
ObjectWindows Library Coding Style
The ObjectWindows Team

1Purpose
This document provides a set of guidelines for anyone writing ObjectWindows Library (OWL) source
code or examples. Since OWL’s source code and examples are public, every effort must be made to
maintain a consistent look.

This document is more specific to the current team’s style. It is not meant to replace the Borland
Framework Team Guidelines, but to clarify certain gray areas within that document for OWL.

2Naming Conventions

2.1Identifiers
In general, identifiers are mixed case. The only exception to this are macros, which are in UPPERCASE.
Any identifier global variables, class data members, function names, and member function names begin
with a capital letter. Parameters to functions and local variables begin with a lower case letter and are
mixed case. OWL’s name for its classes, enums, and structs begins with an initial capital T followed by its
description with word capitalization. Example:

class _OWLCLASS TWindow : public TEventHandler {
 public:
 DataMember1;
 static DataMember2;
 void MemberFunc1(int arg1, char arg2);
};

Try not to use _ to separate words unless it is in a macro, which is all UPPERCASE.

Identifiers should be as descriptive as possible without being too long. If you cannot find one, perhaps the
class or function is doing too much.

Boolean data variables should be named when the condition in true. For example, a boolean variable that
maintains the opened state of a file would be named IsOpened instead of IsClosed. Conditionals based on
the variable would be easier to read. In this case, if (IsOpened) rather than if (!IsClosed) to test if the file is
open. Also, consider using enums like if (FileState == open).

2.1.1Resource Identifiers
For cross-platform compatibility, resources should be named with a number identifier rather than a named
identifier. Windows supports both methods, but OS/2 only supports number identifiers.

The following table lists the prefix for the various resource types:

OWL Style Guidelines 4/19/1995 11:11:00 AM

Resource Type Prefix
Accelerator IDA_
Bitmap or Dib IDB_
Cursor IDC_
Dialog IDD_
Font IDF_
Icon IDI_
Menu IDM_
String IDS_
VersionInfo IDV_
Help IDH_
User-defined IDU_
Commands CM_

2.1.2Miscellaneous Identifiers

Type Prefix
Child windows IDW_
Gadgets IDG_

2.1.3Command Member Functions
Command member functions are named CmXXXX where XXXX is the command. For example:

void
TMyWindow::CmFileOpen()
{
}

The command enablers are named CeXXXX. For example:

void
TMyWindow::CeFileOpen(TCommandEnabler& enabler)
{
}

2.1.4Member Functions That Handle Child Notifications
Member functions that handle child notifications use this prefix convention:

Control Type Prefix
Button Bn
Combobox Cbn
Edit En
Listbox Lbn

Common Controls Prefix
Listview Lvn
Header Hdn
Treeview Tvn
Tooltip Ttn
Common dialog Cdn
Toolbar Tbn
Animation control Acn
Updown Udn
Tab control Tcn

Borland International Confidential 2

OWL Style Guidelines 4/19/1995 11:11:00 AM

2.2Types
OWL provides a wrapper for various data types to make it more portable and easier to read. In some cases,
rather than using macros like MAKELONG, OWL provides safer inline functions. Use OWL’s data types
instead of Windows’s.

For data that needs to be specific size, use int8, int16, and int32 instead of using short, int, and long which
may not have the same size depending on target platform. Correspondingly use uint8, uint16, and uint32
for unsigned versions. Use int or long, when size is a suggestion.

OWL also provides MkUint16(), MkUint32(), LoUint16(), HiUint16(), LoUint8(), and HiUint8() inline
functions to extract and put together various integer data types. Use these instead of the macros
MAKELONG, MAKELPARAM, HIWORD, and LOWORD.

OWL provides a bool data type. Depending on the compiler, it may be the instrinsic C++ type or it will be
emulated. In most cases, use bool instead of BOOL. Use true and false instead of TRUE and FALSE. Be
sure to keep your usage consistent. Windows declare BOOL to be synonymous with int. The size of int
changes when you switch from 16-bits to 32-bits (i.e. from 2 bytes to 4 bytes). If the compiler version of
bool is used, the compiler will decide the most efficient size for bool.

