
Copyright © 1997. Borland International, Inc.

Using Borland C++Builder Forms in OWL and MFC Applications

Written by Brian Myers and Greg Cole

Contents
I. Introduction
II. Examples
III. Combining OWL and VCL

· Instructions
· Potential Difficulties Using OWL with VCL

IV. Combining MFC and VCL
· Instructions

V. Late breaking developments - an alternative integration strategy

I. Introduction
This document describes how to build OWL or MFC programs that invoke forms designed visually in C+
+Builder using the Visual Component Library. The Visual Component Library (VCL) is the class
framework that ships with C++Builder and Delphi. Programs you design visually as forms in C++Builder
and Delphi use components built from VCL.

This paper explains how to combine OWL and MFC applications with forms built using C++Builder. It's
certainly possible to combine C++ applications with forms built using Delphi, but it is easier with C+
+Builder because of the common language, C++. For more information on blending C++ with Delphi
code, look on http://www.borland.com/borlandcpp/papers for "Sharing Code and Objects Between Delphi
and C++" and "Application Development with Borland C++ and Delphi."

Pros and Cons
The main reason to consider combining the OWL or MFC framework with the VCL framework is to take
advantage of VCL while leveraging all your existing code. For example, the RAD visual design
capabilities of Borland C++Builder make it easy to design many self-contained dialog boxes very quickly.
You can then invoke those forms directly from your OWL application.

The smallest unit that transfers easily from VCL to another framework is a form. Taking individual
controls or components out of VCL individually would be more difficult. And you can get the effect of
transferring a single control alone by creating a form that fits the control exactly, invisibly, and bringing
that form to OWL.

You can use a VCL form as a dialog or as a client window in your OWL application, and you can put all
the controls you want onto a form.

Note: Section V, Late breaking developments, details an alternative integration strategy which is both
quicker and easier to implement.

Combining OWL or MFC with VCL involves the following steps:
· Install both C++Builder and Borland C++ 5.0. The Service Release version of Borland C++ 5.0 is

required. This release will be available shortly after the release of Borland C++Builder.
· Put BC5\BIN first on your path and define BCBROOT as an environment variable pointing to your

C++Builder installation.
· Copy the examples under bc5\examples\cbuilder from your CD to your hard drive.
· Link to a version of the OWL or MFC library that has been rebuilt for VCL compatibility.

· For OWL, this means either OWL52V.DLL or OWLWV.LIB. Both are available on the
Borland C++ 5.0 Service Release CD.

· For MFC, you'll have to rebuild the MFC library. See the instructions below.

Copyright © 1997. Borland International, Inc.

· Use #define STRICT everywhere. (OWL always does anyway, but VCL does not.)

Also, combining both OWL and VCL results, not surprisingly, in larger .EXE files than would be expected
when working with a single class library. A non-debugging version of the simple OWLDLG example
linked dynamically and built with the -O1 switch (optimize for size) is about 266K.

If you rely on string tables for editing or internationalizing your user interface, be aware that VCL
application UI strings are written in the binary DFM file. VCL forms can be viewed and edited as text
and, in addition, a Borland C++Builder Translation Suite will be available after the release of C++Builder
based upon the Delphi Translation Suite. This tool supports string extraction, table-based translation,
context-sensitive translation for forms and menus, and more.

II. Examples
Borland C++ 5.0 Service Release includes three new examples demonstrating ways to combine VCL
forms with OWL and MFC applications. All three examples are located on the CD under
\BC5\EXAMPLES\CBUILDER.

EXAMPLES\CBUILDER\OWLDLG: located on your CD
In this example, an OWL application invokes a dialog box that was created with C++Builder. The dialog
box is a VCL form, not an OWL TDialog object. You will want to create your own
bc5\examples\cbuilder\owldlg directory on your hard drive and copy the example files from your CD to
your hard drive.

OWLDLG demonstrates simple interaction between to the OWL and VCL parts. A menu command
invokes the dialog. The dialog asks the user to pick a color. When the dialog closes, it passes the selected
color back to the application. Each time the user invokes the dialog, the OWL application tells the dialog
what the current color setting is, and the dialog starts by showing the current color.

