. If the application already
maintains this information anyway, setting up callback items could decrease
the memory requirements of the control. Callback items are just as useful
for items that display constantly changing information. Setting these items
up as callback items allows the application to display the most current
values appropriate for that item.

Take for example a SPY application that displays information in a
hierarchical form (or a treeview) about the window being browsed or spied
on. One of the things it displays is the window rectangle, or the
dimensions of the window.

Because the user could resize this window at any time, this particular item
is a good candidate for a callback item because it displays constantly
changing information.

The application defines a callback item by specifying LPSTR_TEXTCALLBACK
for the pszText member of the TV_ITEM structure. Whenever the item needs to
be displayed, Windows requests the callback information by sending the
treeview's parent a TVN_GETDISPINFO notification in the form of a WM_NOTIFY
message. The parent window then fills the pszText member of the TV_ITEM
structure as the following sample code demonstrates:

 LRESULT MsgNotify(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {
 TV_DISPINFO *ptvdi = (TV_DISPINFO *)lparam;

 switch (ptvdi->hdr.code)
 {
 case TVN_GETDISPINFO:

 if (ptvdi.mask & TVIF_TEXT)
 {
 RECT rect;
 char szBuf [30];

 GetWindowRect (hWndToBrowse, &rect);

 // where FormatRectText formats the rect information
 // in a nice <WindowRect: (x,y):cx,cy> format
 // and stores it in szBuf.
 FormatRectText (&rect, szBuf, sizeof (szBuf));

 lstrcpy (ptvdi.pszText, szBuf);
 }
 :

 default: break;

 }
 return 0;
 }

At a certain point, the application may determine during run time, that the
window dimensions will no longer change. At this point, there may be no
reason for this particular treeview item to remain as a callback item. This
time, you need to process the TVN_GETDISPINFO message in a slightly
different manner, specifying the TVIF_DI_SETITEM flag as demonstrated in
the following code:

 case TVN_GETDISPINFO:

 if (ptvdi.mask & TVIF_TEXT)
 {
 RECT rect;
 char szBuf [30];

 GetWindowRect (hWndToBrowse, &rect);

 // where FormatRectText formats the rect information
 // in a nice <WindowRect: (x,y):cx,cy> format
 // and stores it in szBuf.
 FormatRectText (&rect, szBuf, sizeof (szBuf));

 lstrcpy (ptvdi.pszText, szBuf);
 plvdi->item.mask = plvdi->item.mask | TVIF_DI_SETITEM;
 }

By ORing the mask with TVIF_DI_SETITEM, you instruct Windows to start
storing text information for the particular treeview item. At that point,
the application stops receiving a TVN_GETDISPINFO notification whenever the
item needs to be redrawn. This works almost as well as calling

TreeView_SetItem() on the item and replacing pszText's value with
LPSTR_TEXTCALLBACK to the appropriate string.

The same holds true for listview controls when the mask is ORed with the
LVIF_DI_SETITEM flag. However, note that setting the LVIF_DI_SETITEM flag
for listviews works only for the first column of text (iSubItem ==0).

If an application specifies LPSTR_TEXTCALLBACK therefore for a column
other than 0 in report view, LVIF_DI_SETITEM does not store the text
information for that listview item column.

For more information on other members of the LV_ITEM and TV_ITEM structures
that can be set up for callback, refer to the documentation on LV_DISPINFO
and TV_DISPINFO structures.

Additional reference words: 4.00 1.30 I_IMAGECALLBACK win95
I_CHILDRENCALLBACK
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

How to Use PeekMessage() Correctly in Windows

PSS ID Number: Q74042
Authored 11-Jul-1991 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

In the Windows environment, many applications use a PeekMessage() loop to
perform background processing. Such applications must allow the Windows
system to enter an idle state when their background processing is complete.
Otherwise, system performance, "idle-time" system processes such as paging
optimizations, and power management on battery-powered systems will be
adversely affected.

While an application is in a PeekMessage() loop, the Windows system cannot
go idle. Therefore, an application should not remain in a PeekMessage()
loop after its background processing has completed.

NOTE: The PeekMessage method described in this article is only needed if
your application is a 32-bit application for Windows and is, for some
reason, unable to create threads and perform background processing.

MORE INFORMATION

Many Windows-based applications use PeekMessage() to retrieve messages
while they are in the middle of a long process, such as printing,
repaginating, or recalculating, that must be done "in the background."
PeekMessage() is used in these situations because, unlike GetMessage(), it
does not wait for a message to be placed in the queue before it returns.

An application should not call PeekMessage() unless it has background
processing to do between the calls to PeekMessage(). When an application is
waiting for an input event, it should call GetMessage() or WaitMessage().

Remaining in a PeekMessage() loop when there is no background work
causes system performance problems. A program in a PeekMessage() loop
continues to be rescheduled by the Windows scheduler, consuming CPU
time and taking time away from other processes.

In enhanced mode, the virtual machine (VM) in which Windows is running
will not appear to be idle as long as an application is calling the
PeekMessage function. Therefore, the Windows VM will continue to
receive a considerable fraction of CPU time.

Many power management methods employed on laptop and notebook computers are
based on the system going idle when there is no processing to do. An

application that remains in a PeekMessage() loop will make the system
appear busy to power management software, resulting in excessive power
consumption and shortening the time that the user can run the system.

In the future, the Windows system will make more and more use of idle
time to do background processing, which is designed to optimize system
performance. Applications that do not allow the system to go idle will
adversely affect the performance of these techniques.

All these problems can be avoided by calling the PeekMessage() function
only when there is background work to do, and calling GetMessage() or
WaitMessage() when there is no background work to do.

For example, consider the following PeekMessage() loop. If there is no
background processing to do, this loop will continue to run without
waiting for messages, preventing the system from going idle and
causing the negative effects described above.

 // This PeekMessage loop will NOT let the system go idle.

 for(;;)
 {
 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 return TRUE;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 BackgroundProcessing();
 }

This loop can be rewritten in two ways, as shown below. Both of the
following PeekMessage() loops have two desirable properties:

 - They process all input messages before performing background
 processing, providing good response to user input.

 - The application "idles" (waits for an input message) when no
 background processing needs to be done.

Improved PeekMessage Loop 1

 // Improved PeekMessage() loop

 for(;;)
 {
 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 return TRUE;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 if (IfBackgroundProcessingRequired())
 BackgroundProcessing();
 else
 WaitMessage(); // Will not return until a message is posted.
 }

Improved PeekMessage Loop 2

 // Another improved PeekMessage() loop

 for (;;)
 {
 for (;;)
 {
 if (IfBackgroundProcessingRequired())
 {
 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 break;
 }
 else
 GetMessage(&msg, NULL, 0, 0, 0);

 if (msg.message == WM_QUIT)
 return TRUE;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 BackgroundProcessing();
 }

Note that calls to functions such as IsDialogMessage() and
TranslateAccelerator() can be added to these loops as appropriate.

There is one case in which the loops above need additional support: if
the application waits for input from a device (for example, a fax
board) that does not send standard Windows messages. For the reasons
outlined above, a Windows-based application should not use a PeekMessage()
loop to continuously poll the device. Rather, implement an interrupt
service routine (ISR) in a dynamic-link library (DLL). When the ISR is
called, the DLL can use the PostMessage function to inform the
application that the device requires service. DLL functions can safely
call the PostMessage() function because the PostMessage() function
is reentrant.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

How to Use RPC Under Win32s

PSS ID Number: Q127903
Authored 21-Mar-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25a

Win32s does not thunk Remote Procedure Call (RPC) calls. Therefore, if you
have a Win32-based application that uses RPC and you want it to run on
Win32s, you will need to write a thunking layer for your application to
thunk the 32-bit calls to the 16-bit RPC implementation.

One issue to keep in mind when writing the thunking layer is how to handle
stub code. It is convenient to direct the MIDL compiler to produce 16-bit
stub code for the application. The stub code can be built as a 16-bit DLL,
which can be called from the Win32-based application via the Universal
Thunk. This eliminates the need to write a thunking layer for the RPC
run-time functions that appear in 32-bit client stub code.

One limitation is that RPC servers are not supported with the 16-bit RPC,
only clients. Microsoft's 32-bit RPC implements servers by spawning threads
for each call, and threads are not supported under Win32s. There may be
other vendors who supply a 16-bit RPC that supports servers.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

How to Use SS_GRAYRECT SS_BLACKRECT SS_WHITERECT in Windows

PSS ID Number: Q125684
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

The colors used in the gray, white, and black rectangle static controls has
changed in Windows 95. In previous versions of Windows, these colors were
based on the system colors for windows. In Windows 95, these colors are
based on the colors for 3D objects.

MORE INFORMATION

In Windows 95, the definitions for white, gray, and black rectangle static
controls are as follows:

 - SS_WHITERECT: Specifies a rectangle filled with the highlight color for
 three-dimensional display elements (for edges facing the light source).
 This is the same color retrieved by using GetSysColor() with
 COLOR_3DHILIGHT.

 - SS_GRAYRECT: Specifies a rectangle filled with the shadow color for
 three-dimensional display elements (for edges facing away from the light
 source). This is the same color retrieved by using GetSysColor() with
 COLOR_3DSHADOW.

 - SS_BLACKRECT: Specifies a rectangle filled with the Shadow color for
 three-dimensional display elements (for edges facing away from the light
 source). This is the same color retrieved by using GetSysColor() with
 COLOR_3DDKSHADOW. This is not the same color as COLOR_3DSHADOW. There
 are two shadow colors used on 3D objects.

In previous versions of Windows, the definitions for white, gray, and
black rectangle static controls were as follows:

 - SS_WHITERECT: Specifies a rectangle filled with the color used to fill
 window backgrounds. This color is white in the default Windows color
 scheme. This is the same color retrieved by using GetSysColor() with
 COLOR_WINDOW.

 - SS_GRAYRECT: Specifies a rectangle filled with the color used to fill
 the screen background. This color is gray in the default Windows color
 scheme. This is the same color retrieved by using GetSysColor() with
 COLOR_BACKGROUND.

 - SS_BLACKRECT: Specifies a rectangle filled with the color used to draw
 window frames. This color is black in the default Windows color scheme.

 This is the same color retrieved by using GetSysColor() with
 COLOR_WINDOWFRAME.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrCtl

How to Use the Small Icon in Windows 95

PSS ID Number: Q125682
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows 95, each application is associated with two icons: a small icon
(16x16) and a large icon (32x32). The small icon is displayed in the
upper-left hand corner of the application and on the taskbar.

MORE INFORMATION

Large and small icons are associated with an application by using the
RegisterClassEx() function. This function takes a pointer to a WNDCLASSEX
structure. The WNDCLASSEX structure is similar to the WNDCLASS structure
except for the addition of the hIconSm parameter, which is used for the
handle to the small icon. If no small icon is associated with an
application, Windows 95 will use a 16x16 representation of the large icon.

NOTE: RegisterClassEx() is not currently implemented in Windows NT where it
returns NULL.

The LoadIcon() function loads the large icon member of an icon resource.
To load the small icon, use the new LoadImage() function as follows:

LoadImage(hInstance,
 MAKEINTRESOURCE(<icon identifier>),
 IMAGE_ICON,
 16,
 16,
 0);

The small icon currently associated with the application will be displayed
in the upper-left corner of the application's main window and on the task
bar. Both the large and the small icon association can be changed at
runtime by using the WM_SETICON message.

By default, the start menu will display the first icon defined in an
application's resources. This can be changed through the start menu
property sheets.

Explorer displays the first defined icon in an application's resources
unless the application adds an entry to the registry under the program
information called DefaultIcon or defines an icon handler shell extension
for the file type. Refer to the Shell Extension documentation for more
information on shell extensions.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrWndw

How to Use WinSock to Enumerate Addresses

PSS ID Number: Q129315
Authored 24-Apr-1995 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.5 and 3.51

SUMMARY

The gethostbyname() and gethostname() WinSock database APIs can be used to
list IP addresses for a multihomed host. However, these functions work only
for IP addresses. This article shows by example how to give addresses for
other address families. Two different methods are given.

MORE INFORMATION

Method One Code Sample

AF_IPX:

This function can be used to give an IPX address:

 #include <winsock.h>
 #include <wsipx.h>
 #include <wsnwlink.h>

 #include <stdlib.h>

 // Note: In the interest of clarity, the following code does not check
 // return values or handle error conditions.

 void IPXEnum()
 {
 int cAdapters,
 cbOpt = sizeof(cAdapters),
 cbAddr = sizeof(SOCKADDR_IPX);

 SOCKET s;
 SOCKADDR_IPX Addr;

 // Create IPX socket.
 s = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX);

 // Socket must be bound prior to calling IPX_MAX_ADAPTER_NUM
 memset(&Addr, 0, sizeof(Addr));
 Addr.sa_family = AF_IPX;
 bind(s, (SOCKADDR*) &Addr, cbAddr);

 // Get the number of adapters => cAdapters.
 getsockopt((SOCKET) s, NSPROTO_IPX, IPX_MAX_ADAPTER_NUM,
 (char *) &cAdapters, &cbOpt);
 // At this point cAdapters is the number of installed adapters.
 while (cAdapters > 0)
 {
 IPX_ADDRESS_DATA IpxData;

 memset(&IpxData, 0, sizeof(IpxData));

 // Specify which adapter to check.
 IpxData.adapternum = cAdapters - 1;
 cbOpt = sizeof(IpxData);

 // Get information for the current adapter.
 getsockopt(s, NSPROTO_IPX, IPX_ADDRESS,
 (char*) &IpxData, &cbOpt);

 // IpxData contains the address for the current adapter.
 cAdapters--;
 }
 }

AF_NETBIOS:

This function uses the EnumProtocols() function to give lana numbers
for the available NetBIOS transports. NOTE: This doesn't work under Windows
NT 3.5 because of a bug in EnumProtocols(), but it does work under Windows
NT 3.51.

 void NBEnum()
 {
 DWORD cb = 0;
 PROTOCOL_INFO *pPI;
 BOOL pfLanas[100];

 int iRes,
 nLanas = sizeof(pfLanas) / sizeof(BOOL);

 // Specify NULL for lpiProtocols to enumerate all protocols.

 // First, determine the output buffer size.
 iRes = EnumProtocols(NULL, NULL, &cb);

 // Verify the expected error was received.
 assert(iRes == -1 && GetLastError() == ERROR_INSUFFICIENT_BUFFER);
 if (!cb)
 {
 fprintf(stderr, "No available NetBIOS transports.\n");
 break;
 }

 // Allocate a buffer of the specified size.
 pPI = (PROTOCOL_INFO*) malloc(cb);

 // Enumerate all protocols.
 iRes = EnumProtocols(NULL, pPI, &cb);

 // EnumProtocols() lists each lana number twice, once for
 // SOCK_DGRAM and once for SOCK_SEQPACKET. Set a flag in pfLanas
 // so unique lanas can be identified.

 memset(pfLanas, 0, sizeof(pfLanas));

 while (iRes > 0)
 // Scan protocols looking for AF_NETBIOS.
 if (pPI[--iRes].iAddressFamily == AF_NETBIOS)
 // found one
 pfLanas[pPI[iRes].iProtocol] = TRUE;

 fprintf(stderr, "Available NetBIOS lana numbers: ");
 while(nLanas--)
 if (pfLanas[nLanas])
 fprintf(stderr, "%d ", nLanas);

 free(pPI);
 }

AF_APPLETALK:

Address enumeration is not meaningful for AF_APPLETALK. On a multihomed
host with routing disabled, only the default adapter is used. If routing is
enabled, a single AppleTalk address is used for all installed network
adapters.

Method Two: Code Sample

Listed below is an example of how to use the WinSock database APIs to
give IP addresses:

 void EnumIP()
 {
 char szHostname[100];
 HOSTENT *pHostEnt;
 int nAdapter = 0;

 gethostname(szHostname, sizeof(szHostname));
 pHostEnt = gethostbyname(szHostname);

 while (pHostEnt->h_addr_list[nAdapter])
 {
 // pHostEnt->h_addr_list[nAdapter] is the current address in host
 // order.

 nAdapter++;
 }
 }

Additional reference words: 3.50

KBCategory: kbnetwork kbcode
KBSubcategory: NtwkWinsock

How Win32-Based Applications Are Loaded Under Windows

PSS ID Number: Q110845
Authored 31-Jan-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

SUMMARY

Microsoft Win32s is an operating system extension that allows Win32-based
applications to be run on Windows 3.1. Win32s consists of a VxD and a set
of dynamic-link libraries (DLLs).

It is possible to distinguish whether an executable was built for Win32 or
Win16. Win32 executables use the Portable Executable (PE) format, while
Win16 executables use the New Executable (NE) format.

The Windows 3.1 loader was designed to be aware that Win32-based
applications would potentially be loaded. When the user starts a
Win32-based application, the Windows 3.1 loader tries to load the
Win32-based application via WinExec(). WinExec() calls LoadModule(), which
will fail with an error indicating that it was passed an .EXE with the PE
format. At this point, WinExec() calls a special function to start up
Win32s. This function loads W32SYS.DLL (16-bit DLL) via LoadModule(). If
W32SYS determines that the EXE is indeed a valid PE file, it calls
LoadModule() on WIN32S.EXE (16-bit EXE) (it is similar to WinOldApp for MS-
DOS-based programs running in Windows). WIN32S.EXE contains the task
database, PSP, task queue, and module database. WIN32S.EXE calls its only
function to load the Win32s 16-bit translator DLL, W32S16.DLL, which does
work as a translator between the Win32-based application and the 16-bit
world that it is running in.

MORE INFORMATION

Win32-based applications are loaded in the upper 2 gigabytes (GB) of the 4
GB address space under Win32s, whereas Windows NT loads them in the lower 2
GBs. This is because W32S.386, a VxD, allocates the memory, and VxDs get
memory in the 2 GB to 4 GB range. The first 64K and the last 64K cannot be
read or written to (similar to a null page on other architectures).

On Windows 3.1, all applications, even the Win32-based applications, share
the same address space, unlike Windows NT where each Win32-based
application gets its own address space. Each Windows-based application may
be given its own address space, starting with Windows NT 3.5.

Additional reference words: 1.00 1.10 1.20 G byte
KBCategory: kbprg
KBSubcategory: W32s

How Windows NT Handles Floating-Point Calculations

PSS ID Number: Q102555
Authored 04-Aug-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

Each thread in a Win32-based application has its own general register set
(provided by the kernel) and its own floating-point state. However, the
floating-point support available in a specific instance depends on the
subsystem or component in question.

Below is a list of various components and environments and what type of
floating-point support is present for them.

MORE INFORMATION

Win32

Floating-point support is available to any thread running in the Win32 or
POSIX subsystem.

This is true even on x86 machines that do not have floating-point hardware.
The floating-point instructions are emulated automatically for the thread.

This feature allows people writing code in higher level languages, such as
C, to assume floating-point support. The compiler generates the appropriate
floating-point machine code. In addition, some standard floating-point
functions allow applications to use floating-point exceptions in a portable
manner. [For more information, see the header file FPIEE.H and the filter
function fpieee_flt().]

POSIX

Again, POSIX applications can be created with the assumption of available
floating-point support.

Note that the POSIX standard does not define a way to enable floating-point
exceptions, so POSIX applications that do so must rely on some system-
specific features. Under Windows NT, a POSIX application can enable
floating exceptions by using _controlfp(). Floating-point exceptions can
then be caught by SIGFPE, or, if the application needs to do more than
simply catch the exception, by fpieee_flt().

MS-DOS/WOW: x86

MS-DOS-based and Windows-based applications are run directly by the
processor in virtual-86 mode. An MS-DOS/WOW application has access to the
floating-point hardware just as it would appear in MS-DOS. (If no floating-
point hardware is present, no emulation is provided for the application.)

MS-DOS/WOW: Non-x86

When run on a RISC-based computer, or other non-x86 machine using the
Windows/NT 80286 emulation code, the 80287 floating-point instructions are
directly emulated. The MS-DOS/WOW application behaves as if an 80287
processor were present.

OS/2 (Supported Only on x86 Versions of Windows NT)

Floating-point support in this subsystem matches that of OS/2: if there's
no floating-point hardware installed, the OS/2 application is expected to
provide its own emulation.

Device Drivers: x86

On x86 platforms, a driver cannot use the coprocessor. Moreover, using any
floating-point instruction (including fnsave or fwait) in the driver could
cause either corruption of the user's numeric state or a bug check.

Device Drivers: MIPS/Alpha

For non-ISR time (that is, execution that does not occur during the
interrupt service routine [ISR]), floating-point support can be assumed. At
ISR time, floating-point support is available so long as the driver
registered the ISR with IoConnectInterrupt and passed FloatingSave as TRUE.
This causes the system to save and restore the volatile floating-point
registers around the associated ISR.

Note that these functions on RISC-based computers use floating-point:
RtlFillMemory(), RtlZeroMemory(), RtlCopyMemory(), RtlMoveMemory(). If an
ISR calls any of these functions, it must connect to the interrupt with
FloatingSave=TRUE on a MIPS.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseMisc

Icons for Console Applications

PSS ID Number: Q91150
Authored 29-Oct-1992 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Under OS/2, when adding an application named CONAPP.EXE to a program group,
the system uses the file CONAPP.ICO (if it exists) as the icon. This does
not happen automatically under Windows NT and Windows 95; the item will
have a generic icon.

To specify the icon that appears in the program group, use the following
steps:

1. Create a resource file containing an ICON statement:

 ConApp ICON ConApp.ICO

2. Compile the resource using RC:

 rc -r $(rcvars) -fo conapp.res conapp.rc

3. Add the .rc file to the link command line

MORE INFORMATION

If the application is started by clicking its icon in Program Manager, the
icon that appears when the application is minimized will be that icon,
whether it is a generic icon or an icon imbedded in the executable file.

If the application is started from the MS-DOS prompt or the File menu, then
the icon that appears when the application is minimized will be the icon
that is used for the MS-DOS prompt.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseCon

Ideas to Remember as You Convert from ASCII or ANSI to

PSS ID Number: Q130052
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

Because the industry is moving to Windows NT, and Windows NT supports
Unicode, many independent software vendors (ISVs) want to know how to
convert existing ASCII (or ANSI) help and resource files into Unicode. This
article gives you some notes on the subject.

MORE INFORMATION

When converting ASCII to Unicode, remember that the entire ASCII characters
map perfectly to the first characters in Unicode. You need only add a
second null bit and a 0x00 in the high byte.

When converting ANSI to Unicode, UCONVERT.EXE sources in the Win32 SDK and
the good illustration of win32 MultiBytetoWideChar conversion API are
helpful sources to consult.

When converting a Help file, you face the challenge presented by the fact
that the old ANSI RTF format is clueless about wide characters. Also, you
need an RTF format for each specific country. For example, you'll need one
specific to Japan, another separate RTF format for Korea, and so on. In
addition, you might want to consider converting to the newer, much more
powerful Help file formats supported in the Windows 95 Help file system;
this may be an easier solution.

Help files in Windows NT versions 3.1 and 3.5 use the same Help file format
as Windows version 3.1 does. But newer operating systems such as Windows 95
contains a new help file compiler, engine, and format. One reason that
Microsoft made this change was to improve international support.

One final idea you might want to consider is to develop your own converter
by using the MutltiByteToWideChar() API. In fact, this may be the best
approach, because application developers know exactly what kind of user
interface they want to implement.

Additional reference words: 1.20 3.50 kbinf
KBCategory: kbother
KBSubcategory: wintldev

Identifying a Previous Instance of an Application

PSS ID Number: Q106385
Authored 07-Nov-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5
 3.51, and 4.0

SUMMARY

The entry point of both Windows and Windows NT applications is documented
to be:

 int WinMain(hInstance, hPrevInstance, lpszCmdLine, nCmdShow)

 HINSTANCE hInstance; /* Handle of current instance */
 HINSTANCE hPrevInstance; /* Handle of previous instance */
 LPSTR lpszCmdLine; /* Address of command line */
 int nCmdShow; /* Show state of window */

However, under Windows NT, hPrevInstance is documented to always be NULL.
The reason is that each application runs in its own address space and may
have the same ID as another application.

To determine whether another instance of the application is running, use a
named mutex. If opening the mutex fails, then there are no other instances
of the application running. FindWindow() can be used with the class and
window name. However, note that a second instance of the application could
be started, and could execute the FindWindow() call before the first
instance has created its window. Use a named object to ensure that this
does not happen.

MORE INFORMATION

The fact that hPrevInstance is set to NULL simplifies porting Win16
applications. Most 16-bit Windows-based applications contain the following
logic:

 if(!hPrevInstance)
 if(!InitApplication(hInstance))
 return FALSE;

Under Windows, window classes only are registered by the first instance of
an application. Consequently, if hPrevInstance is not NULL, then the window
classes have already been registered and InitApplication() is not called.

Under Windows NT, because hPrevInstance is always NULL, InitApplication()
is always called, and each instance of an application will correctly
register its window classes.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMisc

Identifying the Versions of International Windows

PSS ID Number: Q130062
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

This article suggests three ways to check for the language used in an
international version of a Windows-based application.

MORE INFORMATION

Option One: Least Coding and Least Accurate

Check the "sCountry" entry under the [intl] section of the WIN.INI file by
using the GetProfileString API. It is likely that this will match the
Windows language version. For example, German Windows will probably have
"Deutchland" and English Windows will probably have "United States" or
"United Kingdom." However, because the user can change this setting by
using the Control Panel, it is not always accurate.

Option Two: Most Coding and Most Accurate

Check the "deflang" entry under the [data] section of the SETUP.INF file.
This is a three-letter language code that SETUP.EXE uses. The setting will
be one of these:

 English=ENU or ENG
 Spanish=ESP
 German=DEU
 French=FRA or FRC (French Canadian)
 Italian=ITA

The problem with this method is getting at the "deflang" entry in the
SETUP.INF file. The applications should parse SETUP.INF. It's not that
difficult, but it does involve extra coding.

Option Three: Let the User Choose

Suggest to the user what the application found, and let the user make final
decision. Here's the algorithm:

 if Windows Version < 3.1
 Look at Win.ini, Setup.inf files
 Suggest a good guess and let the user choose;
 Register a profile string for your app;
 else
 Use version stamping;

For Windows version 3.1, the way to identify the character set is to use
the version stamping API. The translation value from the GetFileVersionInfo
when performed on GDI or SHELL.DLL is the only way in version 3.1 to find
out the character set of the system. Please refer to the SDK documentation
for more details on this API. Look for both GetFileVersionInfo and
VERSIONINFO.

The VERSIONINFO statement creates a version-information resource. The
resource contains information about the file such as its version number,
its intended operating system, and its original filename. One of the
parameters is langID, which specifies the language identifiers.

On Windows NT, look for the version resource information in one of the
system DLLs, such as KERNEL32.DLL. Look at result returned by
GetFileVersionInfo and its associated structures and references in the
Win32 API help file or documentation. This should be correct on Windows NT
version 3.5.

Additional reference words: 1.20 3.10 3.50 kbinf
KBCategory: kbother
KBSubcategory: wintldev

IME (Input Method Editor) Usage in Windows 95

PSS ID Number: Q118496
Authored 20-Jul-1994 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Japanese
 Windows 95

SUMMARY

IMEs (Input Method Editors) are dynamic-link libraries that allow users to
type complex ideographic characters using a standard keyboard. IMEs are
available in Asian versions of the Microsoft Windows operating system, and
help minimize the effort needed by users to enter text containing
characters from Unicode and double-byte character sets (DBCS). IMEs relieve
users of the need to remember all possible character values. Instead, IMEs
monitor the user's keystrokes, anticipate the character the user may want,
and present a list of candidate characters from which to choose.

MORE INFORMATION

Asian versions of Windows 3.1 and Windows NT each have a separate IME
application programming interface (API). However, these APIs have been
merged into a single API for Windows 95.

Applications for Far East versions of Windows 95 can choose from three
levels of IME support:

1. IME-unaware: Merely retrieves double-byte characters through two WM_CHAR
 messages.

2. IME-aware: Takes control of the IME module's default user interface and
 properly handles Kanji strings passed to it by the IME.

3. Fully IME-aware: Controls the entire process of composing characters,
 including the display of intermediate keystrokes, and can customize the
 IME user interface.

IME, by default, provides an IME window through which users enter
keystrokes and view and select candidate characters. Applications developed
for the WIN32 APIs can use the Input Method Manager(IMM) functions and
messages to create and manage their own IME windows, providing a custom
interface while using the conversion capabilities of the IME.

Additional reference words: 4.00 international IME IMM
KBCategory: kbother
KBSubcategory: WIntlDev

Impersonation Provided by ImpersonateNamedPipeClient()

PSS ID Number: Q101378
Authored 12-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1

SUMMARY

The following information is from the Win32 application programming
interface (API) "Programmer's Reference" in the section regarding
ImpersonateNamedPipeClient():

 BOOL ImpersonateNamedPipeClient(HANDLE hNamedPipe)

 The ImpersonateNamedPipeClient function impersonates a named-pipe
 client application.

The level of impersonation can be specified by the client when the named
pipe is opened. If the client does not explicitly specify a level, then the
default is SecurityImpersonation.

MORE INFORMATION

Suppose there are three threads (A, B, and C) where:

 A calls B

 B calls C

 B does a SecurityImpersonation of A

If A and B both specify dynamic tracking, then C can see the context of A
when it makes a call on the pipe, as long as B impersonates A. Otherwise, C
will see the context of A only if B was impersonating A when the pipe
between B and C was connected.

Note that dynamic tracking is not supported between machines.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseSecurity

Implementing a "Kill" Operation in Windows NT

PSS ID Number: Q90749
Authored 21-Oct-1992 Last modified 02-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

The following sample demonstrates how to implement a "kill" operation, such
as a UNIX ps/kill, under Windows NT. Note that PView will give you the PID
you need.

The code sample makes use of the Win32 API TerminateProcess(). While
TerminateProcess() does clean up the objects owned by the process, it does
not notify any DLLs hooked to the process. Therefore, one can easily leave
the DLL in an unstable state.

In general, the Task List is a much cleaner method of killing processes.

MORE INFORMATION

The following sample shows how to "kill" a process, given its process ID
(PID).

Sample Code

#include <windows.h>
#include <stdio.h>

void ErrorOut(char errstring[30])
/*
Purpose: Print out an meaningful error code by means of
 GetLastError and printf.

Inputs: errstring - the action that failed, passed by the
 calling proc.

Returns: none

Calls: GetLastError
*/

{
 DWORD Error;

 Error= GetLastError();
 printf("Error on %s = %d\n", errstring, Error);

}

void main(int argc, char *argv[])
{
 HANDLE hProcess;
 DWORD ProcId;
 BOOL TermSucc;

 if (argc == 2)
 {
 sscanf(agrv[1],"%x", &ProcId);
 hProcess= OpenProcess(PROCESS_ALL_ACCESS, TRUE, ProcId);
 if (hProcess == NULL)
 ErrorOut("OpenProcess");
 TermSucc= TerminateProcess(hProcess, 0);
 if (TermSucc == FALSE)
 ErrorOut("TerminateProcess");
 else
 printf("Process# %.0lx terminated successfully!\n", ProcId);
 }
 else
 {
 printf("\nKills an active Process\n");
 printf("Usage: killproc ProcessID\n");
 }
}

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseProcThrd

Implementing a Line-Based Interface for Edit Controls

PSS ID Number: Q92626
Authored 11-Nov-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.50, 3.51, and 4.0

SUMMARY

In specific situations, it may be desirable to make multiline edit controls
behave similar to list boxes, such that entries can be selected and
manipulated on a per-line basis. This article describes how to implement
the line-based interface.

MORE INFORMATION

A multiline edit control must be subclassed to achieve the desired
behavior. The subclass function is outlined below.

Most of the work necessary to implement a line-based interface is done by
the predefined window function of the edit control class. With the return
value from the EM_LINEINDEX message, the offset of the line under the caret
can be determined; with the length of that line retrieved via the
EM_LINELENGTH message, the EM_SETSEL message can be used to highlight the
current line.

There are two problems with this approach:

 - The first problem is that the EM_LINEINDEX message, when sent to the
 control with wParam=-1, returns the line index of the caret, which is
 not necessarily the same as the current mouse position. Thus, upon
 receiving the WM_LBUTTONDOWN message, the subclass function should first
 call the old window function, which will set the caret to the character
 under the current mouse position, then compute the beginning and ending
 offsets of the corresponding line, and eventually set the selection to
 that line.

 - The other problem is that the WM_MOUSEMOVE message should be ignored by
 the subclassing function because otherwise the built-in selection
 mechanism will change the selection when the mouse is being dragged with
 the left mouse button pressed, thus defeating the purpose.

Following is the subclassing function that follows from this discussion:

WNDPROC EditSubClassProc(HWND hWnd,
 UINT wMsg,
 WPARAM wParam,
 LPARAM lParam)
{ int iLineBeg, iLineEnd;

 long lSelection;
 switch (wMsg)
 { case WM_MOUSEMOVE:
 break; /* Swallow mouse move messages. */
 case WM_LBUTTONDOWN: /* First pass on, then process. */
 CallWindowProc((FARPROC)lpfnOldEditFn,hWnd,wMsg,wParam,lParam);
 iLineBeg = SendMessage(hWnd,EM_LINEINDEX,-1,0);
 iLineEnd=iLineBeg+SendMessage(hWnd,EM_LINELENGTH,iLineBeg,0);
#ifndef WIN32
 SendMessage(hWnd,EM_SETSEL,0,MAKELPARAM(iLeneBeg,iLineEnd));
#else
 SendMessage(hWnd,EM_SETSEL,iLineBeg,iLine) /* Win 32 rearranges
 parameters. */
#endif
 break;
 case WM_LBUTTONDBLCLK:
 lSelection = SendMessage(hWnd,EM_GETSEL,0,0);
 /* Now we have the indices to the beginning and end of the line in
 the LOWORD and HIWORD of lSelection, respectively.
 Do something with it... */
 break;
 default:

return(CallWindowProc((FARPROC)lpfnOldEditFn,hWnd,wMsg,wParam,lParam));
};
return(0);
}

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Importance of Calling DefHookProc()

PSS ID Number: Q74547
Authored 23-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

When an application installs a hook using SetWindowsHook(), Windows adds
the hook's callback filter function to the hook chain. It is the
responsibility of each callback function to call the next function in the
chain. DefHookProc() is used to call the next function in the hook chain
for Windows 3.0. DefHookProc() is retained in Windows 3.1 for backwards
compatibility. For Windows 3.1, you should use CallNextHookEx() to call
the next function in the hook chain.

For Win32, mouse and keyboard hooks can suppress messages by return value
and do not have to call CallNextHookEx(), unless they want to pass the
message on. Other hooks, like WH_CALLWNDPROC, don't need to call
CallNextHookEx(), because it will be called by the system. However, all
hooks should call CallNextHookEx() immediately if nCode<0.

MORE INFORMATION

Windows 3.0

If a callback function does not call DefHookProc(), none of the filter
functions that were installed before the current filter will be called.
Windows will try to process the message and this could hang the system.

Only a keyboard hook (WH_KEYBOARD) can suppress a keyboard event by not
calling DefHookProc() and returning a 1. When the system gets a value of 1
from a keyboard hook callback function, it discards the message.

Windows 3.1

In Windows 3.1, the WH_MOUSE hook will work like the WH_KEYBOARD hook in
that the mouse event can be suppressed by returning 1 instead of calling
DefHookProc().

Furthermore, when the hook callback function receives a negative value for
the nCode parameter, it should pass the message and the parameters to
DefHookProc() without further processing. When nCode is negative, Windows
is in the process of removing a hook callback function from the hook chain.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrHks

Improve System Performance by Using Proper Working Set Size

PSS ID Number: Q126767
Authored 01-Mar-1995 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

While increasing your working set size and locking pages in physical memory
can reduce paging for your application, it can adversely affect the system
performance. When making decisions for your application, it is important to
consider the whole system, and then test your application under a heavily
loaded system, such as the users of your application might have.

MORE INFORMATION

The Win32 SDK provides a tool called the working set tuner (WST.EXE). The
working set tuner decreases the working set size, which decreases memory
demand. However, you can also choose to set the process working set minimum
and maximum using SetProcessWorkingSetSize() and/or lock pages into memory
with VirtualLock(). These APIs should be used with care. Suppose you have a
16-megabyte system and you set your minimum to four megabytes. In effect,
this takes away four megabytes from the system. Other applications may be
unable to get their minimum working set. You or other applications may be
unable to create processes or threads or perform other operations that
require non-paged pool. This can have an extremely negative impact on the
overall system.

Reducing memory consumption is always a beneficial goal. If you call
SetProcessWorkingSetSize(0xffffffff, 0xffffffff), this tells the system
that your working set can be released. This does not change the current
sizing of the working set, it just allows the memory to be used by other
applications. It is a good idea to do this when your application goes into
a wait state. When you call SetProcessWorkingSet(0, 0), your working set is
reset to the default values. In addition, if you call VirtualUnlock() on a
range that was not locked, it is used as a hint that those pages can be
removed from the working set.

Additional reference words: 3.50
KBCategory: kprg
KBSubcategory: BseMm

Improving the Performance of MCI Wave Playback

PSS ID Number: Q77700
Authored 23-Oct-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

This article discusses two methods to improve playback performance for
a series of MCI wave files in an application developed for the
Microsoft Windows environment.

MORE INFORMATION

The following code fragment demonstrates opening the device and wave
file at the same time. This method does not give the best performance.

 mciopen.lpstrDeviceType = (LPSTR)"waveaudio";
 mciopen.lpstrElementName = (LPSTR)lpWavefile;

 // The following two fields must be initialized or the debugging
 // version of MMSYSTEM will cause an unrecoverable application
 // error (UAE).
 mciopen.lpstrDeviceType = "\0";
 mciopen.lpstrAlias = "\0";

 dwFlags = MCI_OPEN_TYPE | MCI_OPEN_ELEMENT;

 dwRes = mciSendCommand(0, MCI_OPEN, dwFlags,
 (DWORD)(LPSTR)&mciopen);

To improve performance, open the device separately from the wave file
(element) and leave the device open until the last element in the
series has been played. Alternately, open and close elements but leave
the global (waveaudio) device open during the entire process. The
following code fragment demonstrates this process:

 // Open the waveaudio driver separate from the element.
 mciopen.lpstrDeviceType = (LPSTR)MCI_DEVTYPE_WAVEFORM_AUDIO;
 dwFlags = MCI_OPEN_TYPE;
 dwRes = mciSendCommand(0, MCI_OPEN, dwFlags,
 (DWORD)(LPSTR)&mciopen);

The following code fragment demonstrates using the global device ID to
open the wave file separately:

 dwFlags = MCI_OPEN_ELEMENT;
 mciopen.lpstrElementName = (LPSTR)lpWaveName;

 dwRes = mciSendCommand(wGlobalDeviceID, MCI_OPEN, dwFlags,
 (DWORD)(LPSTR)&mciopen);

This allows the application to open and play wave files without
incurring the performance penalty involved with opening the device.
Another method to speed loading a wave file is to use the fully
qualified path. For example, rather than specifying LASER.WAV, specify
C:\MMWIN\MMDATA\LASER.WAV. If this is done, MCI is not required to
search the directories in the MS-DOS PATH environment variable for the
wave file.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbmm kbprg
KBSubcategory: MMWave

Increased Performance Using FILE_FLAG_SEQUENTIAL_SCAN

PSS ID Number: Q98756
Authored 13-May-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

There is a flag for CreateFile() called FILE_FLAG_SEQUENTIAL_SCAN which
will direct the Cache Manager to access the file sequentially.

Anyone reading potentially large files with sequential access can specify
this flag for increased performance. This flag is useful if you are reading
files that are "mostly" sequential, but you occasionally skip over small
ranges of bytes.

MORE INFORMATION

The effect on the Cache Manager of this flag is two-fold:

 - There is a minor savings because the Cache Manager dispenses with
 keeping a history of reads on the file, and tries to maintain a
 high-water mark on read ahead, which is always a certain delta from
 the most recent read.

 - More importantly, the Cache Manager reads further ahead for
 sequential access files--currently about three times more than
 files that are currently detected for sequential access.

If the caller makes multiple passes through a file, there are no negative
effects of specifying the sequential flag, because the Cache Manager will
still disable read ahead for as long as the application is getting hits on
the file (such as on the second or subsequent pass).

If you are working on an application where your ability to sequentially
read file data is key to performance, you may want to consider adding the
sequential flag to your create file call. This is especially true of
applications that use this flag to read from a CD-ROM.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Initializing Menus Dynamically

PSS ID Number: Q75630
Authored 26-Aug-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

Many commercial applications developed for Windows allow the user to
customize the menus of the application. This ability introduces some
complexity when the application must disable particular menu items at
certain times. This article provides a method to perform this task.

Windows sends a WM_INITMENUPOPUP message just before a pop-up menu is
displayed. The parameters to this message provide the handle to the menu
and the index of the pop-up menu on the main menu.

To process this message properly, each menu item must have a unique
identifier. When the application starts up, it creates a mapping array that
lists the items on each menu. When the WM_INITMENUPOPUP message is
received, the application checks the conditions necessary for each menu
item to be disabled or checked and modifies the menu appropriately.

The application must maintain the mapping array when the user modifies the
menus in any way.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Installing the Win32s NLS Files

PSS ID Number: Q124136
Authored 19-Dec-1994 Last modified 25-Apr-1995

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY

The help file for Win32s version 1.2 states that the following NLS files
need to be installed in the <windows>\SYSTEM\WIN32S directory when you
install Win32s version 1.2 with your application. However, if your
Win32-based application is only targeting U.S. Windows, you do not need to
install all these files.

 .NLS files:

 CTYPE.NLS P_850.NLS
 LOCALE.NLS P_852.NLS
 L_INTL.NLS P_855.NLS
 P_037.NLS P_857.NLS
 P_10000.NLS P_860.NLS
 P_10001.NLS P_861.NLS
 P_10006.NLS P_863.NLS
 P_10007.NLS P_865.NLS
 P_10029.NLS P_866.NLS
 P_10081.NLS P_869.NLS
 P_1026.NLS P_875.NLS
 P_1050.NLS P_932.NLS
 P_1051.NLS P_936.NLS
 P_1252.NLS P_949.NLS
 P_1053.NLS P_950.NLS
 P_1054.NLS SORTKEY.NLS
 P_437.NLS SORTTBLS.NLS
 P_500.NLS UNICODE.NLS
 P_737.NLS

MORE INFORMATION

Use the following guidelines when shipping a Win32-based application that
targets Win32s:

Ship National Language Support (.NLS) files corresponding to the market of
the Win32-based application. For a Win32-based application released for an
international market, ship all the .NLS files found in MSTOOLS\WIN32S\NLS.
For a Win32-based application released for use only in the United States,
ship P_437.NLS, P_850.NLS, and P_1252.NLS.

NOTE: When installing Win32s, be sure to remove the obsolete files. These
are tagged in WIN32S\SETUP\W32S.LYT with Win32sSystemObsoleteFiles.

Additional reference words: 1.20
KBCategory: kbusage kbpolicy kbdocerr
KBSubcategory: W32s

Instance-Specific String Handles (HSZs) in DDEML

PSS ID Number: Q94953
Authored 26-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Instance-specific string handles in DDEML may be used in DdeConnect()
or DdeConnectList() in order to connect to a particular instance of a
server. These string handles are received by a DDEML callback as the
HSZ2 parameter to the XTYP_REGISTER/XTYP_UNREGISTER transactions
whenever a server application registers or unregisters the service
name it supports.

This article explains how instance-specific HSZs are internally
implemented in the Windows 3.1 DDEML; however, this is for purposes of
illustration only because the implementation may change in future versions
of DDEML, particularly in Win32. However, the behavior will be the same.

MORE INFORMATION

Currently, instance-specific string handles contain two pieces of
information: the original service name string plus the handle to a
hidden window created by DDEML, which is associated with that string.
These two pieces of information are then merged [that is, MAKELONG
(SvcNameAtom, hWnd)] into an HSZ.

It is important to underscore what the documents on
DdeCreateStringHandle() say in reference to instance-specific HSZs
(see the Comments section of the Windows 3.1 Software Development Kit
(SDK) "Programmer's Reference, Volume 2: Functions," page 169):

 An instance-specific string handle is not mappable from string
 handle to string to string handle again. The DdeQueryString()
 function creates a string from a string handle and then
 DdeCreateStringHandle() creates a string handle from that string,
 but the two handles are not the same.

This might be better explained as follows:

1. Server registers itself:

 0x0000C18F = DdeCreateStringHandle (,"SERVER",);
 DdeNameService (,0x0000C18F,,);

2. Callbacks receive two HSZs in XTYP_REGISTER:

 HSZ1 = 0x0000C18F (normal HSZ)
 HSZ2 = 0x56F8C18F (instance-specific HSZ)

3. Client does a DdeQueryString() on the HSZ2 returned above, and
 creates a string handle with the string returned.

 DdeQueryString (,0x56F8C18F, myLpstr,,,);
 // where myLpstr returned = "SERVER:(56F8)"

 0x0000C193= DdeCreateStringHandle (,myLpstr,);

 Note how instance-specific 0x56F8C18F passed in to DdeQueryString()
 is not the same as the HSZ returned (0x0000C193) from the
 DdeCreateStringHandle() on the same string; whereas regular string
 handles (that is, non-instance-specific HSZs) would have mapped to
 the same string handle.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Intergraph's NFS causes WinSock APIs to return error 10093

PSS ID Number: Q127015
Authored 08-Mar-1995 Last modified 13-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

The presence of Intergraph's NFS (Network File System) may cause Windows
Sockets applications to function incorrectly. Specifically, if the 'Choose
File' common dialog is displayed in a Windows Sockets application,
subsequent Windows Sockets API calls may return error 10093,
WSAENOTINITIALIZED.

STATUS

This problem has been corrected in an updated version of PC-NFS, version
2.0.8.0. The update is available from Intergraph's FTP server or bulletin
board (IBBS): (205) 730-7248. For more information, please call Intergraph
technical support at (800) 633-7248.

MORE INFORMATION

Steps to Reproduce Problem

1. Call WSAStartup(...).

2. Call any WinSock API function to verify that WSOCK32.DLL is initialized.

3. Call GetOpenFileName to display the 'Open File' common dialog.

4. Call any WinSock API function. If Intergraph's NFS implementation is
 installed, you may receive error 10093.

Additional reference words: 3.50 Windows Sockets
bug CFileDialog
KBCategory: kbprg
KBSubcategory: NtwkWinsock

International Versions of Windows 95

PSS ID Number: Q118495
Authored 20-Jul-1994 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Microsoft Windows version 3.1 is available in 27 different language
versions. Windows 95 will also be released in 27 different language
versions, with possibly more versions following later.

MORE INFORMATION

There are three categories of the Windows 95 platform:

1. Western and Eastern European languages, plus Indonesian, which are
 based on single-byte character sets (SBCSs) and are written from left to
 right:

 English
 German
 French
 Spanish
 Swedish
 Dutch
 Italian
 Norwegian
 Danish
 Finnish
 Portuguese-Brazil
 Portuguese-Portugal
 Russian
 Czech
 Polish
 Hungarian
 Turkish
 Greek
 Basque
 Catalan
 Indonesian

2. Middle East languages, plus Thai, which are based on SBCSs from both
 right to left and left to right:

 Arabic
 Hebrew
 Thai

3. Far East languages, which are based on double-byte character
 sets (DBCSs) and are written from both left to right and, in certain
 types of applications, from top to bottom:

 Japanese
 Korean
 Simplified Chinese
 Traditional Chinese

Additional reference words: 4.00 versions international
KBCategory: kbother
KBSubcategory: WIntlDev

Interpreting Executable Base Addresses

PSS ID Number: Q101187
Authored 07-Jul-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

LINK.EXE and DUMPBIN.EXE (from Visual C++ 32-bit edition) can be used to
dump the portable executable (PE) header of an executable file. Below is a
fragment of a dump:

 7300 address of entry point
 7000 base of code
 B000 base of data
 ----- new -----
 10000 image base

The "image base" value of 10000 is the address where the program begins in
memory. The value associated with "base of code," "base of data," and
"address of entry point" are all offsets from the image base.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

Interprocess Communication on Windows NT, Windows 95, &

PSS ID Number: Q95900
Authored 01-Mar-1993 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The following are some of the standard mechanisms available for
interprocess communication (IPC): NetBIOS, mailslots, windows sockets
(winsock), named pipes, anonymous pipes, semaphores, shared memory, and
shared files. Other IPC mechanisms available on Microsoft systems include
DDE, OLE, memory-mapped files, Windows messages, Windows atoms, the
registration database, and the clipboard.

MORE INFORMATION

The table below denotes what platforms and subsystems provide which IPC
mechanisms (this does not imply that all the mechanisms will interoperate
between different subsystems):

Interprocess Communication Mechanisms

 IPC Mechanism WinNT Win95 Win32s(1) Win16(2) MS-DOS(2) POSIX OS/2
 ------------- ----- ----- --------- -------- --------- ----- ----

 DDE YES YES YES YES NO NO NO
 OLE YES NO YES YES NO NO NO
 OLE 2.0 YES YES NO YES NO NO NO
 NetBIOS YES YES YES YES YES NO YES
 Named pipes YES YES(3) YES(3) YES(3) YES(3) YES(4) YES
 Windows sockets YES(5) YES YES YES(5) NO NO(6) NO
 Mailslots YES YES YES(3) NO NO NO YES
 Semaphores YES YES NO NO NO YES YES
 RPC YES YES(7) YES(8) YES YES NO NO
 Mem-Mapped File YES YES YES NO NO NO NO
 WM_COPYDATA YES YES YES(9) YES NO NO NO

(1) Win32s an extension to Windows 3.1, which allows Win32-based
 applications to run under Windows 3.1. Win32s supports all the Win32
 APIs, but only a subset provides functionality under Windows 3.1. Those
 APIs that are not functional return ERROR_CALL_NOT_IMPLEMENTED.

(2) This is technically not a subsystem.

(3) Cannot be created on Win16, Windows 95 and MS-DOS workstations, but can
 be opened.

(4) The POSIX subsystem supports FIFO queues, which do not interoperate
 with Microsoft's implementation of named pipes.

(5) Via the Windows sockets API.

(6) Currently BSD-style sockets are under consideration for the POSIX
 subsystem.

(7) Windows 95 supports the RPC 1 protocol only. The NetBios protocol is
 not supported. Namedpipe servers are not supported.

(8) Win32s version 1.1 provides network support through Universal Thunks.

(9) Under Win32s, WM_COPYDATA does not actually copy the data -- it
 only translates the pointers to the data. If the receiving application
 changes the buffer, then the data is changed for both applications.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseIpc

Interrupting Threads in Critical Sections

PSS ID Number: Q101193
Authored 07-Jul-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

If a thread enters a critical section and then terminates abnormally, the
critical section object will not be released. Many components of the C
Run-time library are not reentrant and use a resource locking scheme to
maintain coherency in the multithreaded environment. Thus, a thread that
has entered a C Run-time function, such as printf(), could deadlock all
access (within that process) to printf() if it terminates abnormally.

This situation could arise if a thread is terminated with TerminateThread()
while it holds a resource lock. If this occurs, any thread that tries to
acquire that resource lock will become deadlocked.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Inverting Color Inverts Palette Index, Not RGB Value

PSS ID Number: Q71227
Authored 10-Apr-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Performing any bitwise logical operator on a color, such as inversion,
does not modify the color's RGB value; it instead changes the index
into the system palette. This applies also to the ROP codes associated
with the blt functions (BitBlt, StretchBlt, and PatBlt) and in
the SetRop2 function. For display devices with hardware palettes
[generally, devices with fewer than 24 bits-per-pixel (BPP)], this can
produce unexpected or undesirable results.

MORE INFORMATION

Suppose the system palette contained the following colors:

 Entry #
 Color 0 1 2 3 4 5 6 7

 Red = 0 0x80 0 0 0x80 0x80 0 0x80
 Green = 0 0 0x80 0 0x80 0 0x80 0x80
 Blue = 0 0 0 0x80 0 0x80 0x80 0x80

 Entry #
 Color 8 9 A B C D E F

 Red = 0xC0 0xFF 0 0 0xFF 0xFF 0 0xFF
 Green = 0xC0 0 0xFF 0 0xFF 0 0xFF 0xFF
 Blue = 0xC0 0 0 0xFF 0 0xFF 0xFF 0xFF

The inversion of colors would look like this:
(Half = half intensity, Full = full intensity)

 Color Index Inverse Color Index
 ----- ----- ------------- -----
 Black 0 White F
 Half Red 1 Full Cyan E
 Half Green 2 Full Magenta D
 Half Blue 3 Full Yellow C
 Half Yellow 4 Full Blue B
 Half Magenta 5 Full Green A
 Half Cyan 6 Full Red 9
 Dark Gray 7 Light Gray 8

This obviously is not the desired effect. Inverting a full-intensity
color such as red will not invert to full-intensity cyan; instead, it
is inverted to half-intensity cyan.

This is also true for any logical operations performed on the bits of
a bitmap, pen, or flood fill through ROP codes. All operations are
done on the index of the color and not its RGB value.

Note that when using custom palettes on a palette capable device, the
application does not have control over the precise mapping between
logical palette indexes and system palette indexes. The results of
bitwise logical operations are unpredictable in such a case.

The only way for an application to precisely control color mixing is
to perform the operation on RGB values, then translate the RGB result
back into the most appropriate palette index.

For example, one way to do this is to mix colors in a 24 BPP
device-independent bitmap (DIB), then set the DIB bits into the device
context (DC) again when finished. Another method is to query the RGB
color of pixels to modify, do the mixing, and then use the SetPixel
function to apply the change to the DC.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPal

Joliet Specification for CD-ROM

PSS ID Number: Q125630
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Content authors who are developing Windows 95 applications on CD-ROM should
develop their titles according to the Joliet specification in order to
incorporate Unicode file names and take full advantage of Windows 95 long
file name support.

The Joliet specification complies with the ISO 9660:1988 standard. It is
designed to resolve some of its restrictions and ambiguities including:

 - Character Set limitations.

 - File Name Length limitations.

 - Directory Tree Depth limitations.

 - Directory Name Format limitations.

 - Unicode Character ambiguities.

Because the Joliet specification is ISO 9660 compliant, CD-ROM disks
recorded according to the Joliet specification may continue to interchange
data with non-Joliet systems. The designs for the System Use Sharing
Protocol, Rock Ridge extensions for POSIX semantics, CD-XA System Use Area
Semantics, and Apple's Finder Flags and Resource Forks all port in a
straightforward manner to the Joliet specification. These protocols are not
an integral part of the Joliet specification, however.

Support for Joliet is included in Windows 95 and will also be included in a
future version of Windows NT. To obtain a copy of the Joliet specification,
send email to mmdinfo@microsoft.com.

Additional reference words: 4.00 CD CD-ROM XA SUSP ROCKRIDGE LFN
KBCategory: kbprg
KBSubcategory: SubSys

Journal Hooks and Compatibility

PSS ID Number: Q106717
Authored 14-Nov-1993 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Journal hooks are used to record and play back events, such as keyboard and
mouse events. Journal hooks are system-wide hooks that take control of all
user input, and therefore should be used as little as possible.

MORE INFORMATION

Note that Windows NT does not ship with a Recorder application, as Windows
3.1 does. Therefore, it may be desirable to create an application that can
play back macros recorded under Windows 3.1. However, there are a number of
different problems with the Windows NT implementation of journaling that
make it difficult to use macros recorded under Windows 3.1.

The EVENTMSG structures recorded under Windows 3.1 that hold keystrokes do
not play back under Windows NT. They must be modified, because the journal
playback hook parses a scan code out of the EVENTMSG structure differently
than the Windows 3.1 journal record hook put it in the structure. Under
Windows 3.1, paramH specifies the repeat count. Under Windows NT, there is
no way to specify a repeat count; it is always assumed to be 1.

For more information on hooks, please see the Hooks Overview in Volume 1 of
the Win32 "Programmer's Reference" and the article "Win32 Hooks" included
in the MSDN CD #5.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrHks

Jumping to a Keyword in the Middle of a Help Topic

PSS ID Number: Q94611
Authored 11-Jan-1993 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The following information was extracted from the Windows Help Authoring
Guide available on the Microsoft Developer's Network CD-ROM:

 Placing Keywords in the Topic

 When the user goes to a topic by choosing a keyword from the Search
 dialog box, Help displays the selected topic in the main window,
 starting from the beginning of the topic. If the information related to
 the keyword is located in the middle or toward the end of the topic, the
 user may not be able to see the relevant information without scrolling
 the topic. This result may not be what you want.

 If you want users to be able to go directly to relevant information
 within a topic (and see it without scrolling), you can place additional
 keywords with the information you want users to find. Keywords placed
 within a topic function as spot references (similar to context-string
 spot references) because they index specific locations, or "spots,"
 within the topic. To access the spot-referenced material, users choose
 the keyword from the Search dialog box.

 In the Search dialog box, all keywords appear the same. The user cannot
 tell the difference between keywords placed at the beginning of the
 topic and those placed elsewhere in the topic. However, when the user
 goes to the topic, Windows Help uses the location of the keyword
 footnote as a reference point. If the keyword footnote is located in the
 middle of the topic, Help displays the topic as if the middle location
 were the "top" of the topic.

 NOTE:

 Because you cannot insert a title footnote in the middle of a topic, any
 keywords that you place in the middle of the topic use the main topic
 title in the Search dialog box.

 To define a keyword in the middle of the topic:

 1. Place the insertion point where you want to define the keyword. A
 keyword inserted anywhere except the beginning of the topic is
 treated as a spot reference.

 2. From the Insert menu, choose Footnote. The Footnote dialog box
 appears.

 3. Type an uppercase K as the custom footnote mark, and then choose OK.
 A superscript K appears in the text window, and the insertion point
 moves to the footnote window.

 4. Type the keyword(s) to the right of the K in the footnote window. Use
 only a single space between the K and the first keyword. Separate
 multiple keywords with a semicolon (;).

Additional reference words: 3.10 3.50 4.00 95 winhelp hc
KBCategory: kbprg
KBSubcategory: TlsHlp

LB_GETCARETINDEX Returns 0 for Zero Entries in List Box

PSS ID Number: Q97922
Authored 25-Apr-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 and 4.0

To determine whether a multiple selection list box is empty or has no items
to select, two messages are required. First, call LB_GETCOUNT to determine
whether or not the list box is empty. If the list box is not empty, then
use LB_GETCARETINDEX to determine the position of the caret.

If you want a list box to contain selections that remain after the focus
goes elsewhere, Microsoft recommends using visible check marks next to the
items in the list box. This method provides better visual feedback to the
user than a selection bar.

Additional reference words: 3.50 3.51 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Length of STRINGTABLE Resources

PSS ID Number: Q20011
Authored 17-Dec-1987 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

In order to find the length of a string in the STRINGTABLE you need to
do a FindResource() and then a SizeofResource() to find the total size
in bytes of the current block of 16 strings. Remember that
STRINGTABLEs are stored specially; to FindResource() you will ask for
RT_STRING as the Type, and the (string number / 16) + 1 as the name.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrRsc

Limit on the Number of Bytes Written Asynchronously

PSS ID Number: Q98893
Authored 18-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

There is a limit to the number of bytes that can be written with
WriteFile() using asynchronous I/O (FILE_FLAG_OVERLAPPED specified). This
limit depends on the size of your system.

Asynchronous (overlapped) I/O consumes system resources for a long time.
For example, the memory used is locked in the process working set until the
I/O completes. To limit the amount of system resources used asynchronously
by an application, the system charges asynchronous I/O to the working set
of the process requesting the I/O.

While the working set size is dynamically raised and lowered based on the
load, there are minimum and maximum values. These values are based on
system size: consider up to 12 megabytes (MB) a small system, between 12 MB
and 19 MB a medium system, and greater than 19 MB a large system. Each
process is guaranteed a minimum working set for performance reasons; about
120K for small systems, 160K for large systems, and 245K for large systems.

When system resources are heavily taxed, a process is confined to its
maximum working set. Asynchronous I/Os may never cause you to exceed your
maximum working set, because once you are allowed to initiate an
asynchronous I/O, the page cannot be taken away if memory becomes tight.
The maximum working set sizes are about 300K for a small system, 716K for a
medium system, and 1.5 MB for a large system.

MORE INFORMATION

The following code can be used to experiment with the maximum number of
bytes that can be written using asynchronous I/O. Simply change the line to
vary the number of bytes that the code attempts to write:

 #define NBR_BYTE 700000

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <assert.h>

#include <windows.h>

#define NBR_BYTE 700000

int main(void)
{
 char *c;
 HANDLE hFile;
 DWORD byteWrite;
 OVERLAPPED overLap;
 DWORD err;
 BOOL result;

 c = malloc(NBR_BYTE);
 assert(c != NULL);

 overLap.hEvent = CreateEvent(NULL, FALSE, FALSE, "event1");
 assert(overLap.hEvent);

 hFile = CreateFile("test", GENERIC_WRITE, 0, NULL, OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED |
 FILE_FLAG_WRITE_THROUGH,
 NULL);

 if(hFile == INVALID_HANDLE_VALUE)
 {
 free(c);
 printf("error opening file\n");
 exit(0);
 }

 overLap.Offset = 0;
 overLap.OffsetHigh = 0;
 result = WriteFile(hFile, c, NBR_BYTE, &byteWrite, &overLap);
 if(result == FALSE)
 {
 err = GetLastError();
 if(err != ERROR_IO_PENDING)
 {
 free(c);
 printf("Error: %d\n", GetLastError());
 exit(0);
 }
 }

 free(c);

 return 0;
}

Additional reference words: 3.10 asynch
KBCategory: kbprg
KBSubcategory: BseFileio

Limitations of Overlapped I/O in Windows 95

PSS ID Number: Q125717
Authored 02-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 does not support overlapped operations on files, disk, pipes, or
mail slots, but does support overlapped operations on serial and parallel
communication ports. Non-overlapped file write operations are similar to
overlapped file writes, because Windows 95 uses a lazy-write disk cache.
Overlapped I/O can be implemented in a Win32-based application by creating
multiple threads to handle I/O.

MORE INFORMATION

Asynchronous I/O on files, disk, pipes and mail slots is not implemented in
Windows 95. If a Win32-based application running on Windows 95 attempts to
perform asynchronous file I/O (such as ReadFile() with any value other than
NULL in the lpOverlapped field) on any of these objects, the ReadFile() or
WriteFile fails and GetLastError() returns ERROR_INVALID_PARAMETER (87).

Overlapped I/O to serial and parallel communication ports is fully
supported in Windows 95. To implement overlapped I/O, call CreateFile()
with the FILE_FLAG_OVERLAPPED flag set in the flags attribute.

Overlapped I/O on disk and files was not implemented in Windows 95, because
the added performance benefits (which would only affect a certain class of
I/O-intensive applications) were not judged to be worth the extra cost.

The system uses a lazy-write disk cache algorithm which automatically
provides many of the benefits of overlapped writes. When a process writes
data to a file, the data is written to the cache and then the write
immediately returns to the calling process. Then, at some later time, the
cache manager writes the data to disk. This is similar to behavior that is
achieved with overlapped I/O. In the case of disk/file reads, many
applications that need to read data do so because it is needed for further
processing. Some applications benefit greatly by prefetching data from
files while doing other work.

Although Windows 95 does not implement overlapped I/O, it is possible for
Win32-based applications on Windows 95 to create additional threads for
implementing an effect similar to overlapped file I/O. One way to implement
this effect is to communicate with an I/O thread using a request packet
mechanism. The thread can queue request packets from other threads and
service them as it is able, signalling the other threads on the completion
of each request with an event. Even though the application may be "waiting"
on some I/O activity, it can still be responsive to the user since the

main, or user interface, thread is not blocking on I/O requests. However,
the use of multiple threads will increase the amount of time spent in the
kernel, which leads to inefficiencies, as compared with an operating system
that supports overlapped I/O.

NOTE: Windows NT has a lazy-write disk cache as well. It has been found
that a write-back cache is not as good as overlapped I/O, particularly when
the data is much larger than the file cache or noncached I/O. One of the
biggest benefits of overlapped I/O is that it allows you to quickly get
lots of outstanding I/O posted to the disk controller, thereby keeping the
disks busy with tagged command queueing in the controller. Using multiple
threads is a reasonable substitute, but I/O may be serialized in the
filesystem.

Additional reference words: 4.00 95 asynchronous overlapped
KBCategory: kbprg
KBSubcategory: BseFileio

Limitations of WINOLDAP's Terminal Fonts

PSS ID Number: Q117742
Authored 06-Jul-1994 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 version 3.1
 - Microsoft Win32 SDK, version 3.1

SUMMARY

The MS-DOS prompt window (WINOLDAP) uses a set of private "Terminal" fonts.
Applications developed for the Windows Graphical Environment should not
rely on these fonts.

MORE INFORMATION

WINOLDAP uses Terminal-like fonts to present its output in the Enhanced
mode. The font resources are loaded when WINOLDAP is launched and are
removed when it terminates. To verify this, run a ChooseFont common dialog
box (such as the one in FONTEST sample in the SAMPLES directory of the
Windows 3.1 SDK) when WINOLDAP is not running. Launch WINOLDAP and notice
that "Terminal" fonts are added to the list of fonts in the common dialog
box.

Developers whose applications benefit from Terminal-like fonts may try to
use Terminal fonts out of convenience. However, it is important to realize
that these fonts (DOSAPP.FON, EGA40WOA.FON, EGA80WOA.FON, CGA40WOA.FON, AND
CGA80WOA.FON) are unlike the standard fonts in that they are shipped for
use by WINOLDAP. The standard Windows fonts are guaranteed to be available
in future versions of Windows; such guarantees do not apply to the Terminal
fonts. The Terminal fonts have actually been altered from version 3.0 to
version 3.1 of Microsoft Windows. A simple resolution to this lack of
guarantee is to ship the fonts along with the application. These fonts,
however, may not be shipped freely with third-party applications without
permission from Microsoft.

The paragraph above may lead you to believe that applications running
exclusively under Microsoft Windows version 3.1 can rely on the Terminal
fonts for the applications' displays because all Windows-based
applications, by default, have the above fonts installed. However, a bug in
WINOLDAP denies applications that benefit: When the last WINOLDAP session
exits, it removes the DOSAPP.FON module twice. Any application with the
DOSAPP.FON module loaded then loses the fonts without prior notice.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: GdiFnt

Limiting the Number of Entries in a List Box

PSS ID Number: Q78241
Authored 10-Nov-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

Although there is no single message that restricts the number of
entries (lines) allowed in a list box, the limit can be imposed
through the use of subclassing.

MORE INFORMATION

The following code fragment is an excerpt from a subclassing function
that can be used to restrict the number of entries in a list box to no
more than the constant MAXENTRIES where the lpfnOldLBFn variable
points to the original list box window procedure:

long FAR PASCAL SubClassFn(hWnd, message, wParam, lParam)
HWND hWnd;
unsigned message;
WORD wParam;
LONG lParam;
{
 int iCount;

 switch (message)
 {
 case LB_ADDSTRING:
 case LB_INSERTSTRING:
 iCount = SendMessage(hWnd, LB_GETCOUNT, 0, 0L);
 if (iCount > MAXENTRIES)
 { /* Insert action here to inform user of limit violation */
 break;
 }
 /* fall through if less entries than maximum */

 default:
 return CallWindowProc(lpfnOldLBProc, hWnd, message, wParam,
 lParam);
 }
}

Additional reference words: 3.00 3.10 3.50 4.00 95 list box
KBCategory: kbprg

KBSubcategory: UsrCtl

Limits on Overlapped Pipe Operations

PSS ID Number: Q115522
Authored 29-May-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The Windows NT version 3.1 redirector allows only 17 outstanding overlapped
pipe operations at any given time. The Windows NT 3.5 redirector does
not have this restriction on overlapped pipe writes. However, the Windows
NT 3.5 redirector allows only 17 outstanding overlapped pipe reads at any
given time.

If the client uses overlapped I/O through the redirector, it is possible
for the client to become deadlocked. You may need to increase the number of
threads that the redirector uses for I/O; the same thing is true for the
server. If your application is doing a lot of I/O, you can avoid this
deadlock by creating extra threads and having them use non-overlapped I/O.

MORE INFORMATION

Increasing the workstation services MaxThreads parameter increases the
number of kernel threads that the redirector will create, thus allowing
more operations to be outstanding at any given time.

This parameter is located in:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 LanmanWorkstation\
 Parameters\
 MaxThreads

The parameter can be set from 0 to 255 (the default is 17).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Line Continuation and Carriage Returns in String Tables

PSS ID Number: Q44385
Authored 12-May-1989 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

The RC compiler does not offer a line-continuation symbol for strings in
string tables.

To force a carriage return into a long line of text, use one of the methods
described below.

One method is to force the carriage return using \012\015. The following
example demonstrates the use of \012\015 and should be considered to be on
one continuous line:

 STRINGTABLE
 BEGIN
 IDSLONGSTRING, "This is a long line of text so I would like \012\015
 to force a carriage return."
 END

For more information on this method, query in the Microsoft Knowledge
Base on the following words:

 STRINGTABLE WinLoadString

Another method of forcing a carriage return is to press ENTER and
continue the line on the next line. The following example will force
a carriage return after the word "like."

 STRINGTABLE
 BEGIN
 IDSLONGSTRING, "This is a long line of text so I would like
 to force a carriage return"
 END

If you try to use the \n or other \ characters, the RC compiler will ignore
them.

NOTE: There is a 255-character limit (per string) in a string table. For
more information on this limit, please query on the following words in the
Microsoft Knowledge Base:

 STRINGTABLE length 255

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

List All NetBIOS Names on a Lana

PSS ID Number: Q124960
Authored 17-Jan-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

SUMMARY

You can get a list of NetBIOS names for a lana by using the Adapter Status
NetBIOS request and using the "*" character as the call name. However, on
Windows NT, this method lists only the names added by the current process.

If you want to list all of the NetBIOS names on the lana, use a unique
local name as the call name. This method causes the Adapter Status to be
treated as a remote call, which will disable the "filtering" of names added
by other processes. The sample code below demonstrates this technique.

SAMPLE CODE

/* The following makefile may be used to build this sample:

 !include <ntwin32.mak>

 PROJ = test.exe
 DEPS = test.obj
 LIBS_EXT = netapi32.lib

 .c.obj:
 $(cc) /YX $(cdebug) $(cflags) $(cvars) $<

 $(PROJ) : $(DEPS)
 $(link) @<<
 $**
 -out:$@
 $(conlibs)
 $(conlflags)
 $(ldebug)
 $(LIBS_EXT)
 <<

*/

#include <windows.h>
#include <stdio.h>
#include <string.h>

/*
 * LANANUM and LOCALNAME should be set as appropriate for
 * your system

 */
#define LANANUM 0
#define LOCALNAME "MAKEUNIQUE"

#define NBCheck(x) if (NRC_GOODRET != x.ncb_retcode) { \
 printf("Line %d: Got 0x%x from NetBios()\n", \
 __LINE__, x.ncb_retcode); \
 }

void MakeNetbiosName (char *achDest, LPCSTR szSrc);
BOOL NBAddName (int nLana, LPCSTR szName);
BOOL NBReset (int nLana, int nSessions, int nNames);
BOOL NBListNames (int nLana, LPCSTR szName);
BOOL NBAdapterStatus (int nLana, PVOID pBuffer, int cbBuffer,
 LPCSTR szName);

void
main ()
{
 if (!NBReset (LANANUM, 20, 30))
 return;

 if (!NBAddName (LANANUM, LOCALNAME))
 return;

 if (!NBListNames (LANANUM, LOCALNAME))
 return;

 printf ("Succeeded.\n");
}

BOOL
NBReset (int nLana, int nSessions, int nNames)
{
 NCB ncb;

 memset (&ncb, 0, sizeof (ncb));
 ncb.ncb_command = NCBRESET;
 ncb.ncb_lsn = 0; /* Allocate new lana_num resources */
 ncb.ncb_lana_num = nLana;
 ncb.ncb_callname[0] = nSessions; /* max sessions */
 ncb.ncb_callname[2] = nNames; /* max names */

 Netbios (&ncb);
 NBCheck (ncb);

 return (NRC_GOODRET == ncb.ncb_retcode);
}

BOOL
NBAddName (int nLana, LPCSTR szName)
{
 NCB ncb;

 memset (&ncb, 0, sizeof (ncb));
 ncb.ncb_command = NCBADDNAME;
 ncb.ncb_lana_num = nLana;

 MakeNetbiosName (ncb.ncb_name, szName);

 Netbios (&ncb);
 NBCheck (ncb);

 return (NRC_GOODRET == ncb.ncb_retcode);
}

/*
 * MakeNetbiosName - Builds a name padded with spaces up to
 * the length of a NetBIOS name (NCBNAMSZ).
 */
void
MakeNetbiosName (char *achDest, LPCSTR szSrc)
{
 int cchSrc;

 cchSrc = lstrlen (szSrc);
 if (cchSrc > NCBNAMSZ)
 cchSrc = NCBNAMSZ;

 memset (achDest, ' ', NCBNAMSZ);
 memcpy (achDest, szSrc, cchSrc);
}

BOOL
NBListNames (int nLana, LPCSTR szName)
{
 int cbBuffer;
 ADAPTER_STATUS *pStatus;
 NAME_BUFFER *pNames;
 int i;

 // Allocate the largest buffer we might need
 cbBuffer = sizeof (ADAPTER_STATUS) + 255 * sizeof (NAME_BUFFER);
 pStatus = (ADAPTER_STATUS *) HeapAlloc (GetProcessHeap (), 0,
 cbBuffer);
 if (NULL == pStatus)
 return FALSE;

 if (!NBAdapterStatus (nLana, (PVOID) pStatus, cbBuffer, szName))
 {
 HeapFree (GetProcessHeap (), 0, pStatus);
 return FALSE;
 }

 // The list of names immediately follows the adapter status
 // structure.
 pNames = (NAME_BUFFER *) (pStatus + 1);

 for (i = 0; i < pStatus->name_count; i++)
 printf ("\t%.*s\n", NCBNAMSZ, pNames[i].name);

 HeapFree (GetProcessHeap (), 0, pStatus);

 return TRUE;
}

BOOL
NBAdapterStatus (int nLana, PVOID pBuffer, int cbBuffer, LPCSTR szName)
{
 NCB ncb;

 memset (&ncb, 0, sizeof (ncb));
 ncb.ncb_command = NCBASTAT;
 ncb.ncb_lana_num = nLana;

 ncb.ncb_buffer = (PUCHAR) pBuffer;
 ncb.ncb_length = cbBuffer;

 MakeNetbiosName (ncb.ncb_callname, szName);

 Netbios (&ncb);
 NBCheck (ncb);

 return (NRC_GOODRET == ncb.ncb_retcode);
}

Additional reference words: 3.10 3.50
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkNetios

List of Articles for Win32 SDK Base Programming Issues

PSS ID Number: Q89989
Authored 17-Jan-1994 Last modified 25-May-1995

The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK),
 versions 3.1 and 3.5

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 83298 Objects Inherited Through a CreateProcess Call 1
Q 83670 Correct Use of Try/Finally 2
Q 83706 Exporting Callback Functions 1
Q 84240 Consoles Do Not Support ANSI Escape Sequences 1
Q 84244 Processes Maintain Only One Current Directory 1

Q 89296 How HEAPSIZE/STACKSIZE Commit > Reserve Affects Execution 1
Q 89373 Replacing the Windows NT Task Manager 1
Q 89750 AllocConsole() Necessary to Get Valid Handles 1
Q 89817 How to Specify Shared and Nonshared Data in a DLL 1
Q 90083 Windows NT Servers in Locked Closets 2

Q 90088 CreateFile() Using CONOUT$ or CONIN$ 1
Q 90368 Cancelling Overlapped I/O 1
Q 90470 Getting Real Handle to Thread/Process Requires Two Calls 1
Q 90530 Exporting Data from a DLL or an Application 2
Q 90745 Dynamic Loading of DLLs Under Windows NT 2

Q 90749 Implementing a "Kill" Operation in Windows NT 2

Q 90837 Default Attributes for Console Windows 1
Q 90910 Win32 Priority Class Mechanism and the START Command 1
Q 91146 PRB: SEH with Abort() in the try Body 1
Q 91147 PRB: SEH with return in the finally Body Preempts Unwind 2

Q 91148 Initiating an Unwind in an Exception Handler 2
Q 91149 Using volatile to Prevent Optimization of try/except 1
Q 91150 Icons for Console Applications 1
Q 91194 Memory Handle Allocation 1
Q 91698 Sharing Win32 Services 1

Q 92395 Determining Whether Windows NT Is Running 2
Q 92761 Process Will Not Terminate Unless System Is In User-mode 1
Q 92764 Non-Addressable Range in Address Space 1
Q 92862 Alternatives to Using GetProcAddress() With LoadLibrary() 1
Q 94239 Secure Erasure Under Windows NT 1

Q 94561 WM_COMMNOTIFY is Obsolete for Win32-Based Applications 1
Q 94804 Thread Local Storage Overview 2
Q 94839 Precautions When Passing Security Attributes 1
Q 94840 Physical Memory Limits Number of Processes/Threads 1
Q 94920 Calculating String Length in Registry 1

Q 94947 PAGE_READONLY May Be Used as Discardable Memory 1
Q 94950 Clarification of COMMPROP dwMax?xQueue Members 1
Q 94990 OpenComm() and Related Flags Obsolete Under Win32 1
Q 94993 Global Quota for Registry Data 2
Q 94994 Determining Whether App Is Running as Service or .EXE 1

Q 94996 VirtualLock() Only Locks Pages into Working Set 1
Q 94997 Reducing the Count on a Semaphore Object 1
Q 94998 Trapping Floating-Point Exceptions Under Windows NT 1
Q 94999 FormatMessage() Converts GetLastError() Codes 1
Q 95043 FlushViewOfFile() on Remote Files 1

Q 95804 Win32 Software Development Kit Buglist 1
Q 95900 Interprocess Communication Under Windows NT and on Win32s 1
Q 96005 Validating User Accounts (Impersonation) 1
Q 96209 Chaining Parent PSP Environment Variables 1
Q 96242 Distinguishing Between Keyboard ENTER and Keypad ENTER 1

Q 96374 Win32 .DEF File Usage in Applications and DLLs 1
Q 96418 Priority Inversion and Windows NT Scheduler 2
Q 96780 Security and Screen Savers 1
Q 97786 Default Stack in Win32-Based Applications 2
Q 97926 The Use of the SetLastErrorEx() API 1

Q 98216 Windows NT Virtual Memory Manager Uses FIFO 1
Q 98575 File Manager Passes Short Filename as Parameter 1
Q 98722 Getting the Net Time on a Domain 1
Q 98756 Increased Performance Using FILE_FLAG_SEQUENTIAL_SCAN 1
Q 98838 Win32 Graphical Setup Over Network Drives 1

Q 98840 Noncontinuable Exceptions 1
Q 98891 Validating User Account Passwords Under Windows NT 1

Q 98892 PRB: Unexpected Result of SetFilePointer() with Devices 2
Q 98893 Limit on the Number of Bytes Written Asynchronously 2
Q 98952 Setting File Permissions 1

Q 99026 Possible Serial Baud Rates on Various Machines 1
Q 99114 Using GMEM_DDESHARE in Win32 Programming 1
Q 99115 Preventing the Console from Disappearing 1
Q 99173 Types of File I/O Under Win32 2
Q 99261 Performing a Clear Screen (CLS) in a Console Application 1

Q 99456 Win32 Equivalents for C Run-Time Functions 6
Q 99794 FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING 1
Q 99795 PRB: SetConsoleOutputCP() Not Functional 1
Q 100027 Direct Drive Access Under Win32 1
Q 100291 Restriction on Named-Pipe Names 1

Q 100328 Replacing the Shell (Program Manager) 2
Q 100329 CPU Quota Limits Not Enforced 1
Q 101186 Time Stamps Under the FAT File System 1
Q 101190 Examining the dwOemId Value 1
Q 101193 Interrupting Threads in Critical Sections 1

Q 101378 Impersonation Provided by ImpersonateNamedPipeClient() 1
Q 102098 Gaining Access to ACLs 1
Q 102099 Administrator Access to Files 1
Q 102100 Passing Security Information to SetFileSecurity() 1
Q 102101 Extracting the SID from an ACE 1

Q 102102 How to Add an Access-Allowed ACE to a File 5
Q 102103 Computing the Size of a New ACL 1
Q 102104 FILE_READ_EA and FILE_WRITE_EA Specific Types 1
Q 102105 System GENERIC_MAPPING Structures 1
Q 102128 Why LoadLibraryEx() Returns an HINSTANCE 1

Q 102352 Passing a Pointer to a Member Function to the Win32 API 2
Q 102429 Detecting Closure of Command Window from a Console App 1
Q 102447 Definition of a Protected Server 1
Q 102555 How Windows NT Handles Floating-Point Calculations 2
Q 102798 Security Attributes on Named Pipes 2

Q 103193 Managing Heap Memory in Win32 1
Q 103237 Using Temporary File Can Improve Application Performance 1
Q 103858 Copy on Write Page Protection for Windows NT 2
Q 103862 Symbolic Information for System DLLs 1
Q 104122 Detecting Logoff from a Service 1

Q 104136 Mapping .INI File Entries to the Registry 1
Q 104378 PRB: Win32 SDK and VC++ NT Help Files Are Incompatible 1
Q 105299 Creating a Font for Use with the Console 1
Q 105302 Cancelling WaitCommEvent() with SetCommMask() 1
Q 105303 FIX: Redirecting Output to an MS-DOS-Based Application 1

Q 105304 SetErrorMode() Is Inherited 1
Q 105305 Calling CRT Output Routines from a GUI Application 2
Q 105306 Getting and Using a Handle to a Directory 1

Q 105531 Named Pipe Buffer Size 1
Q 105532 The Use of PAGE_WRITECOPY 1

Q 105533 BUG: Problems with Local/Global Memory Management APIs 1
Q 105564 BUG: AllocConsole() Does Not Set Error Code on Failure 1
Q 105674 Setting the Console Configuration 1
Q 105675 First and Second Chance Exception Handling 1
Q 105678 Critical Sections Versus Mutexes 1

Q 105681 BUG: GetPrivateProfileSection() Can Read Only 32K Sections 1
Q 105763 Using NTFS Alternate Data Streams 2
Q 106383 RegSaveKey() Requires SeBackupPrivilege 1
Q 106387 Sharing Objects with a Service 1
Q 106663 Accessing the Macintosh Resource Fork 1

Q 106715 Troubleshooting Win32s 1.1 Installation Problems 3
Q 107642 FIX: VirtualLock() on File-Mapped Pages Hangs Computer 1
Q 107728 Retrieving Counter Data From the Registry 3
Q 108228 Replace IsTask() with GetExitCodeProcess() 1
Q 108230 Accessing the Event Logs 2

Q 108231 CreateFileMapping() SEC_* Flags 1
Q 108402 DOCERR: WM_COPYDATA Is Also Supported on Win32s 1
Q 108448 Use LoadLibrary() on .EXE Files Only for Resources 1
Q 108449 Working Set Size, Nonpaged Pool, and VirtualLock() 3
Q 109619 Sharing All Data in a DLL 2

Q 110148 PRB: ERROR_INVALID_PARAMETER from WriteFile() or ReadFile() 1
Q 110853 PRB: Can't Increase Process Priority 1
Q 111541 New Owner in Take-Ownership Operation 1
Q 111542 Checking for Administrators Group 2
Q 111543 Creating a World SID 1

Q 111544 Looking Up the Current User and Domain 1
Q 111545 Security Context of Child Processes 1
Q 111546 Taking Ownership of Registry Keys 1
Q 111559 PRB: GetExitCodeProcess Always Returns 0 for 16-Bit Processes 1
Q 111837 ERROR_BUS_RESET May Be Benign 1

Q 111838 Possible Cause for ERROR_INVALID_FUNCTION 1
Q 115083 DOCERR: EofChar Field of DCB Structure Is Not Supported 1
Q 115231 Retrieving Time-Zone Information 1
Q 115232 Timer Resolution in Windows NT 1
Q 115236 Long Filenames on Windows NT FAT Partitions 2

Q 115522 Limits on Overlapped Pipe Operations 1
Q 115825 Accessing the Application Desktop from a Service 1
Q 115826 Clarification of SearchPath() Return Value 1
Q 115827 Filenames Ending with Space or Period Not Supported 1
Q 115828 Getting Floppy Drive Information 3

Q 115829 How to Gracefully Fail at Service Start 1
Q 115831 Specifying Serial Ports Larger than COM9 1
Q 115848 Services and Redirected Drives 1
Q 115945 Determining the Maximum Allowed Access for an Object 1

Q 115946 PRB: AccessCheck() Returns ERROR_INVALID_SECURITY_DESCR 1

Q 115947 Adding Categories for Events 1
Q 115948 Creating Access Control Lists for Directories 2
Q 117223 BUG: Byte-Range File Locking Deadlock Condition 2
Q 117261 PRB: RegCreateKeyEx() Gives Error 161 Under Windows NT 3.5 2
Q 117330 PRB: Error "Invalid DLL Entrypoint" when Loading a DLL 2

Q 117867 Detecting Parallel Out-of-Paper Status 1
Q 117872 Windows NT 3.5 Hives Not Compatible with Windows NT 3.1 1
Q 117892 Memory Requirements for a Win32 App vs. the Win16 Version 1
Q 118625 Detecting Data on the Communications Port 1
Q 118626 Determining Whether the User is an Administrator 2

Q 118816 PRB: LoadLibrary() Fails with _declspec(thread) 1
Q 119163 Getting the Filename Given a Window Handle 5
Q 119218 PRB: Named Pipe Write() Limited to 64K 1
Q 119219 PRB: GetVolumeInformation() Fails with UNC Name 1
Q 119220 ReadFile() at EOF Changed in Windows NT 3.5 1

Q 119669 Listing Account Privileges 2
Q 120556 PRB: Starting a Service Returns "Logon Failure" Error 1
Q 120557 Dealing w/ Lengthy Processing in Service Control Handler 1
Q 120697 Time Format for WIN32_FIND_DATA 1

End of listing.

Additional reference words: DSKBGuide 3.10 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: BseMisc

List of Articles for Win32 SDK GDI Programming Issues

PSS ID Number: Q80828
Authored 13-Feb-1992 Last modified 05-May-1995

The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 for Windows NT version 3.1

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 85844 PRB: Saving/Loading Bitmaps in .DIB Format on MIPS 1
Q 85846 Using GetDIBits() for Retrieving Bitmap Information 1
Q 89375 Transparent Blts in Windows NT 2
Q 90085 PSTR's in OUTLINETEXTMETRIC Structure 1
Q 91072 PRB: IsGdiObject() Is Not a Part of the Win32 API 1

Q 92514 Use of DocumentProperties() vs. ExtDeviceMode() 1
Q 94236 Using Device Contexts Across Threads 1
Q 94326 16 and 32 Bits-Per-Pel Bitmap Formats 2
Q 94918 Advantages of Device-Dependent Bitmaps 1
Q 95804 Win32 Software Development Kit Buglist 1

Q 96282 DEVMODE and dmSpecVersion 1
Q 100487 Use 16-Bit .FON Files for Cross-Platform Compatibility 1
Q 102353 Tracking Brush Origins in Windows NT 1
Q 102354 Calculating the TrueType Checksum 1
Q 104010 Creating a Logical Font with a Nonzero lfOrientation 1

Q 104834 FIX: StreBlt Sample Causes Windows NT to Stop Responding 1

Q 105733 FIX: SetCaret API May Not Work Correctly in Win32-Based Apps 1
Q 106384 ClipCursor() Requires WINSTA_WRITEATTRIBUTES 1
Q 108234 DOCERR: LoadCursorFromFile() and SetSystemCursor() Are Missing 2
Q 108929 Querying Device Support for MaskBlt 1

Q 110702 DOCERR: DeviceCapabilitiesEx Not Implemented in Windows NT 3.1 1
Q 115762 Printing Offset, Page Size, and Scaling with Win32 1
Q 118622 Using the Document Properties Dialog Box 2
Q 119164 Use of Polygon() Versus PolyPolygon() 1
Q 122564 Prototypes for SetSystemCursor() & LoadCursorFromFile() 1

End of listing.

Additional reference words: DSKBGuide 3.10
KBCategory: kbref kbtlc
KBSubcategory: GdiMisc

List of Articles for Win32 SDK Networking Issues

PSS ID Number: Q81246
Authored 17-Jan-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 for Windows NT versions 3.1 and 3.5

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 92515 Distributed Computing Environment (DCE) Compliance 1
Q 94088 PRB: WSAAsyncSelect() Notifications Stop Coming 1
Q 95804 Win32 Software Development Kit Buglist 1
Q 95866 Writing a Telnet Client 1
Q 95944 NetBIOS Name Table and NCBRESET 2

Q 96781 Using RPC Callback Functions 2
Q 100009 RPC Can Use Multiple Protocols 1
Q 101268 Tuning Sessions, Names, and NCBs for NetBIOS Applications 1
Q 101377 Supported Versions of Windows Sockets 1
Q 102381 Location of WNet* API Functions 1

Q 104315 PRB: RPC Installation Problem 1
Q 104318 RpcNsxxx() APIs Not Supported by Windows NT Locator 1
Q 104536 Using ReadFile() and WriteFile() on Socket Descriptors 1
Q 105785 FIX: NDISCloseFile() Does Not Free Image Buffer 1
Q 105804 FIX: APIs Do Incorrect Comparisons 1

Q 110703 Host Name May Map to Multiple IP Addresses 1

Q 110775 PRB: Winsock select() Returns WSAENOTSOCK 1
Q 110776 Windows NT Support for the MS-DOS LAN Manager APIs 1
Q 115830 MIDL 1.0 and MIDL 2.0 Full Pointers Do Not Interoperate 1
Q 118623 Getting the MAC Address for an Ethernet Adapter 2

Q 119216 Enumerating Network Connections 2
Q 119670 How to Look Up a User's Full Name 2

End of listing.

Additional reference words: DSKBGuide 3.10 3.50
KBCategory: kbref kbtlc
KBSubcategory: NtwkMisc

List of Articles for Win32 SDK Tools

PSS ID Number: Q89345
Authored 17-Jan-1994 Last modified 26-May-1995

The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 for Windows NT versions 3.1 and 3.5

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 83300 Using a Mouse with MEP Under Windows NT 1
Q 84081 RCDATA Begins on 32-Bit Boundary in Windows NT 1
Q 89822 Format for LANGUAGE Statement in .RES Files 2
Q 90384 PRB: Selecting Overlapping Controls in Dialog Editor 1
Q 91697 Use of DLGINCLUDE in Resource Files 1

Q 94248 Using the C Run Time 4
Q 94323 CTYPE Macros Function Incorrectly 1
Q 94924 Postmortem Debugging Under Windows NT 1
Q 97765 Size Comparison of 32-Bit and 16-Bit x86 Applications 1
Q 97858 CTRL+C Exception Handling Under WinDbg 1

Q 97908 Debugging DLLs Using WinDbg 2
Q 97924 Language ID Needed for RC.EXE 1
Q 98288 Watching Local Variables That Are Also Globally Declared 1
Q 98732 FIX: Global Constructors Not Called in Alpha DLLs 1
Q 98888 PRB: MS-SETUP Uses \SYSTEM Rather Than \SYSTEM32 1

Q 98890 Debugging a Service with WinDbg 2

Q 98918 PRB: Cannot Compile from Win32 SDK M Editor (MEP.EXE) 1
Q 99053 Source-level Debugging Under NTSD 1
Q 99516 Compile Errors Caused by Missing Option -D_X86_ 1
Q 99952 PRB: Debugging the Open Common Dialog Box in WinDbg 1

Q 99953 WinDbg Message "Breakpoint Not Instantiated" 1
Q 100289 Enabling Disk Performance Counters 1
Q 100292 PRB: Data Section Names Limited to Eight Characters 1
Q 100642 Setting Dynamic Breakpoints in WinDbg 2
Q 100957 PRB: Debugging an Application Driven by MS-TEST 1

Q 101187 Interpreting Executable Base Addresses 1
Q 102351 Debugging Console Apps Using Redirection 1
Q 102764 FIX: MIPS Compiler Assertion with C version 8.0 1
Q 103861 Choosing the Debugger That the System Will Spawn 1
Q 103863 Cannot Load <exe> Because NTVDM Is Already Running 1

Q 105583 Viewing Globals Out of Context in WinDbg 1
Q 105584 PRB: RC Does Not Support __DATE__ or __TIME__ 1
Q 105585 PRB: Unable to Freeze One Thread in WinDbg 1
Q 105586 FIX: WinDbg FIND Dialog Box Slows Down the System 1
Q 105677 Debugging the Win32 Subsystem 1

Q 105679 Differences Between the Win32 SDK and 32-Bit VC++ 2
Q 105764 Listing the Named Shared Objects 1
Q 106064 PRB: RW1016 Error Due to Unexpected End of File (EOF) 1
Q 106066 Additional Remote Debugging Requirement 1
Q 106382 PRB: Problems with the Microsoft Setup Toolkit 2

Q 108055 FIX: Internal Error from NetUserEnum() 1
Q 108227 Changes to the MSTest WFndWndC() 1
Q 114610 PRB: "Out of Memory Error" in the Win32 SDK Setup Sample 1
Q 115234 Win32 SDK 3.5 LINK32.EXE Calls CVTRES.EXE 1
Q 118890 Using the Call-Attributed Profiler (CAP) 2

End of listing.

Additional reference words: DSKBGuide 3.10 3.50
KBCategory: kbref kbtlc
KBSubcategory: TlsMisc

List of Articles for Win32 SDK User Programming Issues

PSS ID Number: Q89372
Authored 17-Jan-1994 Last modified 13-Jun-1995

The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, 4.0

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 80382 Global Classes in Win32 1
Q 89295 Unicode Conversion to Integers 1
Q 89712 Multiline Edit Control Limits in Windows NT 1
Q 89865 Tips for Writing Multiple-Language Scripts 1
Q 89866 Writing Multiple-Language Resources 1

Q 90912 Getting the WinMain() lpCmdLine in Unicode 1
Q 90975 Creating Windows in a Multithreaded Application 1
Q 92505 Multiple Desktops Under Windows NT 1
Q 94091 DDEML Application-Instance IDs Are Thread Local 1
Q 94149 Freeing PackDDElParam() Memory 1

Q 94917 Uniqueness Values in User and GDI Handles 1
Q 95000 SendMessage() in a Multithreaded Environment 1
Q 95804 Win32 Software Development Kit Buglist 1
Q 96006 Window Message Priorities 1
Q 97920 NULL is a Valid Return From SetWindowsHook() 1

Q 97922 LB_GETCARETINDEX Returns 0 for Zero Entries in List Box 1

Q 97925 SetActiveWindow() and SetForegroundWindow() Clarification 1
Q 99359 UNICODE and _UNICODE Needed to Compile for Unicode 1
Q 99360 Memory Handles and Icons 1
Q 99392 Using SetThreadLocale() for Language Resources 1

Q 100486 PRB: AttachThreadInput() Resets Keyboard State 1
Q 100488 System Versus User Locale Identifiers 1
Q 102428 Debugging a System-Wide Hook 1
Q 102446 DOCERR: WM_ENTERIDLE Documentation Is Misleading 1
Q 102482 SetTimer() Should Not Be Used in Console Applications 1

Q 102485 The SBS_SIZEBOX Style 1
Q 102765 Clarification of the "Country" Setting 1
Q 103240 DOCERR: CloseClipboard() Suggests Calling DuplicateHandle() 1
Q 103644 Differences Between hInstance on Win 3.1 and Windows NT 2
Q 103977 Unicode Implementation in Windows NT 3.1 1

Q 104011 Propagating Environment Variables to the System 1
Q 104311 32-Bit Scroll Ranges 1
Q 104316 How Keyboard Data Gets Translated 1
Q 105300 COMCTL32 APIs Unsupported in the Win32 SDK 1
Q 105446 Win32 Shell Dynamic Data Exchange (DDE) Interface 2

Q 105530 Win32 Drag and Drop Server 1
Q 105575 FIX: Low Memory Condition Cause APIs to Return Random Values 1
Q 106065 Development Tools Do Not Accept Unicode Text 1
Q 106385 Identifying a Previous Instance of an Application 1
Q 106386 Retrieving DIBs from the Clipboard 1

Q 106716 Using SendMessageTimeout() in a Multithreaded Application 2
Q 106717 Journal Hooks and Compatibility 1
Q 108232 Hooking Console Applications and the Desktop 1
Q 108233 PRB: GetOpenFileName() and Spaces in Long Filenames 1
Q 108450 MultiByteToWideChar() Codepages CP_ACP/CP_OEMCP 1

Q 110704 Replacing Windows NT Control Panel's Mouse Applet 1
Q 115081 DOCERR: DragQueryFile() Return Code Can Be Misleading 1
Q 118624 Using GetForegroundWindow() When Desktop Is Not Active 1

End of listing.

Additional reference words: DSKBGuide 3.10 3.50 3.51 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: UsrMisc

List of Articles for Win32s Programming Issues

PSS ID Number: Q93064
Authored 17-Jan-1994 Last modified 21-Feb-1995

The information in this article applies to:

 - FastTips for Microsoft Win32s version 1.1

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 83520 General Overview of Win32s 2
Q 93639 PRB: Win32s GetVolumeInformation() Returns 0x12345678 1
Q 97785 Calling a Win32 DLL from a Win16 App on Win32s 2
Q 97918 Win32s Message Queue Checking 1
Q 98286 PRB: _getdcwd() Returns the Root Directory Under Win32s 2

Q 98723 FIX: GetVersion() Returns Invalid Value Under Win32s 1
Q 100713 Support for Sleep() on Win32s 1
Q 100833 Win32s Translated Pointers Guaranteed for 32K 1
Q 102430 Debugging Applications Under Win32s 2
Q 102762 GetCommandLine() Under Win32s 1

Q 104314 Win32s NetBIOS Programming Considerations 1
Q 105170 SAMPLE: Win32s Universal Thunks 1
Q 105680 Win32s Cannot Support _environ in DLLs 1
Q 105756 Debugging Universal Thunks 1
Q 105757 Using Windows Sockets Under Win32s and WOW 1

Q 105758 Win32s and Windows NT Timer Differences 1
Q 105759 Using Serial Communications Under Win32s 1

Q 105760 Using VxDs and Software Interrupts Under Win32s 1
Q 105761 Getting Resources from 16-Bit DLLs Under Win32s 1
Q 105762 Sharing Memory Between 32-Bit and 16-Bit Code on Win32s 1

Q 106715 Troubleshooting Win32s Installation Problems 3
Q 108403 FIX: Opening Named Pipes on Win32s 2
Q 108497 DIB_PAL_INDICES and CBM_CREATEDIB Not Supported in Win32s 1
Q 108722 PRB: "Routine Not Found" Errors in Windows Help 1
Q 109620 Creating Instance Data in a Win32s DLL 1

Q 110705 BUG: Problems with Win32s CreateFileMapping() 2
Q 110844 Detecting the Presence of NetBIOS in Win32s 1
Q 110845 How Win32-Based Applications Are Loaded Under Windows 1
Q 113739 BUG: Win32s 1.1 Bug List 3
Q 114340 Win32s 1.1 Limitations 7

Q 115080 Converting a Linear Address to a Flat Offset on Win32s 1
Q 115082 PRB: Page Fault in WIN32S16.DLL Under Win32s 1
Q 115084 Win32s Device-Independent Bitmap Limit 1
Q 117153 PRB: Display Problems with Win32s and the S3 Driver 1
Q 117825 Handling COMMDLG File Open Network Button Under Win32s 1

Q 117864 PRB: GP Fault Caused by GROWSTUB in POINTER.DLL 1
Q 117893 PRB: Result of localtime() Differs on Win32s and Windows NT 1
Q 120486 How to Remove Win32s 1
Q 121091 How to Determine Which Version of Win32s Is Installed 1
Q 121092 PRB: Local Reboot (CTRL+ALT+DEL) Doesn't Work Under Win32s 1

Q 121093 Points to Remember When Writing a Debugger for Win32s 7
Q 121094 PRB: Controls Do Not Receive Expected Messages 2
Q 121095 PRB: GPF When Spawn Windows-Based App w/ WinExec() in Win32s 1
Q 122235 Microsoft Win32s Upgrade 2

End of listing.

Additional reference words: 1.10 dskbguide
KBCategory: kbref kbtlc
KBSubcategory: W32s

Listing Account Privileges

PSS ID Number: Q119669
Authored 20-Aug-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

When a user starts a process, that process takes on the security attributes
of the user. The security attributes inherited from the user include
privileges, which control access to system services.

MORE INFORMATION

To list the privileges belonging to a process (and thus to the current
user), perform the following steps:

1. Call GetCurrentProcess() to obtain a handle to the current process.

2. Call GetProcessToken() to obtain the process' access token.

3. Call GetTokenInformation() to obtain the list of privileges (among
 other information).

4. Step through the list of privileges, using LookupPrivilegeName() and
 LookupPrivilegeDisplayName() to obtain the names for the program to
 display.

The following sample code lists the displayable privilege names and the
privilege names as defined in the WINNT.H header file:

Sample Code

 #include <windows.h>
 #include <stdio.h>

 void main()
 {
 HANDLE hProcess, hAccessToken;
 UCHAR InfoBuffer[1000];
 PTOKEN_PRIVILEGES ptgPrivileges = (PTOKEN_PRIVILEGES)InfoBuffer;
 DWORD dwInfoBufferSize;
 DWORD dwPrivilegeNameSize;
 DWORD dwDisplayNameSize;
 UCHAR ucPrivilegeName[500];
 UCHAR ucDisplayName[500];
 DWORD dwLangId;

 UINT x;

 hProcess = GetCurrentProcess();

 OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken);

 GetTokenInformation(hAccessToken, TokenPrivileges, InfoBuffer,
 sizeof(InfoBuffer), &dwInfoBufferSize);

 printf("Account privileges: \n\n");
 for(x=0; x<ptgPrivileges->PrivilegeCount; x++)
 {
 dwPrivilegeNameSize = sizeof(ucPrivilegeName);
 dwDisplayNameSize = sizeof(ucDisplayName);
 LookupPrivilegeName(NULL, &ptgPrivileges->Privileges[x].Luid,
 ucPrivilegeName, &dwPrivilegeNameSize);
 LookupPrivilegeDisplayName(NULL, ucPrivilegeName,
 ucDisplayName, &dwDisplayNameSize, &dwLangId);
 printf("%40s (%s)\n", ucDisplayName, ucPrivilegeName);
 }
 }

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Listing the Named Shared Objects

PSS ID Number: Q105764
Authored 24-Oct-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Included with the Win32 SDK is an object viewer utility called WinObj that
be used to list named objects, devices, dynamic-link libraries (DLLs), and
so forth. To find objects such as pipes, memory, and semaphores, start
WinObj and select the folder BaseNamedObjects.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Localizing the Setup Toolkit for Foreign Markets

PSS ID Number: Q92523
Authored 09-Nov-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SUMMARY

There are no localized versions of the Setup Toolkit .DLLs available.
However, the resource files for these .DLLs are provided with the
Windows 3.1 Software Development Kit (SDK). They can be found in the
INTLDLL subdirectory in the MSSETUP directory created by the SDK
Setup.

The strings in the STRINGTABLES in these .RC files can be translated.
The localized .RC files can then be bound to the .DLLs using the
resource compiler.

Additional reference words: 3.10 3.50 MSSETUP tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

Location of the Cursor in a List Box

PSS ID Number: Q29961
Authored 09-May-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

There is no way to determine which item in the list box has the cursor
when the LBN_DBLCLK message is received. You must keep track of which
item has the cursor as it moves among the items. When you receive the
double-click message, you will know which box has the cursor.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Location of WNet* API Functions

PSS ID Number: Q102381
Authored 03-Aug-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The WNet* API routines are implemented in MPR.DLL. When linking an
application that uses these routines, link with the import library MPR.LIB.
For a list of which APIs can be resolved with which import libraries, see
the file WIN32API.CSV, which is included in the Win32 SDK and the Visual
C++ 32-bit edition.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubCategory: NtwkWinnet

Long Filenames on Windows NT FAT Partitions

PSS ID Number: Q115236
Authored 22-May-1994 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

SUMMARY

Windows NT, version 3.5, introduces the ability to create or open files
with long filenames (LFN) on Windows NT file allocation table (FAT)
partitions.

UNICODE is stored on disk, so that the original name is always preserved
for extended characters regardless of which code page happens to be active
when reading from or writing to the disk.

The legal character set is that of the Windows NT file system (NTFS)
(except for the ":" for opening NTFS alternative file streams), so you can
copy arbitrary files between NTFS and FAT without losing any of the
filename information.

MORE INFORMATION

The LFNs are not available from the MS-DOS DIR command, but they are
available from the Windows NT DIR command. When you create an LFN on a
Windows NT FAT partition, an accompanying short name is created just as
on an NTFS partition. You can access the file or directory with either
the long names or the short names under Windows NT.

For example, use the Microsoft Editor (MEP) to create a file named as
follows on a FAT partition under Windows NT:

 longfilename.fat

This is exactly how the filename appears when you run the DIR command from
the Windows NT command prompt. However, when you boot the machine into MS-
DOS and run the DIR command, the filename appears as follows:

 longfi~1.fat

NOTE: NTFS partitions are not available under MS-DOS, so you cannot
perform this experiment using an NTFS partition.

The same result can also be achieved programmatically. Build and run the
following sample code on Windows NT:

Sample Code

 #include <windows.h>

 void main()
 {
 WIN32_FIND_DATA fd;
 char buf[80];

 FindFirstFile("long*", &fd);
 wsprintf(buf, "File name is %s", fd.cFileName);
 MessageBox(NULL, buf, "Test", MB_OK);
 wsprintf(buf, "Alternate file name is %s", fd.cAlternateFileName);
 MessageBox(NULL, buf, "Test", MB_OK);
 }

The first message box will read:

 File name is longfilename.fat

The second message box will read:

 Alternate file name is longfi~1.fat

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Looking Up the Current User and Domain

PSS ID Number: Q111544
Authored 14-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Program Manager displays the logged in user account and domain name in its
windows title. This information can be retrieved programmatically by
extracting the user SID from the current access token and then looking up
the account and domain name via the LookupAccountSid() Win32 API. Below is
sample code demonstrating this technique:

Sample Code

void ShowUserDomain(void)
{
 HANDLE hProcess, hAccessToken;
 UCHAR InfoBuffer[1000],szAccountName[200], szDomainName[200];
 PTOKEN_USER pTokenUser = (PTOKEN_USER)InfoBuffer;
 DWORD dwInfoBufferSize,dwAccountSize = 200, dwDomainSize = 200;
 SID_NAME_USE snu;

 hProcess = GetCurrentProcess();

 OpenProcessToken(hProcess,TOKEN_READ,&hAccessToken);

 GetTokenInformation(hAccessToken,TokenUser,InfoBuffer,
 1000, &dwInfoBufferSize);

 LookupAccountSid(NULL, pTokenUser->User.Sid, szAccountName,
 &dwAccountSize,szDomainName, &dwDomainSize, &snu);

 printf("%s\\%s\n",szDomainName,szAccountName);
}

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

MAKEINTATOM() Does Not Return a Valid LPSTR

PSS ID Number: Q61980
Authored 17-May-1990 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The LPSTR returned from MAKEINTATOM() cannot be treated as a
general-purpose string pointer. Instead, either use it with the Atom
family or convert it into a valid string before passing it off as one.

MORE INFORMATION

The MAKEINTATOM() macro is documented on Page 370 of the "Microsoft
Windows Software Development Kit Programmer's Reference" versions 2.x
as returning a value of type LPSTR. This is correct, but misleading.
The LPSTR value returned is a "fabricated" LPSTR and cannot be
considered a general-purpose string pointer. Consider the definition
of the MAKEINTATOM macro:

 #define MAKEINTATOM(i) (LPSTR) ((DWORD)((WORD)(i)))

This tells the compiler to "take the integer value 'i', think of it as
a WORD, zero-extend this into a DWORD, then think of this as a LPSTR."
Thus, MAKEINTATOM(1Ah) returns 001Ah. This obviously is not the same
as "1A", which would be ASCII(1)+ASCII(A)+0.

The reason this psuedo-LPSTR works with AddAtom(), for example, is
that AddAtom() looks to see if the HIWORD of the LPSTR parameter is
0 (zero). If so, AddAtom() knows that the LOWORD contains an actual
integer value and it simply grabs that.

The following code samples show how problems can occur with these
psuedo-LPSTRs returned from MAKEINTATOM.

Incorrect

ATOM AddIntAtom(int iAtom)
{
 LPSTR szAtom;

 MessageBox(hWnd,
 (szAtom=MAKEINTATOM(iAtom)),
 "Adding Atom",
 MB_OK);
 return (AddAtom(szAtom));

}

The above code fragment will create and return a valid atom, but the
message box will display an erroneous value.

Correct

ATOM AddIntAtom(int iAtom)
{
 LPSTR szAtom;
 char szBuf[10];

 szAtom=MAKEINTATOM(iAtom);
 sprintf(szBuf, "%d", LOWORD(szAtom)); /* Here's the trick */
 MessageBox(hWnd,
 szBuf,
 "Adding Atom",
 MB_OK);
 return (AddAtom(szAtom));
}

In the above example, we converted the integer value contained in the
LOWORD of szAtom into a character string, then used this new character
string in the MessageBox() call.

Although these code fragments illustrate the limitations of a
MAKEINTATOM LPSTR, they are not very realistic because you really
should use GetAtomName() to get the character string of an atom. If
you have not yet created an atom out of an integer value, you could
just format the integer into character string directly, as follows:

 sprintf (szBuf, "%d", iAtom);
 MessageBox (hWnd, szBuf,....);

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Making a List Box Item Unavailable for Selection

PSS ID Number: Q74792
Authored 30-Jul-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

In the Microsoft Windows graphical environment, an application can use
a list box to enumerate options. However, there are circumstances in
which one or more options may not be appropriate. The application can
change the appearance of items in a list box and prevent the user from
selecting one of these items by using the techniques discussed below.

MORE INFORMATION

Changing the Appearance of a List Box Item
--

To dim (gray) a particular item in a list box, use an owner-draw list
box as follows:

1. Create a list box that has the LBS_OWNERDRAW and LBS_HASSTRINGS
 styles.

2. Use the following code to process the WM_MEASUREITEM message:

 case WM_MEASUREITEM:
 ((MEASUREITEMSTRUCT FAR *)(lParam))->itemHeight = wItemHeight;
 break;

 wItemHeight is the height of a character in the list box font.

3. Use the following code to process the WM_DRAWITEM message:

 #define PHDC (pDIS->hDC)
 #define PRC (pDIS->rcItem)

 DRAWITEMSTRUCT FAR *pDIS;

 ...

 case WM_DRAWITEM:
 pDIS = (DRAWITEMSTRUCT FAR *)lParam;

 /* Draw the focus rectangle for an empty list box or an

 empty combo box to indicate that the control has the
 focus
 */
 if ((int)(pDIS->itemID) < 0)
 {
 switch(pDIS->CtlType)
 {
 case ODT_LISTBOX:
 if ((pDIS->itemAction) & (ODA_FOCUS))
 DrawFocusRect (PHDC, &PRC);
 break;

 case ODT_COMBOBOX:
 if ((pDIS->itemState) & (ODS_FOCUS))
 DrawFocusRect (PHDC, &PRC);
 break;
 }
 return TRUE;
 }

 /* Get the string */
 switch(pDIS->CtlType)
 {
 case ODT_LISTBOX:
 SendMessage (pDIS->hwndItem,
 LB_GETTEXT,
 pDIS->itemID,
 (LPARAM)(LPSTR)szBuf);
 break;

 case ODT_COMBOBOX:
 SendMessage (pDIS->hwndItem,
 CB_GETLBTEXT,
 pDIS->itemID,
 (LPARAM)(LPSTR)szBuf);
 break;
 }

 if (*szBuf == '!') // This string is disabled
 {
 hbrGray = CreateSolidBrush (GetSysColor
 (COLOR_GRAYTEXT));
 GrayString (PHDC,
 hbrGray,
 NULL,
 (LPARAM)(LPSTR)(szBuf + 1),
 0,
 PRC.left,
 PRC.top,
 0,
 0);
 DeleteObject (hbrGray);

 /* SPECIAL CASE - Need to draw the focus rectangle if
 there is no current selection in the list box, the

 1st item in the list box is disabled, and the 1st
 item has gained or lost the focus
 */
 if (pDIS->CtlType == ODT_LISTBOX)
 {
 if (SendMessage (pDIS->hwndItem,
 LB_GETCURSEL,
 0,
 0L) == LB_ERR)
 if ((pDIS->itemID == 0) &&
 ((pDIS->itemAction) & (ODA_FOCUS)))
 DrawFocusRect (PHDC, &PRC);
 }
 }

 else // This string is enabled
 {
 if ((pDIS->itemState) & (ODS_SELECTED))
 {
 /* Set background and text colors for selected
 item */
 crBack = GetSysColor (COLOR_HIGHLIGHT);
 crText = GetSysColor (COLOR_HIGHLIGHTTEXT);
 }
 else
 {
 /* Set background and text colors for unselected
 item */
 crBack = GetSysColor (COLOR_WINDOW);
 crText = GetSysColor (COLOR_WINDOWTEXT);
 }

 // Fill item rectangle with background color
 hbrBack = CreateSolidBrush (crBack);
 FillRect (PHDC, &PRC, hbrBack);
 DeleteObject (hbrBack);

 // Set current background and text colors
 SetBkColor (PHDC, crBack);
 SetTextColor (PHDC, crText);

 // TextOut uses current background and text colors
 TextOut (PHDC,
 PRC.left,
 PRC.top,
 szBuf,
 lstrlen(szBuf));

 /* If enabled item has the input focus, call
 DrawFocusRect to set or clear the focus
 rectangle */
 if ((pDIS->itemState) & (ODS_FOCUS))
 DrawFocusRect (PHDC, &PRC);
 }

 return TRUE;

Strings that start with "!" are displayed dimmed. The exclamation mark
character is not displayed.

Preventing Selection

To prevent a dimmed string from being selected, create the list box
with the LBS_NOTIFY style. Then use the following code in the list
box's parent window procedure to process the LBN_SELCHANGE
notification:

 case WM_COMMAND:

 switch (wParam)
 {

 ...

 case IDD_LISTBOX:
 if (LBN_SELCHANGE == HIWORD(lParam))
 {
 idx = (int)SendDlgItemMessage(hDlg, wParam,
 LB_GETCURSEL, 0, 0L);
 SendDlgItemMessage(hDlg, wParam, LB_GETTEXT, idx,
 (LONG)(LPSTR)szBuf);
 if ('!' == *szBuf)
 {
 // Calculate an alternate index here
 // (not shown in this example).

 // Then set the index.
 SendDlgItemMessage(hDlg, wParam, LB_SETCURSEL, idx, 0L);
 }
 }
 break;

 ...

 }
 break;

When the user attempts to select a dimmed item, the alternate index
calculation moves the selection to an available item.

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Managing Per-Window Accelerator Tables

PSS ID Number: Q82171
Authored 29-Mar-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In the Windows environment, an application can have several windows,
each with its own accelerator table. This article describes a simple
technique requiring very little code that an application can use to
translate and dispatch accelerator key strokes to several windows. The
technique employs two global variables, ghActiveWindow and
ghActiveAccelTable, to track the currently active window and its
accelerator table, respectively. These two variables, which are used
in the TranslateAccelerator function in the application's main message
loop, achieve the desired result.

MORE INFORMATION

The key to implementing this technique is to know which window is
currently active and which accelerator table, if any, is associated
with the active window. To track this information, process the
WM_ACTIVATE message that Windows sends each time an application gains
or loses activation. When a window loses activation, set the two
global variables to NULL to indicate that the window and its
accelerator table are no longer active. When a window that has an
accelerator table gains activation, set the global variables
appropriately to indicate that the accelerator table is active. The
following code illustrates how to process the WM_ACTIVATE message:

case WM_ACTIVATE:
 if (wParam == 0) // indicates loss of activation
 {
 ghActiveWindow = ghActiveAccelTable = NULL;
 }
 else // indicates gain of activation
 {
 ghActiveWindow = <this window>;
 ghActiveAccelTable = <this window's accelerator table>;
 }
 break;

The application's main message loop resembles the following:

while (GetMessage(&msg, // message structure
 NULL, // handle of window receiving the msg

 NULL, // lowest message to examine
 NULL)) // highest message to examine
{
 if (!TranslateAccelerator(ghActiveWindow, // active window
 ghActiveAccelTable, // active accelerator
 &msg))
 {
 TranslateMessage(&msg); // Translates virtual key codes
 DispatchMessage(&msg); // Dispatches message to
 // window procedure
 }
}

Under Windows version 3.1, the WM_ACTIVATE message with the wParam set
to WA_INACTIVE indicates loss of activation.

Under Win32, the low-order word of wParam set to WA_INACTIVE indicates
deactivation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Mapping .INI File Entries to the Registry

PSS ID Number: Q104136
Authored 08-Sep-1993 Last modified 20-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

Under Windows NT, .INI file variables are mapped into the Registry as
defined in the

 \HKEY_LOCAL_MACHINE
 \Software\Microsoft\WindowsNT\CurrentVersion\IniFileMapping

mapping key. The Win32 Profile application programming interface (API)
functions look for a mapping by looking up the filename extension portion
of the profile file. If a match is found, then the search continues under
that node for the specified application name. If a match is found, then the
search continues for the variable name. If the variable name is not found,
the value of the (NULL) variable name is a string that points to a node in
the Registry, whose value keys are the variable names. If a specific
mapping is found for the variable name, then its value points to the
Registry value that contains the variable value.

The Profile API calls go to the Windows server to look for an actual .INI
file, and read and write its contents, only if no mapping for either the
application name or filename is found. If there is a mapping for the
filename but not the application name, and there is a (NULL) application
name, the value of the (NULL) variable will be used as the location in the
Registry of the variable, after appending the application name to it.

In the string that points to a Registry node, there are several
prefixes that change the behavior of the .INI file mapping:

 ! - This character forces all writes to go both to the Registry and
 to the .INI file on disk.

 # - This character causes the Registry value to be set to the value
 in the Windows 3.1 .INI file when a new user logs in for the
 first time after setup.

 @ - This character prevents any reads from going to the .INI file
 on disk if the requested data is not found in the Registry.

 USR: - This prefix stands for HKEY_CURRENT_USER, and the text after
 the prefix is relative to that key.

 SYS: - This prefix stands for HKEY_LOCAL_MACHINE\Software, and the
 text after the prefix is relative to that key.

Additional reference words: 3.10 3.50 inifilemapping
KBCategory: kbprg

KBSubcategory: BseMisc

Mapping Modes and Round-Off Errors

PSS ID Number: Q89215
Authored 14-Sep-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Mapping modes, window extents/origins, and viewport extents/origins
allow for very powerful coordinate manipulation, such as scaling or
moving objects. However, you should be aware that there are cases when
using mapping modes other than MM_TEXT results in improper painting
due to round-off errors.

Round-off errors occur when one logical unit does not equal one device
unit, and an application requests the graphics device interface (GDI)
to perform an action that would result in a nonintegral number of
pixels needing to be drawn, scrolled, blt'd, and so on.

Round-off errors can manifest themselves in many ways, including
unpainted portions of a client area when scrolling, gaps between
objects that shouldn't have gaps (or vice versa), objects that shrink
or grow one pixel depending on where they are on the screen, objects
of unexpected sizes, and so on.

MORE INFORMATION

To better understand round-off errors, consider the following code:

 SetMapMode (hDC, MM_ANISOTROPIC);
 SetWindowExt (hDC, 2, 2);
 SetViewportExt (hDC, 3, 3);
 PatBlt (hDC, 0, 0, 5, 2, BLACKNESS);

This code tells the GDI to treat two logical units (the coordinates
used by most GDI functions), in both the vertical and horizontal
direction, as being equal to three device units (pixels). It then asks
the GDI to draw what amounts to a black rectangle five logical units
wide by three logical units tall starting at the logical point (0,0).

The GDI would translate this request into a request to draw a
rectangle 7.5 (5 * 3/2 = 7.5) pixels wide by 3 (2 * 3/2 = 3) pixels
tall. However, display cards cannot draw half a pixel, so the GDI
would either have to round the width up to 8 or truncate it to 7. If
an application relied on one behavior or the other, improper painting
could occur.

Note that using mapping modes, window origins/extents, and viewport
origins/extents does not mean that an application will have round-off
errors. The occurrence of round-off errors depends on what these
features are used for, the structure of the application, and other
factors. Many applications take advantage of mapping modes, window
origins/extents, and viewport origins/extents without ever
encountering adverse round-off errors.

If an application exhibits round-off errors, there are a number of ways
to prevent them, some which are described below.

Method 1

Only use MM_TEXT mapping mode, where one logical unit always equals
one device unit. However, the application must do all its own scaling
and moving of objects. The benefit of this approach is that the
application has strict control over how objects are scaled and moved;
you can look at your code to see the algebra that leads to round-off
errors, and counter these errors appropriately. The drawback to this
approach is that it makes the code more complicated and harder to read
than it might be if the SetMapMode, SetWindowOrg, SetWindowExt,
SetViewportOrg, and SetViewportExt functions were used.

Method 2

Mix MM_TEXT mapping mode with the mapping mode required. Sometimes
applications only have round-off problems with certain types of
objects. For example, in a graphing program, the application might
want to set a certain mapping mode to draw a bar graph; this mapping
mode might cause the fonts that the application draws to be of the
wrong size.

To work around problems like this, mix MM_TEXT mapping mode with your
mapping mode of choice. You could use MM_TEXT when dealing with
objects that need exact sizes or placement and the other mapping mode
for other drawing.

The benefits and drawbacks of this method are almost the same as those
for method 1. However, with method 2, applications can take advantage
of mapping modes for some of the scaling and moving of objects.

Method 3

If window/viewport origins/extents are set at compile time, be sure to
only do operations that would result in no round-off errors. For
example, take the fraction WindowExt over ViewportExt, and reduce this
fraction. Then only do operations that involve multiples of the
reduced WindowExt values. For example, given the following

 WindowExt = (6, 27)
 ViewportExt = (50, 39)

turn this into a fraction and reduce it. It yields:

 in x direction: 6/50 = (2 * 3) / (2 * 5 * 5) = 3/25
 in y direction: 27/39 = (3 * 3 * 3) / (3 * 13) = 9/13

Therefore, anything done in the x direction could be done using a
multiple of three logical units; anything done in the y direction
could be done using a multiple of nine logical units. For example, if
the application wanted to scroll the window horizontally, it could
scroll 3, 6, 9, 12, and so on logical units without having to deal
with rounding errors. By using these values, the application will
never have round-off errors.

One benefit of this method is that an application can take advantage
of window origins/extents and viewport origins/extents. A disadvantage
is that the application is limited to a certain set of origins/extents
(that is, those built into the application at compile time).

Method 4

Applications can perform method 3 on-the-fly. This allows the
application to deal with arbitrary window origins/extents and viewport
origins/extents. To determine the minimum number of logical units an
application could use given arbitrary extent values, the following
code might prove useful (the code shown is for determining the value
to use in the horizontal direction):

int GetMinWinXFactor (HDC hDC)
{
 int nMinX, xWinExt, xViewExt, nGCD;

 xWinExt = LOWORD (GetWindowExt (hDC));
 xViewExt = LOWORD (GetViewportExt (hDC));
 while ((nGCD = GreatestCommonDivisor (xWinExt, xViewExt)) != 1)
 {
 xWinExt /= nGCD;
 xViewExt /= nGCD;
 }
 return xWinExt;
}

int GreatestCommonDivisor (int i, int j)
{
 while (i != j)
 if (i > j)
 i -= j;
 else
 j -= i;
 return i;
}

The return value from the GetMinWinXFactor function above can then be
used just like in method 3 (that is, the application can do all output
based on multiples of this value).

Final Notes

The discussion above did not take into account the window origin,
which can contribute to round-off errors. How origins and extents
affect the coordinates that GDI uses is summed up in "Programmer's
Reference.

Developers using mapping modes are encouraged to study the equations
presented in the programmer's reference. The GDI uses these equations when
converting between logical and device units. When round-off errors occur in
an application, it is always a good idea to run the numbers through these
equations to try to determine the cause of the errors.