OWL provides wrappers for the four types in a callback: LRESULT, UINT (message), WPARAM, and
LPARAM. Use TResult, TMsgId, TParam1, and TParam2 instead.

3Comments
Comments provide insight to the code. Write them to explain why that piece of code exists and not what it
is doing. The source code explains what. C++ style comments are used instead of C’s /* */ sequence. The
first words in comments are always capitalized. Class comments and block comments should be complete
sentences, while statement-block and single-line comments do not need to be.

3.1Class Comments
Class comments are written in the header file of the class and look like this:

//
// class TLayoutWindow
// ~~~~~ ~~~~~~~~~~~~~
// TLayoutWindow provides a parent window that manages the
// location and sizes of its children.
//
class TLayoutWindow : virtual public TWindow {
 // ... Other stuff ...
 //
};

The comments describe what the class encapsulates and precedes the class declaration in the header file.

3.2Block comments
Block comments precede the definition of functions. They can also be used to describe global variables.
They are used whenever more than one line of comments is required. These style of comments are used
outside the scope of any functions or class. The always line up in the first column of each line.

Borland International Confidential 3

OWL Style Guidelines 4/19/1995 11:11:00 AM

OWL does not use C’s block style comments /* */. Instead of

/*
 This is a block comment.
 Notice it has multiple lines.
*/

Use this style:

//
// This is a block comment.
// Notice it has multiple lines.
//

3.3Statement-Blocks Comments
Statement-blocks comments break up logical groups of statements and explain the purpose of each group.
These comments are used inside of functions or class declarations and always indented by some number of
spaces. They are preceded by a single line of whitespace if the statement above them is on the same level
of indentation. They have this format:

void
SomeFunction()
{
 // Iterate through all choices
 //
 for (int i = 0; i < 0; i++) {
 // Do stuff
 //
 }
}

3.4Single-line Comments
Single line comments are usually very short and belong at the end of the statement. For example,

bool done; // Gone through all the files?

4Layout
This section discusses how each of the following items should look, i.e. its spacing, its identation, and if
applicable, its order of nested items.

4.1Copyright Notice
The following copyright notices must appear at the top of each file (the number of dashes, -, have been
truncated to fit the page, there should be 74 of them):

//-- (74 dashes)
// ObjectWindows
// Copyright (c) 1991, 1995 by Borland International, All Rights Reserved
//
// Description of what is contained within the file
//-- (74 dashes)

The first year is the first published date of the file and the second year is the most recent date published,
which should be updated every time there is a new release of the product.

A description of what is contained within the file follows the copyright notice. It uses the block comments
style mentioned above.

Borland International Confidential 4

OWL Style Guidelines 4/19/1995 11:11:00 AM

4.2Files

4.2.1Header Files (.h)
Header files have a copyright notice at the top of the file. It is followed by a sentry guard. The sentry
guard prevents the file from being included twice. The name of the sentry is typically named
LIBRARY_FILENAME_H, so the header file looks something like

//
// Copyright notice
// ...
#if !defined(PRODUCT_FILENAME_H)
#define PRODUCT_FILENAME_H

//
// Declare stuff here
//

#endif // PRODUCT_FILENAME_H

Within the guards are global variable declarations and global function prototypes. They are then followed
by class declarations and inline implemenations for each class at the end. Inline functions should never be
defined class inline. They should be defined as inline member functions. Do

class TClass1 {
 public:
 void Foo();
};

class TClass2 {
 public:
 void Foo();
};

inline void
TClass1::Foo()
{
 // Do stuff
 //
}

inline void
TClass2::Foo()
{
 // Do stuff
 //
}

instead of

class TClass1 {
 public:
 void Foo()
 {
 // Do stuff
 //
 }
};

class TClass2 {
 public:
 void Foo()
 {
 // Do stuff
 //
 }
};

Borland International Confidential 5

OWL Style Guidelines 4/19/1995 11:11:00 AM

4.2.2Resource header files (.rh)
Resource header files must have a copyright notice at the top of the file. It should contain only #defines for
the resource compiler. It does not need sentry guards since the #defines are always the same.