Copy the OWLDLG example from the Borland C++ CD
The Borland C++ 5.0 Service Release ships with new a example that demonstrate how to combine OWL
and VCL. The new example is not copied to your hard drive during installation. You'll need to copy it
from the CD manually.

· Create a bc5\examples\cbuilder\owldlg directory on your hard drive. It is important to create
this in the right place in order for the .ide file copied over to work. From your bc5\examples
directory on your hard drive:

mkdir cbuilder
cd cbuilder
mkdir owldlg

· From your CD go to the bc5\examples\cbuilder\owldlg directory and issue the command:
copy /s <installed-drive>:bc5\examples\cbuilder\owldlg

EXAMPLES\CBUILDER\HTMLFORM: located on your CD
HTMLForm uses a VCL form to host an ActiveX control in an OWL application. You will want to create
your own bc5\examples\cbuilder\htmlform directory on your hard drive and copy the example files from
your CD to your hard drive. The VCL form contains a tool bar and the NetManage HTML browser OCX
control, available with the Client/Server and Professional versions of C++Builder. The OWL frame has a
menu and a status bar. The client window of the OWL frame is the VCL form. The user can type a URL
in the VCL tool bar and browse that site. The OCX control generates events when it opens a URL and
when it finishes downloading from the URL. The VCL handlers for these events place messages on the
OWL status bar. The user can select sites from an OWL menu and OWL calls OCX methods to open the
appropriate URL.

Copy the HTMLFORM example from the Borland C++ CD

Copyright © 1997. Borland International, Inc.

The Borland C++ 5.0 Service Release ships with new a example that demonstrate how to combine OWL
and VCL. The new example is not copied to your hard drive during installation. You'll need to copy it
from the CD manually.

· Create a bc5\examples\cbuilder\htmlform directory on your hard drive. It is important to create
this in the right place in order for the .ide file copied over to work. From your bc5\examples
directory on your hard drive:

mkdir cbuilder
cd cbuilder
mkdir htmlform

· From your CD go to the bc5\examples\cbuilder\htmlform directory and issue the command:
copy /s <installed-drive>:bc5\examples\cbuilder\htmlform

EXAMPLES\CBUILDER\MFCDLG: located on your CD
This example resembles OWLDLG in that it invokes a VCL form as a dialog box, but this time from an
MFC application. You will want to create your own bc5\examples\cbuilder\mfcdlg directory on your hard
drive and copy the example files from your CD to your hard drive. The program in the MFCDLG
directory is a modified version of the CTRLTEST program from the standard MFC examples. MFCDLG
is described in more detail below, under the heading "Combining MFC and VCL."

Copy the MFCDLG example from the Borland C++ CD
The Borland C++ 5.0 Service Release ships with new a example that demonstrate how to combine MFC
and VCL. The new example is not copied to your hard drive during installation. You'll need to copy it
from the CD manually.

· Create a bc5\examples\cbuilder\mfcdlg directory on your hard drive. It is important to create
this in the right place in order for the .ide file copied over to work. From your bc5\examples
directory on your hard drive:

mkdir cbuilder
cd cbuilder
mkdir mfcdlg

· From your CD go to the bc5\examples\cbuilder\mfcdlg directory and issue the command:
copy /s <installed-drive>:bc5\examples\cbuilder\mfcdlg

III. Combining OWL and VCL
This section gives step-by-step instructions for creating programs like OWLDLG and HTMLFORM. It
also explains how to avoid some possible pitfalls. If you want to try the OWLDLG and HTMLFORM
examples follow the instructions above and copy them from your CD to your hard drive.

Instructions
To combine OWL and VCL in your programs, follow these steps.

Set up your machine
· Install both Borland C++Builder and Borland C++ 5.0 Service Release on your machine.
· Set the path and environment so that the BC Integrated Development Environment (IDE) and OWL

makefiles can locate the source, library, include, and tools directories for both OWL and VCL.
· Put \BC5\BIN first on your path (before C++Builder, if it is there too.)
· Define BCBROOT as an environment variable pointing to the directory where C+

+Builder is installed, for example:

SET BCBROOT=C:\CBUILDER

Copy the VCL-Compatible OWL Libraries from the Borland C++ CD

Copyright © 1997. Borland International, Inc.