Additional reference words: 3.00 3.10 3.50 4.00 95 rounding
KBCategory: kbprg
KBSubcategory: GdiDc

Maximum Brush Size

PSS ID Number: Q12071
Authored 01-Dec-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, version 4.0

The maximum size of a brush is determined by the OEM driver. In
theory, any brush size can be created. However, the brushes are
realized by the OEM driver. The only requirement the driver must
satisfy is that it must be able to handle 8 x 8 brushes.

If the driver realizes variable sizes, passing any bitmap is
acceptable. The driver decides what to do with brushes larger than
8 x 8.

Currently, sample drivers use the top left 8 x 8 piece of the pattern;
however, if the OEM wants to use the whole pattern, that also is
proper. The limit of the current device drivers is 8 x 8 because of a
performance trade-off.

The amount of pattern realized is a display driver-dependent issue.

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPnbr

Memory Handle Allocation

PSS ID Number: Q91194
Authored 29-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

This article discusses the limitations that exist when allocating memory
handles.

The minimum block you can reserve with each call to VirtualAlloc() is 64K.
It is a good idea to confirm this number by checking the allocation
granularity returned by GetSystemInfo().

With HeapAlloc(), there is no limit to the number of handles that can be
allocated. GlobalAlloc() and LocalAlloc() (combined) are limited to 65536
total handles for GMEM_MOVEABLE and LMEM_MOVEABLE memory per process. Note
that this limitation does not apply to GMEM_FIXED or LMEM_FIXED memory.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Memory Handles and Icons

PSS ID Number: Q99360
Authored 26-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1

SUMMARY

Memory handles are not globally sharable among processes. Handles for
icons, cursors, windows, and so forth, are not global handles but are
handles into an index into the server-side handle table (the handle is
actually an index into the server-side's handle table). Thus, some objects
can be shared between processes -- but probably shouldn't be, for
concurrency reasons.

GDI-related objects, however, are stored in a client-side handle table,
which is translated to a handle value in a server-side table on every
client-server transition. Thus, there are some objects that can be shared
(USER-related objects) and some that can't be shared (BASE/KERNEL and GDI).

MORE INFORMATION

There are three types of handles in the system:

 - Handles to objects that the executive (object manager) knows
 about. These are assigned on a per-process basis but each access to
 these objects goes through the executive.

 - Handles that are maintained by the Win32 subsystem server (USER
 objects, including icons and cursors) and are therefore sharable.
 Please note that the allowed behavior of shared USER objects is
 subject to change in future releases of Windows NT. Thus, care
 should be taken when using these handles.

 - Handles that are maintained by the Win32 subsystem client, and
 therefore are valid only in the context of the process that created
 it (GDI objects). These handles differ from the first type of
 handles listed in that you cannot call handle manipulation
 functions, such as DuplicateHandle() an WaitForSingleObject(), or
 use the security facilities on these objects.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: UsrMisc

Memory Requirements for a Win32 App vs. the Win16 Version

PSS ID Number: Q117892
Authored 13-Jul-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5
 3.51, and 4.0
 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SUMMARY

A Win32 port of a Windows-based application generally requires more virtual
memory than the original Windows-based application. However, it is possible
for the Win32 version of the application to have a smaller working set. The
working set is the certain number of pages that the virtual memory manager
must keep in memory for a process to execute efficiently. If you lower the
working set of an application, it will use less RAM.

MORE INFORMATION

It can appear that the Win32-based version of an application running on
Win32s requires more RAM than the Windows-based version of the application
running on the same machine. This is because segments of a Windows-based
application are loaded only as they are referenced, while the address space
is reserved for the Win32-based application and its DLLs (dynamic-link
libraries) at program load. Therefore, the memory count that is displayed
by many "About" boxes is misleading: for the Windows-based application, the
free memory reported is reduced by the number of segments actually loaded;
for the Win32-based application, the free memory reported is reduced by the
total address space required. However, this free memory represents only the
virtual address space that all applications share, not the amount of RAM
actually used.

You can use WMem to determine the address space used, the number of
physical pages of RAM used, and to get an estimate of the working set. On a
machine that has enough RAM to load the whole application without swapping,
run only Program Manager and WMem. Use SHIFT+double-click in WMem and write
down the available physical memory. Activate the application and use
SHIFT+double-click again. The difference between the available physical
memory before and after activating the application is a rough estimate of
the working set. Test your application further and see how the working set
changes during execution.

The working set of a Win32-based application can be decreased 30 percent or
more with the use of the Working Set Tuner, included in the Win32 SDK.
However, a Win32-based application may fail to load on Win32s even if its
working set is significantly smaller than the free RAM (for example, 100K
working set versus 1 megabyte free RAM). The entire application, DLLs
included, must be mapped into the virtual address space.

The virtual memory size is set by the system at boot time, based on several
factors. RAM is one factor, free disk space is another. The system must be
able to allocate enough space for the swap file on disk. Windows, by
default, allows the size of the swap file to be a maximum of 4 times larger
than available RAM. This constant (4) can be modified by setting
PageOverCommit in the 386enh section of the SYSTEM.INI file. Valid settings
are between 1 and 20. Setting PageOverCommit to a value larger than 4 will
result in less efficient usage of resources and slower execution, but it
will allow you to run applications that otherwise are not able to run.

Additional reference words: 1.10 1.20 3.10 3.50 4.00 95 ProgMan
KBCategory: kbprg
KBSubcategory: BseMm

Menu Operations When MDI Child Maximized

PSS ID Number: Q71836
Authored 04-May-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

Pop-up menus added to an MDI application's menu using InsertMenu() with
MF_BYPOSITION will be inserted one position further left than expected if
the active MDI child window is maximized. This behavior occurs because the
system menu of the active MDI child is inserted into the first position of
the MDI frame window's menu bar.

To avoid this problem, if the active child is maximized when a new pop-up
is inserted by position, add 1 (one) to the position value that would
otherwise have been used. To determine that the currently active child
window is maximized, send a WM_MDIGETACTIVE message to the MDI client
window. In 16-bit Windows, if the high word of the return value from this
message contains 1, the active child window is maximized. In Win32, you
need to pass a pointer to a BOOL in the lParam. If the child window is
maximized, then Windows will set the BOOL pointed to by the lParam to TRUE.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMdi

Message Retrieval in a DLL

PSS ID Number: Q96479
Authored 18-Mar-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

When a function in a dynamic-link library (DLL) retrieves messages on
behalf of a calling application, the following must be addressed:

 - The application and the DLL may be re-entered.
 - The application can terminate while in the DLL's message retrieval
 loop.
 - The DLL must allow the application to preprocess any messages that
 may be retrieved.

MORE INFORMATION

The following concerns arise when a function in a DLL retrieves
messages by calling GetMessage or PeekMessage:

 - When the DLL function retrieves, translates, and dispatches
 messages, the calling application and the DLL function may be re-
 entered. This is because message retrieval can cause the calling
 application to respond to user input while waiting for the DLL
 function to return. The DLL function can return a reentrancy error
 code if this happens. To prevent reentrancy, disable windows and
 menu-items, or use a filter in the GetMessage or PeekMessage call
 to retrieve specific messages.

 - The application can terminate while execution is in the DLL
 function's message retrieval loop. The WM_QUIT message retrieved by
 the DLL must be re-posted and the DLL function must return to the
 calling application. This allows the calling application's message
 retrieval loop to retrieve WM_QUIT and terminate.

 - When the DLL retrieves messages, it must allow the calling
 application to preprocess the messages (to call
 TranslateAccelerator, IsDialogMessage, and so forth) if required.
 This is be done by using CallMsgFilter to call any WH_MSGFILTER
 hook that the application may have installed.

The following code shows a message retrieval loop in a DLL function
that waits for a PM_COMPLETE message to signal the end of processing:

while (notDone)
{

 GetMessage(&msg, NULL, 0, 0);

 // PM_COMPLETE is a WM_USER message that is posted when
 // the DLL function has completed.
 if (msg.message == PM_COMPLETE)
 {
 Clean up and set result variables;
 return COMPLETED_CODE;
 }
 else if (msg.message == WM_QUIT) // If application has terminated...
 {
 // Repost WM_QUIT message and return so that calling
 // application's message retrieval loop can exit.
 PostQuitMessage(msg.wParam);
 return APP_QUIT_CODE;
 }

 // The calling application can install a WH_MSGFILTER hook and
 // preprocess messages when the nCode parameter of the hook
 // callback function is MSGF_MYHOOK. This allows the calling
 // application to call TranslateAccelerator, IsDialogMessage, etc.
 if (!CallMsgFilter(&msg, MSGF_MYHOOK))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 :
 :
}

Define MSGF_HOOK to a value greater than or equal to MSGF_USER defined
in WINDOWS.H to prevent collision with values used by Windows.

Preprocessing Messages in the Calling Application

The calling application can install a WH_MSGFILTER hook to preprocess
messages retrieved by the DLL. It is not required for the calling
application to install such a hook if it does not want to preprocess
messages.

 lpfnMsgFilterProc = MakeProcInstance((FARPROC)MsgFilterHookFunc,
 ghInst);
 hookprocOld = SetWindowsHook(WH_MSGFILTER, lpfnMsgFilterProc);
 // Call the function in the DLL.
 DLLfunction();
 UnhookWindowsHook(WH_MSGFILTER, lpfnMsgFilterProc);
 FreeProcInstance(lpfnMsgFilterProc);

MsgFilterHookFunc is the hook callback function:

LRESULT CALLBACK MsgFilterHookFunc(int nCode, WPARAM wParam,
 LPARAM lParam)
{

 if (nCode < 0)
 return DefHookProc(nCode, wParam, lParam, &hookprocOld);

 // If CallMsgFilter is being called by the DLL.
 if (nCode == MSGF_MYHOOK)
 {
 Preprocess message (call TranslateAccelerator,
 IsDialogMessage etc.);
 return 0L if the DLL is to call TranslateMessage and
 DispatchMessage. Return 1L if TranslateMessage and
 DispatchMessage are not to be called.
 }
 else return 0L;
}

Additional reference words: 3.10 3.50 3.51 4.00 95 yield
KBCategory: kbprg
KBSubcategory: UsrMsg

Method for Sending Text to the Clipboard

PSS ID Number: Q35100
Authored 01-Sep-1988 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Sending text to the Clipboard is usually a cumbersome process of
allocating and locking global memory, copying the text to that memory,
and sending the Clipboard the memory handle. This method involves many
pointers and handles and makes the entire process difficult to use and
understand.

Clipboard I/O is easily accomplished with an edit control. If a
portion of text is highlighted, an application can send the edit
control a WM_COPY or WM_CUT message to copy or cut the selected text
to the Clipboard. In the same manner, text can be pasted from the
Clipboard by sending a WM_PASTE message to an edit control.

The following example demonstrates how to use an edit control
transparently within an application to simplify sending and retrieving
text from the Clipboard. Note that this code will not be as fast as
setting or getting the Clipboard data explicitly, but it is easier
from a programming standpoint, especially if the text to be sent is
already in an edit control. Note also that the presence of the edit
window will occupy some additional memory.

MORE INFORMATION

For simplified Clipboard I/O, do the following:

1. Declare a global HWND, hEdit, which will be the handle to the edit
 control.

2. In WinMain, use CreateWindow() to create a child window edit
 control. Use the style WS_CHILD, and give the control dimensions
 large enough to hold the most text that may be sent to or received
 from the Clipboard. CreateWindow() returns the handle to the edit
 control that should be saved in hEdit.

3. When a Cut or Copy command is invoked, use SetWindowText() to place
 the desired string in the edit control, then use SendMessage() to
 select the text and copy or cut it to the Clipboard.

4. When a Paste command is invoked, use SetWindowText() to clear the
 edit control, then use SendMessage() to paste text from the
 Clipboard. Finally, use GetWindowText() to copy the text in the

 edit control to a string buffer.

The actual coding for this procedure is as follows:

 .
 .
 .

 #define ID_ED 100
 HWND hEdit;

 .
 .
 .
 /* In WinMain: hWnd is assumed to be the handle of the parent window,
*/
 /* hInstance is the instance handle of the parent.
*/
 /* The "EDIT" class name is required for this method to work. ID_ED
*/
 /* is an ID number for the control, used by Get/SetDlgItemText.
*/

 hEdit=CreateWindow("EDIT",
 NULL,
 WS_CHILD | BS_LEFTTEXT,
 10, 15, 270, 10,
 hWnd,
 ID_ED,
 hInstance,
 NULL);

 .
 .
 .

 /* In the procedure receiving CUT, COPY, and PASTE commands: */
 /* Note that the COPY and CUT cases perform the same actions, only */
 /* the CUT case clears out the edit control. */

 /* Get the string length */
 short nNumChars=strlen(szText);

 case CUT:
 /* First, set the text of the edit control to the desired string */
 SetWindowText(hEdit, szText);

 /* Send a message to the edit control to select the string */
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0, nNumChars));

 /* Cut the selected text to the clipboard */
 SendMessage(hEdit, WM_CUT, 0, 0L);
 break;

 case COPY:
 /* First, set the text of the edit control to the desired string */
 SetWindowText(hEdit, szText);

 /* Send a message to the edit control to select the string */
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0, nNumChars));

 /* Copy the text to the clipboard */
 SendMessage(hEdit, WM_COPY, 0, 0L);
 break;

 case IDM_PASTE:
 /* Check if there is text available */
 if (IsClipboardFormatAvailable(CF_TEXT))
 {
 /* Clear the edit control */
 SetWindowText(hEdit, "\0");

 /* Paste the text in the clipboard to the edit control */
 SendMessage(hEdit, WM_PASTE, 0, 0L);

 /* Get the test from the edit control into a string. */
 /* nNumChars represents the number of characters to get */
 /* from the edit control. */
 GetWindowText(hEdit, szText, nNumChars);
 }
 else
 MessageBeep(0); /* Beep on illegal request */
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrClp

Microsoft Win32s Upgrade

PSS ID Number: Q122235
Authored 01-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

SUMMARY

Microsoft Win32s version 1.25a, the latest version of the software that
allows you to run Win32-based applications on Windows version 3.1 or
Windows for Workgroups versions 3.1 and later, is now available as a
Microsoft Application Note.

The Application Note number is PW1118, and the title is "Microsoft
Win32s Upgrade." It includes these files:

 - W32S125.EXE, which is version 1.25a of Win32s.

 - LICENSE.TXT, which has legal information regarding redistribution of
 Win32s files [please consult the Win32s "Programmer's Reference," which
 is part of the Microsoft Win32 Software Development Kit (SDK), for
 further information].

 - README.TXT, which is the text of the Application Note.

The "Microsoft Win32s Upgrade" does not include OLE support. For OLE
support for Win32-based applications under Win32s, obtain the OLE 2.02
appnote, number WW1116. For more information, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q123087
 TITLE : WW1116: OLE Version 2.02

The Win32s upgrade is intended as an end-user upgrade and is not intended
for further redistribution.

MORE INFORMATION

To obtain this Application Note (number PW1118) and the files
included with it, download PW1118.EXE, a self-extracting file,
from the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for PW1118.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL

 Download PW1118.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get PW1118.EXE

If you are unable to access the sources listed above, you can have this
Application Note mailed to you by calling Microsoft Product Support
Services Monday through Friday, 6:00 A.M. to 6:00 P.M. Pacific time. If
you are outside the United States, contact the Microsoft subsidiary for
your area. To locate your subsidiary, please call Microsoft International
Customer Service at (206) 936-8661.

Additional reference words: 1.25a
KBCategory: kbsetup kbappnote kbfile
KBSubcategory: W32s

MIDL 1.0 and MIDL 2.0 Full Pointers Do Not Interoperate

PSS ID Number: Q115830
Authored 05-Jun-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

Microsoft Remote Procedure Call (RPC), version 1.0, has minimal support for
full pointers, so the version of the MIDL compiler with Microsoft RPC
version 1.0 (MIDL 1.0) treats full pointers (specified with the ptr
attribute) as unique pointers (specified with the unique attribute).

The MIDL compiler with Microsoft RPC, version 2.0 (MIDL 2.0), supports full
pointers. Because of the way Microsoft RPC, version 1.0, handles the on-
wire representation of pointers, applications compiled using MIDL 2.0 full
pointers cannot operate interactively with applications compiled using MIDL
1.0 full pointers.

The workaround is to recompile the MIDL 2.0 application to use unique
pointers.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: NtwkRpc

Mirroring Main Menu with TrackPopupMenu()

PSS ID Number: Q99806
Authored 08-Jun-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

A developer may want to use TrackPopupMenu() to display the same menu
that is used by the main window. TrackPopupMenu() takes a pop-up menu,
while GetMenu() and LoadMenu() both return handles to top level menus,
and therefore you cannot use the menus returned from these functions
with TrackPopupMenu(). To "mirror" the main menu, you must create
pop-up menus with the same strings, style, and IDs as the main menu.
To do this, use the following Windows APIs:

 GetMenu()
 CreatePopupMenu()
 GetMenuState()
 GetMenuString()
 GetSubMenu()
 AppendMenu()

MORE INFORMATION

The following code displays the same menu as the main window when the
right mouse button is clicked:

// In the main window procedure...

 case WM_RBUTTONDOWN:
 {

 HMENU hMenu; // The handle to the main menu.
 int nMenu; // The index of the menu item.
 POINT pt; // The point to display the track menu.
 HMENU hMenuOurs; // The pop-up menu that we are creating.
 UINT nID; // The ID of the menu.
 UINT uMenuState; // The menu state.
 HMENU hSubMenu; // A submenu.
 char szBuf[128]; // A buffer to store the menu string.

// Get the main menu.
 hMenu = GetMenu(hWnd);
 nMenu = 0;

// Create a pop-up menu.
 hMenuOurs = CreatePopupMenu();

// Get menu state will return the style of the menu
// in the lobyte of the unsigned int. Return value
// of -1 indicates the menu does not exist, and we
// have finished creating our pop up.
 while ((uMenuState =
 GetMenuState(hMenu,nMenu,MF_BYPOSITION)) != -1)
 {
 if (uMenuState != -1)
 {
// Get the menu string.
 GetMenuString(hMenu,nMenu, szBuf,128,MF_BYPOSITION);
 if (LOBYTE(uMenuState) & MF_POPUP) // It's a pop-up
menu.
 {
 hSubMenu = GetSubMenu(hMenu,nMenu);
 AppendMenu(hMenuOurs,
 LOBYTE(uMenuState),hSubMenu,szBuf);
 }
 else // Is a menu item, get the ID.
 {
 nID = GetMenuItemID(hMenu,nMenu);
 AppendMenu(hMenuOurs,LOBYTE(uMenuState),nID,szBuf);

 }
 nMenu++; // Get the next item.
 }
 }
 pt = MAKEPOINT(lParam);
// TrackPopupMenu expects screen coordinates.
 ClientToScreen(hWnd,&pt);
 TrackPopupMenu(hMenuOurs,
 TPM_LEFTALIGN|TPM_RIGHTBUTTON,
 pt.x,pt.y,0,hWnd,NULL);

// Because we are using parts of the main menu in our
// pop-up menu, we can't just delete the pop-up menu, because
// that would also delete the main menu. So we must
// go through the pop-up menu and remove all the items.
 while (RemoveMenu(hMenuOurs,0,MF_BYPOSITION))
 ;

// Destroy the pop-up menu.
 DestroyMenu(hMenuOurs);
 }
 break;

If the menu is never dynamically modified, then the menu hMenuOurs
could be made static and created inside the WM_CREATE message, and
destroyed in the WM_DESTROY message.

To see how this function works, paste this code into the MENU sample
application shipped with both Microsoft Visual C/C++ and Microsoft
C/C++ version 7.0 in the file MENU.C in the MenuWndProc() function.

Additional reference words: 3.10 3.50 3.51 4.00 95 popup
KBCategory: kbprg
KBSubcategory: UsrMen

Missing Japanese Win32s-J Version 1.25 Files

PSS ID Number: Q130844
Authored 30-May-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Japanese Win32s-J version 1.25

SUMMARY

The files missing from the Japanese Win32s version 1.25 release included in
MSDN (Microsoft Developers Network) Development Platform April '95 (CD 1)
are now available.

Download WIN32SJ.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for WIN32SJ.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WIN32SJ.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get WIN32SJ.EXE

MORE INFORMATION

The following files are missing from the MSDN Win32s-J v1.25 NODEBUG
directory:

ole2conv.dll
ole2conv.sym
ole2disp.dll
ole2disp.sym
ole2nls.dll
ole2nls.sym
ole2prox.dll
ole2prox.sym
ole2thk.dll
ole32.dll
oleaut32.dll
oleaut32.sym
olecli.dll
olecli32.dll
olecli32.sym

olesvr32.dll
olesvr32.sym
sck16thk.dll
shell32.dll
shell32.sym
stdole.tlb
stdole32.tlb
storage.dll
typelib.dll
typelib.sym
version.dll
version.sym
w32s.386
w32scomb.dll
w32scomb.sym
w32skrnl.dll
w32sys.dll
win32s.exe
win32s16.dll
winmm.dll
winmm16.dll
winspool.drv
winspool.sym
wsock32.dll
wsock32.sym

All of these files are included in the self-extracting file (WIN32SJ.EXE)
available from the MSL.

Additional reference words: 1.25 3.10 kbinf kbmsdn
KBCategory: kbother kbfile
KBSubcategory: wintldev

Mixer Manager Incorporated into NT 3.5 SDK and DDK

PSS ID Number: Q124504
Authored 03-Jan-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0
 - Microsoft Win32 Device Development Kit (DDK) version 3.5

In Windows version 3.1, the Mixer Manager Application Programming Interface
(API) and Mixer Manager Service Provider Interface (SPI) are provided by
the Windows Sound System Version 2.0 Driver Development Kit (DDK). The
Windows Sound System Version 2.0 DDK supports 16-bit application and driver
development for digital audio mixers.

Starting with Windows NT version 3.5, the Mixer Manager API has been
incorporated into the Win32 SDK, and the Mixer Manager SPI has been
incorporated into the Win32 DDK. As a result, there is no 32-bit version of
the Windows Sound System Version 2.0 DDK; all of its functions have been
incorporated into the Win32 SDK and DDK.

Additional reference words: 3.50 4.00 95 WSS DDK Mixer Manager
KBCategory: kbmm
KBSubcategory: MMMixer

MoveFileEx Not Supported in Windows 95 But Functionality Is

PSS ID Number: Q129532
Authored 27-Apr-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

Win32 applications running on Windows NT use MoveFileEx() with the
DELAY_UNTIL_REBOOT flag to move, replace, or delete the files currently
being used. Examples of such files include device drivers and setup
programs. To replace a file that is in use, you would do something like
this:

 MoveFileEx(szDstFile, NULL, MOVEFILE_DELAY_UNTIL_REBOOT);
 MoveFileEx(szSrcFile, szDstFile, MOVEFILE_DELAY_UNTIL_REBOOT);

Windows 95 does not implement MoveFileEx() but does provide an alternate
way for all Win32-, Win16-, and MS-DOS-based applications to move, replace,
or delete files that are currently in use. To replace a file that is in
use, you would do something like this:

 GetWindowsDirectory(szTmpName, cchpFullPathBuf);
 lstrcat(szTmpName, "\\WININIT.INI");
 WritePrivateProfileString("Rename", "NUL", szDstFile, szTmpName);
 WritePrivateProfileString("Rename", szDstFile, szSrcFile, szTmpname);

MORE INFORMATION

Although Windows 95 does not implement MoveFileEx(), it provides similar
functionality to the DELAY_UNTIL_REBOOT flag through the [rename] section
of WININIT.INI. If WININIT.INI is present in the Windows directory,
WININIT.EXE processes it when the system boots. Once WININIT.INI has been
processed, WININIT.EXE renames it to WININIT.BAK.

The syntax of the [rename] section is:

 DestinationFileName=SourceFileName

NOTE: The source and destination filenames in WININIT.INI must be 8.3 file
names. Long filenames are not processed.

The [rename] section can have multiple lines with one file per line. To
delete a file, specify NUL as the DestinationFileName.

NOTE: DestinationFileName and SourceFileName cannot be long filenames,
because WININIT.INI is processed before the protected mode disk system is
loaded, and long filenames are only available when the protected mode disk
system is running.

Here are some example entries:

 [rename]
 NUL=C:\TEMP.TXT
 C:\NEW_DIR\EXISTING.TXT=C:\EXISTING.TXT
 C:\NEW_DIR\NEWNAME.TXT=C:\OLDNAME.TXT
 C:\EXISTING.TXT=C:\TEMP\NEWFILE.TXT

The first line causes TEMP.TXT to be deleted. The second line causes
EXISTING.TXT to be moved to a new directory. The third line causes
OLDNAME.TXT to be moved and renamed. The fourth line causes an existing
file to be overwritten by NEWFILE.TXT.

Applications should not use WritePrivateProfileString() to write entries to
the [rename] section because there can be multiple lines with the same
DestinationFileName, especially if DestinationFileName is "NUL." Instead,
they should add entries by parsing WININIT.INI and appending them to the
end of the [rename] section.

Applications that use WININIT.INI should check for its existence in the
Windows directory. If WININIT.INI is present, then another application has
written to it since the system was last restarted. Therefore, the
application should open it, and add entries to the [rename] section. If
WININIT.INI isn't present, the application should create it and add to the
[rename] section. Doing so ensures that entries from other applications
won't be deleted accidentally by your application.

NOTE: WININIT.INI is not processed until Windows 95 is restarted.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseFileio

MS Setup Disklay2 Utility Calls COMPRESS.EXE Internally

PSS ID Number: Q103071
Authored 16-Aug-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

The Disklay2 utility that comes with the Microsoft Setup Toolkit calls the
COMPRESS.EXE application internally to compress files. If this utility
cannot be found during the execution of Disklay2, the infamous "Bad Command
or Filename" error results. The screen dump of the results of Disklay2's
progress will contain this error message. The solution is to ensure
COMPRESS.EXE is available in the path.

COMPRESS.EXE is a component of the Windows Software Development Kit (SDK).

Additional reference words: 3.10 3.50 4.00 95 mssetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

MultiByteToWideChar() Codepages CP_ACP/CP_OEMCP

PSS ID Number: Q108450
Authored 12-Dec-1993 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

MultiByteToWideChar() maps a character string to a wide-character string.
The declaration of this application programming interface (API) is as
follows:

 int MultiByteToWideChar(uCodePage, dwFlags, lpMultiByteStr,
 cchMultiByte, lpWideCharStr, cchWideChar)

 UINT uCodePage; /* codepage */
 DWORD dwFlags; /* character-type options */
 LPCSTR lpMultiByteStr; /* address of string to map */
 int cchMultiByte; /* number of characters in string */
 LPWSTR lpWideCharStr; /* address of wide-character buffer */
 int cchWideChar; /* size of wide-character buffer */

The first parameter, uCodePage, specifies the codepage to be used when
performing the conversion. This discussion applies to the first parameter
of WideCharToMultiByte() as well. The codepage can be any valid codepage
number. It is a good idea to check this number with IsValidCodepage(), even
though MultiByteToWideChar() returns an error if an invalid codepage is
used. The codepage may also be one of the following values:

 CP_ACP ANSI codepage
 CP_OEMCP OEM (original equipment manufacturer) codepage

CP_ACP instructs the API to use the currently set default Windows ANSI
codepage. CP_OEMCP instructs the API to use the currently set default OEM
codepage.

If Win32 ANSI APIs are used to get filenames from a Windows NT system, use
CP_ACP when converting the string. Windows NT retrieves the name from the
physical device and translates the OEM name into Unicode. The Unicode name
is translated into ANSI if an ANSI API is called, then it can be translated
back into Unicode with MultiByteToWideChar().

If filenames are being retrieved from a file that is OEM encoded, use
CP_OEMCP instead.

MORE INFORMATION

When an application calls an ANSI function, the FAT/HPFS file systems will

call AnsiToOem(); however, if an ANSI character does not exist in an OEM
codepage, the filename will not be representable. In these cases,
SetFileApisToOEM() should be called to prevent this problem by setting a
group of the Win32 APIs to use the OEM codepage instead of the ANSI
codepage.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

Multicolumn List Boxes in Microsoft Windows

PSS ID Number: Q64504
Authored 06-Aug-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows environment, a multicolumn list box is
designed to contain homogeneous data. For example, all the data might
be "first names." These first names could logically fall into the same
column or be in multiple columns. This feature was added to Windows at
version 3.0 to enable a list box to be shorter vertically by splitting
the data into two or three columns.

MORE INFORMATION

To create a multicolumn list box, specify the LBS_MULTICOLUMN style
when creating the list box. Then the application calls the SendMessage
function to send an LB_SETCOLUMNWIDTH message to the list box to set
the column width.

When an application sends an LB_SETCOLUMNWIDTH message to a
multicolumn list box, Windows does not update the horizontal scroll
bar until the a string is added to or deleted from the list box. An
application can work around this situation by performing the following
six steps when the column width changes:

1. Send the LB_SETCOLUMNWIDTH message to the list box.

2. Send a WM_SETREDRAW message to the list box to turn off redraw.

3. Add a string to the list box.

4. Delete the string from the list box.

5. Send a WM_SETREDRAW message to the list box to turn on redraw.

6. Call the InvalidateRect function to invalidate the list box.

In response, Windows paints the list box and updates the scroll bar.

Windows automatically manages the list box, including horizontal and
vertical scrolling and distributing the entries into columns. The
distribution is dependent on the dimensions of the list box. Windows
fills Column 1 first, then Column 2, and so on. For example, if an
application has a list box containing 13 ordered items and vertical
space for 5 items, items 1-5 would be in the first column, items 5-10

in the second, and 11-13 in the last column, and item order would be
maintained.

A multicolumn list box cannot have variable column widths.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Multiline Edit Control Does Not Show First Line

PSS ID Number: Q66668
Authored 01-Nov-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.10 3.5, 3.51, and 4.0

When a multiline edit control is created that is less than one system
character in height, the text in the edit control will not be displayed and
subsequent attempts to enter text will cause the edit control to beep. This
functionality is an invalid multiline edit control under Microsoft Windows
versions 3.0 and later, even though this construct does work in Windows
versions 2.x.

The multiline edit control also checks to see if the next line of text is
displayable. If the next line of text is not displayable, it will beep to
let you know that you have reached the limit of the edit control.

There is a similar situation with a control that overlaps another control
in a dialog box. This construct is also considered invalid; thus, the
second control will not be displayed.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Multiline Edit Control Limits in Windows NT

PSS ID Number: Q89712
Authored 28-Sep-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)versions 3.1, 3.5,
 3.51, and 4.0

The default maximum size for a multiline edit (MLE) control in both Windows
and Windows NT is 30,000 characters. The EM_LIMITTEXT message allows an
application to increase this value. Setting "cchmax" to 0 is a portable
method of increasing this limit to the maximum in both Windows and Windows
NT. When cchmax is set to 0, the maximum size for an MLE is 4GB-1 (4
gigabytes minus 1).

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Multiline Edit Control Wraps Text Different than DrawText

PSS ID Number: Q67722
Authored 12-Dec-1990 Last modified 23-Jun-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SUMMARY

Multiline edit controls will not wrap text in the same manner as the
DrawText() function. This can be a problem when an application
displays text that has been in an edit control because the text may
wrap in a different location.

It is possible to obtain the text from the edit control and display it
statically in a window with the same line breaks. To do this, the
application must retrieve each line of text separately. This can be
accomplished by sending the EM_GETLINE message to the control and
displaying the retrieved text with the TextOut() function.

MORE INFORMATION

The following is a brief code fragment that demonstrates how to obtain
the text of a multiline edit control line by line:

 ... /* other code */

 char buf[80]; // Buffer for line storage
 HDC hDC; // Temporary display context
 HFONT hFont; // Temporary font storage
 int iNumEditLines; // How much text
 TEXTMETRIC tm; // Text metrics

 // Get number of lines in the edit control
 iNumEditLines = SendMessage(hEditCtl, EM_GETLINECOUNT, 0, 0L);

 hDC = GetDC(hWnd);

 // Get font currently selected into the control
 hFont = SendMessage(hEditCtl, WM_GETFONT, 0, 0L);

 // If it is not the system font, then select it into DC
 if (hFont)
 SelectObject(hDC, hFont);

 GetTextMetrics(hDC, &tm);
 iLine = 0;

 while (iNumEditLines--)
 {
 // First word of buffer contains max number of characters
 // to be copied
 buf[0] = 80;

 // Get the current line of text
 nCount = SendMessage(hEditCtl, EM_GETLINE, iLine, (LONG)buf);
 TextOut(hDC, x, y, buf, nCount); // Output text to device
 y += tm.tmHeight;
 iLine++;
 }

 ReleaseDC(hWnd, hDC);
 ... /* other code */

The execution time of this code could be reduced by using the
ExtTextOut() function instead of TextOut().

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Multimedia API Parameter Changes in the Win32 API

PSS ID Number: Q125864
Authored 07-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

This article discusses the following topics concerning multimedia APIs in
the Win32 SDK:

 - Some Windows version 3.1 APIs that require a device ID will also accept
 a properly cast device handle in the Win32 API if the caller is a 32-bit
 application.

 - Some Windows version 3.1 APIs that require a device handle will also
 accept a properly cast device ID in the Win32 API if the caller is a
 32-bit application.

 - An explanation of the difference between using a device ID and using a
 device handle in conjunction with the above functions is given.

 - A list of related APIs that are now obsolete but are provided for
 backwards compatibility with Windows version 3.1 is given.

MORE INFORMATION

Functions That Accept A Device Handle

Several MIDI and wave audio APIs have been revised in Win32 to
provide greater flexibility to application developers. The following
APIs require the calling application to provide a device ID for the
target device under Windows 3.1, but under Win32 the APIs also
accept a properly cast device handle if the caller is a 32-bit
application:

 midiInGetDevCaps
 midiOutGetDevCaps
 waveInGetDevCaps
 waveOutGetDevCaps

Functions That Accept A Device ID

Conversely, the following APIs require the calling application to
provide a device handle under Windows 3.1, but under Win32 the APIs
also accept a properly cast device ID if the caller is a 32-bit
application:

 midiOutGetVolume
 midiOutSetVolume
 waveOutGetVolume
 waveOutSetVolume

Device ID vs. Device Handle

A device ID has a one-to-one correspondence with the physical device
it references and is determined by querying for the number of
devices of a given type in the system and selecting the desired
device. A device handle refers to a specific instance of a device,
of which there may be more than one, and is obtained by opening a
device. A device instance may be thought of as a logical copy of
a physical device.

If a 32-bit application is querying a device's capabilities using
one of the xxxGetDevCaps APIs listed above, the distinction between
whether a device ID or device handle is used in the function call
is unimportant because all instances of a device have the same
capabilities. The result of one of these function calls will be the
same whether or not a device ID or device handle was used.

However, if a 32-bit application uses one of the xxxVolume APIs listed
above to get or set the output volume of a device, the distinction
between using a device ID or device handle becomes important. If a
device ID is used in a call to these xxxVolume APIs, then the result
of the call and/or information returned applies to all instances of
the device. If a device handle is used in a call to the xxxVolume
APIs, then the result of the call and/or information returned by the
call applies only to the instance of the device referenced by the
device handle.

The revised versions of the above APIs are available to 32-bit
applications only. For backwards compatibility reasons, 16-bit
applications are subject to the API design of Windows 3.1.

Obsolete APIs

In addition to the above changes, the following related APIs are now
obsolete, but are included in Win32 for backwards compatibility
purposes:

 midiInGetID
 midiOutGetID
 waveInGetID
 waveOutGetID

For further information about all the above APIs and how to use
device IDs and device handles, please consult the Win32
Multimedia Programmer's Reference.

Additional reference words: 4.00 95

KBCategory: kbmm
KBSubcategory: MmMisc

Multimedia Group System and API Design Guidelines

PSS ID Number: Q67692
Authored 11-Dec-1990 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The Microsoft Multimedia Systems Group is doing a large amount of
system design and implementation. This article comments on the areas of
system design.

MORE INFORMATION

Definitions

 Term Definition
 ---- ----------

 Module A module provides a set of functions and the interface to
 access those functions. The interface is called the API.

 Client A client uses a module. A client might be an application
 or a dynamic-link library (DLL).

 Prefix The initialization portion of the module that must be
 called before any of the other functions can be accessed.

 Postfix The closing portion of the module that must be called
 after the client has finished using the functions of the
 module.

 Channel A channel is created by calling a module's prefix
 function. It is used by the rest of the functions of the
 module (including the postfix function).

 Two notes about a channel:

 1. A module can allocate resources to a channel. For
 example, a handle to a window is a channel, which has
 memory, a window procedure, and many other resources
 associated with it.

 2. The channel uniquely identifies the user of the
 interface to the module. This allows the module to
 perform functions uniquely on each open channel. For

 example, each file handle represents a different file
 that has been opened. Each file handle may have
 different attributes (read, write, read/write, binary,
 and so forth).

Separate Driver Interface from Module Interface

Separating the application from the hardware is one of the major tasks
of system software. Layers within the operating system are separated
from the hardware through the use of drivers. The system interface to
the application should hide the mechanisms of the drivers as much as
possible. This allows changing the mechanics of a driver in a later
version of the system software. This also preserves the formality of
the interface; applications are prevented from directly accessing the
hardware.

Each application should also be separated from the drivers within the
system. The driver API should not depend on where the driver is
located, what it is named, or what form it takes (DLL, VxD, and so
forth).

A driver should shield the application writer from its internal
workings to enforce the principle of information hiding. If too much
information is available, the application writer may choose to
directly access the hardware, which jeopardizes the separation of
functionality provided by the driver mechanism and system API.

Every Module Should Have an Initialization Function
--

Requiring the application to call a prefix function before using a
system module and a postfix function after using a system module
provides three major benefits, as follows:

1. Later versions of the driver can easily virtualize resources
 because the driver defies a channel for all communication. The
 driver can maintain separate resources for each communication
 channel, which is required for virtualization.

 Note that the complete virtualization does not need to be done in
 the first implementation of the module. As long as the interface
 requires the prefix and postfix calls, subsequent prefix calls can
 fail with an appropriate error message. Future versions of the
 system can properly handle multiple requests for the system
 resource.

2. The system module can allocate resources when the channel is
 allocated (when the prefix function is called), rather than when
 the system is initialized. Modules that are not called consume no
 resources. Resource allocation for all modules is postponed as long
 as possible.

3. The system can resolve conflicts between clients through the
 identification provided by the channels.

Interface Naming

During the process of designing a new module, use the interface naming
conventions from an existing module with similar functionality. For
example, an interface that deals with files would have a prefix
interface containing the word "open," and a postfix interface
containing the word "close." Extend naming conventions to similar
functional areas. A stream interface would also have an "open" and a
"close" function.

If the module has new functionality, then the functions can have
unique names, such as the MIDI driver's midiOutStop function. If the
module is similar to but not the same as another module, then use the
function name to distinguish between modules. For example, the
CreateWindow and CreateWindowEx functions in Windows create windows
but CreateWindowEx also allows an application to specify other
attributes.

The goal is to provide programmers familiar with existing modules a
basis by which to quickly learn the new interface.

Prefix function names with the module name (abbreviated, if
necessary). This allows the documentation to sort function names
alphabetically, while keeping related functions together. More
importantly, it allows easy identification of the module to which a
function belongs.

Definition Naming

Prefix the names of constants and data structures with the module name
(abbreviated, if necessary). For example, STRM_SEEK is a constant in
the STRM group. This allows easy identification of the module to which
a definition or data structure belongs.

As another example, MIDIOUTCAPS is the Device Capabilities structure
for the MIDI output module. Using the naming convention developed here
and symmetry (discussed in depth in the second part of this article),
the MIDI Input module Device Capabilities structure should be called
MIDIINCAPS.

Use additional prefixes as appropriate to identify the use of the
definition. For example, MOERR_NODRIVER is a definition in the MIDI
Output module to describe an error, that of no driver present.

Registering Drivers with Module

Most of the systems designed by the Multimedia group allow device
drivers to be installed by the original equipment manufacturer (OEM)
or even by the end user (given an appropriate setup program). There
are two main ways for these drivers to communicate with the main
module.

The first is to place an entry in the SYSTEM.INI file. When the parent
module loads, it loads the child driver and initiates communication
with the child.

The other method is for the child driver to call the parent to
register itself as a client. This second method presumes that there is
a suitable method available to load the child. Windows provides such a
mechanism.

Requiring a driver to register itself with the handler module provides
four benefits:

1. Drivers can be installed by adding them to the "modules to load"
 list. This is much easier than creating a line for the SYSTEM.INI
 file.

2. The handler module is more general because it does not assume the
 presence of certain drivers. This enhances system portability and
 reduces interdependencies between drivers and handlers. This
 advantage also applies to drivers loaded by a parent process.

3. A driver can pass information about itself, such as its name and
 entry points, to its parent during registration. This further
 separates the parent module from the driver. As long as the format
 of the interface data is fixed, independent changes may be made to
 both parent and driver.

4. Run-time installation of drivers is possible. The inherent nature
 of registration makes installing new drivers while the system is
 running much easier. This also simplifies implementing
 virtualization.

Symmetry of Function Names

 - Every Open function should have a Close function and every Get
 function a Put function.

 - Related functions in separate areas should work the same way. For
 example, if the MIDI output has an Open, the MIDI input should also
 have an Open. Additionally, the return values and parameters should
 be as similar as possible. This eases the programmer's task of
 learning the new APIs. This applies even if the current
 implementation doesn't use API symmetry. See "Designing for
 Implementation in Steps," below.

Symmetry in Naming Conventions

 - Name defined constants and types for related areas should all be
 named using the same conventions. For example, LPMIDICALLBACK and
 LPWAVECALLBACK.

 - If a naming convention already exists for a function type, adhere

 to it. Example: use SEEK and TELL functions to move within a file
 system.

 - If any part of an existing convention is used, little deviation
 from it is allowed. For example, a combination of SEEK and GET
 functions to move within a file system would not be the product of
 good design because it confuses an existing convention.

 - If a convention does not already exist, create a new naming
 convention to avoid confusing things. Example: KNOCK and ANSWER.

Design for Implementation in Steps

Most implementations of any size must be done in incremental steps of
functionality. More and more features are added to the modules until
the entire design is completely implemented. For large or complex
modules, this process may occur over several years. However, the
original design must anticipate the complete, final functionality, not
just the short-term goals. For example, even if allowing multiple
users of a module will not be implemented in the first phase, this
capability should be designed into the API. That way, the impact on
users of the module will be minimal once implementation is complete.

Avoid placing arbitrary limits on functionality due to details of the
current implementation. For example, even if only one user can have a
resource allocated today, this may not always be true. Specifically,
the Open function should return a handle to the resource that is then
passed to functions that manipulate the resource. In the future, when
multiple users of the resource is implemented, it will not be
necessary to change other functions or applications.

In a message-based system, functions should return a "message not
recognized" code for unexpected messages that is distinct from the "an
error occurred" code. Then, when a future version of the driver
contains extended functionality, an application can determine if the
installed version of the driver supports the new features. If not, the
application can take appropriate alternative action.

A project designed to be built in phases has well defined progress
milestones. This makes it much easier to track progress while the
module is under construction.

Building a module in phases also makes it easier to verify that the
module is built correctly. Testing receives increments of
functionality instead of the entire product toward the end of the
development cycle.

Error Reporting

An function call can fail for many reasons. It is best if the call can
return the specific cause of the error in addition to noting that the
call failed. Functions that return a handle, structure, or other data
cause particular problems because there is a limited set of values

that are always invalid.

Three approaches to error reporting are:

1. Ignore it (not recommended).

2. Provide a separate "what was that error?" call. This is more
 complicated than it sounds because, in a multitasking system, there
 can be multiple users of the module at the same "time." This makes
 determining what was the last error for a particular application
 difficult.

3. Return the handle or structure in a parameter and return the error
 code as the function return. This seems to be the best option, and
 is the approach used by OS/2.

Now that the error code is available, what should be done with it? To
allow for internationalization and for additional error codes, the
application should not associate the error code with a message.
Instead, provide a function in each API that returns the text message
for a specified error code. This function might be named
GetTextErrorInformation, for example.

Client-Supplied Buffers

It is desirable for the client application to provide all buffers that
it will access. If a system module allocates and maintains buffers,
many implementation problems can arise when a buffer is made visible
to the client application. Three advantages of client-supplied buffers
are:

1. If the system software runs at a different privilege level or on a
 different CPU, or is otherwise separate from the client
 application, the system software can easily access the buffer.
 However, at the client's lower privilege level, or if the client
 and operating system are on different CPUs, it may be extremely
 difficult (if not impossible) to make a system-supplied buffer
 available to the client.
2. When the application supplies the buffers, the application has
 complete control over how much memory the system module uses.

3. The application is responsible for reporting an out-of-memory
 error. This removes an error condition from the system call.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbmm kbprg
KBSubcategory: MMMisc

Multiple Columns of Text in Windows Help Files

PSS ID Number: Q67895
Authored 28-Dec-1990 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Microsoft Windows Help version 3.0 will support multiple columns of
information in Help files. Unfortunately, the Table features of Word for
Windows are not supported in Help version 3.0. In Windows Help version 3.1,
however, Word for Windows tables are supported. Below is an outline of the
supported techniques for creating multiple columns in Help files.

MORE INFORMATION

The best results can be achieved with Help version 3.0 if the text is
organized such that one column has the bulk of the text to be
presented and the other columns have relatively little text. The text
might resemble the following:

 column1column1 column2 column3column3column3column3column3column3col
 column3column3column3...

As the size of the Help window is decreased, the text in the third
column will wrap to remain displayed for as long as possible. To
achieve this effect, format the text as paragraphs with an "outdent,"
or negative indent, as shown in the following example:

 First line Left margin and tab stop
 v v
 column1column1 column2 column3column3column3column3column3column3col
 column3column3column3...

A typical format for paragraphs of this type is:

 Left Margin 2.5"
 First Line -2.5"

It is also necessary to define a tab stop at 2.5 inches.

Having two columns of text in the outdent is merely an example. You
can define as many or as few columns in that space as necessary.

If two columns with similar amounts of text in each are required, you
can use the side-by-side paragraph formatting of Word for the
Macintosh or Word for MS-DOS. Only two paragraphs side-by-side are

supported by the Help compiler.

If neither of the tools mentioned above is available, or if more
complicated tables are required, you can format the tables manually.
Define appropriate tab stops and use them to align the columns of
text. Format each physical line in the table as a separate paragraph.
Select the entire table and format the paragraphs as "Keep Together."
In the context of a Help system, this paragraph format disables word
wrap.

The following is an example of a more complex table. In this example,
(P*) is the paragraph mark at the end of a line:

 column1column1 column2column2 column3column3column3column3colu(P*)
 column1column1 column2coul column3column3column3column3colu(P*)
 column1column1 column3column3column3column3(P*)
 column1column1(P*)

 newcol1newcol1 newcol2newcol2 newcol3newcol3newcol3newcol3...(P*)

As the size of the Help window is reduced, the text will not wrap.
Instead, you must use the horizontal scroll bar at the bottom of the
window to view the remainder of the table.

Support for Word for Windows tables was added in Windows Help version 3.1.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Multiple Desktops Under Windows NT

PSS ID Number: Q92505
Authored 08-Nov-1992 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.51, 3.5, and 3.1

Windows NT does not support sharing the same desktop between two monitors
on the same machine. An independent software vendor (ISV) that wants this
capability must write a display device driver that behaves similar to a
normal driver with a single monitor, but actually controls two monitors.

Support for multiple desktops is exposed and supported in Windows NT
version 3.51.

Additional reference words: 3.10 3.50
KBCategory: kbother kbui
KBSubcategory: UsrMisc

Multiple References to the Same Resource

PSS ID Number: Q83808
Authored 20-Apr-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Windows supports multiple references to a given resource. For example,
suppose that an application has two top-level menus that each contain the
same submenu. (An application can use the AppendMenu or SetMenu functions
to add a submenu to another menu at run time.)

Normally, destroying a menu destroys all of its submenus. In the case
above, however, when one menu is destroyed, the other menu has a lock on
the common submenu. Therefore, the common submenu remains in memory and is
not destroyed. The handle to the submenu remains valid until all references
to the submenu are removed. The submenu either remains in memory or is
discarded, while its handle remains valid.

MORE INFORMATION

Windows maintains a lock count for each resource, including menus. When the
lock count falls to zero, Windows can free (destroy) the object. Each time
an application loads a resource, its lock count is incremented. If a
resource is loaded more than once, only one copy is created; subsequent
loads only increment the lock count. Each call to free a resource
decrements its lock count.

When the LoadResource function determines if a resource has already been
loaded, it also determines if the resource has been discarded. If so,
LoadResource loads the resource again. The resource is not necessarily
present in memory at all times. However, if the lock count is not zero and
the resource is discarded, Windows will automatically reload the resource.
All resources are discardable and will be discarded if required to free
memory.

Therefore, in the example above, the application's call to the DestroyMenu
function calls FreeResource, which checks the lock count. This process is
analogous to LoadMenu, which calls LoadResource.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrRsc

Multiprotocol Support for Windows Sockets

PSS ID Number: Q125704
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

The Windows Sockets (WinSock) API is based on the Berkeley Sockets
progamming model, the standard interface for TCP/IP network programming on
Windows. However, the WinSock implementations for Windows NT and Windows 95
include support for additional network transports. Here are the network
transports supported by Microsoft WinSock implementations, listed by
platform. For convenience, the headers and libraries required for
application development are also listed.

Platform Transport Header* Lib
--
Windows NT TCP/IP WINSOCK.H WSOCK32.LIB
 IPX/SPX WSIPX.H, WSNWLINK.H ""
 NetBEUI (via NetBIOS) WSNETBS.H ""
 Appletalk ATALKWSH.H ""
 ISO/TP4 WSHISOTP.H ""

Windows 95 TCP/IP WINSOCK.H ""
 IPX/SPX WSIPX.H, WSNWLINK.H ""

Windows for
Workgroups
version 3.11 TCP/IP WINSOCK.H WINSOCK.LIB

* WINSOCK.H is required for all platforms and transports, in addition to
 other header files.

MORE INFORMATION

The Windows Sockets API provides a uniform interface to multiple network
transports and shields the programmer from most transport level
ideosyncracies. However, WinSock does not eliminate the need to learn the
basics of the transport protocol used. In particular, the programmer should
be familiar with the following aspects of any transport protocol used with
Windows Sockets:

1. Addressing.

 Each transport uses different address format. For example, the IP
 socket address structures looks like this:

 /*

 * Socket address, internet style.
 */
 struct sockaddr_in
 {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
 };

 struct in_addr
 {
 union
 {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
 }

 In contrast, the IPX address structure looks like this:

 typedef struct sockaddr_ipx
 {
 short sa_family;
 char sa_netnum[4];
 char sa_nodenum[6];
 unsigned short sa_socket;
 } SOCKADDR_IPX;

2. Connection-Oriented vs. Connectionless Transport.

 In a connection-oriented transport protocol such as TCP or SPX,
 applications are required to establish a virtual circuit before data
 transfer can take place. The following sequences of WinSock functions
 are required at minimum to establish a virtual circuit:

 Server Client

 socket socket
 bind connect
 listen
 accept

 After the virtual circuit is established, the send() and recv()
 functions are used to transfer data.

 In a connectionless transport, a virtual circuit is not established.
 Both the client and server exchange data by binding a socket and
 calling sendto() or recvfrom().

3. Virtual circuit termination semantics.

4. Message Oriented vs. Stream-Oriented.

 See the Win32 SDK online documentation for information on these topics.

5. Expedited data delivery.

 This is data that has been earmarked by the application as urgent data,
 and will be sent by the transport as quickly as possible. Not all
 transports support this feature. The Windows Sockets API provides the
 ability to request expedited data delivery via the MSG_OOB flag in the
 send() function.

6. Broadcasts.

 Here is an extract from the Win32 SDK online documentation:

 "Most connectionless transport protocols support broadcasts in the
 same fashion, in which any bound socket can send a broadcast if the
 SO_BROADCAST option is set, and broadcasts sent to the appropriate
 local endpoint are received without any additional work on the part
 of the application. NetBIOS transport protocols, however, handle
 broadcasts somewhat differently. In order to receive broadcasts, an
 application must bind to the NetBIOS broadcast address, which is an
 asterisk ("*") followed by 15 blank spaces (ASCII character 0x20).
 This means two things: A socket must be specially bound to receive
 broadcasts, and applications cannot depend on receiving broadcasts
 intended only for a specific application, since all NetBIOS broadcasts
 are delivered to this address. In other protocols such as
 UDP/IP and IPX, broadcasts are delivered to a socket only if the
 broadcast was sent to the same port to which the socket was bound."

For more information on any of the above topics, please see the Win32 SDK
online documentation.

Additional reference words: 4.00
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

Mutex Wait Is FIFO But Can Be Interrupted

PSS ID Number: Q125657
Authored 01-Feb-1995 Last modified 03-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.1 and 3.5

SUMMARY

A mutex is a synchronization object that is signalled when it is not owned
by any thread. Only one thread at a time can own a mutex. Other threads
requesting the mutex will have to wait until the mutex is signalled. This
article discusses the order in which threads acquire the mutex.

MORE INFORMATION

Threads that are blocked on a mutex are handled in a first in, first out
(FIFO) order. Therefore, the first to wait on the mutex will be the first
to receive the mutex, regardless of thread priority.

It is important to remember that Windows NT can interrupt the wait and that
this will change the order in which threads are queued. A kernel-mode
asynchronous procedure call (APC) can interrupt a user-mode thread's
execution at any time. Once the normal execution of the thread resumes, the
thread will again wait on the mutex; however, the thread is placed at the
end of the wait queue. For example, each time you enter the debugger (hit a
breakpoint, execute OutputDebugString(), and so on), all application
threads are suspended. Suspending a thread causes the thread to run a piece
of code in kernel mode. When you continue from the debugger, the threads
are resumed, causing them to resume their wait for the mutex, but possibly
in a different order than before. In this case, it does not look like the
mutex is acquired in FIFO order. Some threads may be unable to acquire the
mutex when the application in run under the debugger.

NOTE: This implementation detail is subject to change. Windows 95 and other
platforms that support the Win32 API may adopt different strategies.

Most programs do not usually need to make any assumption about this
behavior. The only class of applications that should be sensitive to mutex
claim and release throughput are realtime-class applications. If throughput
is of importance to a program, critical sections should be used wherever
possible.

Additional reference words: 3.10 3.50 windbg ntsd
KBCategory: kbprg
KBSubcategory: BseSync

Named Pipe Buffer Size

PSS ID Number: Q105531
Authored 20-Oct-1993 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, and 3.51

The documentation for CreateNamedPipe() indicates that

 The input and output buffer sizes are advisory. The actual buffer
 size reserved for each end of the named pipe is either the system
 default, the system minimum or maximum, or the specified size
 rounded up to the next allocation boundary.

The buffer size specified should be a reasonable size so that your process
will not run out of nonpaged pool, but it should also be large enough to
accommodate typical requests.

Every time a named pipe is created, the system creates the inbound and/or
outbound buffers using nonpaged pool, which is the physical memory used by
the kernel. The number of pipe instances (as well as objects such as
threads and processes) that you can create is limited by the available
nonpaged pool. Each read or write request requires space in the buffer for
the read or write data, plus additional space for the internal data
structures.

Whenever a pipe write operation occurs, the system first tries to charge
the memory against the pipe write quota. If the remaining pipe write quota
is enough to fulfill the request, the write completes immediately.

If the remaining pipe write quota is too small to fulfill the request, the
system will try to expand the buffers to accommodate the data using
nonpaged pool reserved for the process. The write will block until the data
is read from the pipe so that the additional buffer quota can be released.
Therefore, if your specified buffer size is too small, the system will grow
the buffer as needed, but the downside is that the operation will block. If
the operation is overlapped, a system thread is blocked; otherwise, the
application thread is blocked.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Named Pipes Under WOW

PSS ID Number: Q94948
Authored 26-Jan-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

A 16-bit Windows-based application under Windows on Win32 (WOW) may use a
named pipe that was created previously by a Win32-based application;
however, REDIR.EXE must be included in the AUTOEXEC.BAT file for this to
work properly.

Note that for local named pipes, networking doesn't need to be enabled.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Nesting Quotation Marks Inside Windows Help Macros

PSS ID Number: Q77748
Authored 24-Oct-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

In Windows Help macros, strings may be delimited in two ways. The
string can be opened and closed by double quotation marks or the
string can be opened by a single opening quotation mark and closed by
a single closing quotation mark.

Any quoted strings contained in a string delimited with double
quotation marks must be enclosed in opening and closing single
quotation marks.

The single opening quotation mark is different from the single closing
quotation mark. The single opening quotation mark (`) is paired with
the tilde (~) above the TAB key on extended keyboards; the single
closing quotation mark (') is the same as the apostrophe. For example,

 CreateButton("time_btn", "&Time", "ExecProgram("clock", 0)")

is illegal because the string "clock" uses double quotation marks
within the double quotation marks used for the ExecProgram macro. The
following example corrects the error by enclosing "clock" in single
quotation marks:

 CreateButton("time_btn", "&Time", "ExecProgram(`clock', 0)")

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

NetBIOS Name Table and NCBRESET

PSS ID Number: Q95944
Authored 02-Mar-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The Windows NT NetBIOS implementation conforms to the IBM NetBIOS 3.0
specifications, with several enhancements discussed in this article.

MORE INFORMATION

Name Table

Under Windows NT, the name table is maintained on a per-process basis,
which means that names added by one process are not visible by a different
process. This also means that for two processes to establish a session,
both processes must register two different NetBIOS names. However, sessions
can be established by two threads in the same process using the same
NetBIOS name.

NCBRESET

The IBM NetBIOS 3.0 specifications defines four basic NetBIOS environments
under the NCBRESET command. Win32 follows the OS/2 Dynamic Link Routine
(DLR) environment. This means that the first NCB issued by an application
must be a NCBRESET, with the exception of NCBENUM. The Windows NT
implementation differs from the IBM NetBIOS 3.0 specifications in the
NCB_CALLNAME field.

In the "IBM Local Area Network Technical Reference," under the section on
NetBIOS 3.0, the NCB_CALLNAME field is defined as the following:

 REQ_SESSIONS at NCB_CALLNAME+0 (1-byte field)
 The number of sessions requested by the application program.
 If zero, the default of 16 is used.

 REQ_COMMANDS at NCB_CALLNAME+1 (1-byte field)
 The number of commands requested by the application program.
 If zero, the default of 16 is used.

 REQ_NAMES at NCB_CALLNAME+2 (1-byte field)
 The number of names requested by the application program. This
 does not include a reservation for NAME_NUMBER_1.
 If zero, the default of 8 is used.

 REQ_NAME_ONE at NCB_CALLNAME+3 (1-byte field)
 A request to reserve NAME_NUMBER_1 for this application program.
 If 0, NAME_NUMBER_1 is not requested.
 If not 0, NAME_NUMBER_1 is desired to be reserved for this
 application.

Under the Windows NT implementation, the REQ_COMMANDS (NCB_CALLNAME+1)
field is ignored. Instead, an application is bound by the amount of memory
the process can allocate.

For more information on the differences between the Windows NT
implementation and the IBM NetBIOS 3.0 specifications, see "The NetBIOS
Function" in the "Win32 API Reference" Help file.

For more information on version 3.0 of NetBIOS, contact IBM and order the
"IBM Local Area Network Technical Reference."

Additional reference words: 3.00 3.10 3.50 NCBRESET
KBCategory: kbprg
KBSubcategory: NtwkNetbios

Network DDE For 16-bit Windows-based Apps Under Windows NT

PSS ID Number: Q127861
Authored 19-Mar-1995 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

Network Dynamic Data Exchange (NetDDE) has limited support for 16-bit
Windows application running under Windows NT. You can use DDE across the
network, however, the NDde APIs are not supported.

The NDde APIs, such as NDdeShareAdd(), are used to create and manage the
NetDDE shares, not for the actual communication. Therefore, for 16-bit
applications to use NetDDE under Windows NT, you will need to use Generic
Thunks to thunk to the 32-bit NDde APIs to create and trust the share. Once
that is done, you can communicate using DDE or DDEML.

NOTE: You must be an administrator to add a DDE share.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: SubSys UsrNetDde

New Dialog Styles in Windows 95

PSS ID Number: Q125678
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 provides a few new dialog styles -- all listed in this article.
All Windows version 3.1 dialog styles are still usable in Windows 95.
However, DS_LOCALEDIT cannot be used in Win32-based applications because it
does not apply. Although not documented, DS_ABSALIGN and DS_SETFONT exist
in Windows version 3.1. They are documented in Windows 95.

MORE INFORMATION

Here is a list of the new dialog styles:

DS_3DLOOK Gives the dialog box a nonbold font and draws
 three-dimensional borders around control windows
 in the dialog box.

DS_CENTER Centers the dialog box in the working area -- the
 area not obscured by the tray.

DS_CENTERMOUSE Centers the mouse cursor in the dialog box.

DS_CONTEXTHELP Includes a question mark in the title bar of the
 dialog box. When the user clicks the question mark,
 the cursor changes to a question mark with a
 pointer. If the user then clicks a control in the
 dialog box, the control receives a WM_HELP message.
 The control should pass the message to the dialog
 procedure, which should call the WinHelp function
 using the HELP_WM_HELP command. The Help
 application displays a pop-up window that
 typically contains help for the control. Note that
 DS_CONTEXTHELP is just a placeholder. When the dialog
 box is created, the system checks for DS_CONTEXTHELP
 and, if it is there, adds WS_EX_CONTEXTHELP to the
 extended style of the dialog box.

DS_CONTROL Creates a dialog box that works well as a child
 window of another dialog box, much like a page in
 a property sheet. This style allows the user to
 tab among the control windows of a child dialog
 box, use its accelerator keys, and so on.

DS_FIXEDSYS Uses SYSTEM_FIXED_FONT instead of SYSTEM_FONT.

DS_NOFAILCREATE Creates the dialog even if errors occur -- for
 example, if a child window cannot be created
 or if the system cannot create a special data
 segment for an edit control.

DS_SETFOREGROUND Brings the dialog box to the foreground.
 Internally, Windows calls the SetForegroundWindow
 function for the dialog box.

Additional reference words: 4.00 DLGTEMPLATE kbinf
KBCategory: kbui kbprg
KBSubcategory: UsrDlgs

New Owner in Take-Ownership Operation

PSS ID Number: Q111541
Authored 14-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

When ownership of a file is taken, the user performing the operation
becomes the new owner. The exception to this rule is when the user is a
member of the "Administrators" group. In this situation, the ownership of
the file is assigned to the Administrators group.

The reasoning for this behavior is that the administrators on a particular
system work together. When one administrator takes ownership of a file, the
others should also receive access.

MORE INFORMATION

When a take-ownership operation is performed, the system assigns the new
owner SID based on the TOKEN_OWNER field of the user's access token.

When a user logs on to a Windows NT system, the logon process builds an
access token to represent the user. Normally the TOKEN_OWNER field in the
access token is set equal to TOKEN_USER (the user's SID). However, when the
user is a member of the Administrators group, the system sets the
TOKEN_OWNER field to the Administrators SID.

Although Windows NT does not provide a user interface for changing the
TOKEN_OWNER field in the user's access token, it is possible to
programatically change this value via the SetTokenInformation() Win32 API
(application programming interface).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

New User Heap Limits Under Windows 95

PSS ID Number: Q125676
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows version 3.1, window and menu data is maintained in two 16-bit
heaps. This limits window and menu data to 64k each. Windows 95 uses
32-bit heaps for window and menu data, thus greatly expanding the
limits placed on the number of items contained in these heaps.

MORE INFORMATION

Windows version 3.1 user and menu heaps are each limited to 64K of data.
As a result, the number of window and menus in a system are each
constrained to around 200. In Windows 95, the number of Windows and Menus
that may exist in the system goes up to 32K each. This is possible because
the Windows 95 user and menu heaps are each two megabytes in size.

The first 64K of the user heap looks exactly as it did in Windows version
3.1, except for the absense of WND structures. The Windows 95 WND
structures populate the heap space above 64K, thus increasing the number of
WND structures the heap can hold. This new arrangement also has the
positive effect of freeing up space in the lower 64K space, making more
space for class structures and other items that reside in the user heap.
For the menu heap, there is nothing special about the low 64K, menus and
their data may appear anywhere in the two-megabyte heap.

Additional reference words: 4.00
KBCategory: kbusage
KBSubcategory: UsrMisc

New Window Styles in Windows 95

PSS ID Number: Q125679
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 provides a number of new window styles that help make the user
interface more attractive and intuitive. These new styles are listed in
this article. Most of the new styles are extended styles, which are
specified with the CreateWindowsEx() function. All Windows version 3.1
window styles are still usable in Windows 95.

MORE INFORMATION

Here are the new styles:

WS_EX_ABSPOSITION Specifies that a window has an absolute position.

WS_EX_CLIENTEDGE Specifies that a window has a 3D look -- that is
 a border with a sunken edge.

WS_EX_CONTEXTHELP Includes a question mark in the title bar of the
 window. When the user clicks the question mark,
 the cursor changes to a question mark with a
 pointer. If the user then clicks a child window,
 the child receives a WM_HELP message.

WS_EX_CONTROLPARENT Allows the user to navigate among the child windows
 of the window by using the TAB key.

WS_EX_LEFT Gives window generic left-aligned properties.
 This is the default.

WS_EX_LEFTSCROLLBAR Places vertical scroll bar to the left of the
 client area.

WS_EX_LTRREADING Displays the window text using left-to-right
 reading order properties. This is the default.

WS_EX_MDICHILD Creates an MDI child window.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and WS_EX_WINDOWEDGE
 styles.

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE, WS_EX_SMCAPTION,
 and WS_EX_TOPMOST styles.

WS_EX_RIGHT Gives window generic right-aligned properties.
 This depends on the window class.

WS_EX_RIGHTSCROLLBAR Places vertical scroll bar (if present) to the
 right of the client area. This is the default.

WS_EX_RTLREADING Displays the window text using right-to-left
 reading order properties.

WS_EX_SMCAPTION Creates a window that has a small title bar.

WS_EX_STATICEDGE Creates a window with a three-dimensional border
 style intended to be used for items that do not
 accept user input.

WS_EX_TOOLWINDOW Creates a tool window, which is a window intended
 to be used as a floating toolbar. A tool window has
 a title bar that is shorter than a normal title
 bar, and the window title is drawn using a smaller
 font. A tool window does not appear in the task bar
 or in the window that appears when the user presses
 ALT+TAB.

WS_EX_WINDOWEDGE Specifies that a window has a border with a raised
 edge.

Additional reference words: 4.00 CreateWindowEx kbinf
KBCategory: kbui kbprg
KBSubcategory: UsrWndw

New Windows 95 Styles Make Attaching Bitmap to Button Easier

PSS ID Number: Q125673
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

In Windows 95, there are two new button styles (BS_BITMAP and BS_ICON).
Using these styles makes attaching a bitmap or an icon to a button in
Windows 95 easier than it was in Windows version 3.1.

MORE INFORMATION

In Windows version 3.1 you create the button by using the CreateWindow()
function with the BS_OWNERDRAW style to attach a bitmap or an icon to a
button. Each time the parent window receives the WM_DRAWITEM message the
bitmap or the icon must be loaded and drawn on the button.

In Windows 95 you can create a button with style BS_BITMAP to display a
bitmap instead of text on the button. After you create the button by using
CreateWindow() function, assign the bitmap to the button by sending a
WM_SETIMAGE message to the button with the wparam as IMAGE_BITMAP and
lparam as a handle to the bitmap. Windows displays the specified bitmap on
the button. The attached bitmap should not be deleted until the button uses
it.

SAMPLE CODE

hwndButton = CreateWindow(
 "BUTTON", // predefined class
 "OK", // button text
 WS_VISIBLE| WS_CHILD | BS_DEFPUSHBUTTON |BS_BITMAP, //styles
 // Size and position values are given explicitly, because
 // the CW_USEDEFAULT constant gives zero values for buttons.
 5, // starting x position
 5, // starting y position
 30,// button width
 18, // button height
 hWnd,// parent window
 NULL,// No menu
 (HINSTANCE) GetWindowLong(hWnd,
 GWL_HINSTANCE), NULL); // pointer not needed

// load the bitmap, NOTE: delete it only when it's no longer being used.
hBitmap = LoadBitmap(hInst,MAKEINTRESOURCE(IDB_BITMAP1));
// associate the bitmap with the button.
SendMessage(hwndButton,BM_SETIMAGE,(WPARAM)IMAGE_BITMAP,

 (LPARAM)(HANDLE)hBitmap);

In Windows 95, you can also create a button with style BS_ICON to display a
icon instead of text on the button. After creating the button by using
CreateWindow() function, assign the icon to the button by sending a
WM_SETIMAGE message to the button with the wparam as IMAGE_ICON and the
lparam as the handle to the icon. Windows displays the specified icon on
the button.

NOTE: The system handles cleanup of icons or cursors loaded from resources.
Therefore, the icon should not be deleted unless the icon was created at
run time by using CreateIcon() function.

SAMPLE CODE

hwndButton = CreateWindow(
 "BUTTON", // predefined class
 "OK", // button text
 WS_VISIBLE | WS_CHILD | BS_DEFPUSHBUTTON|BS_ICON,//styles
 // Size and position values are given explicitly, because
 // the CW_USEDEFAULT constant gives zero values for buttons.

 5, // starting x position
 5, // starting y position
 30, // button width
 18, // button height
 hWnd, // parent window
 NULL, // No menu
 (HINSTANCE) GetWindowLong(hWnd,GWL_HINSTANCE),
 NULL); // pointer not needed

// load the icon, NOTE: you should delete it after assigning it.
hIcon = LoadIcon(hInst,MAKEINTRESOURCE(IDI_ICON1));
// associate the icon with the button.
SendMessage(hwndButton,BM_SETIMAGE,(WPARAM)IMAGE_ICON,
 (LPARAM)(HANDLE)hIcon);

If a bitmap or icon is not specified via the BM_SETIMAGE message and the
BS_BITMAP or BS_ICON style is specified, a blank button with no text is
displayed.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrWnd

No Subsystem Developer Kit or Support for Such a Kit

PSS ID Number: Q89987
Authored 06-Oct-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

There is not a kit available for developers to write subsystems, nor are
there plans to provide such a kit. Furthermore, there is no documentation
or support available to develop a subsystem for Windows NT.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Non-Addressable Range in Address Space

PSS ID Number: Q92764
Authored 15-Nov-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

In Windows NT, each process has its own private address space. The process
can use up to 2 gigabytes of virtual memory. This 2Gb is not necessarily
contiguous. The system uses the other 2Gb.

The user-mode addresses extend from 0x00010000 to 0x7FFF0000. The
following ranges are reserved as non-address space to ensure that the
process does not walk on system-owned memory

 0x00000000 to 0x0000FFFF (first 64K of virtual space)

 0x7FFF0000 to 0x7FFFFFFF (last 64K of user virtual space)

These are effectively PAGE_NOACCESS ranges.

Additionally, Win32 DLLs will reserve other specific address ranges. For
more information, see the file COFFBASE.TXT that comes with the DDK.

MORE INFORMATION

This range is not guaranteed to serve this purpose in the future. There
could be good reasons in a future implementation to use these addresses.
Code that is going to depend on this non-address range should verify its
validity at run time with something like

 BOOL IsFirst64kInvalid(void)
 {
 BOOL bFirst64kInvalid = FALSE;

 try {
 *(char *)0x0000FFFF;
 }
 except (EXCEPTION_EXECUTE_HANDLER) {
 if (EXCEPTION_ACCESS_VIOLATION == GetExceptionCode())
 bFirst64kInvalid = TRUE;
 }

 return bFirst64kInvalid;
 }

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseMm

Noncontinuable Exceptions

PSS ID Number: Q98840
Authored 13-May-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

An exception is noncontinuable if the event isn't continuable in the
hardware, or if continuation makes no sense. For example, if the caller's
stack is corrupted while trying to post an exception, continuing from the
bad stack exception would not be useful.

The noncontinuable exception does not terminate the application, and
therefore an application that can succeed in catching the exception and
running after a noncontinuable exception is free to do so. However, a
noncontinuable exception typically arises as a result of a corrupted stack
or other serious problem, making it very difficult to recover from the
exception.

Additional reference words: 3.10 3.50 4.00 95 non-continuable
KBCategory: kbprg
KBSubcategory: BseExcept

Nonzero Return from SendMsg() with HWND_BROADCAST

PSS ID Number: Q102588
Authored 04-Aug-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The SendMessage() function calls the window procedure for the
specified window and does not return until that window has processed
the message and returned a value. Applications can send messages to
all top-level windows in the system by specifying HWND_BROADCAST as
the first parameter to the SendMessage() function. In doing so,
however, applications lose access to the return values resulting from
the SendMessage() call to each of the top-level windows.

MORE INFORMATION

When a call to SendMessage() is made, the value returned by the window
procedure that processed the message is the same value returned from
the SendMessage() call.

Among other things, SendMessage() determines whether the first
parameter is HWND_BROADCAST (defined as -1 in WINDOWS.H). If
HWND_BROADCAST is the first parameter, SendMessage enumerates all
top-level windows in the system and sends the message to all these
windows. Because this one call to SendMessage() internally translates
to a number of SendMessage() calls to the top-level windows, and
because SendMessage() can return only one value, Windows ignores the
individual return values from each of the top-level window procedures,
and just returns a nonzero value to the application that broadcast the
message. Thus, applications that want to broadcast a message to all
top-level windows, and at the same time expect a return value from
each SendMessage() call, should not specify HWND_BROADCAST as the
first parameter.

There are a couple of ways to access the correct return value from
messages sent to more than one window at a time:

 - If the broadcasted message is a user-defined message, and only a few
 other applications respond to this message, then those applications
 that trap the broadcasted message must return the result by sending
 back another message to the application that broadcast the message.
 The return value can be encoded into the message's lParam.

 - If the application does not have control over which application(s)
 will respond to the message, and it still expects a return value,
 then the application must enumerate all the windows in the system

 using EnumWindows() function, and send the message separately to
 each window it obtained in the enumeration callback function.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

Objects Inherited Through a CreateProcess Call

PSS ID Number: Q83298
Authored 08-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The objects inherited by a process started by a call to CreateProcess() are
those objects that you can get a handle to and on which you can use the
CloseHandle() function. These objects include the following:

 Processes
 Events
 Semaphores
 Mutexes
 Files (including file mappings)
 Standard input, output, or error devices

However, the new process will only inherit objects that were marked
inheritable by the old process.

These are duplicate handles. Each process maintains memory for its own
handle table. If one of the processes modifies its handle (for example,
closes it or changes the mode for the console handle), other processes will
not be affected.

Processes will also inherit environment variables, the current directory,
and priority class.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Obsolete Macro functions in Japanese Windows Version 3.1

PSS ID Number: Q130059
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

Some of the Japanese Windows version 3.1 functions are no longer supported
in the Japanese version of Windows NT. These Macro functions are obsolete
in the current C++ compiler.

MORE INFORMATION

The macro functions of Japanese Windows version 3.10 are no longer
supported and are obsolete in current C++ compiler. They were remapped to
other generic MBCS functions. Use the following as workaround functions.
Include them in the current header file. T _ismbb* entries correspond to
the replaced Windows version 3.1 macro.

#include <mbctype.h>
#define iskana _ismbbkana
#define iskpun _ismbbkpunct
#define iskmoji _ismbbkalpha
#define isalkana _ismbbalpha
#define ispnkana _ismbbpunct
#define isalnmkana _ismbbalnum
#define isprkana _ismbbprint
#define isgrkana _ismbbgraph
#define iskanji _ismbblead
#define iskanji2 _ismbbtrail

Additional reference words: 3.10 1.20 3.50 kbinf
KBCategory: kbother
KBSubcategory: wintldev

Obtaining a Console Window Handle (HWND)

PSS ID Number: Q124103
Authored 19-Dec-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

It may be useful to manipulate a window associated with a console
application. The Win32 API provides no direct method for obtaining the
window handle associated with a console application. However, you can
obtain the window handle by calling FindWindow(). This function retrieves a
window handle based on a class name or window name.

Call GetConsoleTitle() to determine the current console title. Then supply
the current console title to FindWindow().

MORE INFORMATION

Because multiple windows may have the same title, you should change the
current console window title to a unique title. This will help prevent the
wrong window handle from being returned. Use SetConsoleTitle() to change
the current console window title. Here is the process:

1. Call GetConsoleTitle() to save the current console window title.

2. Call SetConsoleTitle() to change the console title to a unique title.

3. Call Sleep(40) to ensure the window title was updated.

4. Call FindWindow(NULL, uniquetitle), to obtain the HWND
 this call returns the HWND -- or NULL if the operation failed.

5. Call SetConsoleTitle() with the value retrieved from step 1, to
 restore the original window title.

You should test the resulting HWND. For example, you can test to see if the
returned HWND corresponds with the current process by calling
GetWindowText() on the HWND and comparing the result with
GetConsoleTitle().

The resulting HWND is not guaranteed to be suitable for all window handle
operations.

Sample Code

The following function retrieves the current console application window

handle (HWND). If the function succeeds, the return value is the handle of
the console window. If the function fails, the return value is NULL. Some
error checking is omitted, for brevity.

HWND GetConsoleHwnd(void)
{
 #define MY_BUFSIZE 1024 // buffer size for console window titles
 HWND hwndFound; // this is what is returned to the caller
 char pszNewWindowTitle[MY_BUFSIZE]; // contains fabricated WindowTitle
 char pszOldWindowTitle[MY_BUFSIZE]; // contains original WindowTitle

 // fetch current window title

 GetConsoleTitle(pszOldWindowTitle, MY_BUFSIZE);

 // format a "unique" NewWindowTitle

 wsprintf(pszNewWindowTitle,"%d/%d",
 GetTickCount(),
 GetCurrentProcessId());

 // change current window title

 SetConsoleTitle(pszNewWindowTitle);

 // ensure window title has been updated

 Sleep(40);

 // look for NewWindowTitle

 hwndFound=FindWindow(NULL, pszNewWindowTitle);

 // restore original window title

 SetConsoleTitle(pszOldWindowTitle);

 return(hwndFound);
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: BseCon UsrWndw

Obtaining Public Domain Information About Windows Sockets

PSS ID Number: Q115045
Authored 18-May-1994 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
 - Microsoft Windows SDK for Windows, version 3.1

SUMMARY

Anyone with FTP access to the Internet can obtain a vast amount of
information pertinent to the Windows Sockets API. The information is
available through anonymous FTP to sunsite.unc.edu in the /pub/micro/pc-
stuff/ms-windows/winsock directory. In the winsock directory, there is a
wealth of technical information, including specifications, applications,
DLLs for testing, and developers' guides not only from Microsoft, but also
from other vendors of Windows Sockets.

The following list gives a brief overview of the information contained in
the directory. This information can also be obtained from the READ.ME file
in the location mentioned above.

FAQ

A list of frequently asked questions, with companion answers. Please send
additional questions or answers to towfiq@Microdyne.COM.

apps/

Applications that have been written to run on top of the Windows Sockets
DLL. See the file READ.ME in the winsock directory for a description of
each application.

./incoming/

A directory where submissions to the archive (such as sample programs)
should be placed.

packages/

The winsock directory contains different vendors' WINSOCK.DLLs for testing
purposes as well as Windows Sockets development packages. See the file
READ.ME in this directory for a description of each package.

press-releases/

Some of the press releases about the Windows Sockets.

winsock-archive/

An archive of the winsock@Sunsite.UNC.Edu mailing list. (Send subscription
requests to listserv@SunSite.UNC.Edu.)

wsguide.doc

The "Windows Sockets Guide," by Martin Hall, JSB (martinh@jsbus.com) in
Microsoft Word for Windows format.

wsguide.ps

The "Windows Sockets Guide," by Martin Hall, JSB (martinh@jsbus.com) in
PostScript format. In the subdirectories winsock-1.0 and winsock-1.1, you
can find the specification in many different formats.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref
KBSubCategory: NtwkMisc

Open File Dialog Box -- Pros and Cons

PSS ID Number: Q74612
Authored 24-Jul-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Applications can call the common dialog library (COMMDLG.DLL) function
GetOpenFileName() to retrieve the name of a file that the user wants to
manipulate. Using this DLL provides a common interface for opening files
across applications and also eliminates dialog-box message processing
within the application's code. However, the application must initialize a
structure specific to the dialog box. This article discusses the benefits
and costs of using the Open File common dialog, via GetOpenFileName().

MORE INFORMATION

When an application uses the Open File dialog box provided by the common
dialog DLL, the primary benefit to that application's users will be a
familiar interface. Once they learn how to open a file in one application
that uses the DLL, they will know how to open a file in all applications
that use it.

Features of the Open File dialog include:

 - A list box of files, filtered by extension, in the current directory
 - A list box of directories from root of current drive to current
 directory, plus subdirectories
 - A combo box of file types to list in filename list box
 - A combo box of drives available, distinguished by drive type
 - An optional "Read Only" check box
 - An optional "Help" button
 - An optional application hook function to modify standard behavior
 - An optional dialog template to add private application features

For the application's programming staff, the benefits of using the Open
File common dialog will include:

 - No dialog-box message processing necessary to implement the Open
 File dialog box
 - Drive and directory listings are constructed by the DLL, not by
 the application
 - A full pathname for the file to be opened is passed back to the
 application, and this name can be passed directly to the OpenFile
 function
 - Offsets into the full pathname are also returned, giving the
 application access to the filename (sans pathname) and the file

 extension without the need for parsing
 - The application can pass in its own dialog box template, in which
 case the DLL will use that template instead of the standard template
 - The application can provide a dialog hook function to extend the
 interface of the DLL or to change how events are handled
 - The application can choose to have a single filename or multiple
 filenames returned from the dialog box

The cost for the programming staff could be in adapting previously written
application code to handle the common dialog interface. While making this
change is straightforward, it does require coding time. If the application
only needs a filename with no path, the Open File common dialog is probably
not appropriate.

For more information on using the Open File common dialog, query on
GetOpenFileName().

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

OpenComm() and Related Flags Obsolete Under Win32

PSS ID Number: Q94990
Authored 28-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

OpenComm(), a Windows 3.1 application programming interface (API), is
obsolete under Windows NT and is not in the Win32 API. Note that the flags,
IE_BADID, IE_BAUDRATE, IE_BYTESIZE, IE_DEFAULT, IE_HARDWARE, IE_MEMORY,
IE_NOPEN, and IE_OPEN are obsolete, but are still in the header files.

OpenComm() is provided for 16-bit Windows-based applications running under
Windows on Win32 (WOW).

MORE INFORMATION

Under Win32, CreateFile() is used to create a handle to a communications
resource (for example, COM1). The fdwShareMode parameter must be 0
(exclusive access), the fdwCreate parameter must be OPEN_EXISTING, and the
hTemplate parameter must be NULL. Read, write, or read/write access can be
specified and the handle can be opened for overlapped I/O.

ReadFile() and WriteFile() are used for communciations I/O. The TTY sample
program shipped with the Win32 Software Development Kit (SDK) demonstrates
how to do serial I/O in a Win32-based application.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Overlapping Controls Are Not Supported by Windows

PSS ID Number: Q79981
Authored 14-Jan-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Child window controls should not be overlapped in applications for the
Windows operating system. When one control overlaps another control,
or another child window, the borders shared by the controls may not be
drawn properly. Overlapping controls may confuse the user of the
application because clicking the mouse in the common area may not
activate the control that the user intended to activate. This behavior
is a consequence of the way that Windows is designed.

MORE INFORMATION

The following example illustrates the painting problems caused by the
ambiguity of overlapping borders. Consider three edit controls, called
A, B and C, which overlap each other, and an enclosing child window D:

 __
 | | A | B | C | |
 | -- |
 | D |
 --

Assume that control B has the focus. If this set of controls is
covered by another window, which is subsequently moved away, Windows
will send a series of client and nonclient messages to each of the
controls and to the enclosing child window. The result of these
messages may appear as the illustration below, where the portion of
window B's border that overlapped with part of window D's border is
missing:

 _______________ ________________
 | | A | B | C | |
 | -- |
 | D |
 --

Repainting problems related to overlapping controls may vary depending
on the version of Windows used.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 CS_PARENTDC
WS_CLIPCHILDREN
WS_CLIPSIBLINGS WM_NCPAINT WM_PAINT

KBCategory: kbprg
KBSubcategory: UsrDlgs

Overview of the Windows 95 Virtual Address Space Layout

PSS ID Number: Q125691
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

The virtual memory management mechanism in Microsoft Windows 95 makes it
possible to execute Win32-based, 16-bit-based, and MS-DOS-based
applications simultaneously. To accomplish this, the virtual memory manager
uses a virtual address space layout that is considerably different from
that used by Microsoft Windows version 3.x and that is slightly different
from that used by Microsoft Windows NT. Although the differences from
Windows NT are slight, they are important.

The memory manager in Windows 95 uses paging and 32-bit linear addressing
to provide a full 32-bit virtual address space that has a maximum size of
four gigabytes (GB). This four-GB address space is partitioned by the
memory manager into four major sections, known as arenas, that are used for
different types of applications and parts of the system. The first arena,
from zero to four megabytes (MB) exists for compatibility with applications
based on Windows version 3.1x and MS-DOS. The next arena, from four MB to
two GB, is the private address space for each Win32 process. The third
arena, from two to three GB, is a shared address space that contains memory
mapped files and the 16-bit components. Finally, the fourth arena, from
three to four GB, is reserved for the system's use.

MORE INFORMATION

The following diagram shows the overall virtual address space layout used
in Windows 95. The Compatibility Arena holds the current virtual machine
and other software. Each Win32 process gets its own private address space
in which to execute. The Private Arena contains the currently executing
Win32 process's private address space. All 16-bit-based applications and
DLLs, including the 16-bit Windows system components, reside in the Shared
Arena. Finally, the Reserved System Arena is used to store all ring-0 code
such as the virtual machine manager and virtual device drivers. It is not
accessible by either 16-bit-based or Win32-based applications.

 +---------------------------------+ 4 Gigabytes
 | |
 | Reserved System Arena |
 | (Holds ring-0 components) |
 | |
 |---------------------------------| 3 Gigabytes
 | |
 | Shared Arena |
 | |

 | |
 |---------------------------------| 2 Gigabytes
 | |
 | Private Arena |
 | (Holds address space of |
 | currently executing |
 | Win32 process) |
 | |
 +---------------------------------+ 4 Megabytes
 | 16-bit/MS-DOS |
 | Compatibility Arena |
 +---------------------------------+ 0 Gigabytes

Each arena has a specific purpose and is described in detail below.

16-bit/MS-DOS Compatibility Arena

The first four megabytes of the system's address space is reserved by the
system and is accessible to 16-bit and MS-DOS software for compatibility.
The current virtual machine occupies the lowest megabyte of this area. The
remaining three megabytes are mostly empty space but may contain MS-DOS
device drivers and Terminate & Stay Resident (TSR) programs.

The 16-bt/MS-DOS Compatibility Arena is not accessible to Win32 processes
for reading or writing. This means Win32 processes may may not allocate
memory, load DLLs, or be loaded below the four megabyte (MB) address.

Private Arena

The private arena holds the private address space of the currently
executing Win32 process. Because every Win32 process gets its own address
space, the contents of this arena will depend upon which process is
currently executing. The memory manager maps the pages of a process's
private address space so that other processes cannot access it and corrupt
the process. The process's code, data, and dynamically-allocated memory all
exist in the private address space.

With the exception of the system's shared DLLs (USER32.DLL, GDI32.DLL, and
KERNEL32.DLL), all DLLs loaded by the process are mapped into the process's
private address space. Windows extension DLLs such as SHELL32.DLL,
COMCTL32.DLL, and COMDLG32.DLL are not system shared DLLs and are mapped
into the process's private address space.

Because console applications are Win32-based applications without graphical
user interfaces, they too get their own private address spaces, as do Win32
graphical user interface (GUI) applications.

The minimum load address for a Win32 process in Windows 95 is four MB
because the first four megabytes are reserved for the Compatibility Arena.

Shared Arena

The shared arena is unique to Windows 95. This arena contains components
that must be mapped into every process's address space. All of the pages in
this arena are mapped identically in every process.

The 16-bit global heap, which contains all 16-bit-based applications, DLLs,
and 16-bit system DLLs, resides in the shared arena. The Win32 shared
system DLLs (USER32.DLL, GDI32.DLL, and KERNEL32.DLL) are also located in
the shared arena.

Unlike the Reserved System Arena, the shared arena is readable and writable
by Win32 and 16-bit processes alike. This doesn't mean they are free to get
memory directly from this address space. All 16-bit-based applications and
DLLs actually are located in the 16-bit global heap, so they allocate
memory from the 16-bit global heap; when this heap needs to be grown,
KRNL386.EXE gets the memory from the shared arena.

Win32 processes may not allocate memory directly from the shared arena, but
they always use it for mapping views of file mappings. Unlike Windows NT,
where views of file mappings always are placed in the private address
space, Windows 95 holds views of file mappings in the shared arena.

The DOS Protected Mode Interface (DPMI) server's memory pool is located in
the Shared Arena. Thus, calls to the DPMI server to allocate memory will
result in memory that is globally accessible.

Sometimes, a virtual device driver (VxD) may need to map a buffer passed to
it by a Win32 process into globally accessible memory so that the buffer
can be accessed even if the process isn't in context. By calling
_LinPageLock virtual machine manager service with the PAGEMAPGLOBAL flag, a
VxD can obtain a linear address in the shared arena that corresponds to the
buffer passed to it by the Win32 process.

Reserved System Arena

The reserved system contains the code and data of all ring-0 components
such as the virtual machine manager, DOS extender, DPMI server, and virtual
device drivers. This arena is used exclusively by ring-0 components and not
addressable by ring 3 code, such as MS-DOS-based, 16-bit-based, and
Win32-based applications and DLLs.

Additional reference words: 4.00 layout memory virtual
KBCategory: kbprg
KBSubcategory: BseMm

Owner-Draw Buttons with Bitmaps on Non-Standard Displays

PSS ID Number: Q67715
Authored 12-Dec-1990 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

If an application contains an owner-draw button that paints itself with a
bitmap, the application's resources must contain a set of bitmaps
appropriate to each display type on which the application might run.

If the application's resources do not contain bitmaps suitable for the
display on which the application is running, the application can use the
default 3-D button appearance by changing the button style to BS_PUSHBUTTON
from BS_OWNERDRAW.

Under Windows 95, there is a new style BS_BITMAP which applications might
find easier to use.

Changing the style of a button is possible in Windows version 3.0; however,
this technique is not guaranteed to be supported in future releases of
Windows.

MORE INFORMATION

An owner-draw button can use bitmaps to paint itself. When an application
contains this type of owner-draw button, it must also contain a set of
bitmaps appropriate for each display type on which the application might
run. Each set of bitmaps has a normal "up" bitmap and a depressed "down"
bitmap to implement the 3-D effects. The most common standard Windows
display types are: CGA, EGA, VGA, 8514/a, and Hercules Monochrome. The
dimensions and aspect ratio of the display affect the appearance of the
bitmap. For example, a monochrome bitmap designed for VGA will display
correctly on an 8514/a and any other display with a 1:1 aspect ratio.

If an application determines that it does not contain an appropriate set of
bitmaps for the current display type, then it should change the button
style from BS_OWNERDRAW to BS_PUSHBUTTON. After the style has been changed
and the button has been redrawn, the button will appear as a normal 3-D
push button.

The following code fragment demonstrates how to change the style of a
push button from owner-draw to normal:

 ...

 /*

 * hWndButton is assumed to be the handle to the button.
 * Note that lParam has a nonzero value, which forces the button
 * to be redrawn. This assures that the normal button appearance
 * will show after this message is sent.
 */
 SendMessage(hWndButton, BM_SETSTYLE, BS_PUSHBUTTON, 1L);

 ...

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Owner-Draw: Overview and Sources of Information

PSS ID Number: Q64327
Authored 31-Jul-1990 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

Owner-draw controls are a new feature of Windows version 3.0. Because your
application does all the drawing of the contents of the controls, you can
customize them any way you like. Owner-draw controls are similar to
predefined controls in that Windows will handle the control's functionality
and mouse and keyboard input processing. However, you are responsible for
drawing the owner-draw control in its normal, selected, and focus states.

You can create owner-draw controls from the menu, button, and list-box
classes. You can create owner-draw combo boxes, but they must have the
CBS_DROPDOWNLIST style (equates to a static text item and a list box). The
elements of an owner-draw control can be composed of strings, bitmaps,
lines, rectangles, and other drawing functions in any combination, in your
choice of colors.

MORE INFORMATION

The Windows SDK sample application MENU demonstrates owner-draw menu items.
The SDK sample application OWNCOMBO is a fairly large example of owner-draw
and predefined list boxes and combo boxes.

The Microsoft Software Library contains simplified examples of an owner-
draw push button, owner-draw list boxes, and an owner-draw drop-down list
style combo box. Each of these examples includes descriptive text in a
related Knowledge Base article. For additional information, please see the
following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q64326
 TITLE : Owner-Draw: Handling WM_DRAWITEM for Drawing Controls

 -or-

 ARTICLE-ID: Q64328
 TITLE : Owner-Draw: 3-D Push Button made from Bitmaps with Text

 -or-

 ARTICLE-ID: Q65792
 TITLE : Owner-Draw Example: Right - and Decimal Alignment

To respond to a WM_MEASUREITEM message, you MUST specify the height of the
appropriate item in your control. Optionally, you can specify the item's
width as well.

If you want to do something special when a string is deleted from a list
box, you should process WM_DELETEITEM messages. Windows's default action is
to erase the deleted string and to redraw the list box.

If you want to have control over the sorting for the order of items in a
list box or combo box that does not have the *_HASSTRINGS style, you should
specify the appropriate *_SORT style and process WM_COMPAREITEM messages.
If the *_SORT and *_HASSTRINGS styles are present, Windows will
automatically do the sorting without sending WM_COMPAREITEM messages. If
*_SORT is not specified, WM_COMPAREITEM messages will not be generated and
items will be displayed in the list box in the order in which they were
inserted.

The heart of owner-draw controls is the response to WM_DRAWITEM messages.
During this processing is when you draw an entire button or each individual
item in a menu, list box, or combo box. Because Windows does not interfere
in the drawing of owner-draw controls, your application must draw the
specified control item. The display of the control must indicate the state
of the control. Common states are as follows:

1. Focus state (has the focus or not)

2. Selection state (selection or not)

3. Emphasis state (active, grayed, or disabled) (less common to
 process)

See the article titled "Owner-Draw: Handling WM_DRAWITEM for Drawing
Controls" for information about drawing controls in their various
states. Familiarity with the WM_DRAWITEM message and the various
control states is extremely helpful before trying to follow the code
examples.

Under Windows 95 and Windows 3.51, the BS_BITMAP style allows buttons to
display bitmaps without using owner-draw.

Additional reference words: 3.00 3.10 3.50 4.00 owndraw od owner draw
KBCategory: kbprg
KBSubcategory: UsrCtl

Owners Have Special Access to Their Objects

PSS ID Number: Q130543
Authored 22-May-1995 Last modified 23-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5
 and 3.51

The Windows NT operating system allows the owner of an object to determine
what types of access are granted or denied for a given user. This is
referred to as Discretionary Access Control (DAC). In addition to granting
the generic read and write types of access, the owner of an object can also
grant other users the right to modify the access allowed to the object.

The access right to view the access allowed on an object is called
READ_CONTROL. This is often granted as part of a generic right. The access
right that allows someone to change the access for an object is called
WRITE_DAC.

The owner of an object can always request WRITE_DAC and READ_CONTROL access
to the object. This prevents a situation where the owner of an object can
not manipulate the object. This also allows owners of objects to restrict
their own access to the object (to guard against accidents) without having
to explicitly grant READ_CONTROL and WRITE_DAC access to their accounts.

Additional reference words: 3.10 3.50 AccessCheck
KBCategory: kbprg
KBSubcategory: BseSecurity

PAGE_READONLY May Be Used as Discardable Memory

PSS ID Number: Q94947
Authored 26-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

Virtual memory pages marked as PAGE_READONLY under Win32 may be used the
way discardable segments of memory are used in Windows 3.1. These virtual
memory pages are by default not "dirty," so the system may use them
(zeroing them first if necessary) without having to first write their
contents to disk.

From a system resource perspective, PAGE_READONLY is treated similar to
discardable memory under Windows 3.1 when the system needs to free up
resources. From a programming standpoint, the system automatically re-reads
the memory when the data is next accessed (for example, we attempt to
access our page when it has been "discarded," a page fault is generated,
and the system reads it back in). Memory-mapped files are convenient for
setting up this type of behavior.

If a PAGE_READONLY memory page becomes dirty [by changing the protection
via VirtualProtect() to PAGE_READWRITE, changing the data, and restoring
PAGE_READONLY], the page will be written to disk before the system uses it.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Panning and Scrolling in Windows

PSS ID Number: Q11619
Authored 02-Nov-1987 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

When using bitmaps, the mapping mode is ignored and physical units (in
other words, MM_TEXT pixels) are used. It is not necessary to use the
extent/origin routines to keep track of the logical origin.

If scrolling is desired and if there are no child windows in the
client area, it is best to BitBlt the client area to scroll it, and
PatBlt the uncovered area with the default brush.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrPnt

Passing a Pointer to a Member Function to the Win32 API

PSS ID Number: Q102352
Authored 03-Aug-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Many of the Win32 application programming interfaces (APIs) call for a
callback routine. One example is the lpStartAddr argument of
CreateThread():

 HANDLE CreateThread(lpsa, cbStack, lpStartAddr, lpvThreadParm,
 fdwCreate, lpIDThread)

 LPSECURITY_ATTRIBUTES lpsa; /* Address of thread security attrs */
 DWORD cbStack; /* Initial thread stack size*/
 LPTHREAD_START_ROUTINE lpStartAddr; /* Address of thread function */
 LPVOID lpvThreadParm; /* Argument for new thread*/
 DWORD fdwCreate; /* Creation flags*/
 LPDWORD lpIDThread; /* Address of returned thread ID */

When attempting to use a member function as the thread function, the
following error is generated:

 error C2643: illegal cast from pointer to member

The problem is that the function expects a C-style callback, not a pointer
to a member function. A major difference is that member functions are
called with a hidden argument called the "this" pointer. In addition, the
format of the pointer isn't simply the address of the first machine
instruction, as a C pointer is. This is particularly true for virtual
functions.

If you want to use a member function as a callback, you can use a static
member function. Static member functions do not receive the "this" pointer
and their addresses correspond to an instruction to execute.

Static member functions can only access static data, and therefore to
access nonstatic class members, the function needs an object or a pointer
to an object. One solution is to pass in the "this" pointer as an argument
to the member function.

MORE INFORMATION

This situation occurs with callback functions of other types as well, such
as:

 DLGPROC GRAYSTRINGPROC
 EDITWORDBREAKPROC LINEDDAPROC
 ENHMFENUMPROC MFENUMPROC
 ENUMRESLANGPROC PROPENUMPROC
 ENUMRESNAMEPROC PROPENUMPROCEX
 ENUMRESTYPEPROC TIMERPROC
 FONTENUMPROC WNDENUMPROC
 GOBJENUMPROC

For more information on C++ callbacks, please see the May 1993 issue of the
"Windows Tech Journal."

The following sample demonstrates how to use a static member function as a
thread function, and pass in the "this" pointer as an argument.

Sample Code

#include <windows.h>

class A
{
public:
 int x;
 int y;

 A() { x = 0; y = 0; }

 static StartRoutine(A *); // Compiles clean, includes "this" pointer
};

void main()
{
 A a;

 DWORD dwThreadID;

 CreateThread(NULL,
 0,
 (LPTHREAD_START_ROUTINE)(a.StartRoutine),
 &a, // Pass "this" pointer to static member fn
 0,
 &dwThreadID
);
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Passing Security Information to SetFileSecurity()

PSS ID Number: Q102100
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

The SetFileSecurity() Win32 application programming interface (API) takes a
pointer to a Security Descriptor. This is because SetFileSecurity() can set
any of the following security information for a file:

 The owner identifier of the file
 The primary group identifier of the file
 The discretionary access-control list (DACL) of the file
 The system access-control list (SACL) of the file

When you pass the SD and SECURITY_INFORMATION structure to
SetFileSecurity(), the SECURITY_INFORMATION structure identifies which
security information is to be set. The SECURITY_INFORMATION structure is a
DWORD that can be one of the following values:

 OWNER_SECURITY_INFORMATION
 GROUP_SECURITY_INFORMATION
 DACL_SECURITY_INFORMATION
 SACL_SECURITY_INFORMATION

Each of these values represents one of the security items listed above. The
SD that is passed to SetFileSecurity() is simply a container for the
security information being set for the specified file. SetFileSecurity()
examines the value in the SECURITY_INFORMATION structure, extracts the
appropriate information from the provided SD, and applies it to the
specified file's SD.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseSecurity

PEN2CTL.VBX Custom Controls for Windows 95 Pen Services

PSS ID Number: Q130654
Authored 24-May-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) Version 4.0

SUMMARY

The PEN2CTL.VBX provides three pen edit custom controls to allow for quick
development of pen-aware applications using Microsoft Windows 95 Pen
Services. The application designer may substitute these custom controls for
the standard input controls available in Visual Basic.

MORE INFORMATION

The PEN2CTL.VBX ships with version 4.0 of the Win32 SDK and is available in
the Microsoft Software. It is installed along with the Pen 2.0 Samples
Library.

To get PEN2CTL.VBX along with the PENVBX.HLP Help file and the sample
application files discussed in this article, download PEN2CTL.EXE, a self-
extracting file, from the Microsoft Software Library (MSL) on the following
services:

 - CompuServe
 GO MSL
 Search for PEN2CTL.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PEN2CTL.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get PEN2CTL.EXE

The PEN2CTL.EXE self-extracting file contains:

 - PENVBX.HLP, a help file that fully explains all the technical issues and
 describes how to interact with these pen-aware custom controls.

 - Several files that comprise a sample Pen application that demonstrates
 how to use all the major features of the PEN2CTL.VBX.

 - PEN2CTL.VBX, which is freely redistibutable and implements the three
 pen-aware custom edit controls: HEdit, BEdit, and lEdit.

 - HEdit is the handwriting edit control. It accepts free-form input.
 This control is similar to the standard Visual Basic text box except
 data can be entered using a pen in addition to the normal keyboard
 input method.

 - BEdit is the boxed edit control. It expands the properties of the
 handwriting edit control. It allows for additional manipulation of
 the writing area and provides the application with comb or box guides
 that accept pen input. Each segment or box accepts only a single
 character of input. This increases the accuracy of the recognition
 and in most cases is preferable to the handwriting edit control. The
 BEdit control also has the ability to provide a list of alternate
 words from which you may choose.

 - lEdit is the pen ink edit control. It is similar to a picture box
 control in that it allows you to draw, erase, move, resize,
 manipulate, and format pen strokes (called ink) on the control. It
 also allows you to set background pictures and grid lines as well as
 create bitmaps of the background and/or ink.

While there are many similarities between the controls provided by the Pen
1.0 VBX (PENCNTRL.VBX) and those provided by PEN2CTL.VBX, there are also
many differences. Those familiar with the Pen 1.0 VBX should refamiliarize
themselves with PEN2CTL.VBX and its changes.

NOTE: Neither VBX is compatible with the other but both implement some of
the same custom controls, so developers should make sure the correct VBX is
installed in their development environment and is distributed with their
application.

Additional reference words: 4.00 2.00
KBCategory: kbprg kbfile
KBSubcategory: WpenMisc WpenVB

Performing a Clear Screen (CLS) in a Console Application

PSS ID Number: Q99261
Authored 26-May-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

There is no Win32 application programming interface (API) that will clear
the screen in a console application. However, it is fairly easy to write a
function that will programmatically clear the screen.

MORE INFORMATION

The following function clears the screen:

void cls(HANDLE hConsole)
{
 COORD coordScreen = { 0, 0 }; /* here's where we'll home the
 cursor */
 BOOL bSuccess;
 DWORD cCharsWritten;
 CONSOLE_SCREEN_BUFFER_INFO csbi; /* to get buffer info */
 DWORD dwConSize; /* number of character cells in
 the current buffer */

 /* get the number of character cells in the current buffer */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "GetConsoleScreenBufferInfo");
 dwConSize = csbi.dwSize.X * csbi.dwSize.Y;

 /* fill the entire screen with blanks */

 bSuccess = FillConsoleOutputCharacter(hConsole, (TCHAR) ' ',
 dwConSize, coordScreen, &cCharsWritten);
 PERR(bSuccess, "FillConsoleOutputCharacter");

 /* get the current text attribute */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "ConsoleScreenBufferInfo");

 /* now set the buffer's attributes accordingly */

 bSuccess = FillConsoleOutputAttribute(hConsole, csbi.wAttributes,
 dwConSize, coordScreen, &cCharsWritten);
 PERR(bSuccess, "FillConsoleOutputAttribute");

 /* put the cursor at (0, 0) */

 bSuccess = SetConsoleCursorPosition(hConsole, coordScreen);
 PERR(bSuccess, "SetConsoleCursorPosition");
 return;
}

Additional reference words: 3.10 3.50 4.00 95 clearscreen
KBCategory: kbprg
KBSubcategory: BseCon

Performing a Synchronous Spawn Under Win32s

PSS ID Number: Q125212
Authored 22-Jan-1995 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SUMMARY

Under Windows NT, you can synchronously spawn an application (that
is, spawn an application and wait until the spawned application is
terminated before continuing). To do so, call CreateProcess() to start the
application, and pass the handle returned to WaitForSingleObject() to
wait for the application to terminate. This is shown in the sample code
in the "More Information" section in this article.

However, this method does not work under Win32s. Under Win32s,
CreateProcess() does not return the process handle for 16-bit
Windows-based applications, only for Win32-based application. Even if it
did, the method described in the proceeding paragraph would not work under
Win32s because WaitForSingleObject() returns TRUE immediately under Win32s.

In fact, there is no 32-bit only solution for this issue. The 32-bit
WinExec() does not return an instance handle as the 16-bit WinExec() does.
In addition, you cannot use GetExitCodeProcess() to find the exit status
of 16-bit Windows-based applications in order to loop on their status. It
is a limitation that GetExitCodeProcess() returns zero for 16-bit
Windows-based applications on both Windows NT and Win32s.

The solution is to create a thunk to the 16-bit side and from the 16-bit
side, solve the problem as you would normally solve it from a Windows-based
application. Namely, start the application with WinExec() and use one of
the Toolhelp APIs in a test loop to determine when the application is
terminated. Alternatively, you can use EnumWindows() to determine when the
application is terminated. The sample code below uses the Toolhelp APIs.

MORE INFORMATION

Sample code to perform a synchronous spawn is given below. The code
is divided into three source files:

 - The main application.
 - The 32-bit side of the thunk.
 - The 16-bit side of the thunk.

You can use the thunking code as is, calling SynchSpawn() in your own
application as demonstrated in the main application below. For information
on Universal thunks (including which header files and libraries to use),
please see the "Win32s Programmer's Reference."

In all three modules, use the following header file SPAWN.H:

/*** Function Prototypes ****/

DWORD APIENTRY SynchSpawn(LPCSTR lpszCmdLine, UINT nCmdShow);

/*** Constants for Dispatcher ***/

#define SYNCHSPAWN 1

Main Application

This application attempts to synchronously spawn NOTEPAD under Windows NT
and Win32s. NOTE: Under Win32s, NOTEPAD is a 16-bit application.

GetVersion() is used to detect the platform. Under Windows NT,
CreateProcess() and WaitForSingleObject() perform the spawn. Under Win32s,
the thunked routine SynchSpawn() is called.

/*** Main application code ***/

#include <windows.h>
#include "spawn.h"

void main()
{
 DWORD dwVersion;
 STARTUPINFO si = {0};
 PROCESS_INFORMATION pi = {0};

 dwVersion = GetVersion();

 if(!(dwVersion & 0x80000000)) // Windows NT
 {
 si.cb = sizeof(STARTUPINFO);
 si.lpReserved = NULL;
 si.lpReserved2 = NULL;
 si.cbReserved2 = 0;
 si.lpDesktop = NULL;
 si.dwFlags = 0;

 CreateProcess(NULL,
 "notepad",
 NULL,
 NULL,
 TRUE,
 NORMAL_PRIORITY_CLASS,
 NULL,
 NULL,
 &si,
 &pi);
 WaitForSingleObject(pi.hProcess, INFINITE);
 }
 else if(LOBYTE(LOWORD(dwVersion)) < 4) // Win32s

 {
 SynchSpawn("notepad.exe", SW_SHOWNORMAL);
 }

 MessageBox(NULL, "Return from SynchSpawn", " ", MB_OK);

}

32-bit Side of Thunk

This DLL provides the 32-bit side of the thunk. If the DLL is loaded
under Win32s, it initializes the thunk in its DllMain() by calling
UTRegister(). The entry point SynchSpawn() packages up the arguments
and calls the 16-bit side through the thunk.

/*** Code for 32-bit side of thunk ***/

#define W32SUT_32 // Needed for w32sut.h in 32-bit code

#include <windows.h>
#include "w32sut.h"
#include "spawn.h"

typedef BOOL (WINAPI * PUTREGISTER) (HANDLE hModule,
 LPCSTR lpsz16BitDLL,
 LPCSTR lpszInitName,
 LPCSTR lpszProcName,
 UT32PROC * ppfn32Thunk,
 FARPROC pfnUT32Callback,
 LPVOID lpBuff
);

typedef VOID (WINAPI * PUTUNREGISTER) (HANDLE hModule);

typedef DWORD (APIENTRY *PUT32CBPROC) (LPVOID lpBuff, DWORD dwUserDefined);

UT32PROC pfnUTProc = NULL;
PUTREGISTER pUTRegister = NULL;
PUTUNREGISTER pUTUnRegister = NULL;
PUT32CBPROC pfnUT32CBProc = NULL;
int cProcessesAttached = 0;
BOOL fWin32s = FALSE;
HANDLE hKernel32 = 0;

/**\
* Function: BOOL APIENTRY DllMain(HANDLE, DWORD, LPVOID) *
* *
* Purpose: DLL entry point. Establishes thunk. *

BOOL APIENTRY DllMain(HANDLE hInst, DWORD fdwReason, LPVOID lpReserved)
{
 DWORD dwVersion;

 if (fdwReason == DLL_PROCESS_ATTACH)

 {

 /*
 * Registration of UT need to be done only once for first
 * attaching process. At that time set the fWin32s flag
 * to indicate if the DLL is executing under Win32s or not.
 */

 if(cProcessesAttached++)
 {
 return(TRUE); // Not the first initialization.
 }

 // Find out if we're running on Win32s
 dwVersion = GetVersion();
 fWin32s = (BOOL) (!(dwVersion < 0x80000000))
 && (LOBYTE(LOWORD(dwVersion)) < 4);

 if(!fWin32s)
 return(TRUE); // Win32s - no further initialization needed

 hKernel32 = LoadLibrary("Kernel32.Dll"); // Get Kernel32.Dll handle

 pUTRegister = (PUTREGISTER) GetProcAddress(hKernel32, "UTRegister"
);

 if(!pUTRegister)
 return(FALSE); // Error- Win32s, but can't find UTRegister

 pUTUnRegister = (PUTUNREGISTER) GetProcAddress(hKernel32,
 "UTUnRegister");

 if(!pUTUnRegister)
 return(FALSE); // Error- Win32s, but can't find
UTUnRegister

 return (*pUTRegister)(hInst, // Spawn32.DLL module handle
 "SPAWN16.DLL", // 16-bit thunk dll
 "UTInit", // init routine
 "UTProc", // 16-bit dispatch routine
 &pfnUTProc, // Receives thunk address
 pfnUT32CBProc, // callback function
 NULL); // no shared memroy

 }
 if((fdwReason==DLL_PROCESS_DETACH)&&(0==--cProcessesAttached)&&fWin32s)
 {
 (*pUTUnRegister)(hInst);
 FreeLibrary(hKernel32);
 }
} // DllMain()

/**\

* Function: DWORD APIENTRY SynchSpawn(LPTSTR, UINT) *
* *
* Purpose: Thunk to 16-bit code *

DWORD APIENTRY SynchSpawn(LPCSTR lpszCmdLine, UINT nCmdShow)
{
 DWORD Args[2];
 PVOID Translist[2];

 Args[0] = (DWORD) lpszCmdLine;
 Args[1] = (DWORD) nCmdShow;

 Translist[0] = &Args[0];
 Translist[1] = NULL;

 return((* pfnUTProc)(Args, SYNCHSPAWN, Translist));
}

16-bit Side of Thunk

This DLL provides the 16-bit side of the thunk. The LibMain() and WEP()
of this 16-bit DLL perform no special initialization. The UTInit()
function is called during thunk initialization; it stores the callback
procedure address in a global variable. The UTProc() function is called
with a code that indicates which thunk was called as its second
parameter. In this example, the only thunk provided is for SynchSpawn().
The synchronous spawn is performed in the SYNCHSPAWN case of the switch
statement in the UTProc().

NOTE: UTInit() and UTProc() must be exported. This can be done in the
module definition (.DEF) file.

/* Code for 16-bit side of thunk. */
/* Requires linking with TOOLHELP.LIB, for ModuleFindHandle(). */

#ifndef APIENTRY
#define APIENTRY
#endif
#define W32SUT_16 // Needed for w32sut.h in 16-bit code

#include <windows.h>
#include <toolhelp.h>
#include <malloc.h>
#include "w32sut.h"
#include "spawn.h"

UT16CBPROC glpfnUT16CallBack;

/**\
* Function: LRESULT CALLBACK LibMain(HANDLE, WORD, WORD, LPSTR) *
* *
* Purpose: DLL entry point *

int FAR PASCAL LibMain(HANDLE hLibInst, WORD wDataSeg,

 WORD cbHeapSize, LPSTR lpszCmdLine)
{
 return (1);
} // LibMain()

/**\
* Function: DWORD FAR PASCAL UTInit(UT16CBPROC, LPVOID) *
* *
* Purpose: Universal Thunk initialization procedure *

DWORD FAR PASCAL UTInit(UT16CBPROC lpfnUT16CallBack, LPVOID lpBuf)
{
 glpfnUT16CallBack = lpfnUT16CallBack;
 return(1); // Return Success
} // UTInit()

/**\
* Function: DWORD FAR PASCAL UTProc(LPVOID, DWORD) *
* *
* Purpose: Dispatch routine called by 32-bit UT DLL *

DWORD FAR PASCAL UTProc(LPVOID lpBuf, DWORD dwFunc)
{
 switch (dwFunc)
 {
 case SYNCHSPAWN:
 {
 HMODULE hMod;
 MODULEENTRY FAR *me;
 UINT hInst;
 LPCSTR lpszCmdLine;
 UINT nCmdShow;
 MSG msg;
 BOOL again=TRUE;

 /* Retrieve the command line arguments stored in buffer */

 lpszCmdLine = (LPSTR) ((LPDWORD)lpBuf)[0];
 nCmdShow = (UINT) ((LPDWORD)lpBuf)[1];

 /* Start the application with WinExec() */

 hInst = WinExec(lpszCmdLine, nCmdShow);
 if(hInst < 32)
 return 0;

 /* Loop until the application is terminated. The Toolhelp API
 * ModuleFindHandle() returns NULL when the application is
 * terminated. NOTE: PeekMessage() is used to yield the
 * processor; otherwise, nothing else could execute on the
 * system.
 * /

 hMod = GetModuleHandle(lpszCmdLine);

 me = (MODULEENTRY FAR *) _fcalloc(1, sizeof(MODULEENTRY));
 me->dwSize = sizeof(MODULEENTRY);
 while(NULL != ModuleFindHandle(me, hMod) && again)
 {
 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) && again)
 {
 if(msg.message == WM_QUIT)
 {
 PostQuitMessage(msg.wParam);
 again=FALSE;
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 return 1;
 }

 } // switch (dwFunc)

 return((DWORD)-1L); // We should never get here.
} // UTProc()

/**\
* Function: int FAR PASCAL _WEP(int) *
* *
* Purpose: Windows exit procedure *

int FAR PASCAL _WEP(int bSystemExit)
{
 return (1);
} // WEP()

Additional reference words: 1.20 win16
KBCategory: kbprg kbcode
KBSubcategory: W32s

PHONECAPS for Phones That Don't Report Button States

PSS ID Number: Q108308
Authored 08-Dec-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Telephony Software Development Kit (SDK) version
 1.0 for Windows version 3.1
 - Microsoft Win32 SDK, version 4.0

A Windows Telephony application can call phoneGetDevCaps to inquire about a
phone's telephony capabilities. The resulting function in the TAPI
(Telephony application programming interface) service provider is
TSPI_phoneGetDevCaps. If the phone device does not report button states, it
is acceptable for the service provider to set the dwButtonModeSize/Offset
fields in the PHONECAPS structure to 0 (zero). Alternatively, the provider
could describe the button(s) as PHONEBUTTONMODE_DUMMY.

As a clarification, setting the dwButtonModeSize to 0 or describing the
buttons as PHONEBUTTON_DUMMY does not prohibit the service provider from
setting and using the dwButtonFunctionsSize and dwButtonFunctionsOffset
members of the PHONECAPS structure.

Additional reference words: 1.00 3.10 4.00 95
KBCategory: kbprg
KBSubcategory: MsgTapi

Physical Memory Limits Number of Processes/Threads

PSS ID Number: Q94840
Authored 19-Jan-1993 Last modified 14-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Each time Windows NT creates an object, such as a process or a thread, it
must allocate a certain amount of physical memory (nonpaged pool) for its
support. The amount of memory that is needed for support of a process
object is significantly higher than the memory requirement for support of a
thread object. The amount of memory that is required for a thread object
on a RISC machine is higher than the memory requirement for a thread on an
x86 machine, due to the greater number and size of registers on the RISC
machines.

Due to the physical memory requirement of processes and threads, programs
that use the CreateProcess() and CreateThread() APIs should be careful to
check their return codes to detect out-of-memory conditions.

On Windows NT 3.5, each time a process is created it reserves the minimum
working set of memory. On a 32 MB system, the default minimum working set
is 200 KB. Therefore, on a 32 MB system, you can create ~100 processes. You
can lower your minimum working set to 80 KB (the lowest allowed) with the
following call:

 SetProcessWorkingSetSize((HANDLE)(-1), 20*4096, 100*4096);

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

Placing a Caret After Edit-Control Text

PSS ID Number: Q12190
Authored 16-Oct-1987 Last modified 25-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
-

The EM_SETSEL message can be used to place a selected range of text in
a Windows edit control. If the starting and ending positions of the
range are set to the same position, no selection is made and a caret
can be placed at that position. To place a caret at the end of the
text in a Windows edit control and set the focus to the edit control,
do the following:

 hEdit = GetDlgItem(hDlg, ID_EDIT); // Get handle to control
 SetFocus(hEdit);
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0xffff,0xffff));

It is also possible to force the caret to a desired position within
the edit control. The following code fragment shows how to place the
caret just to the right of the Nth character:

 hEdit = GetDlgItem(hDlg, ID_EDIT); // Get handle to control
 SetFocus(hEdit);
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(N,N));
 // N is the character position

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Placing Captions on Control Windows

PSS ID Number: Q77750
Authored 24-Oct-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

The SetWindowText() function can be used to place text into the caption bar
specified for a control window. The control must have the WS_CAPTION style
for the caption to be visible.

This technique does not work with edit controls because the SetWindowText()
function specifies the contents of the edit control, not its caption.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Placing Double Quotation Mark Symbol in a Resource String

PSS ID Number: Q47674
Authored 03-Aug-1989 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

To specify a set of double quotation marks within a string in an
application's resource (RC) file, use two double quotation mark characters
in succession, as in the following example:

Specify the following string in the RC file:

 "The letter ""Q"" is quoted."

The following string will appear in the compiled resource (RES) file:

 The letter "Q" is quoted.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrRsc

Placing Text in an Edit Control

PSS ID Number: Q32785
Authored 11-Jul-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

Text is placed into an edit control by calling SetDlgItemText() or by
sending the WM_SETTEXT message to the edit control window, with lParam
being a pointer to a null-terminated string. This message can be sent in
two ways:

1. SendMessage(hwndEditControl, WM_SETTEXT, ...

2. SendDlgItemMessage(hwndParent, ID_EDITCTL, WM_SETTEXT...

 NOTE: hwndParent is the window handle of the parent, which may be a
 dialog or window. ID_EDITCTL is the ID of the edit control.

Text is retrieved from an edit control by calling GetDlgItemText() or
by sending the WM_GETTEXT message to the edit control window, with
wParam being the maximum number of bytes to copy and lParam being a
far pointer to a buffer to receive the text. This message can be sent
in two ways:

1. SendMessage(hwndEditControl, WM_GETTEXT, ...

2. SendDlgItemMessage(hwndParent, ID_EDITCTL, WM_GETTEXT...

 NOTE: hwndParent is the window handle of the parent, which may be
 a dialog or window. ID_EDITCTL is the ID of the edit control.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Points to Remember When Writing a Debugger for Win32s

PSS ID Number: Q121093
Authored 26-Sep-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SUMMARY

This article is intended for developers of debugging tools for the Win32s
environment. It covers the issues that should be to taken into
consideration while writing debugging tools for the Win32s environment.

Overall, the code of a debugger for the Win32s environment is similar to
the code of a debugger for the Windows NT environment. There are special
points that must be considered before and while writing debugging tools for
the Win32s environment. They are:

 - Using the WaitForDebugEvent() API Function

 - Debugging Shared Code

 - Getting and Setting Thread Context

 - Tracing Through Mixed 16- and 32-bit Code

 - Using Asynchronous Stops

 - Identifying System DLLs

 - Understanding Linear and Virtual Addresses

 - Reading and Writing Process Memory

 - Accessing the Thread Local Storage (TLS)

Each of these is discussed in detail in the More Information section below.

MORE INFORMATION

The following information is specific to writing a debugger for the Win32s
environment.

Using the WaitForDebugEvent() API Function

The WaitForDebugEvent() API function waits for a debugging event to occur
in a process being debugged. Use it to trap debugging events.

Because of the non-preemptive nature of Windows version 3.1, it is not

possible to guarantee the timeout functionality. For this reason, the
dwTimeout parameter was implemented differently in Win32s. In Win32s, if
dwTimeout is zero, the WaitForDebugEvent() function behaves as documented
in the "Win32 Programmer's Reference." Otherwise, the function waits
indefinitely, until a debug event occurs or until a message is received for
that process.

Make sure the function returns if a message is received, so that the
calling process can respond to messages. If WaitForDebugEvent() returns
because a debug event has occurred, the return value is TRUE. Otherwise,
the return value is FALSE. In Win32, a FALSE return value means failure.
Have the calling process use SetLastError() to set the error value to 0
before calling WaitForDebugEvent(). Then if the return value is FALSE and
error value returned by GetLastError() is still zero, it means a message
arrived.

The following code fragment demonstrates the use of WaitForDebugEvent() in
the message loop:

 while(GetMessage(&msg, NULL, NULL, NULL))
 {
 TranslateMessage(&msg); /* Translate virtual key codes */
 DispatchMessage(&msg); /* Dispatch message to window */

 SetLastError(0); /* Set error code to zero */
 if(WaitForDebugEvent(&DebugEvent, INFINITE))
 {
 /* Process the debug event */
 ProcessDebugEvents(&DebugEvent);
 }
 else
 {
 if(GetLastError() != 0)
 {
 /* Handle error condition. */
 }
 }
 }

Debugging Shared Code

Under Win32s, all processes run in a single address space. For that reason,
if a debugger sets a breakpoint in shared code, all processes will
encounter this breakpoint, even those that are not being debugged. For
these processes, the debugger should restore the code, let the process
execute the restored instruction, and then reset the breakpoint. The
problem is that in order to do these operations, the debugger needs a
handle to the process thread.

The debugger does not have a handle for the process thread of a process it
did not create. To get the handle, Win32s supports a new function,
OpenThread(), which is not a part of the Win32 API.

 HANDLE OpenThread(dwThreadId);

 DWORD dwThreadId; /* The thread ID */

 Parameter description:

 dwThreadId - Specifies the thread identifier of the thread to open.

 Returns:

 If the function succeeds, the return value is an open handle of the
 specified thread; otherwise, it is NULL. To get extended error
 information, use the GetLastError() API.

 Comments:

 The handle returned by OpenThread() can be used in any function that
 requires a handle to a thread.

OpenThread() is exported by KERNEL32.DLL, but is not included in any of the
SDK import libraries.