4.2.3Resource Files (.rc)
Resource files must have a copyright notice at the top of the file. It should have #includes for any resource
header it needs before defining any of the resource. Resources files should be self contained, for example,
it should not need to refer to mybitmap.bmp. The resource file may contain other resource files.

4.2.4Source Files
Source files must have a copyright notice at the top of the file. It should include any files it needs to
compile. Be sure to check if the .cpp file compiles without precompiled headers. Global variable
definitions as well as class-static data members are defined near the top of the file. They are followed by
function definitions. Each function definition must be preceded by block comments.

4.3Whitespace, Indentation, and Braces
Whitespace is very important for readability. Cramming too much code onto a page is usually not a good
idea. In general, looking at OWL’s source code or examples, it should feel open with comments sprinkled
throughout. Indentation plays another key role to quickly pick groups of statements, without actually
reading the code. Braces are language punctuation that helps indentation make things clearer.

4.3.1Tabs and Indentation
OWL does not use tab characters, it always use spaces. There are no control-z characters in the file to
denote an end of file. Control-z is an anachronism from CP/M that has been obsolete for 13 years.

Each level of indentation is 2 spaces.

4.3.2Line Breakage
A statement in C++ ends with a semicolon (;). Each statement should be on its own line. The line is
usually never longer than 80 characters. If the line is too long and needs to be separated, try to separate it
as you would word-wrap a paragraph. But unlike a paragraph, the continuation should be indented one
level or line up vertically to the logical group in the previous line. For example,

void
Foo(TArgType1 arg1, TArgType2 arg2,
 TArgType3 arg3)
{
}

4.3.3Keywords and Braces
The following sections discuss many of the keywords in C++ and how they are formatted in OWL.

4.3.3.1Function Definition
ReturnType TypeModifier
FuncName(ArgType1 argName1, ArgType2 argName2, ...)
{
}

For constructors with initialization list, use this format:

Borland International Confidential 6

OWL Style Guidelines 4/19/1995 11:11:00 AM

ReturnType FunctionModifier
ClassName::FuncName(TArgType1 argName1, TArgType2 argName2, ...)
:
 Initialization(List)
{
}

If the line is too long, break the line at the comma and indent the next line.

4.3.3.2Operators
All binary and trinary operators must have a space on each side of the operator.

r = sqrt(x * x + y * y);
smaller = (a < b) ? a : b;

If a group of assignment statements follow each other and they should be logically grouped, then the
assignment operator should line up vertically:

rect.left = 0;
rect.top = 0;
rect.right = 100;
rect.bottom = 100;

In addition the group should be preceded by a block comment.

4.3.3.3Control Flow
The following section describes the various control-flow statements in C++ and how they are separated in
OWL. Most control flow statements are preceded and followed by a blank line. A blank line separates the
various cases in a switch statement. If the control flow statement is fairly long or contains multiple closing
braces (}), it is advantageous to include a single line comment that says what the braces closes when the
opening brace is more than screenful or pageful away. If it is too long, consider breaking it up into logical
parts.

do/while

do {
 statement1;
 statement2;
} while (condition);

while

while (condition) {
 statement1;
 statement2;
}

if/else/else if

if (condition) {
 statement1;
 statement2;
}
else if (condition2) {
 statement3;
 statement4;
}
else {
 statement5;
 statement6;
}

Borland International Confidential 7

OWL Style Guidelines 4/19/1995 11:11:00 AM

for

int j;
for (j = 0; j < 3; j++) {
 step1;
 step2;
}

or

for (int j = 0; j < 3; j++) {
 step1;
 step2;
}

The biggest difference between the two example for loops is the scope of the j. In the first example, j lives
outside the scope of the for loop, whereas in the second example, j lives within the scope of the for. If the
statement, j = 0, follows the closing brace of the for loops, it will always work in the first example, but not
in the second.

switch/case/break/delete

switch (expression) {
 case choice1: {
 choice1statement1;
 choice2statement2;
 break;
 } // Choice1

 // more cases
 //

 default: {
 defaultstatement1;
 defaultstatement2;
 break;
 } // default
}; // switch

The braces around the case statements are not always needed. But if one of the statement inside the case is
a definition of a variable, then you will need to start a new block with the braces.