The Borland C++ 5.0 Service Release ships with new libraries that are essential for combining OWL with
VCL. The new VCL-compatible libraries are not copied to your hard drive during installation. You'll
need to copy them from the CD manually.

· Copy these files into the BIN and LIB directories of your Borland C++ 5.0 tree.

CD directory Description
\BC5\BIN\OWL52V.DLL OWL DLL
\BC5\BIN\BDS52V.DLL BIDS DLL
\BC5\LIB\OWLWVI.LIB OWL DLL import library
\BC5\LIB\BIDSVI.LIB BIDS DLL import library
\BC5\LIB\OWLWV.LIB OWL static-link library
\BC5\LIB\BIDSV.LIB BIDS static-link library

The CD's BIN and LIB directories also contain VCL-compatible OCF libraries and diagnostic versions of
all the VCL-compatible libraries.

Building the VCL-Compatible Libraries Yourself
You can also build the VCL-compatible libraries yourself, if you prefer. The makefiles under
\BC5\SOURCE recognize a new -DVCL switch and will pick the right options for you:

cd c:\bc5\source\classlib
make BIDSNAME=bids BIDSVER=52 -DVCL
cd c:\bc5\source\ocf
make -DVCL
cd c:\bc5\source\owl
make -DVCL

To make the DLL versions, add the -DUSEDLL flag to each command line. To make debugging or
diagnostic versions, add the -DDEBUG and -DDIAGS flags. Don't use the -DCODEGUARD flag –
CodeGuard support for the Delphi and C++Builder VCL is not yet available.

To use the incremental linker instead of TLINK32, add the -DILINK flag.

Why is a New OWL Library Necessary for Working with VCL?
The "V" versions of the OWL libraries use alignment and vtable compiler options that make them
compatible with VCL . They also consider enums to be the size of a byte rather than the size of an int, as
does VCL.

VCL uses a new version of the run-time library, the one that ships with Borland C++Builder
(CP32MT.LIB). The new RTL to has a different memory manager. To work with VCL, OWL must be
linked to the VCL's RTL. Because the VCL's RTL is multithreading, the VCL-compatible version of
OWL is really the MODEL=t version of OWL, now built with different command-line options.

Finally, the VCL and OWL frameworks happen to use a lot of the same names for different classes. Both
define a TApplication, a TStatusBar, a TRect, etc. When you turn on the -DVCL flag you also turn on a
namespace wrapper around OWL. This lets you tell the compiler which version of TRect you mean by
writing OWL::TRect or Windows::TRect (where Windows is a namespace defined by VCL).

Create a C++Builder Form
· Launch C++Builder and create a new project. Design your form visually and program it
completely—adjust properties, add events, and extend your TForm-derived class in any way that will
be useful.

Copyright © 1997. Borland International, Inc.

It's C++, just like OWL. You can do whatever you like with the form. You will still be able to edit the
form even after building it into an OWL app, but making it as complete as possible the first time helps.

Import the Form Into Your OWL Project
· The .H, .CPP, and .DFM files from your C++Builder project are needed for the OWL project. Copy

them to the OWL project directory.
Command line Users: you can just point your OWL makefile to the C++Builder project files.
IDE Users: add these files to your project using the project views local menu | Add node.

· Define STRICT in every unit. (You can omit it if the first Windows header you include is an
OWL header. Otherwise, be sure to #define STRICT explicitly.)

· Call AdoptVCLAppWindow in your SetupWindow function. The adoption function is defined for
you in ADOPT.H and ADOPT.CPP, part of the VCLDLG example. See ADOPT.H for more details
about what it's doing and why.

Build Your Program
You've installed the VCL-compatible OWL libraries, set your environment variables, and designed your
C++Builder form. Depending on the logic of your program, you may also have to add a few function calls
so the OWL code can interact with the VCL code. They're just C++ function calls. VCL objects can call
methods on OWL objects and vice versa without any difficulty.

The next step is to build all the files together.