To create an import library on a Windows NT development machine:

1. Place the following contents into a file named W32SOPTH.C:

 #include <windows.h>

 HANDLE WINAPI OpenThread(DWORD dwThreadId)
 {
 return (HANDLE)NULL;
 }

2. Place the following contents into a file named W32SOPTH.DEF:

 LIBRARY kernel32

 DESCRIPTION 'Win32s OpenThread library'

 EXPORTS
 OpenThread

3. Place the following contents into a file named MAKEFILE:

 w32sopth.lib: w32sopth.obj
 lib -out:w32sopth.lib -machine:i386 -def:w32sopth.def w32sopth.obj

 w32sopth.obj: w32sopth.c
 cl /c w32sopth.c

4. Run the NMAKE utility from the directory that contains the files
 created in steps 1-3. This creates the W32SOPTH.LIB file.

The debugger should perform the following test: in the DEBUG_INFO structure
returned by WaitForDebugEvent(), there is a thread ID. The debugger should
check to see if this ID is one of the debugged processes. If it is not, the

debugger should call OpenThread() with the given thread ID as the parameter
and receive a handle to the thread. Using this handle, the debugger should
call GetThreadContext(), identify the breakpoint, restore the code, set the
single step bit of EFlag, and resume the process by calling
ContinueDebugEvent(). Then control returns to the debugger. The debugger
restores the breakpoint. After dealing with the non-debugged process, the
debugger must close the thread handle obtained from OpenThread() by using
CloseHandle().

The following code fragment demonstrates how a debugger can handle
breakpoints in the context of a non-debugged process:

 LPDEBUG_EVENT lpEvent; /* Pointer to the debug event structure */
 HANDLE hProc; /* Handle to process */
 HANDLE hThread; /* Handle to thread */
 CONTEXT Context; /* Context structure */;
 BYTE bOrgByte; /* Original byte in the place of BP */
 DWORD cWritten; /* Number of bytes written to memory */
 static DWORD dwBPLoc; /* Breakpoint location */

 /*
 * Other debugger functions:
 *
 * LookupThreadHandle -
 * Receives a thread ID and returns a handle to the thread, if
 * the thread created by the debugger, else returns NULL.
 */
 HANDLE LookupThreadHandle(DWORD);

 /*
 * LookupOriginalBPByte -
 * Receives an address of a breakpoint and returns the original
 * contents of the memory in the place of the breakpoint.
 * The memory contents is returned in the byte buffer passed as
 * a parameter.
 * Return value - If the breakpoint was set by the debugger the
 * return value is TRUE, else FALSE.
 */
 BOOL LookupOriginalBPByte(LPVOID, LPBYTE);

 /* Handle debug events according to event types */
 switch(lpEvent->dwDebugEventCode)
 {
 /* ... */
 case EXCEPTION_DEBUG_EVENT:
 /* Handle exception debug events according to exception type */
 switch(lpEvent->u.Exception.ExceptionRecord.ExceptionCode)
 {
 /* ... */
 case EXCEPTION_BREAKPOINT:
 /* Breakpoint exception */
 /* Look for the thread handle in the debugger tables */
 hThread = LookupThreadHandle(lpEvent->dwThreadId);
 if(hThread == NULL)
 {

 /* Not a debuggee */
 /* Get process and thread handles */
 hProc = OpenProcess(0, FALSE, lpEvent->dwProcessId);
 hThread = OpenThread(lpEvent->dwThreadId);

 /* Get the full context of the processor */
 Context.ContextFlags = CONTEXT_FULL;
 GetThreadContext(hThread, &Context);

 /* We get the exception after executing the INT 3 */
 dwBPLoc = --Context.Eip;

 /* Restore the original byte in memory in the */

 /* place of the breakpoint */
 if(!LookupOriginalBPByte((LPVOID)dwBPLoc, &bOrgByte))
 {
 /* Handle unfamiliar breakpoint */
 }
 else
 {
 /* Restore memory contents */
 WriteProcessMemory(hProc, (LPVOID)dwBPLoc,
 &bOrgByte, 1, &cWritten);

 /* Set the Single Step bit in EFlags */
 Context.EFlags |= 0x0100;
 SetThreadContext(hThread, &Context);
 }

 /* Free Handles */
 CloseHandle(hProc);
 CloseHandle(hThread);

 /* Resume the interrupted process */
 ContinueDebugEvent(lpEvent->dwProcessId,
 lpEvent->dwThreadId, DBG_CONTINUE);
 }
 else
 {
 /* Handle debuggee breakpoint. */
 }
 break;

 case STATUS_SINGLE_STEP:
 hThread = LookupThreadHandle(lpEvent->dwThreadId);
 if(hThread == NULL)
 {
 /* Not a debuggee, just executed the original instruction */
 /* and returned to the debugger. */

 /* Get process handle */
 hProc = OpenProcess(0, FALSE, lpEvent->dwThreadId);

 /* Restore the INT 3 instruction in the place of the BP */

 bOrgByte = 0xCC;
 WriteProcessMemory(hProc, (LPVOID)dwBPLoc,
 &bOrgByte, 1, &cWritten);

 /* Free Handle */
 CloseHandle(hProc);

 /* Resume the process */
 ContinueDebugEvent(lpEvent->dwProcessId,
 lpEvent->dwThreadId, DBG_CONTINUE);
 }
 else
 {
 /* Handle debuggee single-step. */
 }
 break;
 /* */
 }
 /* */
 }

This sample code does not contain code to handle error checking and return
values from APIs. The assumption is that a non-debugged process generates a
single step exception only when it is executing the instruction in the
place of the breakpoint. The code for handling the single step exception
does not handle debug registers.

Getting and Setting Thread Context

Because of architectural differences between Windows NT and Win32s, there
is a difference in the way GetThreadContext() and SetThreadContext() work
in Win32s. These functions return successfully only if they are called
after returning from WaitForDebugEvent() with the EXCEPTION_DEBUG_EVENT
value in the dwDebugEventCode field of the DEBUG_INFO structure and before
calling ContinueDebugEvent(). At any other point, these APIs fail and
GetLastError() returns ERROR_CAN_NOT_COMPLETE.

Tracing Through Mixed 16- and 32-bit Code

Occasionally, Win32-based applications switch to 16-bit mode and then go
back to 32-bit mode. For example, part of the Windows API is implemented in
Win32s by using thunks to connect to Windows version 3.1. That means that
in order to call the API, Win32s switches to 16-bit mode, calls the
corresponding API on the Windows version 3.1 side, and then returns to 32-
bit mode.

Most debuggers do not allow tracing through 16-bit code. So when the code
is about to switch to 16-bit mode, the debugger should trace over this
code. To do so, Win32s supplies the DbgBackTo32 label. All calls to 16-bit
code return through this address. The DbgBackTo32 label is exported by
W32SKRNL.DLL. At this label, there is a RET instruction. After executing
this RET instruction and immediately another following RET instruction,
Win32s resumes execution at the application code, at the instruction

following the call to the thunked function. So if the debugger determines
that the next call is into a thunk function, it can set a breakpoint at
DbgBackTo32 and trace over this call.

Using Asynchronous Stops

The asynchronous stop key combination was set to CTRL+ALT+F11 in Win32s.
It allows a 16-bit debugger to run at the same time as a 32-bit debugger.
Each debugger can synchronously stop the other.

If the user presses CTRL+ALT+F11 when the executing code is 16-bit code,
execution will not be interrupted until it returns to 32-bit code. This
way, the debugger does not have to handle 16-bit code. If the user presses
CTRL+ALT+F11 when the executing code is 32-bit code, execution is
interrupted immediately.

Execution is interrupted by generating a single step exception. To handle
the case where the user presses CTRL+ALT+F11 while 16-bit code is
executing, the address of the exception is at a special Win32s label
(W32S_BackTo32). This label is exported by W32SKRNL.DLL and is located a
few instructions before DbgBackTo32. For more information on this see the
"Tracing Through Mixed 16- and 32-bit Code" above.

The code at W32S_BackTo32 is system code and usually debuggers should not
allow tracing through system code. But between W32S_BackTo32 and
DbgBackTo32, the debugger may allow tracing through this specific code and
also through the two following RET instructions. This will bring the user
to the point in the application at which CTRL+ALT+F11 was pressed.

Identifying System DLLs

When tracing through application code, it is not desirable to trace into
system DLL code. The main reason for this is that in many cases the code
goes to 16-bit code. To enable the debugger to distinguish between system
and user DLLs, all Win32s system DLLs contain an extra exported symbol
called WIN32SYSDLL. The address of this symbol is meaningless. The
existence of such a symbol indicates that this is a system DLL.

Understanding Linear and Virtual Addresses
--

Win32s uses flat memory address space as does Windows NT, but unlike
Windows NT, the base of the code and data segments is not at zero. You must
consider this when dealing with linear addresses -- such as hardware debug
registers when setting a hardware breakpoint. When setting a hardware
breakpoint, you need to add the base of the selector to the virtual address
of the breakpoint and set the debug register with this value. If you do not
do so, the code will run on Windows NT but not on Win32s.

The debugger needs to get the base address of the selectors by using the
GetThreadSelectorEntry() function.

Similarly, when the hardware breakpoint is encountered, you must subtract

the selector base address from the contents of the debug register in order
to read the process memory at the breakpoint location.

Reading and Writing Process Memory

When reading from or writing to process memory, all hardware breakpoints
must be disabled. If you do not do so, accessing the memory locations
pointed to by the debug registers will trigger the hardware breakpoints.

The following code demonstrates how a debugger can read process memory at
the location of a read memory hardware breakpoint:

 CONTEXT Context;
 LDT_ENTRY SelEntry;
 DWORD dwDsBase;
 DWORD DR7;
 BYTE Buffer[4];

 /* Get Context */
 Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS;
 GetThreadContext(hThread, &Context);

 /* Calculate the base address of DS */
 GetThreadSelectorEntry(hThread, Context.SegDs, &SelEntry);
 dwDsBase = (SelEntry.HighWord.Bits.BaseHi << 24) |
 (SelEntry.HighWord.Bits.BaseMid << 16) |
 SelEntry.BaseLow;

 /*
 * Disable all hardware breakpoints before reading the process
 * memory. Not doing so will lead to nested breapoints.
 */
 DR7 = Context.Dr7;
 Context.Dr7 &= ~0x3FF;
 SetThreadContext(hThread, &Context);

 /* Read DWORD at the location of DR0 */
 ReadProcessMemory(hProcess,
 (LPVOID)((DWORD)Context.Dr0-dwDsBase),
 Buffer, sizeof(Buffer), NULL);

 /* Restore hardware breakpoints */
 Context.Dr7 = DR7;
 SetThreadContext(hThread, &Context);

Accessing the Thread Local Storage (TLS)

The lpThreadLocalBase field of the CREATE_PROCESS_DEBUG_INFO structure in
Windows NT specifies the base address of a per-thread data block. At offset
0x2C within this block, there exists a pointer to an array of LPVOIDs.
There is one LPVOID for each DLL/EXE loaded at process initialization, and
that LPVOID points to Thread Local Storage (TLS). This gives a debugger

access to per-thread data in its debuggee's threads using the same
algorithms that a compiler would use.

On the other hand, in Win32s, lpThreadLocalBase contains a pointer directly
to the array of LPVOIDs, not the pointer to the per-thread data block.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbprg kbcode
KBSubCategory: W32s

Possible Cause for ERROR_INVALID_FUNCTION

PSS ID Number: Q111838
Authored 20-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The Win32 Tape API (application programming interface) functions may return
an error code of ERROR_INVALID_FUNCTION if the operation being attempted is
not supported by the tape device.

MORE INFORMATION

You can determine what operations are valid for a tape device by calling
GetTapeParameters() to get the tape drive parameters. See the code fragment
in the Sample Code section of this article for an example of how to call
GetTapeParameters() for this information.

Once you have the TAPE_GET_DRIVE_PARAMETERS structure, you can check for a
specific operation in the FeaturesLow and FeaturesHigh members of the
TAPE_GET_DRIVE_PARAMETERS structure. This is also demonstrated in the
Sample Code section.

Sample Code

/*
** This is a code fragment only and will not compile and run as is.
*/

DWORD dwRes, dwSize;
TAPE_GET_DRIVE_PARAMETERS parmDrive;

...

dwSize = sizeof(parmDrive);
dwRes = GetTapeParameters(hTape, GET_TAPE_DRIVE_INFORMATION,
 &dwSize, &parmDrive);
if (dwRes != NO_ERROR) {
 /* place error handling code here */
 exit(-1);
}

if (parmDrive.FeaturesLow & TAPE_DRIVE_ERASE_LONG)
 printf("Device supports the long erase technique.\n");

...

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Possible Serial Baud Rates on Various Machines

PSS ID Number: Q99026
Authored 19-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

Computers running Windows NT may be unable to set the same serial baud
rates due to differences in serial port hardware on various platforms and
machines. These differences may be important to note when writing a serial
communications application that runs on different Windows NT platforms.

The simplest way to determine what baud rates are available on a particular
serial port is to call the GetCommProperties() application programming
interface (API) and examine the COMMPROP.dwSettableBaud bitmask to
determine what baud rates are supported on that serial port.

MORE INFORMATION

Some baud rates may be available on one machine and not on another because
of differences in the serial port hardware used on the two machines. Most
Intel 80x86 machines use a standard 1.8432 megahertz (MHz) clock speed on
serial port hardware, and therefore most Intel machines can set the same
baud rates. However, on other platforms, such as MIPS, there is no standard
serial port clock speed. MIPS serial ports are known to exist with 1.8432
MHz, 3.072 MHz, 4.2336 MHz, and 8.0 MHz serial port clock chips. Future NT
implementations on other platforms may have different serial port clock
speeds as well.

Furthermore, certain requested baud rates are special-cased in the Windows
NT serial driver so that they will work. The following are these special
cases:

 MHz Requested Baud Divisor Resulting Baud Rate (+/- 1)

 1.8432 56000 2 57600
 3.072 14400 13 14769
 4.2336 9600 28 9450
 4.2336 14400 18 14700
 4.2336 19200 14 18900
 4.2336 38400 7 37800
 4.2336 56000 5 52920
 8.0 14400 35 14286
 8.0 56000 9 55556

The actual baud rate can be calculated by dividing the divisor multiplied

by 16 into the clock rate. For example, for a 1.8432 MHz clock and a
divisor of 2, the baud rate would be:

 1843200 Hz / (2 * 16) = 57600

For all other cases, as long as the requested baud rate is within 1 percent
of the nearest baud rate that can be found with an integer divisor, the
baud rate request will succeed.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCommapi

Posting Frequent Messages Within an Application

PSS ID Number: Q40669
Authored 26-Jan-1989 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The object-oriented nature of Windows programming can create a situation in
which an application posts a message to itself. When such an application is
designed, care must be taken to avoid posting messages so frequently that
system messages to the application are not processed. This article
discusses two methods of using the PeekMessage() function to combat this
situation.

MORE INFORMATION

In the first method, a PeekMessage() loop is used to check for system
messages to the application. If none are pending, the SendMessage()
function is used from within the PeekMessage() loop to send a message to
the appropriate window. The following code demonstrates this technique:

while (fProcessing)
 {
 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 break;
 /* process system messages */
 }
 else
 {
 /* perform other processing */
 ...
 /* send WM_USER message to window procedure */
 SendMessage(hWnd, WM_USER, wParam, lParam);
 }
 }

In the second method, two PeekMessage() loops are used, one to look for
system messages and one to look for application messages. PostMessage() can
be used from anywhere in the application to send the messages to the
appropriate window. The following code demonstrates this technique:

while (fProcessing)
 {
 if (PeekMessage(&msg, NULL, 0, WM_USER-1, PM_REMOVE))
 {

 if (msg.message == WM_QUIT)
 break;
 /* process system messages */
 }
 else if (PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_REMOVE))
 /* process application messages */
 }

An application should use a PeekMessage() loop for as little time as
possible. To be compatible with battery-powered computers and to optimize
system performance, every Windows-based application should inform Windows
that it is idle as soon and as often as possible. An application is idle
when the GetMessage() or WaitMessage() function is called and no messages
are waiting in the application's message queue.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

PRB: "Out of Memory Error" in the Win32 SDK Setup Sample

PSS ID Number: Q114610
Authored 08-May-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

When a dialog box is shown using UIStartDlg() or a billboard is switched
during the file copy operation, you may receive an "out of memory" error.
The error will also occur in any setup program based on a modified version
of the SDK sample.

CAUSE

The dialog box and billboard templates are stored as resources in
MSCUISTF.DLL. This DLL (Dynamic Link Library) is not loaded at the
beginning of the setup program but is rather loaded and unloaded [using
LoadLibrary() and FreeLibrary()] around each call to UIStratDlg() and when
billboards are switched. Hence, each time a dialog or billboard is
displayed, floppy disk #1 has the potential of being accessed. If disks
have been swapped due to the installation process such that disk #1 is no
longer in the drive, you will receive an out of memory error when
LoadLibrary() is called on MSCUISTF.DLL.

RESOLUTION

To solve the problem, call LoadLibrary() at the beginning of WinMain() and
call FreeLibrary() and the end of WinMain(). This way the DLL is always in
use and will never be unloaded until the setup is done.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsMss

PRB: "Routine Not Found" Errors in Windows Help

PSS ID Number: Q108722
Authored 16-Dec-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

SYMPTOMS

When Freecell is running on Win32s, you may get some errors when you try to
use Freecell Help. This has nothing to do with whether or not Win32s is
installed correctly.

When you first open Help in Freecell running on Win32s, you will get a
message box that says, "Routine Not Found." You will get that same
message box when you choose the Find button.

When you choose any term in Freecell Help that has a dotted underline (a
pop-up hot key), a window pops up but then quickly disappears. You will
then get a message box that reads, "Help Topic Does Not Exist."

CAUSE

FREECELL.HLP was meant to be used with WINHLP32.EXE. FREECELL.HLP uses the
advanced features of WINHLP32.EXE for full-text searching. WINHELP.EXE,
which runs on Windows 3.1, does not support full-text searching.
WINHLP32.EXE does not run on Win32s or Windows 3.1. As a result, everytime
FREECELL.HLP tries to bind the Find button to the full-text searching
functions, it fails, and WinHelp pops up an error message box.

RESOLUTION

You can still read the information in the help file. Although you cannot
use the Find button to do full-text searches, you can use the Search
button to do keyword searches. WINHLP32.EXE will not work on a MS-DOS +
Windows + Win32s operating system. If you need to read the pop-up
definitions or use the Find button, you can do so if you run Freecell Help
on the Windows NT operating system.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: _getdcwd() Returns the Root Directory Under Win32s

PSS ID Number: Q98286
Authored 02-May-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2

SYMPTOMS

In the following code segment, _getdcwd() always returns the root:

 _getdcwd(3, cBuf, MAX_PATH);
 MessageBox(hWnd, cBuf, "Drive 3 <C drive>", MB_OK);

Also, in the following code segment, _chdrive() and _getcwd() always return
the root:

 _chdrive(3);
 _getcwd(cBuf, MAX_PATH);
 MessageBox(hWnd, cbuf, "Drive 3 <C drive>", MB_OK);

CAUSE

When a Win32-based application starts on Win32s, the root is set as the
current directory for any drive except the default drive.

RESOLUTION

The following code fragments work as expected under Win32s:

 _getdcwd(0, cBuf, MAX_PATH);
 MessageBox(hWnd, cBuf, "Drive 0 <default drive>", MB_OK);

 -or-

 GetCurrentDirectory(sizeof (cBuf), cBuf);
 MessageBox(hWnd, cBuf, "SCD", MB_OK);

MORE INFORMATION

Windows NT uses the current directory of a process as the initial current
directory for the current drive of a child process. So for example, if the
current directory in the command prompt (CMD.EXE) is C:\WINNT then the
current directory of the child process will be C:\WINNT.

However, on Win32s, the current directory for any drive except the default
drive is set to the root and not the current directory of the parent
process. A Win32-based application running on Win32s calling _chdrive() or

SetCurrentDirectory() to change the drive GetCurrentDirectory or _getcwd()
will then return the root. The _getdcwd() function is a composite of
changing drives, getting the current directory of that drive, and change
back to the original drive. Therefore, _getdcwd() will always return the
root on Win32s.

Running the following sample to display the current directory of drives C
and D under Windows NT properly displays the full path of the drive.
Running the sample under Win32s always displays the root ("C:\", "D:\").

Sample Code

#include <direct.h>

...

 status = _getdcwd(3, szPath, MAX_PATH); // drive 3 == C:
 if(status != NULL)
 {
 MessageBox(hWnd, szPath, "Current working directory on C:", MB_OK);
 }

 status = _getdcwd(4, szPath, MAX_PATH); // drive 4 == D:
 if(status != NULL)
 {
 MessageBox(hWnd, szPath, "Current working directory on D:", MB_OK);
 }

...

Additional reference words: 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Access Denied When Opening a Named Pipe from a Service

PSS ID Number: Q126645
Authored 27-Feb-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5 and 3.51

SYMPTOMS

If a service running in the Local System account attempts to open a named
pipe on a computer running Windows NT version 3.5, the operation may fail
with an Access Denied error (error 5). This can happen even if the pipe was
created with a NULL DACL.

NOTE: For more information about placing a NULL DACL on a named pipe,
please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q102798
 TITLE : Security Attributes on Named Pipes

CAUSE

In Windows NT version 3.1, a process running in the Local System account
could connect to a resource using a Null Session. For security reasons, use
of the Null Session is restricted by default on Windows NT version 3.5.

RESOLUTION

You can allow access to a named pipe using the Null Session by adding
the pipe name to the following registry entry on the machine that
creates the named pipe:

 \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\
 Parameters\NullSessionPipes

The pipe name added to this entry is the name after the last backslash
in the string used to open the pipe. For example, if you use the following
string to open the pipe:

 \\hardknox\pipe\mypipe

you would add mypipe to the NullSessionPipes entry on the computer named
hardknox.

You must either reboot or restart (stop and then start) the Server service
for changes in this entry to take effect. Also, the named pipe will still
need to have a NULL DACL.

In Windows NT 3.51, by customer request, it is no longer necessary to

reboot. Once a named pipe is added to the key listed above, null-session
connections to that pipe will immediately be accessible.

This new functionality allows programs to permit null session access
to named pipes that do not have names known prior to booting the
system.

MORE INFORMATION

Usually, when a session is established between a computer supplying a
resource (server) and a computer that wants to use the resource (client),
the client is identified and credentials are verified. When a Null Session
is used, there is no validation of the client; everyone is allowed access.

If you allow a pipe to be used by a Null Session, you should either:

 - Verify that the data supplied by the pipe is truly public.

 -or-

 - Use an alternative method for verifying clients.

REFERENCES

The "Windows NT Registry Entries" help file in the Windows NT version 3.5
Resource Kit.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseSecurity

PRB: AccessCheck() Returns ERROR_INVALID_SECURITY_DESCR

PSS ID Number: Q115946
Authored 07-Jun-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS

In certain cases, the AccessCheck() API fails and GetLastError() returns
the message "ERROR_INVALID_SECURITY_DESCR". This error message indicates
that the security descriptor passed to AccessCheck() was in an invalid
format.

CAUSE

This is expected behavior for the AccessCheck() function. AccessCheck()
was designed for use by programs that create and maintain their own
security descriptors. These security descriptors would always have the
owner, DACL, and group information.

RESOLUTION

If the security descriptor is indeed valid, you can eliminate the error
by ensuring that the security descriptor has been opened for access to
the following types of security information:

 OWNER_SECURITY_INFORMATION
 GROUP_SECURITY_INFORMATION
 DACL_SECURITY_INFORMATION

You can double check the validity of the security descriptor by calling
the IsValidSecurityDescriptor() API.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseSecurity

PRB: After CreateService() with UNC Name, Service Start Fails

PSS ID Number: Q127862
Authored 19-Mar-1995 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SYMPTOMS

When giving a Universal Naming Convention (UNC) name to CreateService(),
the call succeeds, but service start fails with ERROR_ACCESSS_DENIED (5).
The access denied message is given, even though the service runs under an
account that has logon as service rights and has full access to the service
image path.

CAUSE

The service control manager calls CreateProcess() to start the service and
the service controller runs in the LocalSystem security context. When you
call CreateProcess() with a UNC name from a process running in the
LocalSystem context, you get ERROR_ACCESS_DENIED. This is because
LocalSystem has restricted (less than guest) access to remote machines. A
null session is set up for LocalSystem remote access, which has reduced
rights (less in Windows NT version 3.5 than in Windows NT version 3.1).

RESOLUTION

There are two possible solutions:

 - When specifying the fully qualified path to the service binary file,
 do not use a UNC name. It may be desirable to copy the service binary
 file to the local machine. This has the added benefit that the service
 will no longer be dependent on network operations.

 -or-

 - If the service binary is on \\MACHINEA\SHARENAME, add SHARENAME to

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 LanmanServer\
 Parameters\
 NullSessionShares

 on MACHINEA. This will let requests to access this share from null
 sessions succeed.

 WARNING: This will allow everyone access to the share. If you want to

 maintain security for the share, create an account with the access
 required.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseService

PRB: Applications Cannot Change the Desktop Bitmap

PSS ID Number: Q74366
Authored 16-Jul-1991 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

The desktop bitmap is not updated when an application updates the Wallpaper
entry of the [Desktop] section of WIN.INI and then sends a WM_WININICHANGE
message to the desktop window.

RESOLUTION

By design, there is no supported method for an application to dynamically
change the desktop bitmap under Windows 3.0 and 3.1.

MORE INFORMATION

Please note that an application could accidentally (or maliciously)
reference a desktop bitmap in a format that would GP fault the system. For
additional information, please see the following article(s) in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q69292
 TITLE : PRB: Video Driver GP Faults When Handling Large Bitmaps

Because the entry in WIN.INI has changed, this means that Windows will GP
fault every time the user tries to start it in the future, making Windows
no longer available.

In Windows 3.1, the application can call

 SystemParametersInfo(SPI_SETDESKWALLPAPER,....)

which has safety checks built in.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 WM_WININICHANGE
KBCategory: kbprg kbprb
KBSubCategory: UsrIni

PRB: Area Around Text and Remainder of Window Different

PSS ID Number: Q22242
Authored 17-Dec-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When text is painted into a window, an area around the text is a
different color than the remainder of the window.

CAUSE

The area around the text is painted with a solid color while the
remainder of the window is painted using a dithered color.

RESOLUTION

To make the area around the text and the remainder of the window
have the same color, perform one of the following two steps:

 - Use a solid color for the window background, and use the same
 color for the text background. To ensure that a color is a solid
 color, use the GetNearestColor function. This function returns
 the nearest solid color available to represent the specified
 color.

 -or-

 - Call the SetBkMode function to specify TRANSPARENT mode for the
 text. Doing so prevents Windows from painting the area behind
 the text. The window background color shows through instead.

MORE INFORMATION

By default, when an application paints text into its window, Windows
fills the area around the character with the current background color.
Windows always uses a solid color for this purpose.

When an application registers a window class, it specifies a handle to
a brush that Windows uses to paint the window background. On some
output devices, brushes can create dithered colors. On one of these
devices, the area behind painted text might have a different color
than the remainder of the window.

The following code specifies the window background color:

 #define ELANGREEN 0x003FFF00
 pTemplateClass->hbrBackground = CreateSolidBrush((DWORD)ELANGREEN);

The following code specifies the color used to paint around text and
draws some text into a device context:

 #define SZ -1
 SetBkColor(hDC, (DWORD)ELANGREEN);
 DrawText(hDC, (LPSTR)"text", SZ, (LPRECT)&Rect, DT_BOTTOM);

The color used to paint the area around the text has a yellow cast,
which gives it a slightly different appearance than the window
background color.

A brush may be able to represent a wider color range than the solid
colors because a brush covers an area while a solid color may be used
to paint nominal-width lines (for example, lines that are one device
unit wide) that must be the same color at all locations and angles.
Therefore, the device-driver writer has the option of providing
dithered colors for brushes, but has no such freedom when it comes to
the solid colors for drawing lines.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiDrw

PRB: AttachThreadInput() Resets Keyboard State

PSS ID Number: Q100486
Authored 22-Jun-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.1

SYMPTOMS

Start with a program that calls AttachThreadInput() to a thread in another
process. Call GetKeyboardState() to get the current key. Call
SetKeyboardState() to set the keystate. This call returns TRUE, indicating
success, but the keystate is not successfully set.

If the thread is in the same process, calling SetKeyboardState() works as
expected.

CAUSE

When attaching to another thread, a temporary message queue is created.
This queue contains a copy of the keystate information from the queue to
which you are attaching. When the keystate is set, the temporary queue
keystate is updated and the application programming interface (API)
succeeds. However, when the detach occurs, the keystate change information
is lost and reverts to what it was before the attach.

RESOLUTION

To work around the problem, either:

 - Stay attached

 -or-

 - Use hooks

STATUS

This problem will not be resolved in the release of Windows NT version 3.1;
however, a resolution is being considered for a future release.

Additional reference words: 3.10
KBCategory: kbprg kbprb
KBSubcategory: UsrMisc

PRB: Average & Maximum Char Widths Different for TT Fixed

PSS ID Number: Q92410
Authored 05-Nov-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

The tmAveCharWidth and tmMaxCharWidth fields of the TEXTMETRIC
structure are not equal for a fixed-pitch TrueType (TT) font such
as Courier New.

RESOLUTION

This is by TrueType design. The tmMaxCharWidth denotes the maximum
possible ink width of the font rather than maximum cell width of
the font.

MORE INFORMATION

TrueType fonts use ABC character spacing. The "A" width is the
distance that is added to the current position before placing the
TrueType glyph. The "B" width is the width of the black part (ink
width) of the TT glyph. The "C" width is the distance from the end of
the "B" width to the beginning of the next character. Advanced width
(cell width) is equal to A+B+C.

The physical TT fonts that are passed to drivers have just the "B"
part of the characters, so all fonts at the level of the driver appear
to be proportional width fonts. The tmMaxCharWidth is the least width
in which the "B" part of all characters will fit. The tmAveCharWidth
is the average advance width (A+B+C). For a fixed-pitch TT font such
as Courier New, the A+B+C width is the same for all characters;
however, the maximum width as defined above can be different.

tmMaxCharWidth is greater than tmAveCharWidth only if A+C is negative.
This is possible for a fixed-pitch font.

Please see section 18.2.4.1 of the Windows 3.1 SDK "Guide to
Programming" for more information about ABC character spacing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiTt

PRB: Building SDK SNMP Samples Results in Unresolved

PSS ID Number: Q129240
Authored 23-Apr-1995 Last modified 24-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

Building the SNMP samples in the Win32 SDK for Windows NT version 3.5
(TESTDLL.DLL or SNMPUTIL.EXE) using Visual C++ version 2.0 results in the
the linker complaining of unresolved externals _mb_cur_max_dll and
_pctype_dll.

CAUSE

The application was built to use the C run-time in a DLL. In the Win32 SDK,
the import library is CRTDLL.LIB, and in Visual C++, the import library is
MSVCRT.LIB. The "___mb_cur_max_dll" and "__pctype_dll" symbols are defined
in the CRTDLL.LIB file, but not in the MSVCRT.LIB file.

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q119503
 TITLE : PRB: Unresolved ___mb_cur_max_dll and __pctype_dll

RESOLUTION

Choose Settings from the Project menu. Then select C/C++, and go to the
Code Generation category. For the run-time library listed, use
Multithreaded using DLL.

Additional reference words: 3.50
KBCategory: kbnetwork kberrmsg kbprb
KBSubcategory: NtwkSnmp

PRB: Byte-Range File Locking Deadlock Condition

PSS ID Number: Q117223
Authored 22-Jun-1994 Last modified 19-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1 and 3.5

SYMPTOMS

It is possible for a thread in a multithreaded Win32-based application to
block while doing a LockFile() or LockFileEx() API call, even when the area
of memory the thread has requested is not locked by another thread.

NOTE: If performance-monitoring tools (such as PERFMON) are used to examine
the status of existing threads and the Thread State indicates that the
thread is waiting and the Thread Wait Reason shows that it is the executive
that the thread is waiting on, this is probably not an indication that a
deadlock has occurred, because threads are often in this state for other
reasons. Also, if the Thread State indicates that the thread is not
waiting, then a deadlock has probably not occurred.

CAUSE

There is a small window of time during which a multithreaded application is
vulnerable to this condition. Specifically, if one thread (call it Thread1)
is in the process of unlocking a currently locked byte range within a file
while a second thread (Thread2) is in the process of obtaining a lock on
that same byte range using the same file handle and without specifying the
flag LOCKFILE_FAIL_IMMEDIATELY, Thread1 can block, waiting for the region
to become available. Ordinarily, when unlocking takes place, blocked
threads are released; but in this critical window of time, it is possible
for Thread2 to unlock the byte range without Thread1 being released. Thus,
Thread1 never resumes operation despite the fact that there is no apparent
fault in the logic of the program.

RESOLUTION

The deadlock condition described above can only come about if multiple
threads are concurrently doing synchronous I/O using the same file handle.

To avoid the problem, you have three options:

 - Each thread can obtain its own handle to the file either through the use
 of the DuplicateHandle() API or through multiple calls to the
 CreateFile() API.

 -or-

 - The threads can perform asynchronous I/O. This also requires the

 application developer to provide some form of explicit synchronization
 to coordinate access to the file by the threads.

 -or-

 - The threads can specify LOCKFILE_FAIL_IMMEDIATELY and then loop until a
 retry succeeds if the lock request fails. This option is the least
 desirable because it incurs significant CPU use overhead.

REFERENCES

For more information about threads, files, and file handles, see the
following sections in the "Win32 SDK Programmer's Reference," volume 2,
part 3, "System Services":

 - Chapter 43.1.6, "Synchronizing Execution of Multiple Threads"

 - Chapter 45.2.2, "Reading, Writing, and Locking Files"

 - Chapter 48.3, "Kernel Objects"

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubCategory: BseMisc

PRB: C2371 BSTR Redefinition When VFW.H Included in MFC App

PSS ID Number: Q129953
Authored 08-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1

SYMPTOMS

The following error message occurs when compiling an application with
Microsoft Visual C++, version 2.0 or 2.1, which uses the Microsoft Video
for Windows header file, VFW.H, and the Microsoft Foundation Classes (MFC):

 c:\msvc20\include\oleauto.h(214) : error C2371: 'BSTR' : redefinition;
 different basic types

This error message does not occur when using Microsoft Visual C++ version
1.5 for Windows with the Microsoft Video for Windows 1.1 DK installed while
running under Microsoft Windows operating system
version 3.1.

RESOLUTION

If the application does not require binary string (BSTR) support you can
eliminate this error message by defining "_AFX_NO_BSTR_SUPPORT" before the
MFC include files. For example, place the code below at the beginning of
the STDAFX.H file:

 #define _AFX_NO_BSTR_SUPPORT

If the application does require BSTR support, then you can eliminate this
error message by including the code below before including the VFW.H file:

 #define OLE2ANSI

MORE INFORMATION

This error message occurs by design. MFC versions 3.0 and 3.1 require
either that "OLE2ANSI" is defined when including the object linking and
embedding (OLE) headers or that "_AFX_NO_BSTR_SUPPORT" is defined. You
cannot use both ANSI-BSTRs (which is the default) and Unicode-BSTRs; you
must use one or the other.

The AFX.H file defines the BSTR type in order to allow CStrings to support
BSTRs. The VFW.H file unconditionally includes the OLE2.H file, which
eventually includes the OLEAUTO.H file, which also defines the BSTR type.
"_AFX_NO_BSTR_SUPPORT" disables CString support for BSTRs.

Steps to Reproduce Problem

1. Generate a default application with AppWizard.
2. Add the statement "#include vfw.h" to the end of the STDAFX.H file.
3. Compile the application.

The VFW.H file is included with the Microsoft Visual C++, 32-bit Edition,
and the Microsoft Win32 SDK for Windows NT.

Additional reference words: 3.10 3.50 2.00 2.10 CString port porting VfWDK
KBCategory: kbmm kbprb kberrmsg
KBSubcategory: MMVIDEO

PRB: Calling LoadMenuIndirect() with Invalid Data Hangs

PSS ID Number: Q131281
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Under Windows 95 if you call LoadMenuIndirect() with invalid data, the
system hangs (stops responding).

CAUSE

Invalid data anywhere in the array of MENUITEMTEMPLATE structures passed to
the LoadMenuIndirect() function may cause this problem. An example of this
might be an extra NULL byte after a MENUITEMTEMPLATE structure.

Under Windows NT version 3.5, passing the same invalid data in the
MENUITEMTEMPLATE structure causes LoadMenuIndirect() to return NULL, with
GetLastError() reporting an ERROR_INVALID_DATA value.

STATUS

This behavior is by design.

Additional reference words: 4.00 freeze lock up Menus
KBCategory: kbprg kbprb
KBSubcategory: UsrMen

PRB: Can't Disable CTRL+ESC and ALT+TAB Under Windows NT

PSS ID Number: Q125614
Authored 31-Jan-1995 Last modified 11-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SYMPTOMS

CTRL+ESC and ALT+TAB task switching cannot be disabled by an application
running under Windows NT.

Capturing WM_SYSCOMMAND messages and not sending them on for processing by
DefWindowProc() allowed task switching to be disabled in Windows version
3.1, but it doesn't work under Windows NT.

CAUSE

A primary reason for this change is to avoid dependence on an application
for processing of these key combinations. This way a hung application can
be switched away from by using either CTRL+ESC or ALT+TAB.

RESOLUTION

CTRL+ESC may disabled on a system-wide basis by replacing the NT Task
Manager. This is not recommended.

ALT+TAB and ALT+ESC may be disabled while a particular application is
running if that application registers hotkeys for those combinations with
Register HotKey().

STATUS

This behavior is by design.

REFERENCES

The first reference below describes the steps that must be taken to replace
TASKMAN.EXE. The two additional references provide more information on the
Windows NT Task Manager and its relationship to the Program Manager.

ARTICLE-ID:Q89373
TITLE :Replacing the Windows NT Task Manager

ARTICLE-ID:Q100328
TITLE :Replacing the Shell (Program Manager)

ARTICLE-ID:Q101659
TITLE :How Windows NT, 16-Bit Windows 3.1 Task Managers Differ

Additional reference words: 3.50
KBCategory: kbusage kbprb
KBSubcategory: UsrMisc

PRB: Can't Increase Process Priority

PSS ID Number: Q110853
Authored 31-Jan-1994 Last modified 02-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

An attempt to increase process priority to the real-time priority
REALTIME_PRIORITY_CLASS may not set the PriorityClass to the expected
level.

CAUSE

Only accounts with the "Increase Scheduling Priority" permission can
increase the priority to real-time. Only Administrators and "Power Users"
have this permission by default.

RESOLUTION

Either run the program from an Administrator or Power User account, or
grant the Increase Scheduling Priority permission to any user group that
must run the program.

STATUS

This behavior is by design.

MORE INFORMATION

The Increase Scheduling Priority permission can be granted to a user or
group through the User Manager. To do this:

1. Open the Administrative Tools group in Program Manager.
2. Run the User Manager application.
3. Choose User Rights from the Policies menu.
4. Select the Show Advanced User Rights check box.
5. Select Increase Scheduling Priority from the drop-down list box.
6. Choose the Add button to add users or groups to the list of entities
 that have this right.

Note that the call to SetPriorityClass() may return success even though the
priority was not set to REALTIME_PRIORITY_CLASS, because if you don't have
the Increase Scheduling Priority permission, a request for
REALTIME_PRIORITY_CLASS is interpreted as a request for the highest

priority class allowed in the current account. If it is important to know
the actual priority class that was set, use the GetPriorityClass()
function.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseProcThrd

PRB: Can't Remove Minimize or Maximize Button from Caption

PSS ID Number: Q130760
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Under Windows 95, applications cannot create an overlapped or a popup
window that contains only the Minimize or the Maximize button.

CAUSE

This is by design. Windows can have both buttons or none depending on the
styles specified while creating the window, but specifying just one style
(either the WS_MAXIMZIEBOX or WS_MINIMIZEBOX) creates both buttons on the
caption, with the other one disabled.

STATUS

This behavior is by design.

MORE INFORMATION

Under Windows version 3.1 or Window NT, applications could remove either
the Maximize or Minimize buttons on the caption bar. (This was usually done
when the appliction removed a corresponding menu item from the system menu
of a window.)

Applications running under Windows 95 that try to remove one of the buttons
(not both), will not succeed. The system displays both buttons and disable
the one whose style was not specified during creation. This is by design,
and there is no way to work around it, unless the application draws its own
caption bar.

Applications that removed the maximize or minimize menu items under Windows
version 3.1, should just gray them out (disable them) under Windows 95 to
maintain a uniform user interface.

Under Windows 95, applications can create a window (overlapped or popup)
with just the Close button (the X button) by creating the window without
specifying the WS_MAXIMIZEBOX or WS_MINIMIZEBOX styles. Calling
SetWindowLong(GWL_STYLE) to change or remove the minimize of the maxmize
buttons dynamically still displays both buttons with one of them disabled.

Additional reference words: 4.00 user
KBCategory: kbprg kbui kbprb

KBSubcategory: UsrWndw

PRB: Can't Use TAB to Move from Standard Controls to Custom

PSS ID Number: Q131283
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

As you attempt to customize the new Explorer-style File Open or Save As
common dialog, pressing the TAB key fails to move the focus from the
standard dialog's controls to the new controls specified in the custom
template.

CAUSE

The custom dialog box template failed to specify the DS_CONTROL style.

RESOLUTION

When creating a custom dialog box template to be used with the new FileOpen
or Save As common dialog, you must specify the DS_CONTROL style.

STATUS

This behavior is by design.

MORE INFORMATION

With the new way of customizing the File Open or Save As common dialog in
Windows 95, you can customize applications to provide a custom dialog box
template that adds controls to the default Open or Save As dialog box. This
custom dialog box is created as a child of the default dialog box and thus
requires a WS_CHILD style.

DS_CONTROL is a new style provided in Windows 95. It makes a modal dialog
created as a child of another dialog interact well with its parent dialog.
This style ensures that the user can move between the controls of the
parent dialog and the child dialog - or in this case between the standard
Open or Save As common dialog and the custom dialog provided by the
application.

NOTE: This article does not apply to Windows NT. This information applies
only to the new way of customizing the Explorer-style File Open or Save As
common dialog in Windows 95.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: UsrCmnDlg

PRB: Cannot Alter Messages with WH_KEYBOARD Hook

PSS ID Number: Q33690
Authored 29-Jul-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

After creating a program that uses the WH_KEYBOARD hook function to
intercept a user's keystrokes and changing the wParam value before passing
the hook code on to DefHookProc(), whichever application currently has the
focus still receives the original character typed in rather than the
translated character.

CAUSE

Keyboard messages cannot be altered with the WH_KEYBOARD hook. All that can
be done is to "swallow" the message (return TRUE) or have the message
passed on (FALSE). In a keyboard hook function, when you return
DefHookProc(), you are passing the event to the next hook procedure in the
potential hook chain, and giving it a chance to look at the event to decide
whether or not to discard it. You are not passing the message to the system
as if you had called DefWindowProc() from a Window procedure.

RESOLUTION

NOTE: In the discussion below, ignore the references to the WH_CALLWNDPROC
hook for Win32-based applications. Win32 does not allow an application to
change the message in a CallWndProc, as 16-bit Windows does.

To change the value of wParam (and hence the character message that is
received by the window with the focus), you must install the WM_GETMESSAGE
and WH_CALLWNDPROC hooks. The WH_GETMESSAGE hook traps all messages
retrieved via GetMessage() or PeekMessage(). This is the way actual
keyboard events are received: the message is placed in the queue by Windows
and the application retrieves it via GetMessage() or PeekMessage().
However, because applications can send keyboard messages with
SendMessage(), it is best to also install the WH_CALLWNDPROC hook. This
hook traps messages sent to a window via SendMessage().

These hooks pass you the address of the message structure so you can change
it. In Windows 3.0, when you return DefHookProc() within a WH_GETMESSAGE or
WH_CALLWNDPROC hook procedure, you are passing the address of the
(potentially altered) contents of the message structure on to the next hook
function in the chain. In Windows 3.1, you should use the CallNextHookEx()
function to pass the hook information to the next hook function. If you

alter the wParam before passing on the message, this will change the
character message eventually received by the application with the focus.

NOTE: For Windows 3.0, keep in mind that the hook callback procedure must
be placed in a DLL with fixed code so that it will be below the EMS line
and thus will always be present. If the hook callback procedure is not in a
fixed code segment, it could be banked out when it is called, and this
would crash the system. System-wide hooks in Windows 3.1, however, must
still reside in a DLL.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrHks

PRB: CBS_SIMPLE ComboBox Repainting Problem

PSS ID Number: Q128110
Authored 27-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK version 3.5
 - Microsoft Win32s version 1.2

SYMPTOMS

When a CBS_SIMPLE combo box has a WS_CLIPCHILDREN parent, the area below
the edit control and left to the list box is not repainted correctly. This
problem exists for 16-bit as well as 32-bit applications.

RESOLUTION

To work around this problem, subclass the combo box, calculate the blank
area, and then repaint to the desired color.

The following ComboBox subclass procedure is written for a 16-bit
application, but you can use the same idea in 32-bit applications.

Sample Code

LRESULT CALLBACK NewComboProc(
 HWND hWnd,
 UINT uMessage,
 WPARAM uParam,
 LPARAM lParam)
{
HDC myDC;
HPEN hPen, hOldPen;
HBRUSH hBrush;
HBRUSH hOldBrush;
COLORREF myColor=RGB(255,255,255); //It can be any color. Here
 //the area is painted white.

HWND hEdit, hList;
RECT comboRect, editRect, listRect;
char *wndClassName="Edit";

if (uMessage == WM_PAINT)
 {
 CallWindowProc(lpfnOldComboProc, hWnd, uMessage, uParam,
 lParam);
 myDC = GetDC(hWnd);
 hBrush = CreateSolidBrush(myColor);
 hPen = CreatePen (PS_SOLID, 1, myColor);

 hOldBrush = SelectObject(myDC, hBrush) ;
 hOldPen = SelectObject(myDC, hPen);

 //This code obtains the handle to the edit control of the
 //combobox.

 hEdit = GetWindow(hWnd, GW_CHILD);
 GetClassName (hEdit, wndClassName, 10);
 if (!lstrcmp (wndClassName, "Edit"))

 hList=GetWindow(hEdit, GW_HWNDNEXT);

 else
 {
 hList=hEdit;
 hEdit=GetWindow(hList, GW_HWNDNEXT);
 }

 //The dimensions of the Edit Control, ListBox control and
 //the Combobox are calculated and then used
 //as the base dimensions for the Rectangle() routine.

 GetClientRect (hWnd, &comboRect);
 GetClientRect (hEdit, &editRect);
 GetClientRect (hList, &listRect);
 Rectangle (myDC,
 comboRect.left,
 editRect.bottom,
 comboRect.right-listRect.right,
 comboRect.bottom);
 //Also paint the gap, if any exists, between the bottom
 //of the listbox and the bottom of the ComboBox rectangle.
 Rectangle (myDC,
 comboRect.right-listRect.right,
 editRect.bottom +
 listRect.bottom,
 comboRect.right,
 comboRect.bottom);

 DeleteObject(SelectObject(myDC, hOldBrush)) ;
 DeleteObject(SelectObject(myDC, hOldPen)) ;
 ReleaseDC(hWnd, myDC);
 return TRUE;
 }

return CallWindowProc(lpfnOldComboProc, hWnd, uMessage, uParam,
 lParam);
}

STATUS

This behavior is by design.

MORE INFORMAITON

Steps to Reproduce Behavior

To reproduce this behavior, use AppStudio to create a dialog with the
WS_CLIPCHILDREN style, put a CBS_SIMPLE combobox in the dialog, and click
the test button so you can test the dialog. Then move something on top of
the dialog, and move the object on top of the combobox away. You can then
see that area to the left of the listbox is not repainted correctly.

Additional reference words: 3.10 3.50 1.20
KBCategory: kbprg kbcode kbprb
KBSubcategory: UsrCtl

PRB: CBT_CREATEWND Struct Returns Invalid Class Name

PSS ID Number: Q106079
Authored 31-Oct-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The CBT_CREATEWND structure contains information passed to a WH_CBT
hook callback function before a window is created in the system. The
lpszClass field of this CBT_CREATEWND structure may return an invalid
class name, particularly for windows created internally by the system.

SYMPTOMS

The code to get to the window class name via the CBT_CREATEWND
structure in a CBT callback function may look like the following:

 int FAR PASCAL CBTProc (int nCode, WPARAM wParam, LPARAM lParam)
 {
 LPCBT_CREATEWND CreateWndParam;

 if (nCode >= 0)
 {
 switch (nCode)
 {
 case HCBT_CREATWND:
 CreateWndParam = (LPCBT_CREATEWND)lParam;
 OutputDebugString ("ClassName = ");
 OutputDebugString (lParam->lpcs->lpszClass);
 OutputDebugString ("\r\n");
 break;
 :
 :
 }
 }

 return (int)CallNextHookEx (hHook, nCode, wParam, lParam);
 }

However, this code may or may not output the correct class name,
depending on what the call to CreateWindow() (for the window about to
be created) looks like.

RESOLUTION

Windows provides the GetClassName() function to allow applications to

retrieve a window's class name. This function takes the handle to the
window as a parameter, as well as a buffer to receive the
null-terminated class name string. This function is a more reliable
and a more recommended means to obtain window class name information
than the CBT callback function's CBT_CREATEWND structure.

MORE INFORMATION

Whenever a window is about to be created, Windows checks to see if a
WH_CBT hook is installed anywhere in the system. If it finds one, it
calls the CBTProc() callback function with hook code set to
HCBT_CREATEWND, and with the lParam parameter containing a long
pointer to a CBT_CREATEWND structure.

The CBT_CREATEWND structure is defined in WINDOWS.H as follows

 typedef struct tagCBT_CREATEWND {
 CREATESTRUCT FAR* lpcs;
 HWND hwndInsertAfter;
 } CBT_CREATEWND;

with the CREATESTRUCT structure defined in the same file as:

 typedef struct tagCREATESTRUCT {
 void FAR* lpCreateParams;
 :
 LPCSTR lpszClass; // Null-terminated string specifying window
 // class name
 DWORD dwExStyle;
 } CREATESTRUCT;

When Windows internally creates windows (such as predefined controls
in a dialog box, for example), it uses atoms for lpszClass instead of
the actual string to minimize overhead. This makes it a little less
straightforward (sometimes impossible) to get to the actual class name
directly from the lpszClass field of the CREATESTRUCT structure.

To cite one particular example, when an application is minimized in
Windows, Windows calls CreateWindow() for the icon title, specifying a
class name of

 (LPSTR)MAKEINTATOM (ICONTITLECLASS == 0x8004)

where MAKEINTATOM() is defined in WINDOWS.H as:

 #define MAKEINTATOM (i) ((LPCSTR) MAKELP (NULL, i))

Given this, to get to the actual class name, GetAtomName() must be
called in this manner:

 char szBuf [10];

 GetAtomName (LOWORD (lpszClass), szBuf, 10);
 OutputDebugString (szBuf);

This outputs a class name of #32772 for the IconTitleClass.

For predefined controls, such as "static", "button", and so forth, in
a dialog box, the Dialog Manager calls CreateWindow() on each control,
similarly using atoms for lpszClass. The Dialog Manager, however,
creates these atoms in a local atom table in USER's default data
segment (DS), thus making it impossible for other applications to get
to these class names.

[Note the difference between local and global atom tables, where
global atom tables are stored in a shared DS, and are therefore
accessible to all applications, while local atom tables are stored in
USER's default DS. DDE uses global atom tables so that Excel, for
example, can use GlobalAddAtom() to add a string to the atom table,
and another program could use GlobalGetAtomName() to obtain the
character string for that atom.]

More information on atoms can be found by searching on the following
word in the Microsoft Knowledge Base:

 atoms

More Information can also be found in the Windows version 3.1 online
Help file under the heading Function Groups, under the Atom Functions
subheading.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrHks

PRB: CFileDialog::DoModal() Does Not Display FileOpen Dialog

PSS ID Number: Q131225
Authored 06-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Calling CFileDialog::DoModal() returns without displaying the FileOpen
common dialog.

CAUSE

The CFileDialog class will automatically use the new Explorer-style
FileOpen common dialog under Windows 95. This can break existing code which
customizes these dialogs with custom templates, because the mechanism has
changed in Windows 95.

NOTE: This does not apply to Windows NT 3.51, as this version of Windows NT
will not display the new Explorer-style dialog.

RESOLUTION

An application that depends on the old behavior of customizing the File
Open common dialogs will need to reset the OFN_EXPLORER bit in the Flags
member of the OPENFILENAME structure before calling CFileDialog::DoModal.

MORE INFORMATION

The DIRPKR sample in particular, exhibits the symptoms described above, and
will need to be modified to display the dialog box correctly in Windows 95.
It works as is under Windows NT 3.51.

Sample Code

 CMyFileDlg cfdlg(FALSE, NULL, NULL, OFN_SHOWHELP | OFN_HIDEREADONLY |
 OFN_OVERWRITEPROMPT | OFN_ENABLETEMPLATE,
 NULL, m_pMainWnd);

 cfdlg.m_ofn.hInstance = AfxGetInstanceHandle();
 cfdlg.m_ofn.lpTemplateName = MAKEINTRESOURCE(FILEOPENORD);
 cfdlg.m_ofn.Flags &= ~OFN_EXPLORER;

 if (IDOK==cfdlg.DoModal())
 {
 :

 :
 }

REFERENCES

This information was derived from Visual C++ 2.1 Technical Note 52:
"Writing Windows 95 Applications with MFC 3.1"

Additional reference words: 2.10 4.00
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

PRB: COMM (TTY) Sample Does Not Work on Windows 95

PSS ID Number: Q128787
Authored 10-Apr-1995 Last modified 11-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

The Win32 COMM (old TTY) sample that ships with Visual C++ version 2.x and
the Windows 95 SDK (pre-release) does not work correctly under Windows 95
M8 builds and later. The problem involves assigning values to the Offset
member of the OVERLAPPED structure which is one of the arguments to the
WriteFile function call.

The observed behavior is that the COMM sample writes only one byte to the
serial port. No other data is transmitted after the first byte.

CAUSE

The documentation for the OVERLAPPED structure explicitly states that the
Offset and OffsetHigh members must be set to 0 when reading from or writing
to a named pipe or communications device. This was not done in the sample.

RESOLUTION

1. Delete the following line from the WriteCommByte() function in the
 sample:

 WRITE_OS(npTTYInfo).Offset += dwBytesWritten ;

2. Add the following lines to the CreateTTYInfo() function:

 WRITE_OS(npTTYInfo).Offset = 0 ;
 WRITE_OS(npTTYInfo).OffsetHigh = 0 ;

STATUS

This is a problem with the sample, not with Windows 95. Windows 95
correctly implements WriteFile() and use of the OVERLAPPED structure.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: BseComm

PRB: Controls Do Not Receive Expected Messages

PSS ID Number: Q121094
Authored 26-Sep-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS

A Win32-based application works as expected under Windows NT, but under
Win32s, control messages are not received by the application as expected.

Here are some possible scenarios symptomatic of this problem:

 - Sending LB_GETSELITEMS to a superclassed list box does not work.

 - The custom control procedure does not receive messages such as
 CB_ADDSTRING, CB_INSERTSTRING, or CB_SHOWDROPDOWN.

 - The wrong control message is received.

CAUSE

This is a Win32s limitation. When a Win32-based application sends a
message, Win32s processes the message and passes it to Windows. Windows is
responsible for delivering the message. Win32s truncates wParam from a
DWORD to a WORD. Most messages do not use the high word of wParam, however,
if you do use the high word of wParam, be aware that it will be lost under
Win32s.

In the course of processing known messages (messages that are not user-
defined), Win32s translates any pointers in lParam. In addition, if a
message is new to Win32, the corresponding Windows message is used instead.
For example, the Windows WM_CTLCOLOR was replaced in Win32 with
WM_CTLCOLORBTN, WM_CTRLCOLORDLG, WM_CTLCOLOREDIT, and so on. Therefore, if
a Win32-based application uses WM_CTRLCOLORBTN, Win32s passes WM_CTLCOLOR
to Windows with a type of CTLCOLOR_BTN.

Control messages are not unique on Windows version 3.1 as they are on
Windows NT. Control messages on Windows have values above WM_USER, however,
messages for one control may share the same number as a message of another
control. For example, both CB_ADDSTRING and LB_DELETESTRING are defined as
WM_USER+3. Therefore, when Win32s receives the WM_USER+3 message, it needs
to determine the correct control message. Win32s looks at the window class
of the window that will receive the message and maps the message
accordingly. If the window class is not a recognized control class, as in
the case of a superclassed control, the message is not mapped, which
results in unexpected behavior.

RESOLUTION

In order to get the desired behavior under Win32s, make the custom control
use a recognized control class (such as "combobox") and subclass the window
procedure instead of superclassing. If you need to subclass before the
WM_CREATE/WM_NCCREATE messages, use a CBT hook. You will not be able to
change the class icon and cursor, but the messages will be handled
correctly.

If you need to use a custom control, create and use user-defined messages
instead of the control messages.

STATUS

This behavior is by design.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbprg kbprb
KBSubCategory: W32s

PRB: Corruption of the Perflib Registry Values

PSS ID Number: Q128404
Authored 02-Apr-1995 Last modified 11-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

SYMPTOMS

The Performance Monitoring tool can be affected by a corruption problem in
the Perflib key. The following symptoms are evidence of this corruption
problem:

 - The explain text is not displayed.

 -or-

 - The objects and counters are not displayed.

 -or-

 - The explain text, objects, and counters are not displayed.

CAUSE

When an .INI file, which contains an extra language entry not associated
with any specific objects and counters, is passed as a parameter to
LODCTR.EXE, the values of 'Last Counter' and 'Last Help' are set to zero.
This in turn causes the Performance Monitoring tool to fail.

The following is an example of a problem-causing .INI file:

 [info]
 drivername=SampPerf
 symbolfile=sampperf.h

 [languages]
 009=English
 011=OtherLanguage <-- problem area

 [text]
 SampObj_009_Name=SampPerf
 SampObj_009_Help=A sample performance object.

 Count_1_009_Name=Tests/sec
 Count_1_009_Help=The number of tests completed.

A further complication arises when a user attempts to rectify the situation
by executing UNLODCTR.EXE. At this point, because Last Counter and Last

Help are set to zero, UNLODCTR.EXE only resets '\009\HELP' and
'\009\COUNTER' to NULL.

RESOLUTION

To resolve this corruption problem, you must restore the Registry to its
former state by using one of the following five methods:

 - Backup and restore the local copy of the Registry by using Windows NT
 Backup.

 -or-

 - Copy and restore the data located in the %WINNT%\SYSTEM32\CONFIG
 directory. This can be done only if Windows NT was installed on a FAT
 partition.

 -or-

 - Save and restore the SOFTWARE registry hive.

 -or-

 - Save and restore the Registry values First Counter, First Help, Last
 Counter, and Last Help.

 -or-

 - Save and restore the Registry by using REGBACK.EXE and REGREST.EXE. Both
 programs are available with the Windows NT Resource Kit (RESKIT).

If the user ran UNLODCTR.EXE to attempt to fix the problem, you will also
need to restore \009\HELP and \009\COUNTER, which you can do by simply
rebooting the computer running Windows NT.

WARNING: The Registry is a vital part of Windows NT; improper modification
of its keys and values can cause Windows NT to malfunction.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: CreateEllipticRgn() and Ellipse() Shapes Not Identical

PSS ID Number: Q83807
Authored 20-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When CreateEllipticRgn() is used to create a region in the shape of an
ellipse and Ellipse() is called with the same parameters to draw an ellipse
on the screen, the calculated region does not match the drawn ellipse
identically.

CAUSE

Ellipse() includes the lower-right point of the bounding rectangle in its
calculations, while the CreateEllipticRgn function excludes the lower-right
point.

RESOLUTION

To draw a filled ellipse on the screen that matches an elliptic region,
create the region with CreateEllipticRgn() and call FillRgn() to fill the
region with the currently selected brush.

MORE INFORMATION

The region created by the CreateEllipticRgn() is slightly smaller than
the elliptical area created by Ellipse(). Unfortunately, decreasing the
width and height of the bounding rectangle by 1 pixel does not solve
the problem. Although changing the parameters of the Ellipse() API
in this way produces a smaller ellipse, the new ellipse does not match
the region created with CreateEllipticRgn().

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiDrw

PRB: CreateFile Fails on Win32s w/ UNC Name of Local Machine

PSS ID Number: Q129543
Authored 27-Apr-1995 Last modified 29-Apr-1995

The information in this article applies to:

 - Microsoft Win32s version 1.2

SYMPTOMS

CreateFile() fails on Win32s if the file name is a UNC name that refers to
the local machine.

CAUSE

This is a limitation of Windows for Workgroups version 3.11. The same
problem occurs with 16-bit Windows-based applications using OpenFile().

RESOLUTION

Do not use a UNC name to open a file on the local machine.

STATUS

This behavior is by design.

MORE INFORMATION

There is a similar limitation with Windows version 3.1 and LAN Manager. If
you create a network drive and try to open a file on the same network share
using a UNC name, it will fail. This also happens with 16-bit
Windows-based applications.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: CreateFile() Does Not Handle OEM Chars as Expected

PSS ID Number: Q129544
Authored 27-Apr-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25a

SYMPTOMS

When CreateFile() is passed a filename string that contains an OEM
character, the name of the file created is not as expected. In particular,
a file created with CreateFile() cannot be opened with OpenFile() when
OpenFile() is passed the same filename string.

For example, suppose that the ANSI filename string contains a lower-case e
accent character (0x0e9). The file created by CreateFile() contains an
upper-case E and the file created by OpenFile() contains an upper-case E
accent character.

CAUSE

CreateFile() is implemented with calls to MS-DOS. MS-DOS converts the given
file names to upper-case letters. OpenFile() is implemented with a thunk to
the 16-bit Windows OpenFile(). OpenFile() converts the file name to
upper-case before calling MS-DOS. The conversion that the 16-bit OpenFile()
is doing is different from the conversion performed by MS-DOS for the OEM
characters. The result is that different filenames are created for the same
string passed to CreateFile() and OpenFile() if the name contains OEM
characters.

RESOLUTION

To make the file name created by CreateFile() consistent with the file name
created by OpenFile(), call AnsiUpper() on the file name string before
calling CreateFile().

STATUS

This behavior is by design. This will not be changed in Win32s now, because
it may break existing Win32-based applications.

MORE INFORMATION

The 16-bit OpenFile() will fail to find an existing file if the file
contains OEM characters but not an explicit full path. This also occurs
with the 32-bit OpenFile(), because it is thunked to the 16-bit OpenFile().

SearchFile() will also fail to find files if the file name contains OEM
characters or if the search path (lpszpath != NULL) contains OEM
characters.

NOTE: In 16-bit Windows and Win32s 1.2 and earlier, OpenFile() returns the
filename in OEM characters. However, the Win32 API documentation states
that OpenFile() should return an ANSI string. Starting with the next
version of Win32s, OpenFile() will return an ANSI string, as it does under
Windows NT.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: CreateProcess() of Windows-Based Application Fails

PSS ID Number: Q127860
Authored 19-Mar-1995 Last modified 21-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SYMPTOMS

When you spawn a 16-bit Windows-based application using CreateProcess()
where neither lpApplicationName and lpCommandLine are NULL, WOW gives a
popup saying:

 Cannot find file (or one of its components). Check to ensure the path
 and filename are correct and that all required libraries are available.

CAUSE

NTVDM expects the first token in the command line (lpCommandLine) to be the
program name, although the Win32 subsystem does not. The current design
will not be changed.

RESOLUTION

Make lpApplicationName NULL and put the full command line in lpCommandLine.

STATUS

This behavior is by design.

MORE INFORMATION

The documentation for CreateProcess() states:

 If the process to be created is an MS-DOS-based or Windows-based
 application, lpCommandLine should be a full command line in which
 the first element is the application name.

In this case (lpApplicationName is not NULL), lpCommandLine not only
should be a full command line, but it must be a full command line.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseProcThrd

PRB: Data Section Names Limited to Eight Characters

PSS ID Number: Q100292
Authored 17-Jun-1993 Last modified 18-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS

Data sections can be named by using #pragma data_seg. This method is
commonly used so that the named data sections can be shared using the
SECTIONS statement in the DEF file. However, if the length of the name
specified in the pragma exceeds eight characters, then the section is not
properly shared.

CAUSE

The linker does not support sections with longer names. The longer names
require use of the COFF strings table, so the rewrite is not trivial.

MORE INFORMATION

Note that in addition, the first character of a section name must be a
period. Therefore, the section name, as specified in both the pragma and
the DEF file, can be a maximum of a period followed by seven characters.

For more information on the shared named-data section, please see the
following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q89817
 TITLE : How to Specify Shared and Nonshared Data in a DLL

Additional reference words: 3.10 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsMisc

PRB: DDEML Fails to Call TranslateMessage() in its Modal Loop

PSS ID Number: Q102576
Authored 04-Aug-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

During a synchronous transaction, DDEML causes the client to enter a
modal loop until the transaction is processed. While DDEML dispatches
messages appropriately, it fails to call TranslateMessage() while
inside this modal loop. This problem does not apply to asynchronous
transactions, where no such modal loop is entered.

SYMPTOMS

A common symptom of this problem is seen as the client processes user
input while inside DDEML's modal loop in a synchronous transaction.
WM_KEYDOWN and WM_KEYUP messages are received, with no corresponding
WM_CHAR message for the typed character.

CAUSE

No WM_CHAR message is received because the WM_KEYDOWN message is never
translated. For this to take place, a call to TranslateMessage() must
be made inside the modal loop.

RESOLUTION

This limitation is by design. DDEML applications can work around this
limitation by installing a WH_MSGFILTER hook, watching out for code ==
MSGF_DDEMGR.

The WH_MSGFILTER hook allows an application to filter messages while

the system enters a modal loop, such as when a modal dialog box (code

similarly, when DDEML enters a modal loop in a synchronous transaction
(code == MSGF_DDEMGR).

The Windows 3.1 Software Development Kit (SDK) DDEML\CLIENT sample
demonstrates how to do this in DDEML.C's MyMsgFilterProc() function:

/**
 *
 * FUNCTION: MyMsgFilterProc

 *
 * PURPOSE: This filter proc gets called for each message we handle.
 * This allows our application to properly dispatch messages
 * that we might not otherwise see because of DDEMLs modal
 * loop that is used while processing synchronous transactions.
 *
***/

 DWORD FAR PASCAL MyMsgFilterProc(int nCode, WORD wParam,

 DWORD lParam)
 {
 wParam; // not used

 #define lpmsg ((LPMSG)lParam)

 if (nCode == MSGF_DDEMGR) {

 /* If a keyboard message is for the MDI, let the MDI client
 * take care of it. Otherwise, check to see if it's a normal
 * accelerator key. Otherwise, just handle the message as usual.
 */

 if (!TranslateMDISysAccel (hwndMDIClient, lpmsg) &&
 !TranslateAccelerator (hwndFrame, hAccel, lpmsg)){
 TranslateMessage (lpmsg);
 DispatchMessage (lpmsg);
 }
 return(1);
 }
 return(0);
 #undef lpmsg
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrDde

PRB: DDEML with Excel Error: Remote Data Not Accessible

PSS ID Number: Q95982
Authored 03-Mar-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When data is linked between a Microsoft Excel spreadsheet and a DDEML
server application, with both applications open, the following error
message may appear:

 Remote data not accessible; start application <SERVER FILENAME>.EXE?

CAUSE

Excel broadcasts an initiate to all windows, for every service/topic name
pair it finds, in an attempt to initiate a conversation with the server
application. (This can be easily verified by running DDESPY and watching
Excel broadcast its initiates.) If Excel can't get a response, or gets a
NACK (negative ACK), Excel attempts to EXEC() a new instance of the server
application.

RESOLUTION

A DDEML server application should return TRUE, in response to the
XTYP_CONNECT transaction it receives, for every service/topic name pair it
supports. Refer to page 518 of the Microsoft Windows Software Development
Kit (SDK) version 3.1 "Programmer's Reference, Volume 3: Messages,
Structures, and Functions" for more information on the XTYP_CONNECT
transaction.

MORE INFORMATION

The DDEML server application responds to Excel's initiate by sending the
XTYP_CONNECT transaction to the DDE callback function of each server
application, passing the service and topic names to the server.

If the server application fails to return TRUE to the service/topic name it
supports, Excel concludes that it is trying to initiate a DDE link to an
application that is not available, and brings up the message box above,
thus giving the user an option to start the application.

Additional reference words: 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrDde

PRB: DDESpy Track Conversations Strings Window Empty

PSS ID Number: Q88197
Authored 19-Aug-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

In the DDESpy application, provided with version 3.1 of the
Microsoft Windows Software Development Kit (SDK), DDE messages
appear in the main window, while the Track Conversation Strings
window remains empty.

CAUSE

Either the DDESpy application was started after the client and
server applications, or neither application uses functions in the
Dynamic Data Exchange Management Library (DDEML) to conduct DDE.

RESOLUTION

Start the DDESpy application before starting the client and server
applications. Make sure that the client or the server (or both)
uses the DDEML.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsSpy

PRB: Debugging an Application Driven by MS-TEST

PSS ID Number: Q100957
Authored 01-Jul-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

When an application driven by MS-TEST is being debugged by WinDbg or NTSD
(for example, after an exception has occurred), both the application and
the debugger hang.

CAUSE

The debugger is hooked and ends up hanging.

RESOLUTION

It is not possible to use NTSD or WinDbg to debug an application that is
driven by MS-TEST. Use Dr. Watson (drwtsn32) instead. Note that you must
turn off Visual Notification.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Debugging the Open Common Dialog Box in WinDbg

PSS ID Number: Q99952
Authored 10-Jun-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

When debugging an application that uses the Open common dialog box (created
by the GetOpenFileName() function) in WinDbg, the program stops and the
following information is displayed in the Command window:

 Thread Terminate: Process=0, Thread=2, Exit Code=1

CAUSE

The Open common dialog box causes a thread to be created. At this point in
the debugging, that thread has terminated. By default, WinDbg halts
whenever a thread terminates.

RESOLUTION

Execute the go command (type "g" at the command prompt). Execution will
continue.

MORE INFORMATION

To prevent WinDbg from halting when a thread is terminated, select Debug
from the Options menu and check "Go on thread terminate."

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Description for Event ID Could Not Be Found

PSS ID Number: Q129003
Authored 17-Apr-1995 Last modified 18-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft Visual C++, 32-bit Edition, version 2.0

SYMPTOMS

After building and executing the Win32 LOGGING sample that accompanies
Visual C++ version 2.0 and the Microsoft Developer's Network Library CD,
you find that the descriptions for the logged events contain the following:

 The Description for Event ID (#) in Source (application name) could not
 be found. It contains the following string(s):

CAUSE

The resource file containing the descritions that correspond to the Event
IDs are not bound to the MESSAGES.DLL.

RESOLUTION

Add the MESSAGES.RC file to the Visual C++ version 2.0 project:

1. Run MAKEMC.BAT first. MAKEMC.BAT creates the MSG00001.BIN, MESSAGES.RC,
 and MESSAGES.H files.

2. Open Visual C++ version 2.0 and add MESSAGES.RC to the MESSAGES project
 (MESSAGES.MAK).

3. Rebuild both the MESSAGES and the LOG projects.

NOTE: If you ran the sample a couple of times from different places, you
may need to delete the LOG registry key if it contains an incorrect
location for the MESSAGES.DLL file.

Additional reference words: 3.50 3.51 Event Logging Log MSDN
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: Device and TrueType Fonts Rotate Inconsistently

PSS ID Number: Q82932
Authored 01-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

In an application for the Microsoft Windows graphical environment
that uses a mapping mode other than MM_TEXT and a text alignment
other than the default (TA_LEFT, TA_TOP), device fonts and TrueType
fonts rotate in the opposite directions. Device fonts may exhibit
other unusual behaviors. Differences in rotated text may appear on
the screen or in printed output.

RESOLUTION

To create a font that rotates based on the coordinate system in
which the font is used, the application must set the CLIP_LH_ANGLES
(0x10) bit in the lfClipPrecision field of the LOGFONT data
structure. This technique is backward-compatible with Windows 3.0
because the CLIP_LH_ANGLES bit is ignored in version 3.0.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiTt

PRB: Dialog Box and Parent Window Disabled

PSS ID Number: Q11337
Authored 01-Dec-1987 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When an application uses one of the DialogBox family of functions
to create a modal dialog box, both the parent window and the dialog
box are disabled (unable to accept keyboard or mouse input).

CAUSE

In the application's resource file, the dialog box resource has the
WS_CHILD style.

RESOLUTION

To avoid this problem, use the WS_POPUP style instead of the
WS_CHILD style.

MORE INFORMATION

When an application creates a modal dialog box using one of the
DialogBox family of functions, Windows disables the dialog box's
parent window. If the parent window has any child windows, the child
windows are also disabled.

An application can use the WS_CHILD style for dialog boxes created by
one of the CreateDialog family of functions. However, problems and
inconsistencies arise if the application uses the IsDialogMessage
function to process dialog box input for either the parent or the
child.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
CreateDialogIndirect CreateDialogIndirectParam CreateDialogParam
DialogBoxIndirect DialogBoxIndirectParam DialogBoxParam
KBCategory: kbprg kbprb
KBSubcategory: UsrDlgs

PRB: Dialog Editor Does Not Modify RC File Dialog Box

PSS ID Number: Q32019
Authored 22-Jun-1988 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1 and 3.5

SYMPTOMS

If the Windows Dialog Editor (DIALOG.EXE) is used to edit a dialog
box, when the associated application is built, the previous version
of the dialog box is used.

CAUSE

The dialog resource used by the program is stored in the
application's resource file (which has the extension RC). The
Dialog Editor stores the updated dialog box resource in a file with
the .DLG extension.

RESOLUTION

Modify the resource file to use the RCINCLUDE statement to include
the updated dialog box resource, as follows:

 RCINCLUDE DIALOG.DLG

MORE INFORMATION

Suppose an application is written that uses a dialog box. The
developer creates a dialog box template manually in the application's
resource file. After building the application, the developer decides
to modify the dialog box using the Dialog Editor.

When the Dialog Editor edits an existing dialog box, it reads the
application's compiled resources stored in a compiled resource file
(with the extension .RES). However, when the developer saves any
changes, the Dialog Editor creates a file with the .DLG extension.

When the application is built for a second time, the Resource Compiler
uses the original definition for the dialog box stored in the resource
file. The resolution provided above avoids this problem because the
Resource Compiler always includes the latest version of the dialog box
template.

For more information about this topic, please see the following article in

the Microsoft Knowledge Base:

 ARTICLE-ID: Q40958
 TITLE : PRB: DIALOG.EXE Reads Compiled .RES Files, Not .DLG Files

Additional reference words: 3.00 3.10 3.50
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsDlg

PRB: Dialog Editor Does Not Retain Unsupported Styles

PSS ID Number: Q74264
Authored 15-Jul-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

The Windows Dialog Editor does not retain control/dialog styles that it
does not support.

RESOLUTION

The styles in question must be manually added to the dialog script before
using the resource compiler to compile the resource script.

MORE INFORMATION

Any style that cannot be explicitly set in the Dialog Editor Styles dialog
box will not be present in the script file generated by the the Dialog
Editor. For example, the edit control style, ES_OEMCONVERT is not available
in the Dialog Editor Styles dialog box. If this style is manually added to
the dialog script, compiled, and then loaded into the Dialog Editor, the
ES_OEMCONVERT style will be removed.

Any styles that are not supported by the Dialog Editor must be manually
added to the dialog script. To modify the dialog script, use a text editor
to combine the desired styles using the bitwise OR operator("|"). This
modified script should then be included into the application's resource
script. If the application's .RES file is later loaded into the Dialog
Editor, the unsupported styles will be removed and will need to be added
again as described above.

The following is a list of styles that are known not to be supported by the
Dialog Editor:

Style

CBS_OEMCONVERT
ES_OEMCONVERT
SBS_BOTTOMALIGN
SBS_LEFTALIGN
SBS_RIGHTALIGN
SBS_SIZEBOX
SBS_SIZEBOXBOTTOMRIGHTALIGN

SBS_SIZEBOXTOPLEFTALIGN
SBS_TOPALIGN
SS_LEFTNOWORDWRAP
SS_NOPREFIX
SS_USERITEM

In addition to the above control styles, any menu definitions added to
the dialog script via the MENU resource statement will be deleted by
the Dialog Editor.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsDlg

PRB: DIALOG.EXE Reads Compiled .RES Files, Not .DLG Files

PSS ID Number: Q40958
Authored 07-Feb-1989 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1 and 3.5

SYMPTOMS

Create a dialog box using DIALOG.EXE, the Dialog Editor. From
MS-DOS, change an attribute (for example, position of control) of
the dialog box by modifying the .DLG file produced by DIALOG.EXE.
Invoke DIALOG.EXE again, the changes that were made are not
evident.

CAUSE

The Dialog Editor produces .DLG and .RES files for the dialog box
created. When using the Dialog Editor to modify an existing dialog
box, the Dialog Editor will look at the .RES file for information
about the makeup of the dialog box. The .DLG file is completely
ignored at this point. This is why the Dialog Editor does not
recognize any .DLG changes.

RESOLUTION

For the modifications to be recognized, the Resource Compiler (RC)
must be used with the -r switch to compile the .DLG file. The new
.RES file can then be loaded into the Dialog Editor and the changes
will be recognized.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsDlg

PRB: DialogBox() Call w/ Desktop Window Handle Disables Mouse

PSS ID Number: Q129597
Authored 30-Apr-1995 Last modified 01-May-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SYMPTOMS

Under Windows NT and Windows 95, you can call DialogBox() using the return
from GetDesktopWindow() as the parent window handle. However, doing the
same thing under Win32s will disable the mouse. Clicking any mouse button
results in a beep, and you must reboot the computer to enable the mouse
again.

CAUSE

This is a bug in Windows, not Win32s. The same thing occurs from a 16-bit
Windows-based application. Internally, Windows disables the parent window
by calling EnableWindow(hwndParent, FALSE). If the handle is the desktop
window handle, the desktop window is disabled. This disables the mouse as
well, due to the bug in the Windows code.

RESOLUTION

Do not call DialogBox() with the desktop window handle as the parent window
handle.

Additional reference words: 1.20 HWND_DESKTOP
KBCategory: kprg kbprb
KBSubcategory: W32s

PRB: Display Problems with Win32s and the S3 Driver

PSS ID Number: Q117153
Authored 21-Jun-1994 Last modified 04-Apr-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SYMPTOMS

Applications running on Windows 3.1 exhibit no problems when using an S3
driver, with a resolution of 1024x768 and 256 colors. However, the display
is corrupted when Win32-based applications, such as FreeCell, run on Win32s
in the same configuration.

CAUSE

This is a known problem with the S3 driver.

A general protection (GP) fault occurs when the display driver is
performing a bit-block transfer (BitBlt). This happens whether or not
Win32s is running. However, when Win32s is not running, Windows recovers
from the faults. When a Win32-based application is running, Win32s catches
all exceptions and transfers control to the nearest try/except frame. As a
result, the BitBlt is interrupted.

RESOLUTION

Certain S3 drivers which exhibit these problems can be made to work with
Win32s by making the following edit to your SYSTEM.INI file before running
any Win32-based applications:

In the SYSTEM.INI file, you will find an entry in the [display] section

 aperture-base=100

Change this entry to

 aperture-base=0

Restart Windows and the display problems will no longer occur.

If this does not help, obtain the latest S3 drivers. It is reported that S3
driver version 1.3 does not have this problem.

Additional reference words: 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: DLL Load Fails Under Win32s When Apps Share a DLL

PSS ID Number: Q131224
Authored 06-Jun-1995 Last modified 07-Jun-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.2 and 1.25a

SYMPTOMS

LoadLibrary fails under Win32s in the following situation:

1. App1 is executed and loads MYDLL.DLL.

2. App2 is executed and loads MYDLL.DLL as well.

3. App1 is terminated and unloads MYDLL.DLL.

App2 can GP fault when MYDLL.DLL is accessed. In addition, if App1 is
restarted and attempts to load MYDLL.DLL, the call to LoadLibrary fails and
GetLastError reports ERROR_DLL_INIT_FAILED.

This problem does not occur under Windows NT or Windows 95.

CAUSE

By default, Visual C++ create a DLL that statically links to the C Run-time
(CRT). This version of the CRT is not compatible with Win32s. Problems
occur when global data for the CRT is initialized, because of the shared
address space under Windows.

The static CRT library uses global variables to manage memory allocations.
In the scenario above, App2 can fault when allocating memory, if the global
variables used to access memory refer to memory that was allocated App1
which has since terminated, because the allocated memory was returned to
the heap.

RESOLUTION

Use the /MD (Multithreaded using CRT in a DLL) option when compiling the
DLL and add the MSVCRT.LIB import library to the library list. Include the
Win32s version of MSVCRT20.DLL which is included in Visual C++ 2.x (it is
redistributable) in your project. Then the DLL will use the DLL version of
the CRT libraries that is compatible with Win32s and the problem will not
occur.

MORE INFORMATION

When a DLL that uses the CRT is loaded into memory, all global variables
for the DLL and for the CRT libraries are initialized. Under Windows NT and
Windows 95, the application is given its own copy of the global data for
the DLL. When other applications use the same DLL, they each receive their
own copy of the global variables as well. This eliminates conflicts,
because the data is not shared.

Under Win32s, DLLs are loaded into the same shared memory space and all
global variables for a DLL are shared. This means that the CRT global data
is also shared. The version of MSVCRT20.DLL that targets Win32s was written
to take this into account and avoid conflicts.

The Windows NT/Windows 95 version of MSVCRT20.DLL can be found in the
MSVC20\REDIST directory of the CD. The Win32s version can be found in the
WIN32S\REDIST directory.

Additional reference words: 1.20 2.00
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Dotted Line Displays as Solid Line

PSS ID Number: Q24179
Authored 16-Dec-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When an application creates a dotted line using a dotted pen and
the R2_NOT mode, a solid line is drawn on the screen.

CAUSE

The background mode is OPAQUE. This is the default background mode.
In this mode, the line is painted with the background color first,
followed by the pen.

RESOLUTION

Use the SetBkMode() function to set the mode to TRANSPARENT. In
this mode, only the pen is used; the background is not disturbed.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiPnbr

PRB: Double Quotes Not in Help Files Compiled From Word 6 RTF

PSS ID Number: Q114604
Authored 08-May-1994 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When using the Microsoft Windows Help Compiler (any version) to compile a
.RTF file generated by Microsoft Word for Windows version 6.0, any double
quotation marks (") in the text may not show up in the compiled help file.

CAUSE

Microsoft Word for Windows 6.0 automatically replaces double quotation
marks with "smart quotes". This causes your .RTF file to contain
the \ldblquote and \rdblquote tokens rather than the double quotation mark
characters. The Help Compiler does not recognize these tokens and therefore
ignores them.

RESOLUTION

1. Replace existing \ldblquote and \rdblquote tokens with quotation mark
 characters by loading your .RTF file into a text editor (such as
 notepad) and performing a search and replace. That is, search for
 \ldblquote and replace with the quote character (") (without the
 parenthesis).

2. Stop Word for Windows from replacing quotation mark characters in the
 future by unchecking the "Replace Simple Quotes with Smart Quotes" check
 box under both of the following dialog boxes:

 a. Choose Options from the Tools menu, then choose Auto Format.

 b. Choose Auto Correct from the Tools menu.

Additional reference words: 3.10 3.50 4.00 95 WINHELP HC HC31 HC30 HCP
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: DSKLAYT2 May Create Too Many Files on a Disk Image

PSS ID Number: Q114605
Authored 08-May-1994 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, version 3.1

SYMPTOMS

The DSKLAYT2 program may create a disk image with more than 224 files
on a single disk when many small files are part of your product. When
trying to copy this image to a floppy disk, MS-DOS gives an error
message indicating it cannot create all of the files.

CAUSE

MS-DOS allows aproximantly 224 files to be placed in the root directory
of a floppy disk. Therefore, if DSKLAYT2 creates a disk image with more
than 224 files, MS-DOS will generate an error message when trying to
copy this disk image to an actual floppy disk. DSKLAYT2, however, will
not provide any warnings about the potential problem.

RESOLUTION

The MS-DOS 224-file limit only applies to the root directory of the
floppy disk, and therefore the solution involves creating a subdirectory
on the floppy disk and copying some of the files to the subdirectory.
The .INF file must also be modified to reflect the new locations of
the files.

Perform the following steps:

1. Create your disk images as normal.

2. When copying the problem disk image to a floppy disk, create a
 subdirectory on the floppy disk to receive most of the files. For
 example, suppose your target disk is in drive A:. Use

 md a:\files

 to create the subdirectory. Then, when copying the image files to the
 floppy disk, be sure to copy all the Setup Toolkit files (for example,
 SETUP.EXE, _MSTEST.EXE, SETUPAPI.INC, and so forth) to the root
 directory of the floppy disk and all the other files to the "files"
 subdirectory.

3. Modify the .INF file and place the new copy in the root of disk 1. Your

 .INF file must be modified to reference the new subdirectory as follows:

 Before

 [Files]
 1, myfile1.exe,,,,1992-01-30,,,,,,,ROOT,,,13833,,6,,,

 After

 [Files]
 1, files\myfile1.exe,,,,1992-01-30,,,,,,,ROOT,,,13833,,6,,,

 This modification is easy using the global search and replace
 capabilities of a good editor. For example, if disk 2 is the problem
 disk, search for all occurrences of "2, " and replace them
 with "2, files\".

4. Change the "STF_ROOT" line in the [Default File Settings] section of
 your .INF to read:

 "STF_ROOT" = "YES"

 If your .LST file specifies a compressed .INF file, you must use
 COMPRESS.EXE to compress your modified .INF file before copying it to
 disk 1.

Additional reference words: 3.10 MSSETUP
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsMss

PRB: Editing Labels in a TreeView Gives WM_COMMAND|IDOK

PSS ID Number: Q130692
Authored 24-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS

WM_COMMAND|IDOK errors are received while editing labels in a TreeView
control.

CAUSE

While editing labels in a TreeView control, the edit control created by the
TreeView control can, and usually does, have an identifier of 1. This
identifier is the same as IDOK. This can cause the parent window or dialog
box to receive WM_COMMAND messages with an identifier of 1. Then the
TreeView control passes on the EN_UPDATE and EN_CHANGE notifications from
the edit control to the TreeView's parent.

This was a design decision made to meet system requirements and cannot be
changed. If the parent window is going to perform some action in response
to a command with an identifier of 1, this problem can occur. This problem
is especially significant in dialog boxes that use the standard IDOK for a
command button control.

RESOLUTION

Avoid using command and control identifiers with an identifier of 1 (IDOK).
To be safe, the application should not use any identifiers less than 100
when used in conjunction with a TreeView control.

Another way to avoid this problem is to check the notification codes in the
WM_COMMAND messages. Then respond only to the proper notification codes
such as BN_CLICKED.

STATUS

This behavior is by design.

Additional reference words: 1.30 4.00 95
KBCategory: kbprg kbui kbprb
KBSubcategory: UsrCtl W32s

PRB: EndPage() Returns -1 When Banding

PSS ID Number: Q118873
Authored 01-Aug-1994 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SYMPTOMS

When an application that implements banding calls EndPage(), EndPage()
returns SP_ERROR (-1).

CAUSE

EndPage() returns -1 if there has been no corresponding call to
StartPage(). Windows keeps track of whether StartPage() has been called by
maintaining an internal flag that is set when StartPage() is called and
then is cleared when EndPage() is called.

This flag is also cleared when the NEXTBAND escape is called and there are
no more bands on the page to be printed. At this point, Windows clears the
internal flag and tells the device that a page has been finished. Because
the internal flag has been cleared, a subsequent call to EndPage()
returns -1.

RESOLUTION

Though EndPage() returns -1 when it is called from printing code that
implements banding, it does no harm. An application can safely call
StartPage() and EndPage() when banding and ignore the -1 error returned
from EndPage().

NOTE: It is not recommended that a Win32-based application use banding.
Windows NT, spools in a journal file and Windows 95 spools in an enhanced
metafile, so all GDI calls are supported without banding.

Additional reference words: 3.10 3.50 4.00 NEWFRAME
KBCategory: kbprg kbprb
KBSubcategory: GdiPrn

PRB: Error 1 (NRC_BUFLEN) During NetBIOS Send Call

PSS ID Number: Q124879
Authored 15-Jan-1995 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

When making a NetBIOS Send call, the call with fail with error code 1
(NRC_BUFLEN). This error code indicates that the buffer length is
invalid.

CAUSE

NRC_BUFLEN will be returned if the buffer length specified in the
NetBIOS Control Block (NCB) is incorrect. Less obvious is the fact that
this error will also be returned if the buffer pointed to by the NCB is
protected from write operations.

RESOLUTION

Although the NetBIOS code does not write to the buffer supplied in the NCB,
write access is required. You can solve the problem by changing the
protection on your buffer to include write access.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork kbprg kberrmsg
KBSubcategory: NtwkNetbios

PRB: Error Message Box Returned When DLL Load Fails

PSS ID Number: Q117330
Authored 26-Jun-1994 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

SYMPTOMS

Under Windows NT, when you load a DLL, a message box titled "Invalid DLL
Entrypoint" is displayed and has the following text:

 The dynamic link library <name> is not written correctly.
 The stack pointer has been left in an inconsistent state.
 The entry point should be declared as WINAPI or STDCALL.
 Select YES to fail the DLL load. Select NO to continue
 execution. Selecting NO may cause the application to operate
 incorrectly.

Under Windows 95, the message box is titled "Error starting program" and
the text is:

 The <dll file name> file cannot start. Check the file to
 determine the problem.

The user is not given a choice to continue, only an OK button. Pressing the
OK button fails program load.

CAUSE

The system expects DLL entrypoints to use the _stdcall convention. If you
use the _cdecl convention, the stack is not properly restored and
subsequent calls into the DLL can cause a general protection fault (GPF).

This error message is new to Windows NT, version 3.5. Under Windows NT,
version 3.1, the DLL is loaded without an error message, but the
application usually causes a GPF when calling a DLL routine.

RESOLUTION

Correct the prototype of your entrypoint. For example, if your entrypoint
is as follows:

 BOOL DllMain(HANDLE hDLL, DWORD dwReason, LPVOID lpReserved)

change it to the following:

 BOOL WINAPI DllMain(HANDLE hDLL, DWORD dwReason, LPVOID lpReserved)

Then, link with the following linker option to specify the entry point if
you are using the C run-time:

 -entry:_DllMainCRTStartup$(DLLENTRY)

MORE INFORMATION

If you are using the Microsoft C run-time, you need to use the entry point
given in the RESOLUTION section in order to properly initialize the C run-
time. For additional information, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q94248
 TITLE : Using the C Run Time

REFERENCES

For more information on the DLL entrypoint, please search on the topic
"DllEntryPoint" (without the quotes) in the Win32 API help file.

Additional reference words: 3.50 4.00 libmain
KBCategory: kbprg kbprb
KBSubcategory: BseDll

PRB: Error on Win32s: R6016 - not enough space for thread

PSS ID Number: Q126709
Authored 28-Feb-1995 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS

Spawning and closing an application repeatedly succeeds around 60 times,
then the spawn fails with this error:

 R6016 - not enough space for thread data

CAUSE

The thread local storage (TLS) is not freed by the system.

The failure occurs only if there is another Win32-based application active
while you are doing the spawns. The message itself is not generated by
Win32s. It is generated by the Microsoft C Run-time (CRT) libraries
LIBC.LIB and LIBCMT.LIB.

RESOLUTION

In Win32s version 1.25, TLS indices are freed during module cleanup. The
TLS index is owned by the application's main module, so that it is freed
when the application terminates. This solves the problem for LIBC and
LIBCMT.

There is a similar problem with MSVCRT20.DLL. This DLL version of the CRT
allocates a new TLS index each time a process attaches to it. MSVCRT20
doesn't free the TLS indices when unloading. The system should free them.
If only one application uses MSVCRT20 at a time, then the application can
be spawned successfully up to about 60 times on Win32s version 1.20. On
Win32s version 1.25, there is no limitation.

If there is already an active application that uses MSVCRT20, it is not
possible to spawn and close a second application that uses MSVCRT20 more
than about 60 times under Win32s version 1.25. This is because MSVCRT20
allocates a TLS index each time a process attaches to it. Win32s will free
all of the TLS indices only when MSVCRT20 is unloaded.

MORE INFORMATION

On Win32s, TLS allocation should be done once and not per process. Each
process can use the index to store per-process data, just as a thread
uses a TLS index on Windows NT. This is easy to do, because DLL data is

shared between all processes under Win32s.

The following example demonstrates how to do the TLS allocation once on
Win32s:

 BOOL APIENTRY DllMain(HINSTANCE hinstDll, DWORD fdwReason,
 LPVOID lpvReserved)
 {
 static BOOL fFirstProcess = TRUE;
 BOOL fWin32s = FALSE;
 DWORD dwVersion = GetVersion();
 static DWORD dwIndex;

 if (!(dwVersion & 0x80000000) && LOBYTE(LOWORD(dwVersion))<4)
 fWin32s = TRUE;

 if (dwReason == DLL_PROCESS_ATTACH) {
 if (fFirstProcess || !fWin32s) {
 dwIndex = TlsAlloc();
 }
 fFirstProcess = FALSE;
 }
 .
 .
 .
 }

Additional reference words: 1.20
KBCategory: kbprg kbcode kbprb
KBSubcategory: W32s

PRB: Error with GetOpenFileName() and OFN_ALLOWMULTISELECT

PSS ID Number: Q99338
Authored 26-May-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SYMPTOMS

Assume that the GetOpenFileName() function is called with the Flags
parameter set to OFN_ALLOWMULTISELECT (allow for multiple selections
in the list box) and OFN_NOVALIDATE (allow for invalid characters in
the filename), the lpstrFile parameter points to a 2K buffer, and the
corresponding nMaxFile is set appropriately to 2048.

When the GetOpenFileName() function call returns, the complete
selection in the list box is not copied to the lpstrFile buffer, but
the string in the buffer is truncated.

CAUSE

This is a problem with the GetOpenFileName() function in the current
version of COMMDLG.DLL in that the OFN_NOVALIDATE flag cannot be used
when multiple selections are allowed.

RESOLUTION

The following are two suggested solutions to this problem:

One solution for this problem is to not use the OFN_NOVALIDATE flag
with the OFN_ALLOWMULTISELECT flag. That is, if only the
OFN_ALLOWMULTISELECT flag is used, then multiple selections will be
copied properly to the text buffer. Note that there is a buffer size
limit of 2K bytes for the lpstrFile buffer, and characters are
truncated after 2K bytes when the OFN_ALLOWMULTISELECT flag is used.

There is another solution, if both the OFN_ALLOWMULTISELECT and
OFN_NOVALIDATE flags must be used simultaneously with
GetOpenFileName(). Note that the entire string is always copied into
the edit control even though the text gets truncated during the
process of copying the text to the lpstrFile buffer. Therefore, one
could write a hook procedure and read the entire string from the edit
control and use it appropriately instead of using the lpstrFile
buffer.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: UsrCmnDlg

PRB: ERROR_INVALID_PARAMETER from WriteFile() or ReadFile()

PSS ID Number: Q110148
Authored 13-Jan-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

The WriteFile() or ReadFile() function call may fail with the error
ERROR_INVALID_PARAMETER if you are operating on a named pipe and using
overlapped I/O.

CAUSE

A possible cause for the failure is that the Offset and OffsetHigh members
of the OVERLAPPED structure are not set to zero.

RESOLUTION

Set the Offset and OffsetHigh members of your OVERLAPPED structure to zero.

STATUS

This behavior is by design. The online help for both WriteFile() and
ReadFile() state that the Offset and OffsetHigh members of the OVERLAPPED
structure must be set to zero or the functions will fail.

MORE INFORMATION

In many cases the function calls may succeed if you do not explicitly set
OVERLAPPED.Offset and OVERLAPPED.OffsetHigh to zero. However, this is
usually either because the OVERLAPPED structure is static or global and
therefore is initialized to zero, or the OVERLAPPED structure is automatic
(local) and the contents of that location on the stack are already zero.
You should explicitly set the OVERLAPPED.Offset and OVERLAPPED.OffsetHigh
structure members to zero.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB: Errors When Windbg Switches Not Set for Visual C++ App

PSS ID Number: Q131111
Authored 04-Jun-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

If two switches are not set correctly, Windbg gives the following error
message when the module is loaded:

 (symbol format not supported)

In addition, Windbg gives the following error message for any breakpoints
set in the module:

 Unresolved Breakpoint

CAUSE

For Windbg to understand the symbolic format generated from Microsoft
Visual C++ version 2.0, two linker switches have to be set correctly:

 - /DEBUG is set in the Project Settings dialog box, under the Link tab.
 Choose the Debug category. Then select the Generate Debug Info check
 box, and choose Microsoft Format.

 - /PDB:none is set in the Project Settings dialog box, under the Link tab.
 Choose the Customize category. Then clear the Use Program Database check
 box.

STATUS

This behavior is by design.

Additional reference words: 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Excel's =REQUEST() from DDEML Application Returns #N/A

PSS ID Number: Q107980
Authored 01-Dec-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When executing the =REQUEST() macro to request data from a DDEML server
application, Excel returns a value of "#N/A", although the server
application returned a valid data handle from the request.

CAUSE

When Excel executes a =REQUEST, it requests data in the most efficient
format available. Verifying through DDESPY when Excel executes the =REQUEST
macro, one can see that Excel sends out a request for data for each format,
in this order:

 XLTable (Excel fast table format)
 BIFF4 (Excel 4.0 file format)
 BIFF3 (Excel 3.0 file format)
 SYLK (Symbolic Link)
 WK1 (Lotus 1-2-3 release 2 format)
 CSV (comma-delimited text)
 TEXT (CF_TEXT)
 RTF (rich text format)
 DIF (data interchange format)

Knowing what formats it can handle best, Excel requests data in the most
efficient format first, and so on, until it finds one that the server
application supports. At this point, Excel stops sending further requests.

In response to a request, a DDEML server application that supports only one
format (for example, the CF_TEXT format) may return a data handle in
CF_TEXT format, regardless of the format being requested. When Excel sends
its first request for data in XLTable format, this server application
returns a data handle in CF_TEXT format, as demonstrated in the code below:

 case XTYP_REQUEST:
 if ((ghConv == hConv) &&
 (!DdeCmpStringHandles (hsz1, hszTopicName)) &&
 (!DdeCmpStringHandles (hsz2, hszItemName))) {

 lstrcpy (szBuffer, "The Simpsons");
 return (DdeCreateDataHandle (idInst,
 szBuffer,
 lstrlen (szBuffer)+1,

 0L,
 hszItemName,
 CF_TEXT,
 0);
 }
 return (HDDEDATA)NULL;

Because Excel expected to receive data in the format it had requested (that
is, XLTable format), and instead received date in CF_TEXT format, Excel
returns #N/A, not knowing how to handle the data it received.

RESOLUTION

In response to a request, a DDEML server application should return a valid
data handle only for the format it supports. When processing an
XTYP_REQUEST transaction, the server application should first check whether
the data being requested is in its supported format; if so, the server
application should return an appropriate data handle. Otherwise, the server
application should return NULL.

The code above can be modified as follows to check for this condition:

 case XTYP_REQUEST:
 if ((ghConv == hConv) &&
 (!DdeCmpStringHandles (hsz1, hszTopicName)) &&
 (!DdeCmpStringHandles (hsz2, hszItemName)) &&
 (wFmt == CF_TEXT)) { // Add this to the if clause
 // to check if data is being requested
 // in one of its supported formats.

 lstrcpy (szBuffer, "Fred Flintstone");
 return (DdeCreateDataHandle (idInst,
 szBuffer,
 lstrlen (szBuffer)+1,
 0L,
 hszItemName,
 CF_TEXT,
 0);
 }
 return (HDDEDATA)NULL;

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrDde

PRB: ExitProgman DDE Service Does Not Work If PROGMAN Is

PSS ID Number: Q69899
Authored 06-Mar-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

Calling the ExitProgman() function documented in the Microsoft Windows SDK
version 3.0 "Guide to Programming," section 22.4.4 (pages 22-19 through 22-
22) fails under certain circumstances.

CAUSE

Calling this function will fail if the Program Manager is the Windows
shell.

RESOLUTION

This behavior is by design. The Windows 3.1 documentation states:

 If Program Manager was started from another application, the ExitProgman
 command instructs Program Manager to exit and, optionally, save its
 groups information.

For another application to start Program Manager, the Program Manager
cannot be the shell.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrDde

PRB: FindText, ReplaceText Hook Function

PSS ID Number: Q96135
Authored 09-Mar-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When adding a hook function to the FindText and/or ReplaceText common
dialog box, the dialog box is not shown. However, the hook function is
receiving messages and the dialog box window does exist.

CAUSE

The hook function is returning FALSE after processing the WM_INITDIALOG
message.

RESOLUTION

After processing the WM_INITDIALOG message in the hook function, return
TRUE. If your hook function is setting the focus to a specific control, and
therefore should return FALSE, add the following code:

 case WM_INITDIALOG:

 ...WM_INITDIALOG code...

 SetFocus(hCtrl);
 ShowWindow(hDlg, SW_NORMAL);
 UpdateWindow(hDlg);
 return(FALSE);

This code ensures that the dialog box is visible.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrCmnDlg

PRB: GetExitCodeProcess() Always Returns 0 for 16-Bit

PSS ID Number: Q111559
Authored 14-Feb-1994 Last modified 27-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SYMPTOMS

GetExitCodeProcess() always returns a status of 0 (zero) when the handle
for a 16-bit process is passed. This applies to both Windows NT and Win32s.

STATUS

This behavior is by design in the Microsoft products listed at the
beginning of this article. Microsoft may add functionality in future
versions that support exit codes from 16-bit processes.

Additional reference words: 3.10 3.50 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: BseMisc W32s

PRB: GetLogicalDrives() Indicates that Drive B: Is Present

PSS ID Number: Q126626
Authored 27-Feb-1995 Last modified 28-Feb-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS

GetLogicalDrives() returns a bitmask that indicates that drive B is an
available drive present on the system, even though there is no physical
drive B.

CAUSE

Drive B is a ghosted drive, so you can use it even if it does not exist.
This is useful for performing a diskcopy.

RESOLUTION

Use GetDriveType() to determine whether drive B: is present as a physical
device.

STATUS

This behavior is by design.

Additional reference words: 1.20 1.25
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: GetOpenFileName() and Spaces in Long Filenames

PSS ID Number: Q108233
Authored 07-Dec-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

GetOpenFileName() is the application programming interface (API) for the
open file common dialog box. This API displays the long filenames (LFNs) on
NTFS and HPFS.

When using the OFN_ALLOWMULTISELECT flag with the GetOpenFileName() API,
the dialog box automatically presents the 8.3 names for all LFNs that
contain embedded spaces.

CAUSE

The original design of GetOpenFileName() uses a filename list that is
space-delimited when the OFN_ALLOWMULTISELECT flag is specified. Thus,
there is no programmatic way to determine which string tokens are complete
filenames or fragments of a complete name with spaces.

STATUS

This behavior is by design. Microsoft is considering changing this behavior
in a future release of Windows NT.

MORE INFORMATION

Historically, FAT filenames that contained embedded spaces were branded as
"illegal," even though the specifications of the FAT file system do not
impose such a restriction. For example, many of the MS-DOS command-line
utilities do no allow the user to specify filenames with embedded spaces,
because of difficulties that would be introduced in parsing the command
line. Under Windows NT, the command utilities have been enhanced to support
such names if they are in quotation marks.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: UsrCmnDlg

PRB: Getsockopt() Returns IP Address 0.0.0.0 for UDP

PSS ID Number: Q129065
Authored 18-Apr-1995 Last modified 19-Apr-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.11 and 4.0
 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

By following the steps listed below, you might think you should get back
the interface address over which the connection was made. However, it
actually returns the address 0.0.0.0.

1. Open a UDP socket.

2. Bind it to INADDR_ANY.

3. Call connect() to make a UDP connection.

4. Call getsockname() on your socket.

However, if it was a TCP socket, you would get back the IP address of the
interface.

CAUSE

UDP

This is the behaviour expected from some flavors of UNIX, notably those
derived from BSD. When an application calls connect() on a UDP socket that
is bound to INADDR_ANY, the operating system associates the remote address
with the local socket. This saves the programmer from having to specify the
remote IP address in each sendto() or recvfrom(). Instead they may use
send() and recv(). Note that this is just a convenience provided by the
operating system; there is no network traffic associated with this call. At
this point, the underlying IP software determines the interface over which
packets will be sent. As described earlier, under BSD UNIX, calling
getsockname() will return the IP address of the interface to the
application.

This however, is not expected behaviour under Windows NT, Windows 95, or
Microsoft TCP IP/32 for Windows for Workgroups version 3.11. Calling
getsockname() will return the IP address 0.0.0.0 (INADDR_ANY). Applications
should not assume that they can get the IP address of the interface.

TCP

The behaviour is different if it was a TCP socket. In this case, calling
getsockname() on a connected socket that was bound to INADDR_ANY will
return the IP address of the interface over which the connection was made.
The state of the connection can also be observed by typing 'netstat' at a
command prompt.

NOTE: To enumerate all the IP addresses on an IP host, the
application should call gethostname(), call gethostbyname(), and then
iterate through the h_addr_list[] member of the hostent struct returned by
gethostbyname() as in this example:

 char Hostname[100];
 HOSTENT *pHostEnt;
 int nAdapter = 0;

 gethostname(Hostname, sizeof(Hostname));
 pHostEnt = gethostbyname(Hostname);

 while (pHostEnt->h_addr_list[nAdapter])
 {
 // pHostEnt->h_addr_list[nAdapter] -the current address in host order
 nAdapter++;
 }

STATUS

This behavior is by design.

Additional reference words: 3.11 4.00 3.10 3.50 3.51
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB: GetVolumeInformation() Fails with UNC Name

PSS ID Number: Q119219
Authored 10-Aug-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

GetVolumeInformation() fails and GetLastError() returns 123
(ERROR_INVALID_NAME) if a UNC name is used. The UNC name has the form
\\<SERVER>\<SHARE>.

RESOLUTION

GetVolumeInformation() requires an extra backslash with UNC names, so that
the name has the form \\<SERVER>\<SHARE>\.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: GlobalAlloc() Pagelocks Blocks on Win32s

PSS ID Number: Q114611
Authored 08-May-1994 Last modified 21-Dec-1994

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS

If a Win32-based application running in Win32s uses GlobalAlloc() to
allocate memory from the global heap with GMEM_FIXED, with GPTR, with
GMEM_ZEROINIT, or without specifying GMEM_MOVEABLE the memory allocated
will be fixed and page-locked.

CAUSE

When a Win32 application running under Win32s on Windows 3.1 calls
GlobalAlloc() the call is translated via a thunk supplied by Win32s in a 16-
bit DLL. The 16-bit DLL then calls the Windows 3.1 function GlobalAlloc().
When GlobalAlloc() is called from a DLL in Windows 3.1 the allocated memory
will be fixed and page-locked unless GMEM_MOVEABLE is specified.

RESOLUTION

The GlobalAlloc() flags should always include GMEM_MOVEABLE if memory does
not need to be fixed and page-locked. This is expected behavior for Windows
3.1.

MORE INFORMATION

A Windows-based application will not fix or page-lock memory even when
specifically using the GMEM_FIXED flag. This behavior is unique to Windows
version 3.1; using GlobalAlloc() with GMEM_FIXED to allocate fixed and page-
locked memory must be done in a DLL.

In Windows 3.1, the GMEM_FIXED flag is defined as 0x0000. Using
GMEM_ZEROINIT without GMEM_MOVEABLE will command GlobalAlloc() to allocate
using GMEM_FIXED by default. Since Win32s passes all GlobalAlloc() calls to
the Windows 3.1 GlobalAlloc() by a DLL, GlobalAlloc() called from either a
Win32 application or a Win32 DLL will allocate the block fixed and page-
locked unless the GMEM_MOVEABLE flag is specified.

The following code illustrates this case:

 {
 HGLOBAL hMem;

 // allocate a block from the global heap

 hMem = GlobalAlloc(GMEM_ZEROINIT, 512);

 .
 .
 .

 }

Although this source code is compatible between applications for Windows
3.1 and applications for Windows NT running on Win32s, the result is
different. A 16-bit application running on Windows 3.1 will allocate the
memory as moveable and zero the contents. A Win32 application running on
Win32s will allocate the memory as fixed and page-locked and zero the
contents.

REFERENCES

Appendix B, titled "System Limits", of the "Win32s Programmer's Reference
Manual" briefly mentions on page 56 not to use GMEM_FIXED in GlobalAlloc()
called by 32-bit applications.

Additional reference words: 1.10 1.20 3.10
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: GP Fault Caused by GROWSTUB in POINTER.DLL

PSS ID Number: Q117864
Authored 11-Jul-1994 Last modified 16-Dec-1994

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SYMPTOMS

As soon as your Win32-based application starts, there is a GP fault caused
by GROWSTUB in POINTER.DLL.

CAUSE

This problem is caused by a bug in GROWSTUB, which is part of the Microsoft
Mouse driver version 9.01.

RESOLUTION

Microsoft Mouse driver version 9.01b corrects this problem. Driver 9.01b is
available via part number: 135-099-351 "Intellepoint Mouse Driver
2.0(dual)". This driver does not introduce new functionality, therefore,
you need only upgrade if you have run into this problem.

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q119775
 TITLE : HD1061: POINTER.DLL Corrects GP Fault with Win32 Apps

You can also avoid the problem by removing POINTER.EXE from the load= line
in your WIN.INI file.

Additional reference words: 1.10
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: GP Fault in DDEML from XTYP_EXECUTE Timeout Value

PSS ID Number: Q83999
Authored 27-Apr-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

A general protection (GP) fault occurs in DDEML When the following occurs:

1. A DDEML (Dynamic Data Exchange Server Library) server
 application requires more time to process a XTYP_EXECUTE
 transaction than the timeout value specified by a DDEML client
 application

2. The server application creates windows as part of its processing

3. The client application abandons the transaction because the
 transaction timed out

CAUSE

The server application receives a window handle with the same value
as the hidden window created to control the transaction.

RESOLUTION

Specify a timeout value in the client application longer than the
time required by the server application to complete the task.

MORE INFORMATION

To use DDEML, an application (either a client or a server) registers a
callback function with the library. The DDEML calls the callback
function for any DDE activity. A DDE transaction is similar to a
message; it contains a named constant, accompanied by other
parameters.

A client application issues a XTYP_EXECUTE transaction to instruct the
server application to execute a command. When a client calls the
DdeClientTransaction function to issue a transaction, it can specify a
timeout value, which is the amount of time (in seconds) the client is
willing to wait while the server processes the transaction. If the
server fails to execute the command within the specified timeout
value, the DDEML sends a message to the client that the transaction
timed out. Upon receipt of this message, the client can inform the

user, reissue the command, abandon the transaction, or take other
appropriate actions.

If a client application specifies a short timeout period (one second,
for example) and the server requires fifteen seconds to execute a
command, the client will receive notification that the transaction
timed out. If the client terminates the transaction, which is an
appropriate action, the DDEML will GP fault.

When the client sends an XTYP_EXECUTE transaction, the DDEML creates a
hidden window for the conversation. If the client calls the
DdeAbandonTransaction function to terminate the transaction, the DDEML
destroys the associated hidden window.

At the same time, the server application processes the execute
transaction, which might involve creating one or more windows. If the
server creates a window immediately after the DDEML destroys a window,
the server receives a window handle with the same value as that of the
destroyed window. After the server completes processing the execute
transaction, it returns control to the DDEML.

Normally, the DDEML determines that the callback function is returning
to a conversation that has been terminated. It calls the IsWindow
function with the window handle for the transaction's hidden window to
ensure that the handle remains valid.

Because the window handle has been allocated to the server
application, the IsWindow test succeeds. However, this handle no
longer corresponds to the transaction's hidden window. Therefore, when
the DDEML attempts to retrieve the pointer kept in the hidden window's
window extra bytes, the pointer is not available. When the DDEML uses
the contents of this memory, a GP fault is likely to result.

The current way to work around this problem is to specify a timeout
value in the client application that is longer than the time required
by the server to complete its processing.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrDde

PRB: GPF When Spawn Windows-Based App w/ WinExec() in Win32s

PSS ID Number: Q121095
Authored 26-Sep-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS

Win32-based applications running under Win32s can spawn both Windows-based
and Win32-based applications by using either WinExec() or CreateProcess().
However, there is a case where spawning a Windows-based application with
WinExec() does not work as expected and may cause a general protection (GP)
fault.

CAUSE

There is a bug in the C start-up code that comes with Microsoft C version
6.0. If you spawn an application built with Microsoft C version 6.0 by
calling LoadModule() with an explicit environment, the application does not
run correctly. This is true whether the application was spawned from a
Win32-based application or a Windows-based application. Win32s calls
LoadModule() with an explicit environment when you spawn a Windows-based
application with WinExec(). As a result, under Win32s version 1.1 and 1.15,
WinExec() will report success, but the Windows-based application built with
Microsoft C version 6.0 may cause a GP fault.

RESOLUTION

The best solution is to rebuild the application with another compiler
package. However, because a number of Windows accessories (such as Notepad
and Write) were built with Microsoft C version 6.0 and you cannot modify
these applications, changes were introduced into Win32s version 1.2 to help
you work around this problem. These changes are detailed in the More
Information section below.

NOTE: Win32s uses a different mechanism to spawn Win32-based applications,
so the problems discussed in this article do not occur when spawning Win32-
based applications with WinExec().

MORE INFORMATION

In Win32s version 1.2, WinExec() does not pass the environment to the
spawned application (child). The child receives the standard global
environment strings. This allows the application to run, but the child does
not receive the modified environment from the parent. This seemed to be a
reasonable compromise, because most applications do not change the
environment for the child. If an application must modify the child's

environment, it can spawn the application using CreateProcess() and specify
an explicit environment. However, if the child was built using Microsoft C
version 6.0, it may cause a GP fault. In addition, if the parent exits, the
child's environment becomes invalid. These three problems are not specific
to Win32s and will happen with Windows-based applications as well.

Additional reference words: 1.00 1.15 1.20 GPF
KBCategory: kbprg kbprb
KBSubCategory: W32s

PRB: Inadequate Buffer Length Causes Strange Problems in

PSS ID Number: Q107387
Authored 18-Nov-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SYMPTOMS

Specifying an inadequate buffer length for an XTYP_POKE or an
XTYP_EXECUTE command causes strange problems in DDEML.

Problems can range from a general protection (GP) fault or Exception
13, to DDEML timeout errors (such as DMLERR_EXECACKTIMEOUT or
DMLERR_POKEACKTIMEOUT) or a DDEML transaction failure (or
DMLERR_NOTPROCESSED). Sometimes, the application may seem to work for
the most part, and then occasionally crash.

Data can be passed to the server application via XTYP_POKE or
XTYP_EXECUTE in two ways:

 - Directly, as a pointer to the data or command string, as in the
 sample code below:

 char lpszString [80];

 lstrcpy (lpszString, "[FileOpen(""C:\README.DOC"")]");
 DdeClientTransaction (lpszString, // string buffer
 lstrlen (lpszString)+1, // string buffer length
 hConv,
 hszItem,
 CF_TEXT,
 XTYP_POKE,
 1000,
 NULL);

 -or-

 - By creating a data handle, and passing that on to the
 DdeClientTransaction() call:

 char lpszString [80];
 HDDEDATA hData;

 lstrcpy (lpszString, "[FileOpen(""C:\README.DOC"")]");
 hData = DdeCreateDataHandle (idInst,
 lpszString,
 lstrlen (lpszString)+1,
 0,
 NULL,

 CF_TEXT,
 0);
 if (!hData)
 DdeClientTransaction (hData, // string buffer
 -1, // indicates hData is a data handle
 hConv,
 hszItem,
 CF_TEXT,
 XTYP_POKE,
 1000,
 NULL);

CAUSE

Because data is most commonly passed between applications in CF_TEXT
format, a common problem with the string buffer length is setting it
to lstrlen (lpszString), where lpszString is the buffer containing the
string the client needs to pass to the server. Because the lstrlen()
function does not include the terminating null character, this can
cause the system to append garbage characters to the end of the
string, thus sending an invalid string to the server application.

RESOLUTION

When passing strings between two applications, the string buffer
length should be set to lstrlen (lpszString) +1, to include the
terminating null character ('\0').

Using DDESPY, it is easy to track down this problem, because one can
follow the string being passed from the client to the server
application. Garbage characters incorrectly being appended to the
string usually indicate a problem with specifying an inadequate string
buffer length.

Additional reference words: 3.10 3.50 3.51 4.00 95 gpf gp-fault
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrDde

PRB: Inconsistencies in GDI APIs Between Win32s and Windows

PSS ID Number: Q123421
Authored 01-Dec-1994 Last modified 01-Dec-1994

The information in this article applies to:

 - Microsoft Win32s version 1.2

SYMPTOMS

The StretchBlt() and StretchDIBits()/SetDIBits() GDI APIs do not behave
consistently under Win32s and Windows NT.

StretchBlt()

If the source width and height specified in the call to StretchBlt() are
greater than the actual bitmap width and height, StretchBlt() fails. The
same call to StretchBlt() succeeds under Windows NT.

StretchDIBits()/SetDIBits()

If the memory pointed to by the lpBits parameter is read-only, the call to
StretchDIBits()/SetDIBits() fails.

NOTE: When a Win32-based application uses the memory returned from
LockResource() as a parameter to SetDIBits(), by default, it's using
read-only memory, because the resource section is defined by default as
read-only.

CAUSE

These problems are due to bugs in Windows. In the case of StretchDIBits()
and SetDIBits(), Windows mistakenly verifies that the buffer is writable.
This problem does not show up in a 16-bit Windows-based application running
under Windows because resources are loaded into read/write (global) memory.

RESOLUTION

In Win32s version 1.25, Win32s will always make the resource section
read/write, regardless of what is specified in the section attributes. This
will work around the problem. In the meantime, use the following
resolutions:

StretchBlt()

To work around the problem, specify the proper width and height for the
source bitmap.

StretchDIBits()/SetDIBits()

To work around the problem, do one of the following:

 - Copy the memory to a temporary read/write buffer.

 -or-

 - Use the linker switch /SECTION:.rsrc,rw to make the resource section
 read/write. Windows NT will allocate separate resource sections for
 each copy of the application.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Inter-thread SetWindowText() Fails to Update Window Text

PSS ID Number: Q125687
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SYMPTOMS

Calling SetWindowText() to set a static control text from a thread other
than the one that created the control fails to display the new text
in Windows 95.

CAUSE

When SetWindowText() is called from another thread, instead of sending a
WM_SETTEXT message to the appropriate window procedure, only
DefWindowProc() is called, so the edit and static controls do not paint the
control appropriately because the appropriate code is never executed, so
the text on the screen is never updated. In other words, calling
SetWindowText() updates the buffer internally, but the change is not
reflected on the screen.

RESOLUTION

One obvious workaround is to refrain from calling SetWindowText() from
another thread, if possible.

If design considerations don't allow doing this, use one of these
workarounds:

 - Send a WM_SETTEXT message directly to the window or control.

 -or-

 - Call InvalidateRect() immediately after the SetWindowText(). This works
 because DefWindowProc() updates the buffer where the text is stored.

STATUS

This inter-thread SetWindowText() behavior is by design in Windows version
3.x. It was maintained in Windows 95 for backward compatibility purposes.
Applications written for Windows version 3.x can expect their inter-thread
SetWindowText() calls to behave as they did in Windows version 3.x.

MORE INFORMATION

Calling SetWindowText() from another thread in Windows NT displays the
window text correctly, so it works differently from Windows 95.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: UsrWndw

PRB: IsCharAlpha Return Value Different Between Versions

PSS ID Number: Q84843
Authored 21-May-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

Under Windows version 3.1, the IsCharAlpha function returns TRUE
for the character values 8Ah, 8Ch, 9Ah, 9Ch, 9Fh, and DFh. Under
Windows version 3.0, the function returns FALSE for these character
values.

CAUSE

These characters represent alphabetic characters that were added to
the Windows character set in Windows 3.1.

RESOLUTION

Applications that use the IsCharAlpha function should behave
properly with the newly-defined characters. No changes should be
required.

MORE INFORMATION

Appendix C.1, page 596, of the "Microsoft Windows Software Development
Kit: Programmer's Reference, Volume 3: Messages, Structures, and
Macros" lists the Windows character set.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrLoc

PRB: IsGdiObject() Is Not a Part of the Win32 API

PSS ID Number: Q91072
Authored 27-Oct-1992 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

There is no IsGdiObject() function in the Win32 API.

CAUSE

The function was added to the Windows 3.1 API because passing a handle
to a non-GDI object to a GDI function causes a GP fault under Windows
3.0. Windows NT and Windows 95 detect whether the APIs are passed an
inappropriate handle, so the function can return an error.

RESOLUTION

IsGdiObject() is not needed on Windows NT or Windows 95.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: GdiMisc

PRB: JournalPlayback Hook Can Cause Windows NT to Hang

PSS ID Number: Q124835
Authored 12-Jan-1995 Last modified 13-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

Incorrect use of the delay return value from a journal playback hook can
cause Windows NT to hang temporarily.

CAUSE

The menu loop in Windows NT calls PeekMessage() with the PM_NOREMOVE flag,
does some processing, and then removes the message from the queue. This
sequence is repeated until the menu goes away. When JournalPlayback is
occurring, the PeekMessage(PM_NOREMOVE) results in a callback to the
application's JournalPlaybackProc with an HC_ACTION code. The subsequent
PeekMessage(PM_REMOVE) also calls the JournalPlaybackProc with an
HC_ACTION code. If the peek is successful, it is followed by an HC_SKIP
callback.

In order to have playback from a journal playback hook occur at a certain
rate, Microsoft designed it so that the value returned by the
JournalPlaybackProc can be non-zero. This value represents the number of
clock-ticks the system should wait before processing the event. What the
documentation doesn't make clear is that when the delay has expired,
another callback to the JournalPlaybackProc is made to obtain the same
event again; the event provided with the previous non-zero delay is not
used at all. All subsequent HC_ACTION calls that request the same event
should be returned with a zero delay value. Only after an HC_SKIP callback
has been made, may an HC_ACTION callback return a non-zero delay value
again. Some applications do not do this correctly, and simply alternate
between returning a delay and returning a non-delay.

This alternating delay/no delay method made the Windows NT menu loop hang
because the PeekMessage(PM_NOREMOVE) would get an input event (with no
delay), then the PeekMessage(PM_REMOVE) would get a non-zero return
value from the JournalPlaybackProc. This represents no message -- so
instead of issuing an HC_SKIP callback to the JournalPlaybackProc to
advance to the next event, the Windows NT menu loop code simply looped back
to the PeekMessage(PM_NOREMOVE) getting stuck in an infinite loop.

RESOLUTION

To work around this problem, make sure the JournalPlaybackProc correctly
returns the delay only for the first request for an event.

Neither Windows version 3.1 nor Windows 95 have this problem.

STATUS

This behavior is by design.

MORE INFORMATION

The following sample code demonstrates correct and incorrect methods of
handling delays in a journal playback hook.

Sample Code

LRESULT CALLBACK JournalPlaybackProc(
 int nCode,
 WPARAM wParam,
 LPARAM lParam)
{
 static BOOL fDelay;
 static EVENTMSG event;
 static LRESULT ticks_delay;
 BOOL fCallNextHook = FALSE;
 LRESULT lResult = 0;

 switch(nCode)
 {
 case HC_SKIP:
 fDelay = TRUE; // <<<< CORRECT PLACE TO RESET fDelay

 // Get the next event from the list. If the routine returns
 // FALSE, then we are done - release the hook.
 if(!GetNextEvent(&event, &ticks_delay))
 SetJournalHook(FALSE, NULL);
 break;

 case HC_GETNEXT:
 {
 // Structure information returned from previous GetNextEvent
 // call
 LPEVENTMSG lpEvent = (LPEVENTMSG) lParam;

 // Set the event
 *lpEvent = event;

 if(fDelay)
 {
 // Toggle pause variable so that the next call won't
 // pause. Return the pause length specified by ticks_delay
 // since this is the first time the event has been
 // requested.

 fDelay = FALSE; // <<<< CORRECT PLACE TO CLEAR fDelay
 return(ticks_delay);
 }
 break;
 }

 case HC_SYSMODALOFF:
 // System modal dialog is going away - something really got
 // hosed. Windows took care of removing our JournalPlayback
 // hook, so no need to call SetJournalHook(FALSE).

 fCallNextHook = TRUE;
 break;

 case HC_SYSMODALON:
 default:
 // Something is is not right here, let the next hook handle
 // it.

 fCallNextHook = TRUE;
 break;
 }

 // If the event wasn't processed by our code, call next hook
 if(fCallNextHook)
 lResult = CallNextHookEx(s_journalHook, nCode, wParam, lParam);

 // fDelay = TRUE; // <<<< WRONG PLACE TO RESET bDelay !!!
 return lResult;
}

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: UsrHks

PRB: Large DIBs May Not Display Under Win32s

PSS ID Number: Q126575
Authored 26-Feb-1995 Last modified 27-Feb-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.10, 1.15, or 1.20

SYMPTOMS

DIB functions fail when using large DIBs under Win32s.