4.3.3.4Exception Handling
try {
 statement1;
 statement2;
}
catch (condition1) {
 condition1statement1;
 condition1statement2;
} // condition1
catch (condition2) {
 condition2statement1;
 condition2statement2;
} // condition2

4.3.3.5Enums and Unions
enum Type {
 Constant1 = 0,
 Constant2,
};

Borland International Confidential 8

OWL Style Guidelines 4/19/1995 11:11:00 AM

4.3.4Preprocessor macros
The indentation for preprocessor macros is a little different from code because of # being the first
character in the line requirement. So instead of putting spaces at the front of the line to indent, put the
spaces after the #, but make sure the indentation levels still match the code:

#if defined(BI_PLAT_WIN16)
pragma xyz
if 1
pragma morestuff
endif
#endif

void
foo()
{
 if (condition)
 printf(...);
}

4.3.4.1Length
If the length of the preprocessor macro exceeds 80 characters, use the continuation character \ to break the
line. Use the same concept of breaking macros as code.

#define WONDERFULMACRO(x) some gobbledee gook that will space \
 that continues to the next line.

4.3.4.2Conditionals
Use the #if !defined() operator to check for negative conditions and not #ifndef. For example,

#if !defined(BI_PLAT_WIN32)
error Must be compiled for 32-bits
#endif

4.4Class and Struct Declaration
//
// class ClassName
// ~~~~~ ~~~~~~~~~
class ClassModifier ClassName : public BaseClass {
 public:
 // Constructors and destructors
 //

 public_data:
 // Public data that may be hidden depending on OWL_STRICT_DATA
 //

 protected:

 protected_data:

 private:

 DECLARE_RESPONSE_TABLE(ClassName);

 friend class FriendClass;
 friend function();
};

Any friends of a class are declared at the bottom. It is indented one level from the class keyword as are
public, public_data, protected, protected_data, private, and any class specific macros such as
DECLARE_RESPONSE_TABLE or DECLARE_AUTOCLASS (OCF). Each section is separated by a
blank line. Each item within a section is indented one level from the section heading they are in.

Borland International Confidential 9

OWL Style Guidelines 4/19/1995 11:11:00 AM

4.5Pointers and References
Pointers and references belong with the types and not with the variable. Do this

int* j;
double& xAlias = x;

and not

int *j;
double &xAlias = x;

4.6Multiple Declarations
If you have multiple declarations involving pointers and references, it is better to have each as their own
separate statement, rather than lumping them together with a comma (,). Do this:

int* a;
int* b;
int* c;

and not

int* a,
 * b,
 * c;

and definitely do not do this:

int* a, * b, * c;

5General Coding

5.1Makefiles
All examples in OWL must use makefile.gen. At the top of the makefile, it should clearly state which
operating systems the example works with:

SYSTEMS = WIN16 WIN32 CON32

as well as which memory models the example supports:

MODELS = S M L C H D X F

The example must also have a corresponding .ide file. Additionally, there is a readme.txt in that same
directory that describes the functionality of the example. The format of the readme.txt is

Copyright Borland International
[any text]
Title: [Title of readme]
[any text]
Keywords: [List of keywords separated by ;]
 [if last character in preceding line is ;, continue list of keywords]
[Text of readme.txt]
[EOF]

Borland International Confidential 10

OWL Style Guidelines 4/19/1995 11:11:00 AM

5.2Supporting Various Platforms
OWL compiles equally well for both 16-bits and 32-bits. All examples should do the same unless the
example demonstrates features specifically to that operating platform. In which case, the source files
should test for those conditions using this method:

#include <owl/pch.h>
#include <owl/defs.h> // guarantee loading of the needed macros
#if !defined(condition)
error This example does not support the target platform.
#endif

Here is a list of platforms OWL knows about and the define you can check.