Directory Options
Command line Users:
Be sure to add this switch for locating the VCL OBJ files:

-j$(BCBROOT)\lib\obj

IDE Users:
To locate the C++Builder include files, the following must be appended to your projects include path:

$env(bcbroot)\include;$env(bcbroot)\include\vcl

To locate the VCL OBJ files, the following must be appended to your projects Library path:

$env(bcbroot)\lib;$env(bcbroot)\lib\obj

Linker Options
If you rebuild your project often, using ILINK32 instead of TLINK32 will speed up your builds
noticeably.

Compiler Options
Setting the right options is necessary for a successful compile and link because OWL and VCL normally
define vtables differently and use different sizes for enums. Here are the most important option switches
to use:

Command line Users:
-a4 align on 4-byte boundaries (OWL defaults to 1)
-b- don't treat enums as ints (let them be smaller)
-Vx allow 0-length empty member functions
-Ve allow 0-length empty base classes

Since -WM (multithreading) is now the default for BCC32 in both Borland C++Builder and
Borland C++ 5.0 Service Release, you don't need to set it explicitly.

Copyright © 1997. Borland International, Inc.

IDE Users:
off Compiler | Code Generation, Allocate enums as ints (OWL defaults to on)
on 32-bit Compiler | Processor, Data alignment - Double word (4-byte)
on C++ Options | General, Zero-lenth empty base classes
on C++ Options | General, Zero-length empty class member functions

Even though -WM (multithreading) is now the default for BCC32 in both Borland C++Builder
and Borland C++ 5.0 Service Release, this is not true for the IDE. You will need to turn on the
Multithread option explicitly using TargetExpert. While in TargetExpert, choose Dynamic if you
want to use the OWL DLLs, or Static, to use the static libraries. Note, since TargetExpert resets
the libraries, make these changes before manually updating/adding libraries.

Defines
When built for VCL-compatibility, the OWL libraries wrap themselves in three namespaces: ClassLib,
OCF, and OWL. Because the namespaces are conditionalized in the header files, when using the OWL
namespaces you must always define the BI_NAMESPACE symbol for the compiler.

Command line Users: -DBI_NAMESPACE
Command line Users using OWLMAKE.GEN: -DNAMESPACE
IDE Users: add BI_NAMESPACE to the project's Defines. Also, If you are building with the OWL DLL,

confirm these are defined: _RTLDLL;_BIDSDLL;_OWLDLL. If you are building statically, be
sure they are not defined.

Libraries
VCL applications require a number of supporting libraries. You'll probably need all of these:

owlwv bidsv cp32mt vcl ole2w32 oc30 mpr user32 import32

To use the DLL versions of the libraries, replace the first three libraries with owlvi, bidsvi, and cp32mti.

IDE Users: To see what libraries are currently being included by your project, turn on Show run-time
nodes (see Options | Environment, Project View). To add the missing BC++ Libraries, use TargetExpert.
You will then have to modify the BIDS and OWL libraries to be the correct VCL compatible libraries. Do
this by using the project views local menu | Edit node attributes, and changing the name field. Next add
the missing C++Builder Libraries explicitly using the project views local menu | Add node.

Using OWLMAKE.GEN
All the OWL examples in Borland C++, including OWLDLG and HTMLFORM, have short makefiles that
generate their rules by including a larger and more general makefiles, OWLMAKE.GEN and
MAKEFILE.GEN. These have been updated so that they too understand the -DVCL switch. If you're
familiar with using MAKEFILE.GEN, then writing OWL/VCL makefiles is easy—just add -DVCL
whatever you already have. (Also be sure to set BCBROOT as an environment variable—see above.)

Common Build Errors
Depending on what OWL types you use, you are likely to see compiler warnings such as "ambiguity
between OWL::TColor and Graphics::TColor." Because VCL and OWL use the same names for a handful
of classes it is sometimes necessary to be completely explicit about which you mean. The VCL-
compatible version of the OWL framework uses three namespaces: ClassLib, OCF, and OWL. VCL is
split up into many smaller namespaces such the as Graphics, Forms, BDE, Mapi, Controls, and others.
Resolve ambiguities by adding an explicit namespace qualifier to each ambiguous class name.