CAUSE

There is a two-megabyte limit on the size of the area of a DIB that can be
blitted using blting functions under Win32s. In versions of Win32s up to
1.2, Microsoft set this size to accommodate DIB blts of 1024*768*24 bits-
per-pixel. In version 1.25, the maximum size of the blitted area will be
enlarged to accommodate 1280*1024*24 bits-per-pixel.

The following functions are affected:

 SetDIBits
 SetDIBitsToDevice
 CreateDIBitmap
 StretchDIBits

WORKAROUND

To work around the problem, break down large blts into bands that are
smaller than two megabytes. Please keep in mind that the biSizeImage field
of the BITMAPINFOHEADER used with the blting functions will need to be set
to a value smaller than the DIB size limit.

The following code demonstrates a simple implementation of StretchDIBits()
that can be used with large DIBs under Win32s.

/* Macro to determine the bytes in a DWORD aligned DIB scanline */
#define BYTESPERLINE(Width, BPP) ((WORD)((((DWORD)(Width) *
(DWORD)(BPP) + 31) >> 5)) << 2)

int NewStretchDIBits(
 HDC hdc, // handle of device context
 int XDest, // x-coordinate of upper-left corner of dest. rect.
 int YDest, // y-coordinate of upper-left corner of dest. rect.
 int nDestWidth, // width of destination rectangle
 int nDestHeight, // height of destination rectangle
 int XSrc, // x-coordinate of upper-left corner of source rect.
 int YSrc, // y-coordinate of upper-left corner of source rect.
 int nSrcWidth, // width of source rectangle

 int nSrcHeight, // height of source rectangle
 VOID *lpBits, // address of bitmap bits
 BITMAPINFO *lpBitsInfo, // address of bitmap data
 UINT iUsage, // usage
 DWORD dwRop // raster operation code
)
{
 BITMAPINFOHEADER bmiTemp;
 float fDestYDelta;
 LPBYTE lpNewBits;
 int i;

 // Check for NULL pointers and return error
 if (lpBits == NULL) return 0;
 if (lpBitsInfo == NULL) return 0;

 // Get increment value for Y axis of destination
 fDestYDelta = (float)nDestHeight / (float)nSrcHeight;

 // Make backup copy of BITMAPINFOHEADER
 bmiTemp = lpBitsInfo->bmiHeader;

 // Adjust image sizes for one scan line
 lpBitsInfo->bmiHeader.biSizeImage =
 BYTESPERLINE(lpBitsInfo->bmiHeader.biWidth,
 lpBitsInfo->bmiHeader.biBitCount);
 lpBitsInfo->bmiHeader.biHeight = 1;

 // Initialize pointer to the image data
 lpNewBits = (LPBYTE)lpBits;

 // Do the stretching
 for (i = 0; i < nSrcHeight; i++)
 if (!StretchDIBits(hdc,
 XDest, YDest + (int)floor(fDestYDelta * (nSrcHeight - (i+1))),
 nDestWidth, (int)ceil(fDestYDelta),
 XSrc, 0,
 nSrcWidth, 1,
 lpNewBits, lpBitsInfo,
 iUsage, SRCCOPY))
 break; // Error!
 else
 // Increment image pointer by one scan line
 lpNewBits += lpBitsInfo->bmiHeader.biSizeImage;

 // Restore BITMAPINFOHEADER
 lpBitsInfo->bmiHeader = bmiTemp;

 return(i);
}

STATUS

This behavior is by design.

Additional reference words: 1.15 1.20 1.10
KBCategory: kbprg kbprb kbcode
KBSubcategory: W32s

PRB: LB_DIR with Long Filenames Returns LB_ERR in Windows 95

PSS ID Number: Q131286
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51, 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS

Sending an LB_DIR message to a list box that specifies a long filename in
the lParam returns LB_ERR in Windows 95 but works fine in Windows NT
version 3.51.

CAUSE

The implementation of list boxes in Windows 95 thunks down to 16-bit
USER.EXE, and the LB_DIR command has not been enhanced to support long
filenames.

RESOLUTION

Convert the long filename to its short form before passing it as the lParam
to LB_DIR by using GetShortPathName(). Similarly, when calling DlgDirList()
to fill a list box with filenames, make sure the lpPathSpec parameter
refers to the short name of the file.

Sample Code

char szLong [256], szShort [256];
DWORD dwResult;
LONG lResult;

lstrcpy (szLong, "C:\\This Is A Test Subdirectory");
dwResult = GetShortPathName (szLong, szShort, 256);
if (!dwResult)
 dwResult = GetLastError ();

lstrcat (szShort, "\lResult = SendDlgItemMessage (hdlg,
 IDC_LIST1,
 LB_DIR,
 (WPARAM)(DDL_READWRITE),
 (LPARAM)(LPSTR)szShort);
if (LB_ERR == lResult)
 // an error occurred

NOTE: If a file with a long filename exists under the subdirectory
specified, Windows 95 displays the short name in the list box, whereas

Windows NT displays the long name.

STATUS

This behavior is by design.

MORE INFORMATION

This is not a problem under Windows NT because it always supported long
filenames.

You can have an application check the system version and decide at run time
if it should call GetShortPathName before passing the filename as lParam to
the LB_DIR message. Windows NT will, however, take a short name and fill
the list box with the filenames.

Additional reference words: 4.00 1.30 LongFileName LFN DlgDirList CB_DIR
DlgDirListComboBox
KBCategory: kbprg kbcode kbpb
KBSubcategory: UsrCtl

PRB: Listview Comes Up with No Images

PSS ID Number: Q125628
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, version 2.1

SYMPTOMS

A list view is displayed with text and column headings, but the icons
are not displayed.

CAUSE

The CImageList used to store the images for the list view is no longer in
scope.

RESOLUTION

This can occur, for example, if you create a CImageList on the stack and
create your listview, but at the point the listview is displayed, the
image list has been destroyed. The ImageList functions will still return
success, but no images will be displayed.

To avoid the problem, make sure your image list stays in scope.

STATUS

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg
KBSubcategory: UsrCtl

PRB: LoadCursor() Fails on IDC_SIZE/IDC_ICON

PSS ID Number: Q131280
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

LoadCursor() returns NULL when passed IDC_SIZE or IDC_ICON for a second
parameter.

CAUSE

IDC_SIZE and IDC_ICON are obsolete. They are available only for backward
compatibility. Applications marked as a version 4.0 application are not
able to load these cursors under Windows 95.

STATUS

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: UsrRsc

PRB: LoadLibrary() Fails with _declspec(thread)

PSS ID Number: Q118816
Authored 31-Jul-1994 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Software Development Kit (SDK) versions 3.1, 3.5, 3.51,
 and 4.0
 - Microsoft Win32s versions 1.1, 1.15, 1.2, and 1.25a

SYMPTOMS

Your dynamic-link library (DLL) uses __declspec(thread) to allocate thread
local storage (TLS). There are no problems running an application that is
statically linked with the DLL's import library. However, when an
application uses LoadLibrary() to load the DLL instead of using the import
library, LoadLibrary() fails on Win32s with "error 87: invalid parameter".
LoadLibrary() succeeds under Windows NT in this situation; however, the
application cannot successfully call functions in the DLL.

CAUSE

This is a limitation of LoadLibrary() and __declspec(). The global variable
space for a thread is allocated at run time. The size is based on a
calculation of the requirements of the application plus the requirements of
all of the DLLs that are statically linked. When you use LoadLibrary(),
there is no way to extend this space to allow for the thread local
variables declared with __declspec(thread). This can cause a protection
fault either when the DLL is dynamically loaded or code references the
data.

RESOLUTION

DLLs that use __declspec(thread) should not be loaded with LoadLibrary().

Use the TLS APIs, such as TlsAlloc(), in your DLL to allocate TLS if the
DLL might be loaded with LoadLibrary(). If you continue to use _declspec(),
warn users of the DLL that they should not load the DLL with LoadLibrary().

Additional reference words: 1.10 1.20 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseDll

PRB: Local Reboot (CTRL+ALT+DEL) Doesn't Work Under Win32s

PSS ID Number: Q121092
Authored 26-Sep-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS

The Windows local reboot feature (CTRL+ALT+DEL) should terminate a hung
application. However, if the application is a Win32-based application,
using CTRL+ALT+DEL exits Windows.

CAUSE

This is a limitation of Win32s. When the VxD that handles hung applications
tries to access the application stack, it uses ss:sp, instead of ss:esp, as
if the application were a 16-bit application. This causes the VxD to crash,
and when the VxD crashes, the whole system terminates.

STATUS

This behavior is by design.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbenv kbprb
KBSubCategory: W32s

PRB: MDI Program Menu Items Changed Unexpectedly

PSS ID Number: Q74789
Authored 30-Jul-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

In an application for the Microsoft Windows graphical environment
developed using the Windows multiple document interface (MDI), when
the Window menu changes to indicate the addition of MDI child
windows, another menu of the application is also changed.

For example, if the menu resembles the following before any windows
are opened

 FILE WINDOW
 Load Cascade
 Save Tile
 Save As... Arrange Icons
 Exit

the menu might resemble the following after the first window is
opened:

 FILE WINDOW
 Load Cascade
 1: MENU.TXT Tile
 Save As... Arrange Icons
 Exit -------------
 1: MENU.TXT

CAUSE

One or more menu items have menu-item identifiers that are greater
than or equal to the value of the idFirstChild member of the
CLIENTCREATESTRUCT data structure used to create the MDI client
window.

RESOLUTION

Change the value of the idFirstChild member to be larger than any
menu item identifiers.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrMdi

PRB: Messages Sent to Mailslot Are Duplicated

PSS ID Number: Q127905
Authored 21-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

SYMPTOMS

One application creates a mailslot using CreateMailSlot() and reads from it
using ReadFile(). A second application opens the mailslot using
CreateFile() and writes to it using WriteFile(). The second application
writes one message to the mailslot, but the first application receives
three duplicates of the message.

CAUSE

This is expected behavior if you have three network transports loaded.
There is no way to know which transport should be used to deliver to a
given mailslot on a remote machine, so all transports are used.

RESOLUTION

Send a unique ID at the beginning of each message. The listening end can
detect duplicates and delete them. If you have multiple clients sending
messages, their messages may be interleaved in the mailslot. You may need
to track which client sent which message last, in order to successfully
detect duplicates.

STATUS

This behavior is by design.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseIpc

PRB: Most Common Cause of SetPixelFormat() Failure

PSS ID Number: Q126019
Authored 12-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

SYMPTOMS

SetPixelFormat() will fail with incorrect class or window styles.

CAUSE

Win32-based applications that use Microsoft's implementation of OpenGL to
render onto a window must include WS_CLIPCHILDREN and WS_CLIPSIBLINGS
window styles for that window.

RESOLUTION

Include WS_CLIPCHILDREN and WS_CLIPSIBLINGS window styles when in a Win32-
based application, you use Microsoft's implementation of OpenGL to render
onto a window.

Additionally, the window class attribute should not include the CS_PARENTDC
style. The two window styles can be added to the dwStyles parameter of
CreateWindow() or CreateWindowEX() call. If MFC is used, override
PreCreateWindow() to add the flags. For example:

 BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)
 {
 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS);

 return CView::PreCreateWindow(cs);
 }

For more information, please refer to "comments" section of the online
documentation on SetPixelFormat.

STATUS

This behavior is by design.

Additional reference words: 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiOpenGL

PRB: Moving or Resizing the Parent of an Open Combo Box

PSS ID Number: Q76365
Authored 23-Sep-1991 Last modified 16-May-1995

-
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
-

SYMPTOMS

When the user resizes or moves the parent window of an open drop-
down combo box, the list box portion of the combo box does not move.

CAUSE

The list box portion of the combo box does not receive a move
message. Therefore, it remains on the screen at its original
position.

RESOLUTION

Close the drop down list before the combo box is moved. To perform
this task, during the processing of the WM_PAINT message, send the
combo box a CB_SHOWDROPDOWN message with the wParam set to FALSE.

Additional reference words: 3.00 3.10 3.50 4.00 95 combobox
KBCategory: kbprg kbprb
KBSubcategory: UsrCtl

PRB: MS-SETUP Uses \SYSTEM Rather Than \SYSTEM32

PSS ID Number: Q98888
Authored 18-May-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

Call GetWindowsSysDir() in the SETUP.MST file of a 16-bit setup
application. The return value is C:\WINNT\SYSTEM\ instead of
C:\WINNT\SYSTEM32\. Note that this doesn't happen with the 32-bit Setup
Toolkit.

CAUSE

Windows on Win32 (WOW) returns the SYSTEM directory, not the SYSTEM32
directory, to 16-bit applications such as MS-SETUP. This is done for
compatibility reasons.

RESOLUTION

Determine whether the setup code is being run under WOW or Windows version
3.1 by checking the WF_WINNT bit (0x4000) in the return from GetWinFlags().
Choose either the return from GetWindowsSysDir() or <winows dir>\system32
as appropriate.

MORE INFORMATION

Note that there are additional considerations for network installs for
Win32s, because the SYSTEM directory may not be a branch off of the Windows
directory.

Additional reference words: 3.10 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsMss

PRB: Named Pipe Write() Limited to 64K

PSS ID Number: Q119218
Authored 10-Aug-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS

WriteFile() returns FALSE and GetLastError() returns ERROR_MORE_DATA
when WriteFile() writes to a message-mode named pipe using a buffer greater
than 64K.

CAUSE

There is a 64K limit on named pipe writes.

RESOLUTION

The error is different from ERROR_MORE_DATA on the reader side, where bytes
have already been read and the operation should be retried for the
remaining message. The real error is STATUS_BUFFER_OVERFLOW. No data is
transmitted; therefore, the write operation must be retried using a smaller
buffer.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseIpc

PRB: NetBIOS Command NCBSEND Gets Return Code Error 0x3C

PSS ID Number: Q123457
Authored 01-Dec-1994 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS

While opening sessions, you start to get error 0x3C (lock of user area
failed) in the NcbSend command call.

CAUSE

An application in Windows NT uses the NcbListen command to accept NetBIOS
calls. After a call is received, the application uses the NcbSend command
to send data back.

If the computer running Windows NT has 32 megabytes of main memory, an
application can request a large number (for example, 128) of sessions, by
using the NcbReset command, without difficulty.

However, with only 16 megabytes of main memory, an application can request
only a moderate number (for example, 80) of sessions. If more sessions are
opened they start to get error 0x3C (lock of user area failed) in the
NcbSend command call. The error persists until some of the sessions that
are currently open are closed, at which time NcbSend will get a good return
status.

STATUS

This behavior is by design. The system stops the process from using so many
resources that it jeopardizes the performance of other applications and/or
the system itself.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbenv kbprb
KBSubcategory: NtwkNetbios

PRB: Netbios RESET Cannot Be Called with Pending Commands

PSS ID Number: Q125659
Authored 01-Feb-1995 Last modified 07-Mar-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS

A Win32-based application cannot call the Netbios RESET command as long
as there are asynchronous commands still pending.

CAUSE

This behavior is by design in Win32s.

RESOLUTION

The application should cancel all pending commands, and wait for the post
routines of all the pending commands to be called. After that, the
application can issue a Netbios RESET command.

STATUS

This behavior is by design but may be designed differently in a future
version of Win32s.

Additional reference words: 1.20 1.25
KBCategory: kbprg
KBSubcategory: W32s

PRB: NetDDE Fails to Connect Under Windows 95

PSS ID Number: Q131025
Authored 02-Jun-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

An application using Network Dynamic Data Exchange (NetDDE) fails to
connect to another DDE application on another computer.

CAUSE

One of the reasons could be that NETDDE.EXE (a system component) is not
running.

Network Dynamic Data Exchange (NetDDE) allows two DDE applications to
communicate with each other over the network. In Windows for Workgroups,
the NETDDE.EXE (a system component) was loaded by default. However under
Window 95, NETDDE.EXE is not loaded by default.

RESOLUTION

An application using the netDDE services should check if the netDDE system
component is loade. if NETDDE.EXE isn't running, the application should run
it.

Sample Code

The following sample code checks to see if NETDDE.EXE is loaded and tries
to load it if necessary. The sample code works for both 32-bit and 16-bit
applications.

BOOL IsNetDdeActive()
{
HWND hwndNetDDE;

// find a netDDE window
hwndNetDDE = FindWindow("NetDDEMainWdw", NULL);
// if exists then NETDDE.EXE is running
if(NULL == hwndNetDDE)
 {
 UINT uReturn;
 // otherwise launch the NETDDE.EXE with show no active
 uReturn = WinExec("NETDDE.EXE", SW_SHOWNA);
 // if unsucessful return FALSE.
 if(uReturn <= 31)

 return FALSE;
 }
// NetDDE is running
return TRUE;
}

STATUS

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbprg kbnetwork kbcode kbinterop
KBSubcategory: Usrdde

PRB: Number Causes Help Compiler Invalid Context ID Error

PSS ID Number: Q85490
Authored 10-Jun-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When the Windows Help Compiler compiles a help project file, the
following error message appears:

 Error P1083: Invalid context identification number

CAUSE

The representation of the context identification number begins with
a zero and contains the digit 8 or 9.

RESOLUTION

Remove the leading zeros from the number.

MORE INFORMATION

The Windows Help Compiler parses a number that has a leading zero as
an octal number. C compilers also interpret numbers in this manner.
Only the digits 0 through 7 are legal in an octal number.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: Oracle7 for Win32s Hangs When Initialize Database

PSS ID Number: Q127760
Authored 15-Mar-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.00, 1.10, 1.15, 1.20, and 1.25a

SYMPTOMS

There is a known problem with using Oracle7 for Win32s with the Windows
Sound System version 2.0. The problem occurs when starting up a database in
the Database Manager. Oracle7 may hang during this process. The machine
will need to be rebooted.

CAUSE

The SNDEVNTS.DRV file is causing the problem by performing stack checking
on the application stacks of Oracle7. The stack checking is corrupting the
application stack of Oracle7 causing the application to hang.

RESOLUTION

Download SEVNT022.EXE, a self extracting file from the Microsoft Software
Library (MSL) available on the following services:

 - CompuServe
 GO MSL
 Search for SEVNT022.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SEVNT022.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get SEVNT022.EXE

Follow the installation directions contained in the README.TXT file.

Additional reference words: 1.00 1.10 1.20 SNDEVNTS.DRV
KBCategory: kb3rdparty kbfile kbprb
KBSubcategory: W32s

PRB: Page Fault in WIN32S16.DLL Under Win32s

PSS ID Number: Q115082
Authored 18-May-1994 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.1 and 1.15

SYMPTOMS

Start two instances of the Win32 application under Win32s. Close one
instance, then close the other instance. A page fault is generated in
WIN32S16.DLL. Under Win32s, version 1.1, a dialog box appears. Under
Win32s, version 1.15, the error only appears in the output from the debug
version of Win32s.

CAUSE

This problem can be caused by using the static C run-time (CRT) libraries
or using MSVCRT10.DLL. Note that even if the application does not make any
CRT calls, one of its DLLs may call the CRT initialization and cleanup
code. The CRT code makes the following sequence of API calls:

 DeleteCriticalSection
 DeleteCriticalSection
 DeleteCriticalSection
 TlsFree
 VirtualFree
 VirtualFree
 VirtualFree

When the second application instance terminates, it faults before it makes
the call to TlsFree(). The CRT has two blocks, one that contains strings
from the environment and one that contains pointers to the first blocks.
These are allocated by the first process that attach to the DLL. Other
processes that attach do not allocate these blocks. When processes are
terminated, these two blocks are freed. However, this succeeds only when
the process that owns the memory frees them. Any other process that tries
to access these blocks will fail.

RESOLUTION

Because there is no instance data by default under Win32s, DLLs should use
the CRT in a DLL instead of linking to the CRT statically. MSVCRT10.DLL
(which comes with Visual C++) is not compatible with Win32s because
MSVCRT10.DLL falsely assumes that Win32s implements instance data, which is
only available on Windows NT. Therefore, until an updated MSVCRT.LIB file
is released, use CRTDLL.LIB (which comes with the Win32 SDK) because Win32s
has its own CRTDLL.DLL file that was specifically designed for this use.

Microsoft Visual C++ 2.0 contains two versions of MSVCRT20.DLL: one version
is intended for use on Windows NT, the other is intended for use on Win32s.
To avoid this problem, use and ship the Win32s version of MSVCRT20.DLL in
your application.

MORE INFORMATION

The real problem is that memory is allocated for several applications. The
allocation is done by the first application. When this application
terminates, it takes with it all of its memory. This means that each time
the remaining applications try to access this memory, an error occurs.
Symptoms include data corruption, hanging, or the WIN32S16.DLL page fault
mentioned above.

Additional reference words: 1.10 1.15
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: PaintRgn() Fills Incorrectly with Hatched Brushes

PSS ID Number: Q82169
Authored 29-Mar-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, version 4.0

SYMPTOMS

When the TRANSPARENT background mode and a mapping mode other than
MM_TEXT are selected and an application calls the PaintRgn() API
to fill a complex region with a hatched brush, a disconnected
pattern results.

CAUSE

The Windows Graphics Device Interface (GDI) draws a complex region
by filling the individual rectangles that make up the region. The
code to compute the position of each rectangle on the screen fails
when the screen coordinates are not in units of pixels. The error
is visible when a hatched brush style is used in TRANSPARENT mode.

RESOLUTION

When a hatched brush and TRANSPARENT background mode are required,
use the MM_TEXT mapping mode.

Additional reference words: 3.10 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiDrw

PRB: Poor TCP/IP Performance When Doing Small Sends

PSS ID Number: Q126716
Authored 28-Feb-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

When doing multiple sends of less than the Maximum Transmission Unit
(MTU), you may see poor performance. On an Ethernet network, the MTU
for TCP/IP is 1460 bytes.

CAUSE

When an application does two sends of less than a transport MTU, the
second send is delayed until an ACK is received from the remote host.
The delay occurs in case the application does another small send. TCP
can then coalesce the two small sends into one larger packet. This
concept of collecting small sends into larger packets is called Nagling.

RESOLUTION

There are a number of ways to avoid Nagling in an application. Here are
two. The second is more complex but gives a better performance benefit:

 - Set the TCP_NODELAY socket option for the socket. This tells TCP/IP to
 send always, regardless of packet size. This will result in sub-optimal
 use of the physical network, but it will avoid the delay of waiting for
 an ACK.

 - Send larger blocks of data. The send() API call, when you include the
 overhead of the other network components involved, costs a couple of
 thousand instructions. One large send() call will be more efficient than
 two smaller send() calls, even if you need to do some buffer copies.

 Sending larger data blocks will also result in more efficient use of the
 physical network because packets will typically be larger and less
 numerous. This option is much better than the first (enabling
 TCP_NODELAY) and should be used if at all possible.

On Windows NT 3.51, if you are sending files, you should use the new
TransmitFile() API. This call reads the file data directly from the file
system cache and sends it out over the wire. The TransmitFile() call can
also take a data block that will be sent ahead of the file, if desired.

REFERENCES

More information about Nagling and the Nagle algorithm can be found in RFC
1122.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB: Pressing the ENTER Key in an MDI Application

PSS ID Number: Q99799
Authored 08-Jun-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

In a standard Microsoft Windows version 3.1 multiple document
interface (MDI) application, when a minimized MDI child is active and
the user presses the ENTER key, the child is not restored.

This is inconsistent with other MDI applications, such as File Manager
and Program Manager. An MDI child in one of these applications is
restored when it is the active MDI child and the ENTER key is pressed.
When a normal Windows-based application is minimized and the user presses
ENTER, that application is restored to a normal state.

RESOLUTION

One quick workaround to this problem is to create an accelerator for
the ENTER key and restore the minimized MDI child when the key is
pressed.

MORE INFORMATION

It may be desirable to implement the same restore feature that File
Manager and Program Manager have implemented in order to enable the
user to restore an MDI child by pressing the ENTER key. If this
feature is implemented, then the MDI application can be consistent
with other popular applications such as File Manager, Microsoft Excel,
and Microsoft Word.

To achieve this effect in an MDI application, create an accelerator in
the accelerator table of the resource file for the application. This
can be done as follows:

MdiAccelTable ACCELERATORS
 {
 . . .
 . . .
 VK_RETURN, IDM_RESTORE, VIRTKEY
 }

After this accelerator has been installed in the MDI application, each
time the ENTER key is pressed by the user, an IDM_RESTORE command will
be sent to the MDI frame window's window procedure through a

WM_COMMAND message. When the MDI frame receieves this message, its
window procedure should retrieve a handle to the active MDI child and
determine if it is minimized. If it is minimized, then it can restore
the MDI child by sending the MDI client a WM_MDIRESTORE message. This
can all be done with the following code:

 case IDM_RESTORE:
 {
 HWND hwndActive;

 hwndActive = SendMessage(hwndClient,WM_MDIGETACTIVE,0,0L);
 if (IsIconic(hwndActive))
 SendMessage(hwndClient,WM_MDIRESTORE,hwndActive,0L);
 break;
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrMdi

PRB: Printer Font too Small with ChooseFont() Common Dialog

PSS ID Number: Q89544
Authored 24-Sep-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

In an application for the Microsoft Windows graphical environment, the user
selects a printer font through the ChooseFont() common dialog box function.
When the application calls the CreateFontIndirect() to create the selected
font, even though the style and face name are correct, the point size is
much too small.

CAUSE

The LOGFONT structure returned to the application is based on screen
metrics--even when the user selects a printer font. Because the resolution
(dots per inch) on a printer is generally much greater than that of the
screen, the resulting printer font is smaller than desired.

RESOLUTION

Modify the lfHeight member of the LOGFONT data structure according to the
printer metrics.

MORE INFORMATION

The following code demonstrates how to modify the lfHeight member. The
lpcf variable contains a pointer to the CHOOSEFONT data structure. The
hDC member of the CHOOSEFONT data structure is a handle to the printer
device context.

 if (ChooseFont(lpcf))
 {
 if (lpcf->nFontType & PRINTER_FONT)
 {
 iLogPixelsy = GetDeviceCaps(lpcf->hDC, LOGPIXELSY);
 lpcf->lpLogFont->lfHeight =
 MulDiv(-iLogPixelsy, (lpcf->iPointSize / 10), 72);
 hPrinterFont =
 CreateFontIndirect((LPLOGFONT)(lpcf->lpLogFont));
 }
 else
 {
 // Create screen font

 }
 }
 else
 {
 // Process common dialog box error
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrCmnDlg

PRB: Private Button Class Can't Get BM_SETSTYLE in Windows 95

PSS ID Number: Q130951
Authored 31-May-1995 Last modified 02-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

When an application creates a new button class, the new buttons do not
receive BM_SETSTYLE messages under Windows 95.

CAUSE

In previous versions of Windows, the new button had only to return
DLGC_BUTTON in response to the WM_GETDLGCODE message. This was all that was
required to identify the window as a "button."

However, in Windows 95, returning DLGC_BUTTON to WM_GETDLGCODE is no longer
sufficient to identify the window as a "button." The dialog manager code in
Windows 95 is implemented in 16 bits. When a message is dispatched to a
32-bit window, the system automatically generates a thunk. Because the
system does not know that the new class is actually a "button," it does not
automatically perform the thunk - so the BM_SETSTYLE messages are not sent.

RESOLUTION

To tell the system to treat the window as a "button," the window must call
one of the following APIs at least once:

IsDlgButtonChecked
CheckRadioButton
CheckDlgButton

The preferable method for doing this is to call IsDlgButtonChecked during
the WM_CREATE message. Once this is done, the window will receive all
standard button messages.

STATUS

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbprg kbui kbprb
KBSubcategory: UsrCtl

PRB: Problems with the Microsoft Setup Toolkit

PSS ID Number: Q106382
Authored 07-Nov-1993 Last modified 29-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

1. When the /zi option is used with the Win32 DSKLAYT2.EXE to provide
 compression, it causes an access violation.

2. The Win32 Setup Toolkit does not contain a setup bootstrapper to
 copy the needed setup files to a temp drive and run the Setup
 program. Setup runs from floppy disks.

3. Install programs for applications that may run on Win32s must be
 created with the 16-bit version of the Setup Toolkit if the
 installation program will install Win32s. However, the 16-bit
 DSKLAY2.EXE cannot read the version information in a Win32 binary.

4. The Win32 DSKLAYT.EXE only shows 8.3 names in the list box.

5. The Setup program reports "out of memory" during installation, but there
 seems to be plenty of memory.

6. Installation fails from a CD-ROM. If the same files are copied from the
 CD to the hard disk, installation succeeds.

7. Setup programs created with the 32-bit setup toolkit will not run under
 Win32s.

RESOLUTIONS

1. The fix for this problem is available in the Alpha SDK Update and later.

 Note that COMPRESS.EXE has been updated to use a better compression
 algorithm, and therefore /zi is no longer recommended for best
 compression. The option has been kept for compatibility reasons.

2. The bootstrapper is not necessary in a 32-bit environment. It is
 required for Windows because it is not possible to remove the
 floppy disk of a currently running Win16 application (the resources
 could not all be preloaded and locked). If you want to use a
 bootstrapper for compatibility, a 32-bit version is available on
 CompuServe.

3. If a Win32s installation is provided on a separate disk, the
 install program can be developed with the Win32 Setup Toolkit.

4. The program is actually a 16-bit program, and therefore it can
 display only the 8.3 name. Use 8.3 names for the source names and
 specify that the files be renamed (using the long names) when they
 are installed.

5. This error can be caused when a DLL on disk 1 is needed when
 when a different disk is currently inserted. To work around this
 problem, use LoadLibrary() to load the DLL.

6. This problem was corrected in the Win32 3.5 SDK.

7. This problem was corrected in the Win32 3.5 SDK.

Additional reference words: 3.10 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsMss

PRB: Processing the WM_QUERYOPEN Message in an MDI

PSS ID Number: Q99411
Authored 27-May-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When a multiple document interface (MDI) child window processes the
WM_QUERYOPEN message to prevent the child from being restored out of a
minimized state, the system menu and restore button are not removed
from the menu bar when a maximized MDI child loses the focus or is
closed.

This problem occurs only when the maximized MDI child loses the focus
or is closed and the focus is given to an MDI child that returns 0
(zero) on the WM_QUERYOPEN message.

CAUSE

When an MDI child is maximized, the system menu and restore button are
added to the frame menu as bitmap menu items. When a maximized MDI
child is destroyed or another MDI child is given the focus, the MDI
child given the focus afterwards is maximized to replace the old MDI
child. Windows cannot maximize an MDI child when it is processing the
WM_QUERYOPEN message, and therefore the child is not maximized.
Unfortunately, the system menu and restore button bitmaps are not
removed from the menu bar.

RESOLUTION

To prevent this problem, restore the maximized MDI child before giving
the focus to another child.

MORE INFORMATION

It may sometimes be desirable to prevent an MDI child from being
restored during part or all of its life. This can be done by trapping
the WM_QUERYOPEN message by placing the following code in the window
procedure of the MDI child:

 case WM_QUERYOPEN:
 return 0;

Unfortunately, this causes the added restore and system menu bitmaps
to remain on the menu bar when a maximized MDI child loses the focus

or is closed and the focus is given to a child processing this
message. The following code can be used to restore a maximized MDI
child when it loses the focus:

 case WM_MDIACTIVATE:
 if ((wParam == FALSE) && (IsZoomed(hwnd)))
 SendMessage(hwndMDIClient, WM_MDIRESTORE, hwnd, 0L);

 return DefMDIChildProc (hwnd, msg, wParam, lParam);

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrMdi

PRB: Property Sheet w/ Multiline Edit Control Ignores ESC Key

PSS ID Number: Q130765
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Pressing the ESC key when the focus is on a Multiline Edit control that is
a child of a property sheet page, does not dismiss the property sheet
control as expected.

CAUSE

When the ESC key is pressed while focus is on a Mutiline Edit control, the
IDCANCEL notification (sent with a WM_COMMAND message) is sent to the
property sheet dialog proc whose template contains the Multiline Edit
control. Property sheet dialog procs do not process this message, so it is
not forwarded to the property sheet control.

RESOLUTION

Trap the IDCANCEL notification that is sent along with the WM_COMMAND
message in the property sheet dialog proc that contains the multiline edit
control. Then forward the message to the property sheet control. (The
property sheet control is the parent of all the property sheet page
dialogs.) The following code shows how to do this:

Code Sample

//
// FUNCTION: SheetDialogProc(HWND, UINT, WPARAM, LPARAM)
//
// PURPOSE: Processes messages for a page in the PPT sheet control.
//
// PARAMETERS:
// hdlg - window handle of the property sheet
// wMessage - type of message
// wparam - message-specific information
// lparam - message-specific information
//
// RETURN VALUE:
// TRUE - message handled
// FALSE - message not handled
//

LRESULT CALLBACK SheetDialogProc(HWND hdlg,

 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
{
 LPNMHDR lpnmhdr;
 HWND hwndPropSheet;
 switch (uMessage)
 {
 case WM_INITDIALOG:

 // Do whatever initializations you have here.
 return TRUE;

 case WM_NOTIFY:

 // more code here ...

 break;

 case WM_COMMAND:

 switch(LOWORD(wparam))
 {

 case IDCANCEL:

 // Forward this message to the parent window
 // so that the PPT sheet is dismissed
 SendMessage(GetParent(hdlg),
 uMessage,
 wparam,
 lparam);
 beak;

 default:
 break;
 }
 break;

 }

NOTE: This solution also works with wizard controls. This behavior is seen
under both Windows NT and Windows 95; the solution in this article works
for both platforms.

Additional reference words: 4.00 user styles
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrCtl

PRB: Quotation Marks Missing from Compiled Help File

PSS ID Number: Q110540
Authored 24-Jan-1994 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

After upgrading from Word for Windows 2.x to Word for Windows 6.x and
rebuilding a Windows Help file with HCP.EXE or HC31.EXE, all of the
quotation marks are missing from the Help file.

CAUSE

Word 6.x uses a special .RTF keyword to represent the quotation mark
character, and the Help compiler does not understand the new .RTF keyword
so it drops the character. The same problem occurs for the curly double
quotation mark, single quotation mark, en dash (char 150), em dash (char
151), and the bullet character (char 149).

RESOLUTION

You can prevent this problem by turning off the "Smart Quotes" option in
Word for Windows. The following three steps accomplish this:

1. Choose Options from Tools menu.
2. Select the AutoFormat tab.
3. In the Replace group box, clear the "Straight Quotes with Smart Quotes"
 check box, and choose OK.

If you wish to include smark quotes, bullets, em-dashes, and en-dashes in a
Help file, you can open the file as text only and replace the RTF keywords
with their ANSI hexidecimal equivalents, which are recognized by the help
compiler.

 Find String Replace String
 ----------- --------------
 \emdash \'97"
 \endash \'96"
 \bullet \'95"
 \rdblquote \'94"
 \ldblquote \'93"
 \rquote \'92"
 \lquote \'91"

Make sure that there is a blank character included at the end of the Find

String, but not in the Replace String.

This replacement must be made every time you edit and convert the text from
document to RTF format.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: RegCreateKeyEx() Gives Error 161 Under Windows NT 3.5

PSS ID Number: Q117261
Authored 23-Jun-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

A call to RegCreateKeyEx() is successful under Windows NT version 3.1, but
the call fails with error 161 (ERROR_BAD_PATHNAME) under Windows NT version
3.5.

The sample code below demonstrates this problem.

CAUSE

This is by design. Windows NT version 3.1 allows the subkey to begin with a
backslash ("\"), however Windows NT version 3.5 does not. The subkey is
given as the second parameter to RegCreateKeyEx().

RESOLUTION

Remove the backslash from the beginning of the subkey name.

MORE INFORMATION

In the sample code below, RegCreateKeyEx() fails with error 161 while the
string defined by SUBKEY_FORMAT_STRING begins with a backslash, but
succeeds if the initial backslash is removed.

Sample Code

 #include <windows.h>
 #include <stdio.h>

 #define SUBKEY_FORMAT_STRING \
 "\\SYSTEM\\CurrentControlSet\\Services\\EventLog\\Application\\%s"

 void main(int argc, char *argv[])
 {
 DWORD dwErrorCode;
 char lpszSubKey[MAX_PATH];
 HKEY hKey;
 DWORD dwDisposition;

 sprintf(lpszSubKey, SUBKEY_FORMAT_STRING, argv[1]);

 printf("Trying to open: %s\n", lpszSubKey);

 dwErrorCode = RegCreateKeyEx(HKEY_LOCAL_MACHINE,
 lpszSubKey,
 0,
 "",
 REG_OPTION_NON_VOLATILE,
 KEY_ALL_ACCESS,
 NULL, //Security
 &hKey,
 &dwDisposition);

 if (dwErrorCode != ERROR_SUCCESS)
 printf("Code = %d.\n", dwErrorCode);

 RegCloseKey(hKey);
 }

NOTE: Double backslashes ("\\") are required in strings in C code to
represent a single backslash, since a backslash ordinarily indicates the
beginning of an escape sequence.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: RegisterClass()/ClassEx() Fails If cbWndExtra > 40 Bytes

PSS ID Number: Q131288
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

Under Windows 95, a call to RegisterClass() or RegisterClassEx() returns
NULL if a value greater than 40 is specified for the cbWndExtra or
cbClsExtra members of the WNDCLASS or WNDCLASSEX structure.

CAUSE

Windows 95 checks to see if cbWndExtra or cbClsExtra is greater than 40. If
so, it outputs these debug messages and returns NULL to indicate failure:

 RegisterClassEx: Unusually large cbClsExtra (>40)
 RegisterClassEx: Unusually large cbWndExtra (>40)

RESOLUTION

If more than 40 bytes are needed to store window-specific or class-specific
information, an application should allocate memory. Then set the cbWndExtra
or cbClsExtra to 4 bytes, and pass the pointer to the allocated memory by
using SetClassLong() as follows:

 SetClassLong (hWnd, GCL_CBCLSEXTRA, lpMemoryAllocated);
 SetClassLong (hWnd, GCL_CBWNDEXTRA, lpMemoryAllocated);

The pointer can then be retrieved when needed by using GetClassLong() as
follows:

 lpMemoryAllocated = GetClassLong (hWnd, GCL_CBCLSEXTRA);
 lpMemoryAllocated = GetClassLong (hWnd, GCL_CBWNDEXTRA);

STATUS

This behavior is by design. However, as of version 3.51, Windows NT does
not have this 40-byte limitation.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: UsrCls

PRB: Result of localtime() Differs on Win32s and Windows NT

PSS ID Number: Q117893
Authored 13-Jul-1994 Last modified 12-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SYMPTOMS

Under Windows NT, localtime(time()) returns the correct local time.
However, under Win32s, the local time returned is not correct if the TZ
environment variable is set. For example, suppose that you are in the
Pacific time zone (GMT-08:00) and have set tz=pst8pdt. The time returned
under Win32s is off by 8 hours.

CAUSE

This is by design.

The localtime() function depends on time zone information, which is not
available in Win32s. This is the reason that the Win32 API GetLocalTime()
is not supported under Win32s. The C Run-time functions, like localtime(),
use the tz environment variable for time zone information.

The time() function returns the current local time under Win32s, then the
call to localtime() adjusts the time by the offset of your time zone from
GMT, which it finds by reading the tz environment variable.

Under Windows NT, time() and GetSystemTime() return GMT, therefore
localtime(time()) is the current local time.

RESOLUTION

To get the current local time under both Win32s and Windows NT, use the
following code to clear the tz environment variable and get the time:

 _putenv("TZ=");
 _tzset();

 localtime(time());

Note that _putenv() affects only the tz environment variable for the
application. All other applications use the global environment settings and
make their own modifications.

Additional reference words: 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: RichEdit Control Hides Mouse Pointer (Cursor)

PSS ID Number: Q131381
Authored 11-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS

When the mouse pointer (cursor) is over a RichEdit control and the user
starts typing in the control, the RichEdit control hides the pointer.

CAUSE

When the user is typing in a RichEdit control, the control automatically
hides the mouse pointer if it is is over the control. The control does this
intentionally so the cursor does not obscure the text in the control. When
the mouse is moved again, the pointer re-appears.

STATUS

This behavior is by design.

Additional reference words: 4.00 95 1.30
KBCategory: kbprg kbui kbprb
KBSubcategory: UsrCtl

PRB: RoundRect() and Ellipse() Don't Match Same Shaped

PSS ID Number: Q119455
Authored 16-Aug-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SYMPTOMS

When CreateRoundRectrRgn() is used to create a region with the shape of a
rectangle that has rounded corners and RoundRect() is called with the same
parameters to draw the same rectangle that has rounded corners, the
calculated region does not match the drawn rectangle. The same can be said
of the ellipses created by CreateEllipticRgn() and Ellipse().

CAUSE

This behavior is because of the design on Windows. The mismatch between
fills and frames is because of the way that the boundaries and fills must
be specified in order to get polygons to fit together properly. Windows NT
duplicates this behavior for compatibility.

RESOLUTION

Perform the fill first, then draw the frame. Some of the frame pixels will
overwrite fill pixels and some will not; however, there will be no gap
between the frame and the fill, and the fill will not extend past the
frame. Use CreateRoundRectRgn() or CreateEllipticRgn() for the fill and
RoundRect() or Ellipse, respectively, for the frame. Use the same
parameters for both the region API and the filled-shape API.

NOTE: If you use a NULL pen when drawing the filled shape, the pixels will
match those drawn by creating a region through the corresponding region API
and then calling FillRgn() with the same parameters. It draws the frame
with the pen from the filled-shape API that causes the discrepancy.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiDrw

PRB: RPC Installation Problem

PSS ID Number: Q104315
Authored 13-Sep-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

There is a problem with the Remote Procedure Call (RPC) service
installation. Setup searches the Windows directory for WINSOCK.DLL. If the
file is found, Setup installs RPC16C3.DLL.

This is a problem if you are dual booting a machine between Windows 3.1 and
Windows NT because Windows 3.1 uses an older TCP/IP interface, which is
called RPC16C3X.DLL on the distribution disks. When you run Windows NT, you
will want to use the newer TCP/IP interface, called RPC16C3.DLL.

WORKAROUND

If you are dual booting and using RPC, a workaround to this problem is to
rename your WINSOCK.DLL file to something else, such as WINSOCK.XXX. This
will cause Setup to copy the correct version of the TCP/IP dynamic-link
library (DLL).

Additional reference words: 3.10
KBCategory: kbprg kbprb
KBSubcategory: NtwkRpc

PRB: RW1004 Error Due to Unexpected End of File (EOF)

PSS ID Number: Q106064
Authored 31-Oct-1993 Last modified 23-Jun-1995

The information in this article applies to:

- Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SYMPTOMS

The resource compiler generates the following errors when the .RC file
includes a .H file whose last line is a define (that is, there was no
final carriage return at the end of the #define statement):

 fatal error RC1004: unexpected EOF

CAUSE

The resource compiler preprocessor follows C syntax. A newline character is
required on a #define statement.

RESOLUTION

Add a carriage return following the #define.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsRc

PRB: Saving/Loading Bitmaps in .DIB Format on MIPS

PSS ID Number: Q85844
Authored 22-Jun-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

SYMPTOMS

In Win32, saving or loading a bitmap in .DIB file format is basically the
same as in Win16. However, care must be taken in DWORD alignment,
especially on the MIPS platform.

An exception occurs when loading or saving a bitmap on the MIPS platform.
In NTSD, the following error message is received:

 data mis-alignment

CAUSE

A non-DWORD aligned actual parameter was passed to a function such as
GetDIBits().

The .DIB file format contains the BITMAPFILEHEADER followed immediately by
the BITMAPINFOHEADER. Notice that the BITMAPFILEHEADER is not DWORD
aligned. Thus, the structure that follows it, the BITMAPINFOHEADER, is not
on a DWORD boundary. If a pointer to this DWORD misaligned structure is
passed to the sixth argument of GetDIBits(), an exception will occur.

RESOLUTION

To resolve this problem, copy the data in the structure over to a DWORD-
aligned memory and pass the pointer to the latter structure to the function
instead. See the sample code LOADBMP.C for detail.

MORE INFORMATION

The is a sample to illustrates this process. Refer to the LOADBMP.C file in
the MANDEL sample that comes with the Win32 SDK.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: GdiBmp

PRB: Search Button Disabled in Windows Help

PSS ID Number: Q71761
Authored 01-May-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SYMPTOMS

When a help file is loaded into the Windows Help program, the Search button
is disabled.

CAUSE

There are two likely causes:

 1. The help file defines no keywords for searching.

 2. The keywords are defined using a lowercase "k" footnote.

RESOLUTION

For cause 1, if searching is desired, define some keywords in the file. For
cause 2, modify the RTF text to use an uppercase "K" for keyword footnotes.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: SEH with Abort() in the try Body

PSS ID Number: Q91146
Authored 29-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

When using Structured Exception Handling, if the try body calls abort(),
the finally body is not executed.

CAUSE

The finally body is not executed because the abort() never returns. It
calls ExitProcess(), which terminates the process.

RESOLUTION

This behavior is by design.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseExcept

PRB: SEH with return in the finally Body Preempts Unwind

PSS ID Number: Q91147
Authored 29-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51 and 4.0

SYMPTOMS

When using Structured Exception Handling (SEH), returning out of a finally
body results in a return from the containing procedure scope. For example,
in the following code fragment, the return in the finally block results in
a return from func():

 int func()
 {
 int status = 0;
 __try {
 ...
 status = test();
 ...
 }
 __finally {
 if (status != 0) {
 status = FAILURE;
 return status;
 }
 }
 return status;
 }

CAUSE

A return from within a __finally is equivalent to a goto to the closing
brace in the enclosing function [for example, func()]. This is allowed,
but has consequences that should normally be avoided.

Exception handling has two stages. First, the exception stack is walked,
looking for an accepting __except. When an accepting handler has been
found, all __finallys between the top-of-exception-stack and the target
__except will be called. During this "unwind", the __finallys are
assumed to each execute and then return to their caller (the system
unwind code).

A return in a finally abnormally aborts this unwinding. Instead of
returning to the system unwinder, the __finally returns to the enclosing
function's caller [for example, func()'s parent]. The accepting __except
filter may set some status or perform an allocation in anticipation of
the __except handler being entered. In this case, the intervening

__finally with the return will stop the unwind, and the __except handler
is never entered.

RESOLUTION

This is by design. It makes it possible for a finally handler to stop an
unwind and return a status. This is what is referred to as a collided
unwind.

Abnormal termination from try/except or try/finally blocks is not
generally recommended because it is a performance hit.

The example can be rewritten so that the unwind chain is not aborted:

 int func()
 {
 int status = 0;
 __try {
 ...
 status = test();
 ...
 }
 __except(status != 0) {

 /* null */
 }
 if (status != 0)
 status = FAILURE;
 return status;
 }

This does not have identical semantics because the exception filters
higher up the exception stack will not be executed. However, ensuring
that both phases of exception handling progress to the same depth is a
more robust solution.

MORE INFORMATION

Normally this behavior is transparent to any higher-level exception
handling code. If, however, a filter function, as a side effect, stores
information that it expects to process in an exception handler, then it may
or may not be transparent. Storing such information in a filter function
should be avoided because it is always possible that the exception handler
will not be executed because the unwind is preempted. In the absence of
storing such side effects, it will be transparent that an exception
occurred and an attempted unwind occurred if one of the descendent
functions has a try/finally block with an finally clause that preempts the
unwind.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseExcept

PRB: SelectClipRgn() Cannot Grow Clip Region in WM_PAINT

PSS ID Number: Q118472
Authored 19-Jul-1994 Last modified 23-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

Setting a smaller clipping region in WM_PAINT by using SelectClipRgn()
works fine; however, setting a larger clipping region seems to have no
effect. GetClipBox() can be used to verify this after calling
SelectClipRgn().

CAUSE

When you call SelectClipRgn() within a BeginPaint()/EndPaint() block in an
application's WM_PAINT case, the maximum size to which you can set your
clipping region is the size of the update region of your paint structure.
This is because the resulting clip region is the intersection of the update
region and the region specified in the call to SelectClipRgn(). In other
words, you can use SelectClipRgn() to shrink your update region, but not to
grow it. This behavior is by design.

RESOLUTION

Invalidate the clipping region area you want before calling BeginPaint().
For example:

case WM_PAINT:
 InvalidateRect(hWnd,); // Invalidate the size you'll want
 // for the clip region.
 BeginPaint()
 SelectClipRgn();
 ... paint away ...
 EndPaint();
 break;

Something similar could be done in the Microsoft Foundation Classes (MFC),
such as:

void CMyView::OnPaint()
{
 InvalidateRect(...); // Invalidate the size you'll want.
 CPaintDC dc(this); // CPaintDC wraps BeginPaint()/EndPaint().
 // Do drawing here...
}

MORE INFORMATION

This is addressed in the documentation for the Windows NT SDK version 3.1
[Section 20.1.5, "Window Regions" in Chapter 20, "Painting and Drawing" in
the "Microsoft Win32 Programmer's Reference, Volume 1" or in the Win32 API
Reference online help (search on "Window Regions")] which states:

 In addition to the update region, every window has a visible region that
 defines the window portion visible to the user. The system changes the
 visible region for the window whenever the window changes size or
 whenever another window is moved such that it obscures or exposes a
 portion of the window. Applications cannot change the visible region
 directly, but Windows automatically uses the visible region to create
 the clipping region for any display DC retrieved for the window.

 The clipping region determines where the system permits drawing. When
 the application retrieves a display DC using the BeginPaint, GetDC, or
 GetDCEx function, the system sets the clipping region for the DC to the
 intersection of the visible region and the update region. Applications
 can change the clipping region by using functions such as SelectClipPath
 and SelectClipRgn, to further limit drawing to a particular portion of
 the update area.

Additional reference words: 3.10 3.50 4.00 SelectClipRegion big small large
KBCategory: kbprg kbprb
KBSubcategory: GdiMisc

PRB: Selecting Overlapping Controls in Dialog Editor

PSS ID Number: Q90384
Authored 13-Oct-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

Create a dialog box using the Dialog Editor. Place a button onto the dialog
box. Create a frame and place it so that it encompasses the button. It is
not possible to select that button with the mouse. However, if the frame is
created before the button and then moved or placed over the button, then it
is possible to select either the frame or the button.

CAUSE

This behavior is by design. When controls are overlapped, the control that
is selected when the mouse is clicked is the one that comes last in
Z-order.

As a special case, it is possible to select a control placed "underneath" a
group box.

RESOLUTION

From the Arrange menu, choose Order/Group. This will bring up a dialog box.
Change the Z-order of the button to be after that of the frame. The Z-order
may also be changed by manually editing the resource file. The controls
that are further down in the file will be "on top."

NOTE: If the frame is selected and is on top of the button, pressing
SHIFT+TAB selects the previous control, which will be the button. This does
not allow the position of the control to be changed with the mouse;
however, it does allow the text and size to be changed.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsDlg

PRB: SelectObject() Fails After ImageList_GetImageInfo()

PSS ID Number: Q131279
Authored 07-Jun-1995 Last modified 10-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS

When you try to select the hBitmap returned by ImageList_GetImageInfo()
into a device context, the call to SelectObject() fails and returns NULL.

CAUSE

Under the debug version of Windows 95, attempting to select the hBitmap
returned by ImageList_GetImageInfo() into a DC causes the GDI to output
the message "Bitmap already selected."

Image lists maintain memory DCs with the image and mask bitmaps already
selected. This is done to prevent applications from modifying the images
contained in the image list that are currently being used by the system.
Because a bitmap cannot be selected into more than one DC at a time,
applications that call SelectObject() on the same bitmap fail.

RESOLUTION

An application can work around this in Windows 95 by calling CopyImage() on
the hBitmap, as demonstrated in the following sample code. This API is new
for Windows 95. Remember to delete the hBitmap copy when using this
function.

Sample Code

HDC hDC;
HBITMAP hBitmap, hOldBitmap;
IMAGEINFO imageInfo;

ImageList_GetImageInfo (hImgList, iWhichImage, &imageInfo);
hBitmap = CopyImage (imageInfo.hbmImage,
 IMAGE_BITMAP, 0, 0, LR_COPYRETURNORG);

hOldBitmap = SelectObject(hDC, hBitmap);
 :
 :

// Delete hBitmap when you finish using it.
DeleteObject (SelectObject (hDC, hOldBitmap));

STATUS

This behavior is by design.

Additional reference words: 4.00 unusable hDC Image Lists beta
KBCategory: kbprg kbgraphic kbprb kbcode
KBSubcategory: UsrCtl

PRB: SetConsoleOutputCP() Not Functional

PSS ID Number: Q99795
Authored 08-Jun-1993 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS

SetConsoleOutputCP() apparently has no effect. The correct codepage is
returned from a call to GetConsoleOutputCP, but the displaying of the text
remains unchanged.

CAUSE

SetConsoleOutputCP() was designed to change the mapping of the 256 8-bit
character values into the glyph set of a fixed-pitch Unicode font, rather
than loading a separate, non-Unicode font for each call to
SetConsoleOutputCP(). Unfortunately, a fixed-pitch Unicode font was not
available by release time, so you can't view the effects of the
SetConsoleOutputCP() application programming interface (API) because the
currently available console fonts are not Unicode fonts.

STATUS

This behavior is by design in Windows NT versions 3.1 and 3.5.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseCon

PRB: SetCurrentDirectory Fails on a CD-ROM Drive on Win32s

PSS ID Number: Q125013
Authored 19-Jan-1995 Last modified 20-Jan-1995

--
The information in this articles applies to:

 - Microsoft Win32s, versions 1.0, 1.1, and 1.2
--

SYMPTOMS

In the following code, assuming that drive E corresponds to a CD-ROM drive,
SetCurrentDirectory() always fails to set the current directory to the root
directory on the CD-ROM drive. Instead the current directory remains
unchanged:

 char szCurDir[256];

 SetCurrentDirectory("E:\\");
 GetCurrentDirectory(sizeof(szCurDir),szCurDir);
 MessageBox(NULL, szCurDir, "SCD", MB_OK);

CAUSE

SetCurrentDirectory() calls the MS-DOS Interrupt 21h, function 0x4300 to
get the file attributes of the specified drive to check whether the
specified parameter is a directory. This MS-DOS call always fails if you
try to get the attributes of the root directory on a CD-ROM drive, and
therefore SetCurrentDirectory() also fails on the root directory of a CD-
ROM drive.

STATUS

Microsoft is aware of this problem with SetCurrentDirectory() in Win32s. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

RESOLUTION

As a workaround for the problem with SetCurrentDirectory(), thunk to the 16-
bit environment and utilize MS-DOS functions from a 16-bit DLL. For
example, you can use Interrupt 21h, function 0x0E (Set Default Drive)
followed by Interrupt 21h, function 0x3Bh (Change Current Directory).

MORE INFORMATION

Note that SetCurrentDirectory() fails only on the root directory of a CD-
ROM drive. If you pass any directory path other than the root directory to
SetCurrentDirectory(), it will work properly.

This is a problem with MS-DOS and can be reproduced from an MS-DOS
application in Windows version 3.1.

Additional reference words: 1.00 1.10 1.20 win32s
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Setup Toolkit File Copy Progress Gauge not Updated

PSS ID Number: Q114609
Authored 08-May-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SYMPTOMS

The following may be noticed during the execution of a setup program
created with the Setup Toolkit:

1. The copy progress bar appears frozen even though the user may be
 prompted to change disks.

2. The filename shown at the top of the copy progress dialog box does
 not change for long periods of time.

CAUSE

The "gas gauge" copy progress dialog box (or Copy Gauge dialog box
described on pages 106-107 of the "Setup Toolkit for Windows" manual) is
updated only when files are actually being copied to the hard disk. The
Setup Toolkit does not update the copy progress dialog box when it checks
the version of an existing file. This version check can take a significant
amount of time under certain circumstances. A version check is only
performed if "Check For Version" is marked in the DSKLAYT program AND the
file has a version information resource.

RESOLUTION

There is no way to change this behavior. The dialog box is managed by
CopyFilesInCopyList(). The only way to avoid this behavior is to avoid
marking files with "Check For Version" in DSKLAYT.

MORE INFORMATION

Under certain circumstances, a file may need to be copied to the temporary
directory before its version can be checked. This occurs when the version
information in the .INF file matches the version information (exactly) in
the file already residing on the hard drive. In this case, the file will be
copied from the Setup disks to a temporary location (decompressed if
necessary), and other version information will be verified. This can be a
time-consuming process and the copy progress dialog box will not be updated
while this is occurring.

Additional reference words: 3.10 3.50 4.00 95 MSSETUP CopyFilesInCopyList
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsMss

PRB: SetWindowsHookEx() Fails to Install Task-Specific Filter

PSS ID Number: Q92659
Authored 12-Nov-1992 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

In Windows version 3.1, the SetWindowsHookEx() function fails when
it is called to install a task-specific filter (hook) that resides
in a DLL.

CAUSE

According to the documentation, the third parameter to the
SetWindowsHookEx() function must be the instance handle of the
application or the DLL that contains the filter function. However,
because of a problem in Windows 3.1, the SetWindowsHookEx() function
fails when it is called to install a task-specific filter using the
DLL's instance handle.

Note that such a problem does not exist when the SetWindowsHookEx()
function is called to install a system-wide filter in a DLL. The DLL's
instance handle is accepted as a valid parameter. The first argument
passed to the LibMain function of a DLL contains its instance handle.

RESOLUTION

To install a task-specific filter that resides in a DLL, pass the module
handle of the DLL as the third parameter to the SetWindowsHookEx()
function. The module handle can be retrieved using the GetModuleHandle()
function. For example, to install a task-specific keyboard filter, the
code might resemble the following:

g_hHook = SetWindowsHookEx(WH_KEYBOARD,
 HookCallbackProc,
 GetModuleHandle("HOOK.DLL"),
 hTargetTask);

This resolution is compatible with future versions of Windows.

Additional reference words: 3.10 3.50 3.51 4.00 95 hook not allowed
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrHks

PRB: ShellExecute() Succeeds But App Window Doesn't Appear

PSS ID Number: Q124133
Authored 19-Dec-1994 Last modified 21-Dec-1994

The information in this article applies to:

 - Microsoft Win32s, versions 1.15, 1.15a, and 1.2

SYMPTOMS

The following call to ShellExecute() succeeds and the file association
is set in File Manager, but the application does not appear to execute
(the window is not shown):

 hShell = ShellExecute(hWnd,
 NULL,
 lpszFile,
 NULL,
 lpszDir,
 SW_SHOWDEFAULT);

CAUSE

ShellExecute() is directly thunked to 16-bit Windows. Windows-based
applications do not support the SW_SHOWDEFAULT flag.

RESOLUTION

Under Win32s, use SW_NORMAL instead of SW_SHOWDEFAULT when using
ShellExecute() with a 16-bit Windows-based application. You can use
SW_SHOWDEFAULT if the application specified is a Win32-based application.

STATUS

This behavior is by design.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: SNMP Extension Agent Gives Exception on Windows NT 3.51

PSS ID Number: Q130562
Authored 23-May-1995 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.5 and 3.51

SYMPTOMS

An SNMP extension agent built using Windows NT version 3.5 SDK headers and
libraries generates an exception when run under Windows NT version 3.51.

For example, the SDK toaster sample (\MSTOOLS\SAMPLES\WIN32\SNMP\TESTDLL)
works under Windows NT version 3.5 but generates an exception under Windows
NT version 3.51.

CAUSE

The SNMP.LIB SDK library has changed between the release of Windows NT
version 3.5 and the release of Windows NT version 3.51. Memory is now
allocated dynamically with the Win32 API GlobalAlloc() rather than the
c-runtime malloc(). See the SNMP.H SDK header file for details.

An SNMP application that is allocating (or freeing) memory that is passed
to a function in SNMP.LIB should use SNMP_malloc() (or SNMP_free()). The
sample code for the extension DLL provided with the Windows NT version 3.51
beta SDK incorrectly uses malloc().

RESOLUTION

Rebuild the extension agent with the Win32 SDK headers and libraries for
Windows NT version 3.51. Please make sure that the Win32 SDK headers and
libraries are used before Visual C++ headers and libraries.

Also, to allocate and free any memory, use the SNMP_malloc() and
SNMP_free() macros. Both are defined in SNMP.H.

NOTE: If you are using a beta version of Windows NT version 3.51, please
change all references to malloc() and free() in the samples to
SNMP_malloc() and SNMP_free(). This is a known problem with the testdll
sample (MSTOOLS\SAMPLES\WIN32\WINNT\SNMP\TESTDLL).

STATUS

This behavior is by design.

REFERENCES

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q124961
 TITLE : BUG: SNMP Sample Generates an Application Error

Additional reference words: 3.50
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkSnmp

PRB: SnmpMgrGetTrap() Fails

PSS ID Number: Q130564
Authored 23-May-1995 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

If an SNMP manager application calls SnmpMgrGetTrap() to recieve traps and
there are traps available, it returns FALSE. If the application calls
GetLastError(), the error code returned is 42 (SNMP_MGMTAPI_TRAP_ERRORS).

RESOLUTION

The SNMP Manager API SnmpMgrGetTrapListen() must be called before calling
SnmpMgrGetTrap(). The event handle returned by SnmpMgrGetTrapListen() can
then be ignored to poll for traps.

STATUS

This behavior is by design.

REFERENCES

For more information, please see the Microsoft Windows NT SNMP Programmer's
Reference (PROGREF.RTF).

Additional reference words: 3.50
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkSnmp

PRB: SnmpMgrStrToOid Assumes Oid Is in Mgmt Subtree

PSS ID Number: Q129063
Authored 18-Apr-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

When using the SNMP Manager API SnmpMgrStrToOid() and passing it a valid
Oid, the application is unable to get the requested variables.

CAUSE

The SNMP Manager API SnmpMgrStrToOid assumes that the Oid that is supplied
to it is under the internet MIB of the mgmt subtree (1.3.6.1.2.1.x).

RESOLUTION

To get variables that are not under the mgmt subtree, the Oid must be
preceeded by a period (.). For example, say an application is trying to get
the system group and the Oid passed to SnmpMgrStrToOid is this:

 1.3.6.1.2.1.1

Then the application will try to get the following, which does not exist:

 iso.org.dod.internet.mgmt.1.1.3.6.1.2.1.1

The correct way to get the system group is to pass this:

 .1.3.6.1.2.1.1

STATUS

This behavior is by design.

REFERENCES

Microsoft Windows/NT SNMP Programmer's Reference (PROGREF.RTF).

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbprb kbdocerr
KBSubcategory: NtwkSnmp

PRB: Special Characters Missing from Compiled Help File

PSS ID Number: Q86719
Authored 15-Jul-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

In version 2.0 of Microsoft Word for Windows, the RTF (rich-text format)
source file for a Microsoft Windows Help file contains curly (smart) single
or double quotation marks, bullets, or em or en dash characters. However,
even though the specified font contains these special characters, they are
missing when the compiled file is viewed in Help.

CAUSE

Word for Windows stores special RTF tokens for these characters, which the
Microsoft Windows Help Compiler cannot process.

RESOLUTION

In order to avoid these problems do one of the following:

 Format the character to use the Symbol font (without using
 Insert.Symbol).

 -or-

 Select the desired font (not Symbol) and choose the Symbol option from
 the Insert menu. Then choose Normal Text in the Symbols From list box.
 This will format the special character in the desired font.

 -or-

 Use a bitmap to represent the character or symbol. Use the "bmc"
 statement to include the bitmap into the text as a character. For more
 information on the bmc statement, see page 29 of the "Programming Tools"
 manual provided with version 3.1 of the Microsoft Windows SDK.

Additional reference words: 3.10 3.50 4.00 95 HC HC30.EXE HC31.EXE HCP.EXE
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: Spy Repeatedly Lists a Single Message

PSS ID Number: Q74278
Authored 15-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

SPY sometimes reports messages as having been sent twice. Messages
from DDE conversations, especially the WM_DDE_DATA, WM_DDE_ACK, and
WM_DDE_POKE messages, are the most often duplicated. This behavior
can be seen by choosing All Windows from Spy's Windows menu,
selecting DDE messages in Spy's Options dialog, and then running
two applications that communicate using DDE.

CAUSE

Spy displays a message each time it is retrieved. If an application
retrieves a message once by calling PeekMessage() with PM_NOREMOVE,
and then again with GetMessage(), Spy will report it twice. Spy
cannot determine that the message was already retrieved by the
application. Since the application is using the message twice, the
message should indeed be shown twice. This is a useful feature for
determining how an application is handling the DDE messages sent to
it.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsSpy

PRB: Starting a Service Returns "Logon Failure" Error

PSS ID Number: Q120556
Authored 14-Sep-1994 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SYMPTOMS

Starting a service from either the service control manager or from the
StartService API may return error 1069, "ERROR_SERVICE_LOGON_FAILED."

CAUSE

This error occurs if the service was started from an account that does not
have the "Log on a service" privilege.

RESOLUTION

An account can be granted the "Log on a service right" through the User
Manager Application. From the Policies menu, choose User Rights. In the
User Rights Dialog Box, select the "Show Advanced User Rights" check box.
Choose "Log on a service," in the "Right" scroll box. Then choose the Add
button to grant your account the "Log on a service" privilege.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseService

PRB: Successful LoadResource of Metafile Yields Random Data

PSS ID Number: Q86429
Authored 06-Jul-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When an application for the Microsoft Windows graphical environment
calls the LoadResource() function to load a metafile from the
application's resources, locks the metafile with the LockResource()
function, and uses the metafile, the application receives random
data even though the LoadResource() and LockResource() functions
indicate successful completion.

CAUSE

The application loaded the metafile previously and when the
application freed the metafile, it used the DeleteMetaFile() function
to invalidate the metafile handle.

RESOLUTION

Modify the code that unloads the metafile from memory to call the
FreeResource() function.

MORE INFORMATION

The LoadResource() and FreeResource() functions change the lock count
for a memory block that contains the resource. If the application
calls DeleteMetaFile(), Windows does not change the lock count. When
the application subsequently calls LoadResource() for the metafile,
Windows does not load the metafile because the lock count indicates
that it remains in memory. However, the returned memory handle points
to the random contents of that memory block.

For more information on the resource lock count, query in the
Microsoft Knowledge Base on the following words:

 multiple and references and LoadResource

Most of the time, an application uses the DeleteMetaFile() function to
remove a metafile from memory. This function is appropriate for
metafiles created with the CopyMetaFile() or CreateMetaFile()
functions, or metafiles loaded from disk with the GetMetaFile()
function. However, DeleteMetaFile() does not decrement the lock count

of a metafile loaded as a resource.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 EnumMetaFile
GetMetaFile GetMetaFileBits PlayMetaFile PlayMetaFileRecord SetMetaFileBits
SetMetaFileBitsBetter
KBCategory: kbprg kbprb
KBSubcategory: UsrRsc

PRB: TAB Key, Mnemonics with FindText and ReplaceText Dialogs

PSS ID Number: Q96134
Authored 09-Mar-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

When implementing the FindText and/or ReplaceText common dialog box, the
dialog box is displayed but the TAB key and mnemonics do not work properly.

CAUSE

The FindText and ReplaceText common dialog boxes are modeless dialog boxes.
Therefore, a call to IsDialogMessage must be made in the application's main
message loop in order for the TAB key and mnemonics to work properly.

RESOLUTION

This problem can be corrected by adding a call to IsDialogMessage() in the
application's main message loop.

MORE INFORMATION

A typical message loop might resemble the following

 while (GetMessage(&msg,NULL,NULL,NULL))
 {
 if (ghFFRDlg==NULL || !IsDialogMessage(ghFFRDlg, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

where ghFFRDlg is a global window handle for the currently active modeless
common dialog box.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrCmnDlg

PRB: TrackPopupMenu() on LoadMenuIndirect() Menu Causes UAE

PSS ID Number: Q75254
Authored 15-Aug-1991 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When LoadMenuIndirect() is used to create a menu from a menu template and
the menu handle is passed to TrackPopupMenu(), Windows reports an
unrecoverable application error (UAE). Windows NT and Windows 95 display
the floating pop-up menu as a vertical bar.

CAUSE

The menu handle returned from LoadMenuIndirect() does not point to a menu
with the MF_POPUP bit set.

RESOLUTION

The following code fragment demonstrates the correct procedure to "wrap"
the menu created by LoadMenuIndirect() inside another menu. This procedure
sets the MF_POPUP bit properly.

 hMenu1 = LoadMenuIndirect(lpMenuTemplate);

 hMenuDummy = CreateMenu();
 InsertMenu(hMenuDummy, 0, MF_POPUP, hMenu1, NULL);

 hMenuToUse = GetSubMenu(hMenuDummy, 0);

Use hMenuToUse when TrackPopupMenu() is called. The values of hMenu1 and
hMenuToUse should be the same.

When the menu is no longer required, call DestroyMenu() to remove
hMenuDummy. This call will also destroy hMenu1 and free the resources it
used.

Additional reference words: 3.00 3.10 3.50 4.00 gpf
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrMen

PRB: Unable to Choose Kanji Font Using CreateFontIndirect

PSS ID Number: Q119914
Authored 29-Aug-1994 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Japanese
 Windows 95

SYMPTOMS

You have difficulty getting the Japanese font handle in Microsoft Win32
Software Development Kit (SDK) for Japanese Windows 95. If you use
CreateFontIndirect() to create the font handle, only the English font is
selected. You are unable to select Kanji (the main system
of writing in Japan) fonts such as MS Mincho and MS Gothic.

CAUSE

The lfCharSet field in the LOGFONT structure is not set to
"SHIFTJIS_CHARSET".

RESOLUTION

Specify SHIFTJIS_CHARSET as the value for lfCharSet field.

MORE INFORMATION

In Windows 95, Japanese fonts cannot be selected without the lfCharSet
field being set to SHIFTJIS_CHARSET. This standard was not enforced in
Japanese Windows NT and Japanese Windows 3.1, So an application with
lfCharSet set to a value other than SHIFTJIS_CHARSET might be able to
select Japanese fonts under Japanese Windows NT and Japanese Windows
version 3.1 using CreateFontIndirect(), but not under Japanese Windows 95.

ShiftJIS is a double-byte character set (DBCS) unique to the Japanese
version of Windows NT, Windows 95, and Windows version 3.1. It requires
a specialized font, keyboard input, and DBCS string-handling support.

Additional reference words: 4.00 kbprb
KBCategory: kbprg kbprb
KBSubcategory: GdiFnt WIntlDev

PRB: Unexpected Result of SetFilePointer() with Devices

PSS ID Number: Q98892
Authored 18-May-1993 Last modified 28-Nov-1994

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SYMPTOMS

Open a floppy drive with CreateFile():

 h = CreateFile("\\\\.\\a:", ...);

Use SetFilePointer() to advance the file pointer associated with the file
handle returned from CreateFile():

 SetFilePointer(h, // file handle
 5, // distance (in bytes) to move file pointer
 NULL, // optional high 32-bits of distance
 FILE_BEGIN // specifies the starting point
);

If the offset is not a multiple of the sector size of the floppy drive, the
function will return success; however, the pointer will not be exactly
where requested. The pointer value is rounded down to the beginning of the
sector that the pointer value is in.

CAUSE

The behavior of this application programming interface (API) is by design
for the following reasons:

 - The I/O system is unaware of device particulars such as sector
 size; any offset is valid.

 - SetFilePointer() is very frequently used. Because speed is an
 important goal for Windows NT, time is not spent on querying
 device particulars and detecting such errors.

 - The logic to handle this situation is built into the file system,
 which actually performs the rounding, and therefore there was no
 need to put this into the code for SetFilePointer().

RESOLUTION

When using SetFilePointer() with a handle that represents a floppy drive,
the offset must be a multiple of the sector size for the floppy drive in
order for the function to perform as expected.

MORE INFORMATION

Think of a file pointer as merely a stored value, which is where the next
read or write will take place. In fact, it is possible to override this
value on either the read or write itself, using certain APIs, by supplying
a different location. The new pointer location is remembered after the
operation. Therefore, the operation of "setting a file pointer" merely
means to go store a large integer in a cell in the system's data
structures, for possible use in the next file operation. In the case of a
handle to a device, the file pointer must be on a sector boundary.

In a similar way, ReadFile() only reads amounts that are multiples of the
sector size if it is passed a handle that represents a floppy drive.

Additional reference words: 3.10
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB: Unicode ChooseColor() Help Button May Crash Common

PSS ID Number: Q102026
Authored 27-Jul-1993 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

SYMPTOMS

A Unicode compiled program, or a program that explicitly calls the
ChooseColorW() function, may suffer an access violation in the common
dialog boxes if the Help button in the ChooseColor() dialog box is chosen.

CAUSE

This problem may not be 100-percent reproducible. Because of the way that
the program loader loads code into memory, a certain address referenced by
the common dialog box Help button logic may or may not be valid depending
on what other applications have been run, what application is calling
ChooseColorW(), and the order in which these programs are run.

WORKAROUND

The following are suggested workarounds:

 - Try running an ANSI-compiled application that uses the common
 dialog boxes, and open one of the common dialog boxes before you run
 the application having this problem.

 - A workaround for new applications developers is to call
 ChooseColorW() with a hook function (see the Windows Software
 Development Kit documentation for more information on common dialog
 box hook functions), handle the Help button logic, and return TRUE
 from the hook function to bypass the standard common dialog box
 push-button code.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubCategory: UsrCmnDlg

PRB: UnrealizeObject() Causes Unexpected Palette Behavior

PSS ID Number: Q86800
Authored 16-Jul-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

In an application for the Microsoft Windows graphical environment,
when a logical palette (HPALETTE) is used with a device-dependent
bitmap (DDB) and the application realizes the palette, the DDB is
painted in incorrect colors.

CAUSE

The UnrealizeObject function was previously called to unrealize the
palette.

RESOLUTION

Modify the code to remove the call to UnrealizeObject()/

MORE INFORMATION

Because the colors of a DDB are stored using indices into the system
palette rather than explicit RGB colors, proper DDB rendering depends
on the colors of the system palette being set properly. An application
sets up the system palette to display a DDB by realizing a logical
palette. The realization process changes the colors in the system
palette and creates a mapping between entries in the logical palette
and entries in the system palette.

When an application first renders a logical palette with RealizePalette(),
Windows sets an internal flag to indicate that the palette has been
realized and stores the current mapping from logical palette entries to
physical palette entries. When an application realizes the palette again
(for example, after another application modifies the palette), Windows
restores the effected entries of the system palette to the state they had
when the logical palette was realized for the first time.

This mechanism allows a bitmap first realized with a specific palette
to display correctly when the same palette is realized subsequently.

If the application calls UnrealizePalette() on a logical palette,
Windows discards the stored state information for the palette. If the

application realizes the palette subsequently, its colors may map into
new locations in the system palette. Because the bitmap contains
indices into the old system palette, it may display incorrectly.

To address this situation, do not call UnrealizeObject() on a palette if
the application has a DDB that depends on that palette.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: GdiPal

PRB: Vertical Scroll Bars Missing from Windows Help

PSS ID Number: Q77841
Authored 28-Oct-1991 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

The vertical scroll bars do not appear in Windows Help when the
window is sized smaller than the amount of text being displayed.

CAUSE

The displayed topic is formatted as a nonscrolling region.

RESOLUTION

Select the topic in the RTF editor and turn off the "Keep Paragraph
with Next" formatting. This format is used by the Help Compiler to
delimit the nonscrolling regions.

MORE INFORMATION

To remedy the situation in Microsoft Word for Windows, perform the
following three steps:

1. Highlight the entire topic.

2. From the Format menu, choose Paragraph.

3. In the Format Paragraph dialog box, cancel the "With Next" check box.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: Video for Windows Skips AVI Frames

PSS ID Number: Q122775
Authored 13-Nov-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS

When Video For Windows is playing an AVI file, the processing power of the
computer system and the data rate of the AVI stream determine whether
frames will be skipped during playback. If the data rate exceeds the
ability of Video For Windows to render all the AVI frames in time, Video
For Windows will first try to catch up by decompressing delta frames but
not drawing them. If Video For Windows still can't catch up, it will
eventually skip all the way to the next key frame before it renders a new
frame.

STATUS

This behavior of Video for Windows is by design and cannot be controlled by
the application being affected.

Additional reference words: 3.10 3.50 4.00 95 VfW AVI
KBCategory: kbmm kbprb
KBSubcategory: MMVideo

PRB: Win32-Based Screen Saver Shows File Name in Control

PSS ID Number: Q126239
Authored 16-Feb-1995 Last modified 22-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1 and 3.5

SYMPTOMS

After writing a Win32-based screen saver, if the IDS_DESCRIPTION string is
missing from the string table, the file name of the screen saver module is
displayed in the desktop control panel applet. This happens even if the
DESCRIPTION entry is specified in the .DEF file of the module.

CAUSE

Each Windows screen saver has a name, which is a string packed into the
screen saver module by the linker. This name is displayed in the screen
saver name drop down list box under the desktop applet in the control
panel. The user can select different screen savers for the desktop through
this list box.

Under 16-bit Windows, the name of a screen saver is specified by the
DESCRIPTION entry in the .DEF file. Under Windows NT, this is no longer
true. Instead, a special entry in the string table is used to specify the
name of a screen saver. This string must have IDS_DESCRIPTION as its
string ID. IDS_DESCRIPTION is defined in SCRNSAVE.H.

If the DESCRIPTION entry is missing from the .DEF file for a 16-bit screen
saver, or the IDS_DESCRIPTION is missing from the string table for a 32-bit
screen saver, Windows NT displays the file name of the screen saver module
in the drop down list box in the Desktop control panel applet.

RESOLUTION

Place the DESCRIPTION entry in .DEF file for a 16-bit screen saver, or
place the IDS_DESCRIPTION in the string table for a 32-bit screen saver.

STATUS

This behavior is by design.

REFERENCES

Chapter 14, "Screen Saver Library," Microsoft Windows Software Development
Kit, version 3.1, Programmer's Reference, Volume 1: Overview.

Chapter 79, "Screen Saver Library," Microsoft Win32 Programmer's Reference,
Volume 2: System Services, Multimedia, Extensions, and Application Notes.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: GdiScrsav

PRB: Win32s GetVolumeInformation() Returns 0x12345678 or 0

PSS ID Number: Q93639
Authored 17-Dec-1992 Last modified 07-Dec-1994

The information in this article applies to:

 - Microsoft Win32s version 1.0, 1.1, 1.15, and 1.2

SYMPTOMS

In Win32s version 1.0 and 1.1, GetVolumeInformation() always returns a
volume ID of 0x12345678. In Win32s version 1.15 and later, the return is 0.

STATUS

This is a known limitation of Win32s and is by design.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Windows REQUEST Function Not Working With Excel

PSS ID Number: Q26234
Authored 18-Dec-1987 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

The REQUEST function does not work correctly with Excel. The
request message is received, however, Excel does not process the
WM_DDE_DATA message that is sent back.

RESOLUTION

The fResponse bit must also be set in the WM_DDE_DATA message (bit
12). This bit tells Excel that the data message is in reply to a
REQUEST function and not an ADVISE function. If
"lpddeup->fResponse=1" is added, the REQUEST function should work
correctly.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrDde

PRB: WinExec() Fails Due to Memory Not Deallocated

PSS ID Number: Q126710
Authored 28-Feb-1995 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.15, 1.2, and 1.25

SYMPTOMS

Under Win32s version 1.15, when a Win32-based application spawns a 16-bit
application several times using WinExec(), after a few successful spawns,
WinExec() fails.

Each time WinExec() is called to start a 16-bit application, Win32s
allocates a fixed and pagelocked block. The owner of this block is the
Win32-based application. The memory is not deallocated when the 16-bit
application is terminated, only when the 32-bit application is
terminated.

CAUSE

This is actually a bug in Windows version 3.1. The 32-bit WinExec() calls
the 16-bit LoadModule(). Win32s passes the environment of the calling
process to LoadModule(). Then the Windows 3.1 LoadModule() allocates a
buffer for the environment, copies this environment to the buffer, and
passes this buffer to the child process. The problem is that the owner of
the new allocated buffer is the parent, so the memory is freed when the
parent exits. There is no code for otherwise freeing the memory. This bug
also affects 16-bit Windows-based applications if LoadModule() is called
with an environment selector that is not NULL.

In a related problem, when the parent terminates, the child's environment
becomes invalid. This may cause a general protection (GP) fault.

RESOLUTION

To work around the problem, you can call the Windows version 3.1 WinExec()
through the Universal Thunk. However, the parent will not be able to modify
the child's environment.

In Win32s version 1.2x, this problem exists only if you start 16-bit
application using CreateProcess() or LoadModule() and pass it explicit
environment strings. In this case, you will encounter the Windows version
3.1 bug. If you do not pass an explicit environment, the environment passed
to the 16-bit application is NULL. This resolves the problems mentioned in
the Symtpoms and Cause sections of this article.

MORE INFORMATION

With the changes in Win32s version 1.2x, if the calling application
modifies the environment, the child process will not get the modified
environment of the parent. It will get the global MS-DOS environment. This
is also true for WinExec().

If you need to pass a modified environment, call LoadModule() or
CreateProcess() with the environment set to what GetEnvironmentStrings()
returns. Be aware that this will cause a memory leak. In addition, if the
parent terminates before the child, the child's environment will become
invalid.

Additional reference words: 1.20 GPF
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: WINS.MIB & DHCP.MIB Files Missing from Win32 SDK 3.5

PSS ID Number: Q121625
Authored 12-Oct-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS

Two Simple Network Management Protocol (SNMP) files (WINS.MIB and DHCP.MIB)
are missing from the currently released version of the Win32 SDK for
Windows NT version 3.5.

The files are two Management Information Base (MIB) files for WINS and DHCP
SNMP usage. The two files (WINS.MIB and DHCP.MIB) are used in the
generation of a MIB.BIN file for use with the NT SNMP Extendible Agent
Management API.

RESOLUTION

Only developers working on SNMP programming using the SNMP Extendible Agent
Management API will need these two .MIB files. To get the two .MIB files:

Download NEWMIB.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for NEWMIB.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download NEWMIB.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get NEWMIB.EXE

The two missing .MIB files will be included with the next release of the
Win32 SDK for Windows NT version 3.5.

All licensing and redistribution agreements from the Win32 SDK for Windows
NT version 3.5 also apply to these .MIB files. Please consider the two .MIB
files part of the Win32 SDK. Please see your licensing agreement for the
Win32 SDK for more details.

Additional reference words: 3.50 softlib

KBCategory: kbprg kbfile kbprb
KBSubcategory: NtwkSnmp

PRB: WSAAsyncSelect() Notifications Stop Coming

PSS ID Number: Q94088
Authored 23-Dec-1992 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SYMPTOMS

I have set a WSAAsyncSelect() call to notify me of read (FD_READ) and
disconnection (FD_CLOSE). When a read call is posted on my message
queue, I continually read from the socket until there are no more
characters waiting. After each read, I use a select() call to determine
if more data needs to be read. However, after a while, the notifications
stop coming. Why is this?

CAUSE

The message queue must be cleared of extraneous notification messages
for each read notification message.

RESOLUTION

Call WSAAsyncSelect(sockt, hWnd, 0, 0) to clear the message queue for
each read notification.

MORE INFORMATION

Sample Code

WSA_READCLOSE:
 if (WSAGETSELECTEVENT(lParam) == FD_READ) {

 FD_ZERO(&readfds);
 FD_SET(sockt, &readfds);

 timeout.tv_sec = 0;
 timeout.tv_usec = 0;

 /* Clear the queue of any extraneous notification messages. */

 WSAAsyncSelect(sockt, hWnd, 0, 0);

 while (select(0, &readfds, NULL, NULL, &timeout) != 0) {
 recv(sockt, &ch, 1, 0);
 }

 /* Reset the message notification. */

 WSAAsyncSelect(sockt, hWnd, WSA_READCLOSE, FD_READ | FD_CLOSE);
 }

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: NtwkWinsock

PRB: WSAStartup() May Return WSAVERNOTSUPPORTED on Second

PSS ID Number: Q130942
Authored 30-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.1,
 3.5, 3.51, and 4.0

SYMPTOMS

If two sections of code within the same process call WSAStartup(), the
second call to WSAStartup() fails and returns error WSAVERNOTSUPPORTED
unless the second call specifies the version negotiated in the first call.

This happens even if the requested version would normally be accepted.
Often the extra calls to WSAStartup() come from one or more DLLs loaded by
the process.

RESOLUTION

If multiple calls are made to WSAStartup(), the second call must request
the same version negotiated in the first call.

MORE INFORMATION

Some specific examples may help. Currently, if the version of Winsock
requested is 1.1 or greater, the negotiated version will be 1.1. If a
version less than 1.1 is requested, the call fails and returns the
WSAVERNOTSUPPORTED error.

Example One

First call : 1.1 requested
Second call: 1.1 requested
Result : Success

Example Two

First call : 2.0 requested
Second call: 1.1 requested
Result : Success

Example Three

First call : 2.0 requested
Second call: 2.0 requested
Result : WSAVERNOTSUPPORTED

Example Four

First call : 1.1 requested
Second call: 2.0 requested
Result : WSAVERNOTSUPPORTED

Additional reference words: 3.50 4.00 95 3.10
KBCategory: kbprg kbprb
KBSubcategory: NtwkWinsock

PRB:Scroll Bar Continues Scrolling After Mouse Button

PSS ID Number: Q102552
Authored 04-Aug-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0, 3.1,
 and 4.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SYMPTOMS

The scroll bar continuously scrolls even after the left mouse button
is released. The type of scroll bar is irrelevant to this problem,
that is, the same problem occurs regardless of whether the scroll bar
is part of the window or is a scroll bar control.

CAUSE

This problem occurs usually when a message retrieval loop is executed
as the result of actions taken for scrolling upon receiving one of the
scroll bar notification messages.

When scrolling, an internal message retrieval loop is started in
Windows. The task of this message loop is to keep track of scrolling
and to send the appropriate scroll bar notification messages,
WM_HSCROLL and WM_VSCROLL. Scrolling is terminated once WM_LBUTTONUP
is received. If another message loop is started during scrolling, the
WM_LBUTTONUP is retrieved by that message loop, and because an
application does not have access to the scroll bar's internal message
retrieval loop, WM_LBUTTONUP cannot be dispatched correctly.
Therefore, the WM_LBUTTONUP is never received by the internal message
retriever, and scrolling is never ended.

The application that is scrolling does not have to retrieve messages
explicitly to cause this problem. Calling any of the following
functions or processing any message that has a message retrieval loop,
while scrolling, can cause the WM_LBUTTONUP to be lost. The functions
listed below fall into this category:

 DialogBox()
 DialogBoxIndirect()
 DialogBoxIndirectParam()
 DialogBoxParam()
 GetMessage()
 MessageBox()
 PeekMessage()

RESOLUTION

While Scrolling, the WM_LBUTTONUP message should not be retrieved from
the queue by any message retrieval loop other than the scroll bar's
internal one.

An application may come across this problem as follows:

 - An application implements a message retrieval loop to implement
 background processing, for example, background processing while
 performing a time consuming paint.

 - An application implements a message retrieval loop to implement
 communication with another application or DLL. For example, in
 order to scroll, the application needs to receive data from
 elsewhere.

Possible Workarounds

Two possible workarounds are listed below. The first workaround is
used by many exiting applications and by Windows; however, under rare
circumstances the first workaround may not be a feasible one. In this
case, the second workaround may be used. However, if possible, please
try to avoid implementing message retrieval completely while
scrolling.

 - Use timer-message-based processing. Break down the complicated
 processing into smaller tasks and keep track of where each task
 starts and ends, then perform each task based on a timer message.
 When all components of the processing are complete, kill the timer.
 See below for an example of this workaround.

 - Implement a message retrieval loop, but make sure WM_LBUTTONUP is
 not retrieved by it. This can be accomplished by using filters. See
 below for some examples of this workaround.

Example Demonstrating Workaround 1

An application has a complex paint procedure. Calling ScrollWindow(), to
scroll, generates paint messages. Background processing takes place
while painting.

1. When receiving the WM_PAINT message do the following:

 a. Call BeginPaint().

 b. Copy the invalidated rect to a global rect variable (for
 example, grcPaint) to be used in step 2. The global rect
 grcPaint would be a union of the previously obtained rect
 (grcPaint) and the new invalidated rect (ps.rcPaint). The code
 for this will resemble the following:

 RECT grcPaint; // Should be initialized before getting the
 // first paint message.
 :

 :
 UnionRect(&grcPaint, &ps.rcPaint,&grcPaint);

 c. Call ValidateRect() with ps.rcPaint.

 d. Call EndPaint().

 e. Set a Timer.

 This way, no more WM_PAINT messages are generated, because there
 are no invalid regions, and a timer is set up, which will generate
 WM_TIMER messages.

2. Upon receiving a WM_TIMER message, check the global rect variable;
 if it is not empty, take a section and paint it. Then adjust the
 global rect variable so it no longer includes the painted region.

3. Once the global rect variable is empty then kill the timer.

Example Demonstrating Workaround 2

An application needs to obtain some data through DDE or some other
mechanism from another application, which is then displayed in the
window. In order to scroll, the application needs to request and then
obtain the data from a server application.

There are three different filters that can be used to set up a
PeekMessage() and get the information. The filters can be set up by
using the uFilterFirst and uFilterLast parameters of PeekMessage().
uFilterFirst specifies the fist message in the range to be checked and
uFilterLast specifies the last message in the range to be checked. For
more information on PeekMessage() and its parameters, see the Windows
SDK "Programmer's Reference, Volume 2: Functions" for version 3.1 and
"Reference, Volume 1" for version 3.0.

1. Check and retrieve only the related message(s) for obtaining the
 needed data.

2. Check for WM_LBUTTONUP without removing it form the queue; if it is
 in the queue, break. Otherwise, retrieve and dispatch all messages.

3. Retrieve all messages less than WM_LBUTTONUP and greater than
 WM_LBUTTONUP, but do not retrieve WM_LBUTTONUP.

MORE INFORMATION

Steps to Reproduce Behavior

The following is the sequence of events leading to the loss of
the WM_LBUTTONUP message:

1. Click the scroll bar using the mouse.

2. Step 1 generates a WM_NCLBUTTONDOWN message.

3. Step 2 causes a Windows internal message loop to be started. This
 message loop looks for scroll-bar-related messages. The purpose of
 this message loop is to generate appropriate WM_HSCROLL or
 WM_VSCROLL messages. The message loop and scrolling terminates once
 WM_LBUTTONUP is received.

4. When receiving the WM_HSCROLL or WM_VSCROLL message, the application
 either gets into a message retrieval loop directly or calls functions
 which result in retrieval of messages.

5. WM_LBUTTONUP is removed from the queue by the message loop
 mentioned in step 4. WM_LBUTTONUP is then dispatched.

6. As result of step 5 WM_LBUTTONUP message is dispatched elsewhere
 and the internal message retrieval loop, mentioned in step 3 never
 receives it. The message loop in step 3 is looking for the
 WM_LBUTTONUP to stop scrolling. Because it is not received, the
 scroll bar continues scrolling.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 scrollbar stuck
KBCategory: kbprg kbprb
KBSubcategory: UsrCtl

PRB:Unselecting Edit Control Text at Dialog Box

PSS ID Number: Q96674
Authored 24-Mar-1993 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.50, 3.51, and 4.0

SYMPTOMS

To remove the highlight (selection) from an edit control text, an EM_SETSEL
message must be sent to the control. However, while processing the
WM_INITDIALOG message of a dialog box, sending an EM_SETSEL fails to remove
the highlight from (unselect) the edit control text.

CAUSE

While processing the WM_INITDIALOG message, sending the EM_SETSEL message
fails to remove the highlight from the edit control. This happens because
the edit control has not yet been drawn. Because it's not drawn and there
is no selection information available to the edit control's procedure, the
EM_SETSEL message is ignored. In other words, the SendMessage() function
passes the EM_SETSEL message too early to the edit control for it to become
effective.

RESOLUTION

There are two solutions to the above problem.

Solution 1

Use SetFocus() to set the input focus on the edit control. Use
PostMessage() to post the EM_SETSEL message to the edit control rather than
using SendMessage() and return FALSE from the WM_INITDIALOG handler.

Solution 2

When a newly created dialog box is displayed with focus on an edit control,
the default text of the edit control is shown highlighted. In some cases,
the text highlighting is undesirable because accidentally pressing a
character key removes the original text from the edit control. Therefore,
the workaround is to unselect the text by sending an EM_SETSEL message to
the edit control at the dialog box initialization.

Delay the EM_SETSEL message until the focus is set to the edit control.
That is, while processing the first EN_SETFOCUS notification message, an
EM_SETSEL message must be sent to the edit control to remove the highlight

from its text. For example:

 static BOOL bFirstTime; // We want to unselect only once.

 switch (message)
 {
 case WM_INITDIALOG:
 bFirstTime = TRUE;
 return TRUE;

 case WM_COMMAND:
 switch (wParam)
 {
 case IDC_EDIT:
 // If this is the first time, then unselect.
 if (HIWORD(lParam) == EN_SETFOCUS &&
 bFirstTime)
 {
 SendMessage(GetDlgItem(hwndDialog, IDC_EDIT),
 EM_SETSEL, 0,
 MAKELPARAM(-1, -1));
 bFirstTime = FALSE;
 }
 break;
 .
 .
 .
 } // switch (wParam)
 .
 .
 .
 } // switch (message)

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: UsrCtl

Precautions When Passing Security Attributes

PSS ID Number: Q94839
Authored 19-Jan-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

All Win32 APIs that allow security to be specified take a parameter of type
LPSECURITY_ATTRIBUTES as the means to attach the security descriptor.
However, it is a common error to pass a PSECURITY_DESCRIPTOR type to such
functions instead. Because PSECURITY_DESCRIPTOR is of type LPVOID (for
opaque data-type reasons), by C Language definition, it is implicitly
converted to the correct type. Therefore, the compiler does not generate
any warnings; however, unexpected run-time errors will result.

MORE INFORMATION

Below is a correct example of creating a named pipe with a security
descriptor attached.

Sample Code

 saSecurityAttributes.nLength = sizeof(SECURITY_ATTRIBUTES);
 saSecurityAttributes.lpSecurityDescriptor = psdAbsoluteSD;
 saSecurityAttributes.bInheritHandle = FALSE;

 hPipe = CreateNamedPipe(TEST_PIPE_NAME,
 PIPE_ACCESS_DUPLEX,

 (PIPE_TYPE_BYTE|PIPE_READMODE_BYTE|PIPE_WAIT),
 100, // maximum instances
 0, // output buffer, sized as needed
 0, // input buffer, sized as needed
 100, // timeout in milliseconds

 (LPSECURITY_ATTRIBUTES)&saSecurityAttributes);
 if(INVALID_HANDLE_VALUE == hPipe)
 { // handle error
 }

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Preventing Screen Flash During List Box Multiple Update

PSS ID Number: Q66479
Authored 26-Oct-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.1 3.5, 3.51, and 4.0

SUMMARY

The WM_SETREDRAW message can be used to set and clear the redraw flag for a
window. Before an application adds many items to a list box, this message
can be used to turn the redraw flag off, which prevents the list box from
being painted after each addition. Properly using the WM_SETREDRAW message
keeps the list box from flashing after each addition.

MORE INFORMATION

The following four steps outline ways to use the WM_SETREDRAW message to
facilitate making a number of changes to the contents of a list box in a
visually pleasing manner:

1. Clear the redraw flag by sending the list box a WM_SETREDRAW
 message with wParam set to FALSE. This prevents the list box from
 being painted after each change.

2. Send appropriate messages to make any desired changes to the
 contents of the list box.

3. Set the redraw flag by sending the list box a WM_SETREDRAW message
 with wParam set to TRUE. The list box does not update its display
 in response to this message.

4. Call InvalidateRect(), which instructs the list box to update its
 display. Set the third parameter to TRUE to erase the background in
 the list box. If this is not done, if a short list box item is
 drawn over a long item, part of the long item will remain visible.

The following code fragment illustrates the process described above:

 /* Step 1: Clear the redraw flag. */
 SendMessage(hWndList, WM_SETREDRAW, FALSE, 0L);

 /* Step 2: Add the strings. */
 for (i = 0; i < n; i++)
 SendMessage(hWndList, LB_ADDSTRING, ...);

 /* Step 3: Set the redraw flag. */
 SendMessage(hWndList, WM_SETREDRAW, TRUE, 0L);

 /* Step 4: Invalidate the list box window to force repaint. */
 InvalidateRect(hWndList, NULL, TRUE);

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 flash flicker
KBCategory: kbprg
KBSubcategory: UsrCtl

Preventing the Console from Disappearing

PSS ID Number: Q99115
Authored 23-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

When a console application is started from the File Manager, from the
Program Manager, or by typing "start <progname>" from the command prompt,
it executes in its own console. This console disappears as soon as the
application terminates, and therefore the user can't read anything written
to the screen between the last pause and program exit. To resolve this
problem, the programmer should pause the application before termination to
allow the user to read all of the information on the screen.

It is not likely that the programmer will want to introduce this pause if
the application is started directly from the command prompt, because in
this situation it won't make much sense to the user. However, there is no
API (application programming interface) that directly determines whether or
not the application shares a console with CMD.EXE. There is a method that
can be used to determine this information in most cases. When the
application first starts up, call GetConsoleScreenBufferInfo(). If the
cursor position is (0, 0), then the application has its own console, which
will disappear when the application terminates. Otherwise, the application
is operating within a console belonging to another program, typically
CMD.EXE.

NOTE: This method will not work if the user combines a clear screen (CLS)
and execution of the application into one step ([C:\] CLS & <progname>),
because the cursor position will be (0, 0), but the application is using
the console, which belongs to CMD.EXE.

MORE INFORMATION

To start a console application with its own console that will not disappear
when the application is terminated, use CMD /K. For example, use

 start CMD /K <progname>

Note that it is possible to programmatically force an application to always
have its own console by immediately doing a FreeConsole() and an
AllocConsole(). The disadvantage is that the C run-time handles are no
longer valid. Use CreateFile("CONIN$", ...) with lpsa->bInherit=TRUE, in
combination with _open_osfhandle() and dup2() to close the current handles
(stdin, stdout, stderr) and associate handles that will be inherited.

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseCon

Preventing Word Wrap in Microsoft Windows Help Files

PSS ID Number: Q88142
Authored 18-Aug-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

By default, the Microsoft Windows Help application wraps lines of text
to reflect the size of its window. However, there are situations (such
as a table of information) in which wrapping text is undesirable. The
information below presents two methods of preventing a section of text
from changing when the Help application window changes sizes. These
techniques apply to version 2.0 of the Microsoft Word for Windows-based
application.

MORE INFORMATION

Method 1

This method, which is compatible with versions 3.0 and 3.1 of the
Microsoft Windows Help Compiler, involves two steps:

1. Place either a hard or a soft carriage return at the end of each
 line.

2. Format the section with the "keep lines together" paragraph
 attribute. From the Format menu, choose Paragraph, and select the
 Keep Lines Together check box in the Paragraph dialog box.

Method 2

This method, which is compatible only with version 3.1 of the Help
Compiler, is to create a one row, one column table in Word for
Windows. Set the width of the table as desired and allow the text to
wrap within the table normally. Windows Help will duplicate the word
breaks in the table provided that the font used to author the table is
selected by the Help engine when displaying the table. If Help uses a
different font, the text may wrap differently, even though the table
keeps the specified width.

Note

When you use either of these methods, if the Windows Help window is

not large enough to display the entire width of a topic, Help displays
a horizontal scroll bar rather than wrapping the text to make it
visible.

Additional reference words: 3.00 3.10 3.50 4.00 95 HLP word wrap wordwrap
engine HC31 HC31.EXE HCP HCP.EXE
KBCategory: kbtool
KBSubcategory: TlsHlp

Primitives Supported by Paths Under Windows 95

PSS ID Number: Q125697
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Windows 95 supports the full set of Win32 path APIs. However, only a
limited set of primitives can be used to build a path. Windows 95 supports
the following primitives to build paths:

ExtTextOut
LineTo
MoveToEx
PolyBezier
PolyBezierTo
Polygon
Polyline
PolylineTo
PolyPolygon
PolyPolyline
TextOut

All other Win32 primitives will be ignored if used in a path. As with other
Win32 primitives in Windows 95, paths are not mapped pixel-by-pixel to
Windows NT; they support only 16-bit coordinates.

Additional reference words: 4.00 GDI
KBCategory: kbprg
KBSubcategory: GdiMisc

Printer Escapes Under Windows 95

PSS ID Number: Q125692
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Printer escapes are used to access special printer device features and have
been used widely in Windows version 3.x. With Windows 95, Microsoft is
encouraging application developers to move away from these escapes by
providing GDI functionality to replace them.

For example, a Win32-based application should not call the NEXTBAND and
BANDINFO escapes. Banding is no longer needed in Windows 95. Most of these
escapes, however, are still provided for 16-bit-based applications for
backwards compatibility. The only recommended escapes for 32-bit,
Windows 95-based applications are the QUERYESCSUPPORT and PASSTHROUGH
escapes.

MORE INFORMATION

Applications written for Windows version 3.x can use the QUERYESCSUPPORT
and the PASSTHROUGH escapes, as well as the following 10 escapes. It is
important to note that these escapes are only supported for backwards
compatibility. All new Windows 95-based applications should use Win32 API
that replaces these escapes:

 ABORTDOC
 ENDDOC
 GETPHYSPAGESIZE
 GETPRINTINGOFFSET
 GETSCALINGFACTOR
 NEWFRAME
 NEXTBAND
 SETABORTPROC
 SETCOPYCOUNT
 STARTDOC

The following functions should always be used in place of a printer escape:

 Function Printer Escape Replaced
 --
 AbortDoc ABORTDOC
 EndDoc ENDDOC
 EndPage NEWFRAME
 SetAbortProc SETABORTPROC
 StartDoc STARTDOC

Windows 95 provides six new indexes for the GetDeviceCaps function that
replace some additional printer escapes:

 Index for GetDeviceCaps Printer Escape Replaced
 --
 PHYSICALWIDTH GETPHYSPAGESIZE
 PHYSICALHEIGHT GETPHYSPAGESIZE
 PHYSICALOFFSETX GETPRINTINGOFFSET
 PHYSICALOFFSETY GETPRINTINGOFFSET
 SCALINGFACTORX GETSCALINGFACTOR
 SCALINGFACTORY GETSCALINGFACTOR

Although a lot of the escapes have been replaced with Win32 GDI equivalent
APIs, not all device-dependent escapes have been replaced. It is up to
the printer driver manufacturer to decide whether or not its Windows
95-based driver will contain device-specific escapes that were present in
its Windows version 3.x driver. An example of a device-specific escape
would be the Windows version 3.x PostScript driver's POSTSCRIPT_IGNORE
escape. Before calling any of these escapes, an application must first call
the QUERESCSUPPORT escape to find out if the escape is supported or not.

Additional reference words: 4.00
KBCategory: kbprint
KBSubcategory: GdiPrnMisc

Printing in Windows Without Form Feeds

PSS ID Number: Q11915
Authored 26-Oct-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

A Windows-based application cannot print directly to a printer without
issuing a form feed. In 16-bit Windows, the NEWFRAME escape is required to
start the print spooler. This escape, in turn, sends a form feed to the
printer. Without the NEWFRAME escape, the spooler never runs, and nothing
is output to the printer. Win32-based applications should use EndPage(),
which replaces the NEWFRAME escape.

MORE INFORMATION

It is possible to drive the spooler directly by using the spooler
functions documented in the Windows Device Development Kit (DDK). This
allows the printer driver to be bypassed. However, by doing this, the
ability to use GDI output functions and Windows's device-independent
capabilities will be lost.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Printing Monochrome and Color Bitmaps from Windows

PSS ID Number: Q64520
Authored 06-Aug-1990 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The format of a display bitmap determines the procedure that an
application uses to print it. The two display bitmap formats available
under Windows are device-dependent bitmaps (DDBs) and device-
independent bitmaps (DIBs). DIBs and DIB functions should be used for
printing color bitmaps.

MORE INFORMATION

An application can use the BitBlt() or StretchBlt() function to print
or display a monochrome bitmap. Both printer drivers and display
drivers can process monochrome DDBs. However, an application must
account for the difference in resolution between a typical display and
a typical laser printer. The StretchBlt() function enables an
application to appropriately change the size of a monochrome bitmap.

When the display bitmap is a color DDB, printing is more difficult
because the display DDB format may not match the printer DDB format.
Because Windows supports a wide variety of devices, this situation is
quite common. When the formats DDB differ, the application must
convert the display DDB into a print DDB or a DIB.

DIBs are designed to ease the process of transferring images between
devices. When an application uses a DIB, the GDI or the output driver
performs any conversions required for the device. The ShowDIB sample
application, provided in the Windows SDK and the Win32 SDK, demonstrates
converting a DDB to a DIB and other common manipulations. The file DIB.C is
of particular interest. It contains the functions that perform the
manipulations. This code can be incorporated into other applications.

For more information, please see the Windows SDK 3.1 DIBView sample or the
Win32 SDK WinCap32 sample.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Printing Offset, Page Size, and Scaling with Win32

PSS ID Number: Q115762
Authored 02-Jun-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The Win32 documentation for the Escape() function says that the
GETPHYSPAGESIZE, GETPRINTINGOFFSET, and GETSCALINGFACTOR escapes are
obsolete, but it fails to mention the recommended way to get this
information.

The information retrieved by all three escapes can now be retrieved by
calling GetDeviceCaps() with the appropriate index:

 - For the GETPHYSPAGESIZE escape, the indexes to be used with
 GetDeviceCaps() are PHYSICALWIDTH and PHYSICALHEIGHT.

 - For GETPRINTINGOFFSET, the indexes are PHYSICALOFFSETX and
 PHYSICALOFFSETY.

 - For GETSCALINGFACTOR, the indexes are SCALINGFACTORX and SCALINGFACTORY.

All six new indexes are defined in the file WINGDI.H, though they are
missing from the GetDeviceCaps() documentation.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Priority Inversion and Windows NT Scheduler

PSS ID Number: Q96418
Authored 16-Mar-1993 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

SUMMARY

The kernel schedules a thread with the real-time process priority class
ahead of every thread with another priority class (nearly all user-mode
threads). Windows NT does not alter the priority of real-time threads. The
system trusts that the programmer will avoid priority inversion. The
remainder of this article talks about the scheduling of threads that are
not real-time priority class and how the system solves the problem of
priority inversion.

Threads are scheduled according to their priority. When the kernel is
choosing which thread will execute on a processor, the highest dynamic
(variable) priority thread is picked. Priority inversion occurs when two
(or more) threads with different priorities are in contention to be
scheduled. Consider a simple case with three threads: Thread 1 is high
priority and becomes ready to be scheduled, while thread 2, a low-priority
thread, is executing in a critical section. Thread 1, the high-priority
thread, begins waiting for a shared resource from thread 2. A third thread
has medium priority. The third thread receives all the processor time,
because the high-priority thread (thread 1) is busy waiting for shared
resources from the low-priority thread (thread 2). Thread 2 won't leave the
critical section, because it isn't the highest priority thread and won't be
scheduled.

The Windows NT scheduler solves this problem by randomly boosting the
priority of threads that are ready to run (in this case the low priority
lock-holders). The low priority threads run long enough to let go of their
lock (exit the critical section), and the high- priority thread gets the
lock back. If the low-priority thread doesn't get enough CPU time to free
its lock the first time, it will get another chance on the next scheduling
round.

Priority inversion is handled differently in Windows 95. If a high priority
thread is dependent on a low priority thread which will not be allowed to
run because a medium priority thread is getting all of the CPU time, the
system recognizes that the high priority thread is dependent on the low
priority thread and will boost the low priority thread's priority up to the
priority of the high priority thread. This will allow the formerly low
priority thread to run and unblock the high priority thread that was
waiting on it.

MORE INFORMATION

Each Process has a base priority. Each thread has a base priority that is a
function of its process base priority. A thread's base priority is settable
to:

 - 1 or 2 points above the process base
 - equal to the process base
 - 1 or 2 points below the process base

Priority setting is exposed through the Win32 API. In addition to a base
priority, all threads have a dynamic priority. The dynamic priority is
never less than the base priority. The system raises and lowers the dynamic
priority of a thread as needed.

All scheduling is done strictly by priority. The scheduler chooses the
highest priority thread which is ready to run. On a multi-processor (MP)
system, the highest N runnable threads run (where N is the number of
processors). The thread priority used to make these decisions is the
dynamic priority of the thread.

When a thread is scheduled, it is given a quantum of time in which to run.
The quantum is in units of clock ticks. The system currently uses 2 units
of quantum (10ms on r4000 and 15ms on x86).

When a thread is caught running during the clock interrupt, its quantum is
decremented by one. If the quantum goes to zero and the thread's dynamic
priority is not at the base priority, the thread's dynamic priority is
decremented by one and the thread's quantum is replenished. If a priority
change occurs, then the scheduler locates the highest priority thread which
is ready to run. Otherwise, the thread is placed at the end of the run
queue for it's priority allowing threads of equal priority to be "round
robin" scheduled. The above is a description of what is usually called
priority decay, or quantum and priority decay.

When a thread voluntarily waits (an an event, for I/O, etc), the system
will usually raise the thread's dynamic priority when it resumes.
Internally, each wait type has an associated priority boost. For example, a
wait associated with disk I/O has a one point dynamic boost. A wait
associated with a keyboard I/O has a 5 point dynamic boost. In most cases,
this boost will raise the priority of the thread such that it can be
scheduled very soon afterwards, if not immediately.

There are other circumstances under which priority will be raised. For
example, whenever a window receives input (timer messages, mouse move
messages, etc), an appropriate boost is given to all threads within the
process that owns the window. This is the boost that allows a thread to
reshape the mouse pointer when the mouse moves over a window.

By default, the foreground application has a base process priority that is
one point higher than the background application. This allows the
foreground process to be even more responsive. This can be changed by
bringing up the System applet, selecting the Tasking button, and choosing a
different option.

Additional reference words: 3.10 3.50
KBCategory: kbprg

KBSubcategory: BseProcThrd

Process Will Not Terminate Unless System Is In User-mode

PSS ID Number: Q92761
Authored 15-Nov-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Under Windows NT, a process will not be terminated unless the system is
in user-mode. Suppose that TerminateProcess() is called while a device
driver or filesystem code is being executed. The system will wait until
the threads are running user code before marking the process for
termination. On system exit, processes that were the target of a
TerminateProcess() will be killed.

This may affect drivers. If a driver is waiting for an object or
multiple objects in WaitMode or UserMode, its wait may complete
unsuccessfully due to a termination request. Any code that does a
UserMode wait or an Alertable wait must check the return status of the
wait call. If the wait fails with STATUS_USER_APC or STATUS_ALERTED,
this is not an error. The driver should cleanup and return to user-mode.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

Process WM_GETMINMAXINFO to Constrain Window Size

PSS ID Number: Q67166
Authored 22-Nov-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Microsoft Windows sends a WM_GETMINMAXINFO message to a window to
determine the maximized size or position for the window, and the
maximum or minimum tracking size for the window. An application can
change these parameters by processing the WM_GETMINMAXINFO message.

Each window type has an absolute minimum size. If an application
changes any of the values associated with WM_GETMINMAXINFO to a value
smaller than the minimum, Windows will override the values specified
by the application and use the minimum size. This minimum window size
restriction has been removed from Windows version 3.1.

Note that Windows can send a WM_GETMINMAXINFO message to a window
prior to sending a WM_CREATE message. Therefore, any processing for
the WM_GETMINMAXINFO message must be independent of processing done
for the WM_CREATE message.

MORE INFORMATION

An application can use the WM_GETMINMAXINFO message to constrain the
size of a window. For example, the application can prevent the user
from changing a window's width while allowing the user to affect its
height, or vice versa. The following code demonstrates fixing the
width:

 int width;
 LPPOINT lppt;
 RECT rect;

 case WM_GETMINMAXINFO:
 lppt = (LPPOINT)lParam; // lParam points to array of POINTs

 GetWindowRect(hWnd, &rect); // Get current window size
 width = rect.right - rect.left + 1;

 lppt[3].x = width // Set minimum width to current width
 lppt[4].x = width // Set maximum width to current width

 return DefWindowProc(hWnd, message, wParam, lParam);

The modifications required to fix the height are quite

straightforward.

For more information on the array of POINT structures that accompanies
the WM_GETMINMAXINFO message, please refer to the "Microsoft Windows
Software Development Kit Reference."

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Processes Maintain Only One Current Directory

PSS ID Number: Q84244
Authored 05-May-1992 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Processes under Windows NT maintain only one current directory. Under
MS-DOS or OS/2, a process will maintain a current directory for each drive.

MORE INFORMATION

For example, if you do the following

1. Set the current drive to be drive C and set the current directory
 to be \MAINC\MAINSUBC.

2. Change the current drive to be drive D and set the current
 directory to be \MAIND\MAINSUBD.

when you reset the current drive to drive C, the current directory will be
the original directory: \MAINC\MAINSUBC.

MS-DOS and OS/2 use a current directory structure (CDS) to maintain this
information. The memory for this structure is allocated at boot time, and
is set by the LASTDRIVE= line in the CONFIG.SYS file. For example, if you
set LASTDRIVE=Z, you will have 26 entries in the CDS and will be able to
track 26 current directories.

Windows NT by default allows a process to track only one current directory-
-the one for the current drive--because the underlying operating system
does not use drive letters; it always uses fully-qualified names such as:

 \Device\HardDisk0\Partition1\autoexec.bat

The Win32 subsystem maintains drive letters by setting up symbolic links
such as:

 \DosDevices\C: == \Device\HardDisk0\Paritition1
 \DosDevices\D: == \Device\HardDisk0\Paritition2
 \DosDevices\E: == \Device\HardDisk1\Paritition1

(Partitions are 1-based while hard disks are 0-based because Partition0
refers to the entire physical device, which is the "file" that FDISK opens
to do its work.) Therefore, when you do SetCurrentDirectory("c:\tmp\sub"),
the Win32 subsystem translates that to "\DosDevices\c:\tmp\sub", "...".

As far as Windows NT is concerned, there are no "drives," there is one
object namespace.

CMD.EXE maintains a private current directory for each drive it has touched
and uses environment variables to associate a current directory with each
drive. These environment variables have the form "=<drive>:".

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Processing CBN_SELCHANGE Notification Message

PSS ID Number: Q66365
Authored 23-Oct-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

When a combo box receives a CBN_SELCHANGE notification message,
GetDlgItemText() will give the text of the previous selection and not
the text of the new selection.

To get the text of the new selection, send the CB_GETCURSEL message to
retrieve the index of the new selection and then send a CB_GETLBTEXT
message to obtain the text of that item.

MORE INFORMATION

When an application receives the CBN_SELCHANGE notification message,
the edit/static portion of the combo box has not been updated. To
obtain the new selection, send a CB_GETLBTEXT message to the combo box
control. This message places the text of the new selection in a
specified buffer. The following is a brief code fragment:

 ... /* other code */

 case CBN_SELCHANGE:
 hCombo = LOWORD(lParam); /* Get combo box window handle */

 /* Get index of current selection and then the text of that selection
*/

 index = SendMessage(hCombo, CB_GETCURSEL, (WORD)0, 0L);
 SendMessage(hCombo, CB_GETLBTEXT, (WORD)index, (LONG)buffer);
 break;

 ... /* other code */

NOTE: For Win32 applications, change the WORD and LONG casts to WPARAM and
LPARAM, respectively.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 combobox
KBCategory: kbprg
KBSubcategory: UsrCtl

Processing WM_PALETTECHANGED and WM_QUERYNEWPALETTE

PSS ID Number: Q77702
Authored 23-Oct-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

An application that manipulates the system palette should process the
WM_PALETTECHANGED and WM_QUERYNEWPALETTE messages to maintain its
appearance during system palette and input focus changes.

MORE INFORMATION

The WM_PALETTECHANGED message informs all windows that the window with
input focus has realized its logical palette, thereby changing the
system palette. This message allows a window without input focus that
uses a color palette to realize its logical palettes and update its
client area.

This message is sent to all windows, including the one that changed
the system palette and caused this message to be sent. The wParam of
this message contains the handle of the window that caused the system
palette to change. To avoid an infinite loop, care must be taken to
check that the wParam of this message does not match the window's
handle. The following sample code demonstrates how to process
WM_PALETTECHANGED:

 case WM_PALETTECHANGED:
 {
 HDC hDC; // Handle to device context
 HPALETTE hOldPal; // Handle to previous logical palette

 // If this application did not change the palette, select
 // and realize this application's palette
 if (wParam != hWnd)
 {
 // Need the window's DC for SelectPalette/RealizePalette
 hDC = GetDC(hWnd);

 // Select and realize hPalette
 hOldPal = SelectPalette(hDC, hPalette, FALSE);
 RealizePalette(hDC);

 // When updating the colors for an inactive window,
 // UpdateColors can be called because it is faster than
 // redrawing the client area (even though the results are

 // not as good)
 UpdateColors(hDC);

 // Clean up
 if (hOldPal)
 SelectPalette(hDC, hOldPal, FALSE);
 ReleaseDC(hWnd, hDC);
 }
 }
 break;

NOTE: The WM_PALETTECHANGED message is sent to all top-level and
overlapped windows; therefore, if any child window uses a color
palette, this message must be passed on to it.

The WM_QUERYNEWPALETTE message informs a window that it is about to
receive input focus. In response, the window receiving focus should
realize its palette as a foreground palette and update its client
area. If the window realizes its palette, it should return TRUE;
otherwise, it should return FALSE. The following sample code
demonstrates processing WM_QUERYNEWPALETTE:

 case WM_QUERYNEWPALETTE:
 {
 HDC hDC; // Handle to device context
 HPALETTE hOldPal; // Handle to previous logical palette

 // Need the window's DC for SelectPalette/RealizePalette
 hDC = GetDC(hWnd);

 // Select and realize hPalette
 hOldPal = SelectPalette(hDC, hPalette, FALSE);
 RealizePalette(hDC);

 // Redraw the entire client area
 InvalidateRect(hWnd, NULL, TRUE);
 UpdateWindow(hWnd);

 // Clean up
 if (hOldPal)
 SelectPalette(hDC, hOldPal, FALSE);
 ReleaseDC(hWnd, hDC);

 // Message processed, return TRUE
 return TRUE;
 }

NOTE: The WM_QUERYNEWPALETTE message is sent to all top-level and
overlapped windows; therefore, if any child window uses a color
palette, this message must be passed on to it.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPal

Programatically Appending Text to an Edit Control

PSS ID Number: Q109550
Authored 04-Jan-1994 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Windows-based applications often use edit controls to display text. These
applications sometimes need to append text to the end of an edit control
instead of replacing the existing text. There are several ways to do this
in Windows:

 - Use the EM_SETEL and EM_REPLACESEL messages.

 -or-

 - Use the EM_SETSEL message with the clipboard functions to append text to
 the edit control's buffer.

MORE INFORMATION

The EM_SETSEL message can be used to place a selected range of text in a
Windows edit control. If the starting and ending positions of the range are
set to the same position, no selection is made and a caret can be placed at
that position. To place a caret at the end of the text in a Windows edit
control and set the focus to the edit control, do the following:

 HWND hEdit = GetDlgItem (hDlg, ID_EDIT);
 int ndx = GetWindowTextLength (hEdit);
 SetFocus (hEdit);
 SendMessage (hEdit, EM_SETSEL, 0, MAKELONG (ndx, ndx));

Once the caret is placed at end in the edit control, the EM_REPLACESEL
message can be use to append text to the edit control. An application sends
an EM_REPLACESEL message to replace the current selection in an edit
control with the text specified by the lpszReplace (lParam) parameter.
Because there is no current selection, the replacement text is inserted at
the current cursor location. This example sets the selection to the end of
the edit control and inserts the text in the buffer:

 SendMessage (hEdit, EM_SETSEL, 0, MAKELONG (ndx, ndx));
 SendMessage (hEdit, EM_REPLACESEL, 0, (LPARAM) ((LPSTR) szBuffer));

One other way of inserting text into an edit control is to use the Windows
clipboard. If the application has the clipboard open or finds it convenient
to open the clipboard, and copies the text into the clipboard, then it can
send the WM_PASTE message to the edit control to append text.

Before sending the WM_PASTE message, the caret must be placed at the end of
the edit control text using the EM_SETSEL message. Below is pseudo code
that shows how to implement this method:

 OpenClipBoard () ;
 EmptyClipBoard() ;
 SetClipBoardData() ;

 SendMessage (hEdit, EM_SETSEL, 0, MAKELONG (ndx, ndx));
 SendMessage (hEdit, WM_PASTE, 0, 0L);

This pseudo code appends text to the end of the edit control. Note that the
data in the clipboard must be in CF_TEXT format.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Propagating Environment Variables to the System

PSS ID Number: Q104011
Authored 02-Sep-1993 Last modified 27-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

User environment variables can be modified using the System control panel
application or by editing the following Registry key:

 HKEY_CURRENT_USER \
 Environment

System environment variables can be modified using the System control panel
application (in Windows NT 3.5 and later) or by editing the following
Registry key:

 HKEY_LOCAL_MACHINE \
 SYSTEM \
 CurrentControlSet \
 Control \
 Session Manager \
 Environment

Note, however, that modifications to the environment variables do not
result in immediate change. For example, if you start another Command
Prompt after making the changes, the environment variables will reflect the
previous (not the current) values. The changes do not take effect until you
log off and then log back on.

To effect these changes without having to log off, broadcast a
WM_WININICHANGE message to all windows in the system, so that any
interested applications (such as Program Manager, Task Manager, Control
Panel, and so forth) can perform an update.

MORE INFORMATION

For example, on Windows NT, the following code fragment should propagate
the changes to the environment variables used in the Command Prompt:

 SendMessage(FindWindow("Progman", NULL), WM_WININICHANGE,
 0L, (LPARAM) "Environment");

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMisc

Prototypes for SetSystemCursor() & LoadCursorFromFile()

PSS ID Number: Q122564
Authored 08-Nov-1994 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5

SUMMARY

The function prototypes for SetSystemCursor() and LoadCursorFromFile()
were inadvertently omitted from the Win32 SDK header files. These APIs
are resolved by linking for USER32.LIB.

Additionally, the use of the OCR_* constants as described in the online
help for LoadCursorFromFile() is not currently implemented. However,
this functionality is available through LoadCursor().

MORE INFORMATION

The correct function prototypes are given below. NOTE: These prototypes
were included correctly in the Win32 SDK 3.51/4.0 documentation.

To use these functions, add the prototypes to a file in your project after
including WINDOWS.H.

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

/* SetSystemCursor prototype */
WINUSERAPI BOOL WINAPI SetSystemCursor (HCURSOR hcur, DWORD id);

/* LoadCursorFromFile prototypes - UNICODE aware */
WINUSERAPI HCURSOR WINAPI LoadCursorFromFileA (LPCSTR lpFileName);
WINUSERAPI HCURSOR WINAPI LoadCursorFromFileW (LPCWSTR lpFileName);

#ifdef UNICODE
#define LoadCursorFromFile LoadCursorFromFileW
#else
#define LoadCursorFromFile LoadCursorFromFileA
#endif // !UNICODE

#ifdef __cplusplus
}
#endif /* __cplusplus */

Additional reference words: 3.50
KBCategory: kbprg kbdocerr
KBSubcategory: GdiCurico

Providing a Custom Wordbreak Function in Edit Controls

PSS ID Number: Q109551
Authored 04-Jan-1994 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

An application sends the EM_SETWORDBREAKPROC message to an edit control to
replace the default wordwrap function with an application-defined wordwrap
function. The default wordwrap function breaks a line in a multiline edit
control (MLE) at a space character. If an application needs to change this
functionality (that is, to break at some character other than a space),
then the application must provide its own wordwrap (wordbreak) function.

MORE INFORMATION

A wordwrap function scans a text buffer (which contains text to be sent to
the display), looking for the first word that does not fit on the current
display line. The wordwrap function places this word at the beginning of
the next line on the display.