Platform Define
Windows (all) BI_PLAT_MSW
16-bit Windows BI_PLAT_WIN16
32-bit Windows BI_PLAT_WIN32
IBM OS/2 BI_PLAT_OS2
DOS BI_PLAT_DOS

Within each platform, you can check for the various memory models (some do not apply):

Model Define
Tiny BI_MODEL_TINY
Small BI_MODEL_SMALL
Compact BI_MODEL_COMPACT
Medium BI_MODEL_MEDIUM
Large BI_MODEL_LARGE
Huge BI_MODEL_HUGE

Alternatively, you can check for various attributes of the memory model:

Attribute Define
Pointer is segmented BI_PTR_16_16
Pointer is flat BI_PTR_0_32
Pointers are near BI_DATA_NEAR
Pointers are far BI_DATA_FAR
Code is near BI_CODE_NEAR
Code is far BI_CODE_FAR

You can also check if the module being built is for a DLL target or an EXE target:

Target Define
EXE BI_APP_EXECUTABLE
DLL BI_APP_DLL

To know whether the operating platform supports multithreaded programming, check for the
BI_MULTI_THREAD define.

5.3Headers
Always use the forward slash to include files in subdirectories:

Borland International Confidential 11

OWL Style Guidelines 4/19/1995 11:11:00 AM

#include <owl/window.h>

5.3.1Precompiled Headers
Precompiled headers save a lot of time when used properly. But double-check to make sure each .cpp file
can be compiled without precompiled headers. To use precompiled headers, add this to top of each .cpp
file:

#include <owl/pch.h>

5.3.2System Headers
OWL typically will include headers in the right order. For example, it figures out whether you want OLE
or not. Because it gets the header files, you should not need to explicitly include any of the Windows
header files. But if you really want to, make sure you are including OWL’s headers first. Otherwise, there
may be some conflicts.

The order you should include files is OWL, OCF, BIDS, Windows, and finally the RTL.

5.4Warnings
The example should compile without any warnings when all warnings are turned on from the compiler.

5.5Diagnostics
Diagnostic macros should be used liberally. They are only enabled when a diagnostic build is requested
and can be controlled by the user by editing the OWL.INI file. TRACE, CHECK, and WARN also have
option forms which allow a group name and a level to be specified. This provides very fine level control
over which messages are generated.

5.5.1PRECONDITION (BoolExp), PRECONDITIONX (BoolExp, Message)
This is used to prove that the function has been called correctly. Use it to validate any argument values
which should not be encountered in normal usage. This also documents the assumptions that are made.
So if you assume that an integer arg will never be 0, check it with a precondition. An exception will be
thrown if BoolExp is false.

5.5.2CHECK (BoolExp), CHECKX (BoolExp, Message)
This is used to prove that the function works correctly (as opposed to being called correctly). Use it like
precondition, but not for arg validation. An exception will be thrown if BoolExp is false.

A good place to use CHECK in in places where you find a comment like “// Should never get here”

5.5.3WARN (BoolExp, Message), WARNX(Group, BoolExp, Level, Message)
This is used for things that are possible problems. If you know it’s a problem, then use CHECK because it
will throw an exception where CHECK will only display the message.

5.5.4TRACE (Message), TRACEX(Group, Level, Message)
Trace macros are normally used as a debugging aid and may be placed anywhere. They should normally
be removed before ship unless the add to the user’s understanding of the code. For example, a TRACE
statement may be left in constructors if users have had difficulty understanding the order of construction.

Borland International Confidential 12

OWL Style Guidelines 4/19/1995 11:11:00 AM

5.6Catch Memory Leaks
All examples should be run through some form of memory checker such as CodeGuard, Bounds Checker
or the Debugging version of Windows. These tools help track memory and resource leaks and help debug
OWL in general.

5.7C++ Usage

5.7.1Extern “C”
If the header can be use from C, be sure to put the proper sentries around the prototypes:

#if defined (__cplusplus)
extern “C” {
#endif

//
// Some function prototypes here
//

#if defined (__cplusplus)
}
#endif

5.7.2Scoping
Use the scope resolution operator (::) to refer to global objects or functions.