OWL Classes VCL Classes
ClassLib::TColor Graphics::TColor

Copyright © 1997. Borland International, Inc.

OWL::TApplication Forms::TApplication
ClassLib::TRect Windows::TRect

Both OWL and VCL have "using" clauses in their headers so you don't need to write using namespace
OWL or using namespace Forms in your own code. They namespaces are always already open for you.

If your code contains forward references to classes defined inside the namespace, then you should wrap
those references in the namespace, too. For example, if your code contains this line now

class _OWLCLASS TStatusBar;

You should change it this:

namespace OWL {
class _OWLCLASS TStatusBar;
}

Finally, if the linker complains about unresolved references to symbols that include namespace scopes, be
sure that you have defined BI_NAMESPACE for the compiler (see Compiler Options, above.)

Debugging Versions
To build debugging versions, link the executable to VCLD.LIB instead of VCL.LIB. (And as always you
can rebuild OWLWV.LIB and OWLWVI.LIB with the DEBUG and DIAGS options.)

Potential Difficulties Using OWL with VCL
VCL and OWL use the same identifier value for different resource strings. Furthermore, due to the way
VCL apps are built, the VCL strings always get priority. EXEs that combine OWL and VCL always get
the VCL string, not the OWL string, when there is a conflict. HTMLForm has to turn off the display of
status bar hint text for system menu items because otherwise the wrong strings appear. Other resource ID
collisions may still be discovered.

OWL cannot renumber these strings because their numbers are determined by the command ID for the
relevant system menu item. One workaround: build the VCL modules of an OWL/VCL app into a
separate DLL. All the VCL resources will end up there. OWL will look for its resources in the EXE,
VCL in the DLL.

IV. Combining MFC and VCL
This section describes how to modify an MFC example so that it will host a form generated by Borland C+
+Builder. Specifically, it tells how to add a VCL form to the standard MFC example, CTRLTEST (found
in BC5\EXAMPLES\MFC\GENERAL\CTRLTEST.) The instructions detail all the modifications needed
to add a dialog box designed as a form in C++Builder. The modified example can be found on your CD in
BC5\EXAMPLES\CBUILDER\MFCDLG. If you want to try the MFCDLG example follow the
instructions in the EXAMPLES section and copy them from your CD to your hard drive.

CTRLTEST shows an MFC window invoking different types of dialog boxes. MFCDLG adds a
command to invoke a C++Builder form as though it were just another dialog box..

These instructions assume that both Borland C++Builder and Borland C++ are installed. It also assumes
you have copied the example from the CD to your hard drive. MFC is only included in Borland C++, not
C++Builder. VCL is in C++Builder, not in Borland C++.

Instructions
VCL applications are always multithreaded and linked statically to the MFC library (no MFC DLLs). The
corresponding MFC library is NAFXCW.LIB.

Copyright © 1997. Borland International, Inc.

Rebuild NAFXCW.LIB
NAFXCW.LIB is normally built with compiler switches that conflict with VCL. To make a compatible
version, you'll need to rebuild NAFXCW.LIB with the proper compiler and linker switches. Here are the
steps:

· Copy the MFC source code from BC5\SOURCE\MFC directory on the CD to your hard disk.
Preserve directory names and structure so that the makefiles will work. For example, copy it to C:
\BC5\SOURCE\MFC.

· From the MFC subdirectory enter the command:

make -B -l -fborland.mak DEBUG=0 DBGINFO=0 LIBDIR=c:\bc5\lib
"OPT=-a4 -b- -Vx -Ve"

This results in a new version of NAFXCW.LIB being created in the C:\BC5\LIB directory

Create the Form in C++Builder
Using Borland C++ Builder, create the desired form. In our modifications to CTRLTEST, we named the
form "SimpleCP." C++ Builder creates a .CPP file containing the form's code, a .H file to describe the
form, and a DFM file which holds the resource data necessary to create and display the form at runtime.

Add a Menu Choice to CTRLTEST
CTRLTEST already has a menu for selecting different kinds of dialog boxes. We added an item to it.