A wordwrap function defines the point at which Windows should break a line
of text for multiline edit controls, usually at a space character that
separates two words. This can be changed so that the line in an MLE can be
broken at any character. For more information on the EM_SETWORDBREAKPROC
message, please refer to the Windows 3.1 SDK "Programmer's Reference,
Volume 3: Messages, Structures, and Macros" manual.

Below is sample code that demonstrates how to break a line in a multiline
edit control at the "~" (tilde) character (for example) instead of the
regular space (" ") character.

The sample code assumes that the edit control is a multiline edit control
and that it is a child control in a dialog box.

Sample Code

//Prototype the application-defined wordbreakproc.
int CALLBACK WordBreakProc(LPSTR, int, int, int) ;

//Install wordbreakproc in the WM_INITDIALOG case.
 case WM_INITDIALOG:

 lpWrdBrkProc = MakeProcInstance(WordBreakProc, hInst);

 //Send the EM_SETWORDBREAKPROC message to the edit control
 //to install the new wordbreak procedure.
 SendDlgItemMessage(hDlg, ID_EDIT, EM_SETWORDBREAKPROC, 0,
 (LPARAM)(EDITWORDBREAKPROC)lpWrdBrkProc) ;
 return (TRUE);

int FAR PASCAL WordBreakProc(LPSTR lpszEditText, int ichCurrent,
 int cchEditText, int wActionCode)
{

 char FAR *lpCurrentChar;
 int nIndex;
 int nLastAction;

 switch (wActionCode) {

 case WB_ISDELIMITER:

 // Windows sends this code so that the wordbreak function can
 // check to see if the current character is the delimiter.
 // If so, return TRUE. This will cause a line break at the ~
 // character.

 if (lpszEditText[ichCurrent] == '~')
 return TRUE;
 else
 return FALSE;

 break;

 // Because we have replaced the default wordbreak procedure, our
 // wordbreak procedure must provide the other standard features in
 // edit controls.

 case WB_LEFT:

 // Windows sends this code when the user enters CTRL+LEFT ARROW.
 // The wordbreak function should scan the text buffer for the
 // beginning of the word from the current position and move the
 // caret to the beginning of the word.

 {
 BOOL bCharFound = FALSE;

 lpCurrentChar = lpszEditText + ichCurrent;
 nIndex = ichCurrent;

 while (nIndex > 0 &&
 (*(lpCurrentChar-1) != '~' &&
 *(lpCurrentChar-1) != 0x0A) ||
 !bCharFound)
 {
 lpCurrentChar = AnsiPrev(lpszEditText ,lpCurrentChar);
 nIndex--;

 if (*(lpCurrentChar) != '~' && *(lpCurrentChar) != 0x0A)

 // We have found the last char in the word. Continue
 // looking backwards till we find the first char of
 // the word.
 {
 bCharFound = TRUE;

 // We will consider a CR the start of a word.
 if (*(lpCurrentChar) == 0x0D)
 break;
 }

 }
 return nIndex;

 }
 break;

 case WB_RIGHT:

 //Windows sends this code when the user enters CTRL+RIGHT ARROW.
 //The wordbreak function should scan the text buffer for the
 //beginning of the word from the current position and move the
 //caret to the end of the word.

 for (lpCurrentChar = lpszEditText+ichCurrent, nIndex = ichCurrent;
 nIndex < cchEditText;
 nIndex++, lpCurrentChar=AnsiNext(lpCurrentChar))

 if (*lpCurrentChar == '~') {
 lpCurrentChar=AnsiNext(lpCurrentChar);
 nIndex++;

 while (*lpCurrentChar == '~') {
 lpCurrentChar=AnsiNext(lpCurrentChar);
 nIndex++;
 }

 return nIndex;
 }

 return cchEditText;
 break;

 }
}

The wordwrap (wordbreak) function above needs to be exported in the .DEF
file of the application. The function can be modified and customized
according to the application's needs.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 multi-line
KBCategory: kbprg
KBSubcategory: UsrCtl

PSTR's in OUTLINETEXTMETRIC Structure

PSS ID Number: Q90085
Authored 08-Oct-1992 Last modified 05-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The OUTLINETEXTMETRIC structure ends with four fields of type PSTR. The
four fields in question are not actually absolute pointers. They are
offsets from the beginning of the OUTLINETEXTMETRIC structure to the
strings in question, as the documentation indicates:

 otmpFamilyName
 Specifies the offset from the beginning of the structure to a
 string specifying the family name for the font.

 otmpFaceName
 Specifies the offset from the beginning of the structure to a
 string specifying the face name for the font. (This face name
 corresponds to the name specified in the LOGFONT structure.)

 otmpStyleName
 Specifies the offset from the beginning of the structure to a
 string specifying the style name for the font.

 otmpFullName
 Specifies the offset from the beginning of the structure to a
 string specifying the full name for the font. This name is
 unique for the font and often contains a version number or
 other identifying information.

The only difference between this structure in Windows 3.1 and Windows NT is
that the strings may be stored in either Unicode or ASCII under Windows NT.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: GdiMisc

Querying and Modifying the States of System Menu Items

PSS ID Number: Q83453
Authored 13-Apr-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

An application should query or set states of the Restore, Move, Size,
Minimize, and Maximize items on the system menu during the processing
of a WM_INITMENU or a WM_INITMENUPOPUP message.

MORE INFORMATION

Windows changes the state of the Restore, Move, Size, Minimize, and
Maximize items on the system menu just before it draws the menu on the
screen and sends the WM_INITMENU and WM_INITMENUPOPUP messages.

Windows sets the states of these menu items according to the state of
the window just before the menu is displayed. For example, if the
window is minimized when its system menu is pulled down, the Minimize
menu item is unavailable (grayed). If an overlapped window is
maximized when its system menu is pulled down, the Move, Size, and
Maximize items are unavailable.

If an application queries or sets the state of any of these system
menu items, the query or change should occur during the processing of
the WM_INITMENU or WM_INITMENUPOPUP message. If any menu item state is
queried before one of these messages is processed, it could reflect a
previous state of the window. If any state is set before one of these
messages is processed, Windows will reset the menu items to correspond
to the state of the window just prior to sending these messages.

Windows does not change the state of the Close menu item. Its state
can be changed or queried at any time.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Querying Device Support for MaskBlt

PSS ID Number: Q108929
Authored 20-Dec-1993 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

The Win32 documentation for MaskBlt() states:

 Not all devices support the MaskBlt function. An application should call
 the GetDeviceCaps function to determine whether a device supports this
 function.

To query support for MaskBlt(), an application should query the device for
BitBlt support by passing RC_BITBLT constant to GetDeviceCaps().

MaskBlt() implements transparent blts in Windows NT. For more information,
please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q89375
 TITLE : Transparent Blts in Windows NT

GDI implements this application programming interface (API) by calling
BitBlt(). Because BitBlt() is implemented at the driver level, applications
that calls MaskBlt() should check for BitBlt() support on the device.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: GdiBmp

Raster and Stroke Fonts; GDI and Device Fonts

PSS ID Number: Q77126
Authored 08-Oct-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

NOTE: The information contained in this article does not address TrueType
fonts. For information on TrueType fonts, please see chapter 18 of "Guide
to Programming" for the Windows SDK version 3.1.

In Windows version 3.0, there are two different ways that the graphical
device interface (GDI) can generate characters for a font. For a raster
font, GDI displays the font by copying bitmaps to the output device. For a
stroke font, GDI displays the font by drawing lines between a series of
points that describe each character. Each font is owned by either GDI or by
a specific device. Type and ownership information can be determined by
enumerating the fonts. This article discusses the two font types and two
font ownership types.

MORE INFORMATION

A raster font stores its characters as a series of bitmaps; a stroke font
stores its characters as a set of vector operations that describe the
characters. When a character from a raster font is drawn, the bitmap is
copied onto the device. When a character from a stroke font is displayed,
the lines are drawn connecting the points that describe the character.
Examples of raster fonts provided with Windows are Courier and Helv;
examples of stroke fonts are Script and Roman.

Raster fonts are only available in specific sizes. Some devices can scale
installed raster fonts to integer multiples of their size. Use the
GetDeviceCaps() function to determine whether the device has this
capability. The Windows GDI will scale its raster fonts as required
regardless of the device capability. Stroke fonts can be scaled to any size
and can also be rotated.

GDI fonts are owned by the GDI; they are available to all devices. Device
fonts are fonts that are owned by a particular device; they are available
only on that device.

By enumerating the fonts, an application can determine which ones are
raster or stroke fonts, and which are GDI or device fonts. The callback
function used with EnumFonts() has the parameter nFontType. As stated on
page 4-118 of the "Microsoft Windows Software Development Kit Reference
Volume 1," the bitwise AND (&) operator can be used with the constants

RASTER_FONTTYPE and DEVICE_FONTTYPE to determine the font type. If the
RASTER_FONTTYPE bit is set, the font is a raster font; otherwise, it is a
stroke font. If the DEVICE_FONTTYPE bit is set, the font is owned by the
device that corresponds to the display context handle (HDC) used in the
EnumFont() call; otherwise it is a GDI font.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

RCDATA Begins on 32-Bit Boundary in Win32

PSS ID Number: Q84081
Authored 29-Apr-1992 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

RCDATA is guaranteed to begin on a DWORD boundary. However, the strings and
the integers specified in the statement are not aligned by the Resource
Compiler (RC)

 RCDATA statement:

 resname RCDATA
 BEGIN

 0,0,

 END

The definition of RCDATA is not changed. The strings and integers
specified in the statement, 0 in this case, are not aligned on the
DWORD boundary. However, the beginning of the data is DWORD-aligned.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

ReadFile() at EOF Changed in Windows NT 3.5

PSS ID Number: Q119220
Authored 10-Aug-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

The documentation for ReadFile() states that:

 If the function succeeds, the return value is TRUE. If the return value
 is TRUE and the number of bytes read is zero, the file pointer was
 beyond the current end of file at the time of the read operation.

 If the function fails, the return value is FALSE. To get extended error
 information, call GetLastError().

Under Windows NT 3.1, when you read at the end of the file (EOF),
ReadFile() returns TRUE and reports that 0 (zero) bytes were read. However,
if you are using asynchronous I/O and EOF is reached, GetOverlappedResult()
will hang because there is no outstanding I/O. ReadFileEx() properly
handles EOF by failing and setting the error code to ERROR_HANDLE_EOF.

Under Windows NT 3.5, ReadFile() returns FALSE and GetLastError() returns
error 38 (ERROR_HANDLE_EOF) for asynchronous I/O. This change in behavior
was made to avoid the problem described above. The behavior for synchronous
I/O has not changed under Windows NT 3.5.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Reasons for Failure of Clipboard Functions

PSS ID Number: Q92530
Authored 09-Nov-1992 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The following clipboard functions:

 OpenClipboard()
 CloseClipboard()
 EmptyClipboard()
 GetClipboardData()
 SetClipboardData()
 EnumClipboardFormats()
 SetClipboardViewer()
 ChangeClipboardChain()
 GetOpenClipboardWindow()
 GetClipboardOwner()

can fail for several reasons. Different functions return different
values to indicate failure. Read the documentation for information
about each function. This article combines the causes of failure for
all functions and provides a resolution or explanation. In the More
Information section, a list of affected functions follows each cause.
The causes are:

1. The clipboard is not opened by any application.

2. The current application does not have the clipboard open.

3. The current application does not own the clipboard.

4. User's data segment is full.

5. Insufficient global memory.

6. The specified clipboard format is not supported.

7. The application that set the clipboard data placed a corrupt or invalid
 metafile in the clipboard.

8. An application is attempting to open an already open clipboard. The
 debug mode of Windows 3.1 will send the "Clipboard already open"
 message.

9. The application that opened the clipboard used NULL as the window
 handle.

MORE INFORMATION

Cause 1: The clipboard is not opened by any application.

Resolution 1: Open the clipboard using OpenClipboard(). If a DLL needs
to open the clipboard, it may pass hwnd = NULL to OpenClipboard().

Explanation 1: An application cannot copy data (using
SetClipboardData()) when no application has the clipboard currently
open.

Affected Functions: SetClipboardData().

Cause 2: The current application does not have the clipboard open.

Resolution 2: Open the clipboard using OpenClipboard(). If a DLL needs
to open the clipboard, it may pass hwnd = NULL to OpenClipboard().

Explanation 2: An application cannot empty or close the clipboard without
first opening it.

Affected Functions: EmptyClipboard(), CloseClipboard().

Cause 3: The current application does not own the clipboard.

Resolution 3: Open the clipboard and get ownership by emptying it.

Explanation 3: An application cannot enumerate the clipboard formats
without owning it.

Affected Functions: EnumClipboardFormats().

Cause 4: User's data segment is full.

Explanation 4: There should be space available in User's data segment to
store internal data structures when SetClipboardData() is called.

Affected Function: SetClipboardData().

Cause 5: Insufficient global memory.

Explanation 5: If the clipboard has data in either the CF_TEXT or
CF_OEMTEXT format and if GetClipboardData() requests text in the
unavailable format, then Windows will perform the conversion. The
converted text must be stored in global memory.

Affected Function: GetClipboardData().

Cause 6: The specified clipboard format is not supported.

Resolution 6: Use IsClipboardFormatAvailable() to check whether the
specified format is available on the clipboard.

Affected Function: GetClipboardData().

Cause 7: The application that set the clipboard data placed a corrupt or
invalid metafile in the clipboard.

Resolution 7: There are no functions to tell whether a given metafile is
corrupt or invalid. Try playing the metafile and see if the metafile plays
as expected.

Affected Function: SetClipboardData().

Cause 8: Application is attempting to open an already open clipboard. The
debug mode of Windows 3.1 will send the "Clipboard already open" message.

Explanation 8: The clipboard must be closed by the application that opened
it, before other applications can open it.

Affected Functions: OpenClipboard().

Cause 9: The application that opened the clipboard used NULL as the window
handle.

Explanation 9: An application can call OpenClipboard(NULL) to
successfully open a clipboard. The side effects are that subsequent
calls to GetClipboardOwner() and GetOpenClipboardWindow() return NULL.
An application can also call SetClipboardViewer(NULL) successfully.
However, there is no reason why this should be allowed, and it is
currently reported as a bug. The side effects are that subsequent
calls to GetClipboardViewer() and ChangeClipboardChain() return NULL.
NULL from these functions does not necessarily imply that they failed.

Affected Functions: GetClipboardOwner(), GetOpenClipboardWindow(),
GetClipboardViewer(), ChangeClipboardChain().

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
GetClipboardFormatName
RegisterClipboardFormat
KBCategory: kbprg
KBSubcategory: UsrClp

Reasons for Failure of Menu Functions

PSS ID Number: Q89739
Authored 29-Sep-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The Menu functions (AppendMenu(), CheckMenuItem(), CreateMenu(),
CreatePopupMenu(), DeleteMenu(), DestroyMenu(), GetMenu(),
GetMenuItemID(), GetMenuString(), GetSubMenu(), GetSystemMenu(),
HiliteMenuItem(), InsertMenu(), LoadMenuIndirect(), ModifyMenu(),
RemoveMenu(), SetMenu(), SetMenuItemBitmaps(), and TrackPopupMenu())
can fail for several reasons. Different functions return different
values to indicate failure. Read the documentation for information
about each function. This article combines the causes of failure for
all functions and provides a resolution or explanation. A list of
affected functions follows each cause. The causes are:

1. Invalid hWnd parameter.

2. Invalid hMenu parameter.

3. The menu item is not found.

4. No space left in User's heap to hold a string or to hold an
internal data structure for owner draw menu items or to create a menu
or to create a window for TrackPopupMenu().

5. There are no items in the menu.

6. The menu resource could not be found (FindResource()) or loaded
(LoadResource()) or locked (LockResource()) in memory.

7. TrackPopupMenu() is called while another popup menu is being tracked
in the system.

8. The hMenu that has been passed to TrackPopupMenu() has been deleted.

9. MENUITEMTEMPLATEHEADER's versionNumber field is non-zero.

MORE INFORMATION

Cause 1: Invalid hWnd parameter.

Resolution 1: Validate the hWnd parameter using IsWindow(). Make sure
that hWnd is not a child window.

NOTE: Resolution 1 does not apply to TrackPoupuMenu().

Explanation 1: In Windows, menus are always associated with a window.
Child windows cannot have menu bars.

Affected Functions: All functions that take hWnd as a parameter except for
TrackPoupuMenu().

Cause 2: Invalid hMenu parameter.

Resolution 2: Validate hMenu with IsMenu().

Affected Functions: All functions that take hMenu as a parameter.

Cause 3: The menu item is not found.

Resolution 3: If the menu item is referred to BY_POSITION, make sure
that the index is lesser than the number of items. If the menu item is
referred to BY_COMMAND, an application has to devise its own method of
validating it.

Explanation 3: Menu items are numbered consecutively starting from 0.
Remember that separator items are also counted.

Affected Functions: All functions that refer to a menu item.

Cause 4: No space left in User's heap to hold a string or to hold an
internal data structure for owner draw menu items or to create a menu.

Resolution 4: Remember to delete all menus and other objects that have
been created by the application when they are not needed any more.
If you suspect that objects left undeleted by other applications are
wasting valuable system resources, restart Windows.

Explanation 4: In Windows 3.0, menus and menu items were allocated
space from User's heap. In Windows 3.1, they are allocated space from
a separate heap. This heap is for the exclusive use of menus and menu
items.

Affected Functions: AppendMenu(), Insertmenu(), ModifyMenu(),
CreateMenu(), CreatePopupMenu(), LoadMenu(), LoadMenuIndirect(),
TrackPopupMenu(), GetSystemMenu() (when fRevert = FALSE).

Cause 5: There are no items in the menu.

Resolution 5: Use GetMenuItemCount() to make sure the menu is not empty.

Explanation 5: Nothing to be deleted or removed.

Affected Functions : RemoveMenu(), DeleteMenu().

Cause 6: The menu resource could not be found (FindResource()) or loaded
(LoadResource()) or locked (LockResource()) in memory.

Resolution 6: Ensure that the menu resource exists and that the hInst

parameter refers to the correct hInstance. Try increasing the number
of file handles using SetHandleCount() and increasing available global
memory by closing some applications. For more information about the
causes of failure of resource functions, query this Knowledge Base on
the following keywords:

 failure and LoadResource and FindResource and LockResource.

Explanation 6: Finding, loading, and locking a resource involves use
of file handles, global memory, and the hInstance that has the menu
resource.

Affected Functions: LoadMenu(), LoadMenuIndirect()

Cause 7. TrackPopupMenu() is called while another popup menu is being
tracked in the system.

Explanation 7: Only one popup menu can be tracked in the system at
any given time.

Affected Function: TrackPopupMenu()

Cause 8. The hMenu that has been passed to TrackPopupMenu() has been
deleted. The debug mode of Windows 3.1 sends the following message :

"Menu destroyed unexpectedly by WM_INITMENUPOPUP"

Explanation 8: Windows sends a WM_INITMENUPOPUP to the application
and expects the menu to not be destroyed.

Affected Function: TrackPopupMenu()

Cause 9. MENUITEMTEMPLATEHEADER 's versionNumber field is non-zero.

Explanation 9: In Windows 3.0 and 3.1, this field should always be 0.

Affected Function: LoadMenuIndirect()

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Reasons Why RegisterClass() and CreateWindow() Fail

PSS ID Number: Q65257
Authored 28-Aug-1990 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The RegisterClass() and CreateWindow() functions fail when the system
resources are used up. The percentage of free system resources
reflects the amount of available space in the USER and GDI heaps
within Windows. The smaller amount of free space is reported in the
Program Manager's About box because if either heap fills up, functions
fail.

Under Windows NT, the USER and GDI heap resources are practically
unlimited. Under Windows 95, the USER and GDI heap resources are greater
than Windows 3.1, but not as great as under Windows NT.

MORE INFORMATION

If the amount of free system resources remains low after the
application is exited, it is more likely that the GDI heap is filling.
The main reason for the GDI heap filling is that GDI objects that are
created by the application are not deleted or destroyed when they are
no longer needed, or when the program terminates. Windows does not
delete GDI objects (pens, brushes, fonts, regions, and bitmaps) when
the program exits. Objects must be properly deleted or destroyed.

NOTE: Win32-based applications cannot cause the USER or GDI heaps to
overflow when they terminate, because the system will release the resources
to maximize available resources.

The following are two situations that can cause the USER heap to get
full:

1. Memory is allocated for "extra bytes" associated with window
 classes and windows themselves. Make sure that the cbClsExtra and
 cbWndExtra fields in the WNDCLASS structure are set to 0 (zero),
 unless they really are being used.

2. Menus are stored in the USER heap. If menus are added but are not
 destroyed when they are no longer needed, or when the application
 terminates, system resources will go down.

CreateWindow() will also fail under the following conditions:

1. Windows cannot find the window procedure listed in the
 CreateWindow() call. Avoid this by ensuring that each window
 procedure is listed in the EXPORTS section of the program's DEF
 file.

2. CreateWindow() cannot find the specified window class.

3. The hwndparent is incorrect (make sure to use debug Windows to see
 the RIPs).

4. CreateWindow() cannot allocate memory for internal structures in
 USER heap.

5. The application returns 0 (zero) to the WM_NCCREATE message.

6. The application returns -1 to the WM_CREATE message.

Additional reference words: 3.00 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: UsrWndw

Reducing the Count on a Semaphore Object

PSS ID Number: Q94997
Authored 28-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

ReleaseSemaphore(), which increments the count of a given semaphore object
by a specified amount, will not take a negative value.

If, for some reason, you want to reduce the number of available semaphore
"slots" to temporarily restrict or reduce access, you may loop calling
WaitForSingleObject() with a zero timeout, counting the number of times it
succeeds. When you no longer need to hold the semaphore slots, call
ReleaseSemaphore() with the number of slots counted.

Note that this method does not prevent other threads from taking a
semaphore slot when your thread is looping.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Registering Multiple RPC Server Interfaces

PSS ID Number: Q129975
Authored 09-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

When registering multiple server interfaces from multiple threads or from
a single thread under the same process, the RpcServerListen() function
should be called only once.

An application process may register two completely separate Remote
Procedure Call (RPC) server interfaces from two separate threads or from a
single thread. However, when doing so, the RpcServerListen() function
should be called only once from any thread.

RPC APIs are called on a per process basis. From the perspective of RPC run
times, a process can register multiple interfaces using one or more
protocol sequences, but must call the RpcServerListen() function only once
from any one thread. Calling the RpcServerListen() function more than once
results in the run time generating an exception called
RPC_S_ALREADY_LISTENING.

Additional reference words: 3.50
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkRpc

RegSaveKey() Requires SeBackupPrivilege

PSS ID Number: Q106383
Authored 07-Nov-1993 Last modified 20-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The description for RegSaveKey() states the following:

 The caller of this function must possess the SeBackupPrivilege
 security privilege.

This means that the application must explicitly open a security token and
enable the SeBackupPrivilege. By granting a particular user the right to
back up files, you give that user the right only to gain access to the
security token (that is, the token is not automatically created for the
user but the right to create such a token is given). You must add
additional code to open the token and enable the privilege.

MORE INFORMATION

The following code demonstrates how to enable SeBackupPrivilege:

 static HANDLE hToken;
 static TOKEN_PRIVILEGES tp;
 static LUID luid;

 // Enable backup privilege.

 OpenProcessToken(GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken) ;
 LookupPrivilegeValue(NULL, "SeBackupPrivilege", &luid);
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
 AdjustTokenPrivileges(hToken, FALSE, &tp,
 sizeof(TOKEN_PRIVILEGES), NULL, NULL);

 // Insert your code here to save the registry keys/subkeys.

 // Disable backup privilege.

 AdjustTokenPrivileges(hToken, TRUE, &tp, sizeof(TOKEN_PRIVILEGES),
 NULL, NULL);

Note that you cannot create a process token; you must open the existing
process token and adjust its privileges.

The DDEML Clock sample has similar code sample at the end of the CLOCK.C
file where it obtains the SeSystemTimePrivilege so that it can set the
system time.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Removing Focus from a Control When Mouse Released Outside

PSS ID Number: Q66947
Authored 14-Nov-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

Under normal circumstances, when you move the mouse cursor into the client
area of a child-window control, click it, and then release the mouse
button, the child window sends a WM_COMMAND message to its parent and
retains the focus.

If you move the mouse into the client area of the child-window control,
press the mouse button, move the mouse cursor out of the client area of the
control, and then release the mouse button, the control does not send a
WM_COMMAND message. However, the control retains the focus.

If you do not want the control to retain the focus, you can remove it by
performing the following steps:

1. Define a static Boolean flag in the parent window function.

2. When a WM_PARENTNOTIFY message is received, set the flag to TRUE.
 This indicates that the mouse button has been pressed while the
 mouse cursor is in the client area of the control.

3. If a WM_COMMAND message is received, reset the flag to FALSE and
 perform normal processing.

4. Otherwise, if a WM_MOUSEMOVE message is received, the mouse button
 was released after the mouse cursor was moved outside the control.
 Reset the flag to FALSE, and use SetFocus() to move the focus to
 the desired window.

MORE INFORMATION

When the mouse cursor is in the client area of a control and you press the
mouse button, the parent window will receive a WM_PARENTNOTIFY message and
a WM_MOUSEACTIVATE message. A Boolean (BOOL) flag should be set when the
message is processed to indicate that this occurred.

The parent window will receive other messages, including a number of
WM_CTLCOLOR messages, when the mouse is moved around with the mouse button
down. When the mouse button is released, the parent window receives only
one of two messages:

1. WM_COMMAND: The mouse button was released over the control.

2. WM_MOUSEMOVE: The mouse button was released outside the control.

Note that these are not the only messages received when the button is
released, but these two are mutually exclusive.

In response to either message, the following steps must take place:

1. Reset the flag indicating a mouse press.

2. Call SetFocus() or send a WM_KILLFOCUS to the control in question
 to move the focus as desired.

If WM_KILLFOCUS is used, the ID of the control or its handle must be known.
SetFocus(NULL) or SetFocus(hWndParent) removes the focus from the control
but does not set the focus to any other control in the window.

In a dialog box, SetFocus(NULL) MUST be used. SetFocus(hDlg) does not
remove the focus from the button.

The following code sample is taken from the dialog box procedure of a
dialog that has a single OK button. If the mouse button is pressed while
the mouse cursor is over the button, the mouse is moved outside the button,
and then the mouse button is released, the focus is removed from the OK
button.

BOOL FAR PASCAL AboutProc(HWND hDlg, unsigned iMessage,
 WORD wParam, LONG lParam)
 {
 static BOOL fMousePress;

 switch (iMessage)
 {
 case WM_INITDIALOG:
 fMousePress = FALSE;
 return TRUE;

 case WM_PARENTNOTIFY: // or WM_MOUSEACTIVATE
 fMousePress = TRUE;
 break;

 case WM_MOUSEMOVE:
 if (fMousePress)
 SetFocus(NULL);
 fMousePress = FALSE;
 break;

 // Only command is the OK button.
 case WM_COMMAND:
 if (wParam == IDOK)
 EndDialog(hDlg, TRUE);
 break;
 }
 return FALSE;
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

Replace IsTask() with GetExitCodeProcess()

PSS ID Number: Q108228
Authored 07-Dec-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

In Windows 3.1, the application programming interface (API) IsTask() can be
used to determine whether a process is still running or whether it has
terminated. As the help file indicates, this function is obsolete in the
Win32 API.

To get this functionality through the Win32 API, use the API
GetExitCodeProcess(). This function takes the handle as the first parameter
and returns the exit code or STILL_ACTIVE in the second parameter:

 BOOL GetExitCodeProcess(hProcess, lpdwExitCode)

 HANDLE hProcess;
 LPDWORD lpdwExitCode;

As an alternative, you can also use WaitForSingleObject(). Pass the process
handle as the first parameter and a timeout value for the second parameter:

 DWORD WaitForSingleObject(hObject, dwTimeout)

 HANDLE hObject;
 DWORD dwTimeout;

The process handle is signaled when the process terminates. Pass in 0
(zero) for the timeout if you would like to poll or start another thread to
wait with an INFINITE timeout value.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Replacing the Shell (Program Manager)

PSS ID Number: Q100328
Authored 20-Jun-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

To replace the current shell, change the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Shell

Note that Program Manager combines the functionality of Program Manager and
Task Manager (the Task Manager installed is not actually run). Therefore,
you must take this into account. In Windows NT 3.1, if the new shell does
not replace the Task Manager functionality, the replacement string should
contain both the new shell name and TASKMAN.EXE, separated by commas. In
Windows NT 3.5, the new shell should either spawn TASKMAN.EXE or your own
task manager, specified in

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Taskman

The value does not exist by default, it must be added. The value type is
REG_SZ.

To update the string that is retrieved when you call
GetPrivateProfileString(), change the string in the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 MICROSOFT\
 Windows NT\
 Current Version\
 WOW\
 Boot\
 Shell

The duplicate entry is for compatibility with Windows 3.1.

MORE INFORMATION

WritePrivateProfileString() changes the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 WOW\
 Boot\
 Shell

It does not have the desired effect of actually changing the Shell.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Replacing the Windows NT Task Manager

PSS ID Number: Q89373
Authored 21-Sep-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Under Windows 3.1, the Task Manager is an easily replaceable program.
However, under the Win32 subsystem of Windows NT, it is very difficult to
replace the Task Manager, due to special programming considerations. In
general, it is not recommended that users attempt this.

MORE INFORMATION

Special requirements for the Task Manager make it very different from the
Windows 3.1 Task Manager. The EndTask button handling is done through
internal application programming interface (API) functions. These API
functions are not documented. The situation is the same for handling
foreground management, hung applications, and priority issues (to make sure
that the Task Manager will come up as fast as possible). In addition, the
Windows NT Task Manager uses shortcut ("hot") keys.

In Windows NT 3.1, the Task List has been incorporated into the Program
Manager. To remove the Task List, you must also remove the Program Manager.
The full functionality of the Task List (as found in TASKMAN.EXE) is now
folded into the Program Manager (PROGMAN.EXE). If you completely delete the
TASKMAN.EXE file from your system and from the registry location

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 WinLogon\
 Shell

you will still be able to invoke the Task List because it is built into the
Program Manager.

In Windows NT 3.5, Program Manager checks the registry for a Taskman entry.
If the Taskman entry is found, Program Manager will launch the application,
instead of using its built-in Taskman. The registry entry is:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\

 CurrentVersion\
 Winlogon\
 Taskman

This entry does not not exist by default. You will have to create this
value, with type REG_SZ.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Replacing Windows NT Control Panel's Mouse Applet

PSS ID Number: Q110704
Authored 27-Jan-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The Control Panel includes a Mouse applet as a standard applet that is
shipped with the system. In Windows 3.1, this applet can be overridden by
an ISV/OEM's mouse driver or module. Windows 3.1 accomplished this by the
Control Panel doing a GetModuleHandle() call on "Mouse". If MOUSE.DLL or
MOUSE.EXE was already loaded in the system, Control Panel would look for
the entry point "CPlApplet". If found, Control Panel would send the
following messages:

 CPL_NEWINQUIRE

 -or-

 CPL_INQUIRE (the former is preferred)

This would return the icon and strings to replace the mouse icon already in
Control Panel.

In Windows NT, because of the separation of Kernel drivers from
applications by the client-server interface, the GetModuleHandle() call
does not work. Consequently, the same functionality must be achieved in a
slightly different way. The Control Panel calls LoadLibrary("Mouse") to
look for a MOUSE.DLL or a MOUSE.EXE. If this call fails, no other checks
are made.

If LoadLibrary() succeeds, the Control Panel looks for the "CPlApplet"
entry point, sends a CPL_INIT message, and then sends a CPL_NEWINQUIRE. If
CPL_NEWINQUIRE fails, a CPL_INQUIRE is sent; however, it is preferable to
have the applet implement the newer CPL_NEWINQUIRE message. The string
information returned by the CPL_NEWINQUIRE message can be in either UNICODE
or ANSI (UNICODE is preferred) as long as the dwSize field is set
correctly. See the CPL.H public header file for these messages and
structures (for example CPLINFOW or CPLINFOA, where CPLINFOW is the
default).

When the User double-clicks the Mouse applet icon, the MOUSE.DLL or
MOUSE.EXE will receive a CPL_DBLCLK message from the CPlApplet interface.
This routine must return TRUE to the Control Panel if the routine runs its
own dialog. If FALSE is returned, the internal Mouse Dialog box will be
presented to the User.

The Control Panel will send the CPL_EXIT message to the Mouse applet when
it wants to unload the module or terminate. The applet must use this
message to perform tasks such as calling UnRegisterWindowClass(), freeing
memory, and unloading DLLs.

NOTE: It is not possible to replace any of the other standard Windows NT
3.1 Control Panel applets. As of Windows NT 3.5, it is also possible to
replace the Keyboard applet in the same manner.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrMisc

Resource Sections are Read-only

PSS ID Number: Q126630
Authored 27-Feb-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0
 - Microsoft Win32s versions 1.2

SUMMARY

Resource sections are read-only by default under Windows NT and Win32s.
However, under Windows NT, the resource section may appear to be
read/write. If an application tries to write to the resource section, an
exception occurs. Windows NT handles the exception by duplicating the page
and making it read/write. Therefore, under Windows NT it is possible to
write to the resource section, even though its section attribute is
read-only.

In Win32s version 1.2, the resource section is read-only and you cannot
write to it. To work around this, link with /SECTION:.rsrc,rw to make the
resource section read/write. Or copy the resource to your own buffer and
work with it from there. You cannot modify the protection of the resource
section because the memory is owned by the system.

In Win32s version 1.25a and later, the resource section is read/write,
regardless of what is specified in the section attributes.

Windows 95 has a handler similar to the one used in Windows NT.

MORE INFORMATION

Under Windows NT, the default top level handler detects writes to
resources and will make the resource writable. If you are running outside
of a debugger and you have no exception handler, your resource writes will
silently work. If you are running under the debugger, your resource write
will look like an access violation:

 First-Chance Exception in msin32.exe: 0xC0000005: Access Violation

This allows you to "fix" your resource writes. If you have the debugger
pass on the exception to your application and you have no handler, the
default handler will make your resource writable.

The disadvantage of setting the attribute of the resource section to
read/write is that Windows NT and Windows 95 will use a separate copy of
the resource section for each process that uses this section, instead of
one copy for all processes.

Additional reference words: 1.20 3.50 4.00 LoadResource LockResource

KBCategory: kbprg
KBSubcategory: UsrRes W32s

Restriction on Named-Pipe Names

PSS ID Number: Q100291
Authored 17-Jun-1993 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51

Named pipes are implemented in Windows NT using the same approach used for
file systems. Within Windows NT, named pipes are represented as file
objects.

During the design phase, one idea for the implementation was to allow
subdirectories of named pipes. For example, a developer could create a
named pipe subdirectory called \MYPIPES. It would then be possible to
create and use pipes called \MYPIPES\PIPE1 and \MYPIPES\PIPE2, but it would
not be possible to use \MYPIPES as a pipe.

In the end, this idea was not implemented, so subdirectories are not
supported. This does have some effect on the named-pipe names that are
allowed. If a pipe named \MYPIPES is created, it is not possible to
subsequently create a pipe named \MYPIPES\PIPE1, because \MYPIPES is
already a pipe name and cannot be used as a subdirectory. It is possible to
create a pipe named \MYPIPES\PIPE1, but only if there is no pipe named
\MYPIPES. The error recieved is ERROR_INVALID_NAME (123).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Results of GetFileInformationByHandle() Under Win32s

PSS ID Number: Q123813
Authored 11-Dec-1994 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.2 and 1.25a

The GetFileInformationByHandle() function returns information about the
given file in a structure of type BY_HANDLE_FILE_INFORMATION.

The following are the BY_HANDLE_FILE_INFORMATION structure fields and
the values they contain under Win32s:

 dwFileAttributes - Always 0 in version 1.2 (A bug that has been fixed.)
 ftCreationTime - Always 0. (An MS-DOS file system limitation.)
 ftLastAccessTime - Always 0. (An MS-DOS file system limitation.)
 ftLastWriteTime - Correct value.
 dwVolumeSerialNumber - Always 0. (A Win32s limitation.)
 nFileSizeHigh - Correct value.
 nFileSizeLow - Correct value.
 nNumberOfLinks - Always 1.
 nFileIndexHigh - Always 0. (A Win32s limitation.)
 nFileIndexLow - Always 0. (A Win32s limitation.)

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Retrieving Counter Data From the Registry

PSS ID Number: Q107728
Authored 24-Nov-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

SUMMARY

The performance data begins with a structure of type PERF_DATA_BLOCK and is
followed by PERF_DATA_BLOCK.NumObjectTypes data blocks. Each data block
begins with a structure of type PERF_OBJECT_TYPE, followed by
PERF_OBJECT_TYPE.NumCounters structures of type PERF_COUNTER_DEFINITION.
Next, there are PERF_OBJECT_TYPE.NumInstances structures of type
PERF_INSTANCE DEFINITION, each directly followed by an instance name, a
structure of type PERF_COUNTER_BLOCK and PERF_OBJECT_TYPE.NumCounters
counters. All of these data types are described in WINPERF.H.

MORE INFORMATION

The following steps are used to retrieve all of the counter information
from the registry:

1. Allocate a buffer to obtain the performance data. Call
 RegQueryValueEx() to obtain the data. If the call returns
 ERROR_MORE_DATA, then the buffer size was not big enough. Increase the
 size of the buffer and try again. Repeat until the call is successful.

 PPERF_DATA_BLOCK PerfData = NULL;

 PerfData = (PPERF_DATA_BLOCK) malloc(BufferSize);

 while(RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 "Global",
 NULL,
 NULL,
 PerfData,
 &dwSize) == ERROR_MORE_DATA)
 {
 BufferSize += 1024;

 PerfData = (PPERF_DATA_BLOCK) realloc(PerfData, BufferSize);
 if(PerfData == NULL)
 break;
 }

2. Get the first object:

 PPERF_OBJECT_TYPE PerfObj;

 PerfObj = (PPERF_OBJECT_TYPE) ((PBYTE)PerfData +
 PerfData->HeaderLength);

3. Get the first instance:

 PPERF_INSTANCE_DEFINITION PerfInst;

 PerfInst = (PPERF_INSTANCE_DEFINITION) ((PBYTE)PerfObj +
 PerfObj->DefinitionLength);

4. Get the first counter:

 PPERF_COUNTER_DEFINITION PerfCntr;

 PerfCntr = (PPERF_COUNTER_DEFINITION) ((PBYTE)PerfObj +
 PerfObj->HeaderLength);
5. Get the counter data:

 PPERF_COUNTER_BLOCK PtrToCntr;
 PVOID CntrData;

 if(PerfInst != NULL)
 PtrToCntr = (PPERF_COUNTER_BLOCK) ((PBYTE)PerfInst +
 PerfInst.ByteLength);
 else PtrToCntr = (PPERF_COUNTER_BLOCK) ((PBYTE)PerfObj +
 PerfObj.DefinitionLength);
 PVOID CntrData = (PVOID)((PBYTE)PtrToCntr + PerfCntr.CounterOffset);

6. Get the next counter, repeat steps 5 and 6 until all NumCounters
 counters are retrieved:

 PerfCntr = (PPERF_COUNTER_DEFINITION) ((PBYTE)PerfCntr +
 PerfCntr->ByteLength);

7. After all the counters are retrieved for the instance, get the next
 instance, repeat steps 4-6 until all NumInstances instances are
 retrieved:

 PPERF_COUNTER_BLOCK PtrToCntr;
 PPERF_INSTANCE_DEFINITION PerfInst;

 PtrToCntr = (PPERF_COUNTER_BLOCK) ((PBYTE) PerfInst +
 PerfInst->ByteLength);
 PerfInst = (PPERF_INSTANCE_DEFINITION) ((PBYTE) PtrToCntr +
 PtrToCntr->ByteLength);

8. After all instances of the object type are retrieved, move to the next
 object type, repeat steps 3-7 until all NumObjectTypes object types are
 handled:

 PerfObj = (PPERF_OBJECT_TYPE)((PBYTES)PerfObj +
 PerfObj.TotalByteLength);

Note that the instance names are retrieved in a fashion that is similar to

retrieving the data.

The steps above showed how to obtain all of the counters. You can retrieve
only the counters that pertain to a particular object by using the titles
database. The information is stored in the registry in the format index,
name, index, name, and so forth.

To retrieve the titles database and store it in TitlesDatabase:

1. Open the key:

 RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "Software\\Microsoft\\Windows NT\\CurrentVersion\\Perflib\\009",
 0,
 KEY_READ,
 &Hkey);

 Note that 009 is a language ID, so this value will be different on a
 non-English version of the operating system.

2. Query the information from the key:

 RegQueryInfoKey(
 Hkey,
 (LPTSTR) Class,
 &ClassSize,
 NULL,
 &Subkey,
 MaxSubKey,
 &MaxClass,
 &Values,
 &MaxName,
 &MaxData,
 &SecDesc,
 &LastWriteTime);

3. Allocate a buffer to store the information:

 TitlesDataBase = (PSTR) malloc((MaxData+1) * sizeof(TCHAR))

4. Retrieve the data:

 RegQueryValueEx(Hkey,
 (LPTSTR) "Counters",
 NULL,
 NULL,
 (LPBYTE) TitlesDataBase,
 &MaxData);

Once you have the database, it is possible to write code that will go
through all objects, searching by index (field ObjectNameTitleIndex) or by
type (field ObjectNameTitle - which is initially NULL).

Or, you could obtain only the performance data for specified objects by
changing the call to ReqQueryValueEx() in step 1 of the SUMMARY section

above to:

 RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 Indices,
 NULL,
 NULL,
 PerfData,
 &dwSize);

Note that the only difference here is that instead of specifying "Global"
as the second parameter, you specify a string that represents the decimal
value(s) for the object(s) of interest that are obtained from the titles
database.

The PVIEWER and PERFMON samples in the MSTOOLS\SAMPLES\SDKTOOLS directory
contain complete sample code that deals with performance data. The
"Performance Overview" and Volume 3 of the Windows NT Resource Kit also
contain information about performance monitoring.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Retrieving DIBs from the Clipboard

PSS ID Number: Q106386
Authored 07-Nov-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Retrieving a DIB (device-independent bitmap) from the clipboard can take
significantly more time than retrieving a bitmap from the clipboard. The
difference stems from the fact that a bitmap is a GDI object and a DIB is a
global memory object.

MORE INFORMATION

When SetClipBoardData() is passed a global memory handle, as it is when it
is passed a handle to a DIB, all the data gets copied into the Win32 server
and put into a sharable section of memory. When the DIB is retrieved with
GetClipBoardData(), the shared memory is mapped into the application's
virtual address space and the memory handle is cached. Any subsequent calls
to GetClipBoardData() return quickly, because the memory does not have to
be remapped.

In contrast, when retrieving a bitmap with GetClipBoardData(), only a
handle is created, because a bitmap is a GDI object.

When CloseClipboard() is called, all of the cached handles to shared memory
and GDI objects are deleted.

Rather than reopening the clipboard, it is a good idea to keep a local copy
of anything retrieved from the clipboard if the item will be used again
after the clipboard has been closed. In general, data should be retrieved
from the clipboard only when the application is doing a paste or if the
application is a clipboard viewer processing a WM_DRAWCLIPBOARD message.

The data for a GDI object exists on the server side. In other words,
bitmaps and DDBs (device-dependent bitmaps) exist in the Win32 subsystem
address space. Only the handles of GDI objects are private to an
application. Therefore, to make a bitmap or a DDB accessible to another
application, only a call to DuplicateHandle() is needed.

Note that even though it is faster to retrieve a DDB from the clipboard, it
is still recommended to put a DIB on the clipboard rather than a DDB.

Additional reference words: 3.10 3.50 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrClp

Retrieving Font Styles Using EnumFontFamilies()

PSS ID Number: Q84131
Authored 29-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Windows version 3.1 introduces the concept of a font style. In
previous versions of Windows, a font could have the bold, italic,
underline, and strikeout properties, which were supported by
respective members in the LOGFONT and TEXTMETRIC structures. Windows
3.1 also supports these properties, as well as a style name for
TrueType fonts. The article describes how to obtain the font style
name during font enumeration, using the EnumFontFamilies function. For
more information about obtaining style information without enumerating
the fonts, query on the following words in the Microsoft Knowledge
Base:

 prod(winsdk) and getoutlinetextmetrics

MORE INFORMATION

In Windows 3.1, "style" refers to the weight and slant of a font.
Windows supports a wide range of weights in the lfWeight member of the
LOGFONT structure. (Two examples of weights are FW_BOLD, which is
defined as 700, and FW_THIN, which is defined as 100). Very few
applications, however, use any weights other than FW_BOLD and
FW_DONTCARE (defined as 0).

Windows 3.1 builds on the support presently in Windows for these
variations in weight and slant. Style names are NOT used in the
LOGFONT structure except when the fonts are enumerated with
EnumFontFamilies.

The ChooseFont dialog box in the common dialog boxes dynamic-link
library (COMMDLG.DLL) demonstrates how style names are used. The
ChooseFont dialog box has two list boxes: Font and Font Style. The
Font list box lists the face names for all fonts installed and the
Font Style list box lists the font styles for the currently selected
face. For example, if any non-TrueType font (such as MS Sans Serif) is
selected, the following styles appear in the Font Style list box:

 Regular
 Bold
 Italic
 Bold Italic

TrueType fonts may have these or more elaborate styles. For example,
the "Lucida Sans" face includes the following style names:

 Regular
 Italic
 Demibold Roman
 Demibold Italic

In the case of Lucida Sans with the style of Demibold Roman or
Demibold Italic, the lfWeight value is 600 (FW_DEMIBOLD).

In Windows 3.1, the EnumFontFamilies function can be used to obtain
the style name of a font during font enumeration. The EnumFontFamilies
function works in a manner very similar to the Windows 3.0 EnumFonts
function.

EnumFontFamilies is prototyped as:

 int EnumFontFamilies(HDC hdc, LPCSTR lpszFamily,
 FONTENUMPROC lpfnEnumProc, LPARAM lpData)

The lpszFamily parameter points to a null-terminated string that
specifies the family name (or typeface name) of the desired fonts. If
this parameter is NULL, EnumFontFamilies selects and enumerates one
font of each available font family. For example, to enumerate all
fonts in the "Arial" family, lpszFamily points to a string buffer
containing "Arial."

The following table illustrates the meanings of the terms, "typeface
name," "font name," and "font style:"

 Typeface Name Font Name Font Style
 ------------- --------- ----------

 Arial Arial Regular
 Arial Bold Bold
 Arial Italic Italic
 Arial Bold Italic Bold Italic

 Courier New Courier New Regular
 Courier New Bold Bold
 Courier New Italic Italic
 Courier New Bold Italic Bold Italic

 Lucida Sans Lucida Sans Regular
 Lucida Sans Italic Italic
 Lucida Sans Demibold Roman Demibold Roman
 Lucida Sans Demibold Italic Demibold Italic

 MS Sans Serif MS Sans Serif Regular
 MS Sans Serif Bold
 MS Sans Serif Italic
 MS Sans Serif Bold Italic

The first three typefaces in the above table are TrueType faces, the

remaining typeface is MS Sans Serif. The typeface name is also
sometimes referred to as the family name.

When dealing with non-TrueType fonts, typeface name and font name are
the same. However, it is important to recognize the distinction when
dealing with a TrueType font.

For example, CreateFont takes a pointer to a string containing the
typeface name of the font to create. It is not valid to use Arial Bold
as this string because Arial is a TrueType font and Arial Bold is a
font name, not a typeface name.

If EnumFontFamilies is called with the lpszFamily parameter pointing
to a valid TrueType typeface name, the callback function, which is
specified in fntenmprc, will be called once for each font name for
that typeface name. For example, if EnumFontFamilies is called with
lpszFamily pointing to Lucida Sans, the callback function will be
called four times; once for each font name.

If the lpszFamily parameter points to the typeface name of a non-
TrueType font, such as MS Sans Serif, the callback will be called once
for each face size supported by the font. The number of face sizes
supported by the font can vary from font to font and from device to
device. Note that the callback is called for different sizes, not for
different styles. This behavior is identical to that found using the
EnumFonts function.

Remember that, because TrueType fonts are continuously scalable, there
is no reason for the callback function to be called for each size. If
the callback function was called for each size that a TrueType font
supported, the callback function would be called an infinite number of
times!

The EnumFontFamilies callback function is prototyped as follows:

int CALLBACK EnumFontFamProc(LPNEWLOGFONT lpnlf,
 LPNEWTEXTMETRIC lpntm,
 int FontType, LPARAM lpData)

The lpnlf parameter points to a LOGFONT structure that contains
information about the logical attributes of the font. If the typeface
being enumerated is a TrueType font [(nFontType | TRUETYPE_FONTTYPE)
is TRUE], this LOGFONT structure will have two additional members
appended to the end of the structure, as follows:

 char lfFullName[LF_FACESIZE*2];
 char lfStyleName[LF_FACESIZE];

It is important to remember that these two additional fields are used
only during enumeration with EnumFontFamilies and nowhere else in
Windows. The documentation for the EnumFontFamilies function on pages
266-268 of the "Microsoft Windows Software Development Kit:
Programmer's Reference, Volume 2: Functions" manual refers to the
NEWLOGFONT structure which contains the additional members listed
above. However, the NEWLOGFONT structure is not defined in the

WINDOWS.H header file. To address this situation, use the ENUMLOGFONT
structure which is defined in the WINDOWS.H file but is not listed in
the Windows SDK documentation.

To retrieve the style name and full name of a font without using
enumeration, use the GetOutlineTextMetrics function.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiTt

Retrieving Handles to Menus and Submenus

PSS ID Number: Q67688
Authored 11-Dec-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

To change the contents of a menu, you must have its handle. The handle
of the menu associated with a given window is available through the
GetMenu() function.

To obtain a reference to a particular text item in the menu, use the
GetMenuString() function. The definition for this function is

 GetMenuString(hMenu, wIDItem, lpString, nMaxCount, wFlag)

where

 hMenu = The menu handle
 wIDItem = The ID of the item or the zero-based offset of the
 item within the menu
 lpString = The buffer that is to receive the text
 nMaxCount = The length of the buffer
 wFlag = MF_BYCOMMAND or MF_BYPOSITION

If a menu item has a mnemonic, the text will contain an ampersand (&)
character preceding the mnemonic character.

To obtain the handle to a submenu of the menu bar, use the
GetSubMenu() function. The second parameter, nPos, is the zero-based
offset from the beginning of the menu.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMen

Retrieving Palette Information from a Bitmap Resource

PSS ID Number: Q124947
Authored 17-Jan-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

You may sometime need to create a logical palette from a bitmap resource in
order to display the bitmap with the maximum number of available colors.
For example, on an 8 bit-per-pixel display, a logical palette is necessary
to draw a 256-color bitmap on a device context for that display. The
LoadBitmap function does not return or take a palette as one of its
parameters; thus, for example, there is no way to incorporate a palette
with a 256-color bitmap loaded with LoadBitmap. Therefore, an application
must load the resource as a device-independent bitmap (DIB), rather than a
device-dependent bitmap (DDB), in order to retrieve the bitmap's color
information. An application can use the FindResource, LoadResource, and
LockResource functions to do this.

MORE INFORMATION

A bitmap (.BMP file) is stored in an application's resources as a (DIB),
along with a color table if one exists. When a DIB is loaded from an
application's resources with the LoadBitmap function, a DDB is returned.
This DDB is a bitmap compatible with the screen. Routines such as
CreateDIBitmap and SetDIBits that convert DIBs to DDBs take a handle to a
device context as their first parameter. This tells the routine what kind
of DDB to create. If this device context currently has a palette selected
into it, then CreateDIBitmap or SetDIBits can use this palette to create
the DDB. Without a palette, the routines are restricted to system colors
when matching the DIB's colors to the DDB's colors. For example, on an 8
bit-per-pixel display, the resulting DDB can have only up to 20 different
colors. With a logical palette, the resulting bitmap could have had up to
256 different colors.

If the bitmap is loaded as a DIB from the resource, then an application can
query the DIB's color table and create a logical palette for the DIB. Then,
it can call either CreateDIBitmap or SetDIBits, along with a device context
with that palette selected, to obtain a DDB compatible with that palette.
To load a bitmap from a resource as a DIB, you can use the FindResource
function with the RT_BITMAP flag set and then use the LoadResource function
to load it. You can lock the resource with the LockResource function.

The following code demonstrates how to use the above technique to load a
DIB from an application's resources, create a palette for it, and then
create a DDB out of it. The LoadResourceBitmap function below can be used

in place of the LoadBitmap function. The only additional parameter needed
is the address of a logical palette handle. The palette handle referenced
will contain a handle to a logical palette after the function is called.

HBITMAP LoadResourceBitmap(HINSTANCE hInstance, LPSTR lpString,
HPALETTE FAR* lphPalette)
{
 HRSRC hRsrc;
 HGLOBAL hGlobal;
 HBITMAP hBitmapFinal = NULL;
 LPBITMAPINFOHEADER lpbi;
 HDC hdc;
 int iNumColors;

 if (hRsrc = FindResource(hInstance, lpString, RT_BITMAP))
 {
 hGlobal = LoadResource(hInstance, hRsrc);
 lpbi = (LPBITMAPINFOHEADER)LockResource(hGlobal);

 hdc = GetDC(NULL);
 *lphPalette = CreateDIBPalette ((LPBITMAPINFO)lpbi, &iNumColors);
 if (*lphPalette)
 {
 SelectPalette(hdc,*lphPalette,FALSE);
 RealizePalette(hdc);
 }

 hBitmapFinal = CreateDIBitmap(hdc,
 (LPBITMAPINFOHEADER)lpbi,
 (LONG)CBM_INIT,
 (LPSTR)lpbi + lpbi->biSize + iNumColors *
sizeof(RGBQUAD),

 (LPBITMAPINFO)lpbi,
 DIB_RGB_COLORS);

 ReleaseDC(NULL,hdc);
 UnlockResource(hGlobal);
 FreeResource(hGlobal);
 }
 return (hBitmapFinal);
}

HPALETTE CreateDIBPalette (LPBITMAPINFO lpbmi, LPINT lpiNumColors)
{
 LPBITMAPINFOHEADER lpbi;
 LPLOGPALETTE lpPal;
 HANDLE hLogPal;
 HPALETTE hPal = NULL;
 int i;

 lpbi = (LPBITMAPINFOHEADER)lpbmi;
 if (lpbi->biBitCount <= 8)
 *lpiNumColors = (1 << lpbi->biBitCount);
 else

 *lpiNumColors = 0; // No palette needed for 24 BPP DIB

 if (*lpiNumColors)
 {
 hLogPal = GlobalAlloc (GHND, sizeof (LOGPALETTE) +
 sizeof (PALETTEENTRY) * (*lpiNumColors));
 lpPal = (LPLOGPALETTE) GlobalLock (hLogPal);
 lpPal->palVersion = 0x300;
 lpPal->palNumEntries = *lpiNumColors;

 for (i = 0; i < *lpiNumColors; i++)
 {
 lpPal->palPalEntry[i].peRed = lpbmi->bmiColors[i].rgbRed;
 lpPal->palPalEntry[i].peGreen = lpbmi->bmiColors[i].rgbGreen;
 lpPal->palPalEntry[i].peBlue = lpbmi->bmiColors[i].rgbBlue;
 lpPal->palPalEntry[i].peFlags = 0;
 }
 hPal = CreatePalette (lpPal);
 GlobalUnlock (hLogPal);
 GlobalFree (hLogPal);
 }
 return hPal;
}

Here is an example of how you might use the above function to load a bitmap
from a resource and display it using a logical palette:

 {
 HBITMAP hBitmap,hOldBitmap;
 HPALETTE hPalette;
 HDC hMemDC, hdc;
 BITMAP bm;

 hBitmap = LoadResourceBitmap(hInst,"test", &hPalette);
 GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm);
 hdc = GetDC(hWnd);
 hMemDC = CreateCompatibleDC(hdc);
 SelectPalette(hdc,hPalette,FALSE);
 RealizePalette(hdc);
 SelectPalette(hMemDC,hPalette,FALSE);
 RealizePalette(hMemDC);
 hOldBitmap = SelectObject(hMemDC,hBitmap);
 BitBlt(hdc,0,0,bm.bmWidth,bm.bmHeight,hMemDC,0,0,SRCCOPY);
 DeleteObject(SelectObject(hMemDC,hOldBitmap));
 DeleteDC(hMemDC);
 ReleaseDC(hWnd,hdc);
 DeleteObject(hPalette);
 }

REFERENCES

For more information on DIB-related functions, please review the Microsoft
Windows SDK sample DIBVIEW.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiBmp GdiBmpFormat

Retrieving the Style String for a TrueType Font

PSS ID Number: Q84132
Authored 29-Apr-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Windows version 3.1 introduces the concept of a font style. In
previous versions of Windows, a font could have bold, italic,
underline, and strikeout properties, which were supported by
corresponding members of the LOGFONT and TEXTMETRIC structures.
Windows 3.1 continues to support these properties, however, it also
supports the concept of a style name for TrueType fonts.

Windows use of style names can be demonstrated by the ChooseFont
dialog box in the common dialog boxes dynamic-link library
(COMMDLG.DLL). The ChooseFont dialog box contains two list boxes named
Font and Font Style. The Font list box contains a list of all face
names and the Font Style list box contains a list of font styles for
the currently selected face. For example, if any non-TrueType font
(such as MS Sans Serif) is selected, the following styles will appear
in the style list box:

 Regular
 Bold
 Italic
 Bold Italic

TrueType fonts may have these or more elaborate styles. For example,
the "Lucida Sans" face includes the following style names:

 Regular
 Italic
 Demibold Roman
 Demibold Italic

MORE INFORMATION

As part of the TrueType support, the GetOutlineTextMetrics function can be
used to retrieve metric information for TrueType fonts, including the style
name.

GetOutlineTextMetrics is prototyped as follows:

 DWORD GetOutlineTextMetrics(HDC hdc, UINT cbData,
 LPOUTLINETEXTMETRIC lpotm);

The hdc parameter identifies the device context. GetOutlineTextMetrics
retrieves the metric information for the font currently selected into
the specified device context. For GetOutlineTextMetrics to succeed,
the font must be a TrueType font. The sample code given below shows
how to synthesize the style name for a non-TrueType font.

The cbData parameter specifies the size, in bytes, of the buffer in
which information is returned.

The lpotm parameter points to an OUTLINETEXTMETRIC structure. If this
parameter is NULL, the function returns the size of the buffer
required for the retrieved metric information.

The OUTLINETEXTMETRIC structure contains most of the font metric
information provided with the TrueType format. The relative parts of
the structure are listed below:

 typedef struct tagOUTLINETEXTMETRIC {
 .
 .
 .
 PSTR otmpFamilyName;
 PSTR otmpFaceName;
 PSTR otmpStyleName;
 PSTR otmpFullName;
 } OUTLINETEXTMETRIC;

While these four members of the OUTLINETEXTMETRIC structure are
defined as near pointers to strings (PSTR), they are actually offsets
into the structure from the beginning of the structure. Because the
length of these strings is not defined, an application must allocate
space for them above and beyond the space allocated for the
OUTLINETEXTMETRIC structure itself. The sample code below demonstrates
this. It also demonstrates using GetOutlineTextMetrics in an
application that will also work with Windows 3.0.

 #include <windows.h>
 #include <windowsx.h>
 .
 .
 .
 HFONT hFont;
 LPOUTLINETEXTMETRIC potm;
 TEXTMETRIC tm;
 int cbBuffer;

 hFont = CreateFont(.....);

 hFont = SelectObject(hDC, hFont);

 /*
 * Call the GetTextMetrics function to determine whether or not the
 * font is a TrueType font.
 */
 GetTextMetrics(hDC, &tm);

 /*
 * GetOutlineTextMetrics is a function implemented in Windows 3.1
 * and later. Assume fWin30 was determined by calling GetVersion.
 */
 if (!fWin30 && tm.tmPitchAndFamily & TMPF_TRUETYPE)
 {
 WORD (WINAPI *lpfnGOTM)(HDC, UINT, LPOUTLINETEXTMETRIC);

 /*
 * GetOutlineTextMetrics is exported from
 * GDI.EXE at ordinal #308
 */
 lpfnGOTM = GetProcAddress(GetModuleHandle("GDI"),
 MAKEINTRESOURCE(308));

 /*
 * Call GOTM with NULL to retrieve the size of the buffer.
 */
 cbBuffer = (*lpfnGOTM)(hDC, NULL, NULL);

 if (cbBuffer == 0)
 {
 /* GetOutlineTextMetrics failed! */
 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);
 return FALSE;
 }

 /*
 * Allocate the memory for the OUTLINETEXTMETRIC structure plus
 * the strings.
 */
 potm = (LPOUTLINETEXTMETRIC)GlobalAllocPtr(GHND, cbBuffer);

 if (potm)
 {
 potm->otmSize = cbBuffer;

 /*
 * Call GOTM with the pointer to the buffer. It will
 * fill in the buffer.
 */
 if (!(*lpfnGOTM)(hDC, cbBuffer, potm))
 {
 /* GetOutlineTextMetrics failed! */
 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);
 return FALSE;
 }

 /*
 * Do something useful with the string buffers. NOTE: To access
 * the string buffers, the otmp???Name members are used as
 * OFFSETS into the buffer. They *ARE NOT* pointers themselves.

 */
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpFamilyName);
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpFaceName);
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpStyleName);
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpFullName);

 /* Don't forget to free the memory! */
 GlobalFreePtr(potm);
 }
 else
 {
 /* GlobalAllocPtr failed */
 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);
 return FALSE;
 }
 }
 else
 {
 /*
 * It was not a TrueType font, or Windows 3.0 is running.
 */
 LOGFONT lf;
 char szStyle[LF_FACESIZE];
 LPSTR p;

 GetObject(hFont, sizeof(LOGFONT), &lf);

 /*
 * Fabricate a style string. Important note! The strings
 * "Italic", "Bold", and "Regular" are only valid in English. On
 * versions of Windows localized for other countries, these
 * strings will differ.
 */
 szStyle[0] = '\0';

 if (lf.lfWeight >= FW_BOLD)
 lstrcpy(szStyle, "Bold ");

 /*
 * If it's "Bold Italic," concatenate.
 */
 p = szStyle + lstrlen(szStyle);

 if (lf.lfItalic)
 lstrcpy(p, "Italic");

 if (!lstrlen(szStyle))
 lstrcpy(szStyle, "Regular");

 /*
 * szStyle now holds what is equivalent to the otmpStyleName
 * member.
 */
 OutputDebugString(szStyle);

 }

 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiTt

Retrieving the Text Color from the Font Common Dialog Box

PSS ID Number: Q86331
Authored 02-Jul-1992 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The common dialog box library (COMMDLG.DLL) provides the ChooseFont()
routine that provides a common interface (Font dialog box) to specify the
attributes for a font in an application. When the user chooses the Apply
button in the Font dialog box, the application can format selected text
using the specified font. This button is also useful in an application that
allows the user to select more than one font simultaneously.

The Font dialog box provides a common method to specify a number of font
attributes, including color. An application can send the CB_GETITEMDATA
message to the Color combo box to retrieve the currently selected color.

This article discusses the procedure required to obtain all the information
about the currently specified font.

MORE INFORMATION

The Font dialog box includes an Apply button if the application includes
the CF_APPLY value in the specification for the Flags member of the
CHOOSEFONT data structure. The dialog box includes the Color combo box if
the CF_EFFECTS value is also specified. The remainder of this article
assumes that the application has specified both of these values.

To properly process input from the Apply button, an application must
install a hook function. For more information on installing a hook
function from an application, query on the following words in the
Microsoft Knowledge Base:

 steps adding hook function

The following code illustrates one method to process input from the Apply
button:

 case WM_COMMAND:
 switch (wParam)
 {
 case psh3: // The Apply button

 // Retrieve the font information...
 SendMessage(hDlg, WM_CHOOSEFONT_GETLOGFONT, 0,
 (LONG)(LPLOGFONT)&lfLogFont);

 // Perform any required processing
 // (create the specified font, for example)

 // Retrieve color information...
 iIndex = (int)SendDlgItemMessage(hDlg, cmb4,
 CB_GETCURSEL, 0, 0L);
 if (iIndex != CB_ERR)
 {
 dwRGB = SendDlgItemMessage(hDlg, cmb4, CB_GETITEMDATA,
 (WORD)iIndex, 0L);
 wRed = GetRValue(dwRGB);
 wGreen = GetGValue(dwRGB);
 wBlue = GetBValue(dwRGB);

 wsprintf(szBuffer, "RGB Value is %u %u %u\r\n", wRed,
 wGreen, wBlue);

 OutputDebugString(szBuffer);
 }
 break;

 default:
 break;
 }
 break;

The color information is not required to create the font; however, this
information is required to accurately display the font according to the
user's specification.

In an application that does not use the Apply button, the rgbColors member
of the CHOOSEFONT data structure contains the selected color. In this case,
no special processing to retrieve the color is required.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Retrieving Time-Zone Information

PSS ID Number: Q115231
Authored 22-May-1994 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5,
 3.51, and 4.0

In Windows NT, version 3.1, the time-zone strings are compiled into a
resource that is linked into the CONTROL.EXE file. For Windows NT, version
3.5 and later and Windows 95, the time-zone strings have been moved into
the registry.

In Windows NT, the time-zone strings are located in the key:

 HKEY_LOCAL_MACHINE\SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Time Zones.

In Windows 95, the time-zone strings are located in the key:

 HKEY_LOCAL_MACHINE\SOFTWARE\
 Microsoft\
 Windows\
 CurrentVersion\
 Time Zones.

For each time zone, the registry key TZI is formatted as follows:

 LONG Bias;
 LONG StandardBias;
 LONG DaylightBias;
 SYSTEMTIME StandardDate;
 SYSTEMTIME DaylightDate;

You can use this information to fill out a TIME_ZONE_INFORMATION structure,
which is used when calling SetTimeZoneInformation().

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseMisc

Returning CBR_BLOCK from DDEML Transactions

PSS ID Number: Q102584
Authored 04-Aug-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

DDEML servers are applications that provide data to client
applications. For some servers, this data gathering may be a lengthy
process, as when gathering data from sources such as serial ports or a
network. DDEML allows a server application to process data
asynchronously in these situations by returning CBR_BLOCK from the DDE
callback function.

MORE INFORMATION

In DDEML-based applications, while transactions can be either
synchronous or asynchronous, only DDEML client applications may choose
to establish either type of transaction when requesting data from a
server application. DDEML server applications do not distinguish
between synchronous and asynchronous transactions.

Asynchronous transactions can be very useful when client applications
know that the partner server application will take some time to gather
data. This type of transaction frees up the client to do other things
while waiting for a notification from the server of data availability.

Server applications have no way of determining whether the client
application has requested data synchronously or asynchronously.
Request transactions on the server's side are always synchronous. When
a client requests data, the server's callback receives an XTYP_REQUEST
transaction, where the expected return value is a data handle. If the
server application has to wait for data from a serial port, for
example, access to the CPU by other applications will be delayed,
thereby freezing the system until data arrives.

There are a couple of ways one can enable the server to gather data in
an asynchronous manner, thereby allowing it to yield to other
applications on the system while it gathers data. One method is to
use CBR_BLOCK; another is to change the request transaction to a
one-time ADVISE loop.

Method 1

Given that DDEML callbacks are not re-entrant, and that DDEML expects
a data handle as a return value from the XTYP_REQUEST transaction (and

transactions of XCLASS_DATA class), the server application can block
the callback momentarily. It can do this by returning a CBR_BLOCK
value after posting itself a user-defined message.

This way, the server application can gather data in the background
while DDEML queues up any further transactions. The server can start
gathering data when its window procedure gets the user defined message
that was posted by its DDE callback function.

When a server application returns CBR_BLOCK for a request transaction,
DDEML disables the server's callback function. It also queues
transactions that are sent by DDEML after its callback has been
disabled. This feature gives the server an opportunity to gather data
while allowing other applications to run in the system.

As soon as data becomes available, then the server application can
call DdeEnableCallBack() to re-enable the server callback function.
Once the callback is re-enabled, DDEML will resend the same request
transaction to the server's callback and this time, because data is
ready, the server application can return the appropriate data handle
to the client.

Transactions that were queued up because of an earlier block are sent
to the server's callback function in the order they were received by
DDEML.

The pseudo code to implement method 1 might resemble the following:

BOOL gbGatheringData = TRUE; // Defined GLOBAlly.
HDDEDATA ghData = NULL;

HDDEDATA CALLBACK DdeServerCallBack(...)
 {
 switch(txnType)
 {
 case XTYP_REQUEST:

 // If the server takes a long time to gather data...
 // for this topic/item pair, then
 // post a user-defined message to the server app's wndproc
 // and return CBR_BLOCK... DDEML will block the callback
 // and queue transactions.

 if(bGatheringData) {
 PostMessage(hSrvWnd, WM_GATHERDATA,) ;
 return CBR_BLOCK;
 }
 else // Data is ready, send back handle.
 return ghData;

 default:
 return DDE_FNOTPROCESSED;
 }
 }

LRESULT CALLBACK SrvWndProc(...)
 {
 switch (wMessage)
 {
 case WM_GATHERDATA:

 while (bGatheringData)
 {
 // Gather data here while yielding to others
 // at the same time!
 if(!PeekMessage(..))
 bGatheringData = GoGetDataFromSource (&ghData);
 else {
 TranslateMessage() ;
 DispatchMessage ();
 }
 }
 DdeEnableCallback (idInst, ghConv, EC_ENABLEALL);
 break ;

 default:
 return DefWndProc();
 }
 }

Method 2

Advise transactions in DDEML (or DDE) are just a continuous request
link. Changing the transaction from a REQUEST to a "one time only"
ADVISE loop on the client side allows the server to gather data
asynchronously.

The client application can start an ADVISE transaction from its side
and when the server receives a XTYP_ADVSTART transaction, return TRUE
so that an ADVISE link is established. Once the link is established,
the server can start gathering data, and as soon as it becomes
available, notify the client of its availability.

This can be done by calling DdePostAdvise(). The server can use
PeekMessage() to gather data if the data gathering process is a
lengthy one, so that other applications on the system will get a
chance to run. Once the client receives the data from the server in
its callback (in its XTYP_ADVDATA transaction), it can disconnect the
the ADVISE link from the server by specifying an XTYP_ADVSTOP
transaction.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

Rich Edit Control Does Not Support Unicode

PSS ID Number: Q128558
Authored 03-Apr-1995 Last modified 04-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development KIT (SDK) for Windows NT
 version 3.51 and Windows 95

The Rich Edit control included with Windows 95 and Windows NT version 3.51
does not support Unicode.

For a Unicode application to use the Rich Edit control, it must convert any
strings passed to the control to ASCII text. This includes strings used in
the FINDTEXT structure and the TEXTRANGE structure.

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: UsrCtl

Rotating a Bitmap by 90 Degrees

PSS ID Number: Q77127
Authored 08-Oct-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.0 and 3.1
 - Microsoft Win32 SDK, version 4.0

SUMMARY

There are no Windows functions that directly rotate bitmaps. All techniques
for rotating bitmaps in Windows involve copying the rows from a source
bitmap into the columns of a destination bitmap. The following contains
code for rotating a bitmap using GetPixel() and SetPixel(), and contains an
outline of code for rotating device independent bitmaps (DIB).

MORE INFORMATION

A device dependent bitmap (DDB) can be rotated using the GetPixel() and
SetPixel() functions. To rotate the bitmap, use the following code:

HBITMAP Rotate90(HDC hDC, HBITMAP hSourceBitmap)
{
 HBITMAP hOldSourceBitmap, hOldDestBitmap, hDestBitmap;
 HDC hMemSrc, hMemDest;
 int height, width;
 int i, j;
 BITMAP iSrcBitmap;

 // Step 1: Create a memory DC for the source and destination bitmaps
 // compatible with the device used.

 hMemSrc = CreateCompatibleDC(hDC);
 hMemDest= CreateCompatibleDC(hDC);

 // Step 2: Get the height and width of the source bitmap.

 GetObject(hSourceBitmap, sizeof(BITMAP), (LPSTR)&SrcBitmap);
 width = SrcBitmap.bmWidth;
 height = SrcBitmap.bmHeight;

 // Step 3: Select the source bitmap into the source DC. Create a
 // destination bitmap, and select it into the destination DC.

 hOldSourceBitmap = SelectObject(hMemSrc, hSourceBitmap);
 hDestBitmap = CreateBitmap(height, width, SrcBitmap.bmPlanes,
 SrcBitmap.bmBitsPixel, NULL);

 if (!hDestBitmap)
 return(hDestBitmap);

 hOldDestBitmap = SelectObject(hMemDest, hDestBitmap);

 // Step 4: Copy the pixels from the source to the destination.

 for (i = 0; i < width; ++i)
 for (j = 0; j < height; ++j)
 SetPixel(hMemDest, j, width - 1 - i,
 GetPixel(hMemSrc, i, j));

 // Step 5: Destroy the DCs.

 SelectObject(hMemSrc, hOldSourceBitmap);
 SelectObject(hMemDest, hOldDestBitmap);
 DeleteDC(hMemDest);
 DeleteDC(hMemSrc);

 // Step 6: Return the rotated bitmap.

 return(hDestBitmap);
}

If the bitmap is larger, using GetPixel() and SetPixel() may be too slow.
If this is the case, there are two options:

1. If the contents of the bitmap do not change, create two versions of
 the bitmap, the normal version and one that is rotated by 90
 degrees. Load the appropriate bitmap as required.

-or-

2. Find some way to manipulate the bits of the bitmap that is faster
 than using SetPixel() and GetPixel(). The best way to do this is to
 convert the bitmap to a device independent bitmap. The following
 four steps detail how to create the DIB and to perform the
 rotation:

 a. Use GetDIBits() to convert the bitmap to a device independent
 format. It is necessary to create a BITMAPINFO structure
 appropriate for the bitmap. This will write the bitmap as a
 series of scanlines. Each scanline is padded so that it is DWORD
 aligned.

 b. Allocate memory for the destination bitmap. This bitmap requires
 as many scanlines as the width of the source bitmap. Each
 scanline is as many pixels wide as the height of the source
 bitmap. Also, the scanlines must be DWORD aligned.

 c. For each scanline in the source bitmap, copy the pixels to the

 appropriate column in the destination bitmap. NOTE: The format
 for each scanline depends upon the number of bits per pixel. See
 the BITMAPINFO documentation for a description of the possible
 formats.

 d. Use SetDIBits() to copy the device independent bits into a
 device dependent bitmap. Another BITMAPINFO structure,
 appropriate for the destination device is required for this
 step.

The four steps of this method require much more work than is required
if GetPixel() and SetPixel() are used; however, this method may be
faster because it directly manipulates the bits in the bitmap.

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbprg
KBSubcategory: GdiBmp

RPC CALLBACK Attribute and Unsupported Protocol Sequences

PSS ID Number: Q131495
Authored 12-Jun-1995 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SUMMARY

The CALLBACK attribute of RPC does not support connection-less protocol
sequences.

MORE INFORMATION

If an RPC interface has a procedure with the CALLBACK attribute, it can
only make use of connection-oriented protocol sequences. The following
protocol sequences are not supported:

 - ncadg_ip_udp
 - ncadg_ipx

If an RPC client tries to call a remote procedure that in turn calls a
procedure back on client, the client will be able make the initial call,
but when the server tries to call the procedure on client, the RPC run time
generates exception 1726: The remote procedure call failed.

Additional reference words: 3.50
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkRpc

RPC Can Use Multiple Protocols

PSS ID Number: Q100009
Authored 14-Jun-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 and 4.0

Microsoft Remote Procedure Call (RPC) does not rely on a single protocol.
An RPC server can be written to use all available protocols on the server,
and a client can be written in the same manner. Thus, the server or client
does not have to know which protocols it supports explicitly.

RPC protocols supported by Windows 3.1 and 3.5 are:

 ncacn_ip_tcp (TCP/IP)
 ncacn_nb_nb (NetBIOS over NetBEUI)
 ncacn_nb_tcp (NetBIOS over TCP)
 ncacn_np (Named Pipes)
 ncalrpc (LPC)

RPC protocols supported by Windows 3.5 only are:

 ncadg_ipx (Datagram - IPX)
 ncacn_spx (SPX)
 ncadg_ip_udp (Datagram - UDP)
 ncacn_nb_ipx (Netbios over IPX)

RPC protocols supports by Windows 95 are:

 ncacan_ip_tcp
 ncacn_nb_nb
 ncacn_np
 ncacn_spx
 ncalrpc

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: NtwkRpc

RpcNsxxx() APIs Not Supported by Windows NT Locator

PSS ID Number: Q104318
Authored 13-Sep-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The RpsNSxxx group and profile name service application programming
interfaces (APIs), such as RpcNsProfileEltAdd(), are supported by our RPC
run time; however, they are not supported by the Windows NT Locator, which
is the default RPC name service provider. If you attempt to make a call to
one of these APIs, an error 1764, "request not supported," will be
returned. Because the RpcNSxxx APIs are supported in the run time, name
service providers other than the Locator, such as the DCE CDS, can be
accessed.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: NtwkRpc

Running a Windows-Based Application in its Own VDM

PSS ID Number: Q115235
Authored 22-May-1994 Last modified 04-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

SUMMARY

The Windows NT, version 3.1, Windows on Win32 (WOW) supports running all
16-bit Windows-based applications in one virtual machine (VM). These
applications share an address space, just as they do on Windows. The
Windows NT, version 3.5, WOW supports running a Windows-based application
in its own VM, which gives the application its own address space.

In order to programmatically start a Windows-based application in its own
VM, start the application with CreateProcess() and then specify the flag
CREATE_SEPARATE_WOW_VDM.

To specify a Win16 application started from the command prompt to run in
its own address space, use the following syntax:

 start /SEPARATE <filename>

To specify a Windows-based application started from the Program Manager to
run in its own address space, check the following item in the Program Item
Properties for the application or in the Run dialog box, which can be
selected from the Program Manager's File menu:

 Run in Separate Memory Space

NOTE: This option is not the default, nor is there any way to make it
the default.

MORE INFORMATION

Allowing a Windows-based application to run in a separate address space
provides for more robust operation, because the application is isolated
from other Windows-based applications. However, the downside is twofold:

 - WOW VMs require approximately 2500K of private memory on x86 machines.

 - There is no shared memory between WOW VMs. Therefore, Windows-based
 applications that rely on shared memory cannot be run in separate
 VMs. As an alternative, use DDE or OLE, because they can be used by
 an application in one VM to communicate with an application in
 another VM.

Additional reference words: 3.50

KBCategory: kbprg
KBSubcategory: Subsys

Running Bound Applications Under Windows NT

PSS ID Number: Q90913
Authored 26-Oct-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Bound applications are designed and built so they can be run under either
OS/2 or MS-DOS. The OS/2 subsystem is not available on MIPS; therefore,
bound applications will not run as OS/2 applications on MIPS.

When a bound application is run under Windows NT on an 80x86 system, the
application will automatically run under the OS/2 subsystem if it is
available.

MORE INFORMATION

The OS/2 subsystem is available by default on an 80x86 system. To
force bound applications to run as an MS-DOS-based application, you can
disable the OS/2 subsystem, but this is not recommended. Instead use
the FORCEDOS facility. Type "FORCEDOS /?" at the command line to get
help on FORCEDOS. It is not advised that you disable the OS/2
subsystem unless there is a very specific need that FORCEDOS does not
address.

To disable the OS/2 subsystem using RegEdit:

 Go to HKEY_LOCAL_MACHINE
 Go to SYSTEM
 Go to Current Control Set
 Go to Control
 Go to Session Manager
 Go to SubSystems

 Modify 'Optional: REG_MULTI_SZ OS/2 Posix'. Specifically, remove OS/2
 and reboot.

Once this is done, bound applications will run as MS-DOS-based
applications. Running an OS/2 application results in the following message:

 Cannot connect to OS/2 subsystem

WARNING: REGEDT32 is a very powerful utility that facilitates directly
changing the Registry database. Using REGEDT32 incorrectly can cause
serious problems, including hard disk corruption. It may be necessary to
reinstall the software to correct some problems. Microsoft does not support
changes made with REGEDT32. Use this tool AT YOUR OWN RISK.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

RW2002 Error "Cannot Reuse String Constants" in RC.EXE

PSS ID Number: Q21569
Authored 31-Oct-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The error "Cannot Reuse String Constants" will be returned by the Resource
Compiler if you have used the same ID value to define two different string
constants.

For example, the following error is returned when compiling the resource
file:

 Cannot Reuse String Constants

The file MY.RC may contain the following lines:

MORE INFORMATION

The following sample code can be used to demonstrate the problem.

Sample Code

 StringTable
 begin
 1, "one"
 2, "two"
 3, "three"
 1, "four"
 end

Note that "one" and "four" have the same value. This error may be less
noticeable if you are using both decimal and hexadecimal notation in
your RC file. In the following example, 0x010 and 16 have the same
value and generate the error:

 0x010, "hex 10"
 10, "ten"
 11, "eleven"
 15, "fifteen"
 16, "sixteen"

Additional reference words: 3.00 3.10 3.50 4.00 95 RW2002 RC2151
KBCategory: kbtool

KBSubcategory: TlsRc

SAMPLE: 16 and 32 Bits-Per-Pel Bitmap Formats

PSS ID Number: Q94326
Authored 04-Jan-1993 Last modified 21-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Windows NT supports the same bitmap formats as Microsoft Windows version
3.1, but includes two new formats: 16 and 32 bits-per-pel.

SEEDIB.EXE is a file in the Microsoft Software Library that contains the
source code to an application that demonstrates how to load, display, and
save 1, 4, 8, 16, 24, and 32-bits-per-pixel DIB formats. In addition, it
demonstrates a simple method of creating an optimized palette for
displaying DIBSs with more than 8-bits-per-pixel on 8-bits-per-pixel
devices.

NOTE: In order to minimize color loss, SeeDIB uses CreateDIBSection() to
do conversions between uncompressed DIBs which have more than 8-bits-per-
pixel. This function is not available on Windows NT 3.1.

You can download SEEDIB.EXE from the Microsoft Software Library (MSL) on
the following services:

 - CompuServe
 GO MSL
 Search for SEEDIB.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SEEDIB.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get SEEDIB.EXE

MORE INFORMATION

For DIBs (device independent bitmaps), the 16 and 32-bit formats contain
three DWORD masks in the bmiColors member of the BITMAPINFO structure.
These masks specify which bits in the pel correspond to which color.

The three masks must have contiguous bits, and their order is assumed to be
R, G, B (high bits to low bits). The order of the three masks in the color
table must also be first red, then green, then blue (RGB). In this manner,

the programmer can specify a mask indicating how many shades of each RGB
color will be available for bitmaps created with CreateDIBitmap(). For
16-bits-per-pixel DIBs, CreateDIBitmap() defaults to the RGB555 format. For
32-bits-per-pixel DIBs, CreateDIBitmap() defaults to an RGB888 format.

NOTE: The DIB engine in Windows 95 supports only RGB555 and RGB565 for
16-bit DIBs and only RGB888 for 32-bit DIBs.

Example

The RGB555 format masks would look like:

 0x00007C00 red (0000 0000 0000 0000 0111 1100 0000 0000)
 0x000003E0 green (0000 0000 0000 0000 0000 0011 1110 0000)
 0x0000001F blue (0000 0000 0000 0000 0000 0000 0001 1111)

NOTE: For 16 bits-per-pel, the upper half of the DWORDs are always zeroed.

The RGB888 format masks would look like:

 0x00FF0000 red (0000 0000 1111 1111 0000 0000 0000 0000)
 0x0000FF00 green (0000 0000 0000 0000 1111 1111 0000 0000)
 0x000000FF blue (0000 0000 0000 0000 0000 0000 1111 1111)

Usage

When using 16 and 32-bit formats, there are also certain fields of the
BITMAPINFOHEADER structure that must be set to the correct values:

1. The biCompression member must be set to either BI_RGB or BI_BITFIELDS.
 Using BI-RGB indicates that no bit masks are included in the color table
 and that the default (RGB555 for 16bpp and RGB888 for 32bpp) format is
 implied. Using BI_BITFIELDS indicates that there are masks (bit fields)
 specified in the color table.

2. As with 24-bits-per-pixel formats, the biClrUsed member specifies the
 size of the color table used to optimize performance of Windows color
 palettes. If the biCompression is set to BI_BITFIELDS, then the optimal
 color palette starts immediately following the three DWORD masks. Note
 that an optimal color palette is optional and many applications will
 ignore it.

A technical note related to this subject from the Microsoft Multimedia
group is also available. It can be obtained from CompuServe in the WINEXT
and WINSDK forums. The filename is VFW.ZIP. In addition, the technote is
available by calling Microsoft Developer Services at (800) 227-4679,
extension 11771. The technical note is part of the Video for Windows
technical notes and describes how to create a display driver that supports
these new DIB formats, which are used by Video for Windows. The technical
note also includes definitions of installable image codecs.

Windows 95

In Windows 95, if the BI_BITFIELDS flag is set, then a color mask must be
specified and it must be one of the following:

Resolution Bits per color Color Mask
16bpp 5,5,5 0x00007c00 0x000003e0 0x0000001f
16bpp 5,6,5 0x0000f800 0x000007e0 0x0000001f
32bpp 8,8,8 0x00ff0000 0x0000ff00 0x000000ff

User-defined color masks are not available in Windows 95.

Additional reference words: 3.10 3.50 4.00 bpp bmp
KBCategory: kbprg kbfile
KBSubcategory: GdiBmp

SAMPLE: Adding TrueType, Raster, or Vector Fonts to System

PSS ID Number: Q130459
Authored 21-May-1995 Last modified 20-Jun-1995

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), versions 3.1 and 3.11
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

FONTINST is a sample application in the Microsoft Software Library that
demonstrates how to programmatically add a TrueType, raster, or vector font
to the system.

When working with a TrueType font file (.TTF file), FONTINST creates a .FOT
file and moves the specified .TTF file to the Windows system directory. For
a raster or vector font file (.FON file), FONTINST moves the .FON file to
the Windows system directory. After the font file has been moved to the
system directory, FONTINST adds the font to the system by using the
AddFontResource() API. Then it adds font information to the [fonts]
section of the WIN.INI file so that the font is automatically loaded every
time Windows starts. For example, the following line is added to the
WIN.INI file when FONTINST adds the ARIAL.TTF file to the system:

 Arial (TrueType)=ARIAL.FOT

FONTINST also demonstrates how to retrieve the facename of a font given a
.TTF or .FON file. In the case of a TrueType font, FONTINST opens up the
file and reads the naming table of the .TTF file. FONTINST also shows how
to read the FONTINFO structure (as described on pages 49-50 of the
"Microsoft Windows Software Development Kit: Programmer's Reference, Volume
4: Resources") of a .FON file. The facename of a font in a .FON file can
also be found in this manner.

After a font is installed by FONTINST, information about the font is
displayed in the window. Information such as the TEXTMETRIC structure and
font type, as well as sample font text, is displayed. Information added
to the WIN.INI file is also displayed in this window.

Download FONTINST.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for FONTINST.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FONTINST.EXE

 - Internet (anonymous FTP)

 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get FONTINST.EXE

Additional reference words: 3.10 3.50 4.00 95 softlib
KBCategory: kbprg kbfile
KBSubcategory: GdiFnt GdiFntCreate

SAMPLE: AngleArc in Windows 3.1, Win32s, and Windows 95

PSS ID Number: Q125693
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK
 - Microsoft Win32s, version 1.3

SUMMARY

In Windows version 3.1, Win32s, and Windows 95, you may find it useful to
get the functionality provided by the Win32 API AngleArc(). AngleArc() is
only supported on Windows NT.

MORE INFORMATION

The AngleArc() function draws a line segment and an arc. The line segment
is drawn from the current position to the beginning of the arc. The arc is
drawn along the perimeter of a circle with the given radius and center. The
length of the arc is defined by the given start and sweep angles. The
starting point of the sweep is determined by measuring counterclockwise
from the x-axis of the circle by the number of degrees in the start angle.
The ending point is similarly located by measuring counterclockwise from
the starting point by the number of degrees in the sweep angle.

The code below provides two possible ways of getting functionality similar
to that of the AngleArc() function. While both of these methods will work
on any Windows platform, the second (AngleArc2) will be substantially
faster due to the fact that it uses the Arc() function to draw the sweep
rather than calculating each of the segments on the perimeter of the arc.

NOTE: One limitation of the second method is that if the sweep angle is
greater than 360 degrees, the arc will not be swept multiple times. In most
cases this will not be a problem but in certain cases (constructing paths,
for example) this can be a problem.

SAMPLE CODE #1

BOOL AngleArc1(HDC hdc, int X, int Y, DWORD dwRadius,
 float fStartDegrees, float fSweepDegrees)
{
 float fCurrentAngle; // Current angle in radians
 float fStepAngle = 0.03f; // The sweep increment value in radians
 float fStartRadians; // Start angle in radians
 float fEndRadians; // End angle in radians
 int ix, iy; // Current point on arc
 float fTwoPi = 2.0f * 3.141592f;

 /* Get the starting and ending angle in radians */
 if (fSweepDegrees > 0.0f) {
 fStartRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 fEndRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 } else {
 fStartRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 fEndRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 }

 /* Calculate the starting point for the sweep via */
 /* polar -> cartesian conversion */
 ix = X + (int)((float)dwRadius * (float)cos(fStartRadians));
 iy = Y - (int)((float)dwRadius * (float)sin(fStartRadians));

 /* Draw a line to the starting point */
 LineTo(hdc, ix, iy);

 /* Calculate and draw the sweep */
 for (fCurrentAngle = fStartRadians;
 fCurrentAngle <= fEndRadians;
 fCurrentAngle += fStepAngle) {

 /* Calculate the current point in the sweep via */
 /* polar -> cartesian conversion */
 ix = X + (int)((float)dwRadius * (float)cos(fCurrentAngle));
 iy = Y - (int)((float)dwRadius * (float)sin(fCurrentAngle));

 /* Draw a line segment to current point */
 LineTo(hdc, ix, iy);
 }

 return TRUE;
}

SAMPLE CODE #2

BOOL AngleArc2(HDC hdc, int X, int Y, DWORD dwRadius,
 float fStartDegrees, float fSweepDegrees)
{
 int iXStart, iYStart; // End point of starting radial line
 int iXEnd, iYEnd; // End point of ending radial line
 float fStartRadians; // Start angle in radians
 float fEndRadians; // End angle in radians
 BOOL bResult; // Function result
 float fTwoPi = 2.0f * 3.141592f;

 /* Get the starting and ending angle in radians */
 if (fSweepDegrees > 0.0f) {
 fStartRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 fEndRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);

 } else {
 fStartRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 fEndRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 }

 /* Calculate a point on the starting radial line via */
 /* polar -> cartesian conversion */
 iXStart = X + (int)((float)dwRadius * (float)cos(fStartRadians));
 iYStart = Y - (int)((float)dwRadius * (float)sin(fStartRadians));

 /* Calculate a point on the ending radial line via */
 /* polar -> cartesian conversion */
 iXEnd = X + (int)((float)dwRadius * (float)cos(fEndRadians));
 iYEnd = Y - (int)((float)dwRadius * (float)sin(fEndRadians));

 /* Draw a line to the starting point */
 LineTo(hdc, iXStart, iYStart);

 /* Draw the arc */
 bResult = Arc(hdc, X - dwRadius, Y - dwRadius,
 X + dwRadius, Y + dwRadius,
 iXStart, iYStart,
 iXEnd, iYEnd);

 /* Move to the ending point - Arc() wont do this and ArcTo() */
 /* wont work on Win32s or Win16 */
 MoveToEx(hdc, iXEnd, iYEnd, NULL);

 return bResult;
}

Additional reference words: 1.30 3.10 4.00
KBCategory: kbprg kbcode
KBSubcategory: GdiMisc

SAMPLE: Changing Text Alignment in an Edit Control Dynamiclly

PSS ID Number: Q66942
Authored 14-Nov-1990 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

A Microsoft Windows edit control aligns its contents to the left or right
margins, or centers its contents, depending on the window style of the
control. The control styles ES_LEFT, ES_CENTER, and ES_RIGHT specify left-,
center-, and right-alignment, respectively.

Only multiline edit controls can be right-aligned or centered. Single-line
edit controls are always left-aligned, regardless of the control style
given.

Windows does not support altering the alignment style of a multiline edit
control after it has been created. However, there are two methods that you
can use to cause a multiline edit control in a dialog box to appear to
change alignment. Note that in each of these methods, the dialog box that
contains the control must be created with the DS_LOCALEDIT style.

MORE INFORMATION

The first method applies to all platforms. The second method does not apply
to Windows 95. Under Windows 95, EM_SETHANDlE and EM_GETHANDLE are not
supported. For more information, please see the following articles in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q130759
 TITLE : EM_SETHANDLE and EM_GETHANDLE Messages Not Supported

Method 1

Create three controls: one left-aligned, one centered, and one right-
aligned. Each has the same dimensions and position in the dialog box, but
only one is initially made visible.

When the alignment is to change, call ShowWindow() to hide the visible
control and to make one of the other controls visible.

To keep the text identical in all three controls, use the EM_GETHANDLE and
EM_SETHANDLE messages to share the same memory among all three controls.

Method 2

Initially create a single control. When the text alignment is to change,
retrieve location, size, and style bits for the existing edit control.
Create a new control with the same size and in the same location, but
change the style bits to reflect the new alignment.

Send the EM_GETHANDLE to each control to retrieve a handle to the memory
that stores the contents. Send an EM_SETHANDLE to each control to exchange
the memory used by each. Finally, destroy the original control.

There is a sample application named EDALIGN in the Microsoft Software
Library that demonstrates each of these methods. Note, however, that this
sample is a Windows 3.1 sample only.

Download EDALIGN.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for EDALIGN.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download EDALIGN.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get EDALIGN.EXE

Additional reference words: 3.00 3.10 3.50 4.00 95 EDALIGN.EXE
KBCategory: kbprg kbfile
KBSubcategory: UsrCtl

SAMPLE: Customizing the TOOLBAR Control

PSS ID Number: Q125683
Authored 01-Feb-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

The sample BARSDI demonstrates how to provide Customization features for
the Toolbar Common Control. The Toolbar Common Control under Windows 95
provides Customization features that are useful when the user needs to
change the toolbar control's buttons dynamically (add, delete, interchange,
etc. buttons).

Download BARSDI.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for BARSDI.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download BARSDI.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get BARSDI.EXE

MORE INFORMATION

There are two ways the user can cusotmize the toolbar.

First, the user can use the Drag Drop Customization process to delete or
change the position of buttons on the toolbar. This method does not allow
the user to add buttons to the toolbar dynamically.

The second method involves displaying the Customize dialog box through
which the user can add, remove, interchange buttons on the toolbar.

To provide Customization, the toolbar control has to be created with the
CCS_ADJUSTABLE style, and the parent of the toolbar control has to process
a series of TBN_XXXX notifications. The BARSDI sample implements both
methods of Customization.

Method 1: Drag Drop Customization

This method of toolbar customization allows the user to reposition
or delete buttons on the toolbar. The user initiates this operation
by holding down the SHIFT key and begins dragging a button. The toolbar
control handles all of the drag operations automatically, including
the cursor changes.

To delete a button, the user has to release the drag operation outside
the Toolbar control. The Toolbar control sends the TBN_QUERYDELETE
message to its parent window. The parent window can return TRUE to
allow the button to be deleted and FALSE to prevent the button from
being deleted.

If the application wants to do custom dragging, it has to process
the TBN_BEGINDRAG and TBN_ENDDRAG notifications itself and perform
the drag/drop process, which involves more coding.

Method 2: Customization Dialog Box

This method of customization allows users to add buttons to the toolbar
dynmacally in addition to deleting and rearranging buttons on the toolbar.
For example, if the toolbar has N total buttons, and displays only 10 of
those buttons initially, the bitmap that was used to create the toolbar,
should contian all N buttons (where N > 10).

There are two ways in which the Toolbar control dislpays the customize
dialog box. The user can bring up the Customization dialog box by
double-clicking the left mouse button on the toolbar control or the
application can send the TB_CUSTOMIZE message to the toolbar control.

The Customize dialog box displayed by the Toolbar control has two list
boxes. One, on the left contains the list of N-10 Buttons that were not
displayed on the initial toolbar, and the one on the right will have the
currently displayed buttons on the toolbar. The toolbar control provides
the add, remove and other features in the Customize dialog box.

Here is a code sample that shows how the Customization feature is
implemented:

SAMPLE CODE

// The initial set of toolbar buttons.

TBBUTTON tbButton[] =
{
 {0, IDM_FILENEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {1, IDM_FILEOPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {2, IDM_FILESAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {3, IDM_EDITCUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0},
 {4, IDM_EDITCOPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {5, IDM_EDITPASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {6, IDM_FILEPRINT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},

 {0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0},
 {7, IDM_ABOUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
};

// Buttons that can be added at a later stage.

TBBUTTON tbButtonNew[] =
{
 { 8, IDM_ERASE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 { 9, IDM_PEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {10, IDM_SELECT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {11, IDM_BRUSH, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {12, IDM_AIRBRUSH, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {13, IDM_FILL, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {14, IDM_LINE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {15, IDM_EYEDROP, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {16, IDM_ZOOM, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {17, IDM_RECT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {18, IDM_FRAME, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {19, IDM_OVAL, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
};

// The bitmap that is used to create the toolbar should have all
// tbButtonNew + tbButton buttons = 20 in this case.

// Use tbButtons array to create the initial toolbar control.

// Once the user starts to customize the toolbar, process the WM_NOTIFY
// message and the following notifications.
// The toolbar control sends a WM_NOTIFY message to the parent window
// during each process of the customization.

LRESULT OnMsgNotify(HWND hwnd, UINT uMessage, WPARAM wparam, LPARAM lparam)
{
 LPNMHDR lpnmhdr;
 lpnmhdr = (LPNMHDR)lparam;

// process the QUERYINSERT And QUERYDELETE notifications
// to allow the drag/drop operation to succeeed.
 if (lpnmhdr->code == TBN_QUERYINSERT)
 return TRUE;
 else if (lpnmhdr->code == TBN_QUERYDELETE)
 return TRUE;
 else if (lpnmhdr->code == TBN_GETBUTTONINFO)
// The user has brought up the customization dialog box,
// so provide the the control will button information to
// fill the listbox on the left side.
 {
 LPTBNOTIFY lpTbNotify = (LPTBNOTIFY)lparam;
 char szBuffer [20];
 if (lpTbNotify->iItem < 12) // 20 == the total number of buttons
 { // tbButton and tbButtonNew
 // Since initially we displayed
 // 8 buttons
 // send back information about the rest of

 // 12 buttons that can be added the toolbar.

 lpTbNotify->tbButton = tbButtonNew[lpTbNotify->iItem];

 LoadString(hInst,
 NEWBUTTONIDS + lpTbNotify->iItem, // string
 //ID == command ID
 szBuffer,
 sizeof(szBuffer));

 lstrcpy (lpTbNotify->pszText, szBuffer);
 lpTbNotify->cchText = sizeof (szBuffer);
 return TRUE;
 }
 else
 return 0;
 }
}

Additional reference words: 4.00 BARSDI
KBCategory: kbprg kbcode kbfile
KBSubcategory: UsrCtl

SAMPLE: Drawing Three-Dimensional Text in OpenGL Applications

PSS ID Number: Q131024
Authored 02-Jun-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY

GDI operations, such as TextOut, can be performed on an OpenGL window only
if the window is single-buffered. The Windows NT implementation of OpenGL
does not support GDI graphics in a double-buffered window. Therefore, you
can not use GDI functions to draw text in a double-buffered window, for
example. To draw text in a double-buffered window, an application can use
the wglUseFontBitmaps and wglUseFontOutlines functions to create display
lists for characters in a font and then draw the characters in the font
with the glCallLists function.

The wglUseFontOutlines function is new to Windows NT 3.51 and can be used
to draw 3-D characters of TrueType fonts. These characters can be rotated,
scaled, transformed, and viewed like any other OpenGL 3-D image. This
function is designed to work with TrueType fonts.

The GLFONT sample shows how to use the wglUseFontOutlines function to
create display lists for characters in a TrueType font and how to draw,
scale, and rotate the glyphs in the font by using glCallLists to draw
the characters and other OpenGL functions to rotate and scale them. You
will need the Win32 SDK for Windows NT 3.51 to compile this sample and to
incorporate wglUseFontOutlines in your own application. You will need
Windows NT 3.51 to execute the application.

Download GLFONT.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for GLFONT.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLFONT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory

 Get GLFONT.EXE

MORE INFORMATION

To specify which TrueType font you want wglUseFontOutlines to create
display lists for, you must first create the desired logical font with
CreateFont or CreateFontIndirect. Then, you must select the HFONT created
into a screen device context (HDC) with SelectObject and send the HDC to
the wglUseFontOutlines function. Each characer is mapped in the "x" and
"y" directions in the display lists and you specify the depth in the
negative "z" direction in the "extrusion" parameter of wglUseFontOutlines.

You can also specify whether you want the 3-D glyphs to be created with
line segments or polygons. To instruct wglUseFontOutlines to create the
3-D glyphs with lines segments, specify WGL_FONT_LINES in the "format"
parameter and to create them with polygons, you need to specify
WGL_FONT_POLYGONS.

Here is an example of how one could create a set of display lists to draw
the characters of the "Arial" TrueType font as a set of polygons:

 LOGFONT lf;
 HFONT hFont, hOldFont;
 GLYPHMETRICSFLOAT agmf[256];

 // An hDC and an hRC have already been created.
 wglMakeCurrent(hDC, hRC);

 // Let's create a TrueType font to display.
 memset(&lf,0,sizeof(LOGFONT));
 lf.lfHeight = -20 ;
 lf.lfWeight = FW_NORMAL ;
 lf.lfCharSet = ANSI_CHARSET ;
 lf.lfOutPrecision = OUT_DEFAULT_PRECIS ;
 lf.lfClipPrecision = CLIP_DEFAULT_PRECIS ;
 lf.lfQuality = DEFAULT_QUALITY ;
 lf.lfPitchAndFamily = FF_DONTCARE|DEFAULT_PITCH;
 lstrcpy (lf.lfFaceName, "Arial") ;

 hFont = CreateFontIndirect(&lf);
 hOldFont = SelectObject(hDC,hFont);

 // Create a set of display lists based on the TT font we selected
 if (!(wglUseFontOutlines(hDC, 0, 255, GLF_START_LIST, 0.0f, 0.15f,
 WGL_FONT_POLYGONS, agmf)))
 MessageBox(hWnd,"wglUseFontOutlines failed!","GLFont",MB_OK);

 DeleteObject(SelectObject(hDC,hOldFont));

To display these 3-D characters in a string, use the following code:

 // Display string with display lists created by wglUseFontOutlines()
 glListBase(GLF_START_LIST); // indicate start of display lists

 // Draw the characters
 glCallLists(6, GL_UNSIGNED_BYTE, "OpenGL");

Additional reference words: graphics
KBCategory: kbprg kbcode kbfile
KBSubcategory: GdiOpenGL

SAMPLE: Drawing to a Memory Bitmap for Faster Performance

PSS ID Number: Q130805
Authored 28-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 4.0
 - Microsoft Win32s version 1.2

An application whose client area is a complex image can realize a
performance benefit from drawing to a memory bitmap. The complex, time
consuming drawing code need only be performed once - to initialize the
offscreen bitmap. During the handling of the WM_PAINT message, the only
work that needs to be done is a simple BitBlt from the memory bitmap to the
screen.

Sample code demonstrating this technique is available in the Microsoft
Software Library. The MemDC sample code draws a complex pattern on its
client area. A menu option toggle allows the user to see the speed
difference between using and not using the offscreen bitmap.

Download MEMDC.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MEMDC.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MEMDC.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get MEMDC.EXE

Additional reference words: 1.20 3.10 3.50 4.00 95 device context memory DC
speed fast buffer
KBCategory: kbgraphic kbfile
KBSubcategory: GdiDc

SAMPLE: Fade a Bitmap Using Palette Animation

PSS ID Number: Q130804
Authored 28-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0

SUMMARY

PALFADE is a sample application available in the Microsoft Software
Library. It demonstrates:

 - How to use the AnimatePalette function to fade a bitmap to black.

 - How to use the DIBAPI32.DLL library that can be built by the WINCAP32
 sample that ships with the Microsoft Win32 SDK.

To perform palette animation, the sample creates a logical palette for a
device-independent bitmap (DIB) with the PC_RESERVED flag set for each
palette entry. PALFADE loads, displays, and animates both Windows-style and
OS/2-style DIB files.

Download PALFADE.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for PALFADE.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PALFADE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get PALFADE.EXE

MORE INFORMATION

Before performing palette animation on a logical palette entry, ensure that
the palette entry has the PC_RESERVED flag set. To fade a bitmap drawn on a
device context with a PC_RESERVED palette selected, you can lower the RGB
values for each color in the palette in a loop until all colors are black.

The default system palette contains 20 static colors. These static colors
take up the first ten and last ten colors of the system palette; these
palette entries are not available for animation. If you try to fade a

bitmap that has 256 unique colors by creating a 256-color palette with each
palette entry set to PC_RESERVED, you are not guaranteed that every logical
palette entry will map to an entry in the system palette that is available
for palette animation.

One solution to this is to create a logical palette that contains only 236
colors. The PALFADE sample demonstrates one way to create an optimal
palette of 236 colors given a device-independent bitmap with 256 colors in
its color table.

Given a 256-color DIB, PALFADE traverses through every bit in the bitmap to
find the least-used 20 colors in the color table. Then it creates a logical
palette out of the 236 most-used colors. This ensures that all entries in
the logical palette will animate.

This sample uses many of the DIB support functions included with the
DIBAPI32.DLL library. It does not use the LoadDIB() function, because it
was not written to handle OS/2-style DIB files. Instead, PALFADE implements
the DIB-loading routines found in the Win32 SDK SHOWDIB sample.

NOTE: DIBAPI32.DLL is included with this sample.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbfile kbgraphic
KBSubcategory: GdiPal

SAMPLE: FASTBLT Implements Smooth Movement of a Bitmap

PSS ID Number: Q40959
Authored 07-Feb-1989 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

There is a sample application called FASTBLT in the Microsoft Software
Library that demonstrates how to implement the smooth movement of a bitmap
around the screen. Basically, it sets up a pair of BitBlt() calls: one that
erases the image and another that redisplays the image. The necessary ROP
codes for BitBlt() that should be used are SRCCOPY and SRCINVERT.

Download FASTBLT.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for FASTBLT.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FASTBLT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get FASTBLT.EXE

Additional reference words: 3.00 3.10 3.50 4.00 95 softlib FASTBLT.EXE
KBCategory: kbprg kbfile
KBSubcategory: GdiBmp

SAMPLE: Highlighting an Entire Row in a ListView Control

PSS ID Number: Q131788
Authored 20-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SUMMARY

One of the limitations of the ListView common control is that when the
control is in report view, the control only highlights the first column
when a row is selected. To work around this limitation, you can create the
ListView as an owner draw control (using the LVS_OWNERDRAWFIXED style) and
perform all the painting yourself.

The ODLISTVW sample demonstrates how to create an owner draw ListView
control that highlights an entire row.

Download ODLISTVW.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for ODLISTVW.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download ODLISTVW.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get ODLISTVW.EXE

MORE INFORMATION

One of the supported styles for the ListView control is LVS_OWNERDRAWFIXED,
which allows the program to perform all the drawing of items in the
ListView control. Whenever the ListView control needs to have a portion of
the control repainted, it calculates which items are in that area and sends
a WM_DRAWITEM message to its parent for each item. If any part of an item
needs to be redrawn, the ListView sends the WM_DRAWITEM with the update
rectangle set to the entire item.

The ListView control handles owner drawn items differently from other owner
drawn controls. Previous owner drawn controls use the DRAWITEMSTRUCT's
itemAction field to let the parent know if it needs to draw the item,
change the selected state, or change the focus state. The ListView control

always sends the WM_DRAWITEM message with the itemAction set to
ODA_DRAWENTIRE. The parent needs to check the itemState to see if the focus
or selection needs to be updated.

Additional reference words: 1.30 4.00 95 3.51
KBCategory: kbui kbprg kbfile
KBSubcategory: UsrCtl

SAMPLE: How to Simulate Multiple-Selection TreeView Control

PSS ID Number: Q125587
Authored 31-Jan-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

The TVWSTATE sample demonstrates how to simulate a multiple-selection
TreeView control. The Windows 95 TreeView control does not support multiple
selection. If you want a multiple-selection TreeView, you can use state
images to simulate it in your application.

The TVWSTATE sample accomplishes this by using a checkbox type of state
image to indicate that the item is selected or cleared (de-selected). These
checkboxes will retain their state even if the TreeView loses focus.

Download TVWSTATE.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for TVWSTATE.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TVWSTATE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get TVWSTATE.EXE

MORE INFORMATION

The multiple-selection TreeView control simulation is implemented by
setting the state image list of the TreeView control to an image list that
contains the checked and unchecked checkbox bitmaps. This image list is set
by using the TVM_SETIMAGELIST message with lParam == TVSIL_STATE (see
InitImageList in TVWSTATE.C). A TreeView control can have two image lists,
a normal image list and a state image list. In the TreeView, the display
order from left to right is: the expansion button, the state image (if
present), the normal image (if present), and then the item text.

When processing the WM_NOTIFY message where (LPNMHDR)lParam->code ==
NM_CLICK (see MsgNotifyTreeView in TVWSTATE.C), the code checks to see if
the user clicked the left mouse button in the checkbox. If this is the
case, the state image index of the item is retrieved, the index is toggled

between the checked and unchecked image list items, and then the new index
is saved.

The state image index identifies which member of the state image list
should be displayed. The state image index is stored in bits 12-16 of the
item state value. Either TVIS_STATEIMAGEMASK or TVIS_USERMASK can be used
to mask off the lower bits. To access just the state image index, use a
statement similar to this:

 StateIndex = tvi.state & TVIS_STATEIMAGEMASK;

The INDEXTOSTATEIMAGEMASK macro offsets a value to the correct bits for the
state image index. This is accomplished by shifting the given value left 12
places. If the desired state image index is 1, the state can be set using a
statement similar to this:

 tvi.state = INDEXTOSTATEIMAGEMASK(1);

This sample can also be modified to implement selection methods similar to
those of an extended-selection listbox where the user uses the SHIFT key to
select a range of items and/or the CTRL key to select or clear individual
items.

Additional reference words: 3.51 4.00
KBCategory: kbprg kbcode kbfile
KBSubcategory: UsrCtl

SAMPLE: How to Use File Associations

PSS ID Number: Q122787
Authored 13-Nov-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.1 and 3.5

SUMMARY

Windows provides file associations so that an application can register the
type of documents it supports. The benefit of doing this is that it allows
the user to double-click or select a document in File Manager to edit or
print it. File association is also supported by the ShellExecute() API.
File associations also allow the user to open multiple documents with a
single instance of the application via the File Manager.

ShellExecute() has even more benefit in Windows 95.

The sample FILEASSO.EXE demonstrates how to use file associations. Download
FILEASSO.EXE, a self-extracting file, from the Microsoft Software Library
(MSL) on the following services:

 - CompuServe
 GO MSL
 Search for FILEASSO.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FILEASSO.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get FILEASSO.EXE

MORE INFORMATION

The following information applies to both File Open and File Print. For
ease of reading, this article will discuss File Open to explain how File
Associations work.

When the user double-clicks a document, the File Manager calls
ShellExecute() with filename. ShellExecute() checks the Registration
Database for an entry that associates that file extension with a particular
application. If an entry exists and does not specify DDE commands, then
ShellExecute() launches the application as specified in the registry. If
the registry specifies to use DDE commands, ShellExecute() attempts to
establish a DDE conversation with that application using the application

topic. If an application responds to the DDE connections, ShellExecute()
sends a DDE Execute command, as specified in the registry. It is up to the
application to define the specifics on this conversation, particularly the
service and topic name to connect to, and also the correct DDE execute
command syntax to use. However, if attempts to establish the conversation
fail, ShellExecute() launches the application specified in the regiistry
and tries to establish the DDE connection again.

There is one more option available when the application is not running,
which seems to be appropriate for File Print. In this option,
ShellExecute() sends a different Execute statement, the application needs
to Open and Print the document. When the Printing is done, it exits.

There are two steps for an application to open multiple documents through
single application instance via File association. As an example, assume
MyApp is the application and AssocSupport is the topic. Most applications
use MyApp as their application name and System as the topic.

1. When the application starts, register a DDE Server with the
 application name and topic (for example MyApp, and AssocSupport).
 The application also has to support DDE Execute Statements. The
 execute statement could be any format; at minimum, it should be:

 <Action> <fileName> <options>

 Here <Action> is anything specifying unique identification of the
 action, such as Open or Print. The <fileName> is the file that should be
 operated on. Finally, <options> can be any options that need to be
 passed on.

 A typical Execute Statement follows this format:

 [<Action>(<FileName>)]

 For example, Microsoft Word uses:

 [Open("%1")]

 The Application has to support the required functionality for executed
 statements.

2. File association can be done in Windows NT via File Manager or regedit.

Using the File Manager to Set File Associations

When associating a file type using the File Manager, choose Associate from
the File menu. The Associate dialog presents the list of existing file
associations. This dialog allows you to add a new file type (or file
association), modify an existing file type, or delete an existing file
type. The New File Type button allows the user to add an association for a
new file extension. Here are the steps:

1. Add a File type name. For example, name it "Microsoft Word 6.0
 Document."

2. Choose an action (Open or Print). For example, select the Uses DDE
 check box.

3. Add the directory path and application name. For example, enter
 WINWORD as the application.

4. Select the option Uses DDE.

5. Set the Application as the DDE Server Name.

6. Set the Topic as the DDE Server. For example enter System as the
 Topic.

7. Set the DDE Message <Action> <fileName> <options> to be the same as
 your application's Execute Statement. However the <fileName> and
 <options> should be replaced by whatever the command line arguments
 are. For example use:

 DDE Message : [FileOpen("%1")]

Using Regedit in Windows NT to Set File Associations
--

NOTE: Regedit is available only in Windows NT, not in Windows version 3.1.

The user can also associate files with an application by using regedit.
From the Edit menu, choose Add File Type or Modify File Type (to modify an
existing file type). A dialog similar to File Manager Associate dialog
appears. Follow the same steps as described for File Manager. In Windows
version 3.1, once you have defined a File Type via this method, go to the
File Manager associate dialog and attach the file type to the extension.

Using a Program to Set File Assoications
--

You can also set the associations programmatically. This is useful when
setting up your application on other machines. You would provide this
functionality through your installation program. The first way to do this
(the simplier method) is to use regedit to merge the changes from a file.
The syntax for this is:

 regedit <filename>.reg

An example of a <filename>.reg is:

 REGEDIT
 HKEY_CLASSES_ROOT\.riy = FMA000_File_assoc
 HKEY_CLASSES_ROOT\FMA000_File_assoc = File_assoc
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\command = fileasso.EXE
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec = [Open(%1)]
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\application
= Myserver
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\topic = system
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\command = fileasso.EXE

 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec = [Open(%1)]

HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\application =
MYServer
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\topic = System
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\ifexec =
[Test(%1)
]

In the program, you can also add keys to the registry by using the registry
APIs. The developer needs to add the following keys to the registration
database:

 // Your extensions.
 HKEY_CLASSES_ROOT\.riy = FMA000_File_assoc

 //File type name.
 HKEY_CLASSES_ROOT\FMA000_File_assoc = File_assoc

 // Command to execute when application is not running or dde is not
 // present and Open command is issued.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\command = fileasso.EXE

 // DDE execute statement for Open.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec = [Open(%1)]

 // The server name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\application =
 Myserver

 // Topic name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\topic = system

 // Command to execute when application is not running or dde is not
 // present and print command is issued.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\command = fileasso.EXE

 // DDE execute statement for Print.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec = [Open(%1)]

 // The server name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\application =
 MYServer

 // Topic name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File assoc\shell\print\ddeexec\topic = System

 // DDE execute statement for print if the application is not already
 // running. This gives the options for a an application to Run, Print
 // and Exit.
 HKEY_CLASSES_ROOT\FMA000_File assoc\shell\print\ddeexec\ifexec =
 [Test(%1)]

REFERENCES

Windows SDK Programmers Reference, Volume 1, chapter 7, Shell Library or
Books Online.

Window 3.1 SDK Help file, Registration Database, Shell Library Functions.

Win32 Programmers Reference, Volume 2, chapter 52, Registry and
Initialization Files or Books Online.

Win32 SDK Help file Registry and Initialization

File Manager Help File.

REGEDIT.HLP

REGEDT32.HLP

Additional reference words: 3.10 3.50
KBCategory: kbprg kbfile
KBSubcategory: UsrMisc

SAMPLE: How to Use Paths to Create Text Effects

PSS ID Number: Q128091
Authored 26-Mar-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

This article defines the term "path" for the purposes of this article, and
it explains how you can get sample code (provided in TEXTFX.EXE, a self-
extracting file) that shows by example how to use paths to draw text at
varying angles, orientations, and sizes. In addition, the sample code gives
useful routines for displaying path data.

Download TEXTFX.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for TEXTFX.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TEXTFX.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get TEXTFX.EXE

MORE INFORMATION

A path is one or more figures (or shapes) that are filled, outlined, or
both filled and outlined. Computer-aided design (CAD) applications use
paths to create unique clipping regions, to draw outlines of irregular
shapes, and to fill the interiors of irregular shapes.

A path is associated with a Device Context (DC) but unlike other objects
associated with a DC, such as pens and brushes, a path has no default
object.

To create a path, you first call BeginPath(). Then use the drawing
functions in the table below to add to the path. Any drawing done using
these functions is recorded as part of the path. When you finish building
the path, call EndPath(). The new path can then be converted to a region by
using PathToRegion(), selected as a clipping region for a device context by
using SelectClipPath(), and rendered by using StrokePath() or FillPath().

In addition, as this sample illustrates, the path can be retrieved by using
GetPath() and manipulated programmatically.

Functions supported in paths:

 AngleArc LineTo Polyline
 Arc MoveToEx PolylineTo
 ArcTo Pie PolyPolygon
 Chord PolyBezier PolyPolyline
 CloseFigure PolyBezierTo Rectangle
 Ellipse PolyDraw RoundRect
 ExtTextOut Polygon TextOut

Functions not supported under Windows 95:

AngleArc
ArcTo
PolyDraw

Functions not supported in a path under Windows 95:

Arc
Chord
Ellipse
Pie
Rectangle
RoundRect

MORE INFORMATION

The following path functions are used in the TextFX sample:

 BeginPath
 EndPath
 GetPath
 FillPath
 StrokePath

To use TextFX, run it, and then draw two lines into the client area (they
don't have to be straight). The first line appears as blue and the second
appears as red. These lines serve as guides for how the text will be
rendered. After completing the second line, the text "This is a test" will
be drawn so that it appears between the two guide lines.

To remap the text so that it appears between the two lines, TextFX first
breaks down the guide lines (which are composed of line segments) into
distinct adjacent points. The result is that the x,y position of each point
in the lines is adjacent to its neighboring points x,y position.

Next, the text "This is a test" is drawn into a device context as a path.
The points that make up the lines and curves in this path are then
retrieved from the device context by using the GetPath() function.

To reposition the points in the path data, the code must establish a

relationship between the relative position of the points in the original
text and the position defined by the guide lines. To establish this
relationship, the code calculates the x and y positions of each point in
the path data relative to the overall extent of the text string. The
relative x position is used to calculate a corresponding point on each of
the two the guide lines, while the relative y value is used as a weight to
determine how far along on a line between the two guide line points the
remapped position should be.

For example, if the point in the upper left corner of the "T" in the string
"This is a test" is 2% of the total x extent of the string and 10% of the
total y extent, then TextFX would find the point in each guide line that
corresponds to 2% of the total number of points in that guide line. Then
TextFX would reposition the point in the path data representing the upper
left corner of the "T" so that it would be 10% of the way along an
imaginary line extending from the point on the top guide line to the point
on the bottom guide line.

Two different methods can be selected for drawing the remapped data, one
draws just the outline of the characters, while the other fills in the
characters.

To draw the outline of the characters, TextFX converts the remapped data
back into a path and uses StrokePath() to display the outlines. To do the
conversion, TextFX begins a new path, and then loops through the remapped
data and uses the vertex types returned from GetPath() to determine how to
draw the points. After drawing all the data, TextFX ends the path and calls
StrokePath().

To draw the solid characters, instead of using StrokePath(), TextFX uses
FillPath(). However, in order to get the interior areas of characters like
"O", "A", "D", and so on, TextFX sets the ROP2 code to R2_MERGEPENNOT
before calling FillPath(). This is done so that characters like "O" that
consist of two separate polygons (one representing the outer perimeter and
one representing the inner perimeter) will not be drawn as a solid blob. By
drawing the polygons with the R2_MERGEPENNOT code, the code ensures that
the second polygon will cancel the effects of the first in the area of the
inner polygon.

REFERENCES

For additional information on paths, please see the PATHS sample included
with the Win32 SDK.

Additional reference words: 3.10 3.50 4.00 stones effects effect font fx
KBCategory: kbprg kbfile kbcode
KBSubcategory: GdiDrw

SAMPLE: Implementing Multiple Threads in an OpenGL

PSS ID Number: Q128122
Authored 27-Mar-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

It is possible to create multiple threads in an OpenGL application and have
each thread call OpenGL functions to draw an image. You might want to do
this when multiple objects need to be drawn at the same time or when you
want to have certain threads perform the rendering of specific types of
objects.

This article explains how to obtain GLTHREAD, a sample that demonstrates
how to implement multiple threads in an OpenGL application. The main
process default thread creates two threads that each draw a
three-dimensional wave on the main window. The first thread draws a wave on
the left side of the screen. The second thread draws a wave on the right
side of the screen. Both objects are drawn simultaneously, demonstrating
OpenGL's ability to handle multiple threads.

How to Get the GLTHREAD Sample

Download GLTHREAD.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for GLTHREAD.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLTHREAD.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get GLTHREAD.EXE

MORE INFORMATION

When implementing multiple threads in any type of application, it is
important to have adequate communication between threads. In OpenGL, it is
important for two threads to know what the other thread is doing. For
example, it is common practice to clear the display window before drawing

an OpenGL scene. If both threads are called to draw portions of a scene and
they both try to call glClear before drawing, one thread's object may get
erased by another thread's call to glClear.

The GLTHREAD sample assigns the glClear function to a single thread, and
ensures that the other thread does not perform any drawing until glClear
has been called. When a menu command message is sent to the main window,
the application calls CreateThread twice to create two threads. Each thread
calls GetDC(hwndMain) to obtain its own device context to the main window.

Then, each thread calls GLTHREAD's bSetupPixelFormat function to set up the
pixel format and calls wglCreateContext to create a new OpenGL Rendering
Context. Now, each thread has its own Rendering Context and both can call
wglMakeCurrent to make its new OpenGL rendering context its (the calling
thread's) current rendering context.

All subsequent OpenGL calls made by the thread are drawn on the device
identified by the HDC returned from each thread's call to GetDC(). Now,
because only one thread should call glClear, GLTHREAD has thread number one
call it. The second thread is created "suspended" so it does nothing until
a call to ResumeThread is made. After thread one has called glClear, it
enables thread two to resume by calling ResumeThread with a handle to the
second thread.

The procedure in the main thread that created the two other threads waits
until both threads are finished before returning from the processing of the
menu command message that is sent when the user selects the "Draw Waves"
menu selection from the "Test Threads" menu. It will use the
WaitForMultipleObjects function to do this.

Additional reference words: 3.10 3.50 4.00 95 GDI GRAPHICS THREADS
KBCategory: kbprg kbgraphic kbfile kbcode
KBSubcategory: codesam GdiDrwOpenGL

SAMPLE: MFCOGL a Generic MFC OpenGL Code Sample

PSS ID Number: Q127071
Authored 12-Mar-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0

 - The Microsoft Foundation Classes (MFC) included with:
 - Microsoft Visual C++ 32-bit Edition, versions 2.0 and 2.1

SUMMARY

Microsoft Windows NT's OpenGL can be used with the Microsoft Foundation
Class (MFC) library. This article gives you the steps to follow to enable
MFC applications to use OpenGL.

The companion sample (MFCOGL) is a generic sample that demonstrates using
OpenGL with MFC. Download MFCOGL.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MFCOGL.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MFCOGL.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get MFCOGL.EXE

MORE INFORMATION

Step-by-Step Example to Use OpenGL in MFC Application

1. Include the necessary header files to use OpenGL including:

 - "gl\gl.h" for all core OpenGL library fuctions. These functions
 have the "gl" prefix such as glBegin().