5.7.3Inline functions
Whenever possible, use inline functions instead of macros.

5.7.4Constants
Avoid using hardcoded constants. Use the const keyword to create a descriptive alias for the constant.
Instead of using NULL, use 0 instead.

5.7.5Goto
Gotos should be avoided.

5.7.6Casts
Do not use explicit casts anywhere. They are error prone. Instead, use the C++ new-style casts :

· dynamic_cast<>()

· static_cast<>()

· const_cast<>()

· reinterpret_cast<>()

or the Classlib macros:

· TYPESAFE_DOWNCAST()

· STATIC_CAST()

· CONST_CAST()

· REINTERPRET_CAST()

Borland International Confidential 13

OWL Style Guidelines 4/19/1995 11:11:00 AM

It is better to use the macros because on other compilers where the C++ new-style casts are not defined,
the macros emulate the right behaviour.

5.7.7New and Delete
All memory allocation should use new and delete instead of malloc and free.

5.7.8Class declaration
A class should have at the following member functions: default constructor, copy constructor, destructor
(possibly virtual), assignment operator, and the comparison operator. For example, if you have a class
called AClass, these are the declarations of those member functions:

class AClass {
 public:
 AClass();
 AClass(const AClass&);
 virtual ~AClass();
 AClass& operator = (const AClass&);
 int operator == (const AClass&) const;

 protected:

 private:
};

Some of the member functions may not apply in certain situations, but you should declare them and not
define them to prevent the compiler from generating a default ones. If you do accidentally use them, you
will get an undefined symbol from the linker. You may also change the visibility of those member
functions to prevent others from using them accidentally. For example, moving the default constructor to
the private section to prevent anybody from using it in either of these manners:

AClass instance;

or

AClass* instancePtr = new AClass;

Default constructor

AClass::AClass()
{
}

Copy constructor

AClass::AClass(const AClass& otherInstance)
{
 *this = otherInstance;
}

Destructor

AClass::~AClass()
{
}

Borland International Confidential 14

OWL Style Guidelines 4/19/1995 11:11:00 AM

Assignment operator

AClass&
AClass::operator = (const AClass& otherInstance)
{
 // copy as necessary
 //
 return *this;
}

Comparison operator

int
AClass::operator == (const AClass& otherInstance)
{
 if (compareIsEqual)
 return true;
 return false;
}

5.8Locality of Reference for Local Variables
In C, variables can only be defined at the beginning of the block. In C++, a variable definition is
considered as another statement, and therefore can be anywhere within the block. So keep the local
variable definitions close to where they are used. Do the following

5.9No Redundant Parentheses
In conditional expressions, remove any redundant parentheses. Use the C++ precedence rules guide the
behavior, rather than using redundant parentheses. Use

if (c == '\n' || c == '\t')

rather than,

if ((c == '\n') || (c == '\t'))

5.10Function Preferences
For portability, use the standard C library functions over the operating system’s API. For example, use
strcpy() rather than lstrcpy() unless there is a need to use the operating system’s. When using the operating
system API, it should explain why it was chosen.

5.11Optimizing Memory Usage

5.11.1Global Variables
The number of global variables should be kept to a minimum. If a global variable is needed, try to make it
a global pointer to an object, rather than a global instance. Then at run-time, dynamically allocate the
object and free it.

5.11.2Stack
Local variables consume stack space. Keep local variables to a minimum as well. If you need to have a
local array or a local object that is pretty large, then use the same pointer technique for global variables.

Another technique to use for local variables is using smart pointers. With smart pointers, you get all the
benefits of pointers, but you can forget about explicitly deleting the object. For example, if you have this
type of code:

Borland International Confidential 15

OWL Style Guidelines 4/19/1995 11:11:00 AM

void
func()
{
 TSomeObject object;

 // Do stuff with object
 //
}

Change it to using pointers and references:

void
func()
{
 TSomeObject* objectPtr = new TSomeObject;
 TSomeObject& object = *objectPtr; // reference for compatability

 // Do stuff with object
 //

 delete objectPtr;
}

And use this form for smart pointers:

#include <classlib/pointer.h>

void
func()
{
 TPointer<TSomeObject> objectPtr = new TSomeObject;
 TSomeObject& object = *objectPtr;

 // Do stuff with object
 //

 // No need to call delete
 //
}

A big benefit from using smart pointers is whenever the smart pointer goes out of scope, regardless if the
function returned or an exception is throw, it automatically deletes the object. This is not true for the case
of using only pointers because an explicit delete is required.