Add a command ID to RESOURCE.H:

#define IDM_TEST_CPPBUILDER 413

Add a corresponding menu item to the AFX_IDI_STD_FRAME menu defined in CRTLTEST.RC:

MENUITEM "&C++Builder Form...", IDM_TEST_CPPBUILDER

Extend the CTestWindow class defined in CTRLTEST.H by adding a method to handle the menu
selection:

afx_msg void OnTestCppBuilder();

Extend the message map in CTRLTEST.CPP so that selection of the menu at runtime will cause the flow
of execution to be passed to the handler:

ON_COMMAND(IDM_TEST_CPPBUILDER, OnTestCppBuilder)

Create a new file to hold the implementation of the command handler. Ours is BLDRTEST.CPP.

#include "stdafx.h"
#include "ctrltest.h"

// C++Builder and MFC both have BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP
// macros. They are performing analogous tasks but in
// different ways. The defines made by MFC must be removed prior
to
// including VCL.H to avoid

Copyright © 1997. Borland International, Inc.

// compiler errors

#undef BEGIN_MESSAGE_MAP
#undef END_MESSAGE_MAP
#include <vcl.h>

#include "SimpleCPPBuilder.h"

void CTestWindow::OnTestCppBuilder()
{
 TForm1 *aForm = new TForm1(NULL);
 aForm->ShowModal();
}

// The purpose of the following code is to call the VCL
// initialization code once during application startup.
//
static void foo(){
 Application->Initialize();
}
#pragma startup foo

Reparent the main VCL window
During VCL initialization a VCL TApplication window is created. This is a hidden top level window used
to represent the application to the system (its icon shows up in the task bar). In a normal VCL application,
this is the desired behavior. However, when the main window is an MFC window the result is two top
level windows. If you skipped this step, you would end up with two icons in the Task Bar when you ran
CTRLTEST.EXE, both referring to the same application.

To avoid the duplication, modify CTRLTEST.CPP (the main module) to #include the file ADOPT.H.
Then call AdoptVCLAppWindow to in the CTestApp::InitInstance() method:

AdoptVCLAppWindow(*pMainWnd);

The code in ADOPT.CPP makes the invisible VCL window a child of the main MFC window so only one
icon appears in the Task Bar for CTRLTEST.

Modify the Makefile

Modify Symbol Definitions
The MAKEFILE for CTRLTEST needs to be extended. Add these lines to it:

DEBUG=0
CFLAGS=-a4 -b- -Vx -Ve -D_VCL_LEAN_AND_MEAN
LINKFLAGS=-V4.0
CFLAGS=$(CFLAGS) -I"c:\program
files\borland\cbuilder\include\vcl"
OTHERLIBS=vcl
OTHERLIBPATH="c:\program files\borland\cbuilder\lib;c:\program
files\borland\cbuilder\lib\obj"

The line "CFLAGS=-a4 -b- -Vx -Ve -D_VCL_LEAN_AND_MEAN" sets the appropriate compiler
options and omits portions of the VCL which are not strictly necessary when combining MFC and VCL.

Copyright © 1997. Borland International, Inc.

The line "LINKFLAGS=-V4.0" is not strictly necessary. It will tag the resulting .EXE as being a
Windows 4.0 application. Using this tag makes the dialogs in the application look better when run under
Win95 or WinNT because they use the CTRL3D extensions.

The line "CFLAGS=$(CFLAGS) -I"c:\program files\borland\cbuilder\include\vcl"" assumes that Borland
C++ Builder has been installed to the C:\PROGRAM FILES\BORLAND\CBUILDER directory. The line
ensures that header files needed by VCL are locatable.

The line "OTHERLIBS=vcl" specifies that the VCL.LIB file should be linked in to the resulting .EXE.
This library resolves the references which will be made to VCL supplied functionality.

The line "OTHERLIBPATH="c:\program files\borland\cbuilder\lib;c:\program
files\borland\cbuilder\lib\obj"" will be used to expand the library search path so that VCL.LIB can be
located.