 - "gl\glu.h" for all OpenGL utility library functions. These
 functions have the "glu" prefix such as gluLookAt().

 - "gl\glaux.h" for all Windows NT OpenGL auxilary library functions.

 These functions have the "aux" prefix such as auxSphere().

 You don't need to add a header file for functions with the "wgl" prefix.

2. Add necessary library modules to the link project settings. These
 library modules include OPENGL32.LIB, GLU32.LIB, and GLAUX.LIB.

3. Add implementations for OnPaletteChanged() and OnQueryNewPalette() in
 CMainFrame class for palette-aware applications.

 void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
 {
 CFrameWnd::OnPaletteChanged(pFocusWnd);

 if (pFocusWnd != this)
 OnQueryNewPalette();

 }

 BOOL CMainFrame::OnQueryNewPalette()
 {
 WORD i;
 CPalette *pOldPal;
 CMfcOglView *pView = (CMfcOglView *)GetActiveView();
 CClientDC dc(pView);

 pOldPal = dc.SelectPalette(&pView->m_cPalette, FALSE);
 i = dc.RealizePalette();
 dc.SelectPalette(pOldPal, FALSE);

 if (i > 0)
 InvalidateRect(NULL);

 return CFrameWnd::OnQueryNewPalette();
 }

4. Use the one or more of the following classes derived from CWnd,
 including view classes, that will use OpenGL for rendering onto:

 - Implement PreCreateWindow() and add WS_CLIPSIBLINGS and
 WS_CLIPCHILDREN to the windows styles:

 BOOL CMfcOglView::PreCreateWindow(CREATESTRUCT& cs)
 {
 cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN;

 return CView::PreCreateWindow(cs);
 }

 - Implement OnCreate() to initialize a rendering context and make
 it current. Also, initialize any OpenGL states here:

 int CMfcOglView::OnCreate(LPCREATESTRUCT lpCreateStruct)
 {

 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 Init(); // initialize OpenGL

 return 0;
 }

 - Implement OnSize() if the window is sizeable:

 void CMfcOglView::OnSize(UINT nType, int cx, int cy)
 {
 CView::OnSize(nType, cx, cy);

 if (cy > 0)
 {
 glViewport(0, 0, cx, cy);

 if ((m_oldRect.right > cx) || (m_oldRect.bottom > cy))
 RedrawWindow();

 m_oldRect.right = cx;
 m_oldRect.bottom = cy;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0f, (GLdouble)cx / cy, 3.0f, 7.0f);
 glMatrixMode(GL_MODELVIEW);
 }
 }

 - Implement OpenGL rendering code. This can be done in OnDraw() or
 other application-specific places such as OnTimer().

 - Implement clean-up code, which is typically done in OnDestroy():

 void CMfcOglView::OnDestroy()
 {
 HGLRC hrc;

 if (m_nTimerID)
 KillTimer(m_nTimerID);

 hrc = ::wglGetCurrentContext();

 ::wglMakeCurrent(NULL, NULL);

 if (hrc)
 ::wglDeleteContext(hrc);

 CPalette palDefault;

 // Select our palette out of the dc
 palDefault.CreateStockObject(DEFAULT_PALETTE);
 m_pDC->SelectPalette(&palDefault, FALSE);

 if (m_pDC)
 delete m_pDC;

 CView::OnDestroy();
 }

Additional reference words: 3.50 3.51 2.00 2.10 3.00 3.10 4.00 95 graphics
KBCategory: kbprg kbcode kbfile
KBSubcategory: GdiOpenGL

SAMPLE: RASberry - an RAS API Demonstration

PSS ID Number: Q118983
Authored 03-Aug-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

RASberry is a sample application that demonstrates the Remote Access
Service (RAS) API. RASberry allows the user to enumerate current RAS
connections, display the status of a selected connection, dial entries from
the default phone book, and hang up an active connection. The sample may be
built for both Windows version 3.1 and Win32 environments.

RASBRY.EXE can be downloaded as a self-extracting file from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL and download RASBRY.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download RASBRY.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get RASBRY.EXE

MORE INFORMATION

The RAS APIs used in this sample are:

 - RasDial
 - RasEnumConnections
 - RasEnumEntries
 - RasGetConnectStatus
 - RasGetErrorString
 - RasHangUp

The RAS SDK for Win32 is included as part of the Win32 SDK.

The RAS SDK for Windows version 3.1 (which contains additional files that
can be used with the Windows version 3.1 SDK for RAS development) is
available on the Microsoft Developer's Network Level 2 CD set, beginning
with the April 1994 edition.

Additional reference words: 3.10 3.50 4.00 95 softlib
KBCategory: kbnetwork kbprg kbfile
KBSubcategory: NtwkRAS

SAMPLE: RESIZE App Shows How to Resize a Window in Jumps

PSS ID Number: Q123605
Authored 05-Dec-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Sometimes it's useful to have a window that can only be certain sizes. For
example, Microsoft Word and Microsoft Visual C++ have toolbars that are
resizable only to particular sizes that best fit the controls in the
toolbar. When you do this, it's a good idea to give the user visual cues
about the available window sizes. The RESIZE sample code shows by example
how to modify the way Windows resizes a window so that when a user uses the
mouse to resize the window the border jumps automatically to the next
available size.

To obtain the RESIZE sample code, download RESIZE.EXE, a self-extracting
file, from the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for RESIZE.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download RESIZE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get RESIZE.EXE

MORE INFORMATION

When a user clicks the resizing border of a window, Windows enters a
PeekMessage loop to capture all the mouse messages that occur until the
left mouse button is released. While inside this loop, every time the mouse
moves it moves the rectangle that shows the new window size to provide a
visual cue to the user as to what the new window size will be.

The RESIZE sample code modifies the resizing operation by entering it's own
message loop to capture the mouse messages until the left button is
released. Instead of updating the rectangle every time a mouse move is
received, the RESIZE code checks to see if the current mouse position would
make the window size one of the possible window width and height sizes as
defined by the application. By doing this, the RESIZE application provides

more accurate visual cues about what the resizing operation will do.

The resizing operation is triggered by the WM_NCLBUTTONDOWN message both
for Windows and the RESIZE application. When this message is received, a
message loop is entered to filter out all the mouse messages except for
two, WM_MOUSEMOVE and WM_LBUTTONUP. When the WM_MOUSEMOVE message is
received, the RESIZE application checks to see if the current mouse
position would make the window larger or smaller. If the window would be
smaller, the resizing rectangle is moved to the next smaller dimension
defined by the application. If the window would be larger, the program
checks to see if the new size would be large enough for the next possible
dimension and updates the rectangle accordingly. When the WM_LBUTTONUP
message is received, the resizing operation is completed by updating the
window size to the current position defined by the mouse and the rectangle
is removed.

The RESIZE application also takes advantage of some of the flexibility
provided by processing the WM_NCHITTEST message. Windows sends this message
to an application with a mouse position and expects the application to
describe which part of the window that mouse position covers. Frequently,
applications pass this message on to DefWindowProc() and let the default
calculations take care of telling the system what the mouse is on top of.
The RESIZE application allows DefWindowProc() to process the message, but
then checks to see if the mouse is over one of the resizing corners or in
the client area. To simplify the resizing operation, RESIZE doesn't let the
user resize from a window corner, so the application overrides the
HTBOTTOMLEFT, HTBOTTOMRIGHT, HTTOPLEFT, and HTTOPRIGHT hit test codes and
returns HTBOTTOM or HTTOP. By doing this, the mouse cursor accurately
reflects the direction of the resize. When the HTCLIENT hit test code is
returned, RESIZE changes this to HTCAPTION to allow the window to be moved
even though it doesn't have a title bar.

Although this technique will work in Windows 95, it is not necessary.
Windows 95 provides a new message WM_SIZING that will enable the program to
do exactly the same thing without processing the WM_NCxxx messages or
entering a PeekMessage() loop.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg kbui kbcode kbfile
KBSubcategory: UsrWndw

SAMPLE: SCLBLDLG - Demonstrates Scaleable Controls in Dialog

PSS ID Number: Q112639
Authored 15-Mar-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, 4.0

SUMMARY

In certain circumstances it is desirable to dynamically scale the controls
in a dialog box to the size of the dialog box window. SCLBLDLG.EXE is a
file in the Microsoft Software Library that contains sample code
implementing scaleable controls in a dialog box.

SCLBLDLG can be downloaded as a self-extracting file from the Microsoft
Software Library (MSL) on the following services:

 - CompuServe
 GO MSL and download SCLBLDLG.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SCLBLDLG.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get SCLBLDLG.EXE

MORE INFORMATION

To accomplish scaleable controls in a dialog box, the following messages
are processed:

 WM_INITDIALOG - To store original dimensions of the dialog box and all
 its controls, together with the font the dialog box uses. The original
 dimensions are stored using SetProp() in this sample. The font handle is
 stored in a static variable to be used with in WM_SIZE.

 WM_SIZE - To calculate the scaling factor, and then scale up or down the
 font and all the controls in the dialog box.

 WM_GETMINMAXINFO - To set the minimum size of the dialog box so the
 controls are not truncated.

 WM_COMMAND - To clean up when closing the dialog box. RemoveProp() is
 called to remove the stored dimensions from the property list of the
 dialog box window and all its child control windows.

NOTE: Special processing is required for calculating the dimensions of
CBS_DROPDOWN and CBS_DROPDOWNLIST style combo boxes. GetWindowRect()
returns the dimensions of the edit portion of the combo box, excluding the
drop-down list. To get the correct height for such combo boxes, the value
returned by CB_GETDROPPEDCONTROLRECT is used instead of GetWindowRect().

Additional reference words: 3.10 3.50 3.51 4.00 95 proportional sizing
softlib
KBCategory: kbprg kbfile
KBSubcategory: UsrDlgs

SAMPLE: ServerEnumDialog DLL

PSS ID Number: Q118327
Authored 14-Jul-1994 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

SUMMARY

SERVENUM is a dynamic-link library (DLL) that implements a multithreaded
dialog box, allowing a user to browse the network for servers. The dialog
box is instantiated by calling the ServerEnumDialog application programming
interface (API) implemented in the SERVENUM.DLL.

Download SRVENM.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL and download SRVENM.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SRVENM.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SRVENM.EXE

MORE INFORMATION

The Win32 application programming interface (API) implements several WNet
dialog boxes that allow users to connect to and browse network resources.
However, an API allowing a user to browse the network for servers is
currently not implemented.

Because such a dialog box is often useful in network programs, the SERVENUM
sample implements such a dialog box within a DLL. The sample also includes
a simple Windows program that calls the ServerEnumDialog API implemented in
SERVENUM.DLL of the sample. For redistribution issues of the DLL, please
see the README.TXT file included with the sample.

This sample demonstrates the following Win32 programming issues:

 DLLs
 thread local storage
 multithreading and thread synchronization
 owner-draw list boxes
 Unicode

 WNet APIs

API Interface

ServerEnumDialog(
 HWND hwnd, // Handle of calling window
 LPWSTR lpszServer, // Buffer to store chosen server name
 LPDWORD lpcchServer, // Pointer to size of buffer in bytes
 FARPROC lpfnHelpProc // User-defined help procedure
)

Purpose:

 Display a dialog box that allows a user to select a computer on the
 network. The user may also type in a string. The result is not
 guaranteed to be a valid computer name.

Parameters:

 hwnd - Handle of calling window

 lpszServer - Buffer to store resultant server name in. This should be of
 length MAX_COMPUTERNAME_LENGTH+3

 lpcchServer - Pointer to size of lpszServer, including the NULL
 terminating character. The resultant length of the string
 is stored here. If ERROR_MORE_DATA is return, the value is
 the required size of the buffer.

 lpfnHelpProc - Pointer to user-defined help procedure. The procedure
 should be prototyped as int HelpProc(VOID);

 Return Value:

 ERROR_SUCCESS - User selected or typed in a server name
 ERROR_CANCELLED - Dialog box was canceled
 ERROR_NOT_ENOUGH_MEMORY - Unable to initialize dialog box
 ERROR_MORE_DATA - lpszServer not large enough

Additional reference words: 3.10 WNetServerBrowseDialog softlib SRVENM.EXE
KBCategory: kbprg kbfile
KBSubcategory: NtwkWinnet

SAMPLE: Setting Tab Stops in a Windows List Box

PSS ID Number: Q66652
Authored 01-Nov-1990 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

Tab stops can be used in a list box to align columns of information. This
article describes how to set tab stops in a list box and provides a code
example that demonstrates the process.

MORE INFORMATION

To set tab stops in a list box, perform the following three steps:

1. Specify the LBS_USETABSTOPS style when creating the list box.

2. Assign the desired tab stops to an integer array.

 a. The tab stop values must be in increasing order -- back tab
 stops are not allowed. The tabs work the same as typewriter
 tabs: once a tab stop is overrun, a tab character will move
 the cursor to the next tab stop. If the tab stop list is
 overrun (that is, the current position is greater than the last
 tab stop value), the default tab of eight characters is used.

 b. The tab stops should be specified in dialog units. On the
 average, each character is about four horizontal dialog units in
 width.

 c. It is possible to hide columns of text from the user by
 specifying tab stops beyond the right side of the list box. This
 can be a useful way to hide information used for the
 application's internal processing.

3. Send an LB_SETTABSTOPS message to the list box to set the tab
 stops. For example, in Windows 3.1:

 SendMessage(GetDlgItem(hDlg, IDD_LISTBOX),
 LB_SETTABSTOPS,
 TOTAL_TABS,
 (LONG)(LPSTR)TabStopList);

 a. If wParam is set to 0 (zero) and lParam to NULL, the tab stops are
 set to two dialog units by default.

 b. SendMessage() will return TRUE if all of the tab stops are set
 successfully; otherwise, SendMessage() returns FALSE.

Example

Below is an example of the process. Tab stops are set at character
positions 16, 32, 58, and 84.

 int TabStopList[TOTAL_TABS]; /* Array to store tabs */

 TabStopList[0] = 16 * 4; /* 16 spaces */
 TabStopList[1] = 32 * 4; /* 32 spaces */
 TabStopList[2] = 58 * 4; /* 58 spaces */
 TabStopList[3] = 84 * 4; /* 84 spaces */

 SendMessage(GetDlgItem(hDlg, IDD_LISTBOX),
 LB_SETTABSTOPS,
 TOTAL_TABS,
 (LONG)(LPSTR)TabStopList);

NOTE: For Win32, use LPARAM instead of LONG.

If the desired unit of measure is character position, then specifying
tab positions in dialog units is recommended. Dialog units are
independent of the current font; they are loosely based on the average
width of the system font. Each character takes approximately four
dialog units.

NOTE: Under Windows 95, dialog base units for dialogs based on non-system
fonts are calculated in a different way than under Windows 3.1. For more
information, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q125681
 TITLE : How to Calculate Dialog Base Units with Non-system-based
 Font

For more control over the exact placement of a tab stop, the desired
position should be converted to a pixel offset and this offset should
be converted into dialog units. The following formula will take a
pixel position and convert it into the first tab stop position before
(or at) the desired pixel position:

 TabStopList[n] = 4 * DesiredPixelPosition /
 LOWORD(GetDialogBaseUnits());

There is a sample application named TABSTOPS in the Microsoft Software
Library that demonstrates how tab stops are set and used in a list
box.

Download TABSTOPS.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe

 GO MSL
 Search for TABSTOPS.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TABSTOPS.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get TABSTOPS.EXE

Additional reference words: 3.00 3.10 3.50 4.00 softlib
KBCategory: kbprg kbfile
KBSubcategory: UsrCtl

SAMPLE: Simulating Palette Animation on Non-Palette Displays

PSS ID Number: Q130476
Authored 21-May-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5

SUMMARY

LAVALAMP is a sample application in the Microsoft Software Library that
demonstrates how to simulate the effects of the AnimatePalette() function
on devices that may not support palettes. This program also demonstrates
how to create and manipulate dibsections. The following dibsection
functions are used in LAVALAMP:

 CreateDIBSection()
 GetDIBColorTable()
 SetDIBColorTable()

Download LAVALAMP.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for LAVALAMP.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download LAVALAMP.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get LAVALAMP.EXE

MORE INFORMATION

When running in display modes that are not palette-based, many of the
effects that can be performed easily with palette animation need to be
reprogrammed. A simple method of simulating palette animation can be
achieved by "animating" a device-independent bitmap's (DIBs) color table
and redisplaying the DIB with the new colors. To demonstrate this
technique, LAVALAMP creates an 8-bits-per-pixel (bpp) dibsection. Then it
shifts each of the RGBQUAD data structures in the color table by one
position to the left, and recycles the first entry in the color table to
the last position. After each modification to the color
table, the DIB is redisplayed.

Because the entire DIB must be redisplayed after each modification to the
color table, this technique is not recommended for large bitmaps.

Additional reference words: 3.50 technote BMP softlib
KBCategory: kbprg kbfile
KBSubcategory: GdiBmp GdiPal

SAMPLE: Using Blinking Text in an Application

PSS ID Number: Q11787
Authored 17-Dec-1987 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

It is possible to create blinking text in a Windows-based application.
Because there are no character attributes similar to the normal MS-DOS text
environment, the application must repeatedly paint the screen to implement
the flash. This article, and an accompanying file in the Microsoft Software
Library, demonstrate how this is done.

MORE INFORMATION

A timer is used to determine the rate at which the text flashes. Timer
messages are processed by inverting the appropriate area in the window
using the DSTINVERT action of the PatBlt function. The second time that the
PatBlt function is called, the text returns to its original state.
Alternatively, the PATINVERT action of the PatBlt function may be used. To
use this method, an appropriate brush must be selected into the display
context as the current pattern. This method requires more work, however, it
is more flexible.

The rate at which the text blinks can be set to match the cursor blink time
set in the Control Panel. To do this, the following code should be run when
the application starts and in response to WM_WININICHANGE messages:

 nRate = GetProfileInt(
 (LPSTR)"windows", /* heading in [] */
 (LPSTR)"CursorBlinkRate", /* string to match */
 550); /* default value */

Be sure to delete the timer when the application terminates.

There is a sample program in the Microsoft Software Library named BLINK
that uses this technique to demonstrate blinking text.

Download BLINK.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for BLINK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download BLINK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get BLINK.EXE

Additional reference words: 3.00 3.10 3.50 4.00 95 softlib BLINK.EXE
KBCategory: kbprg kbfile
KBSubcategory: UsrPnt

SAMPLE: Win16 App (WOW & Win32s) Calling Win32 DLL Code

PSS ID Number: Q114341
Authored 01-May-1994 Last modified 10-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

The INTEROP sample demonstrates two general methods for calling routines in
a Win32 DLL from a Windows-based application: thunks and SendMessage().
There are two different thunking methods, one for each platform: Generic
Thunks on Windows NT and Universal Thunks on Win32s. The message used is
WM_COPYDATA, a new message introduced by Windows NT and Win32s. All three
methods provide a way to call functions and pass data across the 16-32
boundary, translating any pointers in the process. The advantages of
WM_COPYDATA over thunks are that it is fast the exact same code runs on
either platform (the thunk used will depend on the platform). The
disadvantage of WM_COPYDATA is that a method must be devised to get a
function return value (other than true or false) back to the calling
application.

NOTE: Universal Thunks were designed to work with a Win32-based application
calling a 16-bit DLL. The method described here has limitations. Because
the application is 16-bit, no 32-bit context is created, so certain calls
will not work from the Win32 DLL.

The sample consists of the following source files:

 APP16.C - Win16 Application
 DLL16.C - 16-bit side of Universal Thunk/Generic Thunk
 STUB32.C - 32-bit stub that loads the 32-bit DLLs on Win32s
 UTDLL32.C - 32-bit side of the Universal Thunk
 DISP32.C - Dispatch calls sent through WM_COPYDATA
 DLL32.C - Win32 DLL

This sample is included with the Microsoft Win32 SDK. It is located in
SCT\SAMPLES\INTEROP. NOTE: There is also an RPC sample named INTEROP, but
it is in a different directory.

MORE INFORMATION

Generic Thunk

Under Windows NT, it is possible to call routines in a Win32 DLL from a
Windows-based application using an interface called Generic Thunks. The SDK
file DOC\SDK\MISC\GENTHUNK.TXT describes the interface.

Here is a picture of the way the pieces fit together in INTEROP:

 dll32

 | Win32 |
 32-bit | DLL |

 /|\
 ------------------|-------
 |
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (GT) |
 --------- ------------
 app16 dll16

DLL16 is loaded when APP16 is loaded. If it detects that WOW is present,
then it loads DLL32.

WOW presents a few new 16-bit application programming interfaces (APIs)
that allow you to load the Win32 DLL, get the address of the DLL routine,
call the routine (passing it up to thirty-two 32-bit arguments), convert
16:16 (WOW) addresses to 0:32 addresses (useful if you need to build up a
32-bit structure that contains pointers and pass a pointer to it), and free
the Win32 DLL. These functions are:

 DWORD FAR PASCAL LoadLibraryEx32W(LPCSTR, DWORD, DWORD);
 DWORD FAR PASCAL GetProcAddress32W(DWORD, LPCSTR);
 DWORD FAR PASCAL CallProc32W(DWORD, ..., LPVOID, DWORD, DWORD);
 DWORD FAR PASCAL GetVDMPointer32W(LPVOID, UINT);
 BOOL FAR PASCAL FreeLibrary32W(DWORD);

When linking the Win16 application, you need to put the following
statements in the .DEF file, indicating that the functions will be imported
from the WOW kernel:

 IMPORTS
 kernel.LoadLibraryEx32W
 kernel.FreeLibrary32W
 kernel.GetProcAddress32W
 kernel.GetVDMPointer32W
 kernel.CallProc32W

Note that although these functions are called in 16-bit code, they need to
be provided with 32-bit handles, and they return 32-bit handles.

In addition, be sure that your Win32 DLL entry points are declared with the
_stdcall convention; otherwise, you will get an access violation.

Universal Thunk

Under Win32s, it is possible to call routines in a Win32 DLL from a Win16
application using an interface called Universal Thunks. The interface is

described in the Win32s Programmer's Reference. The sample UTSAMPLE, shows
the opposite (and more typical) case, a Win32 application calling 16-bit
routines.

Here is a picture of the way the pieces fit together in INTEROP:

 stub utdll32 dll32
 ----------- ----------- ---------
 | Win32 |-->| Win32 DLL |<->| Win32 |
 32-bit | EXE | | (UT) | | DLL |
 ----------- ----------- ---------
 /|\ /|\
 ------------------|--------|-------------------------
 | \|/
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (UT) |
 --------- ------------
 app16 dll16

The load order is as follows: The Windows 3.1 application loads the 16-bit
DLL. The 16-bit DLL checks to see whether the 32-bit side has been
initialized. If it has not been initialized, then the DLL spawns the 32-bit
.EXE (stub), which then loads the 32-bit DLL that sets up the Universal
Thunks with the 16-bit DLL. Once all of the components are loaded and
initialized, when the Windows 3.x application calls an entry point in the
16-bit DLL, the 16-bit DLL uses the 32-bit Universal Thunk callback to pass
the data over to the 32-bit side. Once the call has been received on the 32-
bit side, the proper Win32 DLL entry point can be called.

WM_COPYDATA

The wParam and lParam for this message are as follows:

 wParam = (WPARAM) (HWND) hwndFrom; /* handle of sending window */
 lParam = (LPARAM) (PCOPYDATASTRUCT) pcds;

Where hwndFrom is the handle of the sending window and COPYDATASTRUCT is
defined as follows:

 typedef struct tagCOPYDATASTRUCT {
 DWORD dwData;
 DWORD cbData;
 PVOID lpData;
 } COPYDATASTRUCT;

The INTEROP sample uses dwData as a function code, indicating which Win32
DLL entry point should be calling and lpData to contain a pointer to the
data structure to be passed to the function.

Here is a picture of the way the pieces fit together in INTEROP:

 disp dll32
 ----------- ---------

 | Win32 |-->| Win32 |
 32-bit | EXE | | DLL |
 ----------- ---------
 /|\
 ------------------|----------------------------------
 |
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (THUNK) |
 --------- ------------
 app16 dll16

DLL16 is loaded when APP16 is loaded. DISP is spawned to handle WM_COPYDATA
messages, regardless of platform. DISP dispatches the calls to DLL32,
marshalling the arguments.

Additional reference words: 3.50
KBCategory: kbref
KBSubcategory: SubSys

Secure Erasure Under Windows NT

PSS ID Number: Q94239
Authored 30-Dec-1992 Last modified 03-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, and 3.51

SUMMARY

File systems under Windows NT currently have virtual secure erasure (when a
file is deleted, the data is no longer accessible through the operating
system). Although the bits could still be on disk, Windows NT will not
allow access to them.

MORE INFORMATION

The NTFS file system does this by keeping a high-water mark, for each file,
of bytes written to the file. Everything below the line is real data,
anything above the line is (on disk) random garbage that used to be free
space, but any attempt to read past this high-water mark returns all zeros.

Other reusable objects are also protected. For example, all the memory
pages in a process's address space are zeroed when they are touched (unlike
the file system, a process may directly access its pages, and thus the
pages must be actually zeroed rather than virtually zeroed).

Note that file system security assumes physical security; in other words,
if a person has physical access to a machine and can boot an alternative
operating system and/or add custom device drivers and programs, he/she can
always get direct access to the bits on disk.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Security and Screen Savers

PSS ID Number: Q96780
Authored 25-Mar-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 and 3.51

SUMMARY

Screen savers are user-mode applications that execute in a different
desktop (see the note at the end of the article). Therefore, a screen saver
cannot enumerate windows of user-mode applications. This design prevents
unauthorized users from viewing the contents of applications displayed on
the screen. For secure screen savers (those that ask for a password), this
adds a further layer of protection.

Screen savers also execute in the security context of the logged-on user. A
screen saver may call ExitWindowsEx(), to log off from or shut down the
system, or any other application programming interface (API) that the
logged-on user has permission to perform.

MORE INFORMATION

A sample screen saver SCRNSAVE is distributed on the Win32 SDK CD.

NOTE: A desktop is a virtual screen. Windows NT 3.5 and earlier have three
desktops--the main desktop, the WinLogon desktop, and a desktop for screen
savers. Windows NT 3.51 and later support and document creating multiple
desktops.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Security Attributes on Named Pipes

PSS ID Number: Q102798
Authored 10-Aug-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The March beta release of the Windows NT (and earlier) did not require
security attributes on pipes. It was valid at that time to enter NULL for
the last parameter of the Win32-based application programming interface
(API) CreateNamedPipe(). This is no longer the case.

MORE INFORMATION

Windows NT 3.1 and later require security attributes for pipes. Please note
that setting the security attributes parameter to NULL does not indicate
that you want a NULL security descriptor (SD), rather it indicates that you
want to inherit the security descriptor of the current access token. This
generally means that any client wanting to connect to your pipe server must
have the same security attributes as the user that started the server. For
example, if the user who started the server was the administrator of the
machine, then any client who wants to connect must also be an administrator
to that machine.

Below is an code sample that demonstrates creating a named pipe with a NULL
security descriptor.

 HANDLE hPipe; // Pipe handle.
 SECURITY_ATTRIBUTES sa; // Security attributes.
 PSECURITY_DESCRIPTOR pSD; // Pointer to SD.

 // Allocate memory for the security descriptor.

 pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,
 SECURITY_DESCRIPTOR_MIN_LENGTH);

 // Initialize the new security descriptor.

 InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION);

 // Add a NULL descriptor ACL to the security descriptor.

 SetSecurityDescriptorDacl(pSD, TRUE, (PACL) NULL, FALSE);

 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = pSD;
 sa.bInheritHandle = TRUE;

 // Create a local named pipe with a NULL security descriptor.

 hPipe = CreateNamedPipe(
 "\\\\.\\PIPE\\test", // Pipe name = 'test'.
 PIPE_ACCESS_DUPLEX // 2-way pipe.
 | FILE_FLAG_OVERLAPPED, // Use overlapped structure.
 PIPE_WAIT // Wait on messages.
 | PIPE_READMODE_MESSAGE // Specify message mode pipe.
 | PIPE_TYPE_MESSAGE,
 MAX_PIPE_INSTANCES, // Maximum instance limit.
 OUT_BUF_SIZE, // Buffer sizes.
 IN_BUF_SIZE,
 TIME_OUT, // Specify time out.
 &sa); // Security attributes.

It is important to note that by specifying TRUE for the fDaclPresent
parameter and NULL for pAcl parameter of the SetSecurityDescriptorDacl()
API, a NULL access control list (ACL) is being explicitly specified.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Security Context of Child Processes

PSS ID Number: Q111545
Authored 14-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

When a process is created with the CreateProcess() API, it operates under
the same security context as the parent. The child process inherits the
parent's security context, which are defined by the parent's access token.
Even if a thread in the parent process impersonates a client and then
creates a new process, the new process still runs under the parent's
original security context and not the under the impersonation token.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Semicolons Cannot Separate Macros in .HPJ File

PSS ID Number: Q83020
Authored 02-Apr-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The author of a Help system can combine individual macro commands into
a macro string, which the Microsoft Help Compiler processes as a unit.
When the macro string is part of an RTF text file, the individual
macros in the string are separated from each other with a semicolon
character (;). The Help system runs the individual macros of a macro
string sequentially.

The author can define a macro string that is run when the user loads a
Help file. This macro string is placed into the [CONFIG] section of
the Help project (.HPJ) file. However, in the .HPJ file, the
individual macros of the string are separated from each other with a
colon character (:) because the semicolon character indicates the
beginning of a comment.

MORE INFORMATION

In the following sample [CONFIG] section, a macro adds two buttons to
the Help window's button bar. The first button is labeled "Other",
which when chosen brings up the About Help dialog box. The second
button is labeled "Test". When chosen, it disables the "Other" button
and jumps to the topic represented by "context_string." To create the
"Test" button, two macros are concatenated to form the macro parameter
in the CreateButton call.

[CONFIG]
; This first button is added so that the demonstration macro is
; complete. This macro just creates a button. Choosing the button
; brings up the About Help dialog box.

CreateButton("other_button","&Other","About()")

; This macro also creates a button. Choosing the button disables
; "other_button", created above, and jumps to the topic represented by
; "topic_string."
;
; Note that the two macros in the CreateButton macro are separated by
; a colon, not a semicolon.
;
; NOTE: The following macro should appear on a single line.

CreateButton("test_button","&Test","DisableButton(`Other_Button'):
JumpId(`testhelp.hlp',`context_string')")

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

SendMessage() in a Multithreaded Environment

PSS ID Number: Q95000
Authored 28-Jan-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

When thread X calls SendMessage() to send a message to a window created by
thread Y, it must wait until thread Y calls PeekMessage(), GetMessage(), or
WaitMessage() before the SendMessage() call can continue. This process
prevents synchronization problems.

MORE INFORMATION

Because of the multithreaded environment of Windows NT, SendMessage() does
not behave in the same manner as it does under Windows 3.1. Under Windows
3.1, SendMessage() simply calls the window procedure given to it. In
Windows 3.1, if you use the SendMessage() function to send a message to a
window of another task, the system will perform a task switch to the target
window (change to the stack of the target Windows-based application), let
the target window process the message [when it calls GetMessage() or
PeekMessage()], and then switch back to the original message.

Under Windows NT, however, only the thread that created a window may
process the window's messages. Therefore, if thread X sends a message [via
SendMessage()] to a window that was created by thread Y, thread X must wait
for thread Y to be in a receiving state, and handle the message for it.

Thread Y is only in a receiving state when it calls PeekMessage(),
GetMessage(), or WaitMessage(), because synchronization problems may occur
if a thread is interrupted while processing other messages. While in a
receiving state, thread Y may process messages sent to its windows via
SendMessage() (in this case, by thread X).

Note that PeekMessage() and GetMessage() look in thread Y's message queue
for messages. Because SendMessage() does not post any messages,
PeekMessage() and GetMessage() will not see any indication of the
SendMessage() call. The two functions merely serve as a point in time at
which SendMessage() (thread X) may "interrupt," and have thread Y process
its message next. Then PeekMessage() or GetMessage() continues normal
operation under thread Y.

Because of this behavior, if thread X sends a message to thread Y, and
thread Y is locked in a tight loop, thread X is now locked as well. This
may be prevented by using SendNotifyMessage(), which behaves as
SendMessage() does above, but returns immediately. This may be an advantage
if it is not important that the sent message be completed before thread Y

continues. Note, however, that because SendNotifyMessage() is asynchronous,
thread X should not pass pointers to any of its local variables when making
the call, because they may be gone by the time thread Y attempts to look at
them. This would result in a general protection violation (GP fault) when
thread Y accesses the pointer.

Additional reference words: 3.10 3.50 3.51 4.00 95 GP-fault
KBCategory: kbprg
KBSubcategory: UsrMisc

Services and Redirected Drives

PSS ID Number: Q115848
Authored 06-Jun-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

When writing a service, do not use WNetAddConnection() to redirect drives
to remote shares, because the redirector does not allow the logged-on user
to see the server or enumerate the drive. Instead, use universal naming
convention (UNC) names whenever possible to redirect drives to remote
shares.

MORE INFORMATION

WNetAddConnection() creates a global symbolic link describing the drive.
Therefore, the user can change to the drive at the command prompt. However,
WNetOpenEnum(), WNetEnumResource, and the "net use" command fail to list
the drive connection that was created by the service. This happens because
the logged-on user does not have an active session to the remote
connection, so the redirector will not let the user see the remote server.

The File Manager calls GetDriveType() on each drive and puts up an icon
for each drive found. The File Manager creates an icon for redirected
drives created from a service because there is a global symbolic link to
that drive. However, the share name is not available. In addition, the
logged-on user cannot use File Manager to disconnect the drive because the
drive was created by the service, not the logged-on user.

If the service process is running in the Local System account, then only
that process or another process running in the Local System account can
call WNetCancelConnection() to disconnect the drive.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

SetActiveWindow() and SetForegroundWindow() Clarification

PSS ID Number: Q97925
Authored 25-Apr-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

By default, each thread has an independent input state (its own active
window, its own focus window, and so forth). SetActiveWindow() always
logically sets a thread's active window state. To force a window to the
foreground, however, use SetForegroundWindow(). SetForegroundWindow()
activates a window and forces the window into the foreground.
SetActiveWindow() always activates, but it brings the active window into
the foreground only if the thread is the foreground thread.

NOTE: If the target window was not created by the calling thread, the
active window status of the calling thread is set to NULL, and the active
window status of the thread that created the target window is set to the
target window.

Applications can call AttachThreadInput() to allow a set of threads to
share the same input state. By sharing input state, the threads share their
concept of the active window. By doing this, one thread can always activate
another thread's window. This function is also useful for sharing focus
state, mouse capture state, keyboard state, and window Z-order state among
windows created by different threads whose input state is shared.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

SetBkColor() Does Not Support Dithered Colors

PSS ID Number: Q69885
Authored 06-Mar-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The syntax for the SetBkColor function is documented in the Microsoft
Windows Software Development Kit (SDK) as follows:

 DWORD SetBkColor(HDC hDC, COLORREF crColor);

SetBkColor sets the current background color of the specified device
context (DC) to the color that the crColor parameter references, or to
the nearest physical color if the device cannot represent the RGB
color value that the crColor parameter specifies. In other words,
SetBkColor cannot be used to set the background to a dithered color
and defaults to the physical color that is closest to the requested
crColor value.

MORE INFORMATION

This behavior can cause unexpected results for an application that
changes the background color of a control to a color that cannot be
represented by a color provided by the display device.

Specifically, when an application specifies a dithered color for the
background of an edit control, and specifies the same color for the
text background, Windows paints the control in two distinct colors.

For example, using the standard VGA display driver, the following
call, in which COLOR_INACTIVEBORDER is a green/gray specified by
RGB(64, 128, 128), sets the background color to gray (RGB(128, 128,
128)) rather than the dithered green/gray that is desired:

 SetBkColor(wParam, GetSysColor(COLOR_INACTIVEBORDER));

To illustrate, if the application uses the function call while
processing the WM_CTLCOLOR message to change the color of an edit
control, the window background is painted green/gray, and the text
background defaults to the nearest physical color, which is gray. This
produces a gray rectangle inside a green/gray rectangle rather than
the desired green/gray for the entire edit control.

This behavior can also occur with other controls such as option
buttons and list boxes. However, an application can avoid this problem

by using the SetBkMode function to set the background mode to
TRANSPARENT. This allows the dithered brush pattern to show through
beneath the text to achieve the desired results. That solution is not
practical with a multiline edit control because if text is inserted,
and the background mode has been set to TRANSPARENT, the text that is
pushed to the right by the inserted text leaves its image behind. The
result is text superimposed on top of other text, which quickly
becomes unreadable.

To partially work around this situation for a multiline edit control,
use the GetNearestColor function to determine the nearest physical
color to the desired color, as in the code fragment below. In this
case, the entire edit control is gray:

 case WM_CREATE:
 {
 HDC hDC;
 hDC = GetDC(hWnd);
 hGrayBrush = CreateSolidBrush(GetNearestColor(hDC,
 RGB(64, 128, 128)));
 ReleaseDC(hWnd, hDC);
 hWndEdit = CreateWindow(... ES_MULTILINE ...);
 }
 break;

 case WM_CTLCOLOR:
 if (HIWORD(lParam) == CTLCOLOR_EDIT)
 {
 // The following call creates the nearest physical
 // color; therefore, it will be the same as the
 // hGrayBrush created above.
 SetBkColor(wParam, RGB(64, 128, 128));
 SetTextColor(wParam, RGB(255, 0, 0)); // red text
 return (DWORD)hGrayBrush;
 }
 else
 return DefWindowProc(hWnd, identifier, wParam, lParam);
 break;

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDrw

SetClipboardData() and CF_PRIVATEFIRST

PSS ID Number: Q24252
Authored 16-Dec-1987 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

The documentation for SetClipboardData() states that CF_PRIVATEFIRST can be
used to put private data formats on the clipboard. It also states that data
of this format is not automatically deleted. However, that is apparently
not true. That is, the data is removed automatically when the clipboard is
emptied (sending a WM_DESTROYCLIPBOARD message) and the new item is set
into the clipboard. The old item is shown; however, the handle now is
invalid because GlobalFree() is called on it.

MORE INFORMATION

GlobalFree() was not called on this handle. If you try to use the other
handle to this memory, you will find that the one you initially received
from GlobalAlloc() is still valid. Only the clipboard handle has been
invalidated by the call to EmptyClipboard().

The documentation states that "Data handles associated (with
CF_PRIVATEFIRST) will not be freed automatically." This statement refers to
the memory associated with that data handle. When SetClipboardData() is
called under standard data types, it frees the block of memory identified
by hMem. This is not the case for CF_PRIVATEFIRST. Applications that post
CF_PRIVATEFIRST items on the clipboard are responsible for the memory block
containing those items.

This is not intended to imply that items placed on the clipboard will
remain on the clipboard if they are CF_PRIVATEFIRST. When a call is made to
EmptyClipboard(), all objects will be removed.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrClp

SetErrorMode() Is Inherited

PSS ID Number: Q105304
Authored 17-Oct-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

An application can use SetErrorMode() to control whether the operating
system handles serious errors or whether the application itself will handle
the errors.

NOTE: The error mode will be inherited by any child process. However, the
child process may not be prepared to handle the error return codes. As a
result, the application may die during a critical error without the usual
error message popups occurring.

This behavior is by design.

One solution is to call SetErrorMode() before and after the call to
CreateProcess() in order to control the error mode that is passed to the
child. Be aware that this process must be synchronized in a multithreaded
application.

There is another solution available in Windows NT 3.5 and later.
CreateProcess() has a new flag CREATE_DEFAULT_ERROR_MODE that can be used
to control the error mode of the child process.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

SetParent and Control Notifications

PSS ID Number: Q104069
Authored 05-Sep-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

An edit, list box, or combo box control sends notifications to the
original parent window even after SetParent has been used to change
the control's parent. A button control sends notifications to the new
parent after SetParent has been used to change its parent.

Edit, list box, and combo box controls keep a private copy of the
window handle of the parent at the time of creation. This handle is
not changed when SetParent is used to change the control's parent.
Consequently, the notifications (EN_*, LBN_*, and CBN_* notifications)
go to the original parent.

Note that WM_PARENTNOTIFY messages go to the new parent and
GetParent() returns the new parent. If it is required that
notifications go to the new parent window, code must be added to the
old parent's window procedure to pass on the notifications to the new
parent.

For example:

case WM_COMMAND:
 hwndCtl = LOWORD(lParam);

 // If notification is from a control and the control is no longer this
 // window's child, pass it on to the new parent.
 if (hwndCtl && !IsChild(hWnd, hwndCtl))
 SendMessage(GetParent(hwndCtl), WM_COMMAND, wParam, lParam);
 else Do normal processing;

Button controls send notifications to the new parent after SetParent
has been used to change the parent.

Additional reference words: 3.10 3.50 3.51 4.00 95 listbox combobox
KBCategory: kbprg
KBSubcategory: UsrCtl

SetTimer() Should Not Be Used in Console Applications

PSS ID Number: Q102482
Authored 03-Aug-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

SetTimer() was not designed to be used with a console application because
it requires a message loop to dispatch the timer signal to the timer
procedure. In a console application, this behavior can be easily emulated
with a thread that is set to wait on an event.

MORE INFORMATION

In Windows NT 3.1, SetTimer() can work within a console application, but it
requires a thread in a loop calling GetMessage() and DispatchMessage().

For example,

 while (1)
 {
 GetMessage();
 DispatchMessage();
 }

Because this requires a thread looping, there is no real advantage to
adding a timer to a console application over using a thread waiting on an
event.

Another option is to use a multimedia timer, which does not require a
message loop and has a higher resolution. In Windows NT 3.5, the resolution
can be set to 1 msec using timeBeginPeriod(). See the help for
timeSetEvent() and the Multimedia overview. Any application using
Multimedia calls must include MMSYSTEM.H, and must link with WINMM.LIB.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMisc

Setting Dynamic Breakpoints in WinDbg

PSS ID Number: Q100642
Authored 24-Jun-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The WinDbg breakpoint command contains a metacircular interpreter; that is,
you can execute commands dynamically once a breakpoint is hit. This allows
you to perform complex operations, including breaking when an automatic
variable has changed, as described below.

The command interpreter of WinDbg allows any valid C expression to serve as
a break condition. For example, to break whenever a static variable has
changed, use the following expression in the Expression field of the
breakpoint dialog box:

 &<variablename>

In addition, the length should be specified as 4 (the size of a DWORD) in
the length field.

This technique does not work for automatic variables because the address of
an automatic variable may change depending on the value that the stack
pointer has upon entering the function that defines the automatic variable.
This is one case where the breakpoint needs to be redefined dynamically.

For this purpose, a breakpoint can be enabled at function start and
disabled at function exit, so that the address of the variable is
recomputed.

MORE INFORMATION

Suppose that the name of the function is "subroutine" and the local
variable name is "i". The following steps will be used:

1. Start the program and step into the function that defines the
 automatic variable with the commands:

 g subroutine
 p
 bp500 ={subroutine}&i /r4 /C"?i"

 The breakpoint number is chosen to be large so that the breakpoint
 will be well out of range of other breakpoints. Note that /r4
 indicates a length of 4 because i is an integer. Make this number
 larger for other data types. The command "?i" prints out the value

 of i.

2. Next, disable this first breakpoint with the command

 bd500

 because the address of i may change. The breakpoint will be enabled
 when in the scope of function subroutine.

3. The second breakpoint definition is set at the entry point of the
 function:

 bp .<FirstLine> /C"be 500;g"

 This is where the breakpoint is enabled. Note that <FirstLine> is
 the line number of the first statement in the function subroutine.

4. The last breakpoint is set at the end of the function

 bp .<LastLine> /C"bd 500;g"

 and will disable the breakpoint again. Note that <LastLine> is the
 line number of the last statement in the function subroutine.

 Note that if the function has more than one exit point, multiple
 breakpoints may have to be defined.

Program execution stops when breakpoint #500 is hit (for example, the value
of i changes), but execution will continue after the other two breakpoints
because they contain go ("g") commands.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Setting File Permissions

PSS ID Number: Q98952
Authored 18-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

In Windows NT, local access controls can be set on just NTFS partitions,
not FAT or HPFS partitions or floppies. Read/execute-only permissions
should work properly on a CD-ROM.

The exception is that ACLs (access control lists) can be set on shares,
regardless of the file system, to control access to all the files within
that share. For example, you can give read access to everyone, but give
full access just to members of a certain group or to certain individuals.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Setting the Console Configuration

PSS ID Number: Q105674
Authored 22-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

To create a command prompt with custom features such as

 Settings
 Fonts
 Screen Size and Position
 Screen Colors

create a new entry in the Program Manager for CMD.EXE (suppose that the
description is CUSTOM), choose these items from the CMD system menu, and
select Save Configuration in each dialog box. The settings are saved in the
registry under

 HKEY_CURRENT_USER\
 Console\
 custom

and are used when starting the CUSTOM command prompt from the Program
Manager or when specifying:

 start "custom"

This behavior is really a convenient side effect of

 start <string>

which sets the title in the window title bar. When you create a new console
window with the START command, the system looks in the registry and tries
to match the title with one of the configurations stored there. If it
cannot find it, it defaults to the values stored in:

 HKEY_CURRENT_USER\
 Console\
 Configuration

This functionality can be duplicated in your own applications using the
registry application programming interface (API).

For more information, please see the "Registry and Initialization Files"
overview and the REGISTRY sample.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Setup Toolkit .INF File Format and Disk Labels

PSS ID Number: Q88141
Authored 18-Aug-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, version 3.5

In the Microsoft Setup Toolkit for Windows, the Source Media Descriptions
section of the .INF file contains one line for each of the disks you use to
install your application. Each of these lines consists of four quoted
strings, separated by commas. The second quoted string is the disk label,
which you create using the disk-layout utilities. This disk label has
nothing to do with the MS-DOS disk label. The disk label in the .INF file
comes from the Disk Labels command on the Options menu in DSKLAYT.EXE and
is arbitrarily chosen by the developer during the disk-layout process.

The Setup Toolkit only uses this disk label to prompt the user for disks.
The Setup Toolkit uses the tag filename in the Source Media Descriptions
section to determine if the proper disk has been placed in the drive.

Additional reference words: 3.00 3.10 3.50 MSSetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

SHARE.EXE Functionality Built into Windows NT

PSS ID Number: Q101191
Authored 07-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The functionality of the MS-DOS SHARE.EXE utility is built into the Windows
NT kernel. Any application or application programming interface (API) that
relies on the SHARE.EXE functionality is automatically supported. This
functionality cannot be disabled.

MORE INFORMATION

If you run the MS-DOS version of SHARE.EXE, you will receive a message
stating that SHARE is already installed. The Windows NT MS-DOS emulation
hooks Interrupt 2Fh function 10H and always returns a status indicating
that SHARE is installed.

If you run an MS-DOS-based application and it complains that SHARE.EXE is
not installed, the application may be searching the AUTOEXEC.BAT file for a
"share" string rather than using the proper Interrupt 2Fh interface.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Sharing All Data in a DLL

PSS ID Number: Q109619
Authored 05-Jan-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Win32 dynamic-link libraries (DLLs) use instance data by default. This
means that each application that uses a DLL gets its own copy of the DLL's
data. However, it is possible to share the DLL data among all applications
that use the DLL.

If you only need to share some of the DLL data, we recommend creating a
new section and sharing it instead. For additional information, please see
the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q89817
 TITLE : How to Specify Shared and Nonshared Data in a DLL

If you want to share *all* of the DLL static data, it is important to
do two things:

 - First, the DLL must use the DLL version of the C Run-time (for example
 CRTDLL.LIB or MSVCRT.LIB). Please see your product documentation for
 more information about using the C Run-time in a DLL.

 - Second, you will need to specify that both .data and .bss are shared.
 Often, this is done in the "SECTIONS" portion of the .DEF file. For
 example:

 SECTIONS
 .bss READ WRITE SHARED
 .data READ WRITE SHARED

 If you are using Visual C++ 32-bit Edition, you will have to specify
 this using the -section switch on the linker. For example:

 link -section:.data,rws -section:.bss,rws

Only static data will be shared. Memory allocated dynamically with calls to
APIs/functions such as GlobalAlloc() or malloc() will still be specific to
the calling process.

The system will try to load the shared memory block at the same address in
each process. However, if the block cannot be loaded into the same memory
address, the system allocates a new block of memory for that process and
the memory is not shared. No run time warnings are given when this happens,
therefore, named shared memory is generally a safer option.

MORE INFORMATION

The C Run-time uses global variables. If the CRT is statically linked to
the DLL, these variables will be shared among all clients of the DLL and
will most likely cause an exception c0000005.

The reason you need to specify both .data and .bss as shared is because
they each hold different types of data. The .data section holds initialized
data and the .bss section holds the uninitialized data.

One reason for sharing all data in a DLL is to have consistent behavior in
the DLL between Win32 (running on Windows NT) and Win32s (running on
Windows 3.1). When running on Win32s, a 32-bit DLL shares its data among
all of the processes that use the DLL.

Note that it is not necessary to share all data to behave identically
between Win32 and Win32s. The DLL can use thread local storage (TLS) on
Win32s to store variables as instance data. For additional information,
please see the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q109620
 TITLE : Creating Instance Data in a Win32s DLL

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Sharing Memory Between 32-Bit and 16-Bit Code on Win32s

PSS ID Number: Q105762
Authored 24-Oct-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

SUMMARY

This article discusses many of the issues involved in sharing memory across
the process boundary under Win32s.

MORE INFORMATION

Memory allocated by a Win32-based application using GlobalAlloc() can be
shared with a 16-bit Windows-based application on Win32s. If the memory is
allocated with GMEM_MOVEABLE, then GlobalAlloc() returns a handle and not a
pointer. The 16-bit Windows-based application can use the low word of this
handle. The high word is all zeros. Make sure to lock the handle using
GlobalLock() in the 16-bit Windows-based application to get a pointer.

NOTE: GlobalAlloc (GMEM_FIXED...) is not the same as
GlobalFix(GlobalAlloc(GMEM_MOVEABLE...)). GMEM_FIXED will allocate locked
pages, which is most often not what you want.

Memory allocated by a 16-bit Windows-based application via GlobalAlloc()
must be fixed via GlobalFix() and translated before it can be passed to a
Win32-based application. Whenever a Windows object is passed to a
Win32-based application by its 32-bit address, the memory must be fixed,
because the address is computed from the selector base only once. If
Windows moves the memory, the linear address used by the Win32-based
application will no longer be valid.

If you are using the Universal Thunk, you can also pass a buffer from a
Win32-based application to a 16-bit dynamic-link library (DLL) in the
UTRegister() call. The address is translated for you. Another alternative
is the translation list passed to the callable stubs. Addresses passed in
the translation list will be translated during the thunking process. For
more information on the Universal Thunk, please see the "Win32 Programmer's
Reference."

NOTE: The ability to share global memory handles under Win32s is a result
of the implementation of Windows 3.1, in which all applications run in the
same address space. This is not true of existing Win32 platforms and will
not be true of future Win32 platforms.

Allocating memory with GlobalAlloc() gets you tiled selectors. However, you
can only tile 255 selectors at a time and there is an overall limit of 8192
selectors in the system. If you allocate memory using new, malloc(),
HeapAlloc(), LocalAlloc() or VirtualAlloc, your allocated memory does not

automatically get you tiled selectors. However, because you don't
automatically get tiled selectors, whenever you pass memory to 16-bit code,
selectors must be synthesized for you. There's currently a limit of 256
selectors that Win32s maintains for select synthesis. Also note that each
block of memory that you pass is limited to 32K in size due to the way that
Win32s tiles selectors.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Sharing Objects with a Service

PSS ID Number: Q106387
Authored 07-Nov-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

To share objects (file mapping, synchronization, and so forth) created
by a service, you must place a null DACL (discretionary access-control
list) in the security descriptor field when the object is created.
This grants everyone access to the object.

MORE INFORMATION

This null DACL is not the same as a NULL, which is used to specify the
default security descriptor. For example, the following code can be used to
create a mutex with a null DACL:

 PSECURITY_DESCRIPTOR pSD;
 SECURITY_ATTRIBUTES sa;

 pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,
 SECURITY_DESCRIPTOR_MIN_LENGTH);

 if (pSD == NULL)
 {
 Error(...);
 }

 if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION))
 {
 Error(...);
 }

 // Add a NULL DACL to the security descriptor..

 if (!SetSecurityDescriptorDacl(pSD, TRUE, (PACL) NULL, FALSE))
 {
 Error(...);
 }

 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = pSD;
 sa.bInheritHandle = TRUE;

 mutex = CreateMutex(&sa, FALSE, "SOMENAME");

If you are creating one of these objects in an application and the object
will be shared with a service, you could also use a null DACL to grant
everyone access. As an alternative, you could add an access-control entry
(ACE) to the DACL that grants access to the user account that the service
is running under. This would restrict access to the object to the service.

For a more detailed example, please see the SERVICES sample.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Sharing Win32 Services

PSS ID Number: Q91698
Authored 02-Nov-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Win32 services are discussed in the overview for the Service Control
Manager. The documentation says that:

 A Win32 service runs in a Win32 process which it may or may not share
 with other Win32 services.

Whether or not a service has its own process is determined by which of
these service types is specified in the call to CreateService() to add the
service to the Service Control Manager Database.

SERVICE_WIN32_OWN_PROCESS

 This service type indicates that only one service can run in the
 process. This allows an application to spawn multiple copies of a
 service under different names, each of which gets its own process. This
 is the most common type of service.

SERVICE_WIN32_SHARE_PROCESS

 This service type indicates that more than one service can be run in a
 single process. When the second service is started, it is started as a
 thread in the existing process. A new process is not created. An example
 of this is the LAN Manage Workstation and the LAN Manager Server. Note
 that the service must be started in the system account, which is
 .\System. The name must be NULL.

The service type for each service is stored in the registry. The values are
as follows:

 SERVICE_WIN32_OWN_PROCESS 0x10
 SERVICE_WIN32_SHARE_PROCESS 0x20.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Showing the Beginning of an Edit Control after EM_SETSEL

PSS ID Number: Q64758
Authored 09-Aug-1990 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In a single-line edit control created with the ES_AUTOHSCROLL style,
when the EM_SETSEL message is used to select the entire contents of
the control, the text in the control is scrolled to the left and the
caret is placed at the end of the text. This occurs when the control
contains more text than can be displayed at one time. The order of the
starting and ending positions specified in the lParam of the EM_SETSEL
message makes no difference.

If your application needs to have the entire contents selected and the
beginning of the string in view, create the edit control using the
ES_MULTILINE style. The order of the starting and ending positions in
the EM_SETSEL message is respected by multiline edit controls.

MORE INFORMATION

Consider the following example, which sets and then selects the text
in a single-line edit control created with the ES_AUTOHSCROLL style:

 //hEdit and szText defined elsewhere
 SetWindowText(hEdit, szText);
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0x7FFF, 0));

According to the documentation for the EM_SETSEL message, the
low-order word of lParam specifies the starting position of the
selection and the high-order word specifies the ending position.
However, a single-line edit control ignores this ordering and always
selects the text from the lower position to the higher position.

If the content of the edit control is longer than the control can
display, the text is scrolled to the end of the selection, and the
caret is positioned there. In some situations, it is necessary to show
the beginning of the text after the selection is made with EM_SETSEL.
In Windows 3.00, there is no documented method to accomplish this
positioning using a single-line edit control.

A multiline edit control, sized to display only one line and created
without the ES_AUTOVSCROLL style, will appear to the user as a
single-line control. However, this control will respect the order of
the start and end positions in the EM_SETSEL message.

In the sample code above, a multiline edit control will select the
text from the specified starting position to the specified ending
position, regardless of which position is higher. In this example, the
text is scrolled to the beginning and the caret is placed there. The
beginning of the selected text is visible in the control.

NOTE: A multiline edit control uses up slightly more memory in the
USER heap than a single-line edit control.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Simulating CreatePatternBrush() on a High-Res Printer

PSS ID Number: Q74793
Authored 30-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, version 4.0

SUMMARY

When a pattern brush is used to fill an area of the page on the printer,
the printer's high resolution will cause a fine pattern to lose definition
and appear as a shade of gray.

Brushes that are created with the CreatePatternBrush() function are 8
pixels by 8 pixels (8 x 8 pixels) in size. On a 300 dots-per-inch (dpi)
laser printer, the pattern will be 0.027 inches wide.

To create a pattern that gives similar effects on the screen as on the
printer, it is necessary to compare the screen resolution to the printer
resolution, and to compensate for the differences.

For example, if the video display is 100 dpi (typical of a VGA), and the
printer is 300 dpi (a typical laser printer), the bit must be three times
larger in each direction. The following compares a screen bitmap and a
printer bitmap:

 10101010 111000111000111000111000
 01010101 111000111000111000111000
 10101010 111000111000111000111000
 01010101 000111000111000111000111
 10101010 000111000111000111000111 and so forth
 01010101 000111000111000111000111
 10101010 111000111000111000111000
 01010101 111000111000111000111000
 111000111000111000111000
 Video 000111000111000111000111
 000111000111000111000111
 000111000111000111000111
 111000111000111000111000
 111000111000111000111000
 111000111000111000111000
 000111000111000111000111
 000111000111000111000111
 000111000111000111000111
 111000111000111000111000
 111000111000111000111000
 111000111000111000111000

 Printer

However, since the pattern brush is always 8 x 8 pixels, a different
approach must be used when printing:

1. Use the StretchBlt() function to create, from the video bitmap, the
 24 x 24 pixel bitmap for the printer.

2. Manually "tile" this bitmap into the region to be painted.

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Size Comparison of 32-Bit and 16-Bit x86 Applications

PSS ID Number: Q97765
Authored 20-Apr-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

It is expected that a 32-bit version of an x86 application (console or GUI)
will be larger than the 16-bit version. Much of this difference is due to
the flat memory-model addressing of Windows NT. For each instruction, note
that the opcodes have not changed in size, but the addresses have been
widened to 32 bits.

In addition, the EXE format under Windows NT (the PE format) is optimized
for paging; EXEs are demand-loaded and totally mappable. This leads to some
internal fragmentation because protection boundaries must fall on sector
boundaries within the EXE file.

The MIPS (or any RISC) version of a Win32-based application typically will
be larger and require more memory than its x86 counterpart.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

SizeofResource() Rounds to Alignment Size

PSS ID Number: Q57808
Authored 17-Jan-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SizeofResource() returns the resource size rounded up to the alignment
size. Therefore, if you have your own resource types, you cannot use
SizeofResource() to get the actual resource byte count.

It has been suggested that this be changed to reflect the actual
number of bytes in the resource so that applications can use
SizeofResource() to determine the size of each resource. This
suggestion is under review and will be considered for inclusion in a
future release of the Windows Software Development Kit (SDK).

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrRsc

SNMP Agent Breaks Up Variable Bindings List

PSS ID Number: Q127870
Authored 21-Mar-1995 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

When the SNMP agent receives a request for mutiple variables in a single
packet, then for each entry in the variable bindings list, the agent
queries the required sub-agent (in this case the .DLL acting as the agent)
and packs up the results in a response variable bindings list and returns
it in a single packet.

For example, say the varibles requested are:

 ip.ipInReceives (Internet MIB II)
 tcp.tcpMaxConn (Internet MIB II)

 .iso.org.dod.internet.private.enterprises.lanmanager.lanmgr-2.common.
 comVersionMaj (LanManager MIB II)

 icmp.icmpOutErrors (Internet MIB II)

In this case, the agent queries the INETMIB2.DLL file twice, the LMMIB2.DLL
once, and the INETMIB2.DLL once. Then it packs the results in a response
packet and sends it to the requesting manager. There is no "snapshot" of
the MIB.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: NtwkSnmp

Sockets Applications on Microsoft Windows Platforms

PSS ID Number: Q124876
Authored 15-Jan-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
 - Microsoft Win32s version 1.2

SUMMARY

This article documents the resources necessary to do Winsock development on
the different Microsoft Windows platforms. The key components necessary for
Winsock programming are:

 - TCP/IP networking support
 - A Windows Sockets include file
 - A Windows Wockets import library
 - The Windows Sockets Architecture specification.

NOTE: Some implementations of Windows Sockets may support additional
protocols, and TCP/IP will not be strictly necessary. See the documentation
from your vendor for more information.

MORE INFORMATION

Where you get the necessary components for Winsock programming depends on
what platform you are using.

Microsoft Windows NT Versions 3.1 and 3.5 and Windows 95
--

Header filename: WINSOCK.H
Import library name: WSOCK32.LIB

If you are using Microsoft Windows NT version 3.1 or 3.5, the TCP/IP
protocol is provided as a component of the operating system. Please see
your operating system documentation for more information about installing
TCP/IP support for Microsoft Windows NT.

The Winsock header file, import library, and specification are all supplied
as part of the Win32 SDK. If you do not have the Win32 SDK, it can be
purchased as part of the Microsoft Developer Network Level 2 subscription.

The header file and import library are also supplied with the 32-bit
editions of Visual C++. Visual C++ does not include the Windows Sockets
specification.

Microsoft Windows for Workgroups Version 3.11

Header filename: WINSOCK.H
Import library name: WINSOCK.LIB

Windows for Workgroups does not include support for the TCP/IP protocol.
However, Microsoft does provide a TCP/IP protocol for Windows for
Workgroups free of charge. To learn how to obtain the TCP/IP package for
Windows for Workgroups, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q111682
 TITLE : WFWG 3.11: How to Obtain Microsoft DLC and Microsoft TCP/IP

The Winsock include file, import library, and specification are available
from the Microsoft Software library. Download WSA16.EXE, a self-extracting
file, from the Microsoft Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for WSA16.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WSA16.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the /softlib/mslfiles directory
 get WSA16.EXE

The header file and library for Winsock programming are not included with
Visual C++ for Windows.

Microsoft Windows Versions 3.0, 3.1, and 3.11

Header filename: Probably WINSOCK.H (determined by vendor)
Import library name: Probably WINSOCK.LIB (determined by vendor)

TCP/IP support on these versions of Microsoft Windows will have to come
from the underlying network. Your network vendor can tell you what TCP/IP
support is available.

Depending on your network and the TCP/IP implementation, you may also need
to get the Winsock header and library files from your vendor. However,
while not guaranteed, the files supplied in WSA16.EXE (see above) may work
on your implementation.

Microsoft Win32s Version 1.2

Header filename: WINSOCK.H
Import library name: WSOCK32.LIB

A Winsock application running on Win32s will use the networking support of
the underlying system. See the appropriate section above for information
about TCP/IP support on the host platform.

The header file, import library, and specification will be part of the
Win32 SDK from which the Win32s application was created. See the section on
Windows NT above for more information.

Additional reference words: 3.10 3.50 4.00 1.20 tcpip
KBCategory: kbprg kbfile kbnetwork
KBSubcategory: NtwkWinsock W32s

Some Basic Concepts of a Message-Passing Architecture

PSS ID Number: Q74476
Authored 21-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The following is excerpted from an article in the April 1991 issue of
Software Design (Japan).

MORE INFORMATION

Asynchronous message-passing means that Windows will send an application
messages to act on and that these messages may come in any order. At
present, all messages are sent to specific windows. Every window has a
function that Windows calls to send that window a message. This function
processes the message and returns to Windows. When the function returns to
Windows, Windows may then send messages to other windows in the same
program, other programs, or to the same window again.

Because most of these messages are generated by user actions (picking an
item in a menu, moving a window, and so forth), the specific messages a
window receives will differ each time the program is run. This is what
makes the messages asynchronous.

This message passing is what makes Windows programming difficult for many
programmers. The programmer is no longer writing a program in which he or
she controls the flow from beginning to end. Rather, a Windows program is
written as a large number of objects, each one designed to handle a
specific message from Windows.

Understanding message passing is critical and because it leads to so much
confusion, the concept will be explained in greater detail in this article.
If message passing is understood, the remainder of Windows can be learned
fairly easily. However, it is very unlikely that a Windows program or other
graphical user interface (GUI) program can be successfully developed
without a thorough understanding of message passing.

In a message-passing system, the focus changes from being proactive (the
programmer controls the program flow) to being reactive (Windows controls
the program flow). [Or as it has been put by some Macintosh programmers,
"Don't call us, we'll call you."] For example, consider the situation where
a user chooses an action from a menu in a program. In a proactive program,
the program reads the keyboard, determines that the key(s) pressed are
meant to run the action, and calls the function that performs that action.
In a reactive system, the program is sent a message indicating that the

user chose that item from a menu. When the program receives the message, it
calls the function that performs the action. When this function is done,
control returns to the system. Although the reactive approach is
substantially different from the proactive approach, it is also simpler.

In Windows, every window (including dialog boxes) has a "response function"
registered to it. When Windows sends a message to a window, it calls the
response function for that window and passes it the message. All messages
from Windows are passed to window response functions; there is no other way
for Windows to send a message to a program. Therefore, all messages are for
a specific window or group of windows.

However, there are four considerations involved with this method:

1. Messages are sent in two distinct ways. The first method consists
 of messages that are posted to a first-in, first-out queue
 (PostMessage). The second method consists of messages that are sent
 (SendMessage). Posted messages, aside from PAINT messages, are
 serialized, meaning that messages cannot be posted anywhere except
 to the end of the queue, and the application is sent messages only
 from the beginning of the queue. Posted PAINT messages are an
 exception. They are added together and sent only when there is
 nothing else in the queue. This is done to reduce the number of
 times a window has to paint itself.

 Messages that are sent are passed to the application immediately,
 and the send function does not return until the message is
 processed. However, when a message is posted, an indeterminate
 number of messages and amount of time will pass before the message
 is actually sent to a window and acted on. Also, when a message is
 sent, an message posted earlier may not yet have been acted on.

2. Sending messages or calling functions (which may, as part of their
 actions, also send messages), can lead to additional messages being
 generated. The most dangerous situation is where the action for a
 message generates the same message again. If, while processing a
 message, an application sends the same message to itself, the
 application will run out of stack space quite quickly. If an
 application POSTS the same message to itself, the application will
 not run out of stack but it will generate an unending stream of
 messages.

3. If, while processing a message, an application calls a function
 that sends a message, the application will process the second
 message in the middle of processing the first message. Therefore,
 each window response function MUST be fully re-entrant. It is even
 possible for a function to be re-entered to process the same
 message as the message currently being processed. For this reason,
 using global or static variables in a response function is very
 dangerous.

 Also, if the application uses properties, scratch files and/or
 other data storage mechanisms, extreme caution is required.
 Consider the situation where one message reads in data from a file,
 then a second message reads in the same data, makes changes to that

 data, and writes it back to the file. If the first message makes
 additional changes to the data and writes its new data back to the
 file, the changes caused by the second message are completely lost.
 With files, each application must implement its own sharing
 mechanism. For properties, allocated memory and other memory
 storage, there is a simple solution: lock the item and use the
 pointer returned. Because only one lock is allowed, this prevents
 contention. Never copy the data into a scratch buffer to copy back
 later.

4. Because messages come in due to user interaction, the application
 cannot be written to assume that when a particular message is
 received that another message has already been processed and
 performed its functions. While, for a given action, a specific
 sequence of messages may occur, in the interest of remaining
 completely compatible with potential changes in future versions of
 Windows, it is recommended that no message ordering dependencies be
 introduced unless absolutely necessary. The best example of this is
 that the first message a window gets when it is being created is
 not WM_CREATE, rather it is WM_GETMINMAXINFO. When one message must
 logically follow a second (such as WM_CREATE always preceding
 WM_DESTROY), then it is fine to depend on the specific ordering of
 those two messages.

The asynchronous, reactive nature of Windows programming can cause
confusion. Because the program has no control over the order that
messages arrive, the response to ANY specific message CANNOT depend on
other messages having been processed or NOT been processed.

To confuse matters even further, an application may be in the middle
of processing one message when it calls a Windows function that sends
the application another message. When processing this second message,
some dependent processing may be only half finished. If an application
will check and only do some processing if another message has not
already performed it, the application must be prepared for the case
where another message has begun the processing, but has not completed
it.

Further, when an application sets up a modal dialog box, the
DialogBox() function will not return until after the dialog box is
dismissed and processing completed. Therefore, after calling the
dialog box function, all combinations of user-generated messages may
be received before the function returns.

NOTE: 16-bit Windows is non-preemptively multitasks its Windows tasks.
Therefore, an application generally does not need to be designed to process
a user-originated message in the middle of processing another message.
However, when an application calls a Windows function, the application may
then get a set of specific messages sent to it by Windows before the called
function returns.

32-bit Windows 95 and Windows NT are preemptive multitasking systems. Each
thread has its own input queue. It is a good idea to create a separate
thread of execution for the user interface so that it is responsive to user
input.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

Some CTRL Accelerator Keys Conflict with Edit Controls

PSS ID Number: Q67293
Authored 29-Nov-1990 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Some keys produce the same ASCII values as CTRL+key combinations.
These keys conflict with edit controls if one of the CTRL+key
combinations is used as a keyboard accelerator.

The following table lists some of the conflicting keys.

 ASCII Value Key Combination Equivalent Windows Virtual Key
 ----------- --------------- ---------- -------------------
 0x08 CTRL+H BACKSPACE VK_BACK
 0x09 CTRL+I TAB VK_TAB
 0x0D CTRL+M RETURN VK_RETURN

For example, consider the following scenario:

1. CTRL+H has been assigned as an accelerator keystroke to invoke Help

2. An edit control has the focus

3. BACKSPACE is pressed to erase the previous character in the edit
 control

This results in Help being invoked because pressing BACKSPACE is
equivalent to pressing CTRL+H. The edit control does not receive the
BACKSPACE key press that it requires because TranslateAccelerator()
encounters the 0x08 ASCII value and invokes the action assigned to
that accelerator. This limitation is caused by the use of the ASCII
key code for accelerators instead of the system-dependent virtual key
code.

MORE INFORMATION

When messages for the edit control are processed in a message loop
that translates accelerators, this translation conflict will occur.
Child windows and modeless dialog boxes are the most common situations
where this happens.

The affected keystrokes are translated during the processing of the
WM_KEYDOWN message for the letter. For example, when the user types
CTRL+H, a WM_KEYDOWN is processed for the CTRL key, then another

WM_KEYDOWN is processed for the letter "H". In response to this
message, TranslateAccelerator() posts a WM_COMMAND message to the
owner of the CTRL+H accelerator. Similarly, when the user presses the
BACKSPACE key, a WM_KEYDOWN is generated with VK_BACK as the key code.
Because the ASCII value of BACKSPACE is the same as that for CTRL+H,
TranslateAccelerator() treats them as the same character. Either
sequence will cause a WM_COMMAND message to be sent to the owner of
the CTRL+H accelerator, which deprives the child window with the input
focus of the BACKSPACE key message.

Because this conflict is inherent to ASCII, the safest way to avoid
the difficulty is to avoid using the conflicting sequences as
accelerators. Any other ways around the problem may be version
dependent rather than a permanent fix.

A second way around the situation is to subclass each edit control
that is affected. In the subclass procedure, watch for the desired key
sequence(s). The following code sample demonstrates this procedure:

/* This code subclasses a child window edit control to allow it to
 * process the RETURN and BACKSPACE keys without interfering with the
 * parent window's reception of WM_COMMAND messages for its CTRL+H
 * and CTRL+M accelerator keys.
 */

/* forward declaration */
long FAR PASCAL NewEditProc(HWND, unsigned, WORD, LONG);

/* required global variables */
FARPROC lpfnOldEditProc;
HWND hWndOwner;

/* edit control creation in MainWndProc */

TEXTMETRIC tm;
HDC hDC;
HWND hWndEdit;
FARPROC lpProcEdit;

...

 case WM_CREATE:

 hDC = GetDC(hWnd);
 GetTextMetrics(hDC, &tm);
 ReleaseDC(hWnd, hDC);

 hWndEdit = CreateWindow("Edit", NULL,
 WS_CHILD | WS_VISIBLE | ES_LEFT | WS_BORDER,
 50, 50, 50 * tm.tmAveCharWidth, 1.5 * tm.tmHeight,
 hWnd, 1, hInst, NULL);

 lpfnOldEditProc = (FARPROC) GetWindowLong (hWndEdit, GWL_WNDPROC);
 lpProcEdit = MakeProcInstance ((FARPROC) NewEditProc, hInst);

 SetWindowLong(hWndEdit, GWL_WNDPROC, (LONG) lpProcEdit);
 break;

...

/* subclass procedure */

long FAR PASCAL NewEditProc(HWND hWndEditCtrl, unsigned iMessage,
 WORD wParam, LONG lParam)
{
 MSG msg;

 switch (iMessage)
 {
 case WM_KEYDOWN:
 switch (wParam)
 {
 case VK_BACK:
 // This assumes that the next message in the queue will be a
 // WM_COMMAND for the window which owns the accelerators. If
 // this edit control were in a modeless dialog box, hWndOwner
 // should be set to NULL. It may also be NULL in this case.
 PeekMessage(&msg, hWndOwner, 0, 0, PM_REMOVE);

 // Since TranslateAccelerator() processed this message as an
 // accelerator, a WM_CHAR message must be supplied manually to
 // the edit control.
 SendMessage(hWndEditCtrl, WM_CHAR, wParam, MAKELONG(1, 14));
 return 0L;

 case VK_RETURN:
 // Same procedures here.
 PeekMessage(&msg, hWndOwner, 0, 0, PM_REMOVE);
 SendMessage(hWndEditCtrl, WM_CHAR, wParam, MAKELONG(1, 28));
 return 0L;
 }
 break;
 }
 return CallWindowProc(lpfnOldEditProc, hWndEditCtrl, iMessage,
 wParam, lParam);
}

NOTE: Be sure to export the subclass function in the DEF file.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

Some Subsystems Persevere Through Logons

PSS ID Number: Q94995
Authored 28-Jan-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

Subsystems such as the Local Security Authority (LSA), the spooler, the
Win32 server, and the OS/2 subsystem do not terminate when the user logs
off, and then restart at next logon.

Windows on Win32 (WOW) is not a true subsystem; rather, it is a user-mode
program. When you run an MS-DOS program, the console you run it from has a
virtual DOS machine (VDM) attached to it until the console exits (which it
is forced to do at logoff). When you run the first Win16 program, the WOW
VDM is started and continues to run until the user logs off.

Additional reference words: 3.10 and 3.50
KBCategory: kbprg
KBSubcategory: Subsys

Source-level Debugging Under NTSD

PSS ID Number: Q99053
Authored 20-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The following are the steps used for source-level debugging under NTSD:

1. Compile using -Zi and -Od.

2. Link using debug:full and debugtype:coff.

3. Load the program into the debugger.

4. Use s+ to change to source mode.

 -or-

 Use s& to change to mixed mode.

For a console application, type "g main" to get to the program start. For a
GUI application, type "g WinMain" to get to the program start.

Type "v .<number>" to list source lines starting at <number>. For example,
type the following

 v .20

to see all lines starting at line 20.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Specifying Filenames Under the POSIX Subsystem

PSS ID Number: Q99361
Authored 26-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

When specifying filenames under POSIX, use the format

 //C/subdir/executable.exe

to specify C:\SUBDIR\EXECUTABLE.EXE. If you fail to use this format, you
will receive ENAMETOOLONG as the errno.

NOTE: The filenames are case-sensitive.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: Subsys

Specifying Serial Ports Larger than COM9

PSS ID Number: Q115831
Authored 05-Jun-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

CreateFile() can be used to get a handle to a serial port. The "Win32
Programmer's Reference" entry for "CreateFile()" mentions that the share
mode must be 0, the create parameter must be OPEN_EXISTING, and the
template must be NULL.

CreateFile() is successful when you use "COM1" through "COM9" for the name
of the file; however, the message "INVALID_HANDLE_VALUE" is returned if you
use "COM10" or greater.

If the name of the port is \\.\COM10, the correct way to specify the serial
port in a call to CreateFile() is as follows:

 CreateFile(
 "\\\\.\\COM10", // address of name of the communications device
 fdwAccess, // access (read-write) mode
 0, // share mode
 NULL, // address of security descriptor
 OPEN_EXISTING, // how to create
 0, // file attributes
 NULL // handle of file with attributes to copy
);

NOTES: This syntax also works for ports COM1 through COM9. Certain boards
will let you choose the port names yourself. This syntax works for those
names as well.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Specifying Time to Display and Remove a Dialog Box

PSS ID Number: Q74888
Authored 01-Aug-1991 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

It is possible to modify the timing of the display of a dialog box.
For example, an application has its copyright message in a dialog box
that does not have any push buttons. This dialog box is designed to be
displayed for five seconds and then to disappear. This article
discusses a method to implement this functionality.

MORE INFORMATION

Windows draws the dialog box on the screen during the processing of a
WM_PAINT message. Because all other messages (except for WM_TIMER
messages) are processed before WM_PAINT messages, there may be some
delay before the dialog box is painted. This delay may be avoided by
placing the following code in the processing of the WM_INITDIALOG message:

 ShowWindow(hDlg);
 UpdateWindow(hDlg);

This code causes Windows to send a WM_PAINT message to the dialog box,
bypassing the other messages that may be in the application's queue.

To keep the dialog box on the screen for a particular period of time,
a timer should be created during the processing of the WM_INITDIALOG
message. When the WM_TIMER message is received, call EndDialog() to
close the dialog box.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Specifying Windows "Bounding Box" Coordinates

PSS ID Number: Q27585
Authored 07-Mar-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

GDI functions, such as Rectangle, Ellipse, RoundRect, Chord, and Pie, have
parameters that specify the coordinates of a "bounding box" into which the
figure is drawn. Windows draws the figure up to, but not including, the
right and bottom coordinates.

MORE INFORMATION

Suppose the following call is made:

 Rectangle(hDC, 1, 1, 5, 3)

Assuming that the device context is using the MM_TEXT mapping mode (in
which case logical units map directly to physical pixels), the
resulting rectangle will be 4 pixels wide and 2 pixels tall. The
following diagram shows which pixels are affected:

 ---0-----1-----2-----3-----4-----5-----6-
 | | | | | | |
 0 | | | | | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 1 | X | X | X | X | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 2 | X | X | X | X | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 3 | | | | | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 4 | | | | | |

It may be helpful to think of the display as a grid, with each pixel
contained in a grid cell. The X1, Y1, X2, and Y2 parameters to the
Rectangle function specify an imaginary "bounding box" drawn on the
grid. The rectangle is drawn within the bounding box.

The height, width, and area of the resulting rectangle have the
following useful properties:

 Height = X2 - X1
 Width = Y2 - Y1
 Area = Height * Width

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDrw

Starting and Terminating Windows-Based Applications

PSS ID Number: Q105676
Authored 22-Oct-1993 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

A 16-bit Windows-based application running under Windows NT version 3.1 is
running as a thread in a single virtual MS-DOS machine (VDM). These threads
are nonpreemptively scheduled. A 16-bit Windows-based application shares an
address space and an input queue with other 16-bit Windows-based
applications. Objects created by a thread (application) are owned by the
thread (application). This environment is called WOW (Windows on Win32).

Windows NT version 3.5 introduces support for multiple WOWs, so each 16-bit
Windows-based application can be run in its own address space. For
additional information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q115235
 TITLE : Running a Windows-Based Application in its Own VDM

When a 16-bit Windows-based application is started by using
CreateProcess(), the process handle and the thread handle contained in the
PROCESS_INFORMATION structure are pseudo-handles. The only application
programming interfaces (APIs) that can use the process handle are
WaitForSingleObject(), WaitForMultipleObjects(), and WaitForInputIdle().

NOTE: When you call CreateProcess() with CREATE_SEPARATE_WOW_VDM, the
handles returned in the hProcess and hThread fields of the
PROCESS_INFORMATION structure are valid handles. The hProcess handle is the
handle to the new WOW process, but the hThread handle is the handle to the
WOWEXEC thread, and not the thread of the application that you spawned. You
can wait on either of these handles and you will be released when the
Windows-based application terminates, because the separate VDM goes away
when the last application in it terminates. Be aware that if your Windows-
based application spawns another Windows-based application and terminates,
the VDM stays around, because the application is run in the same VDM as the
application that spawned it.

A common question is "How can I terminate a 16-bit process from a 32-bit
process?" However, as implied above, PROCESS_INFORMATION.hProcess cannot be
used in TerminateProcess() and PROCESS_INFORMATION.dwThreadId cannot be
used in PostThreadMessage().

One way to terminate an individual 16-bit Windows-based application is to
enumerate the desktop windows using EnumWindows(), determine which is the
correct window, obtain the thread ID with GetWindowThreadProcessId(), and
post a WM_QUIT message via PostThreadMessage() to terminate the
application.

Another way to terminate an individual 16-bit Windows-based application is
to use the TOOLHELP APIs. Use TaskFirst() and TaskNext() to enumerate the
tasks, determine which is the correct task, and call TerminateApp() to kill
the application. The Windows SDK sample THSAMPLE demonstrates how this can
be done.

Additional reference words: 3.10 3.50 win16
KBCategory: kbprg
KBSubcategory: SubSys

StartPage/EndPage Resets Printer DC Attributes in Windows 95

PSS ID Number: Q125696
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

When you print under Windows version 3.x, the printer device context
attributes, including things like mapping modes, current pen, current
brush, and so on, are reset to their defaults for the device when the end
of a page is reached. The escapes NEWFRAME and NEXTBAND and the API EndPage
all cause the printer device context to be reset.

When you print under Windows NT version 3.x, the printer device context
attributes are not reset during a print job.

When you print under Windows 95, the point at which the printer device
context is reset to the default attributes depends on what version the
executable was marked as. For executables marked as 3.x, the printer
device context will be reset when EndPage is called. For executables
marked as 4.0, the printer device context will be reset when StartPage
is called. This applies to both 16-bit-based and Win32-based executables
running under Windows 95.

A 16-bit-based executable's version can be set by using the Resource
compiler's /xx switch where xx is 30, 31, or 40. A Win32-based executable's
version can be set by using the /SUBSYSTEM:windows,x.x linker switch.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: GdiPrn

Stroke Fonts Marked as OEM Character Set Are ANSI

PSS ID Number: Q72020
Authored 10-May-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

There are three stroke (or vector) fonts packaged with Windows versions 3.0
and 3.1 and Windows NT: Roman, Script, and Modern. These fonts are marked
as belonging to the OEM character set when, in fact, they belong to the
ANSI character set. NOTE: Windows 95 provides only the Modern vector font.
The Roman and Script fonts are included in the True Type fonts shipped with
the system.

The OEM character set is the character set used by the hardware device on
which Windows is running (for example, the IBM PC). The IBM PC OEM
character set and ANSI character set are listed in "Microsoft Windows
Software Development Kit Reference Volume 2" for the Windows SDK version
3.0 and in "Programmer's Reference, Volume 3: Messages, Structures, and
Macros" for the Windows SDK version 3.1.

The fonts were marked in this manner for two reasons. First, in previous
versions of Windows, the stroke fonts did include non-ANSI characters.
Second, mismarking the character set ensures proper font mapping. The
character-set attribute of a font is assigned a very high penalty weight in
the font mapping scheme. If stroke fonts were not marked as using the OEM
character set, a stroke font might be chosen by the font mapper [during a
SelectObject() call] instead of a raster font when a requested raster font
size is not available. This behavior occurs because most raster fonts
belong to the ANSI character set, character size has much lower penalty
weight than character set, and stroke fonts can be scaled to any desired
size. Some raster fonts can be scaled; however, they can be scaled only to
specific sizes.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Support for Sleep() on Win32s

PSS ID Number: Q100713
Authored 27-Jun-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

The Win32 application programming interface (API) documentation indicates
that Sleep() is supported on Win32s. It is important to note, however, that
the behavior of Sleep() on Win32s is not the same as it is under Windows
NT.

Under Win32s, Sleep() calls Yield(). The Windows version 3.1 Yield()
function yields only if the message queue is empty; therefore, Sleep()
cannot be relied on to do anything. Use a PeekMessage() loop to do idle
time processing.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Switching Between Single and Multiple List Boxes

PSS ID Number: Q57959
Authored 23-Jan-1990 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

After creating a list box with the CreateWindow() API, changing the
list box from a single selection to a multiple selection can be
accomplished in the following way:

Create two hidden list boxes in the .RC file, and during the
WM_INITDIALOG routine, display one of the boxes. Change between the
two by making one hidden and the other one visible using the
ShowWindow function.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Symbolic Information for System DLLs

PSS ID Number: Q103862
Authored 01-Sep-1993 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

SUMMARY

The debugging information for the system dynamic-link libraries (DLLs)
is contained separately in files with a .DBG extension. The Win32 SDK
setup, SETUPSDK, will install the following .DBG files by default in
<SYSTEMROOT>\SYMBOLS\DLL:

 ADVAPI32.DBG OLECLI32.DBG
 COMDLG32.DBG OLESVR32.DBG
 CRTDLL.DBG RASAPI32.DBG
 DLCAPI.DBG RPCNS4.DBG
 GDI32.DBG RPCRT4.DBG
 INETMIB1.DBG SHELL32.DBG
 KERNEL32.DBG USER32.DBG
 LMMIB2.DBG VDMDBG.DBG
 LZ32.DBG VERSION.DBG
 MGMTAPI.DBG WIN32SPL.DBG
 MPR.DBG WINMM.DBG
 NDDEAPI.DBG WINSTRM.DBG
 NETAPI32.DBG WSOCK32.DBG
 NTDLL.DBG

For Windows NT version 3.5, the additional .DBG files are:

 GLU32.DBG
 MSACM32.DBG
 OLEAUT32.DBG
 OPENGL32.DBG

For Windows NT versions 3.51, the additional .DBG files are:

 COMCTL32.DBG
 DHCPMIB.DBG
 OLE32.DBG
 OLEDLG.DBG
 RICHED32.DBG
 WINSMIB.DBG

Note that these files are not installed by the alternative Win32 SDK
install method, MANUAL.BAT. Therefore, WinDbg will warn that symbol
information cannot be found for each of the system DLLs called by the
debuggee.

These .DBG files can be manually installed by copying them from the
SDK CD. For x86, they are located in \SUPPORT\DEBUG\I386\SYMBOLS\DLL.
For MIPS, they are located in \SUPPORT\DEBUG\MIPS\SYMBOLS\DLL. Note
that there are more than 200 .DBG files in each of these directories.

MORE INFORMATION

In Windows NT 3.1, there are also debugging versions of the system DLLs
that can be installed by using SWITCH.BAT, which is located on the CD in
\SUPPORT\DEBUGDLL. Refer to page 11 of the "Getting Started" manual
and the batch file itself for more information.

Additional reference words: 3.10 3.50
KBCategory: kbsetup
KBSubcategory: Setins

System GENERIC_MAPPING Structures

PSS ID Number: Q102105
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1

There is not a Win32 application programming interface (API) to retrieve
the GENERIC_MAPPING structures for Windows NT objects. The MapGenericMask()
Win32 API is intended to use GENERIC_MAPPING structures associated with
private objects created by the application.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseSecurity

System Versus User Locale Identifiers

PSS ID Number: Q100488
Authored 22-Jun-1993 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

In Windows NT version 3.1, the following pairs of application programming
interfaces (APIs) have the same functionality:

 GetSystemDefaultLCID() and GetUserDefaultLCID()
 GetSystemDefaultLangID() and GetUserDefaultLangID()

The user LangID and LCID are always set to the system value. In future
versions of Windows NT, it will be possible to set the LangID and the LCID
on a per-user basis.

Note that it is possible to set the LCID on a per-thread basis [that is,
SetThreadLocale()] in Windows NT 3.1.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrLoc WintlDev

Taking Ownership of Registry Keys

PSS ID Number: Q111546
Authored 14-Feb-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

To take ownership of a registry key it is necessary to have a handle to the
key. A handle to the key can be obtained by opening the key with a registry
API (application programming interface) such as RegOpenKeyEx(). If the user
does not have access to the registry key, the open operation will fail and
this will in turn prevent ownership being taken (because a handle to the
key is required to change the key's security).

The solution to this problem is to first enable the TakeOwnership privilege
and then to open the registry key with WRITE_OWNER access as shown below:

 RegOpenKeyEx(HKEY_CLASSES_ROOT,"Testkey",0,WRITE_OWNER,&hKey);

This function call will provide a handle to the registry, which can be used
in the following call to take ownership:

 RegSetKeySecurity(hKey,OWNER_SECURITY_INFORMATION, &SecurityDescriptor);

Please note that you will need to initialize the security descriptor being
passed to RegSetKeySecurity() and set the owner field to the new owner SID.

Taking ownership of a registry key is not a common operation. It is
typically an operation that an administrator would use as a last resort to
gain access to a registry key.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Text Alignment in Single Line Edit Controls

PSS ID Number: Q108940
Authored 20-Dec-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0
 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

Text in single line edit controls cannot be centered or right-aligned
(right-justified). Text in single line edit controls is left-aligned (left-
justified) by default. This is by product design, and therefore specifying
the ES_RIGHT or ES_CENTER style while creating the single line edit control
does not have any effect on the text alignment.

Windows does not allow text to be centered or right-aligned in a single
line edit control. However, an easy way to work around this problem is to
create a multiline edit control that is the same size as a single line edit
control.

Text in a multiline edit control can be centered or right/left aligned.
Note that the multiline edit control should be created without the
WS_VSCROLL or ES_AUTOVSCROLL style.

While single line edit controls may support text alignment in a future
release of Windows, Windows 3.x applications must use multiline edit
controls to achieve the same effect.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

The Clipboard and the WM_RENDERFORMAT Message

PSS ID Number: Q31668
Authored 15-Jun-1988 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

The clipboard sends a WM_RENDERFORMAT message to an application to request
that application format the data last copied to the clipboard in the
specified format, and then pass a handle to the formatted data to the
clipboard.

If an application cannot supply the requested data, it should return a NULL
handle. Because most applications provide access to the actual data (not
rendered) through the CF_TEXT format, applications that use the clipboard
can get the applicable data when rendering fails.

If the application cannot render the data because the system is out of
memory, the application can call GlobalCompact(-1) to discard and compress
memory, then try the memory allocation request again.

If this fails to provide enough memory, the application can render the data
into a file. However, applications that use this technique must cooperate
in order to know that the information is in a file, the name of the file,
and the format of the data.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrClp

The Parts of a Windows Combo Box and How They Relate

PSS ID Number: Q65881
Authored 26-Sep-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

A Windows combo box is a compound structure composed of individual windows.
Three types of windows can be created as part of a combo box:

 - A combo box itself, of window class "ComboBox"
 - An edit control, of window class "Edit"
 - A list box, of window class "ComboLBox"

The relationship among these three windows varies depending upon the
different combo box styles.

MORE INFORMATION

For combo boxes created with the CBS_SIMPLE styles, the ComboBox window is
the parent of the edit control and the list box that is always displayed on
the screen. When GetWindowRect() is called for a combo box of this style,
the rectangle returned contains the edit control and the list box.

Combo boxes created with the CBS_DROPDOWNLIST style have no edit control.
The region of the combo box that displays the current selection is in the
ComboBox window itself. When GetWindowRect() is called for a combo box of
this style, the rectangle returned does not include the list box.

For combo boxes created with the CBS_DROPDOWN style, three windows are
created. The combo box edit control is a child of the ComboBox window. When
GetWindowRect() is called for a combo box of this style, the rectangle
returned does not include the list box.

However, the ComboLBox (list box) window for combo boxes that have the
CBS_DROPDOWN or CBS_DROPDOWNLIST style is not a child of the ComboBox
window. Instead, each ComboLBox window is a child of the desktop window.
This is required so that, when the drop-down list box is dropped, it can
extend outside the application window or dialog box. Otherwise, the list
box would be clipped at the window or dialog box border.

Because the ComboLBox window is not a child of the ComboBox window, there
is no simple method to get the handle of one window, given the other. For
example, given a handle to the ComboBox, the handle to any associated drop-
down list box is not readily available. The ComboLBox is a private class
registered by USER that is a list box with the class style CS_SAVEBITS.

Additional reference words: control focus release 3.00 3.10 3.50 3.51 4.00
95
KBCategory: kbprg
KBSubcategory: UsrCtl

The SBS_SIZEBOX Style

PSS ID Number: Q102485
Authored 03-Aug-1993 Last modified 09-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

A size box is a small rectangle the user can expand to change the size of
the window. When you want a size box, you create a SCROLLBAR window with
the SBS_SIZEBOX flag. This action creates a size box with the height,
width, and position that you specified in the call to CreateWindow. If you
specify SBS_SIZEBOXBOTTOMRIGHTALIGN, the box will be aligned in the lower
right of the rectangle you specified when creating the window. If you
specify SBS_SIZEBOXTOPLEFTALIGN, the box will be aligned in the upper left
of the rectangle you specified in your call to CreateWindow().

MORE INFORMATION

The user moves the mouse pointer over to the box, presses and holds the
left mouse button, and drags the mouse pointer to resize the window. When
the user does this, the borders on the window (the frame) move. When the
user releases the mouse button, the window is resized.

You create a size box by creating a child window of type WS_CHILD |
WS_VISIBLE | SBS_SIZEBOX | SBS_SIZEBOXTOPLEFTALIGN. You don't have to do
any of the processing for this; the system will take care of it. You will
notice in your window procedure that you will get the scroll bar messages
plus the WM_MINMAXINFO message. Size boxes work similar to the way the
WS_THICKFRAME/WS_SIZEBOX style does on a window.

Under Windows NT, applications that create a size box either using
WS_SIZEBOX or WS_THICKFRAME or by created the SBS_SIZEBOX control have no
way of showing the user that such a feature exists. Under Windows 95, the
size box appears as a jagged edge, usually at the bottom right corner.

NOTE: Make sure that the main window is created with the WS_VSCROLL and
WS_HSCROLL styles.

Additional reference words: 3.10 3.50 4.00 sizebox
KBCategory: kbprg
KBSubcategory: UsrCtl

The Use of PAGE_WRITECOPY

PSS ID Number: Q105532
Authored 20-Oct-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The documentation to CreateFileMapping(), VirtualAlloc(), and
VirtualProtect() indicates that the PAGE_WRITECOPY protection gives
copy-on-write access to the committed region of pages. As it is,
PAGE_WRITECOPY makes sense only in the context of file mapping, where
you want to map something from the disk into your view and then modify
the view without causing the data to go on the disk.

The only case where VirtualAlloc() should succeed with PAGE_WRITECOPY
is the case where CreateFileMapping() is called with -1 and allocates
memory with the SEC_RESERVE flag and later on, VirtualAlloc() is used
to change this into MEM_COMMIT with a PAGE_WRITECOPY protection.

There is a bug in Windows NT 3.1 such that the following call to
VirtualAlloc() will succeed:

 lpCommit = VirtualAlloc(lpvAddr, cbSize, MEM_COMMIT, PAGE_WRITECOPY);

This call will fail under Windows NT 3.5.

NOTE: lpvAddr is a pointer to memory that was allocated with
MEM_RESERVE and PAGE_NOACCESS.

One case where this might be useful is when emulating the UNIX fork
command. Emulating fork behavior would involve creating instance data
and using threads or multiple processes.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

The Use of the SetLastErrorEx() API

PSS ID Number: Q97926
Authored 25-Apr-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SetLastErrorEx() is intended for better debugging support, not for passing
additional error information.

The SetLastErrorEx() application programming interface (API) differs from
the SetLastError() API only in that it raises a debug "RIP" event. The RIP
event is intended to give text to the debugger so that the user can retry,
ignore, and so forth, these errors. SetLastErrorEx() raises an exception
only if SetDebugErrorLevel() has been called by the debugger to allow the
errors to be passed on.

The error type can be determined from the debugger by examining the debug
event structure that is passed with the event. The debug event structure
contains a RIP_INFO substructure.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Thread Handles and Thread IDs

PSS ID Number: Q127992
Authored 22-Mar-1995 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0

The CreateThread() API is used to create threads. The API returns both a
thread handle and a thread identifier (ID). The thread handle has full
access rights to the thread object created. The thread ID uniquely
identifies the thread on the system level while the thread is running. The
ID can be recycled after the thread has been terminated. This relationship
is similar to that of the process handle and the process ID (PID).

There is no way to get the thread handle from the thread ID. While there is
an OpenProcess() API that takes a PID and returns the handle to the
process, there is no corresponding OpenThread() that takes a thread ID and
returns a thread handle.

The reason that the Win32 API does not make thread handles available this
way is that it can cause damage to an application. The APIs that take a
thread handle allow suspending/resuming threads, adjusting priority of a
thread relative to its process, reading/writing registers, limiting a
thread to a set of processors, terminating a thread, and so forth.
Performing any one of these operations on a thread without the knowledge of
the owning process is dangerous, and may cause the process to fail.

If you will need a thread handle, then you need to request it from the
thread creator or the thread itself. Both the creator or the thread will
have a handle to the thread and can give it to you using DuplicateHandle().
This requirement allows both applications to coordinate their actions.

NOTE: You can also take full control of the application by calling
DebugActiveProcess(). Debuggers receive the thread handles for a process
when the threads are created. These handles have THREAD_GET_CONTEXT,
THREAD_SET_CONTEXT, and THREAD_SUSPEND_RESUME access to the thread.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Thread Local Storage Overview

PSS ID Number: Q94804
Authored 18-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Thread local storage (TLS) is a method by which each thread in a given
process is given a location(s) in which to store thread-specific data.

Four functions exist for TLS: TlsAlloc(), TlsGetValue(), TlsSetValue(), and
TlsFree(). These functions manipulate TLS indexes, which refer to storage
areas for each thread in a process. A given index is valid only within the
process that allocated it.

Note that the Visual C++ compiler supports an alternate syntax:

 _declspec(thread)

which can be used in place of directly calling these APIs. Please see the
description of _declspec in the VC++ "Language and Run-time Help" helpfile
for more information.

MORE INFORMATION

A call to TlsAlloc() returns a global TLS index. This one TLS index is
valid for every thread within the process that allocated it, and should
therefore be saved in a global or static variable.

Thread local storage works as follows: when TlsAlloc() is called, every
thread within the process has its own private DWORD-sized space reserved
for it (in its stack space, but this is implementation-specific). However,
only one TLS index is returned. This single TLS index may be used by each
and every thread in the process to refer to the unique space that
TlsAlloc() reserved for it.

For this reason, TlsAlloc() is often called only once. This is convenient
for DLLs, which can distinguish between DLL_PROCESS_ATTACH (where the first
process's thread is connecting to the DLL) and DLL_THREAD_ATTACH
(subsequent threads of that process are attaching). For example, the first
thread calls TlsAlloc() and stores the TLS index in a global or static
variable, and every other thread that attaches to the DLL refers to the
global variable to access their local storage space.

Although one TLS index is usually sufficient, a process may have up to
TLS_MINIMUM_AVAILABLE indexes (guaranteed to be greater than or equal
to 64).

Once a TLS index has been allocated (and stored), the threads within the
process may use it to set and retrieve values in their storage spaces. A
thread may store any DWORD-sized value in its local storage (for example, a
DWORD value, a pointer to some dynamically allocated memory, and so forth).
The TlsSetValue() and TlsGetValue() APIs are used for this purpose.

A process should free TLS indexes with TlsFree() when it has finished using
them. However, if any threads in the process have stored a pointer to
dynamically allocated memory within their local storage spaces, it is
important to free the memory or retrieve the pointer to it before freeing
the TLS index, or it will be lost.

For more information, please see "Using Thread Local Storage" in the
"Processes and Threads" overview in the "Win32 Programmer's Reference".

Example

Thread A within a process calls TlsAlloc(), and stores the index returned
in the global variable TlsIndex:

 TlsIndex = TlsAlloc();

Thread A then allocates 100 bytes of dynamic memory, and stores it in its
local storage:

 TlsSetValue(TlsIndex, malloc(100));

Thread A creates thread B, which stores a handle to a window in its local
storage space referred to by TlsIndex.

 TlsSetValue(TlsIndex, (LPVOID)hSomeWindow);

Note that TlsIndex refers to a different location when thread B uses it,
than when thread A uses it. Each thread has its own location referred to by
the same value in TlsIndex.

Thread B may terminate safely because it does not need to specifically free
the value in its local storage.

Before thread A terminates, however, it must first free the dynamically
allocated memory in its local storage

 free(TlsGetValue(TlsIndex));

and then free the TLS index:

 if (!TlsFree(TlsIndex))
 // TlsFree() failed. Handle error.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Time Stamps Under the FAT File System

PSS ID Number: Q101186
Authored 07-Jul-1993 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

Windows NT considers the time stamp on a file stored on a FAT (file
allocation table) partition to be standard time if the current time is
standard time, and daylight time if the current time is daylight time,
regardless of what time of year the file was originally time stamped.

This is not an issue under NTFS, which consistently implements Universal
Coordinated Time.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Timer Resolution in Windows NT

PSS ID Number: Q115232
Authored 22-May-1994 Last modified 01-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

In Win32-based applications, the GetTickCount() timer resolution on Windows
NT, version 3.1, is 15 milliseconds (ms) for x86 and 10 ms for MIPS and
Alpha. On Windows NT, version 3.5, the GetTickCount() timer resolution is
10 ms on the 486 or greater, but the resolution is still 15 ms on a 386.

NOTE: The measurements in milliseconds indicate the period of the
interrupt, not the units of the returned value.

The Win32 API QueryPerformanceCounter() returns the resolution of a high-
resolution performance counter if the hardware supports one. For x86, the
resolution is about 0.8 microseconds (0.0008 ms). For MIPS, the resolution
is about twice the clock speed of the processor. You need to call
QueryPerformanceFrequency() to get the frequency of the high-resolution
performance counter.

NOTE: These numbers are likely to change in future versions.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Tips for Installing TAPI Service Providers

PSS ID Number: Q131356
Authored 08-Jun-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
 - Microsoft Windows Telephony Software Development Kit (TAPI SDK)
 version 1.0

SUMMARY

When installing TAPI Service Providers (TSPs), there is more involved than
just copying the TSP files to the system directory. The TAPI system files
may need to be installed, and the TSP must be installed into TAPI. However,
this process can vary greatly from one Windows version to another.

MORE INFORMATION

First and foremost, be sure to do version checking when installing all
files.

Second, use a setup application rather than relying on an .INF file. While
the ATSP sample uses a .INF file to install, there are two major problems
with using a .INF file:

 - TAPI needs to already be installed (which isn't guarenteed under Windows
 version 3.1 or Windows for Workgroups).

 - You can't do operating system version checking if you use an .INF file.

Files Necessary for Windows Version 3.1 or Windows for Workgroups

When a TSP is installed under Windows version 3.1 or Windows for
Workgroups, it must check and make sure all the necessary system files are
present. The files to be installed can be found in the TAPI 1.0 SDK \REDIST
directory and must be distributed with the TSP. Some of these are optional
and some are not. Here is a list of files and where they should be placed:

Mandidory TAPI files:

 TELEPHON.CPL [system]
 TAPI.DLL [system]
 TAPIADDR.DLL [system]
 TAPIEXE.EXE [system]
 TELEPHON.HLP [system]

Optional TAPI files:

 ATSPEXE.EXE [system]

 ATSP.TSP [system]
 ATSP.HLP [system]
 DIALER.EXE [windows]
 DIALER.HLP [windows]

Files Necessary for Windows 95

Because the Windows 95 system files are not redistributable and because
TAPI is installed automatically under Windows 95, the TAPI system files
must not be distributed with the TSP. The TAPI version 1.0 files are not
compatible with Windows 95, so it is important that no TAPI system files
are installed under Windows 95.

One complication for Windows 95 is the TELEPHON.CPL file. This file is
installed to the system directory by default along with all the rest of the
Windows 95 TAPI files. However, because this file is not needed by most
people using Windows 95, it is installed in the system directory as
TELEPHON.CP$ to reduce control panel clutter. TSPs that need this applet
should first look in the system directory for TELEPHON.CPL; if that isn't
found, the TSP should locate TELEPHON.CP$ (also looking in the system
directory), and rename it to TELEPHON.CPL.

Installing the TSP

Once all the files are installed, the TSP must now be installed into TAPI.
Under Windows version 3.1, this is done through the Telephony Control Panel
applet (TELEPHON.CPL). There are no APIs to automate the installation, so
TSP installation programs must either tell the user how to install their
TSP into TAPI or use an application such as MSTEST that can simulate
keystrokes to automate this part of the installation. Note that TSPs must
have version information (as demonstrated by the ATSP sample) to show in
the Add Driver dialog.

Adding TSPs through the Telephony Control Panel is also available under
Windows 95, but the exact sequence of keystrokes is slightly different.
However, several TAPI APIs (lineAddProvider, lineConfigProvider, and
lineRemoveProvider) have been added that make the TELEPHON.CPL unnecessary.
It's a good idea to have each TSP have its own control panel applet that
calls these APIs, rather than rely on TELEPHON.CPL. The setup program
should install the TSP directly by using these APIs instead of asking the
user to run a control panel applet.

Additional reference words: 1.00 1.30 1.40 4.00 95
KBCategory: kbprg
KBSubcategory: TAPI

Tips for Writing Multiple-Language Scripts

PSS ID Number: Q89865
Authored 01-Oct-1992 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

To aid you in writing multiple-language resources, the Win32 development
system supports language scripts.

MORE INFORMATION

To create a multiple language script, first create a single-language script
file (American English, for example), and duplicate the translations in
your script file. You need a complete translation only once for each major
language. Only those resources that have differences between the major
language and the sublanguage need be included in the sublanguage areas of
the script. The system will use the main language resource if it doesn't
find a resource for the sublanguage.

Sample Code

LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US
<original script file>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_UK
<portions of script file that are different for UK>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_AUS
<portions of script file that are different for Australia>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_CAN
<portions of script file that are different for Canada>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH
<entire script file translated to French>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_CAN
<portions of script file that are different for Canada>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_SWISS
<portions of script file that are different for Switzerland>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_BELGIAN
<portions of script file that are different for Belgium>
LANGUAGE LANG_SPANISH,SUBLANG_SPANISH
<entire script file translated to Spanish>

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

Tips for Writing Windows Sockets Apps That Use AF_NETBIOS

PSS ID Number: Q129316
Authored 24-Apr-1995 Last modified 04-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY

The six issues listed in this article must be addressed when writing
Windows Sockets applications that use the AF_NETBIOS protocol family.

NOTE: Windows 95 does not support AF_NETBIOS.

MORE INFORMATION

Issues to Address When Writing Windows Sockets Applications

1. When creating an AF_NETBIOS socket, specify -1 times lana for the
 protocol option.

 The Windows NT WinSock library allows the programmer to create a
 socket that allows communication over a particular lana. The lana
 number is specified via the protocol option of the socket() function.
 To create an AF_NETBIOS socket, specify -1 times the lana for the
 protocol option of the socket() function. For example:

 SOCKET hSock0 = socket(AF_NETBIOS, SOCK_DGRAM, 0); // lana 0;
 SOCKET hSock1 = socket(AF_NETBIOS, SOCK_DGRAM, -1); // lana 1;

 The lana numbers are basically indices to the list of transports
 supported by the NetBIOS implementation. A given host has one unique
 lana number for every installed transport that supports NetBIOS. For
 example, listed below are some possible lana numbers for a typical
 Windows NT configuration:

 Lana Transport
 --
 0 TCP/IP // lana 0 is the default NetBIOS transport
 1 IPX/SPX w/NetBIOS
 3 NetBEUI

 In the case of a multihomed host (a machine with multiple network
 adapters), the number of unique lana numbers equals the number of
 network transports that support NetBIOS times the number of network
 adapters. For example, if the machine depicted above contained
 two network adapters, it would have a total of 3 * 2 = 6 lana numbers.

 Also, please note the WSNETBS.H header included with the Windows NT
 version 3.5 SDK erroneously defines the NBPROTO_NETBEUI symbol. This
 symbol cannot be used as a protocol option and should be ignored.

2. Use the snb_type values provided by the WSNETBS.H header for NetBIOS
 name registration and deregistration.

 When filling out a sockaddr_nb structure, you must specify the
 appropriate value for the snb_type field. This field is used during
 the bind() operation to handle NetBIOS name registration. The WSNETBS.H
 header defines several values for this field; however only the
 following two values are currently implemented:

 - NETBIOS_UNIQUE_NAME

 Registers a unique NetBIOS name. This action is usually performed
 by a client or a server to register an endpoint.

 - NETBIOS_GROUP_NAME

 Registers a group name. This action is typically performed in
 preparation for sending or receiving NetBIOS multicasts.

 Names are registered during the bind() operation.

3. Use the supported socket types of SOCK_DGRAM and SOCK_SEQPACKET.

 Due to the nature of NetBIOS connection services, SOCK_STREAM
 is not supported.

4. Choose a NetBIOS port that does not conflict with your network
 client software.

 The NetBIOS port is an eight-bit value stored in the last position of
 the snb_name that is used by various network services to differentiate
 various type of NetBIOS names. When you register NetBIOS names, choose
 port values that do not cause conflicts with existing network services.
 This is of particular importance if you are registering a NetBIOS name
 that duplicates a user name or a machine name on the network. The
 following lists the reserved port values:

 0x00, 0x03, 0x06, 0x1f, 0x20, 0x21, 0xbe, 0xbf, 0x1b,
 0x1c, 0x1d, 0x1e

5. Applications should use all available lana numbers when initiating
 communication.

 Because the NetBIOS interface can take advantage of multiple transport
 protocols, it is important to use all lanas when initiating
 communication. Server applications should accept connections on
 sockets for each lana number, and client applications should attempt
 to connect on every available lana. In a similar fashion, data gram
 broadcasts should be sent from sockets created from each lana.

 The following diagram depicts the lana mappings for two machines.

 In order for a client application running on Machine A to communicate
 with a server application on Host B, the client application must create
 a socket on lana 3, and the server must create a socket on lana 1.
 Because the client and the server cannot know in advance which single
 lana to use, they must create sockets for all lanas.

 Host A (Client) Host B (Server)
 --------------- ---------------
 lana Transport lana Transport
 ---- --------- ---- ---------

 0 NetBEUI 0 TCP/IP
 3 IPX/SPX <==========> 1 IPX/SPX
 3 NetBEUI

 The above diagram illustrates several other important points about
 lanas. First, a transport that has a certain lana number on one host
 does not necessarily have the same lana number on other machines.
 Second, lana numbers do not have to be sequential.

 The EnumProtocols() function can be used to enumerate valid lana
 numbers. Listed below is a code fragment that demonstrates this type
 of functionality:

 #include <nspapi.h>

 DWORD cb = 0;
 PROTOCOL_INFO *pPI;
 BOOL pfLanas[100];

 int iRes,
 nLanas = sizeof(pfLanas) / sizeof(BOOL);

 // Specify NULL for lpiProtocols to enumerate all protocols.

 // First, determine the output buffer size.
 iRes = EnumProtocols(NULL, NULL, &cb);

 // Verify the expected error was received.
 // The following code must appear on one line.
 assert(iRes == -1 && GetLastError() ==
 ERROR_INSUFFICIENT_BUFFER);

 if (!cb)
 {
 fprintf(stderr, "No available NetBIOS transports.\n");
 break;
 }

 // Allocate a buffer of the specified size.
 pPI = (PROTOCOL_INFO*) malloc(cb);

 // Enumerate all protocols.
 iRes = EnumProtocols(NULL, pPI, &cb);

 // EnumProtocols() lists each lana number twice, once for
 // SOCK_DGRAM and once for SOCK_SEQPACKET. Set a flag in pfLanas
 // so unique lanas can be identified.

 memset(pfLanas, 0, sizeof(pfLanas));

 while (iRes > 0)
 // Scan protocols looking for AF_NETBIOS
 if (pPI[--iRes].iAddressFamily == AF_NETBIOS)
 // found one.
 pfLanas[pPI[iRes].iProtocol] = TRUE;

 fprintf(stderr, "Available NetBIOS lana numbers: ");
 while(nLanas--)
 if (pfLanas[nLanas])
 fprintf(stderr, "%d ", nLanas);

 free(pPI);
 }

6. Performance: Use of AF_NETBIOS is recommended for communication with
 down-level clients.

 On Windows NT, NetBIOS is a high level emulated interface.
 Consequently, applications that use the WinSock() function over NetBIOS
 obtain lower throughput than applications that use WinSock() over a
 native transport such as IPX/SPX or TCP/IP. However, due to the
 simplicity of the WinSock interface, it is a desirable interface for
 writing new 32-bit applications that communicate with NetBIOS
 applications running on down-level clients like Windows for Workgroups
 or Novell Netware.

Additional reference words: 3.50
KBCategory: kbnetwork kbcode
KBSubcategory: NtwkWinsock

Top-Level Menu Items in Owner-Draw Menus

PSS ID Number: Q69969
Authored 07-Mar-1991 Last modified 15-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

Microsoft Windows version 3.0 allows an application to specify owner-draw
menus. This provides the application with complete control over the
appearance of items in the menu. However, Windows 3.0 only supports owner-
draw items in a pop-up menu. Top-level menu items with the MF_OWNERDRAW
style do not work properly.

In Windows 3.1, Windows NT, and Windows 95, top-level menu items with the
MF_OWNERDRAW style work properly.

MORE INFORMATION

An application may append an item with the MF_OWNERDRAW style to a top-
level menu. At this point, the parent application should receive a
WM_MEASUREITEM message and a WM_DRAWITEM message.

However, a WM_MEASUREITEM message is never sent to the parent window
for the menu item. In addition, the WM_DRAWITEM message is sent only
when the selection state of the item changes (the action field in the
DRAWITEMSTRUCT is equal to ODA_SELECTED). The WM_DRAWITEM message is
not sent with the action field in the DRAWITEMSTRUCT equal to
ODA_DRAWENTIRE.

Additional reference words: 3.00 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: UsrMen

Tracking Brush Origins in a Win32-based Application

PSS ID Number: Q102353
Authored 03-Aug-1993 Last modified 23-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

When writing to the Win32 API on Windows NT, it is no longer necessary to
keep track of brush origins yourself. GDI32 keeps track of the brush
origins by automatically recognizing when the origin has been changed. In
Windows, you have to explicitly tell GDI to recognize the change by calling
UnrealizeObject() with a handle to the brush. When a handle to a brush is
passed to UnrealizeObject() in Windows NT, the function does nothing,
therefore, it is still safe to call this API.

Win32s and Windows 95 require that you track the brush origins yourself,
just as Windows 3.x does.

In Windows 3.1, the default brush origin is the screen origin. In Windows
NT, the default origin is the client origin.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: GdiPnbr

Translating Client Coordinates to Screen Coordinates

PSS ID Number: Q11570
Authored 23-Oct-1987 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The GetClientRect function always returns the coordinates (0, 0) for
the origin of a window. This behavior is documented in the "Microsoft
Windows Software Development Kit (SDK) Programmer's Reference"
manual.

MORE INFORMATION

To determine the screen coordinates for the client area of a window,
call the ClientToScreen function to translate the client coordinates
returned by GetClientRect into screen coordinates. The following code
demonstrates how to use the two functions together:

 RECT rMyRect;

 GetClientRect(hwnd, (LPRECT)&rMyRect);
 ClientToScreen(hwnd, (LPPOINT)&rMyRect.left);
 ClientToScreen(hwnd, (LPPOINT)&rMyRect.right);

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Translating Dialog-Box Size Units to Screen Units

PSS ID Number: Q74280
Authored 15-Jul-1991 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, the MapDialogRect
function converts dialog-box units to screen units easily.

MORE INFORMATION

When a application dynamically adds a child window to a dialog box, it
may be necessary to align the new control with other controls that
were defined in the dialog box's resource template in the RC file.
Because the dialog box template defines the size and position of a
controls in dialog-box units rather than in screen units (pixels), the
application must translate dialog-box units to screen units to align
the new child window.

An application can use the following two methods to translate dialog-
box units to screen units:

1. The MapDialogRect function provides the easier method. This
 function converts dialog-box units to screen units automatically.

 For more details on this method, please see the documentation for
 the MapDialogRect function in the Microsoft Windows Software
 Development Kit (SDK).

2. Use the GetDialogBaseUnits function to retrieve the size of the
 dialog base units in pixels. A dialog unit in the x direction is
 one-fourth of the width that GetDialogBaseUnits returns. A dialog
 unit in the y direction is one-eighth of the height that the
 function returns.

 For more details on this method, see the documentation for the
 GetDialogBaseUnits function in the Windows SDK.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Transparent Blts in Windows NT

PSS ID Number: Q89375
Authored 21-Sep-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

SUMMARY

In order to perform a transparent blt in Microsoft Windows versions 3.0 and
3.1, the BitBlt() function must be called two or more times. This process
involves nine steps. (For more information on this process, see article
Q79212 in the Microsoft Knowledge Base.)

Windows NT introduces a new method of achieving transparent blts. This
method involves the use of the MaskBlt() function. The MaskBlt() function
lets you use any two arbitrary ROP3 codes (say, SRCCOPY and BLACKNESS) and
apply them on a pel-by-pel basis using a mask.

MORE INFORMATION

For this example, the source and target bitmaps contain 4 BPP. The call to
the MaskBlt() function is as follows:

 MaskBlt(hdcTrg, // handle of target DC
 0, // x coord, upper-left corner of target rectangle
 0, // y coord, upper-left corner of target rectangle
 15, // width of source and target rectangles
 15, // height of source and target rectangles
 hdcSrc, // handle of source DC
 0, // x coord, upper-left corner of source rectangle
 0, // y coord, upper-left corner of source rectangle
 hbmMask, // handle of monochrome bit-mask
 0, // x coord, upper-left corner of mask rectangle
 0, // y coord, upper-left corner of mask rectangle
 0xAACC0020 // raster-operation (ROP) code
);

The legend is as follows

 '.' = 0,
 '@' = 1,
 '+' = 2,
 '*' = 3,
 '#' = 15

Source Bitmap Mask Bitmap Target Bitmap Result
--

++++++*** @....... ############### #######*#######
++++++*** @@@...... ############### ######***######
++++++*** @@@@@..... ##...........## ##...+***+...##
+++***+++***+++ @@@@@@@.... ##...........## ##..**+++**..##
+++***+++***+++ ...@@@@@@@@@... ##...........## ##.***+++***.##
+++***+++***+++ ..@@@@@@@@@@@.. ##...........## ##+***+++***+##
++++++*** .@@@@@@@@@@@@@. ##...........## #**+++***+++**#
++++++*** @@@@@@@@@@@@@@@ ##...........## ***+++***+++***
++++++*** .@@@@@@@@@@@@@. ##...........## #**+++***+++**#
+++***+++***+++ ..@@@@@@@@@@@.. ##...........## ##+***+++***+##
+++***+++***+++ ...@@@@@@@@@... ##...........## ##.***+++***.##
+++***+++***+++ @@@@@@@.... ##...........## ##..**+++**..##
++++++*** @@@@@..... ##...........## ##...+***+...##
++++++*** @@@...... ############### ######***######
++++++*** @....... ############### #######*#######

Note that the ROP "AA" is applied where 0 bits are in the mask and the ROP
"CC" is applied where 1 bit is in the mask. This a transparency.

When creating a ROP4, you can use the following macro:

 #define ROP4(fore,back) ((((back) << 8) & 0xFF000000) | (fore))

This macro can be used to call the MaskBlt() function as follows:

 MaskBlt(hdcDest, xTrgt, yTrgt,
 cx, cy,
 hdcSrc, xSrc, ySrc,
 hbmMask, xMask, yMask,
 ROP4(PATCOPY, NOTSRCCOPY)
);

This call would draw the selected brush where 1 bit appears in the mask and
bitwise negation of the source bitmap where 0 bits appear in the mask.

Additional reference words: 3.10 3.50 pixel
KBCategory: kbprg
KBSubcategory: GdiBmp

Transparent Windows

PSS ID Number: Q92526
Authored 09-Nov-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Microsoft Windows version 3.1 does not support fully functional transparent
windows.

MORE INFORMATION

If a window is created using CreateWindowEx() with the WS_EX_TRANSPARENT
style, windows below it at the position where the original window was
initially placed are not obscured and show through. Moving the
WS_EX_TRANSPARENT window, however, results in the old window background
moving to the new position, because Windows does not support fully
functional transparent windows.

WS_EX_TRANSPARENT was designed to be used in very modal situations and the
lifetime of a window with this style must be very short. A good use of this
style is for drawing tracking points on the top of another window. For
example, a dialog editor would use it to draw tracking points around the
control that is being selected or moved.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Trapping Floating-Point Exceptions in a Win32-based App

PSS ID Number: Q94998
Authored 28-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The _controlfp() function is the portable equivalent to the _control87()
function.

To trap floating-point (FP) exceptions via try-except (such as
EXCEPTION_FLT_OVERFLOW), insert the following before doing FP operations:

 // Get the default control word.
 int cw = _controlfp(0,0);

 // Set the exception bits ON.
 cw &=~(EM_OVERFLOW|EM_UNDERFLOW|EM_INEXACT|EM_ZERODIVIDE|EM_DENORMAL);

 // Set the control word.
 _controlfp(cw, MCW_EM);

This turns on all possible FP exceptions. To trap only particular
exceptions, choose only the flags that pertain to the exceptions desired.

Note that any handler for FP errors should have _clearfp() as its first FP
instruction.

MORE INFORMATION

By default, Windows NT has all the FP exceptions turned off, and thus
computations result in NAN or INFINITY rather than an exception. Note,
however, that if an exception occurs and an explicit handler does not exist
for it, the default exception handler will terminate the process.

If you want to determine which mask bits are set and which are not during
exception handling, you need to use _clearfp() to clear the floating-point
exception. This routine returns the existing FP status word, giving the
necessary information about the exception. After this, it is safe to query
the chip for the state of its control word with _controlfp(). However, as
long as an unmasked FP exception is active, most FP instructions will
fault, including the fstcw in _controlfp().

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

Treeviews Share Image Lists by Default

PSS ID Number: Q131287
Authored 07-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51, 4.0
 - Microsoft Win32s version 1.3

SUMMARY

The LVS_SHAREIMAGELISTS style is available for listview controls to enable
the same image lists to be used with multiple listview controls. There is
no equivalent TVS_SHAREIMAGELISTS, however, for the treeview control
because treeviews share image lists by default.

MORE INFORMATION

By default, a listview control takes ownership of the image lists
associated with it. For listviews, this could be any of three image lists
(those with large icons, small icons, or state images). These three image
lists are set by calling ListView_SetImageList() with the flags
LVSIL_NORMAL, LVSIL_SMALL, or LVSIL_STATE respectively. The listview then
takes responsibility for destroying these image lists when it is destroyed.

Setting the LVS_SHAREIMAGELISTS style, however, moves ownership of the
image lists from the listview control to the application. Because this
style assumes that the image lists are shared by multiple listviews,
specifying this style requires that the application destroy the image lists
when the last listview using them is destroyed. Failure to do so causes a
memory leak in the system.

Similarly, because treeviews share image lists by default, an application
that associates an image list with a treeview should ensure that the image
list is destroyed after the last treeview using it is destroyed. Another
way to do this is to first set the treeview's image list to NULL by using
TreeView_SetImageList(); then destroy the handle to the previous image list
returned by the function.

Additional reference words: 1.30 4.00 95 Common Controls
KBCategory: kbprg
KBSubcategory: UsrCtl

Troubleshooting Win32s Installation Problems

PSS ID Number: Q106715
Authored 14-Nov-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SUMMARY

The installation guide for Win32s that is included in the Win32 SDK
recommends running Freecell to verify that the installation was successful.
This article discusses some of the errors that may occur when trying to run
Freecell on an unsuccessful install. The article also contains a list of
corrective actions to help you reinstall Win32s.

MORE INFORMATION

Possible symptoms

One of the following may occur when running Freecell if the installation is
not successful:

 - File Error: Cannot find OLECLI.DLL

 -or-

 - Win32s - Error:
 Improper installation. Win32s requires WIN32S.EXE and WIN32S16.DLL to
 run. Reinstall Win32s.

 -or-

 - Win32s - Error:
 Improper installation. Windows requires w32s.386 in order to run.
 Reinstall Win32s.

 -or-

 - Error: Cannot find file freecell.exe (or one of its components)...

 -or-

 - The display is corrupted as soon as you run FreeCell.

Possible solutions

Check the following when Win32s does not install correctly:

 - If you are having video problems, check to see if you have an S3 video
 card. Certain S3 drivers do not work with Win32s. Either use the generic
 drivers shipped with Windows or contact your video card manufacturer for
 an updated driver. For additional information on the S3 driver and
 Win32s please see the following article(s) in the Microsoft Knowledge
 Base:

 ARTICLE-ID: Q117153
 TITLE : PRB: Display Problems with Win32s and the S3 Driver

 - Make sure that the following line is in your SYSTEM.INI file

 device=*vmcpd

 - If you have a printer driver by LaserMaster, delete it or comment it out
 because it interferes with installing Win32s. Then reboot the computer
 so that the changes you made will take effect. After you successfully
 reinstall Win32s, reinstall the driver or remove the comment characters.