If you have an array, use TAPointer to get a smart pointer for the array.

6General OWL Usage

6.1Frame Windows
In general, do not derive from frame windows such as TFrameWindow, TMDIFrame, or
TDecoratedFrame. All user-specific windows should be derived from TWindow and inserted as a client to
one of the frames. If there are messages needed to be caught at the frame level, then it could be a problem
with the frame not fowarding the message to the client (i.e. a bug in OWL).

If there are messages that specifically need to be caught at the application level, do not put them in the
response table for the main window, put them in the derived TApplication class.

6.2OwlMain
Use OwlMain. Do not create your own WinMain for your applications.

Borland International Confidential 16

OWL Style Guidelines 4/19/1995 11:11:00 AM

Use OwlMain for the entry point of your DLLs as well. It will be called with the right arguments on
startup of the DLL.

6.3InitMainWindow
In TApplication::InitMainWindow, do not use

MainWindow = new TFrameWindow(...);

Instead use

SetMainWindow(new TFrameWindow(...));

6.4Resources
Resources can be named with a number or a string identifier. Use the number identifier, rather than the
string.

Borland International Confidential 17

	1 Purpose
	2 Naming Conventions
	2.1 Identifiers
	2.1.1 Resource Identifiers
	2.1.2 Miscellaneous Identifiers
	2.1.3 Command Member Functions
	2.1.4 Member Functions That Handle Child Notifications

	2.2 Types

	3 Comments
	3.1 Class Comments
	3.2 Block comments
	3.3 Statement-Blocks Comments
	3.4 Single-line Comments

	4 Layout
	4.1 Copyright Notice
	4.2 Files
	4.2.1 Header Files (.h)
	4.2.2 Resource header files (.rh)
	4.2.3 Resource Files (.rc)
	4.2.4 Source Files

	4.3 Whitespace, Indentation, and Braces
	4.3.1 Tabs and Indentation
	4.3.2 Line Breakage
	4.3.3 Keywords and Braces
	4.3.3.1 Function Definition
	4.3.3.2 Operators
	4.3.3.3 Control Flow
	4.3.3.4 Exception Handling
	4.3.3.5 Enums and Unions

	4.3.4 Preprocessor macros
	4.3.4.1 Length
	4.3.4.2 Conditionals

	4.4 Class and Struct Declaration
	4.5 Pointers and References
	4.6 Multiple Declarations

	5 General Coding
	5.1 Makefiles
	5.2 Supporting Various Platforms
	5.3 Headers
	5.3.1 Precompiled Headers
	5.3.2 System Headers

	5.4 Warnings
	5.5 Diagnostics
	5.5.1 PRECONDITION (BoolExp), PRECONDITIONX (BoolExp, Message)
	5.5.2 CHECK (BoolExp), CHECKX (BoolExp, Message)
	5.5.3 WARN (BoolExp, Message), WARNX(Group, BoolExp, Level, Message)
	5.5.4 TRACE (Message), TRACEX(Group, Level, Message)

	5.6 Catch Memory Leaks
	5.7 C++ Usage
	5.7.1 Extern “C”
	5.7.2 Scoping
	5.7.3 Inline functions
	5.7.4 Constants
	5.7.5 Goto
	5.7.6 Casts
	5.7.7 New and Delete
	5.7.8 Class declaration

	5.8 Locality of Reference for Local Variables
	5.9 No Redundant Parentheses
	5.10 Function Preferences
	5.11 Optimizing Memory Usage
	5.11.1 Global Variables
	5.11.2 Stack

	6 General OWL Usage
	6.1 Frame Windows
	6.2 OwlMain
	6.3 InitMainWindow
	6.4 Resources