Add the New Modules to the Build Process
The MAKEFILE contains the line:

OBJS=ctrltest.obj paredit.obj \

we need to add our new files to this list so that they will be compiled and linked. Change the line to be:

OBJS=SimpleCPPBuilder.obj adopt.obj bldrtest.obj \
 ctrltest.obj paredit.obj \

Tell Make What Libraries to Use
The MFCSAMPS.MAK file sets the libraries to be linked with for a statically linked MFC app with the
line:

LIBRARIES=nafxcw$(DEBUG_SUFFIX).lib $(OTHERLIBS) cw32mt.lib\
import32.lib

CP32MT.LIB is a new version of the runtime library (CW32MT was used in past versions) designed to be
fully VCL compatible.

LIBRARIES=nafxcw$(DEBUG_SUFFIX).lib $(OTHERLIBS) cp32mt.lib\
import32.lib

We need to specify a number of other libraries (which we can do by setting OTHERLIBS in our makefile)

Tell Make Where to Look for Libraries
We need to set the library search path to include the C++Builder libraries as well as the standard Borland
C++ libraries. MFCSAMPS.MAK sets LINKFLAGS with a line like:

LINKFLAGS=/n /m /s /w-inq $(LINKDEBUG) /L$(BORLIB) $(LINKFLAGS)

Since BORLIB is used to specify startup code, we can't change it. So we'll extend the line to this:

LINKFLAGS=/n /m /s /w-inq $(LINKDEBUG) /L$(BORLIB);$
(OTHERLIBPATH)\
$(LINKFLAGS)

Help MAKE Locate Its Include File
The MAKEFILE contains the line

!include <$(MAKEDIR)\..\include\mfc\mfcsamps.mak>

Copyright © 1997. Borland International, Inc.

MAKEDIR is an internal macro which expands to be the directory where MAKE was invoked. If C+
+Builder is installed after BC5.0 then typing MAKE on the command line invokes the MAKE.EXE from
CBUILDER\BIN. That MAKE does not have a ..\INCLUDE\MFC\MFCSAMPS.MAK file.

Either put BC5\BIN first on your path, or use an absolute path in the !include line of your makefile so
MAKE can find the MFCSAMPS.MAK installed with Borland C++.

How to Use Debugging Versions of the Libraries
The line "DEBUG=0" makes the linker use the non-debugging version of the MFC library. (To use the
debugging version, you could build NAFXCWD.LIB using the command

make -B -l -fborland.mak DEBUG=1 DBGINFO=0 LIBDIR=c:\bc5\lib
"OPT=-a4 -b- -Vx -Ve"

There is also a debugging version of the VCL. To use it, change OTHERLIBS=vcl to OTHERLIBS=vcld.

V. Late breaking developments - an alternative integration
strategy
This section describes an alternate way of combining VCL with OWL or MFC. This approach is simpler,
but has not been tested as well as the above method.

This method recognizes the differences in vtable alignment, enum size and structure packing between
VCL and MFC/OWL and addresses it by ensuring that the appropriate compiler options are in effect when
VCL related classes are encountered. This is done by wrapping references to VCL within header files
which explicitly set/reset these options.

The following instructions describe how to modify one of the MFC example programs CTRLTEST (found
in BC5\EXAMPLES\MFC\GENERAL\CTRLTEST), so that it will host a VCL based form.

These instructions assume that both Borland C++Builder and Borland C++ are installed. MFC is only
included in Borland C++, not C++Builder. VCL is included in C++Builder, not in Borland C++.

Instructions

Copy new VCL include files
Release 1.0 of C++Builder shipped with several header files which require upgrading to resolve compile
time conflicts. The new header files have no incompatibilities with the other headers shipped with C+
+Builder and so there is no need to rebuild any VCL based code that relies on them. This needs to be done
only once. The existing files:

SYSDEFS.H
WINDOWS.HPP
CONTROLS.HPP
RICHEDIT.HPP

and the new files:
VCLON.H
VCLOFF.H

in the directory BC5\EXAMPLES\CBUILDER\INCLUDE on your CD need to be copied into the
CBUILDER\INCLUDE\VCL subdirectory of your existing CBUILDER installation.