 The driver interferes with installing Win32s because the LaserMaster
 drivers create a WINSPOOL device . The extension is ignored when the
 filename portion of a path matches a device name. As a result, when
 Setup tries to write to WINSPOOL.DRV, it fails, because it attempts to
 write to WINSPOOL. In fact, any Win32-based application that tries to
 link to WINSPOOL.DRV also fails; however, most Win32-based applications
 that print under Win32s do not use the WINSPOOL application programming
 interfaces(APIs) because they are not supported in Win32s. As a result,
 you can usually just disable this driver while installing Win32s and
 then reenable it afterwards.

 - Delete the \WIN32S directory, the \WIN32APP directory, W32SYS.DLL,
 W32S16.DLL, and WIN32S.EXE from your hard drive before installing.
 Although it is possible to install Win32s on top of an old installation
 of Win32s, it is better to remove the old files before installing the
 new ones.

 Edit the WIN32S.INI file on your hard drive. Change the line(s) SETUP =
 1 to read SETUP = 0. Reboot your computer and reinstall Win32s.

 - Make sure that paging is enabled. From the Control Panel, select the 386
 Enhanced icon, choose Virtual Memory, and choose Change. Verify that the
 drive type is not set to none. The type can be set to either temporary
 or permanent.

 - If you are using SHARE, not VSHARE.386 (which WFW machines use), make
 sure that SHARE is enabled. Edit AUTOEXEC.BAT and add the following
 line if it is not already there:

 C:\DOS\SHARE.EXE

If you still receive errors when running Freecell, compare the binaries on
your hard drive with those on the CD. Use the MS-DOS program FILECOMP.EXE,
COMP.EXE, or FC.EXE and do a binary compare. For example, if you have the
Win32 SDK CD, type the following:

 fc /b <system>\win32s\w32s.386 <cd>:\mstools\win32s\nodebug\w32s.386

If you have the 32-bit Visual C++ CD, type the following:

 fc /b <system>\win32s\w32s.386 <cd>:\msvc32s\win32s\retail\w32s.386

The results of the compare will be, "FC: no differences encountered", if
the binaries were correctly installed. If the binaries are not the same,
you might have a bad copy of the files or a bad CD.

As a last resort, you can try reinstalling Win32s that shipped in the
Visual C++ 32-bit edition. There seems to be a slight difference between
the SETUP.EXE program on the Win32 SDK CD and the SETUP.EXE on the Visual
C++ CD. If you try installing from the 32-bit Visual C++ CD, you should NOT
remove the \WIN32APP or \FREECELL directory or any of the Freecell files.
The Visual C++ CD does not contain Freecell.

NOTE: Using Freecell Help will generate errors, including "Routine Not
Found" or "Help Topic Does Not Exist." The generation of these errors has
nothing to do with whether or not Win32s is installed correctly.

FREECELL.HLP was meant to be used with WINHLP32.EXE. FREECELL.HLP uses the
advanced features of WINHLP32 for full-text searching. WINHELP.EXE, which
runs on Windows 3.1, does not support this. As a result, each time
FREECELL.HLP tries to bind the Find button to the full-text searching APIs,
it fails, and Windows Help displays the message box. You can still read
the information in the help file. You can use the Search button to do
keyword searches.

Additional reference words: 1.10
KBCategory: kbsetup
KBSubcategory: W32s

TrueType Font Converters and Editors

PSS ID Number: Q87817
Authored 06-Aug-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The text below lists a number of commercial software tools that
convert existing fonts to TrueType fonts or help build new fonts. The
tools are listed in alphabetical order by name. None of these tools is
recommended over any other, nor over any that are absent from the
list. Each of the tools has its own strengths and weaknesses. Before
making any purchase, examine the tool and its documentation to see if
it meets your needs. This list will be updated as more tools become
available.

Some of the following tools run on an Apple Macintosh while others run
on an IBM PC/AT or compatible computer. The same TrueType font can run
on a Macintosh or with Microsoft Windows operating system version 3.1.

To convert a font from the Macintosh to Windows 3.1, save the data
fork from a Macintosh font to a file, copy the file to an
MS-DOS-formatted disk, give the file a .TTF file extension, and use
the Windows 3.1 Control Panel to install the font.

The products included here are manufactured by vendors independent of
Microsoft; we make no warranty, implied or otherwise, regarding these
products' performance or reliability.

MORE INFORMATION

Last Update: 24 July 1992

 FONT CONVERSION UTILITIES
 =========================

AllType for MS-DOS

Author: Atech Software
 5964 La Place Court, Suite 125
 Carlsbad, CA 92008
 (619) 438-6883
Description: Character-based application running under MS-DOS.
 Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, Type-3, Nimbus-Q, and

 Intellifont.

Evolution 2.0 for Macintosh

Author: Image Club Graphics, Inc.
 1902 11th St. SE, Suite 5
 Calgary, Alberta, Canada T2G 3G2
 (403) 262-8008
Description: Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, and Type-3.

FontMonger for Windows
FontMonger for Macintosh

Author: Ares Software
 561 Pilgrim Drive, Suite D
 Foster City, CA 94404
 (415) 578-9090
Description: Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, Type-3, and
 Intellifont. Also provides minor font editing by
 creating composite characters or rearranging the
 characters in a font.

Incubator for Windows

Author: Type Solutions, Inc.
 91 Plaistow Rd
 Plaistow, NH 03865
 (603) 382-6400
Description: Supports adding effects to TrueType fonts. Contact Type
 Solutions for more information.

Metamorphosis Professional for Macintosh
--

Author: Altsys Corp.
 269 W. Renner Rd
 Richardson, TX 75080
 (214) 680-2060
Description: Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, Type-3, and PICT
 format. One interesting feature allows the user to read
 a Type-1 font from the ROM of an Apple LaserWriter
 printer and convert the font to another format.

 FONT EDITORS
 ============

Fontographer 3.5 for Windows
Fontographer 4.1 for Macintosh

Author: Altsys Corp.
 269 W. Renner Rd
 Richardson, TX 75080
 (214) 680-2060
Description: A complete font editing tool. Supports creating a font
 from scratch and modifying existing fonts. Supports a
 variety of formats including TrueType and Type-1.
 Includes an autohinter.

FontStudio 2.0 for Macintosh

Author: Letraset Graphic Design Software
 40 Eisenhower Dr
 Paramus, NJ 07653
 (800) 343-TYPE or (201) 845-6100
Description: A complete font editing tool. Supports creating fonts
 from scratch and modifying existing fonts. Supports a
 variety of formats including TrueType and Type-1.
 Includes an autohinter.

TypeMan 1.0 for Macintosh

Author: Type Solutions, Inc.
 91 Plaistow Rd
 Plaistow, NH 03865
 (603) 382-6400
Description: Designed for font foundries, this tool provides precise
 control over the hints in a font and includes an
 autohinter. Supports specifying a font in a high-level
 programming language, which the tool compiles to the
 binary TrueType format.

Additional reference words: 3.10 3.50 4.00 95 true type
KBCategory: kbprg
KBSubcategory: GdiTt

Trusted DDE Shares

PSS ID Number: Q128125
Authored 27-Mar-1995 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY

To allow someone else to connect to DDE shares when you are logged in, you
have to trust your existing DDE share. The reason is that when the other
person connects to the share remotely, the application he will connect to
is running in your security context, not the remote user's, because you are
the logged-on user. You need to give permission for the other person to
access the share. Even another person who is an administrator cannot trust
a share for your account.

In your code, you would use NDdeShareAdd() to create the share and
NDdeSetTrustedShare() to trust the share.

Alternatively, you can use DDESHARE to create the share. For more
information on DDESHARE, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q114089
 TITLE : Using the Windows NT NetDDE Share Manager

If you have a DDE share that always needs to be available, you can write
a program that trusts the specific shares and sets up a logon script
to trust the share for every user. The logon script should be a .BAT
file that calls the .EXE file, so that you can add other things to the
logon script as necessary.

MORE INFORMATION

The online documentation for NDdeSetTrustedShare says:

 The NDdeSetTrustedShare function is called to promote the
 referenced DDE share to trusted status within the current
 user's context.

DDE shares are a machine resource, not an account resource, just as
shared drives are. However, NetDDE runs an application that must run
in the context of the current user. This is the reason that the share
must be trusted, so that the application can run in the user's context.

The prototype for the function is:

 UINT NDdeSetTrustedShare(lpszServer, lpszShareName, dwTrustOptions)

The parameter lpszServer is the address of the server name on which the
DDE share resides. The DDE Share Database (DSDM) will be modified. This
service manages the shared DDE conversations and is used by the NetDDE
service. This parameter will generally be the current machine, because
you can't trust a share for someone else.

The dwTrustOptions are NDDE_TRUST_SHARE_START and NDDE_TRUST_SHARE_INIT.
NDDE_TRUST_SHARE_START allows the DDE server, such as Excel, to be
started in the user's context. This allows a DDE client to make a NetDDE
connection without the DDE server already running. When the NetDDE agent
on the server machine detects the attempted connection, it launches the
associated DDE server application if it is not already running.

NDDE_TRUST_SHARE_INIT allows a client to initiate to the DDE server if it
is already executing in the user's context. This allows a DDE client to
make a NetDDE connection to a DDE server already running on the server
machine. If the DDE server is not already running, the connection will
fail.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: UsrNetDde

Types of File I/O Under Win32

PSS ID Number: Q99173
Authored 24-May-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

There are multiple types of file handles that can be opened using the Win32
API and the C Run-time:

 Returned Type File Creation API API Set

 HANDLE CreateFile() Win32
 HFILE OpenFile()/_lcreat() Win32
 int _creat()/_open() C Run-time
 FILE * fopen() C Run-time

In general, these file I/O "families" are incompatible with each other. On
some implementations of the Win32 application programming interfaces
(APIs), the OpenFile()/_lcreat() family of file I/O APIs are implemented as
"wrappers" around the CreateFile() family of file I/O APIs, meaning that
OpenFile(), _lcreat(), and _lopen() end up calling CreateFile(), returning
the handle returned by CreateFile(), and do not maintain any state
information about the file themselves. However, this is an implementation
detail only and is NOT a design feature.

NOTE: You cannot count on this being true on other implementations of the
Win32 APIs. Win32 file I/O APIs may be written using different methods on
other platforms, so reliance on this implementation detail may cause your
application to fail.

The rule to follow is to use one family of file I/O APIs and stick with
them--do not open a file with _lopen() and read from it with ReadFile(),
for example. This kind of incorrect use of the file I/O APIs can easily be
caught by the compiler, because the file types (HFILE and HANDLE
respectively) are incompatible with each other and the compiler will warn
you (at warning level /w3 or higher) when you have incorrectly passed one
type of file handle to a file I/O API that is expecting another, such as
passing an HFILE type to ReadFile(HANDLE, ...) in the above example.

MORE INFORMATION

Compatibility

The OpenFile() family of file I/O functions is provided only for
compatibility with earlier versions of Windows. New Win32-based

applications should use the CreateFile() family of file I/O APIs, which
provide added functionality that the earlier file I/O APIs do not provide.

Each of the two families of C Run-time file I/O APIs are incompatible with
any of the other file I/O families. It is incorrect to open a file handle
with one of the C Run-time file I/O APIs and operate on that file handle
with any other family of file I/O APIs, nor can a C Run-time file I/O
family operate on file handles opened by any other file I/O family.

_get_osfhandle()

For the C Run-time unbuffered I/O family of APIs [_open(), and so forth],
it is possible to extract the operating system handle that is associated
with that C run-time handle via the _get_osfhandle() C Run-time API. The
operating system handle is the handle stored in a C Run-time internal
structure associated with that C Run-time file handle. This operating
system handle is the handle that is returned from an operating system call
made by the C Run-time to open a file [CreateFile() in this case] when you
call one of the C Run-time unbuffered I/O APIs [_open(), _creat(),
_sopen(), and so forth].

The _get_osfhandle() C Run-time call is provided for informational purposes
only. Problems may occur if you read or write to the file using the
operating system handle returned from _get_osfhandle(); for these reasons
we recommend that you do not use the returned handle to read or write to
the file.

_open_osfhandle()

It is also possible to construct a C Run-time unbuffered file I/O handle
from an operating system handle [a CreateFile() handle] with the
_open_osfhandle() C Run-time API. In this case, the C Run-time uses the
existing operating system handle that you pass in rather than opening the
file itself. It is possible to use the original operating system handle to
read or write to the file, but it is very important that you use only the
original handle or the returned C Run-time handle to access the file, but
not both, because the C Run-time maintains state information that will not
be updated if you use the operating system handle to read or write to the
file.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Types of Thunking Available in Win32 Platforms

PSS ID Number: Q125710
Authored 02-Feb-1995 Last modified 14-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 - Microsoft Win32s, version 1.3

SUMMARY

Thunks allow code on one side of the 16-32 process boundary to call into
code on the other side of the boundary. Each Win32 platform employs one or
more thunking mechanisms. This table summarizes the thunking mechanisms
provided by the different Win32 platforms.

 +-Win32s-+-Windows 95-+-Windows NT-+
 Generic Thunk | | X | X |
 +--------+------------+------------+
 Universal Thunk | X | | |
 +--------+------------+------------+
 Flat Thunk | | X | |
 +--------+------------+------------+

Generic Thunks allow a 16-bit Windows-based application to load and call
a Win32-based DLL on Windows NT and Windows 95.

Windows 95 also supports a thunk compiler, so a Win32-based application
can load and call a 16-bit DLL

Win32s Universal Thunks allow a Win32-based application running under
Win32s to load and call a 16-bit DLL. You can also use UT to allow a 16-
bit Windows-based application to call a 32-bit DLL under Win32s, but
this isn't officially supported. Certain things do not work on the 32-
bit side because the app was loaded with the context of a 16-bit
Windows-based application.

This article describes the types of thunking mechanisms available on each
Win32 platform.

MORE INFORMATION

Windows NT

Windows NT supports Generic Thunks, which allow 16-bit code to call into 32-
bit code. Generic Thunks do not allow 32-bit code to call into 16-bit code.
The generic thunk is implemented by using a set of API functions that are
exported by the WOW KERNEL and WOW32.DLL.

In Windows NT, 16-bit Windows-based applications are executed in a

subsystem (or environment) called WOW (Windows On Win32). Each application
runs as a thread in a VDM (virtual DOS machine).

Using generic thunks is like explicitly loading a DLL. The four major APIs
used in generic thunking are: LoadLibraryEx32W(), FreeLibrary32W(),
GetProcAddress32W(), and CallProc32W(). Their functionality is very similar
to LoadLibraryEx(), FreeLibrary(), GetProcAddress(), and calling the
function through a function pointer. The Win32-based DLL called by the
thunk is loaded into the VDM address space. The following is a example of
thunking a call to GetVersionEx():

 void FAR PASCAL __export MyGetVersionEx(OSVERSIONINFO *lpVersionInfo)
 {
 HINSTANCE32 hKernel32;
 FARPROC lpGetVersionEx;

 // Load KERNEL32.DLL
 if (!(hKernel32 = LoadLibraryEx32W("KERNEL32.DLL", NULL, NULL)))
 {
 MessageBox(NULL, "LoadLibraryEx32W Failed", "DLL16", MB_OK);
 return;
 }

 // Get the address of GetVersionExA in KERNEL32.DLL
 if (!(lpGetVersionEx =
 GetProcAddress32W(hKernel32, "GetVersionExA")))
 {
 MessageBox(NULL, "GetProcAddress32W Failed", "DLL16", MB_OK);
 return;
 }
 lpVersionInfo->dwOSVersionInfoSize = sizeof(OSVERSIONINFO);

 // Call GetVersionExA
 CallProc32W(lpVersionInfo, lpGetVersionEx, 1, 1);

 // Free KERNEL32.DLL
 if (!FreeLibrary32W(hKernel32))
 {
 MessageBox(NULL, "FreeLibrary32W Failed", "DLL16", MB_OK);
 return;
 }
 return;
 }

Win32s

All 16-bit Windows-based and Win32-based applications run in a single
address space in Win32s. The mechanism that is provided for accessing
16-bit code from 32-bit code is called the Universal Thunk. The Universal
Thunks consists of 4 APIs. The major APIs, UTRegister() and UTUnRegister(),
are exported by KERNEL32. The prototype for UTRegister() is:

 BOOL UTRegister(HANDLE hModule, // Win32-based DLL handle
 LPCTSTR lpsz16BITDLL, // 16-bit DLL to call

 LPCTSTR lpszInitName, // thunk initialization procedure
 LPCTSTR lpszProcName, // thunk procedure
 UT32PROC *ppfn32Thunk, // pointer to thunk procedure
 FARPROC pfnUT32CallBack, // optional callback
 LPVOID lpBuff); // shared memory buffer

NOTES: lpszInitName, pfnUT32CallBack, and lpBuff are optional parameters.
The value for ppfn32Thunk is the returned value of the 32-bit function
pointer to the thunk procedure. The buffer lpBuff is a globally allocated
shared memory buffer that is available to the 16-bit initialization routine
via a 16-bit selelctor:offset pointer.

The function pointer returned in ppfn32Thunk has the following syntax:

 WORD (*ppfn32Thunk)(lpBuff, dwUserDefined, *lpTranslationList);

where lpBuff is the pointer to the shared data area, dwUserDefined is
available for application use (it is most commonly used as a switch
for multiple thunked functions), and lpTranslationList is an array of flat
pointers within lpBuff that are to be translated into selector:offset
pointers.

This method is not portable to other platforms.

Windows 95

Thunking in Windows 95 allows 16-bit code to call 32-bit code and vice-
versa. The mechanism used is a thunk compiler. To use the thunk compiler
you need to create a thunk script, which is the function prototype with
additional information about input and output variables.

The thunk compiler produces a single assembly language file. This single
assembly language file should be assembled using two different flags -
DIS_32 and -DIS_16 to produce a 16-bit and 32-bit object files. These
object modules should be liked to their respective 16-bit and 32-bit DLL's.
There are no special APIs used, all you have to do is call the function.

In addition to Flat Thunks, Windows 95 supports the Windows NT Generic
Thunk mechanism. Generic thunks are recommended for portability between
Windows 95 and Windows NT.

REFERENCES

For more information on Generic Thunks, see GENTHUNK.TXT on the Win32 SDK
CD.

For more information on the Universal Thunk, see the "Win32s Programmer's
Reference" and the UTSAMP sample on the Win32 SDK CD.

Additional reference words: 1.30 3.50 4.00
KBCategory: kbprg
KBSubcategory: SubSys BseMisc W32s

Understanding Win16Mutex

PSS ID Number: Q125867
Authored 07-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SUMMARY

Windows 95 offers preemptive multithreaded scheduling for Win32 processes,
yet also provides the familiar non-preemptive task switching found in
Windows 3.x for Win16 applications. Some of the Win32 system DLLs, such as
USER32.DLL and GDI32.DLL, thunk to their 16-bit counterparts for
compatibility and size. Unlike Windows 3.x, which did not preemptively
schedule processes, Windows 95 must be able to handle the possibility that
it might be reentered by two or more processes each calling the same API
functions. Windows 95 must do so in a way that uses little memory and is
compatible with all existing 16-bit applications and DLLs.

Win16Mutex is a global semaphore that is used to protect the 16-bit Windows
95 components from being reentered by preventing Win32 threads from
thunking to 16-bit components while other 16-bit code is running.
Win16Mutex is internal to Windows 95 and is not accessible from
applications or DLLs. This article explains how Win16Mutex works and offers
design tips for minimizing the effects Win16Mutex may have on Win32
applications.

MORE INFORMATION

Because Windows 3.x is a non-preemptive system, Windows 3.x did not need to
be designed to prevent the system from being reentered. Only one task
(application instance) at a time can call system services (API functions)
because other tasks cannot run until the active task voluntarily yields
control of the CPU. Since only one task can execute at a time, it is not
possible to have two different tasks calling the same API function, and
thus Windows does not need to protect itself from reentrancy.

Windows 95 differs from Windows 3.x because Windows 95 provides support for
both Win32 and Win16 applications. In Windows 95, every instance of every
Win16 application is a process with exactly one thread, and every Win32
process has at least one thread. Win32 threads are preemptively scheduled
and may even preempt Win16 processes. Because many Win32 API functions are
thunked to 16-bit Windows API functions, there is now a possibility for the
16-bit Windows components to be reentered. Since the 16-bit Windows
components are largely the same as in Windows 3.x, they need to be
protected from being reentered.

The Win16Mutex provides this protection by allowing only one thread (not
process) at a time to access the 16-bit APIs. Whenever Win16Mutex is owned

by a thread, any other thread that tries to claim Win16Mutex will block
until Win16Mutex is released. Now the question remains: "When does
Win16Mutex get claimed and released?"

Whenever a Win16 process is running, it owns Win16Mutex. That is, when a
Win16 process first gets a message via GetMessage or PeekMessage, the Win16
process claims Win16Mutex. The Win16 process releases Win16Mutex whenever
the process yields, such as when the process calls GetMessage or
PeekMessage and doesn't return. The only way a Win16 process can keep
Win16Mutex indefinitely is to never yield; since the message-processing
mechanism provides the scheduler in 16-bit Windows, the only way to never
yield is to stop processing messages (which makes the application
unresponsive to user input).

The only time a thread in a Win32 process claims Win16Mutex is when the
thread makes a call to an API function which thunks to one of the 16-bit
Windows components or when the thread thunks directly to a Win16 DLL.
Immediately after the call returns, the process releases Win16Mutex. Not
all API functions thunk to 16-bit components; most 32-bit USER and GDI
functions thunk to 16-bit USER and GDI, but none of the 32-bit KERNEL
functions thunk to 16-bit KRNL386. One exception is when a Win32 process
spawns a Win16 process, KERNEL32 thunks to KRNL386 to call the Win16
loader.

Putting 16-bit and 32-bit behaviors together, you can see that when a Win16
process is running, and a thread of a Win32 process preempts the Win16
process and calls a function which thunks to a 16-bit component, the Win32
thread is put to sleep until the Win16 process yields, which releases
Win16Mutex. Likewise, when one Win32 process's thread claims Win16Mutex and
then loses its timeslice, and another thread from either the same or a
different process tries to claim Win16Mutex, the second thread blocks until
Win16Mutex is released.

Win16Mutex is internal to Windows 95 and may not be manipulated or even
checked by applications and DLLs. Win16Mutex is implemented mainly in the
thunk layer so that every Win32 API which thunks to a Win16 component will
automatically claim Win16Mutex before entering 16-bit code. Additionally,
thunks created by the thunk compiler to allow Win32 applications and DLLs
to call 16-bit DLLs claim Win16Mutex automatically, so programmers do not
have to do so explicitly.

One way to lessen the impact that Win16 applications have on the
responsiveness of Win32 applications is to create multiple threads where
the primary thread (the initial thread of the process) controls the entire
user interface for the process and each additional thread performs some
useful task, such as reading or writing to a data file, but does not make
user interface or graphics calls. This way, if the Win32 process's primary
thread blocks waiting for a Win16 process to yield, its other threads are
still performing useful work.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseProcThread

UNICODE and _UNICODE Needed to Compile for Unicode

PSS ID Number: Q99359
Authored 26-May-1993 Last modified 18-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

To compile code for Unicode, you need to #define UNICODE for the Win32
header files and #define _UNICODE for the C Run-time header files. These
#defines must appear before the

 #include <windows.h>

and any included C Run-time headers. The leading underscore indicates
deviance from the ANSI C standard. Because the Windows header files are not
part of this standard, it is allowable to use UNICODE without the leading
underscore.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrNls

Unicode Conversion to Integers

PSS ID Number: Q89295
Authored 16-Sep-1992 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Under Windows NT, strings may be either Unicode or ANSI. There is no
function for reliably converting a string that might be either Unicode or
ANSI to an integer. This is because, given a random set of bytes, it is
difficult to determine whether the string is in Unicode or ANSI. The
calling program has to know which format the string uses in order to
convert it.

If the string uses Unicode, the functions wcstol(), wcstoul(), and wcstod()
can be used to perform the conversion.

Note that when you are using the Win32 application programming interface
(API), you can choose what kind of characters you get from the console or
window manager. The names of the API functions that are called to use
Unicode and ANSI characters are different. For more details, see Chapter 93
in the overview, "Unicode."

To mark a string as Unicode, insert the byte-ordering-mark (BOM) 0xFEFF in
the string and/or file.

MORE INFORMATION

You can assume that the first 128 bytes in each character set are in the
same codepoint. For portability, you should code character conversions in
this range as:

 {
 TCHAR c;
 ...
 i = c - TEXT('0');
 }

The TEXT macro places an "L" before the constant if Unicode is defined.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

Unicode Functions Supported by Windows 95

PSS ID Number: Q125671
Authored 01-Feb-1995 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Unlike Windows NT, Windows 95 does not implement the Unicode (or wide
character) version of most Win32 functions that take string parameters.
With some exceptions, these functions are implemented as stubs that
simply return an error value.

In general, Windows 95 implements the ANSI version of these functions.
See the Win32 API documentation for information on particular functions
and differences between the various Win32 platforms.

One major exception to this rule is OLE. All native 32-bit OLE APIs
and interface methods use Unicode exclusively. For more information on
this, please see the OLE documentation.

Excluding OLE, Windows 95 supports the following wide character functions:

 EnumResourceLanguages
 EnumResourceNames
 EnumResourceTypes
 ExtTextOut
 FindResource
 FindResourceEx
 GetCharWidth
 GetCommandLine
 GetTextExtentExPoint
 GetTextExtentPoint32
 GetTextExtentPoint
 lstrlen
 MessageBoxEx
 MessageBox
 TextOut

In addition, Windows 95 implements the following two functions for
converting strings to or from Unicode:

 MultiByteToWideChar
 WideCharToMultiByte

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: WIntlDev

Unicode Implementation in Windows NT 3.1 and 3.5

PSS ID Number: Q103977
Authored 02-Sep-1993 Last modified 27-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.1 and 3.5

SUMMARY

Windows NT is the first widely available operating system to be built
upon the Unicode character encoding. Almost all of the strings used in
the system have 16-bits reserved for each character. However, Windows
NT does not yet realize the Unicode ideal of offering an editor
capable of handling one document containing all of the languages of
the world.

MORE INFORMATION

Unicode support in Windows NT:

 - All Windows USER objects support Unicode strings.
 - The Win32 console is Unicode enabled.
 - NTFS supports Unicode filenames.
 - All of the information strings in the registry are Unicode.
 - The L_10646.TTF (Lucida Sans Unicode) font covers over 1300 Unicode
 characters.
 - Most of the TrueType fonts include a Unicode encoding table.

Unicode features missing from Windows NT:

 - There is no font support for all of the Unicode characters.
 - Although the Win32 console is Unicode enabled, it is not possible to
 use Unicode fonts in the console. Most Unicode characters will be
 represented by the "default character" of the System font.
 - Winhlp32 is not Unicode enabled.
 - There is no general Unicode input method in Windows NT version 3.1. The
 shell applets and File Manager fully support Unicode. You can use the
 new Notepad and Character Mapper applets to create files with Unicode
 text. (Choose the Lucida Sans Unicode font in the Character Mapper, then
 choose the desired Unicode characters in the Character Mapper and copy
 them to the clipboard. Paste the clipboard contents into Notepad, making
 sure Notepad has the Lucida Sans Unicode font selected, and save the
 file as a "Unicode Files". Note, this same process can be used to give
 files Unicode filenames.)
 - The FAT and HPFS file systems do not support Unicode filenames.
 (Nor will they in the future; to accomplish this, use NTFS.)

Additional reference words: 3.10 3.50
KBCategory: kbprg

KBSubcategory: UsrNls

Uniqueness Values in User and GDI Handles

PSS ID Number: Q94917
Authored 25-Jan-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

User and GDI handles, are divided into two parts:

 - The lower 16 bits is an index into a system table of handle
 structures, which includes information such as the type of handle
 (window, menu, cursor, and so forth), as well as a value called the
 uniqueness.

 - The upper 16 bits contain the same uniqueness value.

The first time a handle is issued by the system, the uniqueness value is 0
(zero). It is incremented each time the handle is re-used. In Windows NT
3.1, if you pass in a value of 0xFFFF for the uniqueness, the client side
(that is, USER32.DLL) will look up the correct uniqueness value in shared
memory and use the correct handle. In Windows NT 3.5, use 0x0000 for the
uniqueness value.

This is important because it alleviates potential conflicts with re-used
handles. For example, when a window is destroyed, its handle is reused by
the system. The uniqueness value prevents an old handle to a destroyed
window from being misinterpreted by the system as the handle to a new
object, which was given the same handle value.

MORE INFORMATION

In Win32s, use 0x0000 in the upper 16 bits for the uniqueness.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrMisc

Use 16-Bit .FON Files for Cross-Platform Compatibility

PSS ID Number: Q100487
Authored 22-Jun-1993 Last modified 17-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The AddFontResource() function installs a font resource in the GDI font
table. Under Windows NT and Windows 95, the module can be a .FON file or a
.FNT file. Under Windows 3.1, the module must be a .FON file. When using
Win32s, AddFontResource() passes its argument to the Win16 AddFontResource,
and therefore .FON files should be used for portability.

In addition, when running under Windows NT or Windows 95, the module can be
either a 32-bit "portable executable" or a 16-bit .FON file. However, if
the same Win32 executable is run under Win32s, the call to
AddFontResource() fails if the .FON is not in 16-bit format. Therefore, for
compatibility across platforms, use 16-bit .FON files. These can be created
using the Windows 3.1 Software Development Kit (SDK).

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: GdiFnt

Use LoadLibrary() on .EXE Files Only for Resources

PSS ID Number: Q108448
Authored 12-Dec-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The LoadLibrary() application programming interface (API) can be used to
load an executable module. A common use of this function is to load a
dynamic-link library (DLL), perform a subsequent call to GetProcAddress()
to get the address of an exported DLL routine, and call this DLL routine
through the address that is returned. Another use of LoadLibrary() is to
load an executable module and retrieve its resources.

In Windows NT, a LoadLibrary() of an .EXE file is supported only for the
purposes of retrieving resources. It was decided that it was rather
uncommon to load an .EXE for any other purpose, so this limitation was
imposed on LoadLibrary() to improve the performance in loading resources.
Calling a routine in an .EXE through an address obtained with
GetProcAddress() can cause an access violation.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Use MoveWindow to Move an Iconic MDI Child and Its Title

PSS ID Number: Q70079
Authored 09-Mar-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, version 3.5

Although Windows does not have application programming interface (API)
calls to support dragging iconic windows (windows represented by an icon),
calls to MoveWindow() can be used to implement a dragging functionality for
iconic multiple-document interface (MDI) child windows.

However, the icon's title is not in the same window as the icon, so
when the icon is moved, the title will not automatically move with it.
The title is in a small window of its own, so a separate call to
MoveWindow() must be made to place the title window correctly below
the icon.

The information below describes how to get the window handle for the
small title window, so that the appropriate call to MoveWindow() can
be made.

The icon's title window is a window of class #32772. This window is a
child of the MDI client window, and its owner is the icon window.

To get the window handle to the appropriate icon title window for a
given icon, enumerate all the children of the MDI client window,
looking for a window whose owner is the icon.

You can use EnumChildWindows() to loop through all the children of the
MDI client window.

You can use GetWindow(..., GW_OWNER) to check the parent of each
window.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrMdi

Use of Allocations w/ cbClsExtra & cbWndExtra in Windows

PSS ID Number: Q11606
Authored 23-Oct-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

The following is an explanation of the use of the allocations with
cbClsExtra and cbWndExtra?:

1. cbClsExtra -- extra bytes to allocate to CLASS data structure in
 USER.EXE local heap when RegisterClass() is called. Accessed by
 Get/Set CLASS Word/Long ();.

2. cbWndExtra -- extra bytes to allocate to WND data structure in
 USER.EXE local heap when CreateWindow() is called. Accessed by
 Get/Set WND Word/Long ();.

You can use these structures at your discretion and for any purpose you
desire.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCls

Use of DLGINCLUDE in Resource Files

PSS ID Number: Q91697
Authored 02-Nov-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The dialog editor needs a way to know what include file is associated with
a resource file that it opens. Rather than prompt the user for the name of
the include file, the name of the include file is embedded in the resource
file in most cases.

MORE INFORMATION

Embedding the name of the include file is done with a resource of type
RCDATA with the special name DLGINCLUDE. This resource is placed into the
.RES file and contains the name of the include file. The dialog editor
looks for this resource when it loads a .RES file. If this resource is
found, then the include file is opened also; if not, the editor prompts the
user for the name of the include file.

In some Windows 3.1 build environments, the dialog editor was used to
create dialogs that were placed in more than one .DLG file. These different
.DLG files were then included in one .RC file, which was compiled with the
resource compiler. Therefore, the resource file gets multiple copies of a
RCDATA type resource with the same name, DLGINCLUDE, but the resource
compiler and dialog editor don't complain.

In the Win32 SDK, changes were made so that this resource has its own
resource type; it was changed from an RCDATA-type resource with the
special name, DLGINCLUDE, to a DLGINCLUDE resource type whose name can
be specified. The dialog editor would look for resources of the type
DLGINCLUDE.

We are being more strict about the need for resources to be unique in the
Win32 SDK than the Windows 3.1 SDK. This is good because there was never
any guarantee at run time as to which of the two or more resources would be
returned by LoadResource().

This means that some applications being ported to Windows NT give an error
when their resources are compiled because they have duplicate RCDATA type
resources with the same name (DLGINCLUDE). This error is by design. The
workaround is straightforward: delete all the DLGINCLUDE RCDATA type
resource statements from all the .DLG files.

Finally, because it does not make sense to have the DLGINCLUDE type
resources in the executable, the linker will strip them out so that they

don't get linked into the EXE.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsDlg

Use of DocumentProperties() vs. ExtDeviceMode()

PSS ID Number: Q92514
Authored 08-Nov-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

Windows-based applications have used ExtDeviceMode() to retrieve or modify
device initialization information for printer drivers. The Win32 API
introduces a new function DocumentProperties() that applications can use to
configure the settings of the printer.

Note that ExtDeviceMode() calls DocumentProperties(); therefore, it is
faster for applications to use DocumentProperties() directly.

Specifying the DM_UPDATE mask allows an application to change printer
settings when using DocumentProperties(). Applications should be aware
that the GetProcAddress() function is now case sensitive.

Windows-based applications running on Windows NT (WOW) can call
ExtDeviceMode(). The spooler's ExtDeviceMode() entry is intended for WOW
use.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Use of NULL_PEN, NULL_BRUSH, and HOLLOW_BRUSH

PSS ID Number: Q66532
Authored 30-Oct-1990 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

GDI contains several "NULL" stock objects: NULL_BRUSH, HOLLOW_BRUSH, and
NULL_PEN. These objects are defined in WINDOWS.H (16-bit SDK) or in
WINGDI.H (32-bit SDK). These header files define HOLLOW_BRUSH as
NULL_BRUSH, so they are the same objects.

Note that NULL_BRUSH and NULL_PEN are NOT identical to the value NULL. The
value NULL is defined as 0 (zero) in WINDOWS.H and is not a valid stock
object.

Many GDI functions use the current brush to fill interiors and the current
pen to draw lines. In some cases, an application may not want to modify the
areas normally affected by the pen or brush. Selecting a NULL_PEN or
NULL_BRUSH into the device context tells GDI not to modify the normally
affected areas. In short, "NULL_" objects do not draw anything.

For example, the Rectangle() function uses the current brush to fill
the interior of the rectangle and the current pen to draw the border.
If NULL_PEN is selected into the device context, no border is drawn.
If NULL_BRUSH or HOLLOW_BRUSH is selected, the interior of the
rectangle is not painted. If both NULL_PEN and NULL_BRUSH are
selected, the rectangle will not be drawn.

Additional reference words: 3.00 3.10 3.50 4.00 95 hollow
KBCategory: kbprg
KBSubcategory: GdiPnbr

Use of Polygon() Versus PolyPolygon()

PSS ID Number: Q119164
Authored 09-Aug-1994 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

Polygon() draws a polygon, while PolyPolygon() draws a series of polygons.
Using multiple calls to Polygon() can offer better performance than using a
single call to PolyPolygon(); this is because PolyPolygon() does not
consider the polygons to be independent, but considers them to be one
polygon with multiple disjointed edges. However, there are times when
PolyPolygon() is preferable, particularly if the number of polygons is
small.

MORE INFORMATION

PolyPolygon() batches polygons in a single call, so there is less call
overhead than there is for multiple calls to Polygon(). However, to perform
one combined fill, PolyPolygon() has to work with all the edges in all of
the polygons simultaneously, resulting in sorting overhead. The overhead
involved in sorting becomes quite expensive when there are a lot of
polygons, causing a net loss of performance in comparison to Polygon().

GDI batches multiple Polygon() calls to be more efficient. Setting the
batch limit higher than the default of 10 with GdiSetBatchLimit() improves
performance even further. GDI and some drivers optimize convex polygons,
but will only optimize a single polygon drawn with either Polygon() or
PolyPolygon().

Because PolyPolygon() treats all edges as part of one big polygon, it also
draws every pixel to be filled exactly once; this may be a performance
advantage if a lot of overlapping polygons are drawn, because Polygon()
draws every pixel in each polygon only once, even where there is an
overlap.

PolyPolygon() considers all the polygons when applying the current fill
mode, as set by calling SetPolyFillMode(). Consequently, if any polygons
overlap, the result of one PolyPolygon() call may be different than the
result of the equivalent multiple Polygon() calls. If the polygons overlap
and the raster operation takes the destination pixel values into account,
or if you want the fill rule to be applied to overlapping areas, then it is
preferable to use PolyPolygon().

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: GdiDrw

Use Uppercase "K" for Keywords in Windows Help Files

PSS ID Number: Q64050
Authored 20-Jul-1990 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The standard keyword list must be defined by using capital "K" footnotes.
Lowercase "k" footnotes may not be used for defining either standard or
alternate keyword lists.

MORE INFORMATION

Using lowercase "k" footnotes can result in problems such as the following:

If your application calls WinHelp() using the HELP_KEY option for doing a
keyword search and you pass a LPSTR to a keyword defined in a footnote
attached to your topic, the Help system displays an "Invalid key word"
error message box. For example

 WinHelp(hWnd,cFileDir,HELP_KEY,(DWORD)(LPSTR)"help");

where

 hWnd is the handle of the calling window.
 cFileDir is the directory path and filename of the .HLP file.
 "help" is the keyword defined in the footnote section of the topic.

and the footnote section of the topic is as follows:

 k sample;help

Modifying the footnote for the topic to use an uppercase "K" solves the
problem.

 K sample;help

Additional reference words: 3.00 3.10 3.50 4.00 95 key word
KBCategory: kbtool
KBSubcategory: TlsHlp

Using #include Directive with Windows Resource Compiler

PSS ID Number: Q80945
Authored 20-Feb-1992 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The Windows Resource Compiler supports many standard C language
preprocessor directives such as "#define" to define symbolic
constants, and "#include" to include header and other resource files.

If an application developed for the Windows environment has more than
one resource, each resource can be maintained in a separate file.
Then, use the #include directive to direct the Resource Compiler to
build all the resources into one output file. Using this technique
prevents one resource file from becoming unmanageably large with an
overwhelming number of resources.

It is important to note that the Resource Compiler treats files with
the .C and .H extensions in a special manner. It assumes that a file
with one of these two extensions does not contain resources. When a
file has the .C or .H file extension, the Resource Compiler ignores
all lines in the file except for preprocessor directives (#define,
#include, and so forth). Therefore, a file that contains resources
that is included in another resource file should not have the .C or .H
file extension.

MORE INFORMATION

The following example demonstrates the implications of this situation.
The MSG.H file has the following contents:

 /*
 * This header file defines message IDs for strings in the
 * stringtable resource. All source files can use this header file
 * to reference specific strings.
 */
 #define STRING1 1
 #define STRING2 2
 #define STRING3 3

The STRTABLE.RC file has the following contents:

 /*
 * This file defines the stringtable resource contents for this
 * application. It should be included in the application's resource

 * file. It requires definitions from the MSG.H header file.
 */
 STRINGTABLE
 {
 STRING1, "This is string 1."
 STRING2, "This is string 2."
 STRING3, "This is string 3."
 }

The APP.RC file has the following contents:

 /*
 * This is the "main" resource definition file for this
 * application. Among other things, it includes the stringtable
 * resource definition from other header files.
 */

 RESOURCE 1 (MENU)
 RESOURCE 2 (RAW DATA)
 ...

 #include "MSG.H"
 #include "STRTABLE.RC"

The Resource Compiler treats both MSG.H and STRTABLE.RC as header
files. MSG.H does not include any resources; therefore, it can use the
standard .H file extension. However, because STRTABLE.RC includes a
resource (a STRINGTABLE), it cannot be named with a .C or .H file
extension.

Files that contain resources can have any legal MS-DOS file extension
other than .C and .H.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

Using a Dialog Box as the Main Window of an Application

PSS ID Number: Q108936
Authored 20-Dec-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Dialog boxes might be used as the main window of an application for several
reasons. When an application uses a dialog box as the main window, the
following should be taken into consideration while designing such an
application:

 - The dialog box that acts as the main window of an application can be
 created without an owner.

 - If a modal dialog box is created as a main window,
 TranslateAccelerator() cannot be used.

 - The icon for the dialog box should be drawn manually when the dialog
 box is minimized.

MORE INFORMATION

You can create a modal or modeless dialog box as the main window of an
application. In doing so, there is no need to have an overlapped window
that acts as the owner of the dialog box. Memory for edit controls
created with the DS_LOCALEDIT flag set, and static controls, will come from
the heap represented by the hInstance passed to the CreateDialog() or
DialogBox() call.

When modal dialog boxes are chosen for this purpose, and accelerator keys
are defined in an application, Windows enters a modal message loop that
does not process accelerators, unless a WH_MSGFILTER hook is installed and
TranslateAccelerator() is called from the hook callback function.

One easy way to avoid this limitation is to create a modeless dialog box
and call TranslateAccelerator() from the main message loop.

The icon for a window is stored in its class information. Because a dialog
box is a window of global class that all applications in the system are
using, changing the icon for this application will change the icon for all
dialog boxes in the system. Below is one workaround for drawing the icon
manually when the dialog box is minimized:

Sample Code

BOOL WINAPI GenericDlgProc (HWND hwnd, UINT msg,
 WPARAM wParam, LPARAM lParam)
 {

 RECT rect ;
 switch (msg) {

 case WM_INITDIALOG:
 hIcon = LoadIcon(); // Load the icon that is to be displayed
 // when minimized.
 return TRUE ;

 case WM_ERASEBKGND:
 if (IsIconic(hwnd) && hIcon) {
 SendMessage(hwnd, WM_ICONERASEBKGND, wParam, 0L);
 return TRUE;
 }
 break;

 case WM_QUERYDRAGICON:
 return (hIcon);

 case WM_PAINT: {
 PAINTSTRUCT ps;

 BeginPaint(hwnd, &ps);

 if (IsIconic(hwnd)) //*** If iconic, paint the icon.
 {
 if (hIcon) {

 //center the icon correctly..
 GetClientRect(hwnd, &rect) ;
 rect.left = (rect.right - GetSystemMetrics(SM_CXICON)) >> 1
;
 rect.top = (rect.bottom - GetSystemMetrics(SM_CYICON)) >> 1
;
 DrawIcon(ps.hdc, rect.left, rect.top, hIcon);
 }
 EndPaint(hwnd, &ps);
 }
 break;
 }
 return FALSE;

} //*** GenericDlgProc

The workaround described above assumes that the dialog box belongs to the
predefined dialog class. For private dialog box classes, there is no need
to manually draw the icon for the dialog box when it is minimized. You can
specify the icon while registering the dialog box class. Remember to set
the cbWndExtra field to DLGWINDOWEXTRA. When the dialog box is minimized,
the icon will be painted automatically.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 DLGMAIN

KBCategory: kbprg
KBSubcategory: UsrDlgs

Using a Fixed-Pitch Font in a Dialog Box

PSS ID Number: Q77991
Authored 31-Oct-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

To use a fixed-pitch font in a dialog box, during the processing of
the dialog box initialization message, send the WM_SETFONT message to
each control that will use the fixed font. The following code
demonstrates this process:

 case WM_INITDIALOG:
 SendDlgItemMessage(hDlg, ID_CONTROL, WM_SETFONT,
 GetStockObject(ANSI_FIXED_FONT), FALSE);
 /*
 * NOTE: This code will specify the fixed font only for the
 * control ID_CONTROL. To specify the fixed font for other
 * controls in the dialog box, additional calls to
 * SendDlgItemMessage() are required.
 */
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Using a Modeless Dialog Box with No Dialog Function

PSS ID Number: Q72136
Authored 15-May-1991 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

When creating a modeless dialog box with the default dialog class, an
application normally passes a procedure-instance address of the dialog
function to the CreateDialog() function. This dialog function processes
messages such as WM_INITDIALOG and WM_COMMAND, returning TRUE or FALSE.

It is acceptable to create a modeless dialog box that uses NULL for the
lpDialogFunc parameter of CreateDialog(). This type of dialog box is useful
when the no controls or other input facilities are required. In this case,
using NULL simplifies the programming.

However, the dialog box must be closed through some means other than a push
button (for example, via a timer event).

NOTE: A modal dialog box that does not provide a means of closing itself
will hang its parent application because control will never return from the
DialogBox() function call.

If lpDialogFunc is NULL, no WM_INITDIALOG message will be sent, and
DefDlgProc() does not attempt to call a dialog function. Instead,
DefDlgProc() handles all messages for the dialog. The application that
created the modeless dialog must explicitly call DestroyWindow() to free
its system resources.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Using a Mouse with MEP Under Windows NT

PSS ID Number: Q83300
Authored 08-Apr-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The Microsoft Editor (MEP) included with the Win32 Software Development Kit
(SDK) can be used with a mouse to position the cursor.

By default, the mouse is not enabled for MEP. It is necessary to add the
switch "usemouse:yes" (without the quotation marks) to the TOOLS.INI file
under the [m mep] section. The TOOLS.INI file is a text file editable by
MEP or Notepad.

To change the position of the cursor, first position the mouse pointer on
the new location and then click the left mouse button.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMep

Using Built-In Printing Features from a Rich Edit Control

PSS ID Number: Q129860
Authored 08-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.51 and 4.0
 - Microsoft Win32s, version 1.3

SUMMARY

The Rich Edit control contains built-in printing features that can be used
to send formatted text to the printer with minimal effort from the
programmer.

MORE INFORMATION

Printing from a Rich Edit control involves the use of the standard printing
APIs and two Rich Edit control messages, EM_FORMATRANGE and EM_DISPLAYBAND.
The EM_FORMATRANGE message can be used by itself or used in combination
with the EM_DISPLAYBAND message. Included below at the end of this article
is a code sample which demonstrates the usage of these messages.

EM_FORMATRANGE

This message is used to format the text for the printer DC and can
optionally send the output to the printer.

The wParam parameter for this message is a Boolean value that indicates
whether or not the text should be rendered (printed) to the printer. A zero
value only formats the text, while a nonzero value formats the text and
renders it to the printer.

The lParam parameter for this message is a pointer to the FORMATRANGE
structure. This structure needs to be filled out before sending the message
to the control.

FORMATRANGE Members

HDC hdc - Contains the device context (DC) to render to if the wParam
parameter is nonzero. The output is actually sent to this DC.

HDC hdcTarget - Contains the device context to format for, which is
usually the same as the hdc member but can be different. For example, if
you create a print preview module, the hdc member is the DC of the window
in which the output is viewed, and the hdcTarget member is the DC for the
printer.

RECT rc - Contains the area to render to. This member contains the

rectangle that the text is formatted to fit in, and subsequently printed
in. It also contains the margins, room for headers and footers, and so
forth. The rc.bottom member may be changed after the message is sent. If it
is changed, it must indicate the largest rectangle that can fit within the
bounds of the original rectangle and still contain the specified text
without printing partial lines. It may be necessary to reset this value
after each page is printed. These dimensions are given in TWIPS.

RECT rcPage - Contains the entire area of the rendering device. This area
can be obtained using the GetDeviceCaps() function. These dimensions are
given in TWIPS.

CHARRANGE chrg - Contains the range of characters to be printed. Set
chrg.cpMin to 0 and chrg.cpMax to -1 to print all characters.

The return value from EM_FORMATRANGE is the index of the first character on
the next page. If you are printing multiple pages, you should set
chrg.cpMin to this value before the next EM_FORMATRANGE message is sent.

When printing is complete, this message must be sent to the control with
wParam = 0 and lParam = NULL to free the information cache by the control.

EM_DISPLAYBAND

If you use 0 for the wParam parameter in the EM_FORMATRANGE message, then
you can use the EM_DISPLAYBAND message to send the output to the printer.

The wParam parameter for this message is not used and should be 0.

The lParam parameter for this message is a pointer to a RECT structure.
This RECT structure is the area to display to and is usually the same as
the rc member of the FORMATRANGE structure used in the EM_FORMATRANGE
message but can be different. For example, the rectangles are not the same
if you are printing on a certain portion of a page or built-in margins are
being used.

This message should only be used after a previous EM_FORMATRANGE message.

Sample Code

void Print(HDC hPrinterDC, HWND hRTFWnd)
 {
 FORMATRANGE fr;
 int nHorizRes = GetDeviceCaps(hPrinterDC, HORZRES),
 nVertRes = GetDeviceCaps(hPrinterDC, VERTRES),
 nLogPixelsX = GetDeviceCaps(hPrinterDC, LOGPIXELSX),
 nLogPixelsY = GetDeviceCaps(hPrinterDC, LOGPIXELSY);
 LONG lTextLength; // Length of document.
 LONG lTextPrinted; // Amount of document printed.

 // Ensure the printer DC is in MM_TEXT mode.
 SetMapMode (hPrinterDC, MM_TEXT);

 // Rendering to the same DC we are measuring.
 ZeroMemory(&fr, sizeof(fr));
 fr.hdc = fr.hdcTarget = hPrinterDC;

 // Set up the page.
 fr.rcPage.left = fr.rcPage.top = 0;
 fr.rcPage.right = (nHorizRes/nLogPixelsX) * 1440;
 fr.rcPage.bottom = (nVertRes/nLogPixelsY) * 1440;

 // Set up 1" margins all around.
 fr.rc.left = fr.rcPage.left + 1440; // 1440 TWIPS = 1 inch.
 fr.rc.top = fr.rcPage.top + 1440;
 fr.rc.right = fr.rcPage.right - 1440;
 fr.rc.bottom = fr.rcPage.bottom - 1440;

 // Default the range of text to print as the entire document.
 fr.chrg.cpMin = 0;
 fr.chrg.cpMax = -1;

 // Set up the print job (standard printing stuff here).
 ZeroMemory(&di, sizeof(di));
 di.cbSize = sizeof(DOCINFO);
 if (*szFileName)
 di.lpszDocName = szFileName;
 else
 {
 di.lpszDocName = "(Untitled)";

 // Do not print to file.
 di.lpszOutput = NULL;
 }

 // Start the document.
 StartDoc(hPrinterDC, &di);

 // Find out real size of document in characters.
 lTextLength = SendMessage (hRTFWnd, WM_GETTEXTLENGTH, 0, 0);

 do
 {
 // Start the page.
 StartPage(hPrinterDC);

 // Print as much text as can fit on a page. The return value is the
 // index of the first character on the next page. Using TRUE for the
 // wParam parameter causes the text to be printed.

#ifdef USE_BANDING

 lTextPrinted = SendMessage(hRTFWnd,
 EM_FORMATRANGE,
 FALSE,
 (LPARAM)&fr);
 SendMessage(hRTFWnd, EM_DISPLAYBAND, 0, (LPARAM)&fr.rc);

#else

 lTextPrinted = SendMessage(hRTFWnd,
 EM_FORMATRANGE,
 TRUE,
 (LPARAM)&fr);

#endif

 // Print last page.
 EndPage(hPrinterDC);

 // If there is more text to print, adjust the range of characters to
 // start printing at the first character of the next page.
 if (lTextPrinted < lTextLength)
 {
 fr.chrg.cpMin = lTextPrinted;
 fr.chrg.cpMax = -1;
 }
 }
 while (lTextPrinted < lTextLength);

 // Tell the control to release cached information.
 SendMessage(hRTFWnd, EM_FORMATRANGE, 0, (LPARAM)NULL);

 EndDoc (hPrinterDC);
 }

Additional reference words: 1.30 4.00 95
KBCategory: kbprg kbui
KBSubcategory: UsrCtl W32s

Using cChildren Member of TV_ITEM to Add Speed & Use Less RAM

PSS ID Number: Q131278
Authored 07-Jun-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SUMMARY

The cChildren member of the TV_ITEM structure is used to denote the number
of child items associated with a treeview item. When used correctly, the
cChildren member helps an application go faster and use less memory.

Applications may specify I_CHILDRENCALLBACK for this member, instead of
passing the actual number of child items. To retrieve the actual number of
child items associated with a treeview item, I_CHILDRENCALLBACK causes the
treeview to send a TVN_GETDISPINFO notification when the item needs to be
redrawn.

MORE INFORMATION

In a treeview with the TVS_HASBUTTONS style, specify a nonzero value for
the cChildren member to add the appropriate plus or minus (+/-) button (to
denote expand or collapse) to the left of the treeview item, without having
to insert each of the child items to the treeview. Specifying a zero value
indicates that the particular item does not have any child items associated
with it.

An application that does not use the cChildren member of the TV_ITEM
structure when inserting items to the treeview has to insert each of the
child items associated with that treeview item in order for the +/- button
to show up.

Using the cChildren member, therefore, helps to speed up an application
and reduce memory requirements by allowing the application to fill the tree
on demand.

Applications such as the Explorer, WinHelp, and RegEdit, which display huge
hierarchical structures, take advantage of this feature by initially
inserting only the visible items of the tree. The child items associated
with a particular item are not inserted until the user clicks the parent
item to expand it. At that point, the treeview's parent window receives a
TVN_ITEMEXPANDING notification message, and the application inserts the
child items for that parent item:

 // WM_NOTIFY message handler
 LRESULT MsgNotifyTreeView(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,

 LPARAM lparam)
 {

 LPNMHDR lpnmhdr = (LPNMHDR)lparam;

 // Just before the parent item gets EXPANDED,
 // add the children.

 if (lpnmhdr->code == TVN_ITEMEXPANDING)
 {
 LPNM_TREEVIEW lpNMTreeView;
 TV_ITEM tvi;

 lpNMTreeView = (LPNM_TREEVIEW)lparam;
 tvi = lpNMTreeView->itemNew;

 if ((tvi.lParam == PARENT_NODE) &&
 (lpNMTreeView->action == TVE_EXPAND))
 {

 // Fill in the TV_ITEM struct
 // and call TreeView_InsertItem() for each child item.

 }
 }

 return DefWindowProc(hwnd, uMessage, wparam, lparam);
 }

When the user clicks the same parent item to collapse it, the application
removes all the child items from the tree by using TreeView_Expand
(,,TVE_COLLAPSE | TVE_COLLAPSERESET). The TVN_ITEMEXPANDED notification
message is a good place to do this:

 // WM_NOTIFY message handler
 LRESULT MsgNotifyTreeView(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {

 LPNMHDR lpnmhdr = (LPNMHDR)lparam;

 // Just before the parent item is COLLAPSED,
 // remove the children.

 if (lpnmhdr->code == TVN_ITEMEXPANDED)
 {

 LPNM_TREEVIEW lpNMTreeView;
 TV_ITEM tvi2;

 lpNMTreeView = (LPNM_TREEVIEW)lparam;
 tvi2 = lpNMTreeView->itemNew;

 // Do a TVE_COLLAPSERESET on the parent to minimize memory use.

 if ((lpNMTreeView->action == TVE_COLLAPSE) &&
 (tvi2.lParam == PARENT_NODE))
 {
 TreeView_Expand (ghWndTreeView,
 tvi2.hItem,
 TVE_COLLAPSE | TVE_COLLAPSERESET);
 }
 }
 return DefWindowProc(hwnd, uMessage, wparam, lparam);
 }

Applications that dynamically change the number of child items associated
with a particular treeview item may specify I_CHILDRENCALLBACK for the
cChildren member of its TV_ITEM structure when it is inserted into the
tree. Thereafter, when that treeview item needs to be redrawn, the
treeview sends a TVN_GETDISPINFO to its parent window to retrieve the
actual number of child items and display the +/- button to the left of
the treeview item, as appropriate.

An application that uses I_CHILDRENCALLBACK may process the TVN_GETDISPINFO
notification as follows:

 // WM_NOTIFY message handler
 LRESULT MsgNotifyTreeView(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {

 LPNMHDR lpnmhdr = (LPNMHDR)lparam;

 if (lpnmhdr->code == TVN_GETDISPINFO)
 {
 TV_DISPINFO FAR *lptvdi;

 lptvdi = (TV_DISPINFO FAR *)lparam;

 if ((lptvdi->item.mask & TVIF_CHILDREN) &&
(lptvdi->item.lParam == PARENT_NODE))
 lptvdi->item.cChildren = 1;

 }

 return DefWindowProc(hwnd, uMessage, wparam, lparam);
 }

Additional reference words: 4.00 95 Common Control performance speed up
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

Using Device Contexts Across Threads

PSS ID Number: Q94236
Authored 30-Dec-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 and 3.51

A window created with the CS_OWNDC style retains its device context (DC)
attributes across GetDC() calls.

However, the DC attributes are not retained if the GetDC() calls are called
from different threads. This is by design because DCs are thread-based. In
the Win32 user interface, if the calling thread is not the owner of the
window, then GetDC() returns a cache DC instead of the owned DC handle.

To save attributes across threads, one must create a routine to initialize
DC attributes, which is then called from threads not owning the given
window.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: GdiDc

Using Device-Independent Bitmaps and Palettes

PSS ID Number: Q72041
Authored 11-May-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The method Windows version 3.x uses to transfer colors from the color
table of a device-independent bitmap (DIB) to a device-dependent
bitmap (DDB) on a machine that supports palette operations depends on
the value of the wUsage parameter specified in calls to the
CreateDIBitmap or SetDIBits functions.

Specifying DIB_RGB_COLORS matches the colors in the DIB color table to
the logical palette associated with the device context (DC) listed in
the function call.

Specifying DIB_PAL_COLORS causes the entries in the DIB color table to
not be treated as RGB values; instead, they are treated as word
indexes into the logical palette associated with the DC listed in the
function call.

To create a device-dependent (displayable) bitmap from a DIB that
retains the same colors, follow these five steps:

1. Extract the colors from the DIB header.

2. Use the CreatePalette function to make a logical palette with
 those colors.

3. Use the SelectPalette function to select the logical palette
 into a device context.

4. Use the RealizePalette function to map the logical palette into
 the device context.

5. Call the CreateDIBitmap function using the device context that
 has the logical palette selected.

Because the CreateDIBitmap function creates a bitmap compatible with
the device, to create a device-dependent monochrome bitmap from a DIB,
call the CreateBitmap function with the desired width and height,
specifying one color plane and one bit per pixel. Then call the
SetDIBits function to render the image in the newly created
monochrome bitmap.

Additional reference words: 3.00 3.10 3.50 4.00 95

KBCategory: kbprg
KBSubcategory: GdiPal

Using Drag-Drop in an Edit Control or a Combo Box

PSS ID Number: Q86724
Authored 15-Jul-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows environment, an application can register an
edit control or a combo box as a drag-drop client through the
DragAcceptFiles function. The application must also subclass the
control to process the WM_DROPFILES message that Windows sends when
the user drops a file.

MORE INFORMATION

The following seven steps demonstrate how to implement drag-drop in an
edit control. The procedure to implement drag-drop in a combo box is
identical.

1. Add SHELL.LIB to the list of libraries required to build the file.

2. Add the name of the subclass procedure (MyDragDropProc) to the
 EXPORTS section of the module definition (DEF) file.

3. Include the SHELLAPI.H file in the application's source code.

4. Declare the following procedure and variables:

 BOOL FAR PASCAL MyDragDropProc(HWND, unsigned, WORD, LONG);

 FARPROC lpfnDragDropProc, lpfnOldEditProc;
 char szTemp64[64];

5. Add the following code to the initialization of the dialog box:

 case WM_INITDIALOG:
 // ... other code

 // ------- edit control section --------
 hWndTemp = GetDlgItem(hDlg, IDD_EDITCONTROL);
 DragAcceptFiles(hWndTemp, TRUE);

 // subclass the drag-drop edit control
 lpfnDragDropProc = MakeProcInstance(MyDragDropProc, hInst);

 if (lpfnDragDropProc)
 lpfnOldEditProc = SetWindowLong(hWndTemp, GWL_WNDPROC,

 (DWORD)(FARPROC)lpfnDragDropProc);
 break;

6. Write a subclass window procedure for the edit control.

 BOOL FAR PASCAL MyDragDropProc(HWND hWnd, unsigned message,
 WORD wParam, LONG lParam)
 {
 int wFilesDropped;

 switch (message)
 {
 case WM_DROPFILES:
 // Retrieve number of files dropped
 // To retrieve all files, set iFile parameter
 // to -1 instead of 0
 wFilesDropped = DragQueryFile((HDROP)wParam, 0,
 (LPSTR)szTemp64, 63);

 if (wFilesDropped)
 {
 // Parse the file path here, if desired
 SendMessage(hWnd, WM_SETTEXT, 0, (LPSTR)szTemp64);
 }
 else
 MessageBeep(0);

 DragFinish((HDROP)wParam);
 break;

 default:
 return CallWindowProc(lpfnOldEditProc, hWnd, message,
 wParam, lParam);
 break;
 }
 return TRUE;
 }

7. After the completion of the dialog box procedure, free the edit
 control subclass procedure.

 if (lpfnDragDropProc)
 FreeProcInstance(lpfnDragDropProc);

Additional reference words: 3.10 3.50 3.51 4.00 95 combobox
KBCategory: kbprg
KBSubcategory: UsrDnd

Using DWL_USER to Access Extra Bytes in a Dialog Box

PSS ID Number: Q88358
Authored 24-Aug-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Windows extra bytes are used to store private information specific to
an instance of a window. For dialog boxes, these extra bytes are
already allocated by the dialog manager. The offset to the extra byte
location is called DWL_USER.

DWL_USER is the 8th byte offset of the dialog extra bytes. The
programmer has 4 bytes (a long) available from this offset for
personal use.

CAUTION: DO NOT use more than 4 bytes of these extra bytes, as the
rest of them are used by the dialog manager.

Example

 DWORD dwNumber = 10;
 .
 .
 .
 .
 case WM_INITDIALOG:
 SetWindowLong(hWnd,DWL_USER,dwNumber); // Store value 10 at
 // byte offset 8
 dwNumber = GetWindowLong(hWnd,DWL_USER); // Retrieve the value

NOTE: GetWindowWord and SetWindowWord could be used instead.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Using ENTER Key from Edit Controls in a Dialog Box

PSS ID Number: Q102589
Authored 04-Aug-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Windows-based applications often display data-entry dialog boxes to request
information from users. These dialog boxes may contain several edit
controls and two command (push) buttons, labeled OK and CANCEL. An example
of a data-entry dialog box is one that requests personal information, such
as social security number, address, identification (ID) number, date/time,
and so on, from users. Each of these items is entered into an edit control.

By default, the TAB key is used in a dialog box to shift focus between
edit controls. As a common user-interface, however, one could also use
the ENTER (RETURN) key to move between the edit controls (for example,
after the user enters a piece of information, pressing ENTER moves the
focus to the next field).

There are a few ways to enable the use of the ENTER key to move
between edit controls. One method is to make use of WM_COMMAND and the
notification messages that come with it in the dialog box for edit
controls and buttons. Another method involves subclassing the edit
controls. A third involves using App Studio and Class Wizard and creating a
new dialog box member function.

MORE INFORMATION

Method I: (WM_COMMAND)

This method is based on the following behavior of dialog boxes (Dialog
Manager) and focus handling in Windows.

If a dialog box or one of its controls currently has the input focus,
then pressing the ENTER key causes Windows to send a WM_COMMAND
message with the idItem (wParam) parameter set to the ID of the
default command button. If the dialog box does not have a default
command button, then the idItem parameter is set to IDOK by default.

When an application receives the WM_COMMAND message with idItem set to
the ID of the default command button, the focus remains with the
control that had the focus before the ENTER key was pressed. Calling
GetFocus() at this point returns the handle of the control that had
the focus before the ENTER key was pressed. The application can check
this control handle and determine whether it belongs to any of the

edit controls in the dialog box. If it does, then the user was
entering data into one of the edit controls and after doing so,
pressed ENTER. At this point, the application can send the
WM_NEXTDLGCTL message to the dialog box to move the focus to the next
control.

However, if the focus was with one of the command buttons (CANCEL or
OK), then GetFocus() returns a button control handle, at which point
one can dismiss the dialog box. The pseudo code for this logic
resembles the following in the application's dialog box procedure:

 case WM_COMMAND:

 if(wParam=IDOFDEFBUTTON || IDOK) {
 // User has hit the ENTER key.

 hwndTest = GetFocus() ;
 retVal = TesthWnd(hWndTest) ;

 //Where retVal is a boolean variable that indicates whether
 //the hwndTest is the handle of one of the edit controls.

 if(hwndTest) {
 //Focus is with an edit control, so do not close the dialog.
 //Move focus to the next control in the dialog.

 PostMessage(hDlg, WM_NEXTDLGCTL, 0, 0L) ;
 return TRUE ;
 }
 else {
 //Focus is with the default button, so close the dialog.
 EndDialog(hDlg, TRUE) ;
 return FALSE ;
 }
 }
 break ;

Method II

This method involves subclassing/superclassing the edit control in the
dialog box. Once the edit controls are subclassed or superclassed, all
keyboard input is sent the subclass/superclass procedure of the edit
control that currently has input focus, regardless of whether or not
the dialog box has a default command button. The application can trap
the key down (or char) messages, look for the ENTER key, and do the
processing accordingly. The following is a sample subclass procedure
that looks for the ENTER key:

//*---
//| Title:
//| SubClassProc
//|
//| Parameters:
//| hWnd - Handle to the message's destination window

//| wMessage - Message number of the current message
//| wParam - Additional info associated with the message
//| lParam - Additional info associated with the message
//|
//| Purpose:
//| This is the window procedure used to subclass the edit control.
//*---

long FAR PASCAL SubProc(HWND hWnd, WORD wMessage,WORD wParam,LONG lParam)
{

 switch (wMessage)
 {

 case WM_GETDLGCODE:
 return (DLGC_WANTALLKEYS |
 CallWindowProc(lpOldProc, hWnd, wMessage,
 wParam, lParam));

 case WM_CHAR:
 //Process this message to avoid message beeps.
 if ((wParam == VK_RETURN) || (wParam == VK_TAB))
 return 0;
 else
 return (CallWindowProc(lpOldProc, hWnd,
 wMessage, wParam, lParam));

 case WM_KEYDOWN:
 if ((wParam == VK_RETURN) || (wParam == VK_TAB)) {
 PostMessage (ghDlg, WM_NEXTDLGCTL, 0, 0L);
 return FALSE;
 }

 return (CallWindowProc(lpOldProc, hWnd, wMessage,
 wParam, lParam));
 break ;

 default:
 break;

 } /* end switch */

Method 3

This method involves using App Studio and ClassWizard and creating a new
dialog box member function.

This method will allow a user to press the ENTER key and have the focus
advance to the next edit control. If the focus is currently on the last
edit control in the dialog box, the focus will advance to the first edit
control.

First, use App Studio to change the ID of the OK button of the dialog box.
The default behavior of App Studio is to give the OK button the ID IDOK.

The OK button's ID should be changed to another value, such as IDC_OK.
Also, change the properties of the OK button so that it is not a default
pushbutton.

Next, use ClassWizard to create a new dialog box member funciton. Name the
new member function something like OnClickedOK. This function should be
tied to the BN_CLICKED message from the IDC_OK control.

Once this is done, write the body of the OnClickedOK function. You should
put the code that you would normally put in the OnOK function into the new
OnClickedOK function, including a class's OnOK function.

Add the following prototype to the header file for the dialog box:

 protected:
 virtual void OnOK();

Add an OnOK function to the dialog box and code is as demonstrated below:

void CMyDialog::OnOK()
{
 CWnd* pwndCtrl = GetFocus();
 CWnd* pwndCtrlNext = pwndCtrl;
 int ctrl_ID = pwndCtrl->GetDlgCtrlID();

 switch (ctrl_ID) {
 case IDC_EDIT1:
 pwndCtrlNext = GetDlgItem(IDC_EDIT2);
 break;
 case IDC_EDIT2:
 pwndCtrlNext = GetDlgItem(IDC_EDIT3);
 break;
 case IDC_EDIT3:
 pwndCtrlNext = GetDlgItem(IDC_EDIT4);
 break;
 case IDC_EDIT4:
 pwndCtrlNext = GetDlgItem(IDC_EDIT1);
 break;
 case IDOK:
 CDialog::OnOK();
 break;
 default:
 break;
 }
 pwndCtrlNext->SetFoucs();
}

Additional reference words: 3.10 3.50 3.51 4.00 95 push RETURN keydown
KBCategory: kbprg
KBSubcategory: UsrDlgs

Using Extra Fields in Window Class Structure

PSS ID Number: Q10841
Authored 01-Dec-1987 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

In order to generate several child windows of the same class, each having
its own set of static variables and independent of the sets of the
variables in the sibling windows, you need to use the cbWndExtra field in
WNDCLASS, the window-class data structure, when registering a window; then,
use SetWindowWord() (or Long) and GetWindowWord() (or Long). These
functions will either get or set additional information about the window
identified by hWnd.

Use positive offsets as indexes to access any additional bytes that were
allocated when the window class structure was created, starting at zero for
the first byte of the extra space. Similarly, if you want to refer to bytes
already defined by Windows within the structure, use offsets defined with
the GWW and GWL prefixes.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCls

Using FileOpen Common Dialog w/ OFN_ALLOWMULTIPLESELECT Style

PSS ID Number: Q130761
Authored 25-May-1995 Last modified 22-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

This article covers the format of file names returned by the FileOpen
common dialog with the OFN_ALLOWMULTIPLESELECT style.

The FileOpen common dialog can be used to specify the location (drive and
directory) and name of a file or a set of files. One of the flags needed to
provide mulitple-file selection from the FileOpen common dialog is the
OFN_ALLOWMULTIPLESELECT flag. When this flag is used, and the user makes a
valid selection, the file or files chosen by the user are returned in the
lpstrFile member of the OPENFILENAME structure. The format of the string
returned in the lpstrFile member depends on how many files (single or
multiple) the user selected. This article assumes that the OFN_EXPLORER
Style is set for the file open dialog.

MORE INFORMATION

If multiple files were selected, the string is of this form:

 Drive: \Directory Name\0FileName 1\0FileName 2\0FileName n\0\0.

The Directory Name is listed first. Then each file that was selected is
listed with a terminating NULL Character, except for the last filename,
which is terminated with two NULL characters. The two NULL characters
signal the end of the string.

If a single file was selected, the string is of this form:

 Drive: \Directory Name\FileName\0\0.

The Directory Name in this case is not terminated by a NULL character, and
the file name is terminated with two NULL characters.

Applications must parse the string returned in the lsptrFile member. In
doing so, they should make provisions in the parsing code to have a case
where the user can make a single selection (even though the
OFN_ALLOWMULTIPLESELECT flag is set) or multiple selections.

NOTE: When using OFN_ALLOWMULTIPLESELECT under Windows 95, you need to use
the OFN_EXPLORER flag to get the explorer style dialog and NULL terminated
strings. If you don't use OFN_EXPLORER with OFN_ALLOWMULTIPLESELECT, you
get the old style dialog and space-delimited strings.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Using GDI-Synthesized Italic Fonts

PSS ID Number: Q74467
Authored 21-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, when an application
uses an italic font synthesized by the graphics device interface
(GDI), each character and its whole character cell are "sheared," or
slanted, to the right, which can cause some unexpected results.

MORE INFORMATION

The capital H in the example below illustrates how GDI synthesizes an
italic font:

 . | | . . | | .
 . | | . . | | .
 . |----| . italicizes to . |----| .
 . | | . . | | .
 . | | . . | | .

Note two items in this case:

1. If the text background color is changed so that it does not match
 the window background color, the text background color occupies the
 sheared character cell (in other words, it is also slanted). Gaps
 occur in the background where normal text is adjacent to italic
 text.

2. The italic character is farther to the right in relation to the
 lower-left corner of the character cell than is the normal
 character. Therefore, if normal and italic text start at the same x
 coordinate on different lines, the italic text appears farther to
 the right.

To determine the number of units by which the character cell is
sheared, call the GetTextMetrics function to fill a TEXTMETRIC data
structure with information about the font. The tmOverhang member
describes the amount of shear.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiFnt

Using GetDIBits() for Retrieving Bitmap Information

PSS ID Number: Q85846
Authored 22-Jun-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

When saving a bitmap in .DIB file format, the GDI function is used to
retrieve the bitmap information. The general use of this function and
the techniques for saving a bitmap in .DIB format are largely
unchanged; however, this article provides more details on the use of
the Win32 API version of the GetDIBits() function.

MORE INFORMATION

The function can be used to retrieve the following information:

 - Data in the BitmapInfoHeader (no color table and no bits)

 - Data in the BitmapInfoHeader and the color table (no bits)

 - All the data (BitmapInfoHeader, color table, and the bits)

The fifth and the sixth parameters of the function are used to tell
the graphics engine exactly what the application wants it to return.
If the fifth parameter is NULL, then no bits will be returned. If the
biBitCount is 0 (zero) in the sixth parameter, then no color table
will be returned. In addition, the biSize field of the
BitmapInfoHeader must be set to either the size of BitmapInfoHeader or
BitmapCoreHeader for the function to work properly.

Refer to the SAVEBMP.C file in the MANDEL sample for details. This sample
is included with the Win32 SDK.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiBmp

Using GetForegroundWindow() When Desktop Is Not Active

PSS ID Number: Q118624
Authored 25-Jul-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

GetForegroundWindow() is documented to return the handle of the foreground
window, that is, the window that the user is currently working with. The
proper handle is returned when the desktop that the application is running
on is active; however, when another desktop is active,
GetForegroundWindow() returns NULL.

This is expected behavior. There is no way to get the active window in your
own desktop while another desktop is active.

The application desktop is one desktop. Other desktops include the logon
and screen saver desktops. If GetForegroundWindow() returned a handle to
the logon dialog box, it would be possible to create an application that
could get user passwords. This would violate Windows NT security.

For this reason, it is not possible to create screen savers that melt
or drop out.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrWndw

Using GetUpdateRgn()

PSS ID Number: Q99047
Authored 20-May-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The documentation provided with the Microsoft Windows Software
Development Kit (SDK) for Microsoft Windows version 3.1 does not
address all the issues surrounding the use of the GetUpdateRgn()
function. This article complements the documentation of
GetUpdateRgn().

MORE INFORMATION

The handle to the region (hRgn) does not have to be selected into a
device context (DC) to be able to use it with GetUpdateRgn(). Even if
the hRgn is selected as the clipping region for a DC, Windows only
makes a copy of the hRgn for the hDC instead of using the hRgn
directly.

When hRgn is used with GetUpdateRgn(), Windows will ignore any
existing region in hRgn. It will replace any existing region with the
current update region of the window.

Calling GetUpdateRgn() soon after BeginPaint() always yields an empty
region because BeginPaint() validates the update region.

A typical Windows query function (functions that typically begin with
Get and Is) does not initiate any action. GetUpdateRgn() is not a
typical function in this respect. The third parameter, fErase, works
as advertised to initiate a repaint on request.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrPnt

Using GMEM_DDESHARE in Win32 Programming

PSS ID Number: Q99114
Authored 23-May-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The GMEM_DDESHARE flag remains a legitimate value for GlobalAlloc(). This
flag can be used to indicate that the memory will be used for one of the
following so that the system can optimize the allocation for these special
needs:

 DDE
 OLE 1.0
 Clipboard operations

However, GlobalAlloc(GMEM_DDESHARE, ...) cannot be used to allocate a
block of memory that can be shared between processes. This flag was never
intended for this purpose, even under Windows versions 3.0 and 3.1 (3.x).
GlobalAlloc(GMEM_DDESHARE, ...) works in this case because all Windows-
based applications share the same address space; this is not the case under
Windows NT.

All allocations of global shared memory can be used within the process that
they are allocated in, but another mechanism is required to share memory
between processes.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Using Graphics Within a Help File

PSS ID Number: Q90291
Authored 12-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.51 and 4.0

SUMMARY

This article explains how to use graphics in a Help file with both the help
compiler 3.1 (HC30.EXE, HC31.EXE, and HCP.EXE) and the help compiler 4.0
(HCW.EXE).

MORE INFORMATION

TYPES OF GRAPHICS

With the Help Compiler, four types of graphics can be displayed within help
topics: bitmaps, metafiles, segmented hypergraphics, and multiple
resolution bitmaps. With HC30 and HC31, these graphics are limited to 16
colors but it is possible to use embedded windows to create a 256-color
bitmap. HCW is capable of displaying 16 million colors.

The following section discusses the details of the graphics formats listed
above, and provides details on their advantages and disadvantages.

Bitmaps

A bitmap is an image that is described by a matrix of memory bits that,
when copied to a device, define the color and pattern of a corresponding
matrix of pixels on the display surface of the device. The advantage to
using a bitmap is that drawing a bitmap is very fast. The disadvantage is
that the size of a bitmap is very large. Bitmaps can be created with a
graphics editor, such as Paintbrush.

Metafiles

A metafile is a collection of GDI commands that creates desired text or
images. There are two advantages to using metafiles: the size of the
metafile is small, and metafiles are less device-dependent than bitmaps.
The disadvantage of using a metafile is that it takes a long time to draw
one.

Segmented Hypergraphics

A segmented hypergraphic is a graphic that has hot spots defined in various
regions of the graphic. Clicking hot spots either executes a macro or jumps
to a context string. To make a segmented hypergraphic, use the segmented
hypergraphic (hot spot) editor (SHED.EXE) included with the Windows 3.1
SDK.

Multiple Resolution Bitmaps

A multiple resolution bitmap is a single bitmap file that contains one or
more bitmaps that have been marked for use with specific displays. The
advantages of multiple resolution bitmaps are:

1. Bitmaps are prevented from appearing too big or too small on
 different resolutions.

2. Bitmaps are prevented from looking stretched or compressed from
 display to display.

3. Colors are mapped correctly on different displays.

The disadvantage of multiple resolution bitmaps is that the files are
large. multiple resolution bitmaps can be created from bitmap files
with the multiple resolution bitmap compiler, MRBC.

PLACING GRAPHICS

Direct Pasting

Bitmaps and metafiles can be pasted directly from the clipboard into
an RTF source file. This allows the help author to see what the topic
will look like while it is being edited. There are several
disadvantages to this method. The first disadvantage only applies to HC30
and HC31. It is that any graphic pasted directly into a topic is limited to
64K. This is the result of the help compiler's 64K per paragraph limit when
processing RTF source files. The second disadvantage applies to all the
help compilers. It is size. If the same graphic is used multiple times
within the same source file, then a copy of the graphic is made each time
it is placed within the source.

By Reference

All of the graphics can be placed "by reference." To insert a graphic
by reference, the help author must type {bm? graphic.ext} where bm? is
bml, bmr, or bmc and graphic.ext is the name of the graphic file that
the author wants to have placed in the help topic. The bml command is
used for a left-justified graphic, the bmr command is used for a right
justified graphic, and the bmc command is used for a character
justified graphic (that is, the graphic is inserted into the paragraph
as if it were a character).

One of the advantages of placing a graphic by reference is that it
lifts the 64K limit on a graphic. Also, a graphic placed by reference
is actually just a "pointer" to the real graphic. Therefore, if the
same graphic is used multiple times, it is only "stored" once within
the .HLP file.

The disadvantage of placing graphics by reference is that the help
author does not see how the topic will appear while in the RTF editor.
The bitmap files inserted by reference must be found in the directory
specified by either the ROOT or BMROOT settings in the [OPTIONS]
section of the help project file. If the bitmap is not located in one
of these directories, then the file must be listed in the [BITMAPS]
section of the project file, so the help compiler can locate the
bitmap.

Hot Spots and Pop Ups

When placing a graphic into an RTF source file, it can be turned into
a hot spot or pop up, similar to other text. Just select the graphic
and turn on the double or single underline attribute followed
immediately by the hidden text for the context string or macro.

Additional reference words: 3.10 4.00 95 WinHelp
KBCategory: kbtool
KBSubcategory: TlsHlp

Using Network DDE Under Win32s

PSS ID Number: Q125475
Authored 29-Jan-1995 Last modified 17-Mar-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.2

Network Dynamic Data Exchange (NetDDE) has limited support in Win32s. You
can use DDE across the network, however the NDde APIs are not supported
under Win32s and will not be supported in the future.

The NDde APIs, such as NDdeShareAdd(), are used to create the NetDDE
shares, not for the actual communication. Therefore, to use NetDDE with
Win32s, manually create the shares with the DDESHARE utility included in
the Windows for Workgroups Resource Kit or by thunking to the 16-bit NDde
APIs. Then communicate through DDE or DDEML.

Additional reference words: 1.20
KBCategory: kbprg kbnetwork
KBSubcategory: W32s

Using NTFS Alternate Data Streams

PSS ID Number: Q105763
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The documentation for the NTFS file system states that NTFS supports
multiple streams of data; however, the documentation does not address
the syntax for the streams themselves.

The Windows NT Resource Kit documents the stream syntax as follows:

 filename:stream

Alternate data streams are strictly a feature of the NTFS file system
and may not be supported in future file systems. However, NTFS will be
supported in future versions of Windows NT.

Future file systems will support a model based on OLE 2.0 structured
storage (IStream and IStorage). By using OLE 2.0, an application can
support multiple streams on any file system and all supported operating
systems (Windows, Macintosh, Windows NT, and Win32s), not just Windows NT.

MORE INFORMATION

The following sample code demonstrates NTFS streams:

#include <windows.h>
#include <stdio.h>

void main()
{
 HANDLE hFile, hStream;
 DWORD dwRet;

 hFile = CreateFile("testfile",
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL);
 if(hFile == INVALID_HANDLE_VALUE)
 printf("Cannot open testfile\n");
 else
 WriteFile(hFile, "This is testfile", 16, &dwRet, NULL);

 hStream = CreateFile("testfile:stream",
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL);
 if(hStream == INVALID_HANDLE_VALUE)
 printf("Cannot open testfile:stream\n");
 else
 WriteFile(hStream, "This is testfile:stream", 23, &dwRet, NULL);
}

The file size obtained in a directory listing is 16, because you are
looking only at "testfile", and therefore

 type testfile

produces the following:

 This is testfile

However

 type testfile:stream

produces the following:

 The filename syntax is incorrect

In order to view what is in testfile:stream, use:

 more < testfile:stream

 -or-

 mep testfile:stream

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Using One IsDialogMessage() Call for Many Modeless Dialogs

PSS ID Number: Q71450
Authored 18-Apr-1991 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Windows environment, an application can implement more than one
modeless dialog box with a single call to the IsDialogMessage() function.
This can be done by using the following three-step method:

1. Maintain the window handle to the currently active modeless dialog
 box in a global variable.

2. Pass the global variable as the hDlg parameter to the
 IsDialogMessage() function, which is normally called from the
 application's main message loop.

3. Update the global variable whenever a modeless dialog box's window
 procedure receives a WM_ACTIVATE message, as follows:

 - If the dialog is losing activation (wParam is 0), set the global
 variable to NULL.

 - If the dialog is becoming active (wParam is 1 or 2), set the
 global variable to the dialog's window handle.

MORE INFORMATION

The information below demonstrates how to implement this technique.

1. Declare a global variable for the modeless dialog box's window
 handle.

 HWND hDlgCurrent = NULL;

2. In the application's main message loop, add a call to the
 IsDialogMessage() function.

 while (GetMessage(&msg, NULL, 0, 0))
 {
 if (NULL == hDlgCurrent || !IsDialogMessage(hDlgCurrent, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

3. In the modeless dialog box's window procedure, process the
 WM_ACTIVATE message.

 switch (message)
 {
 case WM_ACTIVATE:
 if (0 == wParam) // becoming inactive
 hDlgCurrent = NULL;
 else // becoming active
 hDlgCurrent = hDlg;

 return FALSE;
 }

For more information on the WM_ACTIVATE message, see page 6-47 in
"Microsoft Windows Software Development Kit Reference Volume 1" for the
Windows SDK version 3.0 and page 87 of "Programmer's Reference, Volume 3:
Messages, Structures, and Macros" for the Windows SDK version 3.1.

For details on the IsDialogMessage() function, see page 4-266 in "Windows
Software Development Kit Reference Volume 1" for the Windows SDK version
3.0 and page 553 of "Programmer's Reference, Volume 2: Functions" for the
Windows SDK version 3.1.

For details on using a modeless dialog box in an application for the
Windows environment, see Chapter 10 of "Programming Windows," second
edition, (Microsoft Press) written by Charles Petzold.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Using Printer Escapes w/PS Printers on Windows NT & Win32s

PSS ID Number: Q124135
Authored 19-Dec-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, 1.15a, and 1.2
 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5

SUMMARY

To identify and print to PostScript printers from a Win32-based application
under Windows NT and under Win32s, you need to special-case your code. This
is because the printer drivers respond to different Printer Escapes under
Windows NT and Windows/Win32s.

This article discusses how to identify and print to PostScript printers on
both Windows NT and Win32s.

MORE INFORMATION

Identification

To identify the printer as a PostScript printer, use this code:

 int gPrCode = 0; // Set according to platform.

 if(Win32s) // Using the Win16 driver.
 {
 gPrCode = PASSTHROUGH;
 if((Escape(printerIC, GETTECHNOLOGY, NULL, NULL, (LPSTR)szTech) &&
 !lstrcmp(szTech, "PostScript")) &&
 Escape(printerIC, QUERYESCSUPPORT, sizeof(int),
 (LPSTR)gPrCode, NULL)
 {
 // The printer is PostScript.
 ...
 }
 }
 else // Using Win32 driver under Windows NT.
 {
 gPrCode = POSTSCRIPT_PASSTHROUGH; // Fails with Win16 driver
 if(Escape(printerIC, QUERYESCSUPPORT, sizeof(int), (LPSTR)gPrCode,
 NULL))
 {
 // The printer is PostScript.
 ...
 }
 }

Printing

To send PostScript data to the printer on either platform, use this code:

// Assuming a buffer, szPSBuf, of max size MAX_PSBUF containing
// nPSData bytes of PostScript data.

 char szBuf[MAX_PSBUF+sizeof(short)];

// Store length in buffer.
 *((short *)szBuf) = nPSData;

// Store data in buffer.
 memcpy((char *)szBuf + sizeof(short), szPSBuf, nPSData);

// Note that gPrCode (set when identifying the printer) depends on
// the platform.
 Escape(printerDC, gPrCode, (int) nPSData, szBuf, NULL);

However, your output may appear scaled or translated incorrectly or data
may be transformed off the page under Win32s.

The origin and scale for Windows printer drivers is not the PostScript
default (bottom left/72 dpi) but is instead at the upper left and at the
device scale(300 dpi). Therefore, before sending data to the printer, you
may need to send a couple of PostScript commands to scale or translate the
matrix. For example, for scaling, send the following escape to scale the
PostScript transform to 72 dpi:

 xres = GetDeviceCaps(printerDC, LOGPIXELSX);
 yres = GetDeviceCaps(printerDC, LOGPIXELSY);

// Two leading spaces for the following operation.
 wsprintf(szBuf, " %d 72 div %d 72 div scale\n", xres, yres);

// Put actual size into buffer
 *((short *)szBuf) = strlen(szBuf)-2;
 Escape(printerDC, gPrCode, strlen(szBuf)-2, szBuf, NULL);

Additional reference words: 1.10 1.20 3.10 3.50
KBCategory: kbprg kbprint kbcode
KBSubcategory: GdiPrn W32s

Using Private Templates with Common Dialogs

PSS ID Number: Q74609
Authored 24-Jul-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5

SUMMARY

An application which uses the common dialog library (COMMDLG.DLL) can
provide its own dialog resource template to be used instead of the standard
template. In this way, the application can include private dialog items
specific to its needs without losing the benefits of using the COMMDLG's
dialog handling.

MORE INFORMATION

Each common dialog data structure contains an lpTemplateName element. (Note
that the Print Dialog structure contains two such elements, each with a
distinct name -- see specifics of PrintDlg for details.) This element
points to a null-terminated string that names the dialog box template
resource to be substituted for the standard dialog template. If the dialog
resource is numbered, the application can use the MAKEINTRESOURCE macro to
convert the number into a pointer to a string. Alternatively, the
application can choose to pass a handle to a preloaded dialog template. The
Flags element of the dialog data structure must be set to indicate which
method is being used.

After loading the application's dialog template, the common dialog DLL
initializes the dialog items as it would for the standard template.
This leads to an important point: all dialog items in the standard
template must also exist in the application's private template. Note
that the items do not have to be enabled or visible -- they just have
to exist.

Once the DLL has finished handling the WM_INITDIALOG message, it
passes that message on to the application's dialog hook function. The
hook function handles WM_INITDIALOG by initializing the application's
private dialog items. It can also disable and hide any items from the
standard template that the application does not want to use.

The hook function should process messages and notifications concerning
the private dialog items.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Using Quoted Strings with Profile String Functions

PSS ID Number: Q69752
Authored 28-Feb-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

Microsoft Windows provides profile files which are a mechanism for an
application to store configuration about itself. The WIN.INI file is
the system profile file in which Windows stores configuration
information about itself. In versions of Windows prior to version 3.0,
applications also stored configuration information in the WIN.INI
file. Windows 3.0 introduced private profile files, which can store
application-specific information.

An application can retrieve information from a profile file by calling
the GetProfileString or GetPrivateProfileString function. If the
profile file associates the specified lpKeyName value with a string
that is delimited by quotation marks, Windows discards the quotation
marks when it copies the associated string into the application-
provided buffer.

For example, if the following entry appears in the profile file:

 [application name] [application name]
 keyname = 'string' or keyname = "string"

The GetPrivateProfileString and GetProfileString functions read the
string value and discard the quotation marks.

MORE INFORMATION

This behavior allows spaces to be put into a string. For example, the
profile entry

 keyname = string

returns the string without a leading space, whereas

 keyname = ' string' or keyname = " string"

returns the string with a leading space.

Doubling quotation marks includes quotation marks in the string. For
example:

 keyname = ''string'' or keyname = ""string""

returns the string with its quotation marks -- 'string' or "string".

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrIni

Using ReadFile() and WriteFile() on Socket Descriptors

PSS ID Number: Q104536
Authored 22-Sep-1993 Last modified 21-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

Socket handles for Windows NT sockets are object handles. For example, you
can pass a socket handle in the appropriate state to the ReadFile(),
ReadFileEx(), WriteFile(), or WriteFileEx() application programming
interface (API) to receive and send data. The socket descriptor passed to
the file APIs must be a connected, TCP descriptor.

NOTE: There is no way to specify send and receive out-of-band data.

To use a Windows Sockets handle, the ReadFile() and WriteFile() APIs must
use asynchronous access. That is, you must specify the overlapped parameter
in the call to ReadFile() and WriteFile(). This will allow you to be
notified when the I/O has completed.

This functionality is based upon the implementation of Windows Sockets and
may not be available to all implementations. For example, although this
works in the Win32 subsystem, it is not supported under Win32s.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: NtwkWinsock

Using RLE Bitmaps for Animation Applications In Windows

PSS ID Number: Q75214
Authored 14-Aug-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

Animation that uses a "brute-force" animation scheme, displaying
successive complete bitmaps, can be slow and choppy. The alternative
approach, displaying an initial frame and then modifying the elements
that change, can save a great deal of time, memory, and disk space.

MORE INFORMATION

Animation applications typically use a very simple algorithm to
display a sequence of bitmaps, or frames, one right over another, on
the same display surface. When the application stores an entire frame
in the device-independent bitmap (DIB) format, it suffers from three
particular bottlenecks:

1. With large frames or long sequences, the storage file becomes quite
 large.

2. Loading an entire sequence requires a large amount of memory.

3. Available Windows functions, such as BitBlt or SetDIBitsToDevice,
 may be too slow to animate the sequence smoothly.

For an animation sequence of bitmaps with a consistent set of colors,
preprocessing the animation sequence and storing it in the run-length-
encoded (RLE) format enables an application to run faster with a
smaller storage file and memory requirement. Note that this RLE file
is different from an RLE compressed DIB. This RLE format consists of
several frames that are compressed according to the differences
between frames. This process is straightforward and consists of five
steps:

1. Select the first frame in the sequence and store it in the DIB
 format.

2. Compare the DIB bitmaps of consecutive frames. Due to the nature of
 animation sequences, the number of differences is often quite small
 compared to the size of the entire frame.

3. Encode the set of changed pixels into RLE format. The encoded frame
 will contain information only on the pixels that change, the delta

 records will skip the unchanged pixels. The RLE bitmap is stored
 instead of the latter frame. For example, the RLE-encoded
 difference between the first and second frames is stored as the
 second frame.

4. When the entire sequence is preprocessed, bring each frame into the
 system as a BITMAPINFO structure and stream of bits. Since only the
 first frame is in the DIB format, the memory requirement is quite
 low. Moreover, frames that contain an identical set of colors can
 share the BITMAPINFO structure, only the biCompression and
 biSizeImage fields must be changed.

5. At display time, load the first frame as a DIB. Then use the
 SetDIBitsToDevice function to display subsequent frames in the
 sequence. Because this function requires much less information,
 the sequence can be animated much more quickly and smoothly.

Additional reference words: 3.00 3.10 3.50 4.00 95 rle
KBCategory: kbprg
KBSubcategory: GdiBmp

Using RPC Callback Functions

PSS ID Number: Q96781
Authored 25-Mar-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The standard remote procedure call (RPC) model has a server containing one
or more exported function calls, and a client, which calls the server's
exported functions. However, Microsoft's implementation of RPC defines
callbacks as a special interface definition language (IDL) attribute
allowing a server to call a client function.

Callbacks can be used only in the context of a server call. Thus, a server
may call a client's callback function only when the server is performing a
client's remote procedure call (before it returns from processing). For
example:

 CLIENT SERVER
 ------ ------

 Client makes RPC call. --->
 <--- Server calls callback procedure.
Client returns from callback. --->
 <--- Server calls callback procedure.
Client returns from callback. --->
 <--- Server returns from original RPC call.

MORE INFORMATION

Callbacks are declared in the RPC .IDL file and defined in the source of
the client. The following demonstrates how callbacks are declared and
defined:

[SAMPLE.IDL]
[
 uuid(9FEE4F51-0396-101A-AE4F-08002B2D0065),
 version(1.0),
 pointer_default(unique)
]

{
 void RPCProc([in, string] unsigned char *pszStr);
 [callback] void CallbackProc([in,string] unsigned char *pszStr);
}

[SAMPLEC.C (Client)]
/*
 Callback RPC call (initiated from server, executed on client).
*/
void CallbackProc(unsigned char *pszString)
{
 printf("Call from server, printed on client: %s", pszStr);
}

[SAMPLES.C (Server)]
/*
 "Standard" RPC call (initiated from client, executed on server).
 Makes a call to client callback procedure, CallbackProc().
*/
void RPCProc(unsigned char *pszStr)
{
 printf("About to call Callback() client function.."
 CallbackProc(pszStr);
 printf("Called callback function.");
}

In the makefile for the sample, the "-ms_ext" switch must be used for the
MIDL compile. For example:

 midl -ms_ext -cpp_cmd $(cc) -cpp_opt "-E" sample.idl

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: NtwkRpc

Using SendMessage() As Opposed to SendDlgItemMessage()

PSS ID Number: Q12273
Authored 16-Oct-1987 Last modified 10-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1 and 3.5

The following information describes under what circumstances it
is appropriate to use either the SendMessage() or SendDlgItemMessage()
function.

Both SendMessage() and SendDlgItemMessage() can be used to add strings
to a list box. SendMessage() is used to send a message to a specific
window using the handle to the list box. SendDlgItemMessage() is used
to send a message to the child window of a given window using the list
box resource ID. SendDlgItemMessage() is most often used in dialog box
functions that have a handle to the dialog box and not to the child
window control.

The SendDlgItemMessage() call

 SendDlgItemMessage (hwnd, id, msg, wParam, lParam)

is equivalent to the following SendMessage() call:

 hwnd2 = GetDlgItem (hwnd, id);
 SendMessage (hwnd2, msg, wParam, lParam);

Please note that PostMessage() should never be used to talk to the
child windows of dialog boxes for the following reasons:

1. PostMessage() will only return an error if the message was not
 posted to the control's message queue. Since many messages are
 sent to control return information, PostMessage() will not work,
 since it does not return the information to the caller.

2. 16-bit only: Messages such as the WM_SETTEXT message that include a far
 pointer to a string can potentially cause problems if posted
 using the PostMessage() function. The far pointer may point into a
 buffer that is inside the DS (data segment). Because
 PostMessage() does not process the message immediately, the DS
 might get moved. If the DS is moved before the message is
 processed, the far pointer to the buffer will be invalid.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrMsg

Using SendMessageTimeout() in a Multithreaded Application

PSS ID Number: Q106716
Authored 14-Nov-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

SendMessageTimeout() is new to the Win32 application programming interface
(API). The function sends a message to a window and does not return until
either the window procedure processes the message or the timeout occurs.

MORE INFORMATION

This article uses the following scenario to illustrate the behavior of this
function:

Suppose that Win1 and Win2 are created by the same application and
that the following code is included in their window procedures:

 <WindowProc for window Win1>
 ...
 case <xxx>:
 ...
 SendMessageTimeout(hWnd2, // window handle
 WM_USER+1, // message to send
 wParam, // first message parameter
 lParam, // second message parameter
 SMTO_NORMAL, // flag *
 100, // timeout (in milliseconds)
 &ret); // return value
 ...
 break;

 case WM_USER+2:
 <time-consuming procedure>
 break;

* Note that the SMTO_NORMAL flag indicates that the calling thread can
process other requests while waiting for the API to return.

 <WindowProc for window Win2>
 ...
 case WM_USER+1:
 ...
 SendMessage(hWnd1, // window handle
 WM_USER+2, // message to send
 wParam, // first message parameter

 lParam); // second message parameter
 OtherStuff();
 ...
 break;

If Win1 executes this SendMessageTimeout() and Win2 uses SendMessage() to
send a message to Win1, Win1 can process the message because SMTO_NORMAL
was specified. If the SendMessageTimeout() expires while the execution is
currently in the window procedure for Win1, the state of the system will
depend on who owns the windows.

If both windows were created by the same thread, the timeout is not used
and the process proceeds exactly as if SendMessage() was being used. If the
windows are owned by different threads, the results can be unpredictable,
because the timeout is restarted whenever a message or some other system
event is received and processed. In other words, the receipt by Win1 of
WM_USER+2 causes the timeout to restart after the message is processed. If
the function executed by Win2, OtherStuff(), then uses up more than 100
milliseconds without awakening the thread that created Win1, the original
SendMessageTimeout() will timeout and return. The OtherStuff() function
continues to completion but any value that was to be returned to Win1 will
be lost. Note that the code paths will always complete.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMisc

Using Serial Communications Under Win32s

PSS ID Number: Q105759
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

Windows NT and Windows provide significantly different serial
communications application programming interfaces (APIs). Win32s does not
support the Win32 Communications API.

A good approach to take in writing a Win32-based application targetted for
Win32s that uses serial communications is to create a pair of dynamic-link
libraries (DLLs) with the same name. One DLL will use Win32 Communications
APIs and be installed under Windows NT. The other DLL will use the
Universal Thunk to call a 16-bit DLL that will call the Windows
Communications API. This DLL will be installed under Win32s.

For more information on the Universal Thunk, see the "Win32s Programmers
Guide" included with the Software Development Kit (SDK). In addition, there
is a sample in MSTOOLS\WIN32S\UT\SAMPLES\UTSAMPLE.

Additional reference words: 1.00 1.10 1.20 comm
KBCategory: kbprg
KBSubcategory: W32s

Using SetClassLong Function to Subclass a Window Class

PSS ID Number: Q32519
Authored 06-Jul-1988 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

It is possible to subclass an entire window class by using the
SetClassLong() function. However, doing so will only subclass windows
of that class created after the call to the SetClassLong() function.
Windows created before the call to the SetClassLong() function are not
affected.

NOTE: In Win32, SetClassLong() only affects Windows in the same address
space. For example, if you subclass EDIT, only edit controls created in
your application will be subclassed.

MORE INFORMATION

Calling the SetClassLong() function with the GCL_WNDPROC index changes
the class function address for that window class, creating a subclass
of the window class. When a subsequent window of that class is created,
the new class function address is inserted into its window structure,
subclassing the new window. Windows created before the call to the
SetClassLong() function (in other words, before the class function
address was changed) are not subclassed.

An application should not use the SetClassLong() function to subclass
standard Windows controls such as edit controls or buttons. If, for
example, an application were to subclass the entire "edit" class,
then subsequent edit controls created by other applications would be
subclassed.

An application can subclass individual standard Windows controls that
it has created by calling the SetWindowLong() function.

Additional reference words: listbox scrollbar 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Using SetThreadLocale() for Language Resources

PSS ID Number: Q99392
Authored 27-May-1993 Last modified 24-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

Under Windows NT, each resource loading application programming interface
(API) is based on the thread's locale. Each thread has a locale--usually
the default system locale.

You can change the thread locale by calling SetThreadLocale(). To obtain
the language resource you want, just set the thread locale to the locale
you want, then call the normal resource loading API.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrNls WintlDev

Using Temporary File Can Improve Application Performance

PSS ID Number: Q103237
Authored 19-Aug-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The use of temporary files can significantly increase the performance of an
application.

MORE INFORMATION

By using CreateFile() with the FILE_ATTRIBUTE_TEMPORARY flag, you let the
system know that the file is likely to be short lived. The temporary file
is created as a normal file. The system needs to do a minimal amount of
lazy writes to the file system to keep the disk structures (directories and
so forth) consistent. This gives the appearance that the file has been
written to the disk. However, unless the Memory Manager detects an
inadequate supply of free pages and starts writing modified pages to the
disk, the Cache Manager's Lazy Writer may never write the data pages of
this file to the disk. If the system has enough memory, the pages may
remain in memory for any arbitrary amount of time. Because temporary files
are generally short lived, there is a good chance the system will never
write the pages to the disk.

To further increase performance, your application might mark the file as
FILE_FLAG_DELETE_ON_CLOSE. This indicates to the system that when the last
handle of the file is closed, it will be deleted. Although the system
generally purges the cache to ensure that a file being closed is updated
appropriately, because a file marked with this flag won't exist after the
close, the system foregoes the cache purge.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Using Text Bullets in a Rich Edit Control

PSS ID Number: Q129859
Authored 08-May-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.51 and 4.0
 - Microsoft Win32s, version 1.3

The Rich Edit control contains a built-in text bullet feature that is used
to add paragraph bullets to the text. To use this feature, you must send
the Rich Edit control a EM_SETPARAFORMAT message. The EM_SETPARAFORMAT
message takes a pointer to a PARAFORMAT structure as its lParam parameter.
In the PARAFORMAT structure, it is necessary to zero out the structure and
fill in the following members:

 UINT cbSize - Contains the size of the structure. Use
 sizeof(PARAFORMAT).

 DWORD dwMask - Contains the attributes to set. For bullets, use
 PFM_NUMBERING | PFM_OFFSET.

 WORD wNumbering - Contains the value that specifies numbering options.
 For bullets, set this member equal to PFN_BULLET.

 LONG dxOffset - Contains the value that specifies indentation of the
 second line and subsequent lines, relative to the starting indentation.
 For bullets, this value must be positive because the bullet is displayed
 in the area between the starting indentation and the offset. If this
 value is too small, the bullets are not displayed.

Additional reference words: 1.30 4.00 95
KBCategory: kbprg kbui
KBSubcategory: UsrCtl W32s

Using the C Run-Time

PSS ID Number: Q94248
Authored 31-Dec-1992 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

This document contains the following sections:

 Section 1: Three Forms of C Run-Time (CRT) Library Are Available
 Section 2: Using the CRT Libraries When Building a DLL
 Section 3: Using NTWIN32.MAK to Simplify the Build Process
 Section 4: Problems Encountered When Using Multiple CRT Libraries
 Section 5: Mixing Library Types

MORE INFORMATION

Section 1: Three Forms of C Run-Time (CRT) Libraries Are Available

There are three forms of the C Run-time library provided with the Win32
SDK:

 - LIBC.LIB is a statically linked library for single-threaded programs.

 - LIBCMT.LIB is a statically linked library that supports multithreaded
 programs.

 - CRTDLL.LIB is an import library for CRTDLL.DLL that also supports
 multithreaded programs. CRTDLL.DLL itself is part of Windows NT.

Microsoft Visual C++ 32-bit edition contains these three forms as well,
however, the CRT in a DLL is named MSVCRT.LIB. The DLL is redistributable.
Its name depends on the version of VC++ (ie MSVCRT10.DLL or MSVCRT20.DLL).
Note however, that MSVCRT10.DLL is not supported on Win32s, while
CRTDLL.LIB is supported on Win32s. MSVCRT20.DLL comes in two versions: one
for Windows NT and the other for Win32s.

Section 2: Using the CRT Libraries When Building a DLL
--

When building a DLL which uses any of the C Run-time libraries, in order to
ensure that the CRT is properly initialized, either

1. the initialization function must be named DllMain() and the entry point
 must be specified with the linker option -entry:_DllMainCRTStartup@12

 - or -

2. the DLL's entry point must explicitly call CRT_INIT() on process attach
 and process detach

This permits the C Run-time libraries to properly allocate and initialize C
Run-time data when a process or thread is attaching to the DLL, to properly
clean up C Run-time data when a process is detaching from the DLL, and for
global C++ objects in the DLL to be properly constructed and destructed.

The Win32 SDK samples all use the first method. Use them as an example.
Also refer to the Win32 Programmer's Reference for DllEntryPoint() and the
Visual C++ documentation for DllMain(). Note that DllMainCRTStartup() calls
CRT_INIT() and CRT_INIT() will call your application's DllMain(), if it
exists.

If you wish to use the second method and call the CRT initialization code
yourself, instead of using DllMainCRTStartup() and DllMain(), there are two
techniques:

1. if there is no entry function which performs initialization code, simply
 specify CRT_INIT() as the entry point of the DLL. Assuming that you've
 included NTWIN32.MAK, which defines DLLENTRY as "@12", add the following
 option to the DLL's link line:

 -entry:_CRT_INIT$(DLLENTRY)

 - or -

2. if you *do* have your own DLL entry point, do the following in the entry
 point:

 a. Use this prototype for CRT_INIT():

 BOOL WINAPI _CRT_INIT(HINSTANCE hinstDLL, DWORD fdwReason,
 LPVOID lpReserved);

 For information on CRT_INIT() return values, see the documentation
 DllEntryPoint; the same values are returned.

 b. On DLL_PROCESS_ATTACH and DLL_THREAD_ATTACH (see "DllEntryPoint" in
 the Win32 API reference for more information on these flags), call
 CRT_INIT(), first, before any C Run-time functions are called or any
 floating-point operations are performed.

 c. Call your own process/thread initialization/termination code.

 d. On DLL_PROCESS_DETACH and DLL_THREAD_DETACH, call CRT_INIT() last,
 after all C Run-time functions have been called and all floating-
 point operations are completed.

 Be sure to pass on to CRT_INIT() all of the parameters of the entry
 point; CRT_INIT() expects those parameters, so things may not work
 reliably if they are omitted (in particular, fdwReason is required to
 determine whether process initialization or termination is needed).

 Below is a skeleton sample entry point function that shows when and how
 to make these calls to CRT_INIT() in the DLL entry point:

 BOOL WINAPI DllEntryPoint(HINSTANCE hinstDLL, DWORD fdwReason,
 LPVOID lpReserved)
 {
 if (fdwReason == DLL_PROCESS_ATTACH || fdwReason == DLL_THREAD_ATTACH)
 if (!_CRT_INIT(hinstDLL, fdwReason, lpReserved))
 return(FALSE);

 if (fdwReason == DLL_PROCESS_DETACH || fdwReason == DLL_THREAD_DETACH)
 if (!_CRT_INIT(hinstDLL, fdwReason, lpReserved))
 return(FALSE);
 return(TRUE);
 }

 NOTE that this is *not* necessary if you are using DllMain() and
 -entry:_DllMainCRTStartup@12.

Section 3: Using NTWIN32.MAK to Simplify the Build Process
--

There are macros defined in NTWIN32.MAK that can be used to simplify your
makefiles and to ensure that they are properly built to avoid conflicts.
For this reason, Microsoft highly recommends using NTWIN32.MAK and the
macros therein.

For compilation, use:

 $(cvarsdll) for apps/DLLs using CRT in a DLL

For linking, use one of the following:

 $(conlibsdll) for console apps/DLLs using CRT in a DLL
 $(guilibsdll) for GUI apps using CRT in a DLL

Section 4: Problems Encountered When Using Multiple CRT Libraries

If an application that makes C Run-time calls links to a DLL that also
makes C Run-time calls, be aware that if they are both linked with one of
the statically-linked C Run-time libraries (LIBC.LIB or LIBCMT.LIB), the
.EXE and DLL will have separate copies of all C Run-time functions and
global variables. This means that C Run-time data cannot be shared between
the .EXE and the DLL. Some of the problems that can occur as a result are:

 - Passing buffered stream handles from the .EXE/DLL to the other module
 - Allocating memory with a C Run-time call in the .EXE/DLL and
 reallocating or freeing it in the other module
 - Checking or setting the value of the global errno variable in the
 .EXE/DLL and expecting it to be the same in the other module. A related
 problem is calling perror() in the opposite module from where the C Run-
 time error occurred, since perror() uses errno.

To avoid these problems, link both the .EXE and DLL with CRTDLL.LIB or
MSVCRT.LIB, which allows both the .EXE and DLL to use the common set of
functions and data contained within CRT in a DLL, and C Run-time data such
as stream handles can then be shared by both the .EXE and DLL.

Section 5: Mixing Library Types

You can link your DLL with CRTDLL.LIB/MSVCRT.LIB regardless of what your
.EXE is linked with if you avoid mixing CRT data structures and passing
CRT file handles or CRT FILE* pointers to other modules.

When mixing library types adhere to the following:

 - CRT file handles may only be operated on by the CRT module that created
 them.

 - CRT FILE* pointers may only be operated on by the CRT module that
 created them.

 - Memory allocated with the CRT function malloc() may only be freed or
 reallocated by the CRT module that allocated it.

To illustrate this, consider the following example:

 - .EXE is linked with MSVCRT.LIB
 - DLL A is linked with LIBCMT.LIB
 - DLL B is linked with CRTDLL.LIB

 If the .EXE creates a CRT file handle using _create() or _open(), this
 file handle may only be passed to _lseek(), _read(), _write(), _close(),
 etc. in the .EXE file. Do not pass this CRT file handle to either DLL.
 Do not pass a CRT file handle obtained from either DLL to the other DLL
 or to the .EXE.

 If DLL A allocates a block of memory with malloc(), only DLL A may call
 free(), _expand(), or realloc() to operate on that block. You cannot
 call malloc() from DLL A and try to free that block from the .EXE or
 from DLL B.

 NOTE: If all three modules were linked with CRTDLL.LIB or all three were
 linked with MSVCRT.LIb, these restrictions would not apply.

When linking DLLs with LIBC.LIB, be aware that if there is a possibility
that such a DLL will be called by a multithreaded program, the DLL will
not support multiple threads running in the DLL at the same time, which can
cause major problems. If there is a possibility that the DLL will be called
by multithreaded programs, be sure to link it with one of the libraries
that support multithreaded programs (LIBCMT.LIB, CRTDLL.LIB or MSVCRT.LIB).

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

Using the Call-Attributed Profiler (CAP)

PSS ID Number: Q118890
Authored 01-Aug-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SUMMARY

The call-attributed profiler (CAP) allows you to profile function calls
within an application.

MORE INFORMATION

To profile an application using CAP, perform the following steps:

1. Replace the Windows NT system DLLs that your application uses with
 DLLs that contain debugging information. To find out which DLLs
 your application uses, run the APF32CVT.EXE utility provided with
 the Win32 SDK. The syntax to use is as follows:

 apf32cvt <application>

 This will list the DLLs to which your program is linked. The system
 DLLs that contain debugging information can be found in the
 \SUPPORT\DEBUGDLL\i386 of the Win32 SDK CD. Rename the DLLs in your
 WINNT\SYSTEM32 directory and copy the debugging DLLs to the
 WINNT\SYSTEM32 directory. You will need to reboot the machine to use
 the DLLs.

2. Recompile your application. If you are using the NTWIN32.MAK file
 in your makefile, all you need to do is to set the environment
 variable PROFILE=on. Otherwise, add /Gh and /Zd to the compiler
 options yourself and be sure that you are linking with the options
 "-debugtype:coff" and "-debug:partial,mapped".

3. Place a CAP.INI file in either the root directory of the drive, the
 application directory, the WINDOWS directory, or the root of the C
 drive. The CAP.INI file specifies the applications for which the
 profiler will gather information. At minimum, CAP.ini must contain
 the following:

 [EXES]
 <app>.exe
 [PATCH IMPORTS]
 <app>.exe
 [PATCH CALLERS]

 where <app> is the application to be profiled. The file CAP.TXT

 included in the \BIN directory of the SDK provides an excellent
 example.

4. Run the application. The profiling information is gathered
 and stored in a file with the same base name as the application
 and a .END extension. This information is in an ASCII format and
 can be viewed by any text editor. You can also use the CAPVIEW
 sample to view a graphical representation of the information.

Walter Oney points out in "Removing Bottlenecks from Your Program with
Windows NT Performance-tuning Tools," from the April 1994 edition of
"Microsoft Systems Journal," that the Visual C++ linker does not correctly
generate debugging information that CAP can use. This is not correct. The
problem is that the SDK 3.1 linker uses "-debug:mapped" by default, but the
Visual C++ linker does not. Adding the switch to the link line (as in
step 2, above) corrects this problem.

A common problem is for the profiling output to have "??? : ???" in place
of the function names from your application. For example:

 1 ??? : ??? (Address=0x77889a1b) 1 4717 4717
 4717 4717 4717 n/a n/a

This occurs if you use the wrong linker options. You should use
"-debugtype:coff" and "-debug:partial,mapped".

Another common problem is to have function pointers instead of the Win32
API names. For example:

 1 0x77e9b10f 1 1577 1577
 1577 1577 1577 n/a n/a

This happens when you do not replace the system DLLs that your application
calls with the DLLs that contain debugging information.

REFERENCES

The release notes for CAP.TXT can be found in the MSTOOLS\BIN directory.

The best source of information is "Optimizing Windows NT" by Russ Blake
in the "Windows NT Resource Kit, Vol. 3".

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Using the DeferWindowPos Family of Functions

PSS ID Number: Q87345
Authored 29-Jul-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, an application can use
the BeginDeferWindowPos, DeferWindowPos, and EndDeferWindowPos
functions when it moves or sizes a set of windows simultaneously.
Using these functions avoids unnecessary screen painting, which would
occur if the windows were moved individually.

The eighth parameter to the DeferWindowPos function can be any one of
eight flag values that affect the size and position of each moved or
sized window. One of the flags, SWP_NOREDRAW, disables repainting and
prevents Windows from displaying any changes to the screen. This flag
effects both the client and nonclient areas of the window. Any portion
of its parent window uncovered by the move or size operation must be
explicitly invalidated and redrawn.

If the moved or sized windows are child windows or pop-up windows,
then the SWP_NOREDRAW flag has the expected effect. However, if the
window is an edit control, a combo box control, or a list box control,
then specifying SWP_NOREDRAW has no effect; the control is drawn at
its new location and its previous location is not erased. This
behavior is caused by the manner in which these three control classes
are painted. Buttons and static controls function normally.

To work around this limitation and move a group of edit, list box, and
combo box controls in a visually pleasing manner, perform the
following three steps:

1. Use the ShowWindow function to hide all of the controls.

2. Move or size the controls as required with the MoveWindow and
 SetWindowPos functions.

3. Use the ShowWindow function to display all of the controls.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 combobox listbox
KBCategory: kbprg
KBSubcategory: UsrWndw

Using the Document Properties Dialog Box

PSS ID Number: Q118622
Authored 25-Jul-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

A number of applications display a printer-configuration dialog box titled
"Document Properties" when the user chooses File from the application menu,
chooses Print, and then chooses the Setup button.

The DocumentProperties() API is used to display this dialog box. You need
to call DocumentProperties() with the DM_IN_PROMPT bit set in the last
parameter (fMode). You also need to call OpenPrinter() before calling
DocumentProperties().

MORE INFORMATION

The following code demonstrates how to call DocumentProperties():

Sample Code

 HDC hPrnDC;
 LPDEVMODE lpDevMode = NULL;
 LPDEVNAMES lpDevNames;
 LPSTR lpszDriverName;
 LPSTR lpszDeviceName;
 LPSTR lpszPortName;
 PRINTDLG pd;
 HANDLE hPrinter;
 int nDMSize;
 HANDLE hDevMode;
 NPDEVMODE npDevMode;
 DEVMODE DevModeIn;

 // Get the defaults without displaying any dialog boxes.

 pd.Flags = PD_RETURNDEFAULT;
 pd.hDevNames = NULL;
 pd.hDevMode = NULL;
 pd.lStructSize = sizeof(PRINTDLG);
 PrintDlg((LPPRINTDLG)&pd);

 lpDevNames = (LPDEVNAMES)GlobalLock(pd.hDevNames);
 lpszDriverName = (LPSTR)lpDevNames + lpDevNames->wDriverOffset;
 lpszDeviceName = (LPSTR)lpDevNames + lpDevNames->wDeviceOffset;

 lpszPortName = (LPSTR)lpDevNames + lpDevNames->wOutputOffset;

 OpenPrinter(lpszDeviceName,&hPrinter,NULL);

 // A zero for last param returns the size of buffer needed.

 nDMSize = DocumentProperties(hWnd,hPrinter,lpszDeviceName,NULL,NULL,0);
 if ((nDMSize < 0) || !(hDevMode = LocalAlloc (LHND, nDMSize)))
 return NULL;

 npDevMode = (NPDEVMODE) LocalLock (hDevMode);

 // Fill in the rest of the structure.

 lstrcpy (DevModeIn.dmDeviceName, lpszDeviceName);
 DevModeIn.dmSpecVersion = 0x300;
 DevModeIn.dmDriverVersion = 0;
 DevModeIn.dmSize = sizeof (DevModeIn);
 DevModeIn.dmDriverExtra = 0;

 // Display the "Document Properties" dialog box.

 DocumentProperties(hWnd,hPrinter,lpszDeviceName,npDevMode,&DevModeIn,
 DM_IN_PROMPT|DM_OUT_BUFFER);

 // Get the printer DC.

 hPrnDC = CreateDC
(lpszDriverName,lpszDeviceName,lpszPortName,(LPSTR)npDevMode);
 LocalUnlock (hDevMode);

 // Use the printer DC.

 ...

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiPrn

Using the DRAWPATTERNRECT Escape in Windows

PSS ID Number: Q75380
Authored 19-Aug-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The DRAWPATTERNRECT escape is implemented by the PCL/HP driver for
Hewlett-Packard (HP) LaserJet printers and compatibles. The escape is
used to draw a patterned rectangle without using the graphics banding
bitmap. Using this escape can enhance the performance for many
applications, particularly when a majority of users have
LaserJet-compatible printers.

MORE INFORMATION

The HP LaserJet Plus and all later LaserJets implement a command
called a rule. A rule is a rectangle filled with some pattern, such as
a black rule, a quasi-halftone gray scale, or a hatch pattern.

The output does not go through the graphics banding bitmap (it is
actually sent to the printer in the text band). The DRAWPATTERNRECT
escape can be used to print line and block graphics in the text band
without using graphics banding at all. Because many applications use
only horizontal and vertical lines or blocks, this is a significant
optimization.

An application should determine support for rules using the
QUERYESCSUPPORT escape. In particular, the application should not
check for the PCL/HP driver, since other page printer drivers may
implement the escape as well.

There are some limitations to the escape. First, rules drawn with
DRAWPATTERNRECT are not subject to clipping regions in the Device
Context (DC). Second, rules cannot be opaqued; no white pixel in the
graphics band will erase a pixel drawn by a rule (the same limitation
occurs for PCL text). Once a rule is drawn, it cannot be erased.

If these limitations are acceptable, if all graphics on the page are
likely to be horizontal and vertical lines, and if a significant
number of users are expected to have LaserJet-type printers (which is
the case for most Windows-based applications), the DRAWPATTERNRECT escape
should be used.

If for any reason DRAWPATTERNRECT cannot be used, then the application
should generally use the PatBlt function. If the device is a

plotter, the Rectangle function should be used. In the case of the
PatBlt function, if a black rectangle is to be printed, the BLACKNESS
raster operator (ROP) should be used to avoid the overhead of
selecting and later deselecting a black brush into the printer DC.

Additional reference words: 3.00 3.10 3.50 4.00 95 HPPCL HP-PCL
KBCategory: kbprg
KBSubcategory: GdiPrn

Using the DS_SETFONT Dialog Box Style

PSS ID Number: Q87344
Authored 29-Jul-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Microsoft Windows graphical environment, an application can
affect the appearance of a dialog box by specifying the DS_SETFONT
style bit. DS_SETFONT is available only when the application creates a
dialog box dynamically from a memory-resident dialog box template
using the CreateDialogIndirect, CreateDialogIndirectParam,
DialogBoxIndirect, or DialogBoxIndirectParam function. The second
parameter to each of these functions is the handle to a global memory
object that contains a DLGTEMPLATE dialog box template data structure.
The dwStyle (first) member of the DLGTEMPLATE structure contains style
information for the dialog box.

When an application creates a dialog box using one of these functions,
Windows determines whether the template contains a FONTINFO data
structure by checking for the DS_FONTSTYLE bit in the dwStyle member
of the DLGTEMPLATE structure. If this bit is set, Windows creates a
font for the dialog box and its controls based on the information in
the FONTINFO structure. Otherwise, Windows uses the default system
font to calculate the size of the dialog box and the placement and
text of its controls.

If Windows creates a font based on the FONTINFO data structure, it
sends a WM_SETFONT message to the dialog box. If Windows uses the
system default font, it does not send a WM_SETFONT message. A dialog
box can change the font of one or more of its controls by creating a
font and sending a WM_SETFONT message with the font handle to the
appropriate controls.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Using the FORCEFONT .HPJ Option

PSS ID Number: Q93395
Authored 09-Dec-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

The FORCEFONT Help project file (HPJ) option can only be used with the
following font names:

 Helv
 Helvetica
 Courier
 Tms Rmn
 Times
 Symbol

Though Helv, Helvetica, Times, and Tms Rmn are not Windows 3.1 fonts, each
of them is mapped to a 3.1 font in the [FontSubstitutes] section of WIN.INI
by Windows Setup. They are mapped as follows:

 Helv=MS Sans Serif
 Tms Rmn=MS Serif
 Times=Times New Roman
 Helvetica=Arial

To force a Help file to use MS Sans Serif, the FORCEFONT option should be:

 FORCEFONT=Helv

Additional reference words: 3.10 3.50 4.00 95 HC30 HC31 HCP help compiler
MAPFONTSIZE
KBCategory: kbtool
KBSubcategory: TlsHlp

Using the GetWindow() Function

PSS ID Number: Q33161
Authored 20-Jul-1988 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

An application can use the GetWindow function to enumerate the windows
that have a specified relationship to another window. For example, an
application can determine the windows that are children of the
application's main window.

MORE INFORMATION

The GetWindow function returns NULL when no more windows match the
specified criteria. Given a window handle, hWnd, the following code
determines how many siblings the associated window has:

 int CountSiblings(HWND hWnd)
 {
 HWND hWndNext;
 short nCount = 0;

 hWndNext = GetWindow(hWnd, GW_HWNDFIRST);
 while (hWndNext != NULL)
 {
 nCount++;
 hWndNext = GetWindow(hWndNext, GW_HWNDNEXT);
 }

 return nCount;
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Using the Registry Under Win32s

PSS ID Number: Q129542
Authored 27-Apr-1995 Last modified 29-Apr-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SUMMARY

A Win32s-based application running under Win32s is limited to the Windows
version 3.1 view of the registry. This means that there are no named
values. In addition, HKEY_CLASSES_ROOT is available, but not
HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER.

The Windows version 3.1 registry is very limited in size. Microsoft
recommends that you store only the OLE registration information in the
Windows registry.

MORE INFORMATION

While Win32s does support some Registry APIs that Windows does not, it does
not support all of the Win32 Registry APIs. For a complete list of the
Registry APIs supported under Win32s, please see the file WIN32API.CSV,
which is included with the Win32 Software Development Kit (SDK) and in
Microsoft Visual C++ (32-bit edition).

NOTE: All supported Registry APIs, except for RegQueryValueA() and
RegQueryValueExA(), return the error codes defined for Windows verion 3.1,
not the codes defined by the Win32 API.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Using the Windows 95 Common Controls on Windows NT and Win32s

PSS ID Number: Q125672
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 - Microsoft Win32s version 1.3

SUMMARY

To provide greater compatibility between Windows 95, Windows NT, and
Win32s, the common control library from Windows 95 has been ported to
Windows NT and Win32s starting with Windows NT version 3.51 and Win32s
version 1.3.

MORE INFORMATION

The COMCTL32.DLL that provides the common controls in Windows 95 is not
compatible with Windows NT or Win32s, so adding the controls to Windows NT
is not as simple as copying the DLL. Also, the COMCTL32.DLL that comes
with Windows NT version 3.51 and with Win32s is not redistributable.
Customers that want to run programs using the new controls must be running
Windows NT version 3.51 or Win32s version 1.3.

Windows NT version 3.51 and Win32s version 1.3 are targeted to be released
before the release of Windows 95, so any changes in the functionality of
these controls between the release of Windows NT and Win32s and the release
of Windows 95 will be added to Windows NT and Win32s in their next updates.

Additional reference words: 4.00 1.30 3.51
KBCategory: kbui
KBSubcategory: UsrCtl

Using the WM_VKEYTOITEM Message Correctly

PSS ID Number: Q108941
Authored 20-Dec-1993 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The WM_VKEYTOITEM message is sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in response to a WM_KEYDOWN
message. The return value from this message specifies the action that the
application performed in response to the message. A return value of -2
indicates that the application handled all aspects of selecting the item
and requires no further action by the list box.

This is true only for certain keys such as the UP ARROW (VK_UP), DOWN ARROW
(VK_DOWN), PAGE DOWN (VK_NEXT) and PAGE UP (VK_PREVIOUS) keys. All other
keys are handled in the normal way by the list box, regardless of the
return value from the WM_VKEYTOITEM message.

MORE INFORMATION

The documentation for the WM_VKEYTOITEM message indicates that the owner of
a list box control can trap the WM_VKEYTOITEM message that is generated in
response to a WM_KEYDOWN message and return -2 if the application does not
want the default list box window procedure to take further action.

This is valid only for keys that are not translated into a character by the
list box control in Windows. If the WM_KEYDOWN message translates to a
WM_CHAR message and the application processes the WM_VKEYTOITEM message
generated as a result of the keydown, the list box ignores the return value
(it will go ahead and do the default processing for that character).

WM_KEYDOWN messages generated by keys such as VK_UP (UP ARROW), VK_DOWN
(DOWN ARROW), VK_NEXT (PAGE DOWN) and VK_PREVIOUS (PAGE UP) are not
translated to WM_CHAR messages. In such cases, trapping the WM_VKEYTOITEM
message and returning a -2 prevents the list box from doing the default
processing for that key.

For example, if an application traps the DOWN ARROW key and does some
nondefault processing (such as moving the selection to the item two indexes
below the currently selected item) and then returns -2, the list box
control will not do any more processing with this message.

Alternatively, if the application trapped the "A" key, does some nondefault
processing, and returns -2, the list box code will still do the default
processing. The list box will select an item in the list box that starts
with an "A" (if one is present).

To trap keys that generate a char message and do special processing, the
application must subclass the list box and trap both the WM_KEYDOWN and
WM_CHAR messages, and process the messages appropriately in the subclass
procedure.

NOTE: This discussion is for regular list boxes that are created with the
LBS_WANTKEYBOARDINPUT style. If the list box is owner draw, the application
must process the WM_CHARTOITEM message. For more information on the
WM_CHARTOITEM message, refer to the SDK documentation.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrCtl

Using UnregisterClass When Removing Custom Control Class

PSS ID Number: Q67248
Authored 28-Nov-1990 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

In the Microsoft Windows environment, when no running application
requires a custom control class, the class should be removed from
memory to free the system resources it uses.

If an application registers a control class for temporary use, the
application should use the UnregisterClass function when the control
is no longer needed. If the application is terminated, Windows
automatically removes any classes that the application registered;
therefore, explicit use of UnregisterClass is not required. However,
pairing calls to the RegisterClass and UnregisterClass functions is a
good programming practice.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrCtl

Using volatile to Prevent Optimization of try/except

PSS ID Number: Q91149
Authored 29-Oct-1992 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

The following is an example of a valid optimization that may take
programmers by surprise.

1. A variable (temp) used only within the try-except body is declared
 outside it, and therefore is global with respect to the try.

2. Assignment to the variable (temp) is in the program only for a possible
 side effect of doing a read memory access through the pointer.

MORE INFORMATION

For example:

 VOID
 puRoutine(PULONG pu)
 {
 ...
 ULONG temp; // Just for probing
 ...
 try {
 temp = *pu; // See if pu is a valid argument
 }

 except {
 // Handle exception
 }
 }

The compiler optimizes and eliminates the entire try-except statement
because temp is not used later.

If the value of temp were used globally, the compiler should treat the
assignment to temp as volatile and do the assignment immediately even if it
is overwritten later in the body of the try. The reasoning is that, at
almost any point in the try body, control may jump to the except (or an
exception filter). Presumably the programmer accessing the variable outside
the try wants to get the current (most recently assigned) value.

The way to prevent the compiler from performing the optimization is:

 temp = (volatile ULONG) *pu;

If a temporary variable is not needed, given the example, the read access
should still be specified as volatile, for example:

 *(volatile PULONG) pu;

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

Using VxDs and Software Interrupts Under Win32s

PSS ID Number: Q105760
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

Calling VxDs directly from a Win32-based application is not supported under
Win32s. Win32s does not support the VxD interfaces, so the call is handled
by the underlying Windows system. The Win32-based application runs with 32-
bit stack and code sections, but Windows expects only 16-bit segments.
Therefore, the calls to the VxD cannot be handled by Windows as expected.

To call software interrupts (such as Interrupt 2F) from a Win32-based
application running under Windows 3.1 via Win32s, place the call in a 16-
bit dynamic-link library (DLL) and use the Universal Thunks to access this
DLL. To convert the addresses between segmented and linear address, use
UTSelectorOffsetToLinear() and UTLinearToSelectorOffset().

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Using Windows Sockets Under Win32s and WOW

PSS ID Number: Q105757
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2

SUMMARY

Win32s versions 1.1 and later provide a thunking layer for Windows Sockets.
A 16-bit Windows Sockets 1.1 package must be installed on the Windows
machine. Otherwise, the system will report that WINSOCK.DLL was not found.
Windows NT provides a versions 1.0- and 1.1-compliant WOW (Windows on
Win32) thunking layer.

MORE INFORMATION

There are a number of vendors that sell Windows Sockets packages. Windows
Sockets support is available from Microsoft for LAN Manager version 2.2 for
MS-DOS and Windows 3.1 at no additional cost. Similar support is also being
shipped in "Microsoft TCP/IP for Windows For Workgroups" and the "Microsoft
Network Client."

If you have LAN Manager with Microsoft TCP/IP, you can pick up everything
you need from ftp.microsoft.com. Or, call Microsoft Sales at (800) 426-
9400.

The following is information on how to subscribe to an Internet mailing
list for Windows Socket programming as of 07/94:

 Send mail to majordomo@mailbag.intel.com with a body that has

 SUBSCRIBE WINSOCK <your_full_internet_email_address>.

 If you want to be on the winsock hackers mailing list (for implementors
 of Windows sockets), use the following body in a separate piece of
 email.

 SUBSCRIBE WINSOCK-HACKERS <your_full_internet_email_address>.

Other lists available include:

 winsnmp
 winsock-2
 ws2-app-review-board
 ws2-appletalk
 ws2-conn-oriented-media
 ws2-decnet
 ws2-generic-api-ext
 ws2-ipx-spx

 ws2-name-resolution
 ws2-oper-framework
 ws2-osi
 ws2-spec-clarif
 ws2-tcp-ip
 ws2-transp-review-board
 ws2-wireless

Use the command 'info <list>' to get more information about a specific
list.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Validating User Account Passwords Under Windows NT

PSS ID Number: Q98891
Authored 18-May-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, and 3.51

Windows NT stores account names and passwords in the security accounts
manager (SAM) database. Windows NT checks this database to validate
passwords when users log on.

In Windows NT 3.1 and 3.5, there is no nonprivileged service that takes a
user name and a password and returns an indication of whether or not the
user account password is valid. There is a privileged service that handles
this password validation; it is for use by logon processes such as
winlogon.

Windows NT 3.51 introduces new Win32 APIs for logon support:

 LogonUser
 ImpersonateLoggedOnUser
 CreateProcessAsUser

MORE INFORMATION

The SAM application programming interface (API) functions were not
exposed due to their changing nature. Microsoft is working on a
developer's kit that will provide guidelines and tutorial information
about most of the security API functions, including the SAM APIs.

Exposing the SAM API will not compromise security because the
passwords are encrypted within SAM; they are one-way encrypted such
that not even SAM can decrypt them. Even a dictionary attack (encrypt
an entire dictionary and see if any of the words match) would not be
easy, because there is no SAM API function that will read the
encrypted password.

Additional reference words: 3.10 3.50 non-privileged
KBCategory: kbprg
KBSubcategory: BseSecurity

Validating User Accounts (Impersonation)

PSS ID Number: Q96005
Authored 03-Mar-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, and 3.51

SUMMARY

Some applications need the ability to execute processes in the context of
another user. This impersonation restricts (or expands) the permissions of
the account in which the application was executed (file access, permission
to change system time, permission to shut down the system, and so forth).

For example, an administrator executes a network server program that allows
remote users to log on to the system and perform actions, as if they were
logged on to the system locally. Because the administrator initiated the
server program and is currently logged on, all actions the server program
performs will be in the security context of the administrator. If a guest
user logs on remotely, he/she will have all the permissions the
administrator account has.

With the Win32 API under Windows NT 3.1 and 3.5, impersonating a remote
client is possible only via the ImpersonateDDEClientWindow(),
ImpersonateNamedPipeClient() and RpcImpersonateClient() APIs.

Windows NT 3.51 introduces new Win32 APIs (Logon Support APIs) to deal with
this problem:

 LogonUser
 ImpersonateLoggedOnUser
 CreateProcessAsUser

MORE INFORMATION

For versions of Windows NT prior to 3.51
--

A common application of impersonation is network server programs (daemons).
For example, a remote login daemon needs a user to be able to to log in to
a remote host and have the host impose all restrictions of the client login
account.

If the daemon is using named pipes, dynamic data exchange (DDE), or a
remote procedure call (RPC) (using the named pipes transport), the client
account may be impersonated on the server daemon, which will impose all the
restrictions of the client's user account.

Using other network interfaces (such as Windows sockets--network

programming interfaces), security cannot be monitored by the system. A
workaround would be to impose password-level security on "login" to the
application. The passwords would be maintained by the application in a
private accounts database. However, none of the user actions are performed
in the security context of the actual client user's account. Therefore,
after the server/daemon has validated the client, the server must be
careful to only perform actions on behalf of the client that the server
knows the client should be allowed to do.

Another option is to create a network share with restricted access. The
WNetAddConnection2() API can verify access to this system resources [disk
or printer network resource (share)]. If the network share was set up to
allow access by a restricted group of people, the WNetAddConnection2()
could validate actual user accounts, maintained by Windows NT. As with the
previous option, the daemon must be careful to perform only restricted
actions on behalf of the client. This option could be used for file server
daemons.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Value Returned by GetWindowLong(hWnd, GWL_STYLE)

PSS ID Number: Q83366
Authored 09-Apr-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

GetWindowLong(hWnd, GWL_STYLE) returns the window style information
stored at the GWL_STYLE offset of the window data structure identified
by hWnd. This offset contains the current state of the window, rather
than the style specified when the window was created.

Windows can set and clear the following styles over the lifetime of a
window: WS_CLIPSIBLINGS, WS_DISABLED, WS_HSCROLL, WS_MAXIMIZE,
WS_MINIMIZE, WS_SYSMENU (for MDI child windows), WS_THICKFRAME,
WS_VISIBLE, and WS_VSCROLL. Windows will not dynamically set or clear
any of the other styles. An application can modify the style state at
the GWL_STYLE offset at any time by calling SetWindowLong(hWnd,
GWL_STYLE, dwNewLong), but Windows will not be aware that the style
has changed. Windows maintains some internal flags on the window style
and may use these rather than checking the GWL_STYLE offset of the
window data structure.

GetWindowLong(hWnd, GWL_STYLE) returns a LONG value, which contains
the currently active styles combined by the Boolean OR operator. An
application can change the information stored at the GWL_STYLE offset
by calling SetWindowLong(hWnd, GWL_STYLE, dwNewLong).

MORE INFORMATION

The following table lists the windows styles that Windows updates
throughout the life span of a window. In the Change column below, an
"S" indicates that the style is set and a "C" indicates that the style
is cleared. The Where column lists the source module involved. Windows
will change a window's styles as follows:

Style Change Window Where Why
----- ------ ------ ----- ---

WS_CLIPSIBLINGS

 S Overlapped WMCREATE.C Set on creation.

WS_CLIPSIBLINGS

 S Popup WMCREATE.C Set on creation.

WS_DISABLED S & C Any WMACT.C Set or cleared when
 EnableWindow function
 disables or enables
 window.

WS_HSCROLL S & C SB_HORZ WINSBCTL.C Set or cleared as scroll
 bar range changed (for
 window scroll bar, not the
 SCROLL BAR class).

WS_HSCROLL S & C SB_HORZ SBRARE.C Set or cleared in
 ShowScrollBar (for window
 scroll bar, not the SCROLL
 BAR class).

WS_HSCROLL S & C List boxes LBOXCTL1.C Set if scroll bar required
 to see contents.

WS_HSCROLL S & C MDI frame MDIWIN.C Set if required to see
 children.

WS_MAXIMIZE C Any WMCREATE.C On creation (reset
 immediately in
 WMMINMAX.C).

WS_MAXIMIZE C Any WMMOVE.C Cleared if window resized.

WS_MAXIMIZE S & C Any WMMINMAX.C Set if window maximized,
 cleared if no longer
 maximized.

WS_MINIMIZE C Any WMCREATE.C On creation (reset
 immediately in
 WMMINMAX.C).

WS_MINIMIZE C Any WMMOVE.C Cleared if window resized.

WS_MINIMIZE S & C any WMMINMAX.C Set if window minimized,
 cleared if no longer
 minimized.

WS_SYSMENU S & C MDI child MDIMENU.C Cleared if child is
 maximized and uses frame
 menu. Set when child no
 longer maximized.

WS_THICKFRAME

 S & C Any WINSBCTL.C State changed for only a
 few instructions during
 painting.

WS_VISIBLE C Any WMCREATE.C Cleared and then reset by
 call to ShowWindow.

WS_VISIBLE S & C Any WMSHOW.C Cleared if window hidden
 in ShowWindow, set if
 shown.

WS_VISIBLE S & C Any WMSWP.C Cleared if window hidden
 in ShowWindow, set if
 shown.

WS_VISIBLE C MDI client MDIWIN.C Cleared when current MDI
 child is maximized, and
 new child is activated.
 Immediately reset with
 call to ShowWindow.

WS_VISIBLE S Desktop INLOADW.C Ensure desktop visible.

WS_VISIBLE S & C Any MSDWP.C Set or cleared when
 DefWindowProc receives
 WM_SETREDRAW message to
 turn drawing on or off,
 respectively.

WS_VISIBLE S & C MDI client MDIWIN.C Cleared and then
 immediately reset to
 optimize painting.

WS_VSCROLL S & C SB_VERT WINSBCTL.C Set or cleared as scroll
 bar range changed (for
 window scroll bar, not the
 SCROLL BAR class).

WS_VSCROLL S & C List boxes LBOXCTL1.C Set if scroll bar required
 to see entire contents.

WS_VSCROLL S & C MDI frame MDIWIN.C Set if required to see
 children.

WS_VSCROLL S & C SB_VERT SBRARE.C Set/cleared in
 ShowScrollBar (for window
 scroll bar, not the SCROLL
 BAR class).

In addition to the information above, the GetWindowLong function
always reports some style bits to be clear, as follows:

 - Combo boxes always report the following styles as clear:

 CBS_HASSTRINGS, CBS_SORT, WS_BORDER, WS_HSCROLL, and WS_VSCROLL

 - All edit controls report the WS_BORDER style clear.

 - Multiline edit controls report the WS_HSCROLL style clear if the
 control contains centered or right-justified text.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95

KBCategory: kbprg
KBSubcategory: UsrWndw

Various Ways to Access Submenus and Menu Items

PSS ID Number: Q71454
Authored 18-Apr-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

In calls to Microsoft Windows functions that create, modify, and destroy
menus, an application can access an individual menu item by either its
position or its item ID. A pop-up menu must be accessed by its position
because it does not have a menu-item ID.

Specifically, when an application calls the EnableMenuItem() function to
enable, disable, or dim (gray) an individual menu item, the application can
specify either the MF_BYPOSITION or the MF_BYCOMMAND flag in the wEnable
parameter. When the application calls EnableMenuItem() to access a pop-up
menu, it must specify the MF_BYPOSITION flag.

The information below provides examples of the following:

 - Retrieving a menu handle for a submenu
 - Accessing a submenu
 - Accessing a menu item

MORE INFORMATION

The following resource-file menu template provides the basis for the source
code examples in this article. The template describes a top-level menu with
two pop-up submenus. One of the submenus contains a third, nested submenu.

 GenericMenu MENU
 BEGIN
 POPUP "&Help"
 BEGIN
 MENUITEM "&About Generic...", IDM_ABOUT
 END

 POPUP "&Test"
 BEGIN
 POPUP "&Nested"
 BEGIN
 MENUITEM "&1 Beep", IDM_1BEEP
 MENUITEM "&2 Beeps", IDM_2BEEPS
 END
 END
 END

Retrieving the Handle to a Submenu

Code such as the following can be used to obtain handles to the menus:

 HMENU hMainMenu, hHelpPopup, hTestPopup, hNestedPopup;

 <other program lines>

 hMainMenu = GetMenu(hWnd);
 hHelpPopup = GetSubMenu(hMainMenu, 0);
 hTestPopup = GetSubMenu(hMainMenu, 1);
 hNestedPopup = GetSubMenu(hTestPopup, 0);

The second parameter of the GetSubMenu() function, nPos, is the position
of the desired submenu. Positions are numbered starting at zero for
the first menu item.

Disabling a Submenu

The following call disables and dims the nested pop-up menu:

 EnableMenuItem (hTestPopup, 0, MF_BYPOSITION | MF_GRAYED);

The following call disables and dims the Test pop-up menu:

 EnableMenuItem (hMainMenu, 1, MF_BYPOSITION | MF_GRAYED);

The second parameter of the EnableMenuItem() function, wIDEnabledItem, is
the position of the submenu. As above, positions are numbered starting at
zero. Note that the call must specify the MF_BYPOSITION flag because a pop-
up menu does not have a menu-item ID.

Disabling a Menu Item

The 1 Beep menu item can be disabled and dimmed by using any one of
the following calls:

 EnableMenuItem(hMainMenu, IDM_1BEEP, MF_BYCOMMAND | MF_GRAYED);
 EnableMenuItem(hTestPopup, IDM_1BEEP, MF_BYCOMMAND | MF_GRAYED);
 EnableMenuItem(hNestedPopup, IDM_1BEEP, MF_BYCOMMAND | MF_GRAYED);
 EnableMenuItem(hNestedPopup, 0, MF_BYPOSITION | MF_GRAYED);

A menu item can be specified by either by its menu-item ID value (using the
MF_BYCOMMAND flag) or by its position (using the MF_BYPOSITION) flag. If
the application specifies the menu-item ID value, Windows must walk the
menu structure and search for a menu item with the correct ID. This implies
the each menu-item ID value must be unique for a given menu.

Other Windows Menu Functions

Although the EnableMenuItem() function is used in the example above, the
same general approach is used for all Windows menu functions; access
pop-up menus by position, and access menu items by position or menu-
item ID.

Additional reference words: 3.00 3.10 3.50 4.00 95 dimmed unavailable
KBCategory: kbprg
KBSubcategory: UsrMen

Video for Windows 1.1--Automatic Window Shift Problem

PSS ID Number: Q118390
Authored 17-Jul-1994 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, version 4.0

When a video playback window is created using MCI, the Video for Windows
(VfW) system software may shift the window a small distance vertically or
horizontally from the original location.

The video software does this to align the window on even-byte boundaries in
video memory for optimal playback speed. When the window is located on a
byte boundary, the video software is not required to perform bit-intensive
calculations during video playback, increasing the playback speed.

This behavior is particular to Video for Windows and cannot be controlled
by the application being affected.

Additional reference words: 3.10 4.00 95
KBCategory: kbmm kbprg
KBSubcategory: MMVideo

Viewing Globals Out of Context in WinDbg

PSS ID Number: Q105583
Authored 20-Oct-1993 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

When viewing global variables (either with the ? command or via the Watch
window) and the variables go out of context, their values become:

 CXX0017 Error: symbol not found

An example of this is when a common dialog box is open in the application.
If you break into an application that is inside COMDLG32.DLL and try to do
a ?gVar, where gVar is a global variable in the application, WinDbg will
not find the symbol because the context is wrong. To view the value of gVar
in MYAPP, use the following:

 ?{,,myapp}gVar

WinDbg will then have no trouble locating the symbolic information.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Virtual Memory and Win32s

PSS ID Number: Q124137
Authored 19-Dec-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, 1.15a, and 1.2

SUMMARY

This article discusses virtual memory issues under Win32s. These issues
include how memory is managed, file mappings, and VirtualAlloc().

MORE INFORMATION

Memory Management

Win32s does not manage the virtual memory by itself. Win32s sits on top
of the Win386 virtual memory manager (VMM). The Win32s VxD and Win386
must cooperatively manage the memory.

Windows sets the amount of virtual memory (VM) at boot time, based on
the amount of free physical RAM. Windows is also responsible for managing
the physical pages.

The pages that map to the Win32-based application's code and data are
reserved at application initialization time. This decreases the available
virtual memory but not necessarily the available RAM. In 16-bit Windows-
based applications, the selectors are initialized at initialization time,
but they are marked as discarded and are loaded only when the segments are
touched. This may lead you to think that a Win32 version of you application
takes significantly more memory than its 16-bit Windows version. However,
in reality, the available memory drops more when the Win32-based
application is loaded, even though the actual RAM usage during execution
may be lower.

NOTE: Code pages are never backed by the .EXE file, but are always backed
by the pagefile.

File Mappings

Because of the way memory is managed, you cannot have a file mapping that
is larger than the amount of virtual memory available on Win32s. This works
fine on Windows NT and Windows 95. Win32s allocates regular virtual memory
for the memory mapped section even though it does not need swap space, and
the amount of VM set by Windows is too small to use for mapping large
files.

VirtualAlloc()

VirtualAlloc() reserves or commits pages in virtual memory. When virtual
memory is allocated (committed), the page is still not present. Touching
the page will make it present and initialized to zero. Unlike Windows NT,
some of the address space on Win32s is not allocated by VirtualAlloc().
You can use VirtualQuery() for every address in the USER address space,
as reported by GetSystemInfo().

VirtualAlloc() allocates private memory, so one process cannot commit or
free memory reserved by another process. This is true for all Win32
platforms. However, on Win32s, the memory is still accessible by all
processes because there is a shared address space provided by Windows.

NOTE: A "not enough memory" error occurs if you reserve memory using
VirtualAlloc() in one application and then try to commit the memory from a
second application. This happens because the call to commit from the second
application is interpreted as a call to reserve. You need to commit at an
address that is not available such as an address already reserved by the
first application.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

VirtualLock() Only Locks Pages into Working Set

PSS ID Number: Q94996
Authored 28-Jan-1993 Last modified 03-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

VirtualLock() causes pages to be locked into an application's working set
(virtual memory); it does not lock them absolutely into physical memory.
VirtualLock() essentially means "this page is always part of the process's
working set."

The system is free to swap out any virtually locked pages if it swaps out
the whole process. And when the system swaps the process back in, the
virtually locked pages (similar to any virtual pages) may end up residing
in different real pages.

It is wise to use VirtualLock() very sparingly because it reduces the
flexibility of the system.

Depending upon memory demands on the system, the memory manager may vary
the number of pages a process can lock. Under typical conditions you can
expect to be able to VirtualLock() approximately 28 to 32 pages.

In Windows NT 3.5, you can use SetProcessWorkingSize() to increase the size
of the working set, and therefore increase the number of pages that
VirtualLock() can lock.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Watching Local Variables That Are Also Globally Declared

PSS ID Number: Q98288
Authored 02-May-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5.
 3.51, and 4.0

SUMMARY

Consider debugging the following program in WinDbg:

 int x = 1;
 int y = 2;

 void main()
 {
 int x = 2;
 x++;
 y++;
 }

Notice that there is a global variable x and a local variable x.

Before you step into main, if you set watchpoints on x and y, the
Watch window will display a value for y but for x will say "Expression
cannot be evaluated." To see the value for x, use ::x and x will
evaluate to the local x in main once you've stepped into main.

MORE INFORMATION

When debugging an application, the X86 C++ evaluator is loaded. Given
this, you can use the scope resolution operator in a watch statement
to view a hidden global variable. Without the use of the scope
resolution operator, there is no way (short of watching it in a memory
window) to watch a hidden global variable.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

When to Use Synchronous Socket Handles & Blocking Hooks

PSS ID Number: Q131623
Authored 14-Jun-1995 Last modified 15-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, and 4.0

SUMMARY

By default, all socket handles are opened as overlapped handles so that
asynchronous I/O can be performed on them. However, in many situations you
may find it preferable to have nonoverlapped (synchronous) socket handles.

For example, only nonoverlapped handles can be used with the C run-time
libraries or used as standard I/O handles for a process. Under Windows NT
and Windows 95, the SO_OPENTYPE socket option allows an application to open
non-overlapped socket handles.

MORE INFORMATION

There are some Windows Sockets features that you cannot use with
synchronous sockets. Here is an extract from the Winsock Help file:

 The WSAAsyncSelect call cannot be used with synchronous sockets and
 will fail with the error WSAEINVAL. It is also not possible to set the
 SO_SNDTIMEO and SO_RCVTIMEO socket options on synchronous sockets;
 setsockopt with these options on synchronous sockets fails with
 WSAEINVAL as well.

Due to the non-preemptive nature of Windows version 3.1 and Windows for
Workgroups version 3.11, the Winsock specification details a mechanism by
which a Winsock application can "yield" processor time. For more
information, please search for WSASetBlockingHook() in the Winsock Help
file.

NOTE: Use of a blocking hook is not recommended on a 32-bit platform. If a
32-bit application chooses to install a blocking hook, the blocking hook
will be disabled if the application is run under Windows NT, but it will
remain enabled if the application is run under Windows 95.

REFERENCES

Online winsock help file

Additional reference words: 3.10 3.50 3.51 4.00
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

Where to Get the Microsoft SNMP Headers and Libraries

PSS ID Number: Q127902
Authored 21-Mar-1995 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0
 - Microsoft Windows for Workgroups SDK, version 3.11

The 32-bit SNMP headers and libraries are available in both the Microsoft
Win32 SDK and Microsoft Visual C++ version 2.0 and later. These files are
for use with the Microsoft implementation of SNMP. They will not work with
other implementations because Microsoft does not conform to the WINSNMP
standard of management APIs.

The headers and libraries for the SNMP agent (parts of SNMP.H and SNMP.LIB)
can be used with Windows NT and Windows 95. The headers and libraries for
the Management APIs (parts of SNMP.H, MGMTAPI.H, parts of SNMP.LIB, and
MGMTAPI.LIB) are for use with Windows NT only.

Microsoft offers no 16-bit SNMP for Windows for Workgroups, however, there
are other companies that do offer SNMP for Windows for Workgroups. Here are
two companies that we know of that offer 16-bit SNMP:

 Company: NetManage
 10725 N. De Anza Blvd.
 Cupertino, CA 95014
 Product: Chameleon Utilities
 Phone: (408) 973-7171
 Fax: (408) 257-6405

 FTP Software
 Corporate Headquarters
 2 High Street
 North Andover, MA 01845-2620
 Phone: (508) 685-4000
 Fax: (508) 794-4488

The third-party products discussed here are manufactured by vendors
independent of Microsoft; we make no warranty, implied or otherwise,
regarding these products' performance or reliability.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg kb3rdparty
KBSubcategory: NtwkSnmp

Which Windows NT (Server or Workstation) Is Running?

PSS ID Number: Q124305
Authored 27-Dec-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

You can determine which variant of Windows NT (Windows NT Server or Windows
NT Workstation) is running by using the technique described in this
article. Then you can use this information to execute code based on which
variant is running.

MORE INFORMATION

To find out which product is currently running, you need to determine the
value of the following registry entry:

HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet
Control\
ProductOptions

Use the following table to determine which product is running:

ProductType Product
--
WINNT Windows NT Workstation is running
SERVERNT Windows NT Server is running
LANMANNT Windows NT Advanced Server is running

The sample code creates a WhichNTProduct() function to indicate whether
Windows NT Server or Windows NT Workstation in currently running. The
following table gives the meaning for each return value:

Return Value Meaning

RTN_SERVER Windows NT Server is running
RTN_WORKSTATION Windows NT Workstation is running
RTN_NTAS Windows NT Advanced Server is running
RTN_UNKNOWN Unknown product type was encountered
RTN_ERROR Error occurred

To get extended error information, call GetLastError(). Some error checking
is omitted, for brevity.

Sample Code

#define RTN_UNKNOWN 0
#define RTN_SERVER 1
#define RTN_WORKSTATION 2
#define RTN_NTAS 3
#define RTN_ERROR 13

unsigned int WhichNTProduct(void)
{
 #define MY_BUFSIZE 32 // arbitrary. Use dynamic allocation
 HKEY hKey;
 char szProductType[MY_BUFSIZE];
 DWORD dwBufLen=MY_BUFSIZE;

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SYSTEM\\CurrentControlSet\\Control\\ProductOptions",
 0,
 KEY_EXECUTE,
 &hKey) != ERROR_SUCCESS) return(RTN_ERROR);

 if(RegQueryValueEx(hKey,
 "ProductType",
 NULL,
 NULL,
 szProductType,
 &dwBufLen) != ERROR_SUCCESS) return(RTN_ERROR);

 RegCloseKey(hKey);

 // check product options, in order of likelihood
 if(lstrcmpi("WINNT", szProductType) == 0) return(RTN_WORKSTATION);
 if(lstrcmpi("SERVERNT", szProductType) == 0) return(RTN_SERVER);
 if(lstrcmpi("LANMANNT", szProductType) == 0) return(RTN_NTAS);

 // else return Unknown
 return(RTN_UNKNOWN);
}

Additional reference words: 3.10 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseMisc

Why LoadLibraryEx() Returns an HINSTANCE

PSS ID Number: Q102128
Authored 28-Jul-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

In the Win32 Help files, LoadLibrary() is typed to return a HANDLE, while
LoadLibraryEx() is prototyped to return a HINSTANCE.

An HINSTANCE return from LoadLibraryEx() is useful because processes that
load dynamic-link libraries (DLLs) do not necessarily want the overhead of
having to page in code for a DllEntryPoint routine when the DLL does not
need to initialize information. This is especially useful when you have
multiple threads that attach to already loaded DLLs. In this case, you may
want to not implicitly load via LoadLibrary() and instead use
LoadLibraryEx() to explicitly load without having to page in the code for
every attach.

LoadLibraryEx() is also useful if you want to retrieve resources from a DLL
or an EXE. In this case, you would use LoadLibraryEx() to load the module
you want into your address space, without executing DLLEntryPoint, and then
use the resource application programming interfaces (APIs) to access the
data.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseDll

Win32 Drag and Drop Server

PSS ID Number: Q105530
Authored 20-Oct-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0

The supported method for creating a drag and drop server is to use OLE
(Object Linking and Embedding) version 2.0. This works on Windows,
Windows NT, and Windows 95 and will work on future versions of these
operating systems.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDnd

Win32 Equivalents for C Run-Time Functions

PSS ID Number: Q99456
Authored 30-May-1993 Last modified 13-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Many of the C Run-time functions have direct equivalents in the Win32
application programming interface (API). This article lists the C Run-time
functions by category with their Win32 equivalents or the word "none" if no
equivalent exists.

MORE INFORMATION

NOTE: the functions that are followed by an asterisk (*) are part of the
16-bit C Run-time only. Functions that are unique to the 32-bit C Run-time
are listed separately in the last section. All other functions are common
to both C Run-times.

Buffer Manipulation

 _memccpy none
 memchr none
 memcmp none
 memcpy CopyMemory
 _memicmp none
 memmove MoveMemory
 memset FillMemory, ZeroMemory
 _swab none

Character Classification

 isalnum IsCharAlphaNumeric
 isalpha IsCharAlpha, GetStringTypeW (Unicode)
 __isascii none
 iscntrl none, GetStringTypeW (Unicode)
 __iscsym none
 __iscsymf none
 isdigit none, GetStringTypeW (Unicode)
 isgraph none
 islower IsCharLower, GetStringTypeW (Unicode)
 isprint none
 ispunct none, GetStringTypeW (Unicode)
 isspace none, GetStringTypeW (Unicode)
 isupper IsCharUpper, GetStringTypeW (Unicode)
 isxdigit none, GetStringTypeW (Unicode)
 __toascii none

 tolower CharLower
 _tolower none
 toupper CharUpper
 _toupper none

Directory Control

 _chdir SetCurrentDirectory
 _chdrive SetCurrentDirectory
 _getcwd GetCurrentDirectory
 _getdrive GetCurrentDirectory
 _mkdir CreateDirectory
 _rmdir RemoveDirectory
 _searchenv SearchPath

File Handling

 _access none
 _chmod SetFileAttributes
 _chsize SetEndOfFile
 _filelength GetFileSize
 _fstat See Note 5
 _fullpath GetFullPathName
 _get_osfhandle none
 _isatty GetFileType
 _locking LockFileEx
 _makepath none
 _mktemp GetTempFileName
 _open_osfhandle none
 remove DeleteFile
 rename MoveFile
 _setmode none
 _splitpath none
 _stat none
 _umask none
 _unlink DeleteFile

Creating Text Output Routines

 _displaycursor* SetConsoleCursorInfo
 _gettextcolor* GetConsoleScreenBufferInfo
 _gettextcursor* GetConsoleCursorInfo
 _gettextposition* GetConsoleScreenBufferInfo
 _gettextwindow* GetConsoleWindowInfo
 _outtext* WriteConsole
 _scrolltextwindow* ScrollConsoleScreenBuffer
 _settextcolor* SetConsoleTextAttribute
 _settextcursor* SetConsoleCursorInfo
 _settextposition* SetConsoleCursorPosition
 _settextwindow* SetConsoleWindowInfo
 _wrapon* SetConsoleMode

Stream Routines

 clearerr none

 fclose CloseHandle
 _fcloseall none
 _fdopen none
 feof none
 ferror none
 fflush FlushFileBuffers
 fgetc none
 _fgetchar none
 fgetpos none
 fgets none
 _fileno none
 _flushall none
 fopen CreateFile
 fprintf none
 fputc none
 _fputchar none
 fputs none
 fread ReadFile
 freopen (std handles) SetStdHandle
 fscanf none
 fseek SetFilePointer
 fsetpos SetFilePointer
 _fsopen CreateFile
 ftell SetFilePointer (check return value)
 fwrite WriteFile
 getc none
 getchar none
 gets none
 _getw none
 printf none
 putc none
 putchar none
 puts none
 _putw none
 rewind SetFilePointer
 _rmtmp none
 scanf none
 setbuf none
 setvbuf none
 _snprintf none
 sprintf wsprintf
 sscanf none
 _tempnam GetTempFileName
 tmpfile none
 tmpnam GetTempFileName
 ungetc none
 vfprintf none
 vprintf none
 _vsnprintf none
 vsprintf wvsprintf

Low-Level I/O

 _close _lclose, CloseHandle
 _commit FlushFileBuffers

 _creat _lcreat, CreateFile
 _dup DuplicateHandle
 _dup2 none
 _eof none
 _lseek _llseek, SetFilePointer
 _open _lopen, CreateFile
 _read _lread, ReadFile
 _sopen CreateFile
 _tell SetFilePointer (check return value)
 _write _lread

Console and Port I/O Routines

 _cgets none
 _cprintf none
 _cputs none
 _cscanf none
 _getch ReadConsoleInput
 _getche ReadConsoleInput
 _inp none
 _inpw none
 _kbhit PeekConsoleInput
 _outp none
 _outpw none
 _putch WriteConsoleInput
 _ungetch none

Memory Allocation

 _alloca none
 _bfreeseg* none
 _bheapseg* none
 calloc GlobalAlloc
 _expand none
 free GlobalFree
 _freect* GlobalMemoryStatus
 _halloc* GlobalAlloc
 _heapadd none
 _heapchk none
 _heapmin none
 _heapset none
 _heapwalk none
 _hfree* GlobalFree
 malloc GlobalAlloc
 _memavl GlobalMemoryStatus
 _memmax GlobalMemoryStatus
 _msize* GlobalSize
 realloc GlobalReAlloc
 _set_new_handler none
 _set_hnew_handler* none
 _stackavail* none

Process and Environment Control Routines
--
 abort none

 assert none
 atexit none
 _cexit none
 _c_exit none
 _exec functions none
 exit ExitProcess
 _exit ExitProcess
 getenv GetEnvironmentVariable
 _getpid GetCurrentProcessId
 longjmp none
 _onexit none
 perror FormatMessage
 _putenv SetEnvironmentVariable
 raise RaiseException
 setjmp none
 signal (ctrl-c only) SetConsoleCtrlHandler
 _spawn functions CreateProcess
 system CreateProcess

String Manipulation

 strcat, wcscat lstrcat
 strchr, wcschr none
 strcmp, wcscmp lstrcmp
 strcpy, wcscpy lstrcpy
 strcspn, wcscspn none
 _strdup, _wcsdup none
 strerror FormatMessage
 _strerror FormatMessage
 _stricmp, _wcsicmp lstrcmpi
 strlen, wcslen lstrlen
 _strlwr, _wcslwr CharLower, CharLowerBuffer
 strncat, wcsncat none
 strncmp, wcsncmp none
 strncpy, wcsncpy none
 _strnicmp, _wcsnicmp none
 _strnset, _wcsnset FillMemory, ZeroMemory
 strpbrk, wcspbrk none
 strrchr, wcsrchr none
 _strrev, _wcsrev none
 _strset, _wcsset FillMemory, ZeroMemory
 strspn, wcsspn none
 strstr, wcsstr none
 strtok, wcstok none
 _strupr, _wcsupr CharUpper, CharUpperBuffer

MS-DOS Interface

 _bdos* none
 _chain_intr* none
 _disable* none
 _dos_allocmem* GlobalAlloc
 _dos_close* CloseHandle
 _dos_commit* FlushFileBuffers
 _dos_creat* CreateFile

 _dos_creatnew* CreateFile
 _dos_findfirst* FindFirstFile
 _dos_findnext* FindNextFile
 _dos_freemem* GlobalFree
 _dos_getdate* GetSystemTime
 _dos_getdiskfree* GetDiskFreeSpace
 _dos_getdrive* GetCurrentDirectory
 _dos_getfileattr* GetFileAttributes
 _dos_getftime* GetFileTime
 _dos_gettime* GetSystemTime
 _dos_getvect* none
 _dos_keep* none
 _dos_open* OpenFile
 _dos_read* ReadFile
 _dos_setblock* GlobalReAlloc
 _dos_setdate* SetSystemTime
 _dos_setdrive* SetCurrentDirectory
 _dos_setfileattr* SetFileAttributes
 _dos_setftime* SetFileTime
 _dos_settime* SetSystemTime
 _dos_setvect* none
 _dos_write* WriteFile
 _dosexterr* GetLastError
 _enable* none
 _FP_OFF* none
 _FP_SEG* none
 _harderr* See Note 1
 _hardresume* See Note 1
 _hardretn* See Note 1
 _int86* none
 _int86x* none
 _intdos* none
 _intdosx* none
 _segread* none

Time

 asctime See Note 2
 clock See Note 2
 ctime See Note 2
 difftime See Note 2
 _ftime See Note 2
 _getsystime GetLocalTime
 gmtime See Note 2
 localtime See Note 2
 mktime See Note 2
 _strdate See Note 2
 _strtime See Note 2
 time See Note 2
 _tzset See Note 2
 _utime SetFileTime

Virtual Memory Allocation

 _vfree* See Note 3

 _vheapinit* See Note 3
 _vheapterm* See Note 3
 _vload* See Note 3
 _vlock* See Note 3
 _vlockcnt* See Note 3
 _vmalloc* See Note 3
 _vmsize* See Note 3
 _vrealloc* See Note 3
 _vunlock* See Note 3

32-Bit C Run Time

 _beginthread CreateThread
 _cwait WaitForSingleObject w/ GetExitCodeProcess
 _endthread ExitThread
 _findclose FindClose
 _findfirst FindFirstFile
 _findnext FindNextFile
 _futime SetFileTime
 _get_osfhandle none
 _open_osfhandle none
 _pclose See Note 4
 _pipe CreatePipe
 _popen See Note 4

NOTE 1: The _harderr functions do not exist in the Win32 API. However, much
of their functionality is available through structured exception handling.

NOTE 2: The time functions are based on a format that is not used in Win32.
There are specific Win32 time functions that are documented in the Help
file.

NOTE 3: The virtual memory functions listed in this document are specific
to the MS-DOS environment and were written to access memory beyond the 640K
of RAM available in MS-DOS. Because this limitation does not exist in
Win32, the standard memory allocation functions should be used.

NOTE 4: While _pclose() and _popen() do not have direct Win32 equivalents,
you can (with some work) simulate them with the following calls:

 _popen CreatePipe
 CreateProcess

 _pclose WaitForSingleObject
 CloseHandle

NOTE 5: GetFileInformationByHandle() is the Win32 equivalent for the
_fstat() C Run-time function. However, GetFileInformationByHandle() is not
supported by Win32s version 1.1. It is supported in Win32s 1.2.
GetFileSize(), GetFileAttributes(), GetFileTime(), and GetFileTitle() are
supported by Win32s 1.1 and 1.2.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg

KBSubcategory: BseMisc

Win32 Graphical Setup Over Network Drives

PSS ID Number: Q98838
Authored 13-May-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The graphical setup for the Win32 Software Development Kit (SDK) does not
include network drives in the list of drives to choose from, however, the
setup program does support installing to network drives.

In addition, you can use the manual install program, manual.bat, to install
to local or network drives.

Additional reference words: 3.10 3.50
KBCategory: kbsetup
KBSubcategory: Setins

Win32 Priority Class Mechanism and the START Command

PSS ID Number: Q90910
Authored 26-Oct-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The Win32 priority class mechanism is exposed through CMD.EXE's START
command.

START accepts the following switches:

 /LOW - Start the command in the idle priority class.

 /NORMAL - Start the command in the normal priority class
 (this is the default).

 /HIGH - Start the command in the high priority class.

 /REALTIME - Start the command in the real-time priority class.

For a complete list of START switches, type the following command at
the Windows NT command prompt:

 start /?

Win32 has also been modified to inherit priority class if the parent's
priority class is idle; thus, a command such as

 start /LOW nmake

causes build and all descendants (compiles, links, and so on) to run in the
idle priority class. Use this method to do a real background build that
will not interfere with anything else on your system.

A command such as

 start /HIGH nmake

runs BUILD.EXE in the high priority class, but all descendants run in the
normal priority class.

MORE INFORMATION

Be very careful with START /HIGH and START /REALTIME. If you use either of
these switches to start applications that require a lot of cycles, the
applications will get all the cycles they ask for, which may cause the

system to appear hung.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseProcThrd

Win32 SDK Knowledge Base Available as Help Files (JUN 94)

PSS ID Number: Q106544
Authored 10-Nov-1993 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for the Windows NT
 version 3.1

The Microsoft Knowledge Base has been compiled into help files for Windows.
The Win32 SDK Knowledge Base is compiled into two versions. The only
difference is that one of the versions has a full-text search index.

The Win32 SDK Knowledge Base is divided into help files as follows:

 ARCHIVE NAME FILENAME TOPIC MODIFY DATE

 WIN32KBI.EXE WIN32KB.HLP Win32 SDK with a 06-JUN-1994
 WIN32KB.IND full-text search index.

 WIN32KB.EXE WIN32KB.HLP Win32 SDK without a 06-JUN-1994
 full-text search index.

NOTE: The full-text search index makes the resulting file over twice the
size of a standalone help file.

Win32 SDK with Full-Text Search

Download WIN32KBI.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for WIN32KBI.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WIN32KBI.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get WIN32KBI.EXE

Win32 SDK without Full-Text Search

Download WIN32KB.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe

 GO MSL
 Search for WIN32KB.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WIN32KB.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get WIN32KB.EXE

Additional reference words: DSKBGuide 3.10
KBCategory: kbref kbtlc kbfile
KBSubcategory: GenSDK

Win32 Shell Dynamic Data Exchange (DDE) Interface

PSS ID Number: Q105446
Authored 20-Oct-1993 Last modified 23-Feb-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, and 3.51

SUMMARY

Information on the DDE Interface to Program Manager can be found in the
Win32 application programming interface (API) reference under the topic
"Shell Dynamic Data Exchange Interface."

The SDK contains a sample program that interfaces with Program
Manager. The sample can be found in MSTOOLS\SAMPLES\DDEML\DDEPROG.

MORE INFORMATION

AppProperties cannot be used to get the item icon, description, or
working directory, as it can in Windows 3.1. Therefore, GetIcon(),
GetDescription(), and GetWorkingDir() do not work in Windows NT.
However, AppProperties can still be used to dump out the contents of a
group, by specifying the group name in lParam.

Here's how a Win32-based application can get the item icon, the
description, and the working directory:

1. Initiate a conversation with the Shell as follows

 SendMessage(-1, WM_DDE_INITIATE, hWndApp, lParam);

 where lParam points to an atom representing:

 LOWORD | HIWORD

 Shell | AppIcon : To get an item's icon
 Shell | AppDescription : To get an item's description
 Shell | AppWorkingDir : To get an item's working directory

2. Get the item DDE number.

 The DDE number is stored by Program Manager in the STARUPINFO
 structure of the application when the application is started. The
 application can get the startup information with:

 GetStartupInfo(&StartupInfo);

 The field lpReserved in the STARUPINFO structure is in the

 following format

 dde.#, hotkey.##

 where the DDE number is # and the hot key for the item is ##.

3. Request data as follows

 SendMessage(hwndProgMan, WM_DDE_REQUEST, hwndApp, lParam);

 where the lParam HIWORD is the item's DDE number obtained in step 2.

4. The data is returned in lParam of WM_DDE_DATA message. The DDE data
 value is a string for AppDescription and AppWorkingDir DDE
 transactions. For AppIcon, the data value has the following
 structure:

 typedef struct _PMIconData {
 DWORD dwResSize;
 DWORD dwVer;
 BYTE iResource; // icon resource
 } PMICONDATA, *LPPMICONDATA;

 To create the icon, the application must call:

 hIcon = CreateIconFromResource((LPBYTE)&(lpPMIconData->iResource),
 lpPMIconData->dwResSize,
 TRUE,
 lpPMIconData->dwVer
);

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: UsrDde

Win32 Software Development Kit Buglist

PSS ID Number: Q95804
Authored 17-Jan-1994 Last modified 18-May-1995

The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 for Windows NT version 3.5

INSTRUCTIONS

Microsoft FastTips is available 24 hours a day, 7 days a week, from a touch-
tone telephone. To order items from this catalog, first select the items
you want to receive, noting the five- to six-digit number of the Item ID
shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING

ITEM ID ARTICLE TITLE PAGES
--
Q 113739 BUG: Win32s 1.1 Bug List 3
Q 121906 BUG: Win32s Version 1.2 Bug List at Time of Release 3
Q 121907 BUG: Win32 SDK Ver. 3.5 Bug List for Win32 SDK and Win32 API 4
Q 122048 BUG: Win32 Ver 3.5 SDK Bug List at Release - Subsystems & WOW 2
Q 122679 BUG: Win32 SDK 3.5 Bug List - OLE 2

Q 122681 BUG: Win32 SDK 3.5 Bug List - WinDbg Debugger 4

End of listing.

Additional reference words: DSKBGuide 3.50
KBCategory: kbref kbtlc
KBSubcategory: BseMisc GdiMisc NtwkMisc UsrMisc

Win32 Subsystem Object Cleanup

PSS ID Number: Q89290
Authored 16-Sep-1992 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

The Win32 subsystem guarantees that all Win32 objects owned by a
process will be freed when an application terminates. To accomplish
this, the Win32 subsystem keeps track of who owns these objects; it
also keeps a reference count. Reference counts are used when the
object is owned by more then one process. For example, a memory mapped
file can be used to provide interprocess communication, where more
than one process would own that object. The subsystem must make sure
that the reference count is zero before the object can be freed.

Freeing of Win32 objects can occur at different times. In general, it
occurs at process termination, but for some objects, it occurs at thread
termination.

NOTE: When running Win32-based applications with Windows 3.1 using the
Win32s environment, it is the responsibility of the Win32-based application
to ensure that all allocated GDI objects are deleted before the program
terminates. This is different from the behavior of the application with
Windows NT. With Windows NT, the GDI subsystem cleans up all orhphaned GDI
objects. Because there is no GDI subsystem with Windows 3.1, this behavior
is not supported.

MORE INFORMATION

At process or thread termination, the Win32 subsystem searches its lists to
find objects owned by this process or thread. Those that are owned by the
terminating process or thread and whose reference counts will be set to
zero when the process or thread is fully terminated will be freed.

The freeing of objects is slightly different for Win32-based applications
running under Win32s on Windows 3.1. The 16-bit objects (GDI objects,
windows, global memory, etc.) follow the same clean-up rules as Windows-
based applications do under Window 3.1. The 32-bit objects, such as memory
allocated via VirtualAlloc(), shared memory via mapped file I/O, 32-bit
modules, thunks allocated on the fly (for hook procedures, wndprocs etc.)
are all handled by Win32s and freed at process termination.

The following is a list of Win32 objects. Note that it may not be complete.

 BASE: console, event, file (including file mapping), mutex,
 semaphore, thread, process, pipe (including named pipes)

 GDI: device context (DC), bitmap, pen, brush, font, region, palette

 USER: window, cursor, icon, menu, accelerator table, desktop,
 DDE communication objects, DDE conversation objects, dialog

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: SubSys

Win32s and LAN Manager APIs

PSS ID Number: Q109204
Authored 28-Dec-1993 Last modified 25-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, 1.15, and 1.2

NOTE: Win32s provides support for NetBIOS and Windows Sockets.

There is a NETAPI32.DLL shipping with Win32s. However, this doesn't have
support for Microsoft LAN Manager application programming interfaces
(APIs). This is not a bug because LAN Manager APIs are not supported on
Win32s. However, if NETAPI32.DLL is not in the system and an application
uses LAN Manager APIs, NETAPI32.DLL will not load because the loader cannot
resolve the entry-points from the nonexistent dynamic-link library (DLL).

One of the solutions is to use Universal Thunks. Using Universal Thunks,
calls can be made to 16-bit DLLs. Therefore, the 16-bit NETAPI.DLL that
ships with LAN Manager can be accessed by this mechanism.

Sample programs using Universal Thunks are provided in the Win32 SDK and
the Visual C++ SDK. The sample on the Win32 SDK is in the
MSTOOLS\WIN32S\UT\SAMPLES directory. On the Visual C++ 32-bit Edition
CD-ROM, the sample is located in the MSVC32S\WIN32S\UT\SAMPLES directory.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s and Windows NT Timer Differences

PSS ID Number: Q105758
Authored 24-Oct-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

Under Windows NT, timers are system objects; as such, they are not owned by
an application. SetTimer() can be called from within one application with a
handle to a window that was created by a different application. This
application would process the WM_TIMER messages in the window procedure.
The timer event will continue to occur even after the application that
created the timer has terminated. Note that it is fairly uncommon for a
Win32-based application to create a timer for another application, but this
method does work.

Because Win32s runs on top of Windows 3.1 and shares many of its
characteristics, timers are owned by the application that calls SetTimer().
The timer event terminates when the application that owns the timer
terminates.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s Device-Independent Bitmap Limit

PSS ID Number: Q115084
Authored 18-May-1994 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, 1.2, and 1.25a

Under versions of Win32s prior to 1.25, a device-independent bitmap (DIB)
is limited to a size of 2.3 MB. This size was chosen to accomodate a bitmap
of 1024 by 768 pixels at 24 bits per pixel.

In Win32s 1.25a, this limit was increased to 1280 by 1024 pixels at 24 bits
per pixel.

This limit can cause a variety of problems to occur, such as painting
problems with SetDIBitstoDevice() if a larger bitmap is used.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s Message Queue Checking

PSS ID Number: Q97918
Authored 25-Apr-1993 Last modified 22-Mar-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2

Win32-based applications that are designed to run with Win32s need to check
the message queue through a GetMessage() or PeekMessage() call to avoid
locking up the system. With Windows NT this is not a problem, because the
input model is desynchronized. That is, each thread has its own input event
queue rather than having one queue for the entire system. In a synchronous
input model, one application can block all of the others by allowing the
single system queue to fill up with its messages. With Windows NT, an
application that lets its input queue fill up will not affect other
applications.

For more information, please see chapter 3 of the "Win32s Programmer's
Reference".

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s NetBIOS Programming Considerations

PSS ID Number: Q104314
Authored 13-Sep-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s version 1.0, 1.1, and 1.2

This article addresses common questions about NetBIOS programming under
Win32s.

Under Windows 3.1, you normally do not issue a RESET command due to the
common name table. When running your Win32-based application under Windows
version 3.1, you may issue a NetBIOS RESET command. Win32s keeps an
internal list of all the names added in the Windows 3.1 NetBIOS name table
by Win32 processes. A RESET on Win32s mimics the RESET on Windows NT by
clearing the names added by that process from the system-wide name table.
As a result, issuing a RESET command as the first NetBIOS command (as
required by Windows NT) on Win32s does not clear out all of the names.

The Windows 3.1 NetBIOS VxD expects memory allocated for the NetBIOS
Control Block (NCB) and the data buffer (NCB.ncb_buffer) to be allocated
with GlobalAlloc(). The VxD will lock the specified memory page. If a Win32-
based application running under Win32s passes the Netbios() command virtual
memory, Netbios() will return error 0x22, indicating that there are too
many commands outstanding. On Win32s, each piece of memory that might
pass through Netbios() must be allocated with GlobalAlloc().

The Win32s NetBIOS thunk layer translates the ncb_buffer pointer in the NCB
itself. The translation back from a 16-bit to original 32-bit pointer is
done for asynchronous commands in the Win32s private post routine. A
problem might occur when an application checks the NCB and finds that
the netbios() command is completed (ncb_retcode == NRC_GOODRET), but the
Win32s post routine was not called yet. The ncb_buffer has not been
translated back. The best way to avoid problems is to define and use a post
routine. At that point you are sure that the netbios() command is completed
and the NCB is correct. If you don't want to use a post routine, you should
make sure that the command was completed by checking the the ncb_retcode
field and verifying that the ncb_buffer pointer is a 32-bit pointer.

There is also no need to page lock the NetBIOS post routine code under
Win32s. NetBIOS post routine on Win32s is not called at interrupt time. The
post routine is called in the context of the process, and therefore there
is no need to page lock the post routine code.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s OLE 16/32 Interoperability

PSS ID Number: Q123422
Authored 01-Dec-1994 Last modified 10-Jan-1995

The information in this article applies to:

 - Microsoft Win32s version 1.20

The OLE support provided in Win32s version 1.2 provides full 16/32
interoperabililty for local servers (EXE servers). Therefore, you can
embed a 32-bit object implemented by a local server in a 16-bit container
and vice-versa.

There is no built-in support in Win32s for 16/32 interoperability for
in-process servers (DLL servers). However, you can use Universal Thunks
to load a 16-bit DLL in the context of a 32-bit process. This allows you
to embed a 16-bit object implemented by a DLL server in a 32-bit
container. However, it is quite complicated to write this code because:

 - Any OLE interface has a hidden "this" pointer which you must handle in
 your thunking code.
 - OLE uses callbacks. If your 32-bit container calls IDataObject:DAdvise,
 then your 16-bit server may call back into the 32-bit side with the
 Advise interface. Your thunking code will have to handle this type of
 conversation.

NOTE: Embedding a 32-bit object implemented by an in-process server in a
16-bit container is supported under Windows NT 3.5. However, this
functionality may not work correctly for your in-process server because
IDispatch and any custom interfaces do not work.

Additional reference words: 1.20
KBCategory: kbole
KBSubcategory: W32s

Win32s Translated Pointers Guaranteed for 32K

PSS ID Number: Q100833
Authored 29-Jun-1993 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2

SUMMARY

Translated pointers are guaranteed to be valid only for 32K, rather than
64K, which selectors are usually limited to. This limitation is for
performance reasons.

Selectors are tiled every 32K. A 0:32 pointer can be quickly translated
into a 16:16 pointer, which will be valid for a minimum of 32K. In other
words, the offset portion of the 16:16 pointer is not guaranteed to be 0
(zero) when translated. As a result, even though the translated selectors
have a limit of 64K, the offset passed to the 16-bit side may be as large
as 32K-1.

Selectors are created on a 32K alignment so that if you pass several
pointers to the same range, the Universal Thunk (UT) uses the same
selector. Selectors are freed when application terminates.

The alternative is to create a selector for each and every translation,
which is very slow.

MORE INFORMATION

For any given address, there are two selectors that point to it, but only
one has a limit less than 32K:

 +-------+-------+-------+-------+-------+-------+
 |Selector 2(64K)|Selector 4(64K)|Selector 6(64K)|
 +-------+-------+-------+-------+-------+-------+-------+
 |Selector 1(64K)|Selector 3(64K)|Selector 5(64K)| |
 +-------+-------+-------+-------+-------+-------+-------+
 | 32K | 32K | 32K | 32K | 32K | 32K | 32K |
 +-------+-------+-------+-------+-------+-------+-------+

Under Win32s, 16-bit and 32-bit applications share the same global data
space; therefore, it is possible to share a buffer of up to 64K in size
with a far pointer or more than 64K with a huge pointer by doing the
following:

1. Do a GlobalAlloc() on the 32-bit side. Be sure to use GMEM_MOVEABLE.
2. Copy the data.
3. Send the handle to the 16-bit side.
4. Get a pointer to the data on the 16-bit side by using GlobalLock().

When you pass a pointer to a block that was allocated via GlobalAlloc()
from the 32-bit side, it costs no selectors. The translated pointer is
valid until the memory is freed.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s Version 1.25a Limitations

PSS ID Number: Q131896
Authored 22-Jun-1995 Last modified 26-Jun-1995

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

SUMMARY

The following lists the limitations of Win32s, not including the complete
list of unsupported Win32 APIs. For information on which Win32 APIs are and
are not supported under Win32s, please see the "Win32 Programmer's
Reference" or the WIN32API.CSV file.

MORE INFORMATION

 - Thread creation is not supported.

 - Win32s uses the Windows version 3.1 nonpreemptive scheduling mechanism.

 - 32-bit processes should be started from a 16-bit application through
 WinExec() or Int 21 4B. LoadModule() does not start a 32-bit process.

 - Win32-based applications cannot use the EM_SETHANDLE or EM_GETHANDLE
 messages to access the text in a multiline edit control. These messages
 allow the sharing of local memory handles between an application and
 USER.EXE. In Win32s, an application's local heap is 32-bit, so USER.EXE
 cannot interpret a local handle. To read and write multi-line edit
 control text, an application should use WM_GETTEXT and WM_SETTEXT.

 Text for multi-line edit controls is stored in the 16-bit local heap in
 DGROUP, which is allocated by Windows version 3.1 for the WIN32S.EXE
 stub loaded before each Win32-based application is loaded. This means
 that the size of edit control text is limited to somewhat less than 64K.

 - The CBT hook thunks do not copy back the contents of structures, so any
 changes are lost.

 - Win32-based applications should not call through the return from
 SetWindowsHook(). SetWindowsHook() returns a pointer to the next hook in
 the chain. To call this function, the application should call
 DefHookProc(), and pass a pointer to a variable where this address is
 stored. Because Win32s simulates the old hook API in terms of the new,
 SetWindowsHook() actually passes back a hook handle, not a function
 pointer.

 - Resource integer IDs must be 16-bit values.

 - PostMessage() and PeekMessage() do not thunk structures. These functions
 do not allocate space for repacking structures, because there is no way

 to know when to free up the space.

 - Private application messages should not use the high word of wParam.
 Win32s uses Windows to deliver window messages. For unknown messages,
 wParam is truncated to make it fit into 16-bits. Therefore, Win32-based
 applications should not put 32-bit quantities into the wParam of
 privately-defined messages, which are unknown to the thunk layer.

 - After calling FindText(), an application cannot directly access the
 FINDREPLACE structure. When an application calls the common dialog
 function FindText(), it passes a FINDREPLACE structure. The FindText()
 dialog communicates with the owner window through a registered message,
 in which the lParam points to the structure. The thunks repack this
 structure in place, so that unless the application is processing the
 registered message, it should not access the structure.

 - Subclassing a window that owns a FindText() common dialog does not work.
 The FindText() thunk repacks the FINDREPLACE structure in place. This
 means that 32-bit window procedures cannot subclass 16-bit owners of
 FindText() dialogs without likely trashing four bytes beyond the end of
 the structure, because the 32-bit FINDREPLACE is four bytes bigger than
 the 16-bit version.

 For 32-bit owners of the dialog box, there are also problems. Whenever
 the structure might be referenced by 16-bit code, it needs to be in the
 16-bit format. However, when the FindText() dialog box terminates, the
 structure needs to be in 32-bit format so that the application can read
 the final values. The dialog box indicates to its owner that it is about
 to be destroyed by sending the commdlg_FindReplace message with the
 FR_DIALOGTERM bit set in the Flags field of the FINDREPLACE structure.
 After sending this message, the FindText() dialog box does not reference
 the structure anymore, so the commdlg_FindReplace thunk leaves it in
 32-bit format.

 The problem occurs when the owner has been subclassed. Once the message
 has moved to the 32-bit side, the structure will not be reconverted to
 16-bits. Suppose the dialog box owner was subclassed by a 16-bit window
 procedure, which was in turn subclassed by a 32-bit window procedure.
 When a message is sent to the owner, it will first go to 32-bits, then
 to 16-bits, then back to 32-bits to the original window procedure:

 1. 16->32 message sent to 32-bit subclasser (struct repacked to 32-bits)
 2. 32->16 message sent to 16-bit subclasser (struct not repacked)
 3. 16->32 message sent to 32-bit original WndProc (struct not repacked)

 The 16-bit subclasser cannot interpret the message parameters because
 they are in 32-bit format. Between steps 2 and 3, the structure is not
 repacked because it's already in 32-bit format.

 Therefore, when a Win32-based application calls FindText(), allocate the
 following:

 1. A structure that contains the htask of WIN32S.EXE.

 2. The original 32-bit FINDREPLACE pointer.

 3. A count of the number of times the structure has been thunked without
 returning.

 4. A 16-bit format copy of FINDREPLACE.

 The structure is repacked into the 16-bit version and this copy is
 passed to Windows. The count is initially 0. When the
 commdlg_FindReplace message is sent in either direction (16->32 or
 32->16), repack the structure on the stack. If it was originally 32-bit,
 increment the count. When returning in either direction, unpack the
 structure and, if originally 32-bit, decrement the count.

 If the Flags field of the structure has the FR_DIALOGTERM bit set, the
 structure is originally 32-bit, and the count goes to 0 on a return,
 then repack the structure back to the original 32-bit space.

 - DDE messages are always posted, not sent, except for two:
 WM_DDE_INITIATE and WM_DDE_ACK (responding to the former). The sent form
 of WM_DDE_ACK is different from the posted form. When sent, no thunking
 of lParam is necessary when going between 16- and 32-bit format.
 However, when posting, the lParam parameter is repacked as two DWORDS
 into private memory, allocated by COMBO.DLL (or by USER.DLL in Windows
 NT). The thunk layer makes this distinction through the InSendMessage()
 function. Therefore, a Win32-based application should not do anything in
 the processing of a WM_DDE_INITIATE message that would cause the return
 code from InSendMessage() to be FALSE.

 - The following DDE messages are handled differently by applications under
 Windows and Win32:

 WM_DDE_ACK
 WM_DDE_ADVISE
 WM_DDE_DATA
 WM_DDE_EXECUTE
 WM_DDE_POKE

 Because of the widening of handles, there is not enough space in the
 Win32 message parameters for all the Windows data. Win32-based
 applications are required to call helper functions that package the data
 into memory (DDEPACK structure) referenced by a special handle. Win32s
 implements the helper functions and allocates the DDEPACK structure on
 behalf of 16-bit code when necessary.

 As with other memory handles shared through DDE, there are rules
 concerning who frees the memory allocated by these helper routines.

 lParam = PackDDElParam(...)
 if (PostMessage(...,lParam))
 receiving window has obligation of freeing memory
 lParam now invalid for this process
 else
 FreeDDElParam(...,lParam)

 A Win32s hook procedure that has called CallNextHookProc() should not

 use the lParam handle as the later's return code indicates that the
 message has been processed. The hooks that could possibly process a DDE
 message are:

 WH_DEBUG
 WH_HARDWARE
 WH_KEYBOARD
 WH_MOUSE
 WH_MSGFILTER
 WH_SYSMSGFILTER

 In each case, if the hook proc (and therefore CallNextHookEx()) returns
 a non-zero value, the message was either discarded or processed.
 Windows-based procedures should not use the lParam of a DDE message
 after handing it off to any other message API because they cannot know
 if the message has been processed, so they must assume that it has been.

 - WDEB386 does not support FreeSegment() for 32-bit segments. Win32s
 Kernel Debugger support depends on it.

 - The maximum size of shared memory is limited by Windows memory.

 CreateFileMapping(hFile,
 lpsa,
 fdwProtect,
 dwMaximumSizeHigh,
 dwMaximumSizeHigh,
 lpszMapName)

 lpsa - Ignored.
 dwMaximumSizeHigh - Must be zero.

 MapViewOfFile(hMapObject,
 fdwAccess,
 dwOffsetHigh,
 dwOffsetLow,
 cbMap)

 dwOffsetHigh - Must be zero.

 - SetClipbrdData() must be used only with a global handle. Otherwise, the
 data can't be accessed by other applications.

 - Win32s supports printing exactly as Windows version 3.1 does. Win32s
 does not add beziers, paths, or transforms to GDI; to allow applications
 to use these features on PostScript printers, you must call the Escape
 function with the appropriate escape codes.

 Applications link to Windows version 3.1 printer drivers through
 LoadLibrary() and GetProcAddress(), which have special support for this
 purpose. There is no general mechanism allowing a Win32-based
 application to link to a 16-bit DLL.

 - Win32s does not support these escape codes:

 BANDINFO ;24
 GETSETPAPERBINS ;29
 ENUMPAPERMETRICS ;34
 EXTTEXTOUT ;512
 SETALLJUSTVALUES ;771

 - Integer atoms must be in the range 0-0x3FFF. This restriction is
 necessary for the current implementation of the window properties API
 thunks: SetProp(), GetProp(), RemoveProp(), EnumProps(), and
 EnumPropsEx(). Integer atoms above 0x4000 are rejected by the thunk
 layer.

 - Arrays must fit in 64K after converting to 16-bit format. An array
 passed to a function such as SetCharABCWidths() or Polyline() must fit
 within 64K after its elements have been converted to their 16-bit form.
 Its 32-bit form may be bigger than 64K.

 - All Windows version 3.1 APIs that return void, return 1 to the
 Win32-based application.

 You can simulate a boolean return value by validating the API parameters
 and returning FALSE if one is bad. However, you can't always do complete
 validation, and if the API is called, you must assume it succeeded
 unless there is a method to verify whether or not it succeeded.

 - Win32 child window IDs must be sign-extended 16-bit values. This
 excludes the use of 32-bit pointer values as child IDs.

 - When calling PeekMessage(), a Win32-based application should not filter
 any messages for Windows internal window classes (button, edit,
 scrollbar, and so on). The messages for these controls are mapped to
 different values in Win32, and checking for the necessity of mapping is
 time-consuming.

 - The dwThreadId parameter in SetWindowsHookEx() is ignored. The
 dwThreadId is translated to hTask in Windows 3.1. There's a bug in
 Windows version 3.1 where if hTask!=NULL, the call may fail.

 - Floating point (FP) emulation by exception cannot be performed in 16-bit
 applications. When tasks are switched between applications, the CR0-EM
 bit state is not preserved in order to support 32-bit application FP
 emulation by exception without breaking the existing 16-bit applications
 that use FP instructions. The CR0-EM bit is assumed to be cleared during
 execution of 16-bit application FP instructions. Upon executing a 16-bit
 application FP instruction, the bit is cleared and reset when switching
 back to a 32-bit application. The CR0-EM bit management is done in the
 Win32s VxD, thus disabling the possibility of getting an int 7 exception
 just by setting the CR0-EM bit in a 16-bit application.

 - EndDialog() nResult parameter is sign-extended. Applications specify the
 return value for the DialogBox() function by way of the nResult
 parameter to the EndDialog() API. This parameter is of type int, which
 is 32-bit in Win32s. However, this value is thunked through to the
 Windows version 3.1 EndDialog() API, which truncates it to a 16-bit

 value. Win32s sign-extends the return code from DialogBox().

 - GetClipBox() returns SIMPLEREGION(2) and COMPLEXREGION(3). Because
 Windows NT is a preemptive multitasking system, GetClipBox() on Windows
 NT never returns SIMPLEREGION(2). The reason for this is that between
 the time the API was called and the time the application gets the
 result, the region may change. Win32s can return both SIMPLEREGION(2)
 and COMPLEXREGION(3).

 - PeekMessage() filtering for posted messages (hWnd==-1) is not supported.
 The hWnd is replaced with NULL.

 - Message queue length is limited to Windows default: 8 or whatever
 length was set by DefaultQueueSize=n in the WIN.INI file. This limit may
 be increased in the future to a larger size, but there will always be a
 limit.

 - GetFileTime() and SetFileTime() process only the lpLastWriteTime
 parameter and return an error if this parameter is not supplied.
 In the DEBUG version, supplying the other parameters causes a warning
 message to be displayed.

 - The precision of the time of a file is two seconds (MS-DOS limitation).

 - CreateProcess has the following limitations:

 - fdwCreate - Only DEBUG_PROCESS and DEBUG_ONLY_THIS_PROCESS are
 supported.

 - Process priority is always NORMAL.

 - lpsaProcess, lpsaThread - Security information ignored.

 - Always use device-independent bitmaps for color bitmaps. Win32s supports
 the four Win32 device-dependent bitmap APIs. These are device-dependent
 in the sense that the bitmap bits are supplied without a color table to
 explain their meaning.

 CreateBitmap
 CreateBitmapIndirect
 GetBitmapBits
 SetBitmapBits

 These are well defined and fully supported for monochrome bitmaps. For
 color bitmaps, these APIs are not well defined and Win32s relies on the
 Windows display driver for their support. This means that an application
 cannot know the format of the bits returned by GetBitmapBits() and
 should not attempt to directly manipulate them. The values returned by
 GetDeviceCaps() for PLANES and BITSPIXEL and the values returned by
 GetObject() for a bitmap do not necessarily indicate the format of the
 bits returned by GetBitmapBits(). It is possible for the GDI DIB APIs to
 be unsupported on some displays. However, it is now rare for display
 drivers to not support DIBs. The one case where you may encounter a lack
 of DIB support is with printer drivers, which may not support the
 GetDIBits() API, though most do support the SetDIBits() API.

 Win32s does not transform the bits in any way when passing them on to a
 Windows version 3.1 API. When running an application that creates a
 device-dependent bitmap via CreateBitmap() or CreateBitmapIndirect(), be
 aware that the bits it is passing in may not be in the right format for
 the device. Windows NT takes care of this by treating the bits as a DIB
 whose format is consistent with the PLANES and BITSPIXEL values; but
 Win32s simply passes them through.

 - GetPrivateProfileString() and GetProfileString() return an error when
 the lpszSection parameter is NULL. Under Windows NT, they give all the
 sections in the .INI file.

 - String resources are limited to a length of 255, as they were in Windows
 version 3.1.

 - TLS locations are the same in all processes for a specific DLL. This is
 because Win32s does not support per-instance data for DLLs. The TLS
 locations are unique per DLL. Each DLL should call TlsAlloc() only once
 if it is runing on Win32s. The index returned will be valid for all
 Win32 processes.

 - GlobalCompact() is thunked through to Windows version 3.1
 GlobalCompact(). This API has no effect on memory allocated through
 VirtualAlloc(), which does not come from the Windows global heap.

 - GetVolumeInformation() does not support the Volume ID.

 - GetFileInformationByHandle() create time and access time are always 0
 (MS-DOS limitations). The volume id, file index low/high are also 0
 (Win32s limitations). This affects the CRT fstat() as well.

 - CreatePolyPolygonRgn() requires a closed polygon, as it does under
 Windows version 3.1. If the polygons are not closed, the Windows NT call
 closes the polygons for you. In Windows version 3.1 or Win32s, if the
 polygons are not closed, the call does not create the region correctly,
 or it returns an error for an invalid parameter.

 - Win32s does not support the DIB_PAL_INDICES option for SetDIBits(). It
 will be supported in a future release. DIB_PAL_PHYSINDICES and
 DIB_PAL_LOGINDICES are not supported either.

 - The WH_FOREGROUNDIDLE hook type is not supported. Windows version 3.1
 does not provide the necessary support.

 - The brush styles BS_DIBPATTERNPT and BS_PATTERN8X8 are not supported and
 cause an error to be returned.

 - The hFile in DLL and PROCESS DEBUG events is not supported in Win32s
 because there is no support for duplicating file handles between
 processes (basically an MS-DOS limitation).

 There are two way to access the image bytes: ReadProcessMemory() or open
 the file in compatibility mode using the name provided in lplpImageName.

 - Under Windows NT, NetBIOS keeps a different name table for each process.
 On Win32s, there is only one NetBIOS name table for the system. Each
 name (group or unique) added by a process is kept in a doubly-linked
 list. Through NCBRESET or by destroying the process, you delete all the
 names that were added by the process. Win32s does not implement the full
 NetBIOS 3.0 specification, which has a separate name table per process.

 - When calling 32-bit code from 16-bit code with UT (for example, from an
 interrupt routine), the stack must be at least 10K. The interrupt
 routine must assure that the stack will be big enough.

 - GetThreadContext() and SetThreadContext() can be called only from within
 an exception handler or an exception debug event. At all other times,
 these functions return FALSE and the error code is set to
 ERROR_CAN_NOT_COMPLETE.

 - CreateProcess() PROCESS_INFORMATION is not supported for 16-bit
 applications. A valid structure must be passed to CreateProcess(), but
 the function fills all the fields with NULLs and zeroes.

 - Win32s does not support the Windows NT event mechanism, therefore the
 ncb_event field in NCB structure is not supported.

 - CreateFileMapping() does not support SEC_NOCACHE or SEC_NOCOMMIT. The
 call fails with ERROR_INVALID_PARAMETER.

 - WaitForDebugEvent() does not fully support the dwTimeout parameter. If
 the parameter is zero, WaitForDebugEvent() behaves the same as under
 Windows NT. Otherwise, the parameter is treated as if it were INFINITE.
 However, the function returns if any messages arrive. If a message
 arrives, the return value is FALSE. The calling process should call
 SetLastError(0) before calling WaitForDebugEvent() and examine
 GetLastError() if WaitForDebugEvent() returns FALSE. If the error is
 zero, it means that a message arrived and the process should process
 the message. Otherwise, the process should handle the error.

 - If a section contains duplicated keys, GetPrivateProfileSection()
 returns the duplicated keys, but all values are the same as the value
 of the first key.

 Suppose a section contains these keys:

 key1=x1
 key2=x2
 key2=x3
 key2=x4
 key3=x5
 key2=x6

 The values returned are:

 key1=x1
 key2=x2
 key2=x2
 key2=x2

 key3=x5
 key2=x2

 - String IDs of resources should not be longer than 255 characters.

 - String IDs must be in the English language. The resources themselves
 can be mulitilingual.

 - GetDlgItemInt() only translates up to 16-bit int/unsigned values. This
 is because it gets its value from Windows, which translates only 16-bit
 values. As a workaround, call GetDlgItem() and translate the value
 using atoi() or sscanf().

Additional reference words: limits
KBCategory: kbprg
KBSubcategory: W32s

WinDbg Message "Breakpoint Not Instantiated"

PSS ID Number: Q99953
Authored 10-Jun-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The WinDbg message "Breakpoint Not Instantiated" indicates that the
debugger could not resolve an address. This can happen for several reasons:

 - A specified symbol does not exist. In this case, check for
 misspelling and check the state of the "ignore case" option if the
 symbol contains mixed case.

 -or-

 - The symbol exists, but the EXE or DLL was built with the wrong
 debugging information, or none at all. Use the -Zi and -Od compiler
 options and use the -debug:full, -debugtype:cv, and -pdb:none linker
 options.

 -or-

 - The symbol exists, but it is in a module that has not yet been
 loaded. If the symbol is in a DLL that is dynamically loaded the
 breakpoint was probably set before the DLL was loaded. The message
 is harmless, because WinDbg will instantiated the BP when the module
 is loaded.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Window Message Priorities

PSS ID Number: Q96006
Authored 03-Mar-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Under Windows NT, messages have the same priorities as with Windows 3.1.

With normal use of GetMessage() (passing zeros for all arguments except the
LPMSG parameter) or PeekMessage(), any message on the application queue is
processed before user input messages. And input messages are processed
before WM_TIMER and WM_PAINT "messages."

MORE INFORMATION

For example, PostMessage() puts a message in the application queue.
However, when the user moves the mouse or presses a key, these messages are
placed on another queue (the system queue in Windows 3.1; a private, per-
thread input queue in Win32).

GetMessage() and its siblings do not look at the user input queue until the
application queue is empty. Also, the WM_TIMER and WM_PAINT messages are
not handled until there are no other messages (for the thread) to process.
The WM_TIMER and WM_PAINT messages can be thought of as boolean toggles,
because multiple WM_PAINT or WM_TIMER messages waiting in the queue will be
combined into one message. This reduces the number of times a window must
repaint itself.

Under this scheme, prioritization can be considered tri-level. All posted
messages are higher priority than user input messages because they reside
in different queues. And all user input messages are higher priority than
WM_PAINT and WM_TIMER messages.

The only difference in the Windows NT model from the Windows versions 3.x
model is that there is effectively a system queue per thread (for user
input messages) rather than one global system queue. The prioritization
scheme for messages is identical.

For information concerning SendMessage() from one thread to another, please
see the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q95000
 TITLE : SendMessage() in a Multithreaded Environment

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg

KBSubcategory: UsrWndw

Window Owners and Parents

PSS ID Number: Q84190
Authored 04-May-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

In the Windows environment, two relationships that can exist between
windows are the owner-owned relationship and the parent-child
relationship.

The owner-owned relationship determines which other windows are
automatically destroyed when a window is destroyed. When window A is
destroyed, Windows automatically destroys all of the windows owned by
A.

The parent-child relationship determines where a window can be drawn
on the screen. A child window (that is, a window with a parent) is
confined to its parent window's client area.

This article discusses these relationships and some Windows functions
that provide owner and parent information for a given window.

MORE INFORMATION

A window created with the WS_OVERLAPPED style has no owner and no
parent. Alternatively, the desktop window can be considered the owner
and parent of a WS_OVERLAPPED-style window. A WS_OVERLAPPED-style
window can be drawn anywhere on the screen and Windows will destroy
any existing WS_OVERLAPPED-style windows when it shuts down.

A window created with the WS_POPUP style does not have a parent by
default; a WS_POPUP-style window can be drawn anywhere on the screen.
A WS_POPUP-style window will have a parent only if it is given one
explicitly through a call to the SetParent function.

The owner of a WS_POPUP-style window is set according to the
hWndParent parameter specified in the call to CreateWindow that
created the pop-up window. If hWndParent specifies a nonchild window,
the hWndParent window becomes the owner of the new pop-up window.
Otherwise, the first nonchild ancestor of hWndParent becomes the owner
of the new pop-up window. When the owner window is destroyed, Windows
automatically destroys the pop up. Note that modal dialog boxes work
slightly differently. If hWndParent is a child window, then the owner
window is the first nonchild ancestor that does not have an owner (its
top-level ancestor).

A window created with the WS_CHILD style does not have an explicit
owner; it is implicitly owned by its parent. A child window's parent
is the window specified as the hWndParent parameter in the call to
CreateWindow that created the child. A child window can be drawn only
within its parent's client area, and is destroyed along with its
parent.

An application can change a window's parent by calling the SetParent
function after the window is created. Windows does not provide a
method to change a window's owner.

Windows provides three functions that can be used to find a window's
owner or parent:

 - GetWindow(hWnd, GW_OWNER)
 - GetParent(hWnd)
 - GetWindowWord(hWnd, GWW_HWNDPARENT)

GetWindow(hWnd, GW_OWNER) always returns a window's owner. For child
windows, this function call returns NULL. Because the parent of the
child window behaves similar to its owner, Windows does not maintain
owner information for child windows.

The return value from the GetParent function is more confusing.
GetParent returns zero for overlapped windows (windows with neither
the WS_CHILD nor the WS_POPUP style). For windows with the WS_CHILD
style, GetParent returns the parent window. For windows with the
WS_POPUP style, GetParent returns the owner window.

GetWindowWord(hWnd, GWW_HWNDPARENT) returns the window's parent, if it
has one; otherwise, it returns the window's owner.

Two examples of how Windows uses different windows for the parent and
the owner to good effect are the list boxes in drop-down combo boxes
and the title windows for iconic MDI (multiple document interface)
child windows.

Due to its size, the list box component of a drop-down combo box may
need to extend beyond the client area of the combo box's parent
window. Windows creates the list box as a child of the desktop window
(hWndParent is NULL); therefore, the list box will be clipped only by
the size of the screen. The list box is owned by the first nonchild
ancestor of the combo box. When that ancestor is destroyed, the list
box is automatically destroyed as well.

When an MDI child window is minimized, Windows creates two windows: an
icon and the icon title. The parent of the icon title window is set to
the MDI client window, which confines the icon title to the MDI client
area. The owner of the icon title is set to the MDI child window.
Therefore, the icon title is automatically destroyed with the MDI
child window.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

WindowFromPoint() Caveats

PSS ID Number: Q65882
Authored 26-Sep-1990 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

When the coordinates passed to the WindowFromPoint() function correspond to
a disabled, hidden, or transparent child window, the handle of that
window's parent is returned.

To retrieve the handle of a disabled, hidden, or transparent child window,
given a point, the ChildWindowFromPoint() function must be used.

MORE INFORMATION

The following code fragment demonstrates the use of the
ChildWindowFromPoint() function during the processing of a WM_MOUSEMOVE
message. This code finds the topmost child window at a given point,
regardless of the current state of the window.

In this fragment, hWnd is the window receiving this message and is assumed
to have captured the mouse via the SetCapture() function.

HWND hWndChild, hWndPoint;
POINT pt;
 .
 .
 .
 case WM_MOUSEMOVE:
 pt.x = LOWORD(lParam);
 pt.y = HIWORD(lParam);

 /*
 * Convert point to screen coordinates. When the mouse is
 * captured, mouse coordinates are given in the client
 * coordinates of the window with the capture.
 */
 ClientToScreen(hWnd, &pt);

 /*
 * Get the handle of the window at this point. If the window
 * is a control that is disabled, hidden, or transparent, then
 * the parent's handle is returned.
 */
 hWndPoint = WindowFromPoint(pt);

 if (hWndPoint == NULL)
 break;

 /*
 * To look at the child windows of hWnd, screen coordinates
 * need to be converted to client coordinates.
 */
 ScreenToClient (hWndPoint, &pt);

 /*
 * Search through all child windows at this point. This
 * will continue until no child windows remain.
 */
 while (TRUE)
 {
 hWndChild = ChildWindowFromPoint(hWndPoint, pt);

 if (hWndChild && hWndChild != hWndPoint)
 hWndPoint = hWndChild;
 else
 break;
 }

 // Do whatever processing is desired on hWndPoint

 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrWndw

Windows 95 Network Programming Support

PSS ID Number: Q125702
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Windows 95 supports the network programming interfaces listed in the table
below:

Interface Comments
--

Microsoft RPC Supports a subset of the protocol sequences specified in
 Microsoft RPC 1.0. For additional information, please see
 the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q125701
 TITLE :Windows 95 RPC: Supported Protocol Sequences

Windows Sockets Supports the TCP/IP and IPX/SPX network transports. For
 (WinSock) additional information, please see the
 following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q125704
 TITLE :Multiprotocol Support for Windows Sockets

NetBIOS Supports NetBIOS v3.0, including the Microsoft extension
 function NCBENUM.

Network DDE Includes the NetDDE agent and a 16 bit NetDDE API DLL.
 (NetDDE) 32-bit applications must thunk to NDDEAPI.DLL. For
 additional information, please see the following
 article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q125703
 TITLE :Windows 95 Support for Network DDE

Additional reference words: 4.00
KBCategory: kbprg kbnetwork
KBSubcategory: NtwkMisc

Windows 95 RPC: Supported Protocol Sequences

PSS ID Number: Q125701
Authored 01-Feb-1995 Last modified 06-Apr-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

The Windows 95 RPC runtime libraries support a subset of the protocol
sequences introduced in Microsoft RPC 1.0. Here is the list of supported
protocol sequences:

 Protocol Sequence Comments

 ncacn_ip_tcp Requires TCP/IP installation
 ncacn_nb_nb NetBEUI is the only supported NetBIOS transport
 ncacn_np Support for client applications only
 ncacn_spx Requires IPX/SPX installation
 ncalrpc Local communication only

Regarding ncacn_np: Windows 95 does not support server-side named pipes,
so ncacn_np is not a valid protocol sequence for RPC servers running on
Windows 95. However, ncacn_np is valid for RPC client applications.

Additional reference words: 4.00 NETWORKING
KBCategory: kbnetwork
KBSubcategory: NtwkRpc

Windows 95 Support for LAN Manager APIs

PSS ID Number: Q125700
Authored 01-Feb-1995 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Windows 95 supports a subset of the Microsoft LAN Manager API. This is
a list of the supported functions:

 NetAccessAdd
 NetAccessCheck
 NetAccessDel
 NetAccessEnum
 NetAccessGetInfo
 NetAccessGetUserPerms
 NetAccessSetInfo
 NetConnectionEnum
 NetFileClose2
 NetFileEnum
 NetSecurityGetInfo
 NetServerGetInfo
 NetServerSetInfo
 NetSessionDel
 NetSessionEnum
 NetSessionGetInfo
 NetShareAdd
 NetShareDel
 NetShareEnum
 NetShareGetInfo
 NetShareSetInfo

Windows 95 support for these functions differs from Windows NT in two
ways. First, since Windows 95 doesn't support Unicode, these functions
require ANSI strings. Second, Windows 95 exports the Lan Manager
functions from SVRAPI.DLL instead of NETAPI32.DLL. If an attempt is
made to run a native Windows NT application on Windows 95, the
following error will result:

 "The <application> file is linked to missing export NETAPI32.DLL
 <Net...API>"

To handle these differences, applications targeted to both Windows NT
and Windows 95 should do the following:

1. Avoid importing Lan Manager functions from NETAPI32.DLL at link time.
 Instead, applications should do a run time version check and
 dynamically link to NETAPI32.DLL for Windows NT or SVRAPI.DLL for
 Windows 95.

 For additional information on version checking, please see the following
 article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q92395
 TITLE :Determining System Version from a Win32-based Application

2. Make sure the application doesn't depend on the presence of unsupported
 API's.

3. When calling Lan Manager API's, pass strings using a character set
 appropriate for the host operating system. Use Unicode strings for
 Windows NT and ANSI strings for Windows 95.

If you are only targetting Windows 95 and wish to use SVRAPI.DLL, SVRAPI.H
and SVRAPI.LIB are included in the Windows 95 DDK. NOTE: The formal
parameter lists for the LAN Manager APIs may be slightly different between
the header files for Windows NT and Windows 95.

Additional reference words: 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkLmapi

Windows 95 Support for Network DDE

PSS ID Number: Q125703
Authored 01-Feb-1995 Last modified 26-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

Network DDE is a technology that allows applications that use the DDE
transport to transparently exchange data over a network. It consists
of two major components:

1. The NetDDE agent. This is a service that acts as a proxy for the remote
 DDE application. It communicates with all local DDE applications, and
 with remote NetDDE agents using NetBIOS as shown in this chart:

 Machine A Machine B
 +-----------+ +-----------+
 | | | |
 | DDE App 1 | | DDE App 2 |
 | | | |
 +-----------+ +-----------+
 ^ | ^ |
 | | | |
 | | | |
 | | | |
 DDE DDE
 Conversation Conversation
 | | | |
 | | | |
 | V | V
 +------+ +------+
 |NetDDE| |NetDDE|
 | Agent| < ------ NetBIOS session ------ > | Agent|
 +------+ +------+

2. A DLL that implements NetDDE API functions such as NDdeShareAdd,
 NDdeShareDel, and so on. This DLL is usually named NDDEAPI.DLL.

In the interests of backwards compatibility, Windows 95 includes a NetDDE
agent and a 16-bit NetDDE API DLL. However, Windows 95 does not include a
32-bit NetDDE API DLL. Consequently, 32-bit applications that use NetDDE
API functions will need to thunk to the 16-bit NETAPI.DLL.

Additional reference words: 4.00
KBCategory: kbnetwork kbprg
KBSubcategory: UsrNetDde

Windows Dialog-Box Style DS_ABSALIGN

PSS ID Number: Q11590
Authored 23-Oct-1987 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The Windows dialog-box style DS_ABSALIGN (used in WINDOWS.H) means
"Dialog Style ABSolute ALIGN." Specifying this style in the dialog
template tells Windows that the dtX and dtY values of the DLGTEMPLATE
struct are relative to the screen origin, not the owner of the dialog
box. When this style bit is not set, the dtX and dtY fields are
relative to the origin of the parent window's client area.

Use this term if the dialog box must always start in a specific part
of the display, no matter where the parent window is on the screen.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDlgs

Windows Does Not Support Nested MDI Client Windows

PSS ID Number: Q74041
Authored 11-Jul-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

The Microsoft Windows implementation of the multiple document
interface (MDI) does not support nested MDI client windows. In other
words, neither an MDI client window nor an MDI child window can have
an MDI client window as a child.

MORE INFORMATION

A Windows MDI client window is a member of the MDIClient window class,
and the Windows MDI model assumes that the parent of an MDIClient
window is a top-level frame window with a valid menu bar. This
assumption is necessary to implement the basic functionality defined
by the MDI interface, and it precludes the possibility of using nested
MDIClient windows. However, an application can have multiple top-level
windows, and each top-level window can have a separate MDIClient
window as a child.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMdi

Windows Help PositionWindow Macro Documented Incorrectly

PSS ID Number: Q83911
Authored 23-Apr-1992 Last modified 24-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5 and 3.51

SUMMARY

In source files for Windows Help, the help author can specify the
size, position, and state of a window with the PositionWindow macro.

MORE INFORMATION

According to page 326 of the "Microsoft Windows Software Development
Kit: Programmer's Reference, Volume 4: Resources," the state parameter
to the PositionWindow macro is either 0 to specify a normal sized
window or 1 to specify a maximized window. This information is
incorrect. The state parameter can assume any of ten different values,
as follows:

 Corresponding
 Value Windows Constant Action
 ----- ---------------- ------

 0 SW_HIDE Hides the window and passes activation to
 another window.

 1 SW_SHOWNORMAL Activates and displays a window. If the
 window is minimized or maximized, Windows
 restores it to its original size and
 position.

 2 SW_SHOWMINIMIZED Activates the window and displays it as an
 icon.

 3 SW_SHOWMAXIMIZED Activates the window and displays it as a
 maximized window.

 4 SW_SHOWNOACTIVATE Displays a window in its most recent size
 and position. The window that is currently
 active remains active.

 5 SW_SHOW Activates a window and displays it in its
 current size and position.

 6 SW_MINIMIZE Minimizes the specified window and
 activates the top-level window in the
 window-manager's list.

 7 SW_SHOWMINNOACTIVE Displays the window as iconic. The window
 that is currently active remains active.

 8 SW_SHOW Displays the window in its current state.
 The window that is currently active remains
 active.

 9 SW_RESTORE Same as SW_SHOWNORMAL.

Note that these constants are valid only for Windows and may change if
Help is ported to another platform.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsHlp

Windows NT 3.5 Hives Not Compatible with Windows NT 3.1

PSS ID Number: Q117872
Authored 11-Jul-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

Hives (registry data) saved from a Windows NT 3.5 machine with the
RegSaveKey() API (application programming interface) cannot be restored on
a Windows NT 3.1 machine with RegLoadKey(), because the hive format for
Windows NT 3.5 is different than the Windows NT 3.1 format (it has been
made more efficient). However, Windows NT 3.5 supports both the new and old
(Windows NT 3.1) hive formats, so hives created on a Windows NT 3.1 machine
can be used on a Windows NT 3.5 machine.

To create a hive on Windows NT 3.5 that can be used on Windows NT 3.1, use
the Win32 registry APIs to read the registry key by key, and save the
values in your own text format. Use the APIs to restore the registry
information on either version of Windows NT.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Windows NT Servers in Locked Closets

PSS ID Number: Q90083
Authored 08-Oct-1992 Last modified 07-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

Some installations are required to restrict access to a server such that
access to the server's keyboard/mouse is unavailable to most personnel.
Such a server is referred to as a server in a locked closet.

The server administrators may provide an emergency reset button to end
users (for example, factory floor workers) in case the system locks up and
no administrators are present. In the case where an emergency reset button
cannot be provided, an administrator must come and physically unlock the
closet in order to get the system up again.

Windows NT requires that the user press CTRL+ALT+DEL to log on. This
requirement implies that Windows NT doesn't lend itself well to the server
in a locked closet situation. Indeed, someone must press CTRL+ALT+DEL and
enter a user ID and a password in order to log on and use the keyboard or
mouse to interact locally with a Windows NT machine. However, it is
possible to configure the machine as a server in a locked closet such that
an administrator is not required to unlock the door to reset the system.
The administrator can configure the system so that services are started
automatically during boot. Once all the services are started, then the
system is fully functional and the administrator need not intervene. If
certain services fail to come up, but network service does come up, then
the system can be remotely administered.

MORE INFORMATION

Remote administration is possible, assuming that the required basic system
services are running. The machine must be on the network. The process
requires only the Windows NT product. In other words, Windows NT Advanced
Server is not an additional requirement.

Make sure that the following steps have been taken to start system services
automatically at system boot and to enable remote administration in case of
failure:

1. Use the Service Control Manager to install any application code that
 must be started as soon as the Windows NT machine reboots.

 Write an application that installs the services and specifies that they
 should be started automatically. To find more information on the Win32
 APIs that support Services, search on "Services Overview" in the Win32

 API help text.

 Once this is done, the necessary application code can be made to start
 automatically upon system reboot, without anyone needing to press
 CTRL+ALT+DEL to log on or to take any other action using the server's
 local mouse/keyboard.

2. Make sure that the Workstation and Server services start automatically
 upon reboot.

 Use the Services application in Control Panel to ensure that both
 the Workstation and Server services start automatically upon
 reboot. Choose the Help button for instructions on how to install a
 service and how to configure it to start automatically.

 This will permit an authorized person to remotely administer the system
 from another machine on the network. Thus, if something from step 1 goes
 wrong, the administrator still does not need to physically unlock the
 closet and log on. The administrator can log on to any machine on the
 network and use the tools on that machine to interact with the server.

Remote administration via dial-up telephone lines is available, but
requires RAS (Microsoft Remote Access Service). RAS permits a machine to
dial over telephone lines into a network, and to become a full participant
on the network. In this way, a system dialing in over RAS can be used to
remotely administer the system in the locked closet.

Note that while these steps allow servers locked in closets to be restored
without an administrator, it is still preferable to install a UPS
(uninterruptable power supply). Servers in locked closets usually need to
provide uninterrupted service to their clients, so a UPS is a better
solution. The capability to do remote administration serves as a backup in
case of failure.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Windows NT Support for the MS-DOS LAN Manager APIs

PSS ID Number: Q110776
Authored 28-Jan-1994 Last modified 05-Jan-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

There is no list that shows specifically which MS-DOS LAN Manager APIs
(application programming interfaces) are supported in a VDM (virtual DOS
machine) on Windows NT. This article discusses what influenced whether or
not an API would be implemented.

The set of APIs that is supported is relatively small. It was necessary to
implement named pipes, mailslots, NetServerEnum(), and the NetUseXXX APIs.
The APIs that are commonly used in shipping applications were implemented,
if possible. There were certain APIs that were impossible to implement from
the VDM. The remaining APIs were not added either because Microsoft did not
feel that they were used in applications or because they did not make sense
in this context, such as the NetServiceXXX APIs.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: NtwkLmapi

Windows NT Virtual Memory Manager Uses FIFO

PSS ID Number: Q98216
Authored 29-Apr-1993 Last modified 02-Mar-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

On page 193 of "Inside NT," Helen Custer states that the Windows NT virtual
memory manager uses a FIFO (first in, first out) algorithm, as opposed to a
LRU (least recently used) algorithm, which the Windows virtual memory
manager uses. While it is true that FIFO can result in a commonly used page
being discarded or paged to the pagefile, there are reasons why this
algorithm is preferable.

Here are some of the advantages:

 - FIFO is done on a per-process basis; so at worst, a process that
 causes a lot of page faults will slow only itself down, not the
 entire system.

 - LRU creates significant overhead--the system must update its page
 database every single time a page is touched. However, the database
 may not be properly updated in certain circumstances. For example,
 suppose that a program has good locality of reference and uses a
 page constantly so that it is always in memory. The operating
 system will not keep updating the timestamp in the page database,
 because the process is not hitting the page table. Therefore this
 page may age even though it is in nearly constant use.

 - Pages that are "discarded" are actually kept in memory for a while,
 so if a page is really used frequently, it will be brought back
 into memory before it is written to disk.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Windows Regions Do Not Scale

PSS ID Number: Q71229
Authored 10-Apr-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY

The coordinates of Windows regions are in device units, not logical
units. Therefore, if the mapping mode is not MM_TEXT, region
coordinates do not scale as would be expected. This causes particular
problems in metafiles because metafiles often use MM_ISOTROPIC or
MM_ANISOTROPIC modes to make pictures appear the same on devices with
different resolutions.

To work around this problem, applications should avoid using regions
if the mapping mode is changed from MM_TEXT. Regions should also be
avoided in metafiles, unless the application knows the scaling factor
and can adjust region coordinates itself.

MORE INFORMATION

If the applications that will read and write the metafile are
developed together, the writing application can include an MFCOMMENT
escape in the metafile to store the region components. This
information can be used by the reading application to scale the
metafile.

However, this comment is not standard across all applications. This
method would not be expected to work if the metafile is imported into
a commercial application.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDc

Windows Socket API Specification Version

PSS ID Number: Q85965
Authored 23-Jun-1992 Last modified 20-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The Windows Sockets API Specification version 1.1 is now available in
two formats. WINSOCK.DOC is a Word for Windows, version 2.0, document
and WINSOCK.TXT is an ASCII-text-format document.

These files contain the Windows Sockets API Specification version 1.1,
which defines a standard binary interface for tcp/ip transports based
on the Berkeley Sockets interface originally in Berkeley UNIX with
Windows-specific extensions. This specification has been endorsed by
20 leading companies, and defines the sockets interface in Windows NT.
The specification will be supported by various vendors in their
upcoming tcp/ip product releases for Windows for MS-DOS.

The Windows Sockets API Specification is contained in a file called WINSOCK
(contains ASCII text version) and a file called WINSOCKW (contains a Word
for Windows version) which is located in the Microsoft Software Library.

Download WINSOCK.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for WINSOCK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WINSOCK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get WINSOCK.EXE

Download WINSOCKW.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for WINSOCKW.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WINSOCKW.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get WINSOCKW.EXE

Additional reference words: 1.00 1.10 3.10 3.50 4.00 95
KBCategory: kbref
KBSubcategory: NtwkWinsock

Windows WM_SYSTIMER Message Is an Undocumented Message

PSS ID Number: Q108938
Authored 20-Dec-1993 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The WM_SYSTIMER message in Windows is an undocumented system message; it
should not be trapped or relied on by an application. This message can
occasionally be viewed in Spy or in CodeView while debugging.

Windows uses the WM_SYSTIMER message internally to control the scroll rate
of highlighted text (text selected by the user) in edit controls, or
highlighted items in list boxes.

NOTE: The WM_SYSTIMER message is for Windows's internal use only and can be
changed without prior notice.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrMsg

WM_CHARTOITEM Messages Not Received by Parent of List Box

PSS ID Number: Q72552
Authored 30-May-1991 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

When keyboard input is sent to a list box that has the
LBS_WANTKEYBOARDINPUT style bit set, its parent does not receive
WM_CHARTOITEM messages; however, WM_VKEYTOITEM messages are received. This
is because the list box has the LBS_HASSTRINGS style bit set.

This behavior is by design. Windows sets the LBS_HASSTRINGS style bit for
all list boxes except owner-draw list boxes. An owner-draw list box can be
created with this style bit turned on or off. For owner-draw list boxes,
the state of the LBS_HASSTRINGS style bit determines which messages are
sent. WM_CHARTOITEM messages and WM_VKEYTOITEM messages are mutually
exclusive.

The documentation for WM_CHARTOITEM states:

 Only owner-draw list boxes that do not have the LBS_HASSTRINGS style can
 receive this message.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 listbox
KBCategory: kbprg
KBSubcategory: UsrInp

WM_COMMNOTIFY is Obsolete for Win32-Based Applications

PSS ID Number: Q94561
Authored 10-Jan-1993 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY

Under Windows version 3.1, the WM_COMMNOTIFY message is posted by a
communication device driver whenever a COM port event occurs. The message
indicates the status of a window's input or output queue.

This message is not supported for Win32-based applications. However, WOW
supports the EnableCommNotification() API for 16-bit Windows-based
applications running on Windows NT.

MORE INFORMATION

To duplicate the Windows 3.1 functionality for a Win32-based application,
refer to the TTY sample, included with the SDK. The TTY sample is a common
code base sample, which uses EnableCommNotification() under Windows 3.1 to
tell COMM.DRV to post messages to the TTY window.

In Win32, this behavior is simulated with a secondary thread which uses
WaitCommEvent() to block on the port and PostMessage() to indicate
when the desired event has occurred.

TTY.C defines WM_COMMNOTIFY if WIN32 is defined. Using this method,
WM_COMMNOTIFY notifications are simulated but use the same message
definition as Windows 3.1.

The TTY sample is located on the Win32 SDK CD in \MSTOOLS\SAMPLES\COMM.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

WM_CTLCOLORxxx Message Changes for Windows 95

PSS ID Number: Q130952
Authored 31-May-1995 Last modified 06-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY

In previous versions of Windows, an application could change the
background, text, and/or text background colors of controls by performing
certain actions in response to WM_CTLCOLORxxx messages.

However, in Windows 95, the messages sent by different types of controls
are somewhat different.

MORE INFORMATION

The following list outlines the changes in WM_CTLCOLORxxx messages sent by
standard controls in Windows 95:

WM_CTLCOLORBTN

Sent By: command buttons (regular and default)

Changes made during this message have no effect on command buttons. Command
buttons always use system colors for drawing themselves.

WM_CTLCOLORSTATIC

Sent By: Any control that displays text which would be displayed using the
default dialog/window background color. This includes check boxes, radio
buttons, group boxes, static text, read-only or disabled edit controls, and
disabled combo boxes (all styles).

The changes affect the text drawn in the control. Changes do not affect the
checkmarks on the buttons or the outline of the group box.

WM_CTLCOLOREDIT

Sent By: Enabled, non-read-only edit controls and enabled combo boxes (all
styles)

The changes affect the background, text, and text background of these
controls. For combo boxes, the changes made in this message affect only the
"edit" portion of the control. The list portion is affected by the
WM_CTLCOLORLISTBOX message.

In previous versions of Windows, radio buttons, check boxes and group boxes
would send WM_CTLCOLORBTN messages and paint themselves accordingly. In
Windows 95, these controls send WM_CTLCOLORSTATIC messages instead.

These changes were implemented to make changing the appearance of controls
more logical (text on the dialog background is now classified as "static").

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: UsrCtl

WM_DDE_EXECUTE Message Must Be Posted to a Window

PSS ID Number: Q77842
Authored 28-Oct-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK)versions 3.0 and 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

Chapter 15 of the "Microsoft Windows Software Development Kit
Reference, Volume 2" documents the dynamic data exchange (DDE)
protocol. The following statement is found on page 15-2:

 An application calls the SendMessage() function to issue the
 WM_DDE_INITIATE message or a WM_DDE_ACK message sent in response to
 WM_DDE_INITIATE. All other messages are sent using the PostMessage()
 function.

In the book "Windows 3: A Developer's Guide" by Jeffrey M. Richter (M
& T Computer Books), the sample setup program uses the SendMessage()
function to send itself a WM_DDE_EXECUTE message that violates the DDE
protocol and may not work in future versions of Windows.

In Richter's sample, no real DDE conversation exists. The correct
method to achieve the desired result is to use the SendMessage()
function to send a user-defined message to the window procedure. When
this message is processed, proceed accordingly.

For more information on user-defined messages, see chapter 6 of the
"Microsoft Windows Software Development Kit Reference, Volume 1" for the
Windows SDK version 3.0 and chapter 2 of the "Programmer's Reference,
Volume 3: Messages, Structures, and Macros" from the Windows SDK version
3.1.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

WM_SIZECLIPBOARD Must Be Sent by Clipboard Viewer App

PSS ID Number: Q74274
Authored 15-Jul-1991 Last modified 12-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

The WM_SIZECLIPBOARD message is not generated by the Windows graphical
environment; the clipboard viewer generates this message.

An application that can display the clipboard contents, such as the
CLIPBRD.EXE application in Windows version 3.0, is a clipboard viewer.
When the size of the clipboard viewer's client area changes and the
clipboard contains a data handle for the CF_OWNERDISPLAY format, the
clipboard viewer must send the WM_SIZECLIPBOARD message to the current
clipboard owner. The GetClipboardOwner function returns the window
handle of the current clipboard owner. This window handle is the
handle in the last call to OpenClipboard.

When sending the WM_SIZECLIPBOARD message, the clipboard viewer must
specify two parameters. The wParam parameter identifies the clipboard
viewer's window handle. The low-order word of the lParam parameter
contains the handle to a block of global memory that holds a RECT data
structure. The RECT structure defines the area in the clipboard viewer
that the clipboard owner should paint.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrClp

WM_SYSCOLORCHANGE Must Be Sent to Windows 95 Common Controls

PSS ID Number: Q129595
Authored 30-Apr-1995 Last modified 01-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 - Microsoft Win32s version 1.3

SUMMARY

You must ensure that applications that use the new common controls
introduced in Windows 95 and Windows NT version 3.51 forward the
WM_SYSCOLORCHANGE message to the controls.

MORE INFORMATION

Windows 95 makes it very easy for the user to change the colors of common
user interface objects, therefore it is critical that applications not rely
on particular colors being constant. When the user changes the color
settings, Windows 95 will send a WM_SYSCOLORCHANGE message to all top level
windows. Because this message is sent only to top level windows, the common
controls will not be notified of the color change unless the application
forwards the WM_SYSCOLORCHANGE message to the control.

An example of why this is important is the toolbar control. If the color
settings are such that the "3D Objects" color is set to light gray, the
toolbar will create its buttons to light gray. However if the
WM_SYSCOLORCHANGE message is not forwarded to the toolbar and the 3D Object
color is changed to blue, the toolbar buttons will remain light gray while
all the other buttons in the system change to blue.

Additional reference words: 1.30 4.00 grey
KBCategory: kbprg
KBSubcategory: UsrCtl

Working Set Size, Nonpaged Pool, and VirtualLock()

PSS ID Number: Q108449
Authored 12-Dec-1993 Last modified 03-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY

This article discusses memory management issues such as working set size,
nonpaged pool, and locking pages into physical memory via VirtualLock().

MORE INFORMATION

Working Set

A process's working set is the set of pages that it has currently in
memory. The values for maximum working set and minimum working set are
hard-coded in Windows NT and are thus impossible to change. There are three
values hard-coded for the maximum working set. The value used for maximum
working set depends on whether your machine is considered to be a small,
medium, or large machine:

 Small machine--less than 16 megabytes (MB)
 Medium machine--between 16 MB and 20 MB
 Large machine--greater than 20 MB

The system tries to keep about 4 MB free to reduce the paging that occurs
when loading a new process, allocating memory, and so forth. Any free RAM
beyond what the system requires is available for the system to use to
increase your working set size if your process is doing a lot of paging.

Process pages that are paged out of your process space are moved into the
"standby list," where they remain until sufficient free RAM is available,
or until system memory is low and they need to be reused. If these pages
are accessed by your process while they are still on the standby list and
more RAM has become available, they will be "soft-faulted" back into the
working set. This does not require any disk access, so it is very quick.
Therefore, even though you have an upper limit to the size of your working
set, you can still have quite a few process pages in memory that can be
pulled back into your working set very quickly.

To minimize working set requirements and increase performance, use the
Working Set Tuner, WST.EXE, to order the functions within your code. One
way to help an application receive a larger working set is to use the
Network application in the Control Panel to set the server configuration to
"Maximize Throughput for Network Applications."

Nonpaged Pool

System memory is divided into paged pool and nonpaged pool. Paged pool can
be paged to disk, whereas nonpaged pool is never paged to disk. In Windows
NT 3.1, the default amount of nonpaged pool also depends on whether your
machine is considered small, medium, or large. In other words, you will
have X amount of nonpaged pool on a 16 MB machine, Y amount of nonpaged
pool on a 20 MB machine, and Z amount of nonpaged pool on a machine with
more than 20 MB (the exact values for X, Y, and Z were not made public).

Important system data is stored in nonpaged pool. For example, each Windows
NT object created requires a block of nonpaged pool. In fact, it is the
availability of nonpaged pool that determines how many processes, threads,
and other such objects can be created. The error that you will receive if
you have too many object handles open is:

 1816 (ERROR_NOT_ENOUGH_QUOTA)

Many 3.1 applications ran into this error because of the limited amount of
nonpaged pool. This limit were addressed in Windows NT 3.5. We found that

 - Some objects were too large
 - Sharing an object caused excessive quota charges
 - The quota limits were artificial and fixed

The resources used by each object were evaluated and many were drastically
reduced in Windows NT 3.5.

In Windows NT 3.1, every time an object was shared, quota was charged for
each shared instance. For example, if you opened a file inheritable and
then spawn a process and have it inherit your handle table, the quota
charged for the file object was double. Each handle pointing to an object
cost quota. Most applications experienced this problem. Under Windows NT
3.5, quota is only charged once per object rather than once per handle.

Windows NT 3.1 had a fixed quota for paged and nonpaged pool. This was
determined by the system's memory size, or could be controlled by the
registry. The limits were artificial. This was due to the poor design of
quotas with respect to sharing. It was also affected by some objects lying
about their actual resource usage. In any case, Windows NT 3.5 has revised
this scheme.

The Windows NT 3.1 "Resource Kit, Volume I" documents that it is possible
to change the amount of nonpaged pool by modifying the following registry
entry:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Control\
 Session Manager\
 Memory Management\
 NonPagedPoolSize

WARNING: This modification can cause the system to crash, and therefore

Microsoft does not recommend that this registry entry be changed.

Quotas can still be controlled in Windows NT 3.5 using these Windows NT 3.1
registry values. However, this technique is now almost never needed. The
new quota mechanism dynamically raises and lowers your quota limits as you
bump into the limits. Before raising a limit, it coordinates this with the
memory manager to make sure you can safely have your limit raised without
using up all of the systems resources.

VirtualLock()

To lock a particular page into memory so that it cannot be swapped out to
disk, use VirtualLock(). The documentation for VirtualLock() states the
following:

 Locking pages into memory may degrade the performance of the system by
 reducing the available RAM and forcing the system to swap out other
 critical pages to the paging file. There is a limit on the number of
 pages that can be locked: 30 pages. The limit is intentionally small to
 avoid severe performance degradation.

There is no way to raise this limit in Windows NT 3.1--it is fixed at 30
pages (the size of your working set). The reason that you see a severe
performance degradation when an application locks these pages is that
Windows NT must reload all locked pages whenever there is a context switch
to this application. Windows NT was designed to minimize page swapping, so
it is often best to let the system handle swapping itself, unless you are
writing a device driver that needs immediate access to memory.

Windows NT 3.5 allows processes to increase their working set size by using
SetProcessWorkingSetSize(). This API is also useful to trim your minimum
working set size if you want to run many processes at once, because each
process has the default minimum working set size reserved, no matter how
small the process actually is. The limit of 30 pages does not apply to
VirtualLock() when using SetProcessWorkingSetSize().

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Writing Code that Works with Different International Formats

PSS ID Number: Q130056
Authored 10-May-1995 Last modified 16-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY

Some European coutries like Germany use a different floating point format
that doesn't include the decimal point (.). This has caused problems whtn
the actual numbers use the decimal point format (xxx.xx) and the German
version of Microsoft Excel is expecting a comma (xxx,xx).

Some developers have made the mistake of hard-coding formats or searching
for all periods and replacing them with commas. This is not good
programming practice.

Microsoft Excel uses the Control Panel Number Format for its separators.
So, regardless of what language version of Windows it runs on, it always
uses the correct separators. Microsoft recommends that you use the same
approach. Always use the separators defined in the number format of control
panel.

MORE INFORMATION

All the international information is stored in the WIN.INI file under the
[intl] heading. The application should look for the value of "sDecimal."
It can query this value using the GetProfileString API. If the application
uses this approach, it will have the correct separator for all countries.

To avoid potential problems, never make assumptions about number formats,
currency formats (that is, don't hard-code the dollar symbol), date
formats, or time formats. These are different for different countries. Use
the settings from the Control Panel.

If an application does any text processing, such as sorting or
upper/lowercase conversions, it should use the Windows APIs and not
supply its own conversion tables and functions. For example, if an
application use APIs such as AnsiLower, it will work regardless of
language because it obtains the data from the language DLL.

To output floating point numbers in Windows, Microsoft recommends that you
use wsprintf. The concept of an "international format string" only has
meaning when the string is output to the user. Internal to the computer,
for all calculations and manipulations, the concept does not apply. Thus
the application can keep its floats in the native format and only convert

to strings before calling the wsprintf function.

There is no need to load conversions from float to string, and vice versa.
In other words, there is no need to write any functions such as
InterStringToFloat(), InterFloatToString(), and so on.

Here's a simple algorithm you could use.

1. Convert your float to a string by using the _fcvt or _gcvt standard C
 functions.

2. Get the sThousand and sDecimal separators from the WIN.INI file by using
 the GetProfileString API.

3. Call wsprintf to output the converted string, using sThousand and
 sDecimal in the formatting string.

The following is an example of a mistake made by a developer who was not
thinking internationally:.

 if language=English
 Output_English_Float ()
 else
 Output_International_Float ()

This is not correct. Think of English as just another language and write a
single Output_Float() function that covers all languages.

Also, for ease of localization, a developer should place all strings in the
resource file. This avoids having to search through all the C files looking
for strings to translate.

Additional reference words: 1.20 3.10 3.50 localization kbinf foreign
KBCategory: kbother
KBSubcategory: wintldev

Writing Multiple-Language Resources

PSS ID Number: Q89866
Authored 01-Oct-1992 Last modified 19-May-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

When you are writing multiple-language resources, the dialog box
identifiers need to be identical for each language instance, as
demonstrated below.

 #define DialogID 100

 DialogID DIALOG 0, 0, 210, 10
 LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US
 .
 .
 .
 DialogID DIALOG 0, 0, 210, 10
 LANGUAGE LANG_FRENCH,SUBLANG_FRENCH

The FindResource() application programming interface (API) function is used
by the system to fetch the dialog box. FindResource() gets the locale
information for the process, then attempts to fetch the resource with that
language identifier using FindResourceEx(), the language-specific API
function for fetching resources. If FindResourceEx() fails to load the
language-specific dialog box, FindResource() then attempts to load the
neutral dialog box, which should fetch LANG_FRENCH,SUBLANG_FRENCH, if the
locale is SUBLANG_FRENCH_CAN or similar.

The LANGUAGE identifiers and the VERSIONINFO language identifiers should
also be identical. The code page for resources is always the Unicode code
page. The system will translate from Unicode to the required code page.

The preferred method of developing multiple-language resources is to
include a LANGUAGE statement for each language supported rather than using
the CODEPAGE, LANGUAGE identifier, and VERSIONINFO information. Although
the CODEPAGE information will work, the new method is easier to use.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrNls WintlDev

wsprintf() Buffer Limit in Windows

PSS ID Number: Q77255
Authored 10-Oct-1991 Last modified 25-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

The wsprintf(lpOutput, lpFormat [, argument] ...) and wvsprintf()
functions format and store a series of characters and values in a
buffer specified by the first parameter, lpOutput. This buffer is
limited to 1K (1024 bytes); in other words, the largest buffer that
wsprintf can use is 1K.

If an application tries to use a buffer larger than 1K, the string
will be truncated automatically to a length of 1K.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: GdiDrw

XFONT.C from SAMPLES\OPENGL\BOOK Subdirectory

PSS ID Number: Q124870
Authored 15-Jan-1995 Last modified 23-Jun-1995

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5
 - Microsoft Visual C++ for Windows NT, version 2.0

SUMMARY

XFONT.C from the SAMPLES\OPENGL\BOOK subdirectory is not in the MAKEFILE,
and subsequently is never built.

MORE INFORMATION

XFONT.C should not be built because the sample uses X Windows system-
specific functions. To use fonts with Windows NT version 3.5 OpenGL, use
the wglUseFontBitmaps() and glCallLists() functions as described in the
OpenGL online reference. Another alternative is to use auxDrawStr(). Note
that auxDrawStr is defined in GLAUX.H as:

 #ifdef UNICODE
 #define auxDrawStr auxDrawStrW
 #else
 #define auxDrawStr auxDrawStrA
 #endif
 void APIENTRY auxDrawStrA(LPCSTR);
 void APIENTRY auxDrawStrW(LPCWSTR);

REFERENCES

For further information on using fonts with OpenGL, please refer to the
OpenGL online reference titled "Fonts and Text."

Additional reference words: 3.50
KBCategory: kbgraphic kbprg
KBSubcategory: GdiOpenGL

XTYP_EXECUTE and its Return Value Limitations

PSS ID Number: Q102574
Authored 04-Aug-1993 Last modified 18-May-1995

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK versions 3.5, 3.51, and 4.0

SUMMARY

A DDEML client application can use the XTYP_EXECUTE transaction to
cause a server to execute a command or a series of commands. To do
this, the client creates a buffer that contains the command string,
and passes either a pointer to this buffer or a data handle
identifying the buffer, to the DdeClientTransaction() call.

If the server application generates data as a result of executing the
command it received from the client, the return value from the
DdeClientTransaction() call does not provide a means for the client to
access this data.

MORE INFORMATION

For an XTYP_EXECUTE transaction, the DdeClientTransaction() function
returns TRUE to indicate success, or FALSE to indicate failure. In
most cases, this provides inadequate information to the client
regarding the actual result of the XTYP_EXECUTE command.

Likewise, the functionality that DDEML was supposed to provide through
the lpuResult parameter of the DdeClientTransaction() function upon
return is currently not supported, and may not be supported in future
versions of DDEML. The lpuResult parameter was initially designed to
provide the client application access to the server's actual return
value (for example, DDE_FACK if it processed the execute, DDE_FBUSY if
it was too busy to process the execute, or DDE_FNOTPROCESSED if it
denied the execute).

In cases where the server application generates data as a result of an
execute command, the client has no means to get to that data, nor does
it have a means to determine the status of that execute command
through the DdeClientTransaction() call.

An example of this might be one where the DDEML client application
specifies a command to a server application such as "OpenFile
<FileName>" to open a file, or "DIR C:\WINDOWS" to get a list of files
in a given directory.

There are two ways that the client application can work around this
limitation and gain access to the data generated from the
XTYP_EXECUTE command:

Method 1

The client can issue an XTYP_REQUEST transaction (with the item name
set to "ExecuteResult", for example) immediately after its
XTYP_EXECUTE transaction call returns successfully. The server can
then return a data handle in response to this request, out of the data
generated from executing the command.

Method 2

The client can establish an ADVISE loop with the server (with
topic!item name appropriately set to Execute!Result, for example) just
before issuing the XTYP_EXECUTE transaction. As soon as the server
then executes the command, it can immediately update the advise link
by calling DdePostAdvise(), and return a data handle out of the data
generated from executing the command. The client then receives the
data handle in its callback function, as an XTYP_ADVDATA transaction.

Note that these workarounds apply only if one has access to the server
application's code. Third-party server applications that provide no
means to modify their code as described above can't obtain any data
generated by the application as a result of an XTYP_EXECUTE back to
the client.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbprg
KBSubcategory: UsrDde

 Legal Notice

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

Portions of this document contain information pertaining to prerelease code that is not at the level of
performance and compatibility of the final, generally available product offering. This information may be
substantially modified prior to the first commercial shipment. Microsoft is not obligated to make this or
any later version of the software product commercially available. APIs that constitute prerelease code
are marked as "Preliminary Windows 95" or "Preliminary Windows NT" (as applicable). If your
application is using any of these APIs, it must be marked as a BETA application. For further details and
restrictions, see Sections 1 and 3 of the License Agreement.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1985-1995 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Windows, Win32, and Win32s are registered
trademarks; and Visual C++ and Windows NT are trademarks of Microsoft Corporation. OS/2 is a
registered trademark licensed to Microsoft Corporation.

Adaptec is a registered trademark of Adaptec, Inc.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc.

Asymetrix and ToolBook are registered trademarks of Asymetrix Corporation.

CompuServe is a registered trademark of CompuServe, Inc.

Sound Blaster and Sound Blaster Pro are trademarks of Creative Technology, Ltd.

Alpha AXP and DEC are trademarks of Digital Equipment Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

PANOSE is a trademark of ElseWare Corporation.

Future Domain is a registered trademark of Future Domain Corporation.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

AT, IBM, Micro Channel, OS/2, and XGA are registered trademarks, and PC/XT and RISC
System/6000 are trademarks of International Business Machines Corporation.

Intel and Pentium are registered trademarks, and i386 and i486 are trademarks of Intel Corporation.

Video Seven is a trademark of Headland Technology, Inc.

Lotus is a registered trademark of Lotus Development Corporation.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

Arial, Monotype, and Times New Roman are registered trademarks of The Monotype Corporation.

Motorola is a registered trademark of Motorola, Inc.

NCR is a registered trademark of NCR Corporation.

Nokia is a registered trademark of Nokia Corporation.

Novell and NetWare are registered trademarks of Novell, Inc.

Olivetti is a registered trademark of Ing. C. Olivetti.

PostScript is a registered trademark of Adobe Systems, Inc.

R4000 is a trademark of MIPS Computer Systems, Inc.

Roland is a registered trademark of Roland Corporation.

SCSI is a registered trademark of Security Control Systems, Inc.

Epson is a registered trademark of Seiko Epson Corporation, Inc.

Silicon Graphics is a registered trademark and OpenGL is a trademark of Silicon Graphics, Inc.

Stacker is a registered trademark of STAC Electronics.

Tandy is a registered trademark of Tandy Corporation.

Unicode is a registered trademark of Unicode, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

VAX is a trademark of Digital Equipment Corporation

Yamaha is a registered trademark of Yamaha Corporation of America.

Paintbrush is a trademark of Wordstar Atlanta Technology Center.