Create C++ Builder form
Use C++Builder to create the desired form - call it myform. Copy the 3 form files (myform.cpp,
myform.h, myform.dfm) to the project's directory.

copy myform.* c:\bc5\examples\mfc\general\ctrltest

Copyright © 1997. Borland International, Inc.

Load the project file
Run BCW and open the project file (c:\bc5\examples\mfc\general\ctrltest\ctrltest.ide).

Extend the project's directories
From the Project View window, select the CTRLTEST.EXE node and use the right mouse button to
invoke the node's context menu. Select "Edit local options" to see the Project Options Dialog. Select the
"Directories" category and append C++Builder's directories to the existing directories. To the Include path
add:

$env(bcbroot)\include;$env(bcbroot)\include\vcl

and to the Library path add:

$env(bcbroot)\lib;$env(bcbroot)\lib\obj

Add VCL form to project
From the Project View window, select the CTRLTEST.EXE node and use the right mouse button to
invoke the node's context menu. Select "Add node", and select the MYFORM.CPP file.

Switch runtime libraries
From the IDE's main menu select Options | Environment | Project View and turn on the "Show run-time
nodes" option.

In the Project View window, select the node named "cw32mt.lib". Remove it from the project by pressing
the Delete key.

This is an important step - your project will crash if this runtime library is left in the project because
VCLON.H brings in an alternate (VCL friendly) runtime library named by CP32MT.LIB.

Incorporate VCL functionality
Make the following modifications to the file CTRLTEST.CPP:

 a. add the following after the last #include:

 #include "vclon.h"
 #include "myform.h"
 #include "vcloff.h"

 b. in the function "CTestApp::InitInstance()", after Create has been
 called on "pMainWnd", add the following code (init VCL stuff
 correctly):

 Application->Initialize();
SetParent(Application->Handle, *pMainWnd);

 c. in the "CTestApp::OnAppAbout()" function (at the bottom of the file),
 comment out the single line of code and add the following:

 TForm1 *form = new TForm1(Application);
 form->Left = 100;
 form->Top = 100;
 form->ShowModal();
 delete form;

Copyright © 1997. Borland International, Inc.

Test the results
Make & run the project; use the "Help | About" menu to invoke the C++Builder dialog box.

Linker issues
VCL.H contains a compiler pragma that causes a library symbol to be emitted into the object file. When
this object file is encountered during the link it will cause the file referenced by the pragma to also be
included. An advantage of this technique is that the linked libraries can be changed without affecting the
project definition. A disadvantage is that control over exactly where (with respect to other object
modules) the referenced libraries will be encountered is difficult for the user to determine. The result may
be success, warnings or errors during link.

If your link succeeds with no warnings, the order of your linked objects requires no tweaking.

If your link encounters either warnings or errors, it is because the order in which files are being linked is
confusing the linker. Borland C++ version 5.02 comes with both an incremental linker (the default) and a
standard linker (controlled by the Options|Project|Linker|32-bit linker|Use incremental linker option).

Messages like:
Linking D:\BC5\EXAMPLES\MFC\GENERAL\CTRLTEST\ctrltest.exe
 Error: Unable to open file 'GRIDS.OBJ'
 Error: Unable to open file 'OUTLINE.OBJ'

Come from the incremental linker and can be fixed by ensuring that a source file containing
VCLON/VCLOFF is encountered prior to a file which simply includes VCL.H.

Messages like:
Linking D:\BC5\EXAMPLES\MFC\GENERAL\CTRLTEST\ctrltest.exe
 Warning: Export '_DebugHook' is duplicated
 Warning: Export '_ExceptionClass' is duplicated
 Warning: Export '__lockDebuggerData()' is duplicated
 Warning: Export '__unlockDebuggerData()' is duplicated
 Warning: Export '_DebugHook' is duplicated
 Warning: Export '_ExceptionClass' is duplicated
 Warning: Export '__lockDebuggerData()' is duplicated
 Warning: Export '__unlockDebuggerData()' is duplicated

Come from the standard linker and can safely be ignored (the duplicates aren't really duplicates at all, they
are the exact same code from the same place just referenced differently).

Copyright © 1997. Borland International, Inc.

